
123

Alexander Lazovik
Stefan Schulte (Eds.)

Workshops of ESOCC 2016
Vienna, Austria, September 5–7, 2016
Revised Selected Papers

Advances in
Service-Oriented
and Cloud Computing

Communications in Computer and Information Science 707

Communications
in Computer and Information Science 707

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu, Dominik Ślęzak,
and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

Junsong Yuan
Nanyang Technological University, Singapore, Singapore

Lizhu Zhou
Tsinghua University, Beijing, China

More information about this series at http://www.springer.com/series/7899

Alexander Lazovik • Stefan Schulte (Eds.)

Advances in
Service-Oriented
and Cloud Computing
Workshops of ESOCC 2016
Vienna, Austria, September 5–7, 2016
Revised Selected Papers

123

Editors
Alexander Lazovik
University of Groningen
Groningen
The Netherlands

Stefan Schulte
Vienna University of Technology
Vienna
Austria

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-72124-8 ISBN 978-3-319-72125-5 (eBook)
https://doi.org/10.1007/978-3-319-72125-5

Library of Congress Control Number: 2017962885

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the technical papers presented at the workshops collocated with
ESOCC 2016 (the 5th European Conference on Service-Oriented and Cloud Com-
puting), held in Vienna, Austria, during September 5–7, 2016. The workshops focused
on specific topics in service-oriented and cloud computing-related domains and
included the 4th International Workshop on Cloud for IoT (CLIoT 2016), the Second
International Workshop on Cloud Adoption and Migration (CloudWays 2016), the
Rethinking Services Research (ReSerCh) workshop, and the combined International
Workshop on Performance and Conformance of Workflow Engines and International
Workshop on Patterns and Pattern Languages for SOCC: Use and Discovery (PEACE
in PATTWORLD). This volume also includes selected papers from the conference’s
PhD Symposium, and the papers presented at the European Projects Track (EU Projects
2016) in conjunction with ESOCC 2016.

The CLIoT 2016 workshop aimed at discussing the limits and/or advantages of
existing cloud solutions for the Internet of Things (IoT) and at proposing original and
innovative contributions for enhancing real-world resources over cloud environments.
Smart connectivity with existing networks and context-aware computation is becoming
indispensable for IoT. Cloud computing provides a very strategic virtual infrastructure
that integrates monitoring devices, storage devices, analytics tools, virtualization
platforms, and client delivery. It supports enormous amounts of data generated for IoT
purposes, which have to be stored, processed, and presented in a seamless, efficient,
and easily interpretable form. These features make the cloud computing a promising
choice for supporting IoT services. IoT has the potential to offer the killer applications
of cloud computing, where the cloud allows one to access IoT-based resources and
capabilities, to process and manage IoT environments, and to deliver on-demand utility
IoT services such as sensing/actuation as a service.

Regardless of the benefits of cloud computing, many organizations still rely on
business-critical applications – legacy systems – developed over a long period of time
using traditional development methods. In spite of maintainability issues, (on-premise)
legacy systems are still crucial as they support core business processes. Therefore,
migrating legacy systems toward cloud-based platforms allows organizations to
leverage their existing systems deployed and provided (using publicly available
resources) as scalable cloud services. CloudWays 2016 brought together cloud
migration experts from both academia and industry. The workshop’s goal was to
promote discussions and collaboration among participants, to help disseminate novel
cloud migration practices and solutions, and to identify future cloud migration chal-
lenges and dimensions.

Workflow management systems provide platforms for delivering complex
service-oriented applications that need to satisfy enterprise-grade quality of service
(QoS) requirements such as dependability and scalability. Benchmarking is an estab-
lished practice that helps to drive continuous improvement of technology by setting a

clear standard and measuring and assessing its performance. Patterns have emerged in
several IT domains as lingua franca to document proven solutions for frequently
reoccurring problems. PEACE in PATTWORLD combines research in the field of
performance and conformance of workflow engines with the field of patterns.

The fourth section of the proceedings includes selected papers from the ReSerCh
workshop. Services have played a key role in innovating and revolutionizing most
software-intensive realms from automotive to urban planning to business processes
automation and so on. In a recent gathering of the IFIP working group on
service-oriented computing (http://ifip-wg-sos.deib.polimi.it), it was evaluated that the
sector is currently undergoing a deep change, which, if not correctly steered and
encouraged, may leave service-oriented research in disarray. The goals of the ReSerCh
workshop were twofold: On the one hand, it aimed to bring researchers and practi-
tioners to share ideas in unconventional and innovative ways that harness service
orientation for moving beyond current topics such as process automation or cloud
computing. On the other hand, it aimed to distill the notion of services and
service-oriented computing toward its originally intended tenets and challenges.

The main aim of the ESOCC 2016 PhD Symposium was to give PhD students an
opportunity to present their research activities and perspectives, to critically discuss
them with other PhD students and with established researchers in the area, and to get
fruitful feedback and advice on their research activity. As for the main conference, the
topics focused on all aspects of cloud computing, service-oriented architectures, Web
services, and related fields. After the symposium, the students who presented results
mature for a scientific publication were invited to submit an extended version of the
presented paper. This post-symposium proceedings volume includes these papers.

Finally, the EU Projects 2016 track aimed at presenting the major running
European-funded projects in the area of service-oriented and cloud computing, high-
lighting the main industrial and academic trends in terms of research and innovation.

The chairs would like to thank the individual workshop organizers, as well as all
authors, keynote speakers, and participants. We also want to thank the main conference
organizers for their support all along the process.

January 2018 Alexander Lazovik
Stefan Schulte

VI Preface

Organization

ESOCC 2016 was organized by TU Wien, Austria.

Organizing Committee

Workshop Chairs

Alexander Lazovik University of Groningen, The Netherlands
Stefan Schulte TU Wien, Austria

Workshop Organizers

Maria Fazio University of Messina, Italy
Pooyan Jamshidi Carnegie Mellon University, USA
Oliver Kopp University of Stuttgart, Germany
eva Kühn TU Wien, Austria
Joerg Lenhard Karlstad University, Sweden
Frank Leymann University of Stuttgart, Germany
Nabor C. Mendonça University of Fortaleza, Brazil
Claus Pahl Free University of Bozen-Bolzano, Italy
Cesare Pautasso University of Lugano, Switzerland
Dana Petcu West University of Temisoara, Romania
Pierluigi Plebani Politecnico di Milano, Italy
Damian A. Tamburri Politecnico di Milano, Italy
Guido Wirtz University of Bamberg, Germany

EU Projects Track

Antonio Brogi University of Pisa, Italy

PhD Symposium

Gianluigi Zavattaro University of Bologna, Italy
Wolf Zimmermann Martin Luther University of Halle-Wittenberg, Germany

Contents

CLoud for IoT

IoT-Big Data Software Ecosystems for Smart Cities Sensing: Challenges,
Open Issues, and Emerging Solutions . 5

Alexander D. Cartier, David H. Lee, Burak Kantarci, and Luca Foschini

Re-powering Service Provisioning in Federated Cloud Ecosystems: An
Algorithm Combining Energy Sustainability and Cost-Saving Strategies. 19

Maurizio Giacobbe, Antonio Celesti, Maria Fazio, Massimo Villari,
and Antonio Puliafito

A Motivating Case Study for Coordinating Deployment of Security VNF
in Federated Cloud Networks . 34

Philippe Massonet, Sébastien Dupont, Arnaud Michot, Anna Levin,
and Massimo Villari

The Big Bucket: An IoT Cloud Solution for Smart Waste Management
in Smart Cities . 43

Maurizio Giacobbe, Carlo Puliafito, and Marco Scarpa

Towards Distributed and Context-Aware Human-Centric
Cyber-Physical Systems . 59

Jose Garcia-Alonso, Javier Berrocal, Carlos Canal,
and Juan M. Murillo

Application Development and Deployment for IoT Devices 74
Farshad Ahmadighohandizi and Kari Systä

Cloud Adoption and Migration (CloudWays)

Cloud Migration Architecture and Pricing – Mapping a Licensing
Business Model for Software Vendors to a SaaS Business Model 91

Frank Fowley and Claus Pahl

A DMN-Based Approach for Dynamic Deployment Modelling
of Cloud Applications . 104

Frank Griesinger, Daniel Seybold, Jörg Domaschka, Kyriakos Kritikos,
and Robert Woitsch

Cloud Migration Methodologies: Preliminary Findings. 112
Mahdi Fahmideh, Farhad Daneshgar, and Fethi Rabhi

Workflow Skeletons: Improving Scientific Workflow Execution
Through Service Migration. 123

Tino Fleuren

Consumer-Driven API Testing with Performance Contracts 135
Johannes Stählin, Sebastian Lang, Fabian Kajzar, and Christian Zirpins

Patterns and Pattern Languages for SOCC: Use and Discovery,
Performance and Conformance of Workflow Engines
(PEACE in PATTWORLD)

Patterns for Workflow Engine Benchmarking . 151
Simon Harrer, Oliver Kopp, and Jörg Lenhard

Patterns in HCI – A Discussion of Lessons Learned 164
Alexander G. Mirnig, Artur Lupp, and Manfred Tscheligi

Interactive Dashboard for Workflow Engine Benchmarks 176
David Bimamisa, Mathias Müller, Simon Harrer, and Guido Wirtz

A Distributed Cross-Layer Monitoring System Based on QoS
Metrics Models. 189

Damianos Metallidis, Kyriakos Kritikos, Chrysostomos Zeginis,
and Dimitris Plexousakis

Rethinking Services (ResearCH)

Continuous, Trustless, and Fair: Changing Priorities
in Services Computing. 205

Stefan Tai

Data Integration and Quality Requirements in Emergency Services 211
Chiara Francalanci and Barbara Pernici

Challanges in Services Research: A Software Architecture Perspective. 219
Flavio De Paoli

PhD

Towards a Unified Management of Applications
on Heterogeneous Clouds. 233

Jose Carrasco, Francisco Durán, and Ernesto Pimentel

Deadlock Analysis of Service-Oriented Systems with Recursion
and Concurrency. 247

Mandy Weißbach

X Contents

Prediction of Quality of Service of Software Applications 260
Ahmad Ibrahim

Impact-Minimizing Runtime Adaptation in Cloud-Based
Data Stream Processing . 274

Cui Qin

Abstracts

Cloudiator - Enacting Deployments and Adaptation in PaaSage 289
Daniel Baur and Jörg Domaschka

BPaaS Execution in CloudSocket . 292
Daniel Seybold, Robert Woitsch, Jörg Domaschka, and Stefan Wesner

Context-Aware Cloud Topology Optimization for OpenStack 294
Christopher B. Hauser, Athanasios Tsitsipas, and Jörg Domaschka

Envisage: Developing SLA-Aware Deployed Services
with Formal Methods . 296

Elvira Albert, Frank de Boer, Reiner Hähnle, Einar Broch Johnsen,
and Cosimo Laneve

Molecular Dynamics with HyperFlow and Scalarm
on the PaaSage Platform . 299

Maciej Malawski, Bartosz Balis, Kamil Figiela, Maciej Pawlik,
Marian Bubak, Dariusz Król, Renata Słota, Michał Orzechowski,
Jacek Kitowski, and Dennis Hoppe

Quality-Aware Development of Big Data Applications with DICE 301
Giuliano Casale, Elisabetta Di Nitto, Pooyan Jamshidi,
and Damian A. Tamburri

The HORSE Project: IoT and Cloud Solutions for Dynamic
Manufacturing Processes . 303

Irene Vanderfeesten, Jonnro Erasmus, and Paul Grefen

BEACON Project: Software Defined Security Service Function Chaining in
Federated Clouds . 305

Massimo Villari, Giuseppe Tricomi, Anna Levin, Sébastien Dupont,
and Philippe Massonet

Author Index . 309

Contents XI

CLoud for IoT

Preface of CLIoT 2016

Internet of Things (IoT) technologies are changing the way we interact with the world
around us, and new business opportunities exploiting IoT solutions are arising. IoT
conceptual base aims to represent the physical world through uniquely identifiable and
interconnected objects (things). These things are able to capture information from the
environment, process them and/or perform actuation within the real world, thus sup-
porting the development of cyber-physical and autonomous systems in several appli-
cations domains. However, to achieve such challenging aims, the exploitation and
orchestration of several heterogeneous physical and virtual resources is necessary.
Cloud computing represents a very flexible technology, able to offer theoretically
unlimited computing and storage capabilities, and efficient communication services.
Cloud technologies address two important goals for distributed system: high scalability
and high availability. These features make the Cloud Computing a promising choice for
supporting IoT applications and services. However, appropriate Cloud solutions and
strategies aimed at the IoT need to be investigated in order to verify effectiveness and
efficiency. The International Workshop on CLoud for IoT (CLIoT) aims at bringing
together scientists, practitioners and PhD students in order to discuss the limits and/or
advantages of existing Cloud solutions for IoT, and to propose original and innovative
contributions for enhancing real world resources over Cloud environments.

CLIoT 2016 is the fourth edition of the International Workshop on CLoud for IoT,
and the topics of interest for CLIoT 2016 included but were not limited to:

– Innovative models and system architectures for Cloud based IoT
– IoT Data abstraction and processing
– Mobile Cloud
– Cloud storage for IoT
– Interaction between sensor networks and Cloud
– Discovery Service for IoT
– Cloud Computing based IoT technologies
– Wireless Sensor Networks into the Cloud
– Big data management using Clouds
– Smart Environments for IoT
– Ubiquitous computing/pervasive computing for IoT
– Real-time communication with smart objects
– Applications based on IoT and Cloud
– Inter-cloud management: Cloud Federation serving IoT
– Security and privacy in Clouds and IoT
– Edge, Fog and Dew Computing
– Micro-service architecture

All submitted manuscripts have been peer-reviewed by an international program
committee, with the objective of having at least three reviews for each paper. The final
acceptance rate of the manuscripts was 40%.

The contributions accepted for presentation at the workshop include the work of
Celesti et al., which presented a Multi-Criteria Decision Making algorithm able to
manage the migration of virtual machines among providers in order to lead towards
global energy sustainability and cost-saving.

Cartier et al. overviewed the prevalent solutions and architecture design principles
in IoT-big data ecosystems for smart cities sensing. Furthermore, they presented the
needs of IoT-big data software ecosystems by exemplifying existing IoT systems.

García-Alonso et al. investigated the key challenges that must be faced to build
distributed and context-aware human-centric Cyber-Physical Systems that take
advantage of the capabilities of modern smart devices.

Giacobbe et al. presented the Big Bucket IoT Cloud environment, where smart
dumpsters are equipped with low-cost sensors and open source easy-to-use hardware
and software.

In the workshop program, also two short papers were included. Massonet et al.
presented current work in the BEACON project to secure the federated network with a
global security policy. Ahmadi Ghohandizi et al. discussed an application framework,
development tool and execution platform for programmable remote devices.

Maria Fazio
Dana Petcu

Preface of CLIoT 2016 3

Organization

Workshop Organizers

Maria Fazio University of Messina, Italy
Dana Petcu West University of Timisoara, Romania

Steering Committee

Nik Bessis University of Derby, UK
Massimo Villari University of Messina, Italy

Technical Program Committee

Liz Bacon Greenwich University
Francisco J. Blaya Gonzálvez University of Murcia, Spain
Antonio Celesti University of Messina, Italy
Ciprian Dobre University Politehnica of Bucharest, Romania
Andy Edmonds Zurich University of Applied Sciences, Switzerland
Teodor-Florin Fortis West University of Timisoara, Romania
Daniel Grosu Wayne State University, USA
Manuele Kirsch Pinheiro Université Paris 1 Panthéon Sorbonne, France
Natalia Kryvinska University of Vienna, Austria
Brian Lee Athlone IT, Ireland
Fei LI Vienna University of Technology, Austria
Dan Marinescu School of EECS University of Central Florida,

USA
Tommi Mikkonen Tampere University of Technology, Tampere,

Finland
John Morrison University College Cork, Ireland
Juan Manuel Murillo Rodríguez University of Extremadura, Spain
Bogdan Nicolae IBM Research, Ireland
Leire Orue-Echevarria Tecnalia Research & Innovation, Spain
Chrysa Papagianni National Technical University of Athens, Greece
Florin Pop University Politehnica of Bucharest, Romania
Evangelos Pournaras ETH Zurich, Switzerland
Luiz Angelo Steffenel Université de Reims Champagne-Ardenne, France
Orazio Tomarchio University of Catania, Italy
Jose Luis Vazquez-Poletti Universidad Complutense de Madrid

IoT-Big Data Software Ecosystems for Smart
Cities Sensing: Challenges, Open Issues,

and Emerging Solutions

Alexander D. Cartier1,2, David H. Lee2, Burak Kantarci2,3(B),
and Luca Foschini4

1 Assured Information Security, Inc., Rome, NY 13441, USA
2 Clarkson University, Potsdam, NY 13676, USA

3 University of Ottawa, Ottawa, ON K1N 6N5, Canada
burak.kantarci@uOttawa.ca

4 University of Bologna, 40136 Bologna, Italy

Abstract. The Internet of Things (IoT) architecture primarily consists
of massive amounts of heterogeneous objects, equipped with sensing,
computing, and communication capabilities to continuously sense the
smart cities pulse. The coordinated collection of this data produces rel-
evant scalability and management issues not only in terms of communi-
cation but also in storage and computing to process and analyze large
amounts of incoming big data streams. In these systems, people also play
a pivotal role which includes both social and technical issues, making
the design of these solutions a very complex task. This paper overviews
the prevalent solutions and architecture design principles in IoT-big data
ecosystems for smart cities sensing. Furthermore, we present the needs of
IoT-big data software ecosystems by exemplifying existing IoT systems.
We also provide useful insights towards future innovation to address open
issues and challenges that are identified based on the expected growth
of data in the next decade.

Keywords: Big data · Cyber-physical systems · Data analytics
Distributed computing · Fog computing · Internet of Things

1 Introduction

Motivated by the ever-increasing amount and value of data gathered and man-
aged by Internet-born companies, such as Google, Facebook, and Amazon, big
data software systems, specialized and tailored for the collection, storage, and
analysis of those largest data depots, are already a well-established reality.
Research efforts in this area not only highlights crucial issues, such as quality
of collected data and scalability of the overall sparse and widely distributed big
data systems, but also produced significant results, such as in the notable case
of NoSQL database solutions (e.g., Cassandra and MongoDB) that, opposed
to traditional SQL-based conventional database solutions, support horizontal
c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 5–18, 2018.
https://doi.org/10.1007/978-3-319-72125-5_1

6 A. D. Cartier et al.

scaling by design [1,2]. Concurrently, advances in communications and device
miniaturization enables the Internet of Things (IoT) vision, with smart objects
in conjunction with smartphones – that in 2013 outnumbered normal feature
phones – acting as sensors deployed over smart cities and equipped with sens-
ing, computing, and communication capabilities.

At the current stage, several research activities in IoT software design focus
on overcoming heterogeneity issues in both communication technologies and soft-
ware Application Programming Interfaces (APIs) for data gathering and man-
agement (see also the IoT architectures and applications sidebar). The goal is
to collect and analyze incoming big data flows, which are densely available and
harvested in urban areas, allowing for a very large-scale fine-grained sensing, by
exploiting all personal resources, mobile activities and collaborations. However,
the software design principles to develop a new class of IoT-big data solutions
defined as software ecosystems are still widely unexplored. For this to become
an effective technology, IoT-big data systems for smart cities sensing still have
to face several challenges. First, there has been a continuously growing net-
work infrastructure associated with the rise of IoT, generating more data (i.e.,
high volume) at an exponentially increasing rate (i.e., high velocity). This data
rate is overwhelming the conventional means of data management, calling for
new methods of collecting, storing, and processing information collected from
the Internet of Things. There are several exemplary models and technologies to
implement these new concepts in big data management in accordance within the
IoT framework. This ecosystem calls for an integrated architecture which com-
bines the functions of Service-Controlled Networking (SCN) through the mid-
dleware, orchestrating the service components of the cloud [3]. From the social
perspective, smart city sensing, which involves smartphone-enabled sensing, calls
for the identification of willing users to participate in sensing campaigns, keep-
ing them involved (e.g., by providing services, entertainment, and rewards), and
fostering their participation with active collaboration in data collection. This
requires user tasks to operate at specific locations (e.g., taking a picture of a
monument, tagging a place, etc.). However, the boundary between social and
technical challenges is not clear cut. The technical problem of minimizing the
global resource overhead by entrusting a minimal subset of users in a sensing
campaign requires analyzing their geo-social profile; to identify and infer which
users are most likely to successfully harvest the required data [4].

Focusing on big data, this emerging trend has been clearly recognized by the
market. IDC’s Digital Universe study in 2012 reports 18% of the United States’
digital universe is valuable (158 exabytes in 898 exabytes) when analyzed and
tagged properly. In the same report, it is predicted that by 2020, the useful infor-
mation will grow 17-fold corresponding to 40% of the digital universe forecasted
for 2020 (i.e., 2631 exabytes in 6617 exabytes). Another important research discov-
ery suggests that the cloud stored, processed, and transmitted 14% of the digital
universe in 2012 whereas cloud-based services will host 37% of the digital uni-
verse in 2020. These numbers call for the adoption of big data solutions in IoT
where volume and value of the data will be the driving factors in the evolution of

IoT-Big Data Software Ecosystems for Smart Cities Sensing 7

big data software, optimization for real time systems, cybersecurity and forensics
for the next decade [5]. These numbers confirm that the challenges with the IoT-
big data will keep evolving throughout the next several decades. This article aims
to present a collection of methods, and theories, discuss prevalent architecture
design principles and identify the required technologies by detecting open issues
and challenges, which will provide insights for paving the way towards effective
IoT-big data solutions. We provide a survey of remarkable big data solutions for
the IoT, then we identify and discuss the open issues and challenges in the IoT-big
data ecosystems.

2 IoT Architectures and Applications

The Internet of Things (IoT) pervasively and ubiquitously interconnects billions
of devices with sensing, computing and communication capabilities as seen in
Fig. 1.

Furthermore, it is crucial to collect, aggregate and correctly represent the
data gathered at the sensor network level, where the data will be sent to the
next level, namely the middleware. The middleware acts as a layer between the
software application layer and hardware layer by parsing the data in order to
recognize certain trends or specific patterns to create reusable solutions for fre-
quently encountered problems such as heterogeneity, interoperability, security
and dependability. It is worthwhile noting that the majority of middleware solu-
tions currently do not provide the functionality of context-awareness and most
solutions are focused on device management. Hence, it will be critical to con-
tinue to work on the implementation of context-awareness into the middleware
solutions within the IoT [3].

In the IoT-big data ecosystem, the sensing plane consists of the sensors of var-
ious types; such as temperature, light, airflow, motion, humidity and several other
sensors purposed for various applications including vehicular networks, water
quality and e-health monitoring. The role of sensors in this architecture is con-
tinuously reporting the sensed data to the data plane through the middleware.
The middleware, as mentioned previously is responsible for aggregating data from
numerous sensors and presenting it to the data plane for pre-processing and stor-
age. The data plane offers short and long term storage for the aggregated data, and
it pre-processes the data for the Cloud platform which provides Data Analytics as
a Service [6] where embedded analytics and statistics libraries play a key role [7].
It is worthwhile noting that the data plane can also be implemented within the
cloud platform based on the storage-as-a-service concept in cloud systems. The
application plane receives software-as-a-service (SaaS) from the cloud platform
and interprets the analyzed data in accordance with the desired application e.g.,
e-health, smart metering, intelligent transportation systems, and so on.

In the corresponding architecture, data is collected via distributed sensors
that are uniquely identifiable, localizable and communicable. The collected data
goes from the user interaction with the embedded system, up to the local network
level and is then stored either on local servers or in the cloud, at which point

8 A. D. Cartier et al.

Fig. 1. The IoT-big data ecosystem with three planes that are connected through a
cloud platform.

the data is available for a variety of uses. The IoT architecture interconnects
sensors, RFID tags, smart phones, and other objects in a scalable manner.

In [8], the requirements of sensing objects driving the integration of cloud
computing and IoT are summarized as having huge computing and storage
capacity, web-based interfaces for data exchange and integration as well as pro-
gramming platforms, real-time processing of big data, inter-operability between
the sensing objects, cost-efficient, scalable on-demand access to the IT resources,
and security and privacy assurance. Therefore, the authors propose deployment,
development and management of the IoT applications over the cloud, namely
the CloudThings architecture. Recent progress in IoT has not only been made
in applications dealing with data analysis, but also in newfound approaches in

IoT-Big Data Software Ecosystems for Smart Cities Sensing 9

structure, storage, and compression. The common goal in the related works is
to make the IoT data readily accessible and understandable to the end user.

A motivation of some of the recent progress has been a product of the Smart-
Campus project that includes two different scenarios where sensors would be
placed to determine the occupation rate of parking lots as well as regulating the
temperature through the control of doors leading outside [9]. These services on
the network would continuously collect data in real time in order to eventually
recognize patterns. The middleware plays a key role in the implementation of
this project because of several API’s used to send data, set up the configurations
for measurement retrieval, and to interact with collected data sets. The responsi-
bility of the middleware is to support the data reception as well as broadcasting
the configurations made on the sensors.

3 IoT-Big Data Design Guidelines

Figure 2 illustrates the need for big data management schemes in an IoT-
dominated environment. Volume, variety and velocity of the data are driven
by the data quality assurance needs, uncertainty in social media accounts, and
networked devices being twice as the global population. Consequently, the tra-
ditional data warehousing solutions remain with low veracity in the IoT Era.

Starting from big data-related aspects, major trends in the field of big data
gathering have an intense focus on the following four areas: velocity, variety,
volume and veracity. Velocity denotes a focus on high-speed processing/analysis
such as click-streaming and fast database transactions. Variety in the structures
of data being collected arises along the lines of Machine-to-Machine (M2M),
radio frequency identification (RFID), and different types of sensors. Volume
includes currently used services such as social networks, cloud storage, network
switches, thermo-metric/atmospheric/motion sensors, and so on. The primary
issues that must be considered when focusing on these three subjects are the
limitations of nodes’ buffer sizes and the maximum acceptable latency in data
collection [10]. Finally, veracity is defined as the potential of releasing useful
information out of unstructured big data. Indeed, handling of the data through
trusted sources improves the veracity of analytics as reported in [7].

The concept of big data has come about with a recent increase in the volume,
velocity, variety, and veracity of data collected via various sources but mainly
via IoT sensors. A cloud-based eco-system is envisioned to share and trade high-
quality data from a vast network of independently managed sensors in real time
[1,9]. While there has been considerable research with WSNs, using cloud-based
platforms to host sensor networks is one of the biggest challenges yet, and the
research regarding this topic has recently started.

This vision introduces a previously unexplored area of research. A few topics
which must be addressed in order to find a solution to this challenge are focuses
on high-quality data, an efficient collaborative emphasis for sharing/trading
data, the need of a markup language that can not only handle the network
but can also support data quality and enable domains to access live sensor feeds

10 A. D. Cartier et al.

Fig. 2. The rise of the need for big data management in the IoT-dominated environment
where majority of the data is collected by connected sensing devices.

as well as historical data [1]. According to this new vision, we propose some main
design guidelines and concepts useful to compare existing solutions in IoT-big
data literature (see also Table 1).

3.1 State of the Art in Building IoT-Big Data Architectures

Today, IoT-big data systems, such as data collected from the global Fligh-
tradar24 flight monitoring system, are handled via software chain architectures.
The software chain basically maps processing phases of big data streams to
multiple components denoting data generation, intermediate and result stages.
As an example, the study in [11] uses the big data stream from a global flight
monitoring system and is processed via the Yahoo!S4 framework. The Yahoo!S4
framework is mapped onto five stages, namely the sensor, extractor, parser, for-
matter and outputter modules.

The sensor module can be implemented as a script which captures unstruc-
tured data. The extractor module is responsible for identifying and distinguish-
ing the events within the data streams. On each event, the parser module runs
data analytics processes such as filtering, pattern recognition and data min-
ing. The parser module can also be decomposed into multiple layers such as in

IoT-Big Data Software Ecosystems for Smart Cities Sensing 11

the Lambda architecture where Hadoop serves as the batch layer for long term
data and Storm serves in the speed layer to manage real time data. Format-
ter and outputter are responsible for generation of the structured data out of
the unstructured data under analysis and maintaining them in a file system of
NoSQL database.

In an open IoT system, a similar software chain approach can be adopted.
As today’s technology is able to enable access to sensor readings through web-
based services; the sensor component can obtain the data of the IoT sensors
via APIs that enable access to web servers. The Open Geospatial Consortium’s
(OGC) IoT RESTful API has been built on the OGC Sensor Web Enablement
standards in order to interconnect IoT objects, their data and applications over
the web via JavaScript Object Notation (JSON) data interchange format. The
API can be integrated to the sensor-end of the software chain in order to make
various IoT sensors of multiple participants connect to the web servers that are
compliant with the OGC standard [12].

3.2 Challenges Experienced in IoT-Big Data Systems

Focusing on IoT-big data systems, we identify some distilled guidelines based on
experiences within the ParticipAct sensing project [4], and identify four major
categories for design guidelines as support for spatio-temporal queries, minimal
overhead on IoT nodes, openness and security, and fast feedback and minimal
delay in producing quality-aware sensing data.

Support for Spatio-Temporal Queries. Support for spatio-temporal queries
over sensed data is a key factor when considering big data because of all possible
sources of where/when data might be pushed from, and it is also important to
keep track of sensed data chunks for future uses. First of all, as data is neither
temporally nor spatially static in the IoT, storage and scalability of retrieving
the data appears as an important issue due to the constant movement of data.

Minimal Overhead on IoT Nodes. By this design guideline, we aim at
minimizing energy consumption due to computing and communication at IoT
nodes through optimizations of local sensing processes (such as, duty-cycling,
employing physical models/verifications, etc.) and, most important, of sensed
data transmissions toward the backend (such as, by locally bulking multiple data
samples in the same sent packet, coordinating IoT nodes in the same location
to avoid useless readings such as in WSN, etc.).

Openness and Security. Sensed data should be stored securely and encrypted
to protect it from possible threats. This challenge has been tackled in [13] through
the use of a distributed storage system using Shamir’s secret sharing as the
driving algorithm for both security and storage.

12 A. D. Cartier et al.

Fast Feedback and Minimal Delay in Producing Quality-Aware Sens-
ing Data. This design guideline derives from the need to associate data with a
quality indicator based on the history of data sensed in the past. This requires
continuous profiling of sensed data in several different dimensions and grains
(such as time, space, weather, season, etc.) by exploiting big data storage to
keep all of these profiles ready, thus allowing fast computation for required feed-
back. Notable efforts within this direction are sensor webs such as IrisNet and
SensorWeb. Furthermore, projects like Aurora, Borealis, Cayuga, Stanford Data
Stream manager and System have explored many issues associated with stream
and event processing comprising the construction of algorithms and techniques
for data quality-aware sensor feed discovery service composition [1].

4 Remarkable Big Data Solutions

As big data continues to be researched, there has yet to be a single defining
breakthrough when it comes to solutions regarding IoT. This is due to many
variables that need to be considered when implementing an idea towards big data
in the IoT such as volume, security and storage. While solutions are currently
being researched and tested, there have been several instances of progress when
dealing with this topic.

4.1 Crowdsensing-Based IoT-Big Data Projects

The features in IoT-big data design guidelines make ParticipAct a complete
mobile crowdsourcing platform that encompasses the whole process from data
collection, to post-processing, to mining, and is available to the mobile crowd-
sourcing community as an open-source project [4]. In a related study, after the
detailed description of the whole architecture of ParticipAct and its technological
stack, some of the use case scenarios are presented. The corresponding scenarios
are currently being used to evaluate the potential of mobile crowdsourcing and
ParticipAct both qualitatively and quantitatively.

4.2 Smart Environment Projects

The SmartCampus experiment performed on the SophiaTech campus in France
[9]. The idea of this project focuses on the final product becoming an open
platform for different types of campus members to use the already deployed
sensors to build their own services or user defined sensors. Through this project,
concepts such as data retrieval and user-defined sensors are implemented into
realistic situations where big data and IoT are the focus. Data retrieval is applied
in a way where users can pull sensor properties using input filters or just the
sensor data itself. User-defined sensors are also introduced in this project as
virtual sensors where users can define a specific configuration and store it into
database where it can be executed using scripts when its dependencies produce
data.

IoT-Big Data Software Ecosystems for Smart Cities Sensing 13

AllJoyn Lambda, a software architecture which integrates the Alljoyn frame-
work into Lambda architecture to enable big data analytics for IoT applications
[14]. The proposed architecture adopts the AllJoyn technology that is intended
for IoT. However it aims at overcoming the real time processing/storage and
management of the data obtained from smart environments by integrating the
MongoDB NoSQL database for storage and Apache Storm for real time analysis
of the data pushed from the smart objects.

As an emerging smart environment, the IoV concept has evolved from the
IoT, and it is presented in [15] where nodes are represented by vehicles and are
connected to form a Vehicular Ad Hoc Network (VANET). The biggest challenge
in IoV is processing this volume of data and delivering it to its destination,
which is done through various relay nodes. This paper analyzes the issue by using
Bayesian Coalition Game (BCG) and Learning Automata (LA). The use of BGC
trains the LAs to make moves correlating to each node/vehicle performing tasks
to make each player in the game safer and more aware. This proposal adopts
the Nash Equilibrium concept with respect to the probabilistic belief of players
in the coalition game.

4.3 Edge Computing Based Projects

The Available Network Gateways in Edge Location Services (ANGELS) frame-
work appeared as a result of the realization of the complexity of new applica-
tions in cyber-physical systems [16]. Services encompassing multiple domains
are beginning to come into effect. As astronomical volumes of data collected
will begin to require huge computing infrastructures for analysis, ANGELS
introduces a framework for fog-computing, which utilizes a key aspect of the
IoT field that has been overlooked thus far. The framework focuses on taking
into account the ability of resources available prior to the distribution of tasks.
Researchers have explored the idea of smart edge devices to perform portions of
IoT data analysis where edge devices are low-powered computational nodes such
as smart phones and home energy gateways. The proposed architecture consists
of servers and commodity computing nodes as well as these smart edge devices as
computational resources. This framework of heterogeneous computational nodes
includes resources ranging from large server-class systems down to low-powered
edge devices forming the basis of the fog computing paradigm. This solution
also involves parallel data computation along with capacity based partitioning
to accomplish a more streamlined approach to big data management.

4.4 Big Data Stream Analysis Projects for Cyberphysical Systems

The proposal in [17] is tailored for cyber-physical systems, and it presents
an online spatiotemporal analysis, which would implement a grid-based single-
linkage clustering algorithm over a sliding window. This online time-space effi-
cient method satisfies the velocity demand of big data streams. A large-scale
real-world scenario including 300,000 sensors over the course of a year has been
established to evaluate the success of the algorithms.

14 A. D. Cartier et al.

The rising necessity for robust and reliable services is leading to the cre-
ation of enormous amount of data, which has the possibility of exceeding the
storage capacity of current micro servers. This has led to Big data correlation
orchestrator (BigCO) which was implemented in a micro cloud server [18]. In
the same study, it is also addressed how multifaceted data could be interrelated
and analyzed with 3D modeling. On top of that, a streaming algorithm that
extends Ramer-Douglas-Peuker heuristic is presented. This proposed compres-
sion algorithm has achieved up to a 99.86% compression of sensor data. With the
recognition of consistent growth in the number of wirelessly connected devices,
the same study conducts in depth testing dealing with high volumes of data.
Their compression method along with the 3D modeling of data assesses the
velocity at which they can analyze large quantities of data from a varying pool
of sensors. BigCO implementation on a micro cloud server also offers portabil-
ity to the data collection and analysis mechanism. The overall design of this
orchestrator exhibits high veracity throughout the compression, modeling, and
the overall BigCO framework.

4.5 Distributed, Secure, Scalable Storage of IoT Data

In [13], a project focusing on secure and scalable IoT storage systems is presented
where the security system is derived from Shamir’s secret sharing algorithm.
However, a major focus is also placed in terms of volume when referring to IoT
storage systems. A distributed storage system was designed based on the idea of
the algorithm where any sort of incoming data is transformed into scaled shares
based on the size of the original files and is inaccessible without the retrieval of
all shares. This method considers volume in relation to scalability. This is done
through an infrastructure based on a client-peer system where a client takes
incoming data; transforms them into scaled shares creating smaller data pieces
which can eventually be reassembled to form the original file also taking security
into consideration. In terms of performance, this system does not account for the
velocity at which the data would be stored and retrieved due to a bottleneck.

4.6 Quality of Data (QoD)-Aware IoT Big Data Projects

In case of continuous retrieval of data through sensor feeds, it is important to
focus on the quality of data being pulled down. The project in [1] breaks the
idea of the Quality of Data (QoD) down into several aspects, which focuses on
availability of sensor feeds, latency, and trustworthiness. These qualities can be
used to determine the certain attributes of managing big data in a system where
attributes such as trustworthiness of data can be defined as veracity of data or
accuracy. Other attributes, such as latency and availability of sensors correlate
with the velocity of data being pulled down. The idea behind this project was
to create a model for sensor services, where, in order to enable seamless sharing
of sensor feeds from various sensors coming from different sources through the
cloud. While QoD takes into consideration velocity and veracity of the sensor
feeds, they stray from other aspects of big data such as volume and variety.

IoT-Big Data Software Ecosystems for Smart Cities Sensing 15

Though a major focus is placed on the variety of data through the use of hetero-
geneous sensor feeds, this work does not fully aim to address the variety aspect
of big data.

4.7 Spatial Big Data Projects

Due to a gap in the development and applications of integrated information
systems for snowmelt flood early warning in water resource management, an
integrated system with IoT, geo-informatics (GIS, GPS, etc.), and cloud services
have been proposed for the monitoring and simulation of snowmelt flooding [19].
This study resulted in an increase in the effectiveness of decision-making because
of the availability of data and the integrated system to analyze all of the data in
an efficient enough manner to make a difference when it comes to split-second
decisions. This proposal goes off a popular practice in the field, which utilizes
environmental tracking and analysis. The architecture of this system collects
a wide variety of data from an assortment of information acquisition facilities.
The collected data calls for a storage facility that can handle large volumes of
information which this system architecture also takes into account. Then the
proposals computing and analysis facility as well as the network and software
used in this system accounts for high velocity collection and analysis of the data
without a loss in veracity through the whole process.

Projects specifically addressing spatial big data exhibits new challenges where
performance on large amounts of measurements is associated to specific locations
and the instance of time when they were conducted. In addition, the paradigm of
wireless networks data analytics varies from the classical data-mining paradigm
as it poses different challenges in scalability and computational time. While
relational data requires a linear time scale for computation for classification and
prediction, spatial data requires a cubic time scale which causes problems for
scalability both in terms of volume, calculation period and velocity. Although it
remains as a distinct category from relational big data, the research in [20] has
shown that existing parallel processing and computational framework algorithms
are powerful tools for implementing spatial processing frameworks but the proper
architecture for these tools are still being researched.

Dealing with spatial big data is considered one of the key challenges for the
development of future wireless networking applications in terms of big data.
Some underlying issues with this topic are that it currently requires a high level
of specialized knowledge in order to design and implement systems for processing
spatial big data. In order for this technology to grow and expand, it requires a
wider use of context and development of systems such that non-experts in the
field are able to build various applications using this technology. Therefore, a
more common language for reasoning and computational inference solutions is
necessary for development of these systems.

16 A. D. Cartier et al.

Table 1. Summary and comparison of the surveyed solutions

Application VolumeVelocityVarietyVeracitySpatio-temp.

queries

Min. overhead Openness-

security

Quality-aware

sensing

Participact [4]
√ √ √ √ √ √ √ √

Smart campus [9]
√ √ √ × √ × × ×

Alljoyn-Lambda [14]
√ √ √ × √ × × √

IoV [15]
√ × × √ × √ × √

ANGELS [16]
√ × √ × × √ × √

CPS [17]
√ √ × × √ √ × ×

BigCo [18]
√ √ √ √ × √ × ×

Dist. storage [13]
√ × × × × × √ ×

Quality of data [1] × √ × √ × × √ √

Flood warning [19]
√ √ √ √ √ √ × ×

Spatial data [20]
√ √ × × √ × × √

5 Summary

This paper has introduced the challenges in the IoT-big data ecosystem, and
overviewed recent applications as summarized in Table 1. A majority of these
applications focuses on two or three of the four Vs typical of big data sys-
tems, yet solutions addressing all dimensions are emergent. Veracity is the most
neglected dimension in related work; hence trustworthiness assessment modules
are emergent in software architectures that are proposed for IoT data man-
agement. Focusing on specific IoT-big data challenges, availability of tools and
libraries for embedded data analytics are critical for use in the development of
middleware solutions for the IoT-big data ecosystem.

All these challenges, pointed out by the related work, will impact the handling
of the IoT data which is expected to contribute to the majority of the data
accumulation in the near future. NoSQL-based solutions are feasible to overcome
the storage challenges of big volumes of data while realtime analytics solutions
such as Storm or Spark suit well with the IoT stream data of high velocity.

6 Open Issues and Challenges

As the data will be scaled out to higher volumes, varieties and velocities with
the wide adoption of connected devices, IoT and big data will be two insep-
arable phenomena of the future. Major innovation should be on the analytics
software architecture that can handle analytics on long term and real time data.
Despite the availability of architectures, like Lambda, that address this issue,
optimization software is required for real time systems. OGC’s standardization
efforts for accessing IoT data is invaluable as heterogeneity of big data pushed
by the IoT objects can be handled. More importantly, we expect that even by
2020 less than half of the digital universe will consist of useful data because the
majority of the data will still be unstructured and untagged. Therefore, collec-
tion of the data, proper tagging and structuring to improve the value of the IoT

IoT-Big Data Software Ecosystems for Smart Cities Sensing 17

data is critical. Furthermore, how to secure the data collected from IoT devices
and ensure privacy of personalized devices is a key problem. In fact, cloud-based
storage, processing and transmission of the data will be reaching 40% of the dig-
ital universe, introducing security as a service in cloud analytics as an emergent
issue. Finally, IoT sensors will push IoT data continuously, and typically in raw
form to be processed so to produce value. Hence, development of scalable and
analytics-backed visualization mechanisms for long term data is also important
to prevent data overloads for the IoT-big data systems.

Acknowledgments. This material is based upon work supported by the U.S.
National Science Foundation (NSF) under Grant No. CNS1464273.

References

1. Ramaswamy, L., Lawson, V., Gogineni, S.V.: Towards a quality-centric big data
architecture for federated sensor services. In: IEEE International Congress on Big
Data, pp. 86–93 (2013)

2. Gorton, I., Klein, J.: Distribution, data, deployment: software architecture conver-
gence in big data systems. IEEE Softw. 32(3), 78–85 (2015)

3. Sowe, S., Dong, M., Kimata, T., Zettsu, K.: Managing heterogeneous sensor data
on a big data platform: IoT services for data-intensive science. In: IEEE 38th
International Computers, Software and Applications Conference Workshops, pp.
295–300 (2014)

4. Cardone, G., Corradi, A., Foschini, L., Ianniello, R.: ParticipAct: a large-scale
crowdsensing platform. IEEE Trans. Emerg. Top. Comput. 4(1), 21–32 (2015)

5. Gantz, J., Reinsel, D: IDC: the digital universe in 2020: big data, bigger digi-
tal shadows, and biggest growth in the far east (2012). https://www.emc.com/
collateral/analyst-reports/idc-digital-universe-united-states.pdf

6. Talia, D.: Clouds for scalable big data analytics. IEEE Comput. 46(5), 98–101
(2013)

7. Louridas, P., Ebert, C.: Embedded analytics and statistics for big data. IEEE
Softw. 30(6), 33–39 (2013)

8. Zhou, J., Leppanen, T, Harjula, E., Ylianttila, M., Ojala, T., Yu C., Jin, H.,
Yang, L.T.: CloudThings: a common architecture for integrating the Internet of
Things with cloud computing. In: IEEE 17th International Conference on Com-
puter Supported Cooperative Work in Design (CSCWD), pp. 651–657 (2013)

9. Cecchinel, C., Jimenez, M., Mosser, S., Riveill, M.: An architecture to support
the collection of big data in the Internet of Things. In: IEEE World Congress on
Services (SERVICES), pp. 442–449 (2014)

10. Takashi, D., Nishiyama, H., Kato, N., Miura, R.: Toward energy efficient big data
gathering in densely distributed sensor networks. IEEE Trans. Emerg. Top. Com-
put. 2(3), 388–397 (2014)

11. Xhafa, F., Naranjo, V., Caballe, S., Barolli, L.: A software chain approach to
big data stream processing and analytics. In: Ninth International Conference on
Complex, Intelligent, and Software Intensive Systems (CISIS), pp. 179–186 (2015)

12. The OGC (Open Geospatial Consortium) SensorThings API Standard. https://
ogc-iot.github.io/ogc-iot-api/index.html

13. Jiang, H., Chen, S., Li, K.-C., Jeong, Y.-S.: A secure and scalable storage system
for aggregate data in IoT. Future Gener. Comput. Syst. 49, 133–141 (2015)

https://www.emc.com/collateral/analyst-reports/idc-digital-universe-united-states.pdf
https://www.emc.com/collateral/analyst-reports/idc-digital-universe-united-states.pdf
https://ogc-iot.github.io/ogc-iot-api/index.html
https://ogc-iot.github.io/ogc-iot-api/index.html

18 A. D. Cartier et al.

14. Villari, M., Celesti, A., Fazio, M., Puliafito, A.: Alljoyn Lambda: an architecture
for the management of smart environments in IoT. In: International Conference
on Smart Computing Workshops, pp. 9–14 (2014)

15. Kumar, N., Misra, S., Rodrigues, J., Obaidat, M.: Coalition games for spatio-
temporal big data in internet of vehicles environment: a comparative analysis.
IEEE IoT J. 2(4), 310–320 (2015)

16. Mukherjee, A., Paul, H.S., Dey, S., Banerjee, A.: Angels for distributed analytics in
IoT. In: IEEE World Forum on Internet of Things (WF-IoT), pp. 565–570 (2014)

17. Fu, Z., Almgren, M., Landsiedel, O., Papatriantafilou, M.: Online temporal-spatial
analysis for detection of critical events in cyber-physical systems. In: IEEE Inter-
national Conference on Big Data, pp. 129–134 (2014)

18. Mozumdar, M., Shahbazian, A., Ton, N-Q.: A big data correlation orchestrator for
Internet of Things. In: IEEE World Forum on Internet of Things (WF-IoT), pp.
304–308 (2014)

19. Fang, S., Xu, L., Zhu, Y., Liu, Y., Liu, Z., Pei, H., Yan, J., Zhang, H.: An integrated
information system for snowmelt flood early-warning based on Internet of Things.
Inf. Syst. Front. 17(2), 321–335 (2015)

20. Jardak, C., Mahonen, P., Riihijarvi, J.: Spatial big data and wireless networks:
experiences, applications, and research challenges. IEEE Netw. 28(4), 26–31 (2014)

Re-powering Service Provisioning in Federated
Cloud Ecosystems: An Algorithm Combining

Energy Sustainability and Cost-Saving Strategies

Maurizio Giacobbe, Antonio Celesti, Maria Fazio(B), Massimo Villari,
and Antonio Puliafito

Department of Engineering, University of Messina,
Contrada Di Dio (S. Agata), 98166 Messina, Italy

{mgiacobbe,acelesti,mfazio,mvillari,apuliafito}@unime.it

Abstract. Cloud federation offers new business models to enforce more
flexible energy management strategies. Independent Cloud providers are
exclusively bounded to the specific energy supplier powering its Data
Centers. The situation radically change if we consider a federation of
cooperating Cloud providers. In such a context a proper migration of
virtual machines among providers can lead to global energy sustainabil-
ity and cost-saving strategy. In this paper, we discuss a decision system
for Cloud federation brokerage able to combine these two strategies. More
specifically, we present Multi-Criteria Decision Making (MCDM) algo-
rithm able to discover the most convenient Cloud providers candidate
to join a particular energy-aware federation. In the end, modelling dif-
ferent possible real Cloud providers, we demonstrate how the algorithm
can accommodate different Cloud federation scenarios characterized by
particular energy-aware parameters.

Keywords: Cloud computing · Federation · Brokerage
Energy management · Energy efficiency · Energy sustainability
Energy cost-saving

1 Introduction

Population Reference Bureau (PRB)’s projections in the 2015 Data Sheet [1]
show world population reaching 9.8 billion by 2050, up from an estimated 7.3
billion now, with education (i.e., percentage quota enrolled in Secondary School)
greater than 76%. This trend will produce new needs and desires by people,
that will cause an increase of energy demand to access digital technologies. As a
consequence, it is required to re-powering infrastructures, platforms and services
by adopting sustainable and cost-saving solutions.

The European Commission’s Effort Sharing Decision [2] forms part of a set of
policies and measures on climate change and energy (i.e., the climate and energy
package) that will help move Europe towards a low-carbon economy, moreover

c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 19–33, 2018.
https://doi.org/10.1007/978-3-319-72125-5_2

20 M. Giacobbe et al.

increasing European energy security. The ESD establishes binding annual green-
house gas emission targets for EU member states for the period 2013–2020. Fur-
thermore, Digital Single Market (DSM) is one of ten European political priorities
because EU, at the same time, is considering to overcome the national barriers
of each of its member state, by moving from its internal national markets to a
single one, and to overcome the current jungle of ICT standards [3].

In this context, Cloud computing and new smart digital technologies promise
to transform our everyday life, towards a new digital age. In particular, Cloud
Federation is an emerging topic that allows to carry out new business opportu-
nities for Cloud service providers in many application field, including the energy
management. Independent Cloud providers are exclusively bounded to the spe-
cific energy supplier powering its Data Centers. The situation radically change if
we consider a federation of cooperating Cloud providers. We define a Cloud Fed-
eration as a mesh of Cloud providers that are interconnected based on open stan-
dards to provide a universal decentralized computing environment where every-
thing is driven by constraints and agreements in a ubiquitous, multi-provider
infrastructure [4]. In such a context a proper migration of virtual machines
among providers can lead to different energy management strategies.

In this paper, we discuss a strategy based on a Multi Criteria Decision Making
(MCDM) approach that allows a Cloud broker to combine energy sustainability
and cost-saving factors along with service parameters in order to detect the most
affordable destination federated Cloud provider where services can be migrated.
Our strategy can be adopted in different brokerage schemes to determine how
partnerships should be established in a Federation so as to allow the whole
federated Cloud ecosystem to pursue a global energy management strategy, e.g.,
pushing down energy costs and/or greenhouse emissions (e.g., carbon dioxide).

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 motivates our work. Section 4 presents the main parameters that have
to be considered to plan ahead our strategy. Section 5 presents our multi-criteria
decision algorithm for an energy-aware broker in a federated Cloud environment.
In Sect. 6, we presents our analytic evaluations considering real parameters, thus
proving the goodness of our approach. Section 7 concludes the paper.

2 Related Work

Scientific literature presents several contributions on green Cloud and the intra-
Datacenters energy management, but the most of the energy-aware management
strategies are focused on independent Cloud datacenters. In [5] a review of lit-
erature on Cloud Brokerage Services is presented. However, even if the authors
inspect several Cloud broker models, Cloud Federation is not a surveyed topic.
The Reservoir European research initiative [6] explores the notion of a feder-
ated Cloud in which computing infrastructure providers lease excess capacity
to others in need of temporary additional resources. The proposed sharing and
paying model helps individual providers avoid over-provisioning of resources to
deal with spikes in capacity demand. Hamze et al. [7] present a very interest-
ing framework which addresses resource allocation according to an end-to-end

Re-powering Service Provisioning Through Federated Cloud Ecosystems 21

Service Level Agreement (SLA) established between a Cloud Service User (CSU)
and several Cloud Service Providers (CSPs) in a Cloud networking environment.
Compared to that study, our work is mainly focused on the achievement of a
good compromise between sustainability and cost metrics, taking into account
both mandatory and recommended criteria.

The authors of [8] propose a work based on a multi-criteria optimization
technique for better selection of a service provider. They use Pareto front to
decide the Cloud service provider which satisfies the Quality of Service (QoS)
requirements of the user. This work focuses only on the QoS parameters (i.e.,
throughput and response time) but it is far from our purposes because it does
not cover the dynamic composition of services based on the migration of data.
Software as a Service (SaaS) adoption presents serious and unique security risks.
In [9] the authors propose a holistic model, known as the Function, Auditabil-
ity, Governability and Interoperability (FAGI), as an approach to help a Cloud
service consumer to engage and select a trusted Cloud service provider through
four major decisions. The main goal of ECO2Clouds European project [10] is
on assessing and reducing the environmental impact of Cloud applications. In
ECO2Clouds, the problem of energy consumption and carbon dioxide emissions
is addressed at the software level, assuming that optimization at the server and
operating system level is not under control of the Cloud platform or the users.
Compared to the ECO2Clouds scientific contributions, such as [11], our approach
mainly differs for the brokerage role in our energy-aware strategy at Federation.
In [12], the authors present a survey that helps researchers to identify the future
trends of energy management in Cloud Federation. In particular, they select the
major contributions dealing with energy sustainability and cost-saving strategies
aimed at Cloud computing and Federation.

3 Motivation

In order to realize a cooperative ecosystem where federated Cloud providers can
share their ICT resources to achieve energy sustainability and cost-saving objec-
tives, a suitable large scale strategy is needed. It should include requirements
and usage scenarios to use Cloud computing in both public sector and industry.
More specifically, we mainly identify two typologies of requirements: mandatory
and recommended. With mandatory we intend a requirement that an institu-
tion or authority, public or private, must absolutely have in order to provide a
service. For example, public authority can demand to Cloud service providers
to store data in Data Centers (DCs) that are localized in Europe. With recom-
mended, instead, we intend a requirement that offers good benefits to an institu-
tion or authority, public or private. For example, an European public authority
can recommend a price for a Cloud based service. A federated Cloud approach
enables multiple independent Cloud providers to maximize their mutual benefit
and therefore their business. It is able to encourage new investments in inno-
vation thus to create a more competitive digital market. Moreover, a Cloud
Federation can allow both small/medium-size enterprises and new companies

22 M. Giacobbe et al.

to become Cloud service providers, in according to specific requirements (e.g.,
Service Level Agreements (SLAs), interoperability, certification, legislation). In
such a context, and independently from the purposes that induce a Cloud
provider to establish a Federation relationship with other providers (e.g., resilient
scalability of resources, deployment of distributed services, energy sustainability,
cost reduction, etc.), brokerage plays a fundamental role. We define brokerage as
the process that allows a provider to select one or more external providers with
which establish a federation relationship, on the basis of specific requirements.
To this end, different possible schemes exist. In this paper, as Fig. 1, we consider
the following schemes: (i) centralized, i.e., a single broker in charge of estab-
lishing the Federation; (ii) hierarchical, i.e., a set of brokers interacting each
others to establish the Federation; Independently from the adopted brokerage
scheme, the aim of this paper is to propose an algorithm for a Cloud brokerage
system enabling federated Cloud DCs to enforce a dynamic energy management
strategy. This is possible by performing a smart VM migration among federated
Cloud DCs considering the best energy cost effective destination. Our reference
scenario is not static, because the energy efficiency of a DC can change in given
moments of the day and in given periods of the year. In fact, the cost due to
energy in a given geographical area can change according to the time zone.

Fig. 1. Cloud brokerage schemes.

4 Strategy

Figure 2 shows our two-steps energy-aware strategy, based on a centralized Cloud
Federation.

Re-powering Service Provisioning Through Federated Cloud Ecosystems 23

Fig. 2. The two-steps Energy-aware Strategy.

4.1 Pre-filtering and Matching Steps

As a first step, it includes a pre-filtering phase of the federable Cloud providers on
the basis of several federation requirements (e.g., interoperability, certification,
legislation, and other possible general requirements). If a Cloud provider fulfills
all federation requirements, it is recognized by the authority in charge (i.e., a
legitimate public authority such as the European authority for Digital Agenda
in the Europe 2020 strategy), thus to became federated member of an inclusive
e-society and to operate in an energy-aware DSM according to the possession of
the above mentioned specific federation requirements.

To make this pre-filtering phase, and thereafter for the periodic monitoring
on the possession of the federation requirements by the federated members, the
authority is able to dynamically update, by software engines a catalog of all fed-
erated members. Each one of these is uniquely identified by an ID (for example
we can think to use the tax code or similar), and the compliance with federa-
tion requirements is verified on the relative indicators (i.e., rules, thresholds or
parametric values) established by the authority. In this manner the authority is
able to control that all the Federation requirements are always satisfied and to
provide in real time the same catalog to the brokers.

Therefore, in a second step our strategy provides for dynamically matching
requests with offers at broker. More specifically, a broker is able to select one or
more offers from one or more federated Cloud providers (identified through the
catalog) on the basis of both mandatory and recommended energy and service
related requirements as discussed in Sect. 3. In particular, an applicant federated
Cloud provider, we name Source, dynamically makes its request to the broker
by filling up in real time a service template. It is established and supplied by
the authority in charge to both Cloud broker and service providers. We define
a service template as a digital model which can be dynamically updated by
an authorized entity (e.g., the broker, authorized provider, but also a public
administration or a company in a more wide scenario).

24 M. Giacobbe et al.

For example, a Source can ask for resources to deploy scalable services or
run microservices (e.g., Docker), data integration and business analytics plat-
form (e.g., Pentaho), software for reliable, scalable, distributed computing (e.g.,
Apache Hadoop). For our energy-aware purposes, a Source uses a service tem-
plate as a dataset (e.g., a vector or array) of requirements that will be useful to
define a particular workload footprint thus to identify the environmental impact
which is produced to run that workload at a Cloud provider.

4.2 Mandatory Requirements

Generally, the ecological footprint calculation is a set of complex operations
that need to take into account several variables. Furthermore, the most famous
metrics to measure energy efficiency of a Cloud Data Center, i.e., Data Center
infrastructure Efficiency (DCiE) and Power Usage Efficiency (PUE), are not
sufficient because they do not take into account dynamics linked to the type
of service offered. In order to overcome the above barriers, thus computing the
workload footprint which is product at each possible destination and for each
offer, we mainly identify the following mandatory fields: DPPE and CUE.

The Data Center Performance per Energy (DPPE) Metric. DPPE is
a sustainability metric introduced by the Japan’s Green IT Promotion Council
in order to improve on PUE. It is defined as follows:

DPPE = ITEU ∗ ITEE ∗ 1/PUE ∗ 1/(1 − GEC) (1)

where DPPE has four sub-metrics, taking contemporary into account the neces-
sity in to improve the Information Technology (IT) Equipment Utilization
(ITEU), the IT Equipment Efficiency (ITEE), the efficiency of facilities with
PUE, and purchasing ‘green’ energy with Green Energy Coefficient (GEC). Let’s
assume that each offer is associated with a site, and that the provider dynami-
cally updates the DPPE of a site measuring in real time the relative sub-metrics
(without exposing functionalities deemed sensitive or risky for its own business).
DPPE characterizes the offer, and a greater value in DPPE indicates a greater
energy efficiency.

The Carbon Usage Effectiveness (CUE) Metric. In order to address car-
bon emissions associated with DCs, the Green Grid consortium proposes the
Carbon Usage Effectiveness (CUE) metric. By considering CUE, our strategy
takes into account the impact of operational carbon usage, because it is mainly
focused on correlating economical advantageous offer with a low-carbon Cloud
site. CUE is defined as follows:

CUE = CEF ∗ PUE (2)

where CEF stand for Carbon Emission Factor, i.e. kgCO2eq/kWh of the site. It
depends from the region where the Cloud site is located and it is based on the
government’s published data for that region of operation for that year.

Re-powering Service Provisioning Through Federated Cloud Ecosystems 25

4.3 Time and Cost as Recommended Requirements

In order to finalize the economic offer, we also consider as recommended fields
the following parameters:

– δt, i.e., a normalized time index referred to the computational plus data
transfer time;

– cost, i.e., the economic offer price.

The δt index is a normalized value with respect to a reference time for a specific
type of request. For each type of possible request the reference template, that
is made accessible by the authority in charge, contains a recommended field
that represents the above-mentioned reference time. Cost can be expressed as a
money/service unit ratio, for example in $/h (i.e., U.S. dollar/hour), or in $/GB
(i.e., U.S. dollar/GigaByte).

4.4 Derived Requirements

The broker automatically computes the following ratios to complete each offer:

– DPPE/δt, i.e., how much ‘green’ is the offer in relation to δt;
– DPPE/cost, i.e., how much ‘green’ is the offer in relation to the economic

offer price;

Our strategy, in fact, stipulates that it is the Cloud broker, and not each
provider, the responsible to complete each offer in order to reduce data transfer
costs and run the final multi-criteria decision step. In this manner, a Cloud
broker is able to have in real time a knowledge of all requests and offers for
several typologies of services, thus to match in real-time a set of offers for each
request.

5 Multi Criteria Decision Making Applied
to Energy-Aware Management in a Federated Cloud
Ecosystem

On the basis of the above discussed aspects, the Cloud broker collects in real time
all the energy and service related offers (codified in quantifiable form) from all
federated Cloud providers. The main objective of the energy-aware Cloud broker
decisional system is to pick out a set of offers that meets specific requirements.
To this end, our strategy implements a Multi Criteria Decision Making (MCDM)
algorithm that has been adapted to address the requirements of energy-aware
federated Cloud environments using a multi-criteria matrix. In this Section,
we present MCDM and discuss how it is adopted to design the multi-criteria
decisional system.

The MCDM algorithm allows an energy Cloud broker to solve a decisional
problem in which, according to M alternatives and N decisional criteria, we have
to identify the best alternative or a set of Y alternatives so that 2 ≤ Y ≤ M .

26 M. Giacobbe et al.

We define the set of alternatives A = {A1, A2, ..., AM} and the set of deci-
sional criteria C = {C1, C2, ..., CN}. For each Cloud provider that matches the
requirement of the energy-aware federation, an entry including its quantifiable
parameter is created inside the MxN-dimensional D matrix, as represented in
Fig. 3.

Fig. 3. Multi-criteria matrix multiplication.

The i-th row of the multi-criteria D matrix is a vector Ai−th, whose N
elements are the quantifiable parameters of all criteria corresponding to the
i-th economic offer (i.e., the i-th alternative) of a Cloud provider, whereas the
j-th column represents a vector Ci−th, whose M elements are the quantifiable
parameters of all Cloud providers corresponding to the j-th criterion.

The main operative steps in using MCDM algorithm in our energy-aware
strategy include:

1. Identification of the energy-aware decisional criteria. More specifically, in our
strategy we consider a set of seven decisional criteria
C = {DPPE,CUE, δt, cost,DPPE/CUE,DPPE/δt,DPPE/cost}.

2. Identification of the MxN-dimensional D multi-criteria matrix, whose dij ele-
ments represent the measure of the alternative Ai on the criterion Cj ;

3. Association of numerical measures to criteria, according to the impact that
they have on the alternatives by means of the identification of the weight
vector W = w1, w2, ..., wN .

4. Processing of the numerical values with the Weighthed Sum Model (WSM)
method consisting of the multiplication of the D multi-criteria matrix and
the W vector. This results in the global evaluation vector P = DxW , with
P = p1, p2, ..., pM as shown in Fig. 3, whose generic pi element represent the
global i-th alternative (i.e., the evaluation of the i-th alternative considering
all decision criteria).

The i-th element of P is given by

pi =
N∑

j=1

xij · wj with i = 1, 2, ...,M ;

Re-powering Service Provisioning Through Federated Cloud Ecosystems 27

5. Identification of the best alternative or a set of Y alternatives so that 2 ≤
Y ≤ M . The Ai alternative (i.e., the i-th Cloud provider offer) will better
than the Ak alternative (i.e., the k-th Cloud provider offer) if and only if the
corresponding global evaluation pi ≥ pk, that is Ai ≥ Ak ⇔ pi ≥ pk with i
and k so that i = 1, 2, ...,M , k = 1, 2, ...,M , i �= k.

The algorithm allows a dynamic evolution for an energy-aware Cloud federa-
tion. In particular, it enables energy-aware Cloud brokers to address energy sus-
tainability contemporary taking into account other heterogeneous requirements
identified as criteria in the matrix.

6 Analytic Evaluation

In order to evaluate our MCDM algorithm, we set a simulated scenario by
using Scilab [13], a free and open source software for numerical computation.
It provides a powerful computing environment for engineering and scientific
applications.

6.1 Scenario

We consider three typical scenarios for our simulations, with respectively a num-
ber of three, ten and thirty federated Cloud Service Providers (CSPs). Each CSP
is able to formulate from one to three offers (i.e., alternatives in our MCDM algo-
rithm). On this basis, for each scenario we run our simulations to compute the
global evaluation vector P (whose definition has been introduced in Sect. 5). More
specifically, as a first step, we set the simulated environment starting from real
datasets: (i) the sustainability sub-metrics dataset (Table 1a) and (ii) the time-
cost fields dataset (Table 1b). They respectively concern: (i) the sub-metrics used
to calculate the mandatory DPPE requirement; (ii) the recommended time-cost
decisional criteria in order to finalize the economic offer.

The sub-metrics dataset is based on the measurement results of a real sce-
nario, i.e. the METI project [14] that clearly shows the characteristics and the
energy efficiency in several Japanese and Asian DCs, proving that the DPPE

Table 1. Datasets

(a) Sustainability sub-metrics
dataset.

(b) Time and cost fields dataset.

28 M. Giacobbe et al.

is a useful assessment tool. In Table 1b, the recommended time requirement δt
(which is previously introduced in paragraph Sect. 4.3) is a sheer number in the
range from one to three times the reference time for a specific type of request.
The cost range, instead, is defined on the basis of typical service prices of known
worldwide providers (e.g., Amazon Web Services (AWS)).

Once criteria have been defined, we set the weight for each criterion. Specif-
ically, we choose the same weight for each one of them according to have the
same impact on the alternatives. This step results in the identification of the
weight vector W in our algorithm.

6.2 Simulation and Experimental Results

This paragraph reports the results produced by the simulations, each one based
on a number of 1000 samples. A graphical representation allows the reader for
a quick visual feedback. Results are mapped on the basis of the derived require-
ments introduced in Sect. 4 and shown in Fig. 2. Therefore, it is possible to distin-
guish three scenarios (for 3-10-30 CSPs) and three typologies of evaluation map
combining the derived requirements. Each evaluation map identifies “where”
each CSP’ offer is placed taking into account both the number of federated CSPs
and a specific combination of derived requirements (i.e., the x and y-axes). More
specifically, simulations place offers in three different typologies of map, that
are the DPPE/cost - DPPE/ δt for the evaluation map 1, the DPPE/CUE -
DPPE/ δt for the evaluation map 2, and the DPPE/cost - DPPE/CUE for the
evaluation map 3. The above typologies are properly chosen taking into account
the necessity in to reduce both energy consumption and carbon dioxide emis-
sions, according the requirements related to the business of each provider (i.e.,
taking into account both energy-aware and time/costs service requirements).

The chosen graphical representation in Figs. 4, 5 and 6 allows to have both
a quantitative (number of best offers near extremity at the top right of the
figures) and qualitative (by the respective values associated with the coordinates)
vision. In particular, by observing each one of the above-mentioned maps, the
results clearly show how, by the MCDM algorithm, the broker is able to select a
variable number of offers in depending of the greater or lesser selectivity that is
required. This selectivity is determined by the datasets and the weights assigned
to the algorithm selection criteria. The goodness of the proposed solution is also
demonstrated by the algorithm’s ability to respond dynamically to changes in
economic offers. In particular, comparing the evaluation maps having the same
index (i.e., the scenarios 1, 2 or 3 respectively distinguished by evaluation map
1, 2 and 3) it is clear that it is possible to select one or more economic offers that
are “good” or “satisfying”, i.e., higher than established minimum values (on the
Cartesian axes in Figs. 4, 5 and 6). Moreover, by observing evaluation maps, it is
clear that areas where fall offers deemed advantageous are wider, as is also shown
by numerical values on the axes. In particular, the maximum values listed on the
x and y axes are increasing as the number of providers which are able to submit
offers.This means that the offers selected by the Multi Criteria Decision Making

Re-powering Service Provisioning Through Federated Cloud Ecosystems 29

Fig. 4. DPPE/cost - DPPE/δt evaluation map for 3-10-30 CSPs. (Color figure online)

algorithm averagely provide higher values of sustainability. More specifically,
graphs show higher DPPE/cost - DPPE/ δt values for 30 CSP than 10 CSP or
3 CSP. The same for DPPE/CUE - DPPE/ δt and DPPE/cost - DPPE/CUE.

30 M. Giacobbe et al.

Fig. 5. DPPE/CUE - DPPE/δt evaluation map for 3-10-30 CSPs. (Color figure online)

Table 2 shown a comparison between the evaluation maps resulting from the
simulations and shown in Figs. 4, 5 and 6. For each map, the first column reports
the couple of thresholds on the x-y axes we chose for the derived requirements;
the second one the number of CSPs; the third column the number of offers
that satisfy the chosen thresholds. It is meaningful that a higher number of

Re-powering Service Provisioning Through Federated Cloud Ecosystems 31

Fig. 6. DPPE/cost - DPPE/CUE evaluation map for 3-10-30 CSPs. (Color figure
online)

“green” CSPs allows federation to achieve a higher level in sustainability, towards
a broad federated Cloud ecosystem, which represents a good balance between
sustainability, cost, and service parameters.

32 M. Giacobbe et al.

Table 2. Evaluation map comparison.

Evaluation map 1

DPPE/cost - DPPE/δt CSPs Num. Number of “green” offers

4–0,5 3 1

4–0,5 10 4

4–0,5 30 9

Evaluation map 2

DPPE/CUE - DPPE/δt CSPs Num. Number of “green” offers

0,6–0,5 3 2

0,6–0,5 10 5

0,6–0,5 30 7

Evaluation map 3

DPPE/cost - DPPE/CUE CSPs Num. Number of “green” offers

4–0,6 3 1

4–0,6 10 10

4–0,6 30 15

7 Conclusion and Future Work

In this paper, we presented and discussed a decision system for Cloud Federation
brokerage able to combine global energy sustainability and cost-saving strate-
gies. More specifically, we presented a Multi-Criteria Decision Making (MCDM)
algorithm able to discover the most convenient Cloud providers able to join a
particular energy-aware Cloud Federation.

It enables multiple involved Cloud Service Providers to maximize their
mutual benefit and therefore their business. Therefore, it bodes to encourage
new investments in innovation thus to create a more competitive digital mar-
ket. The proposed strategy can allow both small/medium-size enterprises and
new companies to become Cloud service providers, both in according to specific
service requirements (e.g., Service Level Agreements (SLAs) and sustainability
metric.

By modeling, in energy-aware manner, different Cloud providers and the
related economic offers, we demonstrated how the MCDM algorithm can accom-
modate different Cloud Federation scenarios characterized by particular energy-
aware and business parameters (e.g., service price). Increasing the number of
“green” Cloud service providers, a Cloud Federation can achieve highest level
in sustainability, towards a broad federated Cloud ecosystem able to compete
with larger providers, through a good balance between sustainability, cost, and
service parameters.

However, in a big data management context, relational schemes are
hard to change incrementally, and especially without impacting performance.

Re-powering Service Provisioning Through Federated Cloud Ecosystems 33

Therefore, in future works, we plan to investigate a strategy to reduce the envi-
ronmental footprint and costs in ICT systems where analyzing unstructured,
semi-structured, and polymorphic data is a priority.

Acknowledgment. This work was partially supported by EU H2020 BEACON
Project G.A. 644048, 2015–2018, and by SIGMA Project - Italian National Opera-
tive Program (PON), 2007–2013. Authors would like to thank Eng. Giulio De Meo for
his technical support.

References

1. Bureau, P.R.: 2015 world population data (2015). http://www.prb.org/wpds/
2015/

2. European Commission: Effort sharing decision. http://ec.europa.eu/clima/
policies/effort/documentation en.htm

3. European Commission: Digital single market. https://ec.europa.eu/digital-
agenda/en/digital-single-market/

4. Giacobbe, M., Celesti, A., Fazio, M., Villari, M., Puliafito, A.: An approach to
reduce energy costs through virtual machine migrations in cloud federation. In:
IEEE Symposium on Computers and Communication (ISCC), pp. 782–787, July
2015

5. Chandrasekar, S.: A review of literature on cloud brokerage services. Int. J. Com-
put. Sci. Bus. Inf. 10(1) (2014)

6. Rochwerger, B., Breitgand, D., Epstein, A., Hadas, D., Loy, I., Nagin, K., Tordsson,
J., Ragusa, C., Villari, M., Clayman, S., Levy, E., Maraschini, A., Massonet, P.,
Muñoz, H., Tofetti, G.: Reservoir - when one cloud is not enough. Computer 44(3),
44–51 (2011)

7. Hamze, M., Mbarek, N., Togni, O.: Broker and federation based cloud networking
architecture for IaaS and NaaS QoS guarantee. In: 13th IEEE Annual Consumer
Communications Networking Conference (CCNC), pp. 705–710, January 2016

8. Usha, M., Akilandeswari, J., Fiaz, A.: An efficient QoS framework for cloud bro-
kerage services. In: International Symposium on Cloud and Services Computing
(ISCOS), pp. 76–79, December 2012

9. Tang, C., Liu, J.: Selecting a trusted cloud service provider for your saas program.
Comput. Secur. 50, 60–73 (2015)

10. The Eco2Clouds Project. http://eco2clouds.eu/
11. Wajid, U., Maŕın, C.A., Karageorgos, A.: Optimizing energy efficiency in the cloud

using service composition and runtime adaptation techniques. In: IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (SMC), pp. 115–120, October
2013

12. Giacobbe, M., Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Towards energy
management in cloud federation: a survey in the perspective of future sustainable
and cost-saving strategies. Comput. Netw. 91, 438–452 (2015)

13. Scilab: Open source software for numerical computation. http://www.scilab.org/
scilab

14. Ministry of Economy, Trade and Industry, Japan (METI): Enhancing the Energy
Efficiency and Use of Green Energy in Data Centers. http://home.jeita.or.jp/
greenit-pc/sd/pdf/ds2.pdf

http://www.prb.org/wpds/2015/
http://www.prb.org/wpds/2015/
http://ec.europa.eu/clima/policies/effort/documentation_en.htm
http://ec.europa.eu/clima/policies/effort/documentation_en.htm
https://ec.europa.eu/digital-agenda/en/digital-single-market/
https://ec.europa.eu/digital-agenda/en/digital-single-market/
http://eco2clouds.eu/
http://www.scilab.org/scilab
http://www.scilab.org/scilab
http://home.jeita.or.jp/greenit-pc/sd/pdf/ds2.pdf
http://home.jeita.or.jp/greenit-pc/sd/pdf/ds2.pdf

A Motivating Case Study for Coordinating
Deployment of Security VNF in Federated

Cloud Networks

Philippe Massonet1, Sébastien Dupont1, Arnaud Michot1, Anna Levin2,
and Massimo Villari3(B)

1 CETIC Research Center, Charleroi, Belgium
philippe.massonet@cetic.be

2 IBM Research Lab, Haifa, Israel
lanna@il.ibm.com

3 University of Messina, Messina, Italy
mvillari@unime.it

Abstract. Federated cloud networks are formed by federating virtual
network segments from different cloud platforms into a single federated
network. This allows virtual machines from one virtual network segment
to communicate with virtual machines running on the other virtual net-
work segments of the federated network. Federated cloud networks can
be very useful for creating application specific isolated networks between
clouds. In this paper we describe current work in the BEACON project
to secure the federated network with a global security policy. Virtual net-
work functions and service function chaining are used to implement the
security policy. The federated cloud network security policy is described
in a service manifest. This enables automated deployment and configu-
ration of network security functions across the different cloud federation
networks. The approach is illustrated with a simple case study where
communications between trusted and untrusted clouds are encrypted.

Keywords: Network federation · Network function virtualisation
Service function chaining · Security

1 Introduction

There is a growing need to connect different cloud services for various purposes
such as creating hybrid clouds or distributing virtual machines across differ-
ent clouds. Cloud federation mechanisms enable cloud providers to collaborate
and share their resources to create a large virtual pool of resources at multi-
ple network locations. Different Cloud federation types such as cloud bursting,
cloud brokering or cloud aggregation have been proposed to provide the neces-
sary mechanisms for sharing compute, storage and networking resources even in
small devices [1]. Federated cloud networking techniques provides mechanisms to
federate cloud network resources, and to define an integrated cloud management
c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 34–42, 2018.
https://doi.org/10.1007/978-3-319-72125-5_3

A Motivating Case Study for Coordinating Deployment of Security VNF 35

layer to deploy applications securely and efficiently within the cloud federation
(see [2,3]). One approach for customising network security is to use network
virtualisation technologies such as VLANs in conjunction with Network Func-
tion Virtualisation (NFV) and Service Function Chaining (SFC). By combining
NFV/SFC with network virtualisation it is possible for cloud tenants to tailor the
security of each of their individual virtual networks. This way, security virtual
network functions (VNF) can be adapted to the specific needs of each appli-
cation. VNF provide the necessary security functionalities such as deep packet
inspection, encryption or firewalls. SFC can be used to compose security VNF
to meet tenant’s security requirements.

In this paper, we argue that the deployment and configuration of security
VNF across the different clouds of a network federation should be coordinated.
In the paper we provide a motivating example for coordinating the deployment
of security VNF across different clouds. The specification of the global network
security policy and how to implement it with VNF and SFC is defined in a service
manifest. The deployment and configuration of the security VNF across the
different federated cloud network segments is the responsibility of the network
federation manager.

The paper is organized as follows: Sect. 2 shows in the literature the topic
we are addressing here is not covered yet. Section 3 describes the motivations for
coordinating the deployment of security VNF across the different federated cloud
network segments. Section 4 describes the network service manifest and a moti-
vating example. Section 5 provides a discussion on the approach and identifies
future work.

2 Related Works

The section shows how in the literature there are not works able to address this
important problem [4]. There is a standardization effort on SFC. IETF SFC
working group [5] developed framework for SFC operations and administration.
The Open Network Foundation proposed Service function chaining (SFC) archi-
tecture [6]. The architecture includes SFC network controller responsible for
setting up the service chaining; Classifier responsible for classifying traffic flows
and Service function forwarder, which is responsible for forwarding packets to the
service functions defined in the policy table. The proposed general architecture
can be applied to any network. However, in order to implement this architecture
in federated heterogeneous networks, there is a need to coordinate SFC network
controllers and classifiers, so they will speak the same language and deploy and
control NFVs in an efficient way.

In addition to a general architecture definition, there are more detailed SFC
issues addressed in the literature. For example, [7,8] address VNF service-chain
placement issues in different cloud network scenarios. However, they do not
address federated network scenario with its specific issues of coordinating SFCs
across heterogeneous networks empowered by different virtualization technolo-
gies. The authors of [9] propose a design of a resource orchestrator that steers

36 P. Massonet et al.

the control of SFCs in a scalable way. Their orchestrator map network functions
of a requested SFC to infrastructure network and compute resources. While scal-
ability is an important issue in federated cloud, there are additional issues that
have to be addressed, such as securing heterogeneous environment with different
levels of trust between them.

3 Motivations

Federated cloud networks are created by joining several pre-existing network
segments that are running in different clouds of a cloud federation. The cloud
federation is assumed to be heterogeneous, it may be composed of different
cloud platforms such as OpenStack, OpenNebula or even public clouds such as
Amazon AWS. The federated cloud network enables the virtual machines that
are running on the different segments of the federated network to communicate.
The main benefits of federated cloud networks are the isolation they provide,
i.e. they can be application specific, and the flexibility they provide to manage
and extend the federated network across different cloud platforms. The main
motivation of this paper is to show how a global security policy of a federated
cloud network can be defined in a service manifest and implemented with security
virtual network functions (VNF) and service function chaining (SFC) in each of
the federation clouds. The main benefit of this approach is that the deployment,
configuration and chaining of the security VNF may be automated and verified
once it is deployed across the different clouds. Performing this manually across
the different network segments by the network administrator could take time
and be error prone if the federated cloud network is large and/or the network
topology or the security policy change often. The deployment of the security VNF
and their chaining across the different cloud network segments is coordinated by
a component called the Federated Cloud Network Manager. The approach is
illustrated with a case study that encrypts network flows if the destination is
untrusted, and does not encrypt it if the destination cloud is trusted.

4 Approach

In this section we describe the approach to specifying global network security
policies in a service manifest and then implementing the security policy in the
federated cloud network. First we describe an example of federated cloud net-
work.

Figure 1 shows a federated cloud network distributed across a federation of
three clouds. The figure shows that each cloud has its physical compute, storage
and networking resources. Network resources of the three clouds are connected
over the internet. The figure shows that in each of the three clouds, and over the
physical resources, there is a virtual network segment on which several virtual
machines are running. The figure shows that the three virtual networks have been
federated into a federated cloud network. This allows virtual machines running
in the different network segments to communicate with each other.

A Motivating Case Study for Coordinating Deployment of Security VNF 37

Fig. 1. A federated cloud network federation

Figure 2 shows the general structure of the federated cloud network service
manifest. The service manifest contains a section describing the networking
resources of the cloud federation. Part of the service manifest is dedicated to
the federated cloud network global security policy. In this part the global secu-
rity policy is defined by specifying for example authorized or forbidden protocols,
trusted and untrusted networks, etc.

Figure 3 shows the case study with three clouds. The first two clouds are
trusted and can communicate without encryption. The third cloud is a public
cloud and is untrusted: communications between the first two clouds and the
third cloud must be encrypted. The global security policy may be specified as
follows and can later be translated into a network program:

Fig. 2. A federated cloud network federation

38 P. Massonet et al.

Fig. 3. Cloud case study: trusted and untrusted clouds

if destination cloud X is untrusted then
encrypt network flow with public key of X

else if destination cloud Y is untrusted then
encrypt network flow with public key of X

else if ... then
...

else if destination cloud Z is trusted then
do not encrypt network flow

else if source cloud is untrusted then
decrypt the network flow using the private key

else
destination or source cloud is not part of the federation

end if
This policy covers both the encryption case, which must be done with the

public key of the destination cloud, and the decryption case that must be done
with the private key of the destination cloud.

This global network policy may be implemented with various mechanisms
available in the different cloud platforms of the federation such as:

• VNF: the VNF managers of different cloud platforms provide catalogues of
VNF that can be used to secure the network federation, e.g. in this case
encryption.

• Traffic direction: VNF can be applied to outgoing or incoming traffic, e.g.
encryption is applied to outgoing traffic and decryption is applied to incoming
traffic.

• SFC: VNF need to be placed in the right sequence inside the service chain,
e.g. encryption should be the last VNF in the outgoing traffic service chain
and decryption should be the first VNF in the incoming traffic service chain.

A Motivating Case Study for Coordinating Deployment of Security VNF 39

Fig. 4. SFC deployment

Figure 4 shows the resulting implementation of the above global security pol-
icy where communications between the three clouds of the federation have been
secured according to the federated network security policy. Communications
between cloud 1 and cloud 2 are not encrypted since both clouds are trusted.
On the other hand, communications with public cloud 3 need to be encrypted
because cloud 3 is untrusted. The figure shows how the encryption and decryp-
tion Virtual Network Functions have been deployed to secure communications.
For example, when VM1 communicates with VM3 all network traffic is encrypted
in cloud 1 and systematically decrypted by public cloud 3. All outgoing traffic
from VM3 to VM1 is encrypted by cloud 3 and decrypted by cloud 1. In this case
the service chaining on each cloud site amounts to an “if . . . then . . . else”: if
the traffic destination is an untrusted cloud, then the traffic has to be encrypted.

Figure 5 shows a fragment of a YAML based service manifest. It describes
the encryption and decryption VNF as well as the security groups. It states
that the encryption VNF should be placed at the end of the outgoing service
chain and specifies which key to use based on the destination address. Conversely
it specifies that the decryption VNF should be placed at the beginning of the
incoming service chain and specifies the private key to be used. Security groups
are sets of IP filter rules that are applied to a VM instance’s networking. The
traditional use of security groups is to ensure security between tenants in the
cloud. However, it is also possible to use this mechanism to secure traffic in
the tenant’s network between clouds. Security groups applied to VM’s ports by
means of OpenFlow filtering rules can be used to protect VM from unauthorised
access from untrusted clouds. The default security group denies all incoming
traffic.

40 P. Massonet et al.

Cloud:
- ID: xxx
Name: Cloud1
Type: Private
- ID: xxx
Name: Cloud2
Type: Private
- ID: xxx
Name: Cloud3
Type: Public

Security groups:
- ID: xxx
Name: Application 1
...

VNF:
-ID: xxxxx
Condition: DestCloudType==Public
Type: Encrypt
Key: xxxx
- ID: xxxxx
Condition: SrcCloudType==Public
Type: Decrypt
Key: xxxx

Fig. 5. YAML service manifest fragment for VNF and security groups

5 Discussion

The federated cloud networking security approach presented in this article lets
tenants define, configure and chain the security VNF of their federated virtual
networks. The approach enforces a global security policy on the federated cloud
network. In this paper we have illustrated the need to coordinate the deployment
and configuration of security VNF across the different network segments of the
cloud federation. Only in this manner can the global network security policy be
enforced across the federated network. This coordinated deployment of VNF is
described in a service manifest and is used to automate the deployment of VNF
in the different federation clouds.

For the sake of simplicity in this paper we have assumed that there were no
pre-existing local network security policies that could conflict with the global
security policy. In reality there will be local security policies that could con-
flict with the global security policy. To resolve any potential conflicts the net-
work administrator will have to analyse pre-existing local security policies and
design of the global security policy accordingly or modify local security policies

A Motivating Case Study for Coordinating Deployment of Security VNF 41

if possible. Again for the sake of simplicity we have assumed very simple service
chaining in each cloud of the federation for this paper. We have assumed that
no pre-existing local service chains existed. If local pre-existing service chains
exist then the addition of any new security VNF should be made in a compat-
ible manner. Verification that the modified service chain performs as expected
needs to be made. Any conflicts between VNF should be resolved by the network
administrator.

The global security policy of the case study was presented in Sect. 4 in the
form of a network program can be reused. For instance when new network seg-
ments are added to the federation the network program can be applied to deploy,
configure and chain the security VNF. In this manner the same global security
policy will be enforced on all network segments of the federation. The approach
was illustrated here on a specific case study but future work will look other case
studies to identify other network programming abstractions.

6 Conclusion and Future Work

Federating cloud virtual networks across different clouds provides much needed
mechanisms for administrators, tenants and applications to create customized
and isolated networks. Federated cloud networks extend existing cloud federa-
tion mechanisms such as cloud bursting, cloud brokering or cloud aggregation.
This paper described a high level approach for customising federated cloud net-
work security with Network Function Virtualisation (NFV) and Service Function
Chaining (SFC). It was argued that the deployment and configuration of security
VNF and their chaining across the different federated cloud networks should be
coordinated. The approach was illustrated with a motivating case study show-
ing that security VNF such as encryption and decryption may conditionally be
applied based on destination and source IP addresses. Future work involves devel-
oping a network federation manager and experimenting with service chaining in
OpenStack.

Acknowledgment. This work has been supported by the BEACON project, grant
agreement number 644048, funded by the European Union’s Horizon 2020 Programme
under topic ICT-07-2014.

References

1. Celesti, A., Fazio, M., Giacobbe, M., Puliafito, A., Villari, M.: Characterizing IoT
cloud federation, Le Régent Congress Centre, Crans-Montana, Switzerland. IEEE
Computer Society (2016)

2. Moreno-Vozmediano, R., et al.: BEACON: a cloud network federation framework.
In: Celesti, A., Leitner, P. (eds.) ESOCC Workshops 2015. CCIS, vol. 567, pp. 325–
337. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33313-7 25

3. Massonet, P., Levin, A., Celesti, A., Villari, M.: Security requirements in a federated
cloud networking architecture. In: Celesti, A., Leitner, P. (eds.) ESOCC Workshops
2015. CCIS, vol. 567, pp. 79–88. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33313-7 6

https://doi.org/10.1007/978-3-319-33313-7_25
https://doi.org/10.1007/978-3-319-33313-7_6
https://doi.org/10.1007/978-3-319-33313-7_6

42 P. Massonet et al.

4. Banerjee, S., Shaw, R., Sarkar, A., Debnath, N.: Towards logical level design of big
data. In: IEEE 13th International Conference on Industrial Informatics (INDIN),
pp. 1665–1671, July 2015

5. Aldrin, S., Krishnan, R., Pignataro, N.A.C., Ghanwani, A.: Service function chaining
operation, administration and maintenance framework. In: IETF RFC, February
2016

6. L4-l7 service function chaining solution architecture. In: ONF TS-027. Version 1.0,
June 2015

7. Gupta, A., Habib, M.F., Chowdhury, P., Tornatore, M., Mukherjee, B.: On service
chaining using virtual network functions in network-enabled cloud systems. In: 2015
IEEE International Conference on Advanced Networks and Telecommuncations Sys-
tems (ANTS), pp. 1–3, December 2015

8. Mehraghdam, S., Karl, H.: Specification of complex structures in distributed service
function chaining using a YANG data model. CoRR, abs/1503.02442 (2015)

9. Sahhaf, S., Tavernier, W., Czentye, J., Sonkoly, B., Sköldström, P., Jocha, D., Garay,
J.: Scalable architecture for service function chain orchestration. In: 2015 Fourth
European Workshop on Software Defined Networks, pp. 19–24, September 2015

The Big Bucket: An IoT Cloud Solution
for Smart Waste Management in Smart Cities

Maurizio Giacobbe1(B), Carlo Puliafito2(B), and Marco Scarpa1(B)

1 Department of Engineering, University of Messina,
Contrada Di Dio, 98166 Messina, Italy

{mgiacobbe,mscarpa}@unime.it
2 DIEEI, University of Catania,

Viale Andrea Doria 6, 95100 Catania, Italy
carlopulia@gmail.com

Abstract. Research and industries are devoting a great effort in getting
cities and communities smarter, thus to improve citizens’ Quality of Life
(QoL) and paying serious attention to e-government and e-inclusion pro-
cesses. This is a strategic but also very complex objective that involves
both governance and citizens to address many challenges. Following this
line, this paper discusses the necessity for new smart waste management
systems and presents a comprehensive state of the art on the use of the
Internet of Things (IoT) for smart waste recycling. In particular, we
present and argue the Big Bucket IoT Cloud environment, where smart
dumpsters are equipped with low-cost sensors and open source easy-
to-use hardware and software. Its architectural model is discussed and
compared with other existing solutions in the future perspective.

Keywords: Smart cities · Smart communities · Quality of Life
Smart waste management · Recycling systems · E-government
E-inclusion · IoT · Cloud Computing

1 Introduction

A smart city is an urban multi-disciplinary development vision where Informa-
tion and Communication Technology (ICT) integrates both existing and new
city’s assets mainly in order to improve citizens’ Quality of Life (QoL). City’s
assets mainly include, but not limited to, governmental departments, public
and private transportation systems, medical-hospital centers, power plants, edu-
cational centers (e.g., schools, universities, colleges, museums, libraries), water
supply network, waste management and other community services. ICT allows
city officials to directly interact with the community, for example by applying
new e-government rules and laws and by involving people in new e-inclusive poli-
cies and processes. Moreover, ICT allows city officials to collect information con-
cerning the city infrastructure in order to monitor (in real-time or on-demand)
what is happening in the city and specifically in which area, where and how the
c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 43–58, 2018.
https://doi.org/10.1007/978-3-319-72125-5_4

44 M. Giacobbe et al.

city is evolving, and how to implement improvements to assure a better citizens’
QoL.

Among the ICTs, the Internet of Things is a “hot” topic. The ITU-T SG20
Study Group on IoT and its applications including smart cities and communities
(SC&C) [1] motivates IoT as having the potential to change people’s lifestyle
and the way they interact with the surroundings, especially in smart cities and
communities (SC&C). In this regard, it is expected that IoT will have a signifi-
cant impact on the above-mentioned key infrastructural elements pertaining to
cities, including the QoL, and environment as well as on society and the economy
in general.

This paper specifically focuses on the use of IoT for smart waste man-
agement and recycling. Over-consumption and waste it creates is a growing
problem for today’s society. Therefore, monitoring the lifecycle of waste is very
important for almost two main reasons: to reduce epidemiological risks and to
improve QoL. About these objectives, a city can be defined “smart” only if it
includes a really efficient waste management assets. City officials can use tech-
nological solutions based on the IoT and Cloud paradigm to gather data from
smart objects dislocated in several areas of the city, to analyze them and to
choose the best solutions to improve existing services and to implement new and
better QoL-oriented services. For example, by collecting data from monitored
zones it is possible to determine if a specific area is well served or not, what are
the most important critical situations (e.g., if dumpsters are sufficient in number
or not), and how to prevent epidemiological problems.

The European Waste Catalogue (EWC) is a hierarchical list of waste descrip-
tions established by CommissionDecision2000/532/EC. Commission Decision
of 18 December 2014 amending Decision 2000/532/EC on the list of waste pur-
suant to Directive 2008/98/EC of the European Parliament and of the Council.
This results in a new EWC document as reported in [2]. It is divided into twenty
main chapters each of which has a two-digit code between 01 and 20. Individ-
ual wastes within each chapter are assigned a six figure code. In particular, the
household wastes are generally coded under Chapter 20 as shown in Table 1, even
if there are some wastes where it is more appropriate to use another code.

Therefore, industries and governmental entities, along with scientific research
and academia, are interested to develop innovative technological solutions in
order to allow an efficient waste management in smart cities, by classifying
waste using the EWC. Generally, they take into account three key factors when
thinking about how to recycle: the 3 R’s: Reduce, Reuse, Recycle.

To this purpose, in this paper we propose an integrated IoT Cloud framework
where a new smart dumpster, named Big Bucket, is integrated into a technolog-
ical platform designed to provide waste services safer for both the environment
and humans. More specifically, the proposed solution is addressed to the house-
hold waste collection (i.e., the above-mentioned wastes within Chapter 20 in the
EWC).

An exemplified scenario is shown in Fig. 1, where several Big Buckets are
geo-localized in different zones and equipped with sensors and connectivity to

The Big Bucket: An IoT Cloud Solution for Smart Waste Management 45

Table 1. EWC Chapter 20 - Municipal wastes (household and similar commercial,
industrial and institutional wastes) including separately collected fraction.

EWC Chapter 20 table
Code Waste description

20 01 Separately collected fractions (except 15 01)

20 01 01 Paper and cardboard
20 01 02 Glass
20 01 08 Biodegradable kitchen and canteen waste
20 01 10 Clothes
20 01 11 Textiles
20 01 13a Solvents
20 01 14a Acids
20 01 15a Alkalines
20 01 17a Photochemicals
20 01 19a Pesticides
20 01 21a Fluorescent tubes and other mercury-containing waste
20 01 23a Discarded equipment containing chlorofluorocarbons
20 01 25 Edible oil and fat
20 01 26a Oil and fat other than those mentioned in 20 01 25
20 01 27a Paint, inks, adhesives and resins containing hazardous substances
20 01 28 Paint, inks, adhesives and resins other than those mentioned in

20 01 27
20 01 29a Detergents containing hazardous substances
20 01 30 Detergents other than those mentioned in 20 01 29
20 01 31a Cytotoxic and cytostatic medicines
20 01 32 Medicines other than those mentioned in 20 01 31
20 01 33a Batteries and accumulators included in 16 06 01, 16 06 02 or 16

06 03 and unsorted batteries and accumulators containing these
batteries

20 01 34 Batteries and accumulators other than those mentioned in 20 01
33

20 01 35a Discarded electrical and electronic equipment other than those
mentioned in 20 01 21 and 20 01 23 containing hazardous
components

20 01 36 Discarded electrical and electronic equipment other than those
mentioned in 20 01 21, 20 01 23 and 20 01 35

20 01 37a Wood containing hazardous substances
20 01 38 Wood other than that mentioned in 20 01 37

(continued)

46 M. Giacobbe et al.

Table 1. (continued)

20 01 39 Plastics
20 01 40 Metals
20 01 41 Wastes from chimney sweeping
20 01 99 Other fractions not otherwise specified
20 02 Garden and park wastes (including cemetery waste)

20 02 01 Biodegradable waste
20 02 02 Soil and stones
20 02 03 Other non-biodegradable wastes
20 03 Other municipal wastes

20 03 01 Mixed municipal waste
20 03 02 Waste from markets
20 03 03 Street-cleaning residues
20 03 04 Septic tank sludge
20 03 06 Waste from sewage cleaning
20 03 07 Bulky waste
20 03 99 Municipal wastes not otherwise specified
aHazardous (special) wastes.

communicate with a IoT Cloud framework. This one is able to analyze data
and to implement algorithms to help waste operators to make the best choices
for their services. For example, through remote monitoring of the full level of
each dumpster and for each area of the city, it is possible to optimize service
scheduling and fleet management, that is the collection schedules, management
of the operators and choosing suitable vehicle for each zone. Moreover, real-time
data can be useful to provide public information on air quality, or to realize
e-inclusion contexts through collaboration and Open API.

The proposal is part of the #SmartME crowd-founding project [3],
a smart city infrastructure in the city of Messina, where IoT solutions and
services are being integrated in one coherent and single development framework.
An Open Data platform has been set up through the employment of low-cost
micro-controller boards, equipped with sensors and actuators and installed on
buses, lamp posts, and buildings of local institutions, all over the urban area.
Thanks to such infrastructure, it is possible to collect data and information to
design advanced services for citizens who may take part in this network, through
smart-phones and other mobile devices by which it is possible to interact with
objects and may even themselves turn into data producers.

The Big Bucket: An IoT Cloud Solution for Smart Waste Management 47

Fig. 1. Exemplified waste management scenario with the Big Buckets smart dumpsters.

2 State of the Art in Smart Waste and Recycling Systems

Nowadays, there are some interesting solutions in smart waste and recycling
systems field. However, they do not currently provide support to the city officials
in order to simultaneously optimize waste management and to improve QoL in
specific areas.

This section presents a large overview on the state-of-the-art in smart waste
and recycling systems solutions. The following paragraphs respectively introduce
several important scientific contributions in Literature and other business solu-
tions. In particular, both architectural models and sensors are presented and
argued.

2.1 Scientific Literature

In [4] the authors motivate and propose an IoT-enabled system architecture
to achieve a dynamic waste collection to deliver to recycling plants. It uses a
top-k query based dynamic scheduling model which addresses the challenges of
near real-time scheduling driven by sensor data streams. Moreover, the authors
present a very interesting case of study applied to the city municipality of
St. Petersburg in Russia. If compared with traditional waste collection systems,
their proposed IoT-enabled system architecture is a strong improvement in that

48 M. Giacobbe et al.

context. However, a weakness can be represented by the use of SQL databases
that are not proper for a Business Analytics as a Service context, where instead
NoSQL databases (e.g., MongoDB) are optimal.

A model which incorporates a robust dynamic routing algorithm is presented
in [5]. Specifically, the proposed model proved to be robust in case of truck
malfunction due to truck overloading or damage.

An interesting study on domestic (i.e., household) waste treatment and dis-
posal is presented in [6]. The authors configure several technologies at different
architectural levels (i.e., perceptual, transport and application). In particular,
perceptual layer includes Radio Frequency IDentification (RFID), both wireless
and wired sensors, and Global Positioning System (GPS).

In [7] the authors present an IoT based household-waste container for future
smart cities, called Recyclable, eco-Friendly, on-Demand Bin (ReDBin). They
discuss the related architectural model and compare it to two other approaches.
Their proposed solution certainly represents a step forward in household-waste
collection because it is an example of city-wide eco-system able to integrate
home-based and city-wide technology.

The aim of the EU Framework 7 BURBA Project [8] is the develop-
ment of an automatic system to be used for intelligent waste management, by
using Radio Frequency IDentification (RFID) and cell-based-phone Locations
Based Service (LBS) abilities. The project involves three different municipali-
ties: Camogli(Italy), Santander(Spain) and Rzeszow(Poland).

2.2 Business Solutions

The Bigbelly Solar Smart Waste & Recycling System combines the power
of Cloud computing with smart solar-powered, compacting waste and recycling
stations. It provides its services to more than 1500 customers in 47 countries
[9]. At the edge of the Bigbelly system, there are the stations, smart garbage
collectors exchanging information with Servers. This information can then be
viewed via the related CLEAN Management Console on the Web or on iOS and
Android devices through the relative apps. The stations, which are essentially
made of recycled steel and plastics, mount a solar panel that is used to charge
an internal 12 V battery. The stations keep functioning for more than 72 h with-
out direct sunlight and electronic components support a temperature range of
−40 ◦F to +185 ◦F (−40 ◦C to +85 ◦C). It is available in two version, i.e., stan-
dard and high capacity, the second one integrating a compactor which ensures a
compaction ratio of up to 5-to-1. Thanks to the compactor, it is possible to store
the equivalent of about 150 gal (568 L) of non compacted trash, while the first
model can store 50 gal (227 L). Both the stations incorporate an infrared emitter
and sensor which periodically monitors trash level and, once the light beam is
broken, informs a built-in microprocessor. First of all, this one activates one of
the three external LEDs, indicating trash level to people: green means that the
bin is close to be empty, yellow that it is quite full, while red means that the
bin is completely full. Secondly, when the compacting system is expected, the
microprocessor initiates a compaction cycle: the higher is the trash level, the

The Big Bucket: An IoT Cloud Solution for Smart Waste Management 49

more frequent will be the compaction cycles. Last but not least, when neces-
sary, the microprocessor can notify the personnel to collect the garbage, through
General Packet Radio Service (GPRS) connectivity. The Bigbelly is also able
to check the machine status and incorporates a GPS receiver. Furthermore, a
wireless repeater is installed on the bottom of each station thus to provide free
public Wi-Fi hotspots. However, costs are a weakness, because the cost of one
station is of about 4000$, to which is to be added a cost of around 500$ per unit
for battery replacement and about other 20$ per year for maintenance against
accidental damages and vandalism. These costs are a problem for that cities in
hardship, in order to realize a homogeneous and large-scale waste collection.

Enevo is a proactive company in smart waste and recycling systems field.
Its solution, called Enevo ONe [10], is somehow different from Bigbelly’s since
Enevo does not produce the whole smart bin, but only the smart ultrasonic
wireless sensors to install inside it. Enevo provides its customers with similar
services to the ones offered by Bigbelly: automation of waste collection planning
and optimization of the routes, all possible thanks to a Cloud service in the
background, the Enevo ONe Web interface and the sensors themselves. As an
example of Enevo ONe’s efficiency, the city of Nottingham, England, is rolling
out the service. With a population of 727977 citizens, Nottingham had 660 daily
collections. But using the Enevo sensors, it could cut that number down to 68 a
day, or 89% less [11]. Enevo’s sensors can be installed in over 100 container types
and, by now, the supported waste types are: mixed, paper and cardboard, glass,
metal, textile and Waste Electrical and Electronic Equipment (WEEE). The sen-
sors incorporate high-performance lithium batteries which, in optimal circum-
stances, can last over 10 years. Actually, Enevo’s sensors do not sense only trash
level, but also temperature (very useful e.g. in case of fire) and movement (e.g. in
case of vandalism). They support temperatures in a range of −40 ◦F to +185 ◦F
(−40 ◦C to +85 ◦C) and are also water and dust proof (IP66). Enevo uses a pro-
prietary ultrasonic sonar technology for its smart sensors (smart because they
run a software which, among other things, is used to determine trash level even
if the surface of the contents is unevenly shaped). Measurements are performed
at configurable intervals, usually once per hour. Substantially, Enevo produces
two sensors, the WE-008 and the WEL-001 sensors. While the first one, which
has an accuracy of ±5 cm (±1.96”), can deal with both solid and liquid con-
tents, the second, which has an accuracy of ±1 cm (±0.39”), is specialized for
liquids. Measurements are communicated to the Servers using GSM. Customers
can check the status of their containers at any time through the Enevo ONe
Web interface. Alarms can be set, via the web based system, to inform the
user of detected events and wireless configuration and remote software updates
are possible. Enevo has recently joined LoRaTM Alliance, an open, non-profit
association of members collaborating together and sharing experience to drive
the success of the LoRa protocol, LoRaWANTM, as the open global standard
for secure, carrier-grade IoT Load-Power Wide-Area (LPWA) [12] connec-
tivity. Enevo’s solution price is calculated per container and is paid monthly.
Furthermore, sensors are fully maintenance free.

50 M. Giacobbe et al.

Apart from the above discussed infrared and ultrasonic level sensors, nowa-
days other level measurement techniques do exist. However, the use of more
complex and expensive sensors is justified only for special waste in industrial
environments, where higher risks need more restrictive (i.e., precise) controls,
furthermore in real-time and following a precautionary approach. The capacitive
level sensing is one of these techniques. If the material to measure the level is
non conductive, this technique exploits the fact that the introduction of a dielec-
tric different from air between the electrodes of a capacitor causes a change in
capacitance. Thus, capacitance is indicative of the material level. Whereas, if the
material is conductive, it will act as one of the two capacitor electrodes and, as
the material level increases, the area of the capacitor plates does the same, vary-
ing the capacitance which is thus still indicative of the waste level. In the first
scenario, the sensing probe is one of the two conductors of the capacitor, while
the other one is the wall of the metallic tank or a conductive reference inserted
into the tank if the latter is non conductive. In the second scenario, the dielectric
is represented by an insulating sheath covering the conductive probe, while the
waste material is the other conductor of the capacitor. Omega Engineering
produces the LV3000/LV4000 series [13] level measurement probes and, of each
series, it offers several different models. In general, the main common features are
the accuracy of 0.5%, the operating temperatures in a range of 14 ◦F to 248 ◦F
(−10 ◦C to 120 ◦C) and the maximum probe length of 6 ft (1.8 m). The starting
price of the products of these two series is 846$. Another type of level sensors is
the hydrostatic one. This kind of sensors cannot be applied to solids, as they are
used to measure the pressure created by a liquid. The greater the level of the liq-
uid, the greater the pressure. First Sensor’s CTE/CTU/CTW9000...CS series
[14] is an example of submersible hydrostatic liquid level sensors which allow for
high compatibility with many industrial liquids, even the corrosive ones. These
sensors work in pressure ranges of 0–100 mbar up to 0–5 bar, depending on
the model. The operating temperature range is of 14 ◦F to 158 ◦F (−10 ◦C to
70 ◦C). The sensor length is of 0.42 ft (12,9 cm) without considering the cable
whose length depends on the model.

Sotkon waste systems is present in 12 countries in the world. It provides
several waste management systems, mainly distinguished in underground and
semi-underground, called Sotkis intelligent systems [15]. Its Sotkis Access solu-
tion is a Pay-As-You-Throw (PAYT) system able to collect data and to manage
information about who deposited what and what kind of waste, when and which
quantity. An access key is used by any of the different users. The data transfer-
ence can be made by a complete GPRS/GSM system, and an Internet portal is
managed by the municipality. Sotkon provides smart dumpsters which can also
provide municipalities and citizens with many other services which improve life
in the cities.

Envac vacuum technology is presented [16] as a sustainable, flexible and cost
efficient way to handle waste generated in almost any urban environment (e.g.,
household waste, street litter, kitchen waste, soiled linen and hospital waste).

The Big Bucket: An IoT Cloud Solution for Smart Waste Management 51

Libelium is a spanish company established in 2006 which designs and man-
ufactures hardware and a complete software development kit (SDK) for wireless
sensor networks.

It provides an open wireless sensor platform, called Waspmote [17], and
considers different modules to be integrated in order to implement the main
communication protocols: for example, the XBee 802.15.4 OEM Digi module
implements the IEEE 802.15.4 standard, while the XBee ZB Digi module allows
for Zigbee connectivity. Furthermore, other modules exist for the LoRaWAN,
Sigfox, Wi-Fi, GPRS/3G and Bluetooth v4.0 connectivities. Data gathered by
the Waspmote nodes are sent to the Cloud by Meshlium, the gateway router
designed to connect Waspmote sensor networks to the Internet via Ethernet,
Wi-Fi and 3G interfaces.

The above board is designed to incorporate specific sensors to be applied in
a certain context. A possible sensor board to be employed in a smart dumpster
is the Smart Cities Sensor Board which can integrate temperature, humidity,
luminosity, dust, noise and level sensors, to monitor the relative parameters out-
side or inside the container. Another board is the Gases PRO Sensor Board
which can monitor internal or external gases such as Carbon Monoxide (CO),
Carbon Dioxide (CO2), Methane (CH4), Ammonia (NH3) and others. Pollution
monitoring and display to the citizens is essential to compare the impact of mea-
sures taken by municipalities and public institutions and raise public awareness.
For example, monitoring of pollution in Stockholm city center made its citizens
approve in a referendum a congestion tax for accessing to downtown. The results
were a 22% reduction in CO2 emissions and a 18% reduction in the average time
of jams.

The goal of the European Project Life named Identification DEtermina-
tioN Traceability Integrated System for Waste Electrical and Elec-
tronic Equipment (IDENTIS WEEE) [18] was to double the collection of
WEEE (e.g. smart-phones, light bulbs, electronic toys, TVs, appliances in gen-
eral) which can cause potential environmental problems if not properly disposed
off, and contain valuable materials (e.g., iron, aluminum, glass, tungsten, palla-
dium, etc.) that can be recovered and reused. To achieve this aim, fundamental
features of the system are: (i) the complete traceability of electrical and electronic
equipment from the moment of delivery to that of recovery; (ii) the identification
of each user and the items delivered, to prevent the illegal trafficking of e-waste
(valuable and potentially dangerous for the raw materials they contain); (iii) the
monitoring of filling for an optimized management of the collection service. It
started at the beginning of 2013 in some parts of Emilia-Romagna (Italy) and in
Spain and ended up in 2015.

3 The Big Bucket Solution

This section shows the main objectives the proposed Big Bucket solution aims
to realize. Big Bucket is proposed as a system of selective collection of waste
based on modern technologies of the IoT, thus to mainly address the problem

52 M. Giacobbe et al.

of inefficiency in traditional waste collection systems. More specifically, once
data are collected, the Big Bucket solution provides services for city officials in
order to:

– optimize collection of waste and therefore contributing to cost-saving and
users’ satisfaction issues, by intervening on the basis of the status (e.g., ful-
l/empty, content waste) of the Big Bucket smart dumpsters which are dis-
tributed throughout a specific monitored area;

– optimize fleet management for waste collection vehicles, that is the displace-
ment of wheeled means of transport, thus consequently reducing traffic and
pollution (i.e., improving air quality), and choosing suitable vehicles to serve
a specific area;

– carry out a monitoring of key environmental parameters (temperature, noise,
humidity, air quality) to improve the QoL in urban contexts;

– monitor the type of produced waste (Identity card of the waste) to perform
statistical analysis on citizens’ QoL, thus to identify critical condition from
the epidemiological point of view;

– achieve e-inclusion contexts through collaboration and Open API (see Fig. 2),
thus reducing ecological footprint. The Big Bucket solution can also operate
as an enabler for people to actively participate in the economy and society of
tomorrow.

Fig. 2. Open API chart.

3.1 The Big Bucket Smart Dumpster

The proposed solution integrates the Big Bucket smart dumpsters as smart IoT
units. Each one of them mainly consists, but not limited to, in a self-powered
instrumented dumpster for waste collection.

The Big Bucket smart dumpster differs from the others in marketplace mainly
because it is designed to be equipped with open-source and low-cost technologies

The Big Bucket: An IoT Cloud Solution for Smart Waste Management 53

based on easy-to-use hardware and software. Moreover, as previously reported in
the state-of-the-art section, the solution which are present in scientific literature
or commercially available are almost always unable to simultaneously optimize
waste management and to improve QoL in specific areas.

Actually, the Big Bucket is thought to serve two different typologies of sep-
arate waste collection: community collection (for public open spaces instead
of traditional old dumpster) and curbside collection (for household waste),
each one with the respective version of the Big Bucket, both essentially made of
recycled steel and plastics.

Moreover, the actual designed version of Big Bucket smart dumpster is based
on Arduino [19], an open source prototyping platform for both industrial and
academia uses. However, just thanks to the use of low-cost sensors with both
open source easy-to-use hardware and software solutions, the on-board instru-
mentation can be easily updated with news produced by Arduino but not limited
to this provider.

Table 2 shows the main technical characteristics of both the above-introduced
versions. In particular, chemical and air quality sensors allow the Big Bucket
smart dumpster to be an ambient control unit able to monitor the type of pro-
duced waste and to identify possible epidemiological risks. To reduce the possi-
bility of theft, a blocking system is provided for all the Big Bucket versions.

3.2 Integration of the Big Bucket Smart Dumpster
in the Stack4Things Framework

In the last years, the IoT has become one of the most attractive fields in ICT
thanks to the wide diffusion of smart and heterogeneous sensor-and actuator-
hosting platforms. Adequate technologies are needed to afford challenges such
as management, organization and coordination of these devices in order to take
advantage of their features and to facilitate the implementation of higher-level
services based on them. In this direction, the integration of IoT and Cloud Com-
puting is one of the most effective solutions. More specifically, the proposed Big
Bucket Smart Dumpster is provided with a “smart” IoT board and connectiv-
ity to be integrated in a Cloud IoT Sensing-and-Actuation-as-a-Service (SAaaS)
framework in order to realize a smart waste management module.

The Mobile and Distributed Systems Lab (MDSLab) at the University of
Messina, Italy, developed Stack4things, an OpenStack extension which man-
ages sensing and actuation resources, remotely controlling nodes as well as vir-
tualizing their functions and creating network overlays among them. Thus, the
aim is not that of using Cloud Computing simply to manage data, but to shift to
a SAaaS perspective in which to provide developers or final users with actual or
virtualized sensing and actuation resources. More specifically, Stack4Things is an
OpenStack-based and Cloud-oriented horizontal solution providing IoT object
virtualization, customization, and orchestration [20].

54 M. Giacobbe et al.

Table 2. The Big Bucket smart dumpster. Characteristics.

The Technologies Involved. Open source technologies and standards are
involved in the implementation of Stack4Things. As said above, the core is Open-
Stack, which is an open source framework for creating and managing private and
public Clouds, since it controls compute, storage and networking resources. At
the edge of the system, the IoT nodes are Arduino YUN-like boards. These
are open source platforms that can interact with the ambient thanks to digital
and analog I/O pins and can connect to the Internet through the Ethernet and
Wi-Fi interfaces. Low-power microcontroller (MCU) and microprocessor (MPU)
units are integrated, with the latter running an OpenWRT [21] Linux distribu-
tion and able to directly access the MCU I/O pins.

Moreover, the shield is an element that can be plugged onto a board to give
it extra features. The Arduino GSM shield is able to connect the Arduino board
to the Internet using the GPRS wireless network.

The Big Bucket: An IoT Cloud Solution for Smart Waste Management 55

A Tx/Rx Bluetooth HC-05 Class 2 module allows to cover a Personal Area
Network (PAN) with a 2.5 mW (4 dBm) maximum power and a 10 m Operating
range. Compared to Bluetooth Classes 1 and 3, our choice is the best compromise
between energy-saving and operating range.

Another technology used in Stack4Things is WebSocket, which provides a
bidirectional, full-duplex, persistent connection from a Web browser to a Server,
in which the Client, but also the Server can send content at any given time to the
other. So, the Server does not need anymore to be called by the Client in order
to send it messages. Communications are done over TCP port number 80, which
is of benefit for those environments which block non-Web Internet connections
using a firewall. The last technology involved in Stack4Things is Web Application
Messaging Protocol (WAMP), an open standard WebSocket sub-protocol that
provides two application messaging patterns, Remote Procedure Calls (RPC)
and Publish/Subscribe, in one unified protocol. In WAMP, the Unified Applica-
tion Routing is responsible of brokering Publish/Subscribe messages and routing
remote calls. Figure 3 shows the Stack4Things overall architecture. It focuses on
the communication between end users, on one side, and an Arduino YUN-like
board on the other. On the board side, the Stack4Things lightning-rod runs on
the MPU and interacts with the OS tools and services, and with sensing and actu-
ation resources through I/O pins. It represents the board’s point of contact with
the Cloud infrastructure, allowing the end users to manage the board resources
even if they are behind a NAT or a strict firewall. This is ensured by a WAMP
and WebSocket-based communication between the Stack4Things lightning-rod

Fig. 3. The Stack4Things overall architecture

56 M. Giacobbe et al.

and its Cloud counterpart, the Stack4Things IoTronic service [22], which is
implemented as an OpenStack service. The end users can interact with the
Stack4Things IoTronic service (and thus with the Stack4Things lightning-rod)
both via a command line based Client, the Stack4Things command-line Client,
and a Web browser through a set of REST APIs provided by the Stack4Things
IoTronic service. This one comprises a set of agents: among others, the IoTronic
registration agent deals with nodes registration to the Cloud while the IoTronic
command agent deals with nodes management and command delivering.

For each monitored zone, each Big Bucket dumpster sends data in real-time
to the collector node for that zone which, in turn, remotely sends data gathered

Table 3. A comparison between the proposed Big Bucket solution, ReDbin, BURBA,
Bigbelly and Sotkis.

Comparative table
Comparative fields ReDbin BURBA Bigbelly Sotkis Big Bucket

Self-powered by solar panel Y Y Y
Ground-level collection Y Y Y Y
Underground collection Y
Dumpsters geolocation Y Y Y Y Y
Level monitoring Y Y Y Y Y
Waste type monitoring Y Y
Air quality monitoring Y Y
Real-time data Y Y Y Y
GSM/GPRS Y Y Y Y
WIFI Y Y Y
RFID Y Y
NFC Y
Bluetooth Y
Remote control Y Y Y Y
Cloud based Y Y Y Y
Open hardware/software Y
Mobile apps Y Y Y Y Y
Collaboration and open API Y Y
Web access Y Y Y Y Y
Reporting Y Y Y Y Y
Routes optimization Y Y Y Y
Self-alarming Y Y

The Big Bucket: An IoT Cloud Solution for Smart Waste Management 57

from the connected Big Buckets to the Stack4Things [23] for the next business
analysis phase. Data collected by the nodes are open and users can visualize
them through Comprehensive Knowledge Archive Network (CKAN), an open
source data portal software. CKAN is built with Python on the back-end and
Javascript on the front-end and its database engine is PostgreSQL. It also
offers a powerful API that allows third-party applications and services to be
built around it.

Comparison of the Big Bucket with Existing Household Waste Man-
agement Solutions. A comparison between the proposed Big Bucket solution,
ReDbin, BURBA, Bigbelly and Sotkis is shown in Table 3, where the above-
mentioned household waste management solutions are compared on the basis of
several functionalities and services.

4 Conclusion and Future Work

In past years, waste collection was treated in a static way, also limiting the man-
agement only to the collection and without paying close attention to the citi-
zens’ Quality of Life (QoL). Nowadays, the proliferation of sensors and actuators
forming “smart” IoT contexts in smart cities enables new dynamic approaches,
furthermore improving both waste management and QoL.

This paper addresses the challenge of specifying an innovative solution in
smart waste and recycling systems. The proposed Big Bucket solution integrates
“smart” dumpsters offering Wi-Fi, Bluetooth and NFC connectivities. It presents
a strong integration of Cloud Computing and IoT, thus allowing to sense trash
level and to communicate information in order to improve the waste manage-
ment and its collection: both public and private entities can use information to
optimize time and costs of recycling. The solution also allows to reduce traffic
and pollution, and at the same time improving citizens’ QoL. Citizens, through
an application on their mobile devices, can detect the nearest Big Bucket where
to depose a specific type of waste (community collection).

We are progressing towards the implementation and testing of this solution
inside the #SmartME project in the city of Messina. One such scenario is the
curbside collection, to test inside the same project, where citizens can control
their own “smart bill”. Moreover, we consider to design further typologies of
smart dumpster for industrial environments, where the management of special
wastes, both hazardous and not, is not trivial.

Acknowledgment. This work has been carried out in the framework of the CINI
Smart Cities National Lab.

58 M. Giacobbe et al.

References

1. The ITU-T SG20 Study Group on IoT and its applications including smart cities
and communities (SC&C). http://www.itu.int/en/ITU-T/studygroups/2013-2016

2. The European Waste Catalogue (EWC). http://eur-lex.europa.eu/legal-content/
EN/TXT/HTML/?uri=CELEX:32014D0955&from=EN

3. The #SmartME crowdfounding project. http://smartme.unime.it/
4. Anagnostopoulos, T., Zaslavsy, A., Medvedev, A., Khoruzhnicov, S.: Top - k query

based dynamic scheduling for IoT-enabled smart city waste collection. In: 16th
IEEE International Conference on Mobile Data Management, vol. 2, pp. 50–55
(2015)

5. Anagnostopoulos, T., Zaslavsy, A., Medvedev, A.: Robust waste collection exploit-
ing cost efficiency of IoT potentiality in smart cities. In: International Conference
on Recent Advances in Internet of Things (RIoT), pp. 1–6 (2015)

6. Wang, J.Y., Cao, Y., Yu, G.P., Yuan, M.Z.: Research on application of IOT in
domestic waste treatment and disposal. In: 11th World Congress on Intelligent
Control and Automation (WCICA), pp. 4742–4745 (2014)

7. Chin, J., Callaghan, V.: Recyclable, eco-friendly, on-demand bin (ReDBin). In:
International Conference on Intelligent Environments (IE), pp. 222–225 (2014)

8. The EU Framework 7 BURBA Project Report Summary. http://www.cordis.
europa.eu/result/rcn/54

9. Bigbelly. http://bigbelly.com/
10. Enevo ONe. https://www.enevo.com/enevo-one/
11. Enevo. http://venturebeat.com/2014/11/19/trash-talk-enevo-equips-trash-bins-

with-sensors-to-save-big-bucks/
12. Low-Power Wide-Area Technologies White Paper. https://www.lora-alliance.

org/portals/0/documents/whitepapers/LoRa-Alliance-Whitepaper-LPWA-
Technologies.pdf

13. The Omega Engineering LV3000/4000 series. http://it.omega.com/green/pdf/
LV3000 LV4000.pdf

14. The First Sensor CT series. http://www.first-sensor.com/cms/upload/datasheets/
DS Standard-CTE-CTU-CTW9000CS E 11594.pdf

15. Sotkis Intelligent Systems. http://www.sotkon.com/en/15/waste management
systems

16. The Envac vacuum technology. http://www.envacgroup.com/using-envac
17. The Libelium Waspmote wireless sensor platform and smart cities sensor board.

http://www.libelium.com/
18. IDENTIS WEEE. http://identisweee.net/
19. Arduino. http://www.arduino.org/
20. Merlino, G., Bruneo, D., Di Stefano, S., Longo, F., Puliafito, A.: Stack4Things:

integrating IoT with OpenStack in a smart city context. In: Proceedings of the
2014 International Conference on Smart Computing Workshops (SMARTCOMP
Workshops), pp. 21–28 (2014)

21. The OpenWRT Linux distribution. https://openwrt.org/
22. IoT resource management service for OpenStack clouds. https://github.com/

MDSLab/iotronic
23. Stack4Things Framework. http://stack4things.unime.it/

http://www.itu.int/en/ITU-T/studygroups/2013-2016
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32014D0955&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32014D0955&from=EN
http://smartme.unime.it/
http://www.cordis.europa.eu/result/rcn/54
http://www.cordis.europa.eu/result/rcn/54
http://bigbelly.com/
https://www.enevo.com/enevo-one/
http://venturebeat.com/2014/11/19/trash-talk-enevo-equips-trash-bins-with-sensors-to-save-big-bucks/
http://venturebeat.com/2014/11/19/trash-talk-enevo-equips-trash-bins-with-sensors-to-save-big-bucks/
https://www.lora-alliance.org/portals/0/documents/whitepapers/LoRa-Alliance-Whitepaper-LPWA-Technologies.pdf
https://www.lora-alliance.org/portals/0/documents/whitepapers/LoRa-Alliance-Whitepaper-LPWA-Technologies.pdf
https://www.lora-alliance.org/portals/0/documents/whitepapers/LoRa-Alliance-Whitepaper-LPWA-Technologies.pdf
http://it.omega.com/green/pdf/LV3000_LV4000.pdf
http://it.omega.com/green/pdf/LV3000_LV4000.pdf
http://www.first-sensor.com/cms/upload/datasheets/DS_Standard-CTE-CTU-CTW9000CS_E_11594.pdf
http://www.first-sensor.com/cms/upload/datasheets/DS_Standard-CTE-CTU-CTW9000CS_E_11594.pdf
http://www.sotkon.com/en/15/waste_management_systems
http://www.sotkon.com/en/15/waste_management_systems
http://www.envacgroup.com/using-envac
http://www.libelium.com/
http://identisweee.net/
http://www.arduino.org/
https://openwrt.org/
https://github.com/MDSLab/iotronic
https://github.com/MDSLab/iotronic
http://stack4things.unime.it/

Towards Distributed and Context-Aware
Human-Centric Cyber-Physical Systems

Jose Garcia-Alonso1(B), Javier Berrocal1, Carlos Canal2, and Juan M. Murillo1

1 University of Extremadura, Badajoz, Spain
{jgaralo,jberolm,juanmamu}@unex.es
2 University of Málaga, Málaga, Spain

canal@lcc.uma.es

Abstract. As the number of devices connected to the Internet increases,
the interactions between the general population and Cyber-Physical Sys-
tems multiplies. Most of these interactions occur through people’s smart
devices. Thanks to the large number of sensor included on these devices
and their capabilities to connect to other sensors they serve as a gate-
way to Cyber-Physical Systems. However, most of the capabilities of
these devices are underutilized, since they are only used to upload the
sensed information to centralized cloud servers. This paper presents the
key challenges that must be faced to build distributed and context-aware
human-centric Cyber-Physical Systems that take advantage of the capa-
bilities of modern smart devices. In addition, the concept of Situational-
Context is introduced as a possible solution addressing these challenges.
Situational-Context is a new computational model that use smart devices
to gather the virtual profiles of their owners. These profiles are combined
and used to adapt and control the behaviour of Cyber-Physical Systems.
This computational model could contribute to a new generation of dis-
tribute human-centric systems with a clear social orientation.

Keywords: Cyber-Physical Systems
Human-centric Cyber-Physical Systems · Internet of Things
Mobile computing · Situational-Context

1 Introduction

The increasing variety of internet-connected smart devices and their growing
capabilities are facilitating the cyber-physical space to acquire special relevance
in nowadays society. Putting together the capabilities offered by such huge
amount of resources to perform tasks that could not be considered feasible so
far is now becoming a practical challenge. The benefits go far beyond, provid-
ing functionalities that no single entity or system can achieve. This integrated
behaviour is expected to start the next technological spin that will transform
society, as it is currently known [15].

By no means can Cyber-Physical Systems (CPS) be considered a new con-
cept. They have been present for many years in industrial facilities controlling
c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 59–73, 2018.
https://doi.org/10.1007/978-3-319-72125-5_5

60 J. Garcia-Alonso et al.

production chains through sensors and actuators, and more recently they have
also been applied to other environments such as eHealth [20], automotive sys-
tems [39] or eldercare [2]. The next step is taking advantage of the high pene-
tration of technology in current society to build a new generation of CPS [17]
to be present in most aspects of daily life. For that, it is particularly interesting
the massive involvement of humans in CPS.

This involvement is to a large extent managed through their smartphones.
Such devices are the perfect sensors [12]. They are almost continuously active,
always maintained by their owners and with the ability of measuring a broad
variety of magnitudes, be it positioning, acceleration, direction, temperature,
or heart rate. Consequently, sensors can provide data to compose a clear and
reliable image of the context of their owners. However, the massive involvement
of humans in CPS is not as perfect as expected. One of the main reasons for
that is the architectural limitations.

Traditional CPS are commonly built based on a server-centric cloud archi-
tecture. With this architecture, the physical world data are provided by sensors
and stored and processed by servers [7]. The data are processed to identify the
need of performing actions over the physical world according to the CPS rules.
The actions are translated to orders that are sent to actuators by the servers.
Although this architecture has shown adequate for simple scenarios, it poses
some limitations for the new generation of CPS. The higher the number of phys-
ical world entities involved in the CPS is, the higher storage and computation
capacities are required on servers. Limitations that are much more serious if one
considers that each person may be involved in several CPS (then, the sensed
data would have to be uploaded to all these systems). A smartphone acting as
a sensor simultaneously in several CPS will get its resources (especially battery)
quickly drained. The natural consequence is that the owner of the smartphone
will probably lose interest in the benefits of CPS and will leave it. An exodus of
active members could make the CPS cease to have meaning.

This paper focuses on the key challenges that should be addressed to enable
a new kind of CPS with significant involvement of humans. To address this
challenge we propose the concept of Situational-Context, a new computational
model that facilitates the distributed data storage and control. The principles
behind that are simple: (1) instead of using smartphones as simply sensors, we
can take advantage of all their storing and computation capabilities; (2) instead
of uploading every data about their owners’ context to servers, we leave them on
the smartphones keeping them reachable and shareable for any CPS interested
on them; (3) instead of computing every CPS rule on servers, we delegate on
them the responsibility for the computation of the rules involving their owners’
context. This distribute model allows people to be involved in several CPS,
minimizing the data traffic between smartphones and servers and producing a
sustainable consumptions. This work contributes to a new generation of massive,
human-centric CPS with clear social orientation.

To describe the proposed model and the benefits it provides, this paper
is organized as follows. Section 2 details the key challenges of building

Towards Distributed and Context-Aware Human-Centric Cyber-Physical 61

human-centric CPS. In Sect. 3 the Situational-Context model is described
emphasizing their effect on human-centric CPS and how can it be integrated
with more traditional CPS. The most relevant related works are discussed in
Sect. 4. Finally, Sect. 5 contains our conclusions and future works.

2 Key Challenges of Building Human-Centric CPS

Most CPS being built today follow a server-centric architecture. As Fig. 1 shows,
this architecture is usually divided into two spaces. The physical-space, where
the network of sensors and actuators are placed, and the cyber-space, where the
processes controlling the CPS behaviour and the data used by them are placed.

Fig. 1. Common architecture of CPS.

In this architecture, sensors obtain information from the physical world. Due
to the ubiquitous internet connection, this information is propagated from sen-
sors to the cloud servers where it will be processed. The information is then
processed according to the CPS rules and commands are sent to the actuators,
so they produce an effect on the physical world.

This architecture leads to very stable and reliable systems that provide suit-
able support for many environments. However, if we try to apply it to new
contexts with massive involvement of people - i.e. social networks, smartcities,
etc., it suffers limitations related to the amount of information that have to be
processed and the way in which it is gathered.

To exemplify this limitations, we introduce a smart transportation scenario as
running example. This kind of CPS, involving vehicles, are particularly affected
by the systems communication [6]. The proposed system, through cameras and
traffic lights, can control the congestion in order to avoid traffic jams. But it
would be more useful to know, in real time, the route that the drivers are going to
follow in order to foretell potential traffic problems and to accordingly control the
traffic lights, or even to suggest drivers an alternative route. However, obtaining

62 J. Garcia-Alonso et al.

such information from drivers and process it using a traditional architecture
would be very expensive.

The constant advances in technology and, specially, the use of the smart
devices for gathering the human context, has made the technological develop-
ment of this kind of CPS feasible. In addition, the increasing storage and com-
puting capabilities of these devices allows them not only to participate as mere
sensors, but also to take a more active role in the architecture. However, the
inclusion of this new role raises important challenges, which can be categorized
in two sets, (1) human-related challenges, such as the ability of the CPS to adapt
to the human context, the capacity of making complex inferences or the control
of the privacy of the users’ data, and (2) technological-related challenges, such as
the control of the smart devices’ resources, the provision of services from smart
devices or the composition and orchestration of these services. Next, we describe
these key challenges.

2.1 Human-Related Challenges

Based on the above, people are becoming the focus of more and more CPS. This
increment in the relevance of people in CPS poses a set of challenges that are
not addressed by traditional CPS. These are the most relevant people related
challenges.

CPS Adapted to the Context of Their Human Users. Current CPS sys-
tems are usually very rigid and static. They analyse the information obtained
by sensors and command specific actions to actuators upon a predefined set of
rules. Therefore, they are not able to react differently to different users, environ-
ments or contextual situations [42]. This limits the personalization and human
characterization of the CPS, reducing their acceptance by users. There are many
situations, such as in everyday environments, in which CPS can provide a higher
value if they can adapt to the context of the humans using them [28].

Currently, there are several approaches working on the development of
context-aware CPS. These approaches propose different methods for monitor-
ing and detecting the activities performed by users in a given context (such as
eHealth [20] or supply chain [9]) to adapt the deployed CPS to the performed
actions. However, in order to exploit all the benefits of human-centric CPS, these
systems should be able to obtain more contextual information of the users, such
as their preferences, interests, emotions or motivations [34].

For example, in the smart transportation scenario, it would be desirable that
when a driver sits in her car, the CPS detects who has seated and adjust the
seat and the dashboard luminosity to her preferences and establish in the car’s
GPS the route to follow to her destination.

Currently, as the general population begin to use a greater number of smart
devices and wearables, the contextual information of the humans can be easily
gathered. This information can be used to adapt the CPS behaviour to the
context of their users. Therefore, in the previously defined example, the car

Towards Distributed and Context-Aware Human-Centric Cyber-Physical 63

could interact with the user’s smartphone in order to obtain her preferences and
her destination, according to the next appointment established in her schedule.

Similarly, multiple benefits can be obtained if a CPS can be adapted not
only to the contextual information of a single user, but if it can also take into
account the contextual information of multiple users, providing a more consistent
improvement. In the smart transportation example, once the car has detected
the destination of the driver, it can detect that there will be a high amount of
drivers that will also follow a similar route. Accordingly, an alternative route
with a more fluid traffic would be recommended to the driver.

To summarize, there is a research challenge of being able to develop human
context-aware CPS in which smart devices can actively adapt the system
behaviour depending on the preferences of a specific user or to the context of a
set of users.

Inference of Complex Sociological Data. Related to the use of contextual
information, another challenge is the inference of complex sociological data. The
complexity of the raw information obtained from users mostly depends on the
sensors involved. Usually, this information is obtained from smartphones’ sensors
or other wearable technology, and involves relative simple data about the physical
state of the user. However, much more complex and useful information can be
inferred.

Social networks, such as Facebook or Twitter, and other IT companies, like
Google, have demonstrated the profitability of the information inferred from
their users. These organizations use the inferred sociological information to offer
more personalized services, mainly advertisement. This information would be
also highly useful to enhance the CPS systems, in order to be capable of reacting
and adapting to it.

Many works have focused on defining systems for processing the large amount
of information gathered [27]. These engines are mainly intended to be performed
on servers with high computing and processing capabilities. However, this app-
roach is not appropriate in situations in which the inferred information have to
be reused in many different systems. For this, smart devices, that already obtain
and maintain the contextual information, should also be able to infer the soci-
ological information of their users and maintain the complete profile. Thus, an
inference can be reused in different CPS.

In our smart transportation example, the usual route users follow from their
homes to their jobs can be used to infer whether they have kids and their ages
– if they usually make a stop at a school. This inferred information can be used
both in a smart transportation CPS, in order to provide alternative routes to
pass by the school, and also in a home automation CPS, for a parental control
access to TV channels.

Currently there are no inference engines specifically adapted to the smart-
phones capabilities. For example, there are some studies, such as [14,40],
analysing whether the already designed interferers can be deployed on smart-
phones. As result, these studies have identified that their deployment is feasible,

64 J. Garcia-Alonso et al.

but their limited processing and memory capabilities lead to a diminution of the
inferring speed.

Therefore, currently, there is a research challenge to develop interferers capa-
ble of exploiting the computing capabilities of smart devices in order to compose
more comprehensive profiles of their users.

Privacy Issues Caused by Obtaining Contextual Information. Finally,
as the number of smart devices and wearable technologies carried by people
increases, more information is available. CPS could greatly benefit from it, but
the privacy challenge becomes a serious concern when a system has several users
and their data can be exposed to unauthorized parties [26].

Regarding our smart transportation scenario, the system could greatly ben-
efit from constantly gathering the position of each user. This information could
be used to control in real time the traffic and to redirect users to the most
appropriate route at every moment. However, gathering this information implies
that the system is able to know where each user is at any time, with the loss of
privacy that this implies.

Currently, there are works focused in different aspects of the privacy and
security of CPS. For example, some researches are focused on specific commu-
nication techniques [11,25], on detailing specific cryptographic mechanisms [30],
or on defining systematic and complete architectures to manage the security in
a CPS [26].

Nevertheless, the management of the users’ information also depend on the
policies established by each user on each individual system. In environments
where the smart devices, participate in multiple CPS, the privacy management
raises duplication issues, since the similar security policies have to be established
in each environment. As it is highlighted in [16,31], there is a key challenge of
approaches facilitating providing capabilities to easily establish security policies
about who, how and when such information can be accessed.

2.2 Technological-Related Challenges

Directly related with the above described human-related challenges, there is a
set of technological challenges that should be addressed during the design and
development of human-centric CPS. These are the most relevant ones:

Battery Consumption of Monitoring Devices. As stated above, contextual
information of its users can greatly benefit CPS performance. From a techno-
logical point of view, obtaining this information poses a significant challenge,
mainly related to battery consumption. If the information is gathered by a bat-
tery powered device, the frequency at which the information can be obtained
highly depend on the available battery.

Furthermore, once the information is obtained, in a traditional architecture,
such data must be uploaded to a server for storing them and for executing the
defined rules. However, uploading the data to the server also carries a significant

Towards Distributed and Context-Aware Human-Centric Cyber-Physical 65

battery consumption. This expenses can be further increased for the devices par-
ticipating in several CPS systems, since the same information should be uploaded
to different CPS.

Therefore, CPS must be developed so that they take into account the bat-
tery life of the devices on their network [8]. This is not only a matter of phys-
ical limitation but also of user acceptance. In a human-centric CPS, users will
automatically tend to reject the participation in any system that drains their
smartphones batteries [38].

Current systems work around this challenge by gathering information every
certain periods or only when specific situations occurs. For instance, most of
the systems that obtain the users location do so whenever a significant change
of position occurs, where significant can mean several hundred meters. This
technique sacrifices precision and freshness of the information for battery savings.
However, real time information is crucial in many situations. Works like [3]
can help developers to analyse the battery consumption caused by CPS under
different architectures.

Coming back to our smart transportation system, constantly uploading the
real time position of a car may involve a reduction in the battery life of the
device, but uploading this information only when there is a change of several
hundred meters may also imply not correctly knowing the situation of a traffic
problem. It would be more desirable to be able to access to fresh information
on demand and under specific situations. Thus, the device’s battery would be
saved in those situations in which real time information is not required.

Therefore, currently, there is a technological challenge for obtaining fresh
and updated information from devices under demand and without incurring on
significant consumption of the battery life.

Providing Information Directly from Smart Devices. In a traditional
CPS architecture, smart devices act as mere sensors and they are only used to
gather information and send it to servers. However, this situation can be coun-
terproductive for devices involved in several CPS and hinders the development
of distributed CPS. It would be desirable that any device or server can directly
access the information gathered and stored in the smart devices.

For example, the geolocalization of a driver can be used by the smart trans-
portation system to improve the traffic congestion in a city, but also can be used
by a home automation system to know when a person will arrive home and, thus,
activate the air conditioning, the lights or the music. So, instead of constantly
uploading the GPS information to each system’s server, these devices should be
capable of directly providing the information on demand.

Currently, there are approaches defining models and architectures for the
deployment of lightweight services on smartphones, such as [13,29]. In [29], the
authors propose a mobile-based hosting and serving architecture to eliminate
the common cloud-based hosting of the media content being shared. Thus, the
information collected and stored in the smartphones may be available to be used
or shared in any CPS whenever required, without necessarily having to upload

66 J. Garcia-Alonso et al.

it to each server. These studies only establish an architecture to deploy services
on mobile devices. However, to the best of our knowledge, there is a research
challenge for the definition of architectures for the deployment, provision and
management of these services in a human-centric CPS.

Service Composition and Orchestration in Human-Centric CPS. If
users devices start providing services that can be consumed by other entities of
the CPS, not only servers but also other smart devices could make use of this
information. This facilitates the development of distributed CPS, where smart
devices are able to execute some CPS rules in order to orchestrate and compose
complex services. In particular, human-centric CPS could greatly benefit from
this orchestration of services, since they can adapt this orchestration to the
context of their users.

This capability could be used to improve different aspects of the smart trans-
portation CPS. For instance, if the smart device of a user detects an anomaly,
like going slower than usual in a given spot, it could fire a CPS rule to directly
communicate with nearby devices to verify if the anomaly is affecting them, too.
If that is the case, the device would notify the traffic problem directly to a trans-
portation control centre. This prevents the system to be constantly monitoring
all drivers in order to detect traffic problems.

There are some works in the CPS and mobile fields focused in the orches-
tration of services deployed in devices. In [19], the authors present an orches-
tration framework for sensor-rich mobile applications. In [32], authors present
a meta-model for modelling flexible and dynamic processes for the automation
of workflows in CPS. Nevertheless, in a human-centric CPS, processes should
be able to adapt to the human context [37]. Hence, there is an open research
challenge to develop frameworks capable of orchestrate services adapted to the
human context.

Large Amounts of Information to Be Processed. Finally, as more and
more information is available, human-centric CPS need to process large amounts
of information. This challenge is not inherent to CPS, but due to the advances in
information technologies. Multiple research areas are involved in the processing
of Big Data that could benefit the development of human-centric CPS.

Nevertheless with traditional methods, it is highly challenging to analyse
the vast data volume generated by crowd sensing [41]. Meeting this challenge
requires interdisciplinary approaches combining new architectures, novel algo-
rithms and new processing environments [33]. Currently, some approaches, such
as [18,36] are working on the deployment of simulation models and novel algo-
rithms in cloud environments to provide higher processing and better accessi-
bility resources. However, these techniques imply that the sensed information
should be uploaded to the cloud environment, with the consequent waste of
resources.

A research challenge for this kind of systems would be the use of smart devices
as the highly capable computational entities they are. If the different devices

Towards Distributed and Context-Aware Human-Centric Cyber-Physical 67

process their own information, the need for a centralized service processing huge
amounts of information would be mitigated.

2.3 Addressing the Challenges

All the above challenges should be addressed to build truly human-centric CPS.
To address them, existing techniques could be added to traditional CPS. How-
ever, more efficient results could be obtained by applying a paradigm shift in the
way CPS have been traditionally built. This paradigm shift involves completely
changing the role played by smart devices and wearable technology in this kind
of systems.

The penetration of these devices, their ever increasing computing and sensing
capabilities, and the fact that they are constantly carried everywhere by their
owners makes them the perfect candidate to be a more active element in almost
any human-centric CPS.

Below, a new computational model for personal yet collaborative contextu-
alization of smart devices enabling distributed CPS is introduced. In this model,
smart devices gather, infer, and store the contextual and sociological informa-
tion of their users and execute the CPS rules delegated to them, adapting them
to their users’ context, exposing complex services or initiating actions in other
devices. Thus, new human-centric CPS minimizing the data traffic and the bat-
tery consumption can be developed.

3 Situational-Context

The Situational-Context [4] can be defined as a way to analyse the conditions
that exist at a particular time and place; and how this analysis can be used to
predict, at run-time, the expected behaviour of CPS. The Situational-Context
is form by the resulting context of locally composing the virtual profiles of the
different entities (things and people) involved in a particular situation. For a
meaningful composition of these profiles, we consider that they contain, at least,
the following information:

– A Basic Profile containing the dated raw information with the entity’s status,
the relationships with other devices and its history. This profile can be seen
as a timeline with the changes and interactions that happened to the entity.

– Social Profile. This profile contains the results of high level inferences per-
formed over the Basic Profile.

– The Goals detailing the status of the environment desired by the entity. These
Goals can also be deducted from the Basic and Social Profiles.

– The Skills or capabilities that an entity have to make decisions and perform
actions capable of modifying the environment and aimed at achieving Goals.

The result of composing the virtual profiles of the involved entities is not only
the combined information of all entities. It contains the combined history of the
entities ordered in a single timeline, the result of high level inferences performed

68 J. Garcia-Alonso et al.

over the combined virtual profiles, the set of Goals of the entities and their Skills.
From the combined information of the Situational-Context, strategies to achieve
the Goals based on the present Skills should be identified. These strategies will
guide the prediction of the interactions that must emerge from the context.

Furthermore, the Situational-Context is a dynamic abstraction of the com-
bined profiles and, therefore, evolves through time. To analyse the instantaneity
of this context, we use the concept of Configuration. A Configuration is the uni-
fied and stable view of the virtual profiles of the devices involved in the situation
at a specific point in time. When changes in the environment happen, the Con-
figuration is no longer stable and must be updated. Thus, a new Configuration
must be defined from the updated/new virtual profiles of the devices. Thus, the
Situational-Context can also be seen as a succession of Configurations.

Figure 2 shows the Situational-Context for controlling the temperature of a
room. It contains a first configuration (C1) combining the virtual profiles of a
thermostat and the smartphone of a person that is in the room. The smart-
phone defines the Goal to have a comfort temperature and the thermostat has
a Skill to control the temperature of the room. When a new user with the same
Goal in her profile enters the room, the situation change, a new configuration
(C2) is computed and the strategies required to achieve the combined Goals
are identified. Then, the interactions required for setting the adequate comfort
temperature emerge from this context.

Fig. 2. Excerpt of a Situational-Context.

By applying the Situational-Context model to the development of human-
centric CPS we can address the human-related challenges detailed in the previous
section. The use of the virtual profiles of all the users involved in a particular
situation would allow developers to build distributed CPS that transparently
adapt to the preferences and needs of their users. As detailed above, these virtual
profiles would include the social profiles of the users, obtained as a result of
applying inferences over the basic profiles. In addition, when the profiles of all

Towards Distributed and Context-Aware Human-Centric Cyber-Physical 69

the entities involved in a situation are combined, higher level inferences are
performed to better adapt the CPS behaviour. Additionally, by keeping the
virtual profiles in the smart devices, instead of sending them to each CPS in
which the users are involved, the privacy is improved and its management is
simplified.

Similarly, the technological-related challenges can be addressed by an imple-
mentation of the Situational-Context. However, due to the early stage of devel-
opment in which the concept of the Situation-Context is, not implementation is
available yet. Nevertheless, the authors of this work have been working in the
past years in the implementation of several concepts like People as a Service [10],
the Internet of People [24] or the analysis of the consumption of mobile applica-
tions under different architectures [3]. A more detailed description of these works
can be found in Sects. 2 and 4 of this paper. By using the technical advances pre-
sented in those works, an implementation of the Situational-Context model can
be created that address all the above described technological-related challenges.

4 Related Work

Currently there are a number of works exploiting the capabilities of smart devices
in order to provide them a more active role in CPS.

VITA [12] proposes an architecture for mobile devices in order to facilitate
the development and management of mobile crowdsensing apps (for collecting
and aggregating sensing data). Also, this system supports the allocation of com-
putational and human tasks to different smartphones in run-time. This system
is a step forward in the use of smart devices as an active element in the human-
centric CPS, but it still delegates a lot of the responsibility on the servers.

In [23], the authors indicate that mobile phones can be used to form wireless
sensor networks in order to sense various information, such as to identify people
in crowded areas. In these networks the autonomy of the mobile phone is critical,
so that they have optimized the OLSR routing protocol to increase it. This
protocol facilitates the achievement of the challenge associated with the battery
consumption in human-centric CPS.

In the Ambient Intelligence paradigm, some works use multi-agents systems
to gather the users’ context and to react in a proactive and autonomously way to
it [35]. However, the constant access to virtual profiles stored on mobile devices
can lead to a quickly drain of their battery, which is a crucial aspect for them
and for the success of mobile applications [22]. The Situational-Context model
intends that these profiles are accessed only once to be composed. Therefore,
since the different inference rules and strategies can be directly executed using
the combined profile, the battery consumption is reduced.

The Fog Computing [5] extends the Cloud Computing paradigm to the edge
of the network, using one or a collaborative multitude of end-users devices or
near-user edge devices to store information or to execute different processes.
Thus, reducing the latency and the communication overhead.

The nimBees notification platform [1] provides a mobile a API that can be
included in any iOS or Android application. This API allows mobile developers

70 J. Garcia-Alonso et al.

to easily gather contextual information about the users of their applications. This
information is processed by the nimBees platform inference engine to create the
sociological profile of the device owners. This profile is keep on the device and
used to segment the push notifications sent to the application. This enables a
segmentation technology based on the sociological profiles of the owners without
compromising their privacy.

PeaaS [10] aims to use smartphones as the virtual representation of their
owner. By using smartphones in this way, the sociological profiles of their owners
are transparently gathered and provided to other systems. These profiles can be
used to better adapt human-centric CPS to the needs and requirements of their
users and, since PeaaS revolves around maintaining the users private information
in their own devices, privacy is greatly improved over traditional systems.

Social Devices [21] aims to exploit the capabilities of these devices to better
acknowledge the social connections between their owners. These social connec-
tions can then be translated to the cyber-space of the CPS to help implement
human-centric CPS. Mainly, Social Devices will help deal with the management
of the multiple devices owned by users and with the coordination of the com-
posed services provided by those devices. It will also add to human-centric CPS
the capabilities to adapt to the needs of large amount of people by taking into
account their social relationships.

The combination of both previous paradigms has resulted in the Internet
of People manifesto [24]. This manifesto seeks to bring human-centric enhance-
ments to existing technologies. These works have been used as the basis for
developing the computational model presented in this paper.

Of course, a distributed system is not always the most optimal solution.
When CPS are designed, they have to be analysed and, depending on their
requirements and characteristics, a server-centric solution could be more efficient
than a distributed solution. In [3], we propose a conceptual framework that
developers can use to identify which architecture is more efficient or, even, is the
best option is a combination of both.

5 Conclusion

CPS with massive involvement of humans requires devices capable of adapting
their behaviour to their users’ context and of collaborating between them in
order to better meet their users’ needs. This requires to provide smart devices a
more active role in CPS.

In this paper, we have presented an ongoing work detailing a computational
model for distributed human-centric CPS allowing smart devices to store, infer
and provide information on their owners. The use of this model enables the devel-
opment of collaborative and contextualized human centric CPS. With the addi-
tional advantages of reducing the consumption of the smart devices’ resources
and increasing the user privacy. The benefit provided by the model, however,
are only significant for CPS with certain characteristics. Its focus on adapting
the system to the context of the users, makes this architecture to be especially
oriented to CPS with massive human involvement.

Towards Distributed and Context-Aware Human-Centric Cyber-Physical 71

As further work, we are planning to apply the defined model in real-world
scenarios. Concretely, we are implementing it for an automotive scenario. This
experiment will be used to measure the reduction in the consumption of the
smart devices’ resources.

Acknowledgments. This work was partially supported by the Spanish Ministry
of Science and Innovation (projects TIN2014-53986-REDT, TIN2015-67083-R and
TIN2015-69957-R), by the Department of Economy and Infrastructure of the Govern-
ment of Extremadura (GR15098), and by the European Regional Development Fund.

References

1. nimBees Platform. http://nimbees.com/
2. Berrocal, J., Garcia-Alonso, J., Murillo, J., Canal, C.: Rich contextual information

for monitoring the elderly in an early stage of cognitive impairment. Pervasive
Mob. Comput. (2016)

3. Berrocal, J., Garcia-Alonso, J., Vicente-Chicote, C., Hernandez, J., Mikkonen, T.,
Canal, C., Murillo, J.: Early analysis of resource consumption patterns in mobile
applications. Pervasive Mob. Comput. (2016)

4. Berrocal, J., Garcia-Alonso, J., Canal, C., Murillo, J.M.: Situational-context: a
unified view of everything involved at a particular situation. In: Bozzon, A.,
Cudre-Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 476–483.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38791-8 34

5. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing (MCC 2012), pp. 13–16. ACM, New York (2012)

6. Bradley, J.M., Atkins, E.M.: Optimization and control of cyber-physical vehicle
systems. Sensors 15(9), 23020–23049 (2015)

7. Chen, N., Xiao, C., Pu, F., Wang, X., Wang, C., Wang, Z., Gong, J.: Cyber-physical
geographical information service-enabled control of diverse in-situ sensors. Sensors
15(2), 2565–2592 (2015)

8. Frank, R., Mouton, M., Engel, T.: Towards collaborative traffic sensing using
mobile phones (poster). In: 2012 IEEE Vehicular Networking Conference (VNC),
pp. 115–120, November 2012

9. Frazzon, E.M., Hartmann, J., Makuschewitz, T., Scholz-Reiter, B.: Towards socio-
cyber-physical systems in production networks. In: Forty Sixth CIRP Conference
on Manufacturing Systems, vol. 7, pp. 49–54 (2013)

10. Guillen, J., Miranda, J., Berrocal, J., Garcia-Alonso, J., Murillo, J., Canal, C.:
People as a service: a mobile-centric model for providing collective sociological
profiles. Softw. IEEE 31(2), 48–53 (2014)

11. Hancke, G., Markantonakis, K., Mayes, K.: Security challenges for user-oriented
RFID applications within the “internet of things”. J. Internet Technol. 11(3), 307
(2010)

12. Hu, X., Chu, T., Chan, H., Leung, V.: Vita: a crowdsensing-oriented mobile cyber-
physical system. IEEE Trans. Emerg. Top. Comput. 1(1), 148–165 (2013)

13. Jansen, M.: Evaluation of an architecture for providing mobile web services. Int.
J. Adv. Internet Technol. 6(1), 32–41 (2013)

14. Kazakov, Y., Klinov, P.: Experimenting with ELK reasoner on android. In: Bail,
S., Glimm, B., Gonçalves, R.S., Jiménez-Ruiz, E., Kazakov, Y., Matentzoglu, N.,
Parsia, B. (eds.) CEUR Workshop Proceedings, vol. 1015, pp. 68–74 (2013)

http://nimbees.com/
https://doi.org/10.1007/978-3-319-38791-8_34

72 J. Garcia-Alonso et al.

15. Kim, K.D., Kumar, P.: Cyber-physical systems: a perspective at the centennial.
Proc. IEEE 100(Special Centennial Issue), 1287–1308 (2012)

16. Kobsa, A.: Privacy-enhanced personalization. In: Tsihrintzis, G., Virvou, M.,
Howlett, R., Jain, L. (eds.) New Directions in Intelligent Interactive Multimedia.
Studies in Computational Intelligence, vol. 142, p. 31. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68127-4 3

17. Lee, E.A.: The past, present and future of cyber-physical systems: a focus on
models. Sensors 15(3), 4837–4869 (2015)

18. Lee, J., Lapira, E., Bagheri, B., Kao, H.A.: Recent advances and trends in pre-
dictive manufacturing systems in big data environment. Manuf. Lett. 1(1), 38–41
(2013). http://www.sciencedirect.com/science/article/pii/

19. Lee, Y., Min, C., Ju, Y., Kang, S., Rhee, Y., Song, J.: An active resource orchestra-
tion framework for pan-scale, sensor-rich environments. IEEE Trans. Mob. Com-
put. 13(3), 596–610 (2014)

20. Li, T., Cao, J., Liang, J., Zheng, J.: Towards context-aware medical cyber-physical
systems: design methodology and a case study. Cyber Phys. Syst. 1–19 (2014)

21. Mäkitalo, N., Pääkkö, J., Raatikainen, M., Myllärniemi, V., Aaltonen, T.,
Leppänen, T., Männistö, T., Mikkonen, T.: Social devices: collaborative co-located
interactions in a mobile cloud. In: Proceedings of the 11th International Confer-
ence on Mobile and Ubiquitous Multimedia (MUM 2012), pp. 10:1–10:10. ACM,
New York (2012). http://doi.acm.org/10.1145/2406367.2406380

22. Merlo, A., Migliardi, M., Caviglione, L.: A survey on energy-aware security mecha-
nisms. Pervasive Mob. Comput. 24, 77–90 (2015). http://www.sciencedirect.com/
science/article/pii/S1574119215000929. Special Issue on Secure Ubiquitous Com-
puting

23. Meseguer, R., Molina, C., Ochoa, S., Santos, R.: Reducing energy consumption in
human-centric wireless sensor networks. In: 2012 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), pp. 1473–1478, October 2012

24. Miranda, J., Mäkitalo, N., Garcia-Alonso, J., Berrocal, J., Mikkonen, T., Canal,
C., Murillo, J.: From the internet of things to the internet of people. IEEE Internet
Comput. 19(2), 40–47 (2015)

25. Ning, H., Liu, H.: Advances in intrusion detection system for WLAN. Adv. Internet
Things 1(3), 51–54 (2011)

26. Ning, H., Liu, H.: Cyber-physical-social based security architecture for future inter-
net of things. Adv. Internet Things 2(1), 1–7 (2012)

27. Perera, C., Zaslavsky, A.B., Christen, P., Georgakopoulos, D.: Context aware com-
puting for the internet of things: a survey. IEEE Commun. Surv. Tutor. J. 16(1),
414–454 (2013)

28. Plödereder, E., Grunske, L., Schneider, E., Ull, D. (eds.): 44. Jahrestagung der
Gesellschaft für Informatik, Informatik 2014, Big Data - Komplexität meistern,
22–26 September 2014 in Stuttgart, Deutschland. LNI, vol. 232. GI (2014)

29. Raatikainen, M., Mikkonen, T., Myllärniemi, V., Mäkitalo, N., Männistö, T.,
Savolainen, J.: Mobile content as a service a blueprint for a vendor-neutral cloud
of mobile devices. Softw. IEEE 29(4), 28–32 (2012)

30. Roman, R., Alcaraz, C., Lopez, J., Sklavos, N.: Key management systems for sensor
networks in the context of the internet of things. Comput. Electr. Eng. 37(2), 147–
159 (2011)

31. Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and
privacy in distributed internet of things. Comput. Netw. 57(10), 2266–2279 (2013)

32. Seiger, R., Keller, C., Niebling, F., Schlegel, T.: Modelling complex and flexible
processes for smart cyber-physical environments. J. Comput. Sci. (2014)

https://doi.org/10.1007/978-3-540-68127-4_3
http://www.sciencedirect.com/science/article/pii/
http://doi.acm.org/10.1145/2406367.2406380
http://www.sciencedirect.com/science/article/pii/S1574119215000929
http://www.sciencedirect.com/science/article/pii/S1574119215000929

Towards Distributed and Context-Aware Human-Centric Cyber-Physical 73

33. Sharma, A.B., Ivančić, F., Niculescu-Mizil, A., Chen, H., Jiang, G.: Modeling and
analytics for cyber-physical systems in the age of big data. SIGMETRICS Perform.
Eval. Rev. 41(4), 74–77 (2014). http://doi.acm.org/10.1145/2627534.2627558

34. Sánchez-Escribano, M., Sanz, R.: Emotions and the engineering of adaptiveness in
complex systems. Procedia Comput. Sci. 28, 473–480 (2014). 2014 Conference on
Systems Engineering Research

35. Sorici, A., Picard, G., Boissier, O., Florea, A.: Multi-agent based flexible deploy-
ment of context management in ambient intelligence applications. In: Demazeau,
Y., Decker, K.S., Bajo Pérez, J., de la Prieta, F. (eds.) PAAMS 2015. LNCS
(LNAI), vol. 9086, pp. 225–239. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18944-4 19

36. Wan, J., Zhang, D., Zhao, S., Yang, L., Lloret, J.: Context-aware vehicular cyber-
physical systems with cloud support: architecture, challenges, and solutions. Com-
mun. Mag. IEEE 52(8), 106–113 (2014)

37. Wieland, M., Kaczmarczyk, P., Nicklas, D.: Context integration for smart work-
flows. In: Sixth Annual IEEE International Conference on Pervasive Computing
and Communications (PerCom 2008), pp. 239–242, March 2008

38. Wilke, C., Richly, S., Gotz, S., Piechnick, C., Assmann, U.: Energy consumption
and efficiency in mobile applications: a user feedback study. In: 2013 IEEE Inter-
national Conference on Green Computing and Communications (GreenCom), and
IEEE Internet of Things (iThings), and IEEE Cyber, Physical and Social Com-
puting (CPSCom), pp. 134–141 (2013)

39. Work, D., Bayen, A., Jacobson, Q.: Automotive cyber physical systems in the
context of human mobility. In: Proceedings of the National Workshop on High-
Confidence Automotive Cyber-Physical Systems, Troy (2008)

40. Yus, R., Bobed, C., Esteban, G., Bobillo, F., Mena, E.: Android goes semantic: Dl
reasoners on smartphones. In: Bail, S., Glimm, B., Gonçalves, R.S., Jiménez-Ruiz,
E., Kazakov, Y., Matentzoglu, N., Parsia, B. (eds.) CEUR Workshop Proceedings,
vol. 1015, pp. 46–52 (2013)

41. Zhang, Y., Chen, M., Mao, S., Hu, L., Leung, V.: CAP: community activity pre-
diction based on big data analysis. Netw. IEEE 28(4), 52–57 (2014)

42. Zhuge, H.: Semantic linking through spaces for cyber-physical-socio intelligence: a
methodology. Artif. Intell. 175(5–6), 988–1019 (2011)

http://doi.acm.org/10.1145/2627534.2627558
https://doi.org/10.1007/978-3-319-18944-4_19
https://doi.org/10.1007/978-3-319-18944-4_19

Application Development and Deployment
for IoT Devices

Farshad Ahmadighohandizi(B) and Kari Systä(B)

Department of Pervasive Computing, Tampere University of Technology,
Korkeakoulunkatu 10, 33720 Tampere, Finland

{farshad.ahmadighohandizi,kari.systa}@tut.fi

Abstract. The current IoT systems are based on simple sensors that
collect data to a cloud and actuators controlled by applications in the
cloud. When the devices become more powerful they will eventually
become programmable and host applications. In this paper we present
an application framework, development tool and execution platform for
such applications. The guiding principle in designing the workflow design
has been Continuous Delivery (CD) and DevOps, and our paper also pro-
vides a comparison of DevOps in the cloud and DevOps for the IoT.

Keywords: IoT · Continuous Delivery · DevOps
Resource Registry and Discovery · Dynamic update
Programmable things

1 Introduction

Although the current IoT devices are very resource constrained and only designed
to collect data to a backend server for further processing [4] we assume that the
IoT devices of the future will be programmable and capable of hosting appli-
cations. This will open possibilities for new types of applications and dynamic
updates to the systems. This is a huge contrast to traditional embedded systems
where the devices are pre-programmed for a certain application. We foresee that
the change to programmable devices opens a new world of intelligent systems
where devices collaborate to achieve the goals of the user.

When remote devices are programmable, the management and operation
of them becomes a challenge. IoT devices are typically headless, i.e., they do
not include any UI. This makes remote device management a central feature of
an IoT system. Remote device management may include setting and updating
configuration of the devices, monitoring the state of the devices, and over-the-air
updates of devices’ firmware [6].

The development and deployment of cloud-based internet services are increas-
ingly done in a continuous manner. This approach is called Continuous Deploy-
ment [9,14]. If the management and operations of the applications and the under-
lying infrastructure are done independently from the application developers,
the overall coordination is compromised and the development is slowed down.
c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 74–85, 2018.
https://doi.org/10.1007/978-3-319-72125-5_6

Application Development and Deployment for IoT Devices 75

DevOps [15] tries to address this by removing the boundary between devel-
opment and operation. We see that dynamic programming of IoT devices has
similar needs to continuous deployment of IoT devices.

Programming of future IoT systems and production of cloud-based appli-
cations have several similarities. In this paper we describe an approach where
the development and deployment of IoT applications are done with an app-
roach inspired by principles of DevOps. The cornerstones of the approach are:
(1) remote management of IoT resources including applications, and (2) an inte-
grated tool for development, deployment and operation.

In addition to introducing the concept, the paper present a proof-of-concept
of the application framework and development tool. The framework runs cur-
rently on Raspberry PI1 and Intel Edison2 hardware and is build on top of
Nodejs3. Similar system could be built on other HW and SW platforms, too. The
development tool is based on Ace4 technology and runs in standard browsers.

The rest of this paper is organized as follows. Section 2 describes the back-
ground and prior work on the area. Section 3 introduces the concept, its imple-
mentation, and its components and their roles. Section 4 compares the approach
with Continuous Deployment of cloud-based applications. There are many sim-
ilarities but also interesting differences between CD of cloud-based Internet ser-
vices and that of IoT applications. Finally, Sect. 6 gives conclusions and points
out some future work.

2 Background

This section briefly describes DevOps and CD and also presents our prior work
on a new kind of DevOps tool for cloud-based development of Web applications.

2.1 Continuous Deployment and DevOps

Frequent deployment of new versions of software to production is not possible
if teams responsible for development and IT-operation are separated from each
other. DevOps is a mind-set that addresses the issue of siloed teams. Both devel-
opers and operation people can benefit substantially from an integrated DevOps
tool that meets the requirements of all tasks. Developers are able to develop the
application while operations personnel can get the executable, deploy it, and
manage the operations of the applications.

2.2 An Integrated Development Tool for DevOps

This research is utilized the earlier cloud-related research at Department of Per-
vasive computing in Tampere university of Technology. One research direction
1 https://www.raspberrypi.org.
2 http://www.intel.com/content/www/us/en/do-it-yourself/edison.html.
3 https://nodejs.org/.
4 https://ace.c9.io/.

https://www.raspberrypi.org
http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
https://nodejs.org/
https://ace.c9.io/

76 F. Ahmadighohandizi and K. Systä

has been cloud- and browser-based development tools, for example CoRED [20].
In ITEA2 project EASI-CLOUDS5 in 2013–2014, TUT’s contribution was to
research integrated development tool that supports the DevOps mind set [2].
This proof-of-concept was based on CoRED. We also implemented a proof-of-
concept of the tool using the Web and cloud as the infrastructure. Inspired by
principles of DevOps, users of the tool can develop web applications, deploy
them into the available cloud providers, and also manage the operations of the
deployed applications with the same tool. Provisioning the required environ-
ments and deployment and further management of applications are done using
two components called COAPS [22] and ACCORDS [26].

3 Programmable Platform for IoT Devices

The platform presented in this paper has three main components. The first com-
ponent is an application framework that is supported by a browser-based Inte-
grated Development Environment (IDE). The IDE also supports deployment of
applications and management of their operations. The second component is a
runtime environment which turns an IoT device into an application server that
can run IoT applications. The last component is a Resource Registry (RR) mech-
anism to discover available IoT Resources including devices and applications. All
these components support our application framework that defines the life-cycle
and execution models of the applications.

Development Platform
supported by a browser-based IDE Resource Registry (RR)

Server

Device
with Runtime Environment

2. Develop application

3. Query device

6.Query application

Fig. 1. Basic scenario for application development, deployment, and management

Figure 1 illustrates the different components and operation of our platform
and tool. The steps are as the following:

1. When a new device is installed, it is registered with the Resource Registry
(RR) Server. This server keeps track of all known devices.

5 https://itea3.org/project/easi-clouds.html.

https://itea3.org/project/easi-clouds.html

Application Development and Deployment for IoT Devices 77

2. A new application is developed or found among pre-existing applications.
3. Suitable device(s) are discovered from RR. See Sect. 3.3 for details.
4. The application is deployed to the discovered device via Application Manage-

ment APIs provided by Runtime Environment.
5. The deployment result is returned to the development tool, and in a case of

successful deployment the installed application is registered to the RR, too.
6. The developer tool or any other entity can search applications from RR, and
7. The tool can be used for monitoring and management of the application.

3.1 Application Framework

The framework provides a standard structure for the application to fit in our IoT
platform. It provides developers with functionalities (in the form of functions)
that need to be either filled in with application specific code or called by the
application. As our implementation is based on JavaScript virtual machine, the
framework is based on a JavaScript object representing the IoT application.

When the user creates a new application, the IDE generates a template that
the developer need to complete by filling in the missing code. The functions that
need to be filled in with code are:

– task. This is the function that gets called periodically at certain intervals
or only once. The frequency can be controlled with function setTaskInter-
val(repeat, interval). The parameter repeat defines whether the task function
should be executed periodically or only once.

– initialize. This function gets called before task function starts. It is mainly
used for initialization purposes like establishing a connection or initializing
variables.

– terminate. This function gets called before the application stops. It is mainly
used for cleaning things up like killing a connection.

The execution model of our applications is event-based and asynchronous.
Usually, the application code is executed by calling function task periodically.
These asynchronous events can be interleaved with other events like completion
of I/O operations. Thus the platform provides additional means to control the
order of events.

In addition to periodically called task functions the applications can also
provide services including RESTful APIs to access these services. These APIs
can be called from anywhere in the network. We call these RESTful APIs as
Application Interfaces (AI) and we use the Open API Specification standard6

as an approach to work with AIs. The IDE includes an API editor7 for defining
and managing of AI specifications. The library of developed AIs is available to
developers for development of applications that either offer or use these APIs.
After choosing which AIs the application should implement, a skeleton code is
added to the application.
6 https://github.com/OAI/OpenAPI-Specification.
7 http://swagger.io/swagger-editor/.

https://github.com/OAI/OpenAPI-Specification
http://swagger.io/swagger-editor/

78 F. Ahmadighohandizi and K. Systä

The tool packs the developed application to one package containing the fol-
lowing files:

– main.js. A file that defines the IoT application source code.
– Package.josn. A file that contains metadata of the application including appli-

cation’s name, description, version, list of dependencies, etc.
– liquidiot.json. A file that is used for discovery and bookkeeping mechanism

(see Subsect. 3.3). It declares the required device capabilities and provided
AIs of the application.

– resource. A folder for application resources like images and sounds.

3.2 Runtime Environment and Management Interface

The runtime is based on Node.js technology and turns an IoT device into an
application server that can host and run IoT applications. Runtime environment
offers a set of RESTful APIs for over-the-air deployment and remote management
of applications. Further information about application management APIs can be
found from http://farshadahmadi.github.io/.

3.3 Resource Registry Service

A fundamental requirement of IoT resource management is a mechanism to
discover available resources in an IoT system and their capabilities and proper-
ties including means to access them [7]. In our platform, resources are catego-
rized into four types: (1) applications, (2) devices, (3) Device Capabilities and
(4) Application Interfaces. In our proof of concept implementation, these
resources are registered to and managed by a centralized Resource Registry (RR)
service. RR also provides discovery mechanism to discover the aforementioned
available resources.

4 CD in Cloud vs IoT

Usually CD is used in application development for virtualized cloud infrastruc-
tures. However in this research we have applied CD to development and deploy-
ment of IoT devices. While investigating CD opportunities in IoT we have found
interesting similarities and differences between continuous deployment of cloud-
based internet services and IoT applications.

4.1 Virtual Host in the Cloud vs Physical Device

When applications are deployed in the cloud environment, new virtual hosts
can be created. Since virtual hosts are offered as cloud services, the number
of hosts is not limited. In the case of IoT, edge devices are not offered as a
cloud service. Therefore, the number of hosts is fixed to the existing devices and
resources available in those devices. CD in IoT must consider this limitation
while creating new execution environments.

http://farshadahmadi.github.io/

Application Development and Deployment for IoT Devices 79

In CD systems for cloud it is common that while the host is created, the
PaaS technology builds a fresh execution environment to match the needs of the
installed application. In the IoT case, the devices may be very heterogeneous
but at the same time the core functionality of the device cannot be changed. For
example, deploying an application to measure temperature to a device without
required sensor is not feasible. So, besides setting up the execution environment,
the developers also needs to find suitable devices and adapt to them. Conse-
quently, the deployment pipeline needs discovery and bookkeeping mechanisms
to find the suitable target devices.

4.2 Deployment Strategies

One of the main deployment questions is whether the new version should imme-
diately replace the old version or should the old version kept active, too. Various
deployment patterns address this challenge differently. This Subsection inves-
tigates these deployment patters and their advantages and disadvantages. The
analysis also compares cloud and IoT environment in this respect.

In in-place deployment the new version of the application replaces the old
one. So, during deployment the application is unavailable resulting in a period
of downtime. If just the application is updated, the downtime may be short.
However, if the execution environment changes, for example, a new version of
operating system or platform components is needed, those changes need to be
applied to the host before deployment of the application. This causes longer
downtime and contains risks and rollback to old version is hard. If the environ-
ment changes significantly, it is often easier to build up the execution environ-
ment from scratch.

Often the application is served by several hosting environments and a load
balancer controls the distribution of application traffic. In these cases the rolling
deployment pattern [3] can be used. While in-place deployment is being done
once at a time on each server, the host under deployment is detached from the
load balancer and attached again only after successful deployment. Compared
with simultaneous in-place deployment to all environments, sequential deploy-
ment takes more time. However, the advantage is zero downtime since there are
always some servers running either the old or new version of the application.
Also, the process can be interrupted if the deployment fails – leaving old hosts
operational. The other pros and cons are the same as for in-place deployment.

Sometimes it is necessary to ensure that the new version really works before
the old version can be removed. The blue-green deployment pattern [10] has been
designed for that purpose. In this pattern the old and still used environment is
called blue and a new environment, called green, will be provisioned to host the
new version of the application. Once the software is stable in the new host, the
old and new environment URLs will be swapped by changing Domain Name
System (DNS) configuration. The first advantage is zero down time. Secondly,
rolling back to old version can be done by swapping the URLs back instead of
redeployment. Similarly to rolling deployment, the risks and issues related to
changes in execution environment can be mitigated. The disadvantage is that if

80 F. Ahmadighohandizi and K. Systä

the old environments includes services like persistent data, the synchronization
of that data is complicated.

For current IoT devices only the in-place deployment is obvious to imple-
ment. The other approaches assume alternative hosts that are usually based on
virtualization. A limited version of blue-green deployment can be implemented,
if the IoT device can host two versions of the same application. In low-resource
devices hosting of two versions of the application is not always possible, which
means that the deployment will cause a short downtime. Then, if the new ver-
sion is found to be faulty, a rollback to old version is needed. However, if the
system can host several versions and instances of the application, many bene-
fits of blue-green deployment can be reached. Our proof-of-concept is based on
rather powerful hardware and thus supports several applications in the same
device. The deployment creates a separate execution environment. Thus, we
could implement a simple blue-green deployment of the apps.

Since the IoT devices do not support functionalities similar to modern PaaS
technologies, possibilities to provision a new execution environment are limited.
Our current proof of concept creates new execution environments by spawning
new Nodejs processes. By this approach, compared with approaches using virtu-
alization, a limited management of execution environments can be implemented.
This means that the benefits of the advanced deployment patters cannot be fully
utilized. However, we see that with appearance of virtualization in IoT, manage-
ment of execution environment will progress dramatically in the future.

4.3 Role of Staging

Staging environment is an exact replica of the production environment. When
the software is stable in the staging, it will be taken to live production. IoT
devices are tightly connected to a physical world so it is impossible to create
an exact replica for staging. However, a lot of final testing should be done in a
simulator, and a simulator of an IoT device can act as a staging environment. We
have not implemented this in our proof of concept but it would be an interesting
topic for future investigations.

Another option to implement staging is to use the blue-green deployment.
The blue-green deployment pattern provides a great opportunity to host the
staging environment in the target device and test the application there. If the
application works properly in the staging, the staging will be swapped by the
production.

4.4 Bulk Deployment to Production

While blue-green deployment works for deployment into a single device, it is
not scalable for bulk deployment to production. Suppose that one application is
deployed to a thousand devices using blue green deployment. Now, if the appli-
cation fails, all the thousand staging environments will fail. Although this does
not cause a serious problem since failures happened in staging not production,

Application Development and Deployment for IoT Devices 81

redeployment should be done again to all devices. Use of Canary deployment
[21] pattern can solve this problem.

Canaries were used in coal mining since their early sign of distress to toxic
gases was an indicator of danger to miners [25]. Similarly, if the deployment is
first done to only a small subset of devices, they can play the role of canaries. If
the canary deployment fails, the rest of devices are not affected. If the software
is stable in “canary devices”, it indicates that deployment to the rest of devices
is safe.

5 Related Work

Our work is closely related to recent trends of Edge and Fog Computing. Edge
Computing is a paradigm where the computing is moved from central servers
to remote ends of the network. Usually this means end user devices but in the
context of IoT it means sensors and actuators. If computation happen at the
proximity of IoT devices, many problems including slow response time, huge
unnecessary network bandwidth, storage for large quantity of data, and security
will be mitigated [23]. In our platform, we are moving computation right up to the
IoT devices through making them programmable dynamically. In Fog Computing
[5] the storage, computing capacity and applications are distributed to several
nodes in the network and the applications operate in a collaborative way. Our
system has similar features since our applications in devices provide AIs that
allow applications to collaborate.

Application programming for IoT devices usually follows the practices of
embedded programming and the low power IoT devices use lightweight embed-
ded operating systems like TinyOs [13] or Contiki [8]. These operating systems
are based on specific programming languages (e.g., nesC [11] for TinyOs) and
communication middleware (e.g., Active Message [4] for TinyOs). The funda-
mental limitation of these systems is poor separation of the application from
platform code, and they do not support separately installed applications. The
basic assumption of our framework is that applications can be developed and
installed separately from the platform code. The proof of concept is based on
JavaScript programming language and virtual machine provided by the Node.js
technology. Moreover, the runtime environment spawns a new process to run a
new application providing a level of isolating for different applications.

ELIoT [24] is a development platform for internet-connected smart devices.
ELIoT code is compiled into a platform independent bytecode which is then exe-
cuted in heterogeneous devices using ELIoT VM. An ELIoT-enabled device has
the ability of dynamically spawning processes so that a new capability can be
added over-the-air to the device by executing the related fragment of code in the
created process. Our platform uses VM provided by Node.js technology and runs
applications in spawned Node.js processes. In ELIoT inter-process communica-
tion is done through asynchronous message passing. Broadcast communication,
where a process needs to send a message to multiple other processes, is used
to implement the discovery of available resources. Our discovery mechanism

82 F. Ahmadighohandizi and K. Systä

is centralized where available resources are queried from a centralized server.
While ELIoT network-wide communication is done through REST interfaces of
processes, in our platform both network-wide and inter-process communication
are through REST Application Interfaces provided by applications.

Actinium [18] is designed for programming networked embedded systems
where each IoT device only offers a simple set of functionality like sensing and
actuation through RESTFul interfaces. Actinium applications are then realized
through scripts running in Actinium Runtime Environment in the cloud. In our
platform, applications run in the devices and are not in the cloud only communi-
cating with the devices. Applications in both our platform and Actinium provide
RESTFul APIs for communicating with other applications. Mashups of appli-
cations is possible in both platforms by using APIs provided by applications.
However, in Actinium application logic runs outside of the networked devices;
in our platform, the logic can run inside the network.

Laukkarinen proposes “embedded cloud” [19], a solution to distribute appli-
cation logic among heterogeneous resource-constrained IoT devices. Application
logic is developed with Process Description Language (PDL) that allows plat-
form independent process creation and is distributed among devices as PDL
processes with help of a Distributed Middleware (MiDiWa). MiDiWa abstracts
the heterogeneity of IoT devices and provides a homogenized service interface
for PDL processes to be both executed and shared as services. In our platform,
the application logic can be distributed through Application Interfaces provided
by IoT applications.

Aaltonen et al. [1] propose an action-oriented programming model to create
multi-device programs. Capabilities are installed on devices by running soft-
ware resources that implement certain interfaces. Under certain conditions, trig-
gers notify actions that utilize device capabilities to coordinate joint behaviour
between several devices. This differs from [12] and Node-RED8 that offer orches-
tration of devices through the notion of “physical mashups” in which the logic
runs outside of the devices. Our platform allows coordination of applications
through the Application Interfaces they implement.

Datta and Bonnet [7] propose a resource discovery framework for IoT similar
to our registry and discovery framework. The difference is the query mechanism
of resources. The resources are indexed and then queried by a search engine.
Our platform uses a library (csstomongo.js9) to turn discovery selectors into
mongodb10 queries to query the resources.

IBM Bluemix11 developed a cloud-hosted Internet of Things service called
Watson IoT Platform12 for collecting data from connected devices. Devices are
registered to and managed by a centralized IoT Platform Device Management
server. Watson platform provides REST APIs to the applications that want to

8 http://nodered.org.
9 https://gist.github.com/ahn/7d82017bef2f5641c7e7.

10 https://www.mongodb.com/.
11 http://www.ibm.com/cloud-computing/bluemix/.
12 http://www.ibm.com/cloud-computing/bluemix/internet-of-things/.

http://nodered.org
https://gist.github.com/ahn/7d82017bef2f5641c7e7
https://www.mongodb.com/
http://www.ibm.com/cloud-computing/bluemix/
http://www.ibm.com/cloud-computing/bluemix/internet-of-things/

Application Development and Deployment for IoT Devices 83

consume the device data. Our platform, as well as collecting the device data in a
remote backend, allows dynamic programming of devices. While both platforms
use centralized registry, our resource registry service enjoys a discovery system
that enables querying of available resources including devices and applications.

6 Conclusion

We presented a programmable platform for IoT devices. The platform consists of
three components. The first component is an application framework for develop-
ment of IoT applications. The framework is supported by a browser-based IDE.
Besides applications, Application Interfaces can also be developed in the same
tool. Application Interfaces are RESTful APIs through which the applications
can provide services to each other. The second component is a Runtime Environ-
ment which turns an IoT device into an application server so that it can host and
run IoT applications and offer an interface for application deployment and man-
agement of operations. The last component is a Resource Registry (RR) server.
The fundamental requirement of IoT resource management is a mechanism to
discover available resources in an IoT system and their capabilities and proper-
ties including means to access them. In our platform the system has four kinds of
resources: (1) available devices, (2) device capabilities, (3) installed applications,
and (4) Application Interfaces. RR keeps track of all available resources.

After presenting our framework and its proof of concept implementation we
compared the enabled application development and deployment facilities to con-
tinuous deployment practice in virtualized clouds. We found out that CD practice
needs to take some considerations in the case of IoT. CD should consider the
limited number of hosts offered by the available devices in an IoT platform while
creating new hosts for application deployment. The deployment pipeline must
also support discovery of available resources including the target device since
they have certain abilities and therefore can only be used for special purposes.
The different deployment patterns were also investigated in the context of IoT
devices. While in-place deployment is an obvious choice for low-resource devices,
powerful devices can leverage some benefits of the blue-green deployment pat-
tern. Bulk deployment into production can follow canary deployment pattern in
which the result (success of failure) of blue-green deployment into a small subset
of devices determines whether to deploy to the rest of devices or not.

As in the future work we want to address multi-device programming so that
applications can utilize several devices. Currently we are investigating three dif-
ferent approaches. The first approach is graphical data wiring [12] similar to
NodeRED. The second approach is orchestration of REST services [16]. The last
approach is action oriented programming model [1]. Other goals include adding
of the test environment using cloud technologies and the staging environment
following blue-green deployment pattern. Our current proof-of-concept assumes
2-way HTTP requests and addressability which is not well-suited with practi-
cal applications for example due to Network Address Translation (NAT). So,
improving protocol support (in particular MQTT [17]) is another future work.

84 F. Ahmadighohandizi and K. Systä

We also plan to experiment additional types of devices with different capabili-
ties in our platform. So far, our development platform has been used and tested
mainly inside the research group, establishing a code camp helps us receive feed-
back from programmers outside the development team.

References

1. Aaltonen, T., Myllärniemi, V., Raatikainen, M., Mäkitalo, N., Pääkkö, J.: An
action-oriented programming model for pervasive computing in a device cloud.
In: 2013 20th Asia-Pacific Software Engineering Conference (APSEC), vol. 1, pp.
467–475, December 2013

2. Ahmadighohandizi, F., Systä, K.: ICDO: Integrated cloud-based development tool
for DevOps. In: SPLST (2015)

3. Amazon Web Services: Deployment policies and settings. http://docs.aws.
amazon.com/elasticbeanstalk/latest/dg/using-features.rolling-version-deploy.
html. Accessed 30 June 2016

4. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

5. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing (MCC 2012), New York, pp. 13–16. ACM (2012)

6. Boswarthick, D., Elloumi, O., Hersent, O.: M2M Communications: A Systems App-
roach. Wiley, Hoboken (2012)

7. Datta, S.K., Bonnet, C.: Search engine based resource discovery framework for
internet of things. In: 2015 IEEE 4th Global Conference on Consumer Electronics
(GCCE), pp. 83–85, October 2015

8. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating
system for tiny networked sensors. In: 29th Annual IEEE International Conference
on Local Computer Networks, pp. 455–462, November 2004

9. Fitz, T.: Continuous deployment, February 2009. http://timothyfitz.com/2009/
02/08/continuous-deployment/. Accessed 30 June 2016

10. Fowler, M.: Bluegreendeployment, March 2010. http://martinfowler.com/bliki/
BlueGreenDeployment.html. Accessed 30 June 2016

11. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC
language: a holistic approach to networked embedded systems. In: Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation (PLDI 2003), New York, pp. 1–11. ACM (2003)

12. Guinard, D., Trifa, V., Wilde, E.: A resource oriented architecture for the web of
things. In: Internet of Things (IOT) 2010, pp. 1–8 (2010)

13. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architec-
ture directions for networked sensors. In: Proceedings of the Ninth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS IX), New York, pp. 93–104. ACM (2000)

14. Humble, J.: Continuous delivery vs continuous deployment, August 2010. https://
continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment.
Accessed 30 June 2016

15. Humble, J., Molesky, J.: Why enterprises must adopt devops to enable continuous
delivery. IT J. 24(8), 6–12 (2011)

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.rolling-version-deploy.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.rolling-version-deploy.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.rolling-version-deploy.html
http://timothyfitz.com/2009/02/08/continuous-deployment/
http://timothyfitz.com/2009/02/08/continuous-deployment/
http://martinfowler.com/bliki/BlueGreenDeployment.html
http://martinfowler.com/bliki/BlueGreenDeployment.html
https://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment
https://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment

Application Development and Deployment for IoT Devices 85

16. Hylli, O., Lahtinen, S., Ruokonen, A., Systä, K.: Service composition for end-users.
Acta Cybern. 21(3), 383–399 (2014)

17. ISO/IEC: ISO/IEC 20922:2016 information technology - message queuing teleme-
try transport (MQTT) v3.1.1

18. Kovatsch, M., Lanter, M., Duquennoy, S.: Actinium: a RESTful runtime container
for scriptable internet of things applications. In: 2012 3rd International Conference
on the Internet of Things (IOT), pp. 135–142, October 2012

19. Laukkarinen, T., Suhonen, J., Hännikäinen, M.: An embedded cloud design for
internet-of-things. Int. J. Distrib. Sens. Netw. (2013)

20. Lautamäki, J., Nieminen, A., Koskinen, J., Aho, T., Mikkonen, T., Englund, M.:
Cored: browser-based collaborative real-time editor for Java web applications. In:
Proceedings of the ACM 2012 Conference on Computer Supported Cooperative
Work (CSCW 2012), New York, pp. 1307–1316. ACM (2012)

21. Sato, D.: Canaryrelease, June 2014. http://martinfowler.com/bliki/
CanaryRelease.html. Accessed 30 June 2016

22. Sellami, M., Yangui, S., Mohamed, M., Tata, S.: PaaS-independent provisioning
and management of applications in the cloud. In: 2013 IEEE Sixth International
Conference on Cloud Computing (CLOUD), pp. 693–700, June 2013

23. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. PP(99), 1 (2016)

24. Sivieri, A., Mottola, L., Cugola, G.: Building internet of things software with
ELIoT. Comput. Commun. 89, 141–153 (2016)

25. Stovell, P.: Canary deployments, July 2014. http://docs.octopusdeploy.com/
display/OD/Canary+deployments. Accessed 30 June 2016

26. Yangui, S., Marshall, I.J., Laisne, J.P., Tata, S.: CompatibleOne: the open source
cloud broker. J. Grid Comput. 12(1), 93–109 (2014)

http://martinfowler.com/bliki/CanaryRelease.html
http://martinfowler.com/bliki/CanaryRelease.html
http://docs.octopusdeploy.com/display/OD/Canary+deployments
http://docs.octopusdeploy.com/display/OD/Canary+deployments

Cloud Adoption and Migration
(CloudWays)

Preface of CloudWays 2016

Cloud computing has recently been the focus of attention both as academic research
and industrial initiatives. From a business point of view, organizations can benefit from
the on-demand and pay-per-use model offered by cloud services rather than an upfront
purchase of costly and over-provisioned infrastructure. From a technological per-
spective, the scalability, interoperability, and efficient (de-)allocation of resources
through cloud services can enable a smooth execution of organizational operations.

Regardless of the benefits of cloud computing, many organizations still rely on
business-critical applications – so-called legacy systems – developed over a long period
of time using traditional development methods. In spite of maintainability issues,
(on-premise) legacy systems are still crucial as they support core business processes
that cannot simply be replaced. Therefore, migrating legacy systems towards
cloud-based platforms allows organizations to leverage their existing systems deployed
(over publicly available resources) as scalable cloud services.

This second edition of the workshop – the 2nd International Workshop on Cloud
Adoption and Migration (CloudWays 2016) – was held in Vienna, Austria on 5
September 2016 as an ESOCC satellite event. The first edition was held in September
2015 in Taormina, Italy, also as a satellite event of ESOCC. The workshop’s goals
were to bring together cloud migration experts from both academia and industry; to
promote discussions and collaboration amongst participants; to help disseminate novel
cloud migration practices and solutions; and to identify future cloud migration chal-
lenges and dimensions.

In this second edition, four full papers and one short paper were accepted for
presentation during the workshop, out of a total of nine submissions.

The first paper “Cloud Migration Architecture and Pricing - Mapping a Licensing
Business Model for Software Vendors to a SaaS Business Model” by Frank Fowley
and Claus Pahl targeted the link between architecture and cost in cloud application
migration, pointing to the challenges particularly for software vendors to migrate the
system in parallel to the business model in order to adapt to cloud constraints.

The second paper “A DMN-based Approach for Dynamic Deployment Modelling
of Cloud Applications” by Frank Griesinger, Daniel Seybold, Jörg Domaschka,
Kyriakos Kritikos and Robert Woitsch has looked at the dynamic nature of cloud
deployments and proposed a decision support layer to assemble an abstract deployment
model.

The third paper “Cloud Migration Methodologies: Preliminary Findings” by Mahdi
Fahmideh Gholami, Farhad Daneshgar and Fethi Rabhi.reviewed a number of existing
migration methodologies in a systematic format. A criteria-based framework allows the
extraction of benefits and limitations of each methodology.

The fourth paper “Workflow Skeletons: Improving Scientific Workflow Execution
through Service Migration” by Tino Fleuren investigated specifically service migration
in the context of scientific workflows. Workflow skeleton are the mechanism to manage
migration.

The final (short) paper “Consumer-Driven API Testing with Performance Con-
tracts“ by Johannes Stählin, Sebastian Lang, Fabian Kajzar and Christian Zirpins
reports on quality aspects in service migration. API testing based on performance
contracts is the mechanism to assert quality requirements.

In addition to the presentation of the accepted papers, an invited talk titled
“Semantics and Patterns to support MultiCloud Applications’ Portability and Cloud
Services Orchestration and Composition” was jointly organized with participants of the
PEACE in PATTWORLD workshop focusing on the challenges and perspectives of
patterns and semantics in cloud-based systems. The presentation was given by Prof.
Beniamino Di Martino from the Second University of Naples, Italy.

We take this opportunity to thank all authors, members of the Program Committee
and workshop attendees, whose participation was invaluable to the success of the
event. We also acknowledge the support provided by The Irish Centre for Cloud
Computing & Commerce (IC4) and the Free University of Bozen-Bolzano (UniBZ).

Claus Pahl
Nabor Mendonça
Pooyan Jamshidi

Preface of CloudWays 2016 89

Organization

Program Committee

Aakash Ahmad IT University of Copenhagen, Denmark
Vasilios Andrikopoulos University of Stuttgart, Germany
Thais Batista Federal University of Rio Grande do Norte, Brazil
William Campbell Birmingham City University, UK
Fei Cao University of Central Missouri, USA
Santiago Gomez University of Stuttgart, Germany
Sören Frey Daimler TSS, Germany
Wilhelm (Willi) Hasselbring Kiel University, Germany
Abbas Heydarnoori Sharif University of Technology, Iran
Pooyan Jamshidi (Co-chair) Imperial College London, UK
Ali Khajeh-Hosseini RightScale, Inc., UK
Xiaodong Liu Napier University, Edinburgh, UK
Theo Lynn Dublin City University, Ireland
Paulo Henrique Maia State University of Ceará, Brazil
Nabor Mendonça (Co-chair) University of Fortaleza, Brazil
Claus Pahl (Co-chair) Free University of Bozen-Bolzano, Italy
Dana Petcu West University of Timisoara, Romania
Américo Sampaio University of Fortaleza, Brazil
Amir Sharifloo University of Duisburg-Essen, Germany

Cloud Migration Architecture
and Pricing – Mapping a Licensing

Business Model for Software Vendors
to a SaaS Business Model

Frank Fowley1 and Claus Pahl2(B)

1 IC4, Dublin City University, Dublin, Ireland
2 Free University of Bozen-Bolzano, Bolzano, Italy

Claus.Pahl@unibz.it

Abstract. Cloud migration is about moving an on-premise software sys-
tem into the cloud. Many approaches exist that describe the technical
migration analysis and the architectural migration. Equally, cloud cost
models have been investigated. What we aim to investigate here is to
link architecture and software utilisation to costing and business mod-
els. We specifically look at software vendors that use the cloud to provide
their solutions to customers. They might face the challenges to migrate
an in-house developed and provided product onto a cloud IaaS or PaaS
platform, while also mapping a licensing model onto a cloud monetisation
model. We provide here an experience report. This is based on experi-
ence with five migration case studies. We discuss the migration process
under consideration of cost aspects, covering both income and expenses
in the cloud in relation to the cloud delivery model chosen. We focus on
one of the case studies to illustrate the concepts and observations.

Keywords: Cloud migration · Cloud cost models · Monetisation
Architecture migration · Independent software vendor · Cloud native

1 Introduction

The adoption of cloud computing and in particular the software as a service
(SaaS) model causes problems for existing on-premises applications and inde-
pendent software vendor (ISV) business models.

ISVs are often forced by external factors to adopt the new model. The threats
and opportunities involved in this step shall be investigated. The demand for
on-premises applications is shifting to the SaaS model. In order to maintain
revenue growth and profitability, ISVs have to provide applications deployable on
cloud services from a technical perspective. But more importantly, ISVs generally
need to go beyond offering just a cloud-enabled application to offering their
application value as SaaS, which dramatically changes the business model in
addition to the technical challenges [1,2,4,5].

c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 91–103, 2018.
https://doi.org/10.1007/978-3-319-72125-5_7

92 F. Fowley and C. Pahl

The technical benefits are well discussed [8,11,12]. Being able to scale up or
down application infrastructure to meet quality requirements and enable reliable
consumption of a product is a key benefit. Cloud migration research has stud-
ied the cloud on-boarding in quite some detail [13]. Processes and techniques
are proposed. For instance, pattern-based migration processes are suggested to
organise and manage the architectural migration. Tools have been provided by
many cloud service provider to migrate for instance data using data loaders.

In [21], the top 10 challenges for start-ups are summarised, that also reflect
the concerns for migrations by software vendors inexperienced in cloud technolo-
gies, particularly if the cloud context is a novel environment.

– Thriving in Technology Uncertainty, i.e., developing technologically innova-
tive products that require cutting-edge development tools and techniques such
as cloud technologies is the top challenge.

– Acquiring First Paying Customer, Delivering Customer Value and Defining
Minimum Viable Product are other concerns within the top-10. These all
relate to defining a payment model for a quality product and making it viable
considering the costs for providing cloud SaaS as well.

A significant change is that the up-front license revenue model is replaced
by over-time subscription revenue [14–17]. This is generally a disruptive process.
Revenue in the cloud builds up more slowly because of typical SaaS pricing
models. With traditional on-premises licensing, each organization that buys a
copy of the software provide a substantial income to the ISV at one moment.
With the subscription model common in the SaaS, the customers will only pay
a small amount per user per month. This is prone to fluctuate.

An additional complication is that this needs to be planned for as an incre-
mental process. For most ISVs the shift from on-premise to SaaS delivery will be
incremental. To some extent this can also help as when this incremental process
is coupled with license sales, it might be easier to maintain profit stability, but
would need to be aligned with any incremental technical migration. Effective
customer retention, which can be achieved through the cloud, the subscription
revenue model can be made to work. Another benefit often cited is the oppor-
tunity to grow business.

The key observation is that sound models do not exist at present that allow
ISVs to map their existing business model to the cloud. Instead of trying to
provide a concrete calculation model, which is not possible due to the complexity
of pricing models [5,6], we report on observations from five case study migrations.
The cover ISVs with software product in the insurance, banking, food sectors
as well as two generic business solutions for image processing and registry data
management. The image processing case will be singled out to illustrate the
observations later on in a concrete setting.

The paper is organised as follows. The next section introduces the link
between technical architectures and costing models. Section 3 reviews the state-
of-the-art. Section discusses the monetisation concerns from a technical archi-
tecture perspective. Section 5 shows the different costing implications of IaaS
and PaaS-based architectures. Section 6 then goes into more detail about PaaS

Cloud Migration Architecture and Pricing 93

costing models. Section 7 looks at the SaaS perspective of charging customers
for the product in the cloud. Section 8 summarise a few concrete concerns learnt
from the use case. Section 9 finally discussed current changes in cloud charging
models that might impact this in the future towards more predictability, before
we end with some conclusions.

2 Linking Cloud Architecture and Services to License
Management and Billing

The key concern for the ISV is the product monetisation. A number of technology
requirement emerge for a successful SaaS monetisation [10]:

– Platform as a service (PaaS) solutions provide development tools and support
necessary to create and deliver software (as a service). PaaS generally includes
support for service provisioning to the customer, which includes metering,
monitoring and auditing tool to determine and analyse who accesses and
utilizes the provided resources.

– License management allows a service provider to enforce, analyse and man-
age use parameters related to how the service is licensed or provisioned. This
includes support for typical cloud and also more complex provisioning sce-
narios (i.e., beyond per user/per month or unlimited enterprise usage for the
latter category).

– Billing takes over from monitoring and metering to implement the subscrip-
tion model and automate the collection of fees. Billing includes the ability
to automate metering, pricing and billing for products, bundles and config-
urations. It looks after handling of recurring payments associated with user
subscriptions.

The technical concerns to feed into the monetisation process are the following:

– Accounting and Billing: Automate orders, provisioning, entitlements, billing,
and ongoing customer management

– Access Control: Controlling access to service features, which could be time
limited, role specific, or value based

– Metering: Measure service usage at a granular level for the purposes of com-
pliance, billing, and product intelligence

– Automation of accounting: Remove manual processes entirely, such as those
around trial conversions when the policy is not to auto-convert

Figure 1 provides the architecture including the relevant income-related com-
ponents for the SaaS provider.

3 Context and Related Work

Both academia and industry provide migration methodologies and tools. These
cover anything from cloud readiness and benefit analysis to the development of
migration plans to execution methods and tools.

94 F. Fowley and C. Pahl

Fig. 1. A PaaS architecture with monitoring, metering and billing components

Industry guides such as white papers by D. Chappell1 provide frameworks
of concerns, but lacks a concrete calculation method. This is still pretty much
a what-to-do, but not a how-to-do coverage. A survey of academic research on
migration is presented by Jamshidi et al. [3].

In addition to the lack of practical advice, costs and their mutual dependen-
cies with architectural decisions are not well addressed [9]. There are academic
paper proposing solutions to calculate profit for cloud services.

Wang et al. [20] proposed an algorithmic solution to optimize data center net
profit with deadline-dependent scheduling.

4 Cloud Migration – Joint Architecture and Costing
Concerns

4.1 Pre-migration – Licensing Model of ISVs

The traditional monetisation approach for software vendors involves a licensing
model, which needs to be off-set against costs for development and operation.

An independent software vendor (ISV) is an organization specializing in mak-
ing or selling software, designed for mass or niche markets. This is in contrast
to software developed for in-house use only within an organization or software
designed or adapted for a single, specific customer.

Independent Software Vendors typically operate a licensing model.

1 http://www.davidchappell.com/writing/white papers/How SaaS Changes an ISVs
Business--Chappell v1.0.pdf
.

http://www.davidchappell.com/writing/white_papers/How_SaaS_Changes_an_ISVs_Business--Chappell_v1.0.pdf.
http://www.davidchappell.com/writing/white_papers/How_SaaS_Changes_an_ISVs_Business--Chappell_v1.0.pdf.
http://www.davidchappell.com/writing/white_papers/How_SaaS_Changes_an_ISVs_Business--Chappell_v1.0.pdf.

Cloud Migration Architecture and Pricing 95

4.2 Architecture Migration and Monetisation

The actual migration planning and execution then needs to consider a number
of models reflecting the different concerns involved:

– Architecture: source and target architecture needs to be considered together
with planned changes in functional or non-functional properties.

– Cost model (expenses): the projected expenses in the cloud need to be deter-
mine, which includes basic infrastructure and platform costs, but also all
additional features for external access and networking, internal quality man-
agement and possibly development and testing costs.

– Revenue model (income): the projected income based on a selected pay-per-
use or subscription model (or a combination).

These together result in a monetisation model for the cloud-provided software
product, which is illustrated in Fig. 2.

From a cloud architecture perspective the following concerns need to be
considered:

– Components: the components of the provided software product - componen-
tisation is important to consider their mapping onto different cloud services
that might be differently charged.

– Usage metering and Billing: applies to the services used, but also the services
provided.

Fig. 2. Monetisation architecture - mapped from on-premise to cloud

5 Architecture Migration – IaaS to PaaS Architecture
Mapping Towards Cloud-Native

An important consideration is the full adoption of the cloud as a development
platform. By shifting development to a PaaS cloud, allows ISVs to avoid capital
expenditure and map investment in developer facilities to revenue potential.

Another important concern is the staged migration. Through basic virtual-
isation a simple VM-based IaaS solution might emerge. The ultimate objective

96 F. Fowley and C. Pahl

would be to move from VMs to cloud native applications at platform level. This
of course changes the expenses model, resulting in something more fine-granular.

Assume a traditional stacked application with Application, Middleware,
DBMS and Disk Storage support that runs in an on-premise setting, with the
aim of providing this as a service in the cloud. A step-wise migration into cloud
could now happen as follows:

1. As a first, simple solution, this application could be packaged into VMs:
(a) situation: license fees for components of the application would occur as

usual.
(b) business problem: scaling out, i.e., adding more VMs (for technical of

other reasons) means adding more license fees for every replicated com-
ponent.

(c) technical problem: multiple copies of data storage that are not in sync,
causing integrity problems.

2. A second step could refactor and extract storage, i.e., use a virtual data-as-
a-service solution for storage needs:
(a) this alleviates the technical integrity problem resulting from different

copies of data.
3. A further step could package the whole DBMS into single virtual machine:

(a) this alleviates the business license fee problem for the DBMS and simpli-
fies data management.

(b) but business problems remain: other license fees do still occur multiple
times.

4. Finally, the ISV could consider to fully move to PaaS services (e.g., using
PaaS services for data management and other concerns).
(a) apart from solving key technical problems, this alleviates as far as possible

the licensing fees issue.

Following this process results in what is called cloud-native, and can be charac-
terised through the following properties:

scalable/elastic, clusterable, multi-tenant, pay-per-use, self-service

This is assumed to have better scalability characteristics. It also, as already
said, allows better licensing and cost management.

This of course only addresses the cost side for the ISV. Technically, this goes
towards what microservices principles by being independently deployable using
fully automated deployment machinery. This requires orchestration support for
topologies that goes beyond provisioning only. And, furthermore, predicting the
cost for a fully cloud-native solution is the challenge. The suggested refactoring
towards a cloud-native solution alleviates licensing problems, but the ultimate
costs till remain unclear. Finding a model how to set fees for the SaaS usage is
also a challenge.

Cloud Migration Architecture and Pricing 97

6 Architecture Migration and PaaS Deployment Cost
Calculation

6.1 Architecture Selection and Deployment

Selection criteria for an ISV for a platform to provide the software product from
include:

– functional requirements, supported by programming language databases and
database support and also procedures for version control, testing and deploy-
ing code (tools such as Eclipse, Git or Jenkins supported by many PaaS).

– fees, where many providers offer monthly subscription fees, but extra fea-
tures will incur extra cost: examples here are scalability, access (IP endpoint,
network bandwidth) or monitoring and advanced self-management.

6.2 Cost and Revenue Prediction/Calculation

What is needed is a calculation of the cloud costs versus the possible revenue
result from the SaaS delivery model. Note that we mainly discuss PaaS here,
although similar assumptions can be made for IaaS. PaaS-level costs need to
cover both development and deployment, which needs to be balanced against
SaaS-level income. The following steps need to be taken to determine some
reliable figures:

– Predict costs based on cloud costs (from basic virtualisation to cloud-native)
for an assumed usage (workload) of the SaaS application provided to cus-
tomers.

– Determine income (by estimating usage and choosing suitable fees levels)
under consideration of, firstly, the current licensing model and resulting rev-
enue and, secondly, under consideration of achieving this through a staged,
incremental migration.

6.3 Pricing Models

In order to systematise this calculation, we list here common factors of a PaaS
or IaaS pricing model:

– Region – slightly different rates might apply per region (which is relevant of
for instance data location regulations apply).

– Replication – is a mechanism to deal to avoid down-time and increase relia-
bility. Sample configurations could be:
• Local Redundant – a number of copies of data, all in the same data-centre,

in the region of the storage account across different Fault or Upgrade
domains (physical rack units managed as a unit)

• Zone Redundant – a number of copies of data, all in different data-centres,
which has slightly less throughput than Local redundancy

98 F. Fowley and C. Pahl

• Geo Redundant – a number of copies of data, all in different data-centres,
with a back-up, separate multiple saves in a specific secondary region to
allow to recover from Region failure

• Read-Only Geo Redundant – is the same as geo redundancy with read
access to secondary data

All replication operations are done asynchronously.
– Size – depends on actual amount of Gbytes stored.
– Transactions – Read/Write Blob Operations are counted.
– Data Transfer – is measured. Some sample costings are as follows:

• Data Ingress Network Data Transfer is free.
• Data Egress Network Data Transfer is free if in the same region.
• Data Egress Data Transfer between regions or out of a region is charged.

Based on these general cost factors, IaaS or PaaS providers usually create account
types with specific pricing models for each of the factors2:

– A General Purpose Storage Account: has tables, blobs and queues. Itemized
prices for specific redundancy schemes (default Local Redundancy) could be:
• Storage: Euro 0.0202 per GB per month (Zone Redundant: Euro 0.0253)

(Geo Redundant: Euro 0.0405)
• Transactions: per 10,000 Euro 0.003 (Zone Redundant: Same) (Geo Redun-

dant: Same)
• Egress from Region: Euro 0.0734 per GB per month (after free 5 GB) (Zone

Redundant: Euro 0.1164) (Geo Redundant: Euro 0.1526)
A Blob Storage Account for block blobs would have the following settings:
• Hot access tier for frequently accessed data. Cold access has lower storage

costs, but higher access and transactions costs.
• A Cool access tier for archive and back-up, i.e., not frequently accessed

data, is an option, but needs to be available immediately when needed.
This is assumed to be the case for image blobs, if needed.

• The Cool access is cheaper, but might require a separate storage account
for tables and blobs, which in turn means that the same shared access keys
cannot be used.

• Cool Prices for Local Redundancy as the default could be:
∗ Storage: Euro 0.0126 per GB per month (Geo Redundant: Euro 0.0253)
∗ Transactions: Put, List blob per 10,000 Euro 0.0843 (Geo Redundant:

Euro 0.1687)
∗ Data Read: Euro 0.0084 per GB (Geo Redundant: Euro 0.0084)
∗ Data Write: Euro 0.0021 per GB (Geo Redundant: Euro 0.0042)
∗ This also has the General Purpose costs for Egress from Region: Euro

0.0734 per GB per month (Geo Redundant: Euro 0.1526)

2 We have taken the concrete figures from recent (May 2016) Microsoft Azure pricing
models.

Cloud Migration Architecture and Pricing 99

Relevant pricing models focus primarily on storage in GB and transactions
(read/write). What this illustration shows is that a very good understanding
of the assumed or predicted workload of a provided SaaS application is needed
on order to calculate the costs for hosting the SaaS application for example
in a PaaS cloud. This requires quantified workload (in terms of GB of data
stored/transferred and number of transactions), but also certainty about other
quality concerns (availability expectations, failover strategy). So, what effectively
the aim in the calculation is, (i) as input the number of storage units and total
size as input and (ii) as output the costs as output calculate over a number of
years with predicted growth and for different replication options.

A further complication is that pricing models between different platform
provider are difficult to compare due to the fragmentation and itemisation of the
factors determining the pricing of a service. Consequently, a formalised mapping
between possible licensing models of a SaaS application and the incurred costs of
hosting this on a PaaS offer cannot exist, but we demonstrate a process here to
carry of this calculation in a concrete case. After an analysis of the PaaS pricing
models for hosting an application, we look at licensing and pricing models for
offering a PaaS-hosted application as a SaaS solution.

7 Princing Model Migration – Cloud SaaS Billing
and Pricing Models

SaaS pricing models typically bill clients using one of the following two metrics3:

– The number of users accessing the application.
– The volume of resources consumed.

Different account types such as pay-per-user or pay-as-you-go exist based on
these individual factors.

7.1 Pay-Per-User SaaS Pricing Model

Pay-per-user is a simple and popular SaaS pricing strategy. With this model, a
separate cost is incurred for each user of a SaaS application. This is consequently
similar to the traditional payment for each copy of software that is put on a
device. The advantage compared to traditional pricing is the SaaS ubiquity,
which is essentially available on most devices today. This does not cause separate
fees for the different device types. SaaS billing happens periodically for all users,
e.g., monthly. SaaS software entitlements can be managed using an identity
management system.

There are variations of the pay-per-user SaaS pricing model. One example is
the pay-per-multiple-user pricing model. Here a separate cost is incurred for a
defined number of users, creating different tiers for certain number ranges such as
1...9, 10...50 etc. A further option is to bundle an increasing number of features
within each successive tier.
3 https://apprenda.com/library/software-on-demand/saas-billing-pricing-models/.

https://apprenda.com/library/software-on-demand/saas-billing-pricing-models/

100 F. Fowley and C. Pahl

7.2 Pay-As-You-Go (Utility) SaaS Pricing Model

The second popular SaaS pricing model is the pay-as-you-go model. Here, the
charges are based on the number of users and the amount of resources consumed
during a defined period of time (typically volume of storage or CPU usage).
This makes the prediction or expenses (for the user) or income (for the provider)
generally difficult, but the pay-as-you-go model is beneficial for users because
only the actual volume of resources consumed is charged, as opposed to a flat
rate model that is not fully utilised. But this is a user benefit, but not for the
ISV for whom this unpredictability is a difficulty.

8 Use Case Study

We now report on the calculation process in a concrete use case. We carried out
this investigation for a concrete company providing a business administration
solution. This solution is migrated into the cloud to respond to changing business
requirements, particularly:

– flexibility, allowing different access forms
– expansion, requiring to facilitate new customers in new markets

The challenge is a high-volume data storage and processing need. The earlier
pricing samples reflect this storage/processing need already.

8.1 Performance Experimentation and Prediction

The first step was to determine performance statistics based on some assumed
workloads:

– standard operations were scaled up to estimated peak loads for the applica-
tion,

– response times and CPU/memory consumption were measured on different
resource configurations to determine a link between resources needed and QoS
provided,

– resulting in the identification suitable configurations that would maintain
SLA compliance for all customers.

This experimentation can include the comparison of similar platform services
within the services of oe provider, but also between different providers where
the comparison is possible. For the case study, we have compared Azure with
AWS pricing with similar settings. While both options were initially considered,
the fact that significant parts of the system were developed in .NET lead to
Azure being chosen, which in this case was not a cost-driven decision.

Cloud Migration Architecture and Pricing 101

8.2 Income Prediction and Income Model Determination

A further collection of input data for the calculation includes:

– to determine the number of users,
– to determine the expected consumption/load of a typical user (based on the

performance experimentation),
– to determine licensing model options using different account types.

This the definition of a pricing model maps costs per typical user, taken from
the experiments, into a licensing model.

9 A Changing Environment

New provisioning and payment models moving away from pay-per-hour models
towards payment by business cycles seem to emerge recently in PaaS. They link
the SaaS provisioning costs for the ISV.

AWS lambda functions are a new feature. AWS Lambda is a compute service
where you code is uploaded and the Lambda service runs the code using AWS
infrastructure. The upload code is used to create a so-called Lambda function.
The AWS Lambda service then handles provisioning and managing the servers
to run the code. Interesting in this your model is the charging approach. A
user (such an ISV) is charged based on the number of requests for the ISV’s
functions and the time the ISV code executes, i.e., is based on (a) Requests and
(b) Duration. This model is a first approach to link ISV PaaS costs to the ISV
SaaS income (through the SaaS utilisation).

Google has announced a similar Cloud Functions model as a lightweight,
event-based, asynchronous compute solution that allows the creation of small
functions that respond to cloud events without the need to manage a server or a
runtime environment. Cloud Functions are written in Javascript and execute in a
managed Node.js environment on Google Cloud Platform. Events from the Cloud
Storage and Google Cloud Pub/Sub can trigger these functions asynchronously
or HTTP invocation is used for synchronous execution.

10 Conclusions

A holistic perspective on costing and architecture within a migration scenario
does not exist. There are metering and billing solutions, be that as part of
commercial products or as part of research prototypes. There are also migration
frameworks targetting architectural transformation and planning the process.
An investigation linking architectural decisions and the impact on costing is
therefore important and has not been looked at apart from case studies [24].

We have reviewed the key components of such a holistic framework. This
investigation has resulted in a process to calculate the costs for hosting a SaaS
application on a PaaS platform and use this to determine a SaaS licensing model.
As a generic, formalised model cannot exist due to the differences in factors and

102 F. Fowley and C. Pahl

account types between the PaaS providers, our aim was to identify the factors
influencing this calculation and to exemplify this through a concrete example.

Note that selection of services as a consumer is also a selection process that
compares functionality, quality and costs, but this stage has been neglected [18].

From a technical perspective, we also aim to investigate container technology
and a microservices style architecture [23] to see their impact in the context of
cloud-native architectures [7,19,22].

Acknowledgement. This work was partly supported by IC4 (the Irish Centre for
Cloud Computing and Commerce), funded by EI and the IDA.

References

1. Arshad, S., Ullah, S., Khan, S.A., Awan, M.D., Khayal, M.: A survey of cloud
computing variable pricing models. In: International Conference on Evaluation of
Novel Approaches to Software Engineering (ENASE) (2015)

2. Al-Roomi, M., Al-Ebrahim, S., Buqrais, S., Ahmad, I.: Cloud computing pricing
models: a survey. Int. J. Grid Distrib. Comput. 6(5), 93–106 (2013)

3. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review.
IEEE Trans. Cloud Comput. 1(2), 142–157 (2013)

4. Brangewitz, S., Hoof, S.: Economic aspects of service composition: price nego-
tiations and quality investments. In: Aiello, M., Johnsen, E.B., Dustdar, S.,
Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 201–215. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44482-6 13

5. Samimi, P., Patel, A.: Review of pricing models for grid and cloud computing.
In: IEEE Symposium on Computers and Informatics (ISCI), pp. 634–639. IEEE
(2011)

6. Chang, V., Wills, G., De Roure, D.: A review of cloud business models and sus-
tainability. In: 2010 IEEE 3rd International Conference on Cloud Computing, pp.
43–50. IEEE (2010)

7. Aldawood, S., Fowley, F., Pahl, C., Taibi, D., Liu, X.: A coordination-based broker-
age architecture for multi-cloud resource markets. In: 4th International Conference
on Future Internet of Things and Cloud Workshops. IEEE (2016)

8. Pahl, C., Xiong, H.: Migration to PaaS clouds - migration process and architec-
tural concerns. In: IEEE 7th International Symposium on the Maintenance and
Evolution of Service-Oriented and Cloud-Based Systems, MESOCA 2013 (2013)

9. Walterbusch, M., Martens, B., Teuteberg, F.: A decision model for the evaluation
and selection of cloud computing services: a first step towards a more sustainable
perspective. Int. J. Inf. Technol. Decis. Making 14(02), 253–285 (2015)

10. Garrison, G., Wakefield, R.L., Kim, S.: The effects of IT capabilities and deliv-
ery model on cloud computing success and firm performance for cloud supported
processes and operations. Int. J. Inf. Manag. 35(4), 377–393 (2015)

11. Pahl, C., Xiong, H., Walshe, R.: A comparison of on-premise to cloud migration
approaches. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013.
LNCS, vol. 8135, pp. 212–226. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40651-5 18

12. Jamshidi, P., Pahl, C., Chinenyeze, S., Liu, X.: Cloud migration patterns: a multi-
cloud service architecture perspective. In: 10th International Workshop on Engi-
neering Service Oriented Applications - WESOA 2014 (2014)

https://doi.org/10.1007/978-3-319-44482-6_13
https://doi.org/10.1007/978-3-642-40651-5_18
https://doi.org/10.1007/978-3-642-40651-5_18

Cloud Migration Architecture and Pricing 103

13. Jamshidi, P., Pahl, C., Mendonça, N.C.: Pattern-based multi-cloud architecture
migration. Softw. Pract. Experience 47(9), 1159–1184 (2017)

14. Sharma, B., Thulasiram, R., Thulasiraman, P., Grag, S.: Pricing cloud compute
commodities: a novel financial economic model. In: IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid) (2012)

15. Pal, R., Hui, P.: Economic Models for Cloud Service Market (Pricing and Capacity
Planning). Telekom Innovation Laboratories (2015)

16. Son, J.: Automated Decision System for Efficient Resource Selection and Alloca-
tion in Inter-Clouds. The University of Melbourne, Department of Computing and
Information System (2013)

17. Abhishek, V. Kash, I., Key, P.: Fixed and market pricing for cloud services. In: 7th
Workshop on the Economics of Networks, Systems, and Computation (NetEcon)
(2012)

18. Gilia, P., Sood, S.: Automatic selection and ranking of cloud providers using service
level agreements. Int. J. Comput. Appl. 72(11), 45–52 (2013)

19. Fang, D., Liu, X., Romdhani, I., Pahl, C.: An approach to unified cloud service
access, manipulation and dynamic orchestration via semantic cloud service opera-
tion specification framework. J. Cloud Comput. 4(1) (2015). Article no. 14

20. Wang, W., Zhang, P., Lan, T., Aggarwal, V.: Datacenter net profit optimization
with deadline dependent pricing. In: 46th Annual Conference on Information Sci-
ences and Systems (CISS) (2012)

21. Giardino, C., Bajwa, S.S., Wang, X., Abrahamsson, P.: Key challenges in early-
stage software startups. In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP
2015. LNBIP, vol. 212, pp. 52–63. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18612-2 5

22. Fang, D., Liu, X., Romdhani, I., Jamshidi, P., Pahl, C.: An agility-oriented and
fuzziness-embedded semantic model for collaborative cloud service search, retrieval
and recommendation. Future Gener. Comput. Syst. 56, 11–26 (2016)

23. Jamshidi, P., Ghafari, M., Ahmad, A., Pahl, C.: A framework for classifying and
comparing architecture-centric software evolution research. In: 17th European Con-
ference on Software Maintenance and Reengineering (CSMR 2013), pp. 305–314.
IEEE (2013)

24. Li, H., Zhong, L., Liu, J., Li, B., Xu, K.: Cost-effective partial migration of VoD
services to content clouds. In: 2011 IEEE International Conference on Cloud Com-
puting (CLOUD), pp. 203–210. IEEE (2011)

https://doi.org/10.1007/978-3-319-18612-2_5
https://doi.org/10.1007/978-3-319-18612-2_5

A DMN-Based Approach for Dynamic
Deployment Modelling of Cloud Applications

Frank Griesinger1(B), Daniel Seybold1, Jörg Domaschka1, Kyriakos Kritikos2,
and Robert Woitsch3

1 Institute of Information Resource Management,
University of Ulm, Ulm, Germany

{frank.griesinger,daniel.seybold,joerg.domaschka}@uni-ulm.de
2 ICS, FORTH, Heraklion, Greece

kritikos@ics.forth.gr
3 BOC Asset Management, Vienna, Austria

robert.woitsch@boc-eu.com

Abstract. Cloud computing is well suited for applications with a
distributed architecture and dynamic demand of resources. Yet, current
approaches to model cloud application deployment do not cater for the
application’s dynamic nature and its rapidly changing business require-
ments. The static description of deployments results in a lack of reusabil-
ity and also lacks an integrated way to adapt to the current context. To
reuse and refine the deployment model, we introduce a simple decision
layer on top of a cloud application description, which abstracts from
the actual deployment language and allows assembling the deployment
model from existing model fragments. Those fragments are chosen based
on the input of the decision process. We define an architecture for the
decision layer and sketch an implementation based on CAMEL, DMN,
and ADOxx. The benefits of the decision layer are illustrated by two
use cases. Our approach shifts the focus from a static to a dynamic and
reusable modelling process, which also reduces the modeller’s effort.

Keywords: DMN · DevOps · MDE · Cloud · Deployment modelling

1 Introduction

The cloud computing paradigm promises the unlimited offering of computational
resources in a pay-as-you-go model. This helps organisations, especially SMEs,
with unplannable or highly dynamic resource demands, to dynamically reserve
IT resources as needed without having a huge upfront investment.

The benefits of cloud computing come along with an additional techni-
cal depth, which may hinder the migration to the cloud. Hence, industry and
academia investigate approaches easing the cloud adoption. A well established
approach to reduce technical complexity is model-driven engineering (MDE).
Within MDE, domain specific languages (DSLs) for the cloud computing domain
c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 104–111, 2018.
https://doi.org/10.1007/978-3-319-72125-5_8

A DMN-Based Approach for Dynamic Deployment Modelling 105

evolved, including TOSCA [4] and CAMEL [5]. Such DSLs ease the cloud adop-
tion by enabling a complex cloud application deployment model on a higher
level. A cloud orchestration tool (COT), such as Cloudiator [2] can then process
this deployment model.

Still, the specification of a deployment requires a certain degree of technical
knowledge to create the deployment model, which is static in nature. Current
modelling approaches do not reflect the dynamic in changing business require-
ments that impact an implemented deployment model at run-time. As shown in
the first lane of Fig. 1, any requirement change leads to the remodelling of the
deployment model, which is error-prone and cost-intensive.

deployment
model

decision
layer

business
requirements

deployment
model

deployment
model

deployment
model

business
requirements

Fig. 1. Dynamic deployment modelling

In this position paper, we pro-
pose a novel approach by adding (i)
dynamic and (ii) reusability to cloud
application modelling. We introduce
a simple decision layer on top of the
modelling, enabling the transforma-
tion of business requirements into a
technical deployment model at both
design- and run-time as shown in the
second lane of Fig. 1. Based on two
use cases, we demonstrate how our approach enhances the scope of cloud appli-
cation modelling and therefore eases cloud adoption.

The remainder of the paper is structured as follows: Sect. 2 analyses the
problem. Section 3 presents our approach and sketches an implementation. The
usage is presented on two use cases in Sect. 4. Section 5 discusses the approach,
while Sect. 6 summarises the related work. Section 7 concludes the paper.

2 Problem Statement

Modelling cloud applications is technically challenging and therefore error-prone.
In addition, most approaches have a steep learning curve. The process of current
modelling approaches is a static sequence of the steps (cf. Fig. 1): (i) business
experts define high level business requirements, (ii) technical experts manually
map these requirements to a technical deployment model using a cloud DSL,
(iii) the deployment model is put into a COT. The shortcomings of this pro-
cess are founded in the dynamic nature of cloud applications, and as soon as a
requirement changes, the complete process has to start from the beginning. Due
to its complexity, the repetition of all steps is cost-intensive and error-prone. This
is also caused by the fact that current cloud modelling approaches do not focus
on the automated reuse of model fragments and manual involvement increases
the risk of failure. In addition, decisions are only implicitly integrated and hard-
coupled into the deployment model. This hinders the employment of a feedback
loop in this process to re-evaluate the business requirements when needed.

The following scenarios exemplify the shortcoming of a static procedure:
(i) A customer-specific deployment model that requires minor adjustments, con-
cerning the cloud provider or data location, will result in an independent model

106 F. Griesinger et al.

per customer. (ii) Update roll-outs are an important feature of DevOps tools.
With the release of a version the deployment model changes. In cloud modelling
approaches, there is no support to model the dependency of the version in respect
to the deployment model. (iii) The service configuration, such as cloud provider
or virtual machines specification, highly depends on business requirements, such
as the available budget.

We argue that these shortcoming can be removed by adding (i) dynamic and
(ii) reusability to the modelling process.

3 Dynamic Cloud Modelling

This sections is structured as follows. First, we present a solution for adding
dynamic to the modelling process. Followed by a realisation sketch of this
solution.

3.1 Introducing a Decision Layer

We propose a novel approach to ease the process of cloud application modelling
by adding a simple decision layer on top of existing cloud DSLs. The proposed
decision layer operates between higher level (business) requirements and low level
concrete model fragments. Business requirements are integrated as influencing
factors of a decision process which maps them to concrete model fragments.
These model fragments are used to assemble the deployment model.

abstract deployment model

simple decision layer

business requirements

concrete deployment model

model fragments
(b)(a)

business
expert

(c)

Fig. 2. Simple decision layer on top of deployment model.

As shown on Fig. 2, the simple decision layer handles business requirements
and concrete model fragments. The decision layer abstracts from the actual
language, by using an abstract deployment model that comprises anchor points
for a decision process to concretise the deployment model by the output values
of an evaluated decision. In contrast to the concrete deployment model, it is
not completely described and therefore not executable in a COT. The business
requirements are fed into the layer by business experts (Fig. 2(a)). The mapping

A DMN-Based Approach for Dynamic Deployment Modelling 107

of requirements to model fragments is done based on a business knowledge model
(Fig. 2(b)). When requirements arrive or change, the decision layer executes a
decision process. After evaluating the business requirements, appropriate model
fragments are selected and used to enhance the abstract deployment model and
create a concrete deployment model that is executable by a COT (Fig. 2(c)).

Based on the requirements, the decision layer operates on an abstract deploy-
ment model and a decision set that is defined just once, to reuse existing model
fragments in order to create multiple concrete deployment models.

While in current approaches the concrete deployment model has to be mod-
elled per business requirement set, this approach requires to model one abstract
deployment model and define its business knowledge model for arbitrary require-
ment sets. In order to extend available business requirements, additional map-
ping decision can be added to the business knowledge model. The simple deci-
sion layer is then able to reuse those model fragments for new incoming business
requirements, as well as for other abstract deployment models.

In order to deal with changing requirements at run-time, the decision layer
will reevaluate the decisions and update the respective model fragments. Thus,
the proposed decision layer enables dynamic redefinition of the required model
fragments based on the predefined decision set.

3.2 Realisation Sketch

We propose a realisation of our approach based on the Decision Model and
Notation (DMN) [3] as decision layer and CAMEL [5] as the cloud modelling
DSL.

The DMN standard provides a human-readable common notation for mod-
elling and automating decisions. We choose decision tables (DTs) to represent
decisions as these are well known to business experts. An example of a DT is
shown in Table 1. A DT consists of three column types: (i) a hit policy, (ii) an
input variable set, and (iii) an output variable set. The hit policy defines the
selection over overlapping decisions with policies like Unique, i.e., only a sin-
gle decision will be selected or Collect, i.e., all decisions can be selected. Each
input variable can potentially map to a respective output variable of a sub-
decision table. Hence, there is a possible cascade of decisions leading to hierar-
chical decision tables. Any DT is associated with a business knowledge model
(BKM) defining the decision logic, i.e., the mapping between the input and

Table 1. Image and Region DT

Hit Policy Input Output

C Privacy level string Provider string VM image string Region string

1 Low Provider X Image X US

2 Low Provider Y Image Y Europe

.

108 F. Griesinger et al.

output parameters. DMN is chosen as it is an impact gaining standard and it is
already well adopted on the business level.

CAMEL models encompasses all technical details to deploy an application
in the cloud, including specific cloud resources such as virtual machines and
deployment structure. A concrete deployment model can be transformed into
a set of cloud-provider specific deployment actions. We favoured CAMEL over
other cloud application modelling languages like TOSCA as CAMEL supports
the specification of a provider-independent deployment model, as well as an
instance model.

business value A

decision table A

business value B

decision table B

decision table C

business
knowledge
model

business
knowledge
model

result Bresult A

business
knowledge
model

CAMEL
fragment

CAMEL
fragment

CAMEL
fragment

concrete CAMEL deployment model

Fig. 3. Dynamic CAMEL modelling

Our proposed realisation is depicted in Fig. 3 implementing the decision layer
as a hierarchical set of DTs enabling the dynamic CAMEL modelling. The DTs
are specified by BKM fragments, which define the actual decisions in the DTs.
We distinguish between two different types of output values, DMN results, used
as input for other DTs, and derived CAMEL fragments.

Both languages are integrated into the meta-modelling platform ADOxx1,
providing a modelling tool for dynamically generating CAMEL models via DMN.
ADOxx is able to provide a modelling user interface and the integration of
algorithms to implement the usage of meta models. The main scenarios taken
into consideration are (i) the specification of DMN via a graphical user interface,
and (ii) the support of the execution of DMN to generate the CAMEL model.

4 Use Cases

We present use cases from the areas of DevOps and business-IT-alignment. We
exemplify achieving their requirements by integrating our approach.
1 https://www.adoxx.org/

https://www.adoxx.org/

A DMN-Based Approach for Dynamic Deployment Modelling 109

4.1 Customer-Specific and Continuous Deployment

A common requirement in DevOps environments is having a customer-specific
deployment that differs slightly due to customers’ specific favors, and continu-
ous deployment on version updates. Introducing a decision process enables in
this case the reusability of the cloud application model. The application is only
modelled once, but the concrete deployment model is generated dynamically for
different requirements of the customers and of the application version.

A sample excerpt of a DT is shown in Table 1. The input of this DT are the
trusted cloud provider and the privacy level. The output is the VM image and
region for the model to be used for the service deployment.

4.2 Business Process as a Service

CloudSocket2 introduces the concept of Business Process as a Service (BPaaS)
by modelling business processes (BPs) on the highest level and semi-
automatically align the BPs to the technical description of the required cloud
services for the BP execution [8]. The BPaaS approach comprises a sequence of
mappings from higher level business descriptions to low level technical descrip-
tions. This chain contains points where decisions are made to create models of
different levels of detail. The proposed layer caters for this mapping as it allows
to integrate the business requirements to the model creation process. The deci-
sions that have to be made in the BPaaS approach define, (i) which service to
use, (ii) which configuration, such as cloud provider and hardware, the service
will have and (iii) the service’s behaviour at run-time.

5 Discussion

The presented approach has a major impact on evolving the current state of
the art with respect to managing cloud applications through COTs and also for
the features supported by COTs. As the input parameters for decision processes
may change during run-time, COTs have to be able to update a deployed appli-
cation on-the-fly according to the changes in the model. To implement this, a
COT will need to create a change set between old model and new model and
apply actions that implement the changes. This will involve adaptation actions
currently not supported by any COT such as the migration of components onto
different clouds.

In current modelling environments, the modeller directly interacts with a
DSL or a direct (graphical) editor. Our approach shifts this view for modellers
to a paradigm above the actual DSL. She will outline the deployment model by
specifying the decisions that lead to the actual deployment. This will increase
the reusability of cloud description fragments and cater for the dynamic nature
of cloud-based applications and lower the learning curve for decision makers.

2 https://www.cloudsocket.eu/

https://www.cloudsocket.eu/

110 F. Griesinger et al.

Although the paper motivates the importance of integrating business require-
ments in the decision process of cloud modelling, the presented approach is able
to involve any kind of requirements, e.g. technical requirements, as the decision
process is agnostic to the type of requirement. Also the rules described in the
decision tables of the introduced layer can be translated into adaptation rules
in the DSL. Obviously, this would demand the specification of the correlation
between business requirements and e.g., the number of component instances in
the case of scaling rules.

By applying our approach, application modeller can create abstract models
and distribute them in a marketplace-like manner. Companies can choose from
those abstract deployment models, customise them, and create concrete deploy-
ment models by the means of a company’s specific business requirements. In
contrast to similar application libraries of current COTs, our approach does not
suffer from static models that needs low level adjustments to customise it.

6 Related Work

Besides DMN, there are numerous approaches for decision engines like Gandalf3

or the IBM Operational Decision Management4 that also apply decision tables
to define business rules. Those can also be used to run the decision layer.

The usage of interconnected ordered decision tables as a selection method for
cloud services can be categorised as a multi-criteria decision-making (MCDM)
process [7]. In contrast to optimisation-based approaches realising MCDM deci-
sions using utility functions, we are convinced that our approach is more user-
friendly and -intuitive, due to the use of human-readable tables as interfaces.

Cloud orchestration tools mainly use DSLs to specify the deployment mod-
els [1]. However, they do not automatically create a set of differences to integrate
modifications due to a decision process. This becomes necessary, when business
requirements are evaluated on run-time and a feedback loop is integrated.

DevOps tools like Puppet5 support updating an application at run-time on
the basis of the differences between the latest and the currently active configu-
ration. However, those DevOps tools operate on the level of the single compo-
nent. They do not consider the overall view on the cloud-based application. The
autonomous provisioning of infrastructure or platform resources is also out of
scope of such tools. Our model-driven approach integrates the update function-
ality by using the application version as input for the decision process.

ToscaMart [6] introduces the idea of reusing model fragments for modelling
by employing a marketplace of predefined application components to be used
by the modellers to assemble their applications. This approach lacks a general
decision-making process but instead relies on lowest technical requirements of
the application to be assembled.

3 https://gndf.io/
4 http://www-03.ibm.com/software/products/de/odm
5 https://puppet.com/

https://gndf.io/
http://www-03.ibm.com/software/products/de/odm
https://puppet.com/

A DMN-Based Approach for Dynamic Deployment Modelling 111

7 Summary

Cloud deployment models are described in domain specific languages (DSLs).
Current DSLs are static and the creation comes along with the complexity of
many technical details. Whereas modelling decisions are taken at design-time,
influencing factors, such as technical or business requirements require to update
fragments of the deployment model at run-time. Current modelling approaches
only cater for updates of the complete deployment model and do not consider
the reusability of constant model fragments.

In this position paper, we proposed a simple decision layer residing above
current DSLs. This decision layer enhances the modelling scope by considering
decisions affecting the deployment model at design and run-time.

We sketch a realisation based on the decision model and notation (DMN)
as decision layer. DMN enables the semi-automatic creation of the deployment
model from the results of DMN decision tables. Our realisation proposes the
usage of DMN with the cloud DSL CAMEL in the ADOxx modelling environ-
ment. The suitability of the approach is discussed based on two use cases types.

Future work will encompass a prototype implementation of the presented
decision layer based on the outlined technologies. Based on the prototype an
evaluation on the impact of model creation and execution will be performed.

Acknowledgements. The research leading to these results has received funding
from the EC’s Framework Programme FP7/2007–2013 under grant agreement number
317715 (PaaSage) and the EC’s Framework Programme HORIZON 2020 (ICT-07-2014)
under grant agreement number 644690 (CloudSocket).

References

1. Baur, D., Seybold, D., Griesinger, F., Tsitsipas, A., Hauser, C.B., et al.: Cloud
orchestration features: are tools fit for purpose? In: 2015 IEEE/ACM 8th Inter-
national Conference on Utility and Cloud Computing (UCC), pp. 95–101. IEEE
(2015)

2. Domaschka, J., Baur, D., Seybold, D., Griesinger, F.: Cloudiator: a cross-cloud,
multi-tenant deployment and runtime engine. In: 9th SummerSoC (2015)

3. Object Management Group: Decision model and notation. Technical rep., OMG
(2015). http://www.omg.org/spec/DMN/1.1/

4. OASIS: Topology and Orchestration Specification for Cloud Applications Version
1.0 Committee Specification Draft 08 (2013)

5. Rossini, A.: Cloud Application Modelling and Execution Language (CAMEL) and
the PaaSage workflow. In: Celesti, A., Leitner, P. (eds.) ESOCC 2015 Workshops.
CCIS, vol. 567, pp. 437–439. Springer, Heidelberg (2016)

6. Soldani, J., Binz, T., Breitenbcher, U., Leymann, F., Brogi, A.: ToscaMart: a method
for adapting and reusing cloud applications. J. Syst. Softw. 113, 395–406 (2016)

7. Sun, L., Dong, H., Hussain, F.K., Hussain, O.K., Chang, E.: Cloud service selection:
state-of-the-art and future research directions. J. Netw. Comput. Appl. 45, 134–150
(2014)

8. Woitsch, R., Utz, W.: Business process as a service: model based business and it
cloud alignment as a cloud offering. In: 2015 International Conference on Enterprise
Systems (ES), pp. 121–130. IEEE (2015)

http://www.omg.org/spec/DMN/1.1/

Cloud Migration Methodologies: Preliminary Findings

Mahdi Fahmideh(✉), Farhad Daneshgar, and Fethi Rabhi

University of New South Wales, Sydney, Australia
m.fahmidehgholami@unsw.edu.au, mehdi.fahmideh@gmail.com

Abstract. Research around cloud computing has largely been dedicated to
addressing technical aspects associated with utilizing cloud services, surveying
critical success factors for the cloud adoption, and opinions about its impact on
IT functions. Nevertheless, the aspect of process models for the cloud migration
has been slow in pace. Several methodologies have been proposed by both
academia and industry for moving legacy applications to the cloud. This paper
presents a criteria-based appraisal of such existing methodologies. The results of
the analysis highlight the strengths and weaknesses of these methodologies and
can be used by cloud service consumers for comparing and selecting the most
appropriate ones that fit specific migration scenarios. The paper also suggests
research opportunities to improve the status quo.

Keywords: Cloud migration · Legacy applications
Cloud migration methodology · Evaluation framework

1 Introduction

Cloud computing initiatives have received significant attention for addressing compu‐
tational requirements of enterprise applications through offering a wide range of services
which are universally accessible, acquirable and releasable on the fly, and payable based
on the service usage. Many IT-based organizations are at the edge of moving their lega‐
cies to the cloud. While there are many valuable technical solutions to make legacies
cloud-enabled, those solutions are not sufficient on their own and one should not under‐
mine the equal importance of adopting a systematic methodology to enable legacies to
benefits from cloud services. Such a methodology aids developers to organize the
migration process and defines a step-by-step guidance on activities should be carried
out to reengineer and move legacies to the cloud. This paper presents a review and
evaluation of the extant cloud migration methodologies in the literature with the aim of
understanding their features, strengths, weaknesses, and potential opportunities for
future research. More than a dozen of cloud migration methodologies have been
suggested by both from academia and industry. Some examples are Chauhan’s Meth‐
odology [1], REMICS [2], Tran’s Methodology [3], Cloud-RMM [4], Strauch’s Meth‐
odology [5], Zhang’s Methodology [6], Oracle [7], ARTIST [8], Amazon [9], and
Legacy-to-Cloud Migration Horseshoe [10].

This paper is organized as follows: Sect. 2 develops an evaluation framework to
assess the abovementioned methodologies, which is followed by Sect. 3 that reports

© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 112–122, 2018.
https://doi.org/10.1007/978-3-319-72125-5_9

evaluation results of the methodologies. Section 4 discusses the implications and threats
of this research. Finally, this paper concludes in Sect. 5.

2 Criteria-Based Evaluation of Migration Methodologies

In the context of software engineering, an evaluation framework constitutes a checklist
of criteria (or methodological requirements) that an ideal methodology is expected to
appropriately address them when dealing with a particular activity objective [11]. A
methodology is checked against an evaluation framework in two steps: firstly, the meth‐
odology is scanned for features concerned by a criterion and then an evaluation result
(e.g. scale point) is yield signifying the some extent that the methodology supports the
criterion [11]. In order to ensure the quality of criteria set, the meta-criteria (criteria used
to assess other criteria) proposed by Karam et al. [12] was taken into account to develop
the proposed evaluation framework. Regarding to this source and context of this study,
the criteria should be (i) sufficiently generic to cover a variety of scenarios for legacy
application migration to the cloud regardless of a particular target cloud platform, (ii)
distinct to characterise the similarities and differences of methodologies, and (iii)
adequately comprehensive to cover end-to-end cloud migration process.

In developing of the criteria, we reviewed and synthesized various existing frame‐
works that define criteria attuned to evaluate software development methodologies in
traditional software (re-engineering) engineering and software process improvement
literatures. A set of criteria were identified in the studies by [12–16]. We also reviewed
studies suggesting criteria pertinent to cloud migration methodologies. Studies by [3, 5,
17, 18] proposed essential criteria that an ideal cloud migration methodology should
satisfy. This includes interoperability/portability, incompatibility resolution, cloud
provider selection, and re-architecting, and tailorability. Once the criteria in the above
sources were analyzed and redundancy and overlapping among them were removed,
nineteen distinct criteria were shortlisted for the purpose of the current study. The criteria
help to contrast and compare existing methodologies. They are listed in Table 1 and
described in Sect. 3. We do not claim that the proposed evaluation framework is compre‐
hensive, however, such a framework has not been proposed yet in literature and our
study provides a good starting point in assessing and comparing extant cloud migration
methodologies to highlight their strengths and weaknesses.

Cloud Migration Methodologies: Preliminary Findings 113

Table 1. Criteria expected to be supported by cloud migration methodologies

Criterion and Definition (letter C is the unique identifier of each criterion) Type
Tailorability (C1): Providing mechanisms to configure and modify process or modelling
language for a given project at hand. Scale
Development Roles (C2): Defining roles who are responsible for performing migration
activities or any stakeholder who are involved in a migration process. Scale
Requirement Analysis (C3): Eliciting and specifying functionalities required to be fulfilled
by cloud-enabled application such as computational, security, elasticity, and storage space
requirements.

Scale

Legacy Understanding (C4): Recapturing an abstract As-Is representation of application
architecture in terms of terms of functionality, different types of dependencies to other
applications, interaction points and message follows between application components, as well
as quality of code blocks for reuse and adaptation.

Scale

Cloud Service Selection (C5): Identifying, evaluating, and selecting a set of cloud providers
that might suit organization and application requirements. Scale

R
e-

A
rc

hi
te

ct
in

g

Cloud Architecture Model Definition (C6: Identifying components of legacy that are
suitable for migration and defining their deployment in the cloud environments. Scale

Refactoring and Incompatibility Resolution (C7): Identifying and resolving
incompatibilities between legacy components and cloud services. Scale

Enabling Application Elasticity (C8): Providing support for dynamic acquisition and
release of cloud resources. Scale

Enabling Multi-Tenancy (C9): Providing support for enabling multi-tenancy in the
application in terms of security, performance, customizability, and fault isolation,
which might incur by running application in the cloud.

Scale

Deployment (C10): Adjusting the application and network configuration for the target cloud
environment. Scale

Monitoring (C11): Continuous monitoring of application and cloud resources to assure
SLAs. Scale

Test (C12): Defining activities for test and continuous delivery. Scale
Work-Products and Notations (C13): Specifying work-products to be produced as
outcomes of migration activities. Scale

Modelling Language (C14): Specifying a modelling or notational component Boolean
Unit of Migration (C15): Applicability of the methodology for the migrating different tier of
a legacy application.

Multiple
Answer

Migration Type (C16): Migration types are concerned with methodology. Multiple
Answer

Tool Support (C17): Availability of tools to support the methodology’s activities and
techniques. Scale

Maturity (C18): Available account on successful adoption the methodology in real-world
migration scenarios.

Multiple
Answer

3 Analysis of Results

Table 2 summarizes the evaluation results of the methodologies according to the frame‐
work. The review of the methodologies reveals that many criteria; specifically Tailor‐
ability (C1), Development Roles (C2), Cloud Architecture Definition (C6), Refactoring
(C7), and Multi-tenancy (C9) are not adequately supported. The methodologies do not
comprehensively elaborate on activities related to these criteria, as a part of their main‐
stream process, which should be carried out to make a legacy application cloud-enabled.
The following, delineates the results of our analysis and suggests areas that indicate
future research directions to improve existing methodologies.

114 M. Fahmideh et al.

Table 2. Results of evaluating cloud migration methodologies

Tailorability (C1). It has been well-acknowledged that in every methodology there are
good features to adopt as well as deficiencies to avoid [14]. These features circumscribe
the applicability of a methodology in a given project situation at hand. The fact that
methodologies should be tailored or designed to suit the characteristics of a given cloud
migration scenario is pinpointed in the cloud migration literature [18, 19]. As shown in
Table 2, except for REMICS and ARTIST methodologies which provide a partial
support for the tailorability, none of the existing methodologies offers mechanisms to
fine-tune their processes or to check if the methodology is properly applicable for a
migration scenario at hand. REMICS is structured in the form of a set of reusable method
fragments which eases its tailoring through selecting suitable method fragments and
assembling them with respect to a migration scenario. ARTIST offers a tool which

Cloud Migration Methodologies: Preliminary Findings 115

facilitates configuration and instantiation of the methodology for a given migration
scenario. However, none of them provides explicit guidance on how to tailor or create
a situational methodology out of the base methodology.

Development Roles (C2). While methodologies describe what activities are to carry
out, the roles and required expertise that take these activities become a concern for its
users. The definition of roles assists developers who have limited experience and are not
sure about roles involving in a migration process. In spite of necessity of defining roles
in any software development lifecycle, the majority of cloud migration methodologies
do not specify roles involving during the migration process. As shown in Table 2, except
for Chauhan’s methodology and ARTIST, the definition of roles and their responsibil‐
ities have been neglected in the existing methodologies. In these methodologies, the
definition of roles is borrowed from traditional software development and they do not
define roles that might be cloud-specific.

Requirement Analysis (C3). Requirements specify the desired features that should be
fulfilled by moving legacies to the cloud. Conventional requirement analysis techniques
such as interview, prototyping, and workshop are widely used by REMICS, ARTIST,
and Chauhan’s methodology. Additionally, Oracle and Amazon extend the requirement
analysis to focusing on computing requirements and application scalability. Further‐
more, Legacy-to-Cloud Migration Horseshoe is concerned with inter-operability
requirements of the target application between cloud platforms. Trans and Zhang’s
methodologies do not define any activities related to the requirement analysis.

Legacy Application Understanding (C4). This is common that the knowledge about
legacy applications is undocumented and incomplete. An in-depth understanding of the
current state of legacies helps to identify any characteristic that might influence the cloud
migration process. Activities related to the legacy understanding are covered by most
of the methodologies, except for Tran’s and Oracle’s methodologies. A few of reviewed
methodologies such as Chauhan’s methodology, Cloud-RMM, Strauch’s methodology
define activities related to recover of legacy architecture model but do not narrow to
provide adequate mechanisms or guidelines to conduct them.

Cloud Platform/Service Selection (C5). Developer should not neglect the influences
of selecting cloud platforms on the development effort and cost required for the migra‐
tion process. A better compatibility between the legacy and cloud services can make the
migration process very easy and shorter. For example, Tran’s methodology reports a
breakdown of activities for moving a .NET 3-tier application to run in Windows Azure.
She highlights required development efforts for modifying data tier, code refactoring,
and installation is major if the underlying technology of the legacy and cloud platform
are not compatible with each other. Table 2 shows that all of the reviewed methodologies
incorporate activities related to cloud service selection. However, REMICS and Oracle
are at the other end of the spectrum: they do not provide any guidelines as to how cloud
service can be evaluated and selected.

116 M. Fahmideh et al.

Re-architecting (C6, C7, C8, C9). Several important aspects should be incorporated
into the migration process when re-engineering a legacy to a cloud platform. The first
(C6) is to select suitable legacy components and define their new deployment model in
the cloud on basis of concerns such as network latency, data transfer, data privacy, legal
restrictions while satisfying the expected QoS of the whole application. Cloud migration
methodologies can be examined with respect to their support for activities and guidelines
to define a cloud architecture model of an application and move components to the
different cloud servers. Only Chauhan’s methodology defines this activity in its process
model. The second architectural aspect (C7) is the resolving of incompatibilities that
might occur between the legacy application and selected cloud platform/services. The
incompatibilities might be sourced from mismatch between legacy codes and cloud
service APIs, interface signatures, data types, and query calls. A methodology is
expected to provide activities to identify possible incompatibility issues and accordingly
proper guidelines to resolve them. Otherwise legacy will not be able to utilize cloud
services. Back to Table 2, the criteria refactoring and incompatibility resolution is only
supported by Strauch’s methodology and Oracle methodology, though they focus on
activities to resolve incompatibilities between the legacy database tier and a target cloud
database service. Other methodologies suggested by Chauhan, REMICS, Tran, Cloud-
RMM, ARTIST, and Amazon suffer from cursory definitions of code refactoring. The
third architectural design aspect (C8) is to enable the legacy in a support of dynamic
resource acquisition and release when it is running in the cloud. According to Table 2,
activities related to the enabling elasticity in the legacies are only supported by Amazon
methodology. The fourth aspect (C9) is the multi-tenancy support. A key concern in the
re-architecting of legacy to address multi-tenancy is to provide a support in the appli‐
cation for isolating the security, performance, customizability, and fault of tenants.
Without such a support, a migrated application may face the risk of tenant interference.
As shown in Table 2, the majority of methodologies are silent regarding the multi-
tenancy requirement. Cloud-RMM includes the multitenancy, however, it does not
elaborate on how conducing it.

Deploying and monitoring (C10, C11). It is likely that the connection between the
migrated legacy to the cloud and local network to be required. A methodology should
properly define activities related to the network configuration such as the setting open
ports, firewall policies, and connection strings to data and application (C10). The
deployment is covered by all the methodologies except for Chauhan’s methodology and
Legacy-to-Cloud Migration Horseshoe. Besides, once migrated to the cloud, the contin‐
uous monitoring of the application and cloud resources to assure SLAs is necessary
(C11). Only three methodologies Oracle, ARTIST, and, Amazon support this criterion.

Test (C12). Test is to ensure that the cloud-enabled application meets the goals of cloud
migration. All the methodologies except for Strauch’s methodology, Zhang’s method‐
ology, and Legacy-to-Cloud Migration Horseshoe define activities in coherence with
the methodology to ensure that application conforms to the expectation of the cloud
migration such as performance or resource utilization.

Cloud Migration Methodologies: Preliminary Findings 117

Work-products and modelling language (C13 and C14). An integral part of every
methodology is to specify necessary work-products as the outcome of each activity
throughout the process model. Defining work-product becomes important if automatic
code generation is required for a specific cloud platform or users of methodology aim
to trace or keep the list of work-products that have been produced throughout the migra‐
tion process. With respect to this, among the reviewed methodologies, Chauhan’s meth‐
odology and ARTIST explicitly define work-products as a result of performing each
migration activity. However, REMICS, Zhang’s methodology, and Legacy-to-Cloud
Migration Horseshoe only defines representing the legacy architecture. Methodologies
may specify modelling techniques along with a particular notation to represent the
outcome of each development activity. Modelling techniques, however, is hardly
supported in the existing methodologies. ARTIST and REMICS use UML for their
whole lifecycles along with Zhang’s methodology and Legacy-to-Cloud Migration
Horseshoe that, respectively, use SoaML and Graph-based modelling to represent legacy
architecture.

Unit of Migration (C15). Some organizations may not move the whole legacy stack
to the cloud because of security concerns, rather they may migrate some legacy compo‐
nents to the cloud whilst other components are kept in local organization network and
cloud services are offered to them. In this regard, it is important to investigate if a meth‐
odology is appropriate for moving a particular tier or whole legacy stack to the cloud.
Given that, eight reviewed methodologies have been designed for full migration to the
cloud. Strauch’s methodology is particularly designed for moving legacy data tier to a
cloud database solution.

Migration Type (C16). Regarding the common service delivery models IaaS, SaaS,
and PaaS, one can view that there are several variants that a legacy can utilize cloud
services. We defined the followings migration variants and assess if the methodolo‐
gies support them. In Type I the business logic tier of a legacy (e.g. WS-BPEL),
which offers discrete and reusable functionality, is deployed in the cloud infrastruc‐
ture. In this migration type, the data tier is kept in local organization network.
Deploying an image processing component of a legacy in E2C is an example of this
migration type. In Type II some components or whole application stack is replaced
with an available and fully tested cloud service. The Salesforce CRM application is
a typical example of this type of cloud migration. In this review, Chauhan’s meth‐
odology, REMICS, Zhang’s methodology, and ARTIST support this type of migra‐
tion. In Type III legacy database is deployed in a cloud data store provider. The
components related to business logic tier are kept in local organization network and
the database is deployed in public cloud data store such as Amazon Simple Storage
Service, Amazon Elastic Block Store, Dropbox, or Zip Cloud. There is not method‐
ology to support this migration type. In Type IV the data tier of a legacy is modified
and converted to a cloud database solution such as Amazon SimpleDB, Google App
Engine data store, or Google Cloud SQL. Tran’s, Strauch’s methodology, and Oracle
support this migration type. Finally, in Type V the whole legacy stack is deployed in
the cloud infrastructure where the legacy is encapsulated in a single virtual machine

118 M. Fahmideh et al.

and then run in the cloud infrastructure. From the reviewed methodologies, Amazon
defines activities to carry out this migration type. Obviously, on the basis of a chosen
migration type, different activities might be required to be carried out and accord‐
ingly a methodology should properly address them.

Tool support (C17). The adoption of a methodology is facilitated if it offers its own
supportive tool or alternatively refers developers to existing third-party tools available
in the cloud marketplace. Only ARTIST and REMICS provide tool for whole migration
process model. More specifically, ARTIST proposes Eclipse-based suites which are
integrated with its activities. Since produced work-products are stored in a shared repo‐
sitory, they can be accessed and modified by other tools. REMICS includes a set of tools
that can be classified in the areas such as requirement management, knowledge recovery
from legacies, re-transformation of legacy components to cloud architecture, and model-
based testing. On the other hand, Strauch’s and Amazon’s methodologies offer tool for
legacy architecture recovering, data migration, and resource elasticity management.
Other methodologies do not offer any tools.

Maturity (C18). Validating a methodology in real-world migration scenarios and
subsequently refining it through feedback from experts improves its applicability and
maturity. In this review, the majority of methodologies, except for Cloud-RMM and
Legacy-to-Cloud Migration Horseshoe, have reported the applying the methodology in
a real-world example. An observed issue during the assessment was the lack of sufficient
contextual information on the environment in which the methodology had been applied,
description of techniques used to data collection and analysis, and addressing threats to
validity.

4 Discussion

This section discusses research implications and possible threats to validity of the eval‐
uation results.

Research implications. This research has two major contributions to the cloud migra‐
tion literature. Firstly, the proposed evaluation framework serves as a valuable tool for
project managers to assess and compare the capabilities of cloud migration methodol‐
ogies and select ones which satisfies their migration scenario characteristics through
reusing the strengths. They can also priorities the proposed requirements on the basis of
their goals and evaluate methodologies with respect to these priorities. Secondly, the
evaluation results can be used as a basis for the purpose of situational cloud migration
methodology construction meaning that useful method fragments from the existing
methodologies can be selected and assembled to create bespoke methodology that fits
the characteristics of a migration scenario at hand.

Threats to evaluation validity. In spite of our effort to provide a comprehensive and
objective comparison, some threats still exist as mentioned in the followings:

Cloud Migration Methodologies: Preliminary Findings 119

Conclusion validity. The evaluation results in this research are mainly theoretical and
based on the available and published documents of the methodologies. However, a real
evaluation of the methodologies through applying them in the same real-world migration
scenario could yield to other results. However, such empirical assessment is planned as
our future work. Furthermore, as the methodologies may have been yet improved by
their designers, the evaluation may need to be updated.

Construct validity The validity of the evaluation results may be concerned in terms of
measures that have been applied to assess the satisfaction of the methodological require‐
ments. To minimize inconsistency in measuring, the definitions of criteria were used
during assessment process (Table 1). These definitions checked the existence of activ‐
ities, work-products,or roles that are related to the criteria.

Internal validity. A threat to the validity of this research is that the evaluation process
was conducted by a single researcher. Hence, the evaluation results might be to some
extent subjective in nature or undergone by misinterpretation. This threat can be further
minimized if a Delphi technique [20] is applied where the evaluation process is
performed by authors of the framework and subject matter experts. The difference
between ratings can be resolved through a post-hoc evaluation discussion to reach a
consensus.

External validity. We acknowledge that to assure generalizability of evaluation results,
more evaluation with a higher number of domain experts is necessary. Furthermore, we
selected a representative number of cloud migration methodologies that have been
proposed in the literature. Nevertheless, more research on the evaluation of cloud migra‐
tion methodologies and criteria which may have not been investigated in this research
is required.

5 Future Work and Conclusion

This paper argued that the current state of legacies to the cloud needs to adopt meth‐
odological/process model perspective. Following an overview of existing methodolo‐
gies related to legacy application to cloud migration, an evaluation of them regarding a
set of important criteria was presented. The evaluation results were presented in a struc‐
tured format and revealed that the methodologies suffer from the lack of tailorability,
defining roles and work-products involved in the migration process, and incorporating
a modelling language to model the output of activities. Additionally, there is no meth‐
odology which focuses on the migration types I and III. The cloud migration method‐
ologies seem quite nascent and are yet to reach a high level of maturity. The current
situation of the cloud migration methodologies definitely calls for further research aimed
at ameliorating the status quo. With respect to the evaluation results in this paper, a
further research opportunity is to develop a new cloud migration methodology through
reusing the strengths of existing methodologies while addressing their deficiencies. This
can be based on identifying method fragments from the methodologies and storing them
in a method library. Such a harness can be effectively addressed by adopting the idea of

120 M. Fahmideh et al.

situational method engineering approach [21] where cloud migration solutions in the
literature can be abstracted away and structured as a complementary source for devel‐
oping method fragments. Once such reusable method fragments identified, they can be
further assembled to construct customized migration methodology which fits a given
migration scenario.

References

1. Chauhan, M.A., Babar, M.A.: Towards process support for migrating applications to cloud
computing. In: 2012 International Conference on Cloud and Service Computing (CSC), pp.
80–87 (2012)

2. Mohagheghi, P.: Software engineering challenges for migration to the service cloud
paradigm: ongoing work in the REMICS project. In: 2011 IEEE World Congress on Services
(SERVICES), pp. 507–514 (2011)

3. Tran, V., Keung, J., Liu, A., Fekete, A.: Application migration to cloud: a taxonomy of critical
factors. In: Proceedings of the 2nd International Workshop on Software Engineering for
Cloud Computing, pp. 22–28 (2011)

4. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review. IEEE
Trans. Cloud Comput. 8, 1 (2013)

5. Strauch, V.A.S., Karastoyanova, D., Leymann, F.: Migrating enterprise applications to the
cloud: methodology and evaluation. Int. J. Big Data Intell. 5, 127–140 (2014)

6. Zhang, W., Berre, A.J., Roman, D., Huru, H.A.: Migrating legacy applications to the service
Cloud. In: 14th Conference companion on Object Oriented Programming Systems Languages
and Applications (OOPSLA 2009), pp. 59–68 (2009)

7. Laszewski, T., Nauduri, P.: Migrating to the Cloud: Oracle Client/Server Modernization.
Elsevier, New York (2011)

8. Menychtas, A., Santzaridou, C., Kousiouris, G., Varvarigou, T., Orue-Echevarria, L., Alonso,
J., et al.: ARTIST methodology and framework: a novel approach for the migration of legacy
software on the Cloud. In: 2013 15th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), pp. 424–431 (2013)

9. Varia, J.: Migrating your existing applications to the AWS cloud: a phase-driven approach
to cloud migration (2010)

10. Ahmad, A., Babar, M.A.: A framework for architecture-driven migration of legacy systems
to cloud-enabled software. Presented at the Proceedings of the WICSA 2014 Companion
Volume, Sydney, Australia (2014)

11. Kitchenham, B., Linkman, S., Law, D.: DESMET: a methodology for evaluating software
engineering methods and tools. Comput. Control Eng. J. 8, 120–126 (1997)

12. Karam, G.M., Casselman, R.S.: A cataloging framework for software development methods.
Computer 26, 34–44 (1993)

13. Wood, B., Pethia, R., Gold, L.R., Firth, R.: A guide to the assessment of software development
methods. DTIC Document (1988)

14. Ramsin, R., Paige, R.F.: Process-centered review of object oriented software development
methodologies. ACM Comput. Surv. (CSUR) 40, 3 (2008)

15. Sturm, A., Shehory, O.: A framework for evaluating agent-oriented methodologies. In: Giorgini,
P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS -2003. LNCS (LNAI), vol. 3030, pp. 94–
109. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25943-5_7

16. Tran, Q.-N.N., Low, G.C.: Comparison of ten agent-oriented methodologies. In: Agent-
Oriented Methodologies, pp. 341–367 (2005)

Cloud Migration Methodologies: Preliminary Findings 121

http://dx.doi.org/10.1007/978-3-540-25943-5_7

17. Quang Hieu, V., Asal, R.: Legacy application migration to the cloud: practicability and
methodology. In: 2012 IEEE Eighth World Congress on Services (SERVICES), pp. 270–277
(2012)

18. Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S.: How to adapt applications for the
Cloud environment. Computing 95, 493–535 (2013)

19. Mahmood, Z. (ed.): Cloud Computing Methods and Practical Approaches. Springer, London
(2013). https://doi.org/10.1007/978-1-4471-5107-4

20. Okoli, C., Pawlowski, S.D.: The Delphi method as a research tool: an example, design
considerations and applications. Inf. Manag. 42, 15–29 (2004)

21. Harmsen, A.F., Brinkkemper, J., Oei, J.H.: Situational method engineering for information
system project approaches. Department of Computer Science, University of Twente (1994)

122 M. Fahmideh et al.

http://dx.doi.org/10.1007/978-1-4471-5107-4

Workflow Skeletons: Improving Scientific
Workflow Execution Through Service Migration

Tino Fleuren(B)

Fraunhofer Institute for Industrial Mathematics,
Fraunhofer Platz 1, 67663 Kaiserslautern, Germany

tino.fleuren@itwm.fraunhofer.de

http://www.fraunhofer.de

Abstract. Planning the execution of a long-running scientific workflow
orchestrating a huge number of services in a cloud infrastructure is a hard
thing to do, because anticipating the current infrastructure situation at
a given point in time is far from easy.

This paper describes a means for adjusting “workflow skeletons”-based
scientific applications to this dynamically changing situation by using
service migration allowing for moving services to different hosts, even if
they already started execution.

From a global workflow perspective, there may be several reasons
for deciding at runtime to move services to other hosts than originally
planned. For example, sometimes it is not easy to predict in which phase
of the workflow big data will be produced. In such situations, moving
services to the data’s location instead of staging data to the services will
save time and network bandwidth. The concept of “workflow skeleton” is
enhanced by letting single tasks decide about starting a migration based
on a predefined set of policies.

Keywords: Reconfiguration of scientific workflows
Service migration · Workflow skeletons · Workflow building blocks
Workflow execution

1 Introduction

In general, scientific workflows are experimental, i.e., workflows are halted during
execution, reconfigured or rescheduled. Moreover, they are long-running and
process large amounts of data. Therefore, workflows have to be able to adjust
to environmental changes; mechanisms for optimal reconfiguration of scientific
workflows are needed.

There are at least two possible means for reconfiguration in cloud environ-
ments. First, clouds allow for dynamic allocation of resources. If the current
resource situation changes, it may be necessary, especially for long-running work-
flows, to reschedule resource allocation or to move virtual machines to other
hosts.
c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 123–134, 2018.
https://doi.org/10.1007/978-3-319-72125-5_10

124 T. Fleuren

The second option is to dynamically relocate services through service migra-
tion. The size of intermediate data produced by workflow activities, can rarely
be determined before the workflow is started. Being able to migrate services to
servers hosting these data avoids unnecessary transfer of data, because the size
of the service’s binary is small in comparison. The decision for migration has to
be made at run time.

Problem Statement. After re-evaluating the current situation of the cloud infras-
tructure at a given point in time, service migration is a means to improve the
workflow execution. Three issues have to be tackled: how, what, and when to
migrate.

The first challenge is how to conduct a service migration. Scientific workflows
usually consist of activities that are implemented using diverse kinds of service
frameworks and technologies. For migrating a service, the systems must support
remote deployment that may even be in another administrative domain. Thus,
security issues like authorization and authentication must be taken into account.

The second challenge is to determine what data has to be copied to the new
location. First of all, the service’s binary must be copied to a new host. Next, if
the services are already executing, they must be halted; all necessary data like
input data, intermediate data, and session data has to be transferred, and then
the service can continue its work at the interruption point.

The third challenge is when to migrate, i.e., how to find the best point in
time for a migration. First rules and criteria need to be defined that help to
decide whether and how to conduct a reconfiguration. Based on those rules,
with the optimization goal in mind, the system must ensure to avoid unnecessary
migrations, to not trigger migrations too often, and to not move services several
time back and forth.

Contribution. In our former work we presented the concept of “workflow skele-
tons” [3]. The main contribution of this paper is the introduction of service
migration to workflow skeletons by utilizing a policy-based decision system. The
decision system is able to migrate services to the best suitable hosts while the
workflow and even the services are executing. Our prototypical implementation
ProWorkE that efficiently executes workflow skeletons on cloud resources has
been enhanced for demonstrating the power of service migration for an example
image rendering workflow.

2 Related Work

Several publications directly address the topic of service migration. In [11], the
authors describe an approach for making Web services migratable. The frame-
work allows for packaging the service and the associated data in a way that it can
be restored at new locations. However, the migration decision – who is deciding
when to migrate – is not discussed.

The authors of [12] present the use of self adaptive mobile processes (SAM-
Proc) as an abstraction to ease application development for ubiquitous systems.
Those processes are capable of changing their behavior and location over time

Improving Scientific Workflow Execution Through Service Migration 125

as specified in their own descriptive language. The application of the SAM-
Proc framework can be implemented either using CORBA or using Web services
both of which support weak migration. In [13], the same authors proposed the
concept of mobile processes by means of self-adaptive migratable web services
(SAM-WS).

In [10], the authors talk about making the web services mobile in Grid
infrastructures. The authors also discuss the problem of tackling the dynami-
cally changing platform and computing infrastructure for stateful services. Their
solution allows stateful services to migrate while ensuring that already executed
instructions need not be re-executed after migration.

In [7], a framework for service migration in cloud environments is presented
using genetic algorithms for determining possible migration settings. Their algo-
rithm utilizes a cost model with various service migration costs, including the
costs of migration overhead. Like in our solution, migration information will be
stored including locations of all migrated and replicated services. In addition,
hosted services will be logged in a service registry.

The authors of [9] use the Semantic Application Design Language (SADL)
for defining ontologies that describe, which services will be migrated using their
migration framework (see [8]) and which servers could be used as migration
targets. However, the solution relies on a particular migration decision strategy
component that must be provided by a user utilizing the presented framework
in contrast to our policy-based approach.

3 Background: Workflow Skeletons

In [3,4], we present a formal model of the concept “workflow skeletons” for spec-
ifying parallel parts of scientific workflows as building blocks. The concept of
workflow skeletons is a refinement of the idea of algorithmic skeletons elevated
from programming libraries to the higher level of workflows [1]. Workflow skele-
tons improve modeling, configuration, and execution of scientific workflows.

Workflow skeletons can be used on top of existing S-WfMS1 – introducing a
new abstraction in the specification without having to add new software entities
to the system. Using workflow skeleton, the workflow is described on a higher
abstraction level comprising skeletons as building blocks. Those descriptions can
then be translated to the workflow language of the concrete target S-WfMS, i.e.,
for the actual workflow run this abstraction will be removed. This allows for a
non-intrusive enhancement of the descriptive capabilities of workflow languages.

A workflow skeleton S = 〈P,C, i, o〉 is a directed acyclic graph (DAG) com-
prising a set P of nodes called “proxies” and a set C of edges called “channels”.
Proxies are placeholders for the actual workflow activities. They receive data on
input ports defined by the tuple i and present the data of its associated workflow
activity at output ports defined by the tuple o. Channels are dataflow connec-
tions between proxies, i.e., links from one output port of a proxy to one input
port of its successor proxy.
1 Scientific workflow management systems.

126 T. Fleuren

Configuration of a workflow skeleton consists of several aspects: configuring
the workflow activities, assigning them to cloud resources, and make use of data
and/or task parallelism. Workflow skeletons are configured by assigning key/-
value pairs to all the attributes of its proxies and channels, e.g. proxies need all
information to invoke its workflow activities.

Workflow skeletons can be parametrized, i.e., the number of parts that build a
skeleton – like proxies, channels, or sub-skeletons – can be adjusted dynamically.
Parameters allow to adjust the length and/or the width allowing for a higher
level of scalability [3]. In addition to the skeleton definition, its configuration
can also be described using parameters. This gives more control for optimizing
the use of resources reducing the complexity. For example, the skeleton can be
configured such that the number of data transfers is reduced.

Based on a formal model of the concept of workflow skeleton we define a speci-
fication language for describing workflow skeletons: Skeleton Workflow Language
(WorkSKEL) [4].

4 Service Migration

There are many definitions for “service migration”; in this paper, service migra-
tion is defined as follows:

Definition 1. Moving a service, i.e. its code, session state (including internal
and client state) as well as input and intermediate data from one server (host A)
to another (host B) without causing service outages and loss of processed data.

We use the terms service, service invocation and workflow activity as syn-
onyms in the sense that they represent the steps of a workflow and are in nature
distributed software components that can be invoked remotely. Services offer
standardized interfaces to activities like invoking Web and Grid services, query-
ing databases, starting scripts or legacy applications, submitting jobs to clusters
and Grids, and others. In the context of scientific workflows, workflow activ-
ities are typically long-running and computationally intensive requiring high-
performance resources. For workflow skeletons, an activity is represented by a
so-called proxy - we say that a proxy is associated with a workflow activity
(cf. Sect. 3).

The service migration may even take place across different networks and
administrative domains as well as between heterogeneous environments. Thus,
service migration is more challenging than just transferring the service’s binaries
from one location to another.

There are numerous reasons for introducing service migration to scientific
workflow systems. For example, one reason might be to improve the performance
of compute-intensive services by allocating more cloud nodes, if the load on
currently used nodes is too high, and move parts of running service instances to
new nodes, thus accelerating the overall scientific workflow.

The decision when and where to migrate services is difficult because multiple
criteria come into play. The following enumeration includes some criteria that

Improving Scientific Workflow Execution Through Service Migration 127

may be a single factor or part of an arbitrary combination of any number of
criteria. Here is a (not comprehensive) list of possible benefits for conducting a
service migration:

– Performance improvements:
• Parallelism: increase number of cloud nodes and distribute services evenly
• Current load of the hosts (dynamic or static compensation)

– Fault tolerance for long-running workflows: e.g. consider maintenance sched-
ules for servers connected to specialized hardware

– Availability of services: add new services to other compute nodes
– Reduction of large data transfers: cost of transferring the service to the data

vs. the other way around
– Reduction of communication overhead between services: e.g. by grouping ser-

vices that communicate a lot with each other on a common host
– Access to resources

• Resources that are not accessible over a public network: e.g. services will
have to use sensor data produced by specialized hardware that can only
be reached via dedicated computers

• Licensed software: the service needs access to licensed software that are
secured with hardware dongles

• Hardware resources: the service needs a computer with more memory,
CPU power, etc.

– Costs: reduce costs by moving services to alternative resources. For example,
cloud systems like AMAZON EC2 allow user to bid on spare Amazon EC2
computing capacity2. Or certain tariff system (night, day) will be applied

– Energy efficiency: computers will be shut down at nights.

5 Workflow Skeletons Supporting Service Migration

In this section, we first present our approach to answering the three question
defined in the introduction: how, what, and when to migrate. Then we describe
our service migration system based on condition/action policies.

5.1 How, What, and When to Migrate

How to Migrate. How to carry out a service migration depends on several
aspects. One factor is the heterogeneity of the execution environment. In a hybrid
environment consisting of clouds, local computers and campus/company net-
works, all kinds of software and hardware are installed and may be used as part
of the scientific workflow. Therefore, not all of the compute nodes are suitable
for a specific service technology, and not all S-WMSs or service engines support
remote deployment. Additionally, when moving services to other nodes, admin-
istrative rights are required on the target node. From the target’s point of view
a migration is in general a deployment. This can be particularly problematic,
2 Amazon EC2 Spot Instances, https://aws.amazon.com/ec2/spot/.

https://aws.amazon.com/ec2/spot/

128 T. Fleuren

if the migration should be made possible between different administered sys-
tems, which is often the case collaborating scientists from different universities.
Therefore, the system should be able to allow for building virtual organizations3.
In such scenarios, the S-WMS must have the rights to deploy services and files
to the target system, and of course access to the target’s network.

In our solution workflow skeleton control services by proxies that can be
easily configured with all necessary information for triggering and migrating
its associated service; this includes credentials, certificates, etc. Proxies can be
enhanced by plugins, so if additional behavior for a specific service technology
is needed, a new plugin will be inserted. In our implementation the skeleton
execution engine calls the migration manager, which is itself a special proxy
that can be used to conduct migrations. It can be enhanced by adding additional
plugins if need be.

What to Migrate. On the one hand, services can be stateful or stateless. Typ-
ically in service oriented architectures, stateless services are recommended [2].
However, in Grid environments services have to handle state, i.e., session state
(also called client state). For example, the Web Services Resource Framework
(WSRF) is a set of specifications that define the modeling and management of
stateful resources using existing Web services technologies4. On the other hand,
services can be inactive or active. Inactive services have no running instances, no
state data, and can easily be migrated. For migrating an active service, the ser-
vice’s internal state has to be taken into account. When an instance is stopped,
the internal state is saved and all data is transferred.

All combination of active/inactive, stateless/stateful, and internal/client
state data will influence the degree of difficulty for conducting a service migra-
tion (see Fig. 1).

In all situations, at least the service binaries must be moved to the new
location. Then the service will have to be deployed on the new host. This will
require a mechanism for remote deployment of services giving rise to security
challenges like authorization and authentication.

To ensure maximum flexibility, session state data and the current internal
state, must be taken into account. The session data can be managed either by
the client or the service itself. Migrating active services with internal or client
state data, represents the greatest challenge. The service implementation may
be multi-threaded, storing state in memory and/or databases as well as files.
The simplest case of handling state is to wait for the end of all active instances
of the service and perform the migration after completion.

3 For example, Grid environments allow for defining groups, which may be distributed
around the world, the so-called virtual organization (VO). Only members of the VO
may access its resources. The Grid middleware’s security mechanisms ensure the
protection of resources and data.

4 Web Services Resource Framework (WSRF), http://docs.oasis-open.org/wsrf/wsrf-
ws resource-1.2-spec-os.pdf.

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf

Improving Scientific Workflow Execution Through Service Migration 129

Fig. 1. Degree of difficulty

However, in our solution the proxies of workflow skeletons can control the
migration of already running services for special services that are migratable.
To this end, we provide a framework for making services migratable. A ser-
vice developer uses the framework’s API for making checkpoints, at which the
execution can be interrupted and resumed. A checkpoint can store the service’s
binaries, session data, as well as input data and intermediate data. A function
call is used to create a checkpoint at selected points in the service’s logic. The
developer has to ensure that all relevant state will be stored in the checkpoint
data. After migration the framework uses the checkpoint data to resume the
service’s work at the exact point in logic, where it was interrupted. While the
migration takes place, the proxies can reject incoming requests, or store them in
a waiting queue. After the migration the proxy relays new request to the new
service’s location.

When to Trigger a Service Migration. An important factor in the migra-
tion of services is deciding when and where a service is to be moved. For workflow
skeletons, such decisions can be made either manually or automatically. In cer-
tain cases, a manually triggering the service migration might be quite sensible.
For example, when maintenance on the hardware or software system pending
and running service instances would be affected, all services can be moved to
non-affected node.

Workflow skeletons with automatic service migration achieve far more flexi-
bility. The current condition of the dynamic execution environment needs to be
considered. Network utilization, CPU load, memory size and other factors fluc-
tuate sometimes fast and strongly; resources come and go freely. Usually, other
software is using the resources at the same time. Adjustment to load and resource
consumption are usually not coordinated and may therefore be in conflict.

In addition, it is important that a system supporting service migration
will not trigger migrations too early or too often, because the migration will

130 T. Fleuren

have an overhead. Therefore, a flexible decision system is integrated based on
condition-action policies (CA policies) that evaluates the current infrastructure
situation and decides whether a migration should take place or not. For exam-
ple, it makes little sense to frequently move services from one host to another
if the migrations take longer than letting the service finish its work in a slower
environment.

Therefore, we must clearly define the factors for automatic migration and
calibrate its thresholds when to start migrations in the CA policies. Depending
on the criterion either fixed thresholds or dynamically generated thresholds may
be specified. In the latter case, for example, the system could consider the current
network utilization and determine a suitable value for a threshold.

5.2 Policy-Based Decision Support

In our approach we use condition-action policies (CA policies) to define the
behavior of the service migration system. This section gives an introduction to
our CA policy documents.

Policy-Based Decision Support. For appropriate migration decisions, knowl-
edge about the environment must be collected by monitors often for a longer
period5. This data will be used together with pre-defined metrics in order to
identify and estimate the potential for an workflow performance optimization
gained by migrating services.

This evaluation is the task of the decision algorithm that will be loaded to
the proxies as a plugin. The decision algorithm is configured by condition-action
(CA) based policy documents. For example, for the criteria “processor load” the
migration could be triggered if the CPU utilization > 70%. The corresponding
action could be to migrate a service to a pre-defined set of alternative hosts or to
currently available hosts determined by the monitors data – or to allocate new
cloud nodes.

Even with the capability of defining the migration behavior with policies, it
will be a challenging task to specify suitable policies. Service migration should
not be triggered too often. Therefore, for each policies thresholds are defined,
which are variable and can be adjusted while the workflow is executing. After
the service migration, this threshold can be raised to a higher value in order to
avoid triggering another migration. It is also possible to define exclusions speci-
fying that certain services cannot be migrated. For example, for a service with a
short execution time (less than 1 min) the migration overhead may be too high.
If several criteria are used for the migration decision, priorities must be defined
and interactions between the individual criteria need to be taken into account.
In some cases, an additional metric may be necessary to decide about an combi-
nation of several criteria. The overall goal of the service migration will result in

5 Monitoring systems are out of scope of this paper.

Improving Scientific Workflow Execution Through Service Migration 131

different set of policies and thus in different behavior of the migration. For exam-
ple, for the goal “minimizing energy consumption” the criterion processing time
would play a minor role.

Policy Documents. The policy document is an XML file that acts as the input
for the proxy’s decision manager module. The configuration of the workflow
skeleton will be enhanced by entries referencing the policy documents. With
WorkSKEL, this can be done for single workflow activities or several at once [5].
When instantiating the workflow skeleton, the skeleton engine will be configured
with policy documents.

Listing 1.1 shows an example policy document for server maintenance. Every
day at 9:00 pm (starting from 2016/05/30) all instances of RendererServiceOn-
Server1 will be migrated to the specified destination host. The Condition part
defines rules, when the corresponding action should be triggered. The condition
parameters will be used for specifying date and time of the migration execution,
or for specifying the infrastructure parameters like percentage of CPU consump-
tion, or temperature, or others that will trigger the action. Additionally, the
condition’s interval can be used to define repeating CA policies.

Policy condition parameters consist of a value (like DateTime, Integer, Float)
and a value type (like percentage, Kbps, celsius) that explains how to interpret
the value. In addition, the arithmetic comparator (like equals, greater than, less
than) is specified that is used for comparing values. A weight can be defined for
prioritizing CA policies that hold true simultaneously, thus, providing a means
for finding a trade-off for multiple criteria.

<tns:PolicyConditionAction >
<tns:PreDefinedConditionAction>

<tns:Condition >
<tns:Repeat >

<tns:RepeatValue >1</tns:RepeatValue >
<tns:RepeatUnit >Day</tns:RepeatUnit >

</tns:Repeat >
<tns:ConditionParameters >

<tns:Parameters >
<tns:Name >StartTime </tns:Name >
<tns:Value >2016 -05 -30 T09:00:00 </tns:Value >
<tns:ValueType >DateTime </tns:ValueType >
<tns:ParameterComparator >Equal</tns:ParameterComparator >
<tns:Weight >10</tns:Weight >

</tns:Parameters >
</tns:ConditionParameters >

</tns:Condition >
<tns:Action >

<tns:ServerAndServicePair >
<tns:DestinationIP >$$$$</tns:DestinationIP >
<tns:ServiceLogicalName >RendererServiceOnServer1 </

tns:ServiceLogicalName >
</tns:ServerAndServicePair >
<tns:FailureNotification >true</tns:FailureNotification >

</tns:Action >
</tns:PreDefinedConditionAction>

Listing 1.1. Example Policy: Maintenance Policy

132 T. Fleuren

Currently, there are two variants of policies: pre-defined or monitor-defined.
Pre-defined policies (as in Listing 1.1) cause the migration of services to spe-
cific, pre-defined hosts, whereas monitor-defined policies cause the algorithm to
analyze the current server situation and migrate services to best suitable hosts.
Search criteria for selecting servers that satisfy the specified conditions can be
stated. One search criterion is used for finding source servers currently hosting
services and the other one for finding destination servers as suitable targets for
a migration. For example, the algorithm can search for servers that have a CPU
utilization less than 60% and more than 70% free disk storage and use them as
targets for migration.

6 Prototypical Implementation

The tool suite ProWorkE (Proxy-enhanced Workflow Engine) is a research pro-
totype based on workflow skeleton that interprets WorkSKEL scripts and instan-
tiates workflows that are composed of workflow skeletons [3,4].

Fig. 2. System architecture of ProWorkE (new components enabling migration)

Figure 2 shows the architecture of the new components enabling service
migration. The system will communicate with the computing infrastructure get-
ting information about the current condition of the execution environment. The
workflow skeleton and the proxies will be configured with the migration CA poli-
cies. All information about servers and services as well as logs about previous
migrations will be kept in the migration database.

Improving Scientific Workflow Execution Through Service Migration 133

The decision manager is a plugin of ProWorkE’s proxy services allowing
for each proxy service to decide whether to migrate its associated service at
run time. The proxies will make the decision to migrate based on the current
environmental state given by the infrastructure monitors and the conditions
defined in the policies. The migration manager is a new part of ProWorkE’s
“Skeleton Engine” that is implemented as a service itself and will be used by
proxy services for executing a migration. WorkSKEL scripts allow to configure
workflow skeletons with all necessary data like credentials and certificates that
are needed to deploy services to foreign servers.

An image rendering workflow dividing a picture in tiles that can be rendered
in parallel (cf. [6]) has been refactored with migratable versions of the rendering
service. The workflow was deployed in a setting including servers from the AMA-
ZON cloud6 and private servers. For the private servers, we could connect our
infrastructure monitors to gather information about the current environmental
conditions – and the AMAZON nodes where used as destination servers.

Table 1. Comparison of the average service execution time (in milliseconds) of migrat-
able and non-migratable service for 1 MB, 5 MB, and 10 MB data packets

Scenarios 1 MB 5 MB 10 MB Average

Migratable 13519,26 13769,66 20825,70 16038,21

Non-Migratable 13448,10 16267,93 14147,36 14621,13

Several experiments with three scenarios have been conducted: non-
migratable workflow execution as well as migratable workflow execution with
and without service interruption. Each scenario has been started 30 times for
three different input data sizes of 1 MB, 5 MB, and 10 MB. Table 1 shows the
comparison of the average execution time (in ms) of the migratable and non-
migratable render services under different input data loads. The execution times
depend on the input size and the time the proxies need for un-marshaling the
data and the fluctuations of the performance of the cloud infrastructure. How-
ever, the increase of execution time caused by migration overhead seems to be
negligible for long-running workflow skeletons.

7 Conclusions and Future Work

In this paper, we showed an enhancement of workflow skeletons offering the pos-
sibility of reconfiguration by using service migration. We described the challenges
of service migration especially for coming to a decision whether to migrate or
not. An approach for decisions based on policy documents was presented taking
the overall goal of the migration into account. All workflows finish their work

6 see AMAZON Web Services (AWS): http://aws.amazon.com.

http://aws.amazon.com

134 T. Fleuren

without noticing that some of its services have been migrated and that all service
requests have been rerouted to new locations – even services that were already
executing when receiving the migration request. However, defining CA policies
well is hard; therefore, in next research steps we would like the system to detect
conflicting policies and to learn from previous migration decisions and to use
this information for adjusting the policies.

References

1. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press and Pitman, London (1989)

2. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

3. Fleuren, T.: Workflow-Skelette: Konzeptionen zur Modellierung und effizienten
Ausführung wissenschaftlicher Workflows. Verlag Dr. Hut (2014)

4. Fleuren, T., Götze, J., Müller, P.: Workflow skeletons: increasing scalability of
scientific workflows by combining orchestration and choreography. In: 9th IEEE
European Conference on Web Services (ECOWS) (2011)

5. Fleuren, T., Götze, J., Müller, P.: Facilitating scientific workflow configuration
with parameterized workflow skeletons. In: Proceedings of 39th Euromicro SEAA,
Santander, Spain. IEEE (2013). http://www.euromicro.org

6. Fleuren, T., Götze, J., Müller, P.: Workflow skeletons: a non-intrusive approach for
facilitating scientific workflow modeling. In: Proceedings of 40th Euromicro SEAA,
Verona, Italy. IEEE (2014). http://www.euromicro.org

7. Hao, W., Yen, I.L., Thuraisingham, B.: Dynamic service and data migration in the
clouds. In: 2009 33rd Annual IEEE International Computer Software and Appli-
cations Conference, vol. 2, pp. 134–139, July 2009

8. Kazzaz, M.M., Rychlý, M.: A web service migration framework. In: The Eighth
International Conference on Internet and Web Applications and Services, ICIW
2013, pp. 58–62. The International Academy, Research and Industry Association
(2013)

9. Kazzaz, M.M., Rychlý, M.: Web service migration with migration decisions based
on ontology reasoning. In: Proceedings of the Twelfth International Conference on
Informatics - Informatics 2013, pp. 186–191. Faculty of Electrical Engineering and
Informatics, University of Technology Košice (2013)

10. Marzouk, S., Jmäıel, M.: Towards making WSRF based web services strongly
mobile. In: IEEE 17th Workshop on Enabling Technologies: Infrastructure for Col-
laborative Enterprises, WETICE 2008, pp. 192–197. IEEE (2008)

11. Meehean, J., Livny, M.: A service migration case study: migrating the condor
schedd. In: Midwest Instruction and Computing Symposium (2005)

12. Schmidt, H., Hauck, F.J.: SAMProc: middleware for self-adaptive mobile processes
in heterogeneous ubiquitous environments. In: Proceedings of the 4th on Middle-
ware Doctoral Symposium, MDS 2007, pp. 11:1–11:6. ACM, New York (2007).
Article no:11, ISBN: 978-1-59593-933-3. https://doi.org/10.1145/1377934.1377935

13. Schmidt, H., Kapitza, R., Hauck, F.J., Reiser, H.P.: Adaptive web service migra-
tion. In: Meier, R., Terzis, S. (eds.) DAIS 2008. LNCS, vol. 5053, pp. 182–195.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68642-2 15

http://www.euromicro.org
http://www.euromicro.org
https://doi.org/10.1145/1377934.1377935
https://doi.org/10.1007/978-3-540-68642-2_15

Consumer-Driven API Testing
with Performance Contracts

Johannes Stählin1, Sebastian Lang2, Fabian Kajzar2, and Christian Zirpins1(B)

1 Faculty of Computer Science and Business Information Systems (IWI),
Karlsruhe University of Applied Sciences,
Moltkestr. 30, 76131 Karlsruhe, Germany

{stjo1031,Christian.Zirpins}@hs-karlsruhe.de
2 SAP SE, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany

{Sebastian.Lang,Fabian.Kajzar}@sap.com

Abstract. Modern software applications are often based on a modular
structure where services expose functions and data via an API. In an
enterprise context, such APIs may be reused in varying contexts with
alternative frontends and on different platforms. E.g., an intranet appli-
cation may be reused by another department or as part of a public portal
thereby migrating between different private clouds.

When migrating services, it is imperative to assure their qualitative
characteristics. Expectations of application users need to be satisfied
despite of changes in service usage context and provisioning platform.
The problem is (a) to adequately verify qualitative expectations after
migration and (b) to optimize service provisioning respectively.

In this position paper we discuss an adaptive API testing approach for
reusable application services and APIs. Our work builds on a case study
of application service reuse and migration at SAP SE. Subsequently,
we propose performance contracts as a means to capture non-functional
application requirements on user level. We utilize these contracts for
consumer-driven API testing in order to verify and optimize the migra-
tion of services to different application contexts.

Keywords: RESTful web services and APIs
Non-functional consumer-driven contract testing · Application reuse
Cloud migration

1 Introduction

After adopting service-oriented architecture principles and cloud-based provi-
sioning models, the application landscape of modern enterprises is turning into
an ecosystem of application service interfaces (aka APIs). Such APIs are dynam-
ically reused in a variety of application contexts to enable alternative user inter-
faces and devices or to address totally distinct user communities.

E.g., an instant messaging application that was initially intended for use by
a single department evolves towards worldwide roll-out to all employees or even
c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 135–143, 2018.
https://doi.org/10.1007/978-3-319-72125-5_11

136 J. Stählin et al.

makes its public debut as part of the enterprise web portal. Generally, in the
course of evolution, characteristics and expectations of API clients are naturally
evolving with respect to API usage. Some cases like going public also require
application service migration to different cloud platforms.

As a consequence, changing application contexts might negatively affect the
quality (e.g., performance, reliability, security) of application services and result
in a subsequent failure to satisfy consumer expectations. This leads to the ques-
tion, how application providers might anticipate the effects of changing applica-
tion contexts beforehand in order to adjust service provisioning.

To this end, consumer-driven contract testing has been widely discussed as
a pattern to foster mutual awareness and agreement of expectations and obli-
gations during service evolution [9]. We propose to extend consumer contracts,
a client perspective onto its concrete service usage behavior, with performance
metrics. In turn, we enable providers to use the aggregated set of consumer per-
formance contracts for automated performance tests against the current or future
cloud deployment of the service implementation. Our results reveal a promising
pattern to support enterprise API management.

The rest of this paper is structured as follows: Sect. 2 introduces a case study
illustrating the challenges of application service reuse and migration. Section 3
gives a short overview of consumer-driven contract testing. Section 4 introduces
our approach of API performance contracting to support reuse and migration
within API ecosystems. Section 5 surveys related work. Finally, Sect. 6 summa-
rizes the paper and gives an outlook on our future work.

2 Case Study

Recently, SAP is pushing its products into the cloud to provide a modern provi-
sion model. One of these products is HCP1, a PaaS-offering providing in-memory
database and application services to rapidly develop new services or extend exist-
ing ones. Beyond public offerings SAPs IT organization also uses SAP HCP for
internal solutions. These include simple services modeling business transactions
but also more complex scenarios such as instant messaging for sharing business-
related content in realtime.

Most of these solutions follow a similar architecture. Provider services expose
business data and functions as HTTP-based REST API [3]. These services run
in a Java Runtime provided by SAP HCP.

Multiple consumer applications utilize these services by connecting to REST
APIs. SAP provides its own UI Development Toolkit for HTML5 (SAPUI5) that
is often used to develop web-based applications. However, provider services are
also consumed by other services, desktop applications or applications using the
native mobile development kit of Android, iOS or Windows. Further, a consumer
application is not strictly limited to use just one service. It may also connect to
multiple services composing their business functions.

1 SAP HANA Cloud Platform, https://hcp.sap.com/.

https://hcp.sap.com/

Consumer-Driven API Testing with Performance Contracts 137

Regardless of how many services are consumed and which implementation
technology is used, the stability of all provider services has to be guaranteed.
Within SAP IT, given functional requirements of provider services are ensured
using open source testing tools. However, when it comes to non-functional
requirements such as service performance that are more sensitive to the evo-
lution of the application landscape, an adequate testing facility is yet missing.

SAP HCP offers four different compute unit sizes, each varying in the amount
of CPU cores and memory, to adjust the performance of provider services. If a
service is introduced to an application context for the first time, only few infor-
mation about its minimal hardware requirements are known. The service is often
started with the minimal available compute unit size. Performance limitations
are revealed in production system when the number of parallel consumers exceeds
a critical point. As a result the compute unit size is increased to the next size.
This approach often leads to a bad user experience and may even result in a
temporary downtime of the provider service, affecting all consumers.

Having proper performance tests is even more important when it comes to
extending the functionality of an existing consumer, new consumers are added
or the application has to be migrated to another environment. E.g., the SAP
Relay application allows employees to exchange business critical information in
realtime. Currently, SAPUI5 and iOS clients have been implemented, but other
client applications will follow soon. It must be ensured that the roll-out of new
clients will not affect the performance of existing applications using this service
and that the performance expectations of new clients are also met. In addition,
it is planned to migrate the provider application also to another environment
allowing customers and partners to use this service. Here the user behavior will
be different, but again it must be ensured that the consumers requirements in
the new environment will be met.

In general, performance limitations of prospect application contexts cannot
be anticipated without proper performance testing. Yet such performance testing
requires a detailed understanding of how the provided service APIs are actually
used. Therefore, an approach is needed to understand the API consumption of
each consumer application, simulate an accurate load behavior of multiple clients
and ensure to meet the consumers requirements.

3 Consumer-Driven Contract Testing

Service evolution (like reuse and migration) challenges mutual awareness as well
as agreement of consumers and providers. Providers need to be aware of and
adjust to the needs of consumers in order to create value but without compro-
mising the evolution of the service system by subsequently introducing ’hid-
den’ coupling. A common pattern to foster evolution in service-oriented systems
revolves around consumer-driven contracts [9].

Service contracts provide a way of capturing mutual expectations and obli-
gations of providers and consumers as exchangeable artifacts comprising aspects
like document schemas, interfaces, conversations, policies and Quality of service

138 J. Stählin et al.

(QoS) characteristics. Provider contracts (e.g., WSDL files or OpenAPI2 specifi-
cations) express complete service offerings as initially intended and implemented
by their providers. Consumer contracts, on the other hand, originate from service
clients capturing just those parts of the service offerings that are actually used.

The idea of consumer-driven contracts (CDCs) is to synthesize provider con-
tracts out of the complete set of corresponding consumer contracts. On the
one hand, CDCs might act as user stories for services helping providers to
focus their service offers on the actual demand. On the other hand, CDCs might
be implemented as executable contracts enabling providers to directly test the
appropriateness of their current implementation. Moreover, providers could use
executable CDCs to anticipate planned changes in the course of service evolution
against current expectations and obligations.

The CDC pattern has been implemented by tools like pact3 and pacto4 that
predominantly focus on executable contracts in the form of functional tests for
client and service implementations in isolation.

4 API Performance Contracting

In this section we discuss our approach of refining the CDC pattern for cap-
turing QoS characteristics of application service APIs and support their reuse
and migration in different cloud-based application contexts. The first part of
this section introduces consumer performance contracts. We then outline how
these contracts can be aggregated in order to drive API testing and optimiza-
tion. Finally, we discuss how performance contracting fits into API lifecycle
methodology.

4.1 Consumer Performance Contracts

The key aspect of executing proper performance tests and simulating accurate
user behavior is to understand how exactly a consumer makes use of the provided
API. Generally, each consumer application corresponds to a set of user scenarios
where multiple requests are executed and a specific performance expectation
has to be fulfilled. This information needs to be captured and documented in an
appropriate way.

We think that consumer contracts (see Sect. 3) can be adopted to fulfill these
needs. The idea is to extend consumer contracts with information to understand
the load that will be put to production servers and the performance expectations
of the users. Each individual client application bound to a service API should
provide its own exclusive consumer contract. Following the CDC pattern, load
characteristics and consumer expectations of the overall application context are
deduced from aggregating individual consumer contracts.

2 https://openapis.org.
3 https://github.com/realestate-com-au/pact.
4 https://thoughtworks.github.io/pacto/.

https://openapis.org
https://github.com/realestate-com-au/pact
https://thoughtworks.github.io/pacto/

Consumer-Driven API Testing with Performance Contracts 139

Besides organizational metadata, the contract has to model business scenarios
that are executed by means of an API. Each scenario must be represented as set
of subsequent API calls. When modeling virtual users, it is important not only
to follow schematic patterns but also consider think times and may even react
like frustrated users, abandoning a web session if a response time is excessive [8].
Therefore, waiting times between API calls and at the end of each business
scenario are added. Furthermore, dependencies between business scenarios like
causality or probability of follow-up actions need to be modeled. This helps
to accurately synthesize user behaviors for performance tests. In the end, the
most common business scenarios and important edge cases should be covered.
The more complete the set of business scenarios is, the better is the model
reflecting client behavior. Beyond modeling client behavior, contracts also need
to contain performance expectations of a client for each business scenario. This
may be represented by average execution time for completing a whole scenario
or the maximum response time for each API call. Note, that assertions about the
functional correctness such as validation of payload are not part of this contract.

To this point we have described performance contracts as an abstract strategy
of modeling client behavior and expectation with respect to the performance of
consumed APIs. Such a pattern, like CDC in general, is technology agnostic. In
the following sections, we propose a formal representation and tool support for
creating and utilizing contracts in the context of application reuse and migration.

4.2 API Contract Aggregation and Evaluation

A provider application is usually not only interested in the usage behavior of one
specific consumer but the overall consumption of its API. It must be ensured that
the performance expectation of all clients are met simultaneously. Following the
approach described so far will result in a set of independent consumer contracts,
each of them reflecting a client’s individual API usage behavior.

The aggregation of all consumer contracts defines the consumer-driven per-
formance contract, including all business scenarios that are used by any of the
clients, but also their performance expectations. This information can be utilized
to simulate load for performance tests. Virtual users can be derived from these
contracts, acting very similar to real users of the production environment. This
shifts the creation of usage scenarios to the consumer – the original source.

Executing all business scenarios sequentially would be rather naive and
doesn’t reflect actual user behaviors. A better approach has been proposed by
Abbors et al. with MBPeT, a model-based performance testing tool [1]. MBPeT
uses a probabilistic timed automata (PTA) [4] to model the behavior of an user.
It defines a finite set of locations and transitions that take the PTA from one
location to another. Each transition is labeled with a probability value, an action,
a clock counter, and a clock reset.

Consumer performance contracts (see Sect. 4.1) can be seen as a declarative
approach describing such a PTA. Business scenarios, comprising multiple HTTP
requests, can be mapped to a sub-PTA with one or more transitions. Waiting
times of performance contracts can be implemented as a clock counter that is

140 J. Stählin et al.

being reset after every transition. Dependencies and possible follow-up actions
of business scenarios translate to transitions between sub-PTAs.

Figure 1 shows an example based on an SAPUI5 client of the SAP Relay
application (see Sect. 4). Initially, the channel list is requested and the PTA will
always reach location q1. Users may now either leave the application or select a
channel resulting in a location change to q2 and multiple HTTP requests retriev-
ing channel details, messages and users. Note that for every location (except the
initial one) there must be a transition to the final location q3 with a probability
greater than 0, since users may leave the application at any time.

Fig. 1. Example of a probabilistic timed automata

Existing approaches like Kao et al. [5] use an engine to generate performance
scripts for performance testing tools out of an abstract model. Accordingly, we
use a contract engine adopting our pattern of consumer performance contracts by
means of a PTA-based testing approach. This tool must be capable of gathering,
storing and evaluating consumer contracts, deriving corresponding PTAs and
generating load scripts. In particular, the contract engine must simulate the PTA
behavior with an appropriate number of users and corresponding sequences of
HTTP requests must be exported as a test script.

Since all consumers declare different business transactions and dependencies
in their contract, each consumer contract needs to be modeled as separate PTA.
This ensures that one virtual user only simulates the load behavior of one specific
client. Yet, it is important that there is only one resulting performance script,
considering all different consumer types. When simulating virtual users in per-
formance tests, different ratios between consumer types may be realized. This
allows reasoning about the performance impact of individual consumers.

With this approach, feedback about the service performance can be provided
to the consumer and optimization potentials of the provider application may be
revealed. Additional preprocessing and analysis of the contracts may add even
more benefit to the consumer-driven performance contract approach. Instead
of applying consumer expectations directly, unrealistic performance expectation
may be lowered or discarded. Moreover, static analysis by the contract engine
may e.g., identify the most common business scenarios, reveal likely performance
bottlenecks or detect API misusage before even executing any performance tests.

Consumer-Driven API Testing with Performance Contracts 141

4.3 Performance Contracting in the API Lifecycle

Within an API lifecycle methodology, using consumer-driven performance con-
tracts can be seen as a continuous process to ensure that performance require-
ments for a service API are always fulfilled (see Fig. 2).

Fig. 2. API lifecycle of performance contracting

Whenever an existing consumer contract is changed or a new client is intro-
duced resulting in another consumer contract, the contract engine gathers the
contracts and generates a new aggregated performance script. This script is
then used to run automated performance tests. Test results indicate any possi-
ble actions that are needed to fulfill the CDC. This may result in a refactoring of
the respective endpoints or increasing the compute unit of the provider service.

Furthermore, performance tests may be executed on already deployed
applications. Costs could be reduced for existing applications by refactor-
ing/optimizing the API implementation with the goal to meet all requirements,
even when running on the next smaller compute unit.

Another important use case for this approach regards the situation when an
application has to be migrated to a distinct cloud platform. E.g., in the case of
SAP Relay (see Sect. 2) the application is planned to be deployed on a different
SAP HCP landscape that provides access not only for SAP employees, but also
customers and partners.

5 Related Work

We focus on adaptive non-functional testing of RESTful web service APIs using
consumer-driven contracts for reuse and migration of cloud application services.

Approaches for adaptive non-functional testing have been proposed in the
area of model-based testing. E.g., Maâlej et al. have proposed a solution for
load testing of WS-BPEL compositions that is based on a timed automata [6].
Abbors et al. have presented the performance testing tool Mbpet [1] and studied

142 J. Stählin et al.

its application in the cloud [2]. We adopt their approach of modeling test cases
as PTAs and extend it towards a more complex contract model.

Non-functional testing is also being studied in the area of RESTful web
service APIs. Kao et al. have proposed an approach for systematic performance
testing of complex REST-based web applications using generated test scripts [5].
Also Zhou et al. presented a model and template-based approach to generate
performance test scripts [11]. Similar to these approaches, we propose a contract
engine for automated performance test script generation from CDC models.

The field of application reuse and cloud migration increasingly adopts meth-
ods of non-functional testing. Strauch et al. identified the need for performance
testing while migrating eScience applications to the cloud [10]. Houghtlin et al.
describe necessary steps, including performance tests on the different environ-
ments, to overcome client concerns around performance when migrating appli-
cations to the cloud [7]. Our approach can be used to gather such requirements
directly from the consumers and generate the respective performance tests.

6 Conclusion and Future Work

In this paper we have illustrated the challenges of application service provision-
ing in modern enterprise application landscapes and illustrated them by means
of a case study. In particular, we showed how application services that are pro-
vided for SAP employees via SAP HCP might be negatively affected when being
reused in different application contexts and thereby migrated between cloud-
based runtime environments.

In order to support application providers to better anticipate and alleviate
the consequences of changing application contexts, we have broadly discussed the
novel pattern of consumer-driven performance contract testing. More concrete,
we have proposed conceptual models for both individual consumer performance
contracts as well as aggregated consumer-driven performance contracts both
based on a PTA formalism. Together, they enable automated performance tests
by means of generated scripts.

Altogether, the pattern allows for continuously updated performance tests
originating from the actual consumer community, which provides very promising
conditions for accurate insights in the course of API management.

Currently, we are implementing the contracting toolkit for capturing and
sharing individual consumer performance contracts as well as the contract engine
to construct aggregated consumer-driven performance contracts for test script
generation in the context of SAP HCP.

Consumer-Driven API Testing with Performance Contracts 143

References

1. Abbors, F., Ahmad, T., Truscan, D., Porres, I.: MBPeT - a model-based perfor-
mance testing tool. In: Alimohammad, A., Dini, P. (eds.) 4th International Con-
ference on Advances in System Testing and Validation Lifecycle, pp. 1–8. IARIA
(2012)

2. Abbors, F., Ahmad, T., Truscan, D., Porres, I.: Model-based performance test-
ing in the cloud using the MBPeT tool. In: Proceedings of the 4th ACM/SPEC
International Conference on Performance Engineering, pp. 423–424. ACM (2013)

3. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. thesis, University of California, Irvine (2000)

4. Jurdziński, M., Kwiatkowska, M., Norman, G., Trivedi, A.: Concavely-priced prob-
abilistic timed automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009.
LNCS, vol. 5710, pp. 415–430. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04081-8 28

5. Kao, C.H., Lin, C.C., Chen, J.N.: Performance testing framework for rest-based
web applications. In: 13th International Conference on Quality Software, pp. 349–
354. IEEE, July 2013

6. Maâlej, A.J., Hamza, M., Krichen, M., Jmäıel, M.: Automated significant load
testing for WS-BPEL compositions. In: 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW), pp. 144–
153, March 2013

7. Mark Houghtlin, M.E.: Migrating applications to the cloud: assessing performance
and response time requirements. Technical report, Cloud Standards Customer
Council, October 2014

8. Menasce, D.A.: Load testing of web sites. IEEE Internet Comput. 6(4), 70–74
(2002)

9. Robinson, I.: Consumer-driven contracts: a service evolution pattern (2006).
http://martinfowler.com/articles/consumerDrivenContracts.html

10. Strauch, S., Andrikopoulos, V., Karastoyanova, D., Vukojevic, K.: Migrating
e-science applications to the cloud: methodology and evaluation. In: Terzo, O.,
Mossucca, L. (eds.) Cloud Computing with e-Science Applications, Chap. 5, pp.
89–114. CRC Press/Taylor & Francis, Boca Raton (2015)

11. Zhou, J., Zhou, B., Li, S.: Automated model-based performance testing for PaaS
cloud services. In: 2014 IEEE 38th International Computer Software and Applica-
tions Conference Workshops (COMPSACW), pp. 644–649, July 2014

https://doi.org/10.1007/978-3-642-04081-8_28
https://doi.org/10.1007/978-3-642-04081-8_28
http://martinfowler.com/articles/consumerDrivenContracts.html

Patterns and Pattern Languages
for SOCC: Use and Discovery,
Performance and Conformance

of Workflow Engines
(PEACE in PATTWORLD)

Preface of PEACE in PATTWORLD

This workshop combines the 1st International Workshop on Performance and Con-
formance of Workflow Engines (PEaCE) with the 1st International Workshop on
Patterns and Pattern Languages for SOCC: Use & Discovery (PATTWORLD).

The goal of PEaCE is to bring the research and industrial practice together, towards
topics that are related to the conformance and performance of workflow management
systems. Workflow management systems provide platforms for delivering complex
service-oriented applications that need to satisfy enterprise-grade quality of service
requirements such as dependability and scalability. Benchmarking is an established
practice that helps to drive continuous improvement of technology by setting a clear
standard and measuring and assessing its performance. For example, transaction pro-
cessing benchmarks have been introduced since a long time and over decades they have
been instrumental to achieve an enormous performance improvement of database
technology, e.g., with the TPC family of benchmarks. Conversely, benchmarks for
service oriented computing in general and workflow management systems in particular
have started to appear only recently and there is no currently accepted standard
benchmark. Any vendor can claim that their product is standard compliant while still
implementing different subsets or interpretations of the standard, since there is no
certification authority for both of the most popular and widespread business process
languages standards BPEL and BPMN. The different interpretations and implementa-
tions of the standards led and still lead to vendor lock-ins as porting a standard
compliant workflow involves too much effort, and sometimes is not possible at all—
effectively killing the standard inherent argument for portability. Benchmarks for
standard conformance have not been around for long in the area of WfMSs, and still
lack scientific foundation in their creation and execution.

The context of PATTWORLD are patterns, which have emerged in several IT
domains as lingua franca to document proven solutions for frequently reoccurring
problems. Especially in the domains of Service-Oriented Computing and Cloud
Computing, the pattern concept is recently used by academia and industry to capture
and use proven knowledge about efficiently designing, building, and managing IT
systems. Well-established pattern languages, e.g., Enterprise Integration Patterns and
Messaging Patterns, complement these works, thereby, providing a huge knowledge
base for the development of future IT systems. In addition, new evolutions, such as the
Internet of Things and the emerging trend of microservices, provide promising topics
for the development of new pattern languages and pattern usage concepts. Practitioners
are desperately looking for solutions for developing applications in these domains.
Especially discovering, using, and structuring patterns are heavily researched fields to
create and maintain a knowledge base that can be used efficiently by humans. More-
over, also concepts for automating the application of patterns to individual use cases
gain more and more attention in very different IT domains, e.g., automating patterns for
the management of Cloud-based applications. A plethora of websites and blogs prove
the strong interest in finding solutions to build proper microservices but lack a

systematic approach. Therefore, finding new ways and general concepts to increase the
efficiency of discovering and using patterns is of great interest, which possibly affects
multiple different domains at once.

The workshop opened with the keynote of Beniamino di Martino on “Semantics
and Patterns to support MultiCloud Applications' Portability and Cloud Services
Orchestration and Composition”. We are grateful for his insightful presentation
focusing on Cloud portability which set the tone for the rest of the workshop. The first
presentation was by Vincenzo Ferme on “Workflow Engine Performance Bench-
marking with BenchFlow,” summarizing the results of the BenchFlow project and
presenting early results on the performance evaluation of open-source workflow
engines using workflow patterns as workloads for micro-benchmarks. These results are
being embedded into the “Interactive Dashboard for Workflow Engine Benchmarks”
presented by David Bimamisa, Mathias Müller, Simon Harrer, and Guido Wirtz. In
addition the dashboard gives an interactive view over the actual compatibility of dif-
ferent versions of different workflow engines with the BPMN 2.0 standard. This not
only allows to track how the standard compliance of these engines has evolved over
time, but also to see which BPMN features are most supported in practice. The session
on Performance and Conformance was concluded by the paper on “A distributed
cross-layer monitoring system based on QoS metrics models” by Damianos Metallidis,
Kyriakos Kritikos, Chrysostomos Zeginis, and Dimitris Plexousakis. The work pro-
poses to gather monitoring data from multiple layers (Workflow, Service and Infras-
tructure) with a cross-layer quality model. The session on “Patterns and Pattern
Languages” was opened by the paper on “Patterns for Workflow Engine Bench-
marking” by Simon Harrer, Oliver Kopp, and Jörg Lenhard. The patterns address
important design challenges of workflow engine benchmarking and cover how to
design suitable tests, how to interface the engines under test with the benchmarking
procedure, as well as how to validate the results of the benchmark. The last paper was
on “Patterns in HCI – A Discussion of Lessons Learned” by Alexander G. Mirnig,
Artur Lupp, and Manfred Tscheligi. The authors reflect upon their pattern finding and
writing activities in the user experience design for the automotive human-computer
interaction domain. We wish that you enjoy reading the papers as much as we did and
look forward to next year's edition of the workshop.

Oliver Kopp
Eva Kühn

Jörg Lenhard
Frank Leymann
Cesare Pautasso

Guido Wirtz

Preface Of PEACE In PATTWORLD 147

Organization

Workshop Organizers

Oliver Kopp IPVS, University of Stuttgart, Germany
Eva Kühn TU Vienna, Austria
Jörg Lenhard Karlstad University, Sweden
Frank Leymann IAAS, University of Stuttgart, Germany
Cesare Pautasso University of Lugano, Switzerland
Guido Wirtz University of Bamberg, Germany

PATTWORLD Program Committee

Uwe Breitenbücher University of Stuttgart, Germany
Manuel Wimmer TU Vienna, Austria
Oliver Kopp University of Stuttgart, Germany
Schahram Dustdar TU Vienna, Austria
Massimo Villari University of Messina, Italy
Andreas Metzger University of Duisburg-Essen, Germany
Florian Daniel Politechnico Milano, Italy
Kostas Magoutis University of Ioannina Greece
Uwe Zdun University of Vienna, Austria
Christian Kohls TH Köln, Germany
Winfried Lammersdorf University of Hamburg, Germany
Simon Moser IBM, Germany
Srinath Perera WSO2, Sri Lanka
Willem-Jan van Heuvel University of Tilburg, Netherlands
Cesare Pautasso University of Lugano, Switzerland
Elisbetta di Nitto Politechnico Milano, Italy
Beniamino di Martino University of Naples, Italy
Antonio Brogi University of Pisa, Italy

PEACE Program Committee

Andre van Hoorn University of Stuttgart, Germany
Andreas Rogge-Solti WU Vienna, Austria
Barbara Pernici Politecnico di Milano, Italy
Christoph Hochreiner TU Vienna, Austria
Claudio Di Ciccio WU Vienna, Austria
Dimitris Plexousakis University of Crete, Greece
Fabio Casati University of Trento, Italy

Ingo Weber University of New South Wales, Australia
Marigianna Skouradaki University of Stuttgart, Germany
Matthias Geiger University of Bamberg, Germany
Matthias Weidlich HU Berlin, Germany
Matthias Weske Hasso Plattner Institute, Potsdam, Germany
Patrick Delfmann University of Münster, Germany
Uwe Breitenbücher University of Stuttgart, Germany
Vincenzo Ferme University of Lugano, Switzerland
Vinod Muthusamy Thomas J. Watson Research Center, Yorktown Heights,

NY USA

Organization 149

Patterns for Workflow Engine Benchmarking

Simon Harrer1(B), Oliver Kopp2, and Jörg Lenhard3

1 Distributed Systems Group, University of Bamberg, Bamberg, Germany
simon.harrer@uni-bamberg.de

2 Institute for Parallel and Distributed Systems,
University of Stuttgart, Stuttgart, Germany
oliver.kopp@informatik.uni-stuttgart.de

3 Department of Mathematics and Computer Science,
Karlstad University, Karlstad, Sweden

joerg.lenhard@kau.se

Abstract. Workflow engines are frequently used in the service-oriented
and cloud computing domains. Since engines have significant impact on
the quality of service provided by hosted applications, it is desirable
to compare and select the most appropriate engine for a given task.
To enable such a comparison, approaches for benchmarking workflow
engines have emerged. Although these approaches deal with different
quality properties, such as performance or standard conformance, they
face many reoccurring problems during the design and implementation
phase, which they solve in similar ways. In this paper, we describe such
common solutions to reoccurring problems in the area of workflow engine
benchmarking as patterns. Our aim is to present pattern candidates that
help benchmark authors to design and implement proper and valid work-
flow engine benchmarks and benchmarking tools.

Keywords: Patterns · Workflow engine · Benchmarking

1 Introduction

An established part of the field of service-oriented computing is the construc-
tion of composite services on the basis of message exchanges between lower-level
services [21]. This composition is often achieved by capturing the data- and
control-flow between message exchanges of several services in a workflow [22].
The workflow is subsequently deployed on a workflow engine, which provides the
middleware execution platform, context and cross-cutting functionality, message
correlation, and many other features to the hosted workflow. Today, several stan-
dards for workflow definition and a multitude of engines have emerged, including
implementations by multi-national middleware vendors, open source solutions,
research prototypes, and even cloud-based engines. The range of solutions makes
it important to the user to compare existing engines with the aim of selecting
the best engine for her purpose. However, engines are highly complex products,
resulting in an equally complex selection problem [9]. To address this problem,
c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 151–163, 2018.
https://doi.org/10.1007/978-3-319-72125-5_12

152 S. Harrer et al.

workflow engine benchmarking approaches have emerged [3,6]. Several research
groups are developing different benchmarking approaches and tools that target
varying quality properties of workflow engines, such as performance [3] or stan-
dard conformance [6].

Currently, approaches for workflow engine benchmarking are being developed
in parallel. Their authors often face the same problems, regardless of the actual
property that lies in the focus of the benchmark. Such common problems are,
for instance, how to identify suitable tests or workloads for engine benchmarks,
or how to ensure the correctness of test implementations. Moreover, solutions
to such common problems are often similar, leading to the unfortunate situ-
ation that multiple groups invest significant effort to solve the same problem
and re-implement the same solution. Since proven solutions to reoccurring prob-
lems exist and can be inferred from existing engine benchmarks, it is possible
to capture these solution as patterns [1,5]. By describing such solutions as pat-
terns, it should be possible to reduce the effort for implementing new work-
flow engine benchmarks and also to ease the communication among benchmark
authors through a common vocabulary.

This paper is a first attempt to provide pattern candidates within the domain
of workflow engine benchmarking. Working on workflow engine benchmarks and
tools for several years, we are confident that the presented patterns can help
the authors of future benchmarks. It should be possible to extend and refine
the proposed pattern candidates in the future. In the following, we develop the
pattern candidates by describing the participants and challenges in workflow
engine benchmarking, for which we propose a number of solutions. These solu-
tions should provide guidelines to future benchmark authors when facing the
same challenge.

The paper is structured as follows. First, we present related work in Sect. 2,
providing the background for describing the participants and challenges in work-
flow engine benchmarking in Sect. 3. In Sect. 4, pattern candidates are presented
which act as a set of alternative and competing solutions to the challenges out-
lined in Sect. 3. The work is concluded with an outlook on future work in Sect. 5.

2 Related Work

Work related to this paper can be roughly divided into three areas: (i) The defi-
nition and usage of patterns, (ii) work on workflows and workflow engines, and
(iii) work on benchmarking and benchmarking workflow engines in particular.

The notion of patterns originated from the field of architecture [1], where pat-
terns were used to describe reoccurring structures in buildings. Years later, the
idea to describe reoccurring structures in the design of software in the form of pat-
terns [5] had a huge impact on software development. Since then, patterns have
been applied in many areas and contexts, and a multitude of pattern catalogs
and languages have been published. Workflow engine benchmarking is an area,
where, to the best of our knowledge, patterns are still lacking. The huge momen-
tum in the development of pattern languages, has also led to work that theorizes

Patterns for Workflow Engine Benchmarking 153

on pattern structure [17,18] and how to write a pattern [19]. Here, we build on
these works to specify our pattern candidates. Meszaros and Doble [19] propose
name, problem, context, forces, and solution as the mandatory elements of pat-
terns. Examples and relations are considered as optional elements. In our work,
we use name, problem, solution, relations, and example as elements for pattern
description. Our paper aims to provide a list of pattern candidates we discovered
in our work with workflow engine benchmarking. Due to space limitations, we
excluded context and forces from the presentation of our pattern candidates.

Workflows and workflow engines, or more abstract, process-aware information
systems [25], are commonly used in the service-oriented computing domain to
orchestrate services [22]. In short, a workflow is the machine-readable and exe-
cutable representation of a business process in whole or part and a workflow
engine is the software runtime environment that manages and controls the execu-
tion of workflow instances [27]. Today, two language standards are predominantly
used for workflow specification and execution. These are the Web Services Busi-
ness Process Execution Language (BPEL) [20] and the Business Process Model
and Notation (BPMN) [16].

Benchmarks are an important tool in computer science that is needed to com-
pare and analyze the quality provided by software systems [15]. Many aspects of
software can be benchmarked, but often the focus resides on performance-related
aspects, such as latency or throughput. When it comes to workflow engines, two
major aspects have been in the spotlight. As indicated above, one of these is per-
formance [2,3]. The second aspect is standard conformance, which reflects the
fact that workflow engines are often standards-based products [7,10]. Benchmark-
ing approaches for both aspects exist for both languages mentioned in the pre-
vious paragraph, for BPEL [2,10] and BPMN [3,7]. The BPEL/BPMN Engine
Test System betsy1 and BenchFlow2 are implementations of these benchmarking
approaches.

3 Problems in Workflow Engine Benchmarking

In the following subsection, we clarify the reoccurring challenges one faces when
building a benchmark for workflow engines. These challenges are the crucial
sources and motivation for gathering workflow engine benchmarking patterns.

3.1 Big Picture

In the big picture of workflow engine benchmarking, there are four elements: tests,
the engines to be tested, the benchmarking procedure, and the benchmark results.

When a benchmark is conducted, tests are used to specify requirements or
desired behavior of the engines under test. Next to the tests, these engines are
the second input to the benchmark. They are the objects of study that are to be

1 https://github.com/uniba-dsg/betsy.
2 https://github.com/benchflow/benchflow.

https://github.com/uniba-dsg/betsy
https://github.com/benchflow/benchflow

154 S. Harrer et al.

Fig. 1. Big Picture of Workflow Engine Benchmarking

evaluated in a comparable fashion. The benchmarking procedure is the tool that
instruments both, engines and tests. It evaluates the first using the latter and
produces benchmark results. These results should be constructed in an easily
comprehensible fashion to allow for a straight-forward interpretation (Fig. 1).

3.2 Challenges

During workflow engine benchmarking, a number of challenges arise related to
each element listed in Sect. 3.1. These challenges are non-trivial and reoccur-
ring problems that need to be solved for every benchmark, hence, they are the
problems for which we propose patterns as a solution in this paper. In total, we
identified eight challenges, numbered from C1 to C8, which we present in the
following.

Regarding the tests, the major issues are how to identify the tests (C1) and
create tests correctly (C2). The tests should be suitable and representative of
a realistic usage scenario. If this is not the case, the results produced by the
benchmark are of no use. Since realistic tests can be non-trivial, it is important to
ensure that they are free of issues, since even minor issues could have considerable
impact on the benchmark results.

Major challenges regarding the benchmarking procedure are how to validate
the procedure (C3), guarantee test isolation (C4), and observe the workflow (C5).
As for the tests, quality assurance needs to be in place to make sure that there
are no errors in the benchmarking procedure that might have an impact on
the benchmark results. As realistic test sets might be large, it is important to
make sure that tests can be executed independently, regardless of the execution
order, and regardless of whether execution takes place sequentially or in parallel.
Finally, a mechanism needs to be in place that helps to identify how and if the
benchmark and singular tests are progressing. Since a benchmark might push
an engine to its limits, it can easily be the case that an engine fails to make
progress during execution, which needs to be detected and acted upon.

Regarding the engines, the major issues are how to determine the aptitude
(C6) of an engine and how to interact with the engines (C7). The sixth challenge
concerns the ability of the engine to participate in the first place. The engine
needs to be in normal working mode at the start of the benchmark, otherwise

Patterns for Workflow Engine Benchmarking 155

meaningful results are unlikely. C7 concerns the ability to control and monitor
the engine during execution. Test execution requires the evaluation of assertions
or observation of behavior, so it is necessary that the engine has facilities in
place that allow to communicate its state to the outside.

Finally, regarding the results, the major issues are how to validate the results
(C8). Although the benchmark procedure might have worked without problems,
it is possible that there are errors in the conversion of raw benchmark data to
interpretable results. Therefore, quality assurance is needed to make sure that
the results are actually correct.

4 Workflow Engine Benchmarking Pattern Catalog

In the following section, we describe our candidates for workflow engine bench-
marking patterns. The candidates are structured into several categories that mir-
ror the elements of a benchmark from Sect. 3.1 and are based on the challenges
described in the previous section. Test patterns concern the identification and
quality assurance of test cases for a benchmark, and procedure patterns group
patterns for automating the benchmark environment. Engine patterns describe
ways to instrument workflow engines for using them in a benchmark. Finally, we
present results patterns, which provide solutions for the validation of result data.
This section concludes with a short discussion of the patterns.

For each pattern, we provide a unique name and list the problems it addresses,
which directly corresponds to the challenges from Sect. 3.2. Furthermore, we
describe the solution to said problem, which outlines what the pattern does, in
an abstract form, whereas the example describes its known usage and relations
to other patterns.

Test Patterns: To identify the tests (C1), one can determine the constructs of
a language and apply Configuration Permutation (P1) or use Reoccurring Con-
structs (P2) to identify the most used constructs and their configuration. To
create tests correctly (C2), one can derive tests using Stub Extension (P3) or
Mutated Existing Test (P4), which both ensure a certain degree of correctness.
Applying Open Sourcing (P5), Expert Review (P6), and Automatic Static Anal-
ysis (P7) helps to strengthen the degree of correctness further. What is more,
the latter patterns can be applied independently of each other.

Name. Configuration Permutation (P1)
Problem. Identify the tests (C1)
Solution. Identify a construct. Permutate all configurations of a construct.

Each permutation is a test.
Example. This pattern was applied in betsy for BPEL and BPMN standard

conformance tests. For instance, in BPMN, there is the construct exclusive
gateway which can be configured in three ways resulting in three tests: (i)
standard with all outgoing sequence flows having conditions, (ii) exclusive
gateway with a sequence flow without a condition and marked as default, and
(iii) one as a mixed gateway with both branching and merging capabilities.

156 S. Harrer et al.

Name. Reoccurring Constructs (P2)
Problem. Identify the tests (C1)
Solution. Gather a large corpus of workflows. Identify the reoccurring elements

in these workflows. Tests are created based on the most important (i.e., reoc-
curring) elements.

Example. This pattern was applied in betsy for BPEL and BPMN expressive-
ness tests as the test suite is based on the workflow control-flow patterns
[26,28] which are created from analyzing multiple workflow management sys-
tems. In BenchFlow, a large corpus of workflows is used to construct work-
loads for performance tests [23,24].

Name. Stub Extension (P3)
Problem. Create tests correctly (C2)
Solution. Use a workflow stub, a minimal workflow, which is extended for all

tests, so that the extension contains solely the feature under test. The stub
itself provides extension points, where the feature under test can be put. The
rest is minimal overhead required to observe the feature under test. This way,
all tests follow the same structure, and when looking at the difference between
the test and the stub, the feature under test can be easily identified.

Example. This pattern was applied in betsy for both, BPEL and BPMN.
Related. If the stub is fully functional, it can act as an Aptitude Test (P8).

Name. Mutated Existing Test (P4)
Problem. Create tests correctly (C2)
Solution. Instead of starting from scratch, use correct tests and modify them

by introducing a mutation [12]. This is especially useful for creating tests for
faulty conditions: An existing test is mutated by injecting a single isolated
fault, to see if a feature works correctly even in the face of errors [13].

Example. The pattern was applied in betsy for creating erroneous workflows
that have to rejected upon deployment for both BPEL and BPMN. In addi-
tion, it was applied to create a test suite for determining robustness [12].

Relations. Similar to Stub Extension (P3) as the workflow model of another
test as the basis for a new workflow test.

Name. Open Sourcing (P5)
Problem. Create tests correctly (C2), validate the procedure (C3), and validate

the results (C8)
Solution. Open source tests, procedure, and results, and put it under the

scrutiny of the public. Public availability can help to find errors the origi-
nal authors did not find. Also, this can help to build a community for the
benchmark.

Example. Both betsy and benchflow are open source. In case of betsy, this has
lead to contributions by experts and also engine vendors.

Relations. May result in Expert Review (P6).

Patterns for Workflow Engine Benchmarking 157

Name. Expert Review (P6)
Problem. Create tests correctly (C2), validate the procedure (C3), and validate

the results (C8)
Solution. Ask experts to review the benchmark artifacts. Experts can be

domain experts, engine developers, or benchmark engineers.
Example. For betsy, the maintainers of Apache ODE and bpel-g helped to

improve the test cases through their feedback, looking at the results and check-
ing why the behavior of their engine was different from what they expected.

Name. Automatic Static Analysis (P7)
Problem. Create tests correctly (C2), validate the procedure (C3), and validate

the results (C8)
Solution. Create static analysis checks which detect mistakes automatically. As

most workflow languages are XML-based, an XML well-formedness check as
well as schema validation with the XSD of the workflow language is straight-
forward. If possible, apply additional static analysis based on workflow lan-
guage rules and best practices.

Example. The pattern was applied in betsy by checking the correctness of
workflows regarding naming conventions, XML well-formedness, XSD validity
regarding the workflow language schema, and even more sophisticated static
analysis rules with BPELlint3 and BPMNspector4.

Benchmarking Procedure Patterns: To validate the procedure (C3), one can
apply Open Sourcing (P5), Expert Review (P6), and Aptitude Test (P8). Rein-
stallation (P9), Virtual Machines (P10), and Containers (P11) can be applied
to guarantee test isolation (C4). To observe the workflow (C5), Message Evalu-
ation (P12), Partner-based Message Evaluation (P13), Execution Trace Evalu-
ation (P14), Engine API Evaluation (P15), Concurrency Detection (P16), and
Detailed Logs (P17) are applicable.

Name. Aptitude Test (P8)
Problem. Validate the procedure (C3) and determine the aptitude (C6)
Solution. Define an aptitude test as a minimal requirement for participation

in the benchmark. An engine must pass this test. The test should check the
minimal amount of features required.

Example. In betsy, there are two aptitude tests, one for BPEL named Sequence,
containing a receive-assign-reply triplet (see Message Evaluation (P12)), and
one for BPMN, named SequenceFlow, containing a start and end event, with
corresponding script tasks to allow to observe the events (see Execution Trace
Evaluation (P14)), connected through sequence flows.

Relations. Can be used as a stub for Stub Extension (P3).

Name. Reinstallation (P9)
Problem. Guarantee test isolation (C4)

3 https://github.com/uniba-dsg/BPELlint.
4 http://bpmnspector.org/.

https://github.com/uniba-dsg/BPELlint
http://bpmnspector.org/

158 S. Harrer et al.

Solution. Install and start the engine anew for each test case, providing a fresh
engine instance. Although a reinstallation can consume a lot of time, it ensures
that one test case cannot interfere with another one.

Example. In betsy, this is the default mode.
Relations. Virtual Machines (P10) and Containers (P11) are alternatives.

Name. Virtual Machines (P10)
Problem. Guarantee test isolation (C4)
Solution. Create a virtual machine with a snapshot of a running engine upfront.

This may require some time and effort once per engine. But with a snapshot
in place, each test can be executed in isolation. The snapshot can easily
be restored before each test and be discarded afterwards, resulting in test
isolation with a low temporal overhead. However, for virtual machines, there
is typically a substantial RAM and HDD overhead.

Example. Since 2014, betsy also supports this pattern [14].
Relations. Reinstallation (P9) and Containers (P11) are alternatives.

Name. Containers (P11)
Problem. Guarantee test isolation (C4)
Solution. Create an image with the engine already installed and configured.

Create a new container for each test and discard the container afterwards,
effectively ensuring test isolation. This is similar to Virtual Machines (P10),
but with considerably less overhead. At this point in time, however, support
for RAM snapshots of containers is not existing, but HDD snapshots are
available.

Example. This pattern is used in both, betsy [8] and BenchFlow [4].
Relations. Reinstallation (P9) and Virtual Machines (P10) are alternatives

Name. Message Evaluation (P12)
Problem. Observe the workflow (C5)
Solution. Send messages to the workflow and compare responses with an

expected response. Use small interfaces with only few methods to keep differ-
ent message types and possibilities low.

Example. Betsy communicates with BPEL instances only through four differ-
ent SOAP messages and observes the behavior by checking the responses.

Relations. Partner-based Message Evaluation (P13) builds upon this pattern.
Execution Trace Evaluation (P14) and Engine API Evaluation (P15) are alter-
natives.

Name. Partner-based Message Evaluation (P13)
Problem. Observe the workflow (C5)
Solution. The workflow under test sends messages to an external service which

the benchmarking system controls. The calling pattern of the service can be
checked and compared to the expected interaction.

Example. In betsy, this pattern is used to mock any partner service a BPEL
workflow is required to communicate with. Moreover, concurrency detection
was implemented with a mocked partner service as well.

Patterns for Workflow Engine Benchmarking 159

Relations. This pattern is an extension of Message Evaluation (P12). Alterna-
tives are Execution Trace Evaluation (P14) and Engine API Evaluation (P15).
Concurrency Detection (P16) can be implemented using this pattern.

Name. Execution Trace Evaluation (P14)
Problem. Observe the workflow (C5)
Solution. The workflow writes log traces to the disk. The benchmarking frame-

work then reads the log traces and compares them with expected ones. Use a
small set of different standardized log traces. One can even inspect Detailed
Logs (P17) and convert log statements to log traces.

Example. This pattern is used in process mining, but also in betsy for observing
the behavior of BPMN workflows, as Message Evaluation (P12) does not work
because of the lacking support for sending and receiving messages. In script
tasks, log traces are written to a log file. Moreover, engine specific logs are
checked and additional log traces are created based on them. This is useful
for conditions like the detection of whether a workflow did exit correctly.

Relations. Partner-based Message Evaluation (P13), Message Evaluation
(P12), Engine API Evaluation (P15), Concurrency Detection (P16), and
Detailed Logs (P17).

Name. Engine API Evaluation (P15)
Problem. Observe the workflow (C5)
Solution. Use the API provided by the engine to query the deployment state

of the workflow model and the current state as well as the history of spe-
cific workflow instances. As this is engine dependent, it profits from applying
Engine Layer Abstraction (P18) as well.

Example. In both betsy and BenchFlow, the BPMN engines are queried about
their deployment and final states.

Relations. Alternative to Partner-based Message Evaluation (P13), Message
Evaluation (P12), and Execution Trace Evaluation (P14), but works fine
together with Engine Layer Abstraction (P18).

Name. Concurrency Detection (P16)
Problem. Observe the workflow (C5)
Solution. Identify the parallel branches in the workflow under test. Upon enter-

ing and exiting each branch, a timestamp has to be stored alongside a branch
identifier at runtime. If the enter-exit pairs of parallel branches overlap, real
concurrency has been detected. The concurrency traces can either be tracked
through an an external service or a log file.

Example. Betsy applies this pattern relying on Partner-based Message Evalua-
tion (P13) for BPEL and Execution Trace Evaluation (P14) with a separate
concurrency detection log file for BPMN.

Relations. Can be used either with Partner-based Message Evaluation (P13)
or Execution Trace Evaluation (P14).

Name. Detailed Logs (P17)
Problem. Observe the workflow (C5)

160 S. Harrer et al.

Solution. Configure the engine to use verbose logging. Otherwise, it might not
be possible to observe everything that is important regarding the state of a
workflow.

Example. In betsy, detailed logs are enabled for several engines by replacing
the log configuration file with a more verbose one.

Relations. Execution Trace Evaluation (P14) and Concurrency Detec-
tion (P16).

Engine Patterns: To determine the aptitude (C6), one can apply the Aptitude
Test (P8). Engine Layer Abstraction (P18), Failable Timed Action (P19), Time-
out Calibration (P20) and Detailed Logs (P17) can be used to interact with the
engines (C7).

Name. Engine Layer Abstraction (P18)
Problem. Interact with the engines (C7)
Solution. Create an abstract layer which (a) converts engine independent arti-

facts to engine dependent ones and vice versa, and (b) provides uniform meth-
ods to interact with each engine. This handles converting engine specific logs
to engine independent log traces, installation, deployment, starting, and other
engine specific assertions such as how to behave after an abortion of a work-
flow.

Example. The Uniform BPEL Management Layer (UBML) [11] has been
extracted from betsy and it is an engine independent layer to (un)install,
start, and stop the engine as well as to deploy workflows and collect log file.
The engine adapters of this layer heavily rely on Failable Timed Action (P19),
Timeout Calibration (P20), and Detailed Logs (P17).

Relations. Can rely upon Failable Timed Action (P19), Timeout Calibra-
tion (P20), and Detailed Logs (P17). In addition, eases Reinstallation (P9).

Name. Failable Timed Action (P19)
Problem. Interact with the engines (C7)
Solution. The test system executes a specified action. Then it waits for a spe-

cific period during which success and failure conditions are checked every X
milliseconds. The action fails if time is exceeded or if failure condition is met.
It succeeds if success condition is met within the specific period.

Example. As most engines do not support a synchronous API, betsy needs
to rely on Failable Timed Action (P19). The act of deploying a workflow
often involves copying the artifact to a specific location on the file system,
after which the engine deploys it automatically, and then evaluating success
through log inspection (see Detailed Logs (P17)).

Relations. May require Detailed Logs (P17), should be used with Timeout
Calibration (P20).

Name. Timeout Calibration (P20)
Problem. Interact with the engines (C7) and validate the results (C8)

Patterns for Workflow Engine Benchmarking 161

Solution. Before an actual machine is used for benchmarking, calibrate the
timeouts that are required in the tests itself, in a Failable Timed Action (P19),
or for Reinstallation (P9). The calibration of timeouts in the tests is neces-
sary, in case a test produces non-deterministic results depending on different
timeout settings.

Example. Betsy implements a mechanism using the Aptitude Test (P8) to
calibrate typical timeout values with a security range.

Relations. Ensures that the timeouts in Reinstallation (P9) and Failable Timed
Action (P19) are suitable.

Results Patterns: To validate the results (C8), one can apply Open Sourc-
ing (P5), Expert Review (P6), Aptitude Test (P8), Timeout Calibration (P20)
and Single Success (P21).

Name. Single Success (P21)
Problem. Validate the results (C8) and create tests correctly (C2)
Solution. Compare the benchmarking results of one test between engines. If

the test does not succeed on at least one engine, it is necessary to investigate
the test itself, since the test or the testing procedure might be broken.

Example. In betsy, this pattern was applied multiple times to detect issues in
the tests, the procedure and the interaction with engines.

Discussion: Most of the patterns are only used for a single challenge. The pat-
tern Detailed Logs (P17) can be applied twice, once to observe the workflow
(C5) and to interact with the engines (C7). Three patterns, namely, Open Sourc-
ing (P5), Expert Review (P6), and Aptitude Test (P8), are applicable to three
challenges each. Open Sourcing (P5) and Expert Review (P6) are more general
patterns not specific to workflow benchmarking, but they helped us tremendously
with quality assurance, namely, to create tests correctly (C2), validate the proce-
dure (C3), and validate the results (C8). The Aptitude Test (P8) is more specific
to the benchmarking domain, and can be used to validate the procedure (C3),
determine the aptitude (C6), and validate the results (C8).

5 Conclusion and Future Work

In this paper, we introduced pattern candidates for workflow engine benchmark-
ing. We identified the central elements in this domain, as well as major challenges
one faces when building a benchmark. The patterns we proposed are categorized,
according to these aspects, into test, procedure, engine, and results patterns.

In the future, we want to improve and refine the pattern candidates with
domain experts, i.e., the authors of other workflow engine benchmarks or work-
flow engines. In the long term, these patterns could provide a useful basis for
future benchmark authors and could help to establish a common vocabulary
in the domain. Last, we see potential in generalizing these specific patterns for
benchmarking workflow engines to more generic patterns for benchmarking other
standard-based software or even to patterns for benchmarking in general.

162 S. Harrer et al.

References

1. Alexander, C.: A Pattern Language, August 1978
2. Bianculli, D., Binder, W., Drago, M.L.: SOABench: performance evaluation of

service-oriented middleware made easy. In: ICSE, pp. 301–302. ACM (2010)
3. Ferme, V., Ivanchikj, A., Pautasso, C.: A framework for benchmarking BPMN

2.0 workflow management systems. In: Motahari-Nezhad, H.R., Recker, J.,
Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 251–259. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23063-4 18

4. Ferme, V., Ivanchikj, A., Pautasso, C., Skouradaki, M., Leymann, F.: A
container-centric methodology for benchmarking workflow management systems.
In: CLOSER (2016)

5. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Amsterdam (1995)

6. Geiger, M., Harrer, S., Lenhard, J.: Process engine benchmarking with betsy -
current status and future directions. In: ZEUS, pp. 37–44, January 2016

7. Geiger, M., Harrer, S., Lenhard, J., Casar, M., Vorndran, A., Wirtz, G.: BPMN
conformance in open source engines. In: SOSE, March 2015

8. Geiger, M., Harrer, S., Lenhard, J., Wirtz, G.: On the evolution of BPMN 2.0
support and implementation. In: SOSE, pp. 120–128, March 2016

9. Harrer, S.: Process engine selection support. In: Meersman, R., et al. (eds.) OTM
2014. LNCS, vol. 8842, pp. 18–22. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45550-0 3

10. Harrer, S., Lenhard, J., Wirtz, G.: BPEL conformance in open source engines. In:
SOCA, pp. 237–244. IEEE, December 2012

11. Harrer, S., Lenhard, J., Wirtz, G., van Lessen, T.: Towards uniform BPEL engine
management in the cloud. In: CloudCycle, LNI. GI e.V., September 2014

12. Harrer, S., Nizamic, F., Wirtz, G., Lazovik, A.: Towards a robustness evaluation
framework for BPEL engines. In: SOCA, pp. 199–206. IEEE, November 2014

13. Harrer, S., Preißinger, C., Wirtz, G.: BPEL conformance in open source engines:
the case of static analysis. In: SOCA, pp. 33–40. IEEE, November 2014

14. Harrer, S., Röck, C., Wirtz, G.: Automated and isolated tests for complex middle-
ware products: the case of BPEL engines. In: ICSTW (2014)

15. Huppler, K.: The art of building a good benchmark. In: Nambiar, R., Poess, M.
(eds.) TPCTC 2009. LNCS, vol. 5895, pp. 18–30. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10424-4 3

16. ISO/IEC. ISO/IEC 19510:2013 - Information technology - Object Management
Group Business Process Model and Notation, November 2013. v2.0.2

17. Kohls, C.: The structure of patterns. In: PLOP. ACM (2010)
18. Kohls, C.: The structure of patterns - part ii - qualities. In: PLOP. ACM (2011)
19. Meszaros, G., Doble, J.: A pattern language for pattern writing. Pattern Lang.

Program Des. 3, 529–574 (1998)
20. OASIS. Web Services Business Process Execution Language, April 2007. v2.0
21. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-

puting: a research roadmap. IJCIS 17(2), 223–255 (2008)
22. Peltz, C.: Web services orchestration and choreography. IEEE Comput. 36(10),

46–52 (2003)
23. Skouradaki, M., Ferme, V., Pautasso, C., Leymann, F., van Hoorn, A.: Micro-

benchmarking BPMN 2.0 workflow management systems with workflow patterns.
In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694,
pp. 67–82. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5 5

https://doi.org/10.1007/978-3-319-23063-4_18
https://doi.org/10.1007/978-3-662-45550-0_3
https://doi.org/10.1007/978-3-662-45550-0_3
https://doi.org/10.1007/978-3-642-10424-4_3
https://doi.org/10.1007/978-3-319-39696-5_5

Patterns for Workflow Engine Benchmarking 163

24. Skouradaki, M., Roller, D.H., Leymann, F., Ferme, V., Pautasso, C.: On the road
to benchmarking BPMN 2.0 workflow engines. In ICPE. ACM (2015)

25. van der Aalst, W.M.P.: Business process management: a comprehensive survey.
ISRN Softw. Eng. 2013, 1–37 (2013)

26. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Work-
flow patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

27. WfMC. The Workflow Reference Model, January 1995. v1.1
28. Wohed, P., Dumas, M., ter Hofstede, A.H.M., Russell, N.: Pattern-based Analysis

of BPMN - An extensive evaluation of the Control-flow, the Data and the Resource
Perspectives (revised version). BPM Center Report BPM-06-17 (2006)

Patterns in HCI – A Discussion
of Lessons Learned

Alexander G. Mirnig(B), Artur Lupp, and Manfred Tscheligi

Christian Doppler Laboratory “Contextual Interfaces”, Center for Human-Computer
Interaction, Department of Computer Sciences, University of Salzburg,

5020 Salzburg, Austria
{alexander.mirnig,artur.lupp,manfred.tscheligi}@sbg.ac.at

http://hci.sbg.ac.at

Abstract. Patterns are a tool to capture best practices and solutions to
reoccurring problems in certain domains. Patterns allow capturing very
specific and context-dependent solutions for re-use by individuals of dif-
ferent levels of expertise and are, therefore, a valuable supplement to
guidelines and other means of general guidance. In our work paper, we
applied the pattern approach to User Experience (UX) design in automo-
tive human-computer interaction. Our approach combines findings from
scientific studies and industry stakeholder’s knowledge and distills them
into automotive patterns for use by in-vehicle system designers. Over
the course of several years of pattern finding and writing workshops, we
encountered a number of issues, solutions, and lessons learned, which we
want to share with the pattern community. These encompass relevant
problem finding, language use and referencing in multidisciplinary con-
texts, and the problem of adequately integrating purely scientific findings
into the rather practically oriented patterns concept. We discuss each
point in detail and provide our internal solutions and lessons learned for
each of these, together with a summary of problems, which are still to
be solved and future work potentials.

Keywords: Human-Computer-Interaction · Cross-discipline
Patterns · Patterns in practice · Lessons learned

1 Introduction

Patterns are a tool and method to capture working solutions to reoccurring
problems, embedded in the context they occurr(ed) in. While they have their
beginnings in architecture, in contemporary literature patterns are mostly used
in software engineering, although they are employed in other disciplines as well.
Human-Computer-Interaction (HCI) is among those disciplines. The need to cap-
ture problem solutions with particular regard to contextual factors and reusabil-
ity is very present in HCI, due to its interdisciplinarity, close ties to industry
advancements, and general rapidly progressing nature.

c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 164–175, 2018.
https://doi.org/10.1007/978-3-319-72125-5_13

Patterns in HCI – A Discussion of Lessons Learned 165

While pattern approaches are well-developed for the software engineering
side of informatics, other pattern approaches vary greatly in level of detail and
quality, due to very little existing general literature on patterns and pattern
approaches. This can make it difficult to put the concept of patterns into practice
without prior experience. Using and generating patterns, much like any other
tool, takes practice and knowledge until a high level of quality is achieved. Some
of these problems can be handled at a theoretical level, although many are
related to lower level, i.e. practical, problems, such as the number of individuals
to involve in a pattern iteration, whether iterations should include a mix of
individuals familiar and unfamiliar with the pattern (fresh eyes vs. expert eyes),
differences in language and reference style (the person who writes a pattern is
not always in the group of individuals who will later use the pattern), a.s.o.

In this paper, we discuss a number of practical problems we encountered
during our pattern generation activities, together with the lessons learned and
strategies we developed to deal with these issues. After an overview of related
work regarding general literature on pattern mining and writing, we present
a list of five issues. Each issue is briefly outlined, after which we present and
discuss the strategies we used to deal with each of these issues. At the end,
we summarize these strategies as five lessons learned. This contribution should
foster discussion regarding practical aspects of pattern generation as well as
provide some preliminary solutions for such problems others might already have
encountered when working with patterns. The solutions or lessons learned we
provide are not necessarily specific to HCI and are intended for anyone who
employs patterns for documenting problem solutions.

2 Related Work

Patterns, as a tool to capture problem solutions, were first introduced by
Christopher Alexander specifically for capturing solutions in architecture. His
idea was to capture individual solutions to common problems in his discipline and
then re-apply and combine these solutions, with the ultimate goal to construct
entire buildings by combining a sufficient number of pattern solutions. Alexan-
der’s idea found resonance not only within the domain of architecture, but also
in other disciplines, most notably in informatics. Gamma et al. [1] provided the
first comprehensive account of patterns as a tool to capture working solutions in
software engineering and offered pattern requirements, a pattern classification,
as well as a methodology to generate (or mine) patterns for reusable software
engineering problem solutions.

The solutions described in a pattern are always specific to certain problems,
which renders patterns less holistic than guidelines and other more general means
of guidance. Some see this as a distinct advantage over guidelines [2], although
it might be more reasonable to see guidelines as a supplementary – and not a
competing – means to guidelines [3]. While patterns contain more specific and
contextual information for solving a particular problem, they lack the general
information and larger scope of guidelines. Even larger pattern collections are

166 A. G. Mirnig et al.

only as comprehensive as the list(s) of problems they cover. A guideline can
encompass a wide area with a clear beginning and an end, whereas a pattern
collection can only ever cover a certain range of problems, which might or might
not completely cover the respective area. Ontologies are another means of knowl-
edge structuring and transfer with similarities to patterns [4]. An ontology is a
tool to hierarchically structure concepts in a specific domain of knowledge [5].
Similar to patterns, they can be used to capture and promote the application
of good or best practices [6]. Building such an ontology is considered to be a
difficult task, even for experts [7] – a trait they share with patterns. Unlike with
patterns, however, the reusability of ontologies is still considered a great and,
as of yet, unsolved challenge [6,7], whereas reusability is one of the distinctive
features of patterns [1].

Existing pattern methodologies and guidances are mostly specific to the disci-
pline or domain they are generated for [8]. From a general point of view, patterns
could be employed in a far greater number of disciplines, since a methodology to
capture solutions to reoccurring problems should be of benefit for most, if not
all, disciplines [9]. Despite this perceived benefit, available general literature on
patterns is scarce [8], although not nonexistent.

Borchers [10] adapted the pattern approach to Interaction design and devel-
oped a model of patterns as interconnected entities, very similar to Alexander’s
original concepts of patterns in architecture. According to Borchers, patterns
can be high- or low-level, depending on the problem’s level of granularity and
one high-level problem is often comprised of several low-level ones. This distinc-
tion is very similar to the one found in software engineering, with the difference
that software engineering has a third category for the lowest-level patterns, the
so-called idioms. Winn and Calder [11] Meszaros as well as Doble [12] developed
pattern writing and structuring approaches and did so by developing and pre-
senting their approaches as actual collections of patterns. While there have been
considerable efforts by the Pattern Languages of Programs (PLoP) and related
communities, general and discipline-nonspecific literature on patterns is more or
less still in a state of relative infancy. The literature, which is available, often
focuses on high-level guidance on pattern writing or theoretical concepts and
frameworks common to all pattern approaches. Practical guidance, collections
of lessons learned, or case studies on pattern generation with general relevance
are difficult to find. That makes it difficult to apply the currently available body
of general literature on patterns in a specific discipline – unless that discipline
already uses patterns and has an appropriate body of specific literature available.

Ultimately, pattern mining is often a long and not very straightforward pro-
cess. Beyond the theoretical guidance provided in the available literature, there
are practical issues pertaining to the pattern mining process, which are beyond
the scope of said literature. Such issues can be the question of how to choose
the right individuals to participate in each stage of a pattern mining process,
how solutions should be presented visually in a respective community (technical
schematics vs. supporting illustrations vs. plain text), questions of copyright of
working solutions relative to the legislatory regulations in a specific geographical

Patterns in HCI – A Discussion of Lessons Learned 167

area, a.s.o. For our pattern approach, we had to look for strategies to deal with
these and similar issues. In the next section, we provide brief overview of our
approach before we begin listing and discussing the actual issues.

3 The HCI Automotive Pattern Approach - An Overview

In the Christian Doppler Laboratory for “Contextual Interfaces we are collecting
pattern solutions for recurring HCI design problems in the driver space domain1.
It is a collaborative effort together with our technical partner AUDIO MOBIL,
Ranshofen, Austria. In the project, we have decided to pursue a nonstandard pat-
tern mining approach by drawing from both academic and industry resources.
This is due to the exploratory nature of the research, in which we look for solutions
to often novel problems with very new technologies, to which established solutions
do not yet exist (either at all or at a large scale). That does not mean, however,
that proven solutions to parts of such problems do not exist as well. That is why
we decided to explore partial solutions from both angles (academia and industry)
in order to arrive at pattern solutions for the actual, larger problems.

Our pattern generation2 process begins with an initial problem finding and
knowledge transfer workshop. In this workshop, experts from both academia
and industry are present. The concept and methodology of patterns is explained
to everyone in order to ensure common ground. Then, a focused brainstorming
for domain-specific problems is made, building the basis for the initial pattern
mining. This initial mining is done by the HCI researchers, in which they break
down the overall problems into smaller sub-problems and then look for state-of-
the-art solutions in the automotive industry, as well as lab-studies or prototypes
in academic literature which can solve the problems. These solutions are col-
lected and written down as a pattern afterwards, based on a predefined pattern
structure [3].

These initial patterns are then discussed and rated in a workshop, in which
both HCI researchers and industry stakeholders participate. Each pattern is
rated in every pattern category on a 5-point Likert scale via a standardized rating
sheet [14] and discussed separately. After the workshop, the second iteration
cycle begins. Each pattern is iterated by at least one industry stakeholder and
one HCI expert. Once all patterns are iterated, a second workshop is conducted,
which proceeds exactly like the first one. The patterns are then reworked once
more and validated via the rating sheet one final time. If they pass in each
category (higher than 3), they are considered final; if they do not, they are
reworked again and integrated into the appropriate evaluation workshop, once
the next new batch of patterns is being generated. While this overall process
description is, while brief, rather complete, there was a number of smaller issues
that appeared during individual stages of our pattern activities, which we discuss
in the following sections.
1 Examples for such patterns can be found in [13].
2 We use ‘pattern generation’ for referring to the overall process, encompassing prob-
lem finding, pattern mining and pattern writing.

168 A. G. Mirnig et al.

4 Lessons Learned

In this section, we present five problem areas we encountered during our pattern
generation process and some lessons learned and strategies we used to solve them.
The pattern context described in this paper is a rather particular one, both
due to the domain (HCI) and procedure (academia and industry as sources).
Nevertheless, the issues and lessons learned are very practical in nature and
should be relevant to other fields and disciplines, which employ patterns as well.

4.1 A Matter of Language

Due to the interdisciplinary approach we pursued, the language used in our pat-
terns is strongly based on scientific papers and books. It is easier for researcher
to transfer the knowledge from referenced works to a solution, when maintain-
ing the characteristic precision of scientific language, together with the writing
and argumentation styles of the respective discipline. Writing patterns in a lan-
guage, which is common to most individuals and easy to understand is often a
basic requirement of a successful pattern. Industry stakeholders are not always
researchers and when they are, they do not always use the same terminology
and writing styles as scientists do. Thus, even though the domains (Human-
Computer-Interaction and Driver Space Design) were similar, the scientific lan-
guage we used in our initial patterns (e.g., UX factors, acronyms, or statistical
study descriptions) turned out to be difficult to understand for the industry
stakeholders.

Therefore, simplification of the used language is a must, in order to pro-
vide easy to read solutions. However, it is difficult to define which language is
complicated and which is easier to understand. This heavily depends on the
language skill level of the reader in question. Finding the right language is a bal-
ancing act. Patterns need a language to offer simple solutions with exact values
without oversimplification and information loss. But simplification alone, as it
turned out, is not everything. In our second pattern iteration, we had removed
as much scientific jargon as possible, employed natural instead of specific writ-
ing styles, and added explanations for concepts, which might be obvious in the
scientific community but not everywhere else. However, the stakeholders still
expressed dissatisfaction with wording, sentence structure and terminology. We
found that stakeholders held certain expectations, which they were unable to
explicitly state, due to those expectations being dependent on technical and
other literature they read on a daily basis (e.g., technical manuals, schematics,
patents, but also technical news articles). Furthermore, in their often very com-
petitive environment, there is no guarantee that stakeholders will admit their
lack of knowledge or language skill if e.g. certain definitions mentioned in solu-
tions are unclear or unknown.

All these aspects were making it hard to adjust the language used in the
patterns. We could not simply ask the stakeholders about how they would like
the pattern to be written. But it would also not have been feasible to go through
all their everyday literature and develop a suitable writing style from that. The

Patterns in HCI – A Discussion of Lessons Learned 169

solution we eventually arrived at was rather simple: We provided one pattern,
which had received high rating in most categories other than language and had
each stakeholder rewrite the pattern according to their needs. We collected and
consolidated these rewritten patterns and used this as a writing template for
all future patterns. This made it easier to adjust language use, level of detail
in explanations, etc. for future patterns, which received better ratings regarding
language used and comprehensibility.

4.2 Cross-Discipline Solution Searching and Unreliable Sources

The problems we tried to solve in our pattern collection were often focusing on
very specific topics, which are not well researched in a given domain. In other
cases, they covered multiple research areas. In order to adequately cover these
areas, we drew from research articles, books, guidelines, standards (e.g., ISO,
DIN), industry state of the art approaches, or prototype designs and demos
from different areas for finding our solutions. This lead to two issues. Firstly, the
individual sources we drew from did not follow the same purpose in most cases,
which meant that it was difficult to consolidate them all into single solutions.
Secondly, in tying information from different sources together, we encountered
two specific problems regarding materials covering very narrow areas, as well as
sparsely documented implementations and prototypes.

Generally speaking, if the underlying problem is focusing on a very specific
topic and no research is to be found, the research area has to be expanded.
Expanding the investigation area by including research from different but related
fields can provide valuable content needed for solution finding. Of course, this
is more easily said than done, since it is not always immediately obvious, which
domains are suitable candidates for such an expansion. We decided to pursue a
simple pragmatical solution in which we extracted key aspects from the problem
description and transforming these into a set of problem keywords (e.g., “eye
movement, position, output, visual” was one such set for a pattern, which tried
to identify ideal display positions depending on eye movement speeds). With
the help of a web based search engine, preferably using meta data of scholarly
literature, these words are then used as search terms. Commonly this method
requires several trials, using different combination of the problem keywords while
trying to leave out the least significant ones, before leading to adequate results.
Of course, these results still had to be checked individually for their actual
relevance, but the method at least provided sources to work with and usually
produced a number of relevant and usable sources after some time of searching
and sorting out the irrelevant ones.

When dealing with topics like state of the art approaches and prototypes,
there was usually very little research or supplementary material available.
Thus, we had to look for information sources other than academic research.
Those sources were often news articles, on-line videos, or presentations. These
sources are less strictly evaluated than academic works and should be handled
with appropriate caution. Before using sources like these as references for solu-
tions and examples, it is strongly advised to review and verify the content.

170 A. G. Mirnig et al.

Videos, presentations as well as news articles might offer some useful informa-
tion for state of the art approaches, new prototypes or future technologies, but
are unlikely to provide exact values. Even though the use of videos may be some-
what limited for exact solutions, they proved to be very handy for the example
section of our pattern approach. The quite simply take-home message we took
from this was “It’s better than nothing”, as patterns with supplementary infor-
mation, even when vague, where perceived better than patterns without that
information.

4.3 Of Iterations and Different Points of View

Workshops with industry stakeholders in the iteration process are a good oppor-
tunity to discuss the pattern work progress. The iteration sessions as well as the
pattern rating workshops are generally organized after a certain pattern work
package (usually anywhere between 5 to 12 patterns) is accomplished.

Internal iteration processes with HCI researchers are held more frequently
and are used to improve the overall quality of the patterns. Iterations are aimed
at reviewing the most recent pattern changes and discuss possible further issues.
These issues are usually rather minor and can reach from changing the title of
a pattern to be more precise, to clarification of problem topics or solutions for
the sake of comprehensibility. New patterns and patterns being iterated for the
first time, are inspected more thoroughly. However, during internal iterations the
focus is mostly on clarity, comprehensibility, and structure. Issues regarding the
pattern content are mostly left out at this stage. Questions and uncertainties,
emerging during pattern creation and internal iteration, which are not answer-
able by the HCI researchers at this point, are noted down for subsequent external
iterations and workshops with the industry stakeholders.

During workshops the generated patterns are reviewed and evaluated by the
industry stakeholders. The industry stakeholders are usually the source of infor-
mation needed to finalize the patterns. This happens in a two-step process. The
industry stakeholders are given each pattern and enough time to read through it
thoroughly. After that, they are instructed to rate each pattern as described in
Sect. 3. During this rating stage, the stakeholders are additionally instructed to
note down particular issues they would like to raise later on. These can be related
to one individual pattern or the whole pattern collection. After a certain batch
of patterns has been rated, the second step begins and a discussion is held. In
this discussion, the stakeholders supplement their ratings with qualitative input.
On top of identifying individual iteration needs, this also helps the researchers
understand the industry stakeholder’s way of thinking, which plays a crucial
part in providing the solutions in an adequate manner. Pattern solutions have
to solve the problem statements and provide exact values in a form or unit the
industry stakeholders need in order to implement the solutions. These iteration
workshops are, therefore, the ideal opportunity to not only handle the content-
side of the pattern iteration process, but also to define a set of preferred metrics
and units for pattern solutions, depending on aspects such as modality or design

Patterns in HCI – A Discussion of Lessons Learned 171

target (e.g., db for acoustics, lm for lighting, distance from center to center in
mm for arrangement of input buttons, etc.).

4.4 Linking - Online vs. Paper

Solution examples provided in our patterns are mostly text based, but sup-
plemented with images, tables, hyperlinks, as well as videos. For the most part
there are few to no limitations in accessing supplementary information in printed
media. That is not the case for hyperlinks and videos, however. In order to access
online content like videos, databases or similar content, hyperlinking is necessary.
Handling those proved to be more of a problem than we had initially expected.
While it is possible to provide hyperlinks in form of written text, accessing them
with ease is only possible in digital form. Links contained in physical print media
need to be typed into the browser’s address bar manually in order to be accessed.
Furthermore, a person who uses a printed pattern collection might not always be
in the vicinity of a workstation with internet access. Ideally, pattern solutions
should be quickly accessible, so this is an obvious limitation. This limitation
reduces the options of how we can provide solution examples in our patterns in
printed form. In the first versions of our patterns, we tried to handle hyperlinks
to videos as simple as possible. We provided an image showing a scene of the
video, followed by a link, which could be clicked on in the digital version of the
pattern. While it was possible to get a first impression of what would be shown
in the video through the provided image, the link still had to be written down
manually in the printed version (Fig. 1).

Fig. 1. Link to https://youtube.com

The preview image could not fully represent the video contents, so our solu-
tion was still sub-optimal and in need of improvement. To overcome the limita-
tions of our initial versions, we decided to use Quick Response codes in addition
to the regular hyperlinks. QR Codes3 are a type of two-dimensional bar-code,
which can be scanned by an imaging device. Scanning the code with a smart-
phone converts the QR Code into a useful form e.g. a hyperlink to a webpage,
3 Short term for Quick Response Code.

https://youtube.com

172 A. G. Mirnig et al.

database or video, which effectively eliminates the need to write down the link
manually. Thus we provide solution examples for e.g. videos by adding QR-Codes
containing a link to the videos instead of a text only link (Fig. 2). In addition to
the QR Code, the link itself in text form is still available as a reference.

Fig. 2. QR code for the link to https://youtube.com

This solution was much better received by our pattern users although it does
come with two drawbacks. For one, each QR code takes up more space than
a hyperlink, which is usually just a single line of text. Secondly, they require
access to a device with QR reading capability. Most smartphones of today do
have this capability, however, so this can be considered a rather minor limitation.
Considering the benefits and drawbacks, it is an improvement over the previous
versions and we decided to adopt QR codes for all our patterns, as it lead to
better usable patterns overall.

4.5 The Art of Referencing

The amount of sufficient references needed to provide enough information (not
appointed in the method) depends on the scope the pattern is trying to fill.
References we used in our patterns ranged from research articles over books
and guidelines up to videos and prototypes. Each of these information sources
had to be cited in out patterns adequately. We initially thought this to be a
rather trivial issue and simply applied the same standards one would apply for
any scientific work: if it is present in another source, then it needs to be cited.
However, it turned out during initial iterations with industry stakeholders, that
actually following this quite basic principle caused quite a few problems. It was
perceived as very irritating to have the text broken up by references and citations
every few lines, which was compounded by the fact that we had used the author-
year format for the initial versions of our papers. Thus, we had to find a way
to (a) reduce the space taken up by each individual reference, as well as (b) the
overall amount of references, in order to render the patterns more readable for
the industry stakeholders.

The first part was rather simple – we switched from the author-year to the
number format, which took up less space and was immediately deemed accept-
able by the stakeholders during subsequent iterations. Dealing with the question
of the right amount of citations was an entirely different and more difficult mat-
ter, however. Even in our adapted and slightly atypical pattern approach, the

https://youtube.com

Patterns in HCI – A Discussion of Lessons Learned 173

solutions should still be proven ones. Tying a solution (or parts of it) to multiple
references is one way of satisfying this provenness-criterion. In addition, refer-
ences not immediately relevant to an individual problem might tie into other
related problems or a larger overall problems. Still, we tried to minimize the
amount of references required for a successful and more easily readable pattern
by establishing and comply the following simple rules for choosing references to
cite in the pattern:

– References with limited to no use for a certain problem are not mentioned.
This includes references to other related problems or larger problems the indi-
vidual problem is a part of. Such references should be handled via keywords
within the pattern collection.

– The aim of the HCI patterns is to provide solutions with exact implementation
metrics. Thus, each reference cited must either provide concrete values or a
full solution implementation description.

– The use of only one reference is legitimate, when it provides exact values, thus
a perfect solution for a certain problem topic. Note that this rule is tiptoeing
the provenness-condition.

– There is more than one way to solve most problems. Multiple references with
exact values should not be inconsistent with each other or the provided solu-
tion. If exact values are provided by multiple references, they should be con-
sistent with each other

– A solution is backed up with sufficient references, if the categories solution
description pattern completeness receive a sufficiently high rating (i.e., higher
than 3 in our rating system).

Following these rules has worked rather well so far but it needs to be said
that the pattern approach is still a work in progress and these rules for citation
are not yet final. It should also be noted that a reduction of sources can lead
to better readability at the cost of validity and profoundness of the solution
description, so it might well be that there is a better solution, which allows to
make a high volume of references easily digestible by a non-academic readership.
We have, however, not found such a solution at this point.

5 Conclusion

In this paper, we presented and discussed some problems we faced during our col-
laborative and interdisciplinary pattern generation activities. We then provided
the solutions we developed for each of these five problems and briefly discussed
these. In the following, we give a quick final summary of each of our solutions
as a lesson learned for future pattern generation activities.

– Lesson One: Matching the language of pattern writer and reader is a difficult
task, especially since the prospective pattern readers are not always able to
fully express their preferred language and writing style. Having the pattern
readers do one pattern iteration of a content-complete pattern regarding only

174 A. G. Mirnig et al.

writing, typography, terminology, and argumentation, is a relatively quick
and easy way to get a template for matching languages in pattern writing.

– Lesson Two: When one discipline does not cover a topic to a sufficient degree
or implementations are not documented or supplemented well enough, one
needs to search “outside the box” for solutions. Breaking down the problem
into a keyword structure and using those in a meta data search provided
to be fruitful for cross-discipline solution searching. Unstable and unreliable
sources such as news articles, on-line videos, and presentation slides often
help to underpin sparsely documented solution implementations. They might
not be validated and should be treated with caution, but they provide a
background to the solution and foster understandability of the pattern more
than the complete absence of any supplementary material would.

– Lesson Three: Academic’s and industry stakeholder’s needs do not always
align. Internal and external iteration processes should be aligned such to fos-
ter this alignment. Polishing regarding structuring and formulations should be
handled in internal iterations as much as possible, so that the external itera-
tions can be used for content-related issues. External iterations and exchange
should additionally be used to define concrete values and units for the solution
descriptions, based on modalities and design space targets.

– Lesson Four: Linking to online resources and videos is difficult in printed
pattern volumes, as typing out the URLs can be tedious and time consuming.
A preview image of the video is not enough to fully communicate the video
content, so a better solution is required. QR codes provide easier access to
online resources at the cost of space (=longer patterns), which is an acceptable
tradeoff for more usable and readable pattern.

– Lesson Five: References are less important for industry stakeholders than
they are for academics. When choosing which works to reference, one should
focus on sources, which provide concrete values or full solution implemen-
tation descriptions. When multiple solutions are valid, only one should be
chosen and described. If a pattern is rated as complete and the solution as
adequately described, then it contains sufficient references. To put it in a
nutshell: less is more.

The problems and the solutions we provide are very practice oriented and
are based on individual feedback, pattern rating results and discussion sessions
during numerous pattern iteration workshops. The lessons learned should not
be considered universally valid. However, they worked in our particular case to
provide higher quality and better readable patterns. There is certainly room for
improvement for many, if not all, of the solutions provided, which we will do
in our continuous pattern approach development. We encourage others working
with patterns to do the same and to develop and share knowledge regarding
practical issues of pattern mining and writing, in order to further knowledge on
pattern generation within and across communities and disciplines.

Patterns in HCI – A Discussion of Lessons Learned 175

Acknowledgments. The financial support by the Austrian Federal Ministry of Sci-
ence, Research and Economy and the National Foundation for Research, Technology
and Development and AUDIO MOBIL Elektronik GmbH is gratefully acknowledged
(Christian Doppler Laboratory for “Contextual Interfaces”).

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Pearson Education, Upper Saddle River
(1994)

2. Van Welie, M., Van Der Veer, G.C.: Pattern languages in interaction design: struc-
ture and organization. In: Rauterberg, M., et al. (eds.) Proceedings of Interact
2003, pp. 527–534. IOS Press (2003)

3. Mirnig, A.G., Meschtscherjakov, A., Perterer, N., Krischkowsky, A., Wurhofer, D.,
Beck, E., Laminger, A., Tscheligi, M.: Gaining user experience patterns by drawing
from science and industry: a combinatory pattern approach. Int. J. Adv. Life Sci.
7(3–4), 145–157 (2015)

4. Gangemi, A., Presutti, V., Blomqvist, E.: The computational ontology perspective:
design patterns for web ontologies. In: Sartor, G., Casanovas, P., Biasiotti, M.,
Fernández-Barrera, M. (eds.) Approaches to Legal Ontologies. Law, Governance
and Technology Series, vol. 1, pp. 201–217. Springer, Cham (2011). https://doi.
org/10.1007/978-94-007-0120-5 12

5. Blomqvist, E., Sandkuhl, K.: Patterns in ontology engineering: classification of
ontology patterns. In: ICEIS, vol. 3, pp. 413–416 (2005)

6. Falbo, R.A., Guizzardi, G., Gangemi, A., Presutti, V.: Ontology patterns: clarifying
concepts and terminology. In: Proceedings of the 4th International Conference on
Ontology and Semantic Web Patterns, WOP 2013, Aachen, Germany, vol. 1188,
pp. 14–26. CEUR-WS.org (2013)

7. Poveda-villalón, M., Suárez-figueroa, M.C., Gómez-pérez, A.: Patterns in ontology
engineering: classification of ontology patterns. In: Proceedings of Second Work-
shop on Ontology Patterns (WOP 2010), pp. 35–49. CEUR-WS (2010)

8. Mirnig, A.G., Tscheligi, M.: Introducing a general multi-purpose pattern frame-
work: towards a universal pattern approach. Int. J. Adv. Intell. Syst. 8(1–2), 40–56
(2015)

9. Vlissides, J.: Pattern Hatching: Design Patterns Applied. The Software Patterns
Series. Addison-Wesley, New York (1998)

10. Borchers, J.O.: A pattern approach to interaction design. AI & Soc. 15(4), 359–376
(2001)

11. Winn, T., Calder, P.: A pattern language for pattern language structure. In: Pro-
ceedings of the 2002 Conference on Pattern Languages of Programs, CRPIT 2002,
Darlinghurst, Australia, vol. 13, pp. 45–58. Australian Computer Society, Inc.,
Sydney (2003)

12. Meszaros, G., Doble, J.: Pattern Languages of Program Design 3, pp. 529–574.
Addison-Wesley Longman Publishing Co., Inc., Boston (1997)

13. Kaiser, T., Mirnig, A., Perterer, N., Meschtscherjakov, A., Tscheligi, M.: Car user
experience patterns: a pattern collection in progress. In: Proceedings of the 8th
International Conferences on Pervasive Patterns and Applications, PATTERNS,
pp. 9–16. IARIA (2016)

14. Wurhofer, D., Obrist, M., Beck, E., Tscheligi, M.: A quality criteria framework for
pattern validation. Int. J. Adv. Softw. 3(1–2), 252–264 (2010)

https://doi.org/10.1007/978-94-007-0120-5_12
https://doi.org/10.1007/978-94-007-0120-5_12

Interactive Dashboard for Workflow
Engine Benchmarks

David Bimamisa, Mathias Müller, Simon Harrer(B), and Guido Wirtz

Distributed Systems Group, University of Bamberg, Bamberg, Germany
{simon.harrer,guido.wirtz}@uni-bamberg.de

Abstract. Today, more and more companies model their business pro-
cesses using languages such as Business Process Model and Notation
(BPMN) or Business Process Execution Language (BPEL), and auto-
mate their processes by executing these models on appropriate work-
flow engines. To help choose the best fitting engine among different
alternatives, several benchmarking initiatives have emerged, e.g., the
BPEL/BPMN Engine Test System (betsy) that benchmarks confor-
mance and expressiveness, and BenchFlow that benchmarks perfor-
mance. However, their results are hard to analyze and compare for the
typical end-user, developer or researcher. This paper tries to solve this
issue by introducing (a) a common data model which can hold data of
both betsy and BenchFlow tests and their results, (b) a transformer that
can automatically transform the results of betsy and BenchFlow runs into
the common data model, and (c) an interactive dashboard that visualizes
the results according to the most important use cases. Hence, it enables
the end-users, developers and researchers to analyze and compare the
engines in a straight-forward manner.

Keywords: BPMN · BPEL · Interactive dashboard · Benchmarking
Workflow engine

1 Introduction

Over the last few years, several process languages (e.g., BPMN [13], and
BPEL [14]) have been developed and standardized for modeling business pro-
cesses and for building service-oriented and process-aware systems. Today,
many business process execution engines (or Workflow Management Systems
(WfMSs)) exist that support the execution of process models. A workflow is the
automated part of a business process [20, p. 8], and if the process is already
fully automated they are used synonymous. But with the emergence of workflow
engines, choosing the “best-fitting” [5] workflow engine for a project becomes
more challenging [3]. Typically, end-users and companies aim to choose a work-
flow engine based upon quality characteristics such as usability, performance and
language support [5]. However, evaluating and comparing workflow engines with
respect to the desired characteristics is a complex undertaking.
c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 176–188, 2018.
https://doi.org/10.1007/978-3-319-72125-5_14

Interactive Dashboard for Workflow Engine Benchmarks 177

Benchmarks are often used by end-users to evaluate and compare competing
systems before deciding on the system to adopt [15]. Likewise, researchers and
developers use benchmarking techniques to evaluate the design and improvement
of systems over time. In the field of workflow engines, benchmarks for testing
different capabilities of workflow engines have been built in [3,6,8]. These bench-
marks may support users, developers and researchers in analyzing and comparing
workflow engines for BPMN and BPEL. While [6,8] have conducted benchmarks
for assessing the standard conformance and expressiveness of BPMN [6] and
BPEL [8], Ferme et al. [3] have evaluated the performance of workflow engines
for BPMN. These papers only show aggregated data of one or two engine capa-
bilities to get their point across. The actual raw data is sometimes published as
well, but uses different data formats and levels of detail. Hence, working with this
raw data is either not possible at all or very hard. But especially the raw data
would allow to gain additional insights, e.g., a clear picture of different capabil-
ities per engine. As with many benchmarks (e.g., for databases, Web servers),
both benchmarks for workflow engines only show raw data with few aggregation
and less emphasis on visualization and interaction with the data. While raw data
and non-interactive result tables are sufficient and even preferred [21, p. 52] by
expert users, novice end-users may find it difficult and time-consuming to choose
their best-fitting workflow engine with this level of detail. In contrast to experts,
novices may have not enough knowledge to analyze, compare and identify prob-
lems using atomic raw data. Also, raw data may not meet the different cognitive
skills (e.g. analytical versus less analytical) [21, p. 49] of end-users. It has been
shown that an appropriate aggregation and visualization of data helps users in
understanding complex information, identifying problems and focusing on the
most relevant data (e.g. metrics) for better decision making [21]. Furthermore, at
the moment, benchmark data for workflow engines are not publicly available or
accessible. This makes it difficult for end-users to make informed decisions about
choosing an appropriate workflow engine without benchmarking these engines
themselves.

To overcome the aforementioned limitations, we created a web-based inter-
active dashboard that makes workflow engine benchmarks accessible, visible
and comprehensible to end-users. By building a dashboard, we mainly focus
on empowering non-expert end-users to easily understand, analyze and access
benchmark results. Nevertheless, experts may still use the dashboard to man-
age their own benchmarks, to compare them with our results or to update test
implementations. This could establish a community of discussing and sharing
engine benchmarks. Further, when using a dashboard, experts may profit from
the more aggregated and structured presentation of the benchmark results to
effectively communicate them to non-experts stakeholders [16].

In this paper, we present the design and implementation of the interactive
dashboard for comparing workflow engines. It visualizes the benchmarks of the
benchmarking tools betsy and BenchFlow [3,6,8], but it is designed to support
other engine benchmarks as well. First, we outline related work along with the
used terminology in Sect. 2, followed by the listing of requirements the interactive

178 D. Bimamisa et al.

dashboard shall fulfill in Sect. 3. Next, in Sect. 4, we describe how we aim to imple-
ment the requirements, namely, designing a common data model (see Sect. 5) and
then implementing the interactive dashboard and a transformer mapping the data
models of betsy and BenchFlow to our data model in Sect. 6. Finally, we conclude
this paper with an outlook on future work in Sect. 7.

2 Related Work and Background

2.1 Dashboards

Few [4] defined a dashboard as “a visual display of the most important informa-
tion needed to achieve one or more objectives; consolidated and arranged on a
single screen so the information can be monitored at a glance”. Based on this
definition, we define a dashboard for software benchmarks as a tool to collect,
summarize and present a large set of benchmark results from multiple sources
over time in single web pages so that key performance indicators of benchmarks
can easily be perceived and understood at a glance [21]. In relation to this work,
a web-based dashboard for benchmarks consists of web pages displaying most
important information about the results of different benchmarks (e.g., confor-
mance, expressiveness, performance). While dashboards are commonly used as
part of business intelligence (BI) systems for measuring and monitoring business
performance to support managerial decision making [21], their characteristics
and design principles have been adopted for reporting benchmark results.

In the following we highlight common characteristics and advantages of web-
based dashboards for visualizing benchmark results. Benchmark dashboards typ-
ically collect and summarize data from different benchmark runs to allow the
analysis and the comparison of these benchmark runs. Some dashboards collect
benchmark results of the same capability over a period, which may be helpful
for identifying trends such as the stability or the improvement of the tested
system. A web-based dashboard is a simple method for making a large set of
benchmark data available in one place on the web, and thus easy to find, access
and share. When done right, dashboards display few metrics and aggregated
information to reduce the information load, and to help users quickly get an
overview of the benchmark results. Interactive dashboards presenting aggregate
data mostly allow users to navigate from highly aggregated data to more detailed
level of data, e.g., to obtain additional details on a particular benchmark run.
This feature is known as drill-down [16]. Furthermore, interactive dashboards
often provide mechanism for filtering data to quickly find and compare specific
parts of the benchmark results. More importantly, filters allow the exploration
of data which is useful for users unfamiliar with the data [2]. One important
characteristic of dashboards is the focus on making the visual presentation of
data intuitive and easy to understand. This is typically achieved by making use
of colors, distinctive sign (e.g., +, −), charts and graphs, easing the identification
of key metrics and the comparisons of the results.

Interactive Dashboard for Workflow Engine Benchmarks 179

2.2 Dashboards for Benchmarks

The characteristics and design principles of dashboards have been adopted in
a variety of web-based dashboards for reporting benchmark results. For exam-
ple, TechEmpower Framework Benchmarks1 (TFB) is a dashboard that presents
performance benchmark results of various web frameworks to facilitate the com-
parison of these frameworks regarding their performance. TFB has become a
community-driven project in which contributors frequently update test imple-
mentations. Compat-table2 is a dashboard that presents benchmark results that
evaluate the compatibility of browsers, servers and compilers with ECMAScript
5, 6 and 7, while the Node-compat-table3 dashboard only focuses on evaluating
different versions of the Node.js server regarding ECMAScript support. Both
dashboards make extensive use of colors to simplify the differentiation and the
recognition of the result ratings. Also, they employ drill-down features to enable
the aggregation of the ECMAScript features. JMeter4 is a performance testing
framework that comes with a dashboard for displaying the benchmark results
using tables and graphs. It provides filters to specify which rows of tables or
series of graphs should be shown or hidden. Another benchmark framework that
provides a dashboard is Rally5. It is used for benchmarking the OpenStack6

cloud hosting infrastructure. The Rally dashboard simplifies the collection of test
results and extracts relevant metrics to help users improving their OpenStack
infrastructure. Similar to our dashboard, it also provides information about the
configuration of each test (e.g., test cases, configurations).

Despite the existence of various web dashboards for benchmarking tools,
there is no interactive dashboard yet for presenting the benchmarking results
of workflow engines. To the best of our knowledge, only the presentation of the
workflow patterns7 has few characteristics of a dashboard, but it displays only
result tables with no interactivity.

2.3 Workflow Engine Benchmarking

Within the area of workflow engine benchmarking, the two most prominent
frameworks are the BPEL/BPMN Engine Test System (betsy) and BenchFlow.
Betsy can benchmark various capabilities, including conformance [6,8], static
analysis conformance [11], expressiveness [7,9], and robustness [10] of a plethora
of BPEL and BPMN engines [5]. BenchFlow is an EU project with the aim
to develop a performance benchmark for workflow engines. It is able to bench-
mark three BPMN engines for performance related metrics of, e.g., workflow
patterns [3,18].

1 https://www.techempower.com/benchmarks.
2 http://kangax.github.io/compat-table.
3 http://node.green.
4 http://jmeter.apache.org/usermanual/generating-dashboard.html.
5 https://www.mirantis.com/blog/rally-as-an-openstack-performance-dashboard/.
6 https://www.openstack.org/.
7 http://www.workflowpatterns.com/.

https://www.techempower.com/benchmarks
http://kangax.github.io/compat-table
http://node.green
http://jmeter.apache.org/usermanual/generating-dashboard.html
https://www.mirantis.com/blog/rally-as-an-openstack-performance-dashboard/
https://www.openstack.org/
http://www.workflowpatterns.com/

180 D. Bimamisa et al.

Next to betsy and BenchFlow, there are other benchmarking approaches
regarding workflow engines. [1] compares engines supporting BPMN, BPEL
and even XPDL, but their approach is not fully automated and their evalua-
tion is rather high level. Nevertheless, their results could be incorporated into
this dashboard as well. The results of nine BPEL performance benchmarking
approaches [17] could also be integrated.

2.4 Terminology

The relevant terms used in this paper and that are at the heart of the dashboard
are defined as follows:

– Engine instance: An engine with a specific version and an optional config-
uration. For instance, activiti 5.15.1 or Apache ODE 1.3.6 in-memory.
An engine normally has multiple engine instances.

– Process: A process is defined using a process language (e.g., BPEL or
BPMN). As we only talk about executable processes, the term workflow is
synonymous in this context.

– Capability: A capability is either conformance, expressiveness or perfor-
mance in this context. We understand that a capability is a quality charac-
teristic that can be associated within one of the characteristics of the ISO/IEC
25010 standard [12].

– Conformance Benchmarking: Evaluates which (configuration of a) lan-
guage construct is supported by the given engine instance.

– Expressiveness Benchmarking: Evaluates the degree of support of work-
flow patterns of a given engine instance in relation to the degree of support
of the process language [9,19].

– Performance Benchmarking: Evaluates the performance and resource uti-
lization of a process on a given engine instance using a specific workload [3].

– Test: Evaluates a single testable feature of a capability using a specific process
on a given engine instance.

Each capability defines its own set of testable features and the aggregation
hierarchy of feature sets and groups as shown in Table 1. Regarding conformance,
a construct is a building block of the process language (e.g., ExclusiveGateway
of BPMN). Of each construct, we derive testable features by instantiating the
construct with a specific configuration, for instance, an ExclusiveGateway with

Table 1. The different feature trees per capability

Capability Conformance Expressiveness Performance

Group Construct group Pattern catalog -

Feature set Construct Pattern -

Testable feature Construct config. Pattern impl. Workflow

Interactive Dashboard for Workflow Engine Benchmarks 181

a default SequenceFlow in BPMN. A construct group is simply a set of semanti-
cally related constructs, e.g., all gateways in BPMN. Regarding expressiveness,
we have pattern catalogs that consist of patterns which can have different pat-
tern implementations. The pattern implementations are the testable features.
For instance, we have the workflow control flow patterns as a pattern cat-
alog, with the pattern WCP-01 Sequence which has one pattern implementation.
Regarding performance, the testable features are one or more workflows which
are put under test by applying a specific workload within a specific environment.
As a result, the performance and resource utilization is measured. But as perfor-
mance metrics are dependent on the actual hardware and software resources of
the system on which the testing was conducted, an aggregation does not make
sense.

3 Requirements

This section discusses the requirements for the dashboard. We can distinguish
between two different stakeholders, namely, the user representing anyone who
either wants to use or already uses a workflow engine, and the vendor repre-
senting anyone who develops, sells or provides support for an engine. The user
is looking for a workflow engine to use and wants to know which one fulfills his
needs best, and which one would lead to the least danger of a vendor lock-in.
But it could also be the case that the user already uses a workflow engine and is
thinking about migrating to another one and wants to know which engine sup-
ports the most of the required features. A special case would be the migration
from an old(er) version of a workflow engine to a newer one. In contrast, the
vendor is looking forward to know how its product compares to its competitors
and how their own product has evolved over time featurewise.

The requirements were elicited by analyzing the benchmark results of betsy
and BenchFlow, by questioning experts from different universities and by review-
ing scientific papers and existing web dashboards. The captured requirements
were decomposed into user stories and validated by letting the experts try out an
interactive prototype. The most important requirements for the dashboard are:

R.User.1 – compare latest feature: As a user, I want to see differences
and similarities in feature support of the latest engine instances so that I
can make an informed decision which engine to choose.

R.User.2 – compare latest aggregated: As a user, I want to see differ-
ences and similarities in feature support on an aggregation level of the latest
engine instances so that I can make an informed decision which engine to
choose more quickly.

R.User.3 – compare versions feature: As a user, I want to see differences
and similarities in feature support of multiple engine instances of the same
engine so that I can check if an upgrade is worthwhile.

R.User.4 – drill down to feature: As a user, I want to see all features for
each (unsuccessful) aggregation level so that I can check if all features are

182 D. Bimamisa et al.

unsupported or if there are only problems with some of the features in this
aggregation.

R.User.5 – compare any feature: As a user, I want to see differences and
similarities in feature support among different engine instances so that I can
estimate the migration costs between engines (see vendor lock-in).

R.User.6 – compare all aggregated: As a user, I want to see aggregated
information of all engine instances in one place so that I can quickly gain
an overview of all engines as an entry point for further investigations.

R.Vendor.1 – compare latest: As a vendor, I want to compare the
strengths and weaknesses of the latest engine instances so that I can know
how my engine compares to its competitors.

R.Vendor.2 – compare engine progress: As a vendor, I want to compare
multiple versions of the same engine so that I can reveal the feature progress
of the engine.

R.Vendor.3 – detail single engine: As a vendor, I want to evaluate the
strengths and weaknesses of a single engine instance so that I can see how
it can be improved further.

R.Vendor.4 – drill down to failure: As a vendor, I want to be able to drill
down to the cause of any failed feature on my engine so that I can verify
and fix the failure.

In addition to these functional requirements, two additional constraints were
imposed to the dashboard, namely, that it should not use any server-side logic to
keep hosting simple and secure, and that it is easy to use and visually appealing.

4 Big Picture

The big picture of our approach to fulfill the requirements in Sect. 3 can be seen
in Fig. 1. It contains three data models and four software components. Both
betsy and BenchFlow already have their own workflow benchmark model in
which they describe their benchmarks along with their results. The dashboard
itself requires a common data model which contains information of both betsy
and BenchFlow. The transformer has the responsibility to map the data from

Fig. 1. Big picture

Interactive Dashboard for Workflow Engine Benchmarks 183

the two workflow benchmark models of both betsy and BenchFlow to the com-
mon workflow benchmark model for the dashboard. Moreover, it can enrich the
data or apply integrity checks during the mapping as well. For example, the
transformer adds images of the workflow models that are tested to the data and
checks if all referenced files exist. It also checks the data for uniqueness and
existence of referenced IDs. The end user only sees the dashboard.

5 Common Data Model

We created a common data model based on the data models of both betsy and
BenchFlow. In the betsy model8, a test evaluates whether a BPMN or BPEL
process behaves as expected. It comprises test cases with test steps that inject
input into the workflows and associated assertions which evaluate the state of
the workflows. A feature is considered to be supported if all test cases pass. If
only some test cases pass, the feature is partly supported, and if none pass, the
feature is not supported. If a workflow itself is undeployable, it is not supported
as well.

The BenchFlow model9 is structured into trials and experiments. In a
trial, one or more BPMN process models are deployed to the engine under test
and tested using an given load function (i.e., workload) while measuring various
metrics (e.g. cpu and memory usage, throughput in form of number of executed
workflow instances per second and duration/number of the workflow instance).
Trials which test the same process model using the same workload on the same
environment are aggregated into experiments. In [18], each experiment comprises
three trials, and is conducted on three engines using various workloads.

To sum up the differences of both data models, betsy tests features in iso-
lation and quantifies the result into something meaningful, whereas BenchFlow
repeats its feature tests multiple times (trials) and aggregates these results to
reduce errors of measurement and to make the data meaningful. Moreover, betsy
does not provide any additional data besides the test itself, whereas BenchFlow
gathers information about the environment and the underlying hardware and
software system as well.

Based on the betsy model and the BenchFlow model, we created a common
data model that represents both types of benchmarks. Figure 2 shows a high
level version of this model alongside a shortened example of a single test. The
common data model consists of four main elements: the engine, the benchmark-
ing framework, the feature (in its feature tree) and the test. The benchmarking
framework is identified by its name and version. In contrast, an engine is iden-
tified by its name, version and configuration parameters. Hence, an engine with
a different configuration is another engine in our terminology. Furthermore, for

8 https://github.com/uniba-dsg/betsy/tree/master/src/main/groovy/betsy/
common/model.

9 https://github.com/benchflow/docker-images/blob/dev/cassandra/data/
benchflow.cql.

https://github.com/uniba-dsg/betsy/tree/master/src/main/groovy/betsy/common/model
https://github.com/uniba-dsg/betsy/tree/master/src/main/groovy/betsy/common/model
https://github.com/benchflow/docker-images/blob/dev/cassandra/data/benchflow.cql
https://github.com/benchflow/docker-images/blob/dev/cassandra/data/benchflow.cql

184 D. Bimamisa et al.

Fig. 2. The common data model

each engine the release date, its URL, software license10, and the programming
language it is developed in is stored. This data reveals internals of the engine
which can help end users when using and developers when extending the engine.
The ID of the feature consists of the names of all elements along the tree, start-
ing from the capability, language, group, feature set, and feature. Hence, the
feature tree is hierarchically structured and provides two levels to categorize fea-
tures with the feature sets and groups. Features, feature sets and groups have
different meanings depending on the tested capability as shown in Table 1.

The test is the key element in the common data model. It tests a single
feature of an engine using a specific benchmarking tool, and because of this, its
ID is the triple of the IDs of the feature, the benchmarking tool and the engine.
Each test has a name and a description. The test configuration of a test is also
known as the engine independent part of the test and consists of referenced files
(e.g., the process models, required XML schema files, etc.), the test cases with
their steps and assertions, and optional test partners so that the workflow under
test can interact with third party services. The test results, however, are engine
dependent, and comprise various referenced files such as logs or the deployed
workflow model, and the actual results which are in a result format that is
dependent on the capability the tested feature corresponds to. In addition, both
the test results and the test configuration can have additional data stored in a
key-value based tree to handle any additional tool specific data, which is not
displayed in Fig. 2.

The test results are dependent on the tested capability. For conformance
and expressiveness benchmarking, this comprises the start and duration of the
execution, whether the test was deployable, the overall test result, and last but
not least the number of all, successful and failed test cases. For performance

10 The license is given according to the enumeration at http://spdx.org/spdx-license-
list/license-list-overview.

http://spdx.org/spdx-license-list/license-list-overview
http://spdx.org/spdx-license-list/license-list-overview

Interactive Dashboard for Workflow Engine Benchmarks 185

benchmarking, the result comprises both performance (e.g., process duration,
throughput, and number of process instances) and resource utilization (e.g.,
CPU, RAM, IO, and size of stored data) metrics providing the minima, maxima,
average, standard deviation and the relative standard deviation.

The example on the right hand side of Fig. 2 describes a single test which
evaluated the feature SequenceFlow on the engine camunda BPM 7.3.0 with the
benchmarking tool betsy. The feature is part of the conformance benchmark for
BPMN, and within the group basics. The test configuration of the test comprises
a single test case which passes two integers into the workflow and asserts that
the trace of the executed workflow must contain task1. The test results describe
that the test was deployable and successful.

All functional requirements from Sect. 3 can be fulfilled with the data from
the common data model. We can compare the results (a) along the feature tree
using either the feature level or any other aggregation level, (b) along the engine
dimension using either the latest engine, multiple versions of the same engine or
any other combination of engine instances, and (c) drill down to the test results
and the actual engine logs.

To add new benchmarks along with their results to the common data model,
one can simply instantiate the existing structure and reuse the currently defined
result formats and options to define test configurations. If these do not suffice,
one can create their own result format for a new capability, and provide cus-
tom test assertions, steps, and partners through extension. One limitation of
this common data model is the fact that the feature tree uses three levels of
hierarchy to group the testable features, and therefore one must adhere to that
structure. In case of BenchFlow, which does not require any grouping of features,
we introduced empty placeholder groups to fit the data model nonetheless.

6 Implementation

This section outlines the implementation of both, the transformer and the dash-
board. The transformer is implemented in Java 8, whereas the dashboard relies
on HTML5 and JavaScript alone. Both interact with each other through the
exchange of the common data model which is implemented in JSON11.

The transformer converts data from betsy and BenchFlow into the common
data model. It does this by adding the data to an existing instance of the common
data model, i.e., acting like an extract-transform-load (ETL) process known
from the field of Business Intelligence with their Data Warehouses. However, in
contrast to a Data Warehouse, it overwrites the results if a newer benchmark
result is mapped to an existing one. During the mapping, the transformer ensures
the uniqueness and resolvability of atomic and composite IDs, and manages the
links to the external files. The transformer itself is usable through a command
line interface, and open source as well as publicly available12.

11 See http://www.json.org/.
12 See https://github.com/peace-project/transformer.

http://www.json.org/
https://github.com/peace-project/transformer

186 D. Bimamisa et al.

The dashboard is open source13 and publicly available14 as well. It contains
seven pages: The start page provides links to the pages containing the actual
benchmark results. Three capability pages have been created, each of them pre-
senting benchmark results of different capabilities: for conformance, for expres-
siveness and for performance. The engine compare page allows users to compare
two different engine instances by their features as well as by their benchmark
results. The engine overview page allows the user to quickly get an overview of
the engine instances and how each engine instance supports the different capa-
bilities. Information about the project is included in the about page.

Both the transformer and the dashboard have been built for extension. The
three steps to add a new capability with benchmarking results are as follows.
First, the transformer must be extended with the ability to convert the data
model of the new benchmark capability to the common data model as described
in Sect. 5. Second, as each capability has its own result format, we need to provide
a function which can interpret and load the benchmark results from the common
data model. Third and last, a HTML template must be created which displays
the benchmark results of the new capability. We can reuse the logic for filtering
the data along the feature tree, but we must specify which filters and drill-down
functions make sense.

7 Conclusion and Future Work

In this paper we have presented (a) a common data model for both workflow
benchmarking frameworks betsy and BenchFlow, (b) a transformer which can
map data from betsy and BenchFlow to the common data model, and (c) an
interactive dashboard which uses the common data model to visualize the data
so that end users, developers or researchers can compare workflow engines. The
implementation of the dashboard was driven by requirements in form of user
stories which are shown to be fulfilled with the implementation.

Future work is subdivided into technical and organizational improvements.
Regarding technical ones, we aim to add charts and graphs to the dashboard so
that the existing data is presented even clearer. Further, we aim to incorporate
additional capabilities and benchmarks, so that we can present interesting met-
rics, e.g., the required effort to implement new features, how many bugs are filed
over a period, and time until a bug is fixed. Last, we try to generalize the com-
mon data model even further to cover benchmarking results for other software
systems as well. Regarding organizational improvements, our plan is to build up
a community for workflow engine benchmarking comprising end users, develop-
ers, and engine vendors alike. This community can then drive the improvement
of the dashboard, betsy and BenchFlow through their feedback.

13 See https://github.com/peace-project/dashboard.
14 See peace-project.github.io.

https://github.com/peace-project/dashboard
https://peace-project.github.io

Interactive Dashboard for Workflow Engine Benchmarks 187

Acknowledgment. We would like to express our gratitude to Jörg Lenhard and
Matthias Geiger for fruitful discussions and feedback regarding the dashboard, and
both, Marigianna Skouradaki and Vincenco Ferme, for helping in bringing the Bench-
Flow data into this dashboard.

References

1. Delgado, A., Calegari, D., Milanese, P., Falcon, R., Garćıa, E.: A systematic app-
roach for evaluating BPM systems: case studies on open source and proprietary
tools. In: Damiani, E., Frati, F., Riehle, D., Wasserman, A.I. (eds.) OSS 2015. IFIP
AICT, vol. 451, pp. 81–90. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-17837-0 8

2. Elias, M., Bezerianos, A.: Exploration views: understanding dashboard creation
and customization for visualization novices. In: Campos, P., Graham, N., Jorge,
J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011. LNCS, vol.
6949, pp. 274–291. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23768-3 23

3. Ferme, V., Ivanchikj, A., Pautasso, C.: A framework for benchmarking BPMN
2.0 workflow management systems. In: Motahari-Nezhad, H.R., Recker, J.,
Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 251–259. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23063-4 18

4. Few, S.: Information Dashboard Design: The Effective Visual Communication of
Data. O’Reilly, Massachusetts (2006)

5. Geiger, M., Harrer, S., Lenhard, J.: Process engine benchmarking with betsy –
current status and future directions. In: ZEUS, pp. 37–44, January 2016

6. Geiger, M., Harrer, S., Lenhard, J., Casar, M., Vorndran, A., Wirtz, G.: BPMN
conformance in open source engines. In: SOSE, March 2015

7. Geiger, M., Harrer, S., Lenhard, J., Wirtz, G.: On the evolution of BPMN 2.0
support and implementation. In: SOSE, pp. 120–128, March 2016

8. Harrer, S., Lenhard, J., Wirtz, G.: BPEL conformance in open source engines. In:
SOCA, pp. 237–244, December 2012

9. Harrer, S., Lenhard, J., Wirtz, G.: Open source versus proprietary software in
service-orientation: the case of BPEL engines. In: Basu, S., Pautasso, C., Zhang,
L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 99–113. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-45005-1 8

10. Harrer, S., Nizamic, F., Wirtz, G., Lazovik, A.: Towards a robustness evaluation
framework for BPEL engines. In: SOCA, pp. 199–206, November 2014

11. Harrer, S., Preißinger, C., Wirtz, G.: BPEL conformance in open source engines:
the case of static analysis. In: SOCA, pp. 33–40, November 2014

12. ISO/IEC. ISO/IEC 25010:2011; Systems and software engineering – Systems and
software Quality Requirements and Evaluation (SQuaRE) – System and software
quality models (2011)

13. ISO/IEC. ISO/IEC 19510:2013 – Information technology - Object Management
Group Business Process Model and Notation, November 2013. v2.0.2

14. OASIS. Web Services Business Process Execution Language, April 2007. v2.0
15. Oppenheimer, D., Brown, A.B., Traupman, J., Broadwell, P., Patterson, D.A.:

Practical issues in dependability benchmarking. In: EASY, p. 7 (2002)
16. Pauwels, K., Ambler, T., Clark, B.H., LaPointe, P., Reibstein, D., Skiera, B.,

Wierenga, B., Wiesel, T.: Dashboards as a service: why, what, how, and what
research is needed? J. Serv. Res. 12, 175–189 (2009)

https://doi.org/10.1007/978-3-319-17837-0_8
https://doi.org/10.1007/978-3-319-17837-0_8
https://doi.org/10.1007/978-3-642-23768-3_23
https://doi.org/10.1007/978-3-642-23768-3_23
https://doi.org/10.1007/978-3-319-23063-4_18
https://doi.org/10.1007/978-3-642-45005-1_8

188 D. Bimamisa et al.

17. Röck, C., Harrer, S., Wirtz, G.: Performance benchmarking of BPEL engines: a
comparison framework, status quo evaluation and challenges. In: SEKE, pp. 31–34,
July 2014

18. Skouradaki, M., Ferme, V., Pautasso, C., Leymann, F., van Hoorn, A.: Micro-
benchmarking BPMN 2.0 workflow management systems with workflow patterns.
In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694,
pp. 67–82. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5 5

19. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distribu. Parallel Databases 14(1), 5–51 (2003)

20. WfMC. Terminology & Glossary. WfMC, February 1999. v3.0
21. Yigitbasioglu, O.M., Velcu, O.: A review of dashboards in performance manage-

ment: implications for design and research. IJAIS 13(1), 41–59 (2012)

https://doi.org/10.1007/978-3-319-39696-5_5

A Distributed Cross-Layer Monitoring System
Based on QoS Metrics Models

Damianos Metallidis(B), Kyriakos Kritikos, Chrysostomos Zeginis,
and Dimitris Plexousakis

ICS-FORTH, Heraklion, Greece
{metal,kritikos,zegchris,dp}@ics.forth.gr

Abstract. Monitoring of business process workflows based on metric
quality models is associated to a gap between the definitions of work-
flow, service and infrastructure layer quality metrics. Most monitoring
frameworks rely only on a layer-specific quality model, covering, e.g., the
service layer, without considering the cross-layer dependencies it might
have with quality models in the rest of the layers. The novelty of this
paper closes the gap between the different functional layers by defining a
cross-layer dependency model indicating relationships of quality aspects
from three different semantic quality models. Each of these three quality
models define metrics, metric aggregations and computations for each
of the separate layers. These quality models are being addressed by a
continuously, yet evolving distributed monitoring system.

Keywords: Quality models · Cross-layer dependencies
Quality metrics · Semantics · Computation · Monitoring · Aggregation

1 Introduction

In order to implement cross-organisational workflows and to realise collabora-
tions between small and medium enterprises (SMEs) the use of Web service
technology and Service-oriented Architecture (SOA) has become a necessity.
Whilst, SMEs are continuously moving towards service-oriented infrastructures
where applications are being modeled, the need of hosting them has raised an
important issue for the quality of the underlying Cloud infrastructures. Virtu-
alization, provided by cloud infrastructures, delegates the use of any kind of
resources, such as computing environments or storage systems, to the data cen-
ter’s internal networks. All of the above issues raised the need for monitoring of
the quality of the acquired resources and of the services offered to final users as
also the workfload-based procedures used by SMEs in order to use services.

We address those aspects by specifying Quality Models (QMs) that a mon-
itoring system could adopt so as to gather monitoring data taken from three
different layers: (a) Workflow, (b) Service and (c) Infrastructure layer. State-
of-the-art research is based mostly on individual layers without considering the
cross-layer dependencies [17] that Quality Models (QM) might have. This leads
c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 189–200, 2018.
https://doi.org/10.1007/978-3-319-72125-5_15

190 D. Metallidis et al.

us to propose layer-specific QMs along with a cross-layer QM catering for depen-
dencies among layers. Intention of QMs is the specification of quality terms (e.g.,
quality attributes) as well as of the respective relationships between these terms.
In order to specify the legitimate structure of a QM, the respective conceptual-
isations and all possible types of quality term/concept relationships, a Quality
Meta-Model (QMM) [14] should be in place. In this paper we use OWL-Q [14]
as a semantic SQMM able to define semantic QMs. While different QMMs have
been proposed using different representation formalisms, ontologies seem to be
the best formalism as they provide a formal, syntactic and semantic descrip-
tion model of concepts, properties and dependencies between concepts. More-
over, they are extensible, human-understandable and machine-interpretable and
enable reasoning via using Semantic Web technologies.

Fig. 1. Quality Models terms and cross-layer dependencies

Catering for the workflow-based usage of a service as well as the infrastructure
that supports software components realizing part of the workflow functionality,
we take into account three main QMs: (a) the workflow QM (WM) stressing
quality terms related to tasks and workflows, (b) the service QM (SM) indicating
quality terms for assessing the quality of services, and (c) the infrastructure QM
(IM) encompassing quality terms suitable for the assessment of the quality of
the underlying cloud infrastructure. Additionally, we have defined cross-layer
relationships between quality metrics defined in the three QMs, in a sense that
a metric defined in layer X can be used for the calculation of a metric defined in
layer Y . Figure 1 depicts the quality models and terms that have been defined
along with the cross-layer connection dependencies between them, indicating
relations between quality metrics.

We are heavily focused on WM quality metrics, in a manner such that a
possible user of any complicated workflow (we address this by an example of a
multi-structure workflow, see Sect. 3.1) is able to evaluate results of procedures
that include benchmarking and conformance tests based on the aforementioned
aspects. Following this direction we will be able to deliver Workflow Monitor
as a Service (WMaaS) in any Workflow as a Service (WfaaS) procedure. The
definitions of the quality terms that are being proposed will help SMEs to give

A Distributed Cross-Layer Monitoring System Based on QoS Metrics Models 191

performance and reliability grades on their business workflows, standardizing
the way that the workflows are going to be evaluated.

The rest of the paper is structured as follows. In Sect. 2 we review the related
work, while in Sect. 3 we represent the four QMs. In Sect. 4 we demonstrate the
architecture of our monitoring system, whilst Sect. 5 provides conclusions and
future work directions.

2 Related Work

As already mentioned, there are many layer-specific approaches for QMs. For
instance, approaches in [12] and [7] are based on stochastic models and proba-
bilistic theory having as a major concern the scalability of the Cloud resources
based on quality metric results. Several approaches have been proposed cap-
turing infrastructure QMs with focus on Cloud resources. Authors in [4] define
QMs which support the evaluation of public Cloud services; the validation of
these QMs is performed according to empirical case studies without taking into
account the relations that WM, IM and SM can have between them. Precise
definitions of scalability and elasticity are given in [5,11], spanning mostly the
service and infrastructure layers; our work on the other hand defines scalability
and elasticity metric dependencies between those two layers and does not cope
with them in isolation.

In [6] a layer-specific extensive WM is proposed for the specification of work-
flow QoS, as well as methods to analyze and monitor QoS. In [9], the authors
introduce the hypothesis that reliability of workflows can be notably improved
by advocating scientists to preserve a minimal set of information that is essential
to assist the interpretations of these workflows and hence improve their repro-
ducibility and reusability, but with no user constraints taken into account.

A very interesting platform-independent solution has been proposed in [8]
in order to support reconfiguration in service-oriented distributed soft real-time
systems, in favor of time-bounded operations. As the main focus is on real-time
monitoring and reconfiguration, the fact that the services might be a functional
piece of a workflow has not been taken into account. This paper mainly involves
service-oriented applications, which could help in the possible re-organization of
the services themselves in order to function properly.

Finally, state-of-the-art research provides some approaches towards cross-
layer monitoring. Kazhamiakin et al. [13] define appropriate mechanisms and
techniques to address monitoring in an integrated cross-layer framework. In [10]
the authors present an integrated approach for monitoring and adapting multi-
layered SBAs. The approach coprises four main steps: (1) monitoring and correla-
tion, (2) analysis of adaptation needs, (3) identification of multi-layer adaptation
strategies and (4) adaptation enactment. Finally, in our previous work [17] we
propose a monitoring framework for Multi-Cloud SBAs, that is able to perform
cross-layer (Cloud and SOA) monitoring enabling concerted adaptation actions.

192 D. Metallidis et al.

3 Definition of Quality Models

Quality dimensions cover an important aspect [14] of QMs involving dimension-
specific attributes that can be measured by one or more dimension-specific met-
rics. Calculation formulas, quality metrics and particular types of metric rela-
tionships are defined in a formal way to formulate the structure of the respective
layer. To achieve this, we have as initial guide quality dimensions/attributes,
that assist in finding candidate metrics at a lower layer which could be con-
nected/mapped to metrics at the higher layers. To produce suitable and com-
plete QMs, which can be easily exploited by cross-layer monitoring systems, the
quality terms included in them should satisfy the properties of measurability,
validity and definition formalization [16]. Before we continue with the definition
of the QMs to be used by a cross-layer monitoring system [17], we should also
mention that these QMs rely on characteristics, stated in [15] (using OWL-Q),
that each of the quality metrics should have.

3.1 Workflow Quality Model (WM)

We have defined a QM for the workflow layer, which contains workflow and task
metrics as advocated in [6]. It also explicates how task measurements can be
propagated to the level of workflow to produce the respective measurements of
workflow metrics through metric aggregations. The proposed QM comprises the
quality dimensions of time and reliability.

Time quality dimension of time is a fundamental aspect of performance that
describes the time needed in order to measure, execute, record, respond and
traverse through operations.

Concerning the Workflow level we have defined metrics of Workflow Process
Time (WPT), which is calculated by the addition of the Workflow Execution
Time (WET) and Workflow Delay Time (WDT) over all tasks along with the
Workflow Transition Delay Time (WTDT) from one task to another. In addi-
tion, we have defined Overall Workflow Execution Time (OWET) indicating
the overall execution time spent when executing all tasks in the workflow being
independent from the workflow structure.

Calculation of Workflow Execution Time. To assist in the calculation of
WET we have defined a composite metric called sub-WorkflowExecution (sub-
WE) which represents the execution time of a workflow’s sub-structure/sub-
element. Possible values of the sub − WE metric depend on the type of the
respective sub-structure. A sub-structure could be any sequential or parallel
structure within a workflow (we neglect conditional ones as they are being pos-
sessed at run-time). In the case of a sequential structure, the respective sub-WE
metric is computed from the addition of Task Execution Time TExT, defined
as the amount of time spent to perform the task by any entity (e.g., a human-
based or software component), and sub-WE values mapping to the contents of
this structure (i.e., tasks and internal sub-structures), respectively. In case of a
parallel structure, the sub-WE metric depends on the max execution time value
over the path branches included in this structure.

A Distributed Cross-Layer Monitoring System Based on QoS Metrics Models 193

Fig. 2. BPMN Workflow indicating sub-WE elements

A new sub-WE is defined in three main situations: (a) For the single
global/outer structure of the workflow which is equal to the workflow’s WET
(S 1 in Fig. 2), (b) When next step in the workflow is a parallel structure and
(c) when next step in the workflow is a sequential structure. A sub-WE is going
to be computed once it’s component values/measurements are available i.e., the
encompassing sub-WE and TExT metrics.

Figure 2 depicts a nice and slightly complex BPMN workflow model which can
reflect the reality and is mainly used to explicate the computation procedure for
workflow metrics. This model includes eight sequential structures, two parallel
structures, and a conditional structure. S symbol represents any kind of structure
in the BPMN diagram. Below we represent the formulation of our algorithm
along with an example following that procedure.

Table 1. Formulas for the calculation of WET.

Metrics for the calculation of the WET Calculation formulas

Workflow Execution Time (WET) sub-WE1

sub-WEi Sequential Element Case:
TExT1 + + TExTN +
sub-WE2 + + sub-WEK

Parallel Element Case:
max(sub-WE2,...,sub-WEK ,
TExT1,...,TExTN)

In Table 1, i indicates a number between 1 and K, where K is the number
of sub-structures which maps to sub-WE metrics and N is the number of tasks
which maps to the TExT metrics.

As shown in Table 1, we rely on a procedure which leads to the production
of a simple computation formula. This formula is recursively broken down into
additional components, so as to compute the WET metric of a specific workflow.
To compute each of the sub-WE metrics we have the convention that sub-WE1

194 D. Metallidis et al.

represents the execution time spent in structure S1, sub-WE2 represents the
execution time spent in structure S2 and so on. Spanning workflow tasks, TExT1

represents the execution time spent in Task1, TExT2 represents the execution
time spent in Task2 and so on. Thus, following the above rules and Table 1
formulations, WET equals to sub-WE1, sub-WE1 equals to the addition of sub-
WE2, sub-WE3 and sub-WE10. Sub-WE2 equals to the addition of TExT1 and
TExT2. Sub-WE3 equals to the max (sub-WE4, sub-WE5, sub-WE6). Same
calculations are done for the remaining numbers of the substructures in order to
get the right values. The calculation procedure of WTDT and WDT metrics is
similar to WET .

Reliability quality dimension corresponds to the likelihood that a component
(e.g., workflow, task, service) will not malfunction or fail. We have defined the
following workflow metrics:

– Workflow Fidelity (WF): It measures the satisfaction of the workflow
instances over the user quality requirements, within a specific time period.
Thus, we can measure WF by applying the values of workflow metric measure-
ments (mapping to the specified period of time) to a utility function which
depends on users requirements.

Additionally we define the following task metrics:

– Task Fidelity (TF): It computes how well tasks instances meet user require-
ments (at the task level) within a specific time period by utilizing similar
functions with respect to the case of WF.

Table 2. Calculation formulas of Workflow and Task metrics.

Workflow and task metrics Calculation formulas

Workflow Fidelity(WF) fWF (hist, reqs)

fWF (hist, reqs) (sat(meas1,reqs)+...+sat(measA,reqs))
A

sat (measi, reqs) if reqs.lowThreshold ≤ measi.value
∧ measi.value ≤ reqs.upperThreshold
return 1; else return 0;

Task Fidelity(TF) fTF (hist, reqs)

fTF (hist, reqs) (sat(meas1,reqs)+...+sat(measB ,reqs))
B

In Table 2, we define the Workflow Fidelity formula. This formula maps to the func-
tion fWF (hist, reqs), which takes as input two parameters. The first parameter is
a set of metrics along with their measured values, mapping to the interested time
interval; while the second parameter represents the user requirements. A measure-
ment is composed of a metric, a value and a timestamp, whilst each user require-
ment represents a threshold being applied over a specific metric. This function has
a body, which computes the mean satisfaction level of user requirements over the

A Distributed Cross-Layer Monitoring System Based on QoS Metrics Models 195

considered measurements represented by a value in the range [0.0, 1.0]. The sat-
isfaction level for each measurement is computed from the sat function which ini-
tially selects those user requirements which map to the respective metric of the
measurement and then performs the comparison of the measurement value against
the user requirement low and upper bound/thresholds. If the metric measurement
is within these thresholds, the output is 1; otherwise, it is equal to 0. In the case
of tasks, we independently calculate their reliability in the context of a particular
workflow, by considering a specific time interval and similar calculation functions
to the workflow fidelity.

3.2 Service Quality Model (SM)

We have defined a SM based on metrics that assesses the quality of the respec-
tive service. Quality of a service maps to the quality that a requester perceives
when using this service based on Service Level Objectives (SLOs) but also to
the internal quality of this service which maps to the capturing of the service
provider view. We can rely on performance metrics, indicating the performance
of a web service; on stability metrics that are related to the service reliability
and availability.

The performance dimension refers to the velocity of a service responding
to any service request. It can be described by metrics that refer to the qual-
ity attribute of Response Time, such as (a) Request Completion Time, which
depicts the time point that all the data mapping to a response arrive at the user,
(b) Execution Time indicating the time taken for the service to execute a single
request and (c) Delay Time defining the delay time of the software component
in order to start processing the request.

Stability quality dimension indicates the ability to provide reliable, con-
tinuous, consistent and recoverable services despite undesired situations like
increased load, congestion, system failure and natural disasters. This quality
dimension has the following quality attributes:

– Availability: We define availability as the ratio of time in which a service
is expected to function properly. We have to stress that we do not consider
networking issues as these are related to service accessibility. Service clients
or third-parties assess the availability of services based on the uptime status
(as conceived by these entities which could also be related to network issues
that cannot be easily detected). Thus, we have defined the metrics of Down
Time which is the total time that the service is not available and the metric of
Availability indicating the external availability of the service as being viewed
by external services. Availability equals to 1 − DownTime

TotalT ime , where TotalT ime
is the total observation time.

– Reliability: The reliability quality attribute measures how reliable is the ser-
vice reffering to the fact of having the least possible number of failures and
the largest possible amount of time between them, according to user con-
straints. Metrics of this attribute are Mean Time To Failure (MTTF), Mean
Time Between Failures (MTBF) and Fidelity as also being defined in WM,
but being adapted for the notion of SM.

196 D. Metallidis et al.

By relying on [11], service scalability is defined as the ability of a service to
scale and satisfy the agreed SLOs, when additional workload is received. The
metrics defined for realizing service scalability are the Scaling Utilization metric
which assesses the percentage of time a service exploits more or less resources
than needed and Scaling Precision (%) which computes the percentage of time
where the scaling of a service process was successful and according to the agreed
SLOs, by dividing the number of successful scaling actions by the total number
of scaling actions.

For the QM of Service layer we have defined the elasticity quality dimension
as the degree at which a service system can autonomously scale the amount of
service instances based on workload fluctuations to still conform to the SLOs
agreed. A service’s elasticity can be computed by the metrics of Mean Time
Taken to React (MTTrct) and PerfScaleFactor. Metric of MTTrct is defined
as the mean time of reaction from the moment the need of scaling is detected
until the respective scaling is completed, which is derived from the metric of
Reaction Time indicating the raw time that the reaction takes. In addition,
PerfScaleFactor is the scale factor of the performance between two invocations
of the same service before and after the scaling has been performed; equals to
∑N

i=1 perfscalefactori
N , where perfscalefactor i is the scale factor of i metric and N

is the number of metrics being considered.

3.3 Infrastructure Quality Model (IM)

At the infrastructure layer we use four quality attributes defined in [4], as
depicted in Fig. 1 and define the corresponding metrics. Mainly Network as a
Service (NaaS), Platform as a Service (PaaS) and Infrastructure as a Service
(IaaS) is the reference point of most of the quality metrics defined.

Networking quality attribute characterizes the quality of a data center’s (DC)
network. In order to assess internally the network performance, we cover the DC
operator and the SaaS provider. Both care about the DC network performance
(e.g., an application execution may involve invoking different components situ-
ated in different DC VMs). We define the respective metrics of (a) Mean Packet
Loss Frequency (lost packets/min) indicating the mean rate of lost packets that
failed to arrive at their destination, (b) Max Connection Error Rate which defines
the maximum rate at which connection errors occurs and (c) Packet Transfer
Time indicating the mean packet transfer time from/to its source/destination
accordingly.

Quality attribute of CPU Utilization depicts the level at which processors are
leveraged within a cloud infrastructure in favour of a client. Thus, we have define
the metrics of (a) Arrival Rate (transactions/ms) indicating the workload that is
arriving at the CPU in certain point of time (b) Shared Physical CPUs indicating
the number of different VMs function on each of the CPUs (c) Network shared
Physical CPUs which is the number of different VMs that the physical CPU is
being used of but between different network clusters (d) Virtual CPUs indicating
the number of virtual CPUs that are being served by each of the physical CPUs

A Distributed Cross-Layer Monitoring System Based on QoS Metrics Models 197

and scheduled by the according hypervisor (e) CPU Average Load (%) which
indicates the average CPU load for a processor, (f) CPU Overall Maximum Load
(%) which indicates the overall maximum CPU Load being monitored which is
further calculated by the metric of (f 1) CPU Maximum Load(%) indicating the
peak load of the CPU within a specific period of reference. Similar metrics are
being defined in case of CPU Minimum Load.

PaaS/IaaS Scalability quality attribute is defined [11] as the ability of the
underlying infrastructure to sustain increasing workloads by making use of addi-
tional resources, that are directly requested, including all the hardware and vir-
tualization layers. Based on [5], we define Scalability Range (ScR) as the ability
of handling maximum workload that can still be handled by the underlying
infrastructure to still satisfy the corresponding SLOs.

To support the notion of elasticity we are also based on [11], where it is defined
as the degree to which a Cloud infrastructure can adapt on workload changes by
provisioning and deprovisioning resources in an autonomic manner, such that at
each time point the available resources match the user requirements, as much as
possible. In addition, we rely on precision [11] to define elasticity metrics which
is the absolute deviation of the according amount of allocated resources from the
actual resource demand. Based on the aforementioned aspects of elasticity, we
use the metrics of (a) Precision of scaling out/scaling in (PO,PI) and (b) Mean
Time To Quality Repair (MTTQR) from [5,11], respectively.

3.4 Cross-Layer Dependency Quality Model

To formalize relationships between quality metrics across the three layer-specific
QMs, we have considered an initial set of cross-layer dependencies in the form
of a dependency quality model. These dependencies indicate (a) that the com-
putation of a metric on layer X can be used on layer X + 1 to complete the
computation of a relevant metric and (b) the waxing dependencies that might
exists between different layer metrics. Relevance could map to either both met-
rics belonging to the same quality dimension, or being described by similar qual-
ity attributes. Via the cross-layer dependencies (Fig. 1), the metric aggregation
formulas and the fact that raw quality metrics with no dependencies can be
calculated by sensors placed by the distributed monitoring system on one of the
respective layers, the measurability of all metrics defined is guaranteed.

We have separated the cross-layer dependencies between the metrics by con-
sidering groups of adjacent layer-specific QMs:

– For the SM and WM group the following dependencies have been captured:
• Task execution time of a service task in a workflow can be computed from

the execution time of the service used to realise this task’s functionality.
• A service task’s fidelity equals the fidelity of the service realising its func-

tionality, when correspondence between task and service component is
valid.

• Metric of Task Delay Time defined in WM can be used in order to derive
the value of the Delay Time of a service component defined in SM .

198 D. Metallidis et al.

– Next group of dependencies derived are from the SM and IM QMs:
• Mean Time to Quality Repair defined in IM has an equality reference to

SM for the MTTrct defined in elasticity dimension. Thus, if we are referring
to the same re-actions due to workload changes, then we can derive MTTrct
of SM by mapping the workload changes to actions that had an impact on
the scalability of the service.

• There is an increasing trend that relates Scaling Utilization defined in SM
and Scaling Range defined in IM . When utilization of scaling is high it
gives us the sign that the underlying infrastructure is capable of handling
scaling actions in high rates, meaning that the scaling range has also an
increasing value making them waxing dependent values.

• Regarding CPU utilization defined in IM we can infer that is a waxing
dependent value with response time defined in SM . CPU utilization is
increased if the overheads associated with context switching are being min-
imized and happen infrequently, thus large values of CPU Average Load
for the according process context. This will have as a result the increase of
the execution time for the according services.

4 Architecture of the Cross-Layer Monitoring System

As Fig. 3 shows, Virtual Machines (VMs) in Public Cloud 1 include moni-
toring sensors, metric calculation aggregators and database instances. There
is more than one user VMs that compromise the IaaS and SaaS aggregators
with the according sensors being deployed. Information being retrieved from
the aforementioned user VMs is passed on the WF Engine VM through a pub-
lish/subscribe mechanism. The rationale of having only one VM that the WF
Engine is established on, is that a certain Workflow Engine is responsible for the
business processes for each of the public clouds. Thus, by passing information
to the Workflow VM we compute and store values of metrics related to VMs of
the according Cloud. The role of the WF Engine VM is not only to have a WF
Engine aggregator, but also a Cloud-dependent aggregator that is responsible
for (a) aggregation of metric values based on the cross-layer dependency QM
and (b) the measurement propagation to the user VMs in order to fulfill missing
cross-layer dependencies that might exist on the according user VMs.

The next step is to pass the metric dependency data, through the pub-
lish/subscribe mechanism, on our private infrastructure. Then, we store and
relate metric measurements being published from different public clouds based
on the QMs that we have defined. Thus, by inter-correlating metric measure-
ments and forcing the propagation of them across public clouds we are fully
aware of the functional aspect of the according services.

Monitoring tools which are being used in order to implement and extend [17]
the functionality of the system are the monitoring tools of Prometheus [3] for
SM , Nagios monitoring tool [2] for IM and the monitoring capabilities of Activ-
iti [1] in case of WM . The provisioning process of the VMs in each of the public
clouds sectors are out of the scope of this paper, nevertheless having a major
impact on the performance of PaaS in IM .

A Distributed Cross-Layer Monitoring System Based on QoS Metrics Models 199

Fig. 3. Physical architecture of the Cross-Layer Monitoring System

5 Conclusions and Future Work

In this paper we have demonstrated three metric quality models along with a
fourth one indicating the cross-layer dependencies and relations between quality
metrics of the three QMs of WM , SM and IM . QMs that have been proposed
are being covered by defining quality terms describing each of the layer’s metric
composability. To address that, we have created computation formulas that can
be used to assign values on cross-layer depended-metrics, that could not been
calculated unless dependencies are not defined. As for future work, we are in
the process of extending the distributed monitoring system framework [17] in
order to realize the support for the QMs proposed. Furthermore, we are going to
enrich our QMs and our dependency model, so as to consider additional aspects
(like security) mapping to the consideration of new domain-independent metrics.
We are going to consider metrics in order to: (a) better validate the approach
according to a specific use case; (b) highlight that the current structuring of the
QMs is appropriate/suitable.

Acknowledgments. This work is supported by (a) CloudSocket project (http://
www.cloudsocket.eu) that has been funded within the European Commissions H2020
Program under contract number 644690 and (b) PaaSage (http://www.paasage.eu)
(FP7-317715) EU project.

References

1. Activiti workflow engine. http://activiti.org/
2. Nagios monitoring tool. https://www.nagios.org/
3. Promitheus monitoring tool. https://prometheus.io/
4. Bardsiri, A.K., Hashemi, S.M.: Qos metrics for cloud computing services evalua-

tion. Int. J. Intell. Syst. Appl., 27–33 (2014)
5. Becker, M., Lehrig, S., Becker, S.: Systematically deriving quality metrics for cloud

computing systems. In: John, L.K., Smith, C.U., Sachs, K., Llad, C.M. (eds.) ICPE,
pp. 169–174. ACM (2015)

http://www.cloudsocket.eu
http://www.cloudsocket.eu
http://www.paasage.eu
http://activiti.org/
https://www.nagios.org/
https://prometheus.io/

200 D. Metallidis et al.

6. Cardoso, J., Miller, J., Sheth, A., Arnold, J.: Modeling quality of service for work-
flows and web service processes, October 2002

7. Cardoso, J., Sheth, A., Miller, J.: Workflow Quality of Service. Technical report,
LSDIS Lab, Computer Science, University of Georgia, Athens GA, USA, LSDIS
Lab, March 2002

8. Garca-Valls, M., Lopez, I.R., Fernndez-Villar, L.: iland: an enhanced middleware
for real-time reconfiguration of service oriented distributed real-time systems. IEEE
Trans. Ind. Inf. 9(1), 228–236 (2013)

9. Gmez-Prez, J.M., Garca-Cuesta, E., Zhao, J., Garrido, A., Ruiz, J.E.: How reliable
is your workflow: monitoring decay in scholarly publications. In: Castro, A.G.,
Lange, C., Lord, P.W., Stevens, R. (eds.) SePublica. CEUR Workshop Proceedings,
vol. 994, pp. 75–86. CEUR-WS.org (2013)

10. Guinea, S., Kecskemeti, G., Marconi, A., Wetzstein, B.: Multi-layered monitoring
and adaptation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2011. LNCS, vol. 7084, pp. 359–373. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25535-9 24

11. Herbst, N.R., Kounev, S., Reussner, R.H.: Elasticity in cloud computing: what it
is, and what it is not. In: Kephart, J.O., Pu, C., Zhu, X. (eds.) ICAC, pp. 23–27.
USENIX Association (2013)

12. Joshi, K.P., Joshi, A., Yesha, Y.: Managing the quality of virtualized services. In:
2011 Annual SRII Global Conference, pp. 300–307, March 2011

13. Kazhamiakin, R., Pistore, M., Zengin, A.: Cross-layer adaptation and monitor-
ing of service-based applications. In: Dan, A., Gittler, F., Toumani, F. (eds.)
ICSOC/ServiceWave -2009. LNCS, vol. 6275, pp. 325–334. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16132-2 31

14. Kritikos, K., Pernici, B., Plebani, P., Cappiello, C., Comuzzi, M., Benbernou, S.,
Brandic, I., Kertsz, A., Parkin, M., Carro, M.: A survey on service quality descrip-
tion. ACM Comput. Surv. 46(1), 1 (2013)

15. Kritikos, K., Plexousakis, D.: Requirements for qos-based web service description
and discovery. IEEE Trans. Serv. Comput. 2(4), 320–337 (2009)

16. Schneidewind, N.F.: Methodology for validating software metrics. IEEE Trans.
Softw. Eng. 18(5), 410–422 (1992)

17. Zeginis, C., Kritikos, K., Garefalakis, P., Konsolaki, K., Magoutis, K., Plexousakis,
D.: Towards cross-layer monitoring of multi-cloud service-based applications. In:
Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135, pp.
188–195. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40651-
5 16

https://doi.org/10.1007/978-3-642-25535-9_24
https://doi.org/10.1007/978-3-642-25535-9_24
https://doi.org/10.1007/978-3-642-16132-2_31
https://doi.org/10.1007/978-3-642-40651-5_16
https://doi.org/10.1007/978-3-642-40651-5_16

Rethinking Services (ResearCH)

Preface of ReSerCh 2016

1 The Need for Services

Since its early inception, Service Oriented Architecture (SOA) [3] has provided a vivid
abstract representation for the basic mechanisms and parts by means of which complex
software solutions can be shaped with a compositional and highly modular approach.
The main concepts on which it has been designed [2] made this architecture suitable for
many domains spanning from the development of software-intensive systems to the
integration of heterogeneous information systems.

Although huge effort has been spent especially in the 2000s, services research
seems to be facing a stall in recent years, focusing and mainly rotating around a distinct
set of highly-researched topics (e.g., service composition) and neglecting extremely
challenging aspects (e.g., service governance). This is actually in contrast with the need
for services. For instance cloud computing [1] is based on concept of providing ser-
vices at different levels (i.e., infrastructure, platform, software). Microservices [4] are
gaining more and more attention as the way to build reliable, scalable, and flexible
software solutions.

Goal of the workshop is to foster the discussion around a new service research
agenda where both academics and industries are the key players. Based on the research
done in the past, the analysis of successful stories and failures, the study of the impact
obtained by the proposed solutions, new topics and challenges need to be defined.

2 Redefine the Service Research Agenda

With this premise, our gathering sought to clarify the dimensions across which
newly-found research ideas may rotate and shape the future of services research.
A number of high-impact topics were introduced and discussed during the workshop,
ranging from fair- to trustless- to continuous-computing, to user-friendly design, and
the definition of ecosystem of services. In addition, the need for investigating the
computer science perspective and the business perspective is also arose.
Service-Dominant Logic [5] and SOA need to talk to each other for the purpose of
designing, implementing, and continuously deploying usable, efficient, and effective
software services.

The workshop concludes that cross-disciplinary collaboration on these topics is
fundamental as service based systems will have more and more importance in various
domains: from emergency management to data analytic and logistic. Although the
basic principles of SOA remain valid, academics and industries need to develop
methods and solutions for enabling the development, deployment and governance of
service-based systems with a unprecedented level of flexibility, scalability and speed of
continuity. For instance, Big data calls for data-intensive applications able to deal with

a lot of information, while fog computing calls for applications able to deal with
numerous, nomadic, and heterogenous devices.

Among the several contributions submitted and selected through a peer-review
process, the authors of three of them have been invited to submit an extended version.
The three papers that follow enter into the details of some of the discussions we had
during the workshop highlighting how service research still deserve a lot attention in
the upcoming years.

References

1. Liu, F., et al.: NIST Cloud Computing Reference Architecture: Recommendations of
the National Institute of Standards and Technology (Special Publication 500-292).
CreateSpace Independent Publishing Platform, USA (2012)

2. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R.: Reference model
for service oriented architecture 1.0 (2006)

3. Papazoglou, M.P., Georgakopoulos, D.: Introduction. Commun. ACM 46(10),
24–28 (2003)

4. Richardson, C., Smith, F.E.: Microservices. From Design to Deployment. NGINX
e-book (2016). https://www.nginx.com/resources/library/designing-deploying-
microservices/

5. Vargo, S.L., Lusch, R.F.: Service-dominant logic: continuing the evolution. J. Acad.
Mark. Sci. 36(1), 1–10 (2008). http://dx.doi.org/10.1007/s11747-007-0069-6

Pierluigi Plebani
Damian A. Tamburri

Preface of ReSerCh 2016 203

https://www.nginx.com/resources/library/designing-deploying-microservices/
https://www.nginx.com/resources/library/designing-deploying-microservices/
http://dx.doi.org/10.1007/s11747-007-0069-6

Organization

Workshop Organizers

Pierluigi Plebani Politecnico di Milano
Damian A. Tamburri Politecnico di Milano

Technical Program Committee

Luciano Baresi Politecnico di Milano, Italy
Antonio Brogi Università di Pisa, Italy
Elisabetta di Nitto Politecnico di Milano, Italy
Schahram Dustdar TU Wien, Austria
Valerie Issarny Inria Paris, France
Patricia Lago Vrije Universiteit Amsterdam, The Netherlands
Winfried Lamersdorf University of Hamburg, Germany
Cesare Pautasso University of Lugano, Switzerland
Barbara Pernici Politecnico di Milano, Italy
George Spanoudakis City University of London, UK
Farouk Toumani Université Blaise Pascal, France
Genoveva Vargas-Solar CNRS, France

Continuous, Trustless, and Fair: Changing
Priorities in Services Computing

Stefan Tai(B)

TU Berlin, Berlin, Germany
tai@tu-berlin.de

Abstract. Services computing research and practice traditionally has
focused on the objectives of business alignment, software systems inter-
operability and on leveraging the Web as a compute platform. Corre-
sponding technology solution stacks and architectural styles have been
promoted. Today, and probably for the next decade to come, different
objectives are replacing these original ones and, correspondingly, differ-
ent solution stacks and architectural styles are emerging. Most notably,
challenges such as frequent delivery of service systems, decentralization
and business disintermediation, and “socially aligned” service systems
lead us to continuous computing, trustless computing, and fair comput-
ing – three major trends that we expect to become the driving force
behind next-generation service systems. In this paper, we discuss these
trends and identify major research directions to deliver on these changing
priorities.

Keywords: Continuous computing · Trustless computing
Fair computing

1 Introduction

After 15+ years of research and practice the services computing community
is undergoing a fundamental change: newer technology is replacing older tech-
nology, research efforts of the past without any significant impact to-date are
discontinued, and new research challenges are appearing. In this invited paper,
we argue that the primary objectives of services computing are changing – from
business alignment, software interoperability and web computing initially to con-
tinuous computing, trustless computing, and fair computing today and tomorrow
– and that the community consequently must part from older themes and instead
focus on addressing current and future priorities.

2 Services Computing – A Brief Historical Sketch

In the early 2000s, a time where XML was popular and interoperability of het-
erogeneous software components and systems was a priority objective, WS-* was
c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 205–210, 2018.
https://doi.org/10.1007/978-3-319-72125-5_16

206 S. Tai

born. SOAP and WSDL, along with the manifold WS-* specifications addressing
all kinds of enterprise concerns, were promoted as industry standards pushed by
large corporations. Correspondingly, the services computing research commu-
nity explored service systems from a variety of angles related to the primary
objectives of software interoperability and web computing, driven by the idea
of establishing a rich computing model based on the services abstraction to
well-align IT services and business services. In the mid- and late 2000s, themes
including service discovery, (business process-driven) service composition, and
service semantics were on the research agenda, with WS-* being the natural
choice for proof-of-concept and implementation.

At around the same time, REST emerged as the more lightweight computing
model and alternative to WS-*. REST is an architectural style using ubiquitous,
foundational web technology like HTTP. REST thereby defines architectural
constraints but, unlike WS-*, does not introduce new technology standards.
Less motivated by interoperability concerns especially of large IT corporations,
REST focuses on leveraging the Web and its manifold resources for purposes of
services computing.

Today, especially from a research perspective, WS-* is mostly history and
best remembered as a set of XML specifications, which encode proven principles
of enterprise computing, but which also tend to (invite to) introduce compu-
tational overhead. While SOAP and WSDL are still in use in many enterprise
systems, the majority of the WS-*-specifications did not have any significant
practical impact and – due to their focus on standardizing interoperability con-
cerns – need no longer be subject of current or future research.

REST, on the other hand, today is by far the more popular services comput-
ing model. A large body of best practices is available, making REST a commonly
applied and principally well-understood computing model. Few if any critical
REST-specific research challenges are left open.

A third, more recent trend in services computing are microservices. Driven by
the need to ease change management, microservices must be seen in the context
of DevOps-based organizations: they directly link the software service artifact
to the development and operations team that builds and manages the artifact –
an aspect that both WS-* and REST have ignored – and emphasize communi-
cation between different teams by means of APIs. Like REST, microservices are
not about standards, but about architecture. Unlike REST, microservices pro-
mote an architectural decomposition into individual business functions, where
each business function may be a full vertical cut across multiple system lay-
ers including the data and resource management layer. Microservices thereby
loosely couple the business functions, but tightly couple business logic and data
management.

Yet another difference lies in the deployment and runtime environments that
the three services computing models propose: WS-* advocates a traditional
enterprise middleware environment, REST relies on the web itself, and microser-
vices lend themselves naturally to cloud systems, especially deployments using
container technology. Microservices can be seen as a native cloud-based services

Continuous, Trustless, and Fair: Changing Priorities in Services Computing 207

computing model, whereas WS-* and REST describe models that were originally
developed and proposed prior to the cloud-era.

3 Some Lessons Learned

WS-*, REST, and microservices describe three different services computing mod-
els. WS-* is mostly history, REST is current engineering practice, and microser-
vices, along with related concepts of lambda-services and serverless architectures,
are gaining momentum. Before we discuss future research directions, we can
conclude:

1. Services computing fundamentally is about architecture – “making non-trivial
decisions that are documented and are based on a clear rationale” [4]. Such
decision-making is influenced by the services computing model chosen and
the corresponding objectives associated with the model. The architectural
principles are what drives and distinguishes service systems.

2. Architecture does not need complex and rich technology standards; the most
basic and simple standards suffice. The engineering, the proposition and the
use of rich standards, correspondingly, is not critical to service architectures
and need not be on the services research agenda.

3. Architectural constraints change as the service engineering culture and tech-
nology evolves. With WS-*, interoperability was a priority objective. REST
put web principles to the front. Microservices emphasize ease of change man-
agement. With different priorities in mind, different architectural solutions
have been and will continue to be born.

4. Future services computing models will natively reflect advancements in com-
puting infrastructure.

4 Research Ahead: Changing Priorities

We observe three major trends in services and cloud computing, which each
replace former thinking and former priorities with newer thinking and newer
priorities: continuous computing, trustless computing, and fair computing. These
three trends, individually and in combination, reflect changing needs: frequent,
i.e. almost ‘continuous’ delivery of systems, disintermediation of businesses and
decentralized applications, and “social alignment” beyond “business alignment”.

4.1 Continuous Computing

Continuous computing emphasizes the need to continuously, i.e., frequently,
deliver a system. Continuity requires new engineering processes for delivery and
a high degree of automation with appropriate tooling, along with organizational
models that support these processes. In practice, “reducing the time between
committing a change to a system and to place the change into normal pro-
duction, while ensuring high quality” [1] – multiple times a day – is a critical

208 S. Tai

requirement. Architectural abstractions in support of an effective change man-
agement consequently are a top priority. We can identify at least the following
main research challenges:

– Engineering microservices-based architectures. Microservices, born out of
DevOps-based organizations with continuous delivery pipelines, and related
concepts of lambda services, describe different building blocks for service-
oriented architectures than the traditional WS-* or REST services. Their
tight integration with organizational and delivery aspects makes them a nat-
ural candidate to support continuous computing. An integrated approach to
the design and use of microservices, their management in cloud-based deploy-
ment and runtime environments, and their role in the organizational context
and continuous delivery processes is required.

– Cloud service benchmarking. Frequent changes and continuous delivery
require evidence-based quality control and management. With cloud service
benchmarking, we refer to recurring quality-oriented experimentation and
analysis of services deployed in cloud environments, for the purpose of dis-
covering quality insights otherwise unknown [2]. Cloud service benchmarking,
in addition to functional testing and monitoring of production systems, is crit-
ical to understanding service systems and to both justify and guide system
changes in continuous computing.

4.2 Trustless Computing

In the past years, much attention was paid to trust in computing and trust
models for services and cloud systems. This was largely driven by fear or risk
aversion when outsourcing computing and data to external service and cloud
providers. Trustful computing then suggested architectures that require com-
plex security protocols, intermediation and, typically, some central authority to
manage and/or warrant ‘trust’.

Trustless computing deliberately breaks with such thinking and promotes
decentralized solutions for the correct execution of ‘transactions’. Unlike trans-
actions as known from database systems, in trustless computing, no transac-
tion manager and no concurrency and coordination control exist, but symmetric
shared responsibilities, including transaction validation, by any node partici-
pating in the network. Peer-to-peer systems employing decentralized consensus
protocols remove centralized control and allow for new forms of business disin-
termediation. Note that the term ‘trustless’ does not imply a lack of trust, but
similar to the terms ‘stateless’ or ‘serverless’ in services computing, a change in
perspective in how trust (or state, or servers) is managed.

To this end, one major research challenge stands out: Blockchain-based appli-
cation architectures. Blockchains are decentralized, immutable ledgers for veri-
fying and recording ‘transactions’. Originally proposed along with the bitcoin
cryptocurrency [5], blockchains today are the prime candidate solution for trust-
less computing in any application domain where trade occurs, and whenever trust
is to be ensured through peers, but not by some central authority. Blockchains

Continuous, Trustless, and Fair: Changing Priorities in Services Computing 209

currently experience intensive debate and hype. We agree that there is a huge
potential associated with blockchains to disruptively change entire application
domains, but argue that a careful selection of application domains and much
more experimental research is needed. Blockchain-based applications are inher-
ently distributed systems, and a distributed systems perspective is fundamental
to building applications using blockchains. Solutions to deal with the typical
fallacies of distributed computing are needed.

4.3 Fair Computing

Third, we observe that services computing no longer is driven by business think-
ing alone, but increasingly also by aspects of social awareness and social respon-
sibility. For example, complex challenges such as privacy go well beyond business
concerns but must focus on the human individual or group as the main stake-
holder. We refer to this trend as fair computing, deliberately calling out for a
modern computer science notion of fairness that may draw from fairness as
studied in other scientific communities, especially law and economics. Research
in fair computing demands at first two strands:

– Fair Information Practices. Different fair information practice principles have
been around for decades, including those published by the US Federal Trade
Commission [3]. These may serve as a first step and as general guidelines for
fair computing in today’s and tomorrow’s service systems – covering aspects
of transparency, choice and consent, and information review, correction and
protection. Nevertheless, we expect refinements to be necessary as digitization
continues to transform every aspect of life with unprecedented speed and
impact. Privacy is more a “social alignment” challenge, complementing the
general “business alignment” objective that services computing traditionally
has focused on.

– Trade-off management. Dealing with complex challenges such as privacy
inherently induces dealing with conflicting objectives within such challenges.
Typical trade-offs relate to ‘anonymity versus accuracy’ or, from a distributed
systems perspective, ‘(desired) security (levels) versus (acceptable) perfor-
mance (impact)’. In addition, ‘fairness’ itself is often regarded to be in a
trade-off relationship with ‘efficiency’, typically, in the context of resource
allocation problems. Balancing and overcoming trade-offs at different lev-
els of abstraction is hardly possible in a generic way, but typically requires
system/application-specific exploration that is evidence-based using quantifi-
able objectives and corresponding benchmarking methods.

5 Next Steps

The three trends of continuous computing, trustless computing, and fair com-
puting described above share significant commonalities. First, core principles of
peer-to-peer computing are prominent in all three trends. Second, all three trends

210 S. Tai

are potentially highly disruptive in nature, replacing older technology stacks and
former architectural thinking with different technology stacks and newer think-
ing. Third, they all build on a notion of a ‘distributed service’, where each service
is tightly associated with critical, non-technical responsibilities – organizational
aspects in continuous computing, independent validation in trustless computing,
and compliance to fair practice principles in fair computing.

We expect architectural styles that define trend-specific sets of constraints to
continue to emerge, and so will innovations and technology in support of all three
trends. We do not expect a need to devise complex standards and standardization
activities for such architectures, neither protocols or infrastructure, as long as
fundamental architectural constraints and governing principles are agreed upon.

The services computing research community must re-focus by putting tra-
ditional and ‘solved’ (or ‘failed’) research topics aside, and instead focus on
current and future priorities that are at the core of next generation service sys-
tems. Continuity of service delivery, decentralization, and fairness should move
into the center of our attention.

References

1. Bass, L.J., Weber, I.M., Zhu, L.: DevOps - A Software Architect’s Perspective.
Addison-Wesley, Redwood City (2015)

2. Bermbach, D., Wittern, J.E., Tai, S.: Cloud Service Benchmarking. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-55483-9

3. Federal Trade Commission: Privacy online: Fair information practices in the
electronic marketplace (2000). https://www.ftc.gov/reports/privacy-online-fair-
information-practices-electronic-marketplace-federal-trade-commission

4. Hohpe, G.: 37 Things One Architect Knows about IT Transformation. Leanpub,
CreateSpace Independent Publishing Platform (2016). https://www.amazon.de/
Things-Architect-Knows-About-Transformation/dp/1537082981

5. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). http://bitcoin.
org/bitcoin.pdf

https://doi.org/10.1007/978-3-319-55483-9
https://www.ftc.gov/reports/privacy-online-fair-information-practices-electronic-marketplace-federal-trade-commission
https://www.ftc.gov/reports/privacy-online-fair-information-practices-electronic-marketplace-federal-trade-commission
https://www.amazon.de/Things-Architect-Knows-About-Transformation/dp/1537082981
https://www.amazon.de/Things-Architect-Knows-About-Transformation/dp/1537082981
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

Data Integration and Quality Requirements
in Emergency Services

Chiara Francalanci and Barbara Pernici(B)

DEIB, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, Italy
{chiara.francalanci,barbara.pernici}@polimi.it

Abstract. The requirements and an initial architecture for supporting
the analysis of social media contents in emergency management tools
are discussed. The use of social media to improve emergency maps and
to support early warning is discussed, and the emerging requirements
are outlined. The proposed architecture is designed to support enhanced
Emergency Copernicus services, as proposed in the European project
E2mC (Evolution of Emergency Copernicus services). In the project a
Witness component is going to be developed, to support social media
monitoring and analysis and federated crowdsourcing.

Keywords: Emergency services · Social media · Map improvement
Data quality

1 Introduction

Emergency response activities are based on many support services. In this paper
we focus on emergency systems providing tools that leverage social media in
emergency management processes.

A classification of social media use in crisis response has been proposed in
[6], where messages are classified in the following categories:

1. Requests for assistance by victims.
2. Distribute official warnings.
3. Establish situational awareness.
4. Sharing media (e.g., pictures) to assist in damage estimation projects.
5. Possibility of direct engagement among users, citizens, organizations, respon-

ders (not only to share information).

In the early phases of an emergency, in most cases it is important to exploit all
possible information sources is a very short lapse of time, therefore an automatic
analysis of these messages can provide further support in the emergency manage-
ment activities. An initial proposal of a system for extracting information from

This work is partially based on the E2mC project proposal. The authors acknowledge
the contribution of all partners, and in particular of e-GEOS SpA.

c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 211–218, 2018.
https://doi.org/10.1007/978-3-319-72125-5_17

212 C. Francalanci and B. Pernici

tweets in emergency situations was put forward in the TORCIA project [4,5],
funded by the Lombardy Region, to manage information originated by tweets
and transforming it into useful information, such as, for instance, early warning
signals for events and identifying consequences of events on the infrastructures,
providing their geolocalization.

A further step in this direction is planned in the E2mC H2020 European
project, starting in November 2016, which aims to demonstrate the technical
and operational feasibility of the integration of social media analysis and crowd-
sourcing within the full Copernicus [1] EMS (Emergency Management System),
which provides annotated maps as a product, starting from satellite and aerial
images [3]. The main goals of the project are focusing on exploiting social media
and crowdsourcing to improve the Mapping and Early Warning service compo-
nents of the system, as illustrated in Fig. 1.

Fig. 1. E2mC [2] extended Copernicus Emergency Management Service

Data Integration and Quality Requirements in Emergency Services 213

The architecture illustrated in the figure shows the three main service com-
ponents of E2mC [2]:

– Mapping : to produce annotated maps in near real-time about areas of inter-
est. An example of map is provided in Fig. 2, showing a grading map that
annotates an aerial image with the severity of the damage to buildings and
roads.

– Early warning : services more and more focusing on the so called impact-based
forecast, where an estimate of the potential impact is provided together with
the location and severity of the forecasted event.

– Witness: a new component to be developed in the project, to collect, integrate,
and curate information from multiple social media sources and crowdsourcing.

Fig. 2. Detail of an aerial grading map from emergency.copernicus.eu

The goal of this paper is to discuss the main components to be studied in
E2mC and the focus will be on illustrating research challenges of the Witness
component.

The project is characterized by the need for integrating or at least relating
several different sources of information (existing maps, satellite, social, crowd).
The social media, in addition, provide a number of different types of information
(text, sound, images, videos). As shown in a recent analysis of two emergency
events described in [8], 50% of the tweets contain a link with a URLs. As a con-
sequence, the analysis needs to go beyond the analysis of the text of the tweets,
providing also tools to understand and possibly exploit also associated informa-
tion. As a consequence, first there is the need to build an integrated knowledge

214 C. Francalanci and B. Pernici

base, and then to exploit its contents as a basis for supporting the improvement
of the quality of the maps derived from satellite images, in a semiautomatic way.

The Witness service is going to be developed as an independent service, to
be connected to the other existing services mentioned above, but also to any
other service operating in this domain, as an independent component. In Sect. 3,
we illustrate the main components for information extraction and analysis and
underlying design choices for a flexible architecture for E2mC.

While the quantity of information posted on Twitter is large, the quality
of tweets is often low. In a situation of emergency, the institutions and the
individuals involved need precise information that can be practically helpful and
make their work more efficient and effective. In E2mC, information is useful if
it can improve at least one the two fundamental services of Copernicus, that is
early warning and rapid mapping. In both cases, the ultimate goal is to improve
maps, by providing more timely and complete information. To this aim, the
information collected from social media needs to be:

– recognized and interpreted, to guarantee that all required contextual informa-
tion is available;

– validated, to guarantee dependability;
– integrated, to avoid redundancy and identify spamming.

For example, a picture has to be recognized and associated with a specific point
of interest, has to be validated as a trustworthy representation of the emergency
situation in the corresponding geographical position and, finally, it has to be
grouped with other pictures providing the same type of evidence. These activities
cannot be always and exclusively carried out by an automated tool. For example,
a picture may represent a building, but the tool has no reference images of that
building, or a picture may be posted without geotagging information and the
tool fails to associate it with a position. In these cases, a crowd of individuals
who are willing to cooperate to improve the quality of social media information
can be extremely helpful. In E2mC, crowdsourcing will be aimed to:

– mitigate the risks associated with information integration;
– reduce error rates, interpreting and classifying information;
– improve the overall accuracy and dependability of technology’s outputs.

2 Research Challenges and Potential Developments

Several research challenges are posed by a service-based architecture in this spe-
cific domain. The main requirements are quantity of data (additional data), its
quality (live maps combined with social multimedia contents) and its timeliness
(first crisis maps available within few hours), while satellite data are not always
available and costly services might need to be requested from the satellite plat-
form: there is a need to complement satellite information to improve quality and
the irregular provision of information from the satellites.

Data Integration and Quality Requirements in Emergency Services 215

2.1 Data Requirements and Quality Requirements

A fundamental goal of the E2mC project is to integrate multimedia information
from multiple sources. This goal raises a number of technical challenges that
are both related to specific technical issues (such as the identification of a tiny
portion of useful information among large volumes of generic data) and to the
need of considering multiple technical issues in combination to provide a usable
result (such as the integration of text processing, image processing, geotagging
and crowdsourcing functionalities to prepare a database of images that can aid
Copernicus services). These issues are made even more challenging by the near
real-time requirements and critical situations in which the system operates. The
proposed approach is to adopt a keyword-based approach, which facilitates a
multilingual annotation, and to support automatic and semi-automatic anno-
tation by operators by micro-tasks for data quality checking supported by the
crowdsourcing platform. The service-based approach will be adopted, providing
operators with services to rapidly define new keywords and their associations on
controlled vocabularies, and to automatically rank data wrt relevance and qual-
ity, e.g., from “full trusted” class (input for live notification and early warning
process) to “to be checked” one (input for the crowdsourcing task). In particular,
quality evaluation will be performed as a two-step process:

1. Authentication of source as reliable: for example, institutional sources rep-
resenting operators that have emergency management responsibilities and
official sources of news will be recognized and analyzed separately.

2. Triangulation of content as valid: this will be performed as a combined effort
of software and crowdsourcing.

2.2 Ad Hoc Workflows with Source Evaluation

Service ownership and management have to be fully understood, to coordinate
the different operators, for access control, and to allow the Copernicus EMS
Rapid Mapping Team to build appropriate workflows to streamline the exploita-
tion of data flows provided by the Copernicus Witness. New challenges are raised
by the need of preserving privacy of subjects, of considering the quality of the
data gathered from the different sources, and to control the output in terms of
timeliness and quality fit for use in a given situation.

3 Towards a Service-Based Architecture for E2mC

The core component of the E2mC software architecture is the platform. The
platform is composed by a service portal and shared social media data. The
service portal provides a set of core REST data management services and a
set of REST micro-services that have local data and can access shared data
through the data management services. Both types of services are used by the
E2mC applications: the Web application, the mobile application, the federated
crowdsourcing application and the crawlers (Fig. 3).

216 C. Francalanci and B. Pernici

Fig. 3. E2mC proposed software architecture

The main advantage of this architecture is the right balance between inte-
gration and flexibility, which are both needed to accommodate for changing
requirements throughout the life span of the project. While core data and data
management services are shared, that is, fully integrated, micro-services are inde-
pendent of each other and can evolve according to different research and exper-
imentation plans. For a same micro-service, different instances or versions can
be simultaneously active and operate on different data for either software test-
ing or field experimentation purposes. This trade-off between integration and
flexibility is key to emergency management. A core set of data and related data
management services is necessary to guarantee that Copernicus rapid mapping
and early warning activities have access to integrated information that over time
is enriched by different applications, such as crowdsourcing, in a consistent way.
Given that social media information has a value, but is not always dependable,
it is important that all applications work towards building a common set of con-
sistent data. On the other hand, the micro-service approach gives applications
the degree of flexibility that is important to support incremental development
and experimentation by independent teams, towards separate goals, along dif-
ferent schedules. At runtime, micro-services can also be beneficial to integrate
new functionalities as they emerge.

It should be noted that crawlers are considered an application, even if they
are not a user application. This allows designing data management services that
accommodate both the insertion of raw posts as well as partly or fully tagged
posts.

The Lambda Architecture [7] shown in Fig. 4 will be deployed as the soft-
ware infrastructure supporting data storage, data processing and service/micro-
service provisioning. The main advantage of the Lambda Architecture is to sup-
port the deployment of Hadoop in a context requiring both big data storage &

Data Integration and Quality Requirements in Emergency Services 217

Fig. 4. Lambda architecture

analytics and real-time querying of streaming data. An obvious advantage of the
Hadoop framework is its high performance with data analytics (write once and
read many paradigm). On the other hand, E2mC requires micro-services that
are based on the (quasi) real-time availability of information, especially for Early
Warning. The Lambda Architecture allows the project to benefit from Hadoop
performance, while providing the infrastructure for the real-time processing of
streaming data from social media.

4 Concluding Remarks

In this paper, we introduced the main requirements and discussed architectural
choices for additional services for Emergency Management Systems, based on
social media and crowdsourcing. Several issues are still open and need further
investigation in the project. We mention here two important ones which are crit-
ical for the development of the project. First, as mentioned above user involve-
ment is planned, assigning users tasks for obtaining further information and
human analysis of the data. Such information, as discussed above, is inherently
of low quality. In addition, it is important to identify possible groups of reli-
able and available users to perform the assigned tasks, to devise strategies and
workflows to assign tasks and collect and integrate information, and in general
creating communities of supporting users during the emergency phases. Another
important aspect is the identification of the interested stakeholders for the use of
the results of the project, since many different roles and institutions are usually
involved in emergency response. It is important to identify a technical solution
that is providing also an adequate support to the management of the system and
involvement of several actors. The key roles and owners of the involved processes
need to be identified and supported by an adequate distributed architecture, both
in technical terms, and in ownership and responsibility.

218 C. Francalanci and B. Pernici

Acknowledgments. This work has been developed in preparation for the E2mC
H2020 European project “Evolution of Emergency Copernicus services”. This work
expresses the opinions of the authors and not necessarily those of the European Com-
mission. The European Commission is not liable for any use that may be made of the
information contained in this work. The authors would like to thank the E2mC project
partners for their collaboration in setting up the project proposal.

References

1. Copernicus, a European system for monitoring the Earth. http://www.copernicus.
eu/

2. E2mC - Evolution of Emergency Copernicus services, Project H2020-EO-2016
(2016). http://www.e2mc-project.eu/

3. Flamini, A., Grandoni, D., Britti, F., Salvi, F.: e-GEOS capabilities in rapid emer-
gency response. Two case studies: L’Aquila earthquake and Parma/Pepang typhoon.
ISPRS Archive, vol. XXXVIII, Part 4-8-2-W9 (2010)

4. Francalanci, C., Giacomazzi, P.: TORCIA: una piattaforma collaborativa per la
gestione delle emergenze, Mondo Digitale, no. 57 (2015)

5. Francalanci, C., Giacomazzi, P.: TORCIA - A decision-support collaborative plat-
form for emergency management. In: DATE Conference (2015)

6. Lindsay, B.R.: Social Media and Disasters: Current Uses, Future Options, and Pol-
icy Considerations. Congressional Research Service 7–5700 (2011). www.crs.gov,
R41987

7. Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime
Data Systems. Manning Publications Co., Greenwich (2015)

8. Meesters, K., van Beek, L., Van de Walle, B.:#Help. The reality of social media use
in crisis response: lessons from a realistic crisis exercise. In: 49th Hawaii International
Conference on System Sciences (HICSS), Koloa, HI, pp. 116–125 (2016)

http://www.copernicus.eu/
http://www.copernicus.eu/
http://www.e2mc-project.eu/
www.crs.gov

Challanges in Services Research:
A Software Architecture Perspective

Flavio De Paoli(B)

University of Milano-Bicocca, Milan, Italy
depaoli@disco.unimib.it

Abstract. Cloud computing and Internet of Things are imposing a dra-
matic change in software development and delivery. Moreover, ICT solu-
tions are paving innovation in every sector and therefore becoming a
business factor for the success of any enterprise. The implications are
manifold since technical issues need to be harmonised with social, organ-
isational and legal aspects. In this paper we illustrate and comment the
current trends to identify research directions to build services as com-
prehensive components accessible via APIs. The goal is to deliver ser-
vices ecosystems, which call for open platforms to manage services that
can connect and interact via shared protocols in dynamic heterogeneous
contexts. Machine-readable semantic descriptions, microservices (single-
function services), and containers (independent units of deployment) are
discussed as building blocks for software architectures of the future.

1 Introduction

In the last decades we dreamed software development by assembling software
components. The dream may become true thanks to microservices1, a new gen-
eration of services, which is likely to affect the ICT industry for the next decades.
Microservices [10] can be defined as single-function components that can be com-
posed and orchestrated to shape applications according to specific requirements
(user needs and context). Microservices are of growing relevance due to the Inter-
net of Things (IoT) era we are entering: sensors, transmitters, actuators and
other electronic devices are able to collect and exchange data to populate the
platforms of the future. We are taking part in the servitization of the real world.

Microservices will be the building blocks of a new generation of software
that will deliver personalised solutions to end users and enterprises. The result
is that computing is moving from data centres (that will keep their primary
role of collecting, storing and analyse data) to the edge of the network where
new processes (i.e., applications) will be developed involving both machines and
people. The software architecture perspective needs to move from products to
platforms that provide developers with the necessary flexibility to support the
quick changes required by a highly dynamic market.

1 http://www.reactivemanifesto.org/.

c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 219–227, 2018.
https://doi.org/10.1007/978-3-319-72125-5_18

http://www.reactivemanifesto.org/

220 F. De Paoli

This days, a popular example in the retail industry is to build applications
that involve customers with personalised experience when they visit a physical
shop. When a customer enter a shop holding a smartphone he or she becomes
part of an ecosystem that includes sensors installed in the shop to collect real-
time data, services accessing data from the retailer, and Internet services to
access public data. Already from this simple example we can see that data as
well as communication issues are becoming central. We need to rethink how
services are build around data so to facilitate data exchange, retrieval and inte-
gration. The communication infrastructure has to provide a common platform
to let services interact. A key characteristic of future applications will be the
mobility, which calls for simple models and standards to be able to accommo-
date heterogeneous components (services interfacing devices, sensors, applica-
tions and people) developed by several stakeholders in different domains and
with different purposes.

The challenge is to design and provide open platforms in which services
can move, understand the new context, interact one each other and with the
environment, accomplish a given task with the resources available in a specific
context as well as in the Internet. Communication and management should fol-
low a shared approach. The current REST-style API approach, which relay in
the Web infrastructure, is a promising direction to provide lightweight interop-
erability and integration mechanisms.

2 An IoT Perspective

IoT is an emerging scenario for a future in which each “Thing” will be pro-
vided with a unique identifier and connected to transfer data over a network
without requiring human-to-human or human-to-computer interaction. Things
will be part of ecosystems that include computers and humans, but will be as
much automated as possible. In practice, IoT provides connections between the
physical world to the virtual world. IoT is mostly in charge of providing infor-
mation to computers and humans to support their informed decisions (by using
data collected from sensors), and tools to implement the decisions taken (by
operating software and devices).

An emerging approach is to access and operate Things as a Service, accord-
ing to the Service Oriented Architecture (SOA) approach, so to make them
compatible with existing service-based systems [6]. IoT services differ from tra-
ditional software services for a number of issues, ranging from technical (scal-
ability, heterogeneity) to social (security, privacy, trust)2. The main differences
can be identified in the reduced capacities of devices involved in IoT, and in
the continuous nature of data provided by sensor devices. As a matter of facts,
resource, bandwidth and energy restrictions of the target devices are major limi-
tations to adopt the REST/HTTP model to implement services associated with
Things. The reason is the overhead required by HTTP messages, which is too
2 See for example the final report of the Workshop on “next-generation Internet of

Things”: http://anrg.usc.edu/ngiot16.

http://anrg.usc.edu/ngiot16

Challanges in Services Research: A Software Architecture Perspective 221

heavy for simple devices. Moreover, HTTP is more suitable for discrete services
based on request/response conversations, than for managing continuous data
streams such as the ones coming from sensors.

There already exist proposals to deliver IoT-specific protocols that cope with
the nature of involved Things. MQTT [1] and CoAP [12] are two reference
standards at the moment. MQTT implements a publish/subscribe model, while
CoAP follows the REST approach3, which dominates the Web today. Perfor-
mance evaluations of the two protocols can be found in [5,13], where the conclu-
sions are that performance is highly dependent on the environment, which allow
us to conclude that the characteristics of exchanged data are relevant for both
efficiency and effectiveness.

The increasing size of the data managed by IoT-based systems has opened a
debate on where the computation should occur. The two options are moving the
computation into the cloud (i.e., at the data centres), or performing it at the edge
of the network (i.e., at or near devices). The former has the advantage of virtually
unlimited storage/computing power, and the disadvantage of moving massive
amount of data over the network. The latter has the advantage of reduced traffic
on the network, and the disadvantage of limited storage/computing power. The
current trend is favouring edge computing since the continuous increment of the
network traffic is unsustainable (due to bandwidth and latency), and processing
every time a full dataset is often unneeded (a smaller set of relevant data allows
for more effective answers to real-time requests). Moreover, effective personal-
isation, confidentiality, and timely reactivity call for application logic near the
users (either humans or machines). As a consequence, devices will be equipped
with gateways that provide aggregated views of data flows to near components
that can perform real-time computing to promptly detect and react to changes.
However, such data should be send to the cloud for further analysis, possibly
off-line. The term fog computing was introduced to name systems that involve
edge computing as counterpart of cloud computing [2].

In this scenario, microservices can play a role since they can be hosted at the
edge of the network to implement specific tasks to interface devices and the rest
of the applications. They can provide the right flexibility to ensure the evolution
of applications. Open issues are the definition of (re)configuration mechanisms to
make systems react to dynamic changes, and the level of protection that can be
ensured to open systems in which components can join and leave arbitrarily. In
the retail example sketched in the introduction, part of the application hosted
by the shop could talk to the apps installed on the smartphone hold by the
customer. At both sides software components and sensors are involved to connect
and exchange data. Moreover, they should interact with the cloud to collect data
(e.g., insights: weather conditions, related events, and user profiles), and provide
fresh information on the current context (e.g., data collected by sensors installed
in the shop, and information on customer behaviours).

3 CoAP redesigns a subset of the HTTP methods to minimise the overhead, and
extends the GET method to support basic publish/subscribe interactions, which is
achieved by adopting the observer pattern to monitor state changes in a device.

222 F. De Paoli

3 Services Ecosystem

Since the beginning, services have been conceived as Lego blocks that can be
freely composed to form arbitrarily complex systems and applications. The real-
ity was made of systems built by manually adapting existing services, when not
by developing services as part of a systems that cannot be, or can hardly be, used
in other contexts. The emerging reality of IoT-based systems (that can take the
form of smart city, smart home, smart mobility, ...) is pushing in the direction of
investing to develop models, tools, an infrastructures to support truely modular
services. The goal is the development of the so called services ecosystems [3]. We
already introduced the idea of developing microservices as specialised actors of
such ecosystems to implement single features/functions that can be composed
with others to deliver an application. The separation-of-concern principle that
sits behind the (empirical) theory of microservices let designers and developers
concentrate on some well-defined aspect, and lead to loosely coupled services
that can be developed and deployed independently.

Besides a set of explicit benefits that include increased agility, resilience, scal-
ability, and developer productivity, there is a set of hidden dividends of microser-
vices that implementers should make a conscious effort to reap [7]. A detailed
discussion of such benefits is out of the scope of this paper, but, it is worth men-
tioning that there are relevant organisational aspects that make a change in the
software development philosophy: a single multidisciplinary team is in charge of
the whole service life cycle, including design, development, deploy and mainte-
nance. A major effect is the end of centralised data centres as unique model to
store and analyse data. Which is what IoT systems call for: distribute storage
and data processing to reduce latency and enhance protection.

As discussed in the next section, the use of containers to host microservices
along with dependencies supports the creation of components that are indepen-
dent units of management and distribution. If we adopt a REST-like approach
to provide them with communication and interaction capabilities, we can get
components that are very close to the Lego blocks envisaged in the early stages
of SOA. REST-like standard interfaces enables for automatic management and
facilitate composition of components.

From an architectural point of view, we can distinguish three types of services:
front-end services, which form the systems of engagement4, and the back-end
services that can be further refined in cloud services, which form the systems
of records, and may include the systems of insight to further analyse data to
provide advises. We need to say that a shared consensus on such a unified archi-
tectural organisation is still under discussion in the different domains and that a
general agreement is far to be reached. The overall goal is to identify the roles of
components in a multi-tier architecture. Anyway, some elements are consolidat-
ing: the evidence that the cloud cannot be the only repository for data and the
only execution environment for applications since businesses need to stress their

4 The term Systems of Engagement was introduced by Geoffrey Moore in a white
paper entitled: “Systems of Engagement and the Future of Enterprise IT” [9].

Challanges in Services Research: A Software Architecture Perspective 223

peculiarities and protect their own identity, and the evidence that new devices
enable for new solutions to engage customers, partners and employees.

The issue is well represented by the shop examples already introduced: smart-
phones, as user-agent systems, need to engage services in a given context. They
act as actors in a service ecosystem that need to discover the available services,
select the ones that fit their requirements, and finally compose their behaviour
to deliver new comprehensive systems. We are using the terminology introduced
with SOA to emphasis that the solutions devised in the past do not fit the
dynamics of new contexts. In the next sections, we discuss three of the most
affecting challenges we need to take up.

4 Programmable Platforms

Even if the de-facto reference infrastructure is the Internet for basic commu-
nication (TCP/IP and UDP/IP are the transport protocols) and the Web to
support services interaction (HTTP is the application protocol for API develop-
ment), there is still little convergence on the best way to develop services as node
of a distributed application. Among others, open challenges are to cope with con-
tinuous integration and continuous delivery that have become a common mantra
for the platform of the future; security and privacy protection that are increas-
ingly important in an open world that foresees application, device and network
convergence; and finally, management (operation and dynamic configuration) of
multi-tenant heterogeneous systems.

To support such scenarios, we need to provide open programmable platforms
that can ensure flexibility in services management to address adaptability to
rapid change and support evolution of both participating services and features
extension. In other terms, we need to provide microservices, which implement
the needed functions, with hosting platforms that provides suitable execution
and management support. Moreover, platforms should be able to address cross-
cutting aspects to let microservices implement functionalities with the expected
qualities. A possible direction is to exploit containers as programmable platform
components that can be configured and managed in heterogenous and distributed
environments5.

A container can be defined as a sandbox that can (i) host an application
along with all the required software to run, and (ii) be deployed in an host
operating systems. These two characteristics make containers a perfect home for
microservices. Once developed, a microservice is compiled to deliver an image
that becomes a component that can be executed in a container, stored, retrieved,
and sent over the network. Being standardised units for software development,
containers facilitate the life-cycle management of microservices to achieve, for
example, scalability and availability. Compared to other solutions, such as virtual
machines, containers do not have the high overhead and hence enable more
efficient usage of the underlying system and resources.

5 Docker (https://www.docker.com) is the most popular container technology.

https://www.docker.com

224 F. De Paoli

Although promising, container technology is still young, and open issues need
to be addressed. The major problem deals with security. Virtual machines, a
mature and popular technology for deploying software, run applications inside
a guest Operating System that ensure full process isolation. Instead, containers
rely on the low-level mechanics of the host operating system to provide most of
the isolation of virtual machines at a fraction of the computing power. Simplicity
and performance come at a cost of lower standard control over the execution.

5 Services Description

To be part of an ecosystem, a service need to advertise its characteristics to let
other services understand what is the communication style (e.g., by REST-style
APIs), how the interaction may occur (e.g., order and semantics of exchanged
messages), what kinds of data are exchanged (e.g., types of exchanged data), and
finally what properties are guarantied (e.g., latency, scalability, security, costs).

In the past decade a vast literature has been published on service descriptions,
in particular adopting Semantic Web approaches, since a major (or possibly the
major) concern is to let machines understand and infer from description con-
tents. Primarily, machines need to understand whether data produced by a ser-
vice are of the same type requested by another service, or understand if they are
compatible and may be transformed to become compliant, thus enabling services
compositions. Despite of the huge effort none of the proposed solutions proved
to be effective. The evidence is that available descriptions are largely incomplete
and written in natural language (e.g., the ones in ProgrammableWeb, the current
reference service directory6). Most of description languages use name:value pairs
to describe features with no semantics associated with such name and value liter-
als/strings, or with semantics written in natural language that only humans can
understand. That’s the case of Swagger7, RAML8, and API Blueprint9, which
are the most popular specification languages.

The use of REST as unified model to design interfaces and interaction
between services has radically changed the approach to services design by moving
from function oriented to resource oriented models. Therefore, services descrip-
tions should concentrate on the exchanged data (i.e., the representations of
the resources), and on the properties associated with a given service, the non-
functional properties (NFPs) that qualify a service. NFPs include properties of
exchanged data (e.g., the bit rate of a mp3 file), quality of services (QoS) (e.g.,
latency), and service level agreements (SLA) (e.g., legal clauses on usage). NFPs
are often collected in contacts that should be described in a machine-readable
formats that enable property matching [4].

6 http://www.programmableweb.com/.
7 https://www.swagger.io. Now Open API specification by OAI (Open API Initiative)

specification http://openapis.org/.
8 http://raml.org/.
9 https://apiblueprint.org/.

http://www.programmableweb.com/
https://www.swagger.io
http://openapis.org/
http://raml.org/
https://apiblueprint.org/

Challanges in Services Research: A Software Architecture Perspective 225

We believe that an evolution of the Linked Open Data (LOD) approach in
connection with the REST-style resource management can make descriptions
an integral part of the Web, which means delivering descriptions as resources
in machine-readable formats that can be accessed and managed with REST
APIs. A path can be annotating descriptions by adding links to shared vocabu-
laries/ontology that machine can exploit for automatic discovery, selection and
composition. Moreover, we seek methods and tools to support (semi)automatic
profiling of services to facilitate the construction of descriptions. We can take
advantage of already available vocabularies (e.g., Linked Open Vocabularies
[14]) to set up a solid shared knowledge, and adopt standard annotation guide-
lines (e.g., Dublin Core Application Profile (DCAP) guidelines10 to share data
semantics in a shared representation format. Examples in that direction can be
found in [8,11].

6 Services Composition

Services composition is likely to be the most intriguing and challenging issue,
and, despite the huge effort in the past years, the most unexplored. A rea-
son may be found in the heterogeneity of descriptions, interfaces and modes of
access/interaction that led to specific solutions instead of building shared mod-
els. As already discussed, the progressive convergence towards shared models
(Internet and Web as infrastructure) can define a favourable framework for the
development of general composition techniques.

A composition can be defined as a process that involve a set of services in a
given workflow, or a self-organising system where services collaborate to reach a
common goal. The former was traditionally classified as orchestration and was
deeply investigated in terms of business processes, and delivered languages like
the well-known Business Process Modelling Language (BPML). The latter was
classified as choreography and was mainly investigated in agent-based systems,
and much less in service-oriented systems.

More recently, end-user composition has been addressed by tools that support
the creation of simple workflows that connect two or more services11. The com-
mon approach is to build connectors that enable inter-service communication.
The result is a set of close and incompatible environments, which means that
every component must conform a set of given rules to participate. The challenge
is to develop open systems. The extensive use of REST APIs, in combination
with semantic descriptions and implemented by microservices and containers
may offer this opportunity.

Services can be consumed either by humans or by machines. The
design of open platforms can provide support for composition (orchestra-
tion/choreography) by machines, but the real challenge is to invent new
10 http://dublincore.org/documents/profile-guidelines/.
11 For example IFTTT (https://ifttt.com/discover), Ziper (https://zapier.com/),

Microsoft Flow (https://flow.microsoft.com) and IBM WebSphere Cast Iron Cloud
integration (https://www.ibm.com/support/knowledgecenter/SSGR73).

http://dublincore.org/documents/profile-guidelines/
https://ifttt.com/discover
https://zapier.com/
https://flow.microsoft.com
https://www.ibm.com/support/knowledgecenter/SSGR73

226 F. De Paoli

metaphors and new environments to let humans understand and interact with
new ecosystems of services. In the smart shop example, this means that cus-
tomers should be able to understand, select, compose and orchestrate the ser-
vices available in that specific context though the smartphones they are using.

7 Conclusions

The progressive convergence toward the Web as standard communication envi-
ronment opens new perspectives to open software architecture developments to
host services ecosystems. The use of (i) semantic descriptions allows for the defi-
nition of automatic matching mechanisms; (ii) REST-style APIs defines standard
inter-service interaction; and (iii) containers facilitates services management.

References

1. Banks, A., Gupta, R. (eds.): MQTT version 3.1.1. Technical report, OASIS (2014).
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

2. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
Internet of Things. In: 1st MCC Workshop. ACM, Ambleside (2012)

3. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of
the 13th SPLC 2009, pp. 111–119. Carnegie Mellon University, Pittsburgh (2009).
http://dl.acm.org/citation.cfm?id=1753235.1753251

4. Comerio, M., Truong, H.-L., De Paoli, F., Dustdar, S.: Evaluating contract
compatibility for service composition in the SeCO2 framework. In: Baresi, L.,
Chi, C.-H., Suzuki, J. (eds.) ICSOC/ServiceWave-2009. LNCS, vol. 5900, pp. 221–
236. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10383-4 15

5. Fysarakis, K., Askoxylakis, I., Soultatos, O., Papaefstathiou, I., Manifavas, C.,
Katos, V.: Which IoT protocol? Comparing standardized approaches over a com-
mon M2M application. In: Proceedings of IEEE GLOBECOM 2016. IEEE, Decem-
ber 2016

6. Guinard, D., Trifa, V., Wilde, E.: A resource oriented architecture for the web of
things. In: Internet of Things (IoT) 2010, pp. 1–8, November 2010

7. Killalea, T.: The hidden dividends of microservices. Queue 14(3), 10:25–10:34
(2016). http://doi.acm.org/10.1145/2956641.2956643

8. Lucky, M.N., Cremaschi, M., Lodigiani, B., Menolascina, A., De Paoli, F.: Enrich-
ing API descriptions by adding API profiles through semantic annotation. In:
Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936,
pp. 780–794. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46295-
0 55

9. Moore, G.: Systems of engagement and the future of enterprise it. Technical report,
AIIM, Silver Spring (2011)

10. Newman, S.: Building Microservices, 1st edn. O’Reilly Media Inc., Sebastopol
(2015)

11. Panziera, L., De Paoli, F.: A framework for self-descriptive restful services. In:
Proceedings of the 22nd WWW Conference Companion, pp. 1407–1414 (2013)

12. Shelby, Z., Hartke, K., Bormann, C.: The constrained application protocol (CoAP).
Technical report, IETF (2014). http://dx.doi.org/10.17487/RFC7252

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://dl.acm.org/citation.cfm?id=1753235.1753251
https://doi.org/10.1007/978-3-642-10383-4_15
http://doi.acm.org/10.1145/2956641.2956643
https://doi.org/10.1007/978-3-319-46295-0_55
https://doi.org/10.1007/978-3-319-46295-0_55
http://dx.doi.org/10.17487/RFC7252

Challanges in Services Research: A Software Architecture Perspective 227

13. Sheng, Z., Wang, H., Yin, C., Hu, X., Yang, S., Leung, V.C.M.: Lightweight man-
agement of resource-constrained sensor devices in Internet of Things. IEEE Internet
Things J. 2(5), 402–411 (2015)

14. Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalón, M., Vatant, B.: Linked
open vocabularies (LOV): a gateway to reusable semantic vocabularies on the web.
Semant. Web J. 1, 1–5 (2014)

PhD

Preface of PhD Symposium

The goal of the PhD-Symposium is to provide a forum for PhD students to present and
to discuss their work with senior scientists and other PhD students working on related
topics. As for the main conference, the topics focus on all aspects of Cloud Computing,
Service Oriented Architectures, Web Services, and related fields. In contrast to the
main conference, this work is usually unfinished or has just been started in the PhD
projects. The programme committee carefully selected five contributions. Each sub-
mission was reviewed by at least two PC-members. In addition to the precise
description of the problem to be solved, preliminary results, and first ideas for solving
the main problem, the contributions also include a workplan. All these issues have been
discussed at the symposium with selected senior scientist and the PhD students. After
the symposium, the students who presented results already mature for a scientific
publication, have been invited to prepare a paper presenting and discussing them. This
post-symposium proceedings includes such papers.

We are grateful to the conference organizer Schahram Dustdar and his team for his
organizatorial support.

Organization

PhD Symposium Organizers

Gianluigi Zavattaro University of Bologna, Italy
Wolf Zimmermann University of Halle, Germany

PhD Programme Committee

Antonio Brogi University of Pisa, Italy
Friederike Klan Friedrich Schiller University Jena, Germany
Welf Löwe Linnaeus University, Sweden
Flavio de Paoli University of Milano-Bicocca, Italy
Alexander Pokahr University of Hamburg, Germany
Ernesto Pimentel University of Malaga, Spain
Emilio Tuosto University of Leicester, UK
Massimo Villari University of Messina, Italy
John Erik Wittern IBM T. J. Watson Research Center, USA

Towards a Unified Management of Applications
on Heterogeneous Clouds

Jose Carrasco(B), Francisco Durán, and Ernesto Pimentel

Dept. Lenguajes y Ciencias de la Computación,
Universidad de Málaga, Málaga, Spain

josec@lcc.uma.es

Abstract. The diversity in the way cloud providers offer their services,
give their SLAs, present their QoS, or support different technologies,
makes very difficult the portability and interoperability of cloud applica-
tions, and favours the well-known vendor lock-in problem. We propose
a model to describe cloud applications and the required resources in an
agnostic, and providers- and resources-independent way, in which indi-
vidual application modules, and entire applications, may be re-deployed
using different services without modification. To support this model, and
after the proposal of a variety of cross-cloud application management
tools by different authors, we propose going one step further in the unifi-
cation of cloud services with a management approach in which IaaS and
PaaS services are integrated into a unified interface. We provide support
for deploying applications whose components are distributed on different
cloud providers, indistinctly using IaaS and PaaS services.

Keywords: Cloud applications · Multi-deployment · TOSCA
Brooklyn

1 Introduction

In recent years, Cloud Computing [1] has experienced a growth in the demand
of its services. The Cloud promotes on-demand access to a large number of
resources throughout three service models, namely Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) [2], which
allow cloud providers to offer services for current IT requirements, with scalabil-
ity and elasticity as the most relevant ones, and allow users to tailor the used
resources to their needs.

Vendors such as Google, Amazon, Cloud Foundry, etc., have implemented
their solutions to this model by developing their own cloud service layers, with
custom APIs that expose their resources. Most of these providers offer a set

This work has been partially supported by Spanish MINECO/FEDER projects
TIN2014-52034-R and TIN2015-67083-R; Andalusian Gov. project P11-TIC-7659;
and Univ. Málaga, Campus de Excelencia Internacional Andalućıa Tech.

c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 233–246, 2018.
https://doi.org/10.1007/978-3-319-72125-5_19

234 J. Carrasco et al.

of similar services as regards functionality, but developed according to their
own specifications. E.g., each supplier specifies its own Service Level Agreement
(SLA) or Quality of Service (QoS), supports a concrete set of technologies, etc.
The proliferation of these solutions has also increased the number of issues to be
addressed in cloud computing, mainly related to the diversity of providers and
their solutions, giving place to the vendor lock-in problem [3], and hampering
the portability and interoperability in the definition and usage of services.

Due to this lack of standardisation, developers are often locked-in to concrete
cloud environments, since they have to adapt their developments according to
the specifics of the vendors that will be used to run their applications. This
heterogeneity affects the entire lifecycle of systems, from design time to
release/deployment, which complicates the development of portable applications
and the integration of services of different providers to achieve cross-deployments.
In this context, migrating components between different platforms seems
impossible.

Given the current state of Cloud Computing, it looks reasonable to offer
to developers mechanisms to deal with the restrictions to the portability and
interoperability of applications. From the developers’ point of view, we believe
it would be very useful to have an environment in which we could build full
detailed application descriptions in an agnostic way, supporting the use of ser-
vices of different offerings to deploy our applications, and abstracting from the
constraints of concrete providers. Furthermore, it would make sense to distribute
the different modules of an application over services of different providers. This
would allow us to optimise the usage of cloud resources, since we could select,
for their deployment, and given the requirements of each of the modules of an
application, and requirements of the application itself as a whole, the services
with best features for each of the modules of our application. Moreover, we plan
to go one step further, and analyse the portability between abstraction levels,
initially focusing on IaaS and PaaS.

Once applications have been deployed and are running, using services of
specific providers, developers may need to modify the cloud environment where
the application is being executed due to many reasons, such as an application
updating or different cloud events. For example, the performance of services
could be altered, e.g., by a modification in the QoS by the provider, affecting
the application performance or its cost. Developers could also modify the cloud
resources used by their applications, for example, by adding new cloud services
to provide new application features. It may be useful counting with mechanisms
supporting the management and reconfiguration of cloud applications.

Additionally, it may be useful to users to have facilities for the migration of
application modules between different cloud levels in order to maintain the per-
formance and optimise the resources usage and minimise the cost. For instance,
given an increase in the workload of an application, it could be beneficial to
migrate some of its modules to PaaS, in order to take advantage of the auto-
matic scalability facilities of this kind of services.

Towards a Unified Management of Applications on Heterogeneous Clouds 235

The rest of the paper is structured as follows. Section 2 describes our research
challenges. The research plan and the current state of our research are explained
in Sects. 3 and 4, respectively. Section 5 describes the current state of the pro-
totype being under development. Finally, Sect. 6 presents our conclusions and
future work.

2 Research Challenges

The main goal of this our wotj is to develop an environment that offers an
homogeneous management of IaaS and PaaS services, and enables a methodol-
ogy to describe applications and the required target cloud resources, providing
developers with mechanisms to improve the portability and interoperability of
applications. Moreover, it will allow users to choose the cloud resources whose
features best adapt to their applications’ requirements, with support for the
deployment of each of the application modules using the PaaS or IaaS services
that better fit their needs. In the following, we elaborate on the descriptions of
our goals.

Unification of IaaS and PaaS cloud services. We plan to develop a com-
mon API that will unify cloud services independently of their abstraction
level, for IaaS and PaaS. To achieve this, we will analyse the different service
features and restrictions in order to find common patterns and abstract them
under a unified interface. This unified level will offer to users a transparent
and simple usage of different cloud services, allowing them to focus on the
functionality of these services, while the complexity of using and integrating
their interfaces is hidden by the unified API. We plan to build this API by
homogenising services with different properties in order to build a normalised
upper layer. Given the existing diversity, trying to homogenise all the func-
tionalities of each provider will most probably not be possible. To minimise
this problem, we will try to maintain these functionalities by using lower
layers, with the goal of providing as many services as possible.

Description of applications and cloud services. We believe that the way
to address the portability and interoperability issues is by developing an
agnostic modeling framework to describe applications and the used cloud
(IaaS and PaaS) services and resources. With this framework, users will be
able to build full-detailed descriptions of their applications, including all the
knowledge about the capabilities, requirements, kinds of services to run the
application, etc., regardless of the concrete providers over which the applica-
tion will be finally deployed. We plan to build on current standards, such as
CAMP and TOSCA, in order to propose a standardised, powerful and flexible
application-modeling environment.

Integration of the modeling and the unified API. A unified API will
offer a homogeneous management of different services. An application model
will allow us to detail all the knowledge about an application. Then, we believe
that by joining both elements, API and agnostic modeling, we will be able

236 J. Carrasco et al.

to provide an environment which will allow portable applications to be mod-
eled and deployed using the unified API features in a standardised manner,
providing a complete application lifecycle management. Then, any services
supported by the unified API will be available for users to deploy modeled
applications without requiring any knowledge about the concrete provider
interfaces.

Development of a functional prototype. We will develop a functional pro-
totype in which we will experiment with the accomplishments related to the
previous goals, and to show its viability and to evaluate its advantages and
disadvantages.

Post-deploy management of applications. Although not one of the core
goals of the work being described, we will also study the implications of our
proposal on the management of applications once they have been deployed
and are running. Specifically, we will consider aspects such as the monitoring
of cloud applications whose modules are deployed using services of different
providers, possibly at different levels, and how SLA policies may be specified
(e.g., auto-scaling policies).

Hot reconfiguration of applications. Given agnostic application descrip-
tions, it seems natural to consider the possibility of moving application mod-
ules from the services they are deployed on to other ones with better features,
or for a better adjustment of the application needs. We will consider the
possibility of performing such reconfiguration operations at runtime.

3 Research Agenda

In this section we describe the different phases in which we have structured our
work plan, detailing the tasks for each of them.

Analysis of the Related Work

• Exhaustive analysis of the state of the art on homogenisation and cloud
management. We will review current practical and theoretical proposals and
related standards. We will also analyse their implementation plan.

• Systematic analysis of the features and restrictions of the different cloud offer-
ings in order to determine the key aspects to consider when carrying out the
proposed homogenisation. This will be made by defining different deployment
use cases involving different service levels.

• Study of deployment-related concepts using services of multiple clouds (multi-
clouds).

• Review of related open projects, with special emphasis on those using stan-
dards, including an evaluation of their capabilities and limitations.

API Composition and Unification of IaaS and PaaS Services

• Classification of different cloud services in terms of their functionalities and
the services of the cloud offerings that will be supported by our approach,
establishing a preliminary approach of the unified API.

Towards a Unified Management of Applications on Heterogeneous Clouds 237

• A first prototypical development of the unified API. We will most probably
first develop independent versions for IaaS and PaaS, which will later be
unified under a common interface.

• Our implementation efforts will be integrated inside an existent open project
supported by an active community. We will pay special attention to Apache
Brooklyn1, an open project that offers a flexible and robust management of
IaaS services of a large number of providers.

Application Modeling

• Analysis of the different concepts related to the management of applications
and cloud services that will be supported by our modeling facilities to provide
flexible and extensible mechanisms to describe systems.

• Development of a modeling proposal, supporting the definition of applications
according to the results of the previous step, addressing the significant man-
agement and capabilities differences between the different providers. We will
also study the use of current standards, initiatives and open projects focused
on the normalisation of applications and the description cloud services.

• Development of a generic nomenclature to identify and reach the target
providers that will be used to deploy applications, making sure that the
nomenclature is flexible enough to support as many as possible provider prop-
erties, and enabling the distribution of the different application modules over
different providers (cross-deployment).

Validation of the Proposal

• Revise the diversity of use cases proposed on the first phase focusing on dif-
ferent characteristics in order to check the supported providers under diverse
restrictions.

• Application of the use cases to specific deployment scenarios which will be
composed by different providers according to real situations.

Post-deployment Strategies

• As possible extensions, we will consider the monitoring concepts and mecha-
nisms to add them to the common API and the application modeling.

• We will research on management policies, such as auto-scaling, which will be
based on the previous monitoring experiments.

• We will study migration techniques, determining how application modules can
be moved between services of different providers and its abstraction levels.

4 Current State of Our Proposal

We present in this section some of the goals we have already achieved.

1 Apache Brooklyn: https://brooklyn.apache.org/.

https://brooklyn.apache.org/

238 J. Carrasco et al.

4.1 Application Modeling

There is a lot of work on methodology descriptions in the literature, including
many projects, standards and initiatives, as Cloud4Soa [4] CAMP,2 Roboconf,3

and mOSAIC.4 After analysing the most relevant related work, we consider
TOSCA (Topology and Orchestration Specification for Cloud Applications)5 as
a standard that provides a useful framework on which basing our application
modeling. It defines a very flexible model for the description of cloud applica-
tions, the corresponding services, allowing their relations to be specify explicitly
by using a fully service topology, containing all the knowledge about the appli-
cations. Furthermore, it allows the description of procedures to manage services
using orchestration processes by using plans.

Currently, we only take advantage of the topology specification of TOSCA,
what allows us to describe the knowledge about applications independently of any
cloud resource restrictions, and integrate the different features and requirements
of the different provider abstraction levels in the same model.

4.2 Towards a Unified API

We propose the development of a common API to unify the management of IaaS
and PaaS services. After analysing the mechanisms to manage the cloud of differ-
ent alternatives, such as OpenTOSCA,6 Cloudify,7 Alien4Cloud,8 Cloud4Soa and
Brooklyn, we decided to base our work on Apache Brooklyn, an open project with
an active community behind. Brooklyn can manage the provisioning and deploy-
ment of cloud applications, can monitor applications’ health and metrics, and
handle the dependencies between components. It enables cross-computing fea-
tures through a unified API to manage IaaS services offered by various providers.

Thanks to jClouds,9 Brooklyn provides an API for the management of IaaS
cloud services for a great number of providers and establishes a lifecycle for the
management of services and applications. We have extended this API with facil-
ities for the management of PaaS services of platforms based on Cloud Foundry,
providing an homogeneous access to IaaS and PaaS services [5]. We have inte-
grated the PaaS management in all the Brooklyn levels but without modifying its
API. Then, we have obtained a prototype with a common API that manages IaaS
and some PaaS services (currently, Cloud Foundry-based platforms) in a unified
manner. We have tested this API by building portable applications, and deploy-
ing them using different IaaS and PaaS providers. Indeed, we have obtained in
this way a first implementation of the proposed trans-cloud mechanisms.

2 CAMP Standard: https://www.oasis-open.org/committees/camp/.
3 Robocobf: http://roboconf.net/.
4 mOSAIC: http://www.mosaic-cloud.eu/.
5 TOSCA: http://docs.oasis-open.org/tosca/TOSCA/v1.0/.
6 OpenTosca: http://www.iaas.uni-stuttgart.de/OpenTOSCA/.
7 Cloudify: http://getcloudify.org/.
8 Alien4Cloud: http://alien4cloud.org/.
9 jClouds: http://jclouds.apache.org/.

https://www.oasis-open.org/committees/camp/
http://roboconf.net/
http://www.mosaic-cloud.eu/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/
http://www.iaas.uni-stuttgart.de/OpenTOSCA/
http://getcloudify.org/
http://alien4cloud.org/
http://jclouds.apache.org/

Towards a Unified Management of Applications on Heterogeneous Clouds 239

4.3 Trans-cloud Management

Independent tools and frameworks have emerged with the goal of integrating,
under a single interface, the services of multiple public and private providers
(see, e.g., [6,7]). In a very short time, these platforms have evolved according to
the mode in which developers can take advantage of integrated cloud services
to expose and run their systems. Terms such as multi-cloud [8], cross-cloud [9],
federated clouds [10], or inter-clouds [11] have been used for deployment plat-
forms with the ability of distributing modules of an application using services
from different providers.

The main differences between these approaches lie on the different ways of
handling the connections between modules deployed on different platforms. How-
ever, in all these attempts, platforms allow operating simultaneously with a single
level of service to deploy applications, i.e., all the components of an application
are deployed either at the IaaS level or all at the PaaS level (see, e.g., [4,9,12]).
From this, with the goal of unifying cloud services, we propose a second dimen-
sion in which deployment tools integrate IaaS and PaaS levels under a single
interface. Then, this will allow developers to deploy their applications combin-
ing services offered by providers at any of these levels. Following the evolution
in terminology, multi-/cross-/inter-cloud, we envision trans-cloud management
tools without the limitations we currently have. Trans-cloud mechanisms enable
one of the most important goals of this work, the unification of IaaS and PaaS
cloud services (see Sect. 1). The idea behind trans-cloud is to be able to build
our applications by using available services and resources offered by different
providers, at IaaS, PaaS or SaaS level, using virtual machines or containers,
according to our needs and preferences. We will focus on IaaS and PaaS in this
work.

A graphical representation of our solution for trans-cloud is depicted in Fig. 1.
Given a TOSCA YAML description of the application’s components and their
relationships, i.e., its topology, (an extended version of) Apache Brooklyn is
used to perform the deployment of the application. TOSCA YAML descriptions
are processed by a TOSCA Engine that generates the necessary objects for
Brooklyn, performing the request and management of the services required for
the deployment of applications.

Developers can describe their applications by means of our TOSCA YAML-
based profile application, thus modelling in an agnostic way, and avoiding any
cloud resource or service particularities. Then, they can point to the providers
where the different application’s modules will be deployed and use the trans-
cloud approach for their distribution, avoiding the need of expertise in the man-
agement of the different vendors.

Brooklyn does not offer native TOSCA support. Instead, we take advan-
tage of the Brooklyn-TOSCA project10 to build the TOSCA Engine Brooklyn,
and add to Brooklyn the capacity for the management of TOSCA specifica-
tions. Brooklyn-TOSCA is an open project being mainly developed by CloudSoft

10 Brooklyn-TOSCA: https://github.com/cloudsoft/brooklyn-tosca.

https://github.com/cloudsoft/brooklyn-tosca

240 J. Carrasco et al.

Fig. 1. Trans-cloud approach architecture

and FastConnect, which are the main developers of Brooklyn and Alien4Cloud,
respectively. We have collaborated to this project with the goal of adding capac-
ity for deploying and managing applications and cloud resources through TOSCA
concepts. In the following section we explain our trans-cloud approach by means
of an use case and some tentative proposals to improve our work.

5 The Softcare Case Study

In this section, we introduce a case study to illustrate how trans-cloud operates
and how we propose using the TOSCA standards. We also give some high-level
presentation of the implementation of our solution for trans-cloud.

The Softcare case study corresponds to an application for social inclusion
of elderly people and for the management of their medical problems. The Soft-
care application was developed by Atos Spain in the context of the SeaClouds
project [13–15]. Softcare is a cloud-based clinical, educational, and social appli-
cation, based on state-of-the-art technology, that provides an innovative and
integrated solution with the following main features: home as care-environment
through the provision of user-friendly ICT tools for frequent, unobtrusive mon-
itoring; risk assessment and early detection of deterioration symptoms; high-
quality interaction between doctors, social workers and elderly people; monitor-
ing and follow-up of the elderlies’ progress; and self-care and self-management of
chronic conditions, through the development of social networking, educational
tools and nutrition recommendations.

Towards a Unified Management of Applications on Heterogeneous Clouds 241

Figure 2 shows the topology of our Softcare case study as defined using the
Alien4Cloud TOSCA editor.11 We can observe that the application is composed
of five modules, each one modeled using a NodeTemplate: three web modules over
respective Tomcat servers (notice the Tomcat icons) and two MySQL databases
(notice the Database icons). The Softcare Dashboard component contains the
main graphical user interface, which depends on Forum and SoftcareWS mod-
ules. Forum adds a forum service to the web platform, and SoftcareWS contains
the application’s business logic. Databases ForumDB and SoftcareDB are mod-
eled by MySQL NodeTemplates. ForumDB stores the forum’s messages, and
SoftcareDB stores all the other data of the application.

Fig. 2. Softcare topology schema

Listing 1.1 shows the Softcare topology YAML schema using the proposed
application modelling. Notice the ellipses in the YAML: we have removed
detailed information on properties, capabilities, etc., with which we specify the
locations of the war files to be deployed, ports to be used, and other details
necessary for the correct operation of the application. This information has been
removed to save some space, since it is not relevant to our presentation. NodeTem-
plate’s requirements have been kept to show the dependency relations between
components, according to the application topology (see Fig. 2). As we can see
in Listing 1.1, we can difference two distinguish parts. First, we find the agnos-
tic and portable application description that only contains information about
the application components and their relations. In the second part, lines 43–51,
information on target providers, following the Brooklyn-TOSCA12 initiative, is
provided. In this part, each topology component indicates to the provider where
it will be deployed by means of TOSCA policies (brooklyn.locations) and groups.
TOSCA groups allow grouping one or more node templates for assigning special
attributes, like policies. Brooklyn-TOSCA takes advantage of policies flexibil-
ity to describe the providers where to distribute the application modules. In
this case, we can see how two groups have been defined, for components to be
deployed on Amazon (Oregon’s Cluster), and SoftLayer (Seattle’s cluster). In
this case, both of them are IaaS services.

The separation of the topology and the providers descriptions allows us to
ensure the independence between the application description and the used cloud
resources, facilitating a better portability management. The application’s topol-
ogy can be specified at design time, without referring to cloud resources, and
target providers can be supplied in very late stages of the design, at deploy-
ment phase. This is a clear advantage for developers and administrators of the
11 Alien4Cloud editor: http://alien4cloud.github.io/.
12 Brooklyn-TOSCA project https://github.com/cloudsoft/brooklyn-tosca.

http://alien4cloud.github.io/
https://github.com/cloudsoft/brooklyn-tosca

242 J. Carrasco et al.

1 tosca_definitions_version: tosca_simple_yaml_1_0_0_wd03
2

3 imports:
4 - tosca-normative-types:1.0.0.wd06-SNAPSHOT
5 - mysql-type:2.0.0-SNAPSHOT
6 - tomcat-template:5.0.2-SNAPSHOT
7 ...
8

9 description: SoftcareApp topology
10

11 topology_template:
12 node_templates:
13 SoftcareDashboard:
14 type: org.apache.brooklyn.entity.webapp.tomcat.TomcatServer
15 ...
16 requirements:
17 - endpoint_configuration:
18 node: SoftcareWS
19 ...
20 - endpoint_configuration:
21 node: Forum
22 ...
23 Forum:
24 type: org.apache.brooklyn.entity.webapp.tomcat.TomcatServer
25 ...
26 requirements:
27 - endpoint_configuration:
28 node: ForumDB
29 ...
30 SoftcareWS:
31 type: org.apache.brooklyn.entity.webapp.tomcat.TomcatServer
32 ...
33 requirements:
34 - endpoint_configuration:
35 node: SoftcareDB
36 ...
37 ForumDB:
38 type: org.apache.brooklyn.entity.database.mysql.MySqlNode
39 ...
40 SoftcareDB:
41 type: org.apache.brooklyn.entity.database.mysql.MySqlNode
42 ...
43 groups:
44 add_compute_locations:
45 members: [SoftcareDB, Forum, ForumDB]
46 policies:
47 - brooklyn.location: aws-ec2:us-west-2
48 add_web_locations:
49 members: [SoftcareDashboard, SoftcareWS]
50 policies:
51 - brooklyn.location: softlayer-seattle

Listing 1.1. Excerpt of Softcare’s YAML TOSCA topology

Towards a Unified Management of Applications on Heterogeneous Clouds 243

1 tosca_definitions_version: tosca_simple_yaml_1_0_0_wd03
2

3 imports:
4 - tosca-normative-types:1.0.0.wd06-SNAPSHOT
5 - mysql-type:2.0.0-SNAPSHOT
6 - tomcat-template:5.0.2-SNAPSHOT
7 ...
8

9 description: SoftcareApp topology
10

11 topology_template:
12 node_templates:
13 ...
14 groups:
15 add_compute_locations:
16 members: [SoftcareDB, Forum, ForumDB]
17 policies:
18 - brooklyn.location: aws-ec2:us-west-2
19 add_web_locations:
20 members: [SoftcareDashboard, SoftcareWS]
21 policies:
22 - brooklyn.location: pivotal-ws

Listing 1.2. Adding new locations to web modules

applications, since the deployment of applications becomes more flexible. For
instance, we may decide to deploy some or all of the components in our Softcare
case study on a different provider just by changing the corresponding location.
Listing 1.2 shows a modified version of the excerpt of the YAML TOSCA in
Listing 1.1, focusing on the groups section. Now, the group with the components
SoftcareDB, Forum, and ForumDB will be deployed on the Oregon’s cluster
of AWS, IaaS provider, as before, while the group with the components Soft-
careDashboard and SoftcareWS will be deployed on Pivotal Cloud Foundry as
PaaS. Of course, modules could be grouped differently, and deployed at will on
any IaaS or PaaS platform available in Apache Brooklyn or the PaaS support
we have developed based on Cloud Foundry.

6 Conclusions and Future Work

We propose the development and use of a common API to unify the manage-
ment of IaaS and PaaS cloud services, making their use completely uniform.
We allocate this proposal inside what we call trans-clouds, which extends cross-
cloud application deployment and management by supporting the portability
and interoperability of application modules from different providers and at dif-
ferent levels. We propose a TOSCA-based agnostic modeling of applications and
cloud services, which allows us to specify the characteristics and requirements of
any system to be deployed in the cloud. The standardised description of applica-
tions and cloud resources and the homogenous service API significantly reduce

244 J. Carrasco et al.

the portability and interoperability issues related to vendor lock-in, facilitating
the reusability of cloud services. By having an agnostic model of our system may
greatly simplify migration, or simply decision change. Indeed, with our approach,
each component may be deployed at one level or the other just by changing its
location. It is worth noting that the proposed thesis project is not an implementa-
tion exercise on an existing deployment tool, but an innovative general approach
to ease the cloud deployment of applications, enforcing the independence of both
cloud providers and cloud models.

We have developed an operational prototype built on the well-established
Apache Brooklyn tool in order to test our trans-cloud ideas. Brooklyn provides
support for a large number of IaaS providers. Thanks to our efforts in integrat-
ing Cloud Foundry into Brooklyn, it now also provides access to PaaS Cloud
Foundry-based providers such as Pivotal Web Services or Bluemix.

Part of the research in this thesis was developed in the context of the Sea-
clouds project, and some preliminary results related to the thesis plan described
here have already been published in [16–18].

Much work remains ahead. We plan to analyse new providers in order to
extend the supported PaaS services and technologies. Our current model will be
extended to integrate new PaaS providers, such as Heroku or OpenShift. Given
their heterogeneity, the new providers to be considered will have to be carefully
analyzed to find out how they should be added to our framework. Furthermore,
we plan to study the possibility of using the flexibility and scalability mecha-
nisms available for PaaS to develop management policies to react to applications’
events.

To advance in the unification of PaaS and IaaS, we will explore the possibili-
ties for improving the post-deployment facilities of our proposal for trans-cloud.
Specifically, we will study the uniform monitoring of applications on both levels,
and mechanisms for the migration of individual components of applications at
runtime.

Given our unified API, to handle different vendors’ cloud approaches, and a
standards-based modelling of applications, the dynamic reconfiguration of appli-
cations seems to be a natural step to take. Once our trans-cloud tool receives
an application description, it build an internal application model which con-
tains all information about the application components, their relations and the
used cloud services. Taking advantage of all this knowledge and the capability
of unified API, once an application is running, we can move one or some of
its components to different providers, to ensure specified restrictions, such as
performance, cost, etc. For the definition of our migration mechanisms we will
consider existing robust algorithms [19] for minimizing the degradation of per-
formance during the process and maintaining the application topology by means
of ensuring the inter-relations between components.

Towards a Unified Management of Applications on Heterogeneous Clouds 245

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

2. Youseff, L., Butrico, M., Silva, D.D.: Toward a unified ontology of cloud computing.
In: Grid Computing Environments Workshop (GCE), pp. 1–10 (2008)

3. Androcec, D., Vrcek, N., Kungas, P.: Service-level interoperability issues of plat-
form as a service. In: World Congress on Services (SERVICES), pp. 349–356. IEEE
(2015)

4. Zeginis, D., D’Andria, F., Bocconi, S., Gorronogoitia Cruz, J., Collell Martin, O.,
Gouvas, P., Ledakis, G., Tarabanis, K.A.: A user-centric multi-PaaS application
management solution for hybrid multi-cloud scenarios. Scalable Comput. Pract.
Exp. 14(1) (2013)

5. Carrasco, J., Cubo, J., Pimentel, E.: Bidimensional cross-cloud management with
Brooklyn and Tosca. In: 2016 IEEE 9th International Conference on Cloud Com-
puting. IEEE (2016)

6. Sellami, M., Yangui, S., Mohamed, M., Tata, S.: PaaS-independent provisioning
and management of applications in the cloud. In: 6th International Conference on
Cloud Computing (CLOUD), pp. 693–700. IEEE (2013)

7. Gonidis, F., Paraskakis, I., Simons, A.J.H.: A development framework enabling the
design of service-based cloud applications. In: Ortiz, G., Tran, C. (eds.) ESOCC
2014. CCIS, vol. 508, pp. 139–152. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-14886-1 14

8. Kritikos, K., Plexousakis, D.: Multi-cloud application design through cloud service
composition. In: 8th International Conference on Cloud Computing (CLOUD), pp.
686–693. IEEE (2015)

9. Elkhatib, Y.: Defining cross-cloud systems. ArXiv e-prints, February 2016
10. Paraiso, F., Haderer, N., Merle, P., Rouvoy, R., Seinturier, L.: A federated multi-

cloud PaaS infrastructure. In: Chang, R. (ed.) 5th International Conference on
Cloud Computing (CLOUD), pp. 392–399. IEEE (2012)

11. Grozev, N., Buyya, R.: Inter-cloud architectures and application brokering: taxon-
omy and survey. Softw. Pract. Exp. 44(3), 369–390 (2014)

12. Hossny, E., Khattab, S., Omara, F., Hassan, H.: A case study for deploying appli-
cations on heterogeneous PaaS platforms. In: International Conference on Cloud
Computing and Big Data (CloudCom-Asia), pp. 246–253. IEEE Computer Society
(2013)

13. Brogi, A., Carrasco, J., Cubo, J., D’Andria, F., Ibrahim, A., Pimentel, E.,
Soldani, J.: EU project seaclouds - adaptive management of service-based applica-
tions across multiple clouds. In: 4th International Conference on Cloud Computing
and Services Science (CLOSER), pp. 758–763 (2014)

14. Barrientos, M., et al.: Adaptive application management over multiple clouds. In:
Celesti, A., Leitner, P. (eds.) ESOCC Workshops 2015. CCIS, vol. 567, pp. 422–424.
Springer, Cham (2016)

15. Brogi, A., Carrasco, J., Cubo, J., Nitto, E.D., Durán, F., Fazzolari, M., Ibrahim,
A., Pimentel, E., Soldani, J., Wang, P., D’Andria, F.: Adaptive management of
applications across multiple clouds: the SeaClouds approach. CLEI Electron. J.
18(1) (2015)

16. Carrasco, J., Cubo, J., Pimentel, E., Durán, F.: Multi-deployment over heteroge-
neous clouds with TOSCA and CAMP. In: 6th International Conference on Cloud
Computing and Services Science (CLOSER) (2016)

https://doi.org/10.1007/978-3-319-14886-1_14
https://doi.org/10.1007/978-3-319-14886-1_14

246 J. Carrasco et al.

17. Carrasco, J., Cubo, J., Pimentel, E.: Towards a flexible deployment of multi-cloud
applications based on TOSCA and CAMP. In: Ortiz, G., Tran, C. (eds.) ESOCC
2014. CCIS, vol. 508, pp. 278–286. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-14886-1 26

18. Carrasco, J., Cubo, J., Durán, F., Pimentel, E.: Bidimensional cross-cloud man-
agement with TOSCA and Brooklyn. In: International Conference on Cloud Com-
puting (CLOUD) (2016)

19. Durán, F., Salaün, G.: Robust reconfiguration of cloud applications. In: Proceed-
ings of the 17th International ACM Sigsoft Symposium on Component-Based Soft-
ware Engineering, CBSE 2014, pp. 179–184. ACM (2014)

https://doi.org/10.1007/978-3-319-14886-1_26
https://doi.org/10.1007/978-3-319-14886-1_26

Deadlock Analysis of Service-Oriented Systems
with Recursion and Concurrency

Mandy Weißbach(B)

Institute of Computer Science, Martin Luther University Halle-Wittenberg,
Von-Seckendorff-Platz 1, 06120 Halle, Germany
mandy.weissbach@informatik.uni-halle.de

Abstract. In this paper, we show an abstraction-based approach
towards analysis of Service-Oriented Systems with the help of Process
Rewrite Systems. On the one hand the approach takes into account recur-
sion, i.e., internal recursion in service implementations as well as external
recursion over service boundaries. On the other hand, also internal con-
currency and concurrency over service boundaries are considered. The
abstraction can automatically derived from the service implementations.

Keywords: Process rewrite systems · Deadlock · Recursion
Concurrency

1 Introduction and Motivation

Composition of services can be an error-prone task. In particular when for exam-
ple web service descriptions only provide interface signatures such as WSDL-
specifications. The lack of information might lead to unintended behaviour of
services such as deadlocks, livelocks [27], unexpected abortions, unexpected func-
tionalities. As interface signature do not provide enough information on the use
of services, approaches such as semantic web technologies, tools for checking
compatibility criterion etc. are used to reduce the risk of unintended behaviour
due to composition incompatibilities [3,19,21].

The focus of this work is on deadlock analysis. Prominent approaches such
as van der Aalst’s workflow nets [23] are Petri-Net based and use Petri-Net tools
to analyse deadlocks [24]. Other approaches are based on process-algebras [16]
and use tools from this field to analyse deadlocks [20]. These approaches are
usually refinement-based, i.e., the behaviour of a service is defined as a workflow
net or process-algebraic expression and then refined to the service implemen-
tation. The behaviours are composed corresponding to the architecture of the
service-oriented system and then e.g., checked for absence of deadlocks. In con-
trast to these works, we use an abstraction-based approach, i.e., the behaviour is
abstracted from the service implementations. The motivation for an abstraction-
based approach is that there are many services not developed according to a PRS-
Rule refinement-based approach. Furthermore, even if they have been developed

Supervisor: Wolf Zimmermann.

c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 247–259, 2018.
https://doi.org/10.1007/978-3-319-72125-5_20

248 M. Weißbach

initially by a refinement-based approach, it is unlikely that programmers consis-
tently maintain the implementation and its abstraction.

For abstraction-based approaches, it is necessary to automatically derive the
abstract behaviour of a service from its implementation. Therefore, this abstrac-
tion is a classical translation task which can be implemented using compiler
technology.

An abstraction-based approach should deal with all kinds of source programs.
Following this philosophy, concepts like procedure calls, forking asynchronous
procedure calls, synchronization and exception handling have to be considered,
c.p. Table 2. However, Petri-Nets allow only rather imprecise abstractions of
procedure calls. The reason is that the behaviour of recursive procedures cor-
responds to the LIFO principle and requires therefore a stack [15]. A solution
for a more precise abstraction might be recursive Petri-Nets [11] or Mayr’s pro-
cess rewrite systems [18]. Recursive Petri Nets combine properties of Petri Nets
and context free grammars. In [9] it is shown that recursive Petri Net languages
strictly include the union of Petri Net and Context Free languages. The Process
Rewrite System (PRS) are an extension of Petri-Nets by stacks [17]. Therefore,
for modelling recursive procedures, forking asynchronous procedure calls, and
synchronizations, Process Rewrite Systems and recursive Petri Nets are suffi-
cient. Indeed, it was shown in [10] that PANs (a subset of the more expressive
PRSs) are a subset of recursive Petri-Nets, but is unknown whether they are
equal.

It was also shown that it is decidable to check PRSs for the absence of
deadlocks, the deadlock reachability problem [18]. We are not aware of any work
towards decidability of deadlock detection in recursive Perti Net. We therefore
use PRSs as the basic model for specifying the abstract behaviour.

This paper is organized as follows: In Sects. 2.1–2.3 we introduce PRSs
according to [17], service-oriented systems and we give a short overview of the
abstraction process and discuss the deadlock issue. In Sect. 2.4 we present the
problem by means of an example of a service-oriented system including proce-
dure calls, forking asynchronous procedure calls and conditionals. We show how
a service-oriented system can be described with Process Rewrite Systems. In
Sect. 3 we discuss the one-to-one correspondence of process rewrite systems with
cactus stacks and in Sect. 4 discusses related work and Sect. 6 concludes our work
with a short overview of the gained results and gives a short outlook.

2 Foundation

2.1 Services and Service-Oriented Systems

We assume that a service S is an implementation with a provided interfaces Is,
where an interface is a set of procedure signatures. It is possible that a service
calls procedures/functions of other services. The required interface Rs of S is
the set of procedures of other services called by S, c.f. Fig. 1a. A service-oriented
system is composed by two or more services which communicate over a required
(and provided) interface, cf. Fig. 1b. Procedures of an interface can be either

Deadlock Analysis of Service-Oriented Systems 249

Fig. 1. Service S and a service-oriented system with two services.

called synchronous or asynchronous. Called synchronous procedures block their
caller until the callee has been completed the call, while asynchronous procedure
calls are executed in parallel when they are called. Hence the caller can proceed
without waiting for completion.

2.2 Process Rewrite System

Mayr presented a unified view of Petri Nets and several simple process algebras
by representing them as subclasses of the general rewriting formalism Process
Rewrite Systems [18].

It is based on rewrite rules on process-algebraic expressions. The set PEX (Q)
of process-algebraic expressions over a finite set Q (atomic processes) is the
smallest set satisfying:

(i) Q ⊆ PEX (Q)
(ii) If e, e′ ∈ PEX (Q), then e.e′ ∈ PEX (Q) and e ‖ e′ ∈ PEX (Q) (sequential

and parallel composition, respectively).
(iii) ε ∈ PEX (Q)

The empty process, denoted by ε, is the identity w.r.t. sequential and parallel
composition.

Definition 1 (Process Rewrite Systems). A Process Rewrite System
(short: PRS) is a tuple Π � (Σ,Q,→, q0, F) where

(i) Q is a finite set (atomic processes),
(ii) Σ is a finite alphabet disjoint from Q (actions),
(iii) q0 ∈ Q (the initial state),

250 M. Weißbach

(iv) →⊆ PEX (Q) × Σ × PEX (Q) is a set of process-rewrite rules,
(v) F ⊆ Q ∪ {ε} (the set of final processes).

The PRS Π defines a derivation relation ⇒⊆ PEX (Q)×Σ∗ ×PEX (Q) (Σ∗

is the set of all finite words over Σ) by the inference rules in Fig. 2.

Fig. 2. Inference rules for the definition of the derivation relation in PRSs.

Remark 1. For this paper, we use always F � {ε}
Definition 2 (Normal Form). A process algebraic expression π ∈ PEX(Q)
of a Process Rewrite System Π is a normal form iff there exists no process
algebraic expression π′ ∈ PEX(Q) with π ⇒ π′.

For this work, the left-hand and the right-hand side of a process rewrite
rule contains an atomic, parallel or sequential process. So both sides are pro-
cess algebraic expressions without any restriction. If the right- and left-hand
side only allows parallel processes, then there is a one-to-one correspondence
to Petri-Nets (Place/Transition Nets) [17]. Table 1 sketches this correspondence.
A parallel operator on the left-hand side of a process-rewrite rule corresponds to
a synchronization, a parallel operator on the right-hand side of a process-rewrite

Table 1. Correspondence between Petri-Nets and PRS (only parallel processes on LHS
and RHS of Rewrite Rules.)

Deadlock Analysis of Service-Oriented Systems 251

rule to a fork of parallel processes (e.g. asynchronous service call), a sequential
operator on the right-hand side corresponds to a procedure call or synchronous
(blocking) service call, and a procedure return corresponds to a process-rewrite
rule q → ε [13]. This work shows a one-to-one correspondence between general
process-algebraic expressions and cactus stacks, i.e., an abstract program seman-
tics can be viewed as transitions on cactus stacks, see Sect. 3. This is a well-known
semantics of programs with parallel processes and were first introduced by Dahl
and Nygaard for the runtime system of Simula (as tree of stacks) [5].

2.3 Deadlock Detection

A deadlock for Petri-Nets corresponds to a normal form (different from ε), i.e.,
a process-algebraic expression where no process-rewrite rule is applicable:

Fig. 3. A Petri-Net and its corresponding PRS.

Example 1. Figure 3 shows a Petri-Net that may lead to deadlock. This happens
if the transitions fire in the order t0, t1, t2 (leaving one token in place s2 and one
in place s3). On the PRS, this corresponds to the derivation

s0
t0⇒ s1‖s1

t1⇒ s2‖s1
t2⇒ s2‖s3

Now, no rule is applicable, i.e., the expression s2‖s3 is a normal form. Note that
there is an infinite firing sequence: t0, t1, t3, t1, t3, This corresponds to the
derivation

s0
t0⇒ s1‖s1

t1⇒ s2‖s1
t3⇒ s1‖s1

t1⇒ s2‖s1
t3⇒ s1‖s1 · · ·

According to the above discussions, this class of PRS is a generalization
of Petri-Nets as it allows on the right-hand side the sequential operator which
corresponds to procedure calls including (mutually) recursive procedures. Let
Π � (Σ,Q,→, q0, {ε}) a process-rewrite system and π ∈ PEX (Q) reachable
from q0, i.e., q0

∗⇒ π. π is a deadlock for Π iff π �= ε and π is in normal form.
[18] shows that deadlock detection is decidable for the class of PRS. Hence, it
is possible to use PRSs for deadlock detection on services if recursion without
restriction on the recursion depth and parallelism without restricting the degree
of parallelism is allowed.

252 M. Weißbach

2.4 Abstraction

This section shows how to abstract the behaviour of services to process rewrite
systems.

The service-oriented system in Fig. 4 includes a synchronous and asyn-
chronous (forking) procedure call, a synchronization and recursion. The used
states correspond to the program points of the implementation of the services.

Table 2. Abstraction of control structures to process rewrite rules [12].

Control structure Abstraction Explanation

q : n := 1; q′ q → q
′ Assignments have no influence on deadlock

behaviour. q′ is the program point of the
statement being executed after n := 1

q : if(e)q′ : ...
else q′′ : ...
q′′′

q → q
′

q → q
′′ No influence on deadlock behaviour if the

condition is being decided. q′′′ is the program
point of the statement being executed after the
last statement of the then- and else-part

q : p(...); q′ : ...
...
p(...){q′′ : ...}

q → q
′′
.q

′ Call of a synchronous procedure p: The program
point q′ of the statement to be executed after
the call is pushed onto the stack. The execution
continues with first program point q′′ of p

q : p(...); q′...
...
p(...){q′′ : ...}

q → q
′′||q′ Call of an asynchronous procedure p: The

execution can be continued concurrently with
the statement at program point q′ after the call
and the statement at the first program point q′′

and q′

p(...){...
q′′ : return; } q

′′
.q

′ → q
′ The current synchronous called procedure is left

and the execution continues with the statement
after the call. The corresponding program point
q′ was pushed upon call, cf. [13]

p(...){...
q′′ : return; }

q
′′||q′ → q

′

q
′||q′′ → q

′ The current asynchronous called procedure is
left and the execution continues with the
statement after the call q′. The forked
execution is being joined

q : sync p; q′ : ...
...
p(...){...
q′′ : return; }

q||q′′ → q
′ The statement after q (at program point q’) can

only be executed when the previously called
asynchronously procedure p returns

Table 2 shows how the different control structures of our example can be
abstracted. By applying these rules to the service oriented system in Fig. 4 the
shown process rewrite rules → in Table 3 can be abstracted. A derivation from
q0 (the initial state of the abstraction Π) is shown in Table 4.

Deadlock Analysis of Service-Oriented Systems 253

Fig. 4. A service-oriented system with three services. Service S acts as a client.

Table 3. Abstraction of the example of Fig. 4 to process rewrite rules →.

Table 4. Derivation of example of Fig. 4 with the process rewrite rules → from Table 3.

Derivation of PRS-rules Rule Represents Method call

q0 ⇒ q2.q1 (1) p();

q2.q1 ⇒ (q3||q10).q1 (3) a();

(q3||q10).q1 ⇒ (q3||q4||q11).q1 (13) b();

(q3||q4||q11).q1 ⇒ (q3||q13.q5||q11).q1 (6) r();

(q3||q13.q5||q11).q1 ⇒ (q3||q14.q5||q11).q1 (17) if(...)

(q3||q14.q5||q11).q1 ⇒ (q3||q6.q15.q5||q11).q1 (19) q();

(q3||q6.q15.q5||q11).q1 ⇒ (q3||q8.q15.q5||q11).q1 (8) if(...)

(q3||q8.q15.q5||q11).q1 ⇒ (q3||q8.q15.q5||q6.q12).q1 (14) q();

(q3||q8.q15.q5||q6.q12).q1 ⇒ (q3||q8.q15.q5||q8.q12).q1 (8) if(...)

(q3||q8.q15.q5||q8.q12).q1 � − normal form

By applying the rules 1, 3, 13, 6, 17, 19, 8, 14, 8 as shown in Table 4 we main-
tain the process algebraic expression π = (q3||q8.q15.q5||q8.q12).q1. It represents
a normal form because no rules can be applied. So, the service oriented system
reaches a deadlock when entering state π.

254 M. Weißbach

Remark 2. The abstraction is similar to control-flow graphs as used for pro-
gram analysis [2]. Each standard statement has a unique entry point but pos-
sibly multiple exit points (e.g. break and continue-statements). For simplicity,
Table 2 only considers statements with a single exit point. Multiple Exit points
are future work. Decisions in conditionals and loops could be abstracted to non-
deterministic choices and belongs to future work. For asynchronous procedure
calls, the place after the call is considered as the unique exit point.

Remark 3. The abstraction of every service to PRS Rules → is done by following
the abstraction rules of Table. 2. Every service abstraction will be combined to
a set of PRS rules of the system, shown in Table 3.

3 Capturing Recursion and Concurrency

An one-to-one correspondence between general process-algebraic expressions and
cactus stacks, i.e., an abstract program semantics can be viewed as transitions on
cactus stacks. This is a well-known semantics of programs with parallel processes
and were first introduced by Dahl and Nygaard for the runtime system of Simula
(as tree of stacks) [5].

Qur approach captures both, parallel and sequential behaviour. However,
to show the one-to-one correspondence the corresponding cactus stack to the
derivation of the Example can be seen in Table 5.

By applying rule (3) to the (cactus) stack in line 1, the top element q0 is
replaced by q1 and q2 (pop q0 out of the stack, push q1 followed by q2 into the
stack). This behaviour represents the sequential behaviour. At program point
q0 the synchronous procedure p of Service T is called. So program point q1, the
program point after q0, is pushed on the stack and on top of q1 the first program
point of the procedure p, q2. The element q1 can only be removed from the stack,
when the synchronous method p returns, which means q2 is removed from the
stack.

By applying rule (13) to the cactus stack in line 3, the top element q10 is
removed (pop) and replaced by element q4 (pop and push on an empty stack
branch). However, another stack branch is created with q11 as top element.
The new branch represents the parallel behaviour of Example Fig. 4. Here, the
asynchronous method b of Service T is called. The first program point of b() is
q4. The first program point of a() is q10.

Remark 4. Rules can only be applied on top of the stack or stack branches.
In Table 5 these are the green elements. Compared to the algebraic expression,
these are the program points on the top left of the sequential part.

4 Related Work

In [22] recursive Petri Nets (rPN) are used to model the planning of autonomous
agents which transport goods form location A to location B and their coordi-
nating problem. The model of recursive Petri Nets is used to model dynamic

Deadlock Analysis of Service-Oriented Systems 255

Table 5. The one-to-one correspondence between general process algebraic expressions
and cactus stacks shown using the example of Fig. 4, cf. derivation shown in Table 4.

Algebraic Expression Applicable Rule Corresponding Cactus Stack

q0 (1) q0 → q2.q1 q 0

q2.q1 (3) q2 → q3||q10
1

q

q
2

(q3||q10).q1 (13) q10 → q4||q11
q3 01

1

q

q

(q3||q4||q11).q1 (6) q4 → q13.q5

q3 4

1

q

q

q11

(q3||q13.q5||q11).q1 (17) q13 → q14 3

1

q

q

q
5

q11

q13

(q3||q14.q5||q11).q1 (19) q14 → q6.q15 3

1

q

q

q
5

q11

q14

(q3||q6.q15.q5||q11).q1 (8) q6 → q8
15
q
6q

3

1

q

q

q
5

q11

(q3||q8.q15.q5||q11).q1 (14) q11 → q6.q12
15
q
8q

3

1

q

q

q
5

q11

(q3||q8.q15.q5||q6.q12).q1 (8) q6 → q8

12
q

15
q
8q

3

1

q

q

q

q
5

6

(q3||q8.q15.q5||q8.q12).q1 −
12
q

15
q
8q

3

1

q

q

8q

q
5

256 M. Weißbach

processes (e.g., agent’s request). Recursion in our sense is not considered. Dead-
locks can only arise when interactions between agents (e.g., shared attributes)
invalidates preconditions. For that reason a coordinating algorithm is introduced
to prevent deadlocks (interactions between agents).

Another refinement based approach is described in [14]. This approach models
healthcare processes and its called sub-processes with recursive Petri Nets.

Recursion in our sense is not considered. Both approaches use the ability of
rPNs to prune sub trees from the state. In [10,14] recursion is used to allow the
flexible extension of a certain workflow, e.g. health care workflow with a flexible
healthcare process, called sub-processes.

[3] uses also Process Rewrite Systems to check the right behaviour of service-
oriented Systems. Instead of considering deadlocks to ensure the right behaviour
they check protocol conformance. Here, too, recursion and concurrency (inter-
nal and over service boundaries) of the services in a service-oriented Systems
are allowed. Protocols ensure the right call sequence of all callable operations
defined in an interface of a single service or instance. Like ours, this approach is
abstraction based.

[1] uses workflow-nets to model business processes. This approach is based
on Petri Nets. Hence only concurrency can be considered.

An abstraction based approach is done by Bouajjani et al. [4]. They discuss
the analysis of recursive parallel programs based on recursive vector addition
systems. They also explore the decidability of problems such as reachability. It
seems that their model is slightly more general as there are situations where the
reachability problem becomes undecidable. Neither deadlock analysis in services
nor in composed systems is considered. Another abstraction based approaches
are done by [6,7]. Both approaches are based on lam programs, a JAVA-like
language introduced in [8]. [6] uses a points-to analysis and a may-happen-in-
parallel-analysis to build up a dependency graph. The absence of cycles in the
graph ensures deadlock freeness. The challenging example is how to handle object
and task creation in loops.

The approach of [7] is based on a type system which is associated to the pro-
cesses (or networks with nodes) of the lam program. The authors show that for
a subset of lam programs including recursion of a non linear problem, deadlock-
freeness is decidable. E.g., the recurrence relation of Fibonacci is a non linear
and the recurrence relation of the factorial function is a linear problem.

Neither deadlock analysis in services nor in composed systems is considered.
So deadlocks that appear by recursive callbacks can possibly not being detected.
This is subject for further research.

To our knowledge, abstraction-based deadlock analysis in service-oriented
systems including synchronous and asynchronous procedure calls (forking),
recursion and recursive callbacks was not investigated before.

5 Research Plan

We want to examine in detail whether all possible processes within a service come
to an end or all called processes in a composition of services, a service-oriented

Deadlock Analysis of Service-Oriented Systems 257

system, come to an end. Services are allowed to communicate asynchronously and
synchronously. Also, recursion and recursive callbacks are allowed. Furthermore,
our goal was to state an approach that supports the black-box behaviour of
services to keep the business secret.

However, there are two reasons why a service or a service-oriented system
can not come to an end: the service or service-oriented system can not terminate
(recursion/sequential case) or deadlocks (concurrency).

So we used termination and deadlock analysis to decide if the called processes
of or a service-oriented system comes to an end or not.

In summary the following points were or will be considered:

1 determination of areas of improvement towards termination analysis of
service-oriented systems [27].

2 termination analysis of service-oriented systems with no asynchronous calls
and with no recursive callbacks [26,27].

3 termination analysis of service-oriented systems with recursive callbacks [28].
4 deadlock analysis of service-oriented systems with only concurrency including

asynchronous calls [25], partly this paper.
5 termination and deadlock analysis of service-oriented systems including 3 and

4 (this paper).
6 implementation of an automatic verification tool and case study.

Literature research has shown that the common consideration of recursion and
concurrency in termination and deadlock analysis in service-oriented systems is
missing. In [27] we pointed out that deadlock analysis based on Petri Nets only
abstract the concurrent behaviour. Recursion is ignored and fairness and sound-
ness of the abstracted Petri Net is assumed. But under certain circumstances
this can lead to a deadlock [27]. We proposed the introduction of a termination
and size change function which can be provided over the WSDL-description of
every service [27].

In [28] recurrence equations were introduced to handle recursion and recursive
callbacks. With the help of a closed system of recurrences the termination can
be proved.

There are still open points that need to be considered. For example under
which circumstances, recursion can be ignored by doing the deadlock analysis.

6 Conclusion

An overview of the research topic deadlock analysis in service-oriented systems
was given. We allow concurrency and recursion, internal and over service bound-
aries. Web Services can be described using Process Rewrite Systems. Process
Rewrite Systems can model concurrency and recursion. The PRS description
can be composed to describe the service behaviour and therefore enables the
application of the deadlock detection algorithm for PRSs.

Recursive callbacks combined with concurrency, further implementation of a
fully automatically tool to test the practical suitability and applicability are still

258 M. Weißbach

open points to be investigated. Since we have an abstraction based approach,
it seems to be interesting if the verification can be done by only providing the
abstractions of the service to keep the business secret and the black-box view.

References

1. van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63139-9 48

2. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison-Wesley Longman Publishing Co. Inc., Boston (2006)

3. Both, A., Zimmermann, W.: Automatic protocol conformance checking of recursive
and parallel BPEL systems. In: IEEE Sixth European Conference on Web Services
(ECOWS 2008), pp. 81–91 (2008)

4. Bouajjani, A., Echahed, R., Habermehl, P.: Verifying infinite state processes with
sequential and parallel composition. In: Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 95–106. ACM
(1995)

5. Dahl, O.J., Nygaard, K.: Simula: an algol-based simulation language. Commun.
ACM 9(9), 671–678 (1966)

6. Flores-Montoya, A.E., Albert, E., Genaim, S.: May-happen-in-parallel based dead-
lock analysis for concurrent objects. In: Beyer, D., Boreale, M. (eds.) FMOODS/-
FORTE -2013. LNCS, vol. 7892, pp. 273–288. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38592-6 19

7. Giachino, E., Kobayashi, N., Laneve, C.: Deadlock analysis of unbounded process
networks. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp.
63–77. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6 6

8. Giachino, E., Laneve, C.: A beginner’s guide to the DeadLock Analysis M odel.
In: Palamidessi, C., Ryan, M.D. (eds.) TGC 2012. LNCS, vol. 8191, pp. 49–63.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41157-1 4

9. Haddad, S., Poitrenaud, D.: Theoretical aspects of recursive petri nets. In:
Donatelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS, vol. 1639, pp. 228–247.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48745-X 14

10. Haddad, S., Poitrenaud, D.: Modelling and analyzing systems with recursive petri
nets. In: Boel, R., Stremersch, G. (eds.) Discrete Event Systems, vol. 569, pp.
449–458. Springer, Boston (2000). https://doi.org/10.1007/978-1-4615-4493-7 48

11. Haddad, S., Poitrenaud, D.: Recursive petri nets. Acta Informatica 44(7), 463–508
(2007). https://doi.org/10.1007/s00236-007-0055-y

12. Heike, C., Zimmermann, W., Both, A.: Protocol conformance checking of services
with exceptions. In: De Paoli, F., Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012.
LNCS, vol. 7592, pp. 122–137. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33427-6 9

13. Heike, C., Zimmermann, W., Both, A.: On expanding protocol conformance check-
ing to exception handling. Serv. Oriented Comput. Appl. 8(4), 299–322 (2014)

14. Hicheur, A., Ben Dhieb, A., Barkaoui, K.: Modelling and analysis of flexible health-
care processes based on algebraic and recursive petri nets. In: Weber, J., Perseil,
I. (eds.) FHIES 2012. LNCS, vol. 7789, pp. 1–18. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39088-3 1

https://doi.org/10.1007/3-540-63139-9_48
https://doi.org/10.1007/978-3-642-38592-6_19
https://doi.org/10.1007/978-3-642-38592-6_19
https://doi.org/10.1007/978-3-662-44584-6_6
https://doi.org/10.1007/978-3-642-41157-1_4
https://doi.org/10.1007/3-540-48745-X_14
https://doi.org/10.1007/978-1-4615-4493-7_48
https://doi.org/10.1007/s00236-007-0055-y
https://doi.org/10.1007/978-3-642-33427-6_9
https://doi.org/10.1007/978-3-642-33427-6_9
https://doi.org/10.1007/978-3-642-39088-3_1

Deadlock Analysis of Service-Oriented Systems 259

15. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation, 2nd edition. SIGACT News 32(1), 60–65 (2001). https://
doi.org/10.1145/568438.568455

16. Kaveh, N., Emmerich, W.: Deadlock detection in distribution object systems. In:
ACM SIGSOFT Software Engineering Notes, vol. 26, pp. 44–51. ACM (2001)

17. Mayr, R.: Combining petri nets and PA-processes. In: Abadi, M., Ito, T. (eds.)
TACS 1997. LNCS, vol. 1281, pp. 547–561. Springer, Heidelberg (1997). https://
doi.org/10.1007/BFb0014567

18. Mayr, R.: Decidability and complexity of model checking problems for infinite-state
systems. Citeseer (1998)

19. Parizek, P., Plasil, F.: Modeling of component environment in presence of callbacks
and autonomous activities. In: Paige, R.F., Meyer, B. (eds.) TOOLS EUROPE
2008. LNBIP, vol. 11, pp. 2–21. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-69824-1 2

20. Rai, G.N., Gangadharan, G., Padmanabhan, V.: Algebraic modeling and verifica-
tion of web service composition. Procedia Comput. Sci. 52, 675–679 (2015)

21. Schmidt, H.W., Krämer, B.J., Poernomo, I., Reussner, R.: Predictable component
architectures using dependent finite state machines. In: Wirsing, M., Knapp, A.,
Balsamo, S. (eds.) RISSEF 2002. LNCS, vol. 2941, pp. 310–324. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-24626-8 22

22. Seghrouchni, A.E.F., Haddad, S.: A recursive model for distributed planning. In:
Proceedings of the 2nd International Conference on Multi-Agent Systems (ICMAS
1996), pp. 307–314 (1996)

23. van der Aalst, W.M.P.: Workflow verification: finding control-flow errors using
petri-net-based techniques. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.)
Business Process Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45594-9 11

24. Verbeek, E., van der Aalst, W.M.P.: Woflan 2.0 a petri-net-based workflow diag-
nosis tool. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp.
475–484. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44988-4 28

25. Weißbach, M.: Termination analysis of concurrent service-oriented systems. Tech-
nical report, Proceedings of the Ph.D. Symposium at the 4th European Conference
on Service-Oriented and Cloud Computing 1(01), pp. 23–29 (2015)

26. Weißbach, M., Zimmermann, W.: Checking of liveness properties in component-
based systems and sercvice-oriented architectures. Technical report, Proceedings
of the Ph.D. Symposium at the 8th IEEE European Conference on Web Services
1(4), pp. 09–12 (2010)

27. Weißbach, M., Zimmermann, W.: Termination analysis of business process work-
flows. In: Proceedings of the 5th International Workshop on Enhanced Web Service
Technologies, WEWST 2010, pp. 18–25. ACM, New York (2010). https://doi.org/
10.1145/1883133.1883137

28. Weißbach, M., Zimmermann, W.: Termination analysis of service-oriented systems.
Technical report, Proceedings of the Ph.D. Symposium at the 1st European Con-
ference on Service-Oriented and Cloud Computing 1(3), pp. 23–38 (2012)

https://doi.org/10.1145/568438.568455
https://doi.org/10.1145/568438.568455
https://doi.org/10.1007/BFb0014567
https://doi.org/10.1007/BFb0014567
https://doi.org/10.1007/978-3-540-69824-1_2
https://doi.org/10.1007/978-3-540-69824-1_2
https://doi.org/10.1007/978-3-540-24626-8_22
https://doi.org/10.1007/3-540-45594-9_11
https://doi.org/10.1007/3-540-44988-4_28
https://doi.org/10.1145/1883133.1883137
https://doi.org/10.1145/1883133.1883137

Prediction of Quality of Service of Software
Applications

Ahmad Ibrahim(B)

Department of Computer Science,
University of Pisa, Pisa, Italy

ahmad@di.unipi.it

Abstract. The ability to a priori predict the Quality of Service (QoS) of
a software application is crucial both in the design of applications and in
the definition of their Service Level Agreements (SLA). QoS prediction
is challenging because of the different possible results of service invoca-
tions, and of the nondeterminism, correlations and complex dependencies
among activities.

In this research we present a technique to probabilistically predict
the QoS of service based and parallel design patterns based applications
by applying Monte Carlo simulations to a simple representation of the
control-flow of the applications. A proof-of-concept implementation of
the analyses is discussed along with future work.

1 Introduction

Quality of Service (QoS) refers to a set of non-functional attributes used to
describe a system [1] such as response time, reliability or cost.

The QoS of an application does depend on the QoS of the services it uses.
For instance, for service based applications [2,3], the response time of a service
orchestration obviously depends on the response times of the services it invokes -
which may actually vary over time for different reasons (e.g., workload or network
congestion).

A straightforward way to assess the QoS of an application would be to simply
deploy it and then monitor the QoS parameters of interest over a sufficiently
high number of runs. Unfortunately, such an approach can be time consuming,
expensive (when non-free services are invoked) and may not be feasible when
invocations have side-effects (e.g., as in the case of services enabling monetary
transactions).

In this research we consider two classes of applications

1. Service based applications. Service based application are usually defined via
workflows that implement business processes by orchestrating various (possi-
bly third-party) services [2,3].

Supervisor: Antonio Brogi, Department of Computer Science, University of Pisa,
Italy.

c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 260–273, 2018.
https://doi.org/10.1007/978-3-319-72125-5_21

Prediction of Quality of Service of Software Applications 261

2. Parallel design patterns based applications. Parallel design patterns (also
called skeletons) are customisable, composable design patterns that can be
fruitfully exploited to define parallel applications [4,5].

The ability of a priori predicting the QoS of an application is very valuable
for application designers. In service based applications, predicting the QoS of
a service orchestration is valuable both during the design of the orchestration
and for defining its Service Level Agreement (SLA [6]). It helps answering ques-
tions, like:

– What is the QoS of a given orchestration?
– What is the effect on the QoS of an orchestration of replacing one or more

of the invoked services with alternative services, (e.g., offered by different
providers)?

– How modifying the workflow of an orchestration impacts on its overall QoS?

Similarly, for parallel design pattern based applications, QoS prediction is
valuable for comparing different deployments as well as for assessing the scala-
bility of their parallelization. It helps answering questions, like:

– What is the QoS of a given parallel design pattern based application?
– Would a restructuring improve the QoS of a parallel design pattern based

application for a steady state?
– What type of parallelization would achieve the best QoS for a dynamic state?

Challenges in predicting the QoS of an application

A priori predicting the QoS of an application is not easy mainly because of four
main challenges.

1. Different possible results of service invocations. In service based appli-
cations, each invoked service can return a successful reply, a fault notification,
or even no reply at all [7]. If a fault is returned, a fault handling routine will
be executed instead of the normal control flow. If no reply is received, the
orchestrator will get stuck (unless some parallel branch throws a fault). In
either case, the resulting QoS of the orchestration will differ from the case of
successful invocation.
In the case of parallel design patterns based applications, the QoS of the
activities executed depends for instance on the type of the inputs arriving in
the input stream, as different inputs typically require different service times.

2. Non-determinism in the orchestration workflow. The control flow of
a workflow defining a service based applications is in general nondetermin-
istic. Besides the nondeterminism induced by the possible different results
of service invocations, a workflow usually contains branching conditions that
depend upon input data values. As a consequence, which branch will be exe-
cuted in an alternative, or the number of iterations of a loop is not known a
priori [8,9].

262 A. Ibrahim

In the case of parallel design patterns based applications, the execution of
conditional loops defined by feedback patterns has a similar nondetermin-
istic behaviour, as some outputs may be routed back depending upon the
evaluation of conditions, and the number of iterations is not known a priori.

3. Complex dependencies among workflow activities. Workflows can con-
tain complex dependencies among activities, as for instance those defined by
WS-BPEL synchronization links [10]. The control flow defined by synchro-
nizations within parallel activities is more expressive than what is allowed
by simple parallel execution with synchronization barriers at the end. This
implies that workflows containing such complex synchronization structures
cannot be always decomposed into parallel and sequential compositions, as
shown in [11,12].
In the case of parallel design patterns based applications, the execution of
a pipe pattern for instance exhibits a complex dependencies behaviour. An
activity in a pipe can proceed with processing new input and run in parallel
along with other activities which can be still busy with previous inputs.

4. Correlations among workflow activities. The above two characteris-
tics suggest to employ a probabilistic approach. However, it is important
to observe that the naive solution of assigning independent probabilities to
workflow activities (e.g., as in [11]) can lead to incorrect results.

To the best of our knowledge, none of the existing techniques for QoS predic-
tion for service based (e.g., [11–16]) and parallel design pattern based applica-
tions (e.g., [17–20]) fully addresses all the aforementioned challenges respectively.

2 Research Contributions

In this research we present a design time QoS prediction algorithm for service
based and parallel design patterns based applications. The QoS prediction tech-
niques rely on two main ideas:

(1) Expressing the control flow of applications in terms of two simple cost com-
positors (Both and Delay) to address complex dependency, and

(2) Exploiting Monte Carlo simulations [21] to deal with the non-determinism,
different possible results of service invocations and correlations in workflow.

For both service based applications and parallel design patterns based appli-
cations, we present algorithms that suitably deals with all the challenges and
that is capable of probabilistically predicting the QoS of an application.

3 Proposed Solution

To estimate the QoS of parallel design patterns based applications, we pro-
posed structurally recursive functions that associate, in a compositional way,
each activity with a cost structure. Such cost structure is general, and it can be
instantiated to define different QoS attributes, e.g., the time needed to complete
an activity etc. The cost compositors are:

Prediction of Quality of Service of Software Applications 263

– The first cost compositor is a parallel compositor. Both(A,B) defines the cost
associated with executing independently an activity with cost A and an activ-
ity with cost B.

– The second cost compositor defines the delayed cost of an activity which must
wait for the completion of another activity before starting. Delay(A,B) defines
the cost associated with executing an activity of cost A which must wait for
the completion of an activity with cost B before starting.

For example, let us denote with aTime and bTime the completion time of
the two activities. The completion time for running both activities in parallel
is given by the maximum between aTime and bTime. Instead, the completion
time for delaying one activity after the other is obtained by summing aTime and
bTime, as the delayed activity can start only after the first activity is completed.

let Both(aTime ,bTime) = Max(aTime ,bTime)

let Delay(aTime ,bTime) = aTime + bTime

Other QoS properties (like energy consumption, monetary cost) can be simi-
larly defined using Both and Delay. Our algorithms respectively converts a given
workflow into an expression of Both and Delay and then estimate the QoS value.

3.1 Service Based Applications

For service based applications, the algorithm converts a given WS-BPEL work-
flow into an expression of Both and Delay.

The algorithm [22–24] is implemented in a open source tool PASO
(Probabilistic Analyser of Service Orchestrations)1. The inputs of the PASO
(Fig. 1) are a WS-BPEL workflow2, and probability distributions for the QoS
properties of the invoked services as well as for the evaluation of the workflow
branching conditions. The output of the algorithm is a probability distribution
for the QoS properties (reliability, time and cost) of the orchestration.

A summary of the algorithm is given in Table 1.

3.2 Parallel Design Patterns Based Applications

For parallel design patterns based applications, the algorithm converts a given
parallel design pattern based application into an expression of Both and Delay.
The algorithm [25] is implemented in a open source tool PASA (Probabilistic
Analyser of Skeleton-based Applications)3 (Fig. 2).

PASA inputs (i) the description of a parallel application defined as a com-
bination of basic activities (i.e., Nodes) and of the core stream parallel design
patterns Comp, Pipe, Farm, Feedback, (ii) the size and the optional classification

1 The source code of PASO is available at https://github.com/upi-bpel/paso.
2 PASO is able to analyse a subset of WS-BPEL structural (sequence, flow, if, while,
scope, and faultHandlers) and basic (invoke, assign, receive, reply) activities.

3 The source code of PASA is available at https://github.com/ahmad1245/PASA.

https://github.com/upi-bpel/paso
https://github.com/ahmad1245/PASA

264 A. Ibrahim

Table 1. Overview of prediction algorithm for service based applications.

Workflow activity Cost compositor syntax Description

Sequence(A,B) Both(A, Delay(B,A)) B will executed after A

Flow(activitySet,linkSet) Both(activitySet) All activities in activitySet

will be executed in Parallel

depending upon the links

1. Sort activities using links

to ensure that preceding

activities are evaluated

before current activity

2. For all activities in Flow:

2.1 Identify all preceding

activities of the current

activity

2.2 Compute outcome of all

preceding activities (Fault

has precedence over stuck

and success. Stuck has

precedence over success)

2.3 Compute cost of all pre-

ceding activities

2.4 Evaluate join condition

for current activity

2.5 Evaluate transition con-

dition for all outgoing links

of current activity

3 Compute cost and

outcome of Flow once all

activities have been

analyzed

Scope(A,faultHandler) Both(A,Delay(faultHandler,A)) or

Both(A,Delay(Zero,A))

If evaluation of A yields a

Fault, then faultHandler is

evaluated

Otherwise cost of executing

A is returned only

Assign(name,expr) Zero We assume that Assign has

Zero cost

IfThenElse(guard,A,B) Both(A, Delay(zero,A)) or

Both(B, Delay(zero,B))

Evaluates guard condition

using sampling function

If true, evaluate A else

evaluate B

While(guard,A) Sequence (A,While(guard,A)) or

Zero

Evaluates guard condition

using sampling function

If false, the body of the loop

is skipped

Otherwise evaluate the

body of the loop and While

again

Invoke(partnerLink) – Use sampling function to

sample a value for QoS

properties and

Success/Fault/Stuck

outcome

Prediction of Quality of Service of Software Applications 265

Fig. 1. Bird-eye view of the input-output behaviour of PASO.

Fig. 2. Bird-eye view of the input-output behaviour of the PASA analyser.

of the input stream (e.g., we can categorise the data items coming from the
input stream to distinguish the energy consumption and completion time they
require for being processed), (iii) the QoS required by each node to process each
type of input, and (iv) the probabilities of a given input type to occur and of
a given Feedback conditions to get satisfied. PASA also permits displaying the
results (i.e., energy consumption and completion time) of the performed analysis
in different formats (e.g., histograms).

A summary of the algorithm is given in Table 2. The algorithms for both
PASO and PASA are implemented in F#.Net [26].

266 A. Ibrahim

Table 2. Overview of prediction algorithm for parallel design patterns based applica-
tions.

Pattern Cost compositor syntax Description

Pipe (A, B) Both (A, B) A and B will be executed

simultaneously. More precisely,

B will wait for A to process an

input i before executing it.

While B will be busy processing
i, A could proceed with input
i+1

Comp (A, B) Both (A, Delay(B,A)) B can start processing a given
input only when A has
completed processing such input

Farm (A, n) Both (wQoS of n

workers)

We split the input stream among
n workers
Execute A on n workers
simultaneously and save cost in
wQoS

Feedback(A, Condition) Both(A,Delay(fQoS,A)) Execute A & save cost in feed-
backQoS
Evaluate Condition using Sam-
pling function
If True then item is routed
back, A is executed again &
cost is saved in fQoS

4 Example

To illustrate our approach, we describe next its application to shipping service
example, adapted from well-known example provided in the original WS-BPEL
specification [10]. Although this example only shows the application of PASO,
yet other examples for both PASO and PASA can be found in [23,25].

4.1 Shipping Service

The shipping service (Fig. 3) starts by receiving a shipping order from the cus-
tomer. A shipping order contains a list of requested items together with the
indication of whether the requested items must be shipped separately or all
together. The service ships the orders as indicated and then it replies to the
customer with a shipment complete notification.

We assume the following input distributions:

– Workflow control-flow (Table 3(a)): Condition ShipIndividual true 70% of
times, condition Item<TotalItems true 80% of times.

– ShipItem service (Table 3(b)): It usually (80%) completes in 2 s with 0.5$
expense. Sometimes (20%) it returns a fault after 3 s.

Prediction of Quality of Service of Software Applications 267

Fig. 3. Shipping service.

4.2 PASO at Work: Shipping Service

We now describe step-by-step analysis of PASO for the shipping service exam-
ple. For instance, if PASO samples the value false for ShipIndividual and
<Success,0.5$,2 sec> for the invocation, then the total cost of the workflow
is:

Both(Zero ,Both(<0.5$,2sec >,Both(Zero ,Zero)))

= <0.5$,2sec >

On the other hand, if PASO samples the value false for ShipIndividual
and <Fault,0$,3 sec> for the invocation, then the total cost of the workflow is:

Both(Zero ,Both(<0$,3sec >,Both(Zero ,Zero)))

Table 3. Input distributions for the shipping service example.

268 A. Ibrahim

= <0$,3sec >

If instead PASO samples the value true for ShipIndividual and the body
of the While is executed three times with <Success,0.5$,2 sec> for the invo-
cation, then the cost of the While, which is also the cost of the whole workflow,
is

Both(x,Delay(Both(x,Delay(x,x)),x))

= <1.5$,6sec >

(where x=<0.5$,2sec>).
Table 4 summarizes the previously described three traces along with other

three runs of the exec function on the example.

Table 4. Six runs of the shipping service example.

ShipIndividual item<TotalItems ShipItem Orchestration

false <Success,0.5$,2 sec> <Success,0.5$,2 sec>

false <Fault,0$,3 sec> <Fault,0$,3 sec>

true true <Success,0.5$,2 sec>

true <Success,0.5$,2 sec>

true <Success,0.5$,2 sec>

false <Success,1.5$,6 sec>

false <Success,0.5$,2 sec> <Success,0.5$,2 sec>

true false <Success,0$,0 sec>

true true <Fault,0$,3 sec> <Fault,0$,3 sec>

The values of the QoS properties reliability, amortized expense for successful
execution and average response time computed from the samples of Table 4 are:

successTime = (2 + 3 + 6 + 2 + 0 + 3) sec = 16 sec

totalExpense = (0.5 + 0 + 1.5 + 0.5 + 0 + 0)$ = 2.5$
reliability = 4/6 = 66.6%
amortizedExpense = (2.5$)/4 = 0.6$
averageResponseTime = (16 sec)/4 = 4 sec

Table 5 shows how the estimations of the QoS parameters considered pro-
gressively converges by increasing the number of samples.

4.3 Experimental Results

To validate the results predicted by PASO, we implemented and deployed ship-
ping service by using Apache ODE [27] and Tomcat server [28] on a local server.
A Java client program was used to invoke and monitor response time of the
orchestration (Fig. 4).

Prediction of Quality of Service of Software Applications 269

Table 5. QoS estimations for different number of samples for the shipping service
example.

Samples reliability amortizedExpense averageResponseTime

6 66.6% 0.6 $ 4 s

100 68% 0.8 $ 4.2 s

10,000 62.8% 0.75 $ 4.1 s

1,000,000 62.9% 0.74 $ 4.1 s

Fig. 4. Activity diagram for monitoring the shipping service example.

Fig. 5. Response time comparison for shipping service example

270 A. Ibrahim

The results after monitoring response time for the shipping service are plot-
ted, along with PASO predicted result, in Fig. 5 respectively. It is easy to see that
PASO predicted results correspond to the monitored results. The slight variation
in response time is due to the overhead associated with monitoring (which was
not considered by PASO).

5 Related Work

Various approaches have been proposed to determine the QoS for service
based applications (e.g., [11–16]) and parallel design patterns based applications
(e.g., [17–20]).

5.1 Service Based Applications

Cardoso [13] presented a mathematical model and an algorithm to compute the
QoS of a workflow composition. The stochastic workflow reduction algorithm
iteratively reduces the workflow by removing parallel, sequence, alternative and
looping structures according to a set of reduction rules, until only one activ-
ity remains. However, some workflow complex dependency structures cannot be
decomposed into parallel or sequence, as shown in [29].

Mukherjee et al. [11] presented a algorithm to estimate the QoS of WS-BPEL
compositions. They convert a WS-BPEL workflow into an activity dependency
graph, and assign probabilities of being executed to each activity. Their frame-
work allows complex dependency structure as well as fault driven flow control.
However, [11] do not consider correlations among activities which do not have a
direct dependency, and this in some cases can yield a wrong result.

Zheng et al. [15] focused on QoS estimation for compositions represented
by service graphs. They transform the service graph in order to remove the
cycles, then calculate probabilities of execution and QoS parameters for each
path. In their approach however they only marginally deal with parallelism, by
not considering arbitrary synchronization <link>s (i.e., they restrict to cases in
which is possible to decompose flow -like structures into parallel and sequences,
as in [13]), and they do not take into account fault handling.

Ivanovic et al. [30] defined a language to represent service compositions, and
they address the problem of correlation. However the language does not describe
parallel execution, thus their solution is similar to the ones proposed in workflow
decomposition approaches [13,15].

Moreover, to the best of our knowledge, all previous approaches for QoS
prediction for service based application require to know a priori the exact number
of iterations, or at least an upper bound for each loop in order to estimate
QoS values.

Prediction of Quality of Service of Software Applications 271

5.2 Parallel Design Patterns Based Applications

Benoit et al. [19] proposed using process algebras to predict QoS of skeleton
applications. The main motivation was to analyze the performance of Grid appli-
cations with the use of algorithmic skeletons and process algebras. Their algo-
rithm AMoGeT works by first generating PEPA models [31] from the given
program. Solving the models and then comparing results provide performance
information (throughput). Their approach only covered the Pipe pattern, though.

Castro et al. [20] proposed a QoS prediction algorithm based on denotational
semantics. The skeletons they considered were sequence, pipe and farm. Their
algorithm works in three steps. It starts by generating all possible alternatives for
a given program. Then minimum number of worker threads for each alternatives
is calculated. The alternative with lowest number of cores is selected at the end.
The approach by [20] is deterministic and they assume that all activities will
take same amount of time to execute, in their proposed cost model, which can
be unrealistic in some scenario.

The approaches by Jay [17] and Hayashi et al. [18] covers only data parallel
patterns and have limitations in terms of non-determinism like Castro et al. [20].

To summarize, only few approaches (e.g., [17–20]) focus on design time pre-
diction of QoS for parallel design pattern based application. Most of them either
focus only on data parallel patterns or limited number of stream parallel patterns
(with no focus on non-deterministic scenarios).

6 Future Work

There are several possible directions to extend this work:
PASO and PASA can be extended to support new activities and languages.

PASO is currently capable of analyzing a proper subset WS-BPEL. Support for
other interesting WS-BPEL activities (e.g., Pick, Event Handlers) and work-
flow languages (e.g.,YAWL, BPMN) could be included in PASO. Similarly, PASA
currently models a simple set of parallel design patterns. Support for other inter-
esting data parallel patterns (e.g., map, reduce) and frameworks (e.g., FastFlow)
could be included in PASA.

Some forms of correlations could be introduced in the samplings. For instance,
it would be interesting to consider some correlation among service invocations
(e.g., if a service invocation returns a fault because it is “down for maintenance”
it may be probable that the same result will be obtained in the next invocation)
and in the input stream of parallel applications (e.g., bursts of data).

Last, but not least, the definition of the cost compositors Both and Delay can
be extended to support new QoS properties (e.g., throughput, availability, and
so on). An interesting extension in this perspective would be to provide users
with a query language to specify their own QoS properties.

Acknowledgments. This work was partly supported by the project Through the Fog
(PRA 2016 64) funded by the University of Pisa.

272 A. Ibrahim

References

1. ISO: CD 15935 - Information Technology: Open Distributed Processing - Reference
Model - Quality of Service. Technical Report ISO document ISO/IEC JTC1/SC7
N1996, International Organization for Standardization (1998)

2. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R., Hamilton, B.A.:
Reference model for service oriented architecture 1.0. OASIS standard 12 (2006)

3. Papazoglou, M.: Web Services: Principles and Technology, 2nd edn. Pearson Edu-
cation Canada (2012)

4. Cole, M.I.: Algorithmic Skeletons: A Structured Approach to the Management of
Parallel Computation. Ph.D. thesis, University of Edinburgh (1988)

5. Rabhi, F.A., Gorlatch, S. (eds.): Patterns and Skeletons for Parallel and Dis-
tributed Computing. Springer, London (2003)

6. Keller, A., Ludwig, H.: The WSLA framework: specifying and monitoring service
level agreements for web services. J. Netw. Syst. Manage. 11, 57–81 (2003)

7. Brüning, S., Weissleder, S., Malek, M.: A fault taxonomy for service-oriented archi-
tecture. In: 10th IEEE High Assurance Systems Engineering Symposium, HASE
2007, pp. 367–368 (2007)

8. Floyd, R.W.: Nondeterministic algorithms. J. ACM (JACM) 14, 636–644 (1967)
9. Lohmann, N., Verbeek, E., Ouyang, C., Stahl, C.: Comparing and evaluating petri

net semantics for BPEL. Int. J. Bus. Process Integr. Manag. 4, 60–73 (2009)
10. Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B.,

Curbera, F., Ford, M., Goland, Y., et al.: Web Services Business Process Execution
Language version 2.0 (2007). http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-
v2.0-OS.html

11. Mukherjee, D., Jalote, P., Gowri Nanda, M.: Determining QoS of WS-BPEL com-
positions. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS,
vol. 5364, pp. 378–393. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-89652-4 29

12. Dumas, M., Garćıa-Bañuelos, L., Polyvyanyy, A., Yang, Y., Zhang, L.: Aggregate
quality of service computation for composite services. In: Maglio, P.P., Weske,
M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 213–227.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17358-5 15

13. Cardoso, A.J.S.: Quality of service and semantic composition of workflows. Ph.D.
thesis, Univ. of Georgia (2002)

14. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. J. Syst. Softw. 82, 3–22 (2009)

15. Zheng, H., Zhao, W., Yang, J., Bouguettaya, A.: QoS analysis for Web service
compositions with complex structures. IEEE Trans. Serv. Comput. 6, 373–386
(2013)

16. Ivanović, D., Carro, M., Kaowichakorn, P.: Towards QoS prediction based on com-
position structure analysis and probabilistic models. In: Franch, X., Ghose, A.K.,
Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 394–402. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45391-9 29

17. Jay, C.B.: Costing parallel programs as a function of shapes. Sci. Comput. Program.
37, 207–224 (2000)

18. Hayashi, Y., Cole, M.: Static performance prediction of skeletal parallel programs.
Parallel Algorithms Appl. 17, 59–84 (2002)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://doi.org/10.1007/978-3-540-89652-4_29
https://doi.org/10.1007/978-3-540-89652-4_29
https://doi.org/10.1007/978-3-642-17358-5_15
https://doi.org/10.1007/978-3-662-45391-9_29

Prediction of Quality of Service of Software Applications 273

19. Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Evaluating the performance of
skeleton-based high level parallel programs. In: Bubak, M., van Albada, G.D.,
Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 289–296.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24688-6 40

20. Castro, D., Hammond, K., Brady, E., Sarkar, S.: Structure, semantics and speedup:
reasoning about structured parallel programs using dependent types. Under Con-
sideration for Publication in J. Funct. Program. (2015)

21. Dunn, W.L., Shultis, J.K.: Exploring Monte Carlo Methods. Elsevier, Amsterdam
(2011)

22. Bartoloni, L., Brogi, A., Ibrahim, A.: Probabilistic prediction of the QoS of ser-
vice orchestrations: a truly compositional approach. In: Franch, X., Ghose, A.K.,
Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 378–385. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45391-9 27

23. Bartoloni, L., Brogi, A., Ibrahim, A.: Automated prediction of the QoS of service
orchestrations: PASO at work. In: Celesti, A., Leitner, P. (eds.) ESOCC Workshops
2015. CCIS, vol. 567, pp. 111–125. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33313-7 8

24. Bartoloni, L., Brogi, A., Ibrahim, A.: Predicting the QoS of service orchestrations.
Submitted for publication, February 2016

25. Brogi, A., Danelutto, M., De Sensi, D., Ibrahim, A., Soldani, J., Torquati, M.:
Analysing multiple QoS attributes in parallel design patterns-based applications.
In: 9th International Symposium on High-Level Parallel Programming and Appli-
cations (HLPP 2016), Münster, Germany (2016)

26. Syme, D., Granicz, A., Cisternino, A.: Expert F# 3.0, 3rd edn. Apress, Berkeley
(2012)

27. Apache Software Foundation: Apache ODE (Orchestration Director Engine) 1.3.6
(2013). http://ode.apache.org

28. Apache Software Foundation: Apache Tomcat 7.0.61 (2011). http://tomcat.apache.
org

29. Mukherjee, D.: QoS in WS-BPEL Processes. Master’s thesis, Indian Institute of
Technology, Delhi (2008)

30. Ivanovic, D., Kaowichakorn, P., Carro, M.: Towards QoS prediction based on com-
position structure analysis and probabilistic environment models. In: 2013 ICSE
Workshop on Principles of Engineering Service-Oriented Systems (PESOS), pp.
11–20. IEEE (2013)

31. Hillston, J.: A Compositional Approach to Performance Modelling, vol. 12. Cam-
bridge University Press, Cambridge (2005)

https://doi.org/10.1007/978-3-540-24688-6_40
https://doi.org/10.1007/978-3-662-45391-9_27
https://doi.org/10.1007/978-3-319-33313-7_8
https://doi.org/10.1007/978-3-319-33313-7_8
http://ode.apache.org
http://tomcat.apache.org
http://tomcat.apache.org

Impact-Minimizing Runtime Adaptation
in Cloud-Based Data Stream Processing

Cui Qin(B)

Software Systems Engineering, University of Hildesheim,
Universitätsplatz 1, 31141 Hildesheim, Germany

qin@sse.uni-hildesheim.de

Abstract. Recently, cloud-based data stream processing has emerged
to process huge amounts of data. During such processing, the actual
characteristics of data streams may vary, e.g., in terms of volume or
velocity. For example, in the financial domain hectic markets can cause
bursty streams of events leading to changes of the stream characteristics
by several orders of magnitude. To handle such situations, adaptation
of the data processing at runtime is desirable. While several techniques
for changing data stream processing at runtime do exist, one specific
challenge is to minimize the impact of runtime adaptation on the data
processing, in particular for real-time data analytics.

In this research work, we aim at performing runtime adaptation in
cloud-based data stream processing, namely, dynamically switching alter-
native distributed algorithms, which have similar functionality, but oper-
ate at different characteristics (tradeoffs). The goal of this work is to pro-
vide a generic approach which can automatically determine the algorithm
switch with minimized impact on the data processing. To achieve this
goal, we introduce the concept of a “safe” (transparent, gap-free) switch,
which takes the characteristics of alternative algorithms into account.
For the actual switch, we combine stream re-routing with buffering and
stream synchronization along with a support of dynamic deployment of
alternative stream processing algorithms into the cloud.

Keywords: Cloud-based data stream processing
Runtime adaptation · Impact-minimizing adaptation
Algorithm switching · Dynamic deployment

1 Introduction

Big data applications aim at processing huge or complex data sets, which usually
cannot be handled by traditional approaches. Distributed stream processing [3],
i.e., continuous processing of conceptually endless streams of data items, is a
popular approach to realize such applications. Particularly, cloud-based data
stream processing, driven by the trend towards cloud computing, has rapidly

Supervisors: Klaus Schmid, Holger Eichelberger.

c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 274–285, 2018.
https://doi.org/10.1007/978-3-319-72125-5_22

Impact-Minimizing Runtime Adaptation 275

emerged and become competitive in high scalability and robustness in terms of
fault tolerance for processing huge amounts of data [15]. Well-known systems
supporting cloud-based data stream processing include Apache Storm [2] and
Apache Spark [1]. Such stream processing systems aim at real-time processing
of complex and distributed stream analysis tasks.

During processing, the stream characteristics such as volume or volatility can
vary over time. For example, in the financial domain hectic markets can cause
bursty streams leading to changes of the stream characteristics by several orders
of magnitude. In such situations, the current stream processing implementation
may not withstand the occurring bursty streams due to the heavy workload.
For instance, it can lead to a sudden slowdown of the processing, or even worse,
cause data buffer-overflow and loss of data, in particular, with the utilization
of buffering techniques in data stream processing. To cope with such problems,
adaptation of the data processing at runtime is desirable.

A typical way to handle bursty streams is to allocate additional computing
resources for the current stream processing. The elasticity of resource provision-
ing offered by the cloud computing model makes this possible, in particular,
adapting the resource allocation at runtime. Representative approaches are pro-
posed in [23] adapting the CPU allocation for data streaming applications under
varying data arrival characteristics and [21] dynamically scaling up and down the
processing to adjust the computational capacities to handle peaks and off-peaks.
Such elastic data stream processing can directly benefit from the availability
of public cloud infrastructure, which enables possibilities to provide virtually
unlimited resources. However, current cloud service providers enable resource
provisioning in a pay-as-you-go fashion, meaning that the utilization of comput-
ing resources from public cloud is directly visible to the monetary costs [14].
Also, with rather strict timing requirements in real-time data stream processing
to dynamically allocate computing resources at runtime is still a chanllenging
problem.

Other approaches such as Borealis [5] or RTSTREAM [25] provide adap-
tation capabilities for continuous stream processing queries, such as changing
the query program. These approaches support the optimal execution of stream
queries to deal with varying workloads, however, they concentrate on a fixed
set of database-like stream operators and also do not support adaptation in a
cloud-based environment. In contrast, recent frameworks such as Apache Storm
or Spark provide possibilities for developers to implement complex analysis algo-
rithms, e.g., realize distributed analysis tasks such as financial correlation com-
putations in a scalable manner, but they currently do not provide much support
for runtime adaptation.

In this research work, we support adapting stream processing in cloud-based
environments by switching among different processing algorithms, which provide
similar functionality but operate at different runtime characteristics (tradeoffs).
This enables us to opportunistically utilize a better algorithm, e.g., at high load a
faster, but more expensive algorithm such as a hardware co-processor, which can
be utilized in other more urgent analyses at low load. The goal of this research

276 C. Qin

work is to minimize the impact on the data streams while performing algorithm
switching, e.g., the disturbance on output results.

The rest of the paper is organized as follows. In Sect. 2, we discuss the poten-
tial problems of the runtime switching among distributed stream processing
algorithms. The related work to our research is presented in Sect. 3. In Sect. 4,
we describe the research challenges for the algorithm switching. The preliminary
solution and result of our research are presented in Sect. 5. Finally, we conduct
a research plan for this research work in Sect. 6.

2 Problem Statement

In this section, we start with a plain stream redirection to characterize the
potential problems in runtime switching among distributed stream processing
algorithms. Finally, we discuss the main goals that we want to achieve in this
research work.

Fig. 1. Plain stream redirection.

Figure 1 depicts plain stream redirection in terms of a data flow diagram, i.e.,
nodes represent (distributable) data processors and edges the data flow. The
distributed stream processing algorithms are presented with several processor
nodes. As shown in Fig. 1, the processors P1,1 to P1,n constitute Algorithm1

(P2,1 to P2,m for Algorithm2). In addition, two guarding processors control input
(Switching Element) and output (Join Element) streams. Assume that Algo-
rithm1 is the currently active algorithm. A signal, i.e., an asynchronous event
sent to a processor, indicates the need to switch the active algorithm to another
target algorithm 1©. In the plain stream redirection, the switch signal causes an
immediate re-routing of the data streams 2©, i.e., the stream to Algorithm1 is
disabled and the alternative stream to Algorithm2 is enabled at the same time.

In this plain stream redirection, we can potentially see two problems. One
is the overlapping results that could be caused by the queuing effects in the

Impact-Minimizing Runtime Adaptation 277

Fig. 2. Throughput caused by the plain stream redirection when switching from a
slower algorithm.

processors of the Algorithm1 if there is no additional care at the connection
between the Algorithm1 and the Join Element after the switch. Another potential
impact is the gap on the processing results, i.e., loss of data queued in the
Algorithm1 that could occur if we immediately remove the resources on the
Algorithm1 after switching to Algorithm2.

We conduct an evaluation on a cloud-based Storm cluster to verify the impact
of the plain stream redirection on data streams. Figure 2 illustrates the through-
put (in the Join Element) caused by the plain stream redirection when switching
from the algorithm with the capacity of 30 items per second (Algorithm1) to the
one with 1000 items per second (Algorithm2). At 1©, we send the switch signal
and cause a rerouting of the data streams from Algorithm1 to Algorithm2. As
depicted in Fig. 2, the throughput after the switch fluctuates for more than 15 s.
To explain this effect, we analyzed the logs written by our implementation of
the processors. By comparing the timestamps of the items, we realized that the
fluctuations are caused by the overlapping processing in both Algorithm1 and
Algorithm2.

Based on these problems, we consider the following goals for our research
work:

G1. Transparency. Our main goal for switching data processing algorithms is
to minimize the impact on data streams, i.e., the switch shall happen trans-
parently without disturbance on the processing results. More specifically, we
focus on two sub-goals:

(a) No missing or duplicated data. Switching an algorithm at runtime
must not cause data loss or duplication of data items.

(b) Minimizing effects on output stream characteristics. In addition
to G1a, also the effect on further (application-) relevant stream charac-
teristics such as latency or throughput shall be minimized.

278 C. Qin

G2. Minimizing the switching time. This is our secondary goal aiming at
switching algorithms at runtime as fast as possible to reduce the time for
causing disturbances to the streams.

3 Related Work

Stream processing frameworks including Apache Storm [2] and Apache Spark
[1] can be deployed in a Cloud environment to support large-scale data process-
ing. In particular, software systems such as storm-deploy [19] aim at simplifying
the deployment of Storm clusters on Cloud offerings including AWS EC2 [4].
Comparing to traditional data processing operators, such cloud-based stream
processing frameworks provide high flexibility to realize analysis algorithms,
i.e., allow the data analyst to implement own operators (we call algorithms),
however, they currently do not provide much support for runtime adaptation.
There exist adaptive cloud-based stream processing approaches in lit-
erature. For instance, Satzger et al. [21] present an elastic stream computing
platform dynamically attaching and releasing machines to adjust the computa-
tional capacities to the current needs. Heinze et al. [15] support auto-scaling of
data stream processing to address varying workloads. Similarly, Cervino et al.
[8] provide an adaptive approach for dynamically provisioning virtual machines
(VMs) based on the current input rates. To enable resource provisioning on
different cloud environments, Calheiros et al. [7] propose the Aneka platform
to provide a seamless integration of enterprise computing resources (e.g., Desk-
top Grids and servers) with public Cloud resources while minimizing the costs
of utilization of public Cloud resources. Such approaches mainly focus on the
adaptation of resource provisioning in the cloud, however they do not address
the adaptation on the stream processing algorithms.

There are different mechanisms to adapt stream processing algo-
rithms in literature. The typical mechanism is the parameter adaptation of
the stream processing algorithm, e.g., dynamically adapting the batch size to
improve the performance of the stream processing [12] and adapting the input
rate based on the network conditions for media streaming [13]. To cope with
varying workloads, Madsen et al. [18] present a dynamic load balancing approach
parallelizing operators to scale up the processing. Similar approaches, such as
[6,22], automatically extract data parallelism of distributed stream processing.
Another type of adaptation for optimizing the performance of stream processing
presented by Chatzistergiou et al. [10] is the task reallocation approach reconfig-
uring stream executing jobs to minimize the transfer latency over cluster-based
stream processing systems. To handle overload situations, data admission (also
called load shedding) is frequently applied, e.g., the frequency-based load shed-
ding technique proposed by Chang et al. [9] and adaptive input admission control
presented in [5]. There are also approaches which adapt the query plan such as
Borealis [5] or RTSTREAM [25]. Changing query programs can be seen as a sim-
ilar approach to our switching of stream processing algorithms, however, they
only focus on a fixed set of database-like stream operators. Another similar app-
roach proposed by Hwang et al. [16] switches among active and standby versions

Impact-Minimizing Runtime Adaptation 279

of the same operator to recover from processing errors, but not among alter-
native algorithms. Probably, the closest approach to ours is by Wei et al. [24],
who switch from the efficient just-in-time join strategy to the more powerful
structural one for the context-aware XQuery stream processing. However, this
approach only focuses on one specific join operator and also does not take the
impact into account. Above discussed mechanisms/approaches do support adap-
tation on stream processing algorithms but none of them focuses on switching
among distributed processing algorithms at runtime.

In summary, to our best knowledge, except for our previous published work
in [20] there are no approaches on dynamically exchanging alternative stream
processing algorithms in the cloud-based environment, which explicitly aim at
minimizing the impact on the data streams.

4 Research Challenges

In order to fulfill the requirements discussed in Sect. 2, we identified the following
research challenges as part of this research work.

1. Definition of a “safe” switch. To avoid the disturbance on the output
result of the processing algorithm, we introduce the concept of a “safe”
(transparent, gap-free) switch, which takes the characteristics of alternative
algorithms into account. We aim at determining a feasible, if not even opti-
mal point in time for switching. This requires us to classify different stream
processing algorithms based on their characteristics and to provide different
switch mechanisms for different groups of algorithms. The goal of the safe
switch is to provide quality guarantees for each group of algorithms, while
minimizing the impact on the runtime algorithm adaptation.

2. Theoretical formalization of the algorithm switch. To provide the full
concept of a generic approach for the algorithm switch, we would need to
formalize the algorithm switch based on the “safe” determination as the the-
oretical part of this research work. This would focus on the theoretical cat-
egories of algorithms with different characteristics as well as the theoretical
solution of switching among different combinations of algorithms. To perform
a “safe” switch, we also need to define the prerequisite for each category of
algorithms.

3. Data tracing. In order to determine whether the data item is fully pro-
cessed or still pending for the completion of its processing, we need to trace
data items for obtaining such information along with processing nodes of the
algorithm. This requires the acknowledgement of each data item to inform
its completion. Although recent data stream processing frameworks, such as
Apache Storm, support acknowledgement mechanisms, we do not have access
to the detailed tracing information.

4. Data synchronization. To support achieving the main goal, i.e., the trans-
parency mentioned in the requirement G1, data synchronization on both algo-
rithms is needed to ensure no data loss or duplicated data items before switch-
ing to the target algorithm. Depending on the enqueued data items as well

280 C. Qin

as the synchronization mechanisms, it may require the transferring of data
items to the target algorithm.

5. Queuing control. As discussed in Sect. 2, queuing effects in the original algo-
rithm could cause inconsistent results while performing an algorithm switch.
To cope with such effects, we would need queuing control over algorithms
to observe the input data feeding into the respective algorithms. However,
the amount of enqueued data items could also have a significant impact on
the switching time as we may need to transfer them to the target algorithm
during data synchronization. For this case, we would adopt Backpressure [11]
or admission control [5].

6. Dynamic algorithm deployment. To optimize the resource usage, we must
support dynamic deployment of alternative algorithms, i.e., deploying only
the selected processing algorithm, avoiding the use of unnecessary processing
nodes in the cloud. For achieving such flexibility, the alternative algorithms
must support dynamical connection to the current processing.

5 Preliminary Solution and Result

In this section, we present our initial idea (more details can be found in [20])
as well as the preliminary results we achieved so far regarding the research
challenges listed in Sect. 4.

Fig. 3. The preliminary solution of the algorithm switch in terms of (a) signals and
(b) timing.

To handle the queuing effects explained in Sect. 2, we introduced an
Entrance Queue to explicitly control the input data feeding into the respective
algorithms. As illustrated in Fig. 3, we represent the entrance queues as individ-
ual processors (Intermediary1 and Intermediary2). The queues in the interme-
diary processors remove an item only when it is fully processed by the last
processing node of the respective algorithm. This is indicated by an acknowl-
edgement signal (ack in Fig. 3) sent by P1,n or P2,m, i.e., the last node of the

Impact-Minimizing Runtime Adaptation 281

respective algorithm. The items in the queues are either pending to be processed
or emitted to the respective algorithm but not fully processed yet. We also utilize
a further queue in the Switching Element to control the overall stream ingestion.

To maintain the state for the target algorithm, we currently apply a parallel
track strategy [17] to run the original and target algorithm for a time Δtm in
parallel to enable the target algorithm for creating and stabilizing its state. Δtm,
the so-called warm-up time depends on the involved algorithms and can, e.g.,
be the time frame of a sliding window.

Let again Algorithm1 be the currently active algorithm and let t0 be the point
in time when Switching Element receives the switch signal 1©. In addition to
the overall design depicted in Fig. 3(a), we illustrate the individual phases of
the approach in the timing diagram in Fig. 3(b). The switch signal initiates
the runtime algorithm switching. First we warm-up the target algorithm in
parallel to build its state, i.e., activate the stream to Algorithm2 by duplicating
the input items in the Switching Element 2©. At the end, Join Element passes
only the items of the active algorithm, i.e., it discards the output of the passive
algorithms, in particular the output of Algorithm2 in the warm-up phase. Now,
both algorithms process the input stream in parallel for Δtm.

When the warm-up time is over, the actual switch happens at t0 +Δtm as
indicated in Fig. 3(b) by performing the data synchronization between both
entrance queues, i.e., Intermediary1 negotiates with Intermediary2 the last pro-
cessed item in Algorithm1 as a basis for the queue transfer. During switching,
each item is queued in the intermediary processors along with a sequential identi-
fier indicating the arrival order of the items. Let lastProcessedId be the identifier
of the last item emitted to Algorithm1. However, ongoing data processing during
the synchronization may invalidate lastProcessedId . Therefore, we first passivate
3© both algorithms during the synchronization and disable 4© also the output
of results in P1,n to avoid that acknowledgment signals disturb the synchroniza-
tion. P1,n confirms the passivation (not shown on Fig. 3) so that Intermediary1
can now send lastProcessedId to Intermediary2 5©. We denote the time needed
for synchronization as Δts.

Fig. 4. Three cases of output synchronization.

Let headId be the identifier of the head of the queue in Intermediary2. As
the involved algorithms may operate at a different speed, we must consider
three cases for the synchronization (illustrated as queues for the intermediary
processors in Fig. 4):

282 C. Qin

(a) If headId = lastProcessedId , both algorithms are running at the same speed.
No items must be transferred and Algorithm2 can immediately take over the
processing from Algorithm1 as shown in Fig. 4(a).

(b) If headId < lastProcessedId then Algorithm1 is faster than Algorithm2. In
this case, no items must be transferred, but the items [headId , lastProcesse-
dId] must be skipped as they would cause duplicated results. For example,
in Fig. 4(b) items [499, 500] have been processed and must be skipped.

(c) If headId > lastProcessedId , items (lastProcessedId , headId) must be trans-
ferred to Intermediary2. Therefore, Intermediary2 sends the headId to Inter-
mediary1 6© and initiates the queue transfer, i.e., Intermediary1 sends unpro-
cessed items via network to Intermediary2. Let Δtt be the transfer time. At
tt = t0 +Δtm + Δts +Δtt, Intermediary2 is notified about the end of the
queue transfer 7© to prepare for regular items from Switching Element . In
the example in Fig. 4(c), the lower queue is processed faster than the upper
queue. So the items (500, 503) must be transferred to avoid a gap.

Due to the ack signals from P2,m, Intermediary2 can track whether all data
items for warm-up have been processed. As soon as synchronized items are passed
to Algorithm2, Intermediary2 sends an emit signal 8© to P2,m enabling the out-
put of processed data to Join Element . To minimize the switching time, Al-
gorithm2 processes synchronized items in parallel to the queue transfer, i.e., it
starts processing real data already during queue transfer. Finally, P2,m confirms
the activation of the output stream (not shown in Fig. 3). In turn, Intermediary2
notifies Switching Element about the end of the synchronization 9© as well as
that Algorithm2 took over the processing and Algorithm1 is discarded.

Fig. 5. Throughput of the preliminary solution when switching from a slower algorithm.

As a comparison, we evaluate this initial solution with the same scenario
used for the plain stream redirection in Sect. 2. As illustrated in Fig. 5, we switch

Impact-Minimizing Runtime Adaptation 283

from a slower algorithm with a capacity of 30 items per second to one with 1000
items per second. The actual switch signal arrives at 1© and both algorithms run
in parallel until 2©, the end of the warm-up phase of 30 s. During the warm-up
phase the output is still produced by the Algorithm1. The output synchronization
starts at 2©. Switching from a slower algorithm, i.e., the third synchronization
case, leads to a queue transfer from Algorithm1 to Algorithm2. Algorithm2 starts
processing data in parallel to the queue transfer so that the switching time is
not dominated by Δtt. However, several transferred items arrive in short time
at Algorithm2 and lead to a throughput peak 3©. As we analyzed from the logs,
in this experiment the actual switching time takes 106 ms, mostly due to the 9
signals (each taking around 10 ms) sent during the switch.

As discussed in Sect. 2, plain stream redirection suffers from queuing effects,
item duplication and requires an overall switching time of more than 15 s. In
contrast, this initial improved approach reduces the switching time to less then
110 ms without impacting the output accuracy.

6 Research Plan

To fulfill our listed requirements as well as address the mentioned challenges, we
present the research plan of this PhD work below by listing the steps that we
intend to perform.

Step 1. Conducting a systematic literature review on runtime stream
processing adaptation. This step is used to obtain an overview on the
runtime adaptation of data stream processing. It aims at gaining insight into
different adaptation approaches in order to acquire the state of the art.

Step 2. Formalization of the “safe” algorithm switch. This step aims
at formalizing the algorithm switch considering the “safe” concept as the
theoretical part of this research work. It mainly contains two substeps. (1)
Classification of the stream processing algorithms with different characteris-
tics to be addressed in our algorithm switch approach. (2) Determining the
prerequisite of each group of algorithms for performing a “safe” switch.

Step 3. Design of a generic approach for algorithm switch. We aim at
designing a generic switch approach which fulfills the requirements for the
groups of algorithms formalized in the Step 2. The generic switch approach
is intended to apply respective strategies for the algorithms with different
characteristics to achieve different levels of quality guarantees.

Step 4. Evaluation of the feasibility of the proposed approach. Before
starting to implement the solution, we plan to make an early evaluation of the
feasibility of the proposed approach, in particular, to prevent from potential
development problems.

Step 5. Design and Implementation of the switch toolbox. The aim of
this step is to build a flexible switch toolbox which can easily integrate differ-
ent switch strategies. This could support the implementation of the proposed
switch approach and also benefit the comparison of switch techniques with
different characteristics.

284 C. Qin

Step 6. Evaluation of the generic switch approach. As the last step, we
evaluate the implemented switch approach. We mainly focus on two types of
evaluation: (a) Technical evaluation, e.g., the characteristics such as latency,
throughput, etc. (b) Developer study, e.g., the usability of our approach for
developers.

We are currently finalizing Steps 1 and 2. Also, based on the preliminary solu-
tion, we started designing a high-level structure of the switch toolbox (Step 5),
which enables further detailed implementation of our switch approach.

Acknowledgments. This work is partially supported by the European Commission
in the 7th framework programme through the QualiMaster project (grant 619525).

References

1. Apache spark. Lightning-fast cluster computing. http://spark.apache.org/.
Accessed 06 Oct 2016

2. Apache storm. Distributed and fault-tolerant realtime computation. http://storm.
apache.org/. Accessed 06 Oct 2016

3. Andrade, H.C.M., Gedik, B., Turaga, D.S.: Fundamentals of Stream Processing:
Application Design, Systems, and Analytics. Cambridge University Press, Cam-
bridge (2014)

4. Assunção, M.D., Calheiros, R.N., Bianchi, S., Netto, M.A., Buyya, R.: Big data
computing and clouds: trends and future directions. J. Parallel Distrib. Comput.
79, 3–15 (2015)

5. Balkesen, C., Tatbul, N., Özsu, M.T.: Adaptive input admission and management
for parallel stream processing. In: Proceedings of the 7th ACM International Con-
ference on Distributed Event-Based Systems (DEBS), pp. 15–26. ACM (2013)

6. Brito, A.: Optimistic parallelization support for event stream processing systems.
In: Proceedings of the 5th Middleware Doctoral Symposium, pp. 7–12 (2008)

7. Calheiros, R.N., Vecchiola, C., Karunamoorthy, D., Buyya, R.: The aneka plat-
form and qos-driven resource provisioning for elastic applications on hybrid clouds.
Future Gener. Comput. Syst. 28, 861–870 (2012)

8. Cervino, J., Kalyvianaki, E., Salvachua, J., Pietzuch, P.: Adaptive provisioning of
stream processing systems in the cloud. In: 2012 IEEE 28th International Confer-
ence on Data Engineering Workshops (ICDEW), pp. 295–301. IEEE (2012)

9. Chang, J.H., Kum, H.-C.M.: Frequency-based load shedding over a data stream of
tuples. Inf. Sci. 179(21), 3733–3744 (2009)

10. Chatzistergiou, A., Viglas, S.D.: Fast heuristics for near-optimal task allocation
in data stream processing over clusters. In: Proceedings of the 23rd ACM Inter-
national Conference on Information and Knowledge Management (CIKM), pp.
1579–1588 (2014)

11. Collins, R.L., Carloni, L.P.: Flexible filters: load balancing through backpressure
for stream programs. In: Proceedings of the Seventh ACM International Conference
on Embedded Software (EMSOFT), pp. 205–214 (2009)

12. Das, T., Zhong, Y., Stoica, I., Shenker, S.: Adaptive stream processing using
dynamic batch sizing. In: Proceedings of the ACM Symposium on Cloud Com-
puting (SOCC), pp. 16:1–16:13 (2014)

http://spark.apache.org/
http://storm.apache.org/
http://storm.apache.org/

Impact-Minimizing Runtime Adaptation 285

13. Goudarzi, H., Salavati, A.H., Pakravan, M.R.: An ant-based rate allocation algo-
rithm for media streaming in peer to peer networks: extension to multiple sessions
and dynamic networks. J. Netw. Comput. Appl. 34(1), 327–340 (2011)

14. Heinze, T., Meyer, P., Jerzak, Z., Fetzer, C.: Measuring and estimating monetary
cost for cloud-based data stream processing (demo). In: Proceedings of the 7th
ACM International Conference on Distributed Event-Based Systems (DEBS), pp.
333–334 (2013)

15. Heinze, T., Pappalardo, V., Jerzak, Z., Fetzer, C.: Auto-scaling techniques for
elastic data stream processing. In: Proceedings of the 8th ACM International Con-
ference on Distributed Event-Based Systems (DEBS), pp. 318–321 (2014)

16. Hwang, J.-H., Balazinska, M., Rasin, A., Çetintemel, U., Stonebraker, M., Zdonik,
S.: High-availability algorithms for distributed stream processing. In: International
Conference on Data Engineering (ICDE), pp. 779–790 (2005)

17. Rundensteiner, E.A., Ding, L., Zhu, Y., Sutherland, T.M., Pielech, B.: CAPE:
a constraint-aware adaptive stream processing engine. Stream Data Manag. 30,
83–111 (2005). Springer

18. Madsen, K.G.S., Zhou, Y.: Dynamic resource management in a massively paral-
lel stream processing engine. In: Proceedings of the 24th ACM International on
Information and Knowledge Management, pp. 13–22 (2015)

19. Marz, N.: Storm-deploy. https://github.com/nathanmarz/storm-deploy/.
Accessed 06 Oct 2016

20. Qin, C., Eichelberger, H.: Impact-minimizing runtime switching of distributed
stream processing algorithms. In: Big Data Processing - Reloaded Workshop of
the EDBT/ICDT Joint Conference (2016)

21. Satzger, B., Hummer, W., Leitner, P., Dustdar, S.: ESC: towards an elastic stream
computing platform for the cloud. In: 4th IEEE International Conference on Cloud
Computing (CLOUD), pp. 348–355 (2011)

22. Schneider, S., Hirzel, M., Gedik, B., Wu, K.-L.: Auto-parallelizing stateful dis-
tributed streaming applications. In: Proceedings of the 21st International Confer-
ence on Parallel Architectures and Compilation Techniques, pp. 53–64 (2012)

23. Vijayakumar, S., Zhu, Q., Agrawal, G.: Dynamic resource provisioning for data
streaming applications in a cloud environment. In: Proceedings of the 2nd Cloud
Computing Technology and Science (CloudCom), pp. 441–448 (2010)

24. Wei, M., Rundensteiner, E.A., Mani, M., Li, M.: Processing recursive xquery over
xml streams: the raindrop approach. Data Knowl. Eng. 65(2), 243–265 (2008)

25. Wei, Y., Son, S.H., Stankovic, J.A.: RTSTREAM: real-time query processing for
data streams. In: International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC 2006), pp. 141–150 (2006)

https://github.com/nathanmarz/storm-deploy/

Abstracts

Cloudiator – Enacting Deployments
and Adaptation in PaaSage

Daniel Baur(B) and Jörg Domaschka

Institute of Information Resource Management, University of Ulm,
Albert-Einstein-Allee 43, 89081 Ulm, Germany
{daniel.baur,joerg.domaschka}@uni-ulm.de

http://www.uni-ulm.de/in/omi

The EU FP7 PaaSage project (http://www.paasage.eu/) realises a model-based
cross-cloud development and deployment platform easing the access and man-
agement of cloud resources for its users (developers and operators). For this task,
PaaSage leverages upon a three phase workflow consisting of modelling, deploy-
ment and execution. During the modelling phase the user creates a cloud-provider
independent model using the domain specific Cloud Application Modelling and
Execution Language (CAMEL). During the deployment phase a constraint prob-
lem is created by matching the user’s model with available cloud provider profiles.
The Reasoner component solves the constraint problem, resulting in a cloud-
provider dependant model, depicting the offers to use for the deployment (possi-
bly from different cloud providers). Subsequently, a deployment plan is calculated
by the Adapter, specifying the single actions to be executed to deploy the model.
Finally, during the execution phase, the deployment plan is executed by the Exe-
cutionware. A feedback loop using monitoring data from the Executionware is
used to improve future deployments.

Cloudiator [1] (https://github.com/cloudiator) is a cross-cloud orchestration
and management tool, that acts as the Executionware of PaaSage. Thus, it pro-
vides the following features: (i) it supports cross-cloud deployments meaning
that it can place different component instances of a single application across
multiple clouds; (ii) it is multi-tenant capable, meaning that it supports mul-
tiple applications and users at a time; (iii) it provides an adaptive monitoring
& aggregation solution and (iv) it provides a runtime management capable of
automatically addressing adaptation actions like scaling.

For these tasks it relies on a distributed architecture as depicted in Fig. 1. Its
components are split into two domains, the cloud domain running on acquired
VMs in the cloud and the home domain located on the PaaSage installation of
the user. The workflow starts with the input of the deployment plan, in PaaSage’s
case provided by the Adapter. This plan contains the exact configuration for the
virtual machines (image, hardware, location) as well as the component place-
ment. In addition the description defines the monitoring demands, accompanied
with a set of scaling rules used for addressing runtime management. Based on
the deployment plan, the deployment engine will allocate the defined virtual
machines, using our abstraction layer Sword, that is hiding semantical and syn-
tactical differences in the cloud providers’ APIs. Afterwards, it instructs Lance
to deploy the components by executing the interface actions (e.g. shell-scripts)
c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 289–291, 2018.
https://doi.org/10.1007/978-3-319-72125-5

http://www.paasage.eu/
https://github.com/cloudiator

290 D. Baur and J. Domaschka

defined in the CAMEL model. It uses an imperative workflow for executing
the actions, that is derived from defined communication dependencies in the
model [3].

Afterwards, the application’s runtime behaviour is monitored by our moni-
toring agent Visor, offering the possibility to install multiple sensors and recon-
figure them during runtime. The monitoring data is fed into the Axe [2] system
responsible for aggregation and derivation of composite metrics. For this pur-
pose it uses a hierarchical, distributed system of aggregators aiming to reduce
the communication effort. Finally, if measurements violate the thresholds defined
in the scaling rules, Axe will enact the user-defined mitigation actions.

In addition, Cloudiator provides the discovery of cloud provider offers, that
are being fed into PaaSage’s provider profiles and a watchdog and recovery
engine, addressing common failures in the deployment (like unresponsive VMs).

Fig. 1. Cloudiator’s Architecture

Acknowledgements. The research leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement number 317715 (PaaSage).

References

1. Baur, D., Domaschka, J.: Experiences from building a cross-cloud orchestration tool.
In: Proceedings of the 3rd Workshop on CrossCloud Infrastructures and Platforms,
CrossCloud 2016, pp. 4:1–4:6 (2016)

2. Domaschka, J., Seybold, D., Griesinger, F., Baur, D.: Axe: a novel approach for
generic, flexible, and comprehensive monitoring and adaptation of cross-cloud appli-
cations. In: Celesti, A., Leitner, P. (eds.) ESOCC Workshops 2015. CCIS, vol. 567,
pp. 184–196. Springer, Cham (2016)

Cloudiator – Enacting Deployments and Adaptation in PaaSage 291

3. Domaschka, J., Griesinger, F., Baur, D., Rossini, A.: Beyond mereapplication struc-
ture thoughts on the future of cloud orchestration tools. Procedia Comput. Sci. 68,
151–162 (2015). 1st International Conference on Cloud Forward: From Distributed
to Complete Computing

BPaaS Execution in CloudSocket

Daniel Seybold1(B), Robert Woitsch2, Jörg Domaschka1, and Stefan Wesner1

1 Institute of Information Resource Management, Ulm University, Ulm, Germany
daniel.seybold@uni-ulm.de

2 BOC Asset Management GmbH, Vienna, Austria
robert.woitsch@boc-eu.com

Abstract. The H2020 research CloudSocket project enacts the business
IT-alignment by implementing Business process as a Service (BPaaS).

1 Introduction

Cloud Computing has a still growing influence on the IT ecosystem, especially for
business applications. Still challenging is the so-called business and IT alignment
(BITA). BITA bridges the gap between the business and IT domains and ensures
sufficient and the right hardware/software resources are available to handle a
company’s business processes. We consider BITA as one of the key success factors
for cloud usage. For supporting BITA in clouds, the current application centric
view needs to be enhanced with a corresponding business process (BP) view.
The CloudSocket project1 enables such a BP-oriented view on cloud offerings
and supports cloud-enabled BITA. In particular, it implements BITA by offering
a new cloud service level: Business process as a Service (BPaaS) [3].

CloudSocket provides a brokerage platform for BPaaS. A CloudSocket Broker
plans and designs the BPs, implements executable workflows (WFs) and creates
BPaaS Bundles. The BPaaS Bundles are deployable in the cloud and offered by
a CloudSocket Broker to its customers through a marketplace.

2 CloudSocket Architecture

The CloudSocket architecture builds upon the four loosely coupled buildings
blocks shown in Fig. 1.

The Design Environment creates the BPaaS Design Package by editing
domain specific BP models and executable WF models, mapping a domain spe-
cific BP model to an executable WF model as well as semantically annotating
BP and WF models. The Design Environment is based on ADONIS2.

The Allocation Environment enriches the executable WF of the BPaaS
Design Package with concrete and deployable cloud services. The cloud services
are modelled in CAMEL [2] and included in the BPaaS Bundle. Design and Allo-
cation Environment compose a management environment assisting the broker in
managing the BPaaS offerings.
1 https://www.cloudsocket.eu/.
2 http://en.adonis-community.com/.

c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 292–293, 2018.
https://doi.org/10.1007/978-3-319-72125-5

https://www.cloudsocket.eu/
http://en.adonis-community.com/

BPaaS Execution in CloudSocket 293

Fig. 1. The CloudSocket architecture

The Execution Environment offers BPaaS Bundles via a marketplace to End-
Users. As a Bundle is purchased, Cloudiator [1] orchestrates, monitors and
adapts the cloud services. End-Users interact with the services via the WF
Engine3. Based on the semantic enrichment in the management environments,
the Execution Environment can operate on a semantically enriched BPaaS
Bundle.

The Evaluation Environment provides optimisation suggestions (KPI assess-
ment, optimised BPaaS deployment and adaptation patterns) to the Broker by
abstracting technical data back to domain specific business decision.

Currently CloudSocket reaches the first half of the project with the release
of the 1st prototype4, enabling the holistic BPaaS life cycle.

Acknowledgements. The research leading to these results has received funding
from the European Community’s Framework Programme for Research and Innovation
HORIZON 2020 (ICT-07-2014) under grant agreement number 644690 (CloudSocket).

References

1. Domaschka, J., Baur, D., Seybold, D., Griesinger, F.: Cloudiator: a cross-cloud,
multi-tenant deployment and runtime engine. In: 9th SummerSOC (2015)

2. Kritikos, K., Domaschka, J., Rossini, A.: SRL: a scalability rule language for multi-
cloud environments. In: IEEE 6th International Conference on, CloudCom 2014,
pp. 1–9. IEEE (2014)

3. Woitsch, R., Utz, W.: Business Processes as a Service (BPaaS): a model-based
approach to align business with cloud offerings. In: eChallenges e-2015 Conference,
pp. 1–8. IEEE (2015)

3 https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/
Workflow+Engine+Component.

4 https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Components.

https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Workflow+Engine+Component
https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Workflow+Engine+Component
https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Components

Context-Aware Cloud Topology Optimization
for OpenStack

Christopher B. Hauser(B), Athanasios Tsitsipas, and Jörg Domaschka

Institute of Information Resource Management, Ulm University, Ulm, Germany
{Christopher.Hauser,Athanasios.Tsitsipas,joerg.domaschka}@uni-ulm.de

Abstract. CACTOS offers Cloud developers, operators, and consul-
tants a context-aware optimisation for private Clouds. It leads to better
and more reliable user experience, by optimising the mapping of virtual
to physical resources, considering application requirements and hetero-
geneity. The optimisation and simulation requires monitoring, and an
integration for controlling and intercepting client requests.

Keywords: Cloud data centres · Optimization · Workload placement

1 Why CACTOS?

Fig. 1. A CACTOS cloud

CACTOS’1 overall goal is to optimise a Cloud data
centre from infrastructure to application level for
better performance, better utilisation and a higher
energy efficiency [1]. CACTOS therefore extensively
monitors on infrastructure level, analyses applica-
tion profiles and enhances the functionality of off the
shelf Cloud middleware OpenStack (cf. Fig. 1) with
improved scheduling and workload reallocation algo-
rithms.

For Cloud developers CACTOS aims at better
experience, and more reliability due to a require-
ment aware resource scheduling. Since CACTOS is
context-aware, the hardware affinity of applications is
considered as well as a heterogeneous infrastructure.
Cloud data centre operators benefit from an increased
overall utilisation and hence cost and energy effi-
ciency. Operators can choose between load balancing or consolidating virtual
resources on physical hardware. CACTOS continously optimises the placement
of applications in a heterogeneous resource pool. CACTOS enables consultants
with the capability to detect bottlenecks on hard- and software level. Either
manually or automatically via CACTOS reorganising application and hardware
infrastructure can be simulated and then enacted for overall improvements.
1 http://www.cactosfp7.eu.

c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 294–295, 2018.
https://doi.org/10.1007/978-3-319-72125-5

http://www.cactosfp7.eu

Context-Aware Cloud Topology Optimization for OpenStack 295

2 CACTOS Runtime Toolkit in OpenStack

To enable CACTOS in an OpenStack cloud, the monitoring and analysis needs
to be connected with the data centre. Bidirectional interactions from the Cloud
middleware to CACTOS and back need to be established. Finally, CACTOS can
optimise and simulate the OpenStack data centre (cf. Fig. 2).

Fig. 2. CACTOS Toolkit Openstack

Data centre analysis starts with mon-
itoring on each host of the data cen-
tre. The Chukwabased tool gets detailed
information from physical and virtual
level. The data is processed and stored
in HBase. The huge amount of data is
used to create application profiles.

Invocations to the OpenStack REST
API are intercepted by a CACTOS-
aware HTTP proxy. The proxy delegates
calls for creating and deleting VMs syn-
chronously to CACTOS. For periodical optimisations, CACTOS accesses Open-
Stack to migrate VMs and via an IPMI Proxy controls the power state of hosts.
CACTOS hence controls the workload placement for existing and new VMs.

CACTOS gets the virtual and physical infrastructure with load information
from the HBase. Depending on configuration and utilisation values, CACTOS
optimises for e.g. load balancing or consolidation. Additionally, an event-driven
simulation uses HBase to predict the data centre workload behaviour.

3 Project Status and Results

The recent CACTOS results are publicly available and linked on the website.
The tools will be available on GitHub2 with the project ending in 2016.

Acknowledgment. This research was funded by European Commission’s FP7 (grant
agrmt. 610711).

Reference

1. Ostberg, P.-O., et al.: The CACTOS vision of context-aware cloud topology opti-
mization and simulation. In: IEEE 6th International Conference on Cloud Comput-
ing Technology and Science, CloudCom 2014, pp. 26–31 (2014)

2 https://github.com/cactos.

https://github.com/cactos

Envisage: Developing SLA-Aware Deployed
Services with Formal Methods

Elvira Albert1(B), Frank de Boer2, Reiner Hähnle3, Einar Broch Johnsen4,
and Cosimo Laneve5

1 Complutense University of Madrid, Madrid, Spain
elvira@fdi.ucm.es

2 CWI Amsterdam, Amsterdam, The Netherlands
f.s.de.boer@cwi.nl

3 TU Darmstadt, Darmstadt, Germany
haehnle@cs.tu-darmstadt.de

4 University of Oslo, Oslo, Norway
einarj@ifi.uio.no

5 University of Bologna – INRIA FOCUS, Bologna, Italy
cosimo.laneve@unibo.it

Insufficient scalability and bad resource management of software services can
easily eat up any potential savings from cloud deployment. Failed service-level
agreements (SLAs) cause penalties for the provider, while oversized SLAs waste
resources on the customer’s side. IBM Systems Sciences Institute estimates that
a defect which costs one unit to fix in design, costs 15 units to fix in testing
(system/acceptance) and 100 units or more to fix in production [6]; this cost
estimation does not even consider the impact cost due to, for example, delayed
time to market, lost revenue, lost customers, and bad public relations. The Envis-
age project aims at shifting deployment decisions from the end of the software
engineering process to become an integral part of software design [2].

Deployment on the cloud gives software designers far reaching control over the
resource parameters of the execution environment, such as the number and kind
of processors, the amount of memory and storage capacity, and the bandwidth.
In this context, designers can also control their software’s trade-offs between the
incurred cost and the delivered quality-of-service. SLA-aware services, which
are designed for scalability, can even change these parameters dynamically, at
runtime, to meet their service contracts. Envisage permits to design and validate
these services by connecting executable models to formal service contracts and
an API that is an abstraction of the cloud environment, see Fig. 1. This approach
enables new kinds of analysis:

– Simulation (“Early modeling”): The formally defined modeling language
ABS [10] realizes a separation of concerns between the cost of execution and
the capacity of dynamically provisioned cloud resources [11]. Models are exe-
cutable; a simulation tool supports rapid prototyping and visualization.

– Formal methods (“Early analysis”): as ABS was designed for analysis,
it enables a range of tool-supported formal techniques, including behavioral

Supported by the EU project FP7-610582 Envisage: Engineering Virtualized Services
(http://www.envisage-project.eu).

c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 296–298, 2018.
https://doi.org/10.1007/978-3-319-72125-5

http://www.envisage-project.eu

Envisage: Developing SLA-Aware Deployed Services with Formal Methods 297

Fig. 1. Making services SLA-aware by means of formal methods, from [9].

types for deadlock analysis and SLA compliance [8], worst-case cost analysis
[1], deductive verification [7], and automated test-case generation [4].

– Monitoring (“Late analysis”): ABS supports code generation backends
[5] that preserve upper bounds on cost and permit performance monitoring
of the provisioned cloud resources after deployment [13].

The modeling approach and analyses developed in Envisage have been suc-
cessfully applied in an industrial context to SDL Fredhopper’s eCommerce Opti-
mization [3] and Apache Hadoop YARN [12].

References

1. Albert, E., Arenas, P., Flores-Montoya, A., Genaim, S., Gómez-Zamalloa, M.,
Martin-Martin, E., Puebla, G., Román-Dı́ez, G.: SACO: Static analyzer for con-
current objects. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol.
8413, pp. 562–567. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54862-8 46

2. Albert, E., de Boer, F., Hähnle, R., Johnsen, E.B., Laneve, C.: Engineering virtu-
alized services. In: 2nd Nordic Symposium on Cloud Computing & Internet Tech-
nologies. NordiCloud 2013, pp. 59–63. ACM Press (2013)

3. Albert, E., de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Tapia Tarifa,
S.L., wong, P.Y.H.: Formal modeling and analysis of resource management for cloud
architectures: an industrial case study using real-time ABS. J. Service-Oriented
Comput. Appl. 8(4), 323–339 (2014)

4. Albert, E., Gómez-Zamalloa, M., Isabel, M.: SYCO: a systematic testing tool for
concurrent objects. In: Compiler Construction, CC 2016. ACM (2016)

5. Bezirgiannis, N., de Boer, F.: ABS: a high-level modeling language for cloud-aware
programming. In: Freivalds, R., Engels, G., Catania, B. (eds.) SOFSEM 2016.
LNCS, vol. 9587, pp. 433–444. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49192-8 35

6. Boehm, B.W., Papaccio, P.N.: Understanding and controlling software costs. IEEE
Trans. Softw. Eng. 14(10), 1462–1477 (1988)

7. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for the
concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 517–526. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 35

https://doi.org/10.1007/978-3-642-54862-8_46
https://doi.org/10.1007/978-3-642-54862-8_46
https://doi.org/10.1007/978-3-662-49192-8_35
https://doi.org/10.1007/978-3-662-49192-8_35
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-21401-6_35

298 E. Albert et al.

8. Giachino, E., Laneve, C., Lienhardt, M.: A framework for deadlock detection in
ABS. Softw. Syst. Model. (2016, To Appear)

9. Hähnle, R., Johnsen, E.B.: Designing resource-aware cloud applications. IEEE
Comput. 48(6), 72–75 (2015)

10. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

11. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architec-
tures and resource consumption in timed object-oriented models. J. Logical Alge-
braic Methods Program. 84(1), 67–91 (2015)

12. Lin, J.-C., Yu, I.C., Johnsen, E.B., Lee, M.-C.: ABS-YARN: a formal framework
for modeling hadoop yarn clusters. In: Stevens, P., Wasowski, A. (eds.) FASE 2016.
LNCS, vol. 9633, pp. 49–65. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49665-7 4

13. Nobakht, B., de Gouw, S., de Boer, F.S.: Formal verification of service level
agreements through distributed monitoring. In: Dustdar, S., Leymann, F., Villari,
M. (eds.) ESOCC 2015. LNCS, vol. 9306, pp. 125–140. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24072-5 9

https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-662-49665-7_4
https://doi.org/10.1007/978-3-662-49665-7_4
https://doi.org/10.1007/978-3-319-24072-5_9

Molecular Dynamics with HyperFlow
and Scalarm on the PaaSage Platform

Maciej Malawski1(B), Bartosz Balis1, Kamil Figiela1, Maciej Pawlik1,
Marian Bubak1, Dariusz Król1, Renata S�lota1, Micha�l Orzechowski1,

Jacek Kitowski1, and Dennis Hoppe2

1 Department of Computer Science, Faculty of Computer Science,
Electronics, and Telecommunications, AGH University of Science and Technology,

Mickiewicza 30, 30-059 Krakow, Poland
{malawski,dkrol}@agh.edu.pl

2 High Performance Computing Center Stuttgart (HLRS),
University of Stuttgart, Nobelstr. 19, 70569 Stuttgart, Germany

dennis.hoppe@hlrs.de

This paper demonstrates how scientific workflow applications executed by Hyper-
Flow engine [1] and data farming experiments managed by the Scalarm plat-
form [2] can benefit from the capabilities offered by PaaSage platform1, on the
example of molecular dynamics simulation. While HyperFlow engine enables
users to execute tasks of scientific workflows and Scalarm supports parameter
studies oriented on data farming on available computing resources (e.g. virtual
machines in a cloud), the role of PaaSage platform is to provision these resources,
deploy an application, and automatically scale them according to the application
demands. PaaSage uses a model-based approach, which means that the cloud
application together with its requirements needs to be described using Cloud
Application Modeling and Execution Language (CAMEL) [4].

The main new capabilities resulting from combining HyperFlow and Scalarm
with PaaSage are to deploy the entire runtime environment as part of the appli-
cation. Consequently, the whole platform such as HyperFlow or Scalarm, sup-
porting a class of applications, can be seen as a single cloud application from the
perspective of PaaSage. In particular, the workflow enactment engine, Hyper-
Flow [1], acts as a component of the PaaSage application. Similarly, in the case
of the Scalarm platform [2], we modelled the whole platform as an application,
which is capable to execute different simulation models and scale itself in a cross-
cloud environment. Consequently, we avoid tight coupling to a particular cloud
infrastructure and middleware in both cases.

According to the PaaSage methodology, we modelled both HyperFlow and
Scalarm using CAMEL. HyperFlow deployment model includes the master node
which contains the workflow engine components, while the worker (which is
scalable from 1 to n nodes) includes the executor together with application
dependencies such as MPI or POV-Ray. Additionally, we deploy Redis and Rab-
bitMQ components, as well as InfluxDB and Grafana as monitoring dashboard.
Scalarm’s architecture also follows the master-worker design pattern, where the

1 http://www.paasage.eu.

c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 299–300, 2018.
https://doi.org/10.1007/978-3-319-72125-5

http://www.paasage.eu

300 M. Malawski et al.

master part consists of loosely coupled services and is responsible for coordinat-
ing experiments, while the worker part handles actual computations. In addition,
Scalarm can be run on different clouds as described in [3], hence its actual run-
time deployment can be divided vertically and horizontally, where the amount
of resources for each part can be dynamically adjusted to the actual load.

We demonstrate the benefits of using HyperFlow and Scalarm with PaaSage
by deploying a molecular dynamics (MD) simulation. MD simulations are highly
representive for e-science applications, because they comprise resource– and
compute–intensive calculations that are massively parallelizable via MPI or
OpenMP. These kinds of simulations provide information about how a given
substance behaves under a given set of physical conditions including tempera-
ture and pressure. It allows us to predict material behaviour, for example for
industrial purposes, such as the crack distribution across bridges. Simulations
usually extend over multiple iterations starting with a coarse simulation over
selected data points, and ending in a fine-granular simulation around a point of
interest such as the origin of a crack. That’s why accurate simulations require to
be executed up to several hundred times with different parameter sets to yield
accurate results. Our simulation includes a post-processing step that generates
a video out of the raw data received from the simulation.

HPC is usually first-choice when it comes to executing e-science applica-
tions. However, the trend is towards a hybrid HPC/Cloud model, where high-
performance resources are combined with the advantages of the cloud: flexibil-
ity, high availability, and disaster recovery to name but a few. Applications that
will benefit from such a hybrid model are, in particular, e-science applications
that usually include pre- and post-processing steps such as generating a video,
which are not compute intensive. Those tasks can then be moved into the cloud,
whereas compute-intensive tasks will continue to run on HPC infrastructure.
PaaSage enables us to model our e-science applications once using CAMEL, and
then deploy individual tasks, managed by HyperFlow or Scalarm, on different
HPC/cloud infrastructures with ease.

Acknowledgments. We thankfully acknowledge the support of the EU FP7-
ICT project PaaSage (317715), Polish grant 3033/7PR/2014/2 and AGH grant
11.11.230.124. Access to EC2 Cloud was provided by AWS in Education Grant.

References

1. Balis, B.: HyperFlow: a model of computation, programming approach and enact-
ment engine for complex distributed workows. Future Gener. Comput. Syst. 55,
147–162 (2016)

2. Król, D., Kitowski, J.: Self-scalable services in service oriented software for cost-
effective data farming. Future Gener. Comput. Syst. 54, 1–15 (2016)

3. Krol, D., Slota, R., Kitowski, J., Dutka, L., Liput, J.: Data farming on heterogeneous
clouds. In: 2014 IEEE 7th International Conference on Cloud Computing, pp. 873–
880. IEEE, June 2014

4. Nikolov, N., Rossini, A., Kritikos, K.: Integration of DSLs and migration of models:
a case study in the cloud computing domain. Procedia Comput. Sci. 68, 53–66
(2015)

Quality-Aware Development of Big Data
Applications with DICE

Giuliano Casale1(B), Elisabetta Di Nitto2, Pooyan Jamshidi1,
and Damian A. Tamburri2

1 Imperial College London, London, UK
g.casale@imperial.ac.uk

2 Politecnico di Milano, Milan, Italy

Abstract. The DICE EU H2020 Project is exploring model-driven ways
to support the continuous design and development of Quality-aware
Data-Intensive applications (DIA) by means of DIA-specific quality anal-
yses (e.g., performance, reliability, cost) applied on key DIA technologies
(e.g., Hadoop, Storm or Spark). We outline the DICE toolchain and the
challenges it addresses.

1 The DICE Project Explained

Today, most organizations face high market pressure, and their ICT is struggling
to accelerate service delivery while preserving production and operations quality.
On the one hand, ICT operators lack understanding of the application internals
(e.g., architecture, design decisions). On the other hand, development teams are
not aware of operation details (e.g., infrastructure topology and its limitations).
These issues become critical for Big Data [1]. In fact, the big data domain has
seen the rapid growth of interest, e.g., featuring increased use of typical big data
technologies, e.g., Hadoop/MapReduce, NoSQL or stream processing. However,
the time to market and the cost of ownership of such applications are high.

In this context, DevOps practices address the common isolation between
Development and Operations [2]. The main goal of DevOps is to achieve a better
quality and continuous DIA architecting by eliminating silos and integrating
‘Dev’ and ‘Ops’ activities, with people sharing the same goals and working closely
with shared modelling, analysis, development and operations facilities. DICE
aims at incorporating within the DevOps movement a model-driven approach
that facilitates flow of information from Dev to Ops and enables operations
monitoring and anomaly detection capabilities to facilitate flow of information
from Ops to Dev. Moreover, DICE, in the form of a compact Eclipse Rich Client
Platform1 (RCP), offers three key tenets in the context of DevOps.

First, DICE enables the data-intensive application design with proper UML
annotations (i.e., an Eclipse Papyrus UML profile - see mid-left of Fig. 1) that

This paper has been supported by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 644869.

1 https://eclipse.org/community/rcpos.php.

c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 301–302, 2018.
https://doi.org/10.1007/978-3-319-72125-5

https://eclipse.org/community/rcpos.php

302 G. Casale et al.

(a) facilitate design-time simulation and optimizations and (b) enables ‘Dev’
and ‘Ops’ to work side by side on continuous application architecting using
simulation and optimization tools (see other Eclipse RCP plugins in lefft-hand
side of Fig. 1) that offers refactoring of architectural designs.

Second, DICE includes analysis tools that exploit monitoring data on running
components (i.e., see lower-right of Fig. 1) to detect anomalies and to optimize
the configurations of applications (see top middle of Fig. 1, Anomaly detection
trace-checking and enhancement tools), as well as feedback loop tools that exploit
the same data to offer feedback to the architectural design to identify bottlenecks
and continuously refactor DIAs.

Third, DICE offers tools which, based on the “Topology and Orchestra-
tion Specification for Cloud Applications” (TOSCA)2, allow for automatic DIA
deployment blueprint generation (see the Repository and Continuous Integration
component (CI) in the mid-bottom of Fig. 1) as well as continuous integration
thereby allowing automated delivery while facilitating the integration between
design-time and runtime.

Fig. 1. DICE Architecture, an overview, bottom-left shows Eclipse plugins while in
mid-figure appear the integrated components.

Figure 1 provides an overview of the DICE architecture rotating around an
Eclipse RCP (bottom-left) while integrated components appear in mid-figure.
For more information please refer to deliverable D1.3 in the DICE homepage3.

References

1. Casale, G., et al.: Dice: quality-driven development of data-intensive cloud applica-
tions. In: Proceedings of the 7th International Workshop on Modelling in Software
Engineering (MiSE), May 2015

2. Nitto, E.D., et al.: A software architecture framework for quality-aware devops.
In: Proceedings of the 2th International Workshop on Quality-Aware DevOps
(QUDOS), July 2016

2 https://www.oasis-open.org/apps/org/workgroup/tosca/members/roster.php.
3 http://dice-h2020.eu/.

https://www.oasis-open.org/apps/org/workgroup/tosca/members/roster.php
http://dice-h2020.eu/

The HORSE Project: IoT and Cloud Solutions
for Dynamic Manufacturing Processes

Irene Vanderfeesten(&), Jonnro Erasmus, and Paul Grefen

School of Industrial Engineering, Eindhoven University of Technology,
Eindhoven, The Netherlands

{i.t.p.vanderfeesten,j.erasmus,p.w.p.j.grefen}@tue.nl

1 Introduction

During the various stages in the advancement of manufacturing, the pervasiveness of
automated equipment gradually increased. Dedicated manufacturing lines improved
efficiency and flexible manufacturing systems provided the ability to produce a large
variety of products. Reconfigurable manufacturing tools made it possible to combine
large volume with improved flexibility between batches [1]. Recently, the demand for
customisation is outpacing the ability of manufacturing systems to remain cost effective
[2]. The rapid change is forcing factories to become more flexible, while maintaining
high volume and quality. The extent of the customisation is also increasing, with
products differing based on composition, size, shape, performance or surface treatment.
Producing variable products requires a wide range of production activities.

Small and medium enterprises (SME) can’t afford to acquire and operate a large
number of automated actors to perform numerous activities. They must use their
limited personnel and financial capital wisely to compete effectively in the global
manufacturing sector. They seek autonomous actors that react to changing variables,
based on accurate information processed by a centralised, cloud-based information
system. It is recognised that the knowledge of actors and management is now the most
valuable asset of a factory, yet enterprise-wide, real-time information and control is still
comparatively limited in the manufacturing sector [3].

2 The HORSE Project

The HORSE Project (www.horse-project.eu) is part of the Factories of the Future area
of the Horizon 2020 research and innovation programme. The project aims to develop
and integrate advanced manufacturing technology in a package accessible to SMEs.
The package will include technology such as situational awareness, augmented reality
and event-driven process management. To ensure industrial relevance and demonstrate
validity, the project consortium includes three commercial manufacturing partners with
diverse production activities, e.g. cold forming, casting and assembly.

The proposed technologies are built around a cloud-based information system that
will provide centralised control, by aggregating information and invoking the services

© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 303–304, 2018.
https://doi.org/10.1007/978-3-319-72125-5

http://www.horse-project.eu

of actors connected through the Internet-of-Things. This system will make it possible to
orchestrate cross-organisational processes, enhancing the potential for customised
products by linking the manufacturing activities of multiple enterprises.

Figure 1 shows an overview of the software architecture of the information system.
The upper layer represents the centralised orchestration, aggregating data from the shop
floor and other information systems to visually inform the user and exert control over
the end-to-end manufacturing process. The bottom layer provides the functionality to
configure and control individual actors in the manufacturing system, while ensuring
safety of humans and equipment.

Additionally, Fig. 1 shows portions of the architecture envisaged to be enabled by a
cloud-based platform, as it contains complex system functionality without strict timing
constraints. The bottom-right portion is the connection between the centralised system
and the individual actors, with the execution and awareness modules corresponding to
the actuating and sensing capabilities of the Internet-of-Things, respectively.

References

1. Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., Brussel, H.V.:
Reconfigurable manufacturing systems. CIRP Annals-Manufact. Technol. 48(2), 527–540
(1999)

2. Zhang, Q., Cao, M.: Business process reengineering for flexibility and innovation in
manufacturing. Ind. Manage. Data Syst. 102(3), 146–152 (2002)

3. Zhang, L., Luo, Y., Tao, F., Li, B.H., Ren, L., Zhang, X., Guo, H., Cheng, Y., Hu, A., Liu,
Y.: Cloud manufacturing: a new manufacturing paradigm. Enterp. Inf. Syst. 8(2), 167–187
(2014)

Fig. 1. Software aspect of the HORSE system architecture

304 I. Vanderfeesten et al.

BEACON Project: Software Defined Security
Service Function Chaining in Federated Clouds

Massimo Villari1(B), Giuseppe Tricomi1, Anna Levin2, Sébastien Dupont3,
and Philippe Massonet3

1 Dep. Ingegneria, University of Messina, Messina, Italy
{mvillari,gtricomi}@unime.it

2 IBM Research - Haifa, Haifa, Israel
lanna@il.ibm.com

3 CETIC Research Center, Charleroi, Belgium
{sebastien.dupon,philippe.massonet}@cetic.be

1 Introduction

BEACON project aims at federating cloud networks leveraging virtualised over-
lay networks over different cloud platforms. The federation of cloud providers
is challenging due to the complex interaction between different administrative
domains. In this context, the setup of cross cloud networks is compelling, but
enabling Service Function Chaining (SFC) is much more complicated. BEACON
project uses software-defined approach for easy setup of advanced security fea-
tures in SFC. Virtual Network Functions (VNF) and SFC are used to implement
these security features in BEACON. The chaining of federated cloud network
security services is described in the OpenStack based service manifest. In the
future we will try to translate this manifest in TOSCA.

In BEACON Project we are customising network security capabilities using
network virtualisation technologies such as VXLAN and GENEVE in conjunc-
tion with Network Function Virtualisation (NFV) and Service Function Chaining
(SFC). By combining NFV/SFC with network virtualisation it is possible for any
cloud tenant to tailor the security of each of their individual virtual networks. In
our model, aimed at OpenStack context, a tenant specifies his/her requirements
through the Heat Orchestration Template (HOT), which is modified accordingly
to our security functionalities. The IETF SFC working group [1] has defined a
framework for SFC operation and administration. The Open Network Foun-
dation has proposed SFC architecture. Their L4-L7 Service Function Chaining
Architectural document defines the way of steering network traffic among sev-
eral elements in order to get the desired service. In their example any end-to-end
application traffic flows are required to traverse various network services such as
IPS/IDS, firewalls, WAN optimizers and load balancers using the SFC. A user
can make a decision in which the flow accessing an application server at a remote
site may need to go through WAN optimizers for performance, firewalls and an
IPS for security, load balancers for performance and high availability, and a VPN
server before reaching the application server. The proposed general architecture
c© Springer International Publishing AG 2018
A. Lazovik and S. Schulte (Eds.): ESOCC 2016 Workshops, CCIS 707, pp. 305–307, 2018.
https://doi.org/10.1007/978-3-319-72125-5

306 M. Villari et al.

(a) L4-L7 Service Function Chaining Architec-
ture: details of the SF Instance Manager [1].

(b) BEACON Project solution [2].

Fig. 1. SFC, the IETF working group solution and BEACON Projects application
scenario.

(a) HEAT Manifest Tem-
plate (HOT) with Security
features.

(b) A view of OS::BEACON Group template in HOT

Fig. 2. The HOT Manifest and HOT Parser in BEACON Project: resources, federation
and security management sections.

can be applied to any network. However, in order to implement this architecture
in federated heterogeneous networks, there is a need to coordinate SFC network
controllers and classifiers, so they will speak the same language and deploy and
control NFVs in an efficient way.

In our approach we are considering to use HOT of OpenStack for configuring
SFC in the security domain. At our knowledge no any formalization has been
done in this perspective yet. Figure 1(a) shows how our assessment is focused
respect to the L4-L7 Service Function Chaining Architectural Scenario (see the
rectangular shape over SF Instance Manager). Whereas Fig. 1(b) shows a typical
scenario where BEACON Project operates.

Figure 2(a) shows the part we included in the HEAT Manifest Template.
Starting with the conventional one (HOT) we extended it with Security VFN
configuration along with Security VNF Chaining. Figure 2(b) depicts a Java
code dealing with the new groups added for BEACON (see in the picture the
OS:BEACON items). The original HOT is in YAML, but for our development
we translated it into JSON format to be easily stored and retrieved exploiting

BEACON Project: Software Defined Security 307

MongoDB. MongoDB represents the BEACON DB where we store the SFC-SF
Instance Manager configurations.

In the near future BEACON Project is looking at the possibility to trans-
late the HOT service definition template of OpenStack towards TOSCA, the
Oasis Standardization initiative applied in this domain. Samuel Bercovici and
Nati Shalom [3] ha an interesting assessment and experimentation in their work
presented during an OpenStack summit on how to orchestrate Application and
Network using HEAT and TOSCA. Our plan is to start from there.

Acknowledgment. This work has been supported by the BEACON project, grant
agreement number 644048, funded by the European Union’s Horizon 2020 Programme
under topic ICT-07-2014.

References

1. Aldrin, S., Krishnan, R., Pignataro, N.A.C., Ghanwani, A.: Service function chaining
operation, administration and maintenance framework. In: IETF RFC (2016)

2. Celesti, A., Levin, A., Massonet, P., Schour, L., Villari, M.: Federated networking
services in multiple openstack clouds. In: Celesti, A., Leitner, P. (eds.) ESOCC 2015.
CCCIS, vol. 567, pp. 338–352. Springer, Cham (2016)

3. Bercovici, S., Shalom, N.: When networks meet apps. http://docslide.us/
technology/when-networks-meet-apps-samuel-bercovici-nati-shalom.html

http://docslide.us/technology/when-networks-meet-apps-samuel-bercovici-nati-shalom.html
http://docslide.us/technology/when-networks-meet-apps-samuel-bercovici-nati-shalom.html

Author Index

Ahmadighohandizi, Farshad 74
Albert, Elvira 296

Baur, Daniel 289
Balis, Bartosz 299
Berrocal, Javier 59
Bimamisa, David 176
Bubak, Marian 299

Canal, Carlos 59
Carrasco, Jose 233
Cartier, Alexander D. 5
Casale, Giuliano 301
Celesti, Antonio 19

Daneshgar, Farhad 112
de Boer, Frank 296
De Paoli, Flavio 219
Di Nitto, Elisabetta 301
Domaschka, Jörg 104, 289, 292, 294
Dupont, Sébastien 34, 305
Durán, Francisco 233

Erasmus, Jonnro 303

Fahmideh, Mahdi 112
Fazio, Maria 19
Figiela, Kamil 299
Fleuren, Tino 123
Foschini, Luca 5
Fowley, Frank 91
Francalanci, Chiara 211

Garcia-Alonso, Jose 59
Giacobbe, Maurizio 19, 43
Grefen, Paul 303
Griesinger, Frank 104

Hähnle, Reiner 296
Harrer, Simon 151, 176
Hauser, Christopher B. 294
Hoppe, Dennis 299

Ibrahim, Ahmad 260

Jamshidi, Pooyan 301
Johnsen, Einar Broch 296

Kajzar, Fabian 135
Kantarci, Burak 5
Kitowski, Jacek 299
Kopp, Oliver 151
Kritikos, Kyriakos 104, 189
Król, Dariusz 299

Laneve, Cosimo 296
Lang, Sebastian 135
Lee, David H. 5
Lenhard, Jörg 151
Levin, Anna 34, 305
Lupp, Artur 164

Malawski, Maciej 299
Massonet, Philippe 34, 305
Metallidis, Damianos 189
Michot, Arnaud 34
Mirnig, Alexander G. 164
Müller, Mathias 176
Murillo, Juan M. 59

Orzechowski, Michał 299

Pahl, Claus 91
Pawlik, Maciej 299
Pernici, Barbara 211
Pimentel, Ernesto 233
Plexousakis, Dimitris 189
Puliafito, Antonio 19
Puliafito, Carlo 43

Qin, Cui 274

Rabhi, Fethi 112

Scarpa, Marco 43
Seybold, Daniel 104, 292

Słota, Renata 299
Stählin, Johannes 135
Systä, Kari 74

Tai, Stefan 205
Tamburri, Damian A. 301
Tricomi, Giuseppe 305
Tscheligi, Manfred 164
Tsitsipas, Athanasios 294

Vanderfeesten, Irene 303
Villari, Massimo 19, 34, 305

Weißbach, Mandy 247
Wirtz, Guido 176
Wesner, Stefan 292
Woitsch, Robert 104, 292

Zeginis, Chrysostomos 189
Zirpins, Christian 135

310 Author Index

	Preface
	Organization
	Contents
	CLoud for IoT
	Part1
	Workshop Organizers
	Steering Committee
	Technical Program Committee

	IoT-Big Data Software Ecosystems for Smart Cities Sensing: Challenges, Open Issues, and Emerging Solutions
	1 Introduction
	2 IoT Architectures and Applications
	3 IoT-Big Data Design Guidelines
	3.1 State of the Art in Building IoT-Big Data Architectures
	3.2 Challenges Experienced in IoT-Big Data Systems

	4 Remarkable Big Data Solutions
	4.1 Crowdsensing-Based IoT-Big Data Projects
	4.2 Smart Environment Projects
	4.3 Edge Computing Based Projects
	4.4 Big Data Stream Analysis Projects for Cyberphysical Systems
	4.5 Distributed, Secure, Scalable Storage of IoT Data
	4.6 Quality of Data (QoD)-Aware IoT Big Data Projects
	4.7 Spatial Big Data Projects

	5 Summary
	6 Open Issues and Challenges
	References

	Re-powering Service Provisioning in Federated Cloud Ecosystems: An Algorithm Combining Energy Sustainability and Cost-Saving Strategies
	1 Introduction
	2 Related Work
	3 Motivation
	4 Strategy
	4.1 Pre-filtering and Matching Steps
	4.2 Mandatory Requirements
	4.3 Time and Cost as Recommended Requirements
	4.4 Derived Requirements

	5 Multi Criteria Decision Making Applied to Energy-Aware Management in a Federated Cloud Ecosystem
	6 Analytic Evaluation
	6.1 Scenario
	6.2 Simulation and Experimental Results

	7 Conclusion and Future Work
	References

	A Motivating Case Study for Coordinating Deployment of Security VNF in Federated Cloud Networks
	1 Introduction
	2 Related Works
	3 Motivations
	4 Approach
	5 Discussion
	6 Conclusion and Future Work
	References

	The Big Bucket: An IoT Cloud Solution for Smart Waste Management in Smart Cities
	1 Introduction
	2 State of the Art in Smart Waste and Recycling Systems
	2.1 Scientific Literature
	2.2 Business Solutions

	3 The Big Bucket Solution
	3.1 The Big Bucket Smart Dumpster
	3.2 Integration of the Big Bucket Smart Dumpster in the Stack4Things Framework

	4 Conclusion and Future Work
	References

	Towards Distributed and Context-Aware Human-Centric Cyber-Physical Systems
	1 Introduction
	2 Key Challenges of Building Human-Centric CPS
	2.1 Human-Related Challenges
	2.2 Technological-Related Challenges
	2.3 Addressing the Challenges

	3 Situational-Context
	4 Related Work
	5 Conclusion
	References

	Application Development and Deployment for IoT Devices
	1 Introduction
	2 Background
	2.1 Continuous Deployment and DevOps
	2.2 An Integrated Development Tool for DevOps

	3 Programmable Platform for IoT Devices
	3.1 Application Framework
	3.2 Runtime Environment and Management Interface
	3.3 Resource Registry Service

	4 CD in Cloud vs IoT
	4.1 Virtual Host in the Cloud vs Physical Device
	4.2 Deployment Strategies
	4.3 Role of Staging
	4.4 Bulk Deployment to Production

	5 Related Work
	6 Conclusion
	References

	Cloud Adoption and Migration (CloudWays)
	Part2
	Program Committee

	Cloud Migration Architecture and Pricing – Mapping a Licensing Business Model for Software Vendors to a SaaS Business Model
	1 Introduction
	2 Linking Cloud Architecture and Services to License Management and Billing
	3 Context and Related Work
	4 Cloud Migration – Joint Architecture and Costing Concerns
	4.1 Pre-migration – Licensing Model of ISVs
	4.2 Architecture Migration and Monetisation

	5 Architecture Migration – IaaS to PaaS Architecture Mapping Towards Cloud-Native
	6 Architecture Migration and PaaS Deployment Cost Calculation
	6.1 Architecture Selection and Deployment
	6.2 Cost and Revenue Prediction/Calculation
	6.3 Pricing Models

	7 Princing Model Migration – Cloud SaaS Billing and Pricing Models
	7.1 Pay-Per-User SaaS Pricing Model
	7.2 Pay-As-You-Go (Utility) SaaS Pricing Model

	8 Use Case Study
	8.1 Performance Experimentation and Prediction
	8.2 Income Prediction and Income Model Determination

	9 A Changing Environment
	10 Conclusions
	References

	A DMN-Based Approach for Dynamic Deployment Modelling of Cloud Applications
	1 Introduction
	2 Problem Statement
	3 Dynamic Cloud Modelling
	3.1 Introducing a Decision Layer
	3.2 Realisation Sketch

	4 Use Cases
	4.1 Customer-Specific and Continuous Deployment
	4.2 Business Process as a Service

	5 Discussion
	6 Related Work
	7 Summary
	References

	Cloud Migration Methodologies: Preliminary Findings
	Abstract
	1 Introduction
	2 Criteria-Based Evaluation of Migration Methodologies
	3 Analysis of Results
	4 Discussion
	5 Future Work and Conclusion
	References

	Workflow Skeletons: Improving Scientific Workflow Execution Through Service Migration
	1 Introduction
	2 Related Work
	3 Background: Workflow Skeletons
	4 Service Migration
	5 Workflow Skeletons Supporting Service Migration
	5.1 How, What, and When to Migrate
	5.2 Policy-Based Decision Support

	6 Prototypical Implementation
	7 Conclusions and Future Work
	References

	Consumer-Driven API Testing with Performance Contracts
	1 Introduction
	2 Case Study
	3 Consumer-Driven Contract Testing
	4 API Performance Contracting
	4.1 Consumer Performance Contracts
	4.2 API Contract Aggregation and Evaluation
	4.3 Performance Contracting in the API Lifecycle

	5 Related Work
	6 Conclusion and Future Work
	References

	Patterns and Pattern Languages for SOCC: Use and Discovery, Performance and Conformance of Workflow Engines (PEACE in PATTWORLD)
	Part3
	Workshop Organizers
	PATTWORLD Program Committee
	PEACE Program Committee

	Patterns for Workflow Engine Benchmarking
	1 Introduction
	2 Related Work
	3 Problems in Workflow Engine Benchmarking
	3.1 Big Picture
	3.2 Challenges

	4 Workflow Engine Benchmarking Pattern Catalog
	5 Conclusion and Future Work
	References

	Patterns in HCI – A Discussion of Lessons Learned
	1 Introduction
	2 Related Work
	3 The HCI Automotive Pattern Approach - An Overview
	4 Lessons Learned
	4.1 A Matter of Language
	4.2 Cross-Discipline Solution Searching and Unreliable Sources
	4.3 Of Iterations and Different Points of View
	4.4 Linking - Online vs. Paper
	4.5 The Art of Referencing

	5 Conclusion
	References

	Interactive Dashboard for Workflow Engine Benchmarks
	1 Introduction
	2 Related Work and Background
	2.1 Dashboards
	2.2 Dashboards for Benchmarks
	2.3 Workflow Engine Benchmarking
	2.4 Terminology

	3 Requirements
	4 Big Picture
	5 Common Data Model
	6 Implementation
	7 Conclusion and Future Work
	References

	A Distributed Cross-Layer Monitoring System Based on QoS Metrics Models
	1 Introduction
	2 Related Work
	3 Definition of Quality Models
	3.1 Workflow Quality Model (WM)
	3.2 Service Quality Model (SM)
	3.3 Infrastructure Quality Model (IM)
	3.4 Cross-Layer Dependency Quality Model

	4 Architecture of the Cross-Layer Monitoring System
	5 Conclusions and Future Work
	References

	Rethinking Services (ResearCH)
	1 The Need for Services
	2 Redefine the Service Research Agenda
	References
	Part4
	Workshop Organizers
	Technical Program Committee

	Continuous, Trustless, and Fair: Changing Priorities in Services Computing
	1 Introduction
	2 Services Computing – A Brief Historical Sketch
	3 Some Lessons Learned
	4 Research Ahead: Changing Priorities
	4.1 Continuous Computing
	4.2 Trustless Computing
	4.3 Fair Computing

	5 Next Steps
	References

	Data Integration and Quality Requirements in Emergency Services
	1 Introduction
	2 Research Challenges and Potential Developments
	2.1 Data Requirements and Quality Requirements
	2.2 Ad Hoc Workflows with Source Evaluation

	3 Towards a Service-Based Architecture for E2mC
	4 Concluding Remarks
	References

	Challanges in Services Research: A Software Architecture Perspective
	1 Introduction
	2 An IoT Perspective
	3 Services Ecosystem
	4 Programmable Platforms
	5 Services Description
	6 Services Composition
	7 Conclusions
	References

	PhD
	Part5
	PhD Symposium Organizers
	PhD Programme Committee

	Towards a Unified Management of Applications on Heterogeneous Clouds
	1 Introduction
	2 Research Challenges
	3 Research Agenda
	4 Current State of Our Proposal
	4.1 Application Modeling
	4.2 Towards a Unified API
	4.3 Trans-cloud Management

	5 The Softcare Case Study
	6 Conclusions and Future Work
	References

	Deadlock Analysis of Service-Oriented Systems with Recursion and Concurrency
	1 Introduction and Motivation
	2 Foundation
	2.1 Services and Service-Oriented Systems
	2.2 Process Rewrite System
	2.3 Deadlock Detection
	2.4 Abstraction

	3 Capturing Recursion and Concurrency
	4 Related Work
	5 Research Plan
	6 Conclusion
	References

	Prediction of Quality of Service of Software Applications
	1 Introduction
	2 Research Contributions
	3 Proposed Solution
	3.1 Service Based Applications
	3.2 Parallel Design Patterns Based Applications

	4 Example
	4.1 Shipping Service
	4.2 PASO at Work: Shipping Service
	4.3 Experimental Results

	5 Related Work
	5.1 Service Based Applications
	5.2 Parallel Design Patterns Based Applications

	6 Future Work
	References

	Impact-Minimizing Runtime Adaptation in Cloud-Based Data Stream Processing
	1 Introduction
	2 Problem Statement
	3 Related Work
	4 Research Challenges
	5 Preliminary Solution and Result
	6 Research Plan
	References

	Abstracts
	Cloudiator – Enacting Deployments and Adaptation in PaaSage
	References

	BPaaS Execution in CloudSocket
	1 Introduction
	2 CloudSocket Architecture
	References

	Context-Aware Cloud Topology Optimization for OpenStack
	1 Why CACTOS?
	2 CACTOS Runtime Toolkit in OpenStack
	3 Project Status and Results
	Reference

	Envisage: Developing SLA-Aware Deployed Services with Formal Methods
	References

	Molecular Dynamics with HyperFlow and Scalarm on the PaaSage Platform
	References

	Quality-Aware Development of Big Data Applications with DICE
	1 The DICE Project Explained
	References

	The HORSE Project: IoT and Cloud Solutions for Dynamic Manufacturing Processes
	1 Introduction
	2 The HORSE Project
	References

	BEACON Project: Software Defined Security Service Function Chaining in Federated Clouds
	1 Introduction
	References

	Author Index

