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Abstract  Macroinvertebrates play an important role in the maintenance of soil 
structural stability and fertility in many natural and man-modified habitats. Termites, 
as dominant invertebrates in tropical soils, have a major influence on soil chemical 
and physical structure. A diverse range of species processes a variety of plant 
organic matter at all stages of decomposition contributing to the efficient return of 
nutrients to the vegetation. Soil restoration and sustainable agricultural practices 
can be achieved through utilization of the ecosystem services of these organisms. 
The exploitation of termites for agroecosystem management and soil restoration 
remains, however, largely unexplored. Only few researches have been reported on 
the utilization of termite activity for the management of soil fertility or for the reha-
bilitation of degraded soils. The present chapter highlights the potentials of termites 
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as detritivores, soil builders, restorers of degraded land, and producers of some 
greenhouse gases, in the light of available literature.

Keywords  Termite • Detritivore • Soil • Mound • Degraded land

10.1  �Introduction

Ecosystem engineers directly or indirectly modulate the availability of resources 
(other than themselves) to other species, by causing physical changes in biotic or 
abiotic materials. In so doing, they modify, maintain, and/or build habitats (Jones 
et al. 1994). A wide range of different soil macrofauna provides several key ecosys-
tem services. In the tropics, termites are arguably the most influential soil-dwelling 
ecosystem engineers (Bignell 2006) whose biogenic structures (nests, soil sheet-
ings, foraging holes, etc.) modify the availability of resources for other organisms. 
Through bioturbation they incorporate plant litter and crop residues into the soil, 
thereby modifying biological, chemical, and physical soil processes that affect the 
flow of energy and material (Fig. 10.1). They hence modify the habitat of other soil 
biota (Jones et al. 1994; Lavelle et al. 1997b; Pulleman et al. 2012).

Termites form an essential component of soil ecology having successfully 
coevolved for millions of years (French 1988). They are dominant invertebrates in 
tropical soils (Bignell and Eggleton 2000) and represent as much as 10% of all 
animal biomass and up to 95% of soil insect biomass (Jones and Eggleton 2000). By 

Fig. 10.1  Constructions built by Macrotermes spp. and mediated processes (arrows). (1) Soil 
turbation via construction of sheetings, (2) nutrient uptake from plant sheetings, (3) increased 
infiltration rates, (4) soil aeration, (5) organic matter relocation, (6) decomposition, (7) soil turba-
tion via mound construction with subsoil, (8) mineralization and nutrient enrichment, (9) erosion 
and redistribution of mound material, (10) nutrient uptake from mound material by plants (Adapted 
and redrawn from Grohmann 2010)
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virtue of microbial symbionts in their gut, they play a key role in processes such as 
carbon and nitrogen mineralization (Bignell and Eggleton 2000; Jouquet et  al. 
2011). Their role in ecosystems has been reviewed by several authors (e.g., Lobry 
de Bruyn and Conacher 1990; Bignell and Eggleton 2000; Jouquet et al. 2011).

Termites live in complex environments, and their functional domain (physical 
sphere of influence at the point scale) is designated as the termitosphere (Dangerfield 
et al. 1998; Lavelle 2002; Jouquet et al. 2006). They construct intricate networks of 
underground tunnels and soil-covered tubes to access resources as well as protect 
themselves from predators and harsh environmental conditions while foraging (Lee 
and Wood 1971; Lee and Su 2010). These soil insects also have the abilities to par-
tially control their own living environments, where the humidity and temperature 
remain constant throughout all seasons. This gives them a striking ability to remain 
active during severe seasons, where most other soil macroinvertebrates are dimin-
ished or eliminated. Environmental factors along with availability of food and water 
resources, interactions with other predators and pathogens, and other genetic behav-
iors affect their population dynamics and behaviors of nesting and foraging, spa-
tially or temporally, separately or in combination (Campora and Grace 2004; 
Cornelius and Osbrink 2010).

Being one of the most abundant biological compounds on the planet, cellulose is 
most commonly found in wood, providing an enormous resource for those organ-
isms able to digest it (Norkrans 1963; Dixon et al. 1994). Termites are among the 
few organisms able to digest cellulose, contributing to their evolutionary and eco-
logical success (Watanabe et al. 1998; Nakashima et al. 2002). Depending on the 
food source, the termites may be classified into three principal feeding guilds, 
mainly (1) wood feeders (xylophagous termites); (2) soil feeders, consuming 
organic residues in the soil (humivorous termites); and (3) termites feeding on both 
wood and organic residues (soil/wood-interface feeders Bignell and Eggleton 
(2000)). Besides, there are niche feeders like Constrictotermes cavifrons, which 
have been shown to feed on microepiphytes (Araujo 1970; Martius et  al. 2000). 
They have considerable influence on soil organic matter turnover, nutrient cycling, 
and soil structure formation (Lavelle et al. 1997b; Brussaard 2012), strongly affect-
ing animal and plant distribution (Holt and Lepage 2000).

Termites transport water from moist areas to relatively drier substrates and 
improve the microclimate by creating and maintaining a humid environment while 
softening their food material for easy consumption (Su and Puche 2003; Arab and 
Costa-Leonardo 2005; Wong and Lee 2010). Studies suggested that termites have a 
positive effect on soil structure and nutrient richness (Jouquet et al. 2011, 2014). 
Through their mound-building activities and impact on plant growth, termites 
enhance the heterogeneity of their ecosystems. Sileshi et al. (2010) reported that 
increased soil fertility and moisture found near termite mounds can have pronounced 
effects on vegetation communities and their productivity. Previous studies also 
found that woody vegetations growing on termite mounds were characterized by an 
increase of density (Moe et  al. 2009), tree height (Levick et  al. 2010), species 
richness (Traore et al. 2008), functional diversity (Joseph et al. 2014), and reproduc-
tive output (Brody et al. 2010).
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Barrios (2007) concluded that soil organisms are essential for the functioning of 
natural and managed ecosystems and the productivity of land. Termites, by creating 
refugia for plants and nuclei for revegetation, can enhance dryland resistance to and 
recovery from drought (Bonachela et  al. 2015). The exploitation of termites for 
agroecosystem management and soil restoration remains largely unexplored (Evans 
et al. 2011; Jouquet et al. 2014). This chapter reflects the present state of knowledge 
concerning ecological impacts of termites.

10.2  �Detritivores

Termites are the dominant arthropod detritivores in many tropical soils, with highest 
diversity in lowland equatorial forests (Eggleton et al. 1996; Eggleton 2000). Their 
activities and interactions with soil result in significant temporal and spatial changes, 
through formations or modifications of soil, vegetation, and landscape (Ali et al. 
2013). A diverse range of termite species processes a variety of plant organic matter 
at all stages of decomposition, from leaf litter to rotten wood and soil humus. Across 
all environments inhabited by termites, the litter feeders can be proposed as the 
most ecologically important, because of their consistent presence and their numeri-
cal preponderance in terms of both species and individuals (Jouquet et al. 2011). 
Overall, tropical termites may consume up to half of the annual litter production 
(Brauman 2000) and up to 90% of dead wood (Bezerra-Gusmão et  al. 2011). 
Tropical rainforest is often associated with low-fertility soils (Jordan 1985), and 
termite cycling of organic matter efficiently contributes to the return of nutrients to 
the vegetation.

Termite associations with symbionts play a significant role in the digestion and 
decomposition of organic matter as well as moderating nutrient dynamics or global 
cycling, through the ingestion and redistribution of minerals (Bignell et al. 1978; Holt 
and Coventry 1990). Via foraging activities, large amounts of organic matter are relo-
cated and taken to the termite nest. The primary food source of Macrotermes species 
consists of dead wood, grass litter, and dung (Dangerfield and Schuurman 2000). This 
food rapidly passes through the gut of the termites, and the material is then expelled 
as so-called primary feces onto the fungus combs, which consist of more or less 
degraded plant material pervaded by the basidiomycete fungus of the genus 
Termitomyces (Westhuizen and Eicker 1991; Osiemo et  al. 2010). Fungus combs 
degrade plant structural compounds. Further decomposition occurs as the termites 
ingest the old parts from the bottom of the fungus combs (Rouland-Lefèvre 2000).

Termites are also the main agents for primary breakdown of surface mulches 
under conservation agriculture. They also perforate soil surfaces resulting in 
increased water infiltration rates (Mando and Miedema 1997). Dung deposited on 
the soil surface by mammalian herbivores needs to be broken down and eventually 
incorporated into the soil layer, as part of the nutrient cycling. Freymann et  al. 
(2008) reported a diversity of termite taxa feeding on a wide range of mammalian 
dung. They can quickly remove large amounts of mammalian dung, especially in 
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the dry season, when on average about 1/3 of the dung deposited in a given habitat 
is removed by termites within 1 month (with the highest rates observed in savannas) 
(Freymann et al. 2008). These authors also address issues like to what extent and 
which species of termites consume mammalian dung and whether termites might 
fulfill a similar ecosystem role as dung beetles.

10.3  �Soil-Building Properties

Macroinvertebrates have an important role in the maintenance of soil structural sta-
bility and fertility in many natural and man-modified habitats. The potential benefi-
cial effects of soil macrofauna on soil physical characteristics in general, and on soil 
aggregations in particular, are well recognized (Kooistra and van Noordwijk 1996; 
Mando and Miediema 1997). Termites, in particular, have a very strong impact on 
the soil environment and are therefore called “ecosystem engineers.” It was sug-
gested some time ago (e.g., Adamson 1943) that they have an important role in 
maintaining the fertility of tropical soils and the productivity of ecosystems. These 
insects are often overlooked as important drivers of habitat quality. Yet the effects of 
termites on soil character and quality may rival or exceed that of vertebrate herbi-
vores, being one of the most important biological agents for reworking the soils. 
Their behavior in selecting, transporting, and manipulating soil particles and 
cementing them together with saliva brings some immediate changes in soil struc-
ture and properties (Lobry de Bruyn and Conacher 1990; Wood 1996; Mando 1997). 
During their feeding and nesting activities, termites improve soil aeration, enhance 
water absorption and storage in soils, and facilitate carbon fluxes and storage. These 
processes are crucial for long-term soil fertility, plant growth, and soil formation 
(Jouquet et al. 2014).

It has been shown that termite activity increases the content of organic matter in 
the soils that they use for the construction of nests and also modifies the clay min-
eral composition of these soil materials (Jouquet et al. 2002b; Roose-Amsaleg et al. 
2004). Tunneling by termites creates channels in soil through which water preferen-
tially flows (Leonard and Rajot 2001; Turner 2006). Also, their incorporation of 
feces and saliva is known to affect soil microorganisms (Jouquet et al. 2011), gen-
erating higher microbial abundances, activities, and diversity in nests, compared to 
surrounding soils (Gupta et al. 1981; Holt and Lepage 2000; Chouvenc et al. 2011). 
Abundant literature is also available in relation to the effects of termites on the 
mobility of a number of elements. Semhi et al. (2008) reported that termite activities 
increase the contents of most major and some trace elements in their mounds.

Soil restoration and sustainable agricultural practices can be achieved through 
utilization of their ecosystem service capability (Crain and Bertness 2006; Brussaard 
et  al. 2007). Termites provide self-renewing services, which might be a relevant 
option for sustaining soil productivity and rehabilitating degraded soils in tropical 
agroecosystems (Jouquet et al. 2011). Kaiser et al. (2017) provided evidence about 
the effectiveness of some termite species in restoring barren soil and maintaining 
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long-term soil productivity, thereby facilitating sustainable agriculture in sub-
Saharan West Africa. They reported that the impact of termites is dependent on the 
particular species and their ecological requirements. Soil-feeding termites have a 
positive impact on the overall organic matter cycling in the tropics. This impact on 
the soil organic matter humification process is due to the most important feeding 
habit in terms of species diversity and soil-feeding species (Brauman 2000). Unlike 
other termites, their diet is not based on lignocellulosic plant degradation but on the 
consumption of the mineral-containing soil horizons, for acquisition of nutrients. 
During gut transit, the soil organic matter is then strongly modified, in terms of 
nature and organization.

Wood (1988) categorizes the main ways in which soil is modified by termites as 
physical disturbance of soil profiles, changes in texture, changes in nature and dis-
tribution of organic matter, changes in distribution of plant nutrients, and hence 
changes in soil fertility with, finally, construction of subterranean galleries. A num-
ber of studies focused on natural savanna ecosystems and reported beneficial effect 
of termites on soil porosity, water infiltration, nutrient uptake, and plant cover or 
biomass, demonstrating their capacity to rehabilitate degraded and crusted soils 
(Sarr et al. 2001; Dawes 2010).

Pedological influence of termites includes the production of biogenic aggregates, 
with physical and chemical properties different from the surrounding environment 
(Jouquet et al. 2016). Termites can mold up to 1300 kg ha–1 of soil annually (Kooyman 
and Onck 1987a), and it has been suggested that their biogenic structures constitute 
microsites that protect organic carbon against rapid mineralization (Mora et  al. 
2003). Sarcinelli et al. (2013) investigated the alterations in soil chemical and physi-
cal properties promoted by pedobioturbation, during mound building. These authors 
reported that the concentrations of nutrients, organic carbon, and clay-size particles 
were significantly higher in mounds than in surface soils. On a weight basis, termite 
mounds had up to 32 times more nutrients, 12 times more organic carbon, and 5 
times more clay than surrounding soils. They mentioned that termites greatly improve 
soil properties, representing truly ecosystem engineers in sandy soils, with an aver-
age soil turnover by mound-building activity reaching 10.5 m3 ha–1. Studies have 
shown idiosyncratic effect of termites on pH, depending on the species and soil type. 
Nutting et al. (1987) found that subterranean termites in Sonoran Desert grassland, 
Heterotermes aureus and Gnathamitermes perplexus, slightly increased the soil pH 
by bringing clay-rich soil from deep layers to the surface.

There is strong evidence in the literature that ecosystem properties greatly 
depend on the diversity, distribution, and abundance of organisms (Hooper et al. 
2005). The interactions among species, both above- and belowground, can have 
profound impacts on plant performance. In many arid ecosystems, however, termite 
nests impart substrate heterogeneity by altering soil properties, thereby enhancing 
plant growth (Bonachela et  al. 2015). Jouquet et  al. (2002a) showed that the 
sheetings of Odontotermes contain more nutrients, particularly carbon and 
exchangeable cations, than the underlying soil. Additionally, soil sheetings of 
Macrotermes and Odontotermes species contain large amounts of inorganic nitro-
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gen (Ndiaye et al. 2004). Thus, sheetings might enhance the growth of plant root at 
sites with high termite activities. Termite interactions with soil depend on soil type, 
moisture, and organic matter content in different seasons and climatic regions. 
Other key factors affecting this interaction include termite species, size range, and 
morphological characteristics within a colony (Ali et al. 2013). It is well known that 
termite-induced changes in soil moisture, carbon availability, pH, and microbial 
biomass may have subsequent effects on soil carbon storage, plant community 
composition, and nutrient and water cycling. Yet it is virtually unknown as to how 
such changes in soil inputs and structure translate to changes in soil microbial bio-
mass, carbon availability, pH, and moisture (Maynard et al. 2015).

10.4  �Mound Properties

Several termite species build mounds or termitaria that provide a buffered environ-
ment against extreme temperature and humidity, as well as protection from preda-
tors. Termite mounds shape many environmental properties. Analogous structures 
built by ants and burrowing mammals are similarly influential worldwide (Alba-
Lynn and Detling 2008). These mounds often differ from their parent soils in physi-
cal, chemical, and biological properties (Holt and Lepage 2000).

Termite mounds are often considered as “patches” or “hotspots” in ecosystems, 
which increase the spatial and temporal heterogeneity of ecological processes 
(Bottinelli et al. 2015). Thus termites are often referred to as “major bioturbators,” 
“soil engineers,” or even “master builders” (Lavelle et al. 1997a; Jouquet et al. 2006; 
Oberst et al. 2016). The materials needed for the construction of the nests are taken 
from the close environment, generally limited to a few meters surrounding the nested 
area. Termites mix soil materials with wood and excrements for the construction of 
their nests (Noirot 1970; Jungerius et al. 1999). The specific properties of mound 
soils are usually explained by the ability of termites to collect soil from deep layers. 
They specifically select fine-size particles such as clays and oxides (Watson 1962; 
Fall et al. 2001; Abe et al. 2009) and/or modify the mineralogical properties of clays 
while building their mounds (Jouquet et al. 2002b, 2007). Thus, termite mound soils 
are usually enriched in clay, compared to the surrounding soil environment.

These “biogenic” structures have a large impact on the regulation of major bio-
geochemical processes in most tropical ecosystems (Kaschuk et al. 2006; Robert 
et al. 2007). Normally a mound grows as the colony grows (Lee and Wood 1971), 
as a result of additions of soil particles to the mound structure. Termite mounds 
may persist in the landscape for more than two decades (Lobry de Bruyn and 
Conacher 1990). With time and abandonment, these mounds are eroded, and their 
material is redistributed on the soil surface, potentially creating a soil environment 
more favorable to plant establishment and development (Dangerfield et al. 1998; 
Konate et al. 1999).

Termite mounds form small islands of enhanced water and soil nutrient avail-
ability on otherwise dry and nutrient-poor hill crests, which can have important 
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impacts on the community of plants (Davies et al. 2016). Rather, mound-field land-
scapes are more robust toward aridity, suggesting that termites may help stabilize 
ecosystems under global change (Bonachela et al. 2015).

Long-term enclosure of ungulate herbivores is known to decrease functional 
diversity of woody plant species, but this effect may be mitigated by termitaria. 
Joseph et al. (2015) reported that at regional scales, mounds can enhance functional 
diversity of woody plant despite the impacts of herbivory. Petipas and Brody (2014) 
tested how termites and vertebrate herbivores affect a common plant endosymbiont, 
arbuscular mycorrhizal fungi (AMF) and reported strong suppressive effect of ter-
mites on AMF communities. Mound soils provide a more hospitable environment 
for plant growth because of their higher levels of phosphorus, nitrogen, and micro-
nutrients (Table 10.1) and enhanced water-holding capacities (Jouquet et al. 2011), 
thus reducing plant reliance on AMF for nutrient acquisition.

It is documented that termite mounds are rich in different plant nutrients (Semhi 
et al. 2008; Seymour et al. 2014) and can be safely used for different purposes like use 
in growing rice paddy cultivation, vegetable beds, and charcoal kilns (Miyagawa et al. 
2011). Moreover, due to their higher density, mounds can be used as a bulking agent 
to speed up composting of agricultural waste as well as to enhance density of the 
matured compost. Karak et al. (2014) reported the suitability of termite mounds as a 
bulking agent for composting with crop residues and cow dung in pit method. These 
authors mentioned that use of 50 kg termite mound with the crop residues (stover of 
ground nut, 361.65 kg; soybean, 354.59 kg; potato, 357.67 kg; and mustard, 373.19 kg) 

Table 10.1  Nutrient conditions from soils collected in fenced and open areas, on termite mounds, 
and in corresponding off-mound areas

Fenced Open F 
value P valueOff On Off On

pH 6.17 (0.27) 7.36 (0.11) 6.31 (0.13) 7.50 (0.16) 135.11 <0.0001 
ON

P 1.19 (0.08) 4.26 (2.61) 1.41 (0.15) 2.31 (0.20) 6.86 0.0307 ON
Mg 982.83 (53.08) 614.00 (10.33) 968.50 (19.87) 699.17 

(224.16)
22.81 0.0014 OFF

Ca 4365.50 
(554.32)

8256.67 
(781.54)

4207.17 
(236.08)

7860.0 
(1798.77)

40.56 0.0002 ON

B 0.25 (0.04) 0.85 (0.19) 0.28 (0.03) 0.81 (0.17) 56.20 <0.0001 
ON

Mn 73.28 (23.04) 45.83 (14.70) 70.75 (13.11) 34.93 (7.81) 12.25 0.0081OFF
ECEC 33.68 (3.02) 49.42 (4.48) 32.97 (0.85) 48.96 (5.43) 13.88 <0.0001 

ON
NO–

3 1.33 (0.59) 17.97 (4.18) 1.0 (0.06) 14.67 (19.76) 6.81 0.0311ON

Source: Petipas and Brody (2014)
Note: ECEC effective cation exchange capacity. Effective cation exchange capacity was estimated 
as the sum of exchangeable cations: Ca, K, Mg, and Na. Available phosphorus was extracted by 
Modified Morgan P (MM-P) method and measured colorimetrically. Means and standard devia-
tions (±) are presented. P values are listed in the last column along with the higher main effect
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and cow dung (84.90 kg) formed a good-quality compost within 70 days of compost-
ing, having nitrogen, phosphorus, and potassium as 20.19, 3.78, and 32.77 g kg–1, 
respectively, with a bulk density of 0.85 g cm–3. Shanbhag et al. (2017) studied the 
abundance and properties of mounds built by Odontotermes obesus in relation to rain-
fall and parent soil properties in southern Indian forests. They analyzed carbon and 
clay contents in soil samples collected from mounds and the surrounding topsoil. 
These authors reported that mound numerical density was positively correlated with 
mound height and that rainfall had a negative relationship with the abundance. The 
carbon content in mound walls depends mainly on how much clay the termites used, 
and the amount of clay in the surrounding topsoil determines mound soil properties. 
Finally, the use of mound material may present an opportunity to resource-poor farm-
ers, provided that the application of mound materials is optimized and that any adverse 
effect on soil physical properties can be mitigated (Adhikary et al. 2016).

10.5  �Termite Diversity and Degraded Land

Soil feeders help create and maintain soil conditions favorable to plant growth. As 
many other organisms, also termite communities are affected by the degradation of 
the habitat. Termite diversity also decreases under long-term cultivation (Kooyman 
and Onck 1987b). Some studies focusing on termites in deforested/degraded land-
scapes showed that this group is a good bioindicator of perturbation and restoration 
processes (Attignon et al. 2005; e.g. Donovan et al. 2007; Vasconcellos et al. 2010; 
Bhavana et al. 2015). To promote macrofauna abundance and taxonomic richness in 
soils, integrated conservation soil management practices, with attention to the par-
ticular needs and preferences of termites and earthworms, are needed (Zida et al. 
2011). According to de Paula et al. (2016), reforestation is a valuable strategy in 
restoring termite diversity, aiming at recovering the ecosystem services they pro-
vide. Only few researches have been reported on the utilization of termites for the 
management of soil fertility or for the rehabilitation of degraded soils. Jouquet et al. 
(2011) discussed the main obstacles hampering the development of such approaches. 
These authors suggested that the ecosystem services provided by termites are not 
sufficiently appreciated, especially in the context of long-term processes and of the 
possible biotechnologies derivable from a detailed knowledge of their biology.

10.6  �Production of Gases

In the tropics, termites are major players in the mineralization of organic matter, 
leading to the production of greenhouse gases. They may emit large quantities of 
methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) into the atmosphere. 
The emission rate of gases by termites is highly variable from species to species. 
Soil-feeding termites emit more methane than wood-feeding termites (Brauman 
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et al. 1992; Bignell et al. 1997). Nitrous oxide production rates were higher in ter-
mites feeding on substrates with higher N content, such as soil and fungi, compared 
to those feeding on N-poor wood (Brauman et al. 2015).

Methane production by termites was first reported by Cook (1932) who observed 
the evolution of a gas from Zootermopsis nevadensis described as hydrogen and/or 
methane. Intensive studies during the following years have shown that methane is 
actually produced in the termite digestive tract by symbiotic microorganisms (Lee 
and Wood 1971). The flux of gases from termite nests into the atmosphere has been 
measured. The first quantitative figures for methane production by wood-feeding 
lower termites were reported by Breznak (1975). According to Zimmerman et al. 
(1982), global annual emissions calculated from laboratory measurements could 
reach 1.5 × 1014 g of CH4 and 5 × 1016 g of CO2. The largest emissions should occur 
in tropical areas disturbed by human activities. Rasmussen and Khalil (1983) veri-
fied the role of termites in the global methane cycle and reported that termites are 
indeed a potentially significant source of atmospheric CH4 with an estimated global 
production of about 50 × 1012 g year−1. Ho et al. (2013) reported that termites are a 
natural methane source contributing 3–4% to the total CH4 budget, globally.

Termite production of gases is species specific and varies depending on the soil 
environment and their food quality (Brümmer et  al. 2009; Jamali et  al. 2013; 
Brauman et al. 2015). There are several important factors controlling the methane 
flux from a termite nest. The amount of CH4 produced in a colony depends on the 
emission rate by termites and the population in the colony (Sugimoto and Inoue 
1998). The mound material showed higher methanotrophic activity. Termites are 
not known to harbor methane-oxidizing microorganisms (methanotrophs). However, 
a considerable fraction of the methane produced can be consumed by methano-
trophs that inhabit the mound material (Ho et al. 2013).

The contribution of termite mounds to the overall carbon balance has been shown 
to be negligible in tropical savannas (e.g., Jamali et al. 2013). However, De Gerenyu 
et al. (2015) estimated that CO2 emissions from termite mounds constituted up to 
10% of the total CO2 emission in a tropical forest, in southern Vietnam. Ohashi et al. 
(2017) determined the carbon dioxide emission from nests of termites and ants in a 
tropical rainforest in Malaysia. They noticed that CO2 emission from termite and ant 
nests was significantly higher than that from the bulk surrounding soils, suggesting 
that termite and ant nests are hotspots of CO2 emission from soil.

10.7  �Conclusion

Soil organisms are essential for the functioning of natural and managed ecosystems 
and the productivity of land. They maintain soil conditions favorable to plant 
growth. Termites, in particular, are ecosystem engineers, altering soil composition 
and hydrology. Their associations with symbionts play a significant role in the 
digestion and decomposition of organic matter. Overall, tropical termites may con-
sume up to half of the annual litter production. A diversity of taxa also feed on a 
wide range of mammalian dung. Termite mounds are rich in different plant nutrients 
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and shape many environmental properties. Rather, mound-field landscapes are more 
robust toward the impact of aridity, suggesting that termites may help stabilizing 
ecosystems, under global change.

Termites are a good bioindicator of perturbation and restoration processes. They 
can modify degraded environments and their biogenic structures, modifying the 
availability of resources for other organisms. During their feeding and nesting activ-
ities, termites improve soil aeration, enhance absorption and storage of water in 
soils, and facilitate carbon fluxes and storage. These processes are crucial for long-
term soil fertility, plant growth, and soil formation. These insects may also emit 
large quantities of greenhouse gases like methane, carbon dioxide, and nitrous oxide 
into the atmosphere. Production of gases is, however, species specific and varies, 
depending on the soil environment and food quality.
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