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Abstract
A broad diversity of animals is susceptible to infection by Coccidioides species.
However severe or disseminated disease in animals other than pet dogs is not
commonly reported in the literature. It is unclear if these cases are indeed rare or if
they are not diagnosed and reported. The awareness of coccidioidomycosis is
increasing in the Central Valley of California and southern Arizona, but outside
of these areas the disease is not often diagnosed. Cases outside the endemic
region frequently have delayed diagnosis, and as summarized here for many
animals, the diagnosis was not made until after euthanasia. Frequently, a fungal
infection is not considered as a primary cause of death or disease, in spite of the
fact that hundreds of thousands of these infections occur every year. In the USA,
coccidioidomycosis cases reported rival the number of cases of tuberculosis and
Lyme disease. Considering that it is likely that only 10% of infections nationwide
are reported, this disease has significant burden in the USA. Disease burden in the
rest of the Americas remains unknown. Clearly, better diagnostics, effective
treatments, and development of vaccines would greatly improve public health
and reduce economic costs associated with coccidioidomycosis. Additionally, a
great deal of work remains to fully understand the ecology and basic biology of
the causative agent.
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4.1 Phylogenetics and Population Structure

There are two distinct cryptic species within the genus Coccidioides (Ascomycota,
Pezizomycotina, Eurotiomycetes, Onygenales, Onygenaceae): Coccidioides immitis
and C. posadasii (Fisher et al. 2002). Previous phylogenetic analyses and morpho-
logical characterization showed that Uncinocarpus reesii, a keratinophilic
saprotroph, is one of the closest related fungi to Coccidioides (Sigler et al. 1998;
Pan et al. 1994). However, recent work reveals that Amauroascus mutatus, A. niger,
Byssoonygena ceratinophila, and Chrysosporium queenslandicum are
phylogenetically closer to Coccidioides than U. reesii (Whiston and Taylor 2015).
Within theOnygenaceae, no other dimorphic human pathogens have been identified;
however other animal pathogens exist (Sigler et al. 1998; Herr et al. 2001; Sigler
et al. 2013). The Ajellomycetaceae, which are distinct from the Onygenaceae,
include Blastomyces dermatitidis, Histoplasma capsulatum, Paracoccidioides
brasiliensis (Untereiner et al. 2004), and Emergomyces species (Dukik et al. 2017).

The Onygenales contain at least these two families as well as the Gymnoascaceae
and Arthrodermataceae, but these are still preliminary assignments, and more work
remains to be done to understand the complete picture of phylogenetic relationships.
The Onygenales are a sister order to the Eurotiales, and the class containing these
orders, the Eurotiomycetes, includes a number of species that cause disease in both
animals and plants (Wang et al. 2009). Several genomes of Eurotiomycetes have
been sequenced, which allows for comparative genomic studies.

The current understanding of genetic population structure within C. immitis
suggests the existence of two populations: San Joaquin/Central Valley California
(SJV) and Southern California/Mexico (SDMX) (Fisher et al. 2001, 2002). The
genetic population structure of C. posadasii suggests three main populations: Texas/
South America (TXSA), Mexico, and Arizona. Limited gene flow occurs among
populations. More effort to understand genetic diversity in Mexico and Central and
South America is needed. Recent evidence for even smaller-scale population struc-
ture within Arizona was reported (Teixeira and Barker 2016). Yuma and Phoenix
isolates are distinct from Tucson patient and soil isolates, which suggests there may
be specific ecological adaptations between these two areas. The Sonoran Desert is a
highly variable landscape, which ranges from desert upland/grassland (Tucson) to
the lower elevation desert biome (Phoenix/Yuma). Coccidioides growing in the soil
in these areas would experience different abiotic and/or biotic stressors (Fisher et al.
2007; Lacy and Swatek 1974).

Additionally, genetic diversity in environmental and veterinary isolates differs
from the genetic diversity among isolates infecting humans (Teixeira and Barker
2016). Human clinical isolates therefore provide valuable insights into population
structure; however, isolates obtained directly from the environment are necessary to
truly understand fine-scale population structure and determine if certain regions (i.e.,
Tucson vs. Phoenix) support the growth and survival of specific genotypes. Perhaps
more intriguing is that the pool of diversity in the environment is higher than what is
observed to cause disease to the human population, even with a small number of
isolates available for genetic comparisons. Environmental isolates of Coccidioides
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exist, but they are difficult to obtain (Barker et al. 2012; Johnson et al. 2014;
Litvintseva et al. 2015; Lauer et al. 2012; Brillhante et al. 2012; Baptista-Rosas
et al. 2007; Fisher et al. 2007). Greater effort is needed to assess the environmental
reservoir of Coccidioides in the environment and true population structure.

The first reported case of the disease was described by Alejandro Posadas over
120 years ago in Argentina (Posadas 1892). Granulomas in skin lesions resembling a
protist were observed. In 1896, the organism was named Coccidioides immitis:
“Coccidioides” for the suspected coccidium protozoan and “immitis” which is
Latin for “not mild” (Rixford and Gilchrist 1896). In 1900, it was clearly shown
by researchers working in California that the causative organism was a fungus.
Ophuls (1905) named the protozoan-like structure a spherule, a parasitic stage of
the life cycle of the fungus. The disease was considered rare and fatal, as these were
the first category of cases to be recognized (Morris 1924; Ryfkogel 1908). However,
this view was changed by five cases of acute infections from which patients fully
recovered and proved that Coccidioides exposure could result in nonlethal illness
(Dickson 1937).

4.2 Life Cycle of Coccidioides

Coccidioides immitis and C. posadasii are dimorphic fungi that switch between a
mycelial phase and a spherule phase (Fig. 4.1). A switch from polar to isotropic
growth occurs when a susceptible host inhales clonal arthroconidia, and the devel-
opment of the unique infectious structure is initiated. The spherule matures and
releases endospores, which may develop into new spherules or arrest growth. Mild
or asymptomatic infections generally stay localized to the lungs. More severe
infections can disseminate to other body sites (spleen, synovial joints, liver, kidneys,
etc.), and endospores can cross the blood-brain barrier (Nguyen et al. 2013). The
fungus can initiate mycelial growth from excised tissue or other biosamples (biopsy,
sputum, synovial fluid, etc.) even at 37 �C, although how and when this occurs in
nature are not known. High temperature, elevated CO2 concentration/low oxygen,
and specific nutrients all play a role in the formation, growth, and maintenance of the
spherule/endospore cycle (Converse and Besemer 1959). Conditions consistent with
development of spherules include shaking cultures at 37 �C, under 6–20% CO2, with
a liquid medium containing glucose, ammonium acetate, potassium phosphate,
magnesium sulfate, and zinc sulfate at a pH of 6.3 (Breslau and Kubota 1964;
Brooks and Northey 1963; Northey and Brooks 1962; Converse 1955). There is
variation among strains, but generally mature spherules develop in 3–6 days
(Pappagianis et al. 1956; Huppert et al. 1982).

Whereas U. reesii has a defined sexual life cycle, the sexual cycle of Coccidioides
is unknown (Sigler et al. 1998). However, typical ascomycete mating-type (MAT)
loci were identified in Coccidioides using comparative genomics methods (Mandel
et al. 2007; Fraser et al. 2007). MAT1-1 and MAT1-2 are present in a 1:1 Mendelian
ratio in over 400 strains of Coccidioides immitis and C. posadasii, which suggests
the sexual recombination is frequent in these species (Mandel et al. 2007). Moreover,
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mRNA is transcribed for genes in theMAT locus, which supports the hypothesis of a
functional sexual cycle. All data obtained to date are consistent with the prediction
that both species of Coccidioides are highly recombining sexual organisms (Burt
et al. 1996; Engelthaler et al. 2015).

4.3 Coccidioidomycosis

All work with Coccidioides organism requires a biosafety-level 3 containment,
primarily because infectious particles are easily produced and aerosolized (Stevens
et al. 2009). The organism was previously designated as a select agent but was
removed in 2012 (Oct 5 2012 Federal Register; Dixon 2001). Healthy dogs, humans,
or other mammals living in or visiting endemic areas can easily become infected
(Cairns et al. 2000; Nguyen et al. 2013). It is thought that approximately 60% of
infections are asymptomatic based on conversion data from skin testing new military
recruits from non-endemic areas that were stationed in Arizona and California (Drips
and Smith 1964; Smith et al. 1956). This has been supported by new data collected
from skin testing prisoners in California with the delayed hypersensitivity-based skin
test now commercially available (Wack et al. 2015; de Perio et al. 2015).

In Arizona and California, an increase in coccidioidomycosis (CM) has been
reported since 1995 (Thompson et al. 2015; Twarog and Thompson 2015). Because
CM severity is so variable, not all infections are diagnosed and reported, and the

Fig. 4.1 Dimorphic asexual life cycle of Coccidioides. From Lewis et al. 2015, used with
attribution
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overall infection rate is closer to 200,000 per year in the USA (Nguyen et al. 2013;
Galgiani 2007). Mild CM in humans presents with general symptoms, such as
coughing, fever, and malaise. Indeed, many community-acquired pneumonias
caused by Coccidioides in endemic regions are misdiagnosed as viral or bacterial
pneumonia (Valdivia et al. 2006). Normally, acute disease is self-limiting and
antifungal therapy is not necessary. However, some of these patients can experience
symptoms for many months, and medical intervention may be recommended (Chen
et al. 2011; Sunenshine et al. 2007). Although severe disease manifests in less than
5% of cases, it can result in life-threatening disease, which may require surgery,
antifungal drug therapy, and hospitalization (Sondermeyer et al. 2013; Flaherman
et al. 2007; Galgiani 2007).

Variable exposures could also play a role in differential severity of
CM. Infectious dosages of 50 arthroconidia of a highly virulent strain have an
LD50 of 17 days in a murine model of CM (Sorensen et al. 1999; Kirkland and
Fierer 1983). The infectious dose of arthroconidia administered to cattle determined
the level of infection (Reed 1960). Dogs infected with between 106 and 104 conidia
died or had severe disease; whereas infection with 103 conidia resulted in mild CM
(Hugenholtz et al. 1958). Similarly, monkeys exposed to 104 conidia had 80%
fatality, and infection with 50 conidia produced nonfatal infection (Converse et al.
1962b).

In addition to infectious dose, phenotypic variation among isolates of
Coccidioides may play a role in CM disease progression. Strain morphology varies
from floccus non-pigmented to flat glabrous pigmented colonies, which suggests that
the strains may produce different secondary metabolites (Baker et al. 1943). In one
classic study, arthroconidia production was assessed in 47 strains (Friedman et al.
1953). The majority had typical 3–5 μm barrel-shaped arthroconidia; however, the
number of conidia produced was highly variable. Growth media type affected this
phenotype: some strains grown on glucose yeast extract produced conidia, but not on
Sabouraud’s agar, and vice versa. Three strains produced no conidia on either media.
This variation in conidial production could result in variable host exposure.

Variation in virulence has been described (Friedman and Smith 1957; Berman
et al. 1956; Friedman et al. 1955; Huppert et al. 1967). Three human clinical strains’
LD50 values ranged from 17 to 90 days after infection with 100 arthroconidia
(Friedman et al. 1955). The same group further assessed 27 clinical isolates with
average LD50 from 17 to 41 days; however, 10 strains did not reach an LD50 after
90 days (Berman et al. 1956). Upon necropsy, mice showed infection for four of the
nonfatal strains, but the mice did not exhibit outward signs of illness. Interestingly,
one of the four strains was obtained from a fatal human infection. This strain was
reassessed and showed similar virulence results. Additionally, the strain did not
produce typical 3 � 5 micron arthroconidia and produced fewer conidia than other
“normal” strains (Friedman and Smith 1957).
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4.4 Epidemiology of Human and Animal Coccidioidomycosis

In the 1940s, one of the first investigations into the source of infection for a localized
outbreak of CM was conducted (Davis et al. 1942). In April 1940 on a field trip to
San Benito County, California, several Stanford students and faculty spent 2 days
collection specimens and camping. Ten days after return to campus, a student was
seen at the health center with fever, chest congestion, and malaise. Five more
students from the same field trip reported similar illness within the week. Although
the other students recovered, the first student that had become ill was diagnosed with
coccidioidomycosis. Eventually, the group exposure was determined to the result of
students digging a rattlesnake out of ground squirrel burrow. Coccidioides immitis
was cultured out of the soils that were collected at the presumed exposure site.

Phylogenomic analyses reveal that C. immitis and C. posadasii speciated between
five and ten million years ago (Engelthaler et al. 2015; Sharpton et al. 2009). The
genus Coccidioides is possibly as old as 40–50 million years (Bowman et al. 1992;
Fisher et al. 2002). Many mammalian orders rapidly diversified during the early
Cenozoic, and the appearance of rodent fossils in North America corresponds to the
proposed emergence of the Coccidioides genus (Fisher et al. 2002; Tapaltsyan et al.
2015; Saarinen et al. 2014). The emergence of both the Sierra Madres and Rocky
Mountains in North America corresponds with divergence among early North Ameri-
can mammals (Saarinen et al. 2014; Bally and Palmer 1989). As South America was a
separate continent until approximately three million years ago, recent introduction of
Coccidioides posadasii to that region, and the origin of Coccidioides in the Sonoran
Desert, is supported by both genomics and geological records (Engelthaler et al. 2015).

4.4.1 Climate

Climate clearly influences the incidence of CM and presence of the organism in the
environment. Early investigations into the role of climate at Williams Air Force Base
in Maricopa County during WW2 showed two seasonal increases in infection rates
after winter and summer precipitation (Hugenholtz 1957). A similar trend among
Arizona residents has been observed more recently (Tamerius and Comrie 2011;
Kolivras and Comrie 2003). In Kern County California, only a single increase in
infection rate occurs after the winter rainy season (Talamantes et al. 2007). Climatic
factors that might affect rates in other endemic area, specifically in Mexico and
South America, are unknown at this time (Vargas-Gastelum et al. 2015; Baptista-
Rosas et al. 2007, 2012). The recent autochthonous infections in Washington state
raise concerns, as there is not a consensus on the effect climate change will have on
the spread of the organism into new areas (Litvintseva et al. 2015). The fungus has
been found sporadically at Dinosaur National Monument in northern Utah, which
indicates suitable habitat can be found in the Great Basin Desert (Johnson et al.
2014; Fisher et al. 2007; Petersen et al. 2004). Climate change predicts less frequent
but more intense precipitation, and higher mean temperatures in the western USA,
which may expand the endemic region.
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4.4.2 Environmental Niche

Current understanding of the distribution of the fungus in the environment is based
on extensive skin testing using a delayed-type hypersensitive reaction to various
Coccidioides antigens (Fiese 1958). Using either spherulin (antigen derived from
parasitic growth phase) or coccidioidin (antigens derived from saprobic growth
phase), researchers mapped highest disease prevalence in the southwestern USA
(Pappagianis 1988; Ajello 1971). Long-term Arizona residents in Maricopa County
(Phoenix), Pima County (Tucson), and Pinal County (Casa Grande, Florence) had
over 70% positive skin test rates, when compared to surrounding counties with only
10–40% reactivity rates (Maddy 1957, 1958b; Palmer et al. 1957; Edwards and
Palmer 1957). Similar testing completed in California shows that Kern County
(Bakersfield), Tulare County (Visalia), and Kings County (Hanford) residents had
50–70% skin test positive rates, while in surrounding counties positive skin tests
dropped to 10% (Edwards and Palmer 1957). Additionally, in Mexico, Central
America, and South America, similar distributions of positive skin tests have been
found (Campins 1970; Mayorga and Espinoza 1970). However, in sparsely
populated regions, this approach may not reflect the distribution of Coccidioides in
the environment. Moreover, human migration over large and small spatial scales
confounds fine spatial-scale analyses.

Several groups have worked to understand the ecology of Coccidioides
(Whiston and Taylor 2014; Barker et al. 2012; Baptista-Rosas et al. 2007; Lacy
and Swatek 1974; Swatek and Omieczynski 1970; Teel et al. 1970; Elconin et al.
1964). Defining factors that determine the presence of Coccidioides, as well as
distribution of the fungus in the soil at local sites, has been investigated
(Litvintseva et al. 2015; Johnson et al. 2014; Barker et al. 2012; Baptista-Rosas
et al. 2007, 2012; Kolivras and Comrie 2003; Greene et al. 2000; Lacy and Swatek
1974; Swatek 1970; Swatek and Omieczynski 1970; Egeberg and Ely 1956).
Environmental isolates of Coccidioides are usually obtained via inoculation of
soil extracts in a susceptible rodent model (Davis et al. 1942; Levine and Winn
1964). The distribution of the fungus in the environment has been determined to be
sporadic and highly localized, on the order of a square meter or less in area (Maddy
1958b, 1965). Additionally, trapping of rodents at the positive sites was conducted,
with low overall levels of infectivity (Emmons 1942, 1943; Emmons and Ashburn
1942).

Defining key factors that explain presence of Coccidioides in the environment
remains an elusive problem. Associations with saline and alkaline soils are the
pattern in California (Plunkett et al. 1963; Egeberg et al. 1964; Elconin et al.
1964). However, in Arizona sandy and porous soil along with rodent burrows
appears to be the strongest association (Barker et al. 2012; Emmons 1942; Maddy
1959, 1965; Smith 1971; Swatek 1970). However, caution is warranted when
attempting to generalize the results, due to few studies and variable design of
collection. Overall, most soil samples tested are negative (ranges from 99 to 80%),
and completely randomized sampling approaches have resulted in predominately
negative results (Lacy and Swatek 1974; Greene et al. 2000; Lauer et al. 2012;
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Barker et al. 2012; Baptista-Rosas et al. 2012). Complex relationships among
microbial organisms that share the same habitats have been investigated (Egeberg
et al. 1964; Orr 1968). Direct plating from soil often results in overgrowth by more
rapidly growing fungi under laboratory growth conditions (Swatek and Omieczynski
1970; Greene et al. 2000; Barker et al. 2012). However, Coccidioides is competitive
under certain circumstances and may persist for decades the same location (Barker
et al. 2012; Greene et al. 2000).

Distinct population and species boundaries, both within and among each species,
are still unclear due to evidence of hybridization and introgression and that both
species have been recovered among patients in southern California and northern
Mexico (Neafsey et al. 2010; Fisher et al. 2001, 2002; Canteros et al. 2015; Johnson
et al. 2014; Litvintseva et al. 2015; Lauer et al. 2012). MLST analysis of over
600 clinical and environmental isolates reveals population structure within Arizona
and that clinical isolates are distinct from environmental isolates (Teixeira and
Barker 2016).

Additionally, techniques to detect the fungus in the environment are being
developed, which will help to understand and define the environmental niche of
Coccidioides. New work on air sampling has provided a needed tool to monitor
seasonal fluctuations (Chow et al. 2016). Extracting DNA from soil and dust has
become much more common and molecular methods to detect the organism more
robust (Johnson et al. 2014; Lauer et al. 2012; Baptista-Rosas et al. 2012; Litvintseva
et al. 2015). Although detecting Coccidioides DNA in soil does not prove the
presence of infectious arthroconidia, it is a method for screening a large number of
soil samples, which would be necessary to model the environmental niche of the
fungus.

4.4.3 Substrate Preferences

Comparative genomic studies have revealed functional differences associated with
pathogenic, saprobic, or commensal lifestyles. Coccidioides species can digest
keratin and other animal products and appear to have lost many genes associated
with plant-derived carbon sources (Whiston and Taylor 2014, 2015; Sharpton et al.
2008). This suggests that this genus has specialized on animal-derived nutrients.
This could be either acquired from tissue digestion during the parasitic phase
in vivo or could be dead, decaying, or other sources of keratin such as skin,
feathers, and hair (Lange et al. 2016; Lopes et al. 2008). It is likely that the primary
nutritional mode is closely associated with animal-derived sources and may have
led to the evolution of the parasitic lifestyle (Whiston and Taylor 2014; Sharpton
et al. 2009).

Specifically, comparisons between Onygenales and Eurotiales (sister orders)
show a reduction of cellulose-binding domain containing proteins, tannases,
cellulases, cutinases, melibiases, pectin lyase, and pectin esterases among the
Onygenales (Sharpton et al. 2009). These are all classes of genes associated with
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plant-derived nutritional sources. Two families appear to be expanded only in
Coccidioides, and in particular the M35 class of deuterolysin metalloproteases,
which contains at least one known virulence factor Mep1 (Hung et al. 2005; Whiston
and Taylor 2015). This family of proteases has a preferred substrate of histones and
protamines, which are arginine-rich molecules (Doi et al. 2003). This class is also
under positive selection, supporting the idea that these genes are associated with the
evolution of Coccidioides (Li et al. 2012). It is suggested that keratin degradation is
associated with M35 class of metalloproteases, and thus Coccidioides may be
associated preferentially with animal-derived nutritional sources, rather than plant-
derived nutrients. This remains to be experimentally proven, and it is possible that
the role of M35 deuterolysin metalloproteases in Coccidioides has diverged into
new, and as yet unexplored, functions.

Other animal-associated nutrition sources include dung and frass. Fecal samples
taken from lizards (Uta stansburiana, Gerrhonotus spp., Sceloporus occidentalis,
Crotaphytus wislizeni, Cnemidophorus tigris), skunks (Spilogale gracilis), black-
tailed deer (Dama hemionus), goats (Capra spp.), sheep (Ovis spp.), and burros
(Equus asinus) near positive soil locations were subjected to culture to attempt to
recover Coccidioides; however, none grew the organism (Swatek et al. 1967).
Coccidioides has been cultured from bat guano in a single report (Krutzsch and
Watson 1978).

4.4.4 Range Expansion

Coccidioides spp. are found in arid or semi-arid regions throughout the Americas but
are thought to be at highest prevalence in southern Arizona (Fig. 4.2) (Fisher et al.
2007). C. immitis is found in central and southern California (Fisher et al. 2001). The
range extends into northern Mexico, and recent work has found C. immitis in
Yakima and Benton counties of Washington, at Dinosaur National Monument in
Utah, and from a patient in Colombia with no travel history (Marsden-Haug et al.
2014; Litvintseva et al. 2015; Johnson et al. 2014; Canteros et al. 2015).
Coccidioides posadasii is found in Arizona, Nevada, Utah, New Mexico, Texas,
and throughout Mexico, with dispersed populations in Central and South America
(Whiston and Taylor 2014; Duarte-Escalante et al. 2013; Brilhante et al. 2013;
Campins 1970). Hybrid strains indicate that the two species coexist in nature
(Neafsey et al. 2010). To determine if this is a recent or ancient phenomenon,
environmental sampling is needed to accurately assess the prevalence of both
species, and hybrid offspring, at a given location.

Direct isolations from soil throughout the range of both species in North and
South America will clarify population structure and species boundaries. Clinical
isolates are still needed to track emergence of any virulent strains or new point
source outbreaks (Litvintseva et al. 2015). With greater surveillance and awareness,
it is predicted that potential habitat for and cases of Coccidioides may be found
throughout the western USA (Baddley et al. 2011). In fact, recent reports of cases in
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Missouri northeast of the endemic area are concerning (Turabelidze et al. 2015).
Although many of these cases could be the result of travel to endemic areas, the
possibility must be considered that these are locally acquired infections as a result of
drier soil and dust storms, fomites, or even unrecognized small foci of growth of the
fungus (Hage et al. 2012; Stagliano et al. 2007; Desai et al. 2001).

4.5 Pathophysiology and Clinical Signs of Coccidioidomycosis

Both Coccidioides species cause the disease coccidioidomycosis (CM) also referred
to as San Joaquin Valley fever, valley fever, desert rheumatism, or “cocci/coccy.”
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Nonfatal disease after exposure opened the possibility of vaccine development
(Levine et al. 1965; Converse et al. 1962a; Swatek 1970). Starting in 1960s, the first
vaccine was made with killed spherules (Levine and Kong 1965, 1966; Levine et al.
1965; Converse 1965; Castleberry et al. 1965). Unfortunately, severe side effects
and lack of significant protection at the dosage given complicated further develop-
ment of the killed vaccine (Pappagianis 1993). Work continues to identify
candidates for vaccine development (Yoon and Clemons 2013; Hung et al. 2012;
Cole et al. 2012; Xue et al. 2009; Awasthi 2007; Johnson et al. 2007; Awasthi et al.
2005). The development of an effective vaccine would provide needed protection to
anyone in endemic areas (Nguyen et al. 2013; Cole et al. 2012).

Prior to the 1950s, there was no effective treatment for coccidioidomycosis
(Einstein 1975). The first drug to be found effective was Amphotericin B; however,
long-term treatment is complicated by nephrotoxic side effects (Longley and
Mendenhall 1960; Fiese 1957; Halde et al. 1957; Lawrence and Hoeprich 1976).
The current recommended treatment of CM is fluconazole (Catanzaro et al. 1990;
Fierer et al. 1990; Galgiani et al. 1988; Finquelievich et al. 1988; Stevens 1977).
Although these drugs are generally well-tolerated, toxicity and drug interactions are
still concerns (Stevens and Clemons 2007). Even with treatment, infections may not
be cleared for patients who have disseminated disease, although recent work with
nikkomycin Z shows promise (Shubitz et al. 2013; Galgiani 2007; Hector et al.
1990). Frequently, lifelong therapeutics and monitoring of disease are required,
particularly with coccidioidal meningitis (Antony et al. 2006).

Otherwise healthy people and animals living in or visiting endemic areas contract
CM via the inhalation of conidia. Rarely, infection has occurred by dermal invasion,
in laboratory accidents, and from bandaged subcutaneous lesions (Gaidici and
Saubolle 2009; Smith and Harrell 1948; Fischer and Kane 1973). Although most
human infections are asymptomatic, symptoms can range from mild to severe
(Nguyen et al. 2013). It is argued that the primary reason for this variation is host
genotype (Galgiani 2014). This is an inherently unsatisfying argument, given varia-
tion in disease presentation as a result of both inoculum levels, as well as isolate/
strain virulence in various laboratory models of infection (Cox and Magee 1998,
2004; Cox and Vivas 1977; Hugenholtz et al. 1958; Friedman and Smith 1957;
Berman et al. 1956; Friedman et al. 1953, 1955). Infectious dose, variation among
strains, and variation among hosts all play a role in disease outcome. Genome-wide
association studies (GWAS) could define genetic-based differences in fungal viru-
lence and host response (Muller et al. 2011). Additionally, defining conditions that
influence Coccidioides’ growth and reproduction will assist with preventing
exposure.

4.5.1 Coccidioidomycosis in Primates

Progression and severity of disease in humans are influenced by host response to
infection. An increase in disease burden has been detected as an increasing number
of naïve hosts travel to endemic areas (Fig. 4.3). North American census data shows
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Arizona population has increased from 3,665,228 in 1990 to 6,731,484 in 2014, with
a median age of 36.5 and around one million people aged 65 and older. In California
population has increased over the same time period, from 29,760,021 to 38,802,500,
with a median age of 35.6 and 4,617,907 over 65. Severe disease and negative
outcomes are more common in elderly vs. younger patients (Blair et al. 2008).
Persons with underlying disease such as HIV infection or diabetes can have greater
risk of disseminated infections (Ampel 2007; Wheeler et al. 2015) The third trimes-
ter of pregnancy is a risk factor for disseminated CM (Crum and Ballon-Landa
2006). Transplant patients are at risk of severe disease, and antifungal prophylactic
therapy and screening for patients in the endemic area is recommended (Mendoza
et al. 2015; Kahn et al. 2015; Kauffman et al. 2014). Additionally, there is an
indication that certain ethnicities have more severe disease and higher rates of
dissemination, specifically African Americans (Wheeler et al. 2015; Ruddy et al.
2011; Pappagianis et al. 1979; Sievers 1974). Finally, certain professions or living
conditions may expose people to higher inoculum, such as construction, landscaping
and living in rural dusty areas (Yau 2016; Das et al. 2012; Cowper and Emmett
1953; Sievers and Fisher 1982).

Among genetic determinants associated with higher possibility of dissemination
are mutations in STAT1, STAT3, IL-12Rβ-1, and IFN-γR1. The STAT1 mutation
conferred a constitutively active gain of function, which likely results in a

Fig. 4.3 Reported cases of coccidioidomycosis in the USA between 1998 and 2015. Data retrieved
from https://www.cdc.gov/fungal/diseases/coccidioidomycosis/statistics.html

92 B. M. Barker

https://www.cdc.gov/fungal/diseases/coccidioidomycosis/statistics.html


dysregulation of IFN-γ mediated inflammation, and was associated with both severe
CM and histoplasmosis infections (Sampaio et al. 2013). The STAT3 mutations
associated with Job’s syndrome result in hyper-IgE levels in serum and
dysregulation of IL-17 and Th17 response to infection, and patients are at risk of
severe fungal infections (Odio et al. 2015). IL-12Rβ-1 novel missense mutations in
two patients with disseminated infection reveals the importance of the IL12:IL23:
IFNγ intersection as a risk factor in the human host for severe disease (Vinh et al.
2011). Finally an IFNγ receptor 1 autosomal dominant mutation resulted in severe
and long-term disease in a pediatric case of CM, culminating to a coinfection with
nontuberculosis Mycobacterium (Vinh et al. 2009). Upon determination of the root
cause of the susceptibility and aggressive antimicrobial treatment, the patient
improved.

These limited but important studies highlight the axis of IL12:IL23:IFNγ
deficiencies and dysregulation as one cause of severe disseminated CM in humans.
However, it does not explain a majority of cases or the cause of severe acute disease.
These studies remain to be completed, and highlight needed future work. In addition,
nonhuman primates are susceptible to infection, and several documented cases of
captive macaques, chimpanzees, and baboons have been reported (Johnson et al.
1998; Bellini et al. 1991; Rosenberg et al. 1984; Rapley and Long 1974; Hoffman
et al. 2007; Herrin et al. 2005; Ginocchio et al. 2013; Beaman et al. 1980; Breznock
et al. 1975; Blundell et al. 1961). These reported infections are frequently severe
disseminated valley fever; however it is not known if this is a common manifestation
of the disease in nonhuman primates and how this informs us about human disease.
Certainly, primates have been used in vaccine research, and immune profiles have
been observed when compared to humans.

4.5.2 Coccidioidomycosis in Dogs

Domestic dogs (Canis familiaris) have been proposed as sentinels of disease and a
way to map the organism in the environment in endemic regions where the disease is
not reported to the CDC or occurrence outside the endemic region (Gautam et al.
2013). The approach has had success in California and Arizona and has been useful
in guiding environmental collections of Coccidioides (Barker et al. 2012; Shubitz
2007; Butkiewicz et al. 2005; Shubitz et al. 2005; Grayzel et al. 2016). Canine
prevalence data would be a useful tool for monitoring emergence of new regions of
endemicity.

Certain breeds may have higher risk of disseminated disease. Data currently are
more suggestive than definitive. Early work that studied 100 dogs postmortem found
that male dogs, boxers, and Doberman pinschers had higher prevalence of severe
disease that resulted in death (Maddy 1958a). A more recent study showed that
boxers, beagles, pointers, Australian shepherds, and Scottish terriers were over-
represented in comparison to general population in a retrospective study of
218 dogs based in Davis, California (Davidson and Pappagianis 1994). A prospec-
tive study on 124 dogs and a cross-sectional study of 381 dogs in Arizona grouped

4 Coccidioidomycosis in Animals 93



dogs according to American Kennel Club guidelines and found no association with
breed group (Butkiewicz et al. 2005). Major impediments to understanding breed
specificity are changing breed popularity, unknown pedigrees, and lack of reliable
demographic data. Certain breeds of dogs tend to be more popular and are thus more
likely to have high incidence within a single clinic. Backyard breeders and unreliable
pedigrees can confound the correct breed assignment. Finally, demographic data
currently relies on owners licensing dogs, and for certain breeds that are deemed
dangerous (pit bulls, German shepherds, Rottweilers, etc.), the breed may not be
disclosed (i.e., listed as “mix” or “unknown”).

Conversion to a positive serology in dogs occurs at a similar rate compared to
humans: around 70% of infections are asymptomatic (Shubitz et al. 2005). Approxi-
mately 24% of 124 dogs enrolled in a prospective study that were followed for
2 years converted positive for Coccidioides exposure, with 6% having clinical
disease (Butkiewicz et al. 2005). Another benefit to using naturally infected dogs
as models to understand disease in humans is that severity and disease
manifestations are similar. The disease generally stays localized to the lungs and
hilar lymph nodes (Graupmann-Kuzma et al. 2008). Dogs can develop
extrapulmonary complications, such as dissemination to bone, meninges, and other
internal organs in about 20% of symptomatic cases, which is higher than in humans
(Davidson and Pappagianis 1994).

Treatment options are similar to what is available for people. Amphotericin B and
azoles are the drugs of choice with similar toxicities and side effects. Generally, it is
recommended that any animal that is clinically ill should be treated with antifungals
(Graupmann-Kuzma et al. 2008). Diagnosis is often based on clinical manifestations
consistent with disease combined with serological testing, travel history, and radio-
graphic findings (Shubitz and Dial 2005; Ajithdoss et al. 2011). The decision on
ending antifungal treatment is also complicated by the fact that in some animals IgG
titers do not drop below the threshold that would allow a determination of a cure or
remission and lifelong antifungal therapy is common for dogs with disseminated
disease (Graupmann-Kuzma et al. 2008). New antifungals, such as nikkomycin Z,
are being developed and show efficacy in dogs (Shubitz et al. 2013, 2015).

Other canids that live in endemic regions that may be naturally infected include
Mexican gray wolves (Canis lupus baileyi), coyotes (Canis latrans), kit foxes
(Vulpes macrotis), and the endangered San Joaquin kit fox (Vulpes macrotis mutica).
A standard method of testing wild animals for any infectious disease is blood
collection, which is followed by serological analysis. For CM, an antibody immu-
nodiffusion assay or ELISA to detect Coccidioides + IgG or +IgM is standard.
However, a negative result may be uninformative, and certainly in wild animals
where testing has not been optimized, results should be viewed with caution. No
reports of valley fever in wolves were found in the literature; however, wolves were
eliminated from most of the endemic region prior to awareness of the disease and
were not likely residents of lower deserts (Carroll et al. 2014). One report of an
investigation of valley fever among coyotes reveals that three of five coyotes
captured in the Tucson AZ area were subclinically infected and two had culturable
fungus from tracheobronchial lymph node tissue (Straub et al. 1961). The fungi were
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then tested in a mouse model, and only one of the two cultures produced an infection
consistent with valley fever. Finally, a survey of San Joaquin kit foxes showed a very
low level of positive Coccidioides serology; however, the exact testing method was
not reported (McCue and O’Farrell 1988).

A greater understanding of disease prevalence and severity among all canids
found in endemic regions could provide valuable information on the genetic basis of
host response to disease and distribution in the environment.

4.5.3 Coccidioidomycosis in Cats

The prevalence of valley fever in domestic cats (Felis catus) and other felines is
thought to be lower than canines and with a very different presentation (Greene and
Troy 1995). An interesting case presentation was reported in a wild mountain lion
(Felis concolor) that had been trapped in Texas and transported to Florida for
research purposes related to Florida panther reintroduction (Clyde et al. 1990).
The animal was otherwise healthy; however, lung function and blood work were
identified as abnormal during an examination and minor surgery. A communicable
disease needed to be rapidly diagnosed as other mountain lions were to be released
into the wild, and this animal had been in proximity to them. The animal was
euthanized, and upon postmortem examination, disseminated CM with peritoneal
involvement was discovered and likely represented a natural infection in a wild
animal. Another peritoneal CM in a mountain lion was reported in a captured animal
taking up residence in a tree in a private yard in Kern County, California (Adaska
1999). The animal was extremely lethargic and emaciated. Recent reports of plague
in the area were cause for concern, and the animal was shot. Postmortem examina-
tion revealed several granulomatous structures throughout the peritoneum consistent
with Coccidioides spherules. Infection was confirmed via histopathology and
culture.

Other large felids in captivity have been reported infected by Coccidioides
including a Indochinese tiger in the El Paso Zoo (Panthera tigris corbetti) and two
Bengal tigers (Panthera tigris tigris) (Helmick et al. 2006; Henrickson and
Biberstein 1972). In the case of the tiger, other animals tested at the facility did
not have positive serology, and few cases of valley fever had been detected at the
facility. The tiger had other comorbidities: chronic renal disease and pancreatic
adenocarcinoma (Helmick et al. 2006). The other case report detailed that both
Bengal tigers were male and contained at the same location in southern California.
The tigers also had severe hepatic disease, which may have predisposed them to
disseminated CM. In these two cases, infection with Coccidioides may have been
asymptomatic for several years and only surfaced when other disease processes
occurred.

In domestic cats, valley fever has variable presentation with the first report of
disease in two cats appearing in 1963 (Reed et al. 1963). Both animals were
euthanized and upon necropsy confirmed to have significant disseminated CM and
disease manifestations similar to canine. However, cats are thought to have fewer
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fungal infections, and few reports of feline CM are found in the literature. Cats tend
to be diagnosed with valley fever later in life, with an average age of 6.2 years at
diagnosis, and the most common clinical manifestation was skin involvement
(Greene and Troy 1995). This study of 48 cats also revealed that respiratory distress
was not common. The primary treatment was ketoconazole; however fluconazole or
itraconazole was also used. In 44 of the 48 cats treated, 25% failed treatment and
were euthanized or died soon after diagnosis. Of the remaining, long-term
(10 months) therapy was necessary with relapse after removal from treatment in a
few cats.

4.5.4 Coccidioidomycosis in Armadillos

In South America, CM outbreaks have been associated with armadillo hunters
(Eulalio et al. 2001; Wanke et al. 1999). Armadillos have lower body temperature
than many other mammals and harbor other pathogens, primarily Mycobacterium
leprae, the causative agent of leprosy (Duthie et al. 2011; Loughry et al. 2009). An
investigation of 26 captured armadillos (Dasypus novemcinctus) revealed that three
were subclinically infected. No evidence of gross pathology or histopathology was
discovered upon necropsy; however, macerated spleen and lung tissue grew colonies
consistent with Coccidioides. These colonies were subsequently used to infect mice,
and these mice developed CM.

The role of armadillos in the ecology, distribution, and prevalence of
Coccidioides posadasii in the environment is unknown. These animals have been
implicated in association with another fungal disease, paracoccidioidomycosis
(Bagagli et al. 2006; Arantes et al. 2016). Additionally, whether or not this associa-
tion is restricted to South America, or also occurs in Texas, remains to be assessed.
An interesting observation however, is the fact that Texas and South America fungal
isolates are more genotypically related than Texas isolates are to Arizona isolates,
despite being geographically more distant. Armadillos are not found commonly in
Arizona and Central California.

4.5.5 Coccidioidomycosis in Rodents

The role of desert rodents, specifically the Heteromyidae, in the life cycle of
Coccidioides is an area of research that has provided confusing data. Early
researchers noticed a correlation of higher rates of infection with soil disturbance
around rodent burrows (Emmons 1942; Stiles and Davis 1942), which suggests a
rodent reservoir for Coccidioides (Ashburn and Emmons 1942). Trapping of 1942
animals occurred in Lordsburg, NM, and Wilcox, Tucson, Casa Grande, and Phoe-
nix AZ. A range of species were obtained, including pocket mice, kangaroo rats,
grasshopper mice, deer mice, pack rats, ground squirrels, rabbits, and harvest mice.
No animals from Lordsburg or Wilcox were infected with Coccidioides. Even in
Tucson, Phoenix, and Casa Grande, infection rates in trapped wild rodents were low.
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Seven out of 207 animals (pocket mice and kangaroo rats only) investigated had
confirmed Coccidioides infection, with three additional animals having lesions but
no fungal growth (Emmons 1943). Wild-caught rodents are susceptible to infection
by Coccidioides; however, route and dosage of infection did not mimic a natural
infection (Swatek and Plunkett 1957). Onygenales fungi degrade keratin; thus it is
possible that Coccidioides is associated with hair and skin in rodent burrows
(Untereiner et al. 2004; Sharpton et al. 2009).

It is possible that a rodent is highly susceptible to CM. Because a sick rodent
could be susceptible to predation, a severely ill animal may die in the burrow. Two
lines of evidence support this hypothesis. Tissue from infected mice fed to predators
did not produce fungal colonies from fecal or pellet material (Swatek et al. 1967),
and when infected animals were sacrificed and buried in soil negative for
Coccidioides, the soil was subsequently positive for growth (Maddy and Crecelius
1965). Coccidioides does not survive gut passage in foxes, coyotes, or owls (Swatek
et al. 1967). Fecal samples from various predators and owl pellets were collected for
5 years near known positive soil sites, but no Coccidioides was recovered (Swatek
and Omieczynski 1970; Swatek et al. 1967). Non-predators such as lizards, skinks, a
burro, deer, goat, and sheep were also analyzed. Interestingly, Coccidioides does
survive in the gut of laboratory and wild mice (Lubarsky and Plunkett 1954). This
supports the possibility of transmission of Coccidioides through the gut of rodents,
which frequently cannibalize.

Laboratory mice have also shown variable resistance to infection (Kirkland and
Fierer 1983). Inbred mice in particular are highly susceptible to severe disease at low
dosage of conidia in an intraperitoneal infection model. Comparing DBA/2N
(outbred) mice to Balb/c or C57b6 (inbred) mice, the mean lethal dose for outbred
was greater than 105 vs. less than or equal to 103 per mouse. IL-10 deficiencies have
been implicated as the source of this susceptibility (Fierer 2007; Fierer et al. 1998).

4.5.6 Coccidioidomycosis in Captive Animals and Other Wildlife

Many wild and domestic mammals are susceptible to CM. The first report of a
California sea lion (Zalophus californianus) infected with Coccidioides was a
captive animal that was housed in a zoo in Tucson, AZ (Reed et al. 1976). Several
years later, a naturally infected dolphin (Tursiops truncatus) was found upon
necropsy to be infected by C. immitis (Reidarson et al. 1998). In a recent retrospec-
tive report, 36 wild marine mammals that had beached along the Central California
coast between 1998 and 2012, including sea lions, sea otters, and harbor seals, were
found to be infected with Coccidioides (Huckabone et al. 2015). How marine
mammals are exposed remains an open question; however, it is most likely from
dust and airborne particulate moving from endemic areas in California to the ocean.

Captive animals in endemic regions are a source of unusual infections but provide
information about the range of susceptible hosts. A black rhinoceros (Diceros
bicornis) that was moved from Texas to the Milwaukee County Zoo developed
severe progressive lameness that was determined upon necropsy to have been caused
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by disseminated CM (Wallace et al. 2009). Interestingly, between 1984 and 1994,
the Phoenix Zoo had several wallabies and kangaroos infected and perish from
valley fever (Reed et al. 1996). In another endemic region, a case of a giant red
kangaroo being infected, as well as positive soil in its enclosure, was also reported
(Hutchinson et al. 1973). One recent case of a koala at the San Diego Zoo
succumbing to infection was also reported (Burgdorf-Moisuk et al. 2012). Whether
marsupials are particularly susceptible to severe disease remains unknown.

Other reported wildlife native to the Sonoran Desert that has been found to be
naturally infected and suffer disease includes bats, desert bighorn sheep, and javelina
(peccary). Bats appear to be incidentally infected by Coccidioides (Cordeiro Rde
et al. 2012; Krutzsch and Watson 1978). In a recent survey looking for another
fungus Histoplasma capsulatum, Coccidioides posadasii was discovered. An exper-
imental infection of Macrotus californicus (California leaf-nosed bat) showed this
animal to be susceptible to a range of dosages: 50, 100, 200, and 400 conidia
(Krutzsch and Watson 1978). However, the pallid bat (Antrozous pallidus) was
infected only at the highest dosage of 400 conidia.

In the one reported case of desert bighorn sheep (Ovis canadensis nelsoni), the
ram, along with 12 other sheep, was captured in November 1984 from the Marble
Mountains in San Bernardino County as part of a relocation effort (Jessup et al.
1989). Animals were penned over the winter in a 17-acre enclosure in the Whipple
Mountains near the Colorado River. The herd was released in the February 1985. In
mid-September 1985, the ram was observed to have a respiratory infection and died
shortly after capture. Postmortem revealed severe disseminated CM, with lungs
being heavily infected and damaged. Continued follow-up with the rest of the herd
revealed no additional evidence of CM, and no other reports have appeared. Thus it
is unknown how frequently this animal is infected and what the burden of disease is
for this native desert dweller.

The javelina, or the collared peccary (Pecari (Tayassu) tajacu), is a common
resident of the desert southwest and behaviorally likely to be exposed to large
inocula. However, only a single report was found in this animal (Lochmiller et al.
1985). The 25 animals in the report were captured throughout Texas and housed in
an outdoor enclosure at Texas A&MUniversity. In January 1984, a female exhibited
neurological symptoms that resulted in euthanasia, and a blood analysis indicated an
infection. The two other animals in the same pen were also euthanized as prevention.
Necropsy revealed several granulomas in the lungs, kidney, and spleen verified as
Coccidioides via histopathology. It is unclear how the infection occurred, as the
animals that were ill were harvested outside the endemic range, and Brazos County
(where animals were held captive) is considered to be outside the endemic range. Of
interest is that both reports occurred in 1984–1985. It is unknown if this was
concurrent with particularly high level of disease in humans as well, as cases were
not nationally reported before 1994.
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4.5.7 Coccidioidomycosis in Livestock

Greater assessment of CM in livestock has been reported, likely because of potential
economic impact. Reports in pigs, cattle, sheep, horses, and llamas have revealed
high rates of infection with rare cases of disseminated disease, although llamas and
horses appear to have more frequent severe disease than other livestock.

A first report of CM in cattle (Bos taurus) was in 1918, after a slaughterhouse
observed infected thoracic lymph tissue and submitted the tissue to a USDA
pathologist (Giltner 1918). The pathologist grew Coccidioides from the tissue and
tested the organism in several animals: guinea pigs, rabbits, dogs, cattle, sheep, and
swine. In calves, subcutaneous infection resulted in lesions at the site of infection but
no apparent disease. However, intravenous inoculation resulted in rapid death and
involvement of lung tissue.

Later observations by a veterinary meat inspector in Los Angeles slaughterhouses
of 3173 cattle from the southwestern USA revealed a similar trend of natural
infections resulting in thoracic lymph node involvement (Maddy 1954b). Between
1947 and 1951, Coccidioides infected 1.8% of all cattle (calves excluded), 2.9% of
steers and heifers, and 7.3% of steers and heifers from San Joaquin Valley feedlots.
Of interest was an assessment of animals shipped direct for slaughter from other
areas. Upon arrival, 23 animals from west Texas (Amarillo, Lubbock), 36 animals
from eastern New Mexico (Clovis, Tatum), 17 from southeastern Colorado
(Springfield), and 4 from southern Oregon (Medford) were found to be infected.
No animal had evidence of acute CM.

Skin test surveys of 11,643 range cattle in Arizona revealed a high rate of
infection that overlapped with the disease prevalence and distribution seen in
humans (Maddy et al. 1960a). Between 1954 and 1959, cattle in Arizona between
1 and 6 years of age were skin tested using the coccidioidin skin test developed for
humans (Palmer et al. 1957; Edwards and Palmer 1957). Pinal County had the
highest rate of infection with 42% of cattle being skin test positive. However,
assessments made during slaughter at a southwestern feedlot reveal that although
coccidioidal granulomas are visible in thoracic viscera, no other signs of disease
were noted (Reed 1960). In addition, laboratory infection experiments with dosages
ranging from 5� 105 to 1.5� 106 arthroconidia and mycelia intratracheally showed
that cattle did not develop disease, with few granulomas in lungs or thoracic lymph
tissue (Maddy et al. 1960b). Serological testing was not confirmatory; however
infected animals did eventually convert to skin test positive using coccidioidin.
Thus cattle are susceptible to infection but do not develop severe disease.

Reports of new world camelids infected and suffering disseminated valley fever
are few; however, it appears that this animal does develop severe disease (Fowler
et al. 1992). The first case report was a single 8-year-old female llama (Lama glama)
with severe disease which was euthanized and upon necropsy was discovered to
have disseminated valley fever (Muir and Pappagianis 1982). The rest of the herd
was tested for infection using a complement fixation antibody test, and 3 of the
11 other llamas showed evidence of infection but no disease. This initial disease
report was expanded in a report on 19 retrospective cases between 1981 and 1989
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from California and Arizona (Fowler et al. 1992). All animals but one had
disseminated valley fever with multiple affected organs. Clinical signs varied
widely, with and without cough or dyspnea, and dissemination to kidney, liver,
intestine, adrenal gland, and meninges. Dermal infection was more common in
llamas from California, but no gender or age correlations were observed. Diagnosis
in llamas is confounded by highly variable clinical presentation and lack of reliable
serological testing. Only one additional recent report was found, which described
ocular disease in a 7-year-old male llama, which disseminated and resulted in
euthanasia (Coster et al. 2010). Of particular interest in this case is a lack of travel
or residence in the endemic region. Llamas appear to have higher rate of complicated
disease than other agricultural animals, but overall disease burden is not high.

CM in naturally infected sheep (Ovis aries) has been reported (Maddy 1954a;
Beck 1929). Upon slaughter, in both cases, the animals had lesions in the mediastinal
and bronchiolar lymph nodes. In the earlier case, Coccidioides was grown from the
tissue and verified in a guinea pig model of infection (Beck 1929). In the second
case, caseous lymphadenitis was suspected, which could be caused by a contagious
bacterial infection common in sheep and goats, so tissue was sent for pathology
(Maddy 1954a). Coccidioides was determined to be the causative agent, although no
evidence of illness was present, and no validation was performed in a rodent model
of infection. One experimental infection of sheep has been conducted (Giltner 1918).
Two animals were infected, one intravenously and the other subcutaneously. Both
animals appeared well nourished, and no evidence of outward disease was reported.
However, the intravenous infection resulted in multiple organ involvement, and
fungus grew from the liver, lymph, and lung tissue. The animal infected subcutane-
ously had no fungal structures in any tissue.

One experimental case of infection in a swine (Sus scrofa) is reported (Giltner
1918). Two animals were infected via the right marginal ear vein. Upon necropsy,
miliary lung nodules and lesions in spleen and liver were observed. A single report
of a young pig succumbing to infection was found (Prchal and Crecelius 1966). A
survey of both young (6-month-old butcher hogs) and older (3-year-old breeding
sows) animals in Tucson, Arizona, revealed no disease but many granulomatous
lesions in the bronchiolar lymph nodes (Prchal and Crecelius 1966). Coccidioides
was confirmed first by microscopy, followed by infection in mice. It appears that
although animals are susceptible to infection, complicated disease rarely develops.

CM in horses (Equus caballus) is reported with higher frequency that other
agricultural animals, possibly because the animals are often considered pets, rather
than livestock. One review states that pulmonary involvement and weight loss is a
common manifestation of disease, along with osteomyelitis and lesions in thoracic
lymph nodes and liver (Ziemer et al. 1992). All 15 animals died or were euthanized,
and treatment was not effective in the 4 animals where it was attempted. These cases
were also interesting in that several of the animals resided in areas not considered to
be highly endemic. Subsequent treatment of animals was more successful due to
earlier diagnosis and treatment (Higgins et al. 2006). A case of a 14-day-old foal
with acute CM that was euthanized due to severe disease suggests that some horses
are more susceptible to infection and suffer disease as a result (Maleski et al. 2002).

100 B. M. Barker



Interestingly, the wild Przewalski’s horse (Equus przewalskii) appears to be even
more susceptible to severe disease than domesticated horses (E. caballus). These
animals appear to be resistant to most common infectious disease of horses; how-
ever, they are susceptible to disseminated CM (Terio et al. 2003). Thirty Przewalski
horses housed in the San Diego Wild Animal Park as part of a breeding and
reintroduction program died over a 16-year period, with 10 deaths attributed to
CM. No other exotic equids at the same facility had reported valley fever deaths. The
cause of susceptibility to valley fever could be from a defect in Coccidioides-specific
immune response, but results were inconclusive.

Specific non-mammalian hosts infected intraperitoneally, including crayfish,
goldfish, and amphibians, developed mycelia in various tissues, and lizards can
develop spherules in the lung (Swatek and Plunkett 1957). A naturally infected
Sonoran gopher snake with pulmonary lesions and histological and microscopic
evidence of Coccidioides infection was reported (Timm et al. 1988). Although
morphology consistent with Coccidioides was observed, the fungus was not
validated by mouse infection, and genotyping was not yet available. A second
case of an infected Sonoran lyre snake at the Phoenix Zoo suggests that natural
infection of reptiles deserves more attention (Reed et al. 1996). Again microscopy
consistent with Coccidioides was observed, but in this case the fungal agent was
confirmed by infection in a mouse. An incidental finding of a lung granuloma in a
Gila monster was reported by the Arizona Veterinary Diagnostic Laboratory, but the
animal perished from another cause (Reed et al. 1996).

No avian species have been reported to have infection. No detailed investigation
of invertebrate associations, such as nematodes in soil or soil-burrowing insects, has
been conducted. An interesting account of mice injected with chromium-51 and
buried in soil was relayed at an international CM meeting (Egeberg 1985). Follow-
ing the movement of the radiation, insects were implicated in the digestion of mouse
tissue in both cases.

4.6 Conclusion and Future Directions

Over the last 30 years, reported cases of valley fever have increased dramatically
(Sondermeyer et al. 2013; Huang et al. 2012; Hector et al. 2011; Lewis et al. 2015;
Twarog and Thompson 2015). Data show that strains recovered in a recent study of
Arizona isolates were highly variable with no clonal structure; therefore, a patho-
genic clone was not responsible for the rise in cases (Jewell et al. 2008). A central
question regarding the increase of disease remains unanswered. Possible
non-mutually exclusive causes include climate change, increased host susceptibility,
and changes in reporting and awareness. Another complication is the high levels of
recombination, admixture, and genetic diversity and an as yet undiscovered sexual
life cycle that could produce an alternative infectious morphology: the ascospore.
Genetic variation in the fungus and ability to adapt to novel hosts and colonize new
environments are additional unanswered questions. The potential emergence of
antifungal resistance is cause for concern, and the lack of early accurate diagnosis
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and treatment recommendations for humans is troublesome. Furthermore, treatment
and diagnostic development for our four-legged friends is based on clinical trials in
humans. Thus, many clinicians are forced to use “wait and see” approaches to
treatment. Greater research effort to understand the organisms as well as the disease
is needed, particularly in response to the potential for the disease to expand into new
areas.
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