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Abstract. In this work, we study unconditionally-secure multi-party
computation (MPC) tolerating t < n/3 corruptions, where n is the total
number of parties involved. In this setting, it is well known that if the
underlying network is completely asynchronous, then one can achieve
only statistical security; moreover it is impossible to ensure input pro-
vision and consider inputs of all the honest parties. The best known
statistically-secure asynchronous MPC (AMPC) with t < n/3 requires a
communication of Ω(n5) field elements per multiplication. We consider a
partially synchronous setting, where the parties are assumed to be glob-
ally synchronized initially for few rounds and then the network becomes
completely asynchronous. In such a setting, we present a MPC protocol,
which requires O(n2) communication per multiplication while ensuring
input provision. Our MPC protocol relies on a new four round, com-
munication efficient statistical verifiable secret-sharing (VSS) protocol
with broadcast communication complexity independent of the number of
secret-shared values.

1 Introduction

Threshold unconditionally-secure multiparty computation (MPC) is a funda-
mental problem in secure distributed computing [2,8,12,26,36,38]. Informally,
an MPC protocol enables a set of n mutually distrusting parties to jointly and
securely compute a publicly known function f of their private inputs over some
finite field F, even in the presence of a computationally unbounded active adver-
sary Adv, who can corrupt any t out of the n parties. Let the parties be con-
nected by pair-wise secure (private and authentic) channels. Then in the synchro-
nous communication setting, where the parties are assumed to be synchronized
through a global clock, it is known that perfectly-secure MPC is possible if and
only if t < n/3 [8]. If a common broadcast channel is also available to the parties

A. Choudhury—Financial support from Infosys Foundation acknowledged.
A. Patra—Work partially supported by INSPIRE Faculty Fellowship (DST/
INSPIRE/04/2014/015727) from Department of Science & Technology, India.

c© Springer International Publishing AG 2017
J. Shikata (Ed.): ICITS 2017, LNCS 10681, pp. 83–109, 2017.
https://doi.org/10.1007/978-3-319-72089-0_6



84 A. Choudhury et al.

in addition to the pair-wise secure channels, then one can tolerate upto t < n/2
corruptions, albeit with statistical security1 [36]. The resilience bounds become
different if one considers a completely asynchronous setting, where parties are
not synchronized and messages can be arbitrarily delayed. Specifically, perfectly-
secure asynchronous MPC (AMPC) is possible if and only if t < n/4 [7], while
statistically-secure AMPC is possible if and only if t < n/3 [9].

Feasibility Results for Unconditionally-secure MPC: In any general
MPC protocol [2–5,8,10,12,15,20,27,36], the function f is usually expressed
as an arithmetic circuit (consisting of addition and multiplication gates) over
F and then the protocol “securely” evaluates each gate in the circuit in a
shared/distributed fashion. More specifically, each party secret-shares its inputs
among the parties using a linear secret-sharing scheme (LSS) [17], say Shamir
[37], with threshold2 t. The parties then interact to maintain the following invari-
ant for each gate: given the gate inputs in a secret-shared fashion, the gate output
is computed in a secret-shared fashion. Finally the (shared) circuit output is pub-
licly reconstructed. Intuitively, the privacy follows since each intermediate value
in the above process remains secret-shared with threshold t. Due to the linearity
of the LSS, the addition (linear) gates are evaluated locally by the parties. How-
ever, maintaining the above invariant for the multiplication (non-linear) gates
requires interaction among the parties. The focus therefore is rightfully placed on
measuring the communication complexity (namely the total number of field ele-
ments communicated) required to evaluate the multiplication gates in the circuit.
In the recent past, a lot of work has been done to design communication-efficient
MPC protocols; we summarize the relevant works here.

With t < n/3, [5] presents a perfectly-secure MPC protocol with O(n)
amortized communication complexity3 per multiplication, while [10] presents
a statistically-secure MPC protocol with t < n/2 with almost O(n) communi-
cation complexity per multiplication. Both these results are in the synchronous
setting and require non-constant number of rounds of interaction among the
parties. While the protocol of [5] requires Θ(n + D) rounds, the protocol of
[10] requires Θ(n2 + D) rounds, where D denotes the multiplicative depth of the
circuit.

A major drawback of the synchronous setting is that it does not model real
life networks like the Internet accurately where it is very hard to ensure that
the users are synchronized through a global clock and that there exists a strict

1 The outcome of a perfectly-secure protocol is error-free, while a negligible error is
allowed in a statistically-secure protocol.

2 Informally such a scheme ensures that the shared value remains information-
theoretically secure even if upto t shares are revealed. Shamir sharing of a secret
with threshold t is done by selecting a random polynomial of degree at most t with
the secret as the constant term and defining the individual shares as distinct evalu-
ations of the polynomial.

3 The amortized communication complexity is derived under the assumption that the
circuit is large enough so that the terms that are independent of the circuit size can
be ignored.
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a priori known upper bound on the message delivery. Real life networks can be
modelled more appropriately by the asynchronous setting, where there are no
known upper bounds and messages are delivered arbitrarily (the only guarantee
given in this model is that the messages sent by the honest parties will reach
to their destination eventually). Hence designing AMPC protocols is practically
motivated. However, an inherent challenge in designing protocols in a completely
asynchronous setting is that it is impossible to distinguish between a slow, but
honest party (whose messages are delayed arbitrarily) and a corrupt party (who
do not send any message at all). Hence in a completely asynchronous protocol, no
party can afford to receive messages from all the n parties, as the wait may turn
out to be an endless wait. So as soon a party receives messages from n−t parties,
it has to proceed to the next “step” of the protocol. However, in this process,
messages from t potentially honest, but slow parties may get ignored. Due to this
inherent phenomena, designing efficient AMPC protocols is a challenging task,
as evident from the known feasibility results for AMPC protocols summarized
below.

In a completely asynchronous setting, [34] presents a perfectly-secure AMPC
protocol with t < n/4 and O(n2) communication per multiplication, while [32]
presents a statistically-secure AMPC with t < n/3 and O(n5) communication
per multiplication. As it is clear, there is a significant gap in the communication
complexity of MPC and AMPC protocols. In addition, any AMPC protocol can-
not ensure input provision, namely the inputs of all the honest parties may not
be considered for the circuit evaluation, as this may turn out to be an endless
wait and so inputs of upto t potentially honest parties may get ignored. With
an aim to bridge the gap in the communication complexity of synchronous and
asynchronous MPC and to enforce input provision, the works of [4,14] motivate
and consider hybrid asynchronous setting, where the network is assumed to be
synchronized for few initial rounds and then it becomes completely asynchro-
nous. This is a practically motivated communication setting, which has been
well considered in the recent past for bridging the efficiency gap between syn-
chronous and asynchronous protocols for various distributed computing tasks
[4,6,14,23,30].

With t < n/4, a perfectly-secure hybrid MPC protocol with one synchronous
round is presented in [14], with O(n) amortized communication complexity per
multiplication. In [15], four MPC protocols in the hybrid setting are proposed
with t < n/3; while two of these protocols are perfectly-secure, the remain-
ing two are statistically-secure. These protocols are obtained by instantiating
the efficient framework for unconditionally-secure MPC proposed in [15] with
existing VSS schemes with t < n/3 (more on this later). Among the perfectly-
secure protocols, the first one requires less number of synchronous rounds,
namely4 (12, 3), but requires a higher communication of O(n5) per multiplica-
tion. The second perfectly-secure protocol requires more number of synchronous

4 We say a protocol requires (r, r′) (synchronous) rounds, if it requires a total of r
rounds of interaction among the parties and out of these r rounds, r′ rounds require
broadcast by the parties, where r′ ≤ r.
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rounds, namely (21, 7), but provides a better communication complexity of O(n4)
per multiplication. So a tradeoff is attained between the amount of synchrony
required and communication achieved per multiplication. The statistically-secure
hybrid protocols of [15] with t < n/3 retain the same communication com-
plexity as their perfect counterparts, but reduces the number of synchronous
rounds. Namely the first statistically-secure protocol requires (7, 2) rounds and
O(n5) communication per multiplication, the second statistically-secure proto-
col requires (16, 6) rounds and O(n4) communication per multiplication. As it
is clear from these results, with t < n/3, significant improvement in the commu-
nication complexity is not achieved, even if partial synchrony is provided in the
network. Our goal is to design more efficient hybrid MPC protocol with t < n/3
using minimal level of synchrony.

Our Results. We present a hybrid MPC protocol with t < n/3. Our protocol is
statistically-secure, requires (4, 3) synchronous rounds and O(n2) communication
per multiplication. Moreover, our protocol also ensures input provision. Our
protocol outperforms the existing hybrid MPC protocols with t < n/3, both
in terms of communication complexity as well as in terms of the number of
synchronous rounds required in the protocol.

To design our protocol, we follow the standard offline-online paradigm, based
on Beaver’s circuit-randomization technique [2] and which is now the de facto
style of designing efficient MPC protocols [3–5,10,14,15]. In this paradigm, an
MPC protocol is divided into two phases, a circuit-independent offline phase and
a circuit-dependent online phase. While the offline phase generates “raw data”,
independent of the circuit and actual inputs for the computation, the online
phase utilizes this raw data for the circuit evaluation. In a more detail, the offline
phase generates random multiplication triples of the form (a, b, c), Shamir-shared
with threshold t; here a, b are random and private and c = ab holds. Later, using
such triples, multiplication gates are evaluated in a shared fashion. For each
multiplication gate, one multiplication triple from the offline phase is utilized
and the multiplication gate is evaluated at the cost of publicly reconstructing two
Shamir-shared values. Reconstructing a Shamir-shared valued (with threshold t)
can be done efficiently with t < n/3 using the standard Reed-Solomon (RS) error
correction [31], even in a completely asynchronous setting [7,11]. Hence we shift
the focus to design an efficient offline phase in the hybrid setting for generating
multiplication triples. For this we follow the recent framework of [15], which
shows how to efficiently generate Shamir-shared multiplication triples in offline
phase, using any (polynomial based) verifiable secret-sharing (VSS) protocol
[13] as a black-box. Informally, a VSS protocol allows a designated party called
dealer (D) to verifiably Shamir-share a secret with threshold t. Thus at the end
of the VSS protocol it is ensured that there exists some polynomial of degree
at most t with the secret as the constant term and every share-holder has a
distinct evaluation of this polynomial. Moreover this is ensured irrespective of
whether the dealer is under the influence of the adversary or not. In addition,
if the dealer is honest then it is ensured that the secret remains information-
theoretically secure from t corrupted share-holders.
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In this work, our proposed VSS protocol in the setting of t < n/3 is plugged
into the framework of [15] and the result is a more efficient hybrid MPC protocol.
Communication-wise, our VSS protocol stands out with an amortized overhead
of O(n2) per secret-shared value, whereas the best known bound is only O(n3)
[25,28]. The improvement comes from the fact that our VSS protocol requires
a broadcast complexity that is independent of the number of secrets shared, a
property that is not achieved by the known constructions [25,28]. To induce a
better complexity over point-to-point channels, we use the best known broadcast
amplification protocols (aka multi-valued broadcast protocols) [22] to simulate
the broadcast invocations in the VSS protocols of [25,28]. Informally, in a multi-
valued protocol, broadcasting a “sufficiently large” message of size � has com-
munication complexity of O(n�) over point-to-point channels and a broadcast
complexity of poly(n). With t < n/3, the most efficient multi-valued broadcast
protocol is due to [35]. The protocol requires a communication complexity of
O(n�) over point-to-point channels and broadcast of n2 bits for broadcasting an
�-bit message. Detailed analysis and comparison of our VSS with existing ones
is deferred to the full version of the paper. In Fig. 1, we compare our MPC and
VSS protocols with their previous best counter parts.

Fig. 1. Comparison of our results with previous best results.

Other Related Work. In the synchronous setting, MPC protocols with O(n)
communication per multiplication has been reported in [5] with perfect security
and t < n/3 and in [10] with statistical security and t < n/2. These protocols
deploy non-robust secret-sharing protocols in the player-elimination and dispute-
control framework. The non-robustness of the underlying primitives inflates the
round complexity of their offline phase to O(n) and O(n2) respectively. The
naive approach of adopting these protocols in hybrid setting will lead to protocols
with O(n) or O(n2) synchronous (broadcast) rounds to execute the offline phase.
The online phase of these protocols can be executed asynchronously. Our hybrid
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MPC protocol on the other hand requires only a constant number of synchronous
broadcast rounds.

The reported works [18,19] in the synchronous setting with polylogarith-
mic (in n) communication per gate (denoted as ˜O(n)) 5 are only non-optimally
resilient. While [19] works with t < ( 12 − ε)n and provides statistical secu-
rity, [18] works with t < ( 13 − ε)n and provides perfect security, where ε > 0.
These protocols also evaluate the underlying circuit in a secret-shared fash-
ion. However, instead of Shamir secret-sharing, they use packed secret-sharing
[24] taking advantage of the presence of larger subset of honest parties (due to
the non-optimal resilience). Due to the use of packed secret-sharing, “multiple”
gates can be evaluated simultaneously by doing a fixed set of operations on the
shares. However, this requires “special” structure from the underlying circuit
being available at each layer, maintaining which, demands additional circuitry
to be incorporated between different layers of the circuit. Evaluating the overall
circuit using packed secret-sharing makes these protocols highly non-trivial and
complex. It is not known how to adapt these protocols in a completely asyn-
chronous or a partially synchronous setting. Specifically, it is not clear whether
these protocols can be executed in a hybrid setting, with a constant number of
synchronous rounds. Therefore, while treating VSS as an MPC functionality and
evaluating the resultant “VSS circuit” using the MPC protocols of [18,19] may
lead to sublinear (namely ˜O(n)) overhead per secret-shared value, it is not clear
if the resultant protocols runs with a constant number of synchronous rounds in
hybrid setting.

New Techniques. Our VSS protocol is built upon a new primitive called infor-
mation checking with succinct proof of possession (ICPoP) that takes motiva-
tion from information checking protocol (ICP) introduced in [16,33,36]. An ICP
allows a D to privately authenticate some data for an intermediary INT, who
can later publicly reveal this data and prove that it originated from D. On the
other hand, in an ICPoP protocol INT gives a proof of possession publicly of
the data originated from D, instead of publicly revealing the data. The proof
preserves data privacy and is “succinct” i.e. its size is independent of the size
of the data. The succinctness of the proof makes the broadcast complexity of
our VSS protocol independent of the number of shared secrets. Our ICPoP also
offers transferability that allows any designated party to take possession of INT’s
authenticated (by D) data and to be able to give a proof of possession on the
“behalf” of INT. The existing ICPs do not support transferability.

We next give a high level overview of our VSS. To share a secret s, we embed
s in the constant term of a random bivariate polynomial F (x, y) of degree t in
x and y. Every party Pi then obtains a row polynomial fi(x) = F (x, αi). The
parties then publicly verify whether the row polynomials of at least n− t parties
called VCORE define a unique bivariate polynomial. The standard way to do
this is to perform the “pair-wise checking”, where every pair of parties (Pi, Pj)
5 The actual complexity (communication, computation and round) of these protocols

are of the form O((logk n · poly(log |C|)) · |C|) + O(poly(n, log |C|, D)), where D is
the multiplicative depth of the underlying circuit C.
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is asked to verify the consistency of the common values on their respective poly-
nomials and publicly complain if there is any inconsistency, in which case D
publicly resolves the complaint by making the common value public [21,25,28].
This approach will lead to a broadcast complexity of O(n2) per secret-shared
value; instead we use a statistical protocol called Poly-Check (Sect. 4.1), adapted
from [34], which performs the same task in parallel for � secrets (and hence �
bivariate polynomials), but keeping the broadcast complexity independent of �.
Once VCORE is found, it is ensured that D has committed a unique F (x, y) and
the secret F (0, 0) to the parties in VCORE. To enable the parties to obtain their
shares, the goal will be to enable each party Pj to compute its column polynomial
gj(y) = F (αj , y). For this each party Pi ∈ VCORE transfers its common value
on gj(y) (namely fi(αj)) to Pj . To ensure that correct values are transferred, Pj

publicly gives a proof of possession of all the transferred values originated from
D via the intermediary parties in VCORE. This is done in parallel for � secrets
(and hence � bivariate polynomials); the succinctness of the proof ensures that
this step has broadcast complexity, independent of �.

2 Network Model, Definitions and Existing Tools

We consider a set P = {P1, . . . , Pn} of n parties, connected by pair-wise pri-
vate and authentic channels. For simplicity we assume n = 3t + 1, so t = Θ(n).
There exists a computationally unbounded adversary Adv who can maliciously
corrupt any t parties and may force them to behave in any arbitrary fashion
during the execution of a protocol. We assume the adversary to be static, who
decides the set of corrupted parties at the beginning of the protocol execu-
tion. We assume a partially synchronous network, where the first four rounds
are synchronous, after which the entire communication is done asynchronously.
Moreover, we assume that the parties have access to a broadcast channel during
the second, third and fourth synchronous round. Our protocols operate over a
finite field F, where |F| > 2n. We assume that there exists 2n distinct non-zero
elements α1, . . . , αn, β1, . . . , βn in F. Each element of F can be represented by
O(log |F|) bits. The communication complexity of any protocol is defined to be
the total number of field elements communicated by the honest parties in that
protocol. We denote the point-to-point communication complexity by PC() and
the broadcast communication complexity as BC().

Without loss of generality, we assume that the parties want to securely com-
pute the function f : Fn → F via an MPC protocol, where f(x1, . . . , xn) = y,
such that xi ∈ F is the input of Pi and every party is supposed to receive the
output y ∈ F. The function f is assumed to be represented by a publicly known
arithmetic circuit C over F. The circuit C consists of n input gates, two-input
addition (linear) and multiplication (non-linear) gates, zero-input random gates
(for generating random values during the computation) and one output gate.
We denote by cM and cR the number of multiplication and random gates in C
respectively. By [X] and [X,Y ] for Y ≥ X, we denote the sets {1, . . . , X} and
{X,X + 1, . . . , Y }, respectively. We use i ∈ [k] to denote that i can take a value
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from the set {1, 2 . . . k}. We will also require that |F| > 4n4(cM + cR)(3t + 1)2κ

to ensure that the error-probability of our MPC protocol is at most 2−κ, for a
given error parameter κ.

2.1 Definitions

Definition 1 (d-sharing [3,5,20]). A value s ∈ F is said to be d-shared if there
exists a polynomial over F, say f(·), of degree at most d, such that f(0) = s and
every (honest) party Pi ∈ P holds a share si of s, where si = f(αi). We denote
by [s]d, the vector of shares of s corresponding to the (honest) parties in P.

A vector S = (s(1), . . . , s(�)) ∈ F
� is said to be d-shared if each s(i)

is d-shared. Note that d-sharings are linear: given [a]d and [b]d, then
[a + b]d = [a]d + [b]d and [c · a]d = c · [a]d holds, for a public con-
stant c. In general, given � sharings [x(1)]d, . . . , [x(�)]d and a public lin-
ear function g : F

� → F
m, where g(x(1), . . . , x(�)) = (y(1), . . . , y(m)), then

g([x(1)]d, . . . , [x(�)]d) = ([y(1)]d, . . . , [y(m)]d). We say that the parties locally com-
pute ([y(1)]d, . . . , [y(m)]d) = g([x(1)]d, . . . , [x(�)]d) to mean that every Pi (locally)
computes (y(1)

i , . . . , y
(m)
i ) = g(x(1)

i , . . . , x
(�)
i ), where y

(l)
i and x

(l)
i denotes the ith

share of y(l) and x(l) respectively.

Definition 2 (Polynomial-based)Verifiable Secret Sharing (VSS) [3–5]).
Let S = (s(1), . . . , s(L)) ∈ F

L be a set of L values that a dealer D ∈ P wants to
t-share among P. Let Sh be a protocol for the n parties, where D has the input
S. Then Sh is a VSS scheme if the following holds for every possible Adv, on all
possible inputs: (1) Correctness: If D is honest then S is t-shared among P at
the end of Sh. Moreover even if D is corrupted there exists a set of L values, say
(s(1), . . . , s(L)), which is t-shared among P at the end of Sh. (2) Privacy: If D is
honest then Sh reveals no information about S to Adv in the information-theoretic
sense; i.e. Adv’s view is identically distributed for all possible S.

If Sh satisfies all its properties without any error then it is called perfectly-
secure. If the correctness is satisfied with probability at least 1 − ε, for a given
error parameter ε, then it is called statistically-secure.

Unconditionally-secure MPC: Recent papers on efficient unconditionally-
secure MPC follow a simpler “property based” security definition of secure
MPC [3,5,10,20], instead of the more rigorous “real-world/ideal-world” para-
digm based definition [1,29]. As our main goal is to provide an efficient VSS
and MPC, to avoid blurring the main focus of the paper and to avoid additional
technicalities, we also use the property based security definition. However, we
confirm that using standard techniques, like the above efficient protocols, our
MPC protocol can be also proved secure according to the simulation based def-
inition. We defer the details to the full version of the paper.

Let f : Fn → F be a publicly known function and party Pi has input xi ∈ F.
In any (unconditionally-secure) multiparty computation, each party Pi t-shares
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its input. Let xi be the value shared by Pi. If Pi is honest then xi = xi. The
parties then compute f as y = f(x1, . . . , xn) and everyone receives y.

Definition 3 (Unconditionally-secure MPC). A protocol Π among the n
parties securely computes f , if it satisfies the following for every possible Adv,
on all possible inputs: (1) Correctness: All honest parties obtain y at the end
of Π. (2) Privacy: Adv obtains no additional information about the inputs of
the honest parties, other than what is inferred from the inputs of the corrupted
parties and y. Protocol Π is called perfectly-secure if it satisfies all its properties
without any error. If the correctness is satisfied with probability at least 1− 2−κ,
for a given error parameter κ, then Π is called statistically-secure.

Information Checking with Succinct Proof of Possession (ICPoP): An
ICPoP protocol involves three entities: a designated dealer D ∈ P who holds a
set of L private values S = {s(1), . . . , s(L)}, an intermediary INT ∈ P and the
set of parties P acting as verifiers (note that D and INT will also play the role
of verifiers, apart from their designated role of dealer and intermediary respec-
tively). The protocol proceeds in three phases, each of which is implemented by a
dedicated sub-protocol: (1) Distribution Phase: Here D, sends S to INT along
with some auxiliary information. For the purpose of verification, some verifica-
tion information is additionally sent to each individual verifier. (2) Authen-
tication Phase: This phase is initiated by INT who interacts with D and the
verifiers to ensure that the information it received from D is consistent with the
verification information distributed to the individual verifiers. If D wants it can
publicly abort this phase, which is interpreted as if D is accusing INT of mali-
cious behaviour. (3) Revelation Phase: This phase is carried out by INT and
the verifiers in P only if D has not aborted the previous phase. Here INT reveals
a proof of possession of the values received from D. The verifiers in P check
this proof with respect to their verification information. Then based on certain
criteria, each verifier either outputs AcceptProof (indicating that it accepts the
proof) or RejectProof (indicating that it rejects the proof).

Definition 4 (ICPoP). A triplet of protocols (Distr,AuthVal,RevealPoP)
(implementing the distribution, authentication and revelation phase respectively)
is a (1 - ε)-secure ICPoP, for an error parameter ε, if the following holds:
(1) ICPoP-Correctness1: If D and INT are honest, then each honest ver-
ifier Pi ∈ P outputs AcceptProof at the end of RevealPoP. (2) ICPoP-
Correctness2: If D is corrupted and INT is honest and if ICPoP proceeds to
RevealPoP, then except with probability at most ε, all honest verifiers output
AcceptProof at the end of RevealPoP. (3) ICPoP-Correctness3: If D is hon-
est, INT is corrupted, ICPoP proceeds to RevealPoP and if the honest verifiers
output AcceptProof, then except with probability at most ε, the proof produced
by INT corresponds6 to the values in S. (4) ICPoP-Privacy: If D and INT are
honest, then information obtained by Adv during ICPoP is independent of S.
6 The interpretation of a proof corresponding to a set of values will be clear later

during the formal presentation of our ICPoP.
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(5) ICPoP-Succinctness of the Proof: The size of the proof produced by INT
during RevealPoP is independent of L.

Properties of Polynomials: A bivariate polynomial F (x, y) of degree at

most t is of the form F (x, y) =
∑i,j=t

i,j=0 rijx
iyj , where rij ∈ F. Let fi(x) def=

F (x, αi), gi(y) def= F (αi, y) for i ∈ [n]. We call fi(x) and gi(y) as ith row
polynomial and column polynomial respectively of F (x, y). We say that a row
polynomial f i(x) lies on a bivariate polynomial F (x, y) of degree at most t if
F (x, αi) = f i(x) holds. Similarly we will say that a column polynomial gi(y)
lies on F (x, y) if F (αi, y) = gi(y) holds. We will use the following well known
standard properties of bivariate and univariate polynomials.

Lemma 1 ([1,11,34]). Let f1(x), . . . , f�(x), g1(y), . . . , g�(y) be degree t univari-
ate polynomials with t + 1 ≤ � ≤ n, such that fi(αj) = gj(αi) holds for every
αi, αj ∈ {α1, . . . , α�}. Then there exists a unique bivariate polynomial F (x, y) of
degree t, such that fi(x) and gi(y) lie on F (x, y), for i ∈ [�].

Lemma 2 ([1,11,34]). Let f1(x), . . . , f�(x) be univariate polynomials of degree
at most t where t + 1 ≤ � ≤ n. Let F (x, y) and G(x, y) be two bivariate poly-
nomials of degree at most t, such that fi(x) lies on both F (x, y) and G(x, y) for
each i ∈ [�]. Then F (x, y) = G(x, y).

Lemma 3 ([34]). Let G(1)(x), . . . G(L)(x) be degree d polynomials and let

A(x)
def
= eG(1)(x)+ · · ·+eLG(L)(x), where e is a random value from F\{0}. Let

a tuple (γ, v1, v2, . . . vL) be such that vi �= G(i)(γ) for some i ∈ [L]. Then except
with probability at most L−2

|F|−1 , the condition A(γ) �= ev1 + . . . eLvL holds.

Lemma 4 ([34]). Let h(0)(y), . . . h(L)(y) be L+1 polynomials and r be a random

value from F \ {0}. Let hcom(y)
def
= h(0)(y) + rh(1)(y) + . . . rLh(L)(y). If at least

one of h(0)(y), . . . h(L)(y) has degree more than t, then except with probability at
most L

|F| , the polynomial hcom(y) will have degree more than t.

3 Efficient ICPoP

We present a (1 − ε)-secure ICPoP protocol, where |S| = L = � × pack, with
� ≥ 1 and 1 ≤ pack ≤ n − t; moreover ε = max{ n�

|F|−1 , n(n−1)
|F |−pack}. The protocol

has communication complexity PC(O(n�)) and BC(O(n)). Hence the broadcast
complexity is independent of �. Our ICPoP is similar to the asynchronous ICP
of [33], adapted to the synchronous setting with the following differences: in ICP
the whole S is revealed during the revelation phase, as only its authenticity is
required during the revelation phase. We require INT to be able to publicly prove
the possession of S while maintaining its privacy. Hence the auxiliary information
distributed in our ICPoP differs and also used differently; the details follow.
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Let S = {(s(1,1), . . . , s(1,pack)), . . . , (s(�,1), . . . , s(�,pack))}. During the distri-
bution phase, D embeds the values (s(k,1), . . . , s(k,pack)) for k ∈ [�] in a ran-
dom degree d secret-encoding polynomial G(k)(x) at x = β1, . . . , βpack, where
d = pack+ t−1. In addition, D picks a masking set M, consisting of 2 ·pack ran-
dom values {(m(1,1), . . . ,m(1,pack)), (m(2,1), . . . ,m(2,pack))}, which are embedded
in two random degree d polynomials H(1)(x) and H(2)(x) respectively at x =
β1, . . . , βpack; we call these polynomials as masking polynomials. The polynomials
are sent to INT, while each verifier Pi receives the values v1,i, . . . , v�,i,m1,i,m2,i

of these polynomials at a secret evaluation point γi. This distribution achieves
ICPoP-Privacy, as each secret-encoding polynomial has degree d and adversary
may get at most t values on these polynomials; so it will lack pack values on
each polynomial to uniquely interpolate them.

During revelation phase, to give a proof of possession of S, INT produces a
random linear combination of the values in S ∪ M by making public a random

linear combiner, say e and a linear combination C(x) def= eH(1)(x)+e2H(2)(x)+
e3G(1)(x) + . . . + e�+2G(�)(x). The values C(β1), . . . , C(βpack) define pack linear
combinations of S ∪ M with respect to e. The pair (e, C(x)) is considered as a
proof of possession of S (union M) and verified as follows: each verifier locally
verifies if the corresponding linear combination em1,i + e2m2,i + e3v1,i + . . . +
e�+2v�,i satisfies C(x) at x = γi and accordingly broadcast an Accept or a Reject
message. If more than t verifiers broadcast Accept then the proof (e, C(x)) is
said to be accepted, otherwise it is rejected. The proof will always be accepted
for an honest D and INT, implying ICPoP-Correctness1. The size of the proof
is O(n) (as d = O(n)), which is independent of �, implying ICPoP-Succinctness
of the Proof. No additional information about the secret-encoding polynomials
is revealed from C(x), thanks to the masking polynomials. If D is honest and
INT is corrupted then the evaluation points of the honest verifiers will be private.
So if INT gives a proof of possession of S� ∪ M� �= S ∪ M by revealing a linear
combination of S� ∪ M� through (e, C�(x)) where C�(x) �= C(x), then with
high probability, every honest verifier will reject the proof. This is because the
corresponding linear combination of the values possessed by the honest verifiers
will fail to satisfy C�(x); this implies ICPoP-Correctness 3.

The above mechanism, however, fails to achieve ICPoP-Correctness 2, as
a corrupted D can distribute “inconsistent” polynomials and values to an hon-
est INT and honest verifiers respectively; later on the proof produced by INT
will be rejected by every honest verifier. To verify the consistency of the dis-
tributed information, during the authentication phase, INT “challenges” D by
making public a random linear combination A(x) of the received polynomials.
In response, D either instructs to abort the protocol or continue, after verifying
whether the A(x) polynomial satisfies the corresponding random linear combi-
nation of the values held by each verifier. The idea here is that if D distributed
inconsistent data, then with very high probability, any random linear combina-
tion of the distributed polynomials would fail to satisfy the corresponding linear
combination of the values given to the honest verifiers. And this will be locally
learned by the honest verifiers after A(x) is made public. So if D still instructs
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to continue the protocol, then clearly D is corrupted; so later even if the proof
produced in the revelation phase turns out to be inconsistent with the informa-
tion held by the honest verifiers, the proof is accepted by adding an additional
acceptance condition to deal with this particular case. We stress that the addi-
tional acceptance condition never gets satisfied for an honest D and a corrupted
INT. The privacy of the secret-encoding polynomials is still preserved during the
authentication phase (for an honest INT and D), thanks to the masking poly-
nomials7. The formal steps of ICPoP are given in Fig. 3. In the protocol, if the
output is AcceptProof then we additionally let the parties output pack linear
combinations of the values in S ∪ M possessed by INT; looking ahead this will
be useful in our VSS. In Fig. 2 we give a pictorial representation of the values
distributed and revealed in ICPoP.

Fig. 2. Pictorial representation of the information generated and communicated during
ICPoP protocol.

In ICPoP, the correspondence between a proof and a set of values is defined
as follows: Let S = {(s(1,1), . . . , s(1,pack)), . . . , (s(�,1), . . . , s(�,pack))} and M =
{(m(1,1), . . . ,m(1,pack)), (m(2,1), . . . ,m(2,pack))}. We say that a proof (e, C(x)) cor-
responds to S ∪M if C(x) embeds linear combination of S ∪M with respect to e

7 This explains the need for two masking polynomials: one is used to preserve the
privacy of the secret-encoding polynomials during the authentication phase while
the other is used to maintain the privacy during the revelation phase.
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at x = β1, . . . , βpack; i.e. if C(βi) = em(1,i) + e2m(2,i) + e3s(1,i) + . . . + e(�+2)s(�,i)

holds for i ∈ [pack].
We state the properties of our ICPoP and the final theorem. We give proofs

for the important properties; the other proofs are simple and will appear in the
full version.

Lemma 5 (ICPoP-Correctness1). If D and INT are honest then each honest
verifier Pi ∈ P outputs AcceptProof along with (C(β1), . . . , C(βpack)) at the end
of RevealPoP.

Lemma 6 (ICPoP-Correctness2). If D is corrupt and INT is honest, and
if ICPoP proceeds to RevealPoP, then all honest verifiers output AcceptProof,
except with probability at most n�

|F|−1 .

Proof. We claim that if INT is honest and ICPoP proceeds to RevealPoP, then
an honest verifier Pi broadcasts Accept, except with probability at most �

|F|−1 .
Assuming that the claim is true, from the union bound it follows that the prob-
ability any honest verifier fails to broadcast an Accept message is at most n�

|F|−1 ,
as the number of honest parties is upper bounded by n. This ensures that there
will be more than t Accept messages broadcasted by honest verifiers implying
that each honest verifier outputs AcceptProof at the end of RevealPoP.

We next proceed to prove our claim. For this we focus on a designated honest
verifier Pi and consider the relationship that holds between the polynomials
G

(1)
(x), . . . , G

(�)
(x),H

(1)
(x),H

(2)
(x) distributed by a corrupted D to INT and

the tuple (γi, v1,i, v2,i, . . . v�,i,m1,i,m2,i) distributed by D to Pi. We have two
cases:

– vk,i = G
(k)

(γi) for each k ∈ [�] and m1,i = H
(1)

(γi),m2,i = H
(2)

(γi): In this
case, the claim is true without any error as Pi will find that condition C1 is
true for the C(x) polynomial during RevealPoP.

– At least one of the following holds — either vk,i �= G
(k)

(γi) for some k ∈
[�] or m1,i �= H

(1)
(γi) or m2,i �= H

(2)
(γi): In this case, A(γi) �= dm1,i +

d2m2,i + d3v1,i + d4v2,i + . . . d�+2v�,i holds, except with probability at most
�

|F|−1 (follows from Lemma 3 by substituting L = �+2). So clearly the verifier
Pi will find that condition C2 is true during RevealPoP

Lemma 7 (ICPoP-Correctness3). If D is honest, INT is corrupted, ICPoP
proceeds to RevealPoP and if the honest verifiers output AcceptProof, then
except with probability at most nd

|F|−pack , the proof produced by INT corresponds
to the values in S ∪ M.

Lemma 8 (ICPoP-Privacy). If D and INT are honest, then the information
obtained by Adv during ICPoP is independent of the values in S.
Theorem 1. Protocols (Distr,AuthVal,RevealPoP) constitute a (1 − ε)-secure
ICPoP for L = � × pack values with � ≥ 1 and 1 ≤ pack ≤ n − t, where
ε = max{ n�

|F|−1 , nd
|F |−pack} and d = pack + t − 1. The protocol has communica-

tion complexity PC(O(n�)) and BC(O(n)).
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Fig. 3. Efficient ICPoP protocol where � ≥ 1 and 1 ≤ pack ≤ n − t.
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Proof. The properties of ICPoP follow from Lemmas 5–8. We next prove the
communication complexity. During Distr, D sends � + 2 polynomials of degree d
to INT and a tuple of � + 3 values to each individual verifier. During AuthVal a
polynomial of degree d is broadcasted by INT and D broadcasts either an OK or
Abort message. During RevealPoP, INT broadcasts a polynomial of degree d and
each individual verifier broadcasts either an Accept or a Reject message. So
overall the protocol has communication complexity PC(O(n�)) and BC(O(n)),
as d = O(n). This also proves the ICPoP-Succinctness of the Proof property,
as the size of the proof is independent of �.

Transferability of ICPoP: In our VSS protocol we will use ICPoP as follows:
after receiving S ∪ M from D via the secret-encoding and masking polynomials,
INT will send these polynomials (and hence S ∪M) to another designated party,
say PR ∈ P (if INT is corrupted then it can send incorrect polynomials to PR).
Later on, party PR will act as an INT and produce a proof of possession of S∪M,
which got “transferred” to PR from INT; the proof gets verified with respect to
the verification information held by the verifiers. This transfer of S ∪ M will
satisfy all the properties of ICPoP, imagining PR as the new INT. Specifically if
D is honest and both INT and PR are honest, then the privacy will hold. Moreover
if PR produces a proof of possession of incorrect sets (this can be the case if either
INT or PR is corrupted), then the proof gets rejected. If D is corrupted and both
INT and PR are honest then the proof given by PR will be accepted.

4 Statistical VSS with a Quadratic Overhead

We present a 4-round VSS protocol Sh to t-share � × (n − t) = Θ(n�) values
with communication complexity PC(O(n3�)) and BC(O(n3)). So for sufficiently
large �, the broadcast complexity will be independent of �. For simplicity, we will
present a 5-round statistical VSS protocol Sh-Single for sharing a single secret.
We will then explain how to reduce the number of rounds of Sh-Single from five
to four. Finally we extend this four round Sh-Single to get Sh. We first discuss a
protocol Poly-Check adapted from [34], used in our VSS.

4.1 Verifiably Distributing Values on Bivariate Polynomials
of Degree at Most t

In our VSS protocol we will come across the following situation: D will select
L bivariate polynomials F (1)(x, y), . . . , F (L)(x, y), each of degree at most t and
send the ith row polynomials f

(1)
i (x), . . . , f (L)

i (x) of F (1)(x, y), . . . , F (L)(x, y)
respectively to each Pi; we stress that the corresponding column polynomials are
retained by D. The parties now want to publicly verify if there is a set of at least
t + 1 honest parties, who received row polynomials, lying on L unique bivariate
polynomials of degree at most t without revealing any additional information
about the polynomials. For this we use a two round protocol Poly-Check (see
Fig. 4), which is adapted from an asynchronous protocol for the same purpose,
presented in [34].
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In the protocol Poly-Check, there is a designated verifier V, who challenges
D to broadcast a random linear combination of the n column polynomials of all
the bivariate polynomials selected by D. Specifically V provides a challenge com-
biner, say r and in response D makes public a linear combination of its column
polynomials with respect to r; to maintain the privacy of the column polynomi-
als, this linear combination is blinded by a random degree t blinding polynomial
B(y), selected by D, with each party Pi having a value on this polynomial.
Corresponding to the linear combination of the column polynomials produced
by D, each party Pi makes public a linear combination of n values of all its
row polynomials, with respect to the combiner r, which is blinded by the value
of B(y) possessed by it. The idea here is the following: if indeed there exists a
set of t + 1 honest parties that we are looking for, then the values of the row
polynomials possessed by these parties will define degree t column polynomials.
And these column and row polynomials will be “pair-wise consistent”. Based on
this idea we check if the blinded linear combination of the column polynomials
produced by D is of degree t. Moreover it is also checked if there exists a witness
set W(V) of at least 2t + 1 parties, such that their blinded linear combination
of row polynomial values satisfies the linear combination produced by D. If any
one of the above conditions is not satisfied the parties output ⊥, otherwise they
output W(V). It is ensured that if V is honest, then except with probability nL

|F| ,
the honest parties in W(V) constitute the desired set of row polynomial holders.
The properties of Poly-Check are stated in Lemma 9; we refer to [34] for the
complete proof.

Lemma 9 (Properties of Protocol Poly-Check [34]). In protocol Poly-Check,
the following holds:

– If D is honest then every honest party outputs a W(V) set which includes
all the honest parties. Moreover the row polynomials of the honest parties in
W(V) will lie on F (1)(x, y), . . . , F (L)(x, y). Furthermore Adv gets no additional
information about F (1)(x, y), . . . , F (L)(x, y) in the protocol.

– If D is corrupted and V is honest and if the parties output a W(V), then
except with probability at most nL

|F| , there exists L bivariate polynomials, say

F
(1)

(x, y), . . . , F
(L)

(x, y), of degree at most t, such that the row polynomials
of the honest parties in W(V) lie on F

(1)
(x, y), . . . , F

(L)
(x, y).

– The protocol requires two rounds and has communication complexity
BC(O(n)).

4.2 Five Round Statistical VSS for a Single Secret

To t-share s, D selects a random secret-carrying bivariate polynomial F (x, y) of
degree at most t such that s = F (0, 0). The ith row polynomial fi(x) of F (x, y)
is given to each Pi. We stress that only the row polynomials are distributed. The
parties then verify the consistency of the distributed polynomials by publicly
verifying the existence of a set VCORE of at least 2t + 1 parties, such that
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Fig. 4. Checking the consistency of row polynomials distributed by D under the super-
vision of a designated verifier V. The inputs for (an honest) D are L secret bivariate
polynomials F (1)(x, y), . . . , F (L)(x, y) of degree at most t and a secret blinding polyno-
mial B(y) of degree at most t. The inputs for (an honest) party Pi are L row polynomials

f
(1)

i (x), . . . , f
(L)

i (x) of degree at most t and a share bi of blinding polynomial. If D and

Pi are honest then these values are private and f
(k)

i (x) = F (k)(x, αi) and bi = B(αi)
will hold for each k ∈ [L].

the row polynomials of the honest parties in VCORE lie on a unique bivariate
polynomial, say F (x, y), of degree at most t. For this, n instances of Poly-Check
are executed (one on the behalf of each party playing the role of the designated
verifier V) and it is verified if there is common subset of at least 2t + 1 parties,
present across all the generated witness sets. As there will be at least one instance
of Poly-Check executed on the behalf of an honest verifier, clearly the common
subset of 2t+1 parties satisfies the properties of VCORE. To maintain the privacy
of the row polynomials during the Poly-Check instances, n independent blinding
polynomials are used by D, one for each instance. If a VCORE is found, then
we say that D has “committed” the secret s = F (0, 0) to the parties in VCORE
via their row polynomials and the next goal will be to ensure that each party
Pj obtains its column polynomial gj(y) of F (x, y); party Pj can then output its
share sj = gj(0) of s and hence s will be t-shared via F (x, 0). If D is honest then
F (x, y) = F (x, y) will hold (and hence s = s), as VCORE will include all the
honest parties.

To enable Pj obtain gj(y), each Pi ∈ VCORE can send the common point
f i(αj) on gj(y) to Pj , where f i(αj) denotes the jth value on the ith row poly-
nomial received by Pi (if D is honest then f i(αj) = fi(αj) holds). The honest
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parties in VCORE will always send the correct values; however the corrupted par-
ties may send incorrect values. Due to insufficient redundancy in the received
f i(αj) values, party Pj cannot error-correct them (for this we require |VCORE| to
be of size at least 3t+1). The way out is that Pj gives a proof of possession of the
f i(αj) values received from the parties Pi in VCORE. Namely the values on the
row polynomials are initially distributed by D by executing instances of Distr.
There will be n2 such instances and instance Distrij is executed to distribute
fi(αj) to Pi, considering Pi as an INT; the corresponding instances AuthValij
are also executed and it is ensured that the AuthVal instances, involving any
party from VCORE as an INT, is not aborted by D. Now when a party Pi in
VCORE sends f i(αj) to Pj , party Pj acts as an INT and publicly gives a proof
of possession of f i(αj) by executing an instance RevealPoPji of RevealPoP. The
idea is to use the transferability property of ICPoP to identify the incorrectly
transferred values. Namely if D is honest and an incorrect f i(αj) is transferred
to Pj , then the corresponding proof gets rejected during RevealPoPji and Pj

discard such values.
Unfortunately, if D is corrupted then the above mechanism alone is not suf-

ficient for Pj to robustly reconstruct gj(y). Because a corrupted Pi in VCORE

can then transfer an incorrect f i(αj) to Pj and still the proof will get accepted;
this is because if both D and INT are corrupted, then INT will know the full aux-
iliary and verification information involved in ICPoP. As a result, Pj will end
up not reconstructing a degree t column polynomial from the received f i(αj)
values. To deal with this particular case, we ensure that the M sets used by D
in the ICPoP instances have a similar “structure” as the corresponding S sets.
Specifically, D selects two random masking bivariate polynomials M (1)(x, y) and
M (2)(x, y) each of degree at most t. Let m

(1)
i (x),m(2)

i (x) denote the correspond-
ing row polynomials. The instances Distrij are executed by setting Sij = {fi(αj)}
and Mij = {m

(1)
i (αj),m

(2)
i (αj)} (thus � = 1 and pack = 1 in these instances).

The corresponding AuthValij instances are executed with Sij = {f i(αj)} and
Mij = {m

(1)
i (αj),m

(2)
i (αj)}, which denotes the S and M sets respectively

received by Pi during Distrij (if D is honest then these will be the same as
Sij and Mij). The existence of VCORE will now imply that D has committed a
secret-carrying polynomial, say F (x, y) and two masking bivariate polynomials,
say M

(1)
(x, y),M

(2)
(x, y) to the parties in VCORE, where all these polynomi-

als have degree at most t. It follows that any linear combination of the column
polynomials F (αj , y),M

(1)
(αj , y) and M

(2)
(αj , y) will be a degree t univariate

polynomial. And this property is used by Pj to identify the correctly transferred
Sij ∪ Mij sets. Namely the values in the transferred Sij ∪ Mij sets should lie
on degree t univariate polynomials and hence any random linear combination
of these sets should also lie on a degree t polynomial. Based on this observa-
tion, party Pj selects a common random combiner, say ej , for all the transferred
Sij ∪ Mij sets and publicly reveals a linear combination of these Sij ∪ Mij

sets via the RevealPoPji instances. It is then publicly verified if these linearly
combined values lie on a degree t polynomial. If not then it implies that D is
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corrupted and it is discarded; see Figs. 5 and 6 for the formal details. For the
ease of understanding, a pictorial representation of the information distributed
in Sh-Single is given in Fig. 7.

We state the properties of Sh-Single and formally prove the correctness of
Sh-Single in case of a corrupt dealer by means of a claim below. The remaining
proofs will appear in the full version.

Lemma 10. If D is honest then except with probability at most n3t
|F|−1 , it is not

discarded during Sh-Single.

Lemma 11 (Correctness for an honest D). If D is honest then except with
probability at most n3t

|F|−1 , the value s is t-shared at the end of Sh-Single.

Lemma 12. Let f i(x),m(1)
i (x) and m

(2)
i (x) be the row polynomials defined by

the values in Sij ∪ Mij received by party Pi ∈ P from D for j ∈ [n]. If D is
corrupted and a VCORE is formed during Sh-Single then except with probabil-
ity at most 3n2

|F| , there exist bivariate polynomials, say F (x, y),M
(1)

(x, y) and

M
(2)

(x, y), each of degree at most t, such that for each honest Pi ∈ VCORE, the
polynomials f i(x),m(1)

i (x) and m
(2)
i (x) lie on F (x, y),M

(1)
(x, y) and M

(2)
(x, y)

respectively.

Proof. From the definition, VCORE = W(P1)∩W(P2)∩. . .∩W(Pn) and |VCORE| ≥
2t+1. This ensures that there are at least t+1 common honest parties in VCORE,
say HVCORE. Consider an honest party Pj ∈ P, playing the role of the verifier
V in the instance Poly-Check(Pj). It follows from Lemma 9 (by substituting L =
3) that for the instance Poly-Check(Pj), except with probability at most 3n

|F| ,

the row polynomials f i(x),m(1)
i (x) and m

(2)
i (x) of the parties Pi ∈ HVCORE

together lie on three unique bivariate polynomials, say F (x, y),M
(1)

(x, y) and
M

(2)
(x, y) respectively of degree at most t. The same will be true with respect to

every other instance Poly-Check(Pk), corresponding to every other honest verifier
Pk �= Pj . Moreover, the set of three bivariate polynomials defined via each

of these instances of Poly-Check will be the same, namely F (x, y),M
(1)

(x, y)
and M

(2)
(x, y) respectively. This follows from Lemma 2 (by substituting � =

|HVCORE|) and the fact that |HVCORE| ≥ t + 1. The lemma now follows from
the union bound and the fact that there are Θ(n) honest parties, playing the
role of V.

Lemma 13 (Correctness for a corrupted D). If D is corrupted and not
discarded during Sh-Single, then there exists some value, say s, such that except
with probability at most n3

|F|−1 , s is t-shared at the end of Sh-Single.

Proof. If a corrupted D is not discarded then it implies that a set VCORE with
|VCORE| ≥ 2t + 1 is constructed during Sh-Single. Let HVCORE be the set of
honest parties in VCORE; clearly |HVCORE| ≥ t + 1. From Lemma 12 it follows
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Fig. 5. VSS for sharing a single secret: Part I.
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Fig. 6. VSS for sharing a single secret: Part II.

that except with probability at most 3n2

|F| , the row polynomials f i(x),m(1)
i (x)

and m
(2)
i (x) of the parties in HVCORE lie on unique bivariate polynomials, say

F (x, y),M
(1)

(x, y) and M
(2)

(x, y) of degree at most t. We define s
def= F (0, 0)

and claim that s is t-shared via the polynomial f0(x) def= F (x, 0), with each hon-

est Pj holding the share sj
def= F (αj , 0). To prove our claim, we show that each

honest party Pj outputs its degree t univariate polynomial gj(y) def= F (αj , y)
except with probability at most n2

|F|−1 ; this ensures that Pj obtains the correct
share, as sj = gj(0). For this, we further need to show that the Sij set trans-
ferred by each party Pi ∈ supj to Pj contains the value gj(αi).
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Fig. 7. Pictorial representation of the values distributed in Sh-Single protocol.
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Consider an honest Pj . Notice that supj ⊆ VCORE. We first argue that every
Pi ∈ HVCORE is present in supj , except with probability at most n2

|F|−1 . This is
because there are Θ(n) such parties Pi and in each corresponding RevealPoPji

instance, the output is AcceptProof, which follows from Lemma 6 (by substitut-
ing � = 1). Now consider the set of values Sij = {f ij} and Mij = {m

(1)
ij ,m

(2)
ij }

transferred by the parties Pi ∈ HVCORE to Pj . Since f ij = f i(αj) = gj(αi)
holds, it follows that the values {f ij}Pi∈HVCORE define the degree t univariate

polynomial gj(y). Similarly the values {m
(1)
ij }Pi∈HVCORE and {m

(2)
ij }Pi∈HVCORE

define degree t univariate polynomials M
(1)

(y, αj) and M
(2)

(y, αj) respectively.
To complete the proof, we argue that except with probability at most 2

|F| , the
values in the Sij and Mij set transferred by a corrupted party Pi ∈ supj lie

on gj(y),M
(1)

(y, αj) and M
(2)

(y, αj) respectively. This is because the combiner
ej selected by the honest Pj in the RevealPoPji instances corresponding to the
parties in supj is truly random and unknown to the adversary in advance, when
the Sij and Mij sets are transferred to Pj . The rest follows from Lemma 4 (by
substituting L = 2) and the fact that the values {combji}Pi∈supj

lie on a polyno-
mial of degree at most t (otherwise D would have been discarded), say combj(y),

where combj(y) def= ejM
(1)

(y, αj) + e2jM
(2)

(y, αj) + e3jgj(y). As there can be n2

pair of parties involving a corrupted party, it follows by the union bound that
except with probability at most 2n2

|F| , the corrupted parties in VCORE transfer
the correct values to the honest parties.

As each honest Pj correctly obtains its column polynomial except with prob-
ability at most n2

|F|−1 and as there are Θ(n) such honest parties, it follows that

except with probability at most n3

|F|−1 , the value s is t-shared.

Lemma 14 (Privacy). In protocol Sh-Single, the value s remains information
theoretically secure.

Theorem 2. Sh-Single is a five round VSS protocol for a single secret, satis-
fying the requirements of VSS except with probability n3t

|F|−1 . The protocol has
communication complexity PC(O(n3)) and BC(O(n3)).

Proof. The properties of VSS follow from Lemmas 11–14. In the protocol n2

instances of ICPoP (with � = 1, pack = 1) and n instances of Poly-Check (each
with L = 3) are executed. The rest follows from the communication complexity
of ICPoP (Theorem 1) and Poly-Check (Lemma 9).

From Five Rounds to Four Rounds: In Sh-Single, the instances of RevealPoP
which start getting executed during Round 4 can be instead instantiated during
Round 3 itself. Namely irrespective of the formation of VCORE, each party Pj

starts executing the instance RevealPoPji corresponding to each party Pi ∈ P,
based on the set of values in Sij ∪ Mij which were transferred to Pj by Pi
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during Round 2. Next VCORE is computed and if Pi is found not to be present
in VCORE, then the instance RevealPoPji can be halted; otherwise the remain-
ing steps of the RevealPoPji instance are executed during Round 4. Based on
this modification, Sh-Single now requires four rounds, the rest of the properties
remain same.

Sharing � × (n − t) Secrets: To share � × (n − t) secrets, the underlying
instances of Distr,AuthVal and RevealPoP are executed to deal with � × pack
values simultaneously, where pack = n− t. The steps for consistency checking of
the values transferred by the parties in VCORE are also generalized to deal with
� × (n − t) values. With these modifications, we get a four round Sh for sharing
�(n−t) values. The properties of Sh follow in a straight forward fashion from the
corresponding properties of Sh-Single, taking into account that the underlying
instances of ICPoP that are executed deal with � × (n − t) values. We state the
theorem below. The proof will appear in the full version.

Theorem 3. Sh is a four round VSS for � × (n − t) values, with an error
probability of max{ n3(n−1)

|F|−(n−t) ,
n3�

|F|−1}. The protocol has communication complexity
PC(O(n3�)) and BC(O(n3)).

5 Efficient Statistical MPC Protocol

Using Sh, we design a statistical MPC protocol in the partially synchronous
setting. The protocol is designed in the offline-online paradigm, where in the
offline phase, the parties generate t-sharing of random and private multiplica-
tion triples of the form (a, b, c), where c = ab. Later in the online phase, these
triples are used for the shared evaluation of the circuit using the standard Beaver
multiplication triple based technique [2,3,5,14]. For designing the offline phase
protocol, we use the protocol Sh and deploy the efficient framework of [15]. The
shared evaluation of the circuit is done in a completely asynchronous fashion in
the online phase. We get the following theorem. The complete description of the
protocol and the proof will appear in the full version.

Theorem 4. Let f : Fn → F be a function expressed as an arithmetic circuit
over a finite field F, consisting of cM and cR multiplication and random gates
respectively. Assuming that the first four communication rounds are synchronous
broadcast rounds after which the entire communication is asynchronous, there
exists a statistical MPC protocol to securely compute f , provided |F| ≥ 4n4(cM +
cR)(3t + 1)2κ for a given error parameter κ. The protocol has communication
complexity PC(O(n2(cM + cR) + n4)) and BC(O(n4)).
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4. Beerliová-Trub́ıniová, Z., Hirt, M.: Simple and efficient perfectly-secure asynchro-
nous MPC. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 376–
392. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 23
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