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Abstract. Barkol et al. (Journal of Cryptology, 2010) introduced the
notion of d-multiplicative secret sharing (d-MSS), which allows the play-
ers to multiply shared d secrets by converting their shares locally into an
additive sharing of the product, and proved that d-MSS among n players
is possible if and only if no d unauthorized sets of players cover the whole
set of players (type Qd). Although this result implies some limitations
on secret sharing in the context of MPC, the d-multiplicative property
is still useful for simplifying complex tasks of MPC by computing the
product of d field elements directly and non-interactively. In this paper,
to further improve usefulness, we introduce and study the verifiability
of multiplication, which is mainly formalized for the motivated applica-
tions of d-MSS. Informally, a d-MSS scheme is verifiable if the scheme
enables the players to locally generate an additive sharing of proof that
the summed value is the correct product of shared d secrets. First, we
prove that verifiably d-MSS among n players is possible if no d+1 unau-
thorized sets of players cover the whole set of players (type Qd+1) where
the error probability is zero. That is, a larger number of players n is
required. In addition, in the proposed error-free scheme, the share size of
a proof increases with the number of unauthorized sets. To achieve the
optimal bound on n of d-MSS (type Qd) efficiently, we accept an error
probability. We prove that verifiably d-MSS among n players is possible
if and only if no d unauthorized sets of players cover the whole set of
players (type Qd) where the error probability is non-zero but is chosen
arbitrarily. In the proposed scheme, each share of a proof consists of only
two field elements. From these results, we can see that there is a tradeoff
between usability and correctness (i.e. either no additional players or no
error). Because these schemes do not require any setup or interaction,
we can freely select them as the situation demands.

1 Introduction

A secret sharing (SS) scheme is a method of sharing a secret among a set of
n players so that some predefined authorized subsets of the players are able to
recover the secret. The notion of threshold SS was introduced by Shamir [24] and
Blakley [4] independently where the cardinality of any authorized set is larger
than a given threshold. Later, Ito et al. [15] generalized this notion to a setting
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where the authorized subsets are an arbitrary family of subsets of the players,
called access structures.

SS is now used as a central building block in many cryptographic and dis-
tributed applications such as unconditionally secure multiparty computation
(MPC) [1,2,5,7]. In addition, for natural application to unconditionally secure
MPC [5,7], the multiplicative property of SS is essential. We therefore focus on
information-theoretically secure SS in this paper.

Motivated by open problems in the area of MPC such as unconditionally
secure MPC with minimal interaction, Barkol et al. (Journal of Cryptology,
2010 [3]) introduced d-multiplicative SS and studied the type of access struc-
tures for which such secret sharing schemes exist. A secret sharing scheme is
d-multiplicative if the scheme allows the players to multiply shared d (rather
than two) secrets by locally converting their shares into an additive sharing of
the product. They proved that d-multiplicative schemes exist if and only if no d
unauthorized sets of players cover the whole set of players (type Qd). In partic-
ular, t-private d-multiplicative secret sharing among n players is possible only
if n > d · t where t-private means that every set of t players is unauthorized.
This result implies a limitation on the usefulness of SS in the context of MPC
in the sense that a larger number of players n is required for maintaining the
privacy level t as d increases. In other words, if we have a sufficient number of
players, there is a possibility of simplifying complex tasks of MPC by computing
the product of two or more elements directly and non-interactively without any
setup.

In this paper, we aim to improve the usefulness of d-multiplicative SS (MSS)
in the context of MPC while maintaining its advantages: no need for any inter-
action, any setup, or any computational assumption.

First, we introduce the notion of verifiably d-multiplicative SS, which is
mainly formalized for the motivated applications of d-MSS given in [3]. In the
motivated applications, each player adds random additive shares of 0 to each
generated share and the receiver of the shares only obtains the summed value
(i.e. the product). We therefore call a d-multiplicative scheme verifiable if the
scheme enables the players to locally generate an additive sharing of a proof that
the sum of shares (rather than each share) is correct. We expect that the verifia-
bility can be used for making MPC secure in the presence of an active adversary
by accepting the output only if the correctness is verified. A concrete application
is beyond the scope of this paper and is a possible future work.

Secondly, we study the feasibility of verifiably d-multiplicative SS. We prove
that verifiably d-multiplicative secret sharing is possible if the access structures
of type Qd+1 where the privacy achieved is perfect and the error probability is
zero. In the threshold case, type Qd+1 implies n > (d + 1) · t. This means that
we need to degrade the privacy level t or gather a larger number of players n. In
addition, in the proposed error-free scheme, the share size of a proof increases
with the number of unauthorized sets. A basic approach for overcoming this
problem in the context of MPC is to require interaction among the players [20]
or to use verifiable secret sharing [22], which relies on computationally secure
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commitment with a common reference string. That is, the advantages of d-MSS
are spoiled.

To achieve the optimal bounds on n of d-MSS (i.e., n > d · t for t-
privacy, or type Qd), we accept an error probability and prove that verifiably
d-multiplicative schemes exist if and only if the access structure is of type Qd,
where the privacy achieved is perfect, the error probability is non-zero but chosen
arbitrarily, and each share of the proof only consists of two field elements.

The interesting point of these results is that a secret sharing scheme itself
is not necessarly verifiable or linear. We note that the same results can be also
obtained for non-perfect privacy from the result on the (im)possibility of non-
perfect d-MSS in [26].

2 Preliminaries

In this section, we recall the definition of multiplicative and private properties,
some results on feasibility, and a motivated application given in [3].

2.1 Notations and Definitions

A secret sharing scheme involves a dealer and n players P1, . . . , Pn, and specifies
a randomized mapping from the secret s to an n-tuple of shares (s1, . . . , sn),
where the share si is given to player Pi. We assume that the secret is taken
from a finite field F. We also assume that all shares si are taken from a finite
share domain S. Let D denote a discrete probability distribution from which
the dealer’s randomness is chosen. To share a secret s ∈ F, the dealer chooses a
random element r ∈ D and applies a sharing function SHARE : F × D → Sn to
compute SHARE(s, r) = (s1, . . . , sn). For T ⊆ [n], let SHARE(s, r)T denote the
restriction of SHARE(s, r) to its T -entries.

Definition 1 (t-Private secret sharing [3]). A secret sharing scheme is said
to be t-private if for every set T ⊆ [n] with |T | = t and every pair of secrets
s, s′ ∈ F, the random variables SHARE(s, r)T and SHARE(s′, r)T induced by a
random choice of r ∈ D are identically distributed.

Definition 2 (d-Multiplicative secret sharing [3]). We call a secret sharing
scheme d-multiplicative if it satisfies the following d-multiplicative property. Let
s(1), . . . , s(d) ∈ F be d secrets, and r(1), . . . , r(d) ∈ D be d elements in the support
of D. For 1 ≤ j ≤ d, let (s(j)1 , . . . , s

(j)
n ) = SHARE(s(j), r(j)). We require the

existence of a function MULT : [n] × Sd → F such that for all possible s(j) and
r(j) as above,

∑n
i=1 MULT(i, s(1)i , . . . , s

(d)
i ) =

∏d
j=1 s(j).

To generalize our results from the threshold case to general access structures,
we show the notations and definitions of such secret sharing given in [3]. In
contrast to traditional secret sharing specifying a collection of authorized player
sets, the complementary notion of an adversary structure, specifying a collection
of unauthorized sets, is used for convenience in [3].
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Definition 3 (Adversary structure [3]). An n-player adversary structure is
a collection of sets T ⊆ 2[n] that is closed under subsets; that is, if T ∈ T and
T ′ ⊆ T then T ′ ∈ T . Let T̂ be the collection of maximal sets in T (namely those
that are not contained in any other set from T ).

Definition 4 (T -Private secret sharing [3]). Let T be an n-player adver-
sary structure. A secret sharing scheme is said to be T -private if every pair
of secret s, s′ ∈ F and every T ∈ T , the random variables SHARE(s, r)T and
SHARE(s′, r)T induced by a random choice of r ∈ D are identically distributed.

Definition 5 (Adversary structure of type Qd [3]). Let n, d be positive
integers and T be an n-player adversary structure. We say that T is of type Qd

if for every d sets T1, . . . , Td ∈ T we have T1 ∪ · · · ∪ Td ⊂ [n]. That is, no d
unauthorized sets cover the entire set of players.

The main result in [3] is a characterization of d-multiplicative secret sharing.

Theorem 1 (Theorem 4.6 in [3]). For any positive integers n, d and a n-
player adversary structure T , there exists a d-multiplicative T -private secret
sharing scheme if and only if T is of type Qd.

2.2 A Motivated Application

The motivated applications of the d-multiplicative property given in [3] are secure
polynomial evaluation and general secure computation with minimal interaction.
It has been shown that given a t-private d-multiplicative secret sharing for n play-
ers over F, there exists a t-private n-server secure polynomial evaluation protocol
for multi-variate polymomials of degree d over F where the communication com-
plexity is linear in the input length (see Lemma 3.1 in [3]). In addition, the
generalization from polynomials to arbitrary functions can be obtained by using
randomizing polynomials [16] which enables to represent an arbitrary function
by a vector of (randomized) degree-3 polynomials [3].

For simplicity, we briefly introduce the simplest case: A polynomial is the
form x1 ·x2 · · · xd; There are d clients, who holds inputs and wish to evaluate the
polynomial without revealing their inputs each other, and n servers, who help
perform the evaluation. Client j with 1 ≤ j ≤ d holds an input s(j) and every
server only knows the identity of the polynomial. Informally, a protocol should
satisfy the following correctness and privacy requirements.

Correctness: All clients output s(1) · · · s(d) (assuming that both client and
servers follow the protocol).

t-Privacy: Any collusion involving a strict subset of the clients and at most t
servers should not learn anything about the inputs of the other clients other
than what follows from their own inputs and the output.

The formal definitions and security proof are not included in [3] (the related
literatures [6,12] are referred), and omitted here.

The t-private n-server protocol given in [3] proceeds as follows:
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– Round 1: Client j, 1 ≤ j ≤ d, shares his input s(j) by computing SHARE(s(j),
r(j)) = (s(j)1 , . . . , s

(j)
n ). After sharing his input, he sends the share s

(j)
i to

Server i. In addition, Client j distributes between the servers random additive
shares of 0, namely it sends to Server i a field element z

(j)
i such that the n

elements z
(j)
i are random subject to the restriction that they add up to 0,

i.e.,
∑n

i=1 z
(j)
i = 0.

– Round 2: Server i, 1 ≤ i ≤ n, computes yi = MULT(i, s(1)i , . . . , s
(d)
i ) +

∑d
j=1 z

(j)
i , and sends yi to all clients.

– Output: Each client computes and outputs
∑n

i=1 yi. From the d-multiplicative
property, this output is equal to s(1) · · · s(d).

An important point to note here is that the generated shares yi is randomized
by additive shares of 0 and each client only obtains the summed value (i.e., the
product). Thus, in this paper, the notion of verifiability is defined for the summed
value rather than each share.

3 Verifiably Multiplicative Secret Sharing

We now define the verifiability of multiplication. We assume that malicious play-
ers who may behave arbitrary have the same structure as that against privacy.
To verify the summed value rather than each additive share, we define a proof
and its shares by vectors in F

c for a positive integer c where the summation
of two vectors a = (a1, . . . , ac) and b = (b1, . . . , bc) is performed by adding the
corresponding components of the vectors, i.e., a + b = (a1 + b1, . . . , ac + bc).

Definition 6 ( (ε, d)-Verifiably multiplicative secret sharing). Let c be a
positive integer. A T -private secret sharing scheme is said to be (ε, d)-verifiably
multiplicative if the scheme is d-multiplicative and there are two functions
PROOF : [n] × Sd → F

c and VER : F × F
c → {1, 0} that satisfy the follow-

ing properties.

Correctness: For s(j) ∈ F and r(j) ∈ D with 1 ≤ j ≤ d, let
(s(j)1 , . . . , s

(j)
n ) = SHARE(s(j), r(j)), m =

∑n
i=1 MULT(i, s(1)i , . . . , s

(d)
i ), and

σ =
∑n

i=1 PROOF(i, s
(1)
i , . . . , s

(d)
i ). Then, VER(m,σ) = 1.

Verifiability: An adversary that modifies any additive shares for any T ∈ T
can cause a wrong value to be accepted as the product with probability at most
ε. More formally, we define the experiment Exp(s(1), . . . , s(d), T,Adv) with
some d secrets s(1), . . . , s(d) ∈ F, unauthorized set T ∈ T , and interactive
adversary Adv.
Exp(s(1), . . . , s(d), T,Adv):

1. For each j with 1 ≤ j ≤ d, sample r(j) ← D and generate (s(j)1 , . . .,
s
(j)
n ) = SHARE(s(j), r(j)).

2. Give {(s(1)i , . . . , s
(d)
i )|i ∈ T} to Adv.
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3. Adv outputs modified additive shares m′
i ∈ F and σ′

i ∈ F
c with i ∈ T .

For i 	∈ T , we define m′
i = MULT(i, s(1)i , . . . , s

(d)
i ) and σ′

i = PROOF(i,
s
(1)
i , . . ., s

(d)
i ).

4. Compute m′ =
∑n

i=1 m′
i and σ′ =

∑n
i=1 σ′

i.
5. If m′ 	= s(1) · · · s(d) and VER(m′, σ′) = 1, then output 1 else 0.

We require that for any d secrets s(1), . . . , s(d) ∈ F, any unauthorized set
T ∈ T , and any unbounded adversary Adv,

Pr[Exp(s(1), . . . , s(d), T,Adv) = 1] ≤ ε.

Given an (ε, d)-verifiably multiplicative t-private secret sharing scheme, we
can make the motivated application correct in the presence of at most t malicious
servers. Specifically, the protocol satisfies the following strong correctness.

t-Correctness: All clients output s(1) · · · s(d) or ⊥ assuming at most t malicious
servers. That is, an incorrect value is not accepted.

The protocol in Sect. 2 is modified as follows.

– Round 1: Client j distributes between the servers random additive shares of
the zero-vector, namely it sends to Server i a vector z

(j)
i ∈ F

c+1 such that the
n vectors z

(j)
i are random subject to the restriction that they add up to the

vector with all components being 0, i.e.,
∑n

i=1 z
(j)
i = (0, . . . , 0).

– Round 2: Server i, 1 ≤ i ≤ n, computes a vector yi = (MULT(i, s
(1)
i , . . .,

s
(d)
i ), PROOF(i, s

(1)
i , . . ., s

(d)
i )) +

∑d
j=1 z

(j)
i , and sends yi to all clients.

– Output: Let yi = (mi, σi). Each client computes m =
∑n

i=1 mi and σ =∑n
i=1 σi. It outputs m if VER(m,σ) = 1, otherwise it outputs 0.

4 Feasibilities

Our main results are sufficient conditions for (ε, d)-verifiably multiplicative T -
private secret sharing to be possible. For the error-free case ε = 0, the condition
is stronger than that of the previous d-multiplicative T -private secret sharing,
which does not require the verifiability.

Theorem 2. For any positive integers n, d, and an n-player adversary structure
T , there exists a (0, d)-verifiably multiplicative T -private secret sharing scheme
if T is of type Qd+1 where c = |T̂ | (every proof consists of |T̂ | elements of F).

Then, we prove that the condition can be weakened to the optimal one, i.e., that
of the previous d-multiplicative T -private secret sharing (type Qd) by relaxing
the requirement on the error probability to ε > 0 that is chosen arbitrarily.

Theorem 3. For any positive integers n,E, d, and an n-player adversary struc-
ture T , there exists a secret sharing scheme that is (1/|F|E , d)-verifiably multi-
plicative and T -private if and only if T is of type Qd where c = 2E (every proof
consists of two elements of FE).
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We now prove Theorem 2.

Proof. (Theorem 2). We construct a (0, d)-verifiably multiplicative T -private
scheme for n players from the CNF scheme in [15], which is given for general
access structures. In the CNF scheme, to share a given secret s, for T ∈ T̂ , rT is
randomly chosen from F subject to the restriction that

∑
T∈T̂ rT = s. Each share

si is the set {rT |i 	∈ T}. We note that in the t-private CNF scheme, si consists
of exactly n−1Ct field elements. The T -privacy property follows from the fact
that every set T ∈ T̂ jointly misses rT and thus can learn no information about
the secret. The d-multiplicative property is proven in [3] and a multiplication
function MULT exists. Thus, we prove the existence of PROOF and VER. The key
idea is to generate shares of the product for subsets of players [n]\T for every set
of malicious players T ∈ T and check the equality of all recovered values. Any set
of malicious players is contained by some T ∈ T̂ . Thus, the value recovered from
shares for [n] \ T is correct, and the equality of all recovered values guarantees
that the error-probability is zero. Based on this idea, we define PROOF and VER
as follows. We number the subsets in T̂ from 1 to |T̂ |. Let s(1), . . . , s(d) be secrets.
For 1 ≤ j ≤ d, let r

(j)
T with T ∈ T̂ denote the additive parts of s(j). We write

the product s(1) · · · s(d) = (
∑

T∈T̂ r
(1)
T ) · · · (

∑
T∈T̂ r

(d)
T ) as the sum of the |T̂ |d

monomials of the form r
(1)
Tj1

· · · r(d)Tjd
. For each Tl ∈ T̂ , we partition the monomials

into n − |Tl| disjoint sets Xl,i such that i ∈ [n] \ Tl and all monomials in set Xl,i

is obtained from si. The possibility of partition follows from the fact that every
monomial as above can be assigned to a set Xl,i such that i 	∈ Tj1 ∪· · ·∪Tjd ∪Tl.
The existence of such i follows from the assumption that T is of type Qd+1. For
each 1 ≤ i ≤ n, PROOF(i, ·) outputs σi = (σi,1, . . . , σi,|T̂ |) ∈ F

|T̂ | where σi,l is
the sum of the monomials in Xl,i if i 	∈ Tl, and otherwise 0. We note that if all
players follow the scheme, then σ =

∑
σi is the vector with all components being

s(1) · · · s(d). We define the verification function VER(m,σ) to be 1 if and only
if σ = (m, . . . ,m) holds. Even if malicious players T provide incorrect shares,
there is a component σl with T ⊆ Tl which is the correct value s(1) · · · s(d). Thus,
VER detects the existence of an incorrect value without error. ��

Next, we prepare a lemma for the proof of Theorem 3.

Lemma 1. Given d-multiplicative T -private secret sharing schemes for n play-
ers over F and F

E, there exists a (1/|F|E , d)-verifiably multiplicative T -private
secret sharing scheme for n players where c = 2E (every proof consists of two
elements of FE).

Proof. For notational convenience, we present the proof for the case E = 1.
The generalization to an arbitrary E > 1 is shown later. Suppose there is a d-
multiplicative T -private secret sharing scheme for n players over F and its multi-
plication function, denoted by SHARE′ and MULT′, with randomness domain D′

and share domain S ′. We show a method of constructing a (1/|F|, d)-verifiably
multiplicative T -private secret sharing scheme for n players (SHARE, MULT,
PROOF, VER) with c = 2 from (SHARE′, MULT′).
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The key idea is as follows: For the product m = s(1) · · · s(d), PROOF generates
additive shares of α ∈ F and those of β = α · m, and then VER checks whether
α · m = β. A similar technique is used for detection of cheaters in secret sharing
by Cabello et al. [9] in which m is replaced with the secret s itself and α and
β are shared together with the secret. In contrast, in the scheme we present
here, additive shares of α and β are not shared beforehand and are computed
by using only the d-multiplicative property. We note that the d-multiplication
property imposes no linearity requirement on SHARE itself. Thus, we need to
convert non-additive shares of α into additive ones. To realize such conversion,
we additionally share “1” for padding the product 1d−1 with α.

Specifically, we define SHARE : F × D → S as follows: D = F × D′4, S = F
4,

and SHARE(s, (α, r1, r2, r3, r4)) = (SHARE′(s, r1), SHARE′(α, r2), SHARE′(α ·
s, r3), SHARE′(1, r4)). That is, randomly chosen α ∈ F, γ = α · s ∈ F, and 1 ∈ F

are additionally shared.
Let s(1), . . . , s(d) be d secrets. Let α(1), . . . , α(d), γ(1), . . . , γ(d) be chosen as

the above, that is, γ(j) = α(j) · s(j). For 1 ≤ i ≤ n and 1 ≤ j ≤ d, s
(j)
i =

(t(j)i , α
(j)
i , γ

(j)
i , 1(j)i ) be the i-th share of s(j). We define MULT(i, s(1)i , . . . , s

(d)
i ) =

MULT′(i, t(1)i , . . . , t(d)), that is, the same as the original scheme. Then, we define
PROOF(i, s

(1)
i , . . ., s

(d)
i ) = (MULT′(i, α

(1)
i , 1(2)i , . . ., 1(d)i ), MULT′(i, γ

(1)
i , t

(2)
i , . . . ,

t
(d)
i )), which consists of an additive share of α(1) · 1 · · · 1 and that of γ(1) ·

s(2) · · · s(d) = α(1) · s(1) · s(2) · · · s(d). For m ∈ F and σ = (σ1, σ2) ∈ F
2,

VER(m,σ) = 1 if and only if m · σ1 = σ2.
Let mi = MULT(i, s(1)i , . . . , s

(d)
i ) and σi = (σi,1, σi,2) = PROOF(i, s(1)i , . . . ,

s
(d)
i ). It is obvious that the correctness holds because m =

∑
mi = s(1) · · · s(d),

σ1 =
∑

σi,1 = α(1) · 1 · · · 1 = α, and σ2 =
∑

σi,2 = α(1) · s(1) · s(2) · · · s(d).
In the following, we prove the verifiability. Let T ∈ T . Let Δm = m − m′,

Δα = σ1 − σ′
1, and Δβ = σ2 − σ′

2 where m′ and σ′ = (σ′
1, σ

′
2) is computed in

Step 4 in Exp. Adv can choose (Δm,Δα,Δβ) arbitrarily by modifying m′
i and σ′

i

for i ∈ T in Step 3 of Exp. The error occurs if Δm 	= 0 and VER(m + Δm, (σ1 +
Δα, σ2 + Δβ)) = 1, that is, m · Δα + α(1) · Δm + (Δm · Δα − Δβ) = 0. For
every choice of (Δm,Δα,Δβ) with Δm 	= 0, there is a unique α(1) ∈ F satisfying
the above equation. Thus, for any d secrets s(1), . . . , s(d), any T ∈ T , and any
unbounded adversary Adv, the probability of VER outputting 1 is 1/|F|.

We can choose E arbitrarily by using an extension field F
E instead of F.

SHARE shares α ∈ F
E , γ = α · s ∈ F

E , and 1 ∈ F
E by using a scheme for F

E .
PROOF generates additive shares in F

E and VER checks the equality over F
E .

It is easy to show taht ε = 1/|F|E holds for the modified scheme with almost
a same proof. Therefore, we obtain arbitrarily chosen ε by choosing a degree of
the extension E such that E = min{E′ | ε ≤ 1/|F|E′}. ��

Proof. (Theorem 3). The only-if part is obvious from Theorem 1. If T is of type
Qd, then there is a d-multiplicative T -private secret sharing scheme for n players
over a finite field. From Lemma 1, the if-part follows. ��
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5 Conclusion

In this paper, we have introduced the notion of (ε, d)-verifiably multiplicative T -
private secret sharing, and clarified the conditions under which such scheme
exists. Namely, we have shown that (0, d)-verifiably multiplicative T -private
secret sharing scheme exists if the adversary structure T is of type Qd+1, and
that, for arbitrarily small ε > 0, (ε, d)-verifiably multiplicative T -private secret
sharing scheme exists if the adversary structure T is of type Qd. These feasibility
results were obtained by presenting constructions of (ε, d)-verifiably multiplica-
tive and T -private secret sharing with the corresponding parameters.

Since it has been shown in [3] that a d-multiplicative T -private secret sharing
scheme exists only if the adversary structure T is of type Qd, our proposed
construction for ε > 0 made it clear that an (ε, d)-verifiably multiplicative T -
private secret sharing scheme with ε > 0 exists if and only if the adversary
structure T is of type Qd.

However, it is not made clear whether (0, d)-verifiably multiplicative T -
private secret sharing scheme can be constructed even when the adversary struc-
ture T is of type Qd. To clarify the necessary and sufficient condition for the
existence of (0, d)-verifiably multiplicative T -private secret sharing scheme will
be future challenge.

References

1. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: 23rd ACM
Conference on Computer and Communications Security (ACM CCS 2016), pp.
805–817 (2016)

2. Araki, T., Barak, A., Furukawa, J., Lichter, T., Lindell, Y., Nof, A., Ohara, K.,
Watzman, A., Weinstein, O.: Optimized honest-majority MPC for malicious adver-
saries - breaking the 1 billion-gate per second barrier. In: 38th IEEE Symposium
on Security and Privacy (S&P 2017), pp. 843–862 (2017)

3. Barkol, O., Ishai, Y., Weinreb, E.: On d-multiplicative secret sharing. J. Cryptology
23(4), 580–593 (2010)

4. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS 1979 National Com-
puter Conference, vol. 48, pp. 313–317 (1979)

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: The 20th Annual ACM
Symposium on Theory of Computing, STOC 1988, pp. 1–10 (1988)

6. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13(1), 143–202 (2000)
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