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Preface

ICITS 2017, the 10th International Conference on Information Theoretic Security, was
held in Hong Kong, China, during November 29 – December 2, 2017. The conference
took place on the campus of The Chinese University of Hong Kong. ICITS 2017 was
held in cooperation with the International Association for Cryptologic Research
(IACR), and supported by IEEE Information Theory Society Hong Kong Chapter. The
General Chair of the conference was Kenneth Shum.

ICITS is the successor conference to the 2005 IEEE Information Theory Workshop
on Theory and Practice in Information Theoretic Security, held on Awaji Island, Japan.
It is now an international conference which deals with all aspects of
information-theoretic security and brings together researchers from various areas
including cryptography, information theory, and quantum computing. Information-
theoretic security is the cryptographic security that does not depend on computational
assumptions, and it is achieved by utilizing techniques or methods from various fields
such as information theory, discrete mathematics, and quantum physics.

ICITS 2017 had two tracks, a conference track and a workshop track, as did the
previous ICITS. This two-track format was started with ICITS 2012, and it has the
advantage of bringing together researchers from various areas with different publication
cultures. The proceedings contain the accepted papers for the conference track. The
accepted works for the workshop track were presented at the conference but do not
appear in this volume. The list of the contributions in the workshop track is given
before the Table of Contents.

The Program Committee received a total of 42 submissions, of which 12 were
accepted for the conference track and 7 for the workshop track. All submitted papers
were reviewed by at least 3 members of the Program Committee, who sometimes were
assisted by external reviewers.

In addition to the 19 contributed presentations, there were 6 invited talks:

– “Randomness Extraction in the Quantum World” by Kai-Min Chung, Academia
Sinica, Taiwan

– “Sufficiently Myopic Adversaries Are Blind” by Sidharth Jaggi, The Chinese
University of Hong Kong, Hong Kong

– “Quantum Wiretap Channel Coding and Information Spectrum Methods” by
Tomohiro Ogawa, The University of Electro-Communications, Japan

– “A Unified Paradigm of Organized Complexity and Semantic Information Theory”
by Tatsuaki Okamoto, NTT, Japan

– “Physical Assumptions for Long-Term Secure Communication” by Rei
Safavi-Naini, University of Calgary, Canada

– “Secret Sharing Schemes: Some New Approaches and Problems” by Huaxiong
Wang, Nanyang Technological University, Singapore



I would like to thank all the people who have contributed to the success of ICITS
2017. First of all, I would like to thank all the authors who submitted their papers to
ICITS 2017. I would also like to thank all members of the Program Committee, who
completed the reviews in a timely and professional manner. It was a great honor for me
to work together with them. Moreover, I would like to thank the Steering Committee of
ICITS, in particular Yvo Desmedt and Rei Safavi-Naini, for their kind support from the
initial stage of the conference. I am grateful to the Program Chairs of previous con-
ferences for their advice and assistance, in particular Anderson Nascimento, Stefan
Wolf, and Anja Lehmann. I would especially like to thank the General Chair, Kenneth
Shum, for organizing and managing the wonderful conference ICITS 2017, and the
Treasurer, Chee Wei, for financial management, Wei Kang for taking charge of pub-
licity, and Hoover Yin for designing the website of the conference. I would also like to
thank the CANS 2017 program co-chairs, Sran Čapkun and Sherman S. M. Chow, and
the CANS 2017 General Chair, Kehuan Zhang, for the collaboration, because ICITS
and CANS were co-located in the campus of The Chinese University of Hong Kong
from November 29 to December 2, 2017. Finally, I would like to thank Alfred Hof-
mann, Elke Werner, and Anna Kramer and other LNCS staff at Springer for their help
in publishing the proceedings. Our sponsor was the Institute of Network Coding, The
Chinese University of Hong Kong.

October 2017 Junji Shikata
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Linear-Time Non-Malleable Codes
in the Bit-Wise Independent Tampering Model

Ronald Cramer1,2, Ivan Damg̊ard3, Nico Döttling4, Irene Giacomelli5(B),
and Chaoping Xing6

1 CWI, Amsterdam, Netherlands
2 Leiden University, Leiden, Netherlands
3 Aarhus University, Aarhus, Denmark

4 Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen-Nurnberg, Germany
5 University of Wisconsin-Madison, Madison, USA

igiacomelli@wisc.edu
6 Nanyang Technological University, Singapore, Singapore

Abstract. Non-malleable codes were introduced by Dziembowski et al.
(ICS 2010) as coding schemes that protect a message against tamper-
ing attacks. Roughly speaking, a code is non-malleable if decoding an
adversarially tampered encoding of a message m produces the original
message m or a value m ′ (possibly ⊥) completely unrelated to m . It is
known that non-malleability is possible only for restricted classes of tam-
pering functions. Since their introduction, a long line of works has estab-
lished feasibility results of non-malleable codes against different families
of tampering functions. However, for many interesting families the chal-
lenge of finding “good” non-malleable codes remains open. In particular,
we would like to have explicit constructions of non-malleable codes with
high-rate and efficient encoding/decoding algorithms (i.e. low computa-
tional complexity). In this work we present two explicit constructions: the
first one is a natural generalization of the work of Dziembowski et al. and
gives rise to the first constant-rate non-malleable code with linear-time
complexity (in a model including bit-wise independent tampering). The
second construction is inspired by the recent works about non-malleable
codes of Agrawal et al. (TCC 2015) and of Cheraghchi and Guruswami
(TCC 2014) and improves our previous result in the bit-wise independent
tampering model: it builds the first non-malleable codes with linear-time
complexity and optimal-rate (i.e. rate 1 − o(1)).

Keywords: Non-malleable codes · Linear-time
Bit-wise independent tampering · Secret-sharing

1 Introduction

Non-malleable codes are a relaxation of error-correcting and error-detecting
codes that have useful applications in cryptography. For example, they can be
used to protect keys that are stored in non-robust devices against tampering
c© Springer International Publishing AG 2017
J. Shikata (Ed.): ICITS 2017, LNCS 10681, pp. 1–25, 2017.
https://doi.org/10.1007/978-3-319-72089-0_1



2 R. Cramer et al.

attacks. Recently, they also found application to computational cryptography
(e.g. construction of non-malleable commitments [7,36] and domain extension
for public-key encryption schemes [20,21]). Roughly speaking, a coding scheme
(Enc,Dec) is non-malleable with respect to the tampering function f if decod-
ing f(Enc(m)) produces the original message m or a value m ′ (possibly ⊥)
completely unrelated to m . Moreover, the probability of which one of these two
events happens is also independent of m . As an illustration of the notion, con-
sider a key that is stored in a device. The adversary is able to tamper with
the key and gets to see the effect of using the device with the tampered key
inside. If the key was coded with a non-malleable code and is decoded before
use, this attack becomes useless, as the key actually used after tampering is
either unchanged or is unrelated to the original key.

Since a tampering function can always try to decode, modify the message,
and encode again, it is clear that non-malleable codes are impossible without
restrictions on the tampering function. We therefore restrict the adversary to
using functions from a specific class F . In this case, we say that we have a
non-malleable code with respect to the family F . For example, if the encoding is
made by n symbols from a finite field F, then we can restrict the tampering func-
tion to be a function with n independent components (f1, . . . , fn) (symbol-wise
independent tampering, or bit-wise independent tampering if F = {0, 1}). Other
important features of the coding scheme are the rate and the computational
complexity1.

Non-malleable codes were introduced in 2010 by Dziembowski et al. [30].
Previously, Cramer et al. [24] introduced the notion of “Algebraic Manipulation
Detection” (AMD) codes. Such codes guarantee error-detection with respect to
the family of additive tampering functions. Since 2010, a line of works has estab-
lished increasingly stronger results concerning the feasibility of non-malleable
codes against different families of tampering functions. However, for many inter-
esting families the challenge of finding “good” non-malleable codes remains open.
In particular, we would like to have explicit constructions of non-malleable codes
with high rate and efficient encoding/decoding algorithm (i.e. low computational
complexity).

This paper follows this research direction studying the following natural ques-
tion: can we achieve the optimal properties of linear-time complexity and rate
approaching 1 simultaneously (via an explicit constriction)? This is not known,
even for the restricted case of bit-wise independent tampering, and even if we
only ask for linear-time complexity2.

Many of the known constructions of non-malleable codes (see for example
[7,8,15,17,30]) use linear secret-sharing schemes (LSSS) as one of the main

1 The rate of the coding scheme (Enc,Dec) is the quotient of the length of the message
m over the length of its encoding Enc(m). The computational complexity of the
scheme is maximum of the computational complexities of the two algorithm Enc and
Dec in function of the length of m .

2 Determining which cryptographic primitives can be instantiated in linear-time is an
interesting and challenging program started by Ishai et al. in [37].
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building blocks. This holds also for the constructions presented in this paper.
Roughly speaking, a secret-sharing scheme is a randomised algorithm that
encodes a message m as a longer vector s such that m can be computed from
large enough sets of entries in s, while smaller set give no information about
m . LSSS with extra properties (uniformity and distance) are used already by
Dziembowski et al. in [30] where they introduce and motivate the formal notion
of non-malleable codes and also construct the first family of non-malleable codes
in the bit-wise independent tampering model. The computational complexity of
the code is quadratic in the size of the input length. Secondly, via the probabilis-
tic method they show that for any family F of tampering functions such that
|F| ≤ 22

αn

for some constant α < 1 (n is the length of the encoding) there exist
constant-rate non-malleable codes with respect to F . In this case, the description
of the code is of exponential size, thus the encoding and decoding algorithms
are inefficient. More recently, Cheraghchi and Guruswami [14,16] prove that for
this kind of families the optimal rate is 1 − α; they construct non-malleable
codes approaching this rate. Again, the construction is non-explicit and gives
rise to inefficient codes. For families of single exponential size, i.e. |F| ≤ 2p(n)

for some polynomial p, efficient (i.e. polynomial time) non-malleable codes were
constructed in [33]. This construction is also randomized, i.e. the construction
succeeds with overwhelming probability in providing non-malleable codes achiev-
ing optimal rate 1 − o(1). On the other hand, in [15] an explicit (deterministic)
construction of non-malleable codes with rate arbitrarily close to 1 in the bit-wise
independent tampering model is given. The construction is based on the concate-
nation of a linear error-correcting secret-sharing scheme of rate close to 1 and a
constant-size non-malleable code. This construction is instantiated using Reed-
Solomon codes and has thus computational complexity at least O(npolylog(n))
(super-linear).

In [38], Jafargholi and Wichs introduce tamper-detection codes (TD) and use
them together with leakage-resilient codes [27] to construct non-malleable codes
that achieve optimal rate when |F| ≤ 22

αn

and efficient encoding and decoding
when |F| ≤ 2p(n).

Our Contribution. In this paper, we study the above question and achieve pos-
itive results. In the first part of our work, we push forward the idea of using
linear secret sharing, and show that when the family of tampering functions has
a clear structure (as in the symbol-wise independent tampering model), then
simple constructions based on LSSS can achieve good results: we get constant-
rate non-malleable codes with optimal computational complexity O(k), where
k is the length of the input message. To obtain this, we also use known results
about linear-time encodable error-correcting codes and linear-time computable
universal hash functions [28,37].

Building on the first result, we then achieve both linear-time complexity
and optimal rate, that is rate 1 − o(1), for non-malleable codes in the bit-wise
independent tampering model. It is instructive to observe that optimal-rate non-
malleable codes with superlinear time complexity were constructed in [8,15],
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and that these codes are based on secret sharing schemes with (relatively) large
privacy and reconstruction thresholds. The problem we face is that there are
no constructions of linear secret sharing schemes with linear-time complexity
for the required parameter range3. We therefore propose a novel construction
which is based on slightly weaker primitives which can be instantiated for the
rate 1 − o(1) and linear-time complexity regime.

Overview of our Constructions. As mentioned, we present two deterministic con-
structions for linear-time non-malleable codes: Construction 1 can be seen as
a generalization of the original construction of [30] and gives rise to the first
linear-time non-malleable codes with constant rate in the symbol-wise indepen-
dent tampering model. More generally, we prove that given a family of TD codes
with any computational complexity and rate, it is possible to explicitly construct
a family of non-malleable codes with constant rate and linear-time complexity.
The other ingredients of this first construction are constant-rate AMD codes and
constant-rate LSSS with good privacy (but where one needs almost all shares
to reconstruct). We present linear-time instantiations of both these primitives
using the results of [28]. Construction 1 encodes a message m with three sequen-
tial steps: first m is encoded with an AMD code, then the result is shared by a
LSSS with privacy and finally each share is encoded by a tamper-detection code
(see Fig. 1).

F
k AMD−−−−−→ F

Θ(k) LSSS−−−−−→ (F )m componet-wise TD−−−−−−−−−−−−→ (F )m

m −−−−−→ m −−−−−→ s

(s1, . . . , sm) (c1, . . . , cm)

Fig. 1. The encoding algorithm of Construction 1 (m = Θ(k) and � constant).

In particular, in Construction 1 if the tamper-detection code is secure against
the family of tampering functions F with constant error, then the resulting
code is non-malleable with respect to the family F+ of functions of the form
(f1, . . . , fm) where each fi is a function from F , a constant function or the
identity and it has error negligible in the length of the input. Hence, depending
on how one instantiates the components of the construction, one can handle
more general tampering models than bit-wise4. A key point for the efficiency is
that the shares produced by the LSSS used are of constant size. This implies that
applying the tamper-detection code to all the shares results only in a constant
overhead for the computational complexity.
3 A Monte-Carlo construction by Cramer et al. [22] can be instantiated for a parameter

range where the rate of the secret sharing scheme is bounded away from 1 by a
constant, but not for rate approaching 1.

4 The concrete instantiation we give in Corollary 3 leads to bit-wise independent
tampering.
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With Construction 2, we achieve linear-time non-malleable codes with opti-
mal rate approaching 1, still with an explicit (deterministic) construction. The
most efficient constructions of optimal rate non-malleable codes in the bit-wise
independent tampering model are from [8,15]. Both these constructions require
a secret sharing scheme with good privacy and non-trivial reconstruction thresh-
old. Together with the rate close to 1 constraint, these are challenging features to
achieve in linear-time. In our construction, we also use a secret-sharing scheme
with rate close to 1, but we do not require any reconstruction property for this
scheme. Instead, we combine the sharing scheme with two other tailored primi-
tives, each implementable in linear-time, and a short constant-rate non-malleable
code. The modular design of our construction makes the security proof much sim-
pler and more intuitive than previous constructions: each primitive takes care
of a specific property needed to prove non-malleability. The encoding is done
in the following way: first the input message is shared with a sharing scheme
that has rate 1 − o(1) and t-uniformity (that is, if s is the share vector of m ,
then each set of t components of s are distributed uniformly on F

t). Then we
use the two tailored primitives: first, a keyed almost universal function is used
to compute the first hash of s, hk (s). Second, we compute short deterministic
hash Comp(s), using a new primitive that we call a compressor. This compressed
value Comp(s) comes with the guaranty of having high entropy. The two hash
values and the key for the almost universal hash function can be thought of as
an “authentication tag” of m . The final encoding is given by the share vector
s and a non-malleable encoding of this tag, this encoding does not have to be
high-rate nor linear-time (see Fig. 2).

F
k sharing−−−−−→ F

k+o(k) hashing−−−−−−→ F
k+o(k) × F

o(k) × F
o(k) short NM−−−−−−−→ F

k+o(k) × F
o(k)

m −−−−−→ s −−−−−→ (s, hk(s),Comp(s))

(s,h, c) (s,NM(k,h, c))

Fig. 2. The encoding algorithm of Construction 2.

More related work. Bit-wise independent tampering functions act on each bit
of the encoding independently. In the more general, C-split state model the
encoding is partitioned into C blocks (C is a constant) and each block can
be tampered arbitrarily but independently of the others blocks (e.g. [18]). For
C = 10, an efficient and explicit construction of constant rate non-malleable
codes was given in [13]. Several results can be found in the literature when C = 2
(split-state model) [3–5,15,29,32,40,41]. In [41] the non-malleability property is
guaranteed only against computationally bounded adversaries, while the scheme
proposed by [29] is secure in the information-theoretic setting, but it can encode
only 1-bit messages. The first explicit construction of non-malleable codes with
information-theoretic security and message space larger than {0, 1} in the split-
state model was proposed in [4] and have rate polynomially small (k-bit strings
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are encoded into codewords of length ≈ k7). This result was recently improved
in [2], where the codeword length is decreased to O(k5). In 2015, Aggarwal
et al. [3] constructed the first explicit non-malleable codes in the split state
model achieving constant-rate. Rate approaching to 1 is achieved in [1,39] in the
computational setting.

In [7,8], Agrawal et al. construct explicit and non-malleable codes which
are simultaneously resilient against bit-wise independent tampering and per-
mutations. [7] gets optimal rate, but has super-linear computational complex-
ity. In [9] constant-rate and explicit non-malleable codes with respect to the
family of functions f : {0, 1}n → {0, 1}n such that any output bit depends
only on nδ input bits (0 ≤ δ < 1 constant). Finally, notice that many variants
of non-malleable codes have been introduced in the literature: e.g. continuous
non-malleable codes [6,12,32,38], leakage-resilient non-malleable codes [5,31,41],
block-wise non-malleable codes [10,35] and local non-malleable codes [11,25,26].

Structure of the paper: In Sect. 2, we fix the notation and give the basic definitions
we need further on in the paper. In Sect. 3 first we give linear-time construction
for AMD codes and LSSS with privacy, then we present Construction 1 in general
and finally, we instantiate it for the binary case (bit-wise independent tampering
model). Section 4 is also divided in two parts: in the first one we define and
instantiate the primitives that are necessary for Construction 2; the latter is
described in the second part of the section together with its instantiation in the
bit-wise independent tampering model.

2 Preliminaries

For an integer n, we write [n] = {1, 2, . . . , n} and, given A ⊆ [n], |A| denotes
the cardinality of A, while Ac indicates the complement set of A, i.e. Ac =
[n] \ A. With the notation (z 1, . . . , zn) we indicate an element of the n-times
cartesian product of F�, where F is a finite field of cardinality q and � is a positive
integer. Given z = (z 1, . . . , zn) ∈ (F�)n and a subset A ⊆ [n], we will use zA

to denote the vector (z i)i∈A ∈ (F�)|A|. Given two vectors z = (z 1, . . . , zn), v =
(v1, . . . , vn) ∈ (F�)n, the generalized Hamming Distance between z and v is
defined by d�

Ham(z , v) = |{i ∈ [n] | z i �= v i}|. If Alg is an algorithm (randomized
or not) that takes as input a value from F

n, then the computational complexity
of Alg is the number of field elementary operations that Alg executes to compute
the output. We indicate with id the identity function. We say that a function ε is
negligible in n (ε(n) = negl(n)) if for every polynomial p there exists a constant
c such that ε(n) < 1

p(n) when n > c. For a random variable X, the notation
v ← X denotes that v is sampled randomly according to X. For a set S, v ← S
denotes that v is sampled uniformly at random from S. Given two random
variables X and Y with finite range S, the statistical distance between X and Y
is defined as SD(X,Y ) = 1

2

∑
i∈S |Pr[X = i]−Pr[Y = i]|. Let X = (X1, . . . , Xn)

be a random variable with range Sn and t be a positive integer less or equal
to n. We say that X is t-wise independent if for any A = {i1, . . . , it} subset
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of [n] of cardinality t and for any vector b = (b1, . . . , bt) ∈ St, it holds that
Pr[XA = b] =

∏t
j=1 Pr[Xij

= bj ]. We say that X is t-wise uniform on Sn if for
any A ⊆ [n] of cardinality t, XA has the uniform distribution on St. If t = n we
simply say that X is an uniform random variable on Sn.

2.1 Tamper-Detection and Non-Malleability

Let F be a finite field and n, �, k be positive integers. An �-folded n-code over
F is a non-empty subset C of (F�)n; we will refer to n as the length of the code.
Given a set A ⊆ [n], with the notation CA we indicate the set {cA | c ∈ C}. If
ψ : C → F

k is a regular function, the pair (C, ψ) is called �-folded (n, k)-coding
scheme. The rate of a scheme is the ratio k/�n. If F = {0, 1}, the scheme is
called binary. When � = 1, we simply call it (n, k)-coding scheme. If C is a vector
space over F, then the code is called linear. The dimension of a linear code is its
dimension as vector space over F. Moreover, if the map ψ is an F-linear map,
also the scheme (C, ψ) is called linear.

Remark 1. Given an �-folded (n, k)-coding scheme (C, ψ), any randomized algo-
rithm Enc : Fk → C that on input m ∈ F

k outputs c ∈ ψ−1({m}) selected uni-
formly at random is called encoding algorithm. On the other side, decoding algo-
rithm is the name used for the deterministic algorithm Dec : (F�)n → F

k ∪ {⊥}
that maps c to m = ψ(c) ∈ F

k if c ∈ C and to ⊥ otherwise. For convenience5,
in the following we will always identify a coding scheme (C, ψ) with the pair
(Enc,Dec).

While keeping F fixed, we will assume throughout that n = n(k). The com-
putational complexity (as a function of k) of a coding scheme is the maximum
taken over the computational complexities of Enc and Dec, respectively. We say
that a coding scheme is linear-time if both Enc and Dec have complexity O(k).

Let (Enc,Dec) be an �-folded (n, k)-coding scheme over F. Given an encoding
c ← Enc(m) for the message m ∈ F

k, tampering with c can be represented
by considering a function f : (F�)n → (F�)n that modifies the encoding c in
c̃ = f(c). The output of Dec(c̃) now depends on the original message m and
also on the tampering function f . To represent this, we consider the following
random variable Realmf .

Realmf =

⎧
⎪⎨

⎪⎩

sample c ← Enc(m);
compute c̃ = f(c);
output m̃ = Dec(c̃);

A simple but strong property that we can ask for is that the coding scheme is
able to detect with overwhelming probability the tampering caused by all the
functions f from a specific family F .
5 The two definitions are equivalent. Given the pair (Enc,Dec) such that for any m it

holds Pr[Dec(Enc(m)) = m ] = 1, define C as the image of Enc in (F�)n and ψ as the
map Dec restricted to C.
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Definition 1 (TD Code, [38]). Given a family F of functions over (F�)n, an
�-folded (n, k)-tamper detection code with respect to F and with error ε is an
(n, k)-coding scheme such that Pr[Realmf �=⊥] ≤ ε, ∀m ∈ F

k and ∀ f ∈ F .

For example, any error-correcting code from coding theory with minimal distance
d is a TD code with respect to the family Fdist of functions that modify less
than d components in the input vector (i.e. d�

Ham(f(x ),x ) < d). The name
algebraic manipulation detection (AMD) code, introduced by [24], is used for
TD codes with respect to the family Famd of additive tampering functions. That
is, functions of the form fe(x ) = x +e where the vector e is a non-zero constant
vector independent of x .

Unfortunately, tampering detection can not be achieved for many natural
families. For example, consider the family Fconst of all constant functions
fc(x ) = c for c ∈ (F�)n; if c is a valid encoding, then Pr[Realmfc

�=⊥] = 1 for all
m ∈ F

k. In order to be able to consider larger families of tampering functions, the
definition of tampering detection needs to be relaxed. Instead of asking that the
tampering is detected, we can ask that the result of the tampering action is inde-
pendent of the original message. This property, called non-malleability is weaker
than tampering-detection, nevertheless it offers enough protection against tam-
pering attacks: an adversary that actively modifies encoded data can not control
the practical effect of his action on the encoded message.

Definition 2 (NM Code, [30]). An �-folded (n, k)-coding scheme (Enc,Dec)
is said to be non-malleable with respect to a family F with error ε if the following
holds for any f ∈ F . There exists a random variable Df on F

k ∪{⊥, same} such
that, given

Idealmf =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sample m∗ ← Df ;
if m∗ = same then m′ = m;

otherwise m′ = m∗;
output m′;

then SD(Realmf , Idealmf ) ≤ ε for any m ∈ F
k.

In the rest of the paper we will mainly consider the family of symbol-
wise independent tampering functions. That is, if the encoding has the form
c = (c1, . . . , cn) ∈ (F�)n, then each component ci can be modified arbi-
trarily but independently of the values of the others components. We will
use the following notation: F q

�,n = {f = (f1, . . . , fn) | fi : F
� → F

�} and
f(c) = (f1(c1), . . . , fn(cn)). Let q be the cardinality of the field F, note that
if q = 2 and � = 1, F 2

1,n is the family considered in the bit-wise independent
tampering model.

2.2 Secret-Sharing

Suppose that (Enc,Dec) is an �-folded (n, k)-coding scheme over F. Let t, r be
positive integers.
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Definition 3. (Enc,Dec) has t-privacy if the following holds for each set
A ⊂ [n] of F

�-coordinates with |A| = t. For each m,m′ ∈ F
k, the distrib-

utions of (Enc(m))A and (Enc(m′))A on (F�)t are identical. The scheme has
t-uniformity if these distributions are the uniform ones on (F�)t. (Enc,Dec) has
r-reconstruction if the following holds for each set A ⊂ [n] of F�-coordinates with
|A| = r. If c, c′ ∈ C satisfy cA = c′

A, then Dec(c) = Dec(c′).

Note that any scheme has n-reconstruction. Moreover, if the coding scheme has
r-reconstruction and t-privacy, then t < r.

Remark 2. Given an �-folded linear (n, k)-coding scheme, it is easy to prove
that t-privacy and t-uniformity are equivalent to the following conditions,
respectively.

– (t-privacy) for each set A ⊆ [n] of F�-coordinates with |A| = t, the map that
maps c in C to the pair (Dec(c), cA) is surjective;

– (t-uniformity) the same condition as before holds and moreover CA = (F�)t.

Definition 4 (LSSS). An �-folded (n, t, r, k)-secret-sharing scheme over F

(with uniformity) is an �-folded (n, k)-coding scheme over F with t-privacy (t-
uniformity) and r-reconstruction. If the coding scheme is linear then we call it
linear secret-sharing scheme (LSSS).

Notice that in the existing literature, the algorithms Enc and Dec of a secret-
sharing scheme are often indicated with the notation Sh (sharing algorithm) and
Rec (reconstruction algorithm), respectively. Moreover, if c ← Sh(m), then c is
called share vector. Later on in the paper we will use this notation.

In this work, we will use secret-sharing schemes with different parameters and
properties as building blocks for constructing efficient NM codes. In particular,
for Construction 1 we are interested in the following aspect: what happens if the
reconstruction algorithm of a t-private LSSS is applied to a share vector where
at most t components have been tampered arbitrarily but independently from
the others. The answer is stated in the next lemma (proof in [23]).

Lemma 1. Let (Sh,Rec) be a t-private �-folded (n, k)-LSSS. Fix a set A ⊆ [n] of
F

�-coordinates with |A| ≤ t and an (eventually randomized) function g : (F�)n →
(F�)n with the following properties. For any s ∈ (F�)n, (g(s))Ac = sAc and
(g(s))A depends only on the entries of sA. Then, there exists a random variable
Δg on (F�)n ∪ {⊥} such that for any m ∈ F

k, Rec(g(Sh(m))) has the same
distribution of m + Δg (with the convention that m+ ⊥=⊥).

3 Constant-Rate and Linear-Time NM Codes

In this section, we describe our first main result: Construction 1 (Fig. 4) combines
an AMD code, a LSSS and a TD code with constant error in order to construct a
constant-rate NM code (with negligible error) whose computational complexity
is controlled by the complexity of the two first schemes used (the AMD code
and the LSSS).



10 R. Cramer et al.

3.1 Building Blocks for Construction 1

Before describing Construction 1, we build linear-time and constant-rate AMD
codes and LSSSs.

We recall that a coding scheme (Enc,Dec) (with alphabet F) is an (n, k)-
AMD code6 with error ε if ∀m ∈ F

k and any non-zero e ∈ F
n, it holds that

Pr[Dec(Enc(m) + e) �=⊥] ≤ ε. This special family of TD codes are of particular
interest because, despite their simple definition, they can be used as basic tools of
generic constructions for coding scheme that achieve security against tampering
family larger than Famd (see for example [30] and our Construction 1). Clearly,
the parameters (i.e. the rate) and the efficiency of the final schemes depend on
the ones of the AMD codes used. In particular, in order to prove our result about
constant-rate and linear-time NM codes (Theorem 2), we need to build constant-
rate and linear-time AMD codes. Our construction, presented in the following
Corollary 1, is based on the family of linear uniform functions from [28].

Lemma 2 (Linear Uniform Family, Theorem 4 in [28]). For any positive
integer c there exists a positive constant b (b ≥ c) such that for any large enough
k there is family of functions {gk : F

k → F
ck}k with k ∈ F

bk, such that the
following holds:

1. gk has computational complexity O(k);
2. gk is F-linear and gk1+k2 = gk1 + gk2 ;
3. for any y ∈ F

ck and x ∈ F
k with x �= 0, if k is chosen uniformly at random

from F
bk then Pr[gk(x) = y] = 1

qck .

Corollary 1 (Linear-Time and Constant-Rate AMD code). For any
large enough integer k, there exists a linear-time (k′, k)-AMD code with error
q−k and k′ = Θ(k).

Proof (Sketch). Given k, let G be the family from Lemma 2 with c = 1. For the
sake of simplicity we assume that b = 1 and we define:
Encamd(m) = (m , k , r , gk (m), gk (r), gr (k)), where k , r ∈ F

k are chosen uni-
formly at random and

Decamd(v1, v2, v3, v4, v5, v6) =

{
v1 if gv2(v1) = v4, gv2(v3) = v5, gv3(v2) = v6

⊥ otherwise

It is easy to verify that (Encamd,Decamd) is a (6k, k)-AMD code with error 1
qk

and computational complexity O(k). The details of this proof together with its
generalization to the case b > 1 can be found in [23]. ��

6 For Construction 1 we need a “strong” AMD code (as in [30]), while AMD codes
were introduced in [24] by a slightly different (weaker) notion (∀m and ∀ e,
Pr[Dec(Enc(m) + e) /∈ {⊥,m}] ≤ ε).
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For Construction 1, we are interested in linear-time (m, t,m, k)-LSSS with
large privacy (i.e. t > m/2) and constant-rate. Recently [22], the first linear-time
constant-rate LSSS was shown, using a construction based on a combination of
suitable linear codes and universal hash functions. More concretely, while being
linear over a fixed finite field and supporting an unbounded number of players
(or shares) m, there are constants εs, εt, εr with 0 < εs, εt, εr < 1 and an integer
� (the share size) such that the length k of the secret satisfies k ≥ es�m, the
privacy parameter t satisfies t ≥ εtm and the reconstruction parameter r satisfies
r ≤ εrm. Moreover, both the sharing and the reconstruction algorithm have
complexity linear in m. Although here we also need constant-rate linear-time
sharing scheme, we do not use the result from for Construction 1 and instead we
construct our constant-rate linear-time sharing scheme for two reasons. First,
the construction in [22] is a Monte-Carlo construction, while in this work we
are interested only in explicit (deterministic) constructions. Second, later on
(Sect. 4) we will require constant-rate sharing scheme with t-uniformity (instead
of only t-privacy). Our schemes from Corollary 2 have this extra property that
is not satisfied by the schemes presented in [22].

We construct the required LSSS using linear codes. Let D be an �-folded
linear m-code of dimension k over the finite field F. The minimum distance of D
is defined as d = min{d�

Ham(c, c′) | c, c′ ∈ D, c �= c′}. If G is a k×m matrix over
F

�, we say that G is a generator matrix for the code D if D = {m ·G | m ∈ F
k}.

We say the D is a linear-time encodable code if the map m → m · G can be
computed by an algorithm that has computational complexity O(k).

The following Lemma generalizes and rephrases Theorem 2 in [19] asserting
that LSSS with t-uniformity can be obtained from linear codes with distance
t + 1.

Lemma 3. Let G be the generator matrix of an �-folded linear code of length
m, dimension k and minimum distance d. Assume that G = (Ik,M) where Ik

is the k × k identity matrix (systematic form of the code)7. Then the scheme
define in Fig. 3 is an �-folded (m, d − 1,m, k)-LSSS with uniformity. If the code
is linear-time encodable, then the LSSS obtained has linear-time complexity.

Proof. According to Remark 2, showing that the map ψA : c → (c · G�, cA) is
surjective over Fk × (F�)d−1 for any A ⊆ [m] of size d−1 is enough to prove that
(Sh1,Rec1) (see Fig. 3) has d − 1 uniformity. Clearly G (and then G�) has rank
k (over F) and the map c → c ·G� is surjective. Moreover since G generates a
code of distance d, we can remove any d − 1 columns of G (i.e. d − 1 rows from
G�) and the punctured matrix still has rank k (as any two distinct codewords
differ in at least d coordinates). This means that for any m we can solve in
x the linear system x · G� = m even when d − 1 components of x are fixed.
This trivially implies that also the map ψA is surjective and concludes the proof
of the uniformity property. Finally, it follows directly from Tellegen’s principle

7 With (I k,M ) we indicate that we append the columns of M to the ones of the
identity matrix I k.
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Input: m ∈ F
k

Sh1(m):

Sample x ← (F )m−k

Compute x = m − x · M
Output x = (x ,x )

Input: c ∈ (F )m

Rec1(c):

Compute m = c · G
Output m

Fig. 3. Linear-time and constant-rate LSSS

(see Appendix A.1) that if the underlying code is linear-time encodable, then
both the algorithms Sh1 and Rec1 are linear-time. ��

Instantiating Lemma 3 with ad-hoc linear-time encodable codes (derived by
the linear-time encodable codes of [28]) provides us with LSSS with the required
properties.

Lemma 4 (Linear-Time Codes, Theorem 2 in [28]). For any real number
δ ∈ (0, 1) and large enough integer k, there exist a real number ρ ∈ (0, 1), a
positive integer � and a linear code over F such that the following hold. The code
is �-folded; if m is the length of the code and d is its minimum distance, then
k
� < m ≤ k

�ρ and d ≥ δm. Furthermore, the code is linear-time encodable.

Corollary 2 (Linear-Time and Constant-Rate LSSS). For any real num-
ber δ ∈ (0, 1) there exists a positive integer � such that for any large enough k
there exists an (m, k)-coding scheme over F with the following properties. The
scheme is an �-folded linear-time LSSS with δm-uniformity and m = Θ(k).

Proof. Given δ and k, let M be the generator matrix of the code of Lemma 4,
then the matrix G = (I k,M ) defines a �-folded linear code of dimension k,
length m+k and distance at least δm+1. The Corollary follows from Lemma 3. ��

3.2 Construction 1

Finally, we are ready to give the details of Construction 1 and its security proof.
All the schemes in the following are defined over the finite field F and are 1-folded
if it is not explicitly stated otherwise. Consider the following building blocks:

– Let (Encamd,Decamd) be a (k′, k)-AMD code with error ε;
– Let (Sh1,Rec1) be an �-folded (m, t,m, k′)-LSSS with privacy;
– Finally let (Enctd,Dectd) be an (�′, �)-TD codes with respect to the family F

and with error α.

The new coding scheme (ENC1,DEC1) is defined in Fig. 4. We indicate with F+

the set of tampering functions f : (F�′
)m → (F�′

)m in F q
�′,m such each fi is a

function from F ∪Fconst∪{id}. That is, each block ci of the encoding is modified
by the adversary using a function fi : F�′ → F

�′
, which can be any function from

F ∪ Fconst ∪ {id} provided that it doesn’t depend on the others blocks of the
encoding.
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Input: m ∈ F
k

ENC1(m)

Sample s ← Sh1(Encamd(m))
Parse s = (s1, . . . sm)
For i = 1, . . .m:

ci ← Enctd(si)
Output c = (c1, . . . , cm)

Input: c ∈ (F )m

DEC1(c)

Parse c = (c1, . . . cm)
For i = 1, . . . ,m

si = Dectd(ci)
If si =⊥ output ⊥

Define s = (s1, . . . , sm)
Compute m = Decamd(Rec1(s))
Output m

Fig. 4. Construction 1

Theorem 1. If t > m
2 , then (ENC1,DEC1) defined in Fig. 4 is an �′-folded

(m, k)-NM code with respect to the family F+ with error less than or equal to
max{ε, α2t−m}. Moreover, if ρ is the rate of (Encamd,Decamd) and ρ′ is the rate
of the sharing scheme, then the rate k/m�′ of the new scheme is ρρ′ �

�′ .

Proof. The correctness of the scheme (ENC1,DEC1) (i.e. Pr[DEC1(ENC1(m)) =
m ] = 1 for any m ∈ F

k) and the statement about the rate are easy to verify and
follow directly from the construction (Fig. 4). Fix f = (f1, f2, . . . , fm) ∈ F+,
to prove the non-malleability property, we have to define Df as in Definition 2
and bound the error SD(Realmf , Idealmf ) for any m ∈ F

k. Let c = (c1, . . . , cm) =
ENC1(m) and s = (s1, . . . , sm) = Sh1(Encamd(m)). Notice that a valid encoding
in the new scheme is a vector c = (c1, . . . , cm) of m blocks each of which
is an encoding done by the constant-size tamper-detection code (Enctd,Dectd).
Each block is independently tampered by the function fi : F�′ → F

�′
and since

(Enctd,Dectd) is an TD code, for any block such that fi ∈ F we know that the
outputs of Dectd(fi(ci)) is ⊥ with probability greater or equal to 1 − α. Using
this and the t-privacy property, in the following we will show that we can have
enough information on the output of DEC1(f(ENC1(m))) only looking at how
many blocks have been tampered by functions not in F . More precisely, define
the following sets: I ⊆ [m] is the set of indices i such that fi is the identity
function, C ⊆ [m] is the set of indices i such that fi is a constant function on
F

�′
and J = [m] \ (I ∪ C) = (I ∪ C)c. Consider now the following cases:

(1) Suppose that many blocks are tampered using constant functions (i.e. |C| ≥
m − t). Then, the t-privacy implies that the distribution of the blocks not
touched by a constant function is the same for any input message m , while
all the other blocks are fixed to known constants. Hence, we define Df as
– sample d accordingly to the distribution of ENC1(0 ) and output the result

of DEC1(f(d)).
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Because of the t-privacy, DEC1(f(d)) has the same distribution of
DEC1(f(c)) and thus we have that SD(Realmf , Idealmf ) = 0.

(2) Otherwise we can assume that few blocks are tampered by constant func-
tions (i.e. |J | + |I| > t) and we consider two sub-cases.
(2.a) Suppose that few blocks are tampered (i.e. |I| ≥ m − t) and look at

what happens during the execution of DEC1 on input f(c). If there
exists i ∈ Ic such that Dectd(fi(ci)) =⊥, then the entire decoding out-
puts ⊥. Otherwise, we have the situation described by Lemma 1 with8

g = Dectd ◦f ◦Enctd. Indeed, in the decoding phase the algorithm Rec1
is applied to a share vector s̃ where at most t components have been
modified respect to the original share vector s. It follows by Lemma 1
that Rec1(s̃) has the same distribution as Encamd(m) + Δg. Moreover,
by definition of AMD code, if Δg = 0 , then DEC1(f(c)) outputs the
original message m , else it outputs ⊥ with probability grater than or
equal to 1 − ε. Thus, in this case we define Df by the following steps:

– sample r = (r1, . . . , rm) accordingly to the distribution of Sh1(0 ). If
there exists i ∈ Ic such that Dectd(fi(Enctd(r i))) =⊥, then output ⊥.
Otherwise continue with the next step;

– sample e accordingly to the distribution of Δg. If e = 0 , Df outputs
same; otherwise it outputs ⊥.

Because of the t-privacy, the probability that there exists i ∈ Ic such
that Dectd(fi(ci)) =⊥ is equal to the probability that there exists
i ∈ Ic such that Dectd(fi(Enctd(r i))) =⊥. Moreover, Lemma 1 implies
that SD(Realmf , Idealmf ) = Pr[Decamd(Encamd(m) + Δg)) �=⊥] and we
know the latter to be less than or equal to ε.

(2.b) Else we can use the assumption on t and m and say that more than
2t−m blocks are tampered by functions in F . That is, |J | > t−m+t =
2t − m > 0. Independently for all these blocks, the tamper-detection
code outputs a message different from ⊥ with probability less than or
equal to α. Thus, DEC1(f(c)) =⊥ with probability less than or equal
to α2t−m. Therefore, in this last case we define Df to output ⊥ and we
have that SD(Realmf , Idealmf ) = Pr[Realmf �=⊥] ≤ Pr[Dectd(fi(ci)) �=⊥
∀ i ∈ J ] ≤ α2t−m. ��

We are now ready to state the first of the results about linear-time NM codes
that we present in this paper:

Theorem 2 (Linear-Time and Constant-Rate NM codes). If for infi-
nitely many integers b, there exists an (b′, b)-TD code with respect of a family F
and with constant error α, then there exist a positive integer �′ such that the fol-
lowing holds. For any large enough integer k there exists an �′-folded (m, k)-NM
code (ENC1,DEC1) with respect of the family F+ and m = Θ(k). Furthermore,
the NM code has error negligible in k and linear-time computational complexity.

8 Abuse of notation, with g = Dectd ◦ f ◦ Enctd we mean the randomized function
g : (F�)m → (F�)m such that (g(v))i = Dectd(fi(Enctd(v i))) for all i ∈ [m].
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Proof. Instantiate Construction 1 with the AMD code given by Corollary 1 and
with the LSSS given by Corollary 2. More details in [23].

In [15] an infinite family of TD code with respect the family F of bit-wise
independent tampering functions that are neither the identity nor constant func-
tions is given. Each code in the family has an error less than or equal to 2/3.

Lemma 5 (Lemma 3.5 in [15]).9 For any β ∈ (0, 1) and any large enough �′

(i.e. �′ ≥ �′(β) = O(log2(1/β)/β)), there exists a binary (�, �′)-TD code respect
to the family F = F 2

1,n \ (Fconst ∪ {id}) with error 2/3 and with � ≥ (1 − β)�′.

The previous lemma together with Theorem 2 implies the following result in
bit-wise independent tampering model.

Corollary 3 (Binary Case for Construction 1). For any large enough
integer k, there exists a linear-time binary (N, k)-NM code with respect of the
family F 2

1,N and with error negligible in k. Furthermore N = Θ(k).

4 Optimal-Rate and Linear-Time NM Codes

In this section, we will construct a linear-time non-malleable code with rate
approaching 1 (Construction 2).

4.1 Building Blocks for Construction 2

Before showing our second main result (Construction 2), we present the required
building blocks.

In order to achieve linear-time and optimal-rate NM codes, we will
employ linear-time (n, t, n, k)-secret-sharing schemes again, however we will need
stronger assumptions regarding the rate and the privacy property of the used
scheme. Namely, besides linear-time complexity, we require that the rate is not
merely constant but that it approaching 1, i.e., length of a full share-vector
divided by the length of the secret tends to 1 when the n tends to infinity. By
general bounds on secret sharing, this implies that the privacy parameter t is
sublinear in the number of players n and that reconstruction is essentially by
the full player set only. But that is still fine for our purposes here (as long as
privacy is nonconstant). Moreover, we note that we do not require linearity of
the scheme either. Besides, we require that any t shares are uniformly and inde-
pendently distributed over the share-space (t-uniformity). Below we show how to
construct the schemes required here by combining results on t-wise independence
generators and constant-rate secret sharing. A t-wise independence generator is
a deterministic algorithm that expands a short random seed in a longer t-uniform
vector. More precisely:
9 The construction presented in [15] is randomised, but since in our Construction 1

the parameter � is constant (respect to k) we can exhaustively search for the proper
TD code.
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Definition 5 (t-wise Independence Generator, [34]). Let k, k′ and t be
positive integers. A function Gen : Fk′ → F

k is a t-wise independence generator
if the following holds. For each uniform random variable X over F

k′
(called the

seed), Gen(X) is t-wise uniform over F
k.

In [23] (Lemma 12) we provide an independence generator with seed-length
and independence sub-linear in the output length. Moreover the proposed inde-
pendence generator has computational complexity linear in the seed-length.
Lemma 6 shows how to use the t-wise independence generator to build a linear-
time secret-sharing scheme with t′-uniformity, t′ = Θ(t) and rate 1 − o(1). The
high-level idea (Fig. 5) is simple, to share a secret m ∈ F

k we do the following.
First, we mask m using Gen(s) where s is a uniformly random seed for Gen.
Then, we share the seed s with a constant-rate sharing scheme (for example, the
scheme from Corollary 2). The final share vector is defined by the concatenation
of m + Gen(s) and the share vector of s.

Sh2(m):

Sample s ← F
k

Compute c1 = m + Gen(s)
Compute c2 ← Sh1(s)
Output c = (c1, c2)

Rec2(c):
Parse c = (c1, c2)
Compute s = Rec1(c2)
If s = ⊥, then output ⊥
Otherwise output c1 Gen(s)

Fig. 5. Linear-time and optimal-rate LSSS

Lemma 6 (Linear-Time and Optimal-Rate LSSS). For any real number
ε ∈ (0, 1) and any large enough k, there exists a linear-time (n, t, n, k)-LSSS with
uniformity such that t = Ω(k1−ε) and n = k + o(k).

Proof. Given ε ∈ (0, 1) and k large enough, there exists a t-wise independence
generator Gen : F

k′ → F
k with t = Ω(k1−ε) and k′ = Θ(k1−δ) (δ ≤ ε, see

Lemma 12 in [23]). Let (Sh1,Rec1) be the (m, t′,m, k′)-LSSS from Corollary 2.
Notice10 that m = Θ(k′) and that the scheme is t′-uniform with t′ = Θ(k′).
Consider the scheme in Fig. 5 and define s = min{t, t′}. It is easy to verify
that (Sh2,Rec2) is a linear-time (n, s, n, k)-LSSS with uniformity. Moreover, s =
Ω(k1−ε) and n = k + m = n + O(k1−δ). ��

We introduce a novel primitive, a compressor. Suppose we are given a vector
whose coordinates are t-wise independent random variables. A compressor is
a deterministic function that, when applying it to the given vector, results in
a shorter vector with nontrivial entropy11, assuming that the original vector
contains at least t coordinates with nontrivial entropy12.
10 The family of LSSSs from Corollary 2 is � folded, where � is a constant respect to k′.

Thus, the scheme (Sh1,Rec1) can be “unfolded” and still it remains a constant-rate
scheme.

11 The min-entropy of a random variable X is H∞(X) = − log2(maxb Pr[X = b]).
12 Since we require compressors to be deterministic, generic methods for privacy ampli-

fication do not apply here.
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Definition 6 (compressor). Let t, n, n′ be positive integers and r a positive
real number. A function Comp : Fn → F

n′
is a (t, r)-compressor if the following

holds. Suppose that X = (X1, . . . , Xn) is a t-wise independent random variable
on F

n such that there is a set A ⊆ [n] of cardinality t and a real number c > 0
for which H∞(Xi) ≥ c for all i ∈ A. Then H∞(Comp(X)) ≥ rc.

This primitive is used in the security proof of Construction 2 to handle the case of
a component-wise tampering function that has many non-constant components.
More precisely, we will use the following fact:

Lemma 7. Let f = (f1, . . . , fn) ∈ F q
1,n be a function such that least t of the

of the functions fi : F → F are non-constant. If Comp : Fn → F
n′

is a (t, r)-
compressor and X is a t-wise uniform random variable on F

n, then for any
vector b ∈ F

n′
, Pr[Comp(f(X)) = b] ≤

(
q−1

q

)r

.

Proof. By the conditions on f , there is a set A ⊆ [n] of cardinality t such that,
for each i ∈ A it holds that H∞(fi(Xi)) ≥ log2(q/(q − 1)). Since X is t-wise
independent, it follows by definition of compressor that H∞(Comp(f(X))) ≥
r log2(q/(q − 1)). ��
We now show a simple construction of Comp suitable for our purposes later on.

Lemma 8 (Linear-Time Compressor). For any real number ε ∈ (0, 1) and
for any large enough positive integer n there exists an (r2, r)-compressor Comp :
F

n → F
n′

with r2 = Ω(n1−ε) and n′ = o(n). Moreover Comp has computational
complexity O(n).

Proof. Given ε, for any n ≥ 1 define r = �n(1−ε)/2� and n′ = �n/r�. Notice that
n′r ≤ n and, if n large enough, r2 ≤ n. Consider the function Comp : Fn → F

n′
,

(x 1, . . . ,xn) �→ (y1, . . . ,yn′) defined by y i =
∑r

j=1 x (i−1)r+j for i = 1, . . . , n′.
Thus, a vector in the domain is viewed as comprising n′ consecutive blocks of
r coordinates and, for i = 1, . . . , n′, the sum taken over the coordinates in the
i-th block gives the i-th coordinate in the image of the vector under Comp. We
now verify that Comp is a (r2, r)-compressor. Suppose X = (X1, . . . , Xn) be a
r2-wise independent random variable on F

n and suppose A ⊂ [n] with |A| = r2

satisfies H∞(Xi) ≥ c > 0 for each i ∈ A. Define (Y1, . . . , Yn′) = Comp(X). By the
pigeonhole principle, there exists a B ⊆ [n′] with |B| = r such that each Yi with
i ∈ B is sum of at least one Xi with i ∈ A. This, together with r2-independence
of X, implies that the corresponding random variable YB = (Yi)i∈B has the
properties that H∞(Yi) ≥ c for each i ∈ B and that the Yi’s are independent. In
conclusion, H∞(Comp(X)) ≥ H∞(YB) ≥ rc. By inspection, the computational
complexity of Comp is O(n). ��

Our Construction 2 that we present later on in Sect. 4.2 depends in particular
on universal hash functions.
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Definition 7 (Almost Universal Family). Let μ ∈ (0, 1) be a real number
and let n,m be positive integers. Suppose H is a family of functions hk : Fn →
F

m, one for each k ∈ F
a. Then H is μ-almost universal if the following holds.

For any pair of distinct x,x′ ∈ F
n, if k is chosen uniformly at random from F

a

then Pr[hk(x) = hk(x′)}] ≤ μ.

For our purposes, we require that these functions are linear-time computable
and have vanishingly small key- and output-lengths. Hence, the linear uniform
family of [28] (see Lemma 2) does not apply directly due to its linear key-length.
Note that, besides linear-time, the uniform output property of this particular
family enables arbitrary output-length. In [23] we show an easy adaptation of
the family from [28] suitable for our purposes. It is a μ-almost universal family.
But since μ is very small, it is good enough for our purposes.

Lemma 9. For any real number β ∈ (0, 1) and any positive integer n, there
exists a μ-universal family H = {hk : Fn → F

m}k∈Fa with a = o(n), m = o(n)
and μ = Θ(q−n(1−β)

). Moreover, each function hk has complexity O(n).

4.2 Construction 2

Finally, we are ready to give the details of Construction 2 and its security proof.
Consider the following ingredients (all the scheme are over the finite field F):

– Let (Sh2,Rec2) an (n, t, n, k)-SSS with uniformity;
– Let Comp : Fn → F

n′
be a (t, r)-compressor;

– Let H = {hk : Fn → F
m} be a μ-almost universal family with key-space F

a;
– Let (Enc,Dec) be a (b′, b)-NM code with respect to a family F with error ε.

We require that b = a + m + n′.

Let N = n+ b′, the new (N, k)-coding scheme (ENC2,DEC2) is defined in Fig. 6.

Theorem 3. The coding scheme (ENC2,DEC2) is an (N, k)-non-malleable code
with respect to the family F q

1,n × F with error less than or equal to

max

{(
q − 1

q

)t

+ μ,

(
q − 1

q

)r
}

+ ε

Proof. It is trivial to verify that the scheme (DEC2,ENC2) is correct, that
is Pr[DEC2(ENC2(m)) = m ] = 1 for all m ∈ F

k. In order to prove non-
malleability, for each tampering function F we have to show a simulator which
only depends on F and whose output distribution is statistically close to the
one of DEC2(F (ENC2(m))) for any given m ∈ F

k. More precisely, according to
Definition 2 for any F = (f, g) ∈ F q

1,n × F , we have to define a random vari-
able DF and bound the error ε′ = SD(RealmF , IdealmF ) for any m ∈ F

k. Given
F and m ∈ F

k, we write ENC2(m) = (c(1), c(2)). Notice that the left part of
the encoding, c(1), is tampered by the function f ∈ F q

1,n, while the right part,
c(2), by the function g from F . Since (Enc,Dec) is a NM-code, there exists the
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Input: m ∈ F
k

ENC2(m):

Compute c(1) ← Sh2(m)
Sample k ← F

a

Compute h = hk(c(1))

Compute c = Comp(c(1))

Compute c(2) = Enc(k,h, c)

Output (c(1), c(2))

Input: c ∈ F
N

DEC2(c):

Parse c = (c(1), c(2)) ∈ F
n × F

b

Compute z = Dec(c(2))
If z =⊥ output ⊥
Otherwise

Parse z = (k,h, c)

If h = hk(c(1)) output ⊥
If c = Comp(c(1)) output ⊥

Output m = Rec2(c
(1))

Fig. 6. Construction 2

random variable Dg such that SD(Realzg , Idealzg) ≤ ε for all z ∈ F
b. That is,

we can simulate the output of decoding the right part, Dec(g(c(2))), using the
random variable Idealzg . Specifically, we define the random variable Hybm

F as
detailed in Fig. 7. Notice that by construction the output of Hybm

F depends on
c(1) (the output of Sh2(m)) and on the output of Idealzg , and the output of RealmF
depends on c(1) and the output of Realzg in the same way. Thus, we have that
SD(RealmF ,Hybm

F ) ≤ SD(Realzg , Idealzg). Given this, defining the random variable
DF in such a way that we can bound ε′′ = SD(Hybm

F , IdealmF ) will conclude the
proof. Indeed, we have ε′ ≤ ε + ε′′. To define DF , first sample z ∗ randomly
according to Dg. The results of the sampling can be classified in three cases: ⊥,
same or some vector (k∗,h∗, c∗). Then, we proceed in the definition of DF in
a different way for each one of the three aforementioned cases. In each case, we
will bound the error ε′′. In the following, we will write f = (f1, . . . , fn) ∈ F q

1,n.
Remember that the value of z ∗ determines the output z ′ of Idealzg .

(1) Assume that z ∗ =⊥, then z ′ =⊥. We know that Pr[Hybm
F =⊥| Dg =⊥] = 1,

thus we define DF to output ⊥ and we get that ε′′ = 0.
(2) If z ∗ = same, then z ′ = (k , hk (c(1)),Comp(c(1))). Define I ⊆ [n] the set of

indices i such that fi is the identity function on F. Consider the following
two situations.
• First, assume that many fi are the identity function (i.e. |I| ≥ n−t). Then

the difference f(c(1)) − c(1) depends only on the vector (c(1))Ic whose
entries are independent of m (because of the t-uniformity property). In
particular, both the event f(c(1)) = c(1) and its complement occur with
the same probability for any message m . If f(c(1)) = c(1), then Hybm

F

obviously outputs the original message m . Otherwise, we have f(c(1)) �=
c(1) and the check done via the hash function hk fails with probability at
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least 1 − μ. If the check fails, Hybm
F outputs ⊥. Given this, we define DF

in the following way:
– sample r i ← F for all i ∈ Ic; if fi(r i) = r i for all i ∈ Ic then outputs

same, otherwise output ⊥.
As we have already argued before, the t-uniformity property implies that
the event fi(r i) = r i for all i ∈ Ic has the same probability as the event
f(c(1)) = c(1) and therefore, as a consequence of the check involving the
hash function, we can bound the error in the following way:

ε′′ ≤ Pr[Hybm
F �=⊥| Dg = same and f(c(1)) �= c(1)]

≤ Pr[hk (f(c(1))) = hk (c(1)) | f(c(1)) �= c(1)] ≤ μ

• In the second case, assume that many fi are not the identity function
(i.e. |I| < n − t). Then, there exists a set A ⊆ Ic of size t, and it follows
again from the uniformity property that the events fi(c

(1)
i ) �= c

(1)
i with

i ∈ A are independent and each of them occurs with probability at least
1/q. Therefore, very likely and independently of m , f(c(1)) �= c(1) and
Hybm

F outputs ⊥ because of the check done using the hash function hk .
For this reason, in this case we define DF to always output ⊥ and we can
bound the error as follows.

ε′′ ≤ Pr[Hybm
F �=⊥| Dg = same] ≤ Pr[hk (f(c(1))) = hk (c(1))]

≤ Pr[f(c(1)) = c(1)] + μ ≤
(

q − 1
q

)t

+ μ

(3) If z ∗ = (k∗,h∗, c∗), then we have that z ′ = z ∗. Let C ⊆ [n] be the set of
all indices i such that fi is a constant function on F. Consider the following
two situations.
• If many fi are constant functions (i.e. |C| ≥ n − t), then the value of

vector f(c(1)) is independent of m . Indeed, the t-uniformity makes the
value of (f(c(1)))Cc independent of m , while (f(c(1)))C is fixed equal to
a constant defined only by f . It follows that, if we define DF in this way:

– sample r ← F
n, if h∗ �= hk∗(f(r)) or c∗ �= Comp(f(r)) output ⊥; other-

wise output Rec2(f(r)).
then we have that ε′′ = 0.
• Otherwise more than t components fi are not constant functions (i.e.

|C| < n − t) and it follows from Lemma 7 that Comp(f(Sh2(m))) is a
random variable with min-entropy at least r log2(q/(q − 1)). Moreover,
Comp(f(Sh2(m))) is independent of the random variable Dg. Therefore,
in this case the probability that the check done using the compressor is
satisfied is less than or equal to

(
q−1

q

)r

. Remember that if the check is
not satisfied then, Hybm

F outputs abort. Thus, we can define DF to output
always ⊥ and we get an error bounded by:

ε′′ ≤ Pr[Hybm
F �=⊥| Dg = (k∗,h∗, c∗)] ≤ Pr[Comp(f(c(1)) = c∗]

≤
(

q − 1
q

)r

��
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RealmF :

Compute c(1) ← Sh2(m)
Sample k ← F

a

Compute z = (k, hk(c(1))),Comp(c(1))
Compute z ← Realzg
If z =⊥ output ⊥
Otherwise

Parse z = (k ,h , c )

If h = hk (f(c(1))) output ⊥
If c = Comp(f(c(1))) output ⊥

Output m = Rec2(f(c(1)))

Hybm
F :

Compute c(1) ← Sh2(m)
Sample k ← F

a

Compute z = (k, hk(c(1))),Comp(c(1))
Compute z ← Idealzg
If z =⊥ output ⊥
Otherwise

Parse z = (k ,h , c )

If h = hk (f(c(1))) output ⊥
If c = Comp(f(c(1))) output ⊥

Output m = Rec2(f(c(1)))

Fig. 7. On the right, the definition of the random variable Hybm
F for an input message

m ∈ F
k and a tampering function F = (f, g) ∈ F q

1,n × F . On the left, for a quick
reference, the random variable RealmF (defined in Sect. 2) for the scheme (ENC2,DEC2).

We are now ready to state the main result about linear-time NM codes that we
present in this paper:

Theorem 4 (Linear-Time and Optimal-Rate NM codes). Suppose that
there exists real number α ∈ (0, 2) such that for any positive integer b there
exists a (b′, b)-NM-code (Enc,Dec) with respect of a family F , with error ε(b) =
negl(b) (the error is a negligible function of the message length) and b′ = O(bα),
then the following holds. For any positive integer k large enough, there exists an
(N, k)-NM code (ENC2,DEC2) with respect of the family F q

1,n ×F and with error
negligible in k. Furthermore N = k + o(k) and, if the computational complexity
of (Enc,Dec) is sub-quadratic in b, then (ENC2,DEC2) is linear-time.

Proof. Instantiate Construction 2 with the LSSS from Lemma 6, the compressor
from Lemma 8 and the universal family from Lemma 9. More details in [23].

Corollary 4 (Binary Case for Construction 2). For any large enough k,
there exists linear-time binary (N, k)-NM code with respect of the family F 2

1,N

and with error negligible in k. Furthermore, N = k + o(k).
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A Appendix

A.1 Tellegen’s Principle

We will briefly discuss a technique know as Tellegen’s principle. Assume that we
are given a linear algorithm T computing the function f(x ) = x ·A, where A is a
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m×n matrix over some ring R and x is a vector from Rn. Then we can transform
T into an algorithm T′ computing the function f ′(y) = y · A�, where y ∈ Rm

and A� is the transpose of the matrix A, which has the same computational
complexity as T. We will discuss this transformation for arithmetic circuits. We
can decompose a circuit into a sequence of elementary instructions φi, where
each φi is a linear transformation on all the wires. We can thus write the matrix
A as A = φn · φn−1 · · · φ2 · φ1. Transposing A immediately yields A� = φ�

1 ·
φ�
2 · · · φ�

n−1 · φ�
n . Thus, we only have to consider the effect of transposition to

the elementary instructions φi.

– Instruction φi multiplies a wire x with a constant α ∈ R and writes the output
in the same register. In this case φ�

i = φi, as the transformation matrix φi is
diagonal and thus symmetric.

– Instruction φi adds wire y to wire x . In this case φ�
i adds wire x to wire y .

These two instructions are sufficient to implement any linear transformation. For
instance, to clear an (auxiliary) register, simply multiply it by 0. We summarize
this in the following Lemma.

Lemma 10 (Tellegen’s Principle [42]). Let T(x) be a linear arithmetic cir-
cuit or linear RAM algorithm computing the function x · A. Then there exists
a linear arithmetic circuit T′(y) that computes the function y · A� and has the
same computational complexity as T.
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Abstract. In the paper “On the Complexity of Scrypt and Proofs of
Space in the Parallel Random Oracle Model” (Eurocrypt 2016) Joël
Alwen et al. focused on proving a lower bound of the complexity of a gen-
eral problem that underlies both proofs of space protocols [Dziembowski
et al. CRYPTO 2015] as well as data-dependent memory-hard functions
like scrypt — a key-derivation function that is used e.g. as proofs of work
in cryptocurrencies like Litecoin.

In that paper the authors introduced a sequence γn and conjectured
that this sequence is upper bounded by a constant. Alwen et al. proved
(among other results) that the Cumulative Memory Complexity of the
hash function scrypt is lower bounded by Ω(n2/(γn · log2(n))). If the
sequence γn is indeed bounded by a constant then this lower bound can
be simplified to Ω(n2/ log2(n)).

In this paper we first show that γn > c
√

log(n) and then we strengthen

our result and prove that γn ≥
√
n

poly(log(n))
.

Alwen et al. introduced also a weaker conjecture, that is also sufficient
for their results — they introduced another sequence Γn and conjectured
that it is upper bounded by a constant. We show that this conjecture is
also false, namely: Γn ≥ c

√
log(n).

1 Introduction

The purpose of proofs of work is to provide a puzzle that requires a worker to
dedicate a significant amount of resources to solve it, while still remaining feasi-
ble. Originally, this technique was developed to fight spam emails — if the sender
had to dedicate some nontrivial amount of resources to send a single message
then sending millions of spam emails would be unprofitable. However, proofs of
work gained a lot of attention only recently — they are used in cryptocurrencies
to solve the problem of double spending of coins.

Originally, the resource used in proofs of work was a time spent on the compu-
tations, and consequently the focus was on time complexity of the worker. In the
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view of recent hardware advances, e.g. tailored ASIC devices, memory-hardness
appears to be a much better requirement, as memory cost is not reduced by such
devices. A candidate memory-hard function scrypt, introduced by Percival in [9],
aims to require the evaluator to either dedicate significant amount of space for
the computation or highly increase the time spent on the evaluation. A similar
space-time trade-off is imposed on the worker in proofs of space — a concept
introduced by Dziembowski et al. in [5]. In proofs of space the worker can either
dedicate a specified amount of the memory to generate proofs very efficiently, or
save the space and pay increased time cost every time he generates the proof.

Alwen et al. in [1] focus on proving a lower bound of the complexity of a gen-
eral problem that underlies both proofs of space protocols as well as the scrypt
function. To prove their main results, the authors of [1] introduced two combi-
natorial conjectures (either of them is sufficient for their results) and assumed
that they are true.

In this paper we disprove both conjectures from [1]. To give a reader intuitions
and a good understanding of the definitions required for stating the conjectures
we give an introduction to [1] in Sect. 1.1. We remind the parallel Random Oracle
Model, the labeling and pebbling games and how to calculate the Cumulative
Memory Complexity of algorithms.

1.1 Introduction to [1]

Alwen et al. in [1] investigate lower bounds on the time and memory complexity
of an adversary algorithm A whose goal is to compute labels of nodes in a
directed acyclic graph. In this game (we describe it in more details in Sect. 1.1)
the label of a node is a hash h of node’s index and the labels of its parents1. The
hash function is modeled as a random oracle, so in order to compute the label,
A has to keep the labels of parent nodes in the memory.

Specific instances of this problem underlie proofs of space protocols con-
structed by Dziembowski et al. in [5]. Proofs of space is an alternative concept
to proofs of work, in which a prover must dedicate a significant amount of his
disc space as opposed to his computing power. Proofs of space are more environ-
mentally friendly than proofs of work, because storage does not require energy.
They can be used to create e.g. greener cryptocurrencies [8].

Another application of the problem considered in [1] is an examination of
a memory-hard hash function2 scrypt introduced by Percival in [9]. The honest
evaluation of the scrypt function invokes underlying hash function h (modeled as
a random oracle) n times, and requires storing n labels (where n is a parameter of
scrypt). As Percival stated, the expectation was that even for the adversary that
parallelizes the computation it holds that S(n) · T (n) ≥ n2−ε, where S(n) and
T (n) denote space and time invested, respectively. However, no rigorous proof of
that fact was given. Another shortcoming of Percival’s analysis was measuring

1 Parent of a node v is any node w s.t. an edge (w, v) exists in the graph.
2 Memory-hard hash functions require large storage during evaluation. They are used

as password hashing functions and in proofs of work in cryptocurrencies.
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memory complexity in terms of maximum memory used during computation.
This does not take into account that the adversary could potentially amortize
memory usage across multiple invocations of scrypt function for multiple differ-
ent inputs. To address this issue Alwen et al. consider a cumulative memory
complexity proposed in [3]. We briefly recall this notion in Sect. 1.1.

Cumulative Memory Complexity in Parallel Random Oracle Model.
Alwen and Serbinenko in [3] developed a new complexity metric better suited
for capturing an amortized memory hardness of a given function. The intuition
behind their model is that the adversary can use specialized hardware to evaluate
many instances of the function in parallel. In such a situation only the amortized
cost per single evaluation is important.

The authors of [3] consider an adversary whose goal is to compute a function
Hh (i.e. some function H that depends on the oracle h) with underlying hash
function h modeled as a random oracle. The computation proceeds in steps and
ends when the adversary computes Hh. In each step the adversary gets the
previous state σi−1 (the state σ0 is set to the given initial state σinit), makes
unbounded local computations and produces the next state σi. Additionally,
once per step the adversary can send a polynomial (therefore parallel in the
model name) set of queries to the random oracle and get back the hash values.

The cumulative memory complexity (CMC) of a single evaluation of Hh is
measured as Σi|σi|. CMC in parallel ROM model of Hh, denoted cmcpROM(Hh),
is defined as minimal (over all the adversaries) expected CMC of the adversary
computing Hh.

Labeling Games. Alwen et al. in [1] proved that the hardness of scrypt-like
functions, as well as the security of proofs of space, rely on difficulty of the
following game, called computeLabel.

The game is played on a single source and a single sink directed acyclic graph
(DAG) G = (V,E) with subset of challenge nodes C ⊆ V and is parametrized
with a hash function h (modeled as a random oracle). Each graph node, with
index i, is associated with a label li defined recursively as a hash of index i
and labels of parents of i, namely li = h(i, lp1 , . . . , lpd

), where p1 < · · · < pd

are indices of all the parents of i. The game proceeds in n rounds, where n is
a parameter of the game. At each round r a challenge cr is drawn uniformly
at random from C. The player’s goal is to compute the label associated with
the challenge node cr, before moving to the next round and learning the next
challenge cr+1. As before, we assume the pROM model, i.e. the player can make
multiple parallel random oracle calls at each step of his computation. The game
ends when the last challenge is answered.

We define a CMC complexity of the computeLabel game as the expected value
of CMC of the best adversary playing the game. The second result of Alwen et al.,
described in Sect. 1.1, applies to the CMC complexity of the computeLabel game
played on a simple path graph, which underlies the scrypt function.
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Pebbling Games and “entangled” Pebbling Games. A standard pebbling
game, similarly to the computeLabel, is played on a single source and a single
sink DAG G = (V,E). At each step the player can put or remove a pebble from
a node of G according to the following two rules: a new pebble can be placed
on any node v for which all parents of v have pebbles on them (in particular, a
pebble can always be placed on the source), and pebbles can always be removed.
The game ends when a pebble is placed on the sink of G. In the parallel pebbling
game the player at each step places at the same time as many pebbles as he wants
(as long as he follows the rules) and then he removes any number of pebbles of
his choice.

The cumulative complexity (CC) of the strategy for the (parallel) pebbling
game is defined as Σi|Si| where Si is a set of pebbled nodes at the end of i-th
step. The CC of a graph G is defined as CC of the best pebbling strategy for G.

For a graph G = (V,E) one could consider a pebbling analogue of the
computeLabel game, called pebble in [1]. At each round a challenge cr is sampled
uniformly at random from C ⊆ V , and the goal of the player is to pebble the
challenge node (following the same rules as in the parallel pebbling game), before
advancing to the next round and learning the challenge cr+1.

It is easy to see that any pebbling strategy in the pebble game can be adapted
as a strategy in the computeLabel game for a restricted adversary who stores in
memory only the labels, i.e. random oracle outputs. One could consider a slightly
strengthened model in which the adversary can store specific functions of the
labels (but not yet arbitrary ones). For example, consider an adversary playing
the computeLabel game who stores in memory the XOR of labels x := li ⊕ lj .
Later, e.g. in the next round, he could compute li and use it together with x to
recover lj (or the other way around). This way he could potentially improve the
complexity in terms of CMC.

A pebbling abstraction of such an adversary is an adversary playing the
entangled pebbling game, a new class of randomized pebbling game introduced
in [1]. In this game, for a set V ⊆ V and some integer 0 ≤ t < |V| a player
who has individual pebbles on all the nodes in V is allowed to place an entangled
pebble 〈V〉t on V that weights |V|−t. The meaning of such an entangled pebble is
that when the player has both 〈V〉t and individual pebbles on any t nodes from
V then he can at once put individual pebbles on all the nodes in V. The pebbles
used to “disentangle” V might be a result of disentangling another entangled
pebble. Note that the entangled pebble is a generalization of a normal pebble
where 〈v〉0 corresponds to the individual pebble on vertex v. The initial pebbling
in this game consists of a number of entangled pebbles.

Alwen et al. show a clever trick using polynomial interpolation which allows
to translate an entangled pebble 〈V〉t to an encoding of length w · (|V| − t) such
that given any t labels of nodes from V it is possible to recover the remaining
ones (here w is the length of a single label). An adversary allowed to use only
such encodings in the computeLabel game is called an entangled adversary.

It is not obvious if relaxing the restriction by allowing the adversary to
use entangled pebbles improves his cumulative complexity of the pebble game.
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However, Alwen et al. show an example of a graph for which entangled pebbling
is strictly more powerful (see [1] Appendix A).

Alwen et al. Conjectures and Their Implications. The authors of [1]
define a sequence γn (we define it in Definition 7, Sect. 2) and prove that:

1. For any DAG G = (V,E) with |V | = n, with high probability over the choice
of the random hash function h : {0, 1}∗ → {0, 1}w, the pROM time complexity
to play computeLabel on G, for any number of challenges, starting with any
initial state of size k ·w is roughly at least the time complexity needed to play
pebble on G with the same number of challenges and starting with an initial
pebbling of size roughly γn · k.

2. The pROM CMC of computeLabel for Ln (a simple graph underlying scrypt,
that consists of a single path from a source to a sink) is Ω

(
n2

γn·log2(n)

)
.

Alwen et al. conjecture that the sequence γn is upper bounded by a constant
(see Conjecture 13 in [1] or Conjecture 1, Sect. 2). They use this conjecture to
boost their results proved for a restricted class of adversaries, so called entangled
adversaries (see Sect. 1.1), to hold for arbitrary adversaries in pROM.

Under this conjecture, the first result would solve the main open problem
from the work of Dziembowski et al. [5] on proofs of space. The second one
would imply a near-quadratic lower bound on CMC of evaluating scrypt for
arbitrary pROM adversaries.

The authors of [1] also prove the same results using a different sequence Γn

instead of γn. It is easy to show that for each n it holds Γn ≤ γn. Therefore the
results would hold assuming only a weaker conjecture — that the sequence Γn is
upper bounded by a constant (see Conjecture 16 in [1] or Conjecture 2, Sect. 2).
However, the authors of [1] concentrate on the stronger conjecture, because the
sequence γn is more convenient to work with.

1.2 Our Results

As stated before, in this paper we disprove the Conjectures 13 and 16 from [1]
(Conjectures 1 and 2 Sect. 2). To do it, we first show how to construct a transcript
(see Sect. 2) from a graph and we prove that the properties of such graph-derived
transcripts are connected to the clique number and the (fractional) chromatic
number of that graph.

We disprove Conjecture 1 first using the Mycielski construction [7] (from
that we get γn ≥ √

log(n)/2) and then we strengthen our result using random
graphs (we get γn ≥ √

n/poly(log(n))). We disprove Conjecture 2 using Kneser
graphs [6] (we get Γn ≥ c

√
log(n)).

1.3 Related Work

In recent work [2] Alwen et al. proved that CMC complexity in pROM model of
scrypt is Ω(n2w), where w and n are the output length and number of invocations
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of the underlying hash function, respectively. That bound clearly improves the
result Ω

(
n2

γn·log2(n)

)
from [1] and is tight because CMC complexity of scrypt

computed as prescribed is O(n2w).
However, the techniques used in [2] do not use the notion of entangled peb-

bling games and are strictly tailored for scrypt function. Thus the approach from
[1] might be of more general use.

2 Preliminaries

In this section we recall the conjectures from [1] and definitions that are necessary
to state them. We also give the intuitions behind the notions introduced by Alwen
et al. They are, however, not necessary to understand our results from Sect. 3.

Definition 1. For n ∈ N an n-transcript T is a set of implications of the form
τj = (i1, i2, . . . , ik → i0) for k, i0, i1, . . . , ik ∈ [n] = {1, 2, . . . , n}.

The idea behind the notion of a transcript is as follows. Consider an adversary
A playing the computeLabel game on a graph G having some fixed initial state
σinit. Here A is unrestricted, which in particular means that σinit can contain
any information, not only labels of the vertices. We fix the random oracle h as
well. We include the implication τj = (i1, i2, . . . , ik → i0) into the transcript
describing Ah(σinit) if for some sequence of challenges c1, . . . , cm at some round
in the game:

– the labels li1 , . . . , lik are all the labels that appeared as inputs or outputs of
the oracle so far,

– the label li0 did not appear as an input or an output of the oracle before, and
– A makes a query to the random oracle using li0 as one of the inputs.

Intuitively, this means that we are able to “extract” the label li0 (without query-
ing the oracle h for it) from σinit and the labels li1 , . . . , lik , by invoking Ah(σinit).

For example, consider a DAG G from Fig. 1. Suppose A so far queried only
for the label of the vertex 1 i.e. l1 = h(1) and for the label of the vertex 3
i.e. l3 = h(3, l1). At this round he makes a query for a label of the vertex 5
i.e. l5 = h(5, l2, l3, l4). A had to extract l2 and l4 from σinit and l1, l3, so in
this case we would include into the transcript the implications (1, 3 → 2) and
(1, 3 → 4).

Definition 2. A set U ⊆ [n] satisfies an n-transcript T , if for some s ≤ n there
exists a sequence U0, . . . , Us, s.t.:

– U0 = U,
– For each j = 1, 2, . . . , s there exists τj = (i1, i2, . . . , ik → i0) ∈ T

s.t. Uj = Uj−1 ∪ {i0} and i1, i2, . . . , ik ∈ Uj−1,
– Us = [n].

Definition 3. For an n-transcript T we define ex(T ) = n−minU |U | where the
minimum is taken over all sets U ⊆ [n] that satisfy T .
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1 3

2

4

5

Fig. 1. An example graph used to illustrate definitions from Sect. 2.

Let the transcript T describe an adversary A playing the computeLabel game
on a graph G with an initial state σinit (as explained before). Intuitively, ex(T )
is the maximal number of labels that can be extracted from σinit and some label
set {li|i ∈ U} (where U corresponds to the set from Definition 3) by invoking
Ah(σinit) on several different challenge sequences, in an optimal way.

Definition 4. The entangled set S = 〈q1, q2, . . . , qt〉m for 0 ≤ m ≤ t − 1 is
an object that given m different numbers from {q1, q2, . . . , qt} returns all the
numbers {q1, q2, . . . , qt}. The weight of S is defined as w(S) = t−m. The weight
of the family F = {S1, . . . , Sr} of entangled sets is the sum of weights of the
entangled sets w(F ) = w(S1)+ · · ·+w(Sr). We will write S∗ to denote the (real)
set {q1, q2, . . . , qt}.
Definition 5. We say that the n-transcript T is covered by the family of entan-
gled sets F = {S1, . . . , Sr} if for every implication τ = (i1, i2, . . . , ik → i0) ∈ T
there exists a sequence of sets V0, . . . , Vs s.t.

– V0 = {i1, i2, . . . , ik},
– For each j = 1, 2, . . . , s there exists an entangled set Sj =

〈q1, q2, . . . , qt〉m ∈ F s.t. Vj = Vj−1 ∪ {q1, q2, . . . , qt} and |{q1, q2, . . . , qt} ∩
Vj−1| ≥ m,

– i0 ∈ Vs.

Definition 6. The weight w(T ) of the n-transcript T is the smallest weight
w(F ) of a family F of entangled sets that covers T .

The intuition behind the notion of the transcript weight w(T ) is as follows.
Let T describe an unrestricted adversary A playing the computeLabel game with
an initial state σinit on a graph G. Then there exists an entangled pebbling
adversary (see Sect. 1.1) A′ playing the pebble game on the same graph G with
an initial pebbling state σ′

init of weight w(T ) who is able to mimic the adversary
A in the following sense: whenever A makes a query to compute some label
li = h(i, lp1 , . . . , lpt

), A′ puts a (normal) pebble on the vertex i. Note that the
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initial state of A′ may contain entangled pebbles which cannot be translated to
standard pebbles.

For example, consider a DAG G from Fig. 1. Suppose σinit consists of l2, a
xor of the first half of l1 with the first half of l4 and a xor of the second half of
l3 with the second part of l4. Then A can extract l2 just from σinit and l4 from
σinit, l1, l3. So T = {(→ 2), (1, 3 → 4)}. In this case the initial pebbling state
σ′
init could be equal to {〈2〉0, 〈1, 3, 4〉2}. Then A′ can use 〈2〉0 when A extracts

l2 from σinit and use 〈1, 3, 4〉2 when A extracts l4 from σinit, l1, l3.

Definition 7. We define a sequence γn as:

γn = max
n−transcript T

w(T )
ex(T )

Conjecture 1 (Conjecture 13 from [1]). There exists a constant C s.t. for
all natural n we have γn < C.

Definition 8. Let li for i = 1, 2, . . . , n be independent random labels chosen
uniformly from {0, 1}w. We say that the state σ ∈ {0, 1}∗, that might depend on
those labels, satisfies the transcript T if for every implication (i1, i2, . . . , ik →
i0) ∈ T the label li0 is a function of a tuple (li1 , . . . , lik , σ). Let σw denote the
shortest state that satisfies T . Then shannon(T ) = infw

|σw|
w .

The value shannon(T ) is the length of the shortest state σ, divided by a label
length w, that for any implication (i1, i2, . . . , ik → i0) ∈ T allows to extract li0
given labels li1 , . . . , lik .

For example, if T = {(1 → 2), (2 → 1)} then a state σ = l1 ⊕ l2 allows to
recover l2 given l1, and to recover l1 given l2. So in this case shannon(T ) ≤ 1.

Definition 9. We define a sequence Γn as:

Γn = max
n−transcript T

w(T )
shannon(T )

Conjecture 2 (Conjecture 16 from [1]). There exists a constant C s.t. for
all natural n we have Γn < C.

It is easy to prove that for each transcript T we have ex(T ) ≤ shannon(T ) ≤
w(T ), so always γn ≥ Γn. To see the first inequality let U = {i1, . . . , ik} ⊆ [n] be
the smallest set that satisfies T and σw be a state that satisfies T . By Definition 2
we can expand the set U to the whole set [n] using implications from T and by
Definition 8 for each implication τ = (j1, j2, . . . , jm → j0) ∈ T we can extract
the label lj0 from σw and the labels lj1 , lj2 , . . . , ljm . Therefore (l1, . . . , ln) is a
function of (σw, li1 , . . . , lik) and

|σw| ≥ H(σw) ≥ H(σw|li1 , . . . , lik) = H(σw, li1 , . . . , lik) − H(li1 , . . . , lik) ≥

≥ H(l1, . . . , ln) − H(li1 , . . . , lik) = (n − k) · w = ex(T ) · w.
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This ends the proof of the first inequality. The second inequality follows from the
fact that the family of entangled sets F covering T can be thought of as a special
case of a state σ, because on the trick used in [1] to translate an entangled pebble
to the encoding of length proportional to the pebble weight (see Sect. 1.1).

Therefore the Conjecture 2 is weaker than the Conjecture 1. As stated before,
both Conjecture 1 and Conjecture 2 are sufficient for the main result of [1].

3 Our Results

We disprove Conjecture 1 in Sect. 3.1 and Conjecture 2 in Sect. 3.2.

3.1 Disproving Conjecture 1

Let G denote an undirected simple3 graph with vertex set equal to [n]. We call
such a graph an n-graph.

Definition 10. Let G be an n-graph. By T (G) we denote an n-transcript
T (G) = {τ1, . . . , τn} where τi = (i1, i2, . . . , ik → i) and i1, i2, . . . , ik are all
the vertices in [n] \ {i} that are not adjacent to the vertex i.

Lemma 1. Let G be an n-graph. Then ex(T (G)) = ω(G) where ω(G) is the
clique number of G i.e. the size of the largest clique in G.

Proof. First we show that ex(T (G)) ≥ ω(G). Let V be the largest clique in G
and U = [n] \ V . Then |U | = n − ω(G) and U satisfies T (G). That is because
we can add elements of V to U , in any order, using implications from T (G).
Formally, let i0 ∈ [n] \ U = V . Then τi0 = (i1, i2, . . . , ik → i0) ∈ T (G) where
i1, i2, . . . , ik are the vertices not adjacent to i0. But V is a clique, so all the
vertices i1, i2, . . . , ik are contained in U , so we can use τi0 and by that add i0 to
U . We can do the same for all i ∈ [n] \ U = V and at the end we get the whole
set [n]. Therefore the set U satisfies T (G), so ex(T (G)) ≥ n − |U | = ω(G).

Now we show that ex(T (G)) ≤ ω(G). Let U be the smallest set that satisfies
T (G). Assume by contradiction, that |U | < n − ω(G). Then V = [n] \ U is not
a clique (as |V | > ω(G)) — there exist i0 = j0 ∈ V that are not adjacent. As U
satisfies T (G), we have to add both i0 and j0 to U . But the only implication in
T (G) with i0 on the right side has j0 on the left side, and the only implication in
T (G) with j0 on the right side has i0 on the left side. In other words i0 depends
on j0 and j0 depends on i0. Therefore we cannot add either of i0, j0 to U because
the other element would have to be added first. Consequently U does not satisfy
T (G). We have a contradiction — U cannot be smaller than n − ω(G).

Lemma 2. Let G be an n-graph. Then
√

χ(G) ≤ w(T (G)) ≤ χ(G) where χ(G)
is the chromatic number of G i.e. the smallest number of colors that has to be
used to properly color the vertices of G.

3 A simple graph is a graph containing no graph loops or multiple edges.
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Proof. First we prove the second inequality. Let C : [n] → [χ(G)] be the proper
coloring of G. Let C−1(i) = {qi

1, q
i
2, . . . , q

i
pi

}, Si = 〈qi
1, q

i
2, . . . , q

i
pi

〉pi−1 and F =
{S1, S2, . . . , Sχ(G)}. Then w(Si) = 1, w(F ) = χ(G) and T (G) is covered by F .
The proof of this claim is easy. Let τi0 = (i1, i2, . . . , ik → i0) ∈ T (G). Then the
vertices i1, i2, . . . , ik are all the vertices in G that are not adjacent to i0. Let
j = C(i0) be the color of the vertex i0. All the other vertices with the color j are
not adjacent to i0, which means that S∗

j ∩ {i1, i2, . . . , ik} = S∗
j \ {i0}. So we can

use the entangled set Sj to get a vertex i0.
Now we prove the first inequality. Assume that T (G) is covered by the family

of entangled sets F = {S1, S2, . . . , Sr}. It is enough to show a proper coloring
of vertices of G using w(F )2 colors. First we show a coloring using r colors
in which every vertex has less than w(F ) same color neighbors. Then, using a
greedy algorithm, we can change it to a proper coloring using r · w(F ) ≤ w(F )2

colors
Let i0 ∈ [n] be any vertex in G and τi0 = (i1, i2, . . . , ik → i0) ∈ T (G).

Let V0, V1, . . . , Vs be any shortest sequence of sets as in Definition 5. Let
Sji = 〈qji

1 , qji
2 , . . . , qji

tji
〉mji

be the entangled set opened at the step number
i = 1, 2, . . . , s, i.e. Vi = Vi−1 ∪ S∗

ji
and |Vi−1 ∩ S∗

ji
| ≥ mji . We assign the color

number js to the vertex i0. Obviously js ∈ [r] and the coloring is unambiguous
as there is exactly one implication in T (G) with the element i0 on the right
side. Additionally, as the sequence V0, V1, . . . , Vs is the shortest, we know that
i0 ∈ S∗

js
and all the indices ji are different.

Now we show that for any vertex i0 ∈ [n] there are less than w(F ) other
vertices that are adjacent to i0 and have the same color js. Let N(i0) ⊆ [n]\{i0}
denotes the set of neighbors of the vertex i0. We know that all the vertices
with the color js are contained in the set S∗

js
. So it is enough to show, that

|S∗
js

∩ N(i0)| < w(F ).
We know that V0 is exactly the set [n] \ N(i0) \ {i0}. So S∗

js
∩ N(i0) ⊆

Vs \ V0 \ {i0}. On the other hand we have |Vi \ Vi−1| ≤ w(Sji) = tji − mji as we
add at most tji elements but only if there were already mji elements present.
We now have:

|S∗
js ∩ N(i0)| < |Vs \ V0| =

s∑
i=1

|Vi \ Vi−1| ≤
s∑

i=1

w(Sji) ≤
r∑

i=1

w(Si) = w(F ).

Now we change the coloring into a proper coloring using colors from the set
[r] × [w(F )]. We use a greedy algorithm. For each vertex i0, with color js, we
assign it the color (js, k) where k is any number from [w(F )] s.t. the color (js, k)
was not assigned earlier to any neighbor of i0. We can always find such k because
there are less than w(F ) neighbors of i0 which previously had the color js.

We have constructed a proper coloring of vertices of G using at most w(F )2

colors, so w(F )2 ≥ χ(G).

To prove that γn is unbounded we use graphs that have big chromatic num-
ber but small clique number. We first give an example of explicit graphs using
Mycielski construction [7] that satisfy these conditions. In Sect. 3.1 we use ran-
dom graphs to get a stronger result.
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The Mycielski construction generates graph μ(G) from a given graph G. The
construction has the following properties:

– |V (μ(G))| = 2 · |V (G)| + 1,
– χ(μ(G)) = χ(G) + 1,
– ω(μ(G)) = max(2, ω(G)).

The proof of these properties can be found in [7].

Corollary 1. Using the Mycielski construction [7], starting from M2 equal to a
single edge, we can create a graph Mk that has n = 3 · 2k−2 − 1 < 2k vertices,
ω(Mk) = 2 and χ(Mk) = k. That means that ex(T (Mk)) = 2 and w(T (Mk)) ≥√

χ(Mk) =
√

k. So γn ≥ w(T (Mk))
ex(T (Mk))

=
√

k
2 >

√
log(n)

2 is unbounded therefore the
Conjecture 1 is false.

Stronger Result. In this section we show that γn ≥
√

n
poly(log(n)) .

Let G(n, p) denote a random n-graph s.t. each edge is present with probabil-
ity p.

Lemma 3. We have:

– P(ω(G(n, 1/2)) ≥ M) ≤ (
n
M

) · 2−(M2 ),
– limn→∞ P(ω(G(n, 1/2)) ≥ log(n)2) = 0.

Proof. The first part of the lemma follows from the union bound — there are
(

n
M

)
candidate sets to be a clique of size M , each of them is a clique with probability
2−(M2 ).

The second part of the lemma follows from the first part:

P(ω(G(n, 1/2)) ≥ log(n)2) ≤
(

n

log(n)2

)
· 2−(log(n)2

2 ) ≤ nlog(n)2 · 2− log(n)4/4 =

= 2log(n)
3−log(n)4/4,

So limn→∞ P(ω(G(n, 1/2)) ≥ log(n)2) ≤ limn→∞ 2log(n)
3−log(n)4/4 = 0.

Lemma 4. There exists d > 0 s.t. limn→∞ P(χ(G(n, 1/2)) ≤ d n
log n ) = 0.

Proof of Lemma 4 can be found in [4].

Theorem 1. There exists c > 0 s.t. γn ≥ c
√

n
log(n)5/2

.

Proof. From the previous lemmas we know that there exists d > 0 s.t. with
probability 1−o(1) a random graph G ← G(n, 1/2) has the following properties:

– ω(G) < log(n)2,
– χ(G) > d n

log n .

So γn ≥ w(T (G))
ex(T (G)) ≥

√
χ(G)

ω(G) >
√

d
√

n
log(n)5/2

= c
√

n
log(n)5/2

.
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3.2 Disproving Conjecture 2

Definition 11. Let G be an n-graph. The b-fold coloring of G is an assignment
of sets of size b (i.e. b colors) to each vertex of G s.t. adjacent vertices receive
disjoint sets. The a : b coloring is a b-fold coloring using a colors. χb(G) is the
smallest number a of colors s.t. a : b coloring exists. Thpfe fractional chromatic
number of G is χF (G) = infb

χb(G)
b .

Remark: For each n-graph G there exists an a : b coloring s.t. χF (G) = a/b (see
e.g. [6]).

Lemma 5. Let G be an n-graph. Then χF (G) ≥ shannon(T (G)).

Proof. Let C : [n] → 2[a] be a fixed b-fold coloring of G s.t. χF (G) = a/b. Let
li ∈ {0, 1}b for i = 1, 2, . . . , n be random labels of the vertices of G and let li[r]
denote the r-th bit of li. We will construct a state σb of length a that satisfies
T (G).

Let C(i) = {ji
1, j

i
2, . . . , j

i
b} where ji

1 < ji
2 < · · · < ji

b. We say that the bit li[r]
has the color ji

r. Let σb[c] be the xor of all the bits li[r] (where i ∈ [n], r ∈ [b])
which have the color c, for c = 1, 2, . . . , a.

It should be easy to see that σb satisfies T (G). That is because for τ =
(i1, i2, . . . , ik → i) ∈ T (G) and r ∈ [b] we can calculate li[r]. Let c be
the color of the bit li[r]. Then li[r] = σb[c] ⊕ lj1 [r1] ⊕ · · · ⊕ ljs [rs] where
li[r], lj1 [r1], lj2 [r2], . . . , ljs [rs] are all the bits of color c. Vertices i, j1, j2, . . . , js

have common color, therefore i is not adjacent to any of j1, j2, . . . , js. Thus by the
definition of T (G) we know that all the numbers j1, j2, . . . , js are present on the
left side of the implication τ . Now we can read the bits lj1 [r1], lj2 [r2], . . . , ljs [rs]
from the labels lj1 , lj2 , . . . , ljs and calculate li[r]. This can be done for any
τ ∈ T (G) and any r ∈ [b].

To prove that Γn is unbounded, we use graphs that have big chromatic num-
bers, but small fractional chromatic numbers. An example of graphs with these
properties are Kneser graphs [6]. The vertices of the Kneser graph Ka:b for a ≥ b
are all b-element subsets of the set [a]. Two vertices are adjacent if their cor-
responding subsets are disjoint. The Knesser graph Ka:b for a ≥ 2b has the
following properties:

– |V (Ka:b)| =
(
a
b

)
,

– χ(Ka:b) = a − 2b + 2,
– χF (Ka:b) = a/b.

The proofs of these properties can be found in [6].

Corollary 2. Let Ka:b be a Kneser graph [6] for a := 3b and n :=
(
a
b

)
. We have:

Γn ≥ w(T (Ka:b))
shannon(T (Ka:b))

≥
√

χ(Ka:b)
χF (Ka:b)

=
√

a − 2b + 2
a/b

=
√

b + 2
3

= Ω(b0.5)

so Γn is unbounded.
In this example n =

(
3b
b

)
< 23b therefore we have proved that Γn is greater

than Ω(
√

log(n)).
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Abstract. Perfect secrecy, which is a fundamental security notion intro-
duced by Shannon, guarantees that no information on plaintexts is
leaked from corresponding ciphertexts in the information-theoretic sense.
Although it captures the strongest security, it is well-known that the
secret-key size must be equal or larger than the plaintext-size to achieve
perfect secrecy. Furthermore, probability distribution on secret keys must
be uniform. Alimomeni and Safavi-Naini (ICITS 2012) proposed a new
security notion, called guessing secrecy, to relax the above two restric-
tions, and showed that unlike perfect secrecy, even non-uniform keys
can be used for providing guessing secrecy. Iwamoto and Shikata (ISIT
2015) showed secure concrete constructions of a symmetric-key encryp-
tion scheme with non-uniform keys in the guessing secrecy framework.
In this work, we extend their results to the broadcast encryption set-
ting. We first define guessing secrecy of broadcast encryption, and show
relationships among several guessing-secrecy notions and perfect secrecy.
We derive lower bounds on secret keys, and show the Fiat-Naor one-bit
construction with non-uniform keys is also secure in the sense of guessing
secrecy.

Keywords: Broadcast encryption · Guessing secrecy
Information-theoretic security · Non-uniform distribution

1 Introduction

Broadcast encryption (BE), which was introduced by Berkovitz [2] and later
formalized by Fiat and Naor [11], enables a sender to control which receivers
can decrypt ciphertexts. Over a quarter of a century, BE schemes, which are
encryption schemes with such a simple but convenient functionality, have been
investigated both in the computational security setting [5,9,13,18,21] and in the
unconditional security setting [2–4,6,11,12,16,17,19,20]. BE schemes are used
in various situations such as copyright protection in the real world. In this paper,
we focus on unconditionally secure BE schemes.

Roughly speaking, we can classify unconditionally secure BE schemes into
two types depending on its functionality: (t,≤ ω)-secure BE schemes [3,4,16,
17,19] and (≤ n,≤ ω)-secure BE schemes [3,11,25], where t is the number of
c© Springer International Publishing AG 2017
J. Shikata (Ed.): ICITS 2017, LNCS 10681, pp. 39–57, 2017.
https://doi.org/10.1007/978-3-319-72089-0_3
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receivers who can decrypt ciphertexts (called privileged users), n is the number
of all receivers, and ω is the maximum number of colluders. Let S be a sender
and R := {R1,R2, . . . ,Rn} be a receiver set. In (t,≤ ω)-secure BE schemes, S
encrypts a plaintext for some subset (called a privileged set) P ⊂ R such that
the cardinality of P is exactly t (i.e. |P| = t). On the other hand, in (≤ n,≤ ω)-
secure BE schemes S can encrypt a plaintext for any P ⊂ R. Namely, the latter
realizes more flexible functionality than the former instead of significantly larger
secret-key sizes [3,11]. It is known that there is a trade-off between the secret-key
sizes and the ciphertext sizes in BE schemes [4,19,25].

After Shannon’s seminal work [23], several relaxations of perfect secrecy,
which is the strongest security notion of confidentiality, have been pro-
posed [1,10,15,22,26]. Alimomeni and Safavi-Naini [1] introduced a security
notion based on success probability of guessing plaintexts, called guessing
secrecy, as a natural extension of perfect secrecy. They showed a non-uniform key
(randomness) is sufficient to construct encryption schemes that satisfy guessing
secrecy, whereas perfect secrecy requires uniform randomness to realize secure
encryption schemes. Iwamoto and Shikata [14] showed concrete constructions
of encryption schemes that meet guessing secrecy. It is important to inves-
tigate cryptographic protocols with non-uniform randomness from a practical
perspective.

In this paper, we consider (≤ n,≤ ω)-secure BE with guessing secrecy
by extending results on symmetric-key encryption [14]. We formalize guessing
secrecy for BE, derive lower bounds on ciphertexts and secret keys, and propose
a construction that meets guessing secrecy. More specifically, our contributions
are as follows. In Sect. 3, we formalize four types of guessing secrecy for BE
depending on conditions on ciphertexts and secret keys of colluders: average
guessing secrecy (A-GS), strong average guessing secrecy (sA-GS), weak optimal
guessing secrecy (wO-GS), and optimal guessing secrecy (O-GS). We derive lower
bounds on ciphertexts, and show that the ciphertext size for any privileged set
must be larger than the plaintext size. Further, we derive tight lower bounds
on sizes of encryption keys and decryption keys when the plaintext size is equal
to the ciphertext size. Those lower bounds are derived in Sect. 4. Finally, we
analyze the Fiat-Naor construction, which is the perfectly secure, most efficient
construction in the sense that secret-key sizes attain lower bounds with equali-
ties, in the guessing secrecy setting in Sect. 5. We show the Fiat-Naor (one-bit)
construction meets A-GS and sA-GS and is most efficient if and only if the prob-
ability distribution on plaintexts is more biased than that on randomness (used
for generating secret keys). In other words, non-uniform randomness is sufficient
to construct (≤ n,≤ ω)-secure BE schemes that satisfy A-GS or sA-GS. We also
show that randomness used in a BE scheme must be uniform to meet wO-GS or
O-GS (or perfect secrecy).

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, 2, . . . , n}. The calligraphy X indicates a set,
and |X | denotes the cardinality of X . The roman capital X indicates a random
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variable which takes values in X (e.g., A,B, and C are random variables which
take values in A,B, and C, respectively).

2.1 Information Theoretic Tools

PX denotes a probability distribution over a set X . Throughout the paper, we
assume that all of probability distributions assign non-zero values to elements of
the corresponding sets. Namely, for any PX , it holds PX(x) > 0 for all x ∈ X .

We briefly describe Shannon entropy. For details, see [7,8] for the excellent
instruction. Let X and Y be random variables which take values in sets X and
Y, respectively. Shannon entropy H(X) is defined by H(X) := −∑

x∈X Pr(X =
x) log Pr(X = x). The joint entropy H(X,Y ) and conditional entropy H(X|Y )
of a pair of random variables (X,Y ) with a joint probability distribution PXY are
defined by H(X,Y ) := −∑

x∈X
∑

y∈Y Pr(X = x, Y = y) log Pr(X = x, Y = y),
and H(X|Y ) :=

∑
y∈Y Pr(Y = y)H(X|Y = y), respectively.

2.2 Symmetric-Key Encryption

We define information-theoretically secure symmetric-key encryption (SKE). Let
M, C, and K be sets of possible plaintexts, ciphertexts, and secret keys, respec-
tively. Let PM and PK be probability distributions on plaintexts and secret keys,
respectively.

Definition 1 (SKE). A symmetric-key encryption (SKE) scheme π consists
of the following three tuple of algorithm (G,E,D) with three finite spaces, M, C,
and K, where D is a deterministic algorithm.

– k ← G(PK): It outputs a common key k ∈ K according to PK .
– c ← E(k,m): It takes k and a plaintext m ∈ M generated according to PM

as input, and outputs a ciphertext c ∈ C.
– m or ⊥ ← D(k, c): It takes k and c as input, and outputs m or ⊥, which is a

special symbol that indicates decryption failure.

π satisfies the following correctness: For all PK , all k ← G(PK), and all m ∈ M,
it holds that m ← D(k,E(k,m)).

Perfect secrecy (PS) is defined as follows (guessing secrecy for SKE is dis-
cussed in Sect. 3).

Definition 2 (Perfect Secrecy for SKE [23]). An SKE scheme π is said to
satisfy PS if it holds H(M | C) = H(M).

2.3 Broadcast Encryption

Suppose that there are n + 1 entities, a sender S and n receivers R1,R2, . . . ,Rn.
Let R := {R1,R2, . . . ,Rn} be a set of all receivers, and M be a set of possible
plaintexts. For any subset J := {Ri1 ,Ri2 , . . . ,Rij

} ⊂ R, let CJ be a set of all
possible ciphertexts for J , and let C :=

⋃
J ⊂R CJ . Let EK be a set of possible
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encryption keys. Let DKi be a set of possible decryption keys for Ri, and let
DK :=

⋃n
i=1 DKi.

Model. First, S generates an encryption key ek ∈ EK and n decryption
keys (dk1, dk2, . . . , dkn) ∈ ∏n

i=1 DKi according to probability distribution PSK ,
where SK := (EK,DK1,DK2, . . . , DKn). S then distributes each decryption
key dki to each receiver Ri via secure channels, respectively. When encrypting
a plaintext m ∈ M by using ek, S can choose a non-empty subset P (called
a privileged set) of R so that only receivers in P can decrypt the resulting
ciphertext cP ∈ CP . A receiver Ri can decrypt the ciphertext by using his/her
decryption key dki if Ri ∈ P. Otherwise, he/she fails to decrypt it.

Definition 3 (BE). A broadcast encryption (BE) scheme Π consists of the
following three-tuple of algorithms (Setup,Enc,Dec) with four finite spaces,
M, C, EK, and DK, where Setup is a probabilistic algorithm and Enc and Dec
are deterministic algorithms.

– (ek, dk1, . . . , dkn) ← Setup(n, PSK): It outputs an encryption key ek ∈ EK, n
decryption keys (dk1, . . . , dkn) ∈ ∏n

i=1 DKi according to PSK , where SK :=
(EK,DK1,DK2, . . . , DKn).

– cP ← Enc(ek,m,P): It takes ek, a plaintext m ∈ M generated according to a
probability distribution PM , and a privileged set P ⊂ R as input, and outputs
a ciphertext cP ∈ CP .1

– m or ⊥ ← Dec(dki, cP): It takes dki of a receiver Ri and the ciphertext cP
for P as input, and outputs m or ⊥.

The following decryption correctness is required for Π: For all n ∈ N, all PSK ,
all (ek, dk1, . . . , dkn) ← Setup(n, PSK), all m ∈ M, all P ⊂ R, and all Ri ∈ P,
m ← Dec(dki,Enc(ek,m,P)).

Security definition. In BE, we consider PS against at most ω colluders.
Namely, an adversary not only observes a ciphertext but also has at most ω
decryption keys. PS for BE guarantees that no information is leaked from a
ciphertext for any P ⊂ R even if any W ⊂ R \ P such that |W| ≤ ω is cor-
rupted.

Before formally describing PS for BE, we define several notations, which are
specific to BE and will be used for definitions, a construction, and proofs:

(i) P(i) := {P ⊂ R | Ri ∈ P},
(ii) W (ω) := {W ⊂ R | |W| ≤ ω},

(iii) W (i)(ω) := {W ∈ W (ω) | Ri /∈ W},
(iv) W (W) :=

⋃

Ri∈W
W (i)(ω),

1 For simplicity, we assume that all entities share the information on P of cP , e.g., by a
publicly accessible authenticated bulletin board, and therefore we omit a description
of P from cP .
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(v) W (P, ω) := {W ⊂ (R \ P) | |W| ≤ ω},

(vi) Ŵ (P, ω) := {W ⊂ (R \ P) | |W| = min{ω, n − |P|}} ,

where (i) is a family of subsets of R such that each subset contains Ri, (ii) is a
family of possible sets of at most ω colluders in the BE scheme, (iii) is a family
of possible sets of at most ω colluders such that each set does not contain Ri,
(iv) is a union of (iii) according to W ⊂ R, (v) is a family of possible sets of at
most ω colluders against P, and (vi) is a family of possible sets that contain the
maximum number of colluders against P.

We are ready to define the notion of PS for BE. For any subset J := {Ri1 ,
Ri2 , . . . ,Rij

} ⊂ R, let DKJ := (DKi1 ,DKi2 , . . . ,DKij
). Let DKJ be its

corresponding random variable (i.e., DKJ := (DKi1 ,DKi2 , . . . , DKij
)), and

dkJ := (dki1 , dki2 , . . . , dkij
).

Definition 4 (Perfect Secrecy for BE [11]). A BE scheme Π is said to be
(≤ n,≤ ω)-PS secure if it holds H(M | CP ,DKW) = H(M) for any P ⊂ R and
any W ∈ W (P, ω).

3 Security Definition Based on Guessing Secrecy

We consider guessing secrecy for BE analogous to traditional perfect secrecy.
More precisely, we assume at most ω (< n) colluders, and define guessing secrecy
against the colluders. As in previous works (e.g., [3,11,25]), we consider one-time
security, which means that only one plaintext is encrypted and an adversary
(i.e., colluders) observes the resulting ciphertext. We also consider two types of
guessing secrecy, average guessing secrecy and optimal guessing secrecy, which
are due to [14], in the BE setting. The former, called A-GS, intuitively means that
the advantage of adversary’s optimal strategy for a random ciphertext, and the
latter, called O-GS, intuitively means that the advantage of adversary’s optimal
strategy for all possible ciphertexts. Note that Alimomeni and Safavi-Naini first
considered A-GS in [1], and later Iwamoto and Shikata introduced O-GS in [14].
We here recall definitions of A-GS and O-GS as follows.

Definition 5 (Guessing Secrecy for SKE [1,14]). Let π be an SKE scheme.
Two kinds of adversary’s guessing probabilities are defined as follows:

A-GS(π) :=
∑

c∈C
PC(c) max

m∈M
PM |C(m | c) =

∑

c∈C
max
m∈M

PMC(m, c),

O-GS(π) := max
c∈C

max
m∈M

PM |C(m | c).

π is said to satisfy A-GS if A-GS(π) = maxm∈M PM (m). Further, π is said to
satisfy O-GS if O-GS(π) = maxm∈M PM (m).

The following relationships among PS, A-GS, and O-GS are known.
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Proposition 1 ([14]). For any SKE scheme π, it holds that PS(π) ⇒
O-GS(π) ⇒ A-GS(π), where “A ⇒ B” means “A implies B”.

Based on Definitions 4 and 5, we define guessing secrecy for BE. However,
it becomes more complicated than the above definition since there are at most
ω colluders. Namely, we have to consider the advantage of adversary’s strategy
with colluders’ decryption keys. Therefore, we consider the following four types
of guessing secrecy notions for any P ⊂ R and any colluders W ∈ W (P, ω).

1. A-GS for P with randomly chosen decryption keys of W.
2. A-GS for P with all possible decryption keys of W.
3. O-GS for P with randomly chosen decryption keys of W.
4. O-GS for P with all possible decryption keys of W.

We refer to the first and the last notions as average guessing secrecy (A-GS)
and optimal guessing secrecy (O-GS) since they are the most “average” notion
and the most “optimal” notion, respectively. Moreover, we refer to the second one
as strong average guessing secrecy (sA-GS) and to the third one as weak optimal
guessing secrecy (wO-GS). We formally define the above notions as follows.

Definition 6 (Guessing Secrecy for BE). Let Π be a BE scheme. For any
P ⊂ R and any W ∈ W (P, ω), four kinds of colluders’ guessing probabilities are
defined as follows:

A-GS(Π,P,W) :=
∑

dkW∈DKW

PDKW (dkW)
∑

cP∈CP

PCP |DKW (cP | dkW)

· max
m∈M

PM |CPDKW (m | cP , dkW)

=
∑

dkW∈DKW

∑

cP∈CP

max
m∈M

PMCPDKW (m, cP , dkW),

sA-GS(Π,P,W) := max
dkW∈DKW

∑

cP∈CP

PCP |DKW (cP | dkW)

· max
m∈M

PM |CPDKW (m | cP , dkW)

= max
dkW∈DKW

∑

cP∈CP

max
m∈M

PMCP |DKW (m, cP | dkW),

wO-GS(Π,P,W) :=
∑

dkW∈DKW

PDKW (dkW) max
cP∈CP

max
m∈M

PM |CPDKW (m | cP , dkW)

O-GS(Π,P,W) := max
dkW∈DKW

max
cP∈CP

max
m∈M

PM |CPDKW (m | cP , dkW).

Π is said to be (≤ n,≤ ω)-X-GS (X ∈ {A, sA,wO,O}) secure (or, it is said to
satisfy (≤ n,≤ ω)-X-GS) if it holds that

X-GS(Π) = max
m∈M

PM (m),

where X-GS(Π) := max
P∈R,W∈W (P,ω)

X-GS(Π,P,W).
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The following relationships among the above security notions and PS are
hold. The proof is omitted since it is straightforward.

Proposition 2. For any BE scheme Π, it holds that

PS(Π) ⇒ O-GS(Π) ⇒
{
wO-GS(Π)
sA-GS(Π)

}

⇒ A-GS(Π).

4 Lower Bounds on Sizes of Ciphertexts and Secret Keys

In this section, we derive lower bounds on sizes of ciphertexts and secret keys
required for BE schemes with guessing secrecy. Although the derived lower
bounds are similar to those required for perfectly secure BE schemes [3,16,24],2

the deriving techniques are different from those.

Theorem 1. Let Π be an (≤ n,≤ ω)-X-GS (X ∈ {A, sA,wO,O}) secure BE
scheme. Then, it holds that for any P ⊂ R,

|CP | ≥ |M|. (1)

Moreover, if |CP | = |M| for any P ⊂ R, it then holds that

log |EK| ≥
ω∑

j=0

(
n

j

)

log |M|, (2)

log |DKi| ≥
ω∑

j=0

(
n − 1

j

)

log |M| for every i ∈ [n]. (3)

Proof. We can easily show Eq. (1) since Enc is an injective mapping for every
ek ∈ EK and P ⊂ R (i.e., Enc(ek, ·,P) : M → CP is injective).

We next show Eqs. (2) and (3) for an (≤ n,≤ ω)-A-GS secure BE scheme
Π since the bounds for A-GS secure scheme can be applied for any BE scheme
satisfying sA-GS, wO-GS, or O-GS.

Proof of Eq. (2). Since the Enc algorithm is deterministic, we can consider a
set of encryption keys EKP for a privileged set P ⊂ R, and EK as

∏
P⊂R EKP .

In other words, we consider ek ∈ EK as a vector (ekP)P⊂R ∈ ∏
P⊂R EKP ,

and Enc : EK × M × P → CP as EKP × M → CP . We then show that the
size of encryption keys ekP ∈ EKP must be larger than the size of ciphertexts
cP ∈ CP (and hence the plaintext size). Finally, we show that for any two sets of
colluders W,W ′ ∈ W (ω), two subsets EKR\W and EKR\W′ are disjoint. Namely,
it indicates that we have to use a different encryption key depending on the set
of possible colluders.

First, we show that it holds |EKP | ≥ |CP | for any P ⊂ R in an (≤
n,≤ ω)-A-GS secure BE scheme Π. We now assume that for some P, it

2 For the lower bounds required for perfectly secure BE schemes, see Appendix A.
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holds |EKP | < |CP |. Let m∗ be a plaintext satisfying m∗ ∈ arg max
m∈M

PM (m).

For m∗, we have � ciphertexts c
(1)
P , c

(2)
P , . . . , c

(�)
P , where c

(i)
P ← Enc(ek,m∗,P)

for every ek ∈ EKP and � ≤ |EKP | (Enc(·,m∗) might output the same c
(j)
P

with some two keys ekP , ek′
P ∈ EKP , and hence � ≤ |EKP |). It means that

Enc(·,m∗) : EK → {c(j)P }�
j=1, and we have CP \ {c

(j)
P }�

j=1 
= ∅ by the assumption.
For any W ∈ W (P, ω), we have

max
m∈M

PM(m) = PM (m∗)

=
∑

dkW∈DKW

PDKW (dkW)PM (m∗)

=
∑

dkW∈DKW

PDKW (dkW)PM (m∗)
�∑

i=1

PCP |MDKW (c(i)P | m∗, dkW)

=
∑

dkW∈DKW

�∑

i=1

PMCPDKW (m∗, c(i)P , dkW)

<
∑

dkW∈DKW

�∑

i=1

PMCPDKW (m∗, c(i)P , dkW)

+
∑

dkW∈DKW

∑

cP∈CP\{ci}�
i=1

max
m∈M

PMCPDKW (m, cP , dkW)

≤ A-GS(Π,P,W).

This is a contradiction with A-GS of Π, and hence we have |EKP | ≥ |CP | for any
P ⊂ R.

We next show that for any distinct W,W ′ ∈ W (ω), P := R \ W, and P ′ :=
R \ W ′, EKP and EKP′ are disjoint (i.e., EKP ∩ EKP′ = ∅). We assume that
it holds EKP ∩ EKP′ 
= ∅ for some distinct W,W ′ ∈ W (ω), P := R \ W, and
P ′ := R \ W ′. Then, there exists ẽkP∩P′ ∈ EKP ∩ EKP′ and some receiver Ri∗

such that Ri∗ ∈ P ∩ W ′ but Ri∗ /∈ P ′.
We have Enc(ẽkP∩P′ , ·) : M → CP ∩ CP′ since ciphertexts encrypted by

ẽkP∩P′ have to be decrypted by every receiver in P or P ′. Then, Ri∗ can decrypt
cP′ ← Enc(ẽkP∩P′ ,m∗,P ′) ∈ (CP ∩CP′) since Ri∗ ∈ P can decrypt all ciphertexts
in CP . This is a contradiction with A-GS of Π, and thus it holds EKR\W ∩
EKR\W′ = ∅ for any distinct W,W ′ ∈ W (ω). Since |EKP | ≥ |CP | = |M| for any
P ⊂ R and |W (ω)| =

∑ω
j=0

(
n
j

)
, we have

|EK| ≥
∏

W (ω)

|EKP | ≥
∏

W (ω)

|CP | =
∏

W (ω)

|M| = |M|
∑ω

j=0 (n
j).

Proof of Eq. (3). We can prove Eq. (3) in a way similar to the proof of Eq. (2).
We first give an intuition. Since the Dec algorithm is deterministic, we can
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consider a set of Ri’s decryption keys for every privileged set P ∈ P(i), and
DKi as

∏
P∈P(i) DKi,P . In other words, we consider dki ∈ DKi as a vector

(dki,P)P∈P(i) ∈ ∏
P∈P(i) DKi,P , and Dec : DKi×CP → M as DKi,P ×CP → M

for every P ∈ P(i). We then show that the size of Ri’s decryption keys
dki,P ∈ DKi,P must be larger than the size of ciphertexts cP ∈ CP (and
hence the plaintext size). Finally, we show that for any two sets of colluders
W,W ′ ∈ W (i)(ω), two subsets DKi,R\W and DKi,R\W′ are disjoint. Namely, it
indicates that each receiver Ri must have a different decryption key depending
on the possible set of colluders.

First, we show that for any P ∈ P(i), it holds |DKi,P | ≥ |CP | in an (≤
n,≤ ω)-A-GS secure BE scheme Π. We now assume it holds for some P ∈ P(i),
|DKi,P | < |CP |. For every dki,P ∈ DKi,P , Dec(dki,P , ·) : CP → M is bijective
from the assumption |CP | = |M|. Namely, for any m ∈ M and any dki,P ∈
DKi,P , there is a unique ciphertext cP ∈ CP such that Dec(dki,P , cP) → m.
We have the number of ciphertexts of any m ∈ M for P is at most |DKi,P |
since some two keys dki,P , dk′

i,P ∈ DKi,P might share the same ciphertext cP .
Let m∗ be a plaintext satisfying m∗ ∈ arg max

m∈M
PM (m), and we here assume

the number of ciphertexts of m∗ for P is �′ (≤ |DKi,P |). They are denoted by
c
(1)
P , c

(2)
P , . . . , c

(�′)
P . Therefore, we have

�′
∑

i=1

PCP |M (c(i)P | m∗) = 1. (4)

We have CP \ {c
(j)
P }�′

j=1 
= ∅ by the assumption. For any W ∈ W (P, ω), we have

max
m∈M

PM(m)

= PM (m∗)

=
∑

dkW∈DKW

PDKW (dkW)PM (m∗)

=
∑

dkW∈DKW

PDKW (dkW)PM (m∗)
�′

∑

i=1

PCP |MDKW (c(i)P | m∗, dkW) (5)

=
∑

dkW∈DKW

�′
∑

i=1

PMCPDKW (m∗, c(i)P , dkW)

<
∑

dkW∈DKW

�′
∑

i=1

PMCPDKW (m∗, c(i)P , dkW)

+
∑

dkW∈DKW

∑

cP∈CP\{ci}�′
i=1

max
m∈M

PMCPDKW (m, cP , dkW)

≤ A-GS(Π,P,W).
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where Eq. (5) follows from Eq. (4). This is a contradiction with A-GS of Π, and
hence we have |DKi,P | ≥ |CP | for any P ∈ P(i).

We next show that for any distinct W,W ′ ∈ W (i)(ω), P := R \ W, and
P ′ := R \ W ′, DKi,P and DKi,P′ are disjoint (i.e., DKi,P ∩ DKi,P′ = ∅). We
assume that it holds DKi,P ∩ DKi,P′ 
= ∅ for some distinct W,W ′ ∈ W (i)(ω),
P := R \ W, and P ′ := R \ W ′. Then, there exists d̃ki,P∩P′ ∈ DKi,P ∩ DKi,P′

and some receiver Rj∗ ∈ P ∩ W ′ (i.e., Rj∗ ∈ P \ P ′). Note that Ri ∈ P and
Ri ∈ P ′.

We then have Dec(d̃ki,P∩P′ , ·) : CP ∩ CP′ → M since for any m ∈ M,
Ri can decrypt both Enc(ẽk,m,P) ∈ CP and Enc(ẽk,m,P ′) ∈ CP′ by using
d̃ki,P∩P′ , where ẽk ∈ EK is an encryption key generated along with d̃ki,P∩P′ by
Setup. Namely, we have Enc(ẽk, ·,P) : M → CP ∩ CP′ and Enc(ẽk, ·,P ′) : M →
CP ∩ CP′ since ciphertexts encrypted by ẽk have to be decrypted by d̃ki,P∩P′

due to the decryption correctness. Therefore, Rj∗ (/∈ P ′) can decrypt cP′ ←
Enc(ẽk,m∗,P ′) ∈ (CP∩CP′) since Rj∗ ∈ P can decrypt all ciphertexts in CP . This
is a contradiction with A-GS of Π, and thus it holds DKi,R\W ∩DKi,R\W′ = ∅ for
any distinct W,W ′ ∈ W (i)(ω). Since |DKi,P | ≥ |CP | = |M| for every P ∈ P(i)

and |W (i)(ω)| =
∑ω

j=0

(
n−1

j

)
, we have

|DKi| ≥
∏

W (i)(ω)

|DKi,P | ≥
∏

W (i)(ω)

|CP | =
∏

W (i)(ω)

|M| = |M|
∑ω

j=0 (n−1
j ). �

In fact, the derived bounds are tight since in the next section, we will see
a construction that attains every bound of Theorem 1 with equality. We define
what is the most efficient BE scheme in terms of sizes of ciphertexts and secret
keys as follows.

Definition 7 (BE with the Shortest Ciphertexts and Keys). A con-
struction of an (≤ n,≤ ω)-X-GS (X ∈ {A, sA,wO,O}) secure BE scheme is said
to achieve the shortest ciphertexts and keys3 if it meets equality in every bound
of Eqs. (1), (2), and (3) in Theorem 1.

5 Construction

In this section, we propose a one-bit construction that meet guessing secrecy
with non-uniform keys. Specifically, we analyze (a variant of) the Fiat-Naor
construction [11] with non-uniform keys.

The idea of the Fiat-Naor construction is simple: Random elements rW are
chosen for every set of colluders W ∈ W (ω), and a ciphertext cP for P ⊂ R is the
one-time pad by the sum of all random elements rW such that W ∈ W (P, ω).
Any W ⊂ (R \ P) does not have at least one random element rW used for

3 Information-theoretically secure schemes that attain all lower bounds of secret keys
with equalities are often said to be optimal. However, in this paper we do not use
the terminology here to avoid confusion since we already use it for O-GS.
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the encryption, and therefore the Fiat-Naor construction meets PS when the
probability distribution on the randomness is uniform [11].

In this section, we simplify (or, fine-tune) the Fiat-Naor construction as
follows: Random elements rW for a ciphertext cP are chosen according to
W ∈ Ŵ (P, ω), instead of W (P, ω). The ciphertext is the one-time pad by the
sum of them. In fact, colluder sets that we have to pay attention are W with
the maximum cardinality (ω or n− |P|), since the construction is secure against
W then it implies it is secure against W ′ ⊂ W. Therefore, this modification
reduces the random elements used for creating a ciphertext while keeping the
construction secure, and hence, it makes the security analysis of the modified
construction easy.

We analyze whether or not the modified construction meets X-GS (X ∈
{A, sA,wO,O}), and clarify requirements if it meets any of them. As a result,
we show that the construction meets sA-GS (and also A-GS) if probability dis-
tribution of plaintexts are more biased than that of randomness used in the
construction. Furthermore, we show that wO-GS, O-GS, and PS are equivalent
under the construction. In other words, uniform distribution of randomness is
required for wO-GS (and O-GS).

The modified Fiat-Naor construction with common biased random-
ness. Suppose that M = C = {0, 1}, and PM (0) = q. We assume a biased
random source RW which takes values in {0, 1} such that PRW (0) = p for any
W ∈ W (ω). Without loss of generality, we assume 1/2 ≤ q < 1 and 1/2 ≤ p < 1.

1. (ek, dk1, . . . , dkn) ← Setup(n, PSK): Output ek := {rW}W∈W (ω) and dki :=
{rW}W∈W (i)(ω) for any i ∈ [n].

2. cP ← Enc(ek,m,P): Compute and output

cP := m
⊕

W∈Ŵ (P,ω)

rW .

3. m or ⊥ ← Dec(dki, cP): Output ⊥ if Ri /∈ P. Otherwise, output

m = cP
⊕

W∈Ŵ (P,ω)

rW .

Theorem 2. A BE scheme Π given by the above construction is (≤ n,≤ ω)-
sA-GS secure and achieves the shortest ciphertexts and keys if and only if p ≤ q.

Proof. Since it is straightforward that Π achieves the shortest ciphertexts and
keys, we omit the proof. Without loss of generality, we fix some P ⊂ R such that
|P| = n − ω and W = R \ P. This maximizes the amount of W’s information
related to cP , and simplifies the analysis since only one random element rW is
used for computing cP (i.e., cP := m⊕ rW). An analysis for the case of |W| < ω
is more complicated, however it basically follows the following proof. Therefore,
we omit it here, and the more detailed analysis will appear in the full version.
Let rW (W) := {rW}W∈W (W) . Namely, rW (W) denotes all random elements that
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W has (i.e., dkW), and we denote it as a |W (W)|-bits string for simplicity. Let
RW (W) be a random variable of rW (W) .

Then, we have

sA-GS(Π,P,W)

= max
dkW∈DKW

∑

cP∈CP

PCP (cP) max
m∈M

PM |CPDKW (m | cP , dkW)

= max
r
W (W)∈{0,1}|W (W)|

(
(PCP (0) max

m∈M
PM |CPR

W (W)
(m | 0, rW (W))

︸ ︷︷ ︸
(a)

+PCP (1) max
m∈M

PM |CPR
W (W)

(m | 1, rW (W))
︸ ︷︷ ︸

(b)

)
.

As for (a), we have

PCP (0) max
m∈M

PM |CR
W (W)

(m | 0, rW (W))

= PCP (0) max
m∈M

PMCPR
W (W) (m, 0, rW (W))

PCPR
W (W) (0, rW (W))

= PCP (0) max
m∈M

PMCP (m, 0)PR
W (W) (rW (W))

PCP (0)PR
W (W) (rW (W))

(6)

= max
m∈M

PMCP (m, 0),

where Eq. (6) follows from that rW (W) is independent of (m, rW). Since
PMCP (0, 0) = pq and PMCP (1, 0) = (1 − p)(1 − q), we have

max
r
W (W)∈{0,1}|W (W)|

PCP (0) max
m∈M

PM |CR
W (W)

(m | 0, rW (W)) = pq. (7)

Similarly, as for (b), we have

PCP (1) max
m∈M

PM |CR
W (W)

(m | 1, rW (W)) = max
m∈M

PMCP (m, 1).

Since PMCP (0, 1) = (1 − p)q and PMCP (1, 1) = p(1 − q), we have

PCP (1) max
m∈M

PM |CR
W (W)

(m | 1, rW (W)) = max{(1 − p)q, p(1 − q)}. (8)

From Eqs. (7) and (8), we have

sA-GS(Π,P,W) = pq + max{(1 − p)q, p(1 − q)}.

If p ≤ q, we have

sA-GS(Π,P,W) = pq + (1 − p)q = q = PM (0) = max
m∈M

PM (m).
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Therefore, Π is (≤ n,≤ ω)-sA-GS secure.

On the other hand, if p > q, then we have

sA-GS(Π,P,W) = pq + p(1 − q) = p > q = max
m∈M

PM (m).

Therefore, Π is not (≤ n,≤ ω)-sA-GS secure if p > q. �
A toy example. Let n = 4 and ω = 2. An encryption key and decryption keys
are

ek := {rW}W∈W (ω)

= {r∅, r{1}, r{2}, r{3}, r{4}, r{1,2}, r{1,3}, r{1,4}, r{2,3}, r{2,4}, r{3,4}},

dk1 := {rW}W∈W (1)(ω) = {r∅, r{2}, r{3}, r{4}, r{2,3}, r{2,4}, r{3,4}},

dk2 := {rW}W∈W (2)(ω) = {r∅, r{1}, r{3}, r{4}, r{1,3}, r{1,4}, r{3,4}},

dk3 := {rW}W∈W (3)(ω) = {r∅, r{1}, r{2}, r{4}, r{1,2}, r{1,4}, r{2,4}},

dk4 := {rW}W∈W (4)(ω) = {r∅, r{1}, r{2}, r{3}, r{1,2}, r{1,3}, r{2,3}},

where we denote Ri as i for simplicity. Suppose P = {R1,R2}. Since Ŵ (P, 2) =
{{R3,R4}}, cP := m ⊕ r{3,4}.4 For W = {R3,R4}, we have

W (W) = {∅, {R1}, {R2}, {R3}, {R4}, {R1,R2}, {R1,R3}, {R1,R4}, {R2,R3}, {R2,R4}}.

Therefore, we have W (ω) \ W (W) = {W = {R3,R4}}. Then, we have

sA-GS(Π,P = {R1,R2},W = {R3,R4})

= max
dkW∈DKW

∑

cP∈CP

PCP (cP) max
m∈M

PM |CPDKW (m | cP , dkW)

= max
r
W (W)∈{0,1}|W (W)|

(
(PCP (0) max

m∈M
PM |CPR

W (W)
(m | 0, rW (W))

︸ ︷︷ ︸
(a)

+PCP (1) max
m∈M

PM |CPR
W (W)

(m | 1, rW (W))
︸ ︷︷ ︸

(b)

)
.

As for (a), we have

PCP (m ⊕ r{3,4} = 0) max
m∈M

PM |CR
W (W)

(m | m ⊕ r{3,4} = 0, rW (W))

= PCP (m ⊕ r{3,4} = 0) max
m∈M

PM |CP (m | m ⊕ r{3,4} = 0) (9)

= max
m∈M

PMCP (m,m ⊕ r{3,4} = 0)

= PMRW (m = 0, r{3,4} = 0)
= pq. (10)

4 cP := m ⊕ r{3,4} ⊕ r∅ ⊕ r3 ⊕ r4 in the original Fiat-Naor construction.
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where Eq. (9) follows from that W = {R3,R4} /∈ W (W) and m and each rW are
independently chosen.

Similarly, as for (b), we have

PCP (m ⊕ r{3,4} = 1) max
m∈M

PM |CR
W (W)

(m | m ⊕ r{3,4} = 1, rW (W))

= max
m∈M

PMRW (m, r{3,4} = 1)

= max{(1 − p)q, p(1 − q)}. (11)

From Eqs. (10) and (11), if p ≤ q we have

sA-GS(Π) = sA-GS(Π,P,W) = pq + (1 − p)q = q = PM (0) = max
m∈M

PM (m).

Therefore, Π is (≤ 4,≤ 2)-sA-GS secure.

We also show that the Fiat-Naor construction satisfies wO-GS (and O-GS) if
and only if it satisfies PS.

Theorem 3. For a BE scheme Π given by the above construction, the following
statements are equivalent:

(I) All the probability distributions of the randomness PRW for W ∈ W (ω) are
uniform (i.e., p = 1/2).

(II) Π is (≤ n,≤ ω)-PS secure.
(III) Π is (≤ n,≤ ω)-O-GS secure.
(IV) Π is (≤ n,≤ ω)-wO-GS secure.

Furthermore, (≤ n,≤ ω)-X-GS (X ∈ {wO,O}) secure Π given by the construction
achieves the shortest ciphertexts and keys.5

Proof. Since it is straightforward that Π achieves the shortest ciphertexts and
keys if it is (≤ n,≤ ω)-X-GS (X ∈ {wO,O}) secure, we omit the proof.

(I)→(II). We omit the proof of (I) since it can be easily proved in a way
similar to PS of the Fiat-Naor construction.
(II)→(III) and (III)→(IV). It is straightforward from Proposition 2.
(IV)→(I). We prove it by showing that the construction is (≤ n,≤ ω)-wO-GS
secure only if p = 1/2.

5 It is already known that (the variant of) the Fiat-Naor construction is (≤ n, ≤ ω)-PS
secure and meets lower bounds of sizes of ciphertexts and secret keys (Proposition 3
in Appendix A) with equalities [3,11].
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Suppose that Π meets wO-GS. As in Theorem 2, we fix some P ⊂ R such
that |P| = n − ω and W = R \ P without loss of generality. Then, it holds

wO-GS(Π,P,W)

=
∑

dkW∈DKW

PDKW (dkW) max
cP∈CP

max
m∈M

PM |CPDKW (m | cP , dkW)

=
∑

r
W (W)∈{0,1}|W (W)|

PR
W (W) (rW (W)) max

cP∈CP
max
m∈M

PMCPR
W (W) (m, cP , rW (W))

PCPR
W (W) (cP , rW (W))

=
∑

r
W (W)∈{0,1}|W (W)|

PR
W (W) (rW (W)) max

cP∈CP
max
m∈M

PM (m)PCP |M (cP | m)
PCP (cP)

(12)

= max
cP∈CP

max
m∈M

PM (m)PCP |M (cP | m)
PCP (cP)

(13)

=
pq

pq + (1 − p)(1 − q)
,

where rW (W) and RW (W) are the same as the proof of Theorem 2, Eq. (12)
follows from that rW (W) is independent of (m, rW), and Eq. (13) follows from∑

PR
W (W) (rW (W)) = 1.

Since Π meets wO-GS by the assumption, we have

wO-GS(Π,P,W) =
pq

pq + (1 − p)(1 − q)
= q = PM (0) = max

m∈M
PM (m).

We
also have wO-GS(Π) = maxP⊂R,W∈W (P,ω) wO-GS(Π,P,W) = pq/(pq + (1 − p)
(1 − q)). Since Π satisfies wO-GS, it holds

wO-GS(Π) =
pq

pq + (1 − p)(1 − q)
= q.

It means it holds (2p − 1)q(1 − q) = 0 for Π with wO-GS security. Since 1/2 ≤
q < 1, Π satisfies wO-GS only if p = 1/2. �

We have considered that randomness rW is independently chosen according
to some biased probability distribution. However, there might be a situation
where the probability distribution is changed as sampling elements (e.g., the
probability distribution of rWi

depends on whether rWi−1 = 0 or rWi−1 = 1).
We can also obtain a similar result with various biased randomness. Namely, we
can prove the security of (the variant of) the Fiat-Naor construction even if each
randomness rW in the construction is chosen according to different probability
distribution. For details, see Appendix B.

6 Concluding Remarks

In this paper, we considered guessing secrecy for BE. We defined four notions
of guessing secrecy, and derived lower bounds on ciphertexts and secret keys.
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We showed that the Fiat-Naor construction is also secure in the sense of guessing
secrecy, and achieves the shortest ciphertexts and keys.

The derived lower bounds of secret keys and the construction are only for
BE schemes when the plaintext size is equal to the ciphertext size. Namely,
analyzing BE schemes that meet guessing secrecy with more general ciphertext
sizes is an open problem. More broadly, there is an interesting open problem in
this research topic: Providing complete solution to trade-offs between sizes of
ciphertexts and secret keys in BE schemes even in the perfect security setting.

Acknowledgments. We would like to thank the anonymous reviewers for fruitful
comments. We would also like to thank Junji Shikata for his feedback. The author is
supported by JSPS Research Fellowship for Young Scientists. This work was supported
by Grant-in-Aid for JSPS Fellows Grant Number JP16J10532 and JP17H01752.

Appendix

A Lower Bounds for Perfectly Secure BE Schemes

Previous works [3,16,24] derived lower bounds on sizes of ciphertexts and secret
keys required for perfectly secure BE schemes in various contexts. We here
describe the bounds from [24] since it explicitly showed the lower bound on
the encryption-key size.

Proposition 3 ([24]). Let Π be an (≤ n,≤ ω)-PS secure BE scheme. Then, it
holds that for any P ⊂ R,

H(CP) ≥ H(M).

Moreover, if H(CP) = H(M) for any P ⊂ R, it then holds that

H(EK) ≥
ω∑

j=0

(
n

j

)

H(M),

H(DKi) ≥
ω∑

j=0

(
n − 1

j

)

H(M) for every i ∈ [n].

B The Fiat-Naor Construction with Various Biased
Randomness

We consider a more complicated situation than the construction in Sect. 5.
Suppose that M = C = {0, 1}, and PM (0) = q. We assume biased random
sources RW which take values in {0, 1} for any W ∈ W (ω). We also assume
PRW (0) = pW for all W ∈ W (P, ω).

We assume a biased random source RW which takes values in {0, 1} such
that PRW (0) = p for any W ∈ W (ω). Without loss of generality, we assume
1/2 ≤ q < 1 and 1/2 ≤ pW < 1 for any W ∈ W (P, ω).

Note that the construction is the same as the previous one (i.e., the modified
Fiat-Naor construction). We then have the following theorem.
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Theorem 4. A BE scheme Π given by the modified Fiat-Naor construction is
(≤ n,≤ ω)-A-GS secure and achieves the shortest ciphertexts and keys if and
only if max{pW}W∈W (P,ω) ≤ q.

Proof (Sketch). As in the proof of Theorem 2, we fix some P ⊂ R such that
|P| = n − ω and W = R \ P.

Then, we have

A-GS(Π,P,W)

=
∑

dkW∈DKW

∑

cP∈CP

max
m∈M

PMCPDKW (m, cP , dkW)

=
∑

r
W (W)∈{0,1}|W (W)|

(

max
m∈M

PMCPR
W (W) (m, 0, rW (W))

+ max
m∈M

PMCPR
W (W) (m, 1, rW (W))

)

=
∑

r
W (W)∈{0,1}|W (W)|

PR
W (W) (rW (W))

(

max
m∈M

PMCP (m, 0) + max
m∈M

PMCP (m, 1)
)

(14)

= max
m∈M

PMCP (m, 0) + max
m∈M

PMCP (m, 1),

where W (W), rW (W) , and RW (W) are the same as those in Theorem 2, and Eq.
(14) follows from rW (W) is independent of (m, rW). Since it holds

PMCP (0, 0) = pWq, PMCP (1, 0) = pW(1 − q),
PMCP (0, 1) = (1 − pW)q, PMCP (1, 1) = (1 − pW)(1 − q),

we have A-GS(Π,P,W) = pWq + max{pW(1 − q), (1 − pW)q}. If pW ≤ q,
then we have A-GS(Π,P,W) = q = maxm∈M PM (m). Otherwise, we have
A-GS(Π,P,W) = pW > q = maxm∈M PM (m).

Therefore, it holdsA-GS(Π) = maxm∈M PM (m) if max{pW}W∈W (P,ω) ≤ q. �
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Abstract. OR-based Visual Cryptographic Schemes (OVCS) suffer
from poor visual quality of the reconstructed image. XOR-based visual
secret sharing (XVCS) can be thought of as an alternative where the
relative contrast of the reconstructed image is much better. Moreover,
it is possible to achieve optimum relative contrast equal to 1 in XVCS
which is an impossibility in case of OVCS. Although there are examples
of XVCSs where optimum relative contrast is achieved but to the best of
our knowledge, this is the first theoretical work to find a necessary and
sufficient condition for a XOR-based VCS to achieve optimum relative
contrast equal to 1 in terms of the underlying access structure.

Keywords: Cumulative array · Relative contrast
Equivalent participants · Essential participants
Maximal forbidden sets · Visual secret sharing scheme

1 Introduction

A traditional Visual Cryptographic Scheme (VCS) for a set of n participants P =
{1, 2, . . . , n} is a variant of secret sharing, that encodes a secret image SI into n
shares which are distributed by the dealer among n participants (also known as
parties) in the form of transparencies on which the shares are photocopied. Such
shares have the property that only “qualified” subsets of participants can visually
recover the secret image by carefully stacking the transparencies. The first VCS
was proposed by Naor and Shamir [20] where they considered the threshold
access structure. This concept has been extended in [1,3,7,8] to general access
structures.

The mathematical operation that lies beneath the physical implementation of
the above mentioned schemes is the Boolean operation “OR”. However the major
problems for any OR-based visual cryptographic scheme are the huge share size
(pixel expansion) and very poor contrast of the reconstructed image. Several

c© Springer International Publishing AG 2017
J. Shikata (Ed.): ICITS 2017, LNCS 10681, pp. 58–72, 2017.
https://doi.org/10.1007/978-3-319-72089-0_4
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papers have been published to minimize the pixel expansion and to maximize
contrast. One may refer to [2,4,5,9,10,12,16,21] for a detailed survey.

Arumugam et al. [6] introduced a VCS for a special type of access structure
lying in between the threshold access structure and general access structure in
the OR-model. They called it (k, n)∗-VCS, to address the scenario where one
participant is “essential” and he needs the help of any k − 1 parties other than
him, to recover the secret image. Guo et al. [14] forwarded this idea to the concept
of (k, n)∗-VCS with t essential participants who require the collaboration of k−t
more parties from the rest of the set of parties. Note that the case when t=0
we have the scenario of a (k, n)-VCS where no participant is essential. The case
t = 1 is the usual (k, n)∗-VCS while t = n leads to the (n, n)-VCS.

1.1 “XOR” Based VCS: An Alternative for “OR” Based VCS

OR based visual cryptographic schemes suffer from the low quality of the recon-
structed image. Tuyls et al. [22] gave a VCS based on polarization of light where
the underlying mathematical operation was the Boolean “XOR” operation. The
polarization of light is done by inserting a liquid crystal layer into a liquid crys-
tal display (LCD). The advantage is two-fold. First, the liquid crystal layer can
be driven in an LCD. Secondly, since the voltage applied to the liquid crys-
tal layer makes it possible to rotate the polarization of light entering the layer
over a certain angle, it facilitates a practical updating mechanism. Thus unlike
OR-based schemes where a participant has to carry a number of transcripts to
update the shares, in a XOR-based VCS a party has to carry just one ded-
icated trusted device that has a display. For recovering the secret image the
shares i.e., the liquid crystal layers are to be stacked together. Moreover, due
to the rapid advancement of technology these devices are getting cheaper. It is
a reasonable expectation that polarization based visual cryptographic schemes
will be implemented in every light-weight cryptographic situation. In [23] the
authors constructed a XOR based (n, n)-VCS and proved that a XOR based
(2, n)-VCS is equivalent to a binary code. There are also two different methods
to realize the XOR operation in the field of visual cryptography. First one uses
a Mach-Zehnder Interferometer [17] and the other one proposed in [24] needs
a copy machine with the reversing function. One for further studies, may refer
to [15,18,19,25]. All these papers have considered the common property of non-
monotonicity of the access structure, i.e., super-set of the minimal qualified set
may not get the secret back if all of them stack their shares. However, it does
not prohibit us to define a visual cryptographic scheme. For most of the practi-
cal scenarios, the access structure is generally a public information. That is, the
participants have complete knowledge of the qualified sets and forbidden sets.
Therefore if a qualified set of participants come together then any minimal qual-
ified subset of it may produce the corresponding shares to reconstruct the secret
image. Thus it is sufficient to restrict ourselves to the collection of all minimal
qualified sets corresponding to the access structure. The first XOR-based VCS
for general access structure was proposed by Liu et al. [19]. They repeatedly
used the share generation algorithm for a (2, 2)-VCS to generate the shares of
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the participants for any access structure. However, their construction method is
not via basis matrices. Moreover, their construction deviates from the traditional
VCS in the sense that,

1. the participants may have to carry multiple share images;
2. due to the presence of multiple shares, at the time of revealing the secret,

the participants have to know for which access structures they are going to
submit which of their shares.

However their construction technique is novel and to the best of our knowl-
edge there does not exist any other construction method other than [19] that
constructs standard visual cryptographic scheme for the general access struc-
ture in the XOR model. So researches towards finding XOR-based VCS without
these assumptions are important. Dutta et al. [11] gave an efficient technique to
construct XOR-based (k, n)∗-VCS with t essential parties. Their linear algebraic
technique can further be exploited to construct XOR-based VCS for general
access structures. Yang et al. [25] provided plethora of examples of basis matri-
ces by proving that basis matrices for OR-based (k, n)-VCS can be used as basis
matrices for XOR-based (k, n)-VCS. Fu et al. [13] theoretically proved a neces-
sary condition for the optimality of pixel expansion of any visual cryptographic
scheme in both OR and XOR models. They gave an algorithm for reducing the
pixel expansion of any scheme. However, their findings are based on the existence
of basis matrices realizing an access structure. They have not however, given any
construction method to produce the basis matrices or distribution matrices cap-
turing the access structure in the first place. Their algorithm is novel modulo
the existence of the basis matrices.

1.2 Our Contribution

In the OR-based VCS (OVCS) the relative contrast is always less than 1
2 . More-

over, it follows from [20] that for any access structure if there is a minimal
qualified set of size t then relative contrast can never be better than 1

2t−1 . This
is true for whatever construction method we adopt to realize OVCS, as long as
it is deterministic. On the other hand, for XOR-based VCS (XVCS) there is
a possibility of achieving optimal relative contrast = 1. With the help of com-
binatorial design cumulative array we show that if a given access structure is
“OPTIMAL” then it is possible to construct XVCS with relative contrast = 1.
We explicitly describe the construction method and prove the correctness of the
construction. We further prove that if an access structure does not satisfy the
optimality condition then there cannot be any construction method realizing
XVCS on the access structure achieving relative contrast equal to one. There
were examples of XVCS which showed optimum relative contrast is achievable
but to the best of our knowledge, this is the first theoretical work to answer the
question of achievability of optimum relative contrast in terms of the underlying
access structure.
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2 Prerequisites

2.1 The Model for Non-monotone XOR-VCS

We follow standard notations and symbols through out. Let P = {1, 2, 3, . . . , n}
denote a set of participants. Let 2P denote the set of all subsets of P. Let Q ⊆ 2P

and F ⊆ 2P , where Q ∩ F = ∅, respectively denote the set of all qualified sets
and the set of all forbidden sets. The pair (Q,F) constitutes an access structure
on P. In this paper, we consider Q = Qmin = {X ⊆ P : B ∈ F ∀B ⊂ X}, the
collection of all minimal qualified sets of participants.

The collection of all maximal forbidden sets is denoted by Fmax = {F ∈ F :
∃B ∈ Qmin & B ⊂ F ∪ {i} ∀i ∈ P − F}. Note that in this paper, we do not
care about any subset Y ∈ 2P such that X ⊂ Y , for some X ∈ Qmin. We are
interested only in the fact that the minimal qualified sets of parties can recover
the secret image and the forbidden sets can not. This makes the access structure
non-monotone. In this paper whenever we consider an access structure, it is
implicit that we are interested in Qmin and Fmax.

Example 1. Let P = {1, 2, . . . , 6} and let Qmin consist of the following minimal
qualified subsets of participants B1 = {1, 2, 3}, B2 = {1, 2, 5}, B3 = {1, 3, 4},
B4 = {1, 4, 5}, B5 = {1, 5, 6}. Note that {1, 2, 4} and {2, 3, 4, 5, 6} are members
of both F and Fmax while {2, 4, 5, 6} is a member of F but not a member of
Fmax.

Notations: Let S be an n × m Boolean matrix and X ⊆ P = {1, 2, . . . , n}. By
S[X] we denote the matrix obtained by restricting the rows of S to the indices
belonging to X. Further, for any X ⊆ P the vector obtained by applying the
boolean “XOR” operation to the rows of S[X] is denoted by SX . The Hamming
weight of the row vector which represents the number of ones in the vector (SX)
is denoted by w(SX), if the context is clear. Other short hand notations and
abbreviations used are given below:

– VCS −→ visual cryptographic scheme.
– OVCS −→ OR-based visual cryptographic scheme.
– XVCS −→ XOR-based visual cryptographic scheme.
– CA −→ cumulative array.
– (k, n)∗-VCS −→ (k, n)-threshold VCS with one fixed essential party who is

present in every minimal qualified set along with any other k − 1 regular
parties.

– t-(k, n)∗-VCS −→ (k, n)-threshold VCS with t many fixed essential parties
who are present in every minimal qualified set along with any other k − t
regular parties.

– 0 −→ bold-case 0 denotes the zero-vector.
– 1 −→ bold-case 1 denotes the vector with all entries equal to 1.
– Contrast-optimal XVCS −→ XVCS with relative contrast equal to 1 for every

minimal qualified set.
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We are now in a position to give definition of a Gen-NM-XVCS. Here, “NM”
stands for non-monotone while X stands for XOR.

Definition 1. Let P = {1, 2, 3, . . . , n} be a set of participants. A Gen-NM-
XVCS on P is a visual cryptographic scheme such that the following two condi-
tions hold:

1. Any minimal qualified set of participants can recover the secret image.
2. Any maximal forbidden set of participants does not have any information

about the secret image.

Any visual cryptographic scheme can be implemented by means of distri-
bution matrices. To be more specific, let n and m be two integers, where n
represents the number of parties and m the pixel expansion, i.e., the parameter
that specifies how many sub-pixels are needed in each share to encode a sin-
gle pixel of the secret image. A scheme is usually defined by two collections of
Boolean matrices.

Definition 2. (via Collection of Matrices)
Let P = {1, 2, 3, . . . , n} be a set of participants. Let (Qmin,Fmax) be the access
structure defined on P. Let m and {hX}X∈Qmin

be non-negative integers satis-
fying 1 ≤ hX ≤ m. Two collections of n × m binary matrices C0 and C1 realize
a (Qmin,Fmax)-NM-XVCS, if there exists {αX > 0 : X ∈ Qmin} such that

1. For any S ∈ C0, the XOR operation of the rows of S[X] for any minimal
qualified set X results in a vector v0 satisfying w(v0) ≤ hX − αX · m.

2. For any T ∈ C1, the XOR operation of the rows of T [X] for any minimal
qualified set X results in a vector v1 satisfying w(v1) ≥ hX .

3. Any forbidden set Y ∈ Fmax has no information on the shared image. For-
mally, the two collections of |Y |×m matrices Dt, with t ∈ {0, 1}, obtained by
restricting each n×m matrix in Ct to rows indexed by Y are indistinguishable
in the sense that they contain the same matrices with the same frequencies.

The symbols αX and αX · m respectively denote the relative contrast and
contrast of the recovered image reconstructed by the minimal qualified set X.
We are considering only “Black and White” images in this paper. A white pixel
is identified as 0 while a black pixel is identified as 1.

During share generation phase the dealer chooses randomly a matrix from
Cb, if the secret pixel is b ∈ {0, 1}, and gives the participant Pi the i-th row as
the participant’s share for all i. When the dealer wants to share a black and
white secret image then for each constituent pixel he repeatedly performs the
above process till all the pixels are shared. Note that the dealer has to store
huge collections of matrices C0 and C1 to share an image. To reduce the storage
space, a Gen-NM-XVCS may also be modelled by introducing the concept of
basis matrices. The formal definition is as follows:

Definition 3 (via Basis Matrices). A (Qmin,Fmax)-NM-XVCS is realized
using two n × m binary matrices S0 and S1 called basis matrices, if there exist
two sets of non-negative real numbers {αX}X∈Qmin

and {tX}X∈Qmin
such that

the following two conditions hold:
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1. (contrast condition) If X ∈ Qmin, then S0
X , the “XOR” of the rows indexed

by X of S0, satisfies w(S0
X) ≤ tX − αX · m; whereas, for S1 it results in

w(S1
X) ≥ tX .

2. (security condition) If Y = {i1, i2, . . . , is} ∈ F then the two s × m matri-
ces S0[Y ] and S1[Y ] obtained by restricting S0 and S1 respectively to rows
i1, i2, . . . , is are identical up to a column permutation.

For any minimal qualified set X ∈ Qmin, the relative contrast of the recon-
structed image is given by αX = w(S1

X)−w(S0
X)

m , where m is the pixel expansion of
the scheme. If the secret pixel is b ∈ {0, 1} then the dealer gives a random per-
mutation to the columns of Sb and distributes the rows of the resulting matrix
as shares to the parties. Similarly if the secret pixel is black then the dealer
repeats the same process with the matrix S1. The collections of matrices C0 and
C1, that one requires to realize a VCS may be thought of as the collection of
all possible matrices obtained by giving all possible column permutations to the
basis matrices S0 and S1 respectively. As a result, the dealer has to store only
the two matrices S0 and S1, making the scheme efficient space-wise.

2.2 Equivalent Parties and Simplification of Access Structures

We now discuss a technique which simplifies and reduces a class of more complex
access structures into a simpler one. For that we need to first define the notion
of equivalent participants. In words, equivalent parties are the parties who enjoy
the same rights and hence they can be given identical shares without hampering
the access structure of a secret sharing scheme. Hence given an access structure if
we can identify the equivalent parties then they can be given the same shares and
the access structure reduces to a much simpler one. One can treat the reduced
access structure (which is simpler than the original one) as the given access
structure and build schemes keeping in mind that ultimately while distributing
the shares the equivalent parties receive the same shares. We start with the
formal definition of equivalent participants.

Definition 4 (adapted from [19]). Let Qmin and Fmax denote the collections of
minimal qualified sets and maximal forbidden sets respectively on a set of parties
P = {1, 2, . . . , n}. If parties i and j satisfy that, for all F ∈ Fmax, i ∈ F if and
only if j ∈ F , then the parties i and j are called equivalent participants for the
access structure.

Example 2. Let us consider 3-(4, 6)∗-XVCS on the set of participants
P = {1, 2, . . . , 6}, where the first three parties are essential in the sense that they
are present in each of the minimal qualified sets. However, they need the share
of one more party to reconstruct the secret image. Here, Qmin = {{1, 2, 3, 4},
{1, 2, 3, 5}, {1, 2, 3, 6}} and
Fmax = {{1, 2, 3}, {1, 2, 4, 5, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}}. In this access struc-
ture 4, 5, 6 are equivalent parties.
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It is easy to see that the relation ‘ ∼′ defined on P by i ∼ j if and only if
i and j are equivalent parties, is an equivalence relation on P. Thus, the set P
is partitioned into equivalence classes. An equivalence class of i ∈ P is the set
[i] = {j ∈ P : i ∼ j}. For the sake of better representation we will denote the
equivalence class [p] by p̃. We now give the definition of the simplified access
structure Q̃min derived from Qmin.

Definition 5 (adopted from [19]). Let (Qmin,Fmax) be a given access structure
on a set P of parties. Let P̃ = {p̃ : p ∈ P}. We choose one single representative
from an equivalence class that is, one party represents an equivalence class. We
say Q̃min = {{p̃ ∈ P̃ : p ∈ B} : B ∈ Qmin} as the simplified access structure
of the given access structure. If Q̃min = Qmin then the access structure is called
the most simplified access structure.

Remark 1. For 2 ≤ k ≤ n, the threshold access structure corresponding to (k, n)-
XVCS are already in the most simplified form. In other words, no two parties
are equivalent.

Example 3. Continuing from Example 2, we see that P̃ = {1, 2, 3, 4̃} and Q̃min =
{{1, 2, 3, 4̃}}, where 4̃ = [4] = {4, 5, 6}. This Q̃min is the most simplified form of
the given access structure.

2.3 Cumulative Array for an Access Structure

So far we have seen a way to simplify certain access structures via the concept of
equivalent parties. Let (Qmin,Fmax) be the given access structure and suppose
that the access structure be already in its most simplified form. Let Fmax =
{F1, F2, . . . , Ft}. Let us now recall the idea of cumulative array (see [7]) for
Qmin. The cumulative array (CA) is an n× t Boolean matrix such that CA(i, j)
= 1 if and only if i /∈ Fj where n is the number of participants.

Example 4. The cumulative array for 3-(4, 6)∗-access structure from Example 2
is given by

Parties F1 = {123} F2 = {12456} F3 = {13456} F4 = {23456}
1 0 0 0 1
2 0 0 1 0
3 0 1 0 0
4 1 0 0 0
5 1 0 0 0
6 1 0 0 0

where {123} means the set {1, 2, 3}, {12456} means the set {1, 2, 4, 5, 6} etc. We
will sometimes denote a set in this form for brevity, when there is no scope for
confusion.

It is not very hard to see the following necessary and sufficient condition for
checking whether two participants i and j are equivalent or not using cumulative
array.
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Proposition 1. Two parties i and j are equivalent if and only if ith row and
jth row of the corresponding cumulative array are identical.

Thus once an access structure is reduced, via equivalent parties, to its most
simplified form then the associated cumulative array does not contain two iden-
tical rows.

Observation. An access structure is in its “most simplified form” if the corre-
sponding CA has no identical rows. For example, the CA for a (k, n)-threshold
VCS with 1 < k ≤ n has no identical rows and hence is in most simplified form.

Observation. Every row of an CA contains at least one 1, otherwise the party
(indexing the row) belongs to every maximal forbidden set and hence in no
minimal qualified set. So the party can be deleted from the access structure.
Moreover, if B ∈ Qmin then CA[B] contains at least one 1 in every column,
otherwise B becomes a subset of some maximal forbidden set and hence not
qualified to recover the secret image.

3 Main Results

Definition 6. A cumulative array for Qmin (which is in its most simplified
form) is called OPTIMAL if it satisfies the following property:
for each minimal qualified set {i1, i2, . . . , ik}, every column of the restricted array
CA[{i1, i2, . . . , ik}] contains only odd many 1’s.

For example, the cumulative array for an (n, n)-threshold VCS is OPTIMAL
whereas for a (k, n)-threshold VCS with k < n, it is not OPTIMAL.

We now present an easy lemma to show the existence of a XOR-based VCS
which achieves optimal relative contrast 1.

Lemma 1. Let (S0, S1) be the basis matrices constructed by the method of Naor-
Shamir as in [20] to realize an (n, n)-OVCS. Then (S0, S1) also realizes (n, n)-
XVCS having pixel expansion 2n−1 and optimal relative contrast 1.

Proof. : We recall that S0 consists of all possible even columns of length n while
S1 consists of all possible odd columns of same length, as given in [20]. It is easy
to see that S0 and S1 can be used to distribute shares to the participants in the
XOR model. The only qualified set of parties is P itself. Also, w(XOR(S1

P)) =
2n−1 and w(XOR(S0

P)) = 0. It follows that the “contrast condition” of Definition
3 is satisfied. The “security condition” for both OR based and XOR based models
is the same. Hence we have the result. We further observe that the Naor-Shamir
construction admits pixel expansion equal to 2n−1 and the relative contrast is 1
which is maximum in XOR-based VCS.

Construction 1. Let us consider an access structure, in its most simplified
form, (Qmin,Fmax) on a set of n parties P. Let the corresponding CA be OPTI-
MAL. Let Fmax = {F1, F2, . . . , Fk} i.e. we have k many maximal forbidden sets.
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Let W(k,k) and B(k,k) respectively denote the Naor-Shamir [20] white basis matrix
and black basis matrix corresponding to a (k, k)-threshold access structure. Each
of W(k,k) and B(k,k) is of size k × 2k−1, where the rows are indexed by the maxi-
mal forbidden sets {F1, F2, . . . , Fk} with respect to which the CA is constructed.

Let us write W(k,k) =

⎡
⎢⎣

.. R0
1 ..

.. R0
2 ..

.. .. ..

.. R0
k ..

⎤
⎥⎦ and B(k,k) =

⎡
⎢⎣

.. R1
1 ..

.. R1
2 ..

.. .. ..

.. R1
k ..

⎤
⎥⎦, where R0

i denotes the

ith row of W(k,k) and R1
i denotes the ith row of B(k,k). Notice that the rows are

the shares of the participants.

Now construct S0 (white basis matrix) and S1 (black basis matrix) realizing
the given access structure (Qmin,Fmax) as follows:
The i-th row of S0 = XOR of those rows in W(k,k) for which i /∈ Fj = R0

j1
⊕

R0
j2

⊕ · · · ⊕ R0
js

,
where R0

jα
s are those rows of W(k,k) such that i /∈ Fj1 ∪ Fj2 ∪ · · · ∪ Fjs

.
The i-th row of S1 = XOR of those rows in B(k,k) for which i /∈ Fj = R1

j1
⊕

R1
j2

⊕ · · · ⊕ R1
js

,
where R1

jα
s are those rows of B(k,k) such that i /∈ Fj1 ∪ Fj2 ∪ · · · ∪ Fjs

.

Proposition 2. Let (Qmin,Fmax) be a non-monotone access structure (in its
most simplified form) with OPTIMAL CA. The matrices (S0, S1) constructed
in the above manner are indeed the basis matrices realizing XVCS on the given
access structure. Moreover, maximum relative contrast equal to 1 is attained
through this construction.

Remark 2. Before proving the proposition, we point out that if the CA of an
access structure (after reducing it to its most simplified form) is not Optimal
then the above construction method does not admit basis matrices for XVCS.
For example, let us consider the (2, 3)-threshold access structure. The CA for
the access structure is constructed with the help of Fmax = {{1}, {2}, {3}} and
is given by

Parties F1 = {1} F2 = {2} F3 = {3}
1 0 1 1
2 1 0 1
3 1 1 0

From the CA it is clear that the access structure is already in its most
simplified form. Moreover, the CA is not Optimal as CA[{1, 2}] =

[
0 1 1
1 0 1

]
, which

is the restriction of the CA to rows indexed by the minimal qualified set {1, 2}
contains an even column. The last column of this restricted CA is indexed by
the maximal forbidden set {3}. Since the number of maximal forbidden sets is
3, we consider the Naor-Shamir basis matrices for (3, 3)-VCS,
W(3,3) =

[
0 0 1 1
0 1 0 1
0 1 1 0

]
and B(3,3) =

[
1 0 0 1
1 0 1 0
1 1 0 0

]
. So by the above construction method

we compute
S0 =

[
0 0 1 1
0 1 0 1
0 1 1 0

]
and S1 =

[
0 1 1 0
0 1 0 1
0 0 1 1

]
. Now it is easy to see that the contrast condition

is not holding for any minimal qualified set.



Contrast Optimal XOR Based Visual Cryptographic Schemes 67

Proof of Proposition 2: Let |Fmax| = t, i.e. the access structure in its most
simplified form has t many maximal forbidden sets and also it is given that the
corresponding CA is optimal. We observe that if X is a minimal qualified set
and since the CA is OPTIMAL then every column of the restricted CA, viz.
CA[X] contains odd number of 1s. The contrast condition holds because XOR
of the shares of the participants in X satisfy the following:
XOR of the rows (in S1) corresp. to the parties in X = XOR of all the rows in
B(t,t) = (1, 1, . . . , 1) = 2t−1 tuple with all entries equal to 1

and

XOR of the rows (in S0) corresp. to the parties in X = XOR of all the rows in
W(t,t) = (0, 0, . . . , 0) = 2t−1 tuple with all entries equal to 0.

Hence,
wt.(XOR of the rows (in S1) corresp. to the parties in X) − wt.(XOR of the

rows (in S0) corresp. to the parties in X) = 2t−1−0 = 2t−1, which gives optimal
relative contrast 1.

To prove the security condition we need to show that if F is any maximal
forbidden set then the restricted matrices S0[F ] and S1[F ] are equal, upto a
column permutation. So let F be a maximal forbidden set. The restricted matrix
CA[F ] contains an all zero column, say the rth column. Here we notice that F
is the rth maximal forbidden set indexing the rth column of the CA. Now, by
our construction method, the shares of the participants in F do not contain
any information about the rth row of W(t,t) and B(t,t). Now from the security
condition (see Lemma 1) of (t, t)-threshold scheme, W(t,t) minus the rth row is
equal (upto a column permutation) to B(t,t) minus the rth row. Without loss
of generality we can assume that the matrices are equal. If two matrices M
and N are equal then so are the matrices M ′ and N ′ obtained by giving same
row operations on M and N respectively. This result follows from the fact that
giving a row operation on a matrix is equivalent to multiplying the matrix by
an elementary matrix from the left. Hence, the result follows.

Example 5. Consider the access structure Qmin = {123, 14} on the set of four
parties P = {1, 2, 3, 4}. Thus, Fmax = {12, 13, 234} and the corresponding CA
is

Parties F1 = {12} F2 = {13} F3 = {234}
1 0 0 1
2 0 1 0
3 1 0 0
4 1 1 0

which shows that access structure is already in its most simplified form. Thus,
CA[{123}] =

[
0 0 1
0 1 0
1 0 0

]
and CA[{14}] =

[
0 0 1
1 1 0

]
which show that the CA is OPTI-

MAL.
Since |Fmax| = 3, we consider the Naor-Shamir basis matrices for (3, 3)-VCS,
W(3,3) =

[
0 0 1 1
0 1 0 1
0 1 1 0

]
and B(3,3) =

[
1 0 0 1
1 0 1 0
1 1 0 0

]
.

We can now construct the basis matrices using the method of Construction 1
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S0 =
[

0 1 1 0
0 1 0 1
0 0 1 1
0 1 1 0

]
and S1 =

[
1 1 0 0
1 0 1 0
1 0 0 1
0 0 1 1

]
which give optimal relative contrast XVCS on

the given access structure.

This example shows that there exist optimal contrast XVCS without being
of the (n, n)-threshold type. Other examples of access structures that can have
optimal contrast XVCS include star-graph access structures, any access struc-
ture with just two minimal qualified sets, (k − 1)-(k, n)∗ type access structures,
complete bipartite graph access structure.

From Proposition 2 we see that if the cumulative array of an access structure
(in its most simplified form) is OPTIMAL then there exists a contrast optimal
XVCS realizing that access structure. We now ask the converse question, namely
if we somehow know that there is an access structure on which it is possible to
have contrast optimal XVCS then is it necessarily true that the corresponding
cumulative array of the access structure (in its most simplified form) OPTIMAL?
Notice that we are not restricting ourselves to one particular way of constructing
basis matrices so that contrast optimality is achieved. We seek for the result for
any arbitrary method of construction.

To rephrase, we are finding the truth value of the following statement: If an
access structure (in its most simplified form) has non-Optimal CA then there is
no construction technique which will give contrast-optimal XVCS realizing the
access structure.

Let us first consider two examples to gain insight into the problem.

Example 6. Let us consider a (2, 3)-XVCS on the set of parties P = {1, 2, 3}.
Thus Qmin = {12, 13, 23} and Fmax = {1, 2, 3}. The cumulative array for this
access structure is given in Remark 2 which shows that the access structure is
already in its most simplified form. Consider the restriction of the CA to the
rows indexed by the minimal qualified set 12, CA[{12}] =

[
0 1 1
1 0 1

]
and thus it is

non-Optimal.
Suppose it is possible to construct basis matrices S0 and S1 which give con-

trast optimal XVCS.

Let S0 =

⎡
⎣

.. R0
1 ..

.. R0
2 ..

.. R0
3 ..

⎤
⎦ and S1 =

⎡
⎣

.. R1
1 ..

.. R1
2 ..

.. R1
3 ..

⎤
⎦. From the definition of relative contrast

it follows that for contrast to be 1

R0
1 ⊕ R0

2 = 0
R0

1 ⊕ R0
3 = 0

R0
2 ⊕ R0

3 = 0

⎫
⎬
⎭ and

R1
1 ⊕ R1

2 = 1
R1

1 ⊕ R1
3 = 1

R1
1 ⊕ R1

2 = 1

⎫
⎬
⎭

where 0 denotes the tuple with all-zero entries and 1 denotes the tuple with
all-one entries. Now, the last three equations

R1
1 ⊕ R1

2 = 1
R1

1 ⊕ R1
3 = 1

R1
1 ⊕ R1

2 = 1

⎫
⎬
⎭

are inconsistent.
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Hence, there can not be any construction method whatsoever that will give
contrast-optimal XVCS on (2, 3)-threshold access structure.

Another type of situation may occur which we explain in the next example.

Example 7. Let us consider a (3, 4)-threshold access structure on the set of par-
ties P = {1, 2, 3, 4}.
Thus Qmin = {123, 124, 134, 234} and Fmax = {12, 13, 14, 23, 24, 34}. The CA
for this access structure is given by

Parties F1 = {12} F2 = {13} F3 = {14} F4 = {23} F5 = {24} F6 = {34}
1 0 0 0 1 1 1
2 0 1 1 0 0 1
3 1 0 1 0 1 0
4 1 1 0 1 0 0

From the CA it is clear that the access structure is already in its most
simplified form. Moreover, the CA is non-Optimal as CA[{1, 2, 3}] =

[
0 0 0 1 1 1
0 1 1 0 0 1
1 0 1 0 1 0

]
,

which is the restriction of the CA to rows indexed by the minimal qualified set
{1, 2, 3}. It contains three columns with weight 2. Let us consider this minimal
qualified set {123} and take F6 which has made the CA non-Optimal.

Suppose it is possible to construct basis matrices S0 and S1 which give con-
trast optimal (3, 4)-XVCS.

Let S0 =

⎡
⎢⎢⎣

.. R0
1 ..

.. R0
2 ..

.. R0
3 ..

.. R0
4 ..

⎤
⎥⎥⎦ and S1 =

⎡
⎢⎢⎣

.. R1
1 ..

.. R1
2 ..

.. R1
3 ..

.. R1
4 ..

⎤
⎥⎥⎦.

Now {1} ∪ F6 = {134} and {2} ∪ F6 = {234} are minimal qualified sets and
hence

R0
1 ⊕ R0

3 ⊕ R0
4 = 0

R0
2 ⊕ R0

3 ⊕ R0
4 = 0

}
and

R1
1 ⊕ R1

3 ⊕ R1
4 = 1

R1
2 ⊕ R1

3 ⊕ R1
4 = 1

}

Moreover, we started with the minimal qualified set {123} and therefore we have

R0
1 ⊕ R0

2 ⊕ R0
3 = 0

}
and R1

1 ⊕ R1
2 ⊕ R1

3 = 1
}

Now, from the equations related to white pixel we get R0
3 = 0 and from the

equations related to black pixel we have R1
3 = 1. Thus the third participant

alone is able to recover the secret although he belongs to the forbidden set F6.
This contradiction shows that there can not be a contrast-optimal (3, 4)-XVCS.

Keeping the above examples in mind we now proceed to prove the following
proposition.

Proposition 3. If the cumulative array for a most simplified access structure
(Qmin,Fmax) is non-Optimal then there cannot be a contrast-optimal XVCS
realizing the access structure.
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Proof: Suppose there exists a construction method by which it is possible to have
relative contrast 1.

Let the basis matrices be S0 =

⎡
⎢⎣

.. R0
1 ..

.. R0
2 ..

.. .. ..

.. R0
n ..

⎤
⎥⎦ and S1 =

⎡
⎢⎣

.. R1
1 ..

.. R1
2 ..

.. .. ..

.. R1
n ..

⎤
⎥⎦, where n is number

of participants.
Now we know that the corresponding CA is not Optimal and therefore there

exists at least one minimal qualified set say, B such that CA[B] contains at
least one non-zero even column. Let F ∈ Fmax be that maximal forbidden set
for which the column is of non-zero even weight. Let the weight be 2k where
k �= 0. Suppose i1, i2, . . . , i2k be the corresponding parties in B but not in F .
Let B = {i1, i2, . . . , i2k, j1, j2, . . . , js} such that the first 2k many parties are in
B \F . We have used different symbols j1, j2, . . . , js to denote the other parties in
B, because it is possible that B = {i1, i2, . . . , i2k} and there is no more parties
in B (e.g. see Example 6).

Since F is maximal forbidden set and i1, i2, . . . , i2k /∈ F therefore F ∪ {i1}
contains at least one minimal qualified set, F ∪ {i2} contains at least one mini-
mal qualified set, . . ., F ∪ {i2k} contains at least one minimal qualified set. We
note that these minimal qualified sets respectively contain i1, i2, . . . , i2k. Let the
minimal qualified sets be respectively,

{f1
1 , f1

2 , . . . , f1
α(1), i1}, {f2

1 , f2
2 , . . . , f2

α(2), i2}, . . ., {f2k
1 , f2k

2 , . . . , f2k
α(2k), i2k}.

Thus we must have the following sets of equations (and using the fact of optimal
relative contrast)

R0
f1
1

⊕ R0
f1
2

⊕ . . . ⊕ R0
f1

α(1)
⊕ R0

i1
= 0

R0
f2
1

⊕ R0
f2
2

⊕ . . . ⊕ R0
f2

α(2)
⊕ R0

i2
= 0

. . . . . .
R0

f2k
1

⊕ R0
f2k
2

⊕ . . . ⊕ R0
f2k

α(2k)
⊕ R0

i2k
= 0

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and
R1

f1
1

⊕ R1
f1
2

⊕ . . . ⊕ R1
f1

α(1)
⊕ R1

i1
= 1

R1
f2
1

⊕ R1
f2
2

⊕ . . . ⊕ R1
f2

α(2)
⊕ R1

i2
= 1

. . . . . .
R1

f2k
1

⊕ R1
f2k
2

⊕ . . . ⊕ R1
f2k

α(2k)
⊕ R1

i2k
= 1

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Notice that there are 2k many equations in each set and the rows
R0

i1
, R0

i2
, . . . , R0

i2k
corresponding to i1, i2, . . . , i2k occur exactly once in each set.

Rows other than these are shares corresponding to the parties in F .
Last we have two more sets of equations corresponding to the parties B,

R0
i1 ⊕ . . . ⊕ R0

i2k
⊕ R0

j1 ⊕ . . . ⊕ R0
js

= 0 , R1
i1 ⊕ . . . ⊕ R1

i2k
⊕ R1

j1 ⊕ . . . ⊕ R1
js

= 1

We observe that j1, j2, . . . , js ∈ F and there are (2k + 1) (odd) many equations
for each set. Adding modulo 2 i.e. taking XOR of all the equations corresponding
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to white pixel 0 we observe that the rows indexed by i1, i2, . . . , i2k are deleted.
Same thing happens with the equations corresponding to black pixel 1. Whatever
rows we are left with, all are indexed by the parties in F . There are only two
possibilities. Either the equations have inconsistency (as in Example 6) or a
forbidden set of parties are able to retrieve the secret image (as in Example 7).
These contradictions show that we cannot have such basis matrices which give
optimal contrast for an access structure whose CA is not Optimal. This completes
the proof of the proposition.

By Construction 1, Propositions 2 and 3 we now conclude that

Theorem 1. A necessary and sufficient condition for (Qmin,Fmax)-XVCS to
achieve optimum relative contrast 1 is that the corresponding cumulative array
of Qmin is OPTIMAL, where the access structure (Qmin,Fmax) is in its
most simplified form.

From the first Observation following Proposition 1 and from Theorem 1 we
now have the following corollary.

Corollary 1. For 2 ≤ k ≤ n − 1, there does not exist (k, n)-XVCS that can
achieve optimal relative contrast 1.
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Abstract. Barkol et al. (Journal of Cryptology, 2010) introduced the
notion of d-multiplicative secret sharing (d-MSS), which allows the play-
ers to multiply shared d secrets by converting their shares locally into an
additive sharing of the product, and proved that d-MSS among n players
is possible if and only if no d unauthorized sets of players cover the whole
set of players (type Qd). Although this result implies some limitations
on secret sharing in the context of MPC, the d-multiplicative property
is still useful for simplifying complex tasks of MPC by computing the
product of d field elements directly and non-interactively. In this paper,
to further improve usefulness, we introduce and study the verifiability
of multiplication, which is mainly formalized for the motivated applica-
tions of d-MSS. Informally, a d-MSS scheme is verifiable if the scheme
enables the players to locally generate an additive sharing of proof that
the summed value is the correct product of shared d secrets. First, we
prove that verifiably d-MSS among n players is possible if no d+1 unau-
thorized sets of players cover the whole set of players (type Qd+1) where
the error probability is zero. That is, a larger number of players n is
required. In addition, in the proposed error-free scheme, the share size of
a proof increases with the number of unauthorized sets. To achieve the
optimal bound on n of d-MSS (type Qd) efficiently, we accept an error
probability. We prove that verifiably d-MSS among n players is possible
if and only if no d unauthorized sets of players cover the whole set of
players (type Qd) where the error probability is non-zero but is chosen
arbitrarily. In the proposed scheme, each share of a proof consists of only
two field elements. From these results, we can see that there is a tradeoff
between usability and correctness (i.e. either no additional players or no
error). Because these schemes do not require any setup or interaction,
we can freely select them as the situation demands.

1 Introduction

A secret sharing (SS) scheme is a method of sharing a secret among a set of
n players so that some predefined authorized subsets of the players are able to
recover the secret. The notion of threshold SS was introduced by Shamir [24] and
Blakley [4] independently where the cardinality of any authorized set is larger
than a given threshold. Later, Ito et al. [15] generalized this notion to a setting

c© Springer International Publishing AG 2017
J. Shikata (Ed.): ICITS 2017, LNCS 10681, pp. 73–82, 2017.
https://doi.org/10.1007/978-3-319-72089-0_5
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where the authorized subsets are an arbitrary family of subsets of the players,
called access structures.

SS is now used as a central building block in many cryptographic and dis-
tributed applications such as unconditionally secure multiparty computation
(MPC) [1,2,5,7]. In addition, for natural application to unconditionally secure
MPC [5,7], the multiplicative property of SS is essential. We therefore focus on
information-theoretically secure SS in this paper.

Motivated by open problems in the area of MPC such as unconditionally
secure MPC with minimal interaction, Barkol et al. (Journal of Cryptology,
2010 [3]) introduced d-multiplicative SS and studied the type of access struc-
tures for which such secret sharing schemes exist. A secret sharing scheme is
d-multiplicative if the scheme allows the players to multiply shared d (rather
than two) secrets by locally converting their shares into an additive sharing of
the product. They proved that d-multiplicative schemes exist if and only if no d
unauthorized sets of players cover the whole set of players (type Qd). In partic-
ular, t-private d-multiplicative secret sharing among n players is possible only
if n > d · t where t-private means that every set of t players is unauthorized.
This result implies a limitation on the usefulness of SS in the context of MPC
in the sense that a larger number of players n is required for maintaining the
privacy level t as d increases. In other words, if we have a sufficient number of
players, there is a possibility of simplifying complex tasks of MPC by computing
the product of two or more elements directly and non-interactively without any
setup.

In this paper, we aim to improve the usefulness of d-multiplicative SS (MSS)
in the context of MPC while maintaining its advantages: no need for any inter-
action, any setup, or any computational assumption.

First, we introduce the notion of verifiably d-multiplicative SS, which is
mainly formalized for the motivated applications of d-MSS given in [3]. In the
motivated applications, each player adds random additive shares of 0 to each
generated share and the receiver of the shares only obtains the summed value
(i.e. the product). We therefore call a d-multiplicative scheme verifiable if the
scheme enables the players to locally generate an additive sharing of a proof that
the sum of shares (rather than each share) is correct. We expect that the verifia-
bility can be used for making MPC secure in the presence of an active adversary
by accepting the output only if the correctness is verified. A concrete application
is beyond the scope of this paper and is a possible future work.

Secondly, we study the feasibility of verifiably d-multiplicative SS. We prove
that verifiably d-multiplicative secret sharing is possible if the access structures
of type Qd+1 where the privacy achieved is perfect and the error probability is
zero. In the threshold case, type Qd+1 implies n > (d + 1) · t. This means that
we need to degrade the privacy level t or gather a larger number of players n. In
addition, in the proposed error-free scheme, the share size of a proof increases
with the number of unauthorized sets. A basic approach for overcoming this
problem in the context of MPC is to require interaction among the players [20]
or to use verifiable secret sharing [22], which relies on computationally secure
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commitment with a common reference string. That is, the advantages of d-MSS
are spoiled.

To achieve the optimal bounds on n of d-MSS (i.e., n > d · t for t-
privacy, or type Qd), we accept an error probability and prove that verifiably
d-multiplicative schemes exist if and only if the access structure is of type Qd,
where the privacy achieved is perfect, the error probability is non-zero but chosen
arbitrarily, and each share of the proof only consists of two field elements.

The interesting point of these results is that a secret sharing scheme itself
is not necessarly verifiable or linear. We note that the same results can be also
obtained for non-perfect privacy from the result on the (im)possibility of non-
perfect d-MSS in [26].

2 Preliminaries

In this section, we recall the definition of multiplicative and private properties,
some results on feasibility, and a motivated application given in [3].

2.1 Notations and Definitions

A secret sharing scheme involves a dealer and n players P1, . . . , Pn, and specifies
a randomized mapping from the secret s to an n-tuple of shares (s1, . . . , sn),
where the share si is given to player Pi. We assume that the secret is taken
from a finite field F. We also assume that all shares si are taken from a finite
share domain S. Let D denote a discrete probability distribution from which
the dealer’s randomness is chosen. To share a secret s ∈ F, the dealer chooses a
random element r ∈ D and applies a sharing function SHARE : F × D → Sn to
compute SHARE(s, r) = (s1, . . . , sn). For T ⊆ [n], let SHARE(s, r)T denote the
restriction of SHARE(s, r) to its T -entries.

Definition 1 (t-Private secret sharing [3]). A secret sharing scheme is said
to be t-private if for every set T ⊆ [n] with |T | = t and every pair of secrets
s, s′ ∈ F, the random variables SHARE(s, r)T and SHARE(s′, r)T induced by a
random choice of r ∈ D are identically distributed.

Definition 2 (d-Multiplicative secret sharing [3]). We call a secret sharing
scheme d-multiplicative if it satisfies the following d-multiplicative property. Let
s(1), . . . , s(d) ∈ F be d secrets, and r(1), . . . , r(d) ∈ D be d elements in the support
of D. For 1 ≤ j ≤ d, let (s(j)1 , . . . , s

(j)
n ) = SHARE(s(j), r(j)). We require the

existence of a function MULT : [n] × Sd → F such that for all possible s(j) and
r(j) as above,

∑n
i=1 MULT(i, s(1)i , . . . , s

(d)
i ) =

∏d
j=1 s(j).

To generalize our results from the threshold case to general access structures,
we show the notations and definitions of such secret sharing given in [3]. In
contrast to traditional secret sharing specifying a collection of authorized player
sets, the complementary notion of an adversary structure, specifying a collection
of unauthorized sets, is used for convenience in [3].
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Definition 3 (Adversary structure [3]). An n-player adversary structure is
a collection of sets T ⊆ 2[n] that is closed under subsets; that is, if T ∈ T and
T ′ ⊆ T then T ′ ∈ T . Let T̂ be the collection of maximal sets in T (namely those
that are not contained in any other set from T ).

Definition 4 (T -Private secret sharing [3]). Let T be an n-player adver-
sary structure. A secret sharing scheme is said to be T -private if every pair
of secret s, s′ ∈ F and every T ∈ T , the random variables SHARE(s, r)T and
SHARE(s′, r)T induced by a random choice of r ∈ D are identically distributed.

Definition 5 (Adversary structure of type Qd [3]). Let n, d be positive
integers and T be an n-player adversary structure. We say that T is of type Qd

if for every d sets T1, . . . , Td ∈ T we have T1 ∪ · · · ∪ Td ⊂ [n]. That is, no d
unauthorized sets cover the entire set of players.

The main result in [3] is a characterization of d-multiplicative secret sharing.

Theorem 1 (Theorem 4.6 in [3]). For any positive integers n, d and a n-
player adversary structure T , there exists a d-multiplicative T -private secret
sharing scheme if and only if T is of type Qd.

2.2 A Motivated Application

The motivated applications of the d-multiplicative property given in [3] are secure
polynomial evaluation and general secure computation with minimal interaction.
It has been shown that given a t-private d-multiplicative secret sharing for n play-
ers over F, there exists a t-private n-server secure polynomial evaluation protocol
for multi-variate polymomials of degree d over F where the communication com-
plexity is linear in the input length (see Lemma 3.1 in [3]). In addition, the
generalization from polynomials to arbitrary functions can be obtained by using
randomizing polynomials [16] which enables to represent an arbitrary function
by a vector of (randomized) degree-3 polynomials [3].

For simplicity, we briefly introduce the simplest case: A polynomial is the
form x1 ·x2 · · · xd; There are d clients, who holds inputs and wish to evaluate the
polynomial without revealing their inputs each other, and n servers, who help
perform the evaluation. Client j with 1 ≤ j ≤ d holds an input s(j) and every
server only knows the identity of the polynomial. Informally, a protocol should
satisfy the following correctness and privacy requirements.

Correctness: All clients output s(1) · · · s(d) (assuming that both client and
servers follow the protocol).

t-Privacy: Any collusion involving a strict subset of the clients and at most t
servers should not learn anything about the inputs of the other clients other
than what follows from their own inputs and the output.

The formal definitions and security proof are not included in [3] (the related
literatures [6,12] are referred), and omitted here.

The t-private n-server protocol given in [3] proceeds as follows:
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– Round 1: Client j, 1 ≤ j ≤ d, shares his input s(j) by computing SHARE(s(j),
r(j)) = (s(j)1 , . . . , s

(j)
n ). After sharing his input, he sends the share s

(j)
i to

Server i. In addition, Client j distributes between the servers random additive
shares of 0, namely it sends to Server i a field element z

(j)
i such that the n

elements z
(j)
i are random subject to the restriction that they add up to 0,

i.e.,
∑n

i=1 z
(j)
i = 0.

– Round 2: Server i, 1 ≤ i ≤ n, computes yi = MULT(i, s(1)i , . . . , s
(d)
i ) +

∑d
j=1 z

(j)
i , and sends yi to all clients.

– Output: Each client computes and outputs
∑n

i=1 yi. From the d-multiplicative
property, this output is equal to s(1) · · · s(d).

An important point to note here is that the generated shares yi is randomized
by additive shares of 0 and each client only obtains the summed value (i.e., the
product). Thus, in this paper, the notion of verifiability is defined for the summed
value rather than each share.

3 Verifiably Multiplicative Secret Sharing

We now define the verifiability of multiplication. We assume that malicious play-
ers who may behave arbitrary have the same structure as that against privacy.
To verify the summed value rather than each additive share, we define a proof
and its shares by vectors in F

c for a positive integer c where the summation
of two vectors a = (a1, . . . , ac) and b = (b1, . . . , bc) is performed by adding the
corresponding components of the vectors, i.e., a + b = (a1 + b1, . . . , ac + bc).

Definition 6 ( (ε, d)-Verifiably multiplicative secret sharing). Let c be a
positive integer. A T -private secret sharing scheme is said to be (ε, d)-verifiably
multiplicative if the scheme is d-multiplicative and there are two functions
PROOF : [n] × Sd → F

c and VER : F × F
c → {1, 0} that satisfy the follow-

ing properties.

Correctness: For s(j) ∈ F and r(j) ∈ D with 1 ≤ j ≤ d, let
(s(j)1 , . . . , s

(j)
n ) = SHARE(s(j), r(j)), m =

∑n
i=1 MULT(i, s(1)i , . . . , s

(d)
i ), and

σ =
∑n

i=1 PROOF(i, s
(1)
i , . . . , s

(d)
i ). Then, VER(m,σ) = 1.

Verifiability: An adversary that modifies any additive shares for any T ∈ T
can cause a wrong value to be accepted as the product with probability at most
ε. More formally, we define the experiment Exp(s(1), . . . , s(d), T,Adv) with
some d secrets s(1), . . . , s(d) ∈ F, unauthorized set T ∈ T , and interactive
adversary Adv.
Exp(s(1), . . . , s(d), T,Adv):

1. For each j with 1 ≤ j ≤ d, sample r(j) ← D and generate (s(j)1 , . . .,
s
(j)
n ) = SHARE(s(j), r(j)).

2. Give {(s(1)i , . . . , s
(d)
i )|i ∈ T} to Adv.
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3. Adv outputs modified additive shares m′
i ∈ F and σ′

i ∈ F
c with i ∈ T .

For i 	∈ T , we define m′
i = MULT(i, s(1)i , . . . , s

(d)
i ) and σ′

i = PROOF(i,
s
(1)
i , . . ., s

(d)
i ).

4. Compute m′ =
∑n

i=1 m′
i and σ′ =

∑n
i=1 σ′

i.
5. If m′ 	= s(1) · · · s(d) and VER(m′, σ′) = 1, then output 1 else 0.

We require that for any d secrets s(1), . . . , s(d) ∈ F, any unauthorized set
T ∈ T , and any unbounded adversary Adv,

Pr[Exp(s(1), . . . , s(d), T,Adv) = 1] ≤ ε.

Given an (ε, d)-verifiably multiplicative t-private secret sharing scheme, we
can make the motivated application correct in the presence of at most t malicious
servers. Specifically, the protocol satisfies the following strong correctness.

t-Correctness: All clients output s(1) · · · s(d) or ⊥ assuming at most t malicious
servers. That is, an incorrect value is not accepted.

The protocol in Sect. 2 is modified as follows.

– Round 1: Client j distributes between the servers random additive shares of
the zero-vector, namely it sends to Server i a vector z

(j)
i ∈ F

c+1 such that the
n vectors z

(j)
i are random subject to the restriction that they add up to the

vector with all components being 0, i.e.,
∑n

i=1 z
(j)
i = (0, . . . , 0).

– Round 2: Server i, 1 ≤ i ≤ n, computes a vector yi = (MULT(i, s
(1)
i , . . .,

s
(d)
i ), PROOF(i, s

(1)
i , . . ., s

(d)
i )) +

∑d
j=1 z

(j)
i , and sends yi to all clients.

– Output: Let yi = (mi, σi). Each client computes m =
∑n

i=1 mi and σ =∑n
i=1 σi. It outputs m if VER(m,σ) = 1, otherwise it outputs 0.

4 Feasibilities

Our main results are sufficient conditions for (ε, d)-verifiably multiplicative T -
private secret sharing to be possible. For the error-free case ε = 0, the condition
is stronger than that of the previous d-multiplicative T -private secret sharing,
which does not require the verifiability.

Theorem 2. For any positive integers n, d, and an n-player adversary structure
T , there exists a (0, d)-verifiably multiplicative T -private secret sharing scheme
if T is of type Qd+1 where c = |T̂ | (every proof consists of |T̂ | elements of F).

Then, we prove that the condition can be weakened to the optimal one, i.e., that
of the previous d-multiplicative T -private secret sharing (type Qd) by relaxing
the requirement on the error probability to ε > 0 that is chosen arbitrarily.

Theorem 3. For any positive integers n,E, d, and an n-player adversary struc-
ture T , there exists a secret sharing scheme that is (1/|F|E , d)-verifiably multi-
plicative and T -private if and only if T is of type Qd where c = 2E (every proof
consists of two elements of FE).
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We now prove Theorem 2.

Proof. (Theorem 2). We construct a (0, d)-verifiably multiplicative T -private
scheme for n players from the CNF scheme in [15], which is given for general
access structures. In the CNF scheme, to share a given secret s, for T ∈ T̂ , rT is
randomly chosen from F subject to the restriction that

∑
T∈T̂ rT = s. Each share

si is the set {rT |i 	∈ T}. We note that in the t-private CNF scheme, si consists
of exactly n−1Ct field elements. The T -privacy property follows from the fact
that every set T ∈ T̂ jointly misses rT and thus can learn no information about
the secret. The d-multiplicative property is proven in [3] and a multiplication
function MULT exists. Thus, we prove the existence of PROOF and VER. The key
idea is to generate shares of the product for subsets of players [n]\T for every set
of malicious players T ∈ T and check the equality of all recovered values. Any set
of malicious players is contained by some T ∈ T̂ . Thus, the value recovered from
shares for [n] \ T is correct, and the equality of all recovered values guarantees
that the error-probability is zero. Based on this idea, we define PROOF and VER
as follows. We number the subsets in T̂ from 1 to |T̂ |. Let s(1), . . . , s(d) be secrets.
For 1 ≤ j ≤ d, let r

(j)
T with T ∈ T̂ denote the additive parts of s(j). We write

the product s(1) · · · s(d) = (
∑

T∈T̂ r
(1)
T ) · · · (

∑
T∈T̂ r

(d)
T ) as the sum of the |T̂ |d

monomials of the form r
(1)
Tj1

· · · r(d)Tjd
. For each Tl ∈ T̂ , we partition the monomials

into n − |Tl| disjoint sets Xl,i such that i ∈ [n] \ Tl and all monomials in set Xl,i

is obtained from si. The possibility of partition follows from the fact that every
monomial as above can be assigned to a set Xl,i such that i 	∈ Tj1 ∪· · ·∪Tjd ∪Tl.
The existence of such i follows from the assumption that T is of type Qd+1. For
each 1 ≤ i ≤ n, PROOF(i, ·) outputs σi = (σi,1, . . . , σi,|T̂ |) ∈ F

|T̂ | where σi,l is
the sum of the monomials in Xl,i if i 	∈ Tl, and otherwise 0. We note that if all
players follow the scheme, then σ =

∑
σi is the vector with all components being

s(1) · · · s(d). We define the verification function VER(m,σ) to be 1 if and only
if σ = (m, . . . ,m) holds. Even if malicious players T provide incorrect shares,
there is a component σl with T ⊆ Tl which is the correct value s(1) · · · s(d). Thus,
VER detects the existence of an incorrect value without error. ��

Next, we prepare a lemma for the proof of Theorem 3.

Lemma 1. Given d-multiplicative T -private secret sharing schemes for n play-
ers over F and F

E, there exists a (1/|F|E , d)-verifiably multiplicative T -private
secret sharing scheme for n players where c = 2E (every proof consists of two
elements of FE).

Proof. For notational convenience, we present the proof for the case E = 1.
The generalization to an arbitrary E > 1 is shown later. Suppose there is a d-
multiplicative T -private secret sharing scheme for n players over F and its multi-
plication function, denoted by SHARE′ and MULT′, with randomness domain D′

and share domain S ′. We show a method of constructing a (1/|F|, d)-verifiably
multiplicative T -private secret sharing scheme for n players (SHARE, MULT,
PROOF, VER) with c = 2 from (SHARE′, MULT′).
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The key idea is as follows: For the product m = s(1) · · · s(d), PROOF generates
additive shares of α ∈ F and those of β = α · m, and then VER checks whether
α · m = β. A similar technique is used for detection of cheaters in secret sharing
by Cabello et al. [9] in which m is replaced with the secret s itself and α and
β are shared together with the secret. In contrast, in the scheme we present
here, additive shares of α and β are not shared beforehand and are computed
by using only the d-multiplicative property. We note that the d-multiplication
property imposes no linearity requirement on SHARE itself. Thus, we need to
convert non-additive shares of α into additive ones. To realize such conversion,
we additionally share “1” for padding the product 1d−1 with α.

Specifically, we define SHARE : F × D → S as follows: D = F × D′4, S = F
4,

and SHARE(s, (α, r1, r2, r3, r4)) = (SHARE′(s, r1), SHARE′(α, r2), SHARE′(α ·
s, r3), SHARE′(1, r4)). That is, randomly chosen α ∈ F, γ = α · s ∈ F, and 1 ∈ F

are additionally shared.
Let s(1), . . . , s(d) be d secrets. Let α(1), . . . , α(d), γ(1), . . . , γ(d) be chosen as

the above, that is, γ(j) = α(j) · s(j). For 1 ≤ i ≤ n and 1 ≤ j ≤ d, s
(j)
i =

(t(j)i , α
(j)
i , γ

(j)
i , 1(j)i ) be the i-th share of s(j). We define MULT(i, s(1)i , . . . , s

(d)
i ) =

MULT′(i, t(1)i , . . . , t(d)), that is, the same as the original scheme. Then, we define
PROOF(i, s

(1)
i , . . ., s

(d)
i ) = (MULT′(i, α

(1)
i , 1(2)i , . . ., 1(d)i ), MULT′(i, γ

(1)
i , t

(2)
i , . . . ,

t
(d)
i )), which consists of an additive share of α(1) · 1 · · · 1 and that of γ(1) ·

s(2) · · · s(d) = α(1) · s(1) · s(2) · · · s(d). For m ∈ F and σ = (σ1, σ2) ∈ F
2,

VER(m,σ) = 1 if and only if m · σ1 = σ2.
Let mi = MULT(i, s(1)i , . . . , s

(d)
i ) and σi = (σi,1, σi,2) = PROOF(i, s(1)i , . . . ,

s
(d)
i ). It is obvious that the correctness holds because m =

∑
mi = s(1) · · · s(d),

σ1 =
∑

σi,1 = α(1) · 1 · · · 1 = α, and σ2 =
∑

σi,2 = α(1) · s(1) · s(2) · · · s(d).
In the following, we prove the verifiability. Let T ∈ T . Let Δm = m − m′,

Δα = σ1 − σ′
1, and Δβ = σ2 − σ′

2 where m′ and σ′ = (σ′
1, σ

′
2) is computed in

Step 4 in Exp. Adv can choose (Δm,Δα,Δβ) arbitrarily by modifying m′
i and σ′

i

for i ∈ T in Step 3 of Exp. The error occurs if Δm 	= 0 and VER(m + Δm, (σ1 +
Δα, σ2 + Δβ)) = 1, that is, m · Δα + α(1) · Δm + (Δm · Δα − Δβ) = 0. For
every choice of (Δm,Δα,Δβ) with Δm 	= 0, there is a unique α(1) ∈ F satisfying
the above equation. Thus, for any d secrets s(1), . . . , s(d), any T ∈ T , and any
unbounded adversary Adv, the probability of VER outputting 1 is 1/|F|.

We can choose E arbitrarily by using an extension field F
E instead of F.

SHARE shares α ∈ F
E , γ = α · s ∈ F

E , and 1 ∈ F
E by using a scheme for F

E .
PROOF generates additive shares in F

E and VER checks the equality over F
E .

It is easy to show taht ε = 1/|F|E holds for the modified scheme with almost
a same proof. Therefore, we obtain arbitrarily chosen ε by choosing a degree of
the extension E such that E = min{E′ | ε ≤ 1/|F|E′}. ��

Proof. (Theorem 3). The only-if part is obvious from Theorem 1. If T is of type
Qd, then there is a d-multiplicative T -private secret sharing scheme for n players
over a finite field. From Lemma 1, the if-part follows. ��
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5 Conclusion

In this paper, we have introduced the notion of (ε, d)-verifiably multiplicative T -
private secret sharing, and clarified the conditions under which such scheme
exists. Namely, we have shown that (0, d)-verifiably multiplicative T -private
secret sharing scheme exists if the adversary structure T is of type Qd+1, and
that, for arbitrarily small ε > 0, (ε, d)-verifiably multiplicative T -private secret
sharing scheme exists if the adversary structure T is of type Qd. These feasibility
results were obtained by presenting constructions of (ε, d)-verifiably multiplica-
tive and T -private secret sharing with the corresponding parameters.

Since it has been shown in [3] that a d-multiplicative T -private secret sharing
scheme exists only if the adversary structure T is of type Qd, our proposed
construction for ε > 0 made it clear that an (ε, d)-verifiably multiplicative T -
private secret sharing scheme with ε > 0 exists if and only if the adversary
structure T is of type Qd.

However, it is not made clear whether (0, d)-verifiably multiplicative T -
private secret sharing scheme can be constructed even when the adversary struc-
ture T is of type Qd. To clarify the necessary and sufficient condition for the
existence of (0, d)-verifiably multiplicative T -private secret sharing scheme will
be future challenge.
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Abstract. In this work, we study unconditionally-secure multi-party
computation (MPC) tolerating t < n/3 corruptions, where n is the total
number of parties involved. In this setting, it is well known that if the
underlying network is completely asynchronous, then one can achieve
only statistical security; moreover it is impossible to ensure input pro-
vision and consider inputs of all the honest parties. The best known
statistically-secure asynchronous MPC (AMPC) with t < n/3 requires a
communication of Ω(n5) field elements per multiplication. We consider a
partially synchronous setting, where the parties are assumed to be glob-
ally synchronized initially for few rounds and then the network becomes
completely asynchronous. In such a setting, we present a MPC protocol,
which requires O(n2) communication per multiplication while ensuring
input provision. Our MPC protocol relies on a new four round, com-
munication efficient statistical verifiable secret-sharing (VSS) protocol
with broadcast communication complexity independent of the number of
secret-shared values.

1 Introduction

Threshold unconditionally-secure multiparty computation (MPC) is a funda-
mental problem in secure distributed computing [2,8,12,26,36,38]. Informally,
an MPC protocol enables a set of n mutually distrusting parties to jointly and
securely compute a publicly known function f of their private inputs over some
finite field F, even in the presence of a computationally unbounded active adver-
sary Adv, who can corrupt any t out of the n parties. Let the parties be con-
nected by pair-wise secure (private and authentic) channels. Then in the synchro-
nous communication setting, where the parties are assumed to be synchronized
through a global clock, it is known that perfectly-secure MPC is possible if and
only if t < n/3 [8]. If a common broadcast channel is also available to the parties
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in addition to the pair-wise secure channels, then one can tolerate upto t < n/2
corruptions, albeit with statistical security1 [36]. The resilience bounds become
different if one considers a completely asynchronous setting, where parties are
not synchronized and messages can be arbitrarily delayed. Specifically, perfectly-
secure asynchronous MPC (AMPC) is possible if and only if t < n/4 [7], while
statistically-secure AMPC is possible if and only if t < n/3 [9].

Feasibility Results for Unconditionally-secure MPC: In any general
MPC protocol [2–5,8,10,12,15,20,27,36], the function f is usually expressed
as an arithmetic circuit (consisting of addition and multiplication gates) over
F and then the protocol “securely” evaluates each gate in the circuit in a
shared/distributed fashion. More specifically, each party secret-shares its inputs
among the parties using a linear secret-sharing scheme (LSS) [17], say Shamir
[37], with threshold2 t. The parties then interact to maintain the following invari-
ant for each gate: given the gate inputs in a secret-shared fashion, the gate output
is computed in a secret-shared fashion. Finally the (shared) circuit output is pub-
licly reconstructed. Intuitively, the privacy follows since each intermediate value
in the above process remains secret-shared with threshold t. Due to the linearity
of the LSS, the addition (linear) gates are evaluated locally by the parties. How-
ever, maintaining the above invariant for the multiplication (non-linear) gates
requires interaction among the parties. The focus therefore is rightfully placed on
measuring the communication complexity (namely the total number of field ele-
ments communicated) required to evaluate the multiplication gates in the circuit.
In the recent past, a lot of work has been done to design communication-efficient
MPC protocols; we summarize the relevant works here.

With t < n/3, [5] presents a perfectly-secure MPC protocol with O(n)
amortized communication complexity3 per multiplication, while [10] presents
a statistically-secure MPC protocol with t < n/2 with almost O(n) communi-
cation complexity per multiplication. Both these results are in the synchronous
setting and require non-constant number of rounds of interaction among the
parties. While the protocol of [5] requires Θ(n + D) rounds, the protocol of
[10] requires Θ(n2 + D) rounds, where D denotes the multiplicative depth of the
circuit.

A major drawback of the synchronous setting is that it does not model real
life networks like the Internet accurately where it is very hard to ensure that
the users are synchronized through a global clock and that there exists a strict

1 The outcome of a perfectly-secure protocol is error-free, while a negligible error is
allowed in a statistically-secure protocol.

2 Informally such a scheme ensures that the shared value remains information-
theoretically secure even if upto t shares are revealed. Shamir sharing of a secret
with threshold t is done by selecting a random polynomial of degree at most t with
the secret as the constant term and defining the individual shares as distinct evalu-
ations of the polynomial.

3 The amortized communication complexity is derived under the assumption that the
circuit is large enough so that the terms that are independent of the circuit size can
be ignored.
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a priori known upper bound on the message delivery. Real life networks can be
modelled more appropriately by the asynchronous setting, where there are no
known upper bounds and messages are delivered arbitrarily (the only guarantee
given in this model is that the messages sent by the honest parties will reach
to their destination eventually). Hence designing AMPC protocols is practically
motivated. However, an inherent challenge in designing protocols in a completely
asynchronous setting is that it is impossible to distinguish between a slow, but
honest party (whose messages are delayed arbitrarily) and a corrupt party (who
do not send any message at all). Hence in a completely asynchronous protocol, no
party can afford to receive messages from all the n parties, as the wait may turn
out to be an endless wait. So as soon a party receives messages from n−t parties,
it has to proceed to the next “step” of the protocol. However, in this process,
messages from t potentially honest, but slow parties may get ignored. Due to this
inherent phenomena, designing efficient AMPC protocols is a challenging task,
as evident from the known feasibility results for AMPC protocols summarized
below.

In a completely asynchronous setting, [34] presents a perfectly-secure AMPC
protocol with t < n/4 and O(n2) communication per multiplication, while [32]
presents a statistically-secure AMPC with t < n/3 and O(n5) communication
per multiplication. As it is clear, there is a significant gap in the communication
complexity of MPC and AMPC protocols. In addition, any AMPC protocol can-
not ensure input provision, namely the inputs of all the honest parties may not
be considered for the circuit evaluation, as this may turn out to be an endless
wait and so inputs of upto t potentially honest parties may get ignored. With
an aim to bridge the gap in the communication complexity of synchronous and
asynchronous MPC and to enforce input provision, the works of [4,14] motivate
and consider hybrid asynchronous setting, where the network is assumed to be
synchronized for few initial rounds and then it becomes completely asynchro-
nous. This is a practically motivated communication setting, which has been
well considered in the recent past for bridging the efficiency gap between syn-
chronous and asynchronous protocols for various distributed computing tasks
[4,6,14,23,30].

With t < n/4, a perfectly-secure hybrid MPC protocol with one synchronous
round is presented in [14], with O(n) amortized communication complexity per
multiplication. In [15], four MPC protocols in the hybrid setting are proposed
with t < n/3; while two of these protocols are perfectly-secure, the remain-
ing two are statistically-secure. These protocols are obtained by instantiating
the efficient framework for unconditionally-secure MPC proposed in [15] with
existing VSS schemes with t < n/3 (more on this later). Among the perfectly-
secure protocols, the first one requires less number of synchronous rounds,
namely4 (12, 3), but requires a higher communication of O(n5) per multiplica-
tion. The second perfectly-secure protocol requires more number of synchronous

4 We say a protocol requires (r, r′) (synchronous) rounds, if it requires a total of r
rounds of interaction among the parties and out of these r rounds, r′ rounds require
broadcast by the parties, where r′ ≤ r.
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rounds, namely (21, 7), but provides a better communication complexity of O(n4)
per multiplication. So a tradeoff is attained between the amount of synchrony
required and communication achieved per multiplication. The statistically-secure
hybrid protocols of [15] with t < n/3 retain the same communication com-
plexity as their perfect counterparts, but reduces the number of synchronous
rounds. Namely the first statistically-secure protocol requires (7, 2) rounds and
O(n5) communication per multiplication, the second statistically-secure proto-
col requires (16, 6) rounds and O(n4) communication per multiplication. As it
is clear from these results, with t < n/3, significant improvement in the commu-
nication complexity is not achieved, even if partial synchrony is provided in the
network. Our goal is to design more efficient hybrid MPC protocol with t < n/3
using minimal level of synchrony.

Our Results. We present a hybrid MPC protocol with t < n/3. Our protocol is
statistically-secure, requires (4, 3) synchronous rounds and O(n2) communication
per multiplication. Moreover, our protocol also ensures input provision. Our
protocol outperforms the existing hybrid MPC protocols with t < n/3, both
in terms of communication complexity as well as in terms of the number of
synchronous rounds required in the protocol.

To design our protocol, we follow the standard offline-online paradigm, based
on Beaver’s circuit-randomization technique [2] and which is now the de facto
style of designing efficient MPC protocols [3–5,10,14,15]. In this paradigm, an
MPC protocol is divided into two phases, a circuit-independent offline phase and
a circuit-dependent online phase. While the offline phase generates “raw data”,
independent of the circuit and actual inputs for the computation, the online
phase utilizes this raw data for the circuit evaluation. In a more detail, the offline
phase generates random multiplication triples of the form (a, b, c), Shamir-shared
with threshold t; here a, b are random and private and c = ab holds. Later, using
such triples, multiplication gates are evaluated in a shared fashion. For each
multiplication gate, one multiplication triple from the offline phase is utilized
and the multiplication gate is evaluated at the cost of publicly reconstructing two
Shamir-shared values. Reconstructing a Shamir-shared valued (with threshold t)
can be done efficiently with t < n/3 using the standard Reed-Solomon (RS) error
correction [31], even in a completely asynchronous setting [7,11]. Hence we shift
the focus to design an efficient offline phase in the hybrid setting for generating
multiplication triples. For this we follow the recent framework of [15], which
shows how to efficiently generate Shamir-shared multiplication triples in offline
phase, using any (polynomial based) verifiable secret-sharing (VSS) protocol
[13] as a black-box. Informally, a VSS protocol allows a designated party called
dealer (D) to verifiably Shamir-share a secret with threshold t. Thus at the end
of the VSS protocol it is ensured that there exists some polynomial of degree
at most t with the secret as the constant term and every share-holder has a
distinct evaluation of this polynomial. Moreover this is ensured irrespective of
whether the dealer is under the influence of the adversary or not. In addition,
if the dealer is honest then it is ensured that the secret remains information-
theoretically secure from t corrupted share-holders.
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In this work, our proposed VSS protocol in the setting of t < n/3 is plugged
into the framework of [15] and the result is a more efficient hybrid MPC protocol.
Communication-wise, our VSS protocol stands out with an amortized overhead
of O(n2) per secret-shared value, whereas the best known bound is only O(n3)
[25,28]. The improvement comes from the fact that our VSS protocol requires
a broadcast complexity that is independent of the number of secrets shared, a
property that is not achieved by the known constructions [25,28]. To induce a
better complexity over point-to-point channels, we use the best known broadcast
amplification protocols (aka multi-valued broadcast protocols) [22] to simulate
the broadcast invocations in the VSS protocols of [25,28]. Informally, in a multi-
valued protocol, broadcasting a “sufficiently large” message of size � has com-
munication complexity of O(n�) over point-to-point channels and a broadcast
complexity of poly(n). With t < n/3, the most efficient multi-valued broadcast
protocol is due to [35]. The protocol requires a communication complexity of
O(n�) over point-to-point channels and broadcast of n2 bits for broadcasting an
�-bit message. Detailed analysis and comparison of our VSS with existing ones
is deferred to the full version of the paper. In Fig. 1, we compare our MPC and
VSS protocols with their previous best counter parts.

Fig. 1. Comparison of our results with previous best results.

Other Related Work. In the synchronous setting, MPC protocols with O(n)
communication per multiplication has been reported in [5] with perfect security
and t < n/3 and in [10] with statistical security and t < n/2. These protocols
deploy non-robust secret-sharing protocols in the player-elimination and dispute-
control framework. The non-robustness of the underlying primitives inflates the
round complexity of their offline phase to O(n) and O(n2) respectively. The
naive approach of adopting these protocols in hybrid setting will lead to protocols
with O(n) or O(n2) synchronous (broadcast) rounds to execute the offline phase.
The online phase of these protocols can be executed asynchronously. Our hybrid
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MPC protocol on the other hand requires only a constant number of synchronous
broadcast rounds.

The reported works [18,19] in the synchronous setting with polylogarith-
mic (in n) communication per gate (denoted as ˜O(n)) 5 are only non-optimally
resilient. While [19] works with t < ( 12 − ε)n and provides statistical secu-
rity, [18] works with t < ( 13 − ε)n and provides perfect security, where ε > 0.
These protocols also evaluate the underlying circuit in a secret-shared fash-
ion. However, instead of Shamir secret-sharing, they use packed secret-sharing
[24] taking advantage of the presence of larger subset of honest parties (due to
the non-optimal resilience). Due to the use of packed secret-sharing, “multiple”
gates can be evaluated simultaneously by doing a fixed set of operations on the
shares. However, this requires “special” structure from the underlying circuit
being available at each layer, maintaining which, demands additional circuitry
to be incorporated between different layers of the circuit. Evaluating the overall
circuit using packed secret-sharing makes these protocols highly non-trivial and
complex. It is not known how to adapt these protocols in a completely asyn-
chronous or a partially synchronous setting. Specifically, it is not clear whether
these protocols can be executed in a hybrid setting, with a constant number of
synchronous rounds. Therefore, while treating VSS as an MPC functionality and
evaluating the resultant “VSS circuit” using the MPC protocols of [18,19] may
lead to sublinear (namely ˜O(n)) overhead per secret-shared value, it is not clear
if the resultant protocols runs with a constant number of synchronous rounds in
hybrid setting.

New Techniques. Our VSS protocol is built upon a new primitive called infor-
mation checking with succinct proof of possession (ICPoP) that takes motiva-
tion from information checking protocol (ICP) introduced in [16,33,36]. An ICP
allows a D to privately authenticate some data for an intermediary INT, who
can later publicly reveal this data and prove that it originated from D. On the
other hand, in an ICPoP protocol INT gives a proof of possession publicly of
the data originated from D, instead of publicly revealing the data. The proof
preserves data privacy and is “succinct” i.e. its size is independent of the size
of the data. The succinctness of the proof makes the broadcast complexity of
our VSS protocol independent of the number of shared secrets. Our ICPoP also
offers transferability that allows any designated party to take possession of INT’s
authenticated (by D) data and to be able to give a proof of possession on the
“behalf” of INT. The existing ICPs do not support transferability.

We next give a high level overview of our VSS. To share a secret s, we embed
s in the constant term of a random bivariate polynomial F (x, y) of degree t in
x and y. Every party Pi then obtains a row polynomial fi(x) = F (x, αi). The
parties then publicly verify whether the row polynomials of at least n− t parties
called VCORE define a unique bivariate polynomial. The standard way to do
this is to perform the “pair-wise checking”, where every pair of parties (Pi, Pj)
5 The actual complexity (communication, computation and round) of these protocols

are of the form O((logk n · poly(log |C|)) · |C|) + O(poly(n, log |C|, D)), where D is
the multiplicative depth of the underlying circuit C.
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is asked to verify the consistency of the common values on their respective poly-
nomials and publicly complain if there is any inconsistency, in which case D
publicly resolves the complaint by making the common value public [21,25,28].
This approach will lead to a broadcast complexity of O(n2) per secret-shared
value; instead we use a statistical protocol called Poly-Check (Sect. 4.1), adapted
from [34], which performs the same task in parallel for � secrets (and hence �
bivariate polynomials), but keeping the broadcast complexity independent of �.
Once VCORE is found, it is ensured that D has committed a unique F (x, y) and
the secret F (0, 0) to the parties in VCORE. To enable the parties to obtain their
shares, the goal will be to enable each party Pj to compute its column polynomial
gj(y) = F (αj , y). For this each party Pi ∈ VCORE transfers its common value
on gj(y) (namely fi(αj)) to Pj . To ensure that correct values are transferred, Pj

publicly gives a proof of possession of all the transferred values originated from
D via the intermediary parties in VCORE. This is done in parallel for � secrets
(and hence � bivariate polynomials); the succinctness of the proof ensures that
this step has broadcast complexity, independent of �.

2 Network Model, Definitions and Existing Tools

We consider a set P = {P1, . . . , Pn} of n parties, connected by pair-wise pri-
vate and authentic channels. For simplicity we assume n = 3t + 1, so t = Θ(n).
There exists a computationally unbounded adversary Adv who can maliciously
corrupt any t parties and may force them to behave in any arbitrary fashion
during the execution of a protocol. We assume the adversary to be static, who
decides the set of corrupted parties at the beginning of the protocol execu-
tion. We assume a partially synchronous network, where the first four rounds
are synchronous, after which the entire communication is done asynchronously.
Moreover, we assume that the parties have access to a broadcast channel during
the second, third and fourth synchronous round. Our protocols operate over a
finite field F, where |F| > 2n. We assume that there exists 2n distinct non-zero
elements α1, . . . , αn, β1, . . . , βn in F. Each element of F can be represented by
O(log |F|) bits. The communication complexity of any protocol is defined to be
the total number of field elements communicated by the honest parties in that
protocol. We denote the point-to-point communication complexity by PC() and
the broadcast communication complexity as BC().

Without loss of generality, we assume that the parties want to securely com-
pute the function f : Fn → F via an MPC protocol, where f(x1, . . . , xn) = y,
such that xi ∈ F is the input of Pi and every party is supposed to receive the
output y ∈ F. The function f is assumed to be represented by a publicly known
arithmetic circuit C over F. The circuit C consists of n input gates, two-input
addition (linear) and multiplication (non-linear) gates, zero-input random gates
(for generating random values during the computation) and one output gate.
We denote by cM and cR the number of multiplication and random gates in C
respectively. By [X] and [X,Y ] for Y ≥ X, we denote the sets {1, . . . , X} and
{X,X + 1, . . . , Y }, respectively. We use i ∈ [k] to denote that i can take a value
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from the set {1, 2 . . . k}. We will also require that |F| > 4n4(cM + cR)(3t + 1)2κ

to ensure that the error-probability of our MPC protocol is at most 2−κ, for a
given error parameter κ.

2.1 Definitions

Definition 1 (d-sharing [3,5,20]). A value s ∈ F is said to be d-shared if there
exists a polynomial over F, say f(·), of degree at most d, such that f(0) = s and
every (honest) party Pi ∈ P holds a share si of s, where si = f(αi). We denote
by [s]d, the vector of shares of s corresponding to the (honest) parties in P.

A vector S = (s(1), . . . , s(�)) ∈ F
� is said to be d-shared if each s(i)

is d-shared. Note that d-sharings are linear: given [a]d and [b]d, then
[a + b]d = [a]d + [b]d and [c · a]d = c · [a]d holds, for a public con-
stant c. In general, given � sharings [x(1)]d, . . . , [x(�)]d and a public lin-
ear function g : F

� → F
m, where g(x(1), . . . , x(�)) = (y(1), . . . , y(m)), then

g([x(1)]d, . . . , [x(�)]d) = ([y(1)]d, . . . , [y(m)]d). We say that the parties locally com-
pute ([y(1)]d, . . . , [y(m)]d) = g([x(1)]d, . . . , [x(�)]d) to mean that every Pi (locally)
computes (y(1)

i , . . . , y
(m)
i ) = g(x(1)

i , . . . , x
(�)
i ), where y

(l)
i and x

(l)
i denotes the ith

share of y(l) and x(l) respectively.

Definition 2 (Polynomial-based)Verifiable Secret Sharing (VSS) [3–5]).
Let S = (s(1), . . . , s(L)) ∈ F

L be a set of L values that a dealer D ∈ P wants to
t-share among P. Let Sh be a protocol for the n parties, where D has the input
S. Then Sh is a VSS scheme if the following holds for every possible Adv, on all
possible inputs: (1) Correctness: If D is honest then S is t-shared among P at
the end of Sh. Moreover even if D is corrupted there exists a set of L values, say
(s(1), . . . , s(L)), which is t-shared among P at the end of Sh. (2) Privacy: If D is
honest then Sh reveals no information about S to Adv in the information-theoretic
sense; i.e. Adv’s view is identically distributed for all possible S.

If Sh satisfies all its properties without any error then it is called perfectly-
secure. If the correctness is satisfied with probability at least 1 − ε, for a given
error parameter ε, then it is called statistically-secure.

Unconditionally-secure MPC: Recent papers on efficient unconditionally-
secure MPC follow a simpler “property based” security definition of secure
MPC [3,5,10,20], instead of the more rigorous “real-world/ideal-world” para-
digm based definition [1,29]. As our main goal is to provide an efficient VSS
and MPC, to avoid blurring the main focus of the paper and to avoid additional
technicalities, we also use the property based security definition. However, we
confirm that using standard techniques, like the above efficient protocols, our
MPC protocol can be also proved secure according to the simulation based def-
inition. We defer the details to the full version of the paper.

Let f : Fn → F be a publicly known function and party Pi has input xi ∈ F.
In any (unconditionally-secure) multiparty computation, each party Pi t-shares
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its input. Let xi be the value shared by Pi. If Pi is honest then xi = xi. The
parties then compute f as y = f(x1, . . . , xn) and everyone receives y.

Definition 3 (Unconditionally-secure MPC). A protocol Π among the n
parties securely computes f , if it satisfies the following for every possible Adv,
on all possible inputs: (1) Correctness: All honest parties obtain y at the end
of Π. (2) Privacy: Adv obtains no additional information about the inputs of
the honest parties, other than what is inferred from the inputs of the corrupted
parties and y. Protocol Π is called perfectly-secure if it satisfies all its properties
without any error. If the correctness is satisfied with probability at least 1− 2−κ,
for a given error parameter κ, then Π is called statistically-secure.

Information Checking with Succinct Proof of Possession (ICPoP): An
ICPoP protocol involves three entities: a designated dealer D ∈ P who holds a
set of L private values S = {s(1), . . . , s(L)}, an intermediary INT ∈ P and the
set of parties P acting as verifiers (note that D and INT will also play the role
of verifiers, apart from their designated role of dealer and intermediary respec-
tively). The protocol proceeds in three phases, each of which is implemented by a
dedicated sub-protocol: (1) Distribution Phase: Here D, sends S to INT along
with some auxiliary information. For the purpose of verification, some verifica-
tion information is additionally sent to each individual verifier. (2) Authen-
tication Phase: This phase is initiated by INT who interacts with D and the
verifiers to ensure that the information it received from D is consistent with the
verification information distributed to the individual verifiers. If D wants it can
publicly abort this phase, which is interpreted as if D is accusing INT of mali-
cious behaviour. (3) Revelation Phase: This phase is carried out by INT and
the verifiers in P only if D has not aborted the previous phase. Here INT reveals
a proof of possession of the values received from D. The verifiers in P check
this proof with respect to their verification information. Then based on certain
criteria, each verifier either outputs AcceptProof (indicating that it accepts the
proof) or RejectProof (indicating that it rejects the proof).

Definition 4 (ICPoP). A triplet of protocols (Distr,AuthVal,RevealPoP)
(implementing the distribution, authentication and revelation phase respectively)
is a (1 - ε)-secure ICPoP, for an error parameter ε, if the following holds:
(1) ICPoP-Correctness1: If D and INT are honest, then each honest ver-
ifier Pi ∈ P outputs AcceptProof at the end of RevealPoP. (2) ICPoP-
Correctness2: If D is corrupted and INT is honest and if ICPoP proceeds to
RevealPoP, then except with probability at most ε, all honest verifiers output
AcceptProof at the end of RevealPoP. (3) ICPoP-Correctness3: If D is hon-
est, INT is corrupted, ICPoP proceeds to RevealPoP and if the honest verifiers
output AcceptProof, then except with probability at most ε, the proof produced
by INT corresponds6 to the values in S. (4) ICPoP-Privacy: If D and INT are
honest, then information obtained by Adv during ICPoP is independent of S.
6 The interpretation of a proof corresponding to a set of values will be clear later

during the formal presentation of our ICPoP.
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(5) ICPoP-Succinctness of the Proof: The size of the proof produced by INT
during RevealPoP is independent of L.

Properties of Polynomials: A bivariate polynomial F (x, y) of degree at

most t is of the form F (x, y) =
∑i,j=t

i,j=0 rijx
iyj , where rij ∈ F. Let fi(x) def=

F (x, αi), gi(y) def= F (αi, y) for i ∈ [n]. We call fi(x) and gi(y) as ith row
polynomial and column polynomial respectively of F (x, y). We say that a row
polynomial f i(x) lies on a bivariate polynomial F (x, y) of degree at most t if
F (x, αi) = f i(x) holds. Similarly we will say that a column polynomial gi(y)
lies on F (x, y) if F (αi, y) = gi(y) holds. We will use the following well known
standard properties of bivariate and univariate polynomials.

Lemma 1 ([1,11,34]). Let f1(x), . . . , f�(x), g1(y), . . . , g�(y) be degree t univari-
ate polynomials with t + 1 ≤ � ≤ n, such that fi(αj) = gj(αi) holds for every
αi, αj ∈ {α1, . . . , α�}. Then there exists a unique bivariate polynomial F (x, y) of
degree t, such that fi(x) and gi(y) lie on F (x, y), for i ∈ [�].

Lemma 2 ([1,11,34]). Let f1(x), . . . , f�(x) be univariate polynomials of degree
at most t where t + 1 ≤ � ≤ n. Let F (x, y) and G(x, y) be two bivariate poly-
nomials of degree at most t, such that fi(x) lies on both F (x, y) and G(x, y) for
each i ∈ [�]. Then F (x, y) = G(x, y).

Lemma 3 ([34]). Let G(1)(x), . . . G(L)(x) be degree d polynomials and let

A(x)
def
= eG(1)(x)+ · · ·+eLG(L)(x), where e is a random value from F\{0}. Let

a tuple (γ, v1, v2, . . . vL) be such that vi �= G(i)(γ) for some i ∈ [L]. Then except
with probability at most L−2

|F|−1 , the condition A(γ) �= ev1 + . . . eLvL holds.

Lemma 4 ([34]). Let h(0)(y), . . . h(L)(y) be L+1 polynomials and r be a random

value from F \ {0}. Let hcom(y)
def
= h(0)(y) + rh(1)(y) + . . . rLh(L)(y). If at least

one of h(0)(y), . . . h(L)(y) has degree more than t, then except with probability at
most L

|F| , the polynomial hcom(y) will have degree more than t.

3 Efficient ICPoP

We present a (1 − ε)-secure ICPoP protocol, where |S| = L = � × pack, with
� ≥ 1 and 1 ≤ pack ≤ n − t; moreover ε = max{ n�

|F|−1 , n(n−1)
|F |−pack}. The protocol

has communication complexity PC(O(n�)) and BC(O(n)). Hence the broadcast
complexity is independent of �. Our ICPoP is similar to the asynchronous ICP
of [33], adapted to the synchronous setting with the following differences: in ICP
the whole S is revealed during the revelation phase, as only its authenticity is
required during the revelation phase. We require INT to be able to publicly prove
the possession of S while maintaining its privacy. Hence the auxiliary information
distributed in our ICPoP differs and also used differently; the details follow.
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Let S = {(s(1,1), . . . , s(1,pack)), . . . , (s(�,1), . . . , s(�,pack))}. During the distri-
bution phase, D embeds the values (s(k,1), . . . , s(k,pack)) for k ∈ [�] in a ran-
dom degree d secret-encoding polynomial G(k)(x) at x = β1, . . . , βpack, where
d = pack+ t−1. In addition, D picks a masking set M, consisting of 2 ·pack ran-
dom values {(m(1,1), . . . ,m(1,pack)), (m(2,1), . . . ,m(2,pack))}, which are embedded
in two random degree d polynomials H(1)(x) and H(2)(x) respectively at x =
β1, . . . , βpack; we call these polynomials as masking polynomials. The polynomials
are sent to INT, while each verifier Pi receives the values v1,i, . . . , v�,i,m1,i,m2,i

of these polynomials at a secret evaluation point γi. This distribution achieves
ICPoP-Privacy, as each secret-encoding polynomial has degree d and adversary
may get at most t values on these polynomials; so it will lack pack values on
each polynomial to uniquely interpolate them.

During revelation phase, to give a proof of possession of S, INT produces a
random linear combination of the values in S ∪ M by making public a random

linear combiner, say e and a linear combination C(x) def= eH(1)(x)+e2H(2)(x)+
e3G(1)(x) + . . . + e�+2G(�)(x). The values C(β1), . . . , C(βpack) define pack linear
combinations of S ∪ M with respect to e. The pair (e, C(x)) is considered as a
proof of possession of S (union M) and verified as follows: each verifier locally
verifies if the corresponding linear combination em1,i + e2m2,i + e3v1,i + . . . +
e�+2v�,i satisfies C(x) at x = γi and accordingly broadcast an Accept or a Reject
message. If more than t verifiers broadcast Accept then the proof (e, C(x)) is
said to be accepted, otherwise it is rejected. The proof will always be accepted
for an honest D and INT, implying ICPoP-Correctness1. The size of the proof
is O(n) (as d = O(n)), which is independent of �, implying ICPoP-Succinctness
of the Proof. No additional information about the secret-encoding polynomials
is revealed from C(x), thanks to the masking polynomials. If D is honest and
INT is corrupted then the evaluation points of the honest verifiers will be private.
So if INT gives a proof of possession of S� ∪ M� �= S ∪ M by revealing a linear
combination of S� ∪ M� through (e, C�(x)) where C�(x) �= C(x), then with
high probability, every honest verifier will reject the proof. This is because the
corresponding linear combination of the values possessed by the honest verifiers
will fail to satisfy C�(x); this implies ICPoP-Correctness 3.

The above mechanism, however, fails to achieve ICPoP-Correctness 2, as
a corrupted D can distribute “inconsistent” polynomials and values to an hon-
est INT and honest verifiers respectively; later on the proof produced by INT
will be rejected by every honest verifier. To verify the consistency of the dis-
tributed information, during the authentication phase, INT “challenges” D by
making public a random linear combination A(x) of the received polynomials.
In response, D either instructs to abort the protocol or continue, after verifying
whether the A(x) polynomial satisfies the corresponding random linear combi-
nation of the values held by each verifier. The idea here is that if D distributed
inconsistent data, then with very high probability, any random linear combina-
tion of the distributed polynomials would fail to satisfy the corresponding linear
combination of the values given to the honest verifiers. And this will be locally
learned by the honest verifiers after A(x) is made public. So if D still instructs
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to continue the protocol, then clearly D is corrupted; so later even if the proof
produced in the revelation phase turns out to be inconsistent with the informa-
tion held by the honest verifiers, the proof is accepted by adding an additional
acceptance condition to deal with this particular case. We stress that the addi-
tional acceptance condition never gets satisfied for an honest D and a corrupted
INT. The privacy of the secret-encoding polynomials is still preserved during the
authentication phase (for an honest INT and D), thanks to the masking poly-
nomials7. The formal steps of ICPoP are given in Fig. 3. In the protocol, if the
output is AcceptProof then we additionally let the parties output pack linear
combinations of the values in S ∪ M possessed by INT; looking ahead this will
be useful in our VSS. In Fig. 2 we give a pictorial representation of the values
distributed and revealed in ICPoP.

Fig. 2. Pictorial representation of the information generated and communicated during
ICPoP protocol.

In ICPoP, the correspondence between a proof and a set of values is defined
as follows: Let S = {(s(1,1), . . . , s(1,pack)), . . . , (s(�,1), . . . , s(�,pack))} and M =
{(m(1,1), . . . ,m(1,pack)), (m(2,1), . . . ,m(2,pack))}. We say that a proof (e, C(x)) cor-
responds to S ∪M if C(x) embeds linear combination of S ∪M with respect to e

7 This explains the need for two masking polynomials: one is used to preserve the
privacy of the secret-encoding polynomials during the authentication phase while
the other is used to maintain the privacy during the revelation phase.
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at x = β1, . . . , βpack; i.e. if C(βi) = em(1,i) + e2m(2,i) + e3s(1,i) + . . . + e(�+2)s(�,i)

holds for i ∈ [pack].
We state the properties of our ICPoP and the final theorem. We give proofs

for the important properties; the other proofs are simple and will appear in the
full version.

Lemma 5 (ICPoP-Correctness1). If D and INT are honest then each honest
verifier Pi ∈ P outputs AcceptProof along with (C(β1), . . . , C(βpack)) at the end
of RevealPoP.

Lemma 6 (ICPoP-Correctness2). If D is corrupt and INT is honest, and
if ICPoP proceeds to RevealPoP, then all honest verifiers output AcceptProof,
except with probability at most n�

|F|−1 .

Proof. We claim that if INT is honest and ICPoP proceeds to RevealPoP, then
an honest verifier Pi broadcasts Accept, except with probability at most �

|F|−1 .
Assuming that the claim is true, from the union bound it follows that the prob-
ability any honest verifier fails to broadcast an Accept message is at most n�

|F|−1 ,
as the number of honest parties is upper bounded by n. This ensures that there
will be more than t Accept messages broadcasted by honest verifiers implying
that each honest verifier outputs AcceptProof at the end of RevealPoP.

We next proceed to prove our claim. For this we focus on a designated honest
verifier Pi and consider the relationship that holds between the polynomials
G

(1)
(x), . . . , G

(�)
(x),H

(1)
(x),H

(2)
(x) distributed by a corrupted D to INT and

the tuple (γi, v1,i, v2,i, . . . v�,i,m1,i,m2,i) distributed by D to Pi. We have two
cases:

– vk,i = G
(k)

(γi) for each k ∈ [�] and m1,i = H
(1)

(γi),m2,i = H
(2)

(γi): In this
case, the claim is true without any error as Pi will find that condition C1 is
true for the C(x) polynomial during RevealPoP.

– At least one of the following holds — either vk,i �= G
(k)

(γi) for some k ∈
[�] or m1,i �= H

(1)
(γi) or m2,i �= H

(2)
(γi): In this case, A(γi) �= dm1,i +

d2m2,i + d3v1,i + d4v2,i + . . . d�+2v�,i holds, except with probability at most
�

|F|−1 (follows from Lemma 3 by substituting L = �+2). So clearly the verifier
Pi will find that condition C2 is true during RevealPoP

Lemma 7 (ICPoP-Correctness3). If D is honest, INT is corrupted, ICPoP
proceeds to RevealPoP and if the honest verifiers output AcceptProof, then
except with probability at most nd

|F|−pack , the proof produced by INT corresponds
to the values in S ∪ M.

Lemma 8 (ICPoP-Privacy). If D and INT are honest, then the information
obtained by Adv during ICPoP is independent of the values in S.
Theorem 1. Protocols (Distr,AuthVal,RevealPoP) constitute a (1 − ε)-secure
ICPoP for L = � × pack values with � ≥ 1 and 1 ≤ pack ≤ n − t, where
ε = max{ n�

|F|−1 , nd
|F |−pack} and d = pack + t − 1. The protocol has communica-

tion complexity PC(O(n�)) and BC(O(n)).
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Fig. 3. Efficient ICPoP protocol where � ≥ 1 and 1 ≤ pack ≤ n − t.
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Proof. The properties of ICPoP follow from Lemmas 5–8. We next prove the
communication complexity. During Distr, D sends � + 2 polynomials of degree d
to INT and a tuple of � + 3 values to each individual verifier. During AuthVal a
polynomial of degree d is broadcasted by INT and D broadcasts either an OK or
Abort message. During RevealPoP, INT broadcasts a polynomial of degree d and
each individual verifier broadcasts either an Accept or a Reject message. So
overall the protocol has communication complexity PC(O(n�)) and BC(O(n)),
as d = O(n). This also proves the ICPoP-Succinctness of the Proof property,
as the size of the proof is independent of �.

Transferability of ICPoP: In our VSS protocol we will use ICPoP as follows:
after receiving S ∪ M from D via the secret-encoding and masking polynomials,
INT will send these polynomials (and hence S ∪M) to another designated party,
say PR ∈ P (if INT is corrupted then it can send incorrect polynomials to PR).
Later on, party PR will act as an INT and produce a proof of possession of S∪M,
which got “transferred” to PR from INT; the proof gets verified with respect to
the verification information held by the verifiers. This transfer of S ∪ M will
satisfy all the properties of ICPoP, imagining PR as the new INT. Specifically if
D is honest and both INT and PR are honest, then the privacy will hold. Moreover
if PR produces a proof of possession of incorrect sets (this can be the case if either
INT or PR is corrupted), then the proof gets rejected. If D is corrupted and both
INT and PR are honest then the proof given by PR will be accepted.

4 Statistical VSS with a Quadratic Overhead

We present a 4-round VSS protocol Sh to t-share � × (n − t) = Θ(n�) values
with communication complexity PC(O(n3�)) and BC(O(n3)). So for sufficiently
large �, the broadcast complexity will be independent of �. For simplicity, we will
present a 5-round statistical VSS protocol Sh-Single for sharing a single secret.
We will then explain how to reduce the number of rounds of Sh-Single from five
to four. Finally we extend this four round Sh-Single to get Sh. We first discuss a
protocol Poly-Check adapted from [34], used in our VSS.

4.1 Verifiably Distributing Values on Bivariate Polynomials
of Degree at Most t

In our VSS protocol we will come across the following situation: D will select
L bivariate polynomials F (1)(x, y), . . . , F (L)(x, y), each of degree at most t and
send the ith row polynomials f

(1)
i (x), . . . , f (L)

i (x) of F (1)(x, y), . . . , F (L)(x, y)
respectively to each Pi; we stress that the corresponding column polynomials are
retained by D. The parties now want to publicly verify if there is a set of at least
t + 1 honest parties, who received row polynomials, lying on L unique bivariate
polynomials of degree at most t without revealing any additional information
about the polynomials. For this we use a two round protocol Poly-Check (see
Fig. 4), which is adapted from an asynchronous protocol for the same purpose,
presented in [34].
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In the protocol Poly-Check, there is a designated verifier V, who challenges
D to broadcast a random linear combination of the n column polynomials of all
the bivariate polynomials selected by D. Specifically V provides a challenge com-
biner, say r and in response D makes public a linear combination of its column
polynomials with respect to r; to maintain the privacy of the column polynomi-
als, this linear combination is blinded by a random degree t blinding polynomial
B(y), selected by D, with each party Pi having a value on this polynomial.
Corresponding to the linear combination of the column polynomials produced
by D, each party Pi makes public a linear combination of n values of all its
row polynomials, with respect to the combiner r, which is blinded by the value
of B(y) possessed by it. The idea here is the following: if indeed there exists a
set of t + 1 honest parties that we are looking for, then the values of the row
polynomials possessed by these parties will define degree t column polynomials.
And these column and row polynomials will be “pair-wise consistent”. Based on
this idea we check if the blinded linear combination of the column polynomials
produced by D is of degree t. Moreover it is also checked if there exists a witness
set W(V) of at least 2t + 1 parties, such that their blinded linear combination
of row polynomial values satisfies the linear combination produced by D. If any
one of the above conditions is not satisfied the parties output ⊥, otherwise they
output W(V). It is ensured that if V is honest, then except with probability nL

|F| ,
the honest parties in W(V) constitute the desired set of row polynomial holders.
The properties of Poly-Check are stated in Lemma 9; we refer to [34] for the
complete proof.

Lemma 9 (Properties of Protocol Poly-Check [34]). In protocol Poly-Check,
the following holds:

– If D is honest then every honest party outputs a W(V) set which includes
all the honest parties. Moreover the row polynomials of the honest parties in
W(V) will lie on F (1)(x, y), . . . , F (L)(x, y). Furthermore Adv gets no additional
information about F (1)(x, y), . . . , F (L)(x, y) in the protocol.

– If D is corrupted and V is honest and if the parties output a W(V), then
except with probability at most nL

|F| , there exists L bivariate polynomials, say

F
(1)

(x, y), . . . , F
(L)

(x, y), of degree at most t, such that the row polynomials
of the honest parties in W(V) lie on F

(1)
(x, y), . . . , F

(L)
(x, y).

– The protocol requires two rounds and has communication complexity
BC(O(n)).

4.2 Five Round Statistical VSS for a Single Secret

To t-share s, D selects a random secret-carrying bivariate polynomial F (x, y) of
degree at most t such that s = F (0, 0). The ith row polynomial fi(x) of F (x, y)
is given to each Pi. We stress that only the row polynomials are distributed. The
parties then verify the consistency of the distributed polynomials by publicly
verifying the existence of a set VCORE of at least 2t + 1 parties, such that
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Fig. 4. Checking the consistency of row polynomials distributed by D under the super-
vision of a designated verifier V. The inputs for (an honest) D are L secret bivariate
polynomials F (1)(x, y), . . . , F (L)(x, y) of degree at most t and a secret blinding polyno-
mial B(y) of degree at most t. The inputs for (an honest) party Pi are L row polynomials

f
(1)

i (x), . . . , f
(L)

i (x) of degree at most t and a share bi of blinding polynomial. If D and

Pi are honest then these values are private and f
(k)

i (x) = F (k)(x, αi) and bi = B(αi)
will hold for each k ∈ [L].

the row polynomials of the honest parties in VCORE lie on a unique bivariate
polynomial, say F (x, y), of degree at most t. For this, n instances of Poly-Check
are executed (one on the behalf of each party playing the role of the designated
verifier V) and it is verified if there is common subset of at least 2t + 1 parties,
present across all the generated witness sets. As there will be at least one instance
of Poly-Check executed on the behalf of an honest verifier, clearly the common
subset of 2t+1 parties satisfies the properties of VCORE. To maintain the privacy
of the row polynomials during the Poly-Check instances, n independent blinding
polynomials are used by D, one for each instance. If a VCORE is found, then
we say that D has “committed” the secret s = F (0, 0) to the parties in VCORE
via their row polynomials and the next goal will be to ensure that each party
Pj obtains its column polynomial gj(y) of F (x, y); party Pj can then output its
share sj = gj(0) of s and hence s will be t-shared via F (x, 0). If D is honest then
F (x, y) = F (x, y) will hold (and hence s = s), as VCORE will include all the
honest parties.

To enable Pj obtain gj(y), each Pi ∈ VCORE can send the common point
f i(αj) on gj(y) to Pj , where f i(αj) denotes the jth value on the ith row poly-
nomial received by Pi (if D is honest then f i(αj) = fi(αj) holds). The honest
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parties in VCORE will always send the correct values; however the corrupted par-
ties may send incorrect values. Due to insufficient redundancy in the received
f i(αj) values, party Pj cannot error-correct them (for this we require |VCORE| to
be of size at least 3t+1). The way out is that Pj gives a proof of possession of the
f i(αj) values received from the parties Pi in VCORE. Namely the values on the
row polynomials are initially distributed by D by executing instances of Distr.
There will be n2 such instances and instance Distrij is executed to distribute
fi(αj) to Pi, considering Pi as an INT; the corresponding instances AuthValij
are also executed and it is ensured that the AuthVal instances, involving any
party from VCORE as an INT, is not aborted by D. Now when a party Pi in
VCORE sends f i(αj) to Pj , party Pj acts as an INT and publicly gives a proof
of possession of f i(αj) by executing an instance RevealPoPji of RevealPoP. The
idea is to use the transferability property of ICPoP to identify the incorrectly
transferred values. Namely if D is honest and an incorrect f i(αj) is transferred
to Pj , then the corresponding proof gets rejected during RevealPoPji and Pj

discard such values.
Unfortunately, if D is corrupted then the above mechanism alone is not suf-

ficient for Pj to robustly reconstruct gj(y). Because a corrupted Pi in VCORE

can then transfer an incorrect f i(αj) to Pj and still the proof will get accepted;
this is because if both D and INT are corrupted, then INT will know the full aux-
iliary and verification information involved in ICPoP. As a result, Pj will end
up not reconstructing a degree t column polynomial from the received f i(αj)
values. To deal with this particular case, we ensure that the M sets used by D
in the ICPoP instances have a similar “structure” as the corresponding S sets.
Specifically, D selects two random masking bivariate polynomials M (1)(x, y) and
M (2)(x, y) each of degree at most t. Let m

(1)
i (x),m(2)

i (x) denote the correspond-
ing row polynomials. The instances Distrij are executed by setting Sij = {fi(αj)}
and Mij = {m

(1)
i (αj),m

(2)
i (αj)} (thus � = 1 and pack = 1 in these instances).

The corresponding AuthValij instances are executed with Sij = {f i(αj)} and
Mij = {m

(1)
i (αj),m

(2)
i (αj)}, which denotes the S and M sets respectively

received by Pi during Distrij (if D is honest then these will be the same as
Sij and Mij). The existence of VCORE will now imply that D has committed a
secret-carrying polynomial, say F (x, y) and two masking bivariate polynomials,
say M

(1)
(x, y),M

(2)
(x, y) to the parties in VCORE, where all these polynomi-

als have degree at most t. It follows that any linear combination of the column
polynomials F (αj , y),M

(1)
(αj , y) and M

(2)
(αj , y) will be a degree t univariate

polynomial. And this property is used by Pj to identify the correctly transferred
Sij ∪ Mij sets. Namely the values in the transferred Sij ∪ Mij sets should lie
on degree t univariate polynomials and hence any random linear combination
of these sets should also lie on a degree t polynomial. Based on this observa-
tion, party Pj selects a common random combiner, say ej , for all the transferred
Sij ∪ Mij sets and publicly reveals a linear combination of these Sij ∪ Mij

sets via the RevealPoPji instances. It is then publicly verified if these linearly
combined values lie on a degree t polynomial. If not then it implies that D is
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corrupted and it is discarded; see Figs. 5 and 6 for the formal details. For the
ease of understanding, a pictorial representation of the information distributed
in Sh-Single is given in Fig. 7.

We state the properties of Sh-Single and formally prove the correctness of
Sh-Single in case of a corrupt dealer by means of a claim below. The remaining
proofs will appear in the full version.

Lemma 10. If D is honest then except with probability at most n3t
|F|−1 , it is not

discarded during Sh-Single.

Lemma 11 (Correctness for an honest D). If D is honest then except with
probability at most n3t

|F|−1 , the value s is t-shared at the end of Sh-Single.

Lemma 12. Let f i(x),m(1)
i (x) and m

(2)
i (x) be the row polynomials defined by

the values in Sij ∪ Mij received by party Pi ∈ P from D for j ∈ [n]. If D is
corrupted and a VCORE is formed during Sh-Single then except with probabil-
ity at most 3n2

|F| , there exist bivariate polynomials, say F (x, y),M
(1)

(x, y) and

M
(2)

(x, y), each of degree at most t, such that for each honest Pi ∈ VCORE, the
polynomials f i(x),m(1)

i (x) and m
(2)
i (x) lie on F (x, y),M

(1)
(x, y) and M

(2)
(x, y)

respectively.

Proof. From the definition, VCORE = W(P1)∩W(P2)∩. . .∩W(Pn) and |VCORE| ≥
2t+1. This ensures that there are at least t+1 common honest parties in VCORE,
say HVCORE. Consider an honest party Pj ∈ P, playing the role of the verifier
V in the instance Poly-Check(Pj). It follows from Lemma 9 (by substituting L =
3) that for the instance Poly-Check(Pj), except with probability at most 3n

|F| ,

the row polynomials f i(x),m(1)
i (x) and m

(2)
i (x) of the parties Pi ∈ HVCORE

together lie on three unique bivariate polynomials, say F (x, y),M
(1)

(x, y) and
M

(2)
(x, y) respectively of degree at most t. The same will be true with respect to

every other instance Poly-Check(Pk), corresponding to every other honest verifier
Pk �= Pj . Moreover, the set of three bivariate polynomials defined via each

of these instances of Poly-Check will be the same, namely F (x, y),M
(1)

(x, y)
and M

(2)
(x, y) respectively. This follows from Lemma 2 (by substituting � =

|HVCORE|) and the fact that |HVCORE| ≥ t + 1. The lemma now follows from
the union bound and the fact that there are Θ(n) honest parties, playing the
role of V.

Lemma 13 (Correctness for a corrupted D). If D is corrupted and not
discarded during Sh-Single, then there exists some value, say s, such that except
with probability at most n3

|F|−1 , s is t-shared at the end of Sh-Single.

Proof. If a corrupted D is not discarded then it implies that a set VCORE with
|VCORE| ≥ 2t + 1 is constructed during Sh-Single. Let HVCORE be the set of
honest parties in VCORE; clearly |HVCORE| ≥ t + 1. From Lemma 12 it follows
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Fig. 5. VSS for sharing a single secret: Part I.
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Fig. 6. VSS for sharing a single secret: Part II.

that except with probability at most 3n2

|F| , the row polynomials f i(x),m(1)
i (x)

and m
(2)
i (x) of the parties in HVCORE lie on unique bivariate polynomials, say

F (x, y),M
(1)

(x, y) and M
(2)

(x, y) of degree at most t. We define s
def= F (0, 0)

and claim that s is t-shared via the polynomial f0(x) def= F (x, 0), with each hon-

est Pj holding the share sj
def= F (αj , 0). To prove our claim, we show that each

honest party Pj outputs its degree t univariate polynomial gj(y) def= F (αj , y)
except with probability at most n2

|F|−1 ; this ensures that Pj obtains the correct
share, as sj = gj(0). For this, we further need to show that the Sij set trans-
ferred by each party Pi ∈ supj to Pj contains the value gj(αi).
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Fig. 7. Pictorial representation of the values distributed in Sh-Single protocol.
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Consider an honest Pj . Notice that supj ⊆ VCORE. We first argue that every
Pi ∈ HVCORE is present in supj , except with probability at most n2

|F|−1 . This is
because there are Θ(n) such parties Pi and in each corresponding RevealPoPji

instance, the output is AcceptProof, which follows from Lemma 6 (by substitut-
ing � = 1). Now consider the set of values Sij = {f ij} and Mij = {m

(1)
ij ,m

(2)
ij }

transferred by the parties Pi ∈ HVCORE to Pj . Since f ij = f i(αj) = gj(αi)
holds, it follows that the values {f ij}Pi∈HVCORE define the degree t univariate

polynomial gj(y). Similarly the values {m
(1)
ij }Pi∈HVCORE and {m

(2)
ij }Pi∈HVCORE

define degree t univariate polynomials M
(1)

(y, αj) and M
(2)

(y, αj) respectively.
To complete the proof, we argue that except with probability at most 2

|F| , the
values in the Sij and Mij set transferred by a corrupted party Pi ∈ supj lie

on gj(y),M
(1)

(y, αj) and M
(2)

(y, αj) respectively. This is because the combiner
ej selected by the honest Pj in the RevealPoPji instances corresponding to the
parties in supj is truly random and unknown to the adversary in advance, when
the Sij and Mij sets are transferred to Pj . The rest follows from Lemma 4 (by
substituting L = 2) and the fact that the values {combji}Pi∈supj

lie on a polyno-
mial of degree at most t (otherwise D would have been discarded), say combj(y),

where combj(y) def= ejM
(1)

(y, αj) + e2jM
(2)

(y, αj) + e3jgj(y). As there can be n2

pair of parties involving a corrupted party, it follows by the union bound that
except with probability at most 2n2

|F| , the corrupted parties in VCORE transfer
the correct values to the honest parties.

As each honest Pj correctly obtains its column polynomial except with prob-
ability at most n2

|F|−1 and as there are Θ(n) such honest parties, it follows that

except with probability at most n3

|F|−1 , the value s is t-shared.

Lemma 14 (Privacy). In protocol Sh-Single, the value s remains information
theoretically secure.

Theorem 2. Sh-Single is a five round VSS protocol for a single secret, satis-
fying the requirements of VSS except with probability n3t

|F|−1 . The protocol has
communication complexity PC(O(n3)) and BC(O(n3)).

Proof. The properties of VSS follow from Lemmas 11–14. In the protocol n2

instances of ICPoP (with � = 1, pack = 1) and n instances of Poly-Check (each
with L = 3) are executed. The rest follows from the communication complexity
of ICPoP (Theorem 1) and Poly-Check (Lemma 9).

From Five Rounds to Four Rounds: In Sh-Single, the instances of RevealPoP
which start getting executed during Round 4 can be instead instantiated during
Round 3 itself. Namely irrespective of the formation of VCORE, each party Pj

starts executing the instance RevealPoPji corresponding to each party Pi ∈ P,
based on the set of values in Sij ∪ Mij which were transferred to Pj by Pi
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during Round 2. Next VCORE is computed and if Pi is found not to be present
in VCORE, then the instance RevealPoPji can be halted; otherwise the remain-
ing steps of the RevealPoPji instance are executed during Round 4. Based on
this modification, Sh-Single now requires four rounds, the rest of the properties
remain same.

Sharing � × (n − t) Secrets: To share � × (n − t) secrets, the underlying
instances of Distr,AuthVal and RevealPoP are executed to deal with � × pack
values simultaneously, where pack = n− t. The steps for consistency checking of
the values transferred by the parties in VCORE are also generalized to deal with
� × (n − t) values. With these modifications, we get a four round Sh for sharing
�(n−t) values. The properties of Sh follow in a straight forward fashion from the
corresponding properties of Sh-Single, taking into account that the underlying
instances of ICPoP that are executed deal with � × (n − t) values. We state the
theorem below. The proof will appear in the full version.

Theorem 3. Sh is a four round VSS for � × (n − t) values, with an error
probability of max{ n3(n−1)

|F|−(n−t) ,
n3�

|F|−1}. The protocol has communication complexity
PC(O(n3�)) and BC(O(n3)).

5 Efficient Statistical MPC Protocol

Using Sh, we design a statistical MPC protocol in the partially synchronous
setting. The protocol is designed in the offline-online paradigm, where in the
offline phase, the parties generate t-sharing of random and private multiplica-
tion triples of the form (a, b, c), where c = ab. Later in the online phase, these
triples are used for the shared evaluation of the circuit using the standard Beaver
multiplication triple based technique [2,3,5,14]. For designing the offline phase
protocol, we use the protocol Sh and deploy the efficient framework of [15]. The
shared evaluation of the circuit is done in a completely asynchronous fashion in
the online phase. We get the following theorem. The complete description of the
protocol and the proof will appear in the full version.

Theorem 4. Let f : Fn → F be a function expressed as an arithmetic circuit
over a finite field F, consisting of cM and cR multiplication and random gates
respectively. Assuming that the first four communication rounds are synchronous
broadcast rounds after which the entire communication is asynchronous, there
exists a statistical MPC protocol to securely compute f , provided |F| ≥ 4n4(cM +
cR)(3t + 1)2κ for a given error parameter κ. The protocol has communication
complexity PC(O(n2(cM + cR) + n4)) and BC(O(n4)).
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Abstract. Secure multi-party computation (MPC) protocols do not
completely prevent malicious parties from cheating or disrupting the
computation. We augment MPC with three new properties to discourage
cheating. First is a strengthening of identifiable abort, called completely
identifiable abort, where all parties who do not follow the protocol will
be identified as cheaters by each honest party. The second is completely
identifiable auditability, which means that a third party can determine
whether the computation was performed correctly (and who cheated if
it was not). The third is openability, which means that a distinguished
coalition of parties can recover the MPC inputs.

We construct the first (efficient) MPC protocol achieving these prop-
erties. Our scheme is built on top of the SPDZ protocol (Damgard et al.,
Crypto 2012), which leverages an offline (computation-independent) pre-
processing phase to speed up the online computation. Our protocol is
optimistic, retaining online SPDZ efficiency when no one cheats. If cheat-
ing does occur, each honest party performs only local computation to
identify cheaters.

Our main technical tool is a new locally identifiable secret sharing
scheme (as defined by Ishai, Ostrovsky, and Zikas (TCC 2012)) which
we call commitment enhanced secret sharing or CESS.

The work of Baum, Damg̊ard, and Orlandi (SCN 2014) introduces
the concept of auditability, which allows a third party to verify that the
computation was executed correctly, but not to identify the cheaters if
it was not. We enable the third party to identify the cheaters by aug-
menting the scheme with CESS. We add openability through the use of
verifiable encryption and specialized zero-knowledge proofs.
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1 Introduction

Secure multi-party computation (MPC) allows multiple parties to evaluate a
function of their secret inputs while maintaining their privacy. In this work, we
focus on preventing malicious behavior that is not prevented by the guarantees
of traditional MPC.

Completely Identifiable Abort. In traditional MPC, a malicious party can-
not cause the computation to return an incorrect output, but it can cheat by
deviating from the protocol and causing a termination with an error, known as an
abort.1 Since the cheater remains anonymous, it does not face any consequences
for its actions. There is no point in recomputing the function, as the honest par-
ties do not know who to exclude. In order to avoid such stalemates, it is desirable
to be able to identify the cheaters. An MPC with identifiable abort [7,10,19,29]
guarantees that all honest parties agree on a subset of cheating parties.2 We
introduce MPC with completely identifiable abort, which guarantees that all
honest parties agree on all cheating parties.

Completely Identifiable Auditability. Baum et al. [2] define auditability,
which enables any third party to verify the correctness of an MPC given a pub-
lic transcript of the computation, and the output it produced. We introduce
completely identifiable auditability, which allows the third party auditor to iden-
tify all the cheating parties if the computation was not carried out correctly.

Openability. In traditional MPC, parties are free to provide any well formed
input they want. Many applications require that the inputs be measurement val-
ues from the real world. However, there is no binding between each party’s input
and the real measurement value, and parties can lie about their measurements.
These lies may change the output of the MPC to one that does not match real-
ity; if this occurs, it is desirable to identify the party responsible. We enable the
recovery of MPC inputs by an opening coalition and call this openability.

To ensure that openability does not break the security of the underlying
MPC, opening coalitions must contain at least one party that did not participate
in the MPC. We call this distinguished party a judge J. This judge’s role may
be shared by more than one party.

1.1 Our Construction

We extend SPDZ [13,14], which is one of the fastest known MPC protocols; it
leverages an inefficient offline pre-processing phase to enable quick online com-
putation. The online portion of SPDZ is very efficient, using fast information-
theoretic tools. For n users, the online communication cost is O(n2m) messages
where m is the number of multiplications evaluated.
1 In this work we consider an arbitrary number of malicious parties. In this setting, it

is impossible to guarantee termination without error [11].
2 Cheater identification gained popularity in the areas of secret sharing [7,18,29] and

pay television [10].
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Like SPDZ, our construction is secure in the presence of a malicious adver-
sary statically making arbitrarily many corruptions. Our protocol is optimistic;
if cheating does not occur, the online communication and computation are very
efficient. Our online protocol has only twice the online complexity of SPDZ.
In particular, the communication complexity remains O(n2m). If cheating does
occur, each party must perform an additional local computation whose complex-
ity is O(nm) in order to identify the cheaters. The additional local work uses
computationally secure tools, which are slower.

Starting Point: SPDZ. SPDZ leverages Beaver triples [4], which are pre-
computed during the offline phase. Each input is additively secret shared; the
computation then proceeds gate by gate. Additions are computed by each party
locally. Multiplications use Beaver triples, and require two values to be recon-
structed (which requires two broadcast messages from each participant). To pre-
vent malicious parties from providing incorrect shares during these reconstruc-
tions, SPDZ uses a linear MAC of the form MAC(x) = αx, where α is the MAC
key which is secret shared amongst all the parties. The linear MAC shares fol-
low the computation, and are checked at the end of the computation to detect
whether any cheating took place.

Adding Completely Identifiable Abort. We design a new locally identifiable
secret sharing scheme (as defined by [18]) which we call commitment-enhanced
secret sharing (CESS). A locally identifiable secret sharing scheme is a secret
sharing scheme where, after reconstruction, all honest parties agree on the set
of parties that modified their shares [18].

Each CESS share contains an additive share (as in SPDZ), and addition-
ally includes linearly homomorphic commitments to every additive share.3 Each
CESS share also contains the decommitment value for the commitment to the
corresponding additive share. This conceptually simple change of giving each
party a commitment to every additive share allows identification of cheaters.
When CESS shares are used for computation, since we use linearly homomor-
phic commitments, if cheating occurs, each honest party can use the homomor-
phism of the commitment scheme to transform the input share commitments of
each other party into a commitment to that party’s output share. All parties
whose claimed output shares do not match their output share commitments are
identified as cheaters.

On the Use of Broadcast. Unlike SPDZ, our protocol requires a fully secure
broadcast channel. Secure (or authenticated) broadcast is a very expensive prim-
itive; constructions typically require O(n2) messages, and use public key primi-
tives. Secure broadcast is used by our protocol only in the Input operation, a
total of n times.

The reason we can use broadcast so sparingly is that, because our CESS
shares are checkable, there is no need to securely broadcast them. Instead, we
implement a specific, optimistic share broadcast protocol. Since the validity of
each decommitment can be checked, the parties send one another their respective
3 We use Pedersen commitments [23] to enable efficient zero-knowledge proofs.
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additive shares and decommitments. Any honest party Pi receiving an incorrect
additive share and decommitment from Pj can send help requests to all other
parties asking for the correct values. If any honest parties received correct values
from Pj , they will forward those to Pi, solving the problem. Otherwise, all honest
parties will agree that Pj cheated, and abort the protocol. If cheating does not
occur, each CESS reconstruction takes only n2 messages. (If cheating does occur,
up to an additional 2n(n− 1)t messages may be required, where t is the number
of corrupt parties).

Related Work on SPDZ with Identifiable Abort. Recent works by Baum
et al. [3] and Spini and Fehr [26] add identifiable abort to the SPDZ protocol.4 In
Table 1, we compare our efficiency to theirs, both in the case that cheating does
not occur and in the case that it does. We improve on the number of broadcast
messages for both schemes in all cases.

Baum et al. augment SPDZ with identifiable abort using a homomorphic
information-theoretic signature scheme. In the event of cheating, our scheme
relies on computational techniques to identify the misbehaving party, while the
scheme of Baum et al. uses information-theoretic techniques.5 Our use of compu-
tational techniques necessitates a larger field (not necessary in Baum et al. [3]).
This makes the length of each message depend logarithmically on the security
parameter. Baum et al. [3] (and Spini and Fehr [26]) assume a broadcast channel,
which may mitigate the efficiency advantage of the smaller field. Implementing
broadcast often uses signatures, which already adds a logarithmic dependence
in the security parameter to all messages.

Spini and Fehr [26] take a different approach. Their approach is based on
dispute control. If no cheating occurs, they retain the exact online efficiency of
SPDZ (while our protocol is slower by a factor of 2). If cheating does occur, they
have two forms of identification. Their protocol can ensure that each honest party
knows the identity of some cheating party by doubling the cost of SPDZ. At an
additional cost, they can ensure that all honest parties agree on the identity of
some cheating party. Spini and Fehr require multiple rounds of blame assignment,
in contrast to our conceptually simple approach.

If the prospect of being identified is likely to discourage all cheating in the
first place, the Spini and Fehr protocol achieves better efficiency. Our protocol is
more prudent if cheating may still occur, for example in the setting of multiple
independent malicious actors. Also, as we discuss next, our protocol allows for an
outside observer to identify cheaters. Public identification is not possible using
the protocol of Spini and Fehr.

Auditability. Openability relies on a property called auditability, introduced
by Baum, Damg̊ard, and Orlandi [2]. They add a public transcript τ to SPDZ

4 An alternative approach uses bitcoin to introduce financial repercussions for cheat-
ing [1,21].

5 We use the Pedersen commitment scheme, which is information-theoretically hiding
but only computationally binding. So, computational assumptions are only necessary
for the correctness of cheater identification.
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Table 1. Online Complexity of Protocols with Identifiable Abort. If cheating does occur
we consider the worst case complexity of the protocol. Spini and Fehr move through
multiple different protocols of decreasing efficiency, we assume if cheating occurs they
are forced to use the most expensive protocol.

cheating? our scheme Baum et. al Spini and Fehr

# messages

broadcast (bc)
no

n n(n + 2m + 2) O(n2)
point-to-point 2(m+1)n(n−1) 2mn(n − 1) O(mn)

broadcast (bc) yes (worst n n(n + 2m + 2) O(n2)

point-to-point case)
2(m + 1)n(n −

1)(2t + 1)
2mn(n − 1) O(mn)

public key operations/party
no

none, except in
broadcast

none, except in
broadcast

none, except in
broadcast

yes (worst
case)

O(nm)
none, except in

broadcast
O(nm)

(modeled as a public append-only bulletin board) to allow external parties to
check protocol correctness even if all participants are malicious. The public tran-
script τ contains Pedersen commitments [23] to each precomputed Beaver triple
value and input ini.

The transcript τ contains all values reconstructed during the computation;
namely the Beaver triple differences. Though τ does not contain Pedersen com-
mitments to intermediate computation values or to the output, these commit-
ments can be derived using the linear homomorphism of Pedersen commitments
and the posted Beaver triple differences. An auditor holding a transcript τ and
the evaluation circuit C can derive a Pedersen commitment cout to the correct
computation output out. The auditor can then check that cout is indeed a com-
mitment to the claimed output out′.

Completely Identifiable Auditability. Our construction includes commit-
ments for each input share, while the construction of Baum et al. [2] includes
a single commitment for each input. This increases the number of committed
values, but does not affect the online communication complexity. The additional
commitments enable completely identifiable auditability, meaning that in addi-
tion to public auditing of the protocol correctness, we can support public identifi-
cation of cheaters. We also rely on auditability to add openability; openability is
unachievable without an audit check to ensure that the transcript is well formed.

Adding Openability. An openable MPC protocol allows a distinguished open-
ing coalition to recover the computation inputs. This is useful in case there is
cause to doubt the truthfulness of these inputs. One might think that having
commitments to the inputs would be enough — each party can the “open” by
providing the decommitment, and anyone who does not cooperate is identified
as a cheater. However, we cannot rely on the input owners to cooperate with the
opening. While it is tempting to simply identify parties who do not cooperate
as cheaters, they might actually be honest. The adversary might be blocking
their messages, or their opening values might have been destroyed by the event
that caused doubts about the input veracity. (An example of such a situation
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is discussed in more detail in Sect. 1.2; in the case of a satellite collision, the
collision may have destroyed the data stored on the satellites involved).

Our approach to building openability is to encrypt each MPC input and prove
consistency with the public transcript τ of the MPC protocol. This encryption
scheme must have two properties: (1) the message must only be readable by an
allowed coalition, and (2) the proof of consistency must be efficient. A thresh-
old encryption scheme splits the secret key between a coalition of parties and
only the entire coalition (or an allowed subset) can jointly decrypt a cipher-
text. A verifiable encryption scheme allows efficient proofs about the underlying
plaintext [6,8,12,15].

We design a new threshold verifiable encryption scheme which, to the best of
our knowledge, is the first universally composable [9] threshold verifiable encryp-
tion scheme. Our scheme uses a variant of the scheme described by Camenisch
and Shoup [8]. The scheme of Camenisch and Shoup cannot be universally com-
posable, since a ciphertext commits to the underlying plaintext in a perfectly
binding way. Simulating decryption would involve breaking this commitment,
which even a powerful simulator cannot do. We avoid this problem using a layer
of secret sharing and commitments that are only computationally binding.

Note that, in our construction, it is possible to open some inputs while main-
taining the privacy of others. This is very useful in the case when there is cause
to suspect some parties of lying, but not others.

1.2 A Motivating Example

In this section we present satellite conjunction analysis [17] as a motivating use
case for our augmented MPC.6 Those readers who are convinced of the need to
catch MPC cheaters may proceed to Sect. 1.2.

Multiple government organizations and companies own satellites. The pur-
pose of many satellites is secret, so organizations are not willing to share their
trajectories. However, there is risk to not sharing trajectory information. The
active Iridium 33 satellite collided with the inactive Cosmos 2251 satellite in
2009 [20] creating significant debris which endangered other satellites [28]. To
avoid such catastrophes, the organizations want to jointly compute whether col-
lisions will occur without revealing satellite trajectories. As a result of the com-
putation, parties should learn only whether a collision will take place, and who
the involved organizations are. Hemenway et al. observed that MPC enables such
a joint and private computation [16,17].

In traditional MPC protocols malicious parties cannot affect the output of the
computation (other than by changing their inputs). However, malicious parties
can cause the computation to abort — to terminate with an error — without
ever being identified as the culprit. Imagine that some malicious organization
wants to cause a satellite collision. All it would have to do is aim its satellite at
another, prevent the MPC from completing every time it is run, sit back and
wait! Because no culprit in an abort can be identified, the malicious organization

6 Other sensitive applications include economic markets [5] and elections [2].
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would not be caught until it is too late. In order to avoid this, we augment MPC
with completely identifiable abort.

Satellites generally reside in one of three bands: low-earth orbit (LEO),
medium-earth orbit (MEO), or geonsynchronous orbit (GEO). Collisions
between functioning objects at different levels are unlikely; however, if a col-
lision occurs at one level, the resulting debris may collide with objects at other
levels. Suppose that the above satellite collision computation is performed by all
organizations with objects in medium earth orbit. Organizations with satellites
in low earth orbit are also affected by the results of the computation, even though
they don’t participate, since a collision in medium earth orbit could cause debris
to fly into low earth orbit, potentially damaging the satellites there. For con-
venience we will refer to one of the organizations owning satellites in low earth
orbit as Leo. Leo wants to be able to determine whether the medium earth orbit
computation was performed correctly even if all of the organizations involved
in it might have malicious intentions, so as to determine the risk to his own
satellites. Given a transcript τ of the MPC, any external organization such as
Leo should be able to audit the correctness of the computation, as described by
Baum et al. [2].

Now, imagine that Leo performed the audit, and determined that the MPC
was performed correctly. However, the next day, a collision occurs and debris
destroys one of Leo’s satellites! This could only have occurred if one of the
organizations participating in the MPC provided incorrect inputs to the com-
putation. In such a situation, it would be crucial to be able to determine who
is responsible. We achieve this property by adding openability. Once inputs are
opened, of the organizations whose satellites were involved in the collision, who-
ever’s claimed input trajectory does not intersect with the collision location is
the one to blame.

Complete identifiable abort, completely identifiable auditability and open-
ability make MPC much more appealing, especially for high-risk applications
such as determining the likelihood of satellite collisions. The increased account-
ability dis-incentivizes cheating, and increases all parties’ trust in the computa-
tion output.

Organization. The rest of the paper is organized as follows. In Sect. 2 we
describe our augmented MPC definitions. In Sect. 3 we introduce commitment-
enhanced secret sharing, which is crucial for our construction. In Sect. 4, we
describe how commitment-enhanced secret sharing can be used in MPC. In
Sect. 5 we construct our MPC protocol with completely identifiable abort. In
Sect. 6 we introduce a universally composable threshold verifiable encryption
scheme. Finally, in Sect. 7 we add openability using threshold verifiable encryp-
tion.

2 Definitions

Notation. Throughout this work we implicitly consider a sequence of protocols
parameterized by a security parameter k. For notational clarity we usually omit
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k (except in the cryptographic building block descriptions in Appendix C of the
full version of this paper), but it is implied that all algorithms take k as input.

All of our MPC protocols consider arithmetic circuits over p-order fields,
where p is a large Sophie-Germain prime (that is, q = 2p+1 is also a prime). Zp

refers to the field {0, . . . , p − 1}; Z
∗
p refers to Zp\{0} = {1, ..., p − 1}. QRp refers

to {x2 mod p : x ∈ Z
∗
p} (quadratic residues modulo p). An element g of a group

G is a generator of that group if ∀x ∈ G,∃a such that ga = x.

Model. We implicitly assume two available functionalities: a broadcast chan-
nel, and an append-only bulletin board. We assume the availability of a secure
broadcast channel for unit cost. If a broadcast channel is not naturally available,
it can be implemented using digital signatures. We make very sparing use of the
broadcast channel; in fact, values need only be broadcast once per input. This
is because all other values that may need to be broadcast are secret shares, and
we do not require the full power of a secure broadcast channels for those, as
discussed in Sect. 1.1.

There are several ways to implement an append-only public bulletin board.
One simple way is using a public server against which privacy is desirable (so, this
server cannot simply be used to perform the computation in question), but which
is trusted to behave semi-honestly. Another way, which does not require trust in
an additional third party, is using a blockchain (but without necessarily using
proofs of work which rely on an honest majority). Put very simply, every post
p to the bulletin board is broadcast together with a signature σ by the posting
party on p and a hash of the previous post (or posts, if there were simultaneous
posts broadcast). The use of the public bulletin board in our protocol is unusual
in that it is public knowledge who needs to be providing a post at which point
in the protocol. Thus, omitting a post contributed by a party would not result
in a valid bulletin board transcript. Chaining the posts together by signing the
posts together with hashes of previous posts ensures that parties’ posts cannot
be replayed from protocol execution to protocol execution.

Multi-Party Computation (MPC). Consider n parties (P1, . . . ,Pn) each of
whom has a secret input (in1, . . . , inn). Secure Multi-Party Computation (MPC)
allows them to compute a joint function C(in1, . . . , inn) = out on their values,
where C is a circuit representing the function. As a result of this computation,
all of the parties learn the output out, but no party learns anything else about
others’ inputs.

This privacy guarantee should hold even if some parties are adversarially
controlled, meaning that they are trying to learn something about other par-
ties’ inputs. Different MPC protocols maintain their security in the presence of
different numbers and types of adversarially controlled parties. In this paper,
we consider security in the presence of arbitrarily many adversarial parties, cho-
sen statically (meaning that the adversarial parties are fixed before the pro-
tocol begins, but it could be that all parties participating in the protocol are
adversarial). Adversarial parties run in probabilistic polynomial time and can
act maliciously, meaning that they can deviate arbitrarily from the specified
protocol.
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The security requirement of MPC is formally defined with respect to an
ideal functionality, wherein a trusted third party receives inputs from everyone,
performs the computation internally, and then distributes the output. When
interacting with this ideal functionality, no party learns more than their own
input and the output, since those are the only values it sees. For an MPC protocol
to be secure, there must exist an efficient simulator that, given the view of all
adversarial parties in an ideal execution (meaning their input and the output),
can produce a view that is indistinguishable from a real protocol execution view.7

Intuitively, the two most important properties of an MPC protocol (both
implied by this definition) are correctness and privacy. Informally, an MPC pro-
tocol π satisfies correctness if for all inputs (in1, . . . , inn) and circuits C where
C(in1, . . . , inn) = out, the protocol π returns out when evaluating C on inputs
in1, . . . , inn. An MPC protocol π satisfies privacy if no party Pi can learn any-
thing about the inputs of any other party, other than what is revealed by out.

Another desirable property is fairness; fairness means that if one party learns
the output, so do all parties. In the setting where the majority of parties may
be adversarial, fairness is known to be unachievable [11]. So, we instead consider
security with abort, a weaker notion of security that allows an adversary to violate
fairness by causing an abort. The ideal functionality for secure MPC with abort
is shown in Fig. 1.

Functionality F
Init: On input (Init, C, p) from all parties (where C is a circuit with n inputs and 1 output,

consisting of addition and multiplication gates over Zp):
1. Store C and p.
2. Wait for A to provide the set I of adversarially controlled party indices.
3. Store out = ⊥.

Input: On input (Input,Pi, ini) from party Pi and (Input,Pi) from all parties Pj , j = i:
Store (Input,Pi, ini).

Eval: On input (Eval) from all parties:
1. If not all inputs values have been provided, output REJECT.
2. Evaluate the circuit C on inputs (in1, . . . , inn). When the evaluation is completed,

store the resulting value as out.
Output: On input (Output) from all parties:

1. Send out to all adversarially controlled parties Pi for i ∈ I.
2. Run Abort, waiting for each adversarially controlled party to provide an input.
3. Output out to all parties, where out may now be ⊥.

Abort: On input (xi) from each adversarial party Pi, i ∈ I:
1. If xi = ACCEPT for some i ∈ I: set out = ⊥.

Fig. 1. Ideal functionality for MPC.

MPC with Identifiable Abort. The ideal MPC functionality given in Fig. 1
implies that if any malicious parties attempt to cause the computation to return
anything other than the correct output, the protocol aborts (returns ⊥). The
honest parties are left knowing something went wrong — however, they do not
7 We call the list of protocol messages the view of the protocol. We use the word

transcript or τ to refer to the public information used for auditing (following the
notation of [2]).
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Functionality FCIDA,AUDIT,OPEN

Init: as in F . Additionally, receive and record the set of allowable coalitions {Ci} from all
parties. Set Lcheat = ∅.

Input: as in F . Additionally, run Abort, waiting for each adversarially controlled party to
provide an input. If Lcheat = ∅, output (⊥, Lcheat) to all parties.

Eval: as in F . Additionally, run Abort, waiting for each adversarially controlled party to
provide an input. If Lcheat = ∅, output (⊥, Lcheat) to all parties.

Output: as in F .
Audit: On input (Audit, out ) from a third party auditor:

if Eval was not executed, output NO AUDIT POSSIBLE.
else if out = (⊥, Lcheat), output (REJECT, Lcheat).
else if out = out, output ACCEPT.

Open: On input (Open) from all of the parties in an allowable coalition (some C ∈ {Ci}):
if Eval was executed AND out =⊥: return in1, . . . , inn.
else: return ⊥.

Abort: On input (xi) from each adversarial party Pi, i ∈ I:
1. For each i ∈ I such that xi = ACCEPT, add Pi to Lcheat.
2. Set out = (⊥, Lcheat).

Fig. 2. Ideal functionality for openable and auditable MPC with completely identifiable
abort

learn what went wrong, or which of the other parties are to blame. MPC with
identifiable abort, defined by Ishai, Ostrovsky and Zikas [19], ensures that when
an abort occurs all the honest parties agree on the identity of at least one mali-
cious party Pi. We extend the definition of Ishai et al. [19], defining MPC with
completely identifiable abort as MPC which ensures that when an abort occurs
all honest parties agree on the identities of all parties who deviated from the
protocol. More formally, Fig. 2 describes the ideal functionality FCIDA for MPC
with completely identifiable abort. FCIDA is simply FCIDA,AUDIT,OPEN without the
Audit and Open commands.

Auditability. Any MPC which supports arbitrarily many adversarially con-
trolled parties enables all honest parties to determine whether the protocol was
executed correctly. It is also useful to allow any third party to inspect some evi-
dence of the computation and arrive at the same conclusion. Baum, Damgard
and Orlandi [2] introduce auditability to MPC; they describe a protocol where,
given the circuit C being evaluated, a presumed output out′ and a public tran-
script τ updated throughout the computation, any third party can audit the
computation and ascertain that it was performed correctly with output out′. In
this setting, we model the MPC as also outputting τ .

More formally, Baum et al. introduce the Audit algorithm. Audit takes
in the public transcript τ which is created during computation, the circuit C
which was evaluated, and the computation output out, and returns a 0 or a 1,
depending on whether the computation was correct.

Definition 1 (Auditable Correctness [2]). An MPC protocol satisfies
Auditable Correctness if for all circuits C and for all potential outputs out,

– Audit(τ, C, out) = 1 with overwhelming probability if for some inputs
in1, . . . , inn, C(in1, . . . , inn) = out and τ is a transcript of the MPC evalu-
ation of C on in1, . . . , inn, and
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– Audit(τ, C, out) = 0 with overwhelming probability if for all inputs
in1, . . . , inn, C(in1, . . . , inn) �= out or τ is not a valid transcript of an MPC
evaluation of C on inputs in1, . . . , inn.

Completely Identifiable Auditability. We add completely identifiable
auditability, which allows a third party to identify all cheaters if the protocol
was not executed correctly. Informally, we say that an MPC protocol satisfies
Completely Identifiable Auditable Correctness if it satisfies auditable correctness
and, when Audit outputs 0, it additionally outputs Lcheat (a list of all cheaters).
Figure 2 describes this enhanced Audit protocol.

While auditability makes the computation execution more transparent, it
does not provide any check on the veracity of the computation inputs. As
motivated in the introduction, a correct computation on false inputs can be
catastrophic. To address this issue, we define openability next.

Openability. In extreme cases, it may be necessary to open the inputs of
an MPC evaluation (see Sect. 1.2 for a motivating example). Of course, inputs
should not be recoverable by any one party; this would violate the privacy guar-
antees of MPC. However, we can define allowable coalitions, or groups of parties
who we trust not to abuse this privilege. In this context, one might want several
additional players that we will call judges {Ji}. A judge Ji notionally has the
power to determine that an opening is justified. We include multiple judges to
compensate in case some of the parties who participated in the MPC do not
cooperate. This is something we need to account for, since if party Pi knows
that it will be identified as a liar, it will not cooperate with an input opening.
Two reasonable examples of allowable opening coalitions might be all the parties
from the MPC together with any judge party ({P1, . . . ,Pn, Ji}), or some t of the
parties together with two judges ({Pi1 , . . . ,Pit , Ji, Jj}).

More formally, we introduce the protocol Open executed jointly by an allow-
able opening coalition. Open takes in a transcript τ , and returns (in1, . . . , inn).
We require that the Open protocol be sound, as described in Definition 2. Notice
that the transcript τ also needs to be hiding, meaning that it shouldn’t reveal
any information about the values being computed on. However, this property is
implied by the privacy requirement of MPC, and does not need to be explicitly
restated.

Definition 2 (Opening Soundness). We say that an MPC protocol satisfies
Opening Soundness if for all circuits C and for all inputs in1, . . . , inn, for all
MPC evaluations of C on in1, . . . , inn resulting in output out and transcript τ
(where all participants may be malicious), the probability that Audit(τ, C, out) =
1 and Open(τ) �= (in1, . . . , inn) is negligible.

Figure 2 describes the ideal functionality FCIDA,AUDIT,OPEN of such a protocol.
For Open to work for only allowable coalitions, such coalitions (and their asso-
ciated cryptographic identity) must be known when Eval is executed.
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3 Commitment-Enhanced Secret Sharing

This section describes a new locally identifiable secret sharing scheme which
we call commitment-enhanced secret sharing (CESS). CESS is our main build-
ing block to add completely identifiable abort to MPC. We first describe basic
secret sharing, and then describe locally identifiable secret sharing (LISS) before
proceeding to describe CESS.

Secret Sharing. Secret sharing was introduced by Shamir [25]. A t-out-of-n
sharing of a secret x is an encoding of the secret into n pieces, or shares, such
that any t shares together can be used to reconstruct the secret x, but fewer than
t shares give no information at all about x. A secret sharing scheme consists of
two algorithms: Share and Rec.

– Share(x) → (s1, . . . , sn) takes in a secret x and produces the n secret shares.
– Rec(si1 , . . . , sit) → x̃ takes in t secret shares and returns the reconstructed

secret x̃.

For n-out-of-n secret sharing, a simple scheme called additive secret shar-
ing (SSAdd) can be used. SSAdd.Share(x) generates n − 1 random elements
s1, . . . , sn−1 in some additive group, and computes the nth share as sn =
x − (s1 + · · · + sn−1). Any n − 1 shares appear completely random; however,
the sum of all n shares gives the secret x. Additive secret sharing has some lin-
ear properties: a shared value x can be multiplied by a constant, or added to
another shared value x′, by separately operating on the individual shares. We
use the notation [x]Pj

to denote the additive secret share of element x belonging
to party Pj .

Shamir t-out-of-n secret sharing (SSShamir) uses degree-(t − 1) polynomials
over some field. SSShamir.Share(x) generates a random degree-(t−1) polynomial
f with x as its y-intercept; each share si is a point (xi, f(xi)) on the polyno-
mial (with xi �= 0). For simplicity, we fix xi = i. Any t shares can be used to
interpolate the polynomial, reconstructing x. Any fewer than t shares give no
information about x.

Looking ahead, our MPC protocols are presented using additive secret shar-
ing, but can be trivially extended to use Shamir secret sharing if a t-out-of-n
sharing (for some t < n − 1) is desired.

3.1 Locally Identifiable Secret Sharing (LISS)

Secret sharing provides confidentiality. However, there are no guarantees that
the reconstruction protocol Rec returns the correct secret in the presence of
malicious parties. Robust secret sharing guarantees reconstruction correctness
in the presence of active adversaries [27].8 It is also useful to identify the parties
8 Robust secret sharing does not require security in the presence of a malicious dealer.

This is in contrast to verifiable secret sharing [24]. Looking ahead, the reason we do
not require security against a malicious dealer is that dealing is done via MPC in
the preprocessing phase.
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that provided incorrect shares; this is known as an identifiable secret sharing [22].
Identifiable secret sharing becomes impossible when a majority of parties are
adversarial [18, Theorem 3]. However, a slightly weaker task is possible in the
presence of an adversarial majority: honest parties can agree on the set of parties
who provided incorrect shares, but cannot prove it to a third party who did not
hold one of the shares. This is known as locally identifiable secret sharing (LISS).
We modify the inputs to the reconstruction algorithm Rec of a LISS to also
include the index i of the party performing the reconstruction; if that party Pi is
honest, it has the additional knowledge that the share si has not been tampered
with. Definition 3 is taken from [18, Definition 4].

Definition 3 (Locally Identifiable Secret Sharing). An n-out-of-n secret
sharing scheme is locally identifiable if it satisfies two requirements: unanimity,
meaning that all honest parties should agree on either a correct reconstruction
or on the correct set of cheating parties (Lcheat), and predictable failure, mean-
ing that the output of the reconstruct algorithm should be simulatable if it does
not return the correct secret. Predictable failure ensures that the output of the
reconstruction algorithm does not reveal anything about the secret, unless it cor-
rectly returns the secret. We give more rigorous descriptions of unanimity and
predictable failure below.

Unanimity. For any probabilistic polynomial time adversary A and for any
secret x, the probability of A’s success in the following game is negligible:

1. (s1, . . . , sn) ← Share(x).
2. A outputs a set I � {1, . . . , n} of adversarial party indices. Let H =

{1, . . . , n} \ I be the set of honest party indices.
3. A receives si for i ∈ I.
4. A selects some B ⊆ I, and outputs s′

i for i ∈ B, where s′
i �= si.

5. Let x̃i be the value reconstructed by each party Pi, for i ∈ H, with the assump-
tion that si is correct. That is, each party Pi runs x̃i ← Rec(i, t1, . . . , tn)
(where tj = s′

j if j ∈ B and tj = sj otherwise).

The adversary A succeeds unless:

1. All honest parties reconstruct the correct secret (x̃i = x for all i ∈ H), or
2. All honest parties agree on the set of cheating players (x̃i =

(REJECT, Lcheat = B) for all i ∈ H).

Predictable Failure. There exists an algorithm SimRec such that for any prob-
abilistic polynomial time adversary A and for any secret x, the probability of A’s
success in the following game is negligible:

1. (s1, . . . , sn) ← Share(x).
2. A outputs a set I � {1, . . . , n} of adversarial party indices. Let H =

{1, . . . , n} \ I be the set of honest party indices.
3. A receives si for i ∈ I.
4. A selects some B ⊆ I, and outputs s′

i for i ∈ B, where s′
i �= si.
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5. simout ← SimRec(I, B, {si}i∈I , {s′
i}i∈B).

6. x̃i ← Rec(i, t1, . . . , tn) for i ∈ {1, . . . , n}, where tj = s′
j if j ∈ B and tj = sj

otherwise.

The adversary A succeeds unless:

1. simout = success and x̃i = x for all i ∈ {1, . . . , n}, or
2. simout = {x̃i}i∈I (where x̃i is either a reconstructed value, or

(REJECT, Lcheat)).

Our LISS Construction. In order to support cheater identification, we intro-
duce the commitment-enhanced secret sharing (CESS) scheme. A CESS of a
secret x is based on an additive secret sharing of x. The ith CESS share addi-
tionally includes a Pedersen commitment (described in Appendix C of the full
version of this paper) to each additive share, as well as the decommitment value
for the ith commitment. The decommitment values contained in the CESS shares
can be viewed as an additive secret sharing of one global decommitment value
rx. The product of the commitments will itself be a valid commitment cx to the
secret x, and the sum of the individual decommitments will be the corresponding
decommitment value. We use the following notation to denote a CESS share of
x belonging to party Pi:

〈x〉Pi

def
= ([x]Pi

, [rx]Pi
, (cx,1, . . . , cx,n)),

where

– [x]Pi
is the additive secret share of x belonging to Pi,

– [rx]Pi
is the decommitment value for cx,i (equivalently, the additive secret

share of the decommitment value rx for cx) belonging to Pi, and
– cx,i is the Pedersen commitment pc([x]Pi

, [rx]Pi
) to value [x]Pi

with decom-
mitment value [rx]Pi

(as described in Appendix C of the full version of this
paper).

We informally refer to a CESS share as an 〈〉-share. Notice that each 〈〉-
share contains O(n) elements, which makes it large and unwieldy. However, the
commitments, which make up the bulk of the 〈〉-share, do not ever need to be
communicated in order to execute reconstruction CESS.Rec, since they are repli-
cated in every share. The reconstruction algorithm CESS.Rec only receives the
additive secret shares, together with one party’s local copy of the commitment
values (cx,1, . . . , cx,n). CESS.Rec is described in Fig. 3.

We additionally describe private reconstruction CESS.PrivRec (Fig. 4),
which describes how a value can be reconstructed by only one party, while every-
one still agrees on the cheaters’ identities.9 The sole object of all but one parties
performing CESS.PrivRec is to compile the correct Lcheat, not to reconstruct
9 We do not extend the definition of a locally identifiable secret sharing scheme to

support private opening; rather, we just describe the functionality. We leave a formal
definition to future work.
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Protocol CESS.Rec for the Reconstruction of a CESS -Sharing

Preconditions: Each party Pi has x Pi
= ([x]Pi , [rx]Pi , (cx,1, . . . , cx,n)).

CESS.Rec(i, ([x]P1 , [rx]P1 ), . . . , ([x]Pn , [rx]Pn ), (cx,1, . . . , cx,n)):
1. Let Lcheat = ∅.
2. For j ∈ {1, . . . , n}, j = i: check that pc([x]Pj , [rx]Pj ) = cx,j . If this does not hold,

add Pj to Lcheat.
3. If Lcheat is empty: return x = j∈{1,...,n}[x]Pj .

4. Else: return (REJECT, Lcheat).

Fig. 3. Protocol Rec for the reconstruction of a 〈〉-Sharing

Protocol CESS.PrivRec for the Private Reconstruction of a CESS -Sharing by Party Pj .

Preconditions:
1. Each party Pi has x Pi

= ([x]Pi , [rx]Pi , (cx,1, . . . , cx,n)).
2. Each party has a private decryption key ski, and knows all parties’ public encryp-

tion keys {pkj}j∈[1,...,n]. The encryption and decryption keys should use a verifiable
encryption scheme, as described in Section 6.

CESS.PrivOpen(i, j, x Pi
= ([x]Pi , [rx]Pi , (cx,1, . . . , cx,n))): Party Pi does the following to

enable only Pj to recover the input, but all parties to compile Lcheat:
1. Computes a verifiable encryption ex,i of [x]Pi using Pj ’s public key.
2. Computes a verifiable encryption ex,i,r of [rx]Pi using Pj ’s public key.
3. Computes a proof πi that ex,i encrypts the value committed in cx,i, and that ex,i,r

encrypts the decommitment value of cx,i.
4. Returns (ex,i, ex,i,r, πi).

CESS.PrivRec (i, j, ((ex,1, ex,1,r, π1), . . . , (ex,n, ex,n,r, πn)), (cx,1, . . . , cx,n)):
1. Let Lcheat = [].
2. For k ∈ {1, . . . , n}: Check the proof πk. If the proof does not verify, add Pk to Lcheat.
3. If Lcheat is empty:

(a) If i = j:
i. For k ∈ {1, . . . , n}: Decrypt ex,k to learn [x]Pk .

ii. Return x = k∈{1,...,n}[x]Pk .
(b) Else: return ⊥.

4. Else: return (REJECT, Lcheat).

Fig. 4. Protocol PrivRec for the private reconstruction of a 〈〉-Sharing

the value in question. In order to support private reconstruction CESS.PrivRec,
the shares can’t be used for reconstruction directly; rather, related values must
be derived from the shares. We call this process CESS.PrivOpen.

Theorem 1. Assuming that the commitment scheme p is secure, the CESS
scheme is a locally identifiable secret sharing scheme (LISS).

Proof. The CESS scheme achieves unanimity. In order to succeed, the adversary
A would have to provide an incorrect additive share of the secret [x]′Pi

or an
incorrect additive share of the decommitment value [rx]′Pi

for every corrupt party
that tampers with their share (Pi, i ∈ B). (Notice that we do not consider
the commitments to be a tamperable part of the sharing, since they are never
communicated.) In order to avoid having honest parties add Pi to the list of
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cheaters Lcheat, the adversary must supply [x]′Pi
and [rx]′Pi

such that

pc([x]′Pi
, [rx]′Pi

) = cx,i = pc([x]Pi
, [rx]Pi

),

which violates the binding property of the Pedersen commitment scheme.
The CESS scheme also achieves predictable failure. The reconstruction simu-

lator SimRec simply checks the decommitments provided by all of the adversar-
ial parties. If Pi’s decommitment does not verify, SimRec adds Pi to Lcheat; it
then returns (REJECT, Lcheat). If all of the decommitments do verify (meaning
that none of the shares could have been altered), SimRec returns success.

4 Adapting CESS for Use with SPDZ

The CESS scheme as described in Sect. 3 isn’t quite ready to be used in MPC.
Firstly, the CESS reconstruction algorithm Rec requires each party to com-
pute n commitments to assemble the list of cheaters Lcheat, whether cheating
occurred at all or not. This is inefficient, and we remedy it. Secondly, we need
to homomorphically compute on CESS shares.

Augmenting CESS with MACs. It would be nice for each party to be able
to begin reconstruction by performing an efficient check to determine if cheat-
ing occurred, and only proceed with the expensive computation of Lcheat when
cheating is detected. We can employ the linear MACs from Damg̊ard et al. [14] to
detect cheating. The linear MACs consist of MAC(x) = αx, where α is an addi-
tively secret-shared MAC key. MAC(x) is then itself additively secret-shared.
MACs can be checked without reconstructing the MAC key α, as described in
Fig. 5.

We use the following notation to denote a MAC-augmented CESS (CESSMAC)
share of x belonging to party Pi:

〈〈x〉〉Pi

def
= ([x]Pi

, [rx]Pi
, (cx,1, . . . , cx,n), [MAC(x)]Pi

),

where cx,i = pc([x]Pi
, [rx]Pi

), all of (cx,1, . . . , cx,n) is public, and each party Pi

is separately assumed to hold an additive share of the secret MAC key α. The
reconstruction algorithm CESSMAC.Rec, executed interactively by the parties,
is shown in Fig. 6.

This remains a locally identifiable secret sharing scheme, because a cheating
party would have to cause the MAC to verify in order to avoid detection, which
they can only do with negligible probability, as shown by Damg̊ard et al. [13].

Note that a party can cause MACCheck to fail, while being honest about
all other values, without being identified. If a party does this, CESSMAC.Rec
will still produce the correct output, but the parties will be forced to execute
the more expensive CESS.Rec. In this situation, our cheating party forces the
participants to waste computational resources; but, since the reconstruction still
succeeds, we do not require that they be identified.

In later sections, we will describe how multiple 〈〈〉〉-sharings are dealt with
throughout our MPC protocol. If it is desired, steps 2 through 4 in Fig. 6 can be
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Protocol MACCheck for Checking a MAC Without Reconstructing the MAC Key
(From Damg̊ard et. al [13], Figure 10)

Preconditions: Each party Pi has an additive share [α]Pi of the MAC key α. All parties have
an opened value x, and additionally each party Pi has an additive share [MAC(x)]Pi of the
MAC value MAC(x) = αx.

MACCheck:
1. The parties jointly pick a random value r ∈ Zp, as described in Figure 4 of Baum et.

al.
2. Each party computes the public value a = rx.
3. Each party Pi computes bi = r[MAC(x)]Pi , and fi = bi − [α]Pia (which is equal to

r[MAC(x)]Pi − [α]Pirx).
4. Each party Pi computes a commitment ci to fi and publishes it.
5. Each party Pi, upon the receipt of all other parties’ commitments, publishes the

decommitment value di.
6. Each party Pi, upon the receipt of all other parties’ decommitments, checks the

decommitments. If any of them are invalid, Pi compiles a list Lcheat of parties that
gave invalid decommitments, and returns (REJECT, Lcheat).

7. If i∈{1,...,n} fi = 0, the parties return REJECT.

Note that such MAC checks can also be batched for m values x1, . . . , xm, by choosing m random
values r1, . . . , rm, setting a = j∈{1,...,m} rjxj , and setting bi = j∈{1,...,m} rj [MAC(xj)]Pi .

Fig. 5. Protocol MACCheck for checking a MAC without reconstructing the key

Protocol CESSMAC.Rec for the Reconstruction of a MAC-augmented CESS -Sharing

Preconditions: Each party Pi has x Pi
= ([x]Pi , [rx]Pi , (cx,1, . . . , cx,n), [MAC(x)]Pi ).

CESSMAC.Rec:
1. Each party Pi broadcasts [x]Pi and [rx]Pi , and computes x = j∈{1,...,n}[x]Pj .
2. All parties execute MACCheck, described in Figure 5, to check the MAC without

reconstructing the MAC itself or the MAC key α.
3. If the MAC verifies: return x.
4. Otherwise: all parties Pi execute the CESS reconstruction protocol

CESS.Rec(i, ([x]P1 , [rx]P1 ), . . . , ([x]Pn , [rx]Pn ), (cx,1, . . . , cx,n)).

Fig. 6. Protocol Rec for the reconstruction of a 〈〈〉〉-Sharing

postponed, and then performed in batch form. If the MAC verifies, each party’s
MAC check communication overhead is independent of the number of sharings
being verified.

Computing on Commitment-Enhanced Secret Shares. Finally, in order
to use MAC-augmented CESS (CESSMAC) in MPC, we need to describe how to
compute on shares. Once we can compute CESSMAC shares, the locally identifi-
able property of CESSMAC will be used to provide completely identifiable abort.

Linear computations on CESSMAC shares can be performed locally, as shown
below, since both additive shares and Pedersen commitments are linearly homo-
morphic.

– To add a constant ε to 〈〈x〉〉Pi
= ([x]Pi

, [rx]Pi
, (cx,1, . . . , cx,n), [MAC(x)]Pi

),
first compute [x + ε]Pi

as

[x + ε]P1 = [x]P1 + ε and [x + ε]Pi
= [x]Pi

for i �= 1.
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Then compute
〈〈x + ε〉〉Pi

= ([x + ε]Pi
, [rx]Pi

,

(cx,1pc(ε, 0), cx,2, . . . , cx,n), [MAC(x)]Pi
+ ε[α]Pi

).

– To add 〈〈x〉〉Pi
= ([x]Pi

, [rx]Pi
, (cx,1, . . . , cx,n), [MAC(x)]Pi

) and
〈〈y〉〉Pi

= ([y]Pi
, [ry]Pi

, (cy,1, . . . , cy,n), [MAC(y)]Pi
), compute

〈〈x + y〉〉Pi
= ([x]Pi

+ [y]Pi
, [rx]Pi

+ [ry]Pi
,

(cx,1cy,1, . . . , cx,ncy,n), [MAC(x)]Pi
+ [MAC(y)]Pi

).

– To multiply 〈〈x〉〉Pi
= ([x]Pi

, [rx]Pi
, (cx,1, . . . , cx,n), [MAC(x)]Pi

) by a constant
ε, compute

〈〈εx〉〉Pi
= (ε[x]Pi

, ε[rx]Pi
, (cε

x,1, . . . , c
ε
x,n), ε[MAC(x)]Pi

).

Beaver triples are a commonly used technique in MPC [4]. A Beaver triple
consists of secret sharings (computed during the preprocessing phase) of values
a, b and c such that ab = c. Each Beaver triple allows a single multiplication to
be efficiently computed during the online phase. Beaver triples can be augmented
for CESSMAC. Given a Beaver triple 〈〈a〉〉, 〈〈b〉〉 and 〈〈c〉〉, the multiplication of
〈〈x〉〉 and 〈〈y〉〉 can be done as follows:

– To multiply 〈〈x〉〉Pi
by 〈〈y〉〉Pi

:
1. Open the sharings 〈〈ε〉〉Pi

= 〈〈x−a〉〉Pi
and 〈〈δ〉〉Pi

= 〈〈y−b〉〉Pi
to obtain

the difference values ε and δ.
2. Compute the product 〈〈xy〉〉Pi

= 〈〈c + δa + εb + εδ〉〉Pi
by performing the

linear operations as described above.

5 Malicious-Majority MPC with Identifiable Abort

In the previous two sections, we introduced CESSMAC (a locally-identifiable secret
sharing scheme) and showed how to compute on it. In this section, we build an
efficient MPC scheme with completely identifiable abort on top of CESSMAC. As
discussed in the introduction, we augment the SPDZ protocol.

In the setup phase Init of SPDZ, shares of random values and Beaver triples
are generated ahead of time (using slower somewhat-homomorphic encryption
techniques), and are then used to facilitate fast multiplications throughout
the on-line computation. For our construction, we need a setup functionality
FSETUP that generates 〈〈〉〉 sharings of random numbers and Beaver triples.10 We
describe a secure instantiation πSETUP of FSETUP in Appendix A of the full version
of this paper.

10 The SPDZ protocol generates the same number of shared values. However, their
sharings only contain an additive secret sharing and a linear MAC. The size of 〈〈〉〉-
shares grows linearly with the number of players, while SPDZ shares have a constant
size for a fixed security parameter.
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Protocol π
FSETUP
CIDA : MPC With Identifiable Abort, with oracle access to the setup functionality

FSETUP

Init: To initiate the evaluation of circuit C with n inputs and one output, consisting of addition
and multiplication gates over Zp,
1. Parties invoke the functionality FSETUP. (Appendix A of the full version of this paper-

contains an instantiation πSETUP of FSETUP.) FSETUP generates the additively secret-shared
MAC key α, as well as -shared Beaver triples and -shared random values.

Input: To enable Pi to provide input ini, the parties do the following (using a fresh random
CESSMAC sharing s generated during Init):
1. s is privately reconstructed as s by Pi using CESS.PrivRec (Figure 4). (All parties

will catch anyone providing malicious shares.)
2. Pi broadcasts = ini − s (to all parties Pj and to the transcript τ if one is used).
3. All parties Pj locally compute ini Pj

= s + Pj
.

Eval: If Init has been executed and inputs for all input wires of C have been assigned, proceed
gate by gate as follows:

Add: For two values x1 Pj
, x2 Pj

: Each party Pj locally computes x3 Pj
= x1 +

x2 Pj
.

Mult: For two values x1 , x2 : Let a , b and c be a fresh Beaver triple gen-
erated during πSETUP. The parties use this Beaver triple to compute t = x1x2 .

Output: To recover the output, The parties execute the reconstruction procedure CESSMAC.Rec
described in Figure 6, catching any parties providing malicious shares.

Fig. 7. MPC with completely identifiable abort

Figure 7 gives a slightly simplified illustration of our protocol. The simpli-
fication comes from our modular usage of the 〈〈〉〉-share reconstruction pro-
tocol Rec, so that cheating detection and cheater identification is performed
with every reconstruction. During Eval, the only communication involved is
the reconstruction of two values ε and δ. Using the reconstruction procedure
CESSMAC.Rec described in Fig. 6, any parties providing malicious shares will be
caught.

Theorem 2. Assuming that the discrete log problem (DLP) is hard in the
Pedersen commitment group QRq, the protocol πFSETUP

CIDA with oracle access to the
functionality FSETUP is a UC-secure implementation of the functionality FCIDA.

Informally, Theorem 2 holds because after running Init, the only messages
sent are (1) a single value broadcast during Input, and (2) reconstructions of
〈〈〉〉-sharings. Since the 〈〈〉〉-sharing scheme (CESSMAC) is a locally identifiable
secret sharing scheme, adversarially controlled parties are not be able to change
any shared values without the honest parties identifying their malicious behavior.
The value broadcast during Input defines the input in question, and inconsis-
tencies with that value will also be detected during reconstructions. A formal
proof of Theorem 2 appears in the full version of this paper.

By the universal composition theorem [9], this implies that a UC-secure
implementation πSETUP of FSETUP gives a UC-secure implementation ππSETUP

CIDA of FCIDA,
simply by replacing the call to FSETUP with a call to πSETUP.

Optimistic Protocol. The cheater detection and identification inherent in the
CESSMAC openings of Eval can be safely postponed to Output. That way,
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cheating detection (MACCheck) is batched in such a way that the communi-
cation required is independent of the number of multiplications performed, as
described in Fig. 5. If MACCheck reveals that cheating occurred, the parties
will finally perform all of the relevant computations on the CESSMAC commit-
ments.

To make the protocol optimistic, parties must save all received shares of the
difference values ε and δ from Beaver triple multiplications performed through-
out the computation.11 This adds an O(nm) storage overhead for each party,
where n is the number of parties and m is the number of multiplications in
the computation. However, this does not asymptotically increase the storage
requirements, because each party must store O(nm) secret-shared Beaver triples
anyway, which are generated during πSETUP.

6 UC Threshold Verifiable Encryption

To achieve openability, we leverage threshold verifiable encryption. Verifiable
encryption schemes support efficient zero-knowledge proofs on ciphertexts;
threshold verifiable encryption schemes additionally require (at least a threshold
number of parties in) a coalition C in order to preform decryption.

We leverage a modified version of the verifiable encryption scheme described
by Camenisch and Shoup [8].12 Our modifications consist solely of removing
elements from the ciphertext, so the modified scheme naturally inherits CPA
security of the original (but not its CCA security). The modified version of their
scheme consists of the following algorithms:
Ver.KeyGen(1k):

1. Let n = pq where p = 2p′ + 1 and q = 2q′ + 1, and p′ and q′ are k-bit primes.
2. Let h = 1 + n.
3. Choose random g′ ∈ Z∗

n2 , set g = (g′)2n mod n2.
4. Choose a random sk ∈ {1, . . . , �(n2)/4}.
5. Let pk = gsk mod n2.
6. Return (pk, sk)

Ver.Enc(pk, x):

1. Choose a random r ∈ [n/4].
2. e = (gr mod n2, pkrhx mod n2).
3. Return the ciphertext e.

Ver.Dec(sk, e = (u, v)):

1. hx = v/(usk) mod n2.
2. Compute x (this is possible for h = 1 + n).
3. Return the plaintext x.

11 Note that if a public transcript τ is maintained, it contains all of these difference
values.

12 Their scheme is secure against chosen ciphertext attacks, which is unnecessary for
our purposes.
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This encryption scheme is verifiable, because statements about the underlying
plaintext can be proven using efficient zero-knowledge proofs (Appendix C of the
full version of this paper). It can also be instantiated as a threshold verifiable
encryption scheme, by secret-sharing the secret key among a coalition C, and
performing decryption in a distributed way using that secret shared key.

However, this candidate threshold verifiable encryption scheme is not univer-
sally composable. Informally, for each honest party, the simulator needs to pro-
duce an encryption ei of their input ini without knowing ini. Since the encryption
scheme is perfectly binding, the simulator would be unable to produce encryp-
tions that decrypt to the correct inputs.

To overcome this problem, we add a layer of secret sharing and commitments
to secret shares. The augmented construction is as follows:
ThreshVer.KeyGen(1k, i):

Run (pki, ski) ← Ver.KeyGen(1k).

ThreshVer.Enc({pki}i∈C , x):

1. Additively share x into |C| values, denoted [x].
2. For each i ∈ C:

(a) Choose a random value ri and compute the commitment ci = pc([x]Pi
, ri).

(b) Encrypt [x]Pi
as ei ← Ver.Enc(pki, [x]Pi

).
(c) Encrypt ri as ei,r ← Ver.Enc(pki, ri).
(d) Compute the following non-interactive zero-knowledge proofs (Appendix

C of the full version of this paper):
i. Proof πi that ei encrypts the value in ci.
ii. Proof πi,r that ei,r encrypts the decommitment value ri for ci.

3. Return e = {ci, ei, ei,r, πi, πi,r}i∈C .

ThreshVer.Dec(e):

1. Each party Pi (i ∈ C):
(a) Decrypts ei and ei,r: [x]Pi

= Ver.Dec(ski, ei), ri = Ver.Dec(ski, ei,r).
(b) Sends [x]Pi

and ri to all other parties.
2. All parties check that ci = pc([x]Pi

, ri). If not, REJECT.
3. All parties reconstruct x using [x].

Informally, no party can cause incorrect decryption without a REJECT
because that would involve breaking the binding property of the Pedersen com-
mitment scheme.

However, a UC simulator can force decryption to return a desired value. The
simulator only needs to open a commitment to an appropriate share of x, not
an encryption. Since Pedersen commitments are only computationally binding,
the simulator can commit to an arbitrary value, and break the binding property
(using a trapdoor) to open to the share of x.13

13 The simulator chooses the generators used in the Pedersen commitment scheme
when selecting the CRS; he does so in such a way that he knows their discrete log
relationship, which serves as his trapdoor.
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Protocol π
FSETUP
CIDA,AUDIT,OPEN: Openable MPC with Identifiable Abort, with oracle access to the

setup functionality FSETUP

Init: Same as in πCIDA (Figure 7). Additionally,
1. All parties Pi in the opening coalition C generate a verifiable encryption key pair

(pki, ski), and publish pki. For parties in the opening coalition C not participating
in the computation, we assume that verifiable encryption key pairs already exist.

Input: Same as in πCIDA (Figure 7). Additionally, let ci be the product of the commitments to
the additive shares of input ini in the -sharing of ini. (So, ci is a commitment to ini.)
Party Pi does the following:
1. Computes a threshold verifiable encryption ei ← ThreshVer.Enc({pkj}j∈C, ini), and

posts it to the transcript τ .
2. Computes πi, a non-interactive zero-knowledge proof (Appendix C of the full version

of this paper) that the encrypted value in ei is the same as the committed value in
ci, and publishes it to the transcript τ .

Eval: Same as in πCIDA (Figure 7); however, all broadcast values are logged to the transcript
τ .

Output: Same as in πCIDA (Figure 7); however, all broadcast values are logged to the transcript
τ .

Audit: The auditor receives the transcript τ , together with the additive secret shares [out] and
[rout]. They then:
1. Check the non-interactive zero-knowledge proofs in the threshold verifiable encryp-

tions ei.
2. Check the non-interactive zero-knowledge proofs πi.
3. Use the commitments in the transcript τ , together with the opened values, to com-

pute commitments to the additive shares of the output belonging to each party.
The auditor sets Lcheat = ∅. For each party Pi, if the output share commitment
cout,i = pc([out]Pi , [rout]Pi ), the auditor adds Pi to Lcheat. If at the end Lcheat = ∅,
the auditor outputs ACCEPT. Otherwise, they output (REJECT, Lcheat).

Open: For each input ini, the parties in C retrieve ei from τ , and run ThreshVer.Dec(ei).

Fig. 8. Openable MPC with identifiable abort

Recall that a verifiable encryption scheme supports proofs about the under-
lying plaintext. Because multiple encryption public keys are now involved, we
compute proofs relative to the commitments ci, not the ciphertexts ei. A com-
mitment to the value x can be computed by taking the product of the additive
share commitments: c =

∏
i∈C ci. Proofs like those described in Appendix C of

the full version of this paper can then be done with respect to c.

Efficiency. Notice that this encryption scheme is very inefficient: a ciphertext
consists of O(|C|) elements, as opposed to O(1) elements as in the scheme of
Camenisch and Shoup [8]. However, as we show in Sect. 7, we only use this
scheme to encrypt computation inputs. This additional work is independent of
the size of the computed circuit f .

7 Openable Auditable MPC

In this section, we augment our construction from Sect. 5 with completely
identifiable auditability and openability. Completely identifiable auditability is
achieved by logging all public values (including commitments from setup and
publicly opened difference values) from the construction in Sect. 5 to the public
transcript τ . As in Baum et al. [2], the input share commitments together with



132 R. Cunningham et al.

the public values can be used to obtain a commitment to the output shares,
and those commitments can be checked against the claimed output share and
decommitment values.

In order to add openability, we leverage threshold verifiable encryption
(Sect. 6). The augmented construction is shown in Fig. 8. Informally, each party
encrypts their input in such a way that the opening coalition can decrypt it, pub-
lishes the resulting ciphertext to the transcript τ , and proves that this ciphertext
encrypts the input used in the computation.

Theorem 3. Assuming (a) that the discrete log problem (DLP) is hard in the
Pedersen commitment group QRq, (b) a secure NIZKP scheme, and (c) that
(ThreshVer.KeyGen,ThreshVer.Enc,ThreshVer.Dec) is a semantically
secure verifiable encryption scheme, the protocol πFSETUP

CIDA,AUDIT,OPEN with oracle access
to the functionality FSETUP is a UC-secure implementation of the functionality
FCIDA,AUDIT,OPEN.

Informally, Theorem 3 holds because the zero-knowledge proofs in Input
prove that encryptions to valid shares of the input values are decryptable by the
opening coalition C. A proof of Theorem 3 appears in the full version of this
paper.

Efficiency. To achieve completely identifiable auditability, no additional val-
ues need to be computed at all. As stated above, values that were previously
broadcast are now additionally posted to the transcript.

Openability requires one additional threshold verifiable encryption (Sect. 6)
to each input. Each threshold verifiable encryption entails one additive secret-
sharing (to the opening coalition C), and two verifiable encryptions and a com-
mitment for each share. Additionally, 2|C| + 1 non-interactive zero-knowledge
proofs (described in Appendix C of the full version of this paper) are required,
where |C| is the size of opening coalition. This cost is small, and independent of
the computation.
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Abstract. We consider a problem, which we call secure grouping, of
dividing a number of parties into some subsets (groups) in the following
manner: Each party has to know the other members of his/her group,
while he/she may not know anything about how the remaining parties
are divided (except for certain public predetermined constraints, such
as the number of parties in each group). In this paper, we construct an
information-theoretically secure protocol using a deck of physical cards to
solve the problem, which is jointly executable by the parties themselves
without a trusted third party. Despite the non-triviality and the potential
usefulness of the secure grouping, our proposed protocol is fairly simple
to describe and execute. Our protocol is based on algebraic properties
of conjugate permutations. A key ingredient of our protocol is our new
techniques to apply multiplication and inverse operations to hidden per-
mutations (i.e., those encoded by using face-down cards), which would
be of independent interest and would have various potential applications.

1 Introduction

Multiparty computation (MPC) is a cryptographic technology that enables two or
more parties to jointly compute a multivariate function from their local inputs,
in such a way that each party knows the party’s local input/output pair but
may not know anything about other parties’ local inputs and outputs except
for those implied by the party’s own input/output pair only. A direction in the
study of MPC, which has recently been an active branch in this area, is so-
called card-based protocols [1–21], where protocols for MPC are supposed to use
a deck of physical cards instead of usual electronic computers. In a card-based
protocol, private information is usually encoded by using face-down cards with
mutually indistinguishable back sides, and randomness is introduced by applying
shuffle operations to some face-down cards. A typical property is that, in contrast
to ordinary computer-based MPC where each party may execute a program
at local environment (hence the security has to rely on certain cryptographic
techniques, some of which may be only computationally secure), a card-based
protocol is supposed to be executed at a public place where the parties can
simply monitor and prevent the other parties’ adversarial behaviors without any
c© Springer International Publishing AG 2017
J. Shikata (Ed.): ICITS 2017, LNCS 10681, pp. 135–152, 2017.
https://doi.org/10.1007/978-3-319-72089-0_8
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cryptographic machinery. Consequently, it is usual that card-based protocols
provide information-theoretic security.

For card-based protocols, it is known that every function is at least securely
computable when ignoring possibly expensive computational costs [1,10]. On
the other hand, many efficient card-based protocols specialized to some typi-
cal problems have been also investigated. In those previous studies, the target
problem to be solved by card-based protocols was usually a type of problem
that already had an efficient computer-based counterpart, such as the case of
card-based Millionaires’ Problem [12]; see the Related Works paragraph below
for further details. In contrast, in this paper we deal with a new type of inter-
esting problem described below, which we call secure grouping ; for this problem,
even a computer-based solution (except ones yielded by naively applying general-
purpose MPC protocols) has not been known to the authors’ best knowledge.

The secure grouping is defined as the problem of dividing a number of par-
ties into some subsets (called groups) in the following manner: Each party has to
know the other members of his/her group, while he/she may not know anything
about how the remaining parties are divided, except for certain public prede-
termined constraints such as the number of parties in each group. For instance,
suppose that there are six parties, say, Parties 1, 2, . . . , 6, and they wish to ran-
domly divide themselves into three pairs. Some examples of the possibilities are
(12, 34, and 56), (14, 26, and 35), (16, 23, and 45), etc. Then the goal is to
generate one of the all possibilities uniformly at random, while each party has
to know who is the partner but may not know about the other two pairs.

It is worth emphasizing that such a secure grouping cannot be achieved by a
simple lottery; namely, when each of the six parties in the example above picks
up one of the two ♥ ’s, two ♣ ’s, and two ♦ ’s, there seems to be no simple way
for every party to know the other party having the same card without revealing
any party’s card to the remaining parties. This suggests that secure grouping is
really a non-trivial problem. We also note that our setting of secure grouping cov-
ers various situations, such as the case where n parties wish to randomly select
two distinguished persons (like “Werewolves” in the famous Werewolf game) in
such a way that only the distinguished persons themselves know who are the
distinguished persons; or the dealer in a card game wishes to randomly select
a partner from the other players in such a way that only the dealer and the
partner him/herself know who is the dealer’s partner1. The flexibility of secure
grouping would be interesting and be potentially useful.

Our Contributions. In this paper, we propose a card-based protocol to solve
the problem of secure grouping explained above. As opposed to usual card-
based protocols where two kinds of cards (e.g., ♥ and ♣ ) are used, here we use
different cards (with indistinguishable back sides) whose front sides are numbers

1 In some card games, the dealer announces one of the cards (e.g., “♠ 8”) and then the
player having this card becomes the dealer’s partner. However, now the dealer cannot
know who is the partner, though the partner him/herself can know that he/she is
the dealer’s partner; hence the condition of secure grouping is not achieved.
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1 , 2 , . . . , which we call number cards. A face-down card with front side k
is called a commitment of k. By a rough estimate, our proposed protocol uses
approximately 3dn number cards where n is the number of parties to be divided
into groups and d is the maximal number of parties in a group.

One of our main ideas is to utilize some algebraic properties of conjugate
permutations (see Sect. 3 for details). To intuitively explain, here we consider
a case of dividing seven parties into two pairs and one triple. In this case, we
deal with permutations of 1, 2, . . . , 7, where a permutation σ is encoded as the
sequence of number cards with front sides σ−1(1), σ−1(2), . . . , σ−1(7)2. Now we
note that a grouping like (ab, cd, and efg) can be represented by a permutation
of the form τ = (a, b)(c, d)(e, f, g), which means that τ exchanges a and b,
exchanges c and d, and changes e, f, g cyclically to f, g, e, respectively. Then the
problem of secure grouping is reduced to generating uniformly at random, in a
committed form (i.g., each number card is faced down), a permutation ρ of the
same “type” (∗, ∗)(∗, ∗)(∗, ∗, ∗) and also the square ρ2 of the permutation; once
commitments of such ρ and ρ2 are obtained, each party, say Party i, can know
the other two (or fewer) parties in his/her group by picking up the i-th face-down
cards for ρ and ρ2. For example, when ρ = (1, 5)(3, 6)(2, 7, 4), the commitments
to ρ and ρ2 are given by

ρ = 5 4 6 7 1 3 2 and ρ2 = 1 7 3 2 5 6 4

(where each card is actually faced down), and then

– for example, Party 4 obtains 7 and 2 , which tells that Parties 7 and 2 are
the other members of the group of size 3 = 2 + 1;

– while Party 6 obtains 3 and 6 (the party’s own number), which tells that
Party 3 is the other member of the group of size 2 = 1 + 1.

We note that, when the sizes of the groups are at most d, a similar process can
be done by using permutations ρ, ρ2, . . . , ρd−1. Moreover, group theory ensures
that the process of randomly shuffling the seven numbers appearing in a given
permutation τ without changing the type is equivalent to taking a conjugate
permutation σ−1τσ with random permutation σ of the seven numbers. Then
the latter problem can be solved by using a protocol for computing multiplica-
tion and inverse of permutations in a committed form; this protocol (see Sect. 3
for details) is also a part of our contribution in this paper, which would be of
independent interest. Secure grouping is now achieved by combining these ideas.
See Sect. 4 for details.

The “plain” protocol explained above is seemingly applicable only to “sim-
ple” types of secure grouping where the parties have “symmetric” roles and the
groups with the same number of members have “symmetric” roles as well. Never-
theless, in fact the idea of the protocol is also applicable to more complex types
2 Note that this sequence of number cards is obtained by moving, for each k =

1, 2, . . . , 7, the k-th card k to the σ(k)-th position. For example, if σ(k) = k +1 for

1 ≤ k ≤ 6 and σ(7) = 1, then the resulting card sequence is 7 1 2 3 4 5 6 .
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of secure grouping. For example, in the aforementioned case of selecting two
distinguished persons, we can use secure grouping of type (∗, ∗)(∗)(∗) · · · (∗) and
then the only group with two members specifies the two distinguished persons.
On the other hand, in another aforementioned case of choosing a partner of the
dealer (numbered as Player 1), we can use our secure grouping protocol start-
ing from a permutation (1, 2)(3)(4) · · · (n) and then shuffling all the numbers
except the number 1 (i.e., the random permutation σ is chosen with constraint
σ(1) = 1); now the resulting permutation ρ is of the form (1, k)(∗)(∗) · · · (∗),
the number k on the card picked up by Player 1 (dealer) specifies the partner,
and the partner will pick up the card 1 which tells that he/she is the dealer’s
partner. Moreover, we can also handle the cases where the groups with equal
numbers of parties have to be mutually distinguished, by appropriately intro-
ducing some dummy number cards indicating the “names” of groups and then
shuffling all the numbers except for dummy numbers. These examples show the
flexibility of our proposed protocol.

Related Works. It is known that every function can be securely computed
based on a deck of cards [1,10]. Besides researches for improving general-purpose
protocols, the other important direction is to investigate efficient card-based
protocols customized to some useful applications: for example, the problem of
generating secret permutations without fixed points [1,3], secure voting [6,17],
and Millionaires’ Problem [12]. In the early research of card-based cryptography,
Crépeau and Kilian [1] constructed a protocol that randomly selects a permu-
tation with no fixed point without revealing which one was selected. It has an
application for e.g., exchanging gifts among multiple players in which each player
does not receive his/her own gift. Recently, Ishikawa et al. [3] introduced a new
shuffle called a Pile-Scramble Shuffle to improve the protocol in [1]. We use the
Pile-Scramble Shuffles in the construction of our protocols. For the secure voting,
Mizuki, Asiedu, and Sone [6] constructed a protocol for two candidates, which
takes n bits as inputs and outputs the sum of the inputs. Recently, Shinagawa
et al. [17] constructed a secure voting protocol for multiple candidates based on
a new type of cards. For the Millionaires’ Problem, Nakai et al. [12] constructed
a protocol, which takes two strings x, y as inputs and outputs a bit indicating
whether x > y or not.

2 Preliminaries

In this section we prepare necessary tools to construct our secure grouping proto-
col. We suppose that a distinct number from 1 to n is assigned to each player in
advance, where n is the total number of players, and the correspondence between
the numbers and the players is publicly known. We identify a player with the
assigned number. Throughout this paper, Sn denotes the group of permutations
on the set {1, 2, . . . , n} of numbers.
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2.1 Definitions and Properties About Permutations

In this subsection, we describe some definitions related to permutations and look
at their properties.

Definition 1 (cyclic permutation). A permutation τ is called a cyclic per-
mutation if there are a unique integer r > 1 and distinct numbers i1, i2, . . . , ir
satisfying the following conditions:

– We have τ(i1) = i2, . . . , τ(ir−1) = ir, and τ(ir) = i1.
– We have τ(k) = k for any number k different from i1, i2, . . . , ir.

In this case, we call the permutation τ a cycle of length r and write it as
(i1, i2, . . . , ir) (or simply (i1i2 · · · ir) if no ambiguity occurs).

In the case above, the set {i1, i2, . . . , ir} is called the cyclic area of the cyclic
permutation τ = (i1, i2, . . . , ir). For example, the permutation τ ∈ S4 given by
(τ(1), τ(2), τ(3), τ(4)) = (1, 4, 2, 3) is a cycle (243) of length three with cyclic
area {2, 3, 4}, while σ ∈ S4 given by (σ(1), σ(2), σ(3), σ(4)) = (2, 1, 4, 3) is not a
cyclic permutation.

We say that two cyclic permutations σ, τ with cyclic areas Cσ, Cτ , respec-
tively, are disjoint if Cσ ∩ Cτ = ∅. For example, the two cyclic permutations
(123) and (45) are disjoint, while (264) and (345) are not disjoint. We note that
disjoint cyclic permutations are commutative in the group of permutations.

The following fact about permutations is well-known.

Proposition 1. Any permutation is uniquely represented by the product of dis-
joint cyclic permutations.

For example, the permutation τ ∈ S6 given by τ(1) = 2, τ(2) = 3, τ(3) = 1,
τ(4) = 4, τ(5) = 6, and τ(6) = 5 is decomposed into disjoint cycles as τ =
(123)(56). We also note that, it is convenient to consider as if a permutation
σ virtually involves “cycle (k) of length one” when σ(k) = k; by using the
abused notation, the permutation τ ∈ S6 above can be also represented by
τ = (123)(4)(56).

Next we define the type of permutation. Type of permutation τ is the data
of how many cycles of each length are present in the decomposition of τ into
disjoint cycles as above.

Definition 2 (type of permutation). Let τ ∈ Sn, which is decomposed into
disjoint cycles (including the virtual “cycles of length one” as mentioned above).
For each i = 1, 2, . . . , n, let mi denote the number of cycles of length i in the
decomposition of τ . Then we say that τ is of type 〈1m1 , 2m2 , . . . , nmn〉; here the
terms imi with mi = 0 may be omitted in the notation.

Note that 〈1m1 , 2m2 , . . . , nmn〉 can be also viewed as the set of permutations
of type 〈1m1 , 2m2 , . . . , nmn〉. For example the permutation τ = (13)(25)(798) =
(13)(25)(4)(6)(798) ∈ S9 belongs to the set 〈12, 22, 31〉.
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2.2 Number Cards

We use cards with numbers written on the front since these are convenient for
treating permutations of numbers 1, 2, . . . , n directly3. We call the cards number
cards and write them as below.

1 2 · · · n

The backs of number cards are indistinguishable. We denote the back of a
number card by ? . A face-down card is called commitment, and an operation
to flip a face-down card into a face-up card is called open. Using the number
cards, permutations in Sn are represented by a card sequence (x1, x2, . . . , xn) in
a certain way explained later.

We also use the term “permutation” as an operation for card sequences. That
is, we say “applying a permutation σ to a card sequence x” in the sense that
rearranging x according to σ, formally defined as follows.

Definition 3 (applying a permutation to a card sequence). Let σ ∈ Sn

be a permutation and let x = (x1, x2, . . . , xn) be a card sequence. We define a
card sequence σ(x) obtained by applying the permutation σ to the sequence x by

σ(x) := (xσ−1(1), xσ−1(2), . . . , xσ−1(n)).

In other words this operation moves each i-th card to the σ(i)-th position. For
example, when σ = (13)(265)(4)(7) ∈ S7 and x = (x1, . . . , x7), we have σ(x) =
(x3, x5, x1, x4, x6, x2, x7). For the special case, the identity permutation idn ∈ Sn

is the identity operation such that a card sequence (x1, x2, . . . , xn) is moved to
a card sequence (x1, x2, . . . , xn) itself.

Definition 4 (card sequence representing a permutation). Let σ ∈ Sn

be a permutation. We define the card sequence for permutation σ to be the card
sequence σ( 1 , 2 , . . . , n ) obtained by applying σ to the card sequence x =
(x1, x2, . . . , xn) with xi = i , i = 1, 2, . . . , n.

For example a permutation τ = (12)(34)(567) ∈ S7 is represented by the follow-
ing card sequence

2 1 4 3 7 5 6 .

3 Usually, we define coding rules such as ♣ ♥ = 0 and ♥ ♣ = 1 since the card-based
protocol normally uses Boolean values. If the usual Boolean encoding rule is used
instead of the number cards, the secure grouping protocol can still be executed. In
the case the number of cards increases 2�log2 n� times larger.
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2.3 Pile-Scramble Shuffle

A shuffle, which is an operation to apply a random permutation chosen from
some distribution, plays an important role in card-based cryptography. While
different types of shuffles are proposed and used for various applications, we use
one of the shuffles called Pile-Scramble Shuffles. It is proposed by Ishikawa et al.
[3] and believed to be an “efficient shuffle” since it has an easy implementation
by e.g., utilizing physical envelopes.

Definition 5 (Pile-Scramble Shuffle). Let n ≥ 1 be any integer. The Pile-
Scramble Shuffle of degree n is the operation that takes a card sequence x =
(x1, x2, . . . , xn) and outputs r(x) = (xr−1(1), xr−1(2), . . . , xr−1(n)) where r ∈ Sn

is a random permutation and hidden from all parties.

Pile-Scramble Shuffle is described by using the following notation:

? ? . . . ? (x) → ? ? . . . ? (r(x)).

We also define a similar operation for the case where each component xi of x is
not a single card but some other object, such as a collection of multiple cards.

3 Permutation Randomizing Protocol

In this section, we present a new protocol called permutation randomizing pro-
tocol which is used as the main building block in our secure grouping protocol.
This section is our main technical contribution part. In the simplest situation for
our protocol, given an input permutation τ that is publicly known, this protocol
outputs a committed card sequence representing a random permutation of the
same type as τ . We emphasize that this functionality cannot be achieved by
using naive shuffles since the Pile-Scramble Shuffle in general changes the type
of a permutation. Therefore, we need to realize an operation on permutations
that does not change the type. The key mathematical fact here is that any per-
mutation ρ that is conjugate to a permutation τ has the same type as τ . More
precisely, we utilize the following well-known property in group theory:

Lemma 1. Let π ∈ Sn be any permutation, which is expressed as the decom-
position into disjoint cyclic permutations. Let ν ∈ Sn, and let π′ denote the
permutation obtained by changing each number j appearing in the expression of
π to the number ν−1(j). Then we have π′ = ν−1πν.

Proof. Let a ∈ {1, 2, . . . , n} and let b := π′(a). Then b is (cyclically) next to a
in the expression of π′ as the decomposition into disjoint cyclic permutations.
By the definition of π′, this implies that ν(b) is (cyclically) next to ν(a) in the
expression of π, which means that π(ν(a)) = ν(b). Hence we have ν−1πν(a) =
ν−1(ν(b)) = b, therefore π′ and ν−1πν are equal as permutations.
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3.1 Permutation Division Protocol

Here we propose a protocol, called the permutation division protocol, which is
the main ingredient of our permutation randomizing protocol. Given committed
card sequences for permutations v, w ∈ Sn as inputs, this protocol outputs the
committed card sequence for permutation v−1w ∈ Sn. As explained later, this
protocol enables us to generate a committed card sequence for a permutation
σ−1τσ as in Lemma 1 from given card sequences for σ, τ .

This protocol is composed of four steps as follows. Here, for any permuta-
tion x, we write “(x)” to mean that the displayed card sequence in a figure is
the committed card sequence for x, while we also write x to indicate that the
displayed card sequence is the opened card sequence for “x”.

1. Arrange the committed card sequences for v and w as in the figure below.

? ? . . . ? (v)
? ? . . . ? (w)

2. Apply Pile-Scramble Shuffle to the first and the second rows simultaneously,

? ? . . . ? (v)
? ? . . . ? (w)

→ ? ? . . . ? (rv)
? ? . . . ? (rw)

where r ∈ Sn is a uniformly random permutation.
3. Open the first row, which reveals the permutation rv. Then apply the permu-

tation (rv)−1 = v−1r−1 to the second row. More precisely, the latter operation
can be efficiently performed by rearranging the n columns of the two rows
in a way that the first row becomes the sequence (1, 2, . . . , n) representing
idn ∈ Sn where * denote a face-up card having some i ∈ {1, 2, . . . , n}.

* * . . . * rv

? ? . . . ? (rw)

→ 1 2 . . . n idn

? ? . . . ? (v−1r−1rw)

4. Output the second row (note that now v−1r−1rw = v−1w).

? ? . . . ? (v−1w)

The correctness of our protocol has been explained above. On the other hand,
the following property holds for the security of our protocol.

Proposition 2. The distribution of the only data available during the protocol,
which is the card sequence for rv ∈ Sn opened at Step 3, is uniform and is
independent of v and w.

Proof. Indeed, for any u ∈ Sn, the number of the possible choice of the uniformly
random r that satisfies rv = u is 1 (i.e., r = uv−1).Hence, the permutation rv
appearing at Step 3 is uniformly random and independent of v, w, as desired.
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3.2 Permutation Randomizing Protocol

Here we describe our permutation randomizing protocol. Given an input permu-
tation τ that is publicly known, this protocol outputs a committed card sequence
representing a random permutation of the same type as τ . In addition to the
degree n of permutations, our protocol in a general form takes an integer k ≥ 1
(which is the number of input permutations) and a subset I of {1, 2, . . . , n}
as public parameters; we call the set I as the fixing set of our protocol. By
introducing the fixing set, we can, for example, use our secure grouping pro-
tocol starting from a permutation (1, 2)(3)(4) · · · (n) and then shuffling all the
numbers except the number 1 (i.e., the random permutation σ is chosen with
constraint σ(1) = 1). Such a generalized setting for the protocol here is required
in our construction of the secure grouping protocol that flexibly covers various
situations.

Let τ1, τ2, . . . , τk ∈ Sn be publicly known inputs for the protocol. Then our
permutation randomizing protocol with fixing set I is performed as follows. In
the figures below, we consider an example where n = 5, k = 2, and I = {1, 3}.

1. Arrange 2k times the opened cards for numbers in {1, 2, . . . , n}\I in increasing
order, and face down the cards.

2 4 5
2 4 5
2 4 5
2 4 5

→
? ? ?
? ? ?
? ? ?
? ? ?

2. Apply Pile-Scramble Shuffle to the 2k rows simultaneously.
3. For each of 2k rows, insert the opened cards for numbers in I to the row in

a way that the number card a for a ∈ I is at the a-th column. Then face
down all the inserted cards. Note that the resulting committed card sequences
represent the same (partially shuffled) permutation in Sn, say σ.

1 ? 3 ? ?
1 ? 3 ? ?
1 ? 3 ? ?
1 ? 3 ? ?

→
? ? ? ? ? (σ)
? ? ? ? ? (σ)
? ? ? ? ? (σ)
? ? ? ? ? (σ)

4. For each i = 1, 2, . . . , k, apply the permutation τi to one of the committed
card sequences for σ generated above.

? ? ? ? ? (σ)
? ? ? ? ? (σ)

→ ? ? ? ? ? (τ1σ)
? ? ? ? ? (τ2σ)

5. For each i = 1, 2, . . . , k, perform the permutation division protocol for com-
mitted card sequences for σ and τiσ. Then output the resulting sequences.

? ? ? ? ? (σ) ? ? ? ? ? (τ1σ)
? ? ? ? ? (σ) ? ? ? ? ? (τ2σ)

→ ? ? ? ? ? (σ−1τ1σ)
? ? ? ? ? (σ−1τ2σ)
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We note that the (committed) permutation σ generated in Step 3 is a uni-
formly random permutation in Sn satisfying that σ(j) = j for every j ∈ I. For
the security of the protocol, the following property is deduced straightforwardly
from Proposition 2.

Proposition 3. The distribution of the only data available during the protocol,
which is the k card sequences opened during the permutation division protocols
at Step 5, is uniform and is independent of the permutations σ and σ−1τiσ for
i = 1, 2, . . . , k.

4 Secure Grouping Protocol

In this section we present a construction of a secure grouping protocol, which
is based on the permutation randomizing protocol described above. See also
“Our Contributions” paragraph in the introduction for an intuitive idea of our
construction of the protocol.

4.1 Our Setting for Grouping

Before presenting our proposed secure grouping protocol, here we clarify our
setting for the grouping problem. We suppose that there are n players, indexed
by numbers 1, 2, . . . , n, to be divided into groups. In our secure grouping protocol,
the number of groups with k members for each k ≥ 1, denoted by M(k), should
be determined in advance and is treated as public information. Note that the
integers M(k) satisfy that M(k) ≥ 0 for each k ≥ 1 and

∑
k≥1 M(k) = n.

We may express M by the sequence (M(1),M(2), . . . ,M(k)) where k is the
maximal integer satisfying M(k) > 0.

Our protocol can also handle a certain kind of constraints on the groupings,
specified in the following manner. For each integer k ≥ 1, let Ck be a (possi-
bly empty) set of non-empty subsets of {1, 2, . . . , n}. Let C be the sequence of
C1, C2, . . . . The meaning of a constraint C is the following:

– For each k ≥ 1 and each C ∈ Ck, the players in C must belong to the same
group of size k.

– For any k, k′ ≥ 1, C ∈ Ck, and C ′ ∈ Ck′ , if C = C ′, then the players in C and
the players in C ′ must belong to different groups.

Accordingly, the sets C1, C2, . . . must satisfy the following conditions:

– For any C ∈ Ck, we have 1 ≤ |C| ≤ k.
– For any C ∈ Ck and C ′ ∈ Ck′ with k = k′, the subsets C,C ′ of {1, 2, . . . , n}

must be (different and) disjoint with each other.
– For any C,C ′ ∈ Ck, C and C ′ must be disjoint unless these are equal.
– For any k ≥ 1, we have |Ck| ≤ M(k).
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Such a constraint C should also be specified in advance and is also treated as
public information in our proposed protocol.

We define a grouping of n players to be a partition G of {1, 2, . . . , n}, that is,
a set of disjoint non-empty subsets of {1, 2, . . . , n} satisfying that the union of
all sets in G is {1, 2, . . . , n}. For each k ≥ 1, let Gk denote the (possibly empty)
sets of all A ∈ G with |A| = k. We say that a grouping G satisfies a constraint
(M, C), if the followings hold:

– We have |Gk| = M(k) for any k ≥ 1.
– If k ≥ 1 and C ∈ Ck, then there is a unique group A in Gk satisfying C ⊂ A;

we sometimes write this group A as A[C].
– If k ≥ 1 and C,C ′ ∈ Ck are different, then we have A[C] = A[C ′].

Note that the conditions for C and M introduced above ensure that the con-
straint can be satisfied by at least one grouping. In our proposed secure grouping
protocol, each player P ∈ {1, 2, . . . , n} will only receive the information on the
(unique) set A ∈ G with P ∈ A; we sometimes write this group A as A[P ]. We
give some examples of the situation above for the sake of explanation.

Example 1. We consider a case of grouping of nine players into three groups
with three members, with constraints that Players 8 and 9 want to be in the same
group while Player 1 does not want to be in the same group as them. This situa-
tion can be expressed by M = (0, 0, 3), C1 = C2 = ∅, and C3 = {{1}, {8, 9}}. Then
an example of a grouping is given by G = G3 = {{1, 4, 6}, {2, 5, 7}, {3, 8, 9}}.
Example 2. We consider a situation to classify five players into two distin-
guished persons and three ordinary persons in the following manner: each dis-
tinguished person is told who is the other distinguished person; while each ordi-
nary person is not told who are the distinguished persons, nor who are the other
ordinary persons. This situation can be realized by treating each of the three
ordinary persons as an individual group of size one consisting of him/herself
alone, while treating the two distinguished persons naturally as a (unique) group
of size two. Accordingly, we set M = (3, 1) and set each Ck to be an empty set.
Then an example of a grouping is given by G = {{2}, {4}, {5}, {1, 3}} (hence
G1 = {{2}, {4}, {5}} and G2 = {{1, 3}}); this means that Players 2, 4, and 5 are
ordinary persons, and Players 1 and 3 are the distinguished persons.

Example 3. We consider a slightly more complicated situation where seven
players are classified into two “Role A” players, one “Role B” player, two “Role
C” players, and two ordinary players. The additional requirements are as follows:

– Each player with Role A and each player with Role C are told his/her own
role, are told who is the other player with the same role as him/herself, but
are told nothing about the remaining players’ roles.

– The player with Role B and each ordinary player are told his/her own role,
but are told nothing about the remaining players’ roles.
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In contrast to Example 2 where the ordinary and the distinguished persons can
be distinguished just by the sizes of the groups (one for the former, and two for
the latter), here we should distinguish Role B from the ordinary players (both
would be represented by size-one groups) and Role C from Role A (both would be
represented by size-two groups).

A solution is to introduce dummy indices 8 representing “Role B” and 9 repre-
senting “Role C”. Namely, we divide the nine numbers into one group consisting
of the dummy index 8 and a player’s index (who becomes “Role B”), one group
consisting of the dummy index 9 and two players’ indices (who become “Role C”),
two groups consisting of a player’s index only (who becomes “ordinary player”),
and one group consisting of two players’ indices only (who become “Role A”).
Accordingly, we set the constraint to be M = (2, 2, 1), C1 = ∅, C2 = {{8}},
and C3 = {{9}}. An example of a grouping is given by G1 = {{1}, {6}},
G2 = {{2, 7}, {4, 8}}, and G3 = {{3, 5, 9}}; this means that Players 1 and 6
are ordinary players, Players 2 and 7 are the Role A players, Player 4 is the
Role B player, and Players 3 and 5 are the Role C players. We note that similar
ideas to introduce dummy indices representing “names of groups” can be applied
to the case of more complicated groupings.

4.2 Secure Grouping Protocol for Simpler Case

Before describing our proposed secure grouping protocol in a general form, here
we consider a simpler case with empty constraints, that is, the sets Ck for spec-
ifying constraints for the groupings are all empty. This case includes the case
mentioned in Example 2 above.

Here we suppose that the number n of players for the secure grouping and the
group size function M (as well as the empty constraint sets Ck) are determined in
advance and are public information. As a pre-computation part of the protocol,
the players compute a permutation τ ∈ Sn as follows; note that this τ is also
a public information, therefore the computation of τ does not need any secure
computation protocol. Let k denote the maximal integer with M(k) > 0. First,
the players compute integers a0, a1, . . . , ak−1 recursively by a0 := 0 and ai :=
ai−1 + i · M(i) for 1 ≤ i ≤ k − 1. Then the players define τ to be the product of
cyclic permutations

(ai−1 + (j − 1)i + 1 ai−1 + (j − 1)i + 2 · · · ai−1 + (j − 1)i + i)

for all 1 ≤ i ≤ k and 1 ≤ j ≤ M(i). We note that this permutation τ is of type
〈r1M(r1), r2

M(r2), . . . , r�
M(r�)〉 where r1, r2, . . . , r� are the integers at which the

function M takes a positive value. For example, if M = (3, 2, 0, 1), then we have

τ = (1)(2)(3)(4 5)(6 7)(8 9 10 11) = (4 5)(6 7)(8 9 10 11) ∈ 〈13, 22, 41〉 .

We also note that, our protocol below utilizes the permutation random-
izing protocol introduced in Sect. 3 with empty fixing set I = ∅ as a sub-
protocol. This sub-protocol is given a number of publicly known permutations
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τ1, τ2, . . . , τ� ∈ Sn as inputs, and outputs committed card sequences for per-
mutations ρ1, ρ2, . . . , ρ� ∈ Sn, where ρi = σ−1τiσ with common and uniformly
random permutation σ ∈ Sn for each 1 ≤ i ≤ �.

Then, given the data above including the permutation τ , the main part of
our secure grouping protocol is executed as follows, where k denotes as above
the maximal integer with M(k) > 0 (which is equal to the maximal length of
cyclic permutations involved in τ):

1. The players jointly execute the permutation randomizing protocol (with
empty fixing set I = ∅) for input permutations τ, τ2, . . . , τk−1, and
obtain the committed card sequences x[ρ], x[ρ2], . . . , x[ρk−1] for permutations
ρ, ρ2, . . . , ρk−1 with ρ = σ−1τσ (note that σ−1τ jσ = (σ−1τσ)j for any j).

2. Each Player i picks the i-th card x[ρj ]i of the card sequence x[ρj ] for all
1 ≤ j ≤ k − 1. Then the numbers (except the number i itself) written on the
front of these k − 1 cards (that may be duplicated) show the other players in
Player i’s group.

For example, if τ ∈ S11 is as above and σ = (1 8)(2 6 3 7 10)(4 11) ∈ S11 is
chosen in the protocol, then we have k = 4, ρ = (1 9 7 4)(2 3)(5 11), and the
card sequences satisfy

fronts of x[ρ] = 4 3 2 7 11 6 9 8 1 10 5 ,

fronts of x[ρ2] = 7 2 3 9 5 6 1 8 4 10 11 ,

fronts of x[ρ3] = 9 3 2 1 11 6 4 8 7 10 5 .

Then Player 3 takes the cards 2 , 3 , and 2 , therefore the player’s group
is {2, 3}. On the other hand, Player 4 takes the cards 7 , 9 , and 1 , therefore
the player’s group is {1, 4, 7, 9}.

4.3 Secure Grouping Protocol for General Case

From now, we describe our secure grouping protocol in a general case where
the constraint set Ck may be non-empty. We note that these sets Ck are also
determined in advance and publicly known. Now the pre-computation part to
determine a public permutation τ ∈ Sn is executed as follows, where k denotes
the maximal integer with M(k) > 0:

– Initialize τ and auxiliary counters B by τ ← idn and B ← {1, 2, . . . , n} \
⋃k

j=1

⋃
A∈Cj

A. Then do the following for each λ = 1, 2, . . . , k:

• Do the following for each μ = 1, 2, . . . ,M(λ):
∗ If Cλ contains a set, say C = {a1, a2, . . . , a�}, then update τ and B by
τ ← τ · (a1 a2 · · · a� b1 b2 · · · bλ−�) and B ← B \ {b1, b2, . . . , bλ−�},
where b1, b2, . . . , bλ−� are the first λ − � elements of the set B; and then
remove the set C from Cλ.
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∗ If Cλ is empty, then update τ and B by τ ← τ · (b1 b2 · · · bλ) and
B ← B \ {b1, b2, . . . , bλ}, where b1, b2, . . . , bλ are the first λ elements of
the set B.

This procedure is constructed to ensure that the resulting τ is a permutation
in Sn and satisfies the constraint (M, C). For example, if n = 9, M = (2, 2, 1)
and C are as in Example 3, then the computation above is performed as follows:

(Initialize) τ = id9, C1 = ∅, C2 = {{8}}, C3 = {{9}}, B = {1, 2, 3, 4, 5, 6, 7}
→ (λ = 1, μ = 1) τ = (1) = id9, C1 = ∅, C2 = {{8}}, C3 = {{9}},
B = {2, 3, 4, 5, 6, 7}
→ (λ = 1, μ = 2) τ = (2) = id9, C1 = ∅, C2 = {{8}}, C3 = {{9}},
B = {3, 4, 5, 6, 7}
→ (λ = 2, μ = 1) τ = (8 3), C1 = C2 = ∅, C3 = {{9}}, B = {4, 5, 6, 7}
→ (λ = 2, μ = 2) τ = (8 3)(4 5), C1 = C2 = ∅, C3 = {{9}}, B = {6, 7}
→ (λ = 3, μ = 1) τ = (8 3)(4 5)(9 6 7), C1 = C2 = C3 = ∅, B = ∅
We also note that, our protocol below utilizes the permutation randomizing

protocol with fixing set I =
⋃k

j=1

⋃
A∈Cj

A ⊂ {1, 2, . . . , n} introduced in Sect. 3.
This sub-protocol is given publicly known permutations τ1, τ2, . . . , τ� ∈ Sn as
inputs, and outputs committed card sequences for permutations ρ1, ρ2, . . . , ρ� ∈
Sn, where for each i, ρi = σ−1τiσ with common and uniformly random permu-
tation σ ∈ Sn satisfying that σ(a) = a for every a ∈ I.

Then, given the data above including the permutation τ , the main part of
our secure grouping protocol is executed as follows, where k denotes as above
the maximal integer with M(k) > 0:

1. The players jointly execute the permutation randomizing protocol with fixing
set I for input permutations τ, τ2, . . . , τk−1, and obtain the committed card
sequences x[ρ], x[ρ2], . . . , x[ρk−1] for permutations ρ, ρ2, . . . , ρk−1 with ρ =
σ−1τσ (note that σ−1τ jσ = (σ−1τσ)j for any j).

2. Each Player i picks the i-th card x[ρj ]i of the card sequence x[ρj ] for all
1 ≤ j ≤ k − 1. Then the numbers (except the number i itself) written on the
front of these k − 1 cards (that may be duplicated) show the other players in
Player i’s group.

We note that, if Ci = ∅ for any 1 ≤ i ≤ k, then the protocol above coincides with
the protocol described in Sect. 4.2.

5 Proofs of Correctness and Security

In this section, we prove the correctness and the security of our proposed secure
grouping protocol.
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5.1 Proof of Correctness

In this subsection, we prove the correctness of our secure grouping protocol as
follows:

Theorem 1. Let (M, C) be a possible constraint for our protocol. Then our
secure grouping protocol with constraint (M, C) generates each grouping G sat-
isfying the constraint (M, C) with equal probability.

To prove the theorem, we introduce some auxiliary definitions. First, let
π ∈ Sn be a permutation and let π = π1π2 · · · π� be the decomposition of π into
disjoint cyclic permutations π1, . . . , π�, where the cyclic permutations of length 1
are also included in the decomposition. Then we define the grouping G[π] speci-
fied by π to be the set of the cyclic areas of the cyclic permutations π1, π2, . . . , π�.
For example, if π = (1 5)(4)(2 6 3) ∈ S6, then G[π] = {{4}, {1, 5}, {2, 3, 6}}.

Secondly, we say that a permutation π ∈ Sn satisfies the constraint (M, C),
if the following conditions are satisfied:

– Let r1 < r2 < · · · < rL be all the positive integers with M(ri) > 0. Then
π ∈ 〈r1M(r1), r2

M(r2), . . . , rL
M(rL)〉.

– Let k ≥ 1 and C = {a1, a2, . . . , ah} ∈ Ck (we assume that the elements
a1, a2, . . . , ah of any set C ∈ Ck are always written in increasing order, in our
argument below as well as the construction of the secure grouping algorithm).
Then the numbers a1, a2, . . . , ah are involved in the cyclic area of the same
cyclic permutation in the decomposition of π, say πi, and we have πi(aj) =
aj+1 for any 1 ≤ j ≤ h − 1.

We note that, if π ∈ Sn satisfies the constraint (M, C), then the grouping G[π]
satisfies the constraint (M, C) as well. We note also that, by the construction,
the permutation τ ∈ Sn computed in the pre-computation part of our secure
grouping protocol with constraint (M, C) satisfies the constraint (M, C) in the
sense above.

Now we show the following property:

Lemma 2. Let ρ ∈ Sn be the permutation generated (in the committed form)
in our secure grouping protocol. Then the output of our secure grouping protocol
is G[ρ].

Proof. Let k denote the integer specified in the construction of the protocol. Let
i ∈ {1, 2, . . . , n}, and let ρi denote the cyclic permutation in the decomposition
of ρ whose cyclic area contains i. Then, by the definition of the card sequence
representing a permutation, the numbers written on the cards obtained by Player
i at the end of the protocol are (ρj)−1(i) = ρ−j(i) = ρ−j

i (i) for j = 1, 2, . . . , k−1.
Moreover, by the definition of k, the length of the cyclic permutation ρi is at
most k, therefore the set of those numbers ρ−j

i (i) for j = 1, 2, . . . , k − 1 together
with the number i itself is equal to the group in G[ρ] containing i, the latter
being the cyclic area of ρi by definition. Hence the claim holds.
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By Lemmas 1, 2 and the fact that the (partially shuffled) permutation σ ∈ Sn

generated in the permutation randomizing protocol fixes each element of the
fixing set I, it follows that the output of our secure grouping algorithm is a
grouping satisfying the given constraint (M, C).

Moreover, since the permutation σ ∈ Sn generated in the permutation ran-
domizing protocol is chosen uniformly at random from all the permutations in Sn

that fixes every element of I, the following property is deduced straightforwardly
by Lemma 1:

Lemma 3. Given the input τ, τ2, . . . , τk−1 for the permutation randomizing
protocol executed internally in our secure grouping protocol, the (committed) per-
mutations ρ, ρ2, . . . , ρk−1 corresponding to the output of the permutation random-
izing protocol satisfy that ρ is uniformly random over the set of all permutations
in Sn satisfying the constraint (M, C).

On the other hand, the following property is deduced straightforwardly by
the definition of the grouping G[π] specified by a permutation π:

Lemma 4. Let (M, C) be a given constraint. For any grouping G satisfying the
constraint (M, C), the number of permutations π that satisfies the constraint
(M, C) and satisfies G[π] = G is independent of the choice of G.

Now our claim follows by combining the last two lemmas: Namely, for any
two groupings G,G′ satisfying the constraint (M, C), the number of permuta-
tions ρ satisfying the constraint (M, C) that specifies the grouping G is equal
to the number of those permutations that specifies the grouping G′, and those
permutations ρ are chosen with equal probability. This completes the proof.

5.2 Proof of Security

In this subsection, we prove the security of our secure grouping protocol as
follows:

Theorem 2. Let (M, C) be a possible constraint for our secure grouping proto-
col. Let G denote the grouping which is the output of our secure grouping protocol
with constraint (M, C). Then, for any Player i, the information obtained by the
player during the protocol is independent of the groups A ∈ G that do not contain
i.

To prove the theorem, we first note that, the argument in the proof of Lemma
2 implies that the output of Player i in the secure grouping protocol is the
sequence of numbers (ρ−1(i), ρ−2(i), . . . , ρ−(k−1)(i)), where ρ is the permutation
generated (in the committed form) in the protocol. Let ρi denote the unique
cyclic permutation involved in ρ that contains the number i. Then, by using the
output above, Player i can recover not only the cyclic area of ρi (which is an
unordered set) but also the whole of the cyclic permutation ρi itself. Therefore,
the information obtained by Player i during the protocol is the cyclic permuta-
tion ρi as well as the card sequences that are opened during the permutation ran-
domizing protocol. Moreover, Proposition 3 implies that the latter cards opened
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during the permutation randomizing protocol provides essentially no informa-
tion, therefore it suffices to concern the information on the cyclic permutation
ρi only.

Now the following property is deduced straightforwardly by the definition of
the grouping G[π] specified by a permutation π:

Lemma 5. Let i and ρi be as above. Let G′ and G′′ be any grouping satisfying
the constraint (M, C), in which the group including i is equal to the cyclic area
of ρi. Then, among the permutations ρ̃ whose decomposition into disjoint cyclic
permutations involves ρi, the number of those permutations that satisfies G[ρ̃] =
G′ is equal to the number of those permutations ρ̃ that satisfies G[ρ̃] = G′′.

Since the choice of the permutation ρ is uniformly random, it follows by
Lemma 5 that the conditional distribution of the grouping G generated by our
secure grouping algorithm, except the group including i, conditioned on the
choice of the cyclic permutation ρi is still the uniform distribution. This com-
pletes the proof.
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Abstract. The card-based cryptographic protocol is a variant of multi-
party computation that enables us to compute a certain function securely
by using playing cards. In existing card-based cryptographic protocols,
a special operation of cards called a shuffle is used to achieve the
information-theoretic security. Recently, card-based cryptographic pro-
tocols have been reconsidered from the viewpoint of multi-party com-
putations. In this direction, a new model of card-based cryptographic
protocol including a new assumption called Private Permutations (PP,
for short) is introduced and succeeds in constructing efficient protocols
for the millionaires’ protocol. In this paper, we construct efficient card-
based cryptographic OR and XOR protocols based on the existing AND
protocol. Furthermore, by unifying AND and OR protocols, it is shown
that a majority voting protocol with three inputs is efficiently obtained.
Our construction requires only four cards thanks to PPs, whereas the
previous work requires eight cards.

Keywords: Card-based cryptographic protocols
Multi-party computation · Logic gates · Majority voting
Private permutation

1 Introduction

1.1 Background

It is known that multi-party computation can be realized by a deck of playing
cards [1], referred to as card-based cryptographic protocols (card-based proto-
col, for short). An important feature of the card-based protocols is that every
operation (including the randomization) of cards is performed in front of all
the players, which is free from the semi-honest model. For instance, an impor-
tant randomization technique called the random bisection cut, which is a type of
shuffling technique, requires the player who holds the bisected cards between the
two stacks with the same number of cards an unspecified number of times. This
is acceptable as an operation of cards, but it is infeasible from the viewpoint
of information-theoretically secure multi-party computation in a rigorous sense
c© Springer International Publishing AG 2017
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because the number of shuffles can be counted by the player and it could be
known to all the players if the shuffle operations were to be recorded by video
or other means.

To resolve this problem, a modified model of card-based protocols was studied
in [3] from the viewpoint of multi-party computation. In this model, each player
is allowed to have private randomness, and to operate the cards behind the
player’s back. This assumption is called Private Permutation (PP). Furthermore,
communication complexity is taken into account in [3] as an efficiency measure,
which was not studied in the previous work. Under the modified model, a shuffle
is broken into two PPs and a communication, and efficient protocols for the
millionaires’ problem [4] were proposed. Furthermore, it is proposed in [2] that
an efficient card-based AND protocol is realized by utilizing the idea of PPs
implicitly (e.g., see Epilogue B in [2]). However, XOR and OR protocols based
on PPs are not proposed.

Observing the card-based millionaires’ protocol [3] and AND protocol [2]
based on PPs, we can reduce the number of cards thanks to the representation
of the player’s input not by the cards but by the player’s actions on the cards.
For instance, in the 3-card AND protocol [2], which will be explained in Protocol
2 below, Bob’s input is represented by replacing the card on the left or the right.
PPs represent a natural assumption for playing cards, but it is worthwhile to
note that a semi-honest model must be assumed if we utilize PPs.

1.2 Contributions and Organization of This Paper

In addition to the 3-card AND protocol [2] described in Sect. 3.1, we propose
the following two logic operations that are more efficient than previous work:

– 3-card OR (in Sect. 3.2), and
– 2-card XOR (in Sect. 3.3).

The interesting points of the proposed protocols are not only that we can
substantially reduce the number of cards, but we can also simultaneously realize
AND and OR operations. This simultaneous realization enables us to implement
the card-based majority voting protocol with three inputs using four cards,
which is the main contribution of this paper. Note that in the previous work
based on shuffles [8] eight cards are necessary to implement the majority voting
protocol. It is possible to extend our protocol to the majority voting with n
(≥ 3) players, which will be presented in the final version of this paper.

The rest of this paper is organized as follows: We describe in Sect. 2 the
previous work [2,3] and the efficiency measure summarized in Table 1 based on
the previous work. Our first contribution is the efficient card-based cryptographic
protocols based on PPs explained in Sect. 3, where we propose 2-card XOR and
3-card OR protocols in addition to 3-card AND in [2].

Observing the relations for a, b ∈ {0, 1},

a ∧ b = 1 ⇐⇒ a + b ≥ 2
a ∨ b = 1 ⇐⇒ a + b ≥ 1
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and using the results in Sect. 3, we can construct the three-input majority voting
protocol using four cards, which is the second contribution of this paper. This
result reduces the previous result with eight cards by half.

In Sect. 5, we discuss the extension of our idea to a card-based cryptographic
protocol using rotation of cards. Specifically, several card-based cryptographic
protocols exploit the difference between a card and its rotation, e.g., ♣ and ♣ .
Such protocols have succeeded in reducing the number of cards compared to the
previous protocols [10,11]. We show that our proposed techniques based on PPs
succeed in reducing the numbers of cards compared to [10,11].

Table 1. Comparison between previous work and our results

Protocol References # # #

of PPs of comm. of Cards

AND Mizuki–Kumamoto–Sone [6] 5 3 4

[2] [Sect. 3.1] 2 1 3

OR Mizuki–Kumamoto–Sone [6] 5 3 4

This work [Sect. 3.2] 2 1 3

XOR Mizuki–Sone [5] 3 2 4

This work [Sect. 3.3] 2 1 2

Majority Voting Nishida–Mizuki–Sone [8] 5 3 8

with 3 inputs This work [Sect. 4] 3 2 4

2 Preliminaries

2.1 Shuffle and Private Permutation

We use two cards ♣ and ♥ , and we assume that the cards with the same suit
cannot be distinguished from each other. The backs of all cards are indistin-
guishable, and we denote this by ? .

In most of the previous work, e.g., [5,6,8,9], card-based protocols consist of
three operations such as permutation, reverse, and shuffle. Permutation is the
permutation of cards in public, where every player knows what type of per-
mutation was used. Reverse means turning over the cards, e.g., ♣ 
→ ? and

? 
→ ♣ .
The most important operation among these three operations is the shuffle,

which is a probabilistic permutation of face-down cards in public. The shuffle
must not to leak the information of the permutation used in the shuffle to any
player (even the player who performs the shuffle). One of the important shuffle
operations is called random bisection cut [5], which is described as follows:
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For a positive integer v, prepare 2v cards. Divide these cards exactly by half,
and denote them by u0,u1. Specifically, we denote

v cards
︷ ︸︸ ︷

? ? · · · ?
︸ ︷︷ ︸

=:u0

v cards
︷ ︸︸ ︷

? ? · · · ?
︸ ︷︷ ︸

=:u1

.

Then a player randomly swaps cards between the two card stacks (e.g., shuffles
the bisected cards) an unspecified number of times. This is considered to be
equivalent to randomly choosing one of the following 2v cards, i.e., swap u0 and
u1 or not, with probability 1/2:

? ? · · · ?
︸ ︷︷ ︸

u0

? ? · · · ?
︸ ︷︷ ︸

u1

or ? ? · · · ?
︸ ︷︷ ︸

u1

? ? · · · ?
︸ ︷︷ ︸

u0

(1)

Note again that no player must know which card in (1) is chosen.
The shuffle operation has been traditionally used in card-based cryptographic

protocols, but it has a merit and a demerit. Its merit is that every operation can
be made public and it is difficult for any player to cheat if we allow the shuffle
operation, which enables us to eliminate the semi-honest assumption. Meanwhile,
the requirement of public randomization using the shuffle is actually infeasible to
realize from the information-theoretic viewpoint in the rigorous sense although
the shuffle is physically realized. For instance, we believe that shuffling the cards
many times in front of all players can hide the permutation of the cards, but if
we can shoot a video of the shuffle operation, the video will clarify how many
times the shuffles were performed.

To remove such infeasibility, [3] proposed a modified model for the card-
based protocols. The idea of [3] is that we regard the card-based cryptographic
protocols as a type of multi-party computation (MPC). The modified model in
[3] consists of the following four operations:

– Permutation: Permutation of face-down cards in public.
– Reverse: Turning over a card.
– Private Permutation (PP): Permutation of cards in private, e.g., behind the

player’s back. Private randomness is available.
– Communication: Handing over cards to the other player.

The PPs corresponds to the private randomness in MPC. By introducing
PPs, shuffles can be divided into communications and PPs. For instance, a ran-
dom bisection cut can be regarded as two PPs and a communication between
two players, say Alice and Bob, as shown in Protocol 1. In Protocol 1, PPs are
used in steps (1) and (3). The output of Protocol 1 is (urA⊕rB ,u1−rA⊕rB ), where
⊕ denotes XOR. Because rA (rB , resp.) is not disclosed to Bob (Alice, resp.),
all players including Alice and Bob cannot know the result (urA⊕rB ,u1−rA⊕rB )
until the cards are opened.

By introducing PPs, every card-based cryptographic protocol becomes theo-
retically feasible, and it is easy to discuss the card-based cryptographic protocol



Four Cards Are Sufficient for a Card-Based Three-Input Voting Protocol 157

Protocol 1. Random Bisection Cut [3]
(1) Alice chooses rA ∈ {0, 1} with probability 1/2 privately, and switches the order of

the bisected cards (u0,u1) if rA = 1 behind her back, or leaves the same if rA = 0.
Then, she has (urA ,u1−rA) behind her back.

(2) Alice sends the cards (urA ,u1−rA) to Bob.
(3) Bob chooses rB ∈ {0, 1} with probability 1/2 privately, and switches the order of

the received cards (urA ,u1−rA) if rB = 1 behind his back, or leaves the same if
rB = 0.

from the viewpoint of MPC. Instead, in compensation for the theoretical feasi-
bility, card-based protocols based on PPs apply the semi-honest model because
the PP requires private operations. The reconsideration of card-based protocols
based on PPs was initiated by [3], but the idea of PP can be seen implicitly in
[2], which will be explained in the 3-card AND protocol as shown in Protocol 2.

2.2 Efficiency Measures

In [3], the authors evaluated the efficiency of card-based cryptographic proto-
cols by the number of PPs, communications, and cards, which correspond to the
amount of randomness, communication complexity, and memory size, respec-
tively, in ordinary MPC. In Table 1, a shuffle in previous work is counted as one
communications and two PPs. We adopt the same efficiency measures in this
paper.

3 Proposed Protocols for Logical Gates

Starting from the card-based cryptographic protocol for an AND gate with three
cards [2], we propose 3-card OR and 2-card XOR protocols. In this section let a
and b be the binary inputs of Alice and Bob, respectively.

3.1 Basic Idea: PPs and Inputs by the Player’s Actions

In the Epilogue in [2] (Solution B), the 3-card AND protocol is proposed as
shown in Protocol 21. Table 2 shows the correspondence between cards at step
(2) and the output of the protocol. Subscripts of ♣ and ♥ indicate the player
who had the card originally2. We can observe that the PP introduced in [3] was
implicitly used in steps (1) and (2) of Protocol 2.

We also note that Bob’s input at the step (3) in Protocol 2 is not represented
by the suit of the card but is represented by the action taken by Bob, i.e., Bob’s
value corresponds to his choice of left or right where he places his ♣. In this

1 Slightly modified for later discussion, but essentially the same as the protocol in [2].
2 Hereafter, we remove the frame of cards for simplicity.
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Protocol 2. Three-card AND Protocol [2]
Inputs: Alice has a ∈ {0, 1}, and Bob has b ∈ {0, 1}.
Setup: Alice has a pair of ♣♥. Bob has one ♣.

(1) Alice chooses ♣ if a = 0, otherwise ♥, behind her back. She sends the face-down
card to Bob.

(2) If b = 0, Bob puts ♣ to the left of the card he received. Otherwise, he places ♣ to
the right of the card he received.

(3) Bob reveals the left card to Alice. If this card is ♣, then a ∧ b = 0. Otherwise,
a ∧ b = 1. He discards the card on the right.

Table 2. Three-card AND protocol

a b Step (2) Output

0 0 ♣Bob ♣Alice 0 (♣Bob)

0 1 ♣Alice ♣Bob 0 (♣Alice)

1 0 ♣Bob ♥Alice 0 (♣Bob)

1 1 ♥Alice ♣Bob 1 (♥Alice)

study, we utilize this idea to express a player’s input by his/her action, and
succeed in reducing the number of cards compared to previous work.
Security Proof of 3-card AND protocol: We present a brief overview of the secu-
rity proof for Protocol 2, which will be useful to understand the security of the
protocols proposed hereafter.

Since we compute AND, the player who inputs 1 can uniquely determine the
other player’s input at the end of the protocol. Meanwhile, for the player who
inputs 0, no information must leak out to the player, which we have to check.
When Alice inputs a = 0 (♣), the output is either ♣Alice or ♣Bob, which is
opened by Bob and is indistinguishable to Alice. When Bob inputs b = 0, he
places his ♣ on the left, and he simply shows his card to Alice. Hence, he obtains
no information on Alice’s input, which is discarded at the end of the protocol.

It is clear that no information is obtained by the players other than Alice
and Bob (if such players exist) because the only information they can obtain is
the output. �

3.2 Three-Card OR Protocol

Although the concept of PPs is implicitly used in [2], but this paper only con-
centrated on the construction of card-based AND protocols, and no card-based
protocols were shown for the other logical gates. Hereafter, we show card-based
protocols for computing OR and XOR, which are realized with three and two
cards, respectively.

To construct card-based OR protocols, we should recall De Morgan’s law:
a ∨ b = ¬(¬a ∧ ¬b). Using this identity, the card-based OR protocol can be
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Protocol 3. Three-Card OR Protocol
Inputs: Alice has a ∈ {0, 1}, and Bob has b ∈ {0, 1}.
Setup: Alice has a pair of ♣♥. Bob has one ♣.

(1) Alice chooses ♥ if a = 0, otherwise ♣, behind her back. She sends the face-down
card to Bob.

(2) If b = 0, Bob puts ♣ to the right of the card he received. Otherwise, he places ♣
to the left of the card he received.

(3) Bob reveals the left card to Alice. If this card is ♥, then a ∧ b = 0. Otherwise,
a ∧ b = 1. He discards the card on the right.

Table 3. Three-Card OR Protocol

a b Step (2) Output

0 0 ♥Alice ♣Bob 0 (♥Alice)

0 1 ♣Bob ♥Alice 1 (♣Bob)

1 0 ♣Alice ♥Bob 1 (♣Alice)

1 1 ♣Bob ♣Alice 1 (♣Bob)

obtained by negating Alice’s input, Bob’s input, and the output. Specifically,
when Alice inputs a = 0, she should use ♥ (otherwise, ♣), and when Bob inputs
b = 0, he should place ♣ to the right of the card he received. Finally, the output
should be negated. Then, we have Protocol 3, where the different parts from
Protocol 2 are underlined.

The relation among the inputs, the pair of cards at the end of step (2),
and the output is shown in Table 3. Security proof is not necessary since this
protocols is essentially the same as Protocol 2.

3.3 Two-Card XOR Protocol

The proposed 2-card XOR protocol is shown in Protocol 4. In this protocol, PPs
are used in steps (1) and (2). The relationships among the inputs, the pair of
cards at the end of step (2), and the output are shown in Table 4.

Protocol 4. Two-card XOR Protocol
Inputs: Alice has a ∈ {0, 1}, and Bob has b ∈ {0, 1}.
Initial Setting: Alice has a pair of ♣♥. Bob has no card.

(1) Alice prepares ♣♥ if a = 0, otherwise ♥♣. She sends the two face-down cards to
Bob.

(2) Bob puts the cards behind his back and switches their order if b = 1 or leaves the
same if b = 0.

(3) Bob opens the cards. If they are ♣♥, a ⊕ b = 0. Otherwise, i.e., ♥♣, a ⊕ b = 1.
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Table 4. Two-Card XOR Protocol

a b Step (2) Output

0 0 ♣ ♥ 0 (♣♥)

0 1 ♣ ♥ 1 (♥♣)

1 0 ♥ ♣ 1 (♥♣)

1 1 ♥ ♣ 0 (♣♥)

Security of Two-card XOR Protocol: For Alice and Bob, there is no information
to be kept secret because, if the value of XOR and one of the two inputs are given,
the other input is uniquely determined. Furthermore, no information except for
the output is known to the players other than Alice and Bob.

It is clear that no information is obtained by the players other than Alice
and Bob (if such players exist) because the only information they can obtain is
the output. �

4 Majority Voting Protocol with Four Cards

Based on the observations on the three-card AND/OR protocols, we propose a
new card-based majority voting protocol with three inputs that uses only four
cards. Consider the scenario such that Alice, Bob, and Carol have their binary
values a, b, and c, respectively, and they want to know the result of majority
voting without revealing their individual inputs.

Two types realizations of such a majority voting protocol can be considered.
One realization is computing the summation s := a + b + c and then output s,
which tells us which is the majority [7]. The other realization is to output 0 if the
majority is 0, otherwise output 1 [8]. In this study, we focus on the latter since
it is more secure and theoretically interesting. Specifically, we want to compute
the following function maj(a, b, c) ∈ {0, 1} securely:

maj(a, b, c) =
{

0, if a + b + c ≤ 1
1, if a + b + c ≥ 2. (2)

4.1 Idea Behind Our Majority Voting Protocol with Three-Inputs

Assume that Alice, Bob, and Carol vote a, b, and c, respectively, in this order.
We focus on the Carol’s vote c ∈ {0, 1}.

In the case of c = 0, the following relationship holds.

a + b + c ≥ 2 ⇐⇒ a + b ≥ 2 ⇐⇒ a ∧ b = 1 (3)

This relationship implies that a ∧ b is the result of the majority voting when
c = 0.
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Meanwhile, in the case of c = 1, we have the following relationship:

a + b + c ≥ 2 ⇐⇒ a + b ≥ 1 ⇐⇒ a ∨ b = 1 (4)

Hence, a ∨ b is the result of the majority voting when c = 1.
Summarizing, we have

maj(a, b, c) =
{

a ∧ b, if c = 0
a ∨ b, if c = 1, (5)

which can be calculated securely if we can merge the AND and OR protocols in
Protocols 2 and 3, respectively. In fact, such unification is possible by using four
cards, which will be explained in the next subsection.

4.2 Unifying AND and OR Operations

Modification of Three-Card OR Protocol. Because the 3-card AND and
OR protocols in Protocols 2 and 3, respectively, are essentially the same based
on the De Morgan’s law, and hence, they have a symmetric form. From this
observation, we design a unified AND/OR protocol where a ∧ b and a ∨ b result
in the left and right cards, respectively, for inputs a, b ∈ {0, 1}.

To obtain the unified protocol, the formats of the outputs of Protocols 2 and
3 must be the same. Then, we exchange ♣ and ♥ in Protocol 3. Moreover, we
swap the left and right cards in the step (2) of Protocol 3 in order to make a∨ b
place on the right. Then, we obtain Protocol 5 from Protocol 3. The relationships
among the inputs, the pair of cards at the end of step (2), and the output are
shown in Table 5.

Protocol 5. Modified Three-Card OR Protocol
Inputs: Alice has a ∈ {0, 1}, and Bob has b ∈ {0, 1}.
Setup: Alice has one ♣ and one ♥, and Bob has one ♥.

(1) If a = 0, Alice selects ♣ behind her back. Otherwise, she selects ♥ behind her
back. Then she sends the face-down card she selected to Bob.

(2) If b = 0, Bob places ♥ to the left of the card he received behind his back. Otherwise,
he places ♥ to the right behind his back.

(3) Bob opens the card on the right. If this card is ♣, output a ∨ b = 0. Otherwise,
output a ∨ b = 1. He discards the card on the left.

Table 5. Modified Three-Card OR Protocol

a b Step (2) Output

0 0 ♥Bob ♣Alice 0 (♣Alice)

0 1 ♣Alice ♥Bob 1 (♥Bob)

1 0 ♥Bob ♥Alice 1 (♥Alice)

1 1 ♥Alice ♥Bob 1 (♥Bob)



162 T. Nakai et al.

Protocol 6. Four-card AND/OR protocol
Inputs: Alice has a ∈ {0, 1}, and Bob has b ∈ {0, 1}.
Setup: Each of Alice and Bob has ♣♥.

(1) If a = 0, then Alice sends face-down ♣. Otherwise, she sends face-down ♥ to Bob.
(2) If b = 0, Bob places ♣ behind his back to the left of the card he received. Otherwise,

he places ♥ behind his back to the right.
(3) The left card represents a ∧ b, and the right card represents a ∨ b. If it is ♣, the

output is 0; otherwise output 1.

Protocol 7. Majority Voting Protocol with Three Inputs
Inputs: Alice has a ∈ {0, 1}, Bob has b ∈ {0, 1}, and Carol has c ∈ {0, 1}.
Setup: Alice and Bob have a pair ♣♥. Carol does not have any card.

(1) Alice chooses ♣ behind her back if a = 0, otherwise, she chooses ♥ behind her
back. Then, she sends the face-down card she chose to Bob.

(2) Bob places ♣ behind his back to the left side of the card from Alice if b = 0,
otherwise he places ♥ behind his back to the right. Then, the left of the cards
represents a ∧ b, the right represents a ∨ b.

(3) Bob sends face-down the pair of cards to Carol.
(4) If c = 0, Carol selects the left card. Otherwise, she selects the right.
(5) Carol opens the card she selected. If the opened card is ♣, then the result is

maj(a, b, c) = 0 (i.e., a+ b+ c ≤ 1), otherwise the result is maj(a, b, c) = 1 (i.e.,a+
b + c ≥ 2). She discards the card that is not opened.

Four-Card AND/OR Protocol. Observe that the right card and the left
card are discarded at the end of the protocol in both Protocols 2 and 5, respec-
tively. We also observe that Bob has ♣ and ♥ at step (1) in both Protocols 2
and 5, respectively. From these observations, we can merge Protocols 2 and 5
by letting Bob have ♣ and ♥ in the initial setup. Then, we can implement the
results of AND and OR simultaneously in a one card-based protocol, as shown
in Protocol 6.

We show in the next section that the 4-card AND/OR protocol is useful in
calculating the majority voting with only four cards.

4.3 Proposed Four-Card Majority Voting Protocol

Based on the 4-card AND/OR protocol, it is easy to compute the majority
voting protocol. First, Alice and Bob computes a ∧ b and a ∨ b simultaneously,
where the result is concealed. Then, Carol chooses a ∧ b or a ∨ b depending on
c = 0 or c = 1, respectively, behind her back. The detailed algorithm is shown in
Protocol 7. Table 6 shows the pair of cards at the end of step (2) and the output.
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Table 6. Majority Voting with Three-Inputs

a b c Step (2) Output

0 0 0 ♣Bob ♣Alice 0 (♣Bob)

0 1 0 ♣Alice ♥Bob 0 (♣Alice)

1 0 0 ♣Bob ♥Alice 0 (♣Bob)

1 1 0 ♥Alice ♥Bob 1 (♥Alice)

0 0 1 ♣Bob ♣Alice 0 (♣Alice)

0 1 1 ♣Alice ♥Bob 1 (♥Bob)

1 0 1 ♣Bob ♥Alice 1 (♥Alice)

1 1 1 ♥Alice ♥Bob 1 (♥Bob)

Protocol 8. Two-Card AND Protocol Using Rotation of Cards
Inputs: Alice has a ∈ {0, 1}, and Bob has b ∈ {0, 1}.
Setup: Each of Alice and Bob has ♣.

(1) Alice chooses

♣

if a = 0, ♣ otherwise, and send its back to Bob.
(2) If b = 0, Bob places behind his back

♣

to the left of the card he received, otherwise
places

♣

to the right.
(3) Bob opens the left card. We have a ∧ b = 0 if this card is

♣

, otherwise we have
a ∧ b = 1.

Table 7. Comparison with the Previous Work Using Rotation of Cards

Protocols References # # #

of PPs of Comm. of Cards

AND Shinagawa et al. [11] 3 2 3

This work: Modification of Protocol 2 2 1 2

OR Shinagawa et al. [11] 3 2 3

This work: Modification of Protocol 3 2 1 2

XOR Mizuki–Shizuya [10] 3 2 2

This work: Modification of Protocol 4 2 1 1

5 Concluding Remarks

In this paper, we proposed a card-based cryptographic protocol for computing
XOR and OR operations based on the model of card-based the protocol presented
in [3], i.e., permutation, reverse, private permutation (PP), and communication.
In the proposed protocols, we succeeded in realizing card-based cryptographic
protocols by representing the participants’ inputs not only by suit of cards but
also by the player’s actions.

Our idea is so powerful that it can be applied to the other types of card-
base cryptographic protocols. For instance, our idea can reduce the number of
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cards for the card-based protocols using ♣ and ♣ to represent numbers. For
instance, the 3-card AND protocol in Protocol 2 can be realized with two cards,
as shown in Protocol 8. Table 7 shows a comparison between previous work and
the proposed protocols if our idea is applied to these card-based cryptographic
protocols.

Because our AND and OR protocols can be simultaneously realized, we show
that the majority voting protocol with three inputs can be realized with four
cards, which halves the previous majority voting protocol with eight cards. Note
that the proposed majority voting protocol can be extended to a majority voting
protocol with an arbitrary number of players, which will be presented in the final
version of this paper.
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Abstract. Based on a secure classical network code, we propose a gen-
eral method for constructing a secure quantum network code in the mul-
tiple unicast setting under restricted eavesdropper’s power. This proto-
col certainly transmits quantum states when there is no attack. We also
show the secrecy with shared randomness as additional resource from
the secrecy and the recoverability of the corresponding secure classical
network code. Our protocol does not require verification process, which
ensures single-shot security.
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1 Introduction

Quantum information processing offers information tasks that overwhelm the
conventional information technologies. Some of them require transmission of
quantum state. For example, quantum communication protocols with exponen-
tially small communication complexity must meet this requirement [1,2]. When
multiple users use quantum information processing, they need to be linked with
each other via a quantum network. For efficient use of a quantum network,
quantum network coding is needed. To meet the demand, the paper [18] ini-
tiated the study of quantum network coding with the butterfly network as a
typical example. Under this example, the paper [19] clarified the importance of
prior entanglement in a quantum network code. Kobayashi et al. [20] discussed
a method for generating GHZ-type states via quantum network coding. Leung
et al. [21] investigated several types of networks when classical communication
is allowed. Based on these studies, Kobayashi et al. [22] made a code to transmit
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quantum states based on a linear classical network code. Then, Kobayashi et al.
[23] generalized the result to the case with non-linear network code. However, no
existing study has discussed the security for the quantum network code when an
adversary attacks the quantum network. Since the improvement of the security
is one of the most essential requirements for developing quantum networks, the
security analysis is strongly required for quantum network codes. Indeed, it is
possible to check the security in these existing methods by verifying the non-
existence of the eavesdropper. However, the verification requires us to repeat the
same quantum state transmission several times. Hence, it is impossible to guar-
antee the security under a single transmission in the simple application of these
existing methods. Therefore, it is needed to propose a quantum network code
that guarantees its security. That is, our aim is a natural extension of classical
secure network coding.

On the other hand, for a classical network, Ahlswede et al. [29] started the
study of network coding. Then, Cai et al. [3] initiated to address the security of
network code, and pointed out that the network coding enhances the security.
Currently, many papers [4–16] have already studied the security for network
codes. In these studies, the security was shown against wiretapping on a part of
the channels. Hence, it is strongly needed to propose a quantum network code
whose security is guaranteed under the similar setting. To see our contribution,
we explain the characteristics of a quantum network. Studies on classical network
coding have most often discussed the unicast setting, in which, we discuss the
one-to-one communication via the network. Even in the unicast setting, there
are many examples of network codes that overcome the routing, as numerically
reported in [28, Sect. 3]. However, in the quantum setting, it is not easy to
find such an example in the unicast setting. As another formulation, studies on
classical network coding often focus on the multicast setting, in which one sender
sends information to multiple receivers. However, in the quantum setting, this is
impossible due to the no-cloning theorem. Hence, we discuss the multiple-unicast
setting, which has multiple pairs composing of a sender and receiver. However,
the multiple-unicast setting has not been well examined even in the classical
case, i.e., it has been discussed only in a few papers such as Agarwal et al. [17]
with the classical case.

In this paper, we generally construct a quantum network code in the multiple-
unicast setting whose security is guaranteed. Our code is canonically constructed
from a classical network code in the multiple-unicast setting, and it certainly
transmits quantum states when there is no attack. Our main issue is the secrecy
of the transmitted quantum states when Eve attacks only edges in the subset EA

of the set of edges of the given network. That is, we show the secrecy of our quan-
tum network code when the secrecy and recoverability of the corresponding clas-
sical network are shown against Eve’s attack on the subset EA of edges. That is,
we clarify the relation between quantum secrecy and the pair of classical secrecy
and classical recoverability in the network coding. We also give several examples
for such secure quantum network codes. Indeed, it is not so easy to satisfy this
condition for the corresponding classical network. Hence, we allow several nodes
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in the network to share common randomness, which is called shared random-
ness. Since a quantum channel is much more expensive than a classical public
channel, we assume that any amount of the classical public channel can be freely
used. Under this assumption, the transmission of a quantum state is equivalent
to sharing a maximally entangled state via quantum teleportation [27]. Hence,
we show the reliability of the transmission by proving that an entangled state
can be shared by sending entanglement halves from sink nodes. Our general
construction covers the previous code for the butterfly network in [34].

Here, we emphasize the difference between our offered security from the con-
ventional quantum security like quantum key distribution (QKD). In QKD, we
repeat the same type of quantum communication several times, which enables
us to verify the non-existence of the eavesdropper and to ensure the security.
However, our security analysis does not require such repetitive quantum com-
munications, i.e., such a verification process because we assume that the eaves-
dropper wiretaps only a part of the channels. Since this kind of security analysis
holds even under the single-shot setting, we call it single-shot security.

The remaining part of this paper is organized as follows. Section 2 prepares
several knowledges for secure classical network coding including secrecy and
recoverability. Section 3 provides our general construction of secure quantum
network code and states its security theorem. Appendix A shows the security
theorem. Appendix B provides precise constructions of the matrices appearing
in the main body.

2 Preparation from Secure Classical Network Coding

In this section, we introduce classical network coding and its security analysis
which is necessary for analyzing the security of quantum network codes in the
next section.

2.1 Classical Linear Multiple-Unicast Network Coding

As a preparation for our general treatment of quantum linear multiple-unicast
network codes, we treat a classical linear multiple-unicast network code with
shared-randomness, i.e., impose the linearity condition on the operations on the
all nodes. In the classical setting of network coding, the network is given as a
directed graph (Ṽ , Ẽ), where the set of vertices Ṽ expresses the set of nodes and
the set of edges Ẽ expresses the set of communication channels, i.e., the set of
packets. When a single character in Fq is transmitted from a vertex u ∈ Ṽ to
another vertex v ∈ Ṽ via a channel, the channel is expressed as (u, v) ∈ Ẽ in
the directed graph, where Fq is the finite field whose order is a power q of the
prime p. We denote the number of edges |Ẽ| as N . The transmission on the edge
is done in the order of the number assigned to the edges.

Since our setting is multiple-unicast, there are (not necessarily distinctive) n
pairs of a source node and a terminal node; that is, the single source or terminal
node may appear multiple times in the set of pairs. That is, the purpose of
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this network is transmitting the messages from the respective source node to
the respective terminal node. In this network, n messages are required to be
transmitted. To realize the secrecy, some of nodes share common randomness,
and a node sharing common randomness is called a shared-randomness node.
Here, let n′ be the number of shared-randomness. In this setting, a source node
may be required to transmit information to plural terminal nodes, and plural
source nodes may be required to transmit information to an identical terminal
node. Thus, our setting includes the unicast setting as well. We denote the sets
of source nodes, terminal nodes, and shared-randomness nodes by VS , VT , and
VSR.

However, to express the protocol systematically, we need to assign a single
quantum system to each message. Hence, we virtually introduce input vertices,
output vertices, and shared-randomness vertices, where an input vertex trans-
mits only one message, an output vertex receives only one message, and a shared-
randomness vertex generates only one random number. Then, we denote the sets
of input vertices, output vertices, and shared-randomness vertices by VI , VO, and
VR, respectively. Hence, |VI | = |VO| = n, and |VR| = n′. We label input vertices
as i1, · · · , in ∈ VI , and the corresponding output vertices as o1, · · · , on ∈ VO. We
similarly label shared-randomness vertices as r1, · · · , rn′ ∈ VR. Thus, we have

VS = {v ∈ V |∃vi ∈ VI s.t. (vi, v) ∈ E} ,

VSR = {v ∈ V |∃vr ∈ VR s.t. (vr, v) ∈ E} ,

VT = {v ∈ V |∃vo ∈ VO s.t. (v, vo) ∈ E} . (1)

The set of all vertices are given as V := Ṽ ∪ VI ∪ VO ∪ VR, where these sets have
no intersection.

An input vertex is connected to a source node via an edge, which are called
an input edge. Similarly, an output vertex is connected to a terminal node (a
shared-randomness node) via an edge, which is called an output edge (a shared-
randomness edge). In contrast, shared-randomness vertex is connected to mul-
tiple shared-randomness nodes via edges, which are called shared-randomness
edges. Then, we denote the sets of input edges, output edges, and shared-
randomness edges by EI , EO, and ER, respectively. Thus, |EI | = |EO| = n.
We denote the number of edges connecting the shared-randomness vertex rj by
lj . Thus, the number |ER| of shared-randomness edges is l :=

∑n′

j=1 lj . We also
have

EI = {(u, v) ∈ E|u ∈ VI , v ∈ V } ,

EO = {(u, v) ∈ E|u ∈ V, v ∈ VO} ,

ER = {(u, v) ∈ E|u ∈ VR, v ∈ V } . (2)

The set of all edges are given as E := Ẽ ∪ EI ∪ EO ∪ ER. These sets have no
intersection, so, |E| = N + 2n + l. These numbers are summarized in Table 1.

To define ordering on edges, we define a map e from {1, · · · , N + 2n + l}
to E as follows: e (1) , · · · , e (n) are input edges, where e (j) is an input
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Table 1. Characteristic numbers of the network coding. Notations undefined here will
be defined later.

n No. of input edges. |EI |
No. of output edges. |EO|
No. of input vertices. |VI |
No. of output vertices. |VO|

l No. of shared-randomness edges. |ER|
n′ No. of shared-randomness. |VR|
N No. of other edges. |Ẽ|
h No. of edges attacked by Eve. |EA|
h′ No. of protected edges. |EP |

edge going out from an input vertex ij ; e (n + 1) , · · · , e (n + l) are shared-

randomness edges, where e
(
n +

∑k−1
j=1 lj + 1

)
, · · · , e

(
n +

∑k
j=1 lj

)
going out

from rk; and e (n + l + 1) , · · · , e (n + l + N) are edges in the directed graph
(Ṽ , Ẽ) that originally appears in the classical setting of network coding. Finally,
e (n + l + N + 1) , · · · , e (2n + l + N) are output edges, where e (n + l + N + j)
is an output edge going into an output vertex oj . Here, we assume that
our network and ordering satisfy the following connectivity condition: For all
n+ l+1 ≤ i ≤ N +2n+ l, there exists j < i such that e (j) is connected to e (i).

For an edge e, we denote its input and output vertices by vI (e) and vO (e).
Thus, we have e = (vI (e) ,vO (e)). Therefore, at time t = i, the random variable
Yi ∈ Fq is inputted from the vertex vI (e (i)) to the edge e (i). Hence, it is
transferred to the vertex vO (e (i)). The set I (i) is defined as the set of natural
numbers identifying the edges that have transferred their information to the
vertex vI (e (i)) before the time t = i:

I (i) := {j ∈ N|j < i, ∃v ∈ V, s.t. e (j) = (v,vI (e (i)))} . (3)

Since there exists j < i such that e (i) is connected to e (j) via vI (e (i)), the
set I (i) is not empty for all n+l+1 ≤ i ≤ N+2n+l. Since we impose the linearity
condition on the operations on all the nodes, the random variable Yi is given as
a linear combination of the random variables {Yj}j∈I(i) as Yi =

∑
j∈I(i) θijYj ,

where θij ∈ Fq. That is, the set {θij}i∈{1,...,|E|},j∈I(i) completely determines the
linear multiple-unicast coding on a given network. For convenience, we define
θij = 0 for j � I (i) so that we have

Yi =
∑

j<i

θijYj . (4)

Example 1. Figure 1 depicts an example of a vertex and connecting edges, where
the edges e (2), e (5), and e (7) go into the vertex and the edges e (4) and e (8)
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Fig. 1. Example of a vertex and connecting edges

go out from the vertex. Hence, the vertex can be written as vI (e (4)) as well as
vI (e (8)), that is, vI (e (4)) = vI (e (8)). At time t = 4, the information from
e (2) has arrived, but the information from e (5) and e (7) has not yet. Since
e (1) and e (3), which do not appear in Fig. 1, do not connect to vI (e (4)), the
operation on vI (e (4)) is determined by θ42, and {θ4i}i<4 can be written as

{θ4i}i<4 := (0, θ42, 0) .

Similarly, at time t = 8, information from e (2), e (5), and e (7) has arrived
at vI (e (8)). Thus, the information transferred through e (8) can be written as∑

j<8 θ8jYj , where Yj is information transferred through e (j), and {θ8j}j<8 can
be written down as

{θ8j}j<8 := (0, θ82, 0, 0, θ85, 0, θ87) .

Due to the linear structure given in (4), the random variables Yi is given
as a linear combination of the messages A := (A1, · · · , An) generated in input
vertices and the shared random number B := (B1, · · · , Bn′) generated in shared-
randomness vertices. For simplicity, combining these random variables, we define
the random vector X ′ := (A,B). Hence, there uniquely exists an Fq-valued
(N + 2n + l) × (n + n′) matrix M0 = (m0 (i, k)) such that

Yi =
n+n′
∑

k=1

m0 (i, k) Xk. (5)

The concrete construction of M0 is given in Appendix B.1. Since e (i) for
N + n + l + 1 ≤ i ≤ N + 2n + l is an output edge, the corresponding coefficients
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m0 (i, k) must satisfy

{m0 (n + l + N + i′, k)}n+n′

k=1 = (

i′−1
︷ ︸︸ ︷
0, · · · , 0, 1,

n+n′−i′
︷ ︸︸ ︷
0, · · · , 0) (6)

for1 ≤ i′ ≤ n. In other words, we define a multiple-unicast network code by the
following condition:

Definition 1. A network code {θij}i∈{1,...,|E|},j∈I(i) is called a multiple-unicast
network code if the coefficients {m0 (i, k)}i,k satisfy Eq.(6), where the coefficients
{m0 (i, k)}i,k are defined by Eq. (5).

2.2 Secrecy of Classical Multiple-Unicast Network Code

In this subsection, we present the results regarding the secrecy of classical net-
work codes, which is necessary to derive the main results regarding quantum
network codes. Although there are a lot of existing works on secrecy of clas-
sical network coding [3,5–16], they do not discuss the case when an adversary
called “Eve” contaminates a part of the network as well as wiretap a part of the
network. Only the paper [33] discusses such an adversary, though its analysis is
limited to the unicast case.

To discuss this kind of secrecy, we define EA ⊂ Ẽ and h as the set of edges
attacked by Eve, and the size of EA, i.e., h := |EA|, respectively. Eve is assumed
to be able to eavesdrop and contaminate the information on all the edges in EA.
Eve also knows the network structure, i.e., the topology of network and all the
coefficients θ.

To number these edges, we define an increasing function ς (j) ∈ N so that EA

can be written as EA = {e (ς (j))}h
j=1. At the j-th attack, Eve attacks the edge

e (ς (j)), i.e., wiretaps the random variable Zj := Yς(j), and injects the random
variable Cj to the vertex vO (e (ς (j))) instead of Zj . Then, to treat the vector
C := (C1, . . . , Ch) jointly with A,B , we redefine the vector X := (A,B ,C ).

Due to the linear structure of the network, there uniquely exists an Fq-valued
(N +2n+l)×(n+n′+h) matrix M satisfying the following. Eve’s attack changes
the input information Yi of the edge e(i) to

Yi =
n+n′+h∑

k=1

m (i, k) Xk. (7)

The concrete construction of M is given in Appendix B.2.
Then, we denote the output information of the edge e(i) by Y ′

i . Thus,

Y ′
i :=

{
Cj when there exists j satisfying i = ς (j)
Yi otherwise. (8)

Hence, defining the Fq-valued (N + 2n + l) × (n + n′ + h) matrix M ′ as

m′ (i, k) :=
{

δk,n+n′+j when there exists j satisfying i = ς (j)
m (i, k) otherwise, (9)



Single-Shot Secure Quantum Network Coding 173

we have

Y ′
i =

n+n′+h∑

k=1

m′ (i, k) Xk. (10)

Here, we categorize her attack into three types: simple attack, deterministic
attack and probabilistic attack :
Simple attack: A simple attack is an attack in which Eve just deterministically
chooses her input value C = {Xn+n′+c}h

c=1 as a constant. Hence, her input is
independent from her information {Zk}j

k=1.
Deterministic attack: A deterministic attack is defined by a set of functions
{gj}h

j=1:
gj : F

j
q → Fq.

Hence, Eve determines her j-th input value Xn+n′+j = Cj as

Cj = gj

(
{Zk}j

k=1

)
= gj

⎛

⎜
⎝

⎧
⎨

⎩

n+n′+i−1∑

k=1

m (ς (i) , k) Xk

⎫
⎬

⎭

j

i=1

⎞

⎟
⎠ .

From the definition of {gj}h
j=1, there exists

∏h
j=1 qqj

different deterministic
attacks. We write the set of all deterministic attacks as G. Note that a sim-
ple attack is also a deterministic attack.
Probabilistic attack: A probabilistic attack is an attack in which Eve proba-
bilistically chooses one of the deterministic attacks {gj}h

j=1 and applies it. Hence,

a probabilistic attack is determined by a probability distribution PG

(
{gj}h

j=1

)

on the set of all deterministic attacks G, where G is the corresponding ran-
dom variable. Note that a deterministic attack {gj}h

j=1 is a special proba-

bilistic attack whose probability distribution satisfies PG

(
{gj}h

j=1

)
= 1 and

PG

({
g′

j

}h

j=1

)
= 0 for an arbitrary deterministic attack

{
g′

j

}h

j=1
�= {gj}h

j=1.
However, any case can be reduced to a simple attack with C = 0 as follows.

Eve’s information is given as {Zk}h
k=1 when Cj is given by the function gj Now,

we denote Eve’s information with C = 0 by
{

Z̃k

}h

k=1
. Due to the linearlity of

the network, we have

Zk = Z̃k +
h∑

j=1

m(ς (k) , n + n′ + j)gj({Zk}j
k=1). (11)

This fact leads to the following lemma.

Lemma 1 ([33, Theorem 1]). Any deterministic attack with function {gj}h
j=1

can be reduced to the simple attack with C = 0. Since any probabilistic attack is
given as a probabilistic mixture of deterministic attacks, it can also be reduced
to the simple attack with C = 0.
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Now, for given EA and the function ς, we define a matrix Mς as a h× (n+n′ +
h) matrix whose elements are given by {m (ς (j) , k)}1≤j≤h,1≤k≤n+n′+h. We fur-
ther define submatrices of Mς as Mς = (Mς,1,Mς,2,Mς,3) where the sizes of Mς,1,
Mς,2, and Mς,3 are h × n, h × m, and h × h, respectively. For x = (a , b, c) ∈
F

n+n′+h
q , the condition

zi =
n+n′+h∑

k=1

mς (i, k) xk (12)

can be rewritten as

z = Mς,1a + Mς,2b + Mς,3c. (13)

Lemma 2. Secrecy holds for Eve’s attack on EA if and only if the following
condition holds: For any vector a ∈ F

n
q , there exists b(a) ∈ F

n′
q such that

Mς,1a = Mς,2b(a). (14)

Proof. Due to Lemma 1, it is enough to discuss the case with C = 0. When
secrecy holds, {Mς,2b|b ∈ F

n′
q } = {Mς,1a + Mς,2b|b ∈ F

n′
q } for any a ∈ F

n
q . The

latter set contains Mς,2b, which ensures the existence of b(a).
When such a vector b(a) exists, due to the uniformity of B , the distribution

of Mς,2B is the same as that of Mς,1a + Mς,2B , which implies the secrecy.

2.3 Recoverability Against Eve’s Attack

For our analysis of quantum network coding, we need to discuss the recoverability
of a classical network code against Eve’s attack in addition to the secrecy when
the receiver is considered to be one party. That is, we assume that Bob can access
all the shared random variables and a subset of edges EP ⊂ E dependently of the
set EA and the network structure, i.e., the matrix M ′. Under this assumption,
we require that Bob can recover the original message correctly. Notice that this
kind of recoverability does not imply the recoverability of our multiple-unicast
setting.

Notice that we do not assume the condition EP ∩ EA = ∅. For the sub-
set EP , we define the monotone increasing function ι : {1, · · · , |EP |} →
{1, · · · , N + 2n + l} as it satisfies EP = {e (ι (i))}h′

i=1, where h′ := |EP |. Then,

the information
{
Yι(i)

}h′

i=1
on EP can be written as

Yι(i) =
n+n′+h∑

k=1

m′
ι (i, k) Xk, (15)

where m′
ι (i, k) := m′ (ι (i) , k). Then, we define the concept of the recoverability

as follows.
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Table 2. Summary of matrices

Matrix Input system Output system Equation

M0 Messages, shared random variables Inputs of all edges =
outputs of all edges

(5)

M Messages, shared random variables,
Eve’s input

Inputs of all edges (7)

M ′ Messages, shared random variables,
Eve’s input

Outputs of all edges (9)

Mζ Messages, shared random variables,
Eve’s input

Inputs of attacked
edges

(12)

M ′
ι Messages, shared random variables,

Eve’s input
Outputs of
protected edges

(15)

Definition 2. A subset EP of edges is called recoverable for M ′ when for any
vector b ∈ F

n′
q there exists a function fb : F

h′
q → F

n
q such that

fb
(
M ′

ι · (a, b, c)T
)

= a (16)

for any a ∈ F
n
q and c ∈ F

h
q .

The function fb is nothing but a decoder of the input a from the information
on EP . Since condition (16) does not depend on the choice of c, it guarantees the
recoverability even when Eve chooses c depending on her observed information.
Overall, the defined matrices in this section are summarized in Table 2.

3 Secure Quantum Network Coding for General Network

3.1 Coding Scheme

In this section, we treat quantum network coding based on the results for classical
network coding in the previous section. Quantum network coding can be cate-
gorized by the type of classical communication allowed [18–23]. In this paper,
we consider the case when classical communication is freely available. In this
case, it is known that for an arbitrary classical multiple-unicast code on an arbi-
trary classical network, there exists a corresponding quantum multiple-unicast
network code on the corresponding quantum network [22,23]. We start this sub-
section by extending this known result to the case when shared randomness is
employed.

As we explained in the previous section, we start with a graph
(
Ṽ , Ẽ

)
cor-

responding to the quantum network. That is, the set of vertices Ṽ and the set of
edges Ẽ represent nodes and quantum channels, respectively, where the quantum
channels can send one quantum system of dimension q from one node to another.
As mentioned above, we assume that classical communication is freely available.
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That is, each node can freely send classical information. To describe the input
systems and the output systems, we additionally consider the set of input ver-
tices VI = {vI (i)}n

i=1 and the set of output vertices VO = {vO (i)}n
i=1. Since we

employ shared randomness, we also use the set of shared-randomness vertices
VR. To connect them to the vertices in Ṽ , we consider input, output and shared-
randomness edges (EI , EO, ER) defined by Eq. (2). Therefore, in the following,
we address the vertices V := Ṽ ∪ VI ∪ VO ∪ VR and E := Ẽ ∪ EI ∪ EO ∪ ER.

Then, the purpose of multiple-unicast quantum network code is to send an
arbitrary quantum state on C

q from a source node having vI (i) to a termi-
nal node having vO (i) for all i through the quantum network simultaneously.
Since classical communication to terminal nodes is free, this task is equivalent to
constructing the maximally entangled state on C

q ⊗ C
q between a source node

having vI (i) and a terminal node having vO (i) for all i.
As we explained in the previous section, in classical network coding, an edge

has a label indicating the time ordering: E = {e (i)}N+2n+l
i=1 . At time i, the

edge e (i) transfers the information Yi, which is coded from the information Yj

transferred from all the edges e (j) with j ∈ I (i); here, the encoding is given by
Eq.(4) with {θij}j∈I(i). Hence, the classical network code is characterized by the
label e (j) and the encoding {θij}i∈{1,··· ,|E|},j∈I(i).

We write the set of all edges except shared-randomness edges as Eq := E\ER.
In the corresponding quantum network, for all edges e ∈ Eq, there exist a q-
dimensional Hilbert space having a computational basis {|k〉}k∈Fq

. Since all edges
have a label e (j), we write a Hilbert space corresponding to the edge e (j) as
Hj . For 1 ≤ j ≤ n, Hj is an input Hilbert space on the source node vO (e (j)).
Similarly, for N + n + l + 1 ≤ j ≤ N + 2n + l, Hj is an output Hilbert space on
the terminal node vI (e (j)). On the other hand, for n + l + 1 ≤ j ≤ n + l + N ,
Hj is a Hilbert space that is sent from the node vI (e (j)) to the node vO (e (j))
through the quantum channel e (j) at time j. Initially, we set the state to be
transmitted in each input edge. Then, for n + l + 1 ≤ j ≤ N + 2n + l, the
states of Hilbert spaces Hj are initially in the state |0〉. The shared randomness
is still classical shared randomness in the quantum network coding; therefore,
no Hilbert space corresponds to a shared-randomness edge. On the other hand,
when a shared-randomness node in Ṽ has an incoming shared-randomness edge
e (j) for n ≤ j ≤ n + l, it receives the common randomness bk at time j, where
n+
∑k−1

j′=1 lj′ +1 ≤ j ≤ n+
∑k

j′=1 lj′ . Then, the shared-randomness node operates
a controlled unitary depending on bk later.

Before presenting a quantum network coding protocol, we give the nota-
tions used in it. We write the shared randomness as b = (b1, · · · , bn′) ∈
F

n′
q . From b, we further define b ′ =

(
b′
n+1, · · · , b′

n+l

) ∈ F
l
q by the rela-

tion b′
j = bk for n +

∑k−1
j=1 lj + 1 ≤ j ≤ n +

∑k
j=1 lj . For a sub-

set D of {1, · · · , n} ∪ {n + l + 1, · · · , N + 2n + l}, we describe the elements
of D as D =

{
k1, · · · , k|D|

}
. Hence, for a given subset D, we introduce

additional notations as HD :=
⊗

j∈D Hj . For a Fq-valued vector y =
(y1, · · · , yn, yn+l+1, · · · , yN+2n+l) ∈ F

N+2n
q , we define the vector y (D) :=



Single-Shot Secure Quantum Network Coding 177

(
yk1 , · · · , yk|D|

) ∈ F
|D|
q and the state |y (D)〉D(∈ HD) := |yk1〉k1⊗· · ·⊗|yk|D|〉k|D| ,

where |ykj
〉kj

is a state on Hkj
. To distinguish a classical system from a quantum

one easily, we introduce sets

QI (j) := {k ∈ I (j) |1 ≤ k ≤ n, or n + l + 1 ≤ k}
CI (j) := {k ∈ I (j) |n + 1 ≤ k ≤ n + l} ,

where I (j) is defined by Eq.(3). Using these notations, depending on the matrix
θ = {θjk}, we define the controlled unitary Uj1...jk|i1...im

(θ) acting on the Hilbert
space Hj1...jk

⊗ Hi1...im
as

Uj1...jk|i1...im(θ)

=
∑

yj1 ,...,yjk
∈Fq

∑

xi1 ,...,yim ∈Fq

∣∣∣∣∣yj1 +
l∑

t=1

θj1itxit , . . . , yjk +
l∑

t=1

θjkitxit , xi1 , . . . , xim

〉〈
yj1 , . . . , yjk , xi1 , . . . , xim

∣∣∣∣∣.

Now, we define the Fourier basis {|z̃〉j ∈ Hj}z∈Fq
of the computational basis

{|x〉j}x∈Fq
⊂ Hj as

|z̃〉j :=
∑

x∈Fq

ωtr xz|x〉j ,

where ω := exp
(
− 2πi

p

)
. Here, tr z expresses the element Tr Mz ∈ Fp, where

Mz denotes the matrix representation of the multiplication map x → zx with
identifying the finite field Fq with the vector space F

t
p and t is the degree of

algebraic extension of Fq. For the details, see [32, Sect. 8.1.2]. We also define
the generalized Pauli operators X(s) and Z(t) as X(s) :=

∑
x∈Fq

|x + s〉〈x| and
Z(t) :=

∑
x∈Fq

ωtr xt|x〉〈x|. Now, based on the coefficients {θjk}, we present the
quantum network code by using shared random variable for a general network
as Protocol 1 (See the next page.).

To discuss how well Protocol 1 works, we introduce another set of q-
dimensional Hilbert spaces H′

j for 1 ≤ j ≤ n on the source node vO (e (j)).
We prepare the Hilbert spaces H′

j as a reference space and never perform any
operations on it. Remember that the transmission of quantum states is mathe-
matically equivalent to sharing the maximally entangled state between the input
and output systems. We consider the following virtual protocol. Initially, the
maximally entangled state |Φ〉j ∈ Hj ⊗ H′

j is on a source node vO (e (j)) for
j satisfying 1 ≤ j ≤ n. Then, we check whether the final state is the maxi-
mally entangled state on H′

j ⊗ HN+n+l+j between a source node vO (e (j)) and
a terminal node vI (e (N + n + l + j)) for all j satisfying 1 ≤ j ≤ n.

Therefore, as a generalization of [22, Theorem 1], we obtain the following
theorem.
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Theorem 1. Any state in ⊗n
j=1Hj can be transmitted to spaces ⊗n

j=1HN+n+l+j

by a protocl given as Protocol 1 if the corresponding classical network coding
identify by {θj,k} is a multiple-unicast network code. That is, when the maximally
entangled state |Φ〉j ∈ Hj ⊗ H′

j is prepared as the initial state on a source node
vO (e (j)) for j satisfying 1 ≤ j ≤ n, after finishing the above protocol, the
resultant state is a maximally entangled state |Φ〉j on H′

j ⊗ HN+n+l+j for all j
satisfying 1 ≤ j ≤ n.

Protocol 1. Quantum network coding protocol for general network code
Step 1: Initialization

First, the initial state is prepared on the input edges ⊗n
j=1Hj .

Step 2: Transmission
This step consists of N +n substeps. Starting from j = n+ l +1, we repeat substeps
until j = N + 2n + l. The j-th substeps start after the j − 1-th substep finished, and
can be described as follows: The node vI (e (j)) has the Hilbert space HQI(j) at this
time. The node vI (e (j)) prepares the Hilbert space Hj in |0〉j . Then, if the node
vI (e (j)) receives the shared random variable B ′ via the edges (CI (j)) �= ∅ at this
time, the node vI (e (j)) operates the unitary

Xj(
∑

k∈CI(j)

θj,n+kbk)Uj| QI(j) (θ) (17)

on HQI(j) ⊗ Hj . If the node vI (e (j)) has no shared randomness at this time, it
operates the controlled unitary Uj| QI(j) (θ) on Hj ⊗ HQI(j). That is, Hj is the con-
trolled system and HQI(j) is the controlling system. The node vI (e (j)) sends the
Hilbert space Hj to the node vO (e (j)) through the quantum channel e (j). The
node vI (e (j)) classically announces that the j-th substep is finished.

Step 3: Measurement on Fourier-basis
For all j satisfying 1 ≤ j ≤ n or n+l+1 ≤ j ≤ N+n+l, the node vO (e (j)) measures
the Hilbert space Hj in the Fourier basis, and sends the measurement outcome βj

to all the terminal nodes vI (e (N + n + l + k)) satisfying m0 (j, k) �= 0.
Step 4: Recovery

For all k satisfying 1 ≤ k ≤ n, the terminal node vI (e (N + n + l + k)) operates

Z
(
−βk −∑N+n+l

j=n+l+1 βjm0 (j, k)
)

on the output Hilbert space HN+n+l+k, where a

matrix M0 is defined by Eq.(5).

Proof. We define the Hilbert spaces HI , HG, HG′ and HO as HI :=
⊗n

j=1 H′
j ,

HG :=
(⊗n

j=1 Hj

)
⊗
(⊗N+2n+l

j=n+l+1 Hj

)
, HG′ :=

(⊗n
j=1 Hj

)
⊗
(⊗N+n+l

j=n+l+1 Hj

)
,

HO :=
⊗N+2n+l

j=N+n+l+1 Hj . By straightforward calculation, we find that the state
on the network after Step 2 is
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1
qn+n′

∑

b∈Fn′
q

∑

a,a′∈Fn
q

|a〉I〈a ′|I ⊗ |MG ·
(
a
b

)

〉G〈MG ·
(
a ′

b

)

|G

=
1

qn+n′

∑

b∈Fn′
q

∑

a,a′∈Fn
q

|a〉I〈a ′|I ⊗ |M ′
G ·
(
a
b

)

〉G′〈M ′
G ·
(
a ′

b

)

|G′ ⊗ |a〉O〈a ′|O.

In the above equation, matrices MG and M ′
G are defined as a submatrix of M0

consisting of all j-th rows satisfying j ∈ {1, · · · , n}∪{n + l + 1, · · · , N + 2n + l}
and a submatrix of M0 consisting of all j-th rows satisfying j ∈ {1, · · · , n} ∪
{n + l + 1, · · · , N + n + l}, respectively, where a matrix M0 is given by Eq.(5).
Suppose that the measurement outcomes in Step 3 form a vector β ∈ F

N+n
q .

Then, the state after Step 3 is

1
qn

∑

a,a′∈Fn
q

ωtrβT ·M ′
G·(a′−a,0)T |a〉I〈a ′|I ⊗ |a〉O〈a ′|O,

where T is transposition. Finally, by applying Z
(

−βk −∑N+n+l
j=n+l+1 βjm0 (j, k)

)
,

where Zj is the generalized Pauli Z on Hj , the state after Step 4 can be written
as

1
qn

∑

a,a′∈Fn
q

|a〉I〈a ′|I ⊗ |a〉O〈a ′|O,

which is the maximally entangled state to be constructed in this protocol.

3.2 Security Analysis

Next, we discuss the secrecy of the quantum state to be transmitted under the
following two assumptions. We assume that Eve can eavesdrop and contaminate
the information on all the edges in EA, and also knows the network structure,
i.e., the topology of the network and all the coefficients θ. The secrecy for the
quantum state is related not only to the secrecy of the classical information but
also to the recoverability of the classical information. To consider the relation
with the recoverability of the classical information, we employ a set of protected
edges EP including a set of output edges; EO ⊆ EP . For a protected edge
e (j) ∈ EP \EO, we also assume that the node vO (e (j)) shares private classical
randomness with the terminal nodes vI (e (N + n + l + k)) when m0 (j, k) �=
0 and vO (e (j)) �= vO (e (N + n + l + k)). To express the second assumption
clearly, we divide Step 3 into the following two steps:

Therefore, our protocol depends on the set of protected edges EP . That is,
our protocol is uniquely determined by the pair comparing of {θi,j} and EP ,
and it is called the quantum network code {θij}i∈{1,··· ,|E|},j∈I(i) with the set of
protected edges EP .

Hence, in Step 3-1 of the protocol, Eve derives all measurement outcomes βj

as long as e (j) is not in EP . We further define the notations: EA ⊂ Ẽ is the set
of edges which Eve attacks, and h is the size of EA, i.e. h := |EA|. We define
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Step 3-1: Measurement on non-protected edges
For all j satisfying n + l + 1 ≤ j ≤ N + n + l and e (j) /∈ EP , the node vO (e (j))
measures the Hilbert space Hj in the Fourier basis, and sends the measurement
outcome βj to the all terminal nodes vI (e (N + n + l + k)) satisfying m0 (j, k) �= 0
publicly.

Step 3-2: Measurement on protected edges
For all j satisfying n + l + 1 ≤ j ≤ N + n + l and e (j) ∈ EP , the node vO (e (j))
makes the same measurement and securely sends the measurement outcome βj to
the all terminal nodes vI (e (N + n + l + k)) satisfying m0 (j, k) �= 0 by use of the
shared-randomness.

functions ς (j) ∈ N and ι (j) ∈ N so that EA and EP can be written as EA =
{e (ς (j))}h

j=1 and EP = {e (ι (j))}h′

j=1 with ς (j) < ς (j + 1) and ι (j) < ι (j + 1);
that is, Eve attacks the quantum system e (ς (j)) on the j-th attack. Note that
we assume the condition that EO ⊆ EP , since this condition is natural from
the viewpoint of the definition of protected edges. However, it is mathematically
unnecessary, and we do not use it in the following part at all.

Now, in Step 2 of the protocol, the node vI (e (ς (j) + 1)) never sends the
Hilbert space Hς(j)+1 before the node vO (e (ς (j))) receives the Hilbert space
Hς(j). Hence, after Eve steals the Hilbert space Hς(j), she must return it to the
edge e (ς (j)) before she steals the Hilbert space Hς(j+1). Further, since Step 3-1
never starts before Step 2 completes, Eve’s operations in Step 2 cannot depend
on the measurement outcomes in Step 3-1. Hence, Eve’s attack in the Step 2 of
the protocol can be described as follows:

Eve’s attack: Eve is assumed to attack only edges in EA and not to attack any
nodes. Eve first has her initial Hilbert space W with state |φini〉, which is chosen
to be sufficiently large so that Eve’s operations can be written as unitaries. For
j = 1 to j = h, Eve repeats the following behavior: Eve applies the unitary Vj

on Hς(j) ⊗ W. Since Eve can hear the measurement outcomes on non-protected
edges, the system of the the classical information is denoted by V.

Hence, the security of the quantum network coding can be defined as follows:

Definition 3. The quantum network code {θij}i∈{1,··· ,|E|},j∈I(i) with the set of

protected edges EP is called secure for Eve’s attack {Vj}h
j=1 on the set of edges

EA if the following condition holds. When the initial state on the Hilbert space
HI ⊗ W ⊗ V is the same state as Theorem 1, the final state of the protocol is a
product state with respect to the partition between HI and W ⊗ V.

In the above definition, ρ ∈ B (H1 ⊗ H2) is called a product state if there
exist ρ1 ∈ B (H1) and ρ2 ∈ B (H2) such that ρ = ρ1 ⊗ ρ2. Note that, if the
quantum network coding is secure, even for any entangled initial state in ⊗n

j=1Hj

which has no correlation with Eve initially, there is no correlation between the
entangled initial state and Eve’s final state after the protocol. Now, we can
present the main result of this paper:



Single-Shot Secure Quantum Network Coding 181

Theorem 2. The quantum network code {θij}i∈{1,··· ,|E|},j∈I(i) with the set of
protected edges EP is secure for all Eve’s attacks on the set of edges EA if the fol-
lowing two conditions hold. (i) The classical network code {θij}i∈{1,··· ,|E|},j∈I(i)
is secret for Eve’s attacks on the set of edges EA. (ii) The set of protected edges
EP is recoverable for Eve’s attacks on EA in the sense of the classical network
coding.

Notice that Theorem 2 does not assume the condition EP ∩ EA = ∅. This
theorem guarantees that the secrecy analysis of our quantum network coding is
reduced to the analysis of the secrecy and the recoverability of the corresponding
classical network coding.

4 Conclusion

Based on a secure classical network code, we have proposed a canonical way
to make a secure quantum network code in the multiple-unicast setting. This
protocol certainly transmits quantum states when there is no attack. We have
also shown the secrecy of the quantum network code under the secrecy and the
recoverability of the corresponding classical network code.
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Appendix

A Security Proof Based on Computation Basis Security

To show the security theorem, we prepare an important result for the recovery
of the maximally entangled state from evaluation of classical information. First,
we consider a sufficient condition to approximately and locally generate the
maximally entangled state |Φ〉 :=

∑d
x=1

1√
d
|x〉A ⊗ |x〉A′ ∈ HA ⊗ HA′ on the

composite system HA ⊗ HA′ , where {|x〉A} and {|x〉A′} are the CONSs of HA

and HA′ , respectively. For this purpose, we focus on the following two conditions
for a pure state ρ on the composite system HA ⊗ HB ⊗ HR.

– ε1-classical secrecy: Let idR be the identity operation, ρmix,A be the
completely mixed state, κA be the pinching with respect to the computa-
tion basis of HA, i.e., κA(σ) :=

∑d
x=1 |x〉A A〈x|σ|x〉A A〈x|. The relation

F (κA ⊗ idR(ρAR), ρmix,A ⊗ ρR) ≥ 1 − ε1 holds.
– ε2-error classical recoverability: There exists a POVM M = {Mx}d

x=1

on HB such that
∑d

x=1 Tr ρAB |x〉A A〈x| ⊗ Mx ≥ 1 − ε2.

The following proposition is known.
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Proposition 1 (Renes[30]1). Assume that a state ρ = |Ψ〉〈Ψ | on the composite
system HA ⊗ HB ⊗ HR satisfies both of the above conditions. Then, there is a
TP-CP map κ : S(HB) → S(HA′) such that

F (idA ⊗κ(ρAB), |Φ〉〈Φ|) ≥ 1 − (
√

ε2 +
√

ε1)2. (18)

Proposition 1 guarantees that we can generate the maximally entangled state
between systems HA and HB only by an operation on the system HB if the bit
information on the system HA is a uniform random number almost indepen-
dent of the environment system HE and can be recovered in the system HB .
In our situation, these two conditions can be checked by the secrecy and the
recoverability.

Proof of Theorem 2: Part 1: To show the theorem, we prove that an entan-
gled state can be shared by sending entanglement halves from sink nodes by
applying Proposition 1 to the state after Step 3-1. We prepare notations, while
we employ the same notation as in the proof of Theorem 1. We introduce
the quantum systems Hn+1, . . . ,Hn+l to describe the shared-randomness edges
e(n + 1), . . . e(n + l). Given a shared-randomness vertex rk, by using the nota-
tion |b〉rk

:= |b, . . . , b〉n+
∑k−1

j=1 lj+1,··· ,n+
∑k

j=1 lj
, the initial state on the composite

system Hn+
∑k−1

j=1 lj+1 ⊗ · · · ⊗ Hn+
∑k

j=1 lj
connected to the shared-randomness

vertex rk. can be regarded as the super position state |Φ〉rk
:= 1√

q

∑
x∈Fq

|b〉rk
.

Hence, we denote the system span by |b〉SR := |b1〉r1 · · · |bn′〉rn′ by HSR.
In this protocol, it is important to consider the path, in which the sequence

of the messages is a ∈ F
n
q , the sequence of the shared random numbers is

b ∈ F
n′
q , the sequence of Eve’s injections is c ∈ F

h
q , the sequence of inputs

of attacked edges is z ∈ F
h
q , and the sequence of outputs of all edges Ẽ ∪ EO is

y = (yn+l+1, . . . , y2n+l+N ). Here, when e(j) is attacked, yj expresses the infor-
mation after the attack.

Depending on this path, the matrix component on Eve’s memory W is
determined. For (a, b, c) ∈ F

n+n′+h
q and y ∈ F

N+n
q , the matrix component

V (a, b, c,y) is given as

V (a, b, c,y) :=
( 2n+l+N∏

j=n+l+1

δ(yj , (M ′(a, b, c)T )j)
)( h∏

i=1

〈ci|Vi|(Mζ(a, b, c)T )i〉
)
.

Since the information c ∈ F
h
q does not appear in the final state, we define the

vector;

|Φ[a, b,y]〉 :=
∑

c

V (a, b, c,y)|φini〉W |a〉I |b〉SR|a,y〉G, (19)

Therefore, the state after Step 2 on the whole system is given as

q−(n+n′)/2
∑

a,b,y

|Φ[a, b,y]〉I,SR,G,W . (20)

1 This theorem is also reviewed in [31, Section 8.15.1].



Single-Shot Secure Quantum Network Coding 183

Now, for a sequence y ∈ F
N+n
q , we introduce the sequence yc :=

(yj)j∈EO∪Ẽ\EP
∈ F

N+n−h′
q , which expresses the information on the non-

protected edges EO ∪ Ẽ \ EP . When we observe the measurement outcome
β = (βj)j∈E\EP

∈ F
N+n−h′
q in Step 3-1, the resultant state is

|Ψβ〉 :=
∑

a,b,y

ω− trβ·(a,yc)q(N+n−h′−n−n′)/2
NP 〈a,yc|Φ[a, b,y]〉I,SR,G,W , (21)

where HNP := (⊗n
j=1Hj) ⊗ (⊗j∈EO∪Ẽ\EP

Hj).
Now we set HA := HI , HB := HP ⊗ HSR ⊗ V ′, and HR := W ⊗ V, where

HP := ⊗j:e(ι(j))∈EP
Hι(j). and V ′ expresses the Hilbert space of the measure-

ment outcome possessed by the system HB. Then, the final state is pure on the
composite system HA ⊗ HB ⊗ HR. Then, due to Proposition 1, it is enough to
show the 0-bit secrecy and the 0-bit recoverability separately for the state |Ψβ〉
with any measurement outcome β.
Part 2: Next, we discuss the 0-classical secrecy. Since HB does not belong to
Eve’s system, it is sufficient to prove the secrecy when we apply the Fourier
basis measurement for shared-randomness edges and protected edges and send
the measurement outcome α to Eve. That is, it is sufficient to show that the
unnormalized state

∑
b,yι

SR〈b| P 〈yι|ω− trα·(b,yι)qn/2
I〈a|Ψβ〉 does not depend

on a for each (α,β) ∈ F
N+2n+n′
q . Based on Lemma 2, we choose b(a) ∈ F

n′
q for

a ∈ F
n
q . Since the vector y(a) := M ′(−a, b(a), 0)T satisfies M ′(a, b, c)T +y(a) =

M ′(0, b + b(a), c)T and Mς(a, b, c) = Mς(0, b + b(a), c), we have V (a, b, c,y) =
V (0, b + b(a), c,y + y(a)). Hence, we have

q−(N−h′−n′)/2
∑

b,yι

SR〈b| P 〈yι|ω− trα·(b,yι)qn/2
I〈a|Ψβ〉

=
∑

b,y

ω− tr(α,β)·(a,b,y)
SR〈b| I〈a| G〈a,y|Φ[a, b,y]〉I,SR,G,W

=
∑

b,y

ω− tr(α,β)·(a,b,y)
∑

c

V (a, b, c,y)|φini〉W

=ωtr(α,β)·(a,b(a),y(a))
∑

b,y

ω− tr(α,β)·(0,b+b(a),y+y(a))

∑

c

V (0, b + b(a), c,y + y(a))|φini〉W

=ωtr(α,β)·(a,b(a),y(a))
∑

b′,y′
ω− tr(α,β)·(0,b′,y′)

∑

c

V (0, b′, c,y′)|φini〉W ,

where b′ := b + b(a) and y′ := y + y(a). Since ωtr(α,β)·(a,b(a),y(a)) is the global
phase factor, Eve’s information on W ⊗ V is independent of a. Thus, we obtain
the 0-classical security.
Part 3: To show the 0-error classical recoverability, we give a POVM {Ma′}a′∈Fn

q

on HP to recover Alice’s message a , which does not use the outcome β of the
Fourier basis measurement on E \ EP . The condition is given as
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Tr(Ma′ ⊗ |a〉I I〈a| ⊗ IR)|Ψβ〉〈Ψβ| =
δ(a,a′)

qn
. (22)

Now, using the function fb given in Definition 2, we define the POVM
Ma′ :=

∑
b∈Fn′

q ,yι∈Fh′
q :fb(yι)=a′ |b〉SR SR〈b| ⊗ |yι〉P P 〈yι|. When we make the

measurement {|b〉SR SR〈b| ⊗ |yι〉P P 〈yι| ⊗ |a〉I I〈a| ⊗ IR}b,yι,a, for observed
outcomes yι,a, b, there exists a sequence c such that yι = M ′

ι(a, b, c). Since the
relation (16) guarantees the relation fb(yι) = a, we obtain the desired condition
(22). �

In summary, the above proof shows Theorem 2 via the 0-classical secrecy and
the 0-error classical recoverability.

Remark 1. Here, we remark on the relation between our security proof and our
protocol. Using Proposition 1, the security proof gives a protocol to transmit a
quantum state to HB . Hence, one might consider that this protocol can be used
for our purpose. However, this protocol cannot be used for three reasons. (i)
Whereas our real setting is multiple-unicast, the protocol in the security proof
assumes one receiver. (ii) The protocol in the security proof requires a measuring
operation on the shared-randomness as a coherent superposition state across the
sharing edges. In the real situation, each receiver possesses only a part of edges.
(iii) To realize the protocol given in the security proof, we need to identify the
edges attacked by Eve. However, the legitimate users know only the range of
Eve’s possible attack. Hence, they cannot perform the decoding protocol. Due
to three problems, we cannot apply the protocol given in the security proof in
our multiple unicast setting.

Remark 2. One might consider that it is sufficient to apply Proposition 1 to
the case when HA := HI , HB := HP ⊗ HSR, and HR := W for the respective
measurement outcome β. However, this application only shows that the whole
density on HI ⊗ W ⊗ V is written as

∑

β

pβρI,β ⊗ ρE,β ⊗ |β〉〈β|. (23)

Hence, we need to apply Proposition 1 to the case when HA := HI , HB :=
HP ⊗ HSR ⊗ V ′, and HR := W ⊗ V.

Indeed, one might consider that the combination of form (23) and Part 3 of
our proof shows the desired statement because Part 3 of our proof shows the
independence of Eve’s state from HI when HI is measured in a computational
basis. This fact only shows that the state 〈a|ρI,β|a〉ρE,β is independent of a.
That is, the form (23) and Part 3 of our proof do not deny the possibility of the
correlation between the resultant state on Eve’s system and HI when the state
on HI is measured in another basis.

B Constructions of Matrices Describing Network

In this appendix, we concretely construct the matrices describing the network
structure.
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B.1 Construction of M0

The definition of input edges and shared-randomness edges determine the coef-
ficients {m0 (i, k)}i,k for 1 ≤ i ≤ n + l as follows: For 1 ≤ i ≤ n, e (i) is an
input edge, that is, e (i) ∈ EI . Thus, the definition of input edges determines
{m0 (i, k)}n+n′

k=1 as

{m0 (i, k)}n+n′

k=1 = (

i−1
︷ ︸︸ ︷
0, · · · , 0, 1,

n′+n−i
︷ ︸︸ ︷
0, · · · , 0) for 1 ≤ i ≤ n. (24)

For n + 1 ≤ i ≤ n + l, e (i) is a shared-randomness edge, that is, e (i) ∈ ER.
Hence, there uniquely exists an integer i′ ∈ [1,m] such that n +

∑i′−1
j=1 lj + 1 ≤

i ≤ n +
∑i′

j=1 lj . Thus, the definition of shared-randomness edges determines

{m0 (i, k)}n+n′

k=1 as

{m0 (i, k)}n+n′

k=1 = (

n+i′−1
︷ ︸︸ ︷
0, · · · , 0, 1,

m−i′
︷ ︸︸ ︷
0, · · · , 0). (25)

Using Eqs. (4) and (5), we derive the recurrence relation of m0 (i, k) as

m0 (i, k) =
i−1∑

j=1

θijm0 (j, k) . (26)

Thus, the coefficients {θij}i∈{1,...,|E|},j<i completely determine all the coefficients
{m0 (i, k)}i,k through Eqs. (24), (25), and (26).

B.2 Construction of M

Since
Yi =

∑

j∈I(i)

θijY
′
j ,

Eqs. (10) and (7) lead

m (i, k) =
∑

j∈I(i)

θijm
′(j, k). (27)

Thus, from Eqs. (27) and (9), we derive the following recurrence relations for
m (i, k):

m (i, k) =
∑

j∈I(i)\EA

θijm (j, k) +
h∑

i′=1

θiς(i′)δk,n+n′+i′ , (28)

where we define θiς(i′) = 0 for i′ such that ς (i′) �∈ I (i).
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Abstract. This paper considers multiple unicast wireline noiseless net-
works where a single source wishes to transmit independent messages
to a set of legitimate destinations. The primal goal is to characterize
the secure capacity region, where the exchanged messages have to be
secured from a passive external eavesdropper that has unbounded com-
putational capabilities, but limited network presence. The secure capac-
ity region for the case of two destinations is characterized and it is shown
to be a function of only the min-cut capacities and the number of edges
the eavesdropper wiretaps. A polynomial-time two-phase scheme is then
designed for a general number of destinations and its achievable secure
rate region is derived. It is shown that the secure capacity result for the
two destinations case is not reversible, that is, by switching the role of
the source and destinations and by reversing the directions of the edges,
the secure capacity region changes.

1 Introduction

Information theoretical network security is increasingly gaining importance, as
we are moving towards a quantum computing era. On the one hand, the com-
putational power at our disposal is continuously increasing and on the other,
terabytes of data per seconds are exchanged over communication networks, a
large portion of which needs to be secure (e.g., banking, professional, health).
However, we still have very limited understanding of information theoretical
security bounds and schemes over arbitrary networks.

In this paper, we consider an arbitrary wireline noiseless network with unit
capacity edges where a source needs to securely transmit information to one
or more receivers. A passive external eavesdropper, Eve, wishes to learn some
information about the data exchanged between the legitimate nodes. Eve has
unbounded computational capabilities (e.g., a quantum computer), but has lim-
ited network presence, namely, she can wiretap at most k edges of her choice.
Over such a network, information theoretical network security seeks to design
transmission schemes that are unconditionally/perfectly secure.
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Our first main result is to extend the secure network coding capacity, from
the single unicast and multicast cases [1], to the case of two unicast sessions.
In particular, in a unicast session, if the min-cut capacity between the source
and the receiver is M , then we can securely transmit information at rate M −k,
where k is the number of edges Eve wiretaps (and the same result extends to
the case of multicasting [1]). We prove in this paper that, if the source needs to
send two independent messages to two receivers, a surprising direct extension
of the single unicast case applies, where again the secure capacity region is
uniquely determined by the min-cut capacities M{1},M{2} and M{1,2} (towards
the first, second and the union of the two receivers), reduced by the number of
the eavesdropped edges k, and thus the network structure plays no role. This is
enabled by the observation that the source can establish secure keys with the
two receivers that need not to be independent, i.e., they may share common
randomness that can be efficiently multicast using network coding techniques.
To the best of our knowledge, this is the first result that provides the secure
capacity region characterization for a general network where multiple unicast
sessions take place simultaneously.

Our second main result focuses on the case where we have an arbitrary num-
ber m of unicast sessions. We first derive an outer bound on the secure capacity
region and then design a polynomial-time transmission scheme and derive its
achievable secure rate region. In particular, our achievable scheme consists of
two phases, where first secure keys are exchanged between the source and the
destinations, then messages are encoded with these keys and finally transmitted.
Although this scheme is not optimal, it is computationally efficient and it pro-
vides a performance guarantee on the secure achievable rate region as a function
of any rate m-tuple that is achievable in the absence of the eavesdropper Eve.

Finally, we also show that the secure capacity result is irreversible, i.e., the
capacity region of the reverse network (obtained by switching the role of the
source and the destinations and by reversing the directions of the edges) is not
the same as the one of the original network. This is a surprising result since
it implies that – different from the unsecure case where irreversible networks
must necessary have non-linear network coding solutions [2,3] – under security
constraints even networks with linear network coding solutions can be irreversible
if the traffic is multiple unicast.

Related Work. The benefits of network coding were first shown in the seminal
paper by Ahlswede et al. [4], where the authors proved that, in a noiseless net-
work (represented by a directed acyclic graph) with single source and multiple
destinations, the source can multicast at a rate equal to the minimum among all
the min-cut capacities. Later, Li et al. [5] showed that it suffices to use random
linear coding operations to achieve the multicast capacity and, more recently
Jaggi et al. [6] designed polynomial-time deterministic algorithms to achieve it.
While for the case of single unicast and multicast traffic the capacity is well-
known, the same is not true for the case of networks where multiple unicast
sessions take place simultaneously and share some of the network resources.
For instance, even though the cut-set bound was proved to be tight for some
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special cases, such as single source with non-overlapping demands and single
source with non-overlapping demands and a multicast demand [7], in general
it is not tight [8]. It was also recently showed by Kamath et al. [9] that char-
acterizing the capacity of a general network where two unicast sessions take
place simultaneously is as hard as characterizing the capacity of a network with
general number of unicast sessions. For the case of single source and two desti-
nations with a non-overlapping demand and a multicast demand, Ramamoorthy
et al. [10] proposed a nice graph theory based approach to characterize the
capacity region.

Cai et al. [1] characterized the secure capacity of a network with multicast
traffic, where a passive external eavesdropper wiretaps any k edges of her choice.
In particular, the authors showed that a secure multicast communication rate
of M − k can always be achieved, where M is the minimum among all the min-
cut capacities. Also, for a multicast scenario, Cui et al. [11] designed a secure
achievable scheme when Eve can wiretap only some of the edges (i.e., among all
possible subsets of k edges, the eavesdropper can wiretap only some of them)
and when the edge capacities are non-uniform. Since, even in the absence of the
eavesdropper, the capacity of a multiple unicast network is not known in general,
very few results are available for security. For instance, recently Agarwal et al.
characterized the secure capacity region for some variations of the butterfly
network both for noiseless [12] and erasure channels [13]. Although the results
in [12] and [13] were the first that provided secure capacity results in multiple
unicast scenarios, they are tailored to some specific network topologies. We here
extend these results to a general multiple unicast network with single source (for
which the capacity in absence of Eve is given by the cut-set bound [7]) and we
characterize the secure capacity region for the case of two destinations.

Paper Organization. This paper is organized as follows. In Sect. 2, we define
the setup (i.e., the multiple unicast network with single source and general num-
ber of destinations) and we formulate the problem. In Sect. 3, we focus on the
secure capacity region characterization for our setup. In particular, we first derive
an outer bound that holds for general number of destinations, we then show
that this outer bound is tight for the case of two destinations and we finally
design a two-phase secure transmission scheme for general number of destina-
tions and compute its achievable rate region. In Sect. 4, we analyze and compare
our designed schemes in terms of performance and complexity. In Sect. 4, we also
show that the secure capacity result is irreversible and we finally conclude the
paper.

2 Setup and Problem Formulation

Notation. Calligraphic letters indicate sets; ∅ is the empty set and |A| is the
cardinality of A; for two sets A1,A2, A1 ⊆ A2 indicates that A1 is a subset of
A2, A1 ∪ A2 indicates the union of A1 and A2, A1 � A2 indicates the disjoint
union of A1 and A2, A1 ∩ A2 is the intersection of A1 and A2 and A1\A2 is the
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set of elements that belong to A1 but not to A2; [n1 : n2] is the set of integers
from n1 to n2 ≥ n1; [x]+ := max{0, x} for x ∈ R.

We represent a wireline noiseless network with a directed acyclic graph G =
(V, E), where V is the set of nodes and E is the set of directed edges. We further
assume that each edge e ∈ E is of unit capacity. If an edge e ∈ E connects a node
i to a node j, we refer to node i as the tail and to node j as the head of e, i.e.,
tail(e) = i and head(e) = j. For each node v ∈ V, we define I(v) as the set of all
incoming edges of node v and O(v) as the set of all outgoing edges of node v.

In this network (graph), there is one source node S and m destination nodes
Di, i ∈ [1 : m]. The source node does not have incoming edges, i.e., I(S) = ∅, and
each destination node does not have outgoing edges, i.e., O(Di) = ∅,∀i ∈ [1 : m].
The source S has a message Wi for each destination Di, i ∈ [1 : m]. The m
messages are assumed to be independent. Thus, this network consists of multiple
unicast traffic where m unicast sessions take place simultaneously and share
some of the network resources. A passive eavesdropper Eve is also present in the
network and can wiretap any k edges of her choice. We highlight that Eve is an
external eavesdropper, i.e., it is not one of the destinations.

Each message Wi, i ∈ [1 : m], is of q-ary entropy rate Ri and each channel
is a discrete noiseless channel accepting alphabets over Fq. Over this network,
we are interested in finding all possible feasible m-tuples (R1, R2, . . . , Rm) such
that each destination Di, i ∈ [1 : m], reliably decodes the message Wi and Eve
receives no information about the messages. In particular, we are interested in
information theoretic secure communication, i.e., we consider “perfect secrecy”.

The symbol transmitted (respectively, received) over n channel uses on edge
e ∈ E is denoted as Xn

e (respectively, Y n
e ). Similarly, Zn

e , e ∈ E , is the symbol
received by Eve on edge e ∈ E over n channel uses. Clearly, since the channels
are noiseless, Yei = Zei = Xei,∀i ∈ [1 : n]; throughout the paper, we use these
symbols interchangeably. In addition, for Et ⊆ E we define Xn

Et
= {Xn

e : e ∈
Et}, Y n

Et
= {Y n

e : e ∈ Et} and Zn
Et

= {Zn
e : e ∈ Et}. We assume that the source

node S has an independent and infinite source of randomness Θ, while the other
nodes in the network do not have any randomness.

Definition 1. A rate m-tuple (R1, R2, . . . , Rm) is said to be securely achievable
if there exist a block length n, a set of encoding functions fe, ∀e ∈ E, such that

Xn
e =

{
fe (W1,W2, . . . , Wm,Θ) if tail(e) = {S}
fe ({Y n

� : � ∈ I(tail(e))}) otherwise ,

and destination Di can reliably (with zero error) decode the message Wi i.e.,
H (Wi|{Y n

e : e ∈ I(Di)}) = 0. Moreover, ∀ EZ ⊆ E, |EZ | ≤ k, I
(
W[1:m];Zn

EZ

)
=

0 (strong secrecy requirement). The closure of all such feasible rate m-tuples is
the secure capacity region.

3 Secure Capacity

In this section we focus on the secure capacity region characterization for the
network described in Sect. 2, when an eavesdropper Eve wiretaps any k edges of
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her choice. In particular, we first derive an outer bound for a general number m
of destinations and then design a secure transmission scheme that achieves the
outer bound for m = 2. This result leads to the secure capacity region character-
ization for m = 2. Finally, we provide the design of a two-phase secure achievable
scheme for a general number m of destinations and compute its achievable rate.

3.1 Outer Bound

We here derive an outer bound on the secure capacity region of a multiple unicast
network with a single source and m destinations. In particular, the outer bound
is provided in the next theorem.

Theorem 1. An outer bound on the secure capacity region for a multiple unicast
network with single source and m destinations is given by

RA ≤ [MA − k]+, ∀A ⊆ [1 : m] , (1)

where RA :=
∑
i∈A

Ri and MA is the min-cut capacity between the source S and

the set of destinations DA := {Di : i ∈ A}.
Proof. Let EA be a min-cut between the source S and DA and EZ ⊆ EA be the
set of k edges wiretapped by Eve and define I(DA) :=

⋃
i∈A I(Di). If |EA| < k,

let EZ = EA. We have,

nRA = H(WA)
(a)
= H(WA) − H(WA|Xn

I(DA))
(b)
= H(WA) − H(WA|Xn

EA)
(c)
= I(WA;Xn

EZ ,Xn
EA\EZ )

= I(WA;Xn
EZ ) + I(WA;Xn

EA\EZ |Xn
EZ )

(d)
= I(WA;Xn

EA\EZ |Xn
EZ )

(e)

≤ H(Xn
EA\EZ )

(f)

≤ n[MA − k]+ ,

where WA = {Wi, i ∈ A} and where: (i) the equality in (a) follows because of
the decodability constraint; (ii) the equality in (b) follows because Xn

I(DA) is a
deterministic function of Xn

EA ; (iii) the equality in (c) follows from the definition
of mutual information and since EA = EZ ∪EA\Z ; (iv) the equality in (d) follows
because of the perfect secrecy requirement; (v) the inequality in (e) follows since
the entropy of a discrete random variable is a non-negative quantity and because
of the ‘conditioning reduces the entropy’ principle; (vi) finally, the inequality in
(f) follows since each link has unit capacity and since |EA \EZ | = [MA −k]+. By
dividing both sides of the above inequality by n we obtain that RA in (1) is an
outer bound on the capacity region of the multiple unicast network with single
source and m destinations. This concludes the proof of Theorem 1.
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Remark 1. Since the eavesdropper Eve wiretaps any k edges of her choice, intu-
itively Theorem 1 states that if she wiretaps k edges of a cut with capacity M ,
we can at most hope to reliably transmit at rate M − k. However, this holds
only for the case of single source; indeed, as we will see in Sect. 4.2 through
an example, higher rates can be achieved for the case of single destination and
multiple sources.

3.2 Secure Capacity Region for m = 2

We here prove that the outer bound in Theorem 1 is indeed tight for the case
m = 2. In particular, our main result is stated in the following theorem.

Theorem 2. The outer bound in (1) is tight for the case m = 2, i.e., the secure
capacity region of a multiple unicast network with single source and m = 2
destinations is given by

R1 ≤ [M{1} − k]+ , (2a)

R2 ≤ [M{2} − k]+ , (2b)

R1 + R2 ≤ [M{1,2} − k]+ . (2c)

Proof. Clearly, from the result in Theorem 1, the rate region in (2) is an outer
bound on the capacity region of a multiple unicast network with single source
and m = 2 destinations. Hence, we now need to prove that the rate region
in (2) is also achievable. Towards this end, we start by providing the following
definition of separable graphs.

Definition 2. A graph G = (V, E) with a single source and m destinations is
said to be separable if its edge set E can be partitioned as E = �2m−1

�=1 E ′
� such

that G′
� = (V, E ′

�) and

MA =
∑

J ⊆[1:m]
J ∩A�=∅

M�
J , ∀A ⊆ [1 : m] ,

where MA is the min-cut capacity between the source S and the set of destinations
DA := {Di : i ∈ A} in G and M�

J is the min-cut capacity between the source S
and the set of destinations DB := {Db : b ∈ B}, ∀B ⊆ J for the graph G′

� with
� ∈ [1 : 2m − 1] being the decimal representation of the binary vector of length
m that has a one in all the positions indexed by j ∈ J and zero otherwise, with
the least significant bit in the first position.

To better understand the above definition, consider a graph G with m = 2
destinations. Then, the graph G is separable if it can be partitioned into 3 graphs
such that:

– G′
1 has the following min-cut capacities: M�

{1} from S to D1 and zero from S
to D2,
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– G′
2 has the following min-cut capacities: zero from S to D1 and M�

{2} from S
to D2,

– G′
3 has the following min-cut capacities: M�

{1,2} from S to D1, M�
{1,2} from S

to D2 and M�
{1,2} from S to {D1,D2},

where the quantities M�
{1}, M�

{2} and M�
{1,2} can be computed using the following

set of equations:

M{i} = M�
{i} + M�

{1,2},∀i ∈ [1 : 2] , (3a)

M{1,2} = M�
{1} + M�

{2} + M�
{1,2} . (3b)

For example, consider the network G0 in Fig. 1(a), which has min-cut capacities
M{1} = M{2} = 3 and M{1,2} = 4. It is not difficult to see that G0 in Fig. 1(a)
can be partitioned in three graphs G′

i, i ∈ [1 : 3] as shown in Figs. 1(b)–(d), with
min-cut capacities equal to (see (3)) M�

{1} = M�
{2} = 1 and M�

{1,2} = 2.

S

D1 D2

(a)

S

D1

(b)

S

D1 D2

(c)

S

D1 D2

(d)

Fig. 1. A 2-destination separable network G0 in Fig. 1(a) and its partition graphs G′
i, i ∈

[1 : 3] in Figs. 1(b)–(d).

We now state the following lemma, which is a direct consequence of [10,
Theorem 1] and we will use to prove the achievability of the rate region in (2).

Lemma 1. Any graph with a single source and m = 2 destinations is separable.

For completeness we report the proof of Lemma 1 in Appendix A. By lever-
aging the result in Lemma 1, we are now ready to prove Theorem 2. In par-
ticular, we consider two cases depending on the value of k (i.e., the number of
edges the eavesdropper wiretaps). Without loss of generality, we assume that
k < mini∈[1:2] Mi, as otherwise secure communication to the set of destinations
{Di : k ≥ Mi} is not possible at any rate, and hence we can just remove this set
of destinations from the network.

1. Case 1: k ≥ M�
{1,2}. In this case, by substituting the quantities in (3) into (2),

we obtain that the constraint in (2c) is redundant. Thus, we will now prove
that the rate pair (R1, R2) = (M{1} − k,M{2} − k) is securely achievable,



Secure Network Coding for Multiple Unicast 195

which along with the time-sharing argument proves the achievability of the
entire region in (2).
We denote with y1, y2, . . . , yk the k key packets and with m

(1)
i ,m

(2)
i , . . . , m

(Ri)
i

(with i ∈ [1 : 2]) the Ri message packets for Di. With this, our scheme is as
follows:

– We multicast yi,∀i ∈ [1 : M�
{1,2}], to both D1 and D2 using G′

3, which has
edges denoted by E ′

3. This is possible as G′
3 has a min-cut capacity M�

{1,2}
to both D1 and D2 (see Definition 2).

– We unicast y�,∀� ∈ [M�
{1,2} + 1 : k], to Di,∀i ∈ [1 : 2], using k − M�

{1,2}
paths out of the M�

{i} disjoint paths in G′
i. We denote by Êi the set that

contains all the first edges of these paths. Clearly, |Êi| = k − M�
{1,2},∀i ∈

[1 : 2]. Notice that Êi ⊆ E ′
i ,∀i ∈ [1 : 2] (see Definition 2).

– We send the Ri,∀i ∈ [1 : 2], encrypted message packets (i.e., encoded
with the keys) of Di on the remaining M�

{i} − k + M�
{1,2} disjoint paths

in G′
i. We denote by Ēi the set that contains all the first edges of these

paths in G′
i. Clearly, |Ēi| = Ri,∀i ∈ [1 : 2], Ēi ⊆ E ′

i and Ēi ∩ Êi = ∅ (see
Definition 2).

This scheme achieves Ri = M�
{i} − k + M�

{1,2} = M{i} − k,∀i ∈ [1 : 2], where
the second equality follows by using the definitions in (3). Now we prove that
this scheme is also secure. We start by noticing that, thanks to Definition 2,
the edges E ′

3, Êi and Ēi, with i ∈ [1 : 2], do not overlap. We write these
transmissions in a matrix form (with G and U being the encoding matrices)
and we obtain

⎡
⎣XE′

3

XÊ1

XÊ2

⎤
⎦ =

⎡
⎢⎢⎢⎣

g11 g12 . . . g1k

g21 g22 . . . g1k

...
...

. . .
...

g�1 g�2 . . . g�k

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
G

⎡
⎢⎢⎢⎣

y1
y2
...

yk

⎤
⎥⎥⎥⎦ , � = |E ′

3| + 2
(
k − M�

{1,2}
)

,

[
XĒ1

XĒ2

]
=

⎡
⎢⎢⎢⎣

u11 u12 . . . u1k

u21 u22 . . . u2k

...
...

. . .
...

ur1 ur2 . . . urk

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
U

⎡
⎢⎢⎢⎣

y1
y2
...

yk

⎤
⎥⎥⎥⎦ ⊕

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m
(1)
1
...

m
(R1)
1

m
(1)
2
...

m
(R2)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, r = R1 + R2 .

The eavesdropper Eve wiretaps k1 ≤ k edges from the collection of edges
{E ′

3, Ê1, Ê2}, over which the linear combinations XE′
3
, XÊ1

and XÊ2
of keys

are transmitted, and k2 = k − k1 edges from the collection of edges {Ē1, Ē2}
over which the messages encoded with the keys XĒ1

and XĒ2
are transmitted.

We here note that on the other edges E\{E ′
3 ∪ Ê1 ∪ Ē1 ∪ Ê2 ∪ Ē2}, of the net-

work, we either do not transmit any symbol or simply route the symbols from
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{XĒ1
,XĒ2

,XÊ1
,XÊ2

} (corresponding to the symbols transmitted on disjoint
paths). Thus, without loss of generality, we can assume that Eve does not
wiretap any of these edges. Since the first |E ′

3| rows of G (i.e., those that cor-
respond to multicasting of they keys) are determined by the network coding
scheme for multicasting [4], we assume that we do not have any control over
the construction of G.
Thus, we would like to construct the code matrix U such that all the linear
combinations of the keys used to encrypt the messages are mutually indepen-
dent and are independent from the linear combinations of the keys wiretapped
on the k1 edges (notice that this makes the symbols wiretapped by the eaves-
dropper completely independent from the messages). In particular, since in
the worst case Eve wiretaps k1 edges which are independent linear combi-
nations, we would like that any matrix formed by k1 independent rows of
the matrix G and k2 rows of the matrix U is full rank. Since there is a finite
number of such choices and the determinant of each of these possible matrices
can be written in a polynomial form – which is not identically zero – as a
function of the entries of U , then we can choose the entries of U such that all
these matrices are invertible. Thus, we can always construct the code matrix
U such that the edges wiretapped by Eve have an independent key and hence
Eve does not get any information about the message packets, i.e., the scheme
is secure. This implies that the rate pair (R1, R2) = (M{1} − k,M{2} − k) is
securely achievable.

2. Case 2: k < M�
{1,2}. By substituting the quantities in (3), the rate region in

(2) becomes

Ri ≤ M{i} − k = M�
{i} + M�

{1,2} − k,∀i ∈ [1 : 2] , (4a)

R1 + R2 ≤ M{1,2} − k = M�
{1} + M�

{2} + M�
{1,2} − k . (4b)

We now show that we can achieve the following two corner points i.e., the
rate pair

(R1, R2) =
(
α(M{1,2} − M{2}) + (1 − α)(M{1} − k),

α(M{2} − k) + (1 − α)(M{1,2} − M{1})
)

(a)
= (M�

{1} + α(M�
{1,2} − k),M�

{2} + (1 − α)(M�
{1,2} − k)) , (5)

for α ∈ {0, 1}, where the equality in (a) follows by using the definitions
in (3). This along with the time-sharing argument proves the achievability
of the entire region in (4). We recall that we denote with y1, y2, . . . , yk the k

key packets and with m
(1)
i ,m

(2)
i , . . . , m

(Ri)
i (with i ∈ [1 : 2]) the Ri message

packets for Di. With this, our scheme is as follows:
– Using the graph G′

3 we multicast to both destinations D1 and D2:
(i) yi,∀i ∈ [1 : k], (ii) α(M�

{1,2} − k) encrypted message packets (i.e.,
encoded with the keys) for D1 and (iii) (1 − α)(M�

{1,2} − k) encrypted
message packets for D2. Recall that the edges of the graph G′

3 are denoted
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by E ′
3 (see Definition 2). We also highlight that the message packets mul-

ticast to the two destinations are encrypted using the key packets, where
the encryption is based on the secure network coding result on multicast-
ing [1], which ensures perfect security from an adversary wiretapping any
k edges.

– We send M�
{i} encrypted message packets of Di on the M�

{i} disjoint paths

to Di in the graph G′
i, and denote by Êi the set that contains all the first

edges of these paths for i ∈ [1 : 2].
This scheme achieves the rate pair in (5). Now we prove that this scheme is also
secure. For ease of representation, in what follows we let R�

1 = α(M�
{1,2} − k)

and R�
2 = (1−α)(M�

{1,2}−k). We again notice that, thanks to Definition 2, the

edges E ′
3, Ê1 and Ê2 do not overlap. We write these transmissions in a matrix

form (with G, U and S being encoding matrices) and we obtain,

XE′
3

=

⎡
⎢⎢⎢⎣

g11 g12 . . . g1k

g21 g22 . . . g1k

...
...

. . .
...

g�1 g�2 . . . g�k

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
G

⎡
⎢⎢⎢⎣

y1
y2
...

yk

⎤
⎥⎥⎥⎦ ⊕

⎡
⎢⎢⎢⎣

s11 s12 . . . s1k

s21 s22 . . . s1k

...
...

. . .
...

s�1 s�2 . . . s�k

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m
(1)
1
...

m
(R�

1)
1

m
(1)
2
...

m
(R�

2)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, � = |E ′
3| ,

[
XÊ1

XÊ2

]
=

⎡
⎢⎢⎢⎣

u11 u12 . . . u1k

u21 u22 . . . u2k

...
...

. . .
...

ur1 ur2 . . . urk

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
U

⎡
⎢⎢⎢⎣

y1
y2
...

yk

⎤
⎥⎥⎥⎦⊕

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m
(R�

1+1)
1

...
m

(R1)
1

m
(R�

2+1)
2

...
m

(R2)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, r=R1+R2−(M�
{1,2}−k) .

The eavesdropper Eve wiretaps k1 ≤ k edges from E ′
3, over which the linear

combinations XE′
3

of key packets and message packets are sent, and k2 =
k − k1 edges from the collection of edges {Ê1, Ê2} over which the messages
encoded with the keys XÊ1

and XÊ2
are transmitted. Similar to Case 1, on

the other edges E\{E ′
3∪Ê1∪Ê2} of the network, we either do not transmit any

symbol or simply route the symbols from {XÊ1
,XÊ2

} (corresponding to the
symbols transmitted on disjoint paths). Thus, without loss of generality, we
can assume that the eavesdropper does not wiretap any of these edges. Since
the matrices G and S are determined by the secure network coding scheme for
multicasting [1], we do not have any control over their construction. Thus,
we would like to construct the code matrix U in order to ensure security.
Again, similar to the argument used in Case 1, we can create U such that
any subset of k2 rows of U are linearly independent and not in the span of
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any subset of k1 rows of G. With this, the keys used to encrypt the messages
over any k2 edges of {Ê1, Ê2} are mutually independent and independent from
the keys used over any k1 edges of E ′

3. This, together with the fact that the
messages transmitted using G′

3 are already secure, makes our scheme secure.
This implies that the rate pair (R1, R2) in (5) is securely achievable.

This concludes the proof of Theorem 2.

3.3 A Two-Phase Scheme

We now propose the design of a secure transmission scheme that consists of
two phases, namely the key generation phase (in which secret keys are generated
between the source and the m destinations) and message sending phase (in which
the message packets are first encoded using the secret keys and then transmitted
to the m destinations). The corresponding achievable rate region is presented in
Theorem 3.

Theorem 3. Let (R̂1, R̂2, . . . , R̂m) be an achievable rate m-tuple in absence of
the eavesdropper Eve. Then, the rate m-tuple (R1, R2, . . . , Rm) with

Ri = R̂i

(
1 − k

M

)
,∀i ∈ [1 : m] , (6)

where M is the minimum min-cut between the source and any destination, is
securely achievable in the presence of an eavesdropper Eve who wiretaps any k
edges of her choice.

Proof. Let Mi be the min-cut capacity between the source and the destination
Di with i ∈ [1 : m]. We define M as the minimum among all these individual
min-cut capacities, i.e., M = mini∈[1:m] Mi. Let (R̂1, R̂2, . . . , R̂m) ∈ R

m be the
unsecure rate m-tuple achieved in the absence of the eavesdropper. We start by
approximating this rate m-tuple with rational numbers; notice that this is always
possible since the set of rationals Q is dense in R. Moreover, an information flow
through the network (from the source S to an artificial destination D′ connected
to all the destinations Di, i ∈ [1 : m] – see also Appendix B) that achieves this
rate m-tuple might involve fractional flows over the edges since the rate m-tuple
may be fractional. To make the rate m-tuple integral and thereby also the flow
over each edge, we multiply the capacity of each edge by a common factor T . This
implies that to achieve (R̂1, R̂2, . . . , R̂m), then (TR̂1, T R̂2, . . . , T R̂m) is achieved
over T instances of the network after which the flow over each edge is an integer.
In what follows, we describe our coding scheme and we show that

(R1, R2, . . . , Rm)=
(

1− k

M

)
(R̂1, R̂2, . . . , R̂m) (7)

is achievable. This particular scheme consists of the two following phases.
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– Key generation. This first phase – in which secure keys are generated between
the source and the destinations – consists of k subphases. In each subphase,
the source multicasts M − k random packets securely to all destinations.
This is possible thanks to the secure network coding result of [1], since the
minimum min-cut capacity is M and Eve has access to k edges. Thus, at the
end of this phase, a total of Tk(M − k) secure keys are generated, since in
each phase we use the network T times.

– Message sending. We choose Tk packets out of the Tk(M −k) securely shared
(in the key generation phase) random packets. For each choice of Tk packets,
we convert the unsecure scheme achieving (TR̂1, T R̂2, . . . , T R̂m) to a secure
scheme achieving the same rate m-tuple. Towards this end, we expand the
Tk shared packets into

∑m
j=1 TR̂j packets using an MDS code matrix. With

this, we have the same number of random packets as the message packets.
We then encode the message packets with the random packets and transmit
them as it was done in the corresponding unsecure scheme. We repeat this
process until we run out of the shared random packets, i.e., we repeat this
process M − k times by using T instances of the network each time.

Proof of security. We know that, in absence of security considerations, a time-
sharing based scheme is optimal (i.e., capacity achieving) for a multiple unicast
network with single source, i.e., network coding is not beneficial [7] (see also
Appendix B) Given that we are not using network coding operations and since
each edge carries an integer information flow, then the eavesdropper will be able
to wiretap at most Tk different messages each encrypted with an independent
key. Hence, the eavesdropper will not be able to obtain any information about
any of the m messages.
Analysis of the achieved rate m-tuple. The secure scheme described above
requires a total of M phases. In particular, in the first k phases we generate
the secure keys and in the remaining M −k phases we securely transmit at rates
of (TR̂1, T R̂2, . . . , T R̂m), over T network instances. Thus, the achieved secure
message rate (R1, R2, . . . , Rm) is

Rj =
M − k

M
R̂j =

(
1 − k

M

)
R̂j ,∀j ∈ [1 : m] . (8)

This concludes the proof of Theorem 3.

4 Discussion and Conclusions

In this section, we analyze, discuss and compare the results that we have derived
in the paper. In particular, we first compare the secure capacity region in (2)
with the capacity region of the same network in the absence of the eavesdropper.
We then show that the secure capacity result in (2), different from the unse-
cure counterpart, is irreversible. We also analyze the complexity of the capacity
achieving scheme and of the two-phase scheme. Finally, we summarize our main
contributions and conclude the paper.
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4.1 Secure Capacity Versus Unsecure Capacity

For the network with single source and multiple destinations described in Sect. 2,
the unsecure capacity (i.e., in the absence of the eavesdropper) is well known [7,
Theorem 9] and given by the following lemma. For completeness we report the
proof of the following lemma in Appendix B.

Lemma 2. The unsecure capacity region for a multiple unicast network with
single source node and m destination nodes is given by

RA ≤ MA, ∀A ⊆ [1 : m] , (9)

where RA :=
∑
i∈A

Ri and MA is the min-cut capacity between the source S and

the set of destinations DA := {Di : i ∈ A}.
We now focus on the case of m = 2 destinations and compare the secure

capacity region in Theorem 2 and the unsecure capacity region in Lemma 2.
By comparing (2) with (9) (evaluated for the case m = 2), we observe that in
the presence of the eavesdropper we lose at most a rate k in each dimension
compared to the unsecure case. We notice that the same result holds for the
case of m = 1 destination and for the case of multicasting the same message to
all receivers [1] (i.e., we have a rate loss of k with respect to the min-cut capacity
M). However, here it is more surprising since the messages to the m = 2 receivers
(and potentially the keys) are different.

4.2 Reversibility and Non-reversibility

In order to characterize the unsecure capacity region in (9) network coding is not
necessary and routing is sufficient (see also Appendix B). Thus, from the result
in [3], it directly follows that the capacity result in (9) is reversible. In particular,
let G be a network with single source and m destinations with a certain capac-
ity region (that can be computed from Lemma 2). Then, the reverse graph G′ is
constructed by switching the role of the source and destinations and by reversing
the directions of the edges. Thus, G′ will have m sources and one single destina-
tion. The result in [3] ensures that G and G′ will have the same capacity region,
i.e., the result in Lemma 2 characterizes also the unsecure capacity region for a
multiple unicast network with m sources and single destination.

We now focus on the secure case. In Sect. 3, we have characterized the secure
capacity region for a multiple unicast network with single source and m = 2
destinations. In particular, Theorem 2 implies that the secure capacity region
does not depend on the specific topology of the network and it can be fully char-
acterized by the min-cut capacities M{1},M{2} and M{1,2} and by the number k
of edges wiretapped by Eve. We now show that this result is irreversible, i.e., the
secure capacity region of the reverse network is not the same as the one of the
original network. Moreover, we also show that the secure capacity region with
2 sources and single destination cannot anymore be characterized by only the
min-cut capacities, i.e., it depends on the specific network topology.
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Consider the three networks in Fig. 2 and assume k = 1, i.e., Eve wiretaps
one edge of her choice. For the network in Fig. 2(a) we have min-cut capacities(
M{1},M{2},M{1,2}

)
= (1, 2, 2) and hence from Theorem 2 it follows that the

secure capacity for this network is given by (R1, R2) = (0, 1). This point can
be achieved by simply using the scheme shown in Fig. 2(a), where y represents
the key and W2 the message for D2. Now, consider the network in Fig. 2(b) that
is obtained from Fig. 2(a) by switching the role of the source and destinations
and by reversing the directions of the edges. For this network, which has the
same min-cut capacities as the network in Fig. 2(a), the rate pair (R1, R2) =
(1, 0) is securely achievable using the scheme shown in Fig. 2(a) where W1 is the
message of S1 and y1 and y2 are the keys generated by S1 and S2, respectively.
The rate pair (R1, R2) = (1, 0), which is securely achieved by the network in
Fig. 2(b), cannot be securely achieved by the network in Fig. 2(a). This result
implies that a secure rate pair that is feasible for one network might not be
feasible for the reverse network, i.e., the secure capacity regions can be different
and hence cannot be derived from one another. The achievability of the pair
(R1, R2) = (1, 0) in Fig. 2(b) also shows that the outer bound in (1) does not
hold for the case of single destination and multiple sources, in which case it is
possible to achieve rates outside this region.

S

D1 D2

y ⊕
W

2

y

y

(a) (R1, R2) = (0, 1) is ca-
pacity.

D

S1 S2

y1

y1 ⊕ W1

y2

y2

y2 ⊕ W1

(b) (R1, R2) = (1, 0) is
achievable.

D

S1 S2

X4

X3

X2X1

(c) (R1, R2) = (1, 0) is not
achievable.

Fig. 2. Network examples.

Consider now the network in Fig. 2(c), which has the same min-cut capacities(
M{1},M{2},M{1,2}

)
= (1, 2, 2) as the network in Fig. 2(b). We now show that

the rate pair (R1, R2) = (1, 0), which can be securely achieved in the network
in Fig. 2(b), cannot be securely achieved in the network in Fig. 2(c). Let Xi, i ∈
[1 : 4], be the transmitted symbols as shown in Fig. 2(c). With this, we have
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R1 = H(W1)
(a)
= H(W1) − H(W1|X3,X4)

(b)

≤ H(W1) − H(W1|X1,X2,X3)
= I(W1;X1,X2,X3)
= I(W1;X1) + I(W1;X2,X3|X1)
(c)
= I(W1;X2,X3|X1)
= H(X2,X3|X1) − H(X2,X3|W1,X1)
(d)
= H(X2,X3) − H(X2,X3) = 0 ,

where: (i) the equality in (a) follows because of the decodability constraint;
(ii) the inequality in (b) follows because of the ‘conditioning reduces the entropy’
principle and since X4 is a deterministic function of (X1,X2); (iii) the equality in
(c) follows because of the perfect secrecy requirement; (iv) finally, the equality in
(d) follows since (X2,X3) is independent of (W1,X1). This result shows that the
rate pair (R1, R2) = (1, 0) is not securely achievable in the network in Fig. 2(c).
This implies that, for a network with single destination and multiple sources,
we cannot characterize the secure capacity region based only on the min-cut
capacities

(
M{1},M{2},M{1,2}

)
, i.e., the result would depend on the specific

network topology.

4.3 Complexity Analysis

The capacity achieving scheme for m = 2 destinations that we have proposed
(see Sect. 3.2) first requires that we edge-partition the original graph G into
three graphs (i.e., an edge in G appears in only one of these three graphs). At
this stage, this step requires an exhaustive search over all possible paths in the
network, which requires an exponential number of operations in the number of
nodes. It therefore follows that the scheme proposed in Sect. 3.2, even though it
allows to characterize the secure capacity region, is of exponential complexity.

Differently, the two-phase scheme proposed in Sect. 3.3 runs in polynomial
time. This is because all the operations that it requires (i.e., find a T such that
over T instances all flows are integer, multicast the keys in the key generation
phase, encrypt messages at the source (i.e., encode the messages with the keys)
and route the encrypted messages) can be performed in polynomial time in the
number of edges. However, the two-phase scheme described in Sect. 3.3 is sub-
optimal and does not achieve the outer bound in (1). However, this scheme offers
a guarantee on the secure rate region that can always be achieved as a function
of any rate m-tuple that is achievable in the absence of the eavesdropper Eve
(see (6) in Theorem 3).

One reason behind this is that in the key generation phase some edges in
the network are not used. Indeed, when we multicast the M random packets to
generate the keys (where M is the minimum of the min-cut capacities and k
is the number of edges wiretapped by the eavesdropper) – out of which M − k
linear combinations are secure keys – it might have been possible to use the other
edges (i.e., those through which the random packets do not flow) to transmit
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some encrypted message packets. For instance, consider the network example in
Fig. 3(a), where the eavesdropper wiretaps k = 1 edge of her choice. Our two-
phase scheme would multicast M = min

i∈[1:2]
M{i} = 2 random packets y1 and y2 (y1

is transmitted over the solid edges and y2 over the dashed edges in Fig. 3(a)), out
of which M − k = 1 is securely received by D1 and D2. Hence, the combination
y1 ⊕ y2 can be used to securely transmit the message packets. However, we see
that in the first phase the dotted edge (i.e., the one that connects S directly to
D2) is not used. This brings to a reduction in the achievable rate region since
this edge could have been used to securely transmit a message packet to D2 by
using W2 ⊕ y1 as shown in Fig. 3(a). Given this, we believe that what makes the
two-phase scheme suboptimal is the fact that it does not fully leverage all the
network resources. In Fig. 3(b), we plotted different rate regions for the network
in Fig. 3(a), which has min-cut capacities M{1} = 2, M{2} = 3 and M{1,2} = 3.
In particular, the region contained in the solid curve is the unsecure capacity
region (given by (9) in Lemma 2), the region inside the dashed curve is the
secure capacity region (given by (2) in Theorem 2) and the region contained
inside the dotted line is the secure rate region that can be achieved by the two-
phase scheme (given by (6) in Theorem 3). From Fig. 3(b), we indeed observe
that the rate region achieved by the two-phase scheme is contained inside the
secure capacity region.

S

D1 D2

y1

y1

y2

y2

y2

y1

W
2 ⊕

y
1

(a) (R1, R2) = (0, 1) is ca-
pacity.

1

1

R2

R1

1
2 2

2

33
2

Unsecure Capacity Region
Secure Capacity Region
Secure Rate Region
Two-Phase Scheme

(b) Rate region for the network in Fig. 3(a).

Fig. 3. Network example for which the two-phase scheme is not optimal.

4.4 Summary

In this paper, we analyzed wireline noiseless networks where a single source would
like to convey independent messages to different destinations in the presence of
a passive external eavesdropper, who can wiretap any k edges of her choice.
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We first derived an outer bound on the capacity region that holds for any num-
ber of destinations and then showed that this bound is indeed tight for the case
of two destinations. To the best of our knowledge, this is the first secure capacity
result for a general network where multiple unicast sessions take place simultane-
ously (i.e., single source and two destinations). We also showed that this secure
capacity result, different from the unsecure counterpart, is irreversible. Finally,
we have proposed a secure two-phase transmission scheme for general number
of destinations and computed its achievable rate region. An appealing feature of
this scheme is that, even though it does not achieve the secure capacity region,
it can be implemented in polynomial time and it provides a performance guar-
antee on the secure achievable rate region as a function of any rate tuple that is
achievable in the absence of the eavesdropper Eve.

Appendix A

For completeness, we here report the proof of the result in Lemma 1, which is
a direct consequence of [10, Theorem 1]. In particular, this result shows that
any graph G with single source and m = 2 destinations is separable. The graph
G has min-cut capacity M{i}, i ∈ [1 : 2], towards destination Di and min-cut
capacity M{1,2} towards {D1,D2}, from which M�

{i}, i ∈ [1 : 2], and M�
{1,2}

can be computed by using the expressions in (3). We represent these min-cut
capacities by the triple

(
M{1},M{2},M{1,2}

)
=

(
M�

{1}+M�
{1,2},M

�
{2}+M�

{1,2},M
�
{1}+M�

{2} + M�
{1,2}

)
,

where the equality follows by using (3). We now prove Lemma 1 in two steps. We
first show that the graph G can be separated into two graphs: Ga with min-cut
capacities

(
M�

{1}, 0,M�
{1}

)
and Gb with min-cut capacities

(
M�

{1,2},M
�
{2} + M�

{1,2},M
�
{2} + M�

{1,2}
)

.

Then, by applying the same principle we further separate the graph Gb into
two graphs: Gc with min-cut capacities

(
0,M�

{2},M
�
{2}

)
and Gd with min-cut

capacities
(
M�

{1,2},M
�
{1,2},M

�
{1,2}

)
. This would complete the proof of Lemma 1.

We now prove that we can separate the graph G into the two graphs Ga and
Gb. Towards this end, from the original graph G, we create a new directed acyclic
graph G′ where a new node D′ is connected to D1 through an edge of capacity
M�

{1} +M�
{1,2} and to D2 through an edge of capacity M�

{2}. By following similar
steps as in the proof of the direct part (achievabiliy) of Lemma 2 (see Appendix
B), it is not difficult to see that in G′ the min-cut capacity between S and D′

is M�
{1} + M�

{1,2} + M�
{2} = M{1,2}, where the equality follows from (3b). From

the max-flow min-cut theorem, we can find M{1,2} edge-disjoint paths from S to
D′; we color the edges in these paths green. We can also find M{2} edge-disjoint
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paths from S to D2; we color the edges in these paths red. Notice that, at the
end of this process, some of the edges can have both green and red colors. We
also highlight that:

– Out of the M{1,2} green paths from S to D′, M�
{1}+M�

{1,2} paths flow through
D1 and M�

{2} flow through D2.
– If a path is exclusively green, it flows through D1 since otherwise, in addition

to the M{2} red edge-disjoint paths from S to D2, we would have also this
path and thereby violate the min-cut capacity constraint to D2.

The second observation above implies that, if there are M�
{1} exclusively green

paths, then we can separate the graph G′ into two graphs: G′
a that contains all

these M�
{1} exclusively green paths and G′

b that contains all the edges of G′ that
are not in G′

a. Given this, by simply removing the node D′ and its incoming edges,
we get Ga and Gb. We now show how we can obtain these M�

{1} exclusively green
paths. Towards this end, we denote with P the set of all green paths from S to
D′ (notice that these paths might have also some red edges). Then, until there
exists a path p ∈ P such that either it is not exclusively green or it does not
start with an edge that is both red and green, we apply the two following steps:

1. Let e be the first edge in p, which is both green and red and denote with g the
red path from S to D2 that contains the edge e. Recall that, since the M{2}
red paths are edge-disjoint, there is only one red path g passing through e.
We split the path p into two parts as p1 − e − p2 and similarly we split the
path g into g1 − e − g2.

2. We add the red color to p1 (that before was all green) and we remove the red
color from g1, i.e., now each edge in g1 is either green or it does not have any
color. Note that in this way we replace the red path g1−e−g2 with p1−e−g2
from source S to D2, which is also disjoint from the rest of M{2}−1 red paths.

We note that this process will stop only when all the M{1,2} paths from S to
D′ are either exclusively green or start with an edge that is both red and green.
We also note that, since we did not remove any edge, clearly we also did not
change any min-cut capacity during this process. Since initially there were M{2}
red edges coming out of S and, in the process of the algorithm, we replaced one
red by another red, then the number of red edges outgoing from S still remains
the same. Thus, among the M{1,2} paths from S to D′, only at most M{2} paths
start with an edge that is both green and red and therefore, by using (3), at least
M�

{1} are exclusively green paths. This proves that the original graph G can be
separated into the two graphs Ga and Gb. By using similar arguments, one can
then show that the graph Gb can be separated into the two graphs Gc and Gd.
This concludes the proof of Lemma 1.

Appendix B

We here give the proof of Lemma 2 (originally proved in [7, Theorem 9]). In
particular, we first prove the converse (i.e., the rate region in (9) is an outer
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bound) and then the direct part (i.e., the rate region in (9) is achievable) of
Lemma 2.

Outer Bound: Let EA ⊆ E be a min-cut between the source S and DA and
define I(DA) :=

⋃
i∈A I(Di). Then, for any A ⊆ [1 : m] we have,

nRA = H(WA)
(a)
= H(WA) − H(WA|Xn

I(DA))
(b)
= H(Wn

A) − H(Wn
A|Xn

EA)
= I(Wn

A;Xn
EA)

(c)

≤ H(Xn
EA)

(d)

≤ nMA ,

where WA = {Wi, i ∈ A} and where: (i) the equality in (a) follows because
of the decodability constraint; (ii) the equality in (b) follows because Xn

I(DA)

is a deterministic function of Xn
EA ; (iii) the inequality in (c) follows since the

entropy of a discrete random variable is a non-negative quantity; (iv) finally, the
inequality in (d) follows since each link has unit capacity and since |EA| = MA.
By dividing both sides of the above inequality by n we obtain that RA in (9) is
an outer bound on the unsecure capacity region of the multiple unicast network
with single source and m destinations.

Achievability: Assume that a rate m-tuple (R1, R2, . . . , Rm) satisfies the con-
straint in (9). We now prove that this m-tuple is achievable. Towards this end,
from the original graph G, we create a new directed acyclic graph G′ where a
new node D′ is connected to each Di, i ∈ [1 : m], through an edge E ′

i of capac-
ity Ri. It is not difficult to see that in G′, the min-cut capacity between S and

D′ is
m∑

i=1

Ri. This can be explained as follows. Suppose that the min-cut from

S to D′, in addition to a subset of E (i.e., the set of edges in the original G),
also contains some edges E ′

J , with J ⊆ [1 : m]. This clearly implies that the
subset of edges from E should form a cut between source S and D[1:m]\J , oth-
erwise we would not have a cut between S and D′. Thus, the min-cut has a
capacity of at least

∑
i∈J

Ri + M{D[1:m]\J } and, since
∑

i∈[1:m]\J
Ri ≤ M{D[1:m]\J }

(this follows from the outer bound proved above), the min-cut has a capacity

of at least
m∑
i

Ri. Then, since the set E ′
[1:m] is a cut of capacity

m∑
i

Ri, it follows

that the min-cut has a capacity of at most
m∑
i

Ri. This implies that the min-cut

capacity between S and D′ in G′ is
m∑

i=1

Ri. With this, the achievability of the

rate m-tuple (R1, R2, . . . , Rm) that satisfies the constraint in (9) directly follows
from the max-flow min-cut theorem. Indeed, since one can communicate a total

information of
m∑
i

Ri from S to D′ in G′, then this is possible only if an amount
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Ri of information flows through Di, i ∈ [1 : m], in G. This concludes the proof

of Lemma 2. Notice that in order to transmit
m∑

i=1

Ri message packets from S to

D′ (single unicast session) network coding is not needed. Thus, there is no need
of coding operations to characterize the capacity region of a network with single
source and multiple destinations.
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Abstract. The conventional channel resolvability problem refers to the
determination of the minimum rate needed for an input process to
approximate the output distribution of a channel in either the total vari-
ation distance or the relative entropy. In this paper, we use the (normal-
ized or unnormalized) Rényi divergence (with the Rényi parameter in
[0,2]) to measure the level of approximation. We also provide asymptotic
expressions for normalized Rényi divergence when the Rényi parameter
is larger than or equal to 1 as well as (lower and upper) bounds for
the case when the same parameter is smaller than 1. We characterize
the minimum rate needed to ensure that the Rényi resolvability vanishes
asymptotically. The optimal rates are the same for both the normalized
and unnormalized cases. In addition, the minimum rate when the Rényi
parameter no larger than 1 equals the minimum mutual information over
all input distributions that induce the target output distribution simi-
larly to the traditional case. When the Rényi parameter is larger than 1
the minimum rate is, in general, larger than the mutual information. We
apply these results to the wiretap channel, and completely characterize
the optimal tradeoff between the rates of the secret and non-secret mes-
sages when the leakage measure is given by the (unnormalized) Rényi
divergence (which is a generalization of effective secrecy). This tradeoff
differs from the conventional setting when the leakage is measured by
the traditional mutual information.

1 Introduction

How much information is needed to simulate a random process through a given
channel so that it mimics a target output distribution? This is so-called “chan-
nel resolvability problem”, first studied by Han and Verdú [1]. In [1], the total
variation (TV) distance and the normalized Kullback-Leibler (KL) divergence
were used to measure the level of approximation. The resolvability problem with
unnormalized KL divergence measure was studied by Hayashi [2,3]. In [1–3] it
was shown that in memoryless case the minimum rates of randomness needed for
simulating a channel output under measure of TV, normalized KL divergence, or
unnormalized KL divergence are the same, and all equal to the minimum mutual
c© Springer International Publishing AG 2017
J. Shikata (Ed.): ICITS 2017, LNCS 10681, pp. 208–233, 2017.
https://doi.org/10.1007/978-3-319-72089-0_12
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information over all input distributions that induce the target output distrib-
ution. Recently, Liu, Cuff, and Verdú [4] extended the theory of resolvability
by considering Eγ metric with γ ≥ 1 to measure the level of approximation.
The Eγ metric reduces to the TV distance when γ = 1, but it is weaker than
the TV distance when γ > 1. Hence, the Eγ metric generalizes the TV dis-
tance by weakening the approximation measure. In contrast, we generalize the
channel resolvability problem by strengthening the unnormalized KL divergence
metric and considering a continuum of secrecy measures indexed by the Rényi
parameter.

The channel resolvability problem is closely related to the common infor-
mation (or distributed sources simulation) problem, which was first studied by
Wyner [5]. For the achievability part, both problems rely on the so-called soft-
covering lemmas [6]. The channel resolvability or common information problems
have several interesting applications—including secrecy, channel synthesis, and
source coding. For example, in [7] it was used to study the performance of a
wiretap channel system under different secrecy measures. In [8] it was used to
study the reliability and secrecy exponents of a wiretap channel with cost con-
straints. In [9] it was used to study the exact secrecy and reliability exponents
for a wiretap channel. In [10], Hou and Kramer used ideas from channel resolv-
ability to study the effective secrecy capacity of wiretap channels. This work is
contrasted to the present work in greater detail in Sect. 3.

In contrast to the aforementioned works, in this paper, we use the (normal-
ized or unnormalized) Rényi divergence to measure the level of approximation
between the simulated and target output distributions. Our work is partly moti-
vated by Shikata [11] who quantified lengths of secret keys in terms of Rényi
entropies of general orders and Bai et al. [12] who showed that the Rényi diver-
gence is particularly suited for simplifying some security proofs. Our contribu-
tions are threefold:

1. We provide asymptotic expressions for the Rényi divergence between the sim-
ulated and target output distributions—we term this the Rényi resolvability.
We distinguish between the case when the Rényi parameter is ≥ 1 —in which
case we have a tight expression—and the case when the same parameter is
< 1—in which case we only have bounds (which are tight in some regime).

2. We characterize the minimum rate needed to guarantee that the (normalized
or unnormalized) Rényi resolvability vanishes asymptotically. Interestingly,
these rates are the same regardless of whether we employ the normalized or
unnormalized Rényi divergences. The optimal rate when the Rényi parameter
is ≤ 1 is just equal to the minimum mutual information over all input distrib-
ution that induce target output distribution. This is similar to the traditional
case [1–3]. In contrast if the Rényi parameter is > 1, the optimal rate is, in
general, larger than the minimum mutual information.

3. As a concrete application of the above mathematical results, we consider the
wiretap channel and completely characterize the optimal tradeoff between
the rates of the secret and non-secret messages when the leakage is mea-
sured by the unnormalized Rényi divergence. This part of work can be seen
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as a generalization of the effective secrecy capacity studied by Hou and
Kramer [10]. Note that different from Csiszár and Körner’s work (with secrecy
measured by the mutual information) [13], the optimal rates tradeoff provided
by us are achieved by a single-layered code. Hence, it has a different expression
from the one given by in [13]. See Remark 7.

It is also worth noting that our work is partly motivated by the work of
Hayashi and Tan [14,15]. In their work, the Rényi divergence was used to measure
the level of approximation of a distribution induced by a hash function, typically
used for source compression; in our work, it is used to measure the level of
approximation of an input process that is sent through a channel. Hence our
work can be considered as a counterpart of theirs, just as the channel coding is
a counterpart of the source hashing.

1.1 Notation

In this paper, we use PX(x) to denote the probability distribution of a random
variable X, which is also shortly denoted as PX(x) or P (x) (when the random
variable X is clear from the context). We also use PX , ˜PX and QX to denote
various probability distributions with alphabet X . All alphabets considered in
the sequel are finite.

Fix distributions PX , QX ∈ P(X ) (the set of probability mass functions
on X ). Then the relative entropy and the Rényi divergence of order 1 + s are
respectively defined as

D(PX‖QX) :=
∑

x∈X
PX(x) log

PX(x)
QX(x)

(1)

D1+s(PX‖QX) :=
1
s

log
∑

x∈X
PX(x)1+sQX(x)−s, (2)

where throughout, log is to the natural base e and s ≥ −1. It is known that
lims→0 D1+s(PX‖QX) = D(PX‖QX) so a special case of the Rényi divergence
is the usual relative entropy.

Given PX and PY |X , we write [PY |X ◦ PX ](y) :=
∑

x PY |X(y|x)PX(x).

1.2 Problem Formulation

In this paper, we consider the channel resolvability problem illustrated in Fig. 1.
Given a random transformation PY |X and a target distribution QY , we wish to
minimize the alphabet size of a message Mn that is uniformly distributed over1

Mn := {1, . . . , enR} (R is a positive number known as the rate), such that given
common randomness Un, the output distribution

PY n|Un
(yn|un) :=

1
|Mn|

∑

m∈Mn

n
∏

i=1

PY |X (yi|fun,i (m)) (3)

1 For simplicity, we assume that enR and similar expressions are integers.
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forms a good approximation to the product distribution QY n := Qn
Y . Here Un is a

random variable independent of the message Mn. If we set Un = {Xn (m)}m∈Mn

with Xn(m) ∼ PXn ,m ∈ Mn, and set fUn
(m) = Xn(m), then the random

mapping is known as a conventional random code. If the input distribution is
i.i.d., i.e., PXn = Pn

X , then it is known as an i.i.d. random code.
In contrast to previous works on the channel resolvability problem [1], here

we employ the Rényi divergence

D1+s(PY nUn
‖QY nPUn

) (4)

to measure the discrepancy between PY n and QY n .
Observe that

esD1+s(PY nUn‖QY n×PUn )

= EUn

[

∑

yn

∑

m

P (m)P (yn|fUn
(m))

(∑

m P (m)P (yn|fUn
(m))

Q(yn)

)s
]

. (5)

Hence to guarantee that D1+s(PY nUn
‖QY nPUn

) finite for s ≥ 0, we assume
PY |X=x � QY for all x ∈ X ; otherwise, we can remove all the values x such
that PY |X=x 	� QY from X . However, it is worth noting that we do not need to
do so for −1 ≤ s < 0, since D1+s(PY nUn

‖QY nPUn
) is always finite regardless of

whether PY |X=x � QY for all x ∈ X or PY |X=x 	� QY for some x ∈ X .

nM nYnX
|Y XP

nU

nU nf M

Fig. 1. Channel resolvability problem: Un is independent of the message Mn ∈ Mn,
and fUn is a random function (induced by Un).

2 Rényi Resolvability

2.1 Asymptotic Expressions

For the channel resolvability problem, the asymptotics of the Rényi divergence
is characterized by single-letter expressions. We have an exact/tight result when
the Rényi parameter ∈ [1, 2] and upper and lower bounds when the Rényi para-
meter ∈ (0, 1). This result is proved in Appendix B.
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Theorem 1 (Asymptotics of Rényi Resolvability). For any s ∈ [0, 1], we have

lim
n→∞

1
n

inf
fUn

D1+s(PY nUn
‖QY nPUn

)

= min
˜PX

max
{

∑

x

˜PX(x)D1+s(PY |X(·|x)‖QY ) − R,

max
˜PY |X

η1+s(PY |X , QY , ˜PX , ˜PY |X)
}

, (6)

where

η1+s(PY |X , QY , ˜PX , ˜PY |X) := (−1
s

− 1)D( ˜PY |X‖PY |X | ˜PX) + D( ˜PY ‖QY ). (7)

For any s ∈ (0, 1), we have

Γ LB
1−s(PY |X , QY , R) ≤ lim inf

n→∞

1
n

inf
fUn

D1−s(PY nUn
‖QY nPUn

) (8)

≤ lim sup
n→∞

1
n

inf
fUn

D1−s(PY nUn
‖QY nPUn

) (9)

≤ ΓUB
1−s(PY |X , QY , R), (10)

where

Γ LB
1−s(PY |X , QY , R)

:= min
˜PX , ˜PY |X

max
{

(
1
s
−1)D( ˜PY |X‖PY |X | ˜PX)+D( ˜PY |X‖QY | ˜PX)−R,

(
1
s

− 1)D( ˜PY |X‖PY |X | ˜PX) + D( ˜PY ‖QY )
}

, (11)

ΓUB
1−s(PY |X , QY , R)

:= min
˜PX , ˜PY |X

max
{

(
1
s
−1)D( ˜PY |X‖PY |X | ˜PX)+D( ˜PY |X‖QY | ˜PX)−R,

1
s
D( ˜PY |X‖PY |X | ˜PX) + D( ˜PY ‖QY )

− min
̂PY |X : ̂PY |X◦ ˜PX= ˜PY |X◦ ˜PX

D( ̂PY |X‖PY |X | ˜PX)
}

. (12)

We also have

lim
n→∞

1
n

inf
fUn

D0(PY nUn
‖QY nPUn

) = 0. (13)

Furthermore, the infima in (6) and ΓUB
1−s(PY |X , QY , R) are achieved by a

sequence of conventional random codes.
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Remark 1. The expression in (6) for s ∈ [0, 1] and Γ LB
1−s(PY |X , QY , R) or

ΓUB
1−s(PY |X , QY , R) for s ∈ (−1, 0) may appear to be inconsistent; however, this

is not true. It can be easily shown that
∑

x

˜PX(x)D1+s(PY |X(·|x)‖QY )

= max
˜PY |X

{

(−1
s

− 1)D( ˜PY |X‖PY |X | ˜PX) + D( ˜PY |X‖QY | ˜PX)
}

. (14)

Hence we can rewrite (6) as

lim
n→∞

1
n

inf
fUn

D1+s(PY nUn
‖QY nPUn

)

= min
˜PX

max
˜PY |X

max
{

(−1
s
−1)D( ˜PY |X‖PY |X | ˜PX)+D( ˜PY |X‖QY | ˜PX)−R,

(−1
s

− 1)D( ˜PY |X‖PY |X | ˜PX) + D( ˜PY ‖QY )
}

. (15)

In other words, (6) for s ∈ [0, 1] is consistent with Γ LB
1−s(PY |X , QY , R) for s ∈

(−1, 0).

Note that ΓUB
1−s

(

PY |X , QY , R
)

and Γ LB
1−s

(

PY |X , QY , R
)

differ only in the sec-
ond term in the maximization. Moreover, when R is large enough, they are both
equal to zero; see Theorem 2 in the next subsection.

We numerically calculate the asymptotics of the normalized Rényi resolv-
ability for binary symmetric channel (BSC) Y = X ⊕ V, V ∼ Bern (0.2) and
QY = Bern (0.5), and display the result in Fig. 2. From this figure, we observe
that the normalized Rényi resolvability decays as R increases, and finally van-
ishes for large enough R. Moreover, the the rate at which the normalized Rényi
resolvability transitions from a positive quantity to zero increases in R for the
Rényi parameter 1 + s ∈ [1, 2], and remains the same when 1 + s ∈ (0, 1]. A
rigorous statement of this point will be provided in the next subsection.

2.2 Optimal Rates for Vanishing Rényi Resolvability

Normalized Rényi Resolvability. Now we compute the minimum rate R of
the input process {Xn(m) : m ∈ Mn} to ensure that the Rényi resolvability
1
nD1+s(PY nUn

‖QY nPUn
) vanishes. We assume that

P
(

PY |X , QY

)

:=
{

PX : PY |X ◦ PX = QY

}

	= ∅. (16)

Otherwise, there does not exist a code such that 1
nD1+s(PY nUn

‖QY nPUn
) van-

ishes. By Theorem 1 we easily obtain the following result.

Theorem 2 (Normalized Rényi Resolvability). For s ∈ [−1, 1], we have

inf
{

R :
1
n

inf
fUn

D1+s(PY nUn
‖QY nPUn

) → 0
}

= R1+s

(

PY |X , QY

)

, (17)
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Fig. 2. Illustration of the Rényi resolvability measure 1
n

inffUn
D1+s(PY nUn‖QY nPUn)

for s ∈ [0, 1] in (6) and the upper ΓUB
1−s

(
PY |X , QY , R

)
and lower bounds

Γ LB
1−s

(
PY |X , QY , R

)
for s ∈ (−1, 0) in (11) and (12), for the BSC Y = X ⊕ V, V ∼

Bern (0.2) and the target distribution QY = Bern (0.5).

where

R1+s

(

PY |X , QY

)

:=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min
PX∈P(PY |X ,QY )

∑

x PX (x)D1+s

(

PY |X (·|x) ‖QY

)

s ∈ (0, 1]

min
PX∈P(PY |X ,QY )

I (X;Y ) s ∈ (−1, 0]

0 s = −1

. (18)

Remark 2. Since P
(

PY |X , QY

)

is nonempty, R1+s

(

PY |X , QY

)

is finite. Hence it
can be shown lims↓0 R1+s

(

PY |X , QY

)

= R1

(

PY |X , QY

)

(by using the continuity
of Rényi divergence [16]). Hence R1+s

(

PY |X , QY

)

is continuous in s for s ∈
(−1, 1]. See the bottom subfigure of Fig. 3.

Remark 3. This result for the case s = 0 (i.e., the KL divergence case) was first
shown by Han and Verdú [1]. Hence our result is the generalization of theirs to
the Rényi divergence of all orders in [0, 2].

Remark 4. The first clause in (18) is the minimization of an expectation of
Rényi divergences

∑

x PX (x) D1+s

(

PY |X (·|x) ‖QY

)

but it is not (and in general
smaller than) the conventional conditional Rényi divergence D1+s (PXY ‖PXQY )
(see Verdú [17] or Fong and Tan [18]). An optimal i.i.d. code can achieve a
rate equal to the minimization of conventional conditional Rényi divergence
D1+s(PXY ‖PXQY ) [19, Thm. 14], while an optimal constant composition code
or an optimal typical set code (a code with channel input distributed according
to the target distribution QY n but truncated to an appropriate typical set) can
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achieve a better (smaller) rate equal to the first clause in (18). This shows that
the expectation of Rényi divergences also admits an operational interpretation
as the minimum rate needed to drive the Rényi divergence to zero when its
parameter is ≥ 1.

The result in Theorem 2 for the BSC Y = X ⊕ V, V ∼ Bern (p) and QY =
Bern (0.5) is illustrated in Fig. 3. For this case,

R1+s

(

PY |X , QY

)

=

⎧

⎪

⎨

⎪

⎩

1
s log

(

p1+s2s + p1+s2s
)

s ∈ (0, 1]
1 − H2 (p) s = (−1, 0]
0 s = −1

. (19)
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Fig. 3. Illustration of the optimal rates for vanishing resolvability in (17) for the BSC
Y = X ⊕ V, V ∼ Bern (p) and QY = Bern (0.5). For the right subfigure, p = 0.2.

Unnormalized Rényi Resolvability. For the unnormalized case, we can prove
the following theorem. Due to space limitation, the proof is provided in [20].

Theorem 3 (Unnormalized Rényi Resolvability). For s ∈ [−1, 1], we have

inf
{

R : inf
fUn

D1+s(PY nUn
‖QY nPUn

) → 0
}

= R1+s

(

PY |X , QY

)

, (20)

where R1+s

(

PY |X , QY

)

is defined in (18).

Remark 5. The minimum rates needed to guarantee that the normalized or
unnormalized Rényi divergence varnish asymptotically are the same.

Remark 6. The case s = 0 (i.e., the unnormalized KL divergence case) has been
shown in other works, such as Hayashi [2,3] and Han, Endo, and Sasaki [8],
which also imply the achievability result part for s ∈ (−1, 0) (since the approxi-
mation measure Dα for α ∈ (0, 1) is weaker than D1). Our results for other cases
(converse for s ∈ [−1, 1] \ {0} and achievability for s ∈ (0, 1)) are new.



216 L. Yu and V. Y. F. Tan

3 Application to the Wiretap Channel

We apply the preceding results to the wiretap channel. In [10], Hou and Kramer
proposed a new security measure, termed effective secrecy, for wiretap channels
by exploiting the unnormalized KL divergence to quantify not only (the wiretap-
per’s) confusion but also stealth. In this section, we generalize Hou and Kramer’s
result to a generalized divergence measure—the Rényi divergence. We provide
a complete characterization of the secrecy capacity region under this new and
generalized leakage measure.

Consider a discrete memoryless wiretap channel PY Z|X , and two messages
(M0,M1) that are uniformly distributed over M0 := {1, . . . , enR0} and M1 :=
{1, . . . , enR1} respectively. A sender wants to transmit the pair (M0,M1) to a
legitimate user, and, at the same time, ensure that M1 as almost independent
from the wiretapper’s observation Zn.

Definition 1. An (n,R0, R1) secrecy code is defined by two stochastic mappings
PXn|M0M1 : M0 × M1 → X n and P

̂M0̂M1|Y n : Yn → M0 × M1.

Given a target distribution QZ , we wish to maximize the alphabet size (or
rate) of M1 such that the distribution PM1Zn induced by the code is approxi-
mately equal to the target distribution PM1QZn (with QZn = Qn

Z) and M1 can
be decoded correctly asymptotically.

Definition 2. The tuple (R0, R1) is (QZ , 1 + s)-achievable if there exists a
sequence of (n,R0, R1) secrecy codes with induced distribution P such that

1. Error constraint:

lim
n→∞

P

(

(M0,M1) 	= (̂M0,̂M1)
)

= 0; (21)

2. Secrecy constraint (generalized effective secrecy):

lim
n→∞

D1+s(PM1Zn‖PM1QZn) = 0. (22)

It is worth noting that (22) is a generalized version of the notion of effective
secrecy considered in [10].

Here we assume QZ satisfies P
(

PZ|X , QZ

)

	= ∅ (P
(

PZ|X , QZ

)

is defined
by (16)); otherwise, (22) cannot be satisfied by any secrecy code.

Definition 3. The (QZ , 1 + s)-admissible region is defined as R1+s(QZ) :=
Closure {(R0,R1) : (R0,R1)is(QZ, 1 + s) − achievable}.

Our secrecy metric (even when s = 0) is stronger than the unnormalized KL
divergence D(PM1Zn‖PM1PZn) (or I (M1;Zn)) considered in [7], since

D(PM1Zn‖PM1QZn) = I (M1;Zn) + D(PZn‖QZn) ≥ I (M1;Zn) . (23)

For our secrecy metric, in addition to requiring that M1 and Zn are approx-
imately independent, we also require that the wiretapper’s observation Zn is
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close to the product distribution Qn
Z . This is similar to Csiszár and Narayan’s

work [21, Eq. (6)] but we consider a continuum of secrecy measures indexed by
s ∈ [−1, 1].

The interpretation of our secrecy measure with s = 0 can be found in [10],
where the authors interpreted I(M1;Zn) in (23) as a measure of “non-confusion”
and D(PZn‖QZn) in (23) as a measure of “non-stealth”. Under this interpreta-
tion, we set QZn to be the distribution that the wiretapper observes if the sender
is not sending useful information. Hence if the secrecy constraint (22) is satisfied
then we can say that useful information is being transmitted in a stealthy way.

3.1 Main Result for Deterministic Encoder

Before solving the problem, in this subsection we consider a simpler version of the
problem—namely, a system with a deterministic encoder. That is, the encoder
is restricted to a deterministic (non-stochastic) function f : M0 × M1 → X n

(denote the (QZ , 1 + s)-admissible region for this case as Rdet
1+s(QZ)). For this

problem, we have the following theorem.

Theorem 4. For s ∈ [−1, 1], we have

Rdet
1+s(QZ) =

⋃

PX∈P(PZ|X ,QZ)

{

(R0, R1) : R0 + R1 ≤ I (X;Y )
R0 ≥ ˜R1+s

(

PX , PZ|X , QZ

)

}

, (24)

where ˜R1+s

(

PX , PZ|X , QZ

)

is defined as

˜R1+s

(

PX , PZ|X , QZ

)

:=

⎧

⎪

⎨

⎪

⎩

∑

x PX (x) D1+s

(

PZ|X (·|x) ‖QZ

)

s ∈ (0, 1]
I (X;Z) s ∈ (−1, 0]
0 s = −1

.

(25)

From Theorem 4, we observe that for the problem with deterministic encoder,
the achievability of a rate pair (R0, R1) does not necessarily imply the achiev-
ability of a rate pair (R′

0, R
′
1) such that R′

0 ≤ R0, R
′
1 ≤ R1. This is because to

meet the resolvability constraint, a certain amount of local randomness (besides
the secret message M1) at the sender is needed; this local randomness only comes
from the non-secret message M0 (since the encoder is a deterministic function
of M0,M1). Therefore, a rate less than R0 may not satisfy the resolvability
constraint.

3.2 Main Result for Stochastic Encoder

If a stochastic encoder is allowed, we can add a virtual memoryless channel Pn
X|W

between the deterministic encoder and the channel. Then we have the following
achievability result.
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Theorem 5. For s ∈ [−1, 1], we have

R1+s(QZ) ⊇
⋃

PX|W ,PW ∈P(PZ|W ,QZ)

{

(R0, R1) : R0 + R1 ≤ I (W ;Y ) ,

R0 ≥ ˜R1+s

(

PW , PZ|W , QZ

)

}

, (26)

where ˜R1+s

(

PW , PZ|W , QZ

)

is given by (25).

However, adding a memoryless channel is not optimal in general. In the
following theorem, we completely characterize the admissible region, and show
that adding a channel with memory between the encoder and channel is optimal.
The proof of this theorem is given in Appendix C.

Theorem 6. For s ∈ [−1, 1], we have

R1+s(QZ)=
⋃

˜PW |X , ˜PX∈P(PZ|X ,QZ)

{

(R0, R1) : R0 + R1 ≤ I
˜P (W ;Y )

R0 ≥ ˜R′
1+s

(

˜PW |X ˜PX , PZ|X , QZ

)

}

(27)

=
⋃

˜PW |X , ˜PX∈P(PZ|X ,QZ)

⎧

⎪

⎨

⎪

⎩

(R0, R1) : R0 + R1 ≤ I
˜P (W ;Y )

R1 ≤ I
˜P (W ;Y )

− ˜R′
1+s

(

˜PW |X ˜PX , PZ|X , QZ

)

⎫

⎪

⎬

⎪

⎭

, (28)

where ˜R′
1+s

(

˜PW |X ˜PX , PZ|X , QZ

)

is given by

˜R′
1+s

(

˜PW |X ˜PX , PZ|X , QZ

)

:=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

max
˜PZ|WX

{

− 1+s
s D

(

˜PZ|WX‖PZ|X | ˜PXW

)

+D
(

˜PZ|W ‖QZ | ˜PW

)}

, s ∈ (0, 1]

I
˜P (W ;Z) , s ∈ (−1, 0]

0, s = −1

. (29)

Here I
˜P (W ;Y ) in (27) and (28) and I

˜P (W ;Z) in (29) are the mutual infor-
mations evaluated under the distribution ˜PWXPY Z|X . Furthermore, the ranges
of W in (27) and (28) may be assumed to satisfy |W| ≤ |X | + 1.

Remark 7. We can define the effective secrecy capacity with the leakage mea-
sured by the Rényi divergence with parameter 1 + s and with target output
distribution QZ as C1+s (QZ) := max(R0,R1)∈R1+s(QZ) R1. The special case with
s = 0 was defined by Hou and Kramer [10], and they showed

C1 (QZ) = max
˜PW |X , ˜PX∈P(PZ|X ,QZ)

{

I
˜P (W ;Y ) − I

˜P (W ;Z)
}

. (30)

For the general case s ∈ [−1, 1], by Theorem 6, we have

C1+s (QZ) = max
˜PW |X , ˜PX∈P(PZ|X ,QZ)

{

I
˜P (W ;Y ) − ˜R′

1+s

(

˜PW |X ˜PX , PZ|X , QZ

)}

,

(31)
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which has a similar form as the conventional secrecy capacity (with secrecy
measured by the normalized mutual information 1

nI (M ;Zn) or unnormalized
mutual information I (M ;Zn)) given in [2,3,13],

CMI = max
PW |XPX

{I (W ;Y ) − I (W ;Z)} . (32)

Note that CMI ≥ maxQZ
C1+s(QZ) for s ∈ (0, 1] and CMI = maxQZ

C1+s(QZ) for
s ∈ (−1, 0]. This is because our secrecy measure is stronger than the conventional
one. Furthermore, when considering the simultaneous transmission of secret and
non-secret messages, the optimal rate region [13, Cor. 2]2 is

RMI =
⋃

PU|W ,PW |X ,PX :

I(U ;Y )≤I(U ;Z)

{

(R0, R1) : R0 + R1 ≤ I (W ;Y ) ,
R1 ≤ I (W ;Y |U) − I (W ;Z|U)

}

, (33)

which is different from the optimal region R1+s given by us. Obviously
⋃

QZ
R1+s

(QZ) ⊆ RMI. Csiszár and Körner [13, Cor. 2] derived the optimal region RMI by
using a two-layered code, but for our case, a single-layered code is sufficient to
achieve the optimality; a similar conclusion for the s = 0 case can be drawn from
the results in [22]. This is because our secrecy measure requires that M1 and
Zn are approximately independent (similarly to the conventional setting) but
also requires the wiretapper’s observation Zn to approximately follow a target
memoryless distribution Qn

Z (soft-covering the space according to the target
distribution). We provide an intuitive interpretation for why a two-layered code
is not necessary to achieve the optimal region for our problem. For simplicity, we
consider the case with the Rényi parameter equal to 1; If we apply a two-layered
code to our setting then to guarantee the soft-covering property (under the TV
distance measure, which is weaker than the Rényi divergence), the non-secret
message for each layer has to have rates that are appropriately lower bounded
as follows: R

(1)
0 > I (U ;Z) , R

(1)
0 +R

(2)
0 > I (UW ;Z) for some PUW |X and PX ∈

P
(

PZ|X , QZ

)

[23], where R
(1)
0 and R

(2)
0 respectively denote the transmission

rate of the non-secret message for the first and second layer. On the other hand,
the total rate is still constrained by I (W ;Y ), i.e., R

(1)
0 + R

(2)
0 + R1 ≤ I (W ;Y ).

Hence the achievable rate pair (R(1)
0 + R

(2)
0 , R1) is still in R1(PZ). This is also

true for the Rényi divergence measure.

Remark 8. The semantic-security capacity CSS (with the secrecy measure3

maxm1 D
(

PZn|M1=m1‖QZn

)

→ 0), studied in [24], is proven to be equal to CMI.

2 Note that here we refer to Corollary 2 of [13], in which the common message rate is
set to zero and the R1 and Re there respectively correspond to the R0 + R1 and R1

of this paper. Although the setting in Corollary 2 of [13] does not implicitly indicate
the secret and non-secret parts, it is easy to show that if divide the total rate into
these two parts, the admissible region does not change.

3 This measure comes from [24, Thm. 2], but is different from and stronger than the
original one maxPM∈P(M) I (M ; Zn), also considered in [24]. However, both measures
result in the same secrecy capacity [24].
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This secrecy measure is stronger than the one considered in this paper (when
the Rényi divergence parameter is equal to 1). However, in [24] Goldfeld, Cuff,
and Permuter focus only on the secrecy capacity CSS, i.e., the maximum trans-
mission rate of the secret message without a constraint on non-secret message
required by the legitimate user. Here we consider a more general case: the simul-
taneous transmission of the secret and non-secret messages. Combining (the
converse part of) our result with (the achievability part of) Goldfeld, Cuff, and
Permuter’s result gives a complete characterization of the admissible region of
(R0, R1) under the secrecy constraint maxm1 D

(

PZn|M1=m1‖QZn

)

→ 0, which
turns out to be the same as R1(QZ) (the admissible region under the constraint
D(PM1Zn‖PM1QZn) → 0). Furthermore, different from [24], we also consider the
Rényi divergence measure for other cases s ∈ [−1, 1] \ {0}, in addition to the
relative entropy.

The result of Theorem 6 for the binary wiretap channel Y = X ⊕ V1, V1 ∼
Bern (0.1) and Z = X ⊕ V2, V2 ∼ Bern (0.3) with target distribution QZ =
Bern (0.5) and s = 1 is illustrated in Fig. 4. From the figure, we observe that
different from the deterministic encoder case, for this case the achievability of a
rate pair (R0, R1) indeed implies the achievability of a rate pair (R′

0, R
′
1) such

that R′
0 ≤ R0, R

′
1 ≤ R1.
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Fig. 4. Illustration of the admissible region for case of using a stochastic encoder and
with Rényi parameter 1 + s = 2 in (27) or (28) for the abovementioned channel.

4 Conclusion and Future Work

In this paper, we studied a generalized version of channel resolvability problem,
in which the (normalized or unnormalized) Rényi divergence is used to measure
the level of approximation. We also applied these results to the wiretap channel.
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Our results generalize or extend several classical and recent results. Our
resolvability results extend those by Han and Verdú [1] and by Hayashi [2,3] as
we consider Rényi divergences with orders in [0, 2]. Our results for the wiretap
channel generalize those by Hou and Kramer [10], and extend those by Wyner
[25] and Csiszár and Körner [13], as we measure the effective secrecy (or the
leakage) using the Rényi divergence. As discussed in Remark 8, our result on
the wiretap channel is also related to the semantic-security capacity studied by
Golfeld, Cuff, and Permuter [24].

In the future, we plan to explore various closely related problems to the one
contained herein.

1. Rényi common information: Wyner [5] defined the common information
between two sources is the minimum rate of commonness needed to simulate
these two source in a distributed fashion. In his original work, the normal-
ized relative entropy was used to measure the level of approximation. We
can generalize his problem by replacing the relative entropy with the Rényi
divergence, and define the minimum rate for this case as Rényi common infor-
mation. In fact, we have provided a complete solution for the Rényi common
information [26].

2. Distributed channel synthesis under the Rényi divergence: The coordina-
tion problem or distributed channel synthesis problem was studied by Cuff,
Permuter, and Cover [6,27]. In this problem, an observer (encoder) of a
source sequence describes the sequence to a distant random number gen-
erator (decoder) that produces another sequence. What is the minimum rate
of description needed to achieve a joint distribution that is statistically indis-
tinguishable, under the TV distance, from the distribution induced by a given
channel? For this problem, Cuff [6] provided a complete characterization of
the minimum rate. We can enhance the level of coordination by replacing
the TV measure with the Rényi divergence. For this enhanced version of the
problem, a natural question is whether the minimum rate remains the same
as that given by Cuff.

Acknowledgements. The authors are supported by a Singapore National Research
Foundation (NRF) National Cybersecurity R&D Grant (R-263-000-C74-281 and
NRF2015NCR-NCR003-006).

Appendix

A Notation for The Proofs

The set of probability measures on X is denoted as P (X ), and the set of
conditional probability measures on Y given a variable in X is denoted as
P (Y|X ) :=

{

PY |X : PY |X (·|x) ∈ P (Y) , x ∈ X
}

.
We use Txn (x) := 1

n

∑n
i=1 1 {xi = x} to denote the type (empirical distribu-

tion) of a sequence xn, TX and VY |X to respectively denote a type of sequences
in X n and a conditional type of sequences in Yn (given a sequence xn ∈ X n).
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For a type TX , the type class (set of sequences having the same type TX) is
denoted by TTX

. For a conditional type VY |X and a sequence xn, the V-shell of
xn (the set of yn sequences having the same conditional type VY |X given xn) is
denoted by TVY |X (xn). The set of types of sequences in X n is denoted as

P(n) (X ) := {Txn : xn ∈ X n} . (34)

The set of conditional types of sequences in Yn given a sequence in X n with the
type TX is denoted as

P(n) (Y|TX) := {VY |X ∈ P (Y|X ) : VY |X × TX ∈ P(n) (X × Y)}. (35)

For brevity, sometimes we use T (x, y) to denote the joint distributions
T (x)V (y|x) or T (y)V (x|y).

The ε-typical set of QX is denoted as

T n
ε (QX) := {xn ∈ X n : |Txn (x) − QX (x)| ≤ εQX (x) ,∀x ∈ X} . (36)

The conditionally ε-typical set of QXY is denoted as

T n
ε (QY X |xn) := {yn ∈ X n : (xn, yn) ∈ T n

ε (QXY )} . (37)

For brevity, sometimes we write T n
ε (QX) and T n

ε (QY X |xn) as T n
ε and T n

ε (xn)
respectively.

The total variation distance between two probability mass functions P and
Q with a common alphabet X is defined by

|P − Q| :=
1
2

∑

x∈X
|P (x) − Q(x)|. (38)

Finally, we use δn, δ′
n, δ′′

n to denote three generic sequences tending to zero as
n → ∞.

B Proof of Theorem 1

B.1 One-Shot Bounds

To prove Theorem 1, we need the following one-shot (i.e., blocklength n equal
to 1) bounds. Due to space limitations, the proofs are omitted but mostly follow
from the proofs of the one-shot bounds in [14,15].

Lemma 1 (One-Shot Bounds for Direct Part). Consider a random mapping
fU : M = {1, . . . , eR} → X . We set U = {X (i)}i∈M with X (i) ∼ PX , i ∈ M,
and set fU (m) = X (m). For this random code, we have for s ∈ [0, 1],

esD1+s(PY U‖QY PU ) ≤ esD1+s(PXY ‖PXQY )−sR + esD1+s(PY ‖QY ) (39)

≤ 2esΓ1+s(PX ,PY |X ,QY ,R), (40)
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where

Γ1+s

(

PX , PY |X , QY , R
)

:= max {D1+s (PXY ‖PXQY ) − R,D1+s(PY ‖QY )} .
(41)

In the other direction with s ∈ [0, 1), we have

e−sD1−s(PY U‖QY PU ) ≥ 2−s

[

esR
∑

x,y

P (x) P 1−s (y|x)Qs (y) 1
{

P (y|x)
P (y)

≥ eR

}

+
∑

x,y

P (x, y) P−s (y) Qs (y) 1
{

P (y|x)
P (y)

< eR

}]

. (42)

Remark 9. A similar result to (39) was shown in [19, Thm. 14], but their result
is a special case of ours with PY = QY . We believe that [19, Thm. 14] cannot
be directly applied to deriving the achievability results (including Theorems 1,
2, 3, and 6) in this paper for the case s ∈ (0, 1], since we need set to PXn as
either the uniform distribution over some type class or a truncated version of
some product distribution and hence the resulting output PY n is not equal to
the target product distribution Qn

Y . This is discussed in Appendices B.3 and C.

Lemma 2 (One-Shot Bounds for Converse Part). For any random mapping
fU : M = {1, . . . , eR} → X , we have for s ∈ [0, 1],

esD1+s(PY U‖QY PU ) ≥ esΓ1+s(PX ,PY |X ,QY ,R) (43)

for some PX , where Γ1+s

(

PX , PY |X , QY , R
)

is given by (41). In the other direc-
tion with s ∈ [0, 1), we have

e−sD1−s(PY U‖QY ×PU ) ≤ esR
∑

x,y

P (x) P 1−s (y|x) Qs (y) 1
{

P (y|x)
P (y)

≥ eR

2

}

+
∑

x,y

P (x, y) P−s (y)Qs (y) 1
{

P (y|x)
P (y)

<
eR

2

}

(44)

for some PX .

B.2 Multi-letter Characterization

We now assume that Mn = {1, . . . , enR} and the channel Pn
Y |X , used n times,

is memoryless and stationary. Then the one-shot bounds can be used to prove
the following result. Due to space limitations, the proofs are omitted.

Theorem 7 (Multi-letter Characterization). For any s ∈ [0, 1], we have

1
n

inf
fUn

D1+s(PY nUn
‖QY nPUn

) = Γ
(n)
1+s

(

PY |X , QY , R
)

+ o (1) , (45)
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where o (1) denotes a term that tends to zero as n → ∞, and

Γ
(n)
1+s

(

PY |X , QY , R
)

:=

inf
PXn

max
{

1
n

D1+s (PXnY n‖PXnQY n) − R,
1
n

D1+s(PY n‖QY n)
}

, (46)

Furthermore, for any s ∈ (0, 1), and any positive integer k, we have

Γ
(n)
1−s

(

PY |X , QY , R
)

+ o (1) ≤ 1
n

inf
fUn

D1−s(PY nUn
‖QY nPUn

) (47)

≤ Γ
(k)
1−s

(

PY |X , QY , R
)

+ o (1) , (48)

where o (1) denotes a term tending to zero as n → ∞, and

Γ
(n)
1−s

(

PY |X , QY , R
)

:= inf
PXn

max
t∈[0,s]

{

− t

s
R

− 1
ns

log
∑

xn,yn

P (xn, yn) P−t (yn|xn)P t−s (yn) Qs (yn)
}

. (49)

The infima in (45) and (48) are achieved by a sequence of conventional ran-
dom codes.

Remark 10. Note that the lower bound and the upper bound differ only in the
parameter of Γ

(·)
1−s.

Remark 11. Theorem 7 holds even when the alphabets are not discrete.

Remark 12. From the definition of Γ
(n)
1+s

(

PY |X , QY , R
)

, we have

Γ
(n)
1+s

(

PY |X , QY , R
)

:= inf
PXn

min
t∈[0,s]

{

− t

s
R

+
1
ns

log
∑

xn,yn

P (xn, yn) P t (yn|xn) P s−t (yn) Q−s (yn)
}

. (50)

Therefore, the notations Γ
(n)
1+s and Γ

(n)
1−s are consistent in the sense that if we set

s to be −s in Γ
(n)
1+s, we obtain Γ

(n)
1−s.

B.3 Proof of Theorem 1

To prove the achievability part of Theorem 1 for the case 1 + s or 1 − s, we set

P (xn) =
1{xn ∈ T

˜TX

}

∣

∣T
˜TX

∣

∣

(51)

where ˜TX is some type of n-length sequences. Substitute this into the multi-
letter expressions (45) and (48), and single-letterize them by using the method
of types. The achievability part of Theorem 1 then follows.
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For the converse part of Theorem 1, we also use the method of types [28] to
single-letterize (45).

Note that although we use the method of types for both the achievability
and converse parts, we relax (45) and (48) in opposite directions for these two
cases. Hence different bounding techniques are applied in these two cases. Fur-
thermore, interested readers may refer to Appendix C, since it contains similar
proof techniques to the one used herein.

C Proof of Theorem 6

We first prove (27).
Achievability: Considering the case s ∈ (0, 1] suffices. The achievability result

for s ∈ (−1, 0] can be obtained from the result for the case s ∈ (0, 1] by letting
s ↓ 0.

We use a similar random code as the one given in Lemma 1. That is, we
set Un = {Wn (m)}m∈M with Wn (m) ∼ PWn ,m ∈ M, and set the encoder as
fUn

(m) = Wn (m). We insert a random mapping (virtual channel) between the
encoder fUn

(m) and the channel, which is denoted as PXn|Wn . For this cascaded
code, we set the distributions

PWn (wn) =
˜PWn (wn) 1 {wn ∈ T n

ε′ }
˜PWn (T n

ε′ )
(52)

PXn|Wn (xn|wn) =
˜PXn|Wn (xn|wn) 1 {(wn, xn) ∈ T n

ε }
˜PXn|Wn (T n

ε (wn) |wn)
, (53)

where ε′ < ε, and ˜PWnXn := ˜Pn
WX for some ˜PWX such that ˜PX ∈ P

(

PZ|X , QZ

)

.
Then by the method of types, we obtain

1
n

D1+s (PWnZn‖PWn × QZn)

=
1
ns

log
∑

wn,zn

P (wn)
(

∑

xn

P (xn|wn) P (zn|xn)
)1+s

Q−s (zn) (54)

=
1
ns

log
∑

TW

∑

wn∈TTW

∑

VZ|W

∑

zn∈TVZ|W (wn)

˜P (wn) 1 {wn ∈ T n
ε′ }

˜PWn (T n
ε′ )

(

∑

VX|WZ

∑

xn∈TVX|WZ
(wn,zn)

˜P (xn|wn) 1 {(wn, xn) ∈ T n
ε }

˜PXn|Wn (T n
ε (wn) |wn)

en
∑

x,z T (x,z) log P (z|x)
)1+s

e−ns
∑

z T (z) log Q(z) (55)
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= δn +
1
ns

log
∑

TW

∑

wn∈TTW

∑

VZ|W

∑

zn∈TVZ|W (wn)

˜P (wn) 1 {wn ∈ T n
ε′ }

(

∑

VX|WZ

∑

xn∈TVX|WZ
(wn,zn)

˜P (xn|wn) 1 {(wn, xn) ∈ T n
ε }

en
∑

x,z T (x,z) log P (z|x)
)1+s

e−ns
∑

z T (z) log Q(z) (56)

≤ δn + δ′
n +

1
ns

log max
TW :|TW − ˜PW |≤ε′

max
VZ|W

∑

wn∈TTW

∑

zn∈TVZ|W (wn)

˜P (wn)

(

max
VX|WZ :

|(VX|WZ◦VZ|W )TW − ˜PWX |≤ε

∑

xn∈TVX|WZ
(wn,zn)

˜P (xn|wn)

en
∑

x,z T (x,z) log P (z|x)
)1+s

e−ns
∑

z T (z) log Q(z) (57)

= max
TW ,VZ|W ,VX|WZ :|TW − ˜PW |≤ε′,

|(VX|WZ◦VZ|W )TW − ˜PWX |≤ε

1
s

(

H(VZ|W × TW ) +
∑

w

T (w) log ˜P (w)
)

+
1 + s

s

(

H
(

VX|WZ |TW VZ|W
)

+
∑

w,x

T (w, x) log ˜P (x|w)

+
∑

x,z

T (x, z) log P (z|x)
)

−
∑

z

T (z) log Q (z) + δn + δ′
n + δ′′

n (58)

= max
TWX ,VZ|WX :|TW − ˜PW |≤ε′,

|TWX− ˜PWX |≤ε

{

1 + s

s

∑

w,x,z

T (w, x, z) log
˜P (w, x) P (z|x)

T (w, x, z)

+
∑

w,z

T (w, z) log
T (w, z)
˜P (w) Q (z)

}

+ δn + δ′
n + δ′′

n, (59)

where [(VX|WZ ◦ VZ|W )TW ](x,w) :=
∑

z VX|WZ(x|w, z)VZ|W (z|x)TW (w), (56)
follows since ˜PWn (T n

ε′ ) → 1 and ˜PXn|Wn (T n
ε (wn) |wn) → 1 for any wn ∈

T n
ε′

(

˜PW

)

by the law of large numbers, in (59) the arguments of maximization
are replaced by TWX , VZ|WX (this is feasible since both (TW , VZ|W , VX|WZ)
in (58) and (TWX , VZ|WX) in (59) run through all the types of sequences in
X n × Yn × Zn).

Observe that in (59) TWX is restricted to being close to ˜PWX but there is
no restriction on VZ|WX , hence it can be shown that as n → ∞ and ε, ε′ → 0,
(59) asymptotically equals

max
˜PZ|WX

{

−1 + s

s

∑

w,x,z

˜P (w, x, z) log
˜P (z|w, x)
P (z|x)

+
∑

w,z

˜P (w, z) log
˜P (z|w)
Q (z)

}

, (60)
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in the sense that the difference between (59) and (60) vanishes as n → ∞.
Essentially, we can replace the (conditional) types with their correspond-
ing (conditional) distributions. The detailed proof is omitted here. Hence
1
nD1+s(PWnZn‖PWn ×QZn) → (60) as n → ∞. Comparing (60) to the defi-
nition of ˜R′

1+s( ˜PW |X ˜PX , PZ|X , QZ) in (29), we can find that they are equal for
the case of s ∈ (0, 1]. Hence

lim
n→∞

1
n

D1+s (PWnZn‖PWn × QZn) = ˜R′
1+s

(

˜PW |X ˜PX , PZ|X , QZ

)

. (61)

Furthermore, observe

PXn (xn) =
∑

wn

˜P (wn) 1 {wn ∈ T n
ε′ }

˜PWn (T n
ε′ )

˜P (xn|wn) 1 {(wn, xn) ∈ T n
ε }

˜PXn|Wn (T n
ε (wn) |wn)

(62)

≤
∑

wn

˜P (wn) 1 {wn ∈ T n
ε′ } ˜P (xn|wn) 1 {(wn, xn) ∈ T n

ε }
1 − δn

(63)

≤
˜P (xn) 1 {xn ∈ T n

ε }
1 − δn

, (64)

where (63) follows since both ˜P (Wn ∈ T n
ε′ ) and ˜P ((wn,Xn) ∈ T n

ε |Wn = wn)
for wn ∈ T n

ε′ converge to 1 as n → ∞. Therefore,

D1+s(PXn‖ ˜PXn) ≤ 1
s

log
∑

xn

(

˜P (xn) 1 {xn ∈ T n
ε }

1 − δn

)1+s

˜P−s (xn) (65)

=
1
s

log
˜PXn (T n

ε )
(1 − δn)1+s → 0, (66)

where (66) follows since ˜PXn (T n
ε ) converges to 1 as n → ∞. Since PZn and QZn

are respectively the distributions of the channel output induced by the input
PXn and ˜PXn , by the data processing inequality [16], we have

D1+s(PZn‖QZn) ≤ D1+s(PXn‖ ˜PXn). (67)

Hence D1+s(PZn‖QZn) → 0 as well.
Finally, by Lemma 1, we obtain

esD1+s(PM1Zn‖PM1QZn )

≤ esD1+s(PWnZn‖PWnQZn )−nsR0 + esD1+s(PZn‖QZn ) → 1, (68)

where (68) holds for s ∈ (0, 1] if

R0 > ˜R′
1+s

(

˜PW |X ˜PX , PZ|X , QZ

)

(69)

by (60) with a small enough ε. Hence the secrecy constraint is satisfied.
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Moreover, using standard joint-typicality decoding, we have that error con-
straint

P

(

(M0,M1) 	=
(

̂M0,̂M1

))

→ 0 (70)

is satisfied as well if R0 + R1 ≤ I
˜P (W ;Y ).

Converse: Set W = (M0,M1). By the data processing inequality,

R0 + R1 ≤ 1
n

I (W ;Y n) ≤ I (W ;YJ ) , (71)

where J ∼ Unif [1 : n] denotes a time index variable, independent of (W,Y n). It
is easy to verify that

PWXJYJ
(w, x, y) = PW (w)

1
n

n
∑

j=1

P {(Xj , Yj) = (x, y) |W = w} (72)

= PW (w)EXnY n|W=w[TXnY n (x, y)], (73)

and

PWXJYJ
(w, x, y) = PWXJ

(w, x) P (y|x) (74)
= PW (w)EXn|W=w [TXn (x)] P (y|x) , (75)

where (75) is obtained similarly to (72)–(73).
We first consider the case s ∈ (0, 1]. Observe M1 is independent of M0. Hence

if we consider M1 as U and M0 as M , then the wiretap channel problem turns
into the channel resolvability problem. By Lemma 2, we obtain

D1+s(PM1Zn‖QM1Zn)
≥max {D1+s (PM0M1Zn‖PM0M1 × QZn) − nR0,D1+s(PZn‖QZn)} (76)
= max {D1+s (PWZn‖PW × QZn) − nR0,D1+s(PZn‖QZn)} . (77)

Define ˜PZ|WX as the maximizing distribution of

max
˜PZ|WX∈P(Z|W×X )

{

−1 + s

s

∑

w,x,z

P (w) PXJ |W (x|w) ˜P (z|w, x) log
˜P (z|w, x)
P (z|x)

+
∑

w,x,z

P (w) PXJ |W (x|w) ˜P (z|w, x) log
∑

x PXJ |W (x|w) ˜P (z|w, x)
Q (z)

}

, (78)

where PWXJZJ
is the distribution of W,XJ , ZJ induced by the adopted code.

Note that ˜PZ|WX is determined by the code, the channel PZ|X , and the target
distribution QZ .

For any w ∈ W and any TX ∈ P(n) (X ), we can find a conditional type
V

(w)
Z|X ∈ P(n) (X|TX) such that

∣

∣

∣TX × ˜PZ|XW (·|·, w) − TX × V
(w)
Z|X

∣

∣

∣ ≤ |X | |Z|
2n

= O

(

1
n

)

. (79)
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The proof of this claim is similar to that of [29, Lem. 2.1.2], and hence omitted
here.

Consider the first term of the maximization in (77), then we obtain

1
n

D1+s (PWZn‖PW × QZn)

=
1
ns

log
∑

w∈W

∑

TZ

∑

zn∈TTZ

P (w) e−ns
∑

z T (z) log Q(z)

(

∑

VX|Z

PXn|W
(

TVX|Z (zn) |w
)

en
∑

x,z T (x,z) log P (z|x)
)1+s

(80)

≥ 1
ns

log
∑

w∈W

∑

TZ

∑

zn∈TTZ

P (w)
∑

VX|Z

P 1+s
Xn|W

(

TVX|Z (zn) |w
)

en(1+s)
∑

x,z T (x,z) log P (z|x)−ns
∑

z T (z) log Q(z) (81)

≥ 1
ns

log
∑

w,TZ ,VX|Z

|TTZ
|P (w)

(

∑

zn∈TTZ

1
|TTZ

|PXn|W
(

TVX|Z (zn) |w
)

)1+s

en(1+s)
∑

x,z T (x,z) log P (z|x)−ns
∑

z T (z) log Q(z) (82)

= δn +
1
ns

log
∑

w,TZ ,VX|Z

P (w) P 1+s
Xn|W (TTX

|w) e−nsH(TZ)+n(1+s)H(VZ|X |TX)

en(1+s)
∑

x,z T (x,z) log P (z|x)−ns
∑

z T (z) log Q(z) (83)

≥ δn +
1
ns

log
∑

w,TX

P (w) P 1+s
Xn|W (TTX

|w)

e
−nsH

(

V
(w)
Z|X◦TX

)

+n(1+s)
(

H
(

V
(w)
Z|X |TX

)

+
∑

x,z T (x)V
(w)
Z|X(z|x) log P (z|x)

)

e
−ns

∑

z

(

V
(w)
Z|X◦TX

)

(z) log Q(z) (84)

= δn +
1
ns

log
∑

w,TX

P (w) P 1+s
Xn|W (TTX

|w)

e−nsH( ˜PZ|WX◦TX)+n(1+s)(H( ˜PZ|WX |TX)+∑x,z T (x) ˜PZ|WX(z|x) log P (z|x))

e−ns
∑

z( ˜PZ|WX◦TX)(z) log Q(z)+n·δ′
n (85)

≥ δn + δ′
n +

1
ns

log |P(n) (X ) |
(

∑

w,TX

1
∣

∣P(n) (X )
∣

∣

P (w) PXn|W (TTX
|w)

e−n
∑

x,z T (x) ˜P (z|w,x) log
˜P (z|w,x)
P (z|x) + ns

1+s

∑

x,z T (x) ˜P (z|w,x) log
∑

x T (x) ˜P (z|w,x)
Q(z)

)1+s

(86)

≥ δn + δ′
n + δ′′

n +
1 + s

ns
log

∑

w,TX

P (w) PXn|W (TTX
|w)

e−n
∑

x,z T (x) ˜P (z|w,x) log
˜P (z|w,x)
P (z|x) + ns

1+s

∑

x,z T (x) ˜P (z|w,x) log
∑

x T (x) ˜P (z|w,x)
Q(z) (87)
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≥ δn + δ′
n + δ′′

n +
∑

w∈W
P (w)

(

−1 + s

s

∑

x,z

EXn|W=w [TXn (x)] ˜P (z|w, x) log
˜P (z|w, x)
P (z|x)

+
∑

x,z

EXn|W=w

[

TXn (x) ˜P (z|w, x) log
∑

x TXn (x) ˜P (z|w, x)
Q (z)

])

(88)

≥ δn + δ′
n + δ′′

n +
∑

w∈W
P (w)

(

−1 + s

s

∑

x,z

PXJ |W (x|w) ˜P (z|w, x) log
˜P (z|w, x)
P (z|x)

+
∑

x,z

PXJ |W (x|w) ˜P (z|w, x) log
∑

x PXJ |W (x|w) ˜P (z|w, x)
Q (z)

)

, (89)

where (81) follows since
∑

i ap
i ≤ (

∑

i ai)
p for non-negative real numbers {ai} and

p ≥ 1, (82) and (86) follow since x → x1+s is a convex function for nonnegative
s, (83) follows since

∑

zn∈TTZ

PXn|W
(

TVX|Z (zn) |w
)

=
∑

zn∈TTZ

∑

xn∈TVX|Z (zn)

P (xn|w) (90)

=
∑

xn∈TTX

∑

zn∈TVZ|X (xn)

P (xn|w) =
∑

xn∈TTX

enH(VZ|X |TX)+nδnP (xn|w) (91)

= enH(VZ|X |TX)+nδnPXn|W (TTX
|w) , (92)

in (84) V
(w)
Z|X : W → P(n) (Z|TX) is an arbitrary conditional type chosen accord-

ing to w,4 (85) follows from (79) and [30, Lem. 8], (87) follows since the number
of types in P(n) (X ) is polynomial in n, (88) follows since (1) x → log x is a con-
cave function; (2) PXn|W (TTX

|w) =
∑

xn∈TTX
PXn|W (xn|w); and 3) TTX

⊆ X n

runs through all the sequences in X n, (89) follows since x → x log x is a convex
function, and EXn|W=w [TXn (x)] = PXJ |W (x|w); see (75).

By the choice of ˜PZ|WX , from (89) we have

lim
n→∞

1
n

D1+s (PWZn‖PW × QZn) ≥ (78). (93)

Furthermore, it is easy to verify

lim
n→∞

∣

∣

∣P
(n)
XJ

◦ PZ|X − QZ

∣

∣

∣ = 0, (94)

since D1+s(PZn‖QZn) → 0 (see (77)).

4 Note that the choice of V
(w)

Z|X is not the best one for the lower bound (84), since the
best one should be independent of w. However, it is actually the best for the final
lower bound (89).
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Since P (X ) is compact, for each w, there must exist some sequence of
increasing integers {nk}∞

k=1 such that P
(nk)
XJ |W=w converges to some distribution

˜PX|W=w. By (94), EW [ ˜PX|W (·|W )] ∈ P
(

PZ|X , QZ

)

holds. Moreover, (71) and
(93) respectively imply

R0 + R1 ≤ I
˜P (W ;Y ) , (95)

and

R0 ≥ max
˜PZ|WX

{

−1 + s

s

∑

w,x,z

˜P (w, x, z) log
˜P (z|w, x)
P (z|x)

+
∑

w,z

˜P (w, z) log
˜P (z|w)
Q (z)

}

.

(96)

Observe that the RHS of (96) is just ˜R′
1+s

(

˜PW |X ˜PX , PZ|X , QZ

)

with s ∈ (0, 1].

Hence R0 ≥ ˜R′
1+s

(

˜PW |X ˜PX , PZ|X , QZ

)

.

Therefore, PW
˜PX|W is the desired distribution ˜PWX in (27). The proof for

the case s ∈ (0, 1] is complete.
Next we consider the case s ∈ (−1, 0]. This case can be proved by follow-

ing similar steps as the proof of traditional channel resolvability problem (or
distributed channel synthesis problem) [6]. Observe

R0 ≥ 1
n

I (M0;Zn|M1) =
1
n

I (M0M1;Zn|M1) (97)

=
1
n

I (M0M1;Zn) − 1
n

I (M1;Zn) (98)

=
1
n

H (Zn) − 1
n

H (Zn|M0M1) − δn (99)

= HQ (Z) − H (ZJ |W ) − δn + δ′
n, (100)

where (99) and (100) follow from the facts |PM1Zn − PM1QZn | → 0 and
|PZn − QZn | → 0, respectively.

Furthermore, for each w, there exist some increasing sequence of integers
{nk}∞

k=1 such that P
(nk)
XJ |W=w converges to some distribution ˜PX|W=w that satis-

fies EW [ ˜PX|W (·|W )] ∈ P
(

PZ|X , QZ

)

. Hence letting n = nk and k → ∞ in (100),
we get

R0 ≥ H
˜P (Z) − H

˜P (ZJ |W ) = I
˜P (W ;Z) . (101)

On the other hand,

R0 + R1 ≤ I
˜P (W ;Y ) . (102)

Combining (101) and (102) gives the converse part. Therefore, the proof of (27)
is complete.
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Next we prove (28). By adding an artificial non-secret message M ′
0 (with rate

R′
0) in the achievability scheme above, we have the following achievable region.

⋃

˜PW |X , ˜PX∈P(PZ|X ,QZ)

⎧

⎪

⎨

⎪

⎩

(R0, R1) : R′
0 ≥ 0,

R′
0 + R0 + R1 ≤ I

˜P (W ;Y ) ,

R′
0 + R0 ≥ ˜R′

1+s

(

˜PW |X ˜PX , PZ|X , QZ

)

⎫

⎪

⎬

⎪

⎭

. (103)

Using Fourier– Motzkin Elimination (see [31, Appendix D]), it is easy to show
the regions in (103) and (28) are the same. Hence (28) ⊆ R1+s(QZ).

On the other hand, comparing the RHS (right-hand-side) of (27) and (28)
yields that the RHS of (27) ⊆ (28). In addition, R1+s(QZ) = the RHS of (27)
as shown above. Hence R1+s(QZ) ⊆ (28).

Therefore, R1+s(QZ) = (28). Furthermore, by standard cardinality bounding
techniques [31, Appendix C], the alphabet size of W can be limited to |W| ≤
|X | + 1.
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20. Yu, L., Tan, V.Y.F.: Rényi resolvability and its applications to the wiretap channel.
arXiv preprint arXiv:1707.00810 (2017)

21. Csiszár, I., Narayan, P.: Secrecy capacities for multiple terminals. IEEE Trans. Inf.
Theory 50(12), 3047–3061 (2004)

22. Kobayashi, D., Yamamoto, H., Ogawa, T.: Secure multiplex coding attaining chan-
nel capacity in wiretap channels. IEEE Trans. Inf. Theory 59(12), 8131–8143
(2013)

23. Gohari, A., Anantharam, V.: Generating dependent random variables over net-
works. In: 2011 IEEE Information Theory Workshop (ITW), pp. 698–702 (2011)

24. Goldfeld, Z., Cuff, P., Permuter, H.H.: Semantic-security capacity for wiretap chan-
nels of type II. IEEE Trans. Inf. Theory 62(7), 3863–3879 (2016)

25. Wyner, A.: The wire-tap channel. Bell Labs Tech. J. 54(8), 1355–1387 (1975)
26. Yu, L., Tan, V.Y.F.: Wyner’s common information under Rényi divergence mea-
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