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Abstract. Team semantics is the mathematical framework of modern
logics of dependence and independence in which formulae are inter-
preted by sets of assignments (teams) instead of single assignments as in
first-order logic. In order to deepen the fruitful interplay between team
semantics and database dependency theory, we define Polyteam Seman-
tics in which formulae are evaluated over a family of teams. We begin
by defining a novel polyteam variant of dependence atoms and give a
finite axiomatisation for the associated implication problem. We also
characterise the expressive power of poly-dependence logic by proper-
ties of polyteams that are downward closed and definable in existential
second-order logic (ESO). The analogous result is shown to hold for poly-
independence logic and all ESO-definable properties.
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1 Introduction

Team semantics is the mathematical framework of modern logics of dependence
and independence. The origin of team semantics goes back to [15] but its devel-
opment to its current form began with the publication of the monograph [24]. In
team semantics formulae are interpreted by sets of assignments (teams) instead
of single assignments as in first-order logic. The reason for this change is that
statements such as the value of a variable x depends on the value of y do not
really make sense for single assignments. Team semantics has interesting connec-
tions with database theory and database dependencies [11–13,18]. In order to
facilitate the exchange between team semantics and database theory, we intro-
duce a generalisation of team semantics in which formulae are evaluated over a
family of teams. We identify a natural notion of poly-dependence that generalises
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dependence atoms to polyteams and give a finite axiomatisation for its implica-
tion problem. We also define polyteam versions of independence, inclusion and
exclusion atoms, and characterise the expressive power of poly-dependence and
poly-independence logic.

A team X is a set of assignments with a common finite domain x1, . . . , xn

of variables. Such a team can be viewed as a database table with x1, . . . , xn as
its attributes. Dependence logic extends the language of first-order logic with
atomic formulae = (x, y) called dependence atoms expressing that value of the
variable y is functionally determined by the values of the variables in x. On the
other hand, independence atoms y ⊥x z [9] express that, for any fixed value of
x, knowing the value of z does not tell us anything new about the value of y.
By viewing a team as a database, the atoms = (x, y) and y ⊥x z correspond
to the widely studied functional and embedded multivalued dependencies. Fur-
thermore, inclusion atoms x ⊆ y and exclusion atoms x|y of [6] inherit their
semantics from the corresponding database dependencies.

Independence, inclusion, and exclusion atoms have very interesting properties
in the team semantics setting. For example, inclusion atoms give rise to a variant
of dependence logic that corresponds to the complexity class PTIME over finite
ordered structures [7] whereas all the other atoms above (and their combinations)
give rise to logics that are equi-expressive with existential second-order logic
and the complexity class NP. The complexity theoretic aspects of logics in team
semantics have been studied extensively during the past few years (see [4] for a
survey).

A multiset version of team semantics was recently defined in [3]. Multiteam
semantics is motivated by the fact that multisets are widely assumed in database
theory and occur in applications. Multiteam semantics can be also used to model
and study database, probabilistic, and approximate dependencies in a unified
framework (see [3,25]).

The aim of this work is similar to that of [3], i.e., we want to extend
the applicability of team semantics. In database theory dependencies are often
expressed by so-called embedded dependencies. An embedded dependency is a
sentence of first-order logic with equality of the form

∀x1 . . . ∀xn

(
φ(x1, . . . , xn) → ∃y1 . . . ∃ykψ(x1, . . . , xn, y1, . . . , yk)

)
,

where φ and ψ are conjunctions of relational atoms R(x1, . . . , xn) and equalities
x = y. In the literature embedded dependencies have been thoroughly classified
stemming from real life applications. Examples of well-known subclasses include
full, uni-relational, 1-head, tuple-generating, and equality-generating. For exam-
ple, an embedded dependency is called tuple-generating if it is equality free (for
further details see, e.g., [16, Sect. 3]). The uni-relational dependencies can be
studied also in the context of team semantics as generalised dependencies [21].
However in many applications, especially in the area of data exchange and data
integration, it is essential to be able to express dependencies between different
relations.

In the context of data exchange (see e.g. [5]) the relational database is divided
into a set of source relations S and a set of target relations T . Dependencies are
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used to describe what kind of properties should hold when data is transferred
from the source schema to the target schema. In this setting a new taxonomy of
embedded dependencies rises: An embedded dependency ∀x

(
φ(x) → ∃yψ(x, y)

)

is source-to-target if the relation symbols occurring in φ and ψ are from S and T ,
respectively. The embedded dependency is target if the relation symbols occur-
ring in it are from T . There is no direct way to study these classes of dependencies
in the uni-relational setting of team semantics. In this paper we propose a gen-
eral framework in which these inherently poly-relational dependencies can be
studied.

In Sect. 2 we lay the foundations of polyteam semantics. The shift to poly-
teams is exemplified in Sect. 2.2, by the definition of poly-dependence atoms
and an Armstrong type axiomatisation for the associated implication prob-
lem. In Sect. 3 polyteam semantics is extended from atoms to complex formu-
lae. Section 4 studies the expressive power of the new logics over polyteams.
The main technical results of the section characterises poly-independence (poly-
dependence) logic as the maximal logic capable of defining all (downward closed)
properties of polyteams definable in existential second-order logic.

2 From Uni-dependencies to Poly-dependencies

We start by defining the familiar dependency notions from the team semantics
literature. In Sect. 2.2 we introduce a novel poly-relational version of dependence
atoms and establish a finite axiomatisation of its implication problem. We then
continue to present poly-relational versions of inclusion, exclusion, and inde-
pendence atoms, and a general notion of a poly-relational dependency atom. We
conclude this section by relating the embedded dependencies studied in database
theory to our new setting.

2.1 Dependencies in Team Semantics

Vocabularies τ are sets of relation symbols with prescribed arities. For each
R ∈ τ , let ar(R) ∈ Z+ denote the arity of R. A τ -structure is a tuple A =(
A, (RA

i )Ri∈τ

)
, where A is a set and each RA

i is an ar(Ri)-ary relation on A

(i.e., RA
i ⊆ Aar(Ri)). We use A, B, etc. to denote τ -structures and A, B, etc. to

denote the corresponding domains.
Let D be a finite set of first-order variables and A be a nonempty set. A

function s : D → A is called an assignment. For a variable x and a ∈ A, the
assignment s(a/x) : D ∪ {x} → A is obtained from s as follows:

s(a/x)(y) :=

{
a if y = x,

s(y) otherwise.

For an assignment s and a tuple of variables x = (x1, . . . , xn), we write s(x)
to denote the sequence

(
s(x1), . . . , s(xn)

)
. A team is a set of assignments with a
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common domain D and codomain A. Let A be a τ -structure and X a team with
codomain A, then we say that X is a team of A.

The following dependency atoms were introduced in [6,9,24].

Definition 1 (Dependency atoms). Let A be a model and X a team with
codomain A. If x, y are variable sequences, then = (x, y) is a dependence atom
with the truth condition:

A |=X=(x, y) if for all s, s′ ∈ X s.t. s(x) = s′(x), it holds that s(y) = s′(y).

If x, y are variable sequences of the same length, then x ⊆ y is an inclusion
atom and x | y an exclusion atom with satisfaction defined as follows:

A |=X x ⊆ y if for all s ∈ X there exists s′ ∈ X such that s(x) = s′(y).
A |=X x | y if for all s, s′ ∈ X : s(x) 	= s′(y).

If x, y, z are variable sequences, then y ⊥x z is a conditional independence atom
with satisfaction defined by

A |=X y ⊥x z if for all s, s′ ∈ X such that s(x) = s′(x) there exists s′′ ∈ X

such that s′′(x) = s(x), s′′(y) = s(y), and s′′(z) = s′(z).

Note that in the previous definitions it is allowed that some or all of the
vectors of variables have length 0. For example, A |=X= (x) holds iff ∀s ∈ X :
s(x) = c holds for some fixed tuple c, and A |=X y ⊥x z holds always if either
of the vectors y or z is of length 0.

All the aforementioned dependency atoms have corresponding variants in
relational databases. One effect of this relationship is that the axiomatic proper-
ties of these dependency atoms trace back to well-known results in database the-
ory. Armstrong’s axioms for functional dependencies constitute a finite axioma-
tisation for dependence atoms [1,9], and inclusion atoms can be finitely axioma-
tised using the axiomatisation for inclusion dependencies [2]. On the other hand,
the non-axiomatisability and undecidability of the (finite and unrestricted) impli-
cation problem for embedded multivalued dependencies both carry over to con-
ditional independence atoms [14,22,23]. Restricting attention to the so-called
pure independence atoms, i.e., atoms of the form x ⊥∅ y, a finite axiomatisation
is obtained by relating to marginal independence in statistics [8,18].

2.2 The Notion of Poly-dependence

For each i ∈ N, let Var(i) denote a distinct countable set of first-order variable
symbols. We say that these variables are of sort i. Relating to databases, sorts
correspond to table names. Usually we set Var(i) = {xi

j | j ∈ N}. We write xi,
yi, xi

j to denote variables form Var(i), and xi to denote tuples of variables from
Var(i). Sometimes we drop the index i and write simply x and x instead of xi and
xi, respectively. Note that x is always a tuple of variables of a single sort. In order
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to simplify notation, we sometimes write xi and xj to denote arbitrary tuples of
variables of sort i and j, respectively. We emphasise that xi and xj might be of
different length and may consist of distinct variables. Let A be a τ -model and let
Di ⊆ Var(i) for all i ∈ N. A tuple X = (Xi)i∈N is a polyteam of A with domain
D = (Di)i∈N, if Xi is a team with domain Di and co-domain A for each i ∈ N.
We identify X with (X0, . . . , Xn) if Xi is the singleton team consisting with the
empty assignment for all i greater than n. Let X = (Xi)i∈N and Y = (Yi)i∈N be
two polyteams. We say that X is a subteam of Y if Xi ⊆ Yi for all i ∈ N. By
the union (resp. intersection) of X and Y we denote the polyteam (Xi ∪ Yi)i∈N

(resp. (Xi ∩ Yi)i∈N). By a slight abuse of notation we write X ∪ Y (resp. X ∩ Y )
for the union (resp. intersection) of X and Y , and X ⊆ Y to denote that X is
a subteam of Y . For a tuple V = (Vi)i∈N where Vi ⊆ Var(i), the restriction of
X to V , written X � V , is defined as (Xi � Vi)i∈N where Xi � Vi denotes the
restriction of Xi to Vi.

Next we generalise dependence atoms to the polyteam setting. In contrast
to the standard dependence atoms, poly-dependence atoms declare functional
dependence of variables over two teams.

Poly-dependence. Let xiyi and ujvj be sequences of variables such that xi

and uj , and yi and uj have the same length, respectively. Then =
(
xi, yi/uj , vj

)

is a poly-dependence atom whose satisfaction relation |=X is defined as follows:

A |=X=
(
xi, yi/uj , vj

)
⇔ ∀s ∈ Xi∀s′ ∈ Xj : s(xi) = s′(uj) implies s(yi) = s′(vj).

Note that the atom =(x, y/x, y) corresponds to the dependence atom =(x, y).
For empty tuples xi and uj the poly-dependence atom reduces to a “poly-
constancy atom” =

(
yi/vj

)
. We will later show (Remark 13) that poly-

dependence atoms of the form =
(
xi, yi/ui, vi

)
can be expressed with formulae

using only ordinary dependence atoms. Thus poly-dependence atoms of this
form are considered as primitive notions only when xiyi = uivi; otherwise
=

(
xi, yi/ui, vi

)
is considered as a shorthand for the equivalent formula obtained

from Remark 13.
The ability to reason about database dependencies can be employed to facili-

tate many critical data management tasks such as schema design, query optimi-
sation, and integrity maintenance. Keys, inclusion dependencies, and functional
dependencies in particular have a crucial role in all of these processes. A tradi-
tional way to approach the interaction between dependencies has been the utili-
sation of proof systems similar to natural deduction systems in logic. The most
significant of all these systems is the Armstrong’s axiomatisation for functional
dependencies. This inference system consists of only three rules which we depict
below using the standard notation for functional dependencies, i.e., X → Y
denotes that an attribute set X functionally determines another attribute set Y .

Definition 2 (Armstrong’s axiomatisation [1])

– Reflexivity: If Y ⊆ X, then X → Y
– Augmentation: if X → Y , then XZ → Y Z
– Transitivity: if X → Y and Y → Z, then X → Z
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Our first development is the generalisation of Armstrong’s axiomatisation to
the poly-dependence setting. To this end, we assemble the three rules of Arm-
strong and introduce three auxiliary rules: Union, Symmetry, and Weak Tran-
sitivity. Contrary to the Armstrong’s proof system, here Union is not reducible
to Transitivity and Augmentation because we operate with sequences instead of
sets of variables or attributes. Symmetry in turn is imposed by the sequential
notation employed by the poly-dependence atom. Weak Transitivity exhibits
transitivity of equalities on the right-hand side of a poly-dependence atom, a
phenomenon that arises only in the polyteam setting.

Definition 3 (Axiomatisation for poly-dependence atoms)

– Reflexivity: =
(
xi, prk(xi)/yj , prk(yj)

)
, where k = 1, . . . , |xi| and prk takes

the kth projection of a sequence.
– Augmentation: if =

(
xi, yi/uj , vj

)
, then =

(
xizi, yizi/ujwj , vjwj

)

– Transitivity: if =
(
xi, yi/uj , vj

)
and =

(
yi, zi/vj , wj

)
, then =

(
xi, zi/uj , wj

)

– Union: if =
(
xi, yi/uj , vj

)
and =

(
xi, zi/uj , wj

)
then =

(
xi, yizi/uj , vjwj

)

– Symmetry: if =
(
xi, yi/uj , vj

)
, then =

(
uj , vj/xi, yi

)

– Weak Transitivity: if =
(
xi, yizizi/uj , vjvjwj

)
, then =

(
xi, yi/uj , wj

)

This proof system forms a complete characterisation of logical implication for
poly-dependence atoms. We use |= to refer to logical implication, i.e., we write
Σ |= σ if A |=X Σ implies A |=X σ for all models A and polyteams X. Given an
axiomatisation R, that is, a set of axioms and inference rules, we write Σ �R σ
if R yields a proof of σ from Σ. Given a class of dependency atoms C, we then
say that R is sound (complete, resp.) for C if for all finite sets of dependency
atoms Σ ∪ {σ} from C, Σ �R σ implies (is implied by, resp.) Σ |= σ.

Theorem 4. The axiomatisation of Definition 3 is sound and complete for poly-
dependence atoms.

Proof. The proof of soundness is straightforward and omitted. We show that the
axiomatisation is complete, i.e., that Σ |= σ implies Σ � σ for a set Σ ∪ {σ} of
poly-dependence atoms. Assume σ is =

(
xi, yi/xj , yj

)
. First we consider the case

where i = j in which case σ is a standard dependence atom. Let Σ∗ be the subset
of Σ consisting of all standard dependence atoms over Var(i). Since all teams
satisfying Σ∗ can be extended to a polyteam satisfying Σ by introducing new
empty teams, we have that Σ∗ |= σ in the team semantics setting. Since depen-
dence atoms = (x, y) in team semantics correspond to functional dependencies
{x ∈ xi} → {y ∈ yi} in relational databases (see e.g. [9]), Armstrong’s com-
plete axiomatisation from Definition 2 yields a deduction of σ0 from Σ∗

0 where
Σ∗

0 and {σ0} are obtained from Σ∗ and σ by replacing dependence atoms with
their corresponding functional dependencies. Since dependence atoms are prov-
ably order-independent (i.e. one derives =(x0, x1) from =(y0, y1) by Reflexivity,
Union, and Transitivity if xi and yi list the same variables), the deduction in
Armstrong’s system can be simulated with the rules in Definition 3. This proves
the case i = j.
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Let us then consider the case i 	= j. We will show that Σ 	� σ implies Σ 	|= σ.
Assume Σ 	� σ. Define first a binary relation ∼ on Var(i) ∪ Var(j) such that
ai ∼ aj if Σ �=

(
xi, ai/xj , aj

)
, aj ∼ ai if Σ �=

(
xj , aj/xi, ai

)
, and ai ∼ bi

(aj ∼ bj , resp.) if ai = bi or Σ �=
(
xi, aibi/xj , ajaj

)
for some aj (aj = bj or

Σ �=
(
xj , ajbj/xi, aiai

)
for some ai, resp.). We show that ∼ is an equivalence

relation.

– Reflexivity: Holds by definition.
– Symmetry: First note that ai ∼ aj and aj ∼ ai are derivably equiv-

alent by the symmetry rule. Assume that ai ∼ bi in which case =(
xi, aibi/xj , ajaj

)
is derivable for some aj . Then derive =

(
aibi, bi/ajaj , aj

)

and =
(
aibi, ai/ajaj , aj

)
by using the reflexivity rule, and then =(

xi, bi/xj , aj
)

and =
(
xi, ai/xj , aj

)
by using the transitivity rule. Finally

derive =
(
xi, biai/xj , ajaj

)
by using the union rule.

– Transitivity: Assume first that ai ∼ bi ∼ ci, where ai, bi, ci and are pair-
wise distinct. Then =

(
xi, aibi/xj , ajaj

)
and =

(
xi, bici/xj , bjbj

)
are deriv-

able for some aj and bj . Then analogously to the previous case assemble
=

(
xi, aibibi/xj , ajajbj

)
which admits =

(
xi, ai/xj , bj

)
by weak transitivity,

and detach =
(
xi, ci/xj , bj

)
from =

(
xi, bici/xj , bjbj

)
. By the union rule we

then obtain =
(
xi, aici/xj , bjbj

)
and thus that ai ∼ ci. Since all the other

cases are analogous, we observe that ∼ is transitive.

Let s be a function that maps each x ∈ Var(i)∪Var(j) that appears in Σ∪{σ}
to the equivalence class x/ ∼. We define X = (Xi,Xj) where Xk = {s � Var(k)}
for k = i, j. First notice that X 	|= σ for, by union, it cannot be the case
that prk(yi) ∼ prk(yj) for all k = 1, . . . , |yi|. It suffices to show that X satisfies
each =(um, vm/un, vn) in Σ. If m = n or {m,n} 	= {i, j}, the atom is trivially
satisfied. Hence, and by symmetry, we may assume that the atom is of the form
=

(
ui, vi/uj , vj

)
. Assume that s(ui) = s(uj), that is, prk(ui) ∼ prk(uj) for all k =

1, . . . , |ui|. We obtain by the union rule that =
(
xi, ui/xj , uj

)
is derivable, and

hence by the transitivity rule that =
(
xi, vi/xj , vj

)
is also derivable. Therefore,

by using the reflexivity and transitivity rules we conclude that s(vi) = s(vj). �

2.3 A General Notion of a Poly-dependency

Next we consider suitable polyteam generalisations for the dependencies dis-
cussed in Sect. 2.1 and also define a general notion of poly-dependency. This gen-
eralisation is immediate for inclusion atoms which are inherently multi-relational;
relational database management systems maintain referential integrity by enforc-
ing inclusion dependencies specifically between two distinct tables. With poly-
inclusion atoms these multi-relational features can now be captured.
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Poly-inclusion. Let xi and yj be sequences of variables of the same length.
Then xi ⊆ yj is a poly-inclusion atom whose satisfaction relation |=X is defined
as follows:

A |=X xi ⊆ yj ⇔ ∀s ∈ Xi∃s′ ∈ Xj : s(xi) = s′(yj).

If i = j, then the atom is the standard inclusion atom.

Poly-exclusion. Let xi and yj be sequences of variables of the same length.
Then xi | yj is a poly-exclusion atom whose satisfaction relation |=X is defined
as follows:

A |=X xi | yj ⇔ ∀s ∈ Xi, s
′ ∈ Xj : s(xi) 	= s′(yj).

If i = j, then the atom is the standard exclusion atom.

Poly-independence. Let xi, yi, aj ,b
j
, uk, vk, and wk be tuples of variables

such that |xi| = |aj | = |uk|, |yi| = |vk|, |bj | = |wk|. Then yi/vk ⊥xi,aj/uk b
j
/wk

is a poly-independence atom whose satisfaction relation |=X is defined as follows:

A |=X yi/vk ⊥xi,aj/uk b
j
/wk ⇔ ∀s ∈ Xi, s

′ ∈ Xj : s(xi) = s′(aj) implies

∃s′′ ∈ Xk : s′′(ukvk) = s(xiyi) and s′′(wk) = s′(b
j
).

The atom y/y ⊥x,x/x z/z, where all variables are of the same sort, corresponds to
the standard independence atom y ⊥x z. Furthermore, a pure poly-independence
atom is an atom of the form yi/vk ⊥∅,∅/∅ b

j
/wk, written using a shorthand

yi/vk ⊥ b
j
/wk.

Poly-independence atoms are closely related to equi-join operators of rela-
tional databases as the next example exemplifies.

Example 5. A relational database schema

P(rojects) = {project,team}, T(eams) = {team,employee},

E(mployees) = {employee,team,project},

stores information about distribution of employees for teams and projects in a
workplace. The poly-independence atom

P[project]/E[project] ⊥P[team],T[team]/E[team] T[employee]/E[employee] (1)

expresses that the relation Employees includes as a subrelation the natural join
of Projects and Teams. If furthermore E[project,team] ⊆ P[project,team]
and E[team,employee] ⊆ T[team,employee] hold, then Employees is exactly
this natural join.

In addition to the poly-atoms described above we define a notion of a gener-
alised poly-atom, similarly to the notion of generalised atom of [21].

Generalised poly-atoms. Let (j1, . . . , jn) be a sequence of positive integers. A
generalised quantifier of type (j1, . . . , jn) is a collection Q of relational structures
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(A,R1, . . . , Rn) (where each Ri is ji-ary) that is closed under isomorphisms.
Then, for any sequence (x1, . . . , xn) where xi is a length ji tuple of variables
from some Var(li), AQ(x1, . . . , xn) is a generalised poly-atom of type (j1, . . . , jn).
For a model A and polyteam X where xi ⊆ Dom(Xli), the satisfaction relation
with respect to AQ is defined as follows:

A |=X AQ(x1, . . . , xn)

⇔
(
Dom(A), R1 := rel(Xl1 , x1) . . . , Rn := rel(Xln , xn)

)
∈ Q.

By rel(X,x), for x = (x1, . . . , xm), we denote the relation {(s(x1), . . . , s(xm)) |
s ∈ X}. A poly-atom AQ(x1, . . . , xn) is a uni-atom if the variable sequences
x1, . . . , xn are of a single sort. Uni-atoms correspond exactly to generalised atoms
of [21]. We say that the atom AQ(x1, . . . , xn) is definable in a logic L if the
class Q is definable in L. For instance, we notice that a poly-inclusion atom
(x1, y1) ⊆ (u2, v2) is a first-order definable generalised poly-atom of type (2, 2).

2.4 Database Dependencies as Poly-atoms

Embedded dependencies in a multi-relational context can now be studied with
the help of generalised poly-atoms and polyteam semantics. Conversely, strong
results obtained in the study of database dependencies can be transferred and
generalised for stronger results in the polyteam setting. In particular, each
embedded dependency can be seen as a defining formula for a generalised poly-
atom, and hence the classification of embedded dependencies naturally yield a
corresponding classification of generalised poly-atoms. For example, the class

C := {AQ(x1, . . . , xn) |Q is definable by an FO(R1, . . . , Rn)-sentence in
the class of equality-generating dependencies}

is the class of equality-generating poly-atoms. The defining formula of the gen-
eralised atom of type (2, 2) that captures the poly-dependence atom of type
=

(
xi, yi/uj , vj

)
is

∀x1∀x2∀y1∀y2
(
(R1(x1, x2) ∧ R2(y1, y2) ∧ x1 = y1) → x2 = y2

)
.

Thus poly-dependence atoms are included in the class of equality-generating
poly-atoms.

In order to study data exchange in the polyteam setting, we first need to
define the notions of source-to-target and target poly-atoms. This classification
of poly-atoms requires some more care as it is not enough to consider the defin-
ing formulae of the corresponding atoms, but also the variables that the atom
is instantiated with. We will return to this topic briefly after we have given
semantics for logics that work on polyteams.
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3 Polyteam Semantics for Complex Formulae

We next delineate a version of team semantics suitable for the polyteam context.
We note here that it is not a priori clear what sort of modifications for connectives
and quantifiers one should entertain when shifting from teams to the polyteam
setting.

3.1 Syntax and Semantics

Definition 6. Let τ be a set of relation symbols. The syntax of poly first-order
logic PFO(τ) is given by the following grammar rules:

φ ::= x = y | x 	= y | R(x) | ¬R(x) | (φ ∧ φ) | (φ ∨ φ) | (φ ∨j φ) | ∃xφ | ∀xφ,

where R ∈ τ is a k-ary relation symbol, j ∈ N, x ⊆ Var(i)k and x, y ∈ Var(i)
for some i, k ∈ N.

We say that ∨ is a global disjunction whereas ∨i is a local disjunction. Note that
in the definition the scope of negation is restricted to atomic formulae. Note also
that the restriction of PFO(τ) to formulae without the connective ∨j and using
only variables of a single fixed sort is FO(τ).

For the definition of the polyteam semantics of PFO, recall the definitions
of teams and polyteams from Sects. 2.1 and 2.2, respectively. Let X be a team,
A a finite set, and F : X → P(A) \ {∅} a function. We denote by X[A/x] the
modified team {s(a/x) | s ∈ X, a ∈ A}, and by X[F/x] the team {s(a/x) | s ∈
X, a ∈ F (s)}. Again note that if restricted to the above fragment of PFO(τ) the
polyteam semantics below coincides with traditional team semantics, see e.g.
[4] for a definition. Thus for FO(τ) formulae we may write A |=Xi

φ instead of
A |=(Xi) φ.

Definition 7 (Lax polyteam semantics). Let A be a τ -structure and X a
polyteam of A. The satisfaction relation |=X for poly first-order logic is defined
as follows:

A |=X x = y ⇔ if x, y ∈ Var(i) then ∀s ∈ Xi : s(x) = s(y)
A |=X x 	= y ⇔ if x, y ∈ Var(i) then ∀s ∈ Xi : s(x) 	= s(y)
A |=X R(x) ⇔ if x ∈ Var(i)k then ∀s ∈ Xi : s(x) ∈ RA

A |=X ¬R(x) ⇔ if x ∈ Var(i)k then ∀s ∈ Xi : s(x) 	∈ RA

A |=X (ψ ∧ θ) ⇔ A |=X ψ and A |=X θ
A |=X (ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ for some Y ,Z ⊆ X s.t. Y ∪ Z = X
A |=X (ψ ∨j θ)⇔ A |=X[Yj/Xj ]

ψ and A |=X[Zj/Xj ]
θ,

for some Yj , Zj ⊆ Xj s.t. Yj ∪ Zj = Xj

A |=X ∀xψ ⇔ A |=X[Xi[A/x]/Xi]
ψ, when x ∈ Var(i)

A |=X ∃xψ ⇔ A |=X[Xi[F/x]/Xi
ψ holds for some F : Xi → P(A) \ {∅},

when x ∈ Var(i)
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The truth of a sentence φ (i.e., a formula with no free variables) in a model A
is defined as: A |= φ if A |=({∅}) φ, where ({∅}) denotes the polyteam consisting
only singleton teams of the empty assignment. We write Fr(φ) for the set of free
variables in φ, and Fri(φ) for Fr(φ) ∩ Var(i).

Polyteam semantics is a conservative extension of team semantics in the same
fashion as teams semantics is a conservative extension of Tarski semantics [24].

Proposition 8. Let φ ∈ FO(τ) whose variables are all of sort i ∈ N. Let A be
a τ -structure and X a polyteam of A. Then A |=X φ ⇔ A |=Xi

φ ⇔ ∀s ∈ Xi :
A |=s φ, where |=s denotes the ordinary satisfaction relation of first-order logic.

Example 9. A relational database schema

Patient ={patient id,patient name},

Case ={case id,patient id,diagnosis id,confirmation},

Test ={diagnosis id,test id},

Results ={patient id,test id,result}

stores information about patient cases and their related laboratory tests. In
order to maintain consistency of the stored data, database management sys-
tems support the use of integrity constraints that are based on functional
and inclusion dependencies. For instance, on relation schema Patient the key
patient id (i.e. the dependence atom = (patient id,patient name)) ensures
that no patient id can refer to two different patient names. On Case the foreign
key patient id referring to patient id on Patient (i.e. the inclusion atom
Case[patient id] ⊆ Patient[patient id]) enforces that patient ids on Case
refer to real patients. The introduction of poly-dependence logics opens up pos-
sibilities for more expressive data constraints. The poly-inclusion formula

φ0 =confirmation �= positive ∨Case ∃x1x2

(
x1 �= x2∧∧

i=1,2

(Case[diagnosis id, xi] ⊆ Test[diagnosis id,test id]∧

Case[patient id, xi, positive] ⊆ Results[patient id,test id,result])
)

ensures that a diagnosis may be confirmed only if it has been affirmed by two
different appropriate tests. The poly-exclusion formula

φ1 =confirmation 	= negative ∨Case

∀x
(
Case[diagnosis id, x] | Test[diagnosis id,test id]∨Case

Case[patient id, x, positive] | Results[patient id,test id,result]
)

makes sure that a diagnosis may obtain a negative confirmation only if it has
no positive indication by any suitable test. Note that both formulae employ
local disjunction and quantified variables that refer to Case. Interestingly, the
illustrated expressive gain is still computationally feasible as both φ0 and φ1

can be enforced in polynomial time. For φ0 note that the data complexity of
inclusion logic is in PTIME [7]; for φ1 observe that satisfaction of a formula of
the form x1 | y2 ∨1 x1 | z3 can be decided in PTIME as well.
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Poly-dependence logics. Poly-dependence, poly-independence, poly-inclusion,
and poly-exclusion logics (PFO(pdep), PFO(pind), PFO(pinc), and PFO(pexc),
resp.) are obtained by extending PFO with poly-dependence, poly-independence,
poly-inclusion, and poly-exclusion atoms, respectively. In general, given a set of
atoms C we denote by PFO(C) the logic obtained by extending PFO with the
atoms of C. We also consider poly-atoms in the team semantics setting; by FO(C)
we denote the extension of first-order logic by the poly-atoms in C. Similarly, it is
also possible to consider atoms of Sect. 2.1 in the polyteam setting by requiring
that the variables used with each atom are of a single sort.

3.2 Basic Properties

We say that a formula φ is local in polyteam semantics if for all V = (Vi)i∈N

where Fri(φ) ⊆ Vi for i ∈ N, and all models A and polyteams X, we have

A |=X φ ⇔ A |=X�V φ.

In other words, the truth value of a local formula depends only on its free vari-
ables. Furthermore, a logic L is called local if all its formulae are local.

Proposition 10 (Locality). For any set C of generalised poly-atoms PFO(C)
is local.

Furthermore, the downward closure of dependence logic as well as the union
closure of inclusion logic generalise to polyteams.

Proposition 11 (Downward Closure and Union Closure). Let φ be a for-
mula of PFO(pdep), ψ a formula of PFO(pinc), A a model, and X,Y two poly-
teams. Then A |=X φ and Y ⊆ X implies that A |=Y φ, and A |=X ψ and
A |=Y ψ implies that A |=X∪Y ψ.

The following proposition shows that the substitution of independence
(dependence) atoms for any (downwards closed) class of atoms definable in exis-
tential second-order logic (ESO) results in no expressive gain.

Proposition 12. Let C (D, resp.) be the class of all (all downward closed, resp.)
ESO-definable poly-atoms. The following equivalences of logics hold: FO(C) ≡
FO(ind), FO(D) ≡ FO(dep), and FO(pinc) ≡ FO(inc).

Proof. The claim FO(pinc) ≡ FO(inc) follows directly from the observation that
in the team semantics setting poly-inclusion atoms are exactly inclusion atoms.
Note that FO(ind) (FO(dep), resp.) captures all (all downward closed, resp.)
ESO-definable properties of teams (see Theorem 18). It is easy to show (cf. [17,
Theorem 6]) that every property of teams definable in FO(C) (FO(D), resp.) is
ESO-definable (ESO-definable and downward closed, resp.). Thus since ind ∈ C
and dep ∈ D, we obtain that FO(C) ≡ FO(ind) and FO(D) ≡ FO(dep). �
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Remark 13. In particular it follows from the previous proposition that, in the
polyteam setting, each occurrence of any (any downward closed, resp.) ESO-
definable poly-atom that takes variables of a single sort as parameters may be
equivalently expressed by a formula of PFO(ind) (PFO(dep), resp.) that only
uses variables of the same single sort.

We end this section by considering the relationship of global and local dis-
junctions. In particular, we observe that by the introduction of local disjunction
its global variant becomes redundant. To facilitate our construction we here
allow the use of ∨I , where I is a set on indices, with obvious semantics. We then
show that ∨ can be replaced by ∨I and ∨I by ∨i.

Proposition 14. For every formula of PFO there exists an equivalent formula
of PFO that only uses disjunctions of type ∨i.

Proof. Let φ be a formula of PFO and let I list the sorts of all the variables
that occur in φ. Let φ∗ denote the formula obtained from φ by substituting all
occurrences of ∨ by ∨I . It is a direct consequence of the locality property that
φ and φ∗ are equivalent.

We will next show how to eliminate disjunctions of type ∨I from φ∗. Let
φ0 ∨I φ1 be a formula of PFO and let I = {i1, . . . , in}. Define

ψ := ∃zi1
0 ∃zi1

1 . . . ∃zin
0 ∃zin

1 (θ0 ∧ θ1),

where zi1
0 , zi1

1 , . . . , zin
0 , zin

1 are fresh and distinct variables, and

θ0 := (zi1
0 = zi1

1 ∨i1 (zi1
0 	= zi1

1 ∧ (zi2
0 = zi2

1 ∨i2 (zi2
0 	= zi2

1

∧ (. . . ∧ (zin
0 = zin

1 ∨in (zin
0 	= zin

1 ∧ φ0) . . .),

θ1 := (zi1
0 	= zi1

1 ∨i1 (zi1
0 = zi1

1 ∧ (zi2
0 	= zi2

1 ∨i2 (zi2
0 = zi2

1

∧ (. . . ∧ (zin
0 	= zin

1 ∨in (zin
0 = zin

1 ∧ φ1) . . .).

The idea above is that the variables z
ij
0 , z

ij
1 are used to encode a split of the

team Xj . Using locality it is easy to see that (φ0 ∨I φ1) and ψ are equivalent
over structures of cardinality at least two. From this the claim follows in a
straightforward manner. �

3.3 Data Exchange in the Polyteam Setting

As promised, we now return to the topic of modelling data exchange in our
new setting. In this section we restrict our attention to poly-atoms that are
embedded dependencies. Our first goal is to define the notions of source-to-target
and target poly-atoms. For this purpose we define a normal form for embedded
dependencies. We call an embedded dependency ∀x

(
φ(x) → ∃yψ(x, y)

)
sepa-

rated if the relation symbols that occur in φ and ψ are distinct. A poly-atom
is called separated, if the defining formula is a separated embedded dependency.
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In the polyteam setting this is just a technical restriction as non-separated poly-
atoms can be always simulated by separated ones. Below we use the syntax
A(x1, . . . , xl, y1, . . . , yk) for separated poly-atoms. The idea is that xis project
extensions for relations used in the antecedent and yjs in the consequent of the
defining formula.

Let S and T be a set of source relations and target relations from some data
exchange instance, respectively. Let X = (S1, . . . Sn, T1, . . . , Tm) be a polyteam
that encodes S and T in the obvious manner. We say that an instance of a
separated atom A(x1, . . . , xl, y1, . . . , yk) is source-to-target if each xi is a tuple
of variables of the sort of Sj , for some j, and each yi is a tuple of variables of
the sort of Tj , for some j. Analogously the instance A(x1, . . . , xl, y1, . . . , yk) is
target if each xi and yj is a tuple of variables of the sort of Tp for some p.

Data exchange problems can now be directly studied in the polyteam setting.
For example the existence-of-solution problem can be reduced to a model check-
ing problem by using first-order quantifiers to guess a solution for the problem
while the rest of the formula describes the dependences required to be fulfilled
in the data exchange problem.

Example 15. A relational database schemas

S : P(rojects) = {name, employee, employee position},

T : E(mployees) = {name, project 1, project 2}

are used to store information about employees positions in different projects.
We wish to check whether for a given instance of the schema S there exists an
instance of the schema T that does not lose any information about for which
projects employees are tasked to work and that uses the attribute name as a key.
The PFO(pinc,dep)-formula

φ := ∃x1∃x2∃x3

((
P[employee, name] ⊆ E[x1, x2]

∨P P[employee, name] ⊆ E[x1, x3]
)
∧ =(x1, (x2, x3))

)
,

when evaluated on a polyteam that encodes an instance of the schema S,
expresses that a solution for the data exchange problem exists. The variables x1,
x2 and x3 above are of the sort E and are used to encode attribute names name,
project 1 and project 2, respectively. The dependence atom above enforces
that the attribute name is a key.

4 Expressiveness

The expressiveness properties of dependence, independence, inclusion, and exclu-
sion logic and their fragments enjoy already comprehensive classifications.
Dependence logic and exclusion logic are equi-expressive and capture all down-
ward closed ESO properties of teams [6,19]. Independence logic, whose indepen-
dence atoms violate downward closure, in turn captures all ESO team properties
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[6]. On the other hand, the expressivity of inclusion logic has been characterised
by the so-called greatest fixed point logic [7]. In this section we turn attention
to polyteams and consider the expressivity of the poly-dependence logics intro-
duced in this paper. Section 4.1 deals with logics with only uni-dependencies
whereas in Sect. 4.2 poly-dependencies are considered.

4.1 Uni-dependencies in Polyteam Semantics

The following theorem displays how polyteam semantics over logics with only
uni-atoms collapses to standard team semantics.

Theorem 16. Let C be a set of uni-atoms. Each formula φ(x1, . . . , xn) ∈
PFO(C) can be associated with a sequence of formulae ψ1(x1), . . . , ψn(xn) ∈
FO(C) such that for all X = (X1, . . . , Xn), where Xi is a team with domain
xi,

M |=X φ(x1, . . . , xn) ⇔ ∀i = 1, . . . , n : M |=Xi
ψi(xi).

Similarly, the statement holds vice versa.

Proof. The latter statement is clear as it suffices to set φ(x1, . . . , xn) := ψ1(x1)∧
. . .∧ψn(xn). For the other direction, we define recursively functions fi that map
formulae φ(x1, . . . , xn) ∈ PFO(C) to formulae ψi(xi) ∈ FO(C). By Proposition
14 we may assume that only disjunctions of type ∨i, for some i ∈ N, may occur
in φ. The functions fi are defined as follows:

– If φ(xj) is an atom, then fi(φ) =

{
φ if i = j,

� otherwise.

– fi(ψ ∨j θ) =

{
fi(ψ) ∨ fi(θ) if i = j,

fi(ψ) ∧ fi(θ) otherwise.
– fi(ψ ∧ θ) = fi(ψ) ∧ fi(θ).

– For Q ∈ {∃,∀}, if fi(Qxjψ) =

{
Qxfi(ψ) if i = j,

fi(ψ) otherwise.

We set ψi := fi(φ) and show the claim by induction on the structure of the
formula. The cases for atoms and conjunctions are trivial. We show the case for
∨i.

Let φ = ψ ∨j θ and assume that the claim holds for ψ and θ. Now

A |=X φ iff A |=X[Yj/Xj ]
ψ andA |=X[Zj/Xj ]

θ,

for some Yj , Zj ⊆ Xj such that Yj ∪ Zj = Xj .

By the induction hypothesis, A |=X[Yj/Xj ]
ψ and A |=X[Zj/Xj ]

θ iff A |=Yj
fj(ψ),

A |=Zj
fj(θ), and A |=Xi

fi(ψ),A |=Xi
fi(θ) for each i 	= j. Thus we obtain that

A |=X φ holds iff

A |=Xj
fj(ψ) ∨ fj(θ), and A |=Xi

fi(ψ) and A |=Xi
fi(θ) for each i 	= j.
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The above can be rewritten as

A |=Xj
fj(ψ) ∨ fj(θ), and A |=Xi

fi(ψ) ∧ fi(θ) for each i 	= j.

The claim now follows, since fj(ψ) ∨ fj(θ) = fj(ψ ∨j θ) and fi(ψ) ∧ fi(θ) =
fi(ψ ∨j θ), for i 	= j.

The cases for the quantifiers are similar.

This theorem implies that poly-atoms which describe relations between two
teams are beyond the scope of uni-logics. The following proposition illustrates
this for PFO(dep).

Proposition 17. The poly-constancy atom =
(
x1/x2

)
cannot be expressed in

PFO(dep).

Proof. Assume that =
(
x1/x2

)
can be defined by some φ(x1, x2) ∈ PFO(dep).

By Theorem 16 there are FO(dep)-formulae ψ1(x1) and ψ2(x2) such that for all
X = (X1,X2), where Xi is a team with domain xi, it holds that

M |=X=
(
x1/x2

)
⇔ ∀i = 1, 2 : M |=Xi

ψi(xi). (2)

Define teams X1 := {x1 �→ 0}, X2 := {x2 �→ 0}, Y1 := {x1 �→ 1}, and Y2 :=
{x2 �→ 1}. Now clearly M |=(X1,X2)=

(
x1/x2

)
, and M |=(Y1,Y2)=

(
x1/x2

)
. Hence

by (2), we obtain first that M |=X1 ψi(x1) and M |=Y2 ψi(x2), and then that
M |=(X1,Y2)=

(
x1/x2

)
, which is a contradiction. �

Using Theorem 16 we may now compare and characterise the expressivity of
PFO(dep) and PFO(ind) in terms of existential second-order logic. To this end, let
us first recall the ESO characterisations of open dependence and independence
logic formulae. Note that rel(X) refers to a relation {s(x1, . . . , xn) | s ∈ X}
where x1, . . . , xn is some enumeration of Dom(X).

Theorem 18 ([6,19]). Let φ(x) be an independence logic (dependence logic,
resp.) formula, and let R be an |x|-ary relation. Then there is an (downward
closed with respect to R, resp.) ESO-sentence ψ(R) such that for all teams X 	= ∅
where Dom(X) = x,

M |=X φ(x) ⇔ (M, R := rel(X)) |= ψ(R)

The same statement holds also vice versa.

It is now easy to see that Theorems 16 and 18 together imply that PFO(dep)
captures all conjunctions of downward closed ESO properties of teams whereas
PFO(ind) captures all such properties.

Theorem 19. Let φ(x1, . . . , xn) be a PFO(ind) (PFO(dep), resp.) formula
where xi is a sequence of variables from Var(i). Let Ri be an |xi|-ary rela-
tion symbol for i = 1, . . . , n. Then there are (downward closed with respect
to Ri, resp.) ESO-sentences ψ1(R1), . . . , ψn(Rn) such that for all polyteams
X = (X1, . . . , Xn) where Dom(Xi) = xi and Xi 	= ∅

M |=X φ(x1, . . . , xn)
⇔ (M, R1 := rel(X1), . . . , Rn := rel(Xn)) |= ψ1(R1) ∧ . . . ∧ ψn(Rn).

The same statement holds also vice versa.
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4.2 Poly-dependencies in Polyteam Semantics

Next we consider poly-dependencies in polyteam semantics.

Lemma 20. The following equivalences hold:

=
(
x1, y1/u2, v2

)
≡ y1/y1 ⊥x1,u2/x1 v2/y1, (3)

=
(
x1, y1/u2, v2

)
≡ ∀z1(y1 = z1 ∨1 x1z1 | u2v2), (4)

x1 ⊆ u2 ≡ x1/u2 ⊥ ∅/∅, (5)

x1 ⊆ u2 ≡ ∀v2(x1 | v2 ∨2 v2 ⊆ u2), (6)

x1 | u2 ≡ ∃y1z1v2w2(=
(
x1, y1z1/u2, v2w2

)
(7)

∧ y1 = z1 ∧ v2 	= w2),

x1 | u2 ≡ ∃y1(u2 ⊆ y1 ∧ x1 | y1), (8)

y2/y1 ⊥x2,x3/x1 z3/z1 ≡ ∀p2q2∃u2v2∀p3q3r3∃u3v3
(

(9)

=
(
p2q2, u2v2/p3q3, u3v3

)

∧
(
u2 = v2 ∨1 (u2 	= v2 ∧ x2y2 | p2q2)

)

∧
(
u3 	= v3 ∨2 x3z3 | p3r3 ∨2 p3q3r3 ⊆ x1y1z1

))
.

Proof. The equivalences (3)–(8) are straightforward and (9) is analogous to the
corresponding translation in the team semantics setting (see [6]). �

The following theorem compares the expressive powers of different polyteam-
based logics. Observe that the expressivity of the logics with two poly-
dependency atoms remains the same even if either one of the atoms has the
standard team semantics interpretation.

Theorem 21. The following equivalences of logic hold:

(1) PFO(pdep) ≡ PFO(pexc),
(2) PFO(pind) ≡ PFO(pexc, inc) ≡ PFO(pinc, exc) ≡ PFO(pdep, inc)

≡ PFO(pinc,dep) ≡ PFO(pdep, ind) ≡ PFO(pexc, ind) ≡ PFO(pinc, ind).

Proof. Item (1) follows by Eqs. (4) and (7). Item (2) follows from the below list
of relationships:

– PFO(pind) ⊆ PFO(pexc, inc) by (4), (6), and (9).
– PFO(pexc, inc) ≡ PFO(pinc, exc) by (6) and (8).
– PFO(pexc, inc) ≡ PFO(pdep, inc) by (4) and (7).
– PFO(pinc, exc) ≡ PFO(pinc,dep), since exclusion (dependence, resp.) atoms

can be described in FO(dep) (FO(exc), resp.) [6].
– PFO(pdep, inc) ⊆ PFO(pdep, ind), PFO(pexc, inc) ⊆ PFO(pexc, ind), and
PFO(pinc,dep) ⊆ PFO(pinc, ind) since inclusion atoms can be described in
FO(ind) [6] and dependence atoms by independence atoms [9].
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– PFO(pdep, ind) ⊆ PFO(ind), PFO(pexc, ind) ⊆ PFO(ind), and PFO(pinc, ind)
⊆ PFO(pind) by (3), (5), and (7). �

Next we show the analogue of Theorem 18 for polyteams.

Theorem 22. Let φ(R1, . . . , Rn) be an ESO-sentence. There is a PFO(pdep,
inc) formula φ∗(x1, . . . , xn), where |xi| = ar(Ri), such that for all polyteams
X = (X1, . . . , Xn) with Dom(Xi) = xi and Xi 	= ∅,

M |=X φ∗(x1, . . . , xn) ⇔ (M, R1 := rel(X1), . . . , Rn := rel(Xn)) |= φ(R1, . . . , Rn).

The statement holds also vice versa.

Proof. The direction from PFO(pdep, inc) to ESO is proven by a translation
similar to the one from dependence logic to ESO in [24]. We show only the
opposite direction. Analogously to [6], we can rewrite φ(R1, . . . , Rn) as

∃f∀u
( n∧

i=1

(Ri(ui) ↔ f2i−1(ui) = f2i(ui)) ∧ ψ(u, f)
)

where f = f1, . . . , f2n, . . . , fm is a list of function variables, ψ is a quantifier-free
formula in which no Ri appears, each ui is a subsequence of u, and each fi occurs
only as fi(uji) for some fixed tuple uji of variables. For instance, ji = i/2 for
even i ≤ 2n.

Let b
i
be sequences of variables of sort i such that |bi| = |ui|, and let u1y1 be

a sequence of variables of sort 1 such that u1 is a copy of u and y1 = y1
1 , . . . , y

1
m.

We define φ∗(x1, . . . , xn) as the formula

∀b
1∃z10z

1
1 . . . ∀b

n∃zn
0 zn

1 ∀u1∃y1
(
θ0 ∧ θ1 ∧ ψ′(u1, y1))

where

θ0 :=
n∧

i=1

=
(
b
i
, zi

0

)
∧ =

(
b
i
, zi

1

)
∧ ((b

i ⊆ xi ∧ zi
0 = zi

1) ∨i (xi | b
i ∧ zi

0 	= zi
1)),

θ1 :=
n∧

i=1

=
(
u1

i , y
1
2i−1/b

i
, zi

0

)
∧ =

(
u1

i , y
1
2i/b

i
, zi

1

)
∧

m∧

i=n+1

=
(
u1

ji , y
1
i

)
,

and ψ′(u1, y1) is obtained from ψ(u, f) by replacing u pointwise with u1 and
each fi(uji) with y1

i . Above, θ0 amounts to the description of the characteristic
functions f2i−1 and f2i. We refer the reader to [6] to check that M |=X θ0 iff for
all i the functions s(b

i
) �→ s(zi

0) and s(b
i
) �→ s(zi

1) determined by the assignments
s ∈ Xi agree on s(b

i
) exactly when s(b

i
) ∈ rel(Xi). The poly-dependence atoms

in θ1 then transfer these functions over to the first team, and the dependence
atoms in ψ1 describe the remaining functions. As in [6], it can now be seen that
φ∗ correctly simulates φ. Since exclusion atoms can be expressed in dependence
logic, the claim then follows. �
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By item (2) of Theorem 21 the result of Theorem 22 extends to a number of other
logics as well. For instance, we obtain that poly-independence logic captures all
ESO properties of polyteams. The proof of Theorem 22 can be now easily adapted
to show that poly-exclusion and poly-dependence logic capture all downward
closed ESO properties of polyteams.

Theorem 23. Let φ(R1, . . . , Rn) be an ESO-sentence that is downward closed
with respect to Ri. Then there is a PFO(pdep)-formula φ∗(x1, . . . , xn), where
|xi| = ar(Ri), such that for all polyteams X = (X1, . . . , Xn) with Dom(Xi) = xi

and Xi 	= ∅,

M |=X φ∗(x1, . . . , xn) ⇔ (M, R1 := rel(X1), . . . , Rn := rel(Xn)) |= φ(R1, . . . , Rn).

The statement holds also vice versa.

Proof. The direction from PFO(pdep) to ESO is again similar to the standard
translation of [24]. For the other direction, let φ(R1, . . . , Rn) be an ESO-sentence
in which the relations Ri appear only negatively. As in the proof of Theorem 22
and by downward closure we may transform it to an equivalent form (see [19]
for details)

∃f∀u
( n∧

i=1

(¬Ri(ui) ∨ f2i−1(ui) = f2i(ui)) ∧ ψ(u, f)
)

Now the translation φ(x1, . . . , xn) is defined analogously to the proof of Theorem
22 except for θ0 which is redefined as

θ0 :=
n∧

i=1

=
(
b
i
, zi

0

)
∧ =

(
b
i
, zi

1

)
∧ (xi | b

i ∨i zi
0 = zi

1).

Finally the claim follows by eliminating the exclusion atoms from θ0.

5 Conclusion

In this article we have laid the foundations of polyteam semantics in order to
facilitate the fruitful exchange of ideas and results between team semantics and
database theory. Our results show that many of the familiar properties and
results from team semantics carry over to the polyteam setting. In particular, we
identified a natural polyteam analogue of dependence atoms and gave a complete
axiomatisation for the associated implication problem. It is an interesting task
to develop axiomatic characterisations for these new logics (cf. [10,20]). Another
interesting issue is to study the expressive power of various syntactic fragments
of logics over polyteams.
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