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Abstract. We study a new model of verification of boolean predicates
over distributed networks. Given a network configuration, the proof-
labeling scheme (PLS) model defines a distributed proof in the form
of a label that is given to each node, and all nodes locally verify that the
network configuration satisfies the desired boolean predicate by exchang-
ing labels with their neighbors. The proof size of the scheme is defined
to be the maximum size of a label.

In this work, we extend this model by defining the approximate proof-
labeling scheme (APLS) model. In this new model, the predicates for
verification are of the form ψ ≤ ϕ, where ψ, ϕ : F → N for a family
of configurations F . Informally, the predicates considered in this model
are a comparison between two values of the configuration. As in the PLS
model, nodes exchange labels in order to locally verify the predicate, and
all must accept if the network satisfies the predicate. The soundness con-
dition is relaxed with an approximation ration α, so that only if ψ > αϕ
some node must reject.

We show that in the APLS model, the proof size can be much smaller
than the proof size of the same predicate in the PLS model. Moreover,
we prove that there is a tradeoff between the approximation ratio and
the proof size.

Keywords: Distributed graph algorithms · Distributed verification
Approximation algorithms · Primal-dual algorithms

1 Introduction

1.1 Context and Objective

Verification of a given property in decentralized systems finds applications in
various domains, such as, checking the result obtained from the execution of a
distributed program [5,20], establishing lower bounds on the time required for
distributed approximation [11], estimating the complexity of logic required for
distributed run-time verification [21], general distributed complexity theory [19],
and the construction of self stabilizing algorithms [8,26].
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In the distributed setting, a network configuration Gs is represented by an
underlying graph and a state assignment. The nodes of the underlying graph
represent processors and the edges represent communication links between pairs
of processors. The state assignment is the state of each node, which can contain a
unique identifier, edge weights, a specified subset of incident edges, an output of
a distributed algorithm and more. In order to verify that a network configuration
has a specified property, nodes exchange messages along the edges and output
either TRUE or FALSE depending on whether the local configuration is consistent
with a legal state of the network. The distributed verification process is correct if
all nodes return TRUE on legal configurations, and on every illegal configuration
at least one node returns FALSE. Some properties are local by nature and easy
to verify, for example, whether a specified subset of edges is a matching in the
graph. However, many other properties cannot be verified in less than diameter
time, even if message size and local computational power are unbounded, for
example, whether a specified matching is of maximum cardinality.

In order to cope with strong time lower bounds, Korman et al. [27] have
introduced the proof-labeling schemes (PLSs) computational model, where nodes
are given auxiliary global information in the form of labels. A proof-labeling
scheme for a predicate P consists of a prover and a verifier. For every legal
state of the network, the prover assigns a label to every node. The verifier is
a distributed algorithm, in which nodes exchange labels with their immediate
neighbors and then output TRUE or FALSE at each node, as a function of the
state and label of the node and the labels it receives from its neighbors. A PLS
satisfies completeness if for every legal configuration, with the labels assigned by
the prover, all nodes output TRUE, and it satisfies soundness if for every illegal
configuration and every label assignment, some node outputs FALSE.

When designing a PLS, we wish to minimize the maximum size of a label,
which is called the proof size. It is known that, for every sequentially decidable
graph property, there exists a PLS with proof size O(m log n) where n is the
number of nodes and m is the number of edges in the network [6,22,27]. For some
properties, lower bounds on the proof size have been proven in this model, for
example Ω(log n) for verification of a spanning-tree [27] and bi-connectivity [6],
Ω(n2/ log n) for verifying that the graph is not 3-colorable [22], and Ω(log2 n) for
verification of a minimum-weight spanning-tree [25], assuming that the maximal
edge-weight W satisfies log n < W ≤ nc for some constant c.

As in the computational framework, variations of the model may allow us to
break known lower bounds. It has been suggested to use super-constant number
of rounds in verification [7,26]. In the former, a linear reduction of proof size
is proven for acyclicity and the universal scheme. In the latter, they present a
scheme for minimum-weight spanning-tree with O(log n) proof size and O(log2 n)
rounds. In [6] it was suggested to distinguish between labels and communication
in the verification process, and to use randomization in order to reduce the
communication complexity of verification. They show an exponential reduction
in the communication complexity of every scheme at the cost of increasing the
proof size by a factor of the maximum degree.
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Table 1. APLS for (D ≤ k) on general graphs—upper and lower bounds on proof size.

Approximation ratio Upper bound Lower bound

Exact O (n log n) (Section 3) Ω (n/k) (Theorem 1)

3/2 − ε Ω
(
n/ log2 n

)
(Theorem 3)

3/2 O
(√

n log2 n
)

(Theorem 2)

2 O (log n) (Theorem 4)

Yet, some properties are still harder. In Sect. 3 we show that any PLS for
D ≤ k must have labels of Ω(n) bits, where D is the diameter of the graph
and k ∈ N is a constant. A natural way to circumvent this lower bound is
through approximation, e.g., by defining a 2-approximation for the problem by
the predicate D ≤ 2k, and hoping for smaller proof size. However, this approach
is bound to fail: any PLS for D ≤ 2k is also a PLS for D ≤ k′, for k′ = 2k, so
the same lower bound holds for this definition of approximation.

Inspired by the above example, we present and investigate a new concept of
approximate proof-labeling schemes (APLSs for short) for optimization prob-
lems. Let ψ,ϕ : F → N be two functions from a family of configurations
to the natural numbers. Assume that we are interested in verifying for every
Gs ∈ F whether ψ(Gs) ≤ ϕ(Gs), and let α > 1 be the approximation ratio. If
ψ(Gs) ≤ ϕ(Gs) then there is an assignment of labels such that all nodes output
TRUE, and if ψ(Gs) > αϕ(Gs) then for every label assignment at least one node
outputs FALSE. If ϕ(Gs) < ψ(Gs) ≤ αϕ(Gs), we do not have any promise. Put
differently, we are promised that if all nodes output TRUE, then ψ(Gs) ≤ αϕ(Gs),
i.e., the approximation holds. This concept indeed allows us to find schemes with
shorter labels: we show a 2-APLS for D ≤ k with proof size of only O(log n)
bits, and a 3/2-APLS for D ≤ k with proof size of O(

√
n log2 n) bits.

1.2 Our Contribution

In this paper we introduce and formalize the concept of approximate proof-
labeling schemes. We study the complexity of verification of two fundamental
problems in this model: diameter and maximum weight matching. We start by
considering the verification of a specified upper bound k on the network diameter
D (see summary of results in Table 1), and show that for every k = k(n), the
proof size of any PLS for D ≤ k is Ω(n/k). In the APLS model, as outlined above,
we present a 3/2-APLS for D ≤ k with O(

√
n log2 n) proof size, and prove that

we cannot obtain a better approximation ratio with the same asymptotic proof
size. Specifically, we prove that for every k there exists an ε ∈ Θ(1/k) such that
the proof size of any (3/2 − ε)-APLS for D ≤ k is Ω(n/ log2 n). Then, we turn
to show that if we increase the approximation ratio we can construct an even
more efficient scheme. In particular, we show a simple 2-APLS for D ≤ k with
proof size O(log n). To our knowledge, the problem of verifying an upper bound
on the diameter in general graphs has not been studied before in the context
of PLSs.



74 K. Censor-Hillel et al.

Table 2. APLS for (w(M) ≥ w(MWM))—upper and lower bounds on proof size.

Approximation ratio Graph family Upper bound Lower bound

Exact Paths O(log n + log W ) [27]

Exact Bipartite O(log W ) [22]

2 Trees O(log n + log W ) [27]

2 Any graph O(log W ) (Theorem 6)

Any Any graph Ω(1) (Sect. 4)

The second property we consider is verifying that a specified matching M
have the maximum possible weight (see summary of results in Table 2). For this
property we are interested in bounding from below the weight of the matching
w.r.t. the weight of the maximum matching w(MWM). We present a 2-APLS for
w(M) ≥ w(MWM) with O(log W ) proof size, where W is the maximum edge-
weight in the network. This improves upon a previous result presented in [27],
with O(log n + log W ) proof size for a 2-approximation of the maximum weight
matching on trees. We note that the notion of approximation in [27] is different
from our definition: they argue that there exists a subset of 2-approximated
configurations that the scheme verifies, but do not promise that any configuration
with an optimal matching is verified successfully.

We use various techniques to obtain our results. The lower bounds for proof
complexity are achieved using reductions for nondeterministic communication
complexity [22], a lower bound graph presented in [23] and a recent construc-
tions of [1]. The APLSs’ design is based on approximation algorithms for the
diameter problem [2], and on complementary slackness conditions for primal-
dual problems.

1.3 Related Work

Approximation algorithms were studied extensively in both sequential and
distributed computing. In the sequential model, unless P = NP, there are no
polynomial-time algorithms for NP-hard problems, and thus efficient approxi-
mation algorithms for the related optimization problems are widely studied [31].
Moreover, even for problems for which polynomial time algorithms exist, there
is sometimes a need for faster algorithms that give an approximate solution.

One example is the problem of determining the diameter of a graph. While the
problem is solvable in polynomial time, faster approximation algorithms are stud-
ied. A trivial 2-approximation algorithm in unweighted graphs goes through build-
ing a single BFS tree in O(n+m) time, and measuring its depth. An Õ(m

√
n+n2)-

time 3/2-approximation algorithm for the diameter was presented in [2], and was
later improved in [30] to Õ(m

√
n) time algorithms using randomization. A deter-

ministic improvement to [2] was presented in [9]. Distributed algorithms for com-
puting the diameter were presented in [23,29], and both also provide approxima-
tion algorithms for the problem. Lower bounds on computing and approximating
the diameter in the CONGEST model were presented in [1,24].
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Distributed decision and verification schemes deal with verifying that a given
instance satisfies some given boolean predicate. These were formalized in vari-
ous models to suit its myriad applications, which include proof-labeling schemes
(PLSs) [27], locally checkable proofs (LCP) [22], and several complexity classes
[19]. The complexity classes presented in the latter include LD—local decision—
which includes all properties that can be decided using a constant number
of rounds and no additional information, and NLD—non-deterministic local
decision—which includes all properties that can be decided in a constant num-
ber of rounds with additional information in the form of a certificate given to
each node. While NLD and PLS are closely related, they differ in that NLD
certificates are independent of node identifiers. Since PLS labels may depend on
node identifiers, there is a PLS for every sequentially decidable property on ID
based networks, while not all sequentially decidable properties are in NLD. For
more details, we refer the reader to a survey of this field of research [12].

The concept of PLS was introduced by Korman et al. in [27]. Among other
results, they show a Θ(log n) bound on the proof size of the diameter of trees,
and the same bound also for the proof size of a lower bound on the diameter in
general graphs. In addition, they present two O(log n+log W ) schemes to verify
a maximum weight matching: one on paths, and the other is a 2-approximation
of maximum weight matching on trees.

Proof labeling schemes where nodes may communicate to a constant distance
that is greater than 1 were studied in [22]. For the maximum cardinality matching
problem, they show that the proof size on the family of bipartite graphs is Θ(1),
and on the family of cycle graphs is Θ(log n). For maximum weight matching,
they present a scheme for the family of bipartite graphs, with O(log W ) proof
size, using techniques similar to the ones we use. Moreover, [22] was the first
to use nondeterministic communication complexity lower bounds in order to
achieve lower bounds on the verification complexity of a PLS.

Schemes with super-constant verification time were presented in [26]. Verifi-
cation processes in which the global result is not restricted to be the conjunction
of local outputs had been studied in [3,4]. The role of unique node identifiers
in local decision and verification was extensively studied in [16–18]. The use of
randomization in verification process in order to reduce communication was pre-
sented in [6]. Proof-labeling schemes in directed networks were studied in [14],
where both one-way and two-way communication over directed edges had been
considered. Verification schemes for dynamic networks, where edges may appear
or disappear after label assignment and before verification, were studied in [15].
Finally, a hierarchy of local decision as an interaction between a prover and a
disprover was presented in [13].

2 Model and Definitions

2.1 Computational Framework

A network is modeled by a connected, undirected, simple graph G = (V,E), with
|V | = n nodes and |E| = m edges. Each node represents a processor, and each
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edge represents a communication link. We do not assume the a processor initially
knows to which other processors it is connected, but only that its communication
links are enumerated by port numbers. A configuration Gs is graph G = (V,E)
along with a state assignment function s : V → S, where S is called the state
space. The state s(v) of a node v includes all local input to v. In particular,
the state includes port numbers of adjacent edges, the node’s identity (if the
network is not anonymous) or other data, e.g., the result of an algorithm. We
sometimes consider weighted networks, in which the graph is accompanied with
an edge weight function w : V → {1, . . . , W}, in which case the state of a node
includes the weights of its adjacent edges.1

In this work, we always assume non-anonymous networks, i.e., every node v
is provided with a unique identity ID(v), which is part of the state of v.

2.2 Proof-Labeling Schemes

Given a family F of network configurations and a boolean predicate P over F ,
a proof-labeling scheme (PLS ) for (F ,P) is a mechanism for deciding P(Gs) for
every Gs ∈ F . A PLS consists of two components: a prover p, and a verifier
v. Given any legal configuration Gs ∈ F (i.e., a configuration satisfying P), the
prover assigns a bit string �(v) to every node v, called the label of v. The verifier
is a local distributed algorithm running concurrently at every node. At each
node v, it takes as input the state s(v) of v, its label �(v) and the labels of all its
neighbors, i.e., the list (�(v1) . . . �(vd)), where d is the degree of v, and vi is the
neighbor of v reachable from port number i. The outputs of the verifier at each
node is a boolean value. If the outputs are TRUE at all nodes, v is said to accept
the configuration, and otherwise (i.e., v outputs FALSE in at least one node) v
is said to reject the configuration. For correctness, a PLS (p,v) for (F ,P) must
satisfy the following requirements, for every Gs ∈ F :

– If P(Gs) = TRUE then, using the labels assigned by p, the verifier v accepts
Gs.

– If P(Gs) = FALSE then, for every label assignment, the verifier v rejects Gs.

The proof size of a PLS (p,v) is the maximum length of a label assigned by the
prover p on a legal configuration Gs ∈ F .

2.3 The New Model: Approximate Proof-Labeling Schemes

In this paper we focus on predicates that represent minimization or maximization
problems. Formally, we are given two functions ψ,ϕ : F → N, and we are
interested in the predicate ψ(Gs) ≤ ϕ(Gs). Note that ψ or ϕ may be constant,
e.g., in verifying an upper bound on the diameter of the graph, one can be
interested in verifying D(Gs) ≤ k. In some cases, classic verification might be
too expansive, as proven in Sect. 3, and so we extend the definition of PLSs to
1 Recall that W is the maximum weight of an edge in the graph. If W = 1, we interpret

O(log W ) as O(1).
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approximate proof-labeling schemes (APLSs). We relax the requirements of a
PLS so that a configuration for which the inequality ψ(Gs) ≤ ϕ(Gs) holds is
guaranteed to be accepted by the scheme, while a configuration for which ψ(Gs)
much larger than ϕ(Gs) is guaranteed to be rejected. Formally, for α ≥ 1, an α-
APLS (p,v) for (F , (ψ ≤ ϕ)) must satisfy the following requirements, for every
Gs ∈ F :

– If ψ(Gs) ≤ ϕ(Gs) then, using the labels assigned by p, the verifier v accepts
Gs.

– If ψ(Gs) > αϕ(Gs) then, for every label assignment, the verifier v rejects Gs.

The proof size of an APLS is defined similarly to that of a PLS. Our definitions
naturally extend to predicates of the form ψ ≥ ϕ, ψ < ϕ and ψ > ϕ.

Finally, we note that although the definition of an APLS might seem to
resemble definitions from the field of property testing, they are inherently dif-
ferent. Our measure for how close a graph is to satisfy a property is entirely
algebraic, and has nothing to do with changing the graph by adding or removing
edges. Moreover, all schemes presented in this paper are deterministic.

2.4 Problem Definitions

Diameter. Given a configuration Gs with an underlying graph G = (V,E) and
an edge weight function w, for every two nodes u, v ∈ V denote by dist(u, v)
the length of the shortest (unweighted) path between u and v in Gs, and by
distw(u, v) the minimum weight of a path between u and v in Gs. The unweighted
diameter of Gs, denoted by D(Gs), is defined as max {dist(u, v) | u, v ∈ V }.
Similarly, The weighted diameter of Gs, denoted by Dw(Gs), is defined as
max {distw(u, v) | u, v ∈ V }.

The first set of problems we consider in this work are problems of bounding
the weighted and unweighted diameters from above.

Definition 1. Let F be the family of all weighted connected undirected config-
urations and let Gs ∈ F . For every integer k = k(n), we define the problems
(F , (D ≤ k)) and (F , (Dw ≤ k)).

A breadth-first search (BFS) tree in a weighted or unweighted graph Gs from
a root r ∈ V is a tree consisting of a shortest (unweighted) path from r to every
node in V . If the graph is weighted, we are also interested in a shortest weighted
distance tree consisting of a shortest weighted path from a root node r to every
node in V . Throughout the paper, we use known schemes for verification of a
BFS tree and a shortest weighted distance tree [27]. They prove that for the
verification of these trees it is enough to give every node the identity of the root
and the distance from the root. Therefore, proof size is O(log n) for a BFS tree
and O(log n + log W ) for a shortest weighted distance tree.
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Matchings. Given a configuration Gs with an underlying graph G = (V,E), an
edge weight function w, and an edge subset M ⊂ E, M is a matching in G if no
two edges in M share a node. The weight of a matching M , denoted by w(M), is
the sum of weights of all edges in M . We say that a matching M is a maximum
weight matching (MWM) if w(M) ≥ w(M ′) for every matching M ′ in G.

Another problem we consider, of a different flavor, is to verify that a specified
matching is a maximum weight matching.

Definition 2. Let FM be the family of all weighted connected undirected config-
urations with a specified matching M . Let Gs ∈ F and let MWM be a maximum
weight matching in Gs. We define the problem (FM , (w(M) ≥ w(MWM))).

Note that although w(M) > w(MWM) is not possible (since M is promised
to be a matching), the problem is defined to follow the structure of APLSs.

2.5 Two-Party Communication Complexity

Given two vectors x, y ∈ {0, 1}s, we say the vectors are not disjoint, and write
DISJ(x, y) = FALSE, if there exists an index i ∈ [s] such that xi = yi = 1. Other-
wise, the vectors are disjoint, and DISJ(x, y) = TRUE. In the Set-Disjointness
two-party communication problem, two players denoted Alice and Bob are
given two vectors, x, y ∈ {0, 1}s respectively, and they need to decide whether
DISJ(x, y) = TRUE or DISJ(x, y) = FALSE. (See [28] for complete definitions and
discussion.)

Given their inputs, the players communicate by a deterministic protocol, and
eventually output DISJ(x, y) = TRUE or DISJ(x, y) = FALSE. A well known result
in communication complexity asserts that in any protocol, Alice and Bob must
exchange Ω(s) bits in order to correctly determine the value of DISJ(x, y).2

In the nondeterministic case of the problem, Alice and Bob use auxiliary
bit strings, which each of them nondeterministically chooses, and then run a
deterministic protocol in order to determine the value of DISJ(x, y). We are
interested in the best assignment of auxiliary strings, i.e. the one that allows the
players to minimize the number of bits exchanged. For example, if DISJ(x, y) =
FALSE and Alice and Bob both use the index i such that xi = yi = 1 as an
auxiliary string, then they only need to exchange O(log s), to verify they have
the same index. On the other hand, a celebrated result [28] asserts that when
DISJ(x, y) = TRUE, Alice and Bob must communicate Ω(s) even with an optimal
assignment of auxiliary strings, i.e. nondeterminism cannot help Alice and Bob
in asymptotically minimizing the communication.

3 PLS and APLS for Diameter

Verifying that the diameter of the graph is bounded from above by a specified
value can be done by a PLS with O(n log n) proof size (and O(n(log n+ log W ))
2 This lower bound holds also for randomized protocols, which we do not discuss in

this work.
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Fig. 1. The diameter lower bound construction for s = 6. Here, x =
(

0 1 1
1 1 1
0 0 0

)
and

y =
(

0 0 1
0 0 0
1 1 1

)
, where the matrix rows are indexed by {1, 2, 3} and the columns by

{4, 5, 6}. Since x16 = y16 = 1, the dotted edges are missing and the distance between
a1 and b6 is greater than k.

for weighted diameter). Simply construct a BFS tree (respectively, a shortest
weighted distance tree) from every node, verify it and locally verify at each node
that all of its distances are bounded by the specified value. We now show that
in the PLS model, for a constant bound k, the proof size cannot be improved by
more than a Θ(log n) factor, i.e., it must have an Ω(n) proof size. Moreover, for
every k = k(n), we show a lower bound for the PLS proof size.

Consider the following graph family {Gx,y} over n nodes (Fig. 1). Assume
s = n

k − 1 is an even integer, and let A1 = a1, ..., as/2, A2 = as/2+1, ..., as, B1 =
b1, ..., bs/2, and B2 = bs/2+1, ..., bs be four cliques, where each ai is connected
to bi with a path of length k − 1, consisting of ai, bi, and k − 2 new nodes
unique to this path. An additional node a is connected to every ai by an edge,
an additional node b is connected to every bi by an edge, and there is a (k − 1)-
node path connecting a and b with another new k − 2 nodes. Given an instance
(x, y) of the Set-Disjointness problem over (s/2)2 elements, enumerate Alice’s
input as xij with i ∈ {1, . . . , s/2} and j ∈ {s/2 + 1, . . . , s}, and similarly for
Bob’s input, yij . To complete the construction of Gx,y, add an edge (ai, aj) if
and only if xij = 0, and we add an edge (bi, bj) if and only if yij = 0.

If n
k −1 is not an even integer, we choose s to be the largest even integer such

that s < n
k − 1, add nodes to described construction to complement the number

of nodes to n, and connect all additional nodes to all neighbors of b.
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Lemma 1. D(Gx,y) ≤ k if and only if DISJ(x, y) = TRUE.

Proof. If DISJ(x, y) = TRUE, then for each {i, j}, at least one of the edges (ai, aj)
or (bi, bj) exists in Gx,y. Let u and v be any two nodes in Gx,y. Suppose that u is
on the path (ai � bi) and v is on the path (aj � bj), where i, j ∈ {1, . . . , s/2}.
If i = j, clearly, dist(u, v) ≤ k − 1. Otherwise, by assumption, either the cycle
(a → ai � bi → bj � aj → a) or the cycle (b → bj � aj → ai � bi → b) exists
and its length is 2k + 1. Hence, every two nodes in the cycle are at distance at
most k from each other, and dist(u, v) ≤ k. Suppose now that either u or v is
on the path (a � b) and the other node is on the path (ai � bi), i ∈ {1, . . . , s}.
The length of the cycle (a → ai � bi → b � a) is 2k, and since u and v are
on this cycle, dist(u, v) ≤ k. Finally, if both u and v are on the path (a � b),
clearly, dist(u, v) ≤ k − 1, and we conclude that D(Gx,y) ≤ k.

If DISJ(x, y) = FALSE, then there exist i ∈ {1, . . . , s/2} and j ∈
{s/2 + 1, . . . , s} such that xij = yij = 1, and by the construction of Gx,y,
both edges (ai, aj) and (bi, bj) are absent. Every path from ai to bj must go
through some (a′ � b′) path of length k − 1, and if dist(ai, bj) ≤ k then the
shortest path connecting ai and bj can only contain one more edge. However,
since the edges (ai, aj) and (bi, bj) are both absent in Gx,y, no such path exists,
so dist(ai, bj) > k, which implies that D(Gx,y) > k. �	
Theorem 1. For every k, the proof size of any PLS for (F , (D ≤ k)) is Ω(n/k).

Proof. Consider any PLS for (F , (D ≤ k)), and construct a nondeterministic
protocol for DISJ(x, y) as follows. Alice and Bob simulate the verification of
D(Gx,y) ≤ k using the PLS, such that Alice simulates the nodes in A = A1 ∪
A2 ∪ a, and Bob simulates the rest of the nodes, denoted by B. Each of the players
nondeterministically chooses the labels of its nodes as his auxiliary bit-string.
Alice and Bob then exchange the labels corresponding to the nodes touching the
cut, and simulate the verification process in all nodes. Then, they compute a and
b, the conjunction of the returned values of A and B respectively. Finally, Alice
sends a to Bob, Bob sends b to Alice, and they both output the conjunction a∧b
as the solution for DISJ(x, y).

If DISJ(x, y) = TRUE then D(Gx,y) ≤ k, there is an assignment of labels
to the nodes such that all nodes output TRUE, and if both players choose these
labels as their bit-strings then they both output DISJ(x, y) = TRUE. On the
other hand, if DISJ(x, y) = FALSE then D(Gx,y) > k, for every assignment of
labels to the nodes at least one node outputs FALSE, and Alice and Bob output
DISJ(x, y) = FALSE in all executions.

Thus, the simulation we presented is a nondeterministic protocol for deciding
DISJ(x, y). We know that in any nondeterministic protocol for Set-Disjointness
(s/2)2 elements, Alice and Bob must exchange Ω((s/2)2) bits. The number of
edges in the cut of Gx,y induced by the partition of the nodes between Alice
and Bob in the simulation is s + 1. Therefore, the proof size of any PLS for
(F , (D ≤ k)) is Ω(s) ∈ Ω(n/k). �	

We now show that in the APLS model there are schemes with much smaller
proof size. We start with a 3/2-APLS and construct a scheme that is based on
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the randomized algorithm for a 3/2-approximation of the diameter presented in
[30]. We use the following two lemmas.

Lemma 2. Let G = (V,E) be a graph, let S,N ⊆ V be two sets of nodes, and
consider a node w ∈ V . Assume that N is the set of z nodes closest to w for
some parameter z, w is the farthest node from the set S, and N ∩S is non-empty.
Then, the largest depth D′ of a BFS tree rooted at a node in R = N ∪ S ∪ {w}
satisfies 2

3D ≤ D′ ≤ D.

Lemma 3. Let G = (V,E) be a graph and z ∈ N a parameter. For each v ∈ V ,
let Nz(v) be the set of z nodes closest to v. Then, there exists a hitting set for
{Nz(v) | v ∈ V }, of size O(n log n/z).

Lemma 2 corresponds to an adapted version of Lemma 4 of [30], and Lemma
3 is a corollary of Theorem 2.7 of [2]. We obtain the following result.

Theorem 2. There exists a 3/2-APLS for (F , (D ≤ k)) with proof size
O(

√
n log2 n).

Proof. Our scheme is based on Lemma 2: it consists of a node w, sets N and
S and all the BFS trees rooted at R = N ∪ S ∪ {w}. In addition, there is a
node w′ that is used to verify that the largest depth of a BFS tree rooted in R
is as claimed, and a BFS tree rooted at w′. The main task in our scheme is to
verify the BFS trees described above, and that the diameter estimation, i.e., the
maximum depth of the trees, is at most k. Since a BFS tree verification is known
from previous work, the challenges in the scheme construction is to verify locally
that w is indeed the farthest node from the set S, that N is the neighborhood
of w, and that the estimation is indeed the maximum depth of a tree.

Formally, let Gs ∈ F be a configuration with the underlying graph G = (V,E)
and D(Gs) ≤ k. For every v ∈ V , denote by N√

n(v) the
√

n nodes closest to v
(break ties according to IDs), and let S ⊂ V be a set of O(

√
n log n) nodes such

that S hits
{
N√

n(v) | v ∈ V
}
, whose existence follows from Lemma 3.

Let h(v) = min {dist(v, u) | u ∈ S}, the distance of v from the set S, and let
w be the farthest node from S, i.e., h(w) ≥ h(v) for every v ∈ V . Let q(w) be
the largest distance from w to any node in N√

n(w). Let R = S ∪ {w} ∪ N√
n(w)

be a set of |R| = O(
√

n log n) nodes, and consider the set RBFS of BFS trees
rooted at nodes in R. Let dmax be the maximum depth of a tree in RBFS and
let w′ be a node at distance dmax from one of the roots.

The label assigned to a node v ∈ V is

�(v) = (�BFSs:S(v), �BFSs:N (v), �BFS:w(v), �BFS:w′(v), �hw(v), �qw(v), �maxdist(v))

where �BFSs:S(v) is a set of O(
√

n log n) pairs {(ID(u),dist(v, u)) | u ∈ S};
�BFSs:N (v) is a set of

√
n pairs

{
(ID(u),dist(v, u)) | u ∈ N√

n(w)
}
; �BFS:w(v) =

(ID(w),dist(v, w)); and �BFS:w′(v) = (ID(w′),dist(v, w′)). Every pair mentioned
above is the label needed in order to verify the correct structure of the corre-
sponding BFS tree. In order to verify that w is indeed the farthest node from
S, every node is given the distance of w from S, �hw(v) = h(w); To verify
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the consistency of N√
n(w), every node is given the radius of this neighborhood

�qw(v) = q(w); and �maxdist(v) = dmax is given in order to verify the existence
and maximality of the estimation dmax.

In the verification process, a node v exchanges labels with all its neighbors,
and verifies the following conditions:

1. Consistency of global parameters: For every neighbor v′ of v, it holds that
�hw(v′) = �hw(v), �qw(v′) = �qw(v), and �maxdist(v′) = �maxdist(v).

2. All distances are bounded by dmax and k: For every pair (ID, d) in
�BFSs:S(v) ∪ �BFSs:N (v) ∪ {�BFS:w(v)} ∪ {�BFS:w′(v)}, it holds that 0 ≤
d ≤ �maxdist(v) ≤ k.

3. Existence of a BFS tree of depth dmax: If �BFS:w′(v) = (ID(v), 0) then there
exists a pair (ID, d) ∈ �BFSs:S(v) ∪ �BFSs:N (v) ∪ {�BFS:w(v)} such that d =
�maxdist(v).

4. Only one pair for each node in S and in N√
n(w): For every two pairs

(ID, d), (ID′, d′) ∈ �BFSs:X(v), for X ∈ {S,N}, if d �= d′ then ID �= ID′.
5. BFS structures: For every neighbor v′ of v and X ∈ {S,N}, the follow-

ing holds. There exists a pair (ID, d) ∈ �BFSs:X(v), for some d if and
only if there exists a pair (ID, d′) ∈ �BFSs:X(v′) with the same ID and
d′ ∈ {d − 1, d, d + 1}. For x ∈ {w,w′}, �BFS:x(v) = (ID, d) for some d if
and only if �BFS:x(v′) = (ID, d′) for d′ ∈ {d − 1, d, d + 1}.

6. Existence of roots: For every X ∈ {S,N} and pair (ID, d) ∈ �BFSs:X(v), if
d > 0 then there exists a neighbor v′ of v with (ID, d − 1) ∈ �BFSs:X(v′). For
x ∈ {w,w′}, if �BFS:x(v) = (ID, d) and d > 0 then there exists a neighbor v′

of v with �BFS:x(v′) = (ID, d − 1).
7. Unique roots: For every pair (ID, d) in �BFSs:S(v) ∪ �BFSs:N (v) ∪

{�BFS:w(v)} ∪ {�BFS:w′(v)}, if d = 0 then ID = ID(v).
8. Non-empty intersection of S and N√

n(w): There exists a pair (ID, d) ∈
�BFSs:S(v) ∩ �BFSs:N (v).

9. Maximality and correctness of h(w): There exists a pair (ID, d) ∈ �BFSs:S(v)
such that d ≤ �hw(v), and if �BFS:w(v) = (ID(v), 0) then there exists no pair
(ID, d) ∈ �BFSs:S(v) such that d < �hw(v).

10. The neighborhood of w: Let �BFS:w(v) = (ID, d). If d < �qw(v) then there
exists a pair (ID(v), 0) ∈ �BFSs:N (v), and if d > �qw(v) then there exists no
pair (ID(v), 0) ∈ �BFSs:N (v).

The completeness of this 3/2-APLS follows from the fact that if D(Gs) ≤ k
then the maximum depth of any BFS tree in Gs is at most k.

For the soundness, consider a configuration Gs ∈ F with the underlying
graph G = (V,E) and label assignment �, and assume that all nodes output
TRUE. By (1), all nodes have the same values �hw, �qw and �maxdist. By (4), (5), (6)
and (7) for every node v ∈ V and every pair (ID, d) ∈ �BFSs:S(v) ∪ �BFSs:N (v) ∪
{�BFS:w(v)} ∪ {�BFS:w′(v)}, there exists a node u such that ID = ID(u) and it
holds that d = dist(v, u).

Let S(v) be the collection of IDs in �BFSs:S(v), let N(v) be the collection
of IDs in �BFSs:N (v), let w(v) be the ID in �BFS:w(v) and let w′(v) be the ID
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in �BFS:w′(v). By (5), for every two nodes v and u it holds that S(v) = S(u),
N(v) = N(u), w(v) = w(u) and w′(v) = w′(u). We denote these values by S,
N , w and w′ respectively. By (10), N is the set of closest nodes to w; by (9), w
is the farthest node from the set S; and by (8), there exists some node in the
intersection of N and S. By (3), the collection of pairs �BFS:w′(v) of all nodes
v ∈ V indicates a BFS rooted at w0 with distance �maxdist to one of the nodes
in S ∪ N ∪ {w}, and by (2) we know that this is the largest distance from any
node to one of the nodes in S ∪ N ∪ {w} and this distance is at most k.

Overall, we have a collection of BFS trees with depth at most �maxdist ≤ k.
Therefore, all conditions of Lemma 2 are satisfied, and we have (2/3)D(Gs) ≤
�maxdist. Hence, D(Gs) ≤ (3/2)k as desired.

The proof size follows from Lemma 3, which implies that there exists a set
S of size O(

√
n log n) that is a hitting set for

{
N√

n(v) | v ∈ V
}
. In particular,

the intersection N√
n(w) ∩ S, where w is the farthest node from S, is not empty.

Therefore, the label consists of O(
√

n log n) sub-labels of size O(log n) each. �	
The following result shows that with the proof size we obtain for 3/2-APLS

we cannot have a better approximation ratio that is correct for all possible
bounds k. To get a better approximation ratio, one needs to use labels that are
almost as large as the labels used for exact PLS.

Let x and y be two s-bit strings, s ∈ Ω(n/ log n). Our lower bound follows
the recent construction of Abboud et al. [1].3

Lemma 4 [1]. Given two strings x, y ∈ {0, 1}s, there exists a graph Gx,y =
(V,E) and a partition of V into VA and VB such that:

1. The number of nodes in Gx,y is n ∈ Θ(s log s).
2. All the edges depending on x are between nodes in VA.
3. All the edges depending on y are between nodes in VB.
4. The number of edges between nodes in VA and VB is in Θ(log s).
5. If DISJ(x, y) = TRUE then D(Gx,y) ≤ k, and otherwise D(Gx,y) > 3k/2 − 9.

From this construction we derive the following lower bound.

Theorem 3. For every k, there exists an ε ∈ Θ(1/k) such that the proof size of
any (3/2 − ε)-APLS for (F , (D ≤ k)) is Ω(n/ log2 n).

Proof. Consider a (3/2 − 9/k)-APLS for (F , (D ≤ k)), and an instance (x, y) of
the DISJ problem over s bits. Construct the graph Gx,y as in Lemma 4, with
the same partition to VA and VB . Alice and Bob nondeterministically choose the
labels for the nodes of VA and VB , simulate the verification algorithm together,
and then compute a and b, the conjunction of the returned values of VA and VB.
Finally, Alice sends a to Bob, Bob sends b to Alice, and they both output the
conjunction a ∧ b as the solution for DISJ(x, y).

By Lemma 4, if DISJ(x, y) = TRUE then D ≤ k, all nodes must accept and
Alice and Bob return TRUE. On the other hand, If DISJ(x, y) = FALSE then

3 See Chap. 2.2 of [1]. We use P = �(k − 2)/4�.
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D > (3/2 − 9/k)k, at least one node rejects, and Alice and Bob return FALSE.
Thus, Alice and Bob correctly solve the Set-Disjointness problem over s elements.

Note that log n = Θ(log s). Alice and Bob must communicate Ω(s) =
Ω(n/ log n) bits, and there are O(log n) nodes touching the cut, so the proof
size is Ω(n/ log2 n). �	

To further study the tradeoff between the approximation ratio and the proof
size, we now prove that if we increase the approximation ratio we can construct
an even more efficient scheme.

Theorem 4. There exists a 2-APLS for (F , (Dw ≤ k)) with proof size O(log n+
log W ).

Proof. Let Gs ∈ F such that Dw(Gs) ≤ k, and let r ∈ V be some node. The
label assigned to every node v ∈ V is �(v) = (�dist(v), �root(v)), where �dist(v) =
distw(r, v) and �root(v) = ID(r). To verify that Dw(Gs) ≤ k, a node v exchanges
labels with all its neighbors, and verifies the following conditions:

1. For every neighbor u of v, it holds that �root(u) = �root(v).
2. 0 ≤ �dist(v) ≤ k.
3. If �dist(v) > 0 then v has at least one neighbor u with �dist(u) = �dist(v) −

w(u, v).
4. If �dist(v) = 0 then �root(v) = ID(v).

The completeness of this 2-APLS is clear: If Dw(Gs) ≤ k and labels are
assigned as described above, all nodes output TRUE.

For the soundness, consider a configuration Gs with label assignment �, such
that all nodes output TRUE. For a node v in the graph, follow the path from v
constructed by repeatedly going from a node v′ to its neighbor u with �dist(u) =
�dist(v′)−w(u, v′), whose existence is guaranteed by Condition (3). By conditions
(2) and (3), this path must end after traversing a weight of at most k, at a node
r with �dist(r) = 0, and this node is unique by Conditions (1) and (4). As this
claim can be applied to each node in the graph, every two nodes in the graph
are connected to each other by a path through r, of weighted distance at most
2k, and Dw(Gs) ≤ 2k as desired. �	

The following corollary directly follows Theorem 4 for the unweighted case.

Corollary 1. There exists a 2-APLS for (F , (D ≤ k)) with proof size O(log n).

4 Maximum Weight Matching

Given a configuration Gs ∈ FM with the underlying graph G = (V,E), an
edge weight function w, and a specified matching M ⊂ E, we wish to verify
(FM , (w(M) ≥ w(MWM))). Göös and Suomela [22] present a PLS for this
problem in bipartite graphs, using a linear programming (LP) formulation. Here,
we extend their technique to present a 2-APLS for (FM , (w(M) ≥ w(MWM)))
on general graphs.
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Our 2-APLS is simple: the label of a matched node is the weight of its
matched edge, and the label of an unmatched node is 0. The verification process,
and the proof that this is indeed a 2-APLS are slightly more involved, and use a
relaxation of the complementary slackness conditions of a relaxation of a linear-
programming formulation for the problem.

Consider the next integral-LP formulation of the MWM problem (cf. [10,
Chap. 5]):

Maximize
∑

e∈E w(e)xe

Subject to
∑

{e|v∈e} xe ≤ 1, ∀v ∈ V

xe ∈ {0, 1} , ∀e ∈ E,

and the LP obtained by relaxing the integrality condition into:

xe ≥ 0, ∀e ∈ E.

The dual linear-program of the relaxed problem is

Minimize
∑

v∈V yv
Subject to yu + yv ≥ w(e), ∀e = (u, v) ∈ E.

Given a pair consisting of a primal and a dual feasible solutions, their optimal-
ity can be verified by checking several conditions derived from the LP, conditions
that are known as the complementary slackness conditions. For the aforemen-
tioned LP, the conditions are:

xe > 0 =⇒ yu + yv = w(e), e = (u, v) ∈ E; and
yv > 0 =⇒ ∑

{e|v∈e} xe = 1, v ∈ V.

If G is bipartite, then any pair of feasible optimal solutions satisfy the com-
plementary slackness conditions, a fact that lies at the heart of the PLS presented
by Göös and Suomela [22].

For general graphs, the same method fails miserably. The inherent obstacle
that this approach faces is the integrality gap of the LP formulation: a fractional
solution to the problem may be twice as large as the maximum integral solution.
While there are LP formulations of the problem with an integrality gap of 1, it
is not clear how to translate them into a PLS, since the number of dual variables
in these LPs is substantially larger.

However, we observe that a relaxed version of these conditions is enough to
prove that a primal solution is an approximation of the MWM.

Theorem 5 (See [31, Sect. 15.1]). If x and y are feasible primal and dual
solutions in a graph G satisfying

xe > 0 =⇒ w(e) ≤ yu + yv ≤ 2w(e), e = (u, v) ∈ E; and
yv > 0 =⇒ ∑

{e|v∈e} xe = 1, v ∈ V,

then x is a 2-approximation of the MWM in G.
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Unlike the case of bipartite graphs, here the opposite implication does not hold:
not every pair of 2-approximate solutions fulfill the conditions. Thus, given a
matching represented by a vector x, we explicitly build a dual solution y such
that x and y satisfy above conditions. This dual solution y will serve as a 2-APLS
for (FM , (w(M) ≥ w(MWM))) in a general graph.

Theorem 6. There exists a 2-APLS for (FM , (w(M) ≥ w(MWM))) with proof
size O(log W ).

Proof. Let G be a weighted graph with weights in {1, . . . , W} and M a maximum
weight matching in G. Let (xe)e∈E be the indicator vector of M . Define the values
of the dual variables (yv)v∈V by yv = w(e) if there exist an edge e ∈ M such
that v ∈ e, and yv = 0 otherwise. The label of a node v is set to be yv.

To verify (FM , (w(M) ≥ w(MWM))), a node v exchanges labels with its
neighbors and check the next feasibility condition:

– For each neighbor u of v, yu + yv ≥ w(u, v).

We start by showing that if M is indeed a MWM, then the relaxed comple-
mentary slackness conditions hold. Let e = (u, v) be an edge satisfying xe > 0,
i.e. e ∈ M , then yu = yv = w(e) and indeed w(e) ≤ yu + yv ≤ 2w(e). For the
second complementary slackness condition, let v be a node with yv > 0, so there
is exactly one edge (u, v) ∈ M with x(u,v) = 1, while for every other neighbor u′

of v, x(u′,v) = 0, so
∑

{e|v∈e} xe = 1.
For the feasibility, the input is a feasible matching, so

∑
{e|v∈e} xe ≤ 1 for

each node v and xe ≥ 0 for each edge e, and the primal solution x is feasible.
For the dual solution y, assume towards contradiction that there is an edge
e = (u, v), e /∈ M , such that yu + yv < w(e). Then, the matching obtained by
removing any edge in M that touches u or v and adding e to M has a weight
w(M) − (yu + yv) + w(e) > w(M), which contradicts the maximality of M . The
case of e ∈ M was considered in the previous paragraph. Thus, we have a pair
of feasible primal and dual solutions satisfying the relaxed slackness conditions,
and the solutions are 2-approximations of the optimal solutions.

Finally, consider a configuration Gs with label assignment (xe), such that all
nodes output TRUE. The labels represent a dual solution that satisfies all the
relaxed complementary slackness conditions, so by Theorem 5 the solution is a
2-approximation of the MWM. �	

We are unaware of any lower bound for the MWM problem in the PLS
model, nor in the CONGEST and LOCAL models. We note that for every
approximation ratio α ≥ 1, some communication is needed in any α-APLS for
(FM , (w(M) ≥ w(MWM))). This is true since, for every configuration Gs with
an empty matching M = ∅ (not any approximation of MWM), the local view of
every node is consistent with some legal configuration with matching M ′, where
w(M ′) = w(MWM). Let v be a node and let u1, . . . , ud be the neighbors of v
where the weight of every edge (v, ui) is wi. The construction of the legal con-
figuration Gv

s for v is as follows. Add nodes z1, . . . , zd and an edge ei = (zi, ui)
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of weight wi + 1 for every 1 ≤ i ≤ d. Finally, define M ′ = {ei | 1 ≤ i ≤ d}. It is
easy to verify that there is no augmenting path for M ′ in this configuration, i.e.,
w(M ′) = w(MWM). However, the local view of v in Gs and in Gv

s is the same.
Therefore, without communication, v must output TRUE. Since the same holds
for every node, we conclude that some communication is necessary, regardless of
the desired approximation ratio.

5 Discussion

This paper presents the new model of approximate proof-labeling schemes. We
illustrate the power of the APLS model with the D ≤ k predicate. We prove a
tight lower bound (up to a logarithmic factor) in the PLS model, and present
two, more efficient, APLSs for this predicate. The two APLSs show a non-trivial
tradeoff between the approximation ratio and the proof size.

We also present a 2-APLS for the predicate w(M) ≥ w(MWM) on general
graphs, a problem for which it is unknown if a non-trivial PLS exists. Presenting
an efficient PLS for this problem, showing that a PLS with small proof size does
not exist, or presenting an APLS with different approximation ratio or different
proof size are interesting questions left open.

It would be interesting to study the APLS model on other graph predicates.
For example, the chromatic number χ(G) of a graph G is the minimal number of
colors in a proper node coloring of G. A PLS for χ ≤ k with proof size O(log k)
exists, where the proof is a proper coloring of the graph. However, it was proven
in [22] that any PLS for χ > 3 must have Ω̃(n2) proof size. Hence, also for this
problem, the APLS model may allow a more efficient verification.

Finally, the idea of approximation in verification we present in this paper
can be extended to other decision and verification schemes, such as the com-
plexity classes LD and NLD, generating a different classification of problems.
For example, our 2-APLS for w(M) ≥ w(MWM) on general graphs can also be
used for 2-approximate NLD, under the relevant definitions, since the labels can
be locally computed by the nodes.
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