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Abstract. Verifying that a network configuration satisfies a given
boolean predicate is a fundamental problem in distributed computing.
Many variations of this problem have been studied, for example, in the
context of proof labeling schemes (PLS), locally checkable proofs (LCP),
and non-deterministic local decision (NLD). In all of these contexts, ver-
ification time is assumed to be constant. Korman et al. [16] presented a
proof-labeling scheme for MST, with poly-logarithmic verification time,
and logarithmic memory at each vertex.

In this paper we introduce the notion of a t-PLS, which allows the
verification procedure to run for super-constant time. Our work analyzes
the tradeoffs of t-PLS between time, label size, message length, and com-
putation space. We construct a universal t-PLS and prove that it uses
the same amount of total communication as a known one-round univer-
sal PLS, and t factor smaller labels. In addition, we provide a general
technique to prove lower bounds for space-time tradeoffs of t-PLS. We
use this technique to show an optimal tradeoff for testing that a net-
work is acyclic (cycle free). Our optimal t-PLS for acyclicity uses label
size and computation space O((log n)/t). We further describe a recursive
O(log∗ n) space verifier for acyclicity which does not assume previous
knowledge of the run-time t.

1 Introduction

A fundamental problem in distributed computing is to determine if a network
configuration satisfies some predicate. In the distributed setting, a network con-
figuration is represented by an underlying graph, where each vertex represents
a processor, edges represent communication links between processors, and each
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vertex has a state. For example, the state of every vertex can be a color, and
the predicate signifies that the coloring is proper, i.e., that every edge has its
endpoints colored differently. Processors learn about the network by exchang-
ing messages along the edges. Some properties are local by nature and easy to
verify, yet many natural problems—for example, testing if the network contains
cycles—cannot be tested in less than diameter time, even if message size and
local computational power are unbounded.

In order to cope with strong time lower bounds, Korman et al. introduced
in [17] a computational model, called proof-labeling schemes (PLS), where ver-
tices are given auxiliary global information in the form of labels. This auxiliary
information may allow vertices to verify that a property is satisfied more effi-
ciently than could be achieved without the aid of labels. Specifically, a PLS
consists of two components: a prover and a verifier. The prover is an oracle that
assigns labels to vertices. The verifier is a distributed algorithm that runs on the
labeled configuration and outputs true or false at each vertex as a function
of its state, its label, and the labels it receives. A PLS is complete if for every
legal configuration (satisfying the predicate), the prover can assign labels such
that all vertices output true. The PLS is sound if for every illegal configuration
(which does not satisfy the predicate) for every labeling, some vertex outputs
false.

Schemes for verifying a predicate are useful in many applications. One such
application is checking the output of a distributed algorithm [3,12]. For exam-
ple, if a procedure is meant to output a spanning-tree of the network, it may
be useful to periodically verify that the output does indeed not contain cycles.
If the original procedure which finds the spanning-tree can additionally pro-
duce labels, verification may be achieved substantially faster than diameter time
required without the aid of labels. A simple procedure for checking the legality
of the current state is very useful in the construction of self stabilizing algo-
rithms [1,2,7,16]. Other applications include estimating the complexity of logics
required for distributed run-time verification [12], establishing a general distrib-
uted complexity theory [11], and proving lower bounds on the time required
for distributed approximation [8]. Local verification was recently applied in the
design and analysis of software defined networks (SDN) in [18].

Distributed verification has been formalized in various models to suit its myr-
iad applications. These models include proof-labeling schemes (PLS) [17], locally
checkable proofs (LCP) [13], and non-deterministic local decision (NLD) [11].
We refer the reader to [9] for a detailed comparison of these models. All three of
these models are local in the sense that verification requires a constant number
of rounds, independent of the size of the graph. PLS differs from LCP and NLD
in that verification in (traditional) PLS occurs in a single communication round,
while the LCP and NLD models allow verification in a fixed constant number
of rounds. While a fast procedure is certainly a desirable feature in verifica-
tion algorithms, it may be the case that other computational resources—space
or communication—must also be considered. For example, in the case of PLS,
deterministically verifying a sub-graph is acyclic requires labels of size Ω(log n)
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per vertex [17]. However, specifying a sub-graph only requires O(Δ) space (the
maximum degree of a vertex) per vertex. Thus, if we restrict attention to local
verification algorithms, the space requirement to store labels may be unbound-
edly larger than the space required to specify the instance.

Korman et al. [16] presented a PLS for minimum spanning-tree with poly-
logarithmic verification time and logarithmic memory at each vertex. In the
present work we also consider super-constant time verification and address
tradeoffs between computational resources in distributed verification algorithms:
label size, communication, computation space, and time. Specifically, we address
the following questions: If verification algorithms are allowed to run in super-
constant time, can labels be significantly shorter? What are the tradeoffs between
label size and verification time? Can verification be achieved using (per proces-
sor) space which is linear in the label size? We focus on the acyclicity problem
and prove that labels can indeed be shortened by a factor of t—the run-time
of the algorithm—compared to constant-round verification. Moreover, computa-
tion space for each vertex can be made linear in the label size. Note that in this
model it does not trivially hold that each message contains exactly one label,
since in each round every vertex receives a (potentially different) label from each
neighbor, and the scheme should specify the message to be sent in the following
round. We show that in our schemes messages are small enough so that the total
communication is the same as in one-round verification.

1.1 Our Contributions

In this paper we consider proof-labeling schemes with super-constant verification
time, and analyze tradeoffs between time, label size, message size, and compu-
tation space. Many of the results presented here were announced without proof
in [5]. In Subsect. 3.1, we describe a universal scheme which can verify any prop-
erty P. Suppose Gs, with n vertices, m edges, and each state can be represented
using s bits. Then for every t ∈ O(diam(Gs)), our scheme verifies P in t rounds
using labels and messages of size O((ns + min{n2,m log n})/t). For t = 1 this is
the known universal scheme [4,13,17]. When t ∈ Ω(n), we obtain labels and mes-
sages of size O(s+min{n, (m/n) log n}). Overall, labels are significantly smaller,
and total communication is the same. Subsect. 3.2 proves a general lower bound
technique for label size of t-round schemes.

In Sect. 4 we consider the problem determining if a graph is acyclic. Using
the lower bound technique of Subsect. 3.2, we prove in Subsect. 4.1 that labels
of size Ω((log n)/t) are required for the acyclic problem. Subsect. 4.2 shows
that this lower bound is tight. Our scheme for acyclic additionally uses opti-
mal space and messages of size O((log n)/t). In particular, by taking t to be
a sufficiently large constant, our upper bound (along with the Ω(log n) lower
bound for acyclic in [17]) implies separation between the PLS and LCP mod-
els for acyclicity (see [9]). The verifier for acyclic assumes that vertices are
given some truthful information about the round number, for example, by being
told when (a multiple of) t rounds have elapsed. We show that such information
is necessary for any super-constant and sub-linear time distributed algorithm.
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In Subsect. 4.3, we describe a recursive scheme for acyclic which uses space
O(log∗ n) and constant communication per vertex per round. The recursive ver-
ifier runs in time O(n) in the worst case, but there are always correct labels
which will be accepted in time O(log diam(G)). We note that in order to break
the logarithmic space barrier, our schemes in Subsects. 4.2 and 4.3 crucially do
not rely upon unique identifiers for the vertices. Conversely, the lower bounds
of Subsects. 3.2 and 4.1 hold for a stronger model where vertices have unique
identifiers, and labels may depend on the unique identifiers.

1.2 Related Work

Distributed verification has been studied extensively. It was studied and used
in the design of self stabilizing algorithms, first in [1], where the notion of local
detection was introduced, and recently in [16], where a super-constant time veri-
fication scheme was presented. Both papers use verification in the design of a self
stabilizing algorithm for constructing a minimum spanning-tree. Verification has
also received attention of its own. For example, [15] presented tight bounds for
minimum spanning-tree verification. In [17], Korman et al. formalized the con-
cept of local verification and introduced the notion of proof-labeling schemes. In
their paper, verification is defined to use one communication round, and among
other results they show a Θ(log n) bound on the complexity (label size and com-
munication) for acyclic. Recently, [4] suggested using randomization in order
to break the lower bounds of deterministic schemes, and among other results
they show a Θ(log log n) bound on the communication complexity of acyclic-
ity. In this paper, we show that if we use super-constant verification time, we
can break the lower bound of space consumption (label size and computation
space), while the total amount of communication is the same as in one deter-
ministic verification round. Proof-labeling schemes with constant, greater than
one, verification time was studied in [13], and with super-constant verification
time was presented in [16]. In [10], the authors consider verification of acyclicity
and related problems in various models for directed graphs.

The question of what properties can be verified using a constant verifica-
tion time was studied in [11], and several complexity classes were presented,
including LD—local decision—which includes all properties that can be decided
using constant number of rounds and no additional information, and NLD—non-
deterministic local decision—which includes all properties that can be decided
in a constant number of rounds with additional information in the form of a
certificate given to each vertex. While NLD and PLS are closely related, they
differ in that NLD certificates are independent of vertex identifiers. Since PLS
labels may depend on vertex identifiers, there is a PLS for every sequentially
decidable property on ID based networks, while not all sequentially decidable
properties are in NLD. Our lower bounds in Subsects. 3.2 and 4.1 allow labels
to depend on unique vertex identifiers, so our arguments give identical lower
bounds for certificate sizes in the weaker NLD model. Nonetheless, the schemes
for acyclic in Subsects. 4.2 and 4.3 do not require unique identifiers.
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Awerbuch and Ostrovsky describe a log∗ n-space distributed acyclicity ver-
ifier in [2]. Our scheme described in Sect. 4.3 achieves the same space usage
per node, but improves on the algorithm of [2] in several ways. The worst-
case runtime of our acyclicity verifier is O(n), whereas that in [2] requires time
O(n log2 n). Further, in our scheme there are always correct labels which are
accepted in time O(log n). This runtime nearly matches the Ω((log n)/ log∗ n)
time lower bound implied by Theorem7. We leave it as an open question if it is
possible to verify acyclic using constant space and worst case runtime O(log n).

2 Model and Definitions

2.1 Computational Framework

A graph configuration Gs consists of an underlying graph G = (V,E), and a
state assignment function ϕ : V → S, where S is a state space. The state of a
vertex includes all of its local information. It may include the vertex’s identity
(in an ID based configuration), the weight of its adjacent edges (in a weighted
configuration), or the result of an algorithm executed on the graph, for example,
its color according to a coloring algorithm.

In a proof-labeling scheme, an oracle assigns labels � : V → L. Verification is
performed by a distributed algorithm on the labeled configuration in synchronous
rounds. In each round every vertex receives messages from all of its neighbors,
performs local computation, and sends a message to all of its neighbors. At the
beginning of each round, a vertex scans its messages in a streaming fashion,
and the computational space is the maximum space required by a vertex
in its local computation. Each vertex may send different messages to different
neighbors in a round. When a vertex halts, it outputs true or false. If the
vertex labels contain unique identifiers, then we require that an algorithm has
the same output for all legal assignments of unique IDs.

2.2 Proof-Labeling Schemes and t-PLS

We start with a short description of proof-labeling schemes (PLS) as introduced
in [17]. Given a family F of configurations, and a boolean predicate P over F ,
a PLS for (F ,P) is a mechanism for deciding P(Gs) for every Gs ∈ F . A PLS
consists of two components: a prover p, and a verifier v. The prover is an
oracle which, given any configuration Gs ∈ F , assigns a bit string �(v) to every
vertex v, called the label of v. The verifier is a distributed algorithm running
concurrently at every vertex. The verifier v at each vertex outputs a boolean. If
the outputs are true at all vertices, v is said to accept the configuration, and
otherwise (i.e., v outputs false in at least one vertex) v is said to reject the
configuration. For correctness, a proof-labeling scheme (p,v) for (F ,P) must be
(1) complete and (2) sound . Formally, for every Gs ∈ F , we say (p,v) is

1. complete if whenever P(Gs) = true then, using the labels assigned by p,
the verifier v accepts Gs, and
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2. sound if whenever P(Gs) = false then, for every label assignment, the
verifier v rejects Gs.

The verification complexity of a proof-labeling scheme (p,v), according
to [17], is the maximal label size—the maximal length of a label assigned by the
prover p on a legal configuration (satisfying P). A PLS is defined to use one
verification round, in which neighbors exchange labels. In this case, label size
and message size are the same.

In this paper we consider proof-labeling schemes with more than one verifi-
cation round, in particular it can use super-constant time, and hence we define
the message size of the scheme (p,v) to be the largest message a vertex sends
during the execution of v on a legal configuration with the labels assigned by p.
We denote a proof-labeling scheme with t-round verification by t-PLS.

3 General Space-Time Tradeoff Results

In this section we give general results for label size reduction and message size
in a t-PLS. The idea is to take a 1-PLS, and break it into smaller shares where
vertices are assigned only a single share of the original label. We refer to this
technique as label sharing . In particular, we present a universal scheme and
provide a tool for obtaining lower bounds. We first observe that if there exists
a PLS for (F ,P) with label size κ (and hence, message size κ), then there
exists a t-PLS for (F ,P) with label size κ and message size κ/t. Indeed, vertices
can communicate their κ-bit label in t different shares of size κ/t, where the
original label is simply the concatenation of the shares. In the universal scheme
described below, the oracle assigns each vertex only a single share. Each vertex
then reconstructs the original (1-PLS) labeling from the shares received from
neighbors in t communication rounds.

3.1 Universal t-PLS

A universal scheme is a scheme that verifies every sequentially decidable prop-
erty. In this subsection we assume that every vertex has an identifier, and iden-
tifiers in the same configuration are pairwise distinct. We give an upper bound
on the label and message size of a universal scheme that uses t communication
rounds.

Theorem 1. Let F be a family of configurations with states set S and diameter
at least D, let P be a boolean predicate over F and suppose that every state in
S can be represented using s bits. For every t ∈ Ω(D) there exists a t-PLS for
(F ,P) with label and message size O((ns + min{n2,m log n})/t) where n is the
number of vertices, and m is the number of edges in the graph.

In the proof of this theorem we use a known universal PLS [4,13,17].
Labels consist of the entire representation of the graph configuration. Nodes
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then verify that they have the same representation, and that it is consis-
tent with its local view. Finally, they verify individually that the label repre-
sents a legal configuration. Since every configuration can be represented using
O(ns + min{n2,m log n}) bits—by listing the state of each vertex and an adja-
cency matrix or an edge list—this is the label (and message) size of this scheme.

The idea of the universal t-PLS is to disperse the configuration representation
into shares such that each vertex can collect the purported graph configuration
from its t-neighborhood. The details and the formal proof appear in the full
version of this paper [6].

3.2 Lower Bound Tool

We start with some definitions. Although we consider only networks represented
by undirected graphs, we will define an orientation on an edge to indicate a
specific ordering of its endpoints. We denote by H(e) the head of a directed edge
e, and by T (e) the tail of e.

Definition 2 (Edge Crossing). Let G = (V,E) be a graph, and e1, e2 ∈ E be
two directed edges. The edge crossing of e1 and e2 in G, denoted by C(e1, e2, G),
is the graph obtained from G by replacing e1 and e2, by the edges (T (e1),H(e2))
and (T (e2),H(e1)).

Edge crossings were used many times before, and were formalized as a tool
for proving lower bounds of verification complexity in [4]. We now show how to
use edge crossing in order to prove lower bounds for label size of t-PLS.

Definition 3 (Edge k -neighborhood). Let G = (V,E) be a graph, and e =
(u, v) ∈ E. The k-neighborhood of e in G, denoted by Nk(e,G), is the subgraph
(V ′, E′) of G satisfying

1. w ∈ V ′ if and only if w ∈ V and min(dist(w, u),dist(w, v)) ≤ k, and
2. e′ ∈ E′ if and only if e′ ∈ E ∩ (V ′ × V ′).

Proposition 4. Let (p,v) be a deterministic t-PLS for (F ,P) with label size
|�|. Suppose that there is a configuration Gs ∈ F which satisfies P and contains
r directed edges e1, . . . , er, whose t-neighborhoods Nt(e1, Gs), . . . , Nt(er, Gs) are
pairwise disjoint, contain q vertices each, and there exist r state preserving
isomorphisms σi : V (Nt(e1, Gs)) → V (Nt(ei, Gs)) for i = 1, . . . , r such that
σi(H(e1)) = H(ei) and σi(T (e1)) = T (ei). If |�| < (log r)/q, then there exist
i, j with 1 ≤ i < j ≤ r such that every connected component of C(ei, ej , Gs) is
accepted by (p,v).

Proof. Let (p,v) and Gs be as described above, and assume that |�| < (log r)/q.
Consider a collection {σi : V (Nt(e1, Gs)) → V (Nt(ei, Gs)), i = 1, . . . , r} of r
state preserving isomorphisms, such that σi(H(e1)) = H(ei) and σi(T (e1)) =
T (ei). Order the vertices of Nt(e1, Gs) arbitrarily. For every i, consider the con-
catenation of labels given by p to the vertices of Nt(ei, Gs), in the order induced
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by the ordering of Nt(e1, Gs) and σi. Denote this concatenated string Li. By
label size assumption, it holds that |Li| < log r for every i, and thus there
are less than r different options for Li. Therefore, by the pigeonhole principle,
there are i �= j such that Li = Lj . Denote C(ei, ej , Gs) by G′

s, and consider
the labels provided by p to Gs. For every vertex v /∈ Nt(ei, Gs) ∪ Nt(ej , Gs),
its t-neighborhood is the same in Gs and in G′

s. Nt(ei, Gs) and Nt(ej , Gs) are
disjoint, isomorphic, and have the same states and labels according to some iso-
morphism which maps H(ei) to H(ej) and T (ei) to T (ej). Thus, for every vertex
v ∈ Nt(ei, Gs)∪Nt(ej , Gs), its t-neighborhood in Gs is the same as in G′

s. Since
the output of the verifier v at each vertex in Gs is only a function of the states
and labels at its t-neighborhood, if the output of v in Gs is true at all vertices,
then the output of v in every connected component of G′

s must be true, and
the proposition follows.

The following theorem, which is a consequence of Proposition 4, is the tool
we use to prove lower bounds of label size in a t-PLS.

Theorem 5. Let F be a family of configurations, and let P be a boolean predi-
cate over F . Suppose that there is a configuration Gs ∈ F which satisfies

1. P(Gs) = true,
2. Gs contains r directed edges e1, . . . , er, whose t-neighborhoods Nt(e1, Gs), . . . ,

Nt(er, Gs) are pairwise disjoint, contain q vertices each, and there exist r state
preserving isomorphisms {σi : V (Nt(e1, Gs)) → V (Nt(ei, Gs)), i = 1, . . . , r}
such that σi(H(e1)) = H(ei) and σi(T (e1)) = T (ei), and

3. for every i �= j, there exists a connected component Hs of C(ei, ej , Gs) such
that P(Hs) = false.

Then the label size of any t-PLS for (F ,P) is Ω((log r)/q).

4 Acyclicity

In this section we focus on the acyclicity property, and give tight t-PLS lower and
upper bounds. The lower bounds of Subsect. 4.1 hold in the computational model
where vertices have unique identifiers, and the labels are allowed to depend on
the ID of a vertex. The upper bounds presented in Subsects. 4.2 and 4.3 still
apply in a weaker computational model where vertices do not have unique IDs.

Definition 6 (Acyclicity). Let F be the family of all connected graphs. Given
a graph configuration Gs ∈ F , acyclic(Gs) = true if and only if the underlying
graph G is cycle free.

4.1 Lower Bound for ACYCLIC

Theorem 7. Every scheme which verifies acyclic in t communication rounds
requires labels of size Ω ((log n)/t).
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Proof. We will show a configuration as described in Theorem 5, with r = Ω (n/t)
and q = O(t), to derive the stated lower bound on label size of any scheme that
verifies acyclic. Let Gs be the n-vertex path v0−v1−· · ·−vn−1 where all states
are the empty string. Obviously acyclic(Gs) = true. Let r = �n/(2t + 2)	−1,
and consider the set {ei = (v(2t+2)i, v(2t+2)i+1) | 1 ≤ i ≤ r} of r directed edges.
Each Nt(ei, Gs) contains exactly 2t + 2 vertices, and thus q = 2t + 2. Every
pair of t-neighborhoods Nt(ei, Gs) and Nt(ej , Gs), for i �= j, is disjoint since
the distance between ei and ej is at least 2t + 1. For every i < j, C(ei, ej , Gs)
contains exactly two connected components. One of them is the cycle Hs =
vqi+1 − vqi+2 − · · · − vqj − vqi+1 where all its edges are marked. By definition,
P(Hs) = false. Hence, the conditions of Theorem 5 are satisfied, and the lower
bound follows.

4.2 Upper Bound for ACYLCLIC

In this section, we describe a t-PLS for acyclic which matches the lower bound
presented in Theorem 7.

Theorem 8. Suppose G = (V,E) is a graph with diameter D. For every t ≤
min {log n,D}, there exists an O(t)-PLS for acyclic with label and messages
of size O((log n)/t). Further, the verifier v uses space of size O((log n)/t).

Remark 9. In this subsection, we assume that each vertex has access to some
means of deciding (correctly) when t communication rounds have elapsed. This
can be achieved either by allowing each vertex a log t bit counter, or by giving
each vertex access to an oracle which alarms when (an integer multiple of) t
rounds have elapsed. We discuss the necessity of this assumption in Subsect. 4.3.

The following scheme can be used to verify that the graph contains no cycles
using labels of size O(log n) in a single round. The label of a vertex v consists of
an integer d(v) which encodes the distance from v to a root vertex (which has
d(v) = 0). Vertices verify the correctness of the labels in a single communication
round. If v satisfies d(v) = 0 (i.e., v is a root), then it accepts the label if all of
its neighbors w satisfy d(w) = 1. If v satisfies d(v) �= 0 then v verifies that v has
exactly one neighbor u with d(u) = d(v) − 1 while all other neighbors w satisfy
d(w) = b(v) + 1. This scheme is used, for example, in [2,3,14]. The correctness
of the scheme is a consequence of the following definition and lemma.

Definition 10. Suppose G = (V,E) is a graph and L = {0, 1, . . . , s − 1} with
s ≥ 3. We call function � : V → L an s-cyclic labeling of G if for every v ∈ V ,
v has at most one neighbor P (v)—the parent of v—such that �(P (v)) ≡ �(v)−1
mod s, while the v’s other neighbors w satisfy �(w) ≡ �(v) + 1 mod s.

Remark 11. An s-cyclic labeling induces an orientation on G where an edge
(u, v) is oriented such that u = P (v). That is, each edge is oriented away from
the parent.
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id = 0
a = 0
b = head

c = 0
d = 00

id = 44
a = 2
b = tail

c = 0
d = 10

id = 45
a = 0
b = head

c = 1
d = 01

id = 46
a = 1
b = mid

c = 1
d = 11

id = 47
a = 2
b = tail

c = 1
d = 10

id = 48
a = 0
b = head

c = 0
d = 00

Fig. 1. Acyclicity labels for a graph consisting of a path rooted at its left endpoint.
We have given the nodes identifiers 0, 1, . . . from left to right, although the labeling
need not include the id of the vertices. For this configuration, the orientation labels
a(v) simply count the distance from v to the root (with id 0) modulo 3. The nodes
with ids 45 6, and 47 form a single block, whose head (45) and tail (47) are indicated
by the corresponding block labels. The color of this block is 1 because it is the 15th
block from the root (45/3 = 15), and 15 ≡ 1 mod 2. Finally, the concatenation of the
distance labels in this block is d(47)d(46)d(45) = 101101, which encodes the distance
of the block’s head to the root (45) in binary.

Lemma 12. Suppose G = (V,E) is a connected graph and � an s-cyclic labeling.
Then either G is acyclic or G contains a unique cycle of length k, where s divides
k. Further, if G contains a cycle, C, then C is an oriented cycle in the orientation
induced by �, and all oriented paths in G are oriented away from vertices in C.

Proof. Suppose C = (v0, v1, . . . , vk−1) is a cycle in G. In the orientation
described in Remark 11, every vertex has in-degree at most 1. Let degin(vi)
denote the in-degree of vi in C and similarly degout(vi) is vi’s out-degree
in C. Then degin(vi) − degout(vi) ≤ 0 for all vi. However, we must have∑

i degin(vi) − degout(vi) = 0, implying that in fact degin vi = degout(vi) = 1
for all i. Thus, C is an oriented cycle. As a consequence, for all i, either
�(vi) ≡ �(vi+1) + 1 mod s or �(vi) ≡ �(vi+1) − 1 mod s. In the former case,
we have �(vk−1) − �(v0) ≡ k ≡ 0 mod s, implying that s divides k. In the latter
case, �(vk−1) − �(v0) ≡ −k ≡ 0 mod s, and the desired result holds.

Since every vertex vi ∈ C has in-degree 1 in C, all edges that leave C must be
oriented away from vertices in C. Similarly, any path w0, w1, . . . , wj with w0 ∈ C
and wi /∈ C for i ≥ 1 must be oriented away from C. Thus no such path may
lead to another cycle C ′, nor could another cycle C ′ share a path with C. Thus
since G is connected C must the unique cycle.

To achieve labels of length O((log n)/t) for acyclic, we simulate the
“distance-to-root” scheme described above. The idea is to break the O(log n)-bit
labels indicating the distance to the root into shares of size O((log n)/t). Unlike
the universal scheme described in Subsect. 3.1, vertices do not reconstruct the
(log n)-bit distance-to-root labels directly, but check the labeling is correct dis-
tributively. Thus the verifier v only uses space linear in the label size.

Formally, for a vertex v, an acyclicity label consists of:

– an orientation label a(v) ∈ {0, 1, 2} which defines an orientation on edges
away from the root of the tree,
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– a block label b(v) ∈ {head,mid,tail} which indicates v’s position within a
block,

– a block color c(v) ∈ {0, 1}, and
– a distance label d(v) ∈ {0, 1}(log n)/t which encodes a share of a distance to

the root.

See Fig. 1 for an example of correctly formed labels. It is clear that an acyclicity
label can be recorded in O((log n)/t) bits. The semantics of acyclicity labels are
described below.

Correct orientation labels. The orientation labels a(v) are correct if every
v ∈ V has at most one neighbor P (v)—the parent of v—such that a(P (v)) ≡
a(v) − 1 mod 3. The remaining neighbors w of v—v’s children—satisfy
a(w) ≡ a(v) + 1 mod 3. If P (v) = ∅, we call v a root . Correct orienta-
tion labels induce an orientation on G where the oriented edges (v, w) satisfy
a(w) ≡ a(v) + 1 mod 3. Thus, edges are oriented away from roots (if any).

Correct block labels. Block labels must be assigned in the following manner
1. b(v) = head if and only if either P (v) = ∅ or b(P (v)) = tail
2. b(v) = tail if and only if there exists an oriented path of length t,

v0, v1, . . . , vt−1 = v such that b(v0) = head. We refer to such a path
as a block .

3. In all other cases, b(v) = mid.
4. For every v, there exists an oriented path w0, w1, . . . , wk−1 = v of length

k < t such that b(w0) = head.

Definition 13. Let B = (v0, v1, . . . , vt−1) be a block. We define the value of
B, denoted D(B), to be the integer whose binary expansion is the concatenation
d(vt−1)d(vt−2) · · · d(v0). That is, v0 holds the least significant bits of D(B), while
vt−1 holds the most significant bits. If B′ = (w0, w1, . . . , wt−1) is another block,
we say that B is the parent of B′ and B′ is a child of B if P (w0) = vt−1. If
there exists i such that vi = wi, we say that B and B′ overlap.

Correct block coloring. The block coloring c is correct if
1. for every block B and v, w ∈ B we have c(v) = c(w), and
2. for every blocks B,B′ such that B is the parent of B′, and v ∈ B, w ∈ B′,

we have c(v) �= c(w).
Correct distance labels. The distance labels d are correct if

1. for every block, B = (v0, v1, . . . , vt−1), D(B) = 0 if and only if v0 is a
root, and

2. for every pair of blocks B and B′ with B the parent of B′, we have
D(B′) = D(B) + t.

Definition 14 (Correct acyclicity labeling). Suppose � is a family of
acyclicity labels for a graph G = (V,E). We say that the family � is correct
if a, b, c, and d are correct orientation labels, correct block labels, correct block
colorings, and correct distance labels as described above.
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Remark 15. If blocks B = (v0, . . . , vt−1) and B′ = (w0, . . . , wt−1) overlap,
then we must have w0 = v0 and D(B) = D(B′). The first equality holds because
each vertex vi has at most one parent, so if wi = vi we must have wj = vj for
0 ≤ j ≤ i. The second equation holds because either B and B′ contain a root, in
which case D(B) = D(B′) = 0, or there is a B′′ which is the parent of both B
and B′. In the latter case, D(B) = D(B′′) + t = D(B′).

Proposition 16. Let G = (V,E) be a graph. Then G is acyclic if and only if it
admits a correct labeling �.

Proof. If G is acyclic, then we can form labels � in the following way. Choose
an arbitrary vertex u to be the root. For all v define d′(v) = dist(v, u) (the
length of the unique path from v to u), and take a(v) = d′(v) mod 3. Define
b(v) by b(v) = head if d′(v) ≡ 0 mod t, b(v) = tail if d′(v) ≡ −1 mod t, and
d(v) = mid otherwise. Finally, assign distance labels d(v) in such a way that in
each block B with first element v0, D(B) = d′(v0). It is easy to verify that these
labels � constructed in this way will satisfy all the provisions of Definition 14.

Conversely, suppose G admits a correct family of acyclicity labels. Suppose
towards a contradiction that C = (w0, w1, . . . , wk−1) is a cycle. Since the orien-
tation labels a(v) are correct (hence form a 3-cyclic labeling), C must be an ori-
ented cycle (as in the proof of Lemma12). The final provision in the correctness
of b and the fact that each vertex wi has a unique parent guarantee some wi must
have b(wi) = head. Without loss of generality, assume that b(w0) = head, and
let B0 be the block containing w0 and contained in C. Inductively define blocks
B1, B2, . . . ⊆ C such that Bi+1 is a child of Bi. By the pigeonhole principle, we
must have Bi = Bj for some i < j. However, the correctness of the distance labels
implies that D(Bi) < D(Bi+1) < · · · < D(Bj) = D(Bi), a contradiction.

In order to prove Theorem 8, by Proposition 16, it suffices to show there is
a verifier v for acyclicity labels which runs in time O(t) using messages and
memory of size O((log n)/t). Verification of the correctness of the orientation
labels a, block coloring c, and conditions 1 and 3 in the correctness of the block
labels b can be accomplished in a single communication round with constant
communication. Thus, we must verify conditions 2 and 4 in the correctness of
the block labels as well as the correctness of distance labels.

After the initial sharing of labels with neighbors in the first round, the ver-
ification algorithm Verify(v, a, b, c, d) continues as follows (see Algorithm 1 for
pseudo-code). For t − 1 steps, each vertex relays the message from its parent
to all of its children. At the end of t rounds, each vertex verifies that at some
point, it received a message from a head vertex. If a vertex v received a mes-
sage from a root vertex, it verifies that d(v) = 0. Otherwise, let b(w), c(w), and
d(w) be labels received by v in the t-th round. Then v checks that b(w) = b(v),
c(w) �= c(v). The block heads increment the distance labels d(w) t times, sending
carry bits (if any) to their children. When children receive carry bits, they incre-
ment their d(w)’s accordingly, sending further carry bits to their children. After
this incrementation procedure, vertex v verifies that the incremented d(w)’s sat-
isfy d(v) = d(w).
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Algorithm 1. Verify(v, a, b, c, d): Verifies correctness of acyclicity labels.

1: send a(v), b(v), and c(v) to all neigh-
bors

2: verify correctness of a and c, and con-
ditions 1 and 3 in correctness of b

3: head check ← false
4: if b(v) = tail then
5: is zero ← true
6: end if
7: for i = 1 to t-1 do
8: M ← (b(w), c(w), d(w)) or ∅

received from P (v)
9: if b(w) = head then

10: head check ← true
11: end if
12: if b(v) = tail then
13: if d(w) �= 0 then
14: is zero ← false
15: end if
16: if i = t − 1 then
17: assert: b(w) = head

18: end if
19: end if
20: send M to all children {if v is a leaf,

ignore}
21: end for
22: if M = ∅ then
23: assert: d(v) = 0 {head of v’s block

is root}
24: else
25: for i = 1 to t do
26: Increment(d(w), |d(w)| , 1)
27: end for
28: assert: b(w) = b(v)
29: assert: c(w) �= c(v)
30: assert: d(w) = d(v)
31: if b(v) = tail then
32: assert: is zero = false
33: end if
34: end if
35: assert: head check = true

Lemma 17. Let � be a family of acyclicity labels on a graph G = (V,E). Then
� is correct if and only if every vertex v accepts in Algorithm1.

Proof. By induction, each vertex receives the message from its (unique) i-th
ancestor in the i-th communication round. Therefore, every tail accepts at lines
16–18 if and only if every tail is at (oriented) distance t−1 from a head. Similarly,
every vertex v is at (oriented) distance iv < t from a head if and only if it accepts
at line 35 (see lines 9–11). Thus, the block labels are correct if and only if every
vertex accepts at lines 2, 17, and 35.

Note that b(w) = ∅ if and only if the head of the block containing v is a
root. Thus, every vertex accepts at line 23 if and only if all blocks B containing
a root satisfy D(B) = 0. Conversely, if B does not contain a root, then by the
assertion at line 32 (and the check at lines 13–15), then D(B) �= 0. Thus the
checks at lines 23 and 32 are satisfied if and only if condition 1 in the correctness
of distance labels is satisfied.

Suppose block B = (w0, . . . , wt−1) is the parent of B′ = (v0, . . . , vt−1), then
the distance label received by each vi is d(wi). Thus, after incrementing the labels
d(w0)d(w1) · · · d(wt−1) t times, the incremented labels will have value D(B) + t.
Therefore, all vertices in B′ accept at line 31 if and only if D(B′) = D(B) + t,
if and only if condition 2 of correct distance labels is satisfied.

Proof (of Theorem 8). Lemma 17 implies that the Verify routine (Algorithm 1)
is a correct verifier for acyclicity labels. Thus we must only argue that Verify
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achieves the claimed time, space, and communication bounds. In each commu-
nication round, each vertex broadcasts a single label (in line 20) or a single bit
(in Increment) to its neighbors. Thus, the communication in each round is
O((log D)/t) per edge. In each iteration of the algorithm, each vertex stores at
most a constant number of labels, hence the memory usage is O((log D)/t) as
well. Finally, the overall run-time is 3t. The label sending procedure in lines
7–21 is accomplished in t rounds, while the incrementation procedure in lines
25–7 requires at most 2t rounds: t rounds where the head vertices increment,
and another t to propagate carries. In particular, the run-time is O(t).

4.3 Recursive Acyclicity Checking

The scheme described in Subsect. 4.2 gives asymptotically optimal label size for
t ≤ log n. Further, the communication per round and local memory usage is
linear in the label size. However, the scheme above crucially requires each vertex
to be given a truthful representation of the parameter t. In the full version of
this paper [6, Appendix A], we show that achieving a runtime t ∈ ω(1) ∩ o(n)
requires that vertices are given some truthful information about t (or n).

In this subsection, we describe a verifier for acyclic that only assumes that
the space provided to each processor is O(log∗ n). The tradeoff is that our algo-
rithm runs in time which may be linear in n in the worst case.

Theorem 18. There exists a O(n)-PLS for acyclic which uses labels and space
of size O(log∗ n). In each round, the communication per-edge is O(1).

Remark 19. While verification time in Theorem18 is O(n) in the worst case,
the actual time depends on the labels given to the vertices. In particular, for
every acyclic graph G there exists a correct labeling which will be accepted in
time O(log D). Thus there is a tradeoff between the time of the algorithm and
the amount of truthful information about t given to the vertices.

The idea of the algorithm is to simulate the verifier Verify (Algorithm 1)
without the benefit of truthful information about t. As before, the labels des-
ignate blocks of length t. Within each block, the vertices store shares of the
distance of that block to the root, where in this case, the shares consist of a sin-
gle bit. Since t (the length of the block) is not known to the vertices in advance,
they must first compute t. However, storing t requires log t bits, so the computed
value of t is stored in shares in sub-blocks of length log t. In order to verify the
correctness of the sub-blocks, the vertices must count to log t using log log t
bits of memory. This value is again stored in shares in sub-sub-blocks of length
log log t. This process of recursively verifying the lengths of blocks continues until
the block length is constant. Thus log∗ n levels of recursion suffice.

Formally, in our recursive scheme, recursive acyclicity labels closely
resemble those in Subsect. 4.2. For each vertex v and each level i = 1, 2, . . . , k =
log∗ n, we have an associated block label bi(v) and block color ci(v). We refer to
the labels associated to each i as a level , denoted Li. The top level L1 addition-
ally contains orientation labels, a(v) and distance labels d(v) for each vertex.
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Each level i has an associated length, denoted by ti. We emphasize that the ti
are not initially known to the vertices at the beginning of an execution. The
semantics and correctness of the block labels bi and block colors ci are precisely
the same as those described in Subsect. 4.2, where blocks at level i have length
ti. As before, the distance labels d(v) encode (a share of) the purported distance
of the L1 block containing v to the root.

Definition 20. Suppose � is a family of recursive acyclicity labels for a graph
G = (V,E). We say that a family � of recursive acyclicity labels is correct if the
L1 labels are correct as in Definition 14, and for i ≥ 2 the block labels in bi and
block colors ci are correct as in Definition 14 with ti = �log ti−1	.
Remark 21. For simplicity of presentation, we assume that for all i ≥ 2 that ti
divides ti−1. Thus, each block in Li−1 contains an integral number of sub-blocks.
The general case can be obtained by allowing “overlap” of the last sub-block of
B in level i with the first sub-block of B′ in i where B is the parent block of B′.

Analogously to Proposition 16, we obtain the following result.

Proposition 22. Let G = (V,E) be a graph. Then G is acyclic if and only if it
admits a correct family C of recursive acyclicity labels.

It is clear that recursive acyclicity labels are of length O(log∗ n). Indeed, each
of the labels in the log∗ n recursive levels has length O(1).

Lemma 23. Let G = (V,E) be a graph, and C a family of recursive acyclic-
ity labels on G. Suppose that for some i, the labels in Li+1 are correct. Then
there exists a verifier vi for the labels in Li with run-time O(2ti+1), constant
communication per round, and constant space.

Algorithm 2. RVerify(i, Li)

1: verify a is correct
2: verify properties 1 and 3 of correctness

of bi correctness of ci
3: if i = log∗ n then
4: verify correctness of bi and ci
5: return
6: end if
7: tcounti+1 ← 0

8: Count(tcounti+1, 1, i)
9: Send(tcounti+1,rec, i + 1)

10: assert: reci+1 = tcounti+1

11: if i = 1 then
12: Add(d(v),tcount2,dcount, 1)
13: Send(dcount,dcount, 1)
14: assert: dcount = d(v)
15: end if

We describe a verifier RVerify (Algorithm 2) for Li assuming Li+1 is correct.
Suppose B is a block in level i, and B1, B2, . . . , Bs its sub-blocks for s = ti/ti+1,
with Bj the parent of Bj+1. By assumption, the block labels for the Bj are
correct. The head v0 of B verifies that it is also the head of B1, and sends a
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token Tcount to all of its children. The vertices in B bounce Tcount to the tail,
which then bounces Tcount back up to v0. Meanwhile, the vertices of each Bj

hold shares of a counter tcountj , which computes ti by incrementing itself until
Tcount returns to the head. If the counter tcountj ever exceeds 2ti+1 (i.e., if
the bit held by the tail of Bj is ever incremented twice), then the vertices in
Bj will halt and reject the label. It is clear that this step of the verification will
always halt in time O(2ti+1). After counting, the blocks in Li+1 verify that they
agree on tcountj . Further, tails of Bj verify that their share of tcount is 1,
implying that 2ti−1−1 < ti ≤ 2ti−1 .

There is a slight complication in the verification algorithm described above
that arises when a block B terminates prematurely in a leaf (a vertex of degree
1) which is not a tail. In correct block labels, if v0 is the head of overlapping
complete blocks (i.e., all have tails at distance ti from the head) then v0 should
receive Tcount from all of its children at the same time, 2ti. However, if some
block containing v0 is incomplete (terminates prematurely with a leaf) then v0
may receive messages from its children in different rounds. To avoid this problem,
leaves which are not labeled tail respond with a token Tleaf to their parent upon
receiving Tcount. The parent then knows not to expect a Tcount from this child.
Similarly, if an internal vertex receives Tleaf from all of its children (perhaps
in different rounds), it sends Tleaf to its parent. Then vertices check that they
receive Tcount from all children at the same time, except those which have sent
Tleaf if a previous round.

Finally, if i = 1, the vertices must additionally verify the correctness of the
distance labels d(v). Suppose B = (v0, . . . , vt−1) and B′ = (w0, . . . , wt−1) are
blocks with B the parent of B′. The tail vt−1 sends b(vt−1), c(vt−1), and d(vt−1)
to its children, and sends the token Tstart to its parent, vt−2. The vertices
continue to echo any messages received from their parents to their children, and
if a vertex v receives Tstart from its children, it additionally sends b(v), c(v),
and d(v) to its children. When wt−1 (the tail of B′) receives d(vt−1), it saves this
value and sends Tstop to its parent. When a vertex w receives Tstop, it saves
the value d(v) in the message it received from its parent such that c(v) �= d(v),
and echos Tstop to its parent. After 2t rounds, the procedure terminates, and
every wi holds d(vi). In a further 3t rounds, B′ distributively increments the
d(vi), and verify that the incremented d(vi) are equal to d(wi), thus ensuring
the distance labels are correct.

Proof (of Lemma 23). We prove that RVerify(i, Li) (Algorithm 2) is a verifier
for Li whenever Li+1 is a correct. As in the proof of Lemma 17, we focus on
verifying properties 2 and 4 in the correctness of bi. Properties 1 and 3 of the
correctness of bi, as well as the correctness of ci can be trivially verified in a
single communication round with constant communication. Let v0 be a root in
Li. By induction, every vertex at distance τ from v0 receives Tcount at time τ .
Thus, property 4 of the correctness of bi is satisfied if and only if no vertex fails
in a call to Count(tcounti+1, 1, i), which occurs if and only if each 2ti+1−1 <
tcounti+1 ≤ 2ti+1 (line 20 of Count ensures the first inequality, while the
check in lines 11–13 of Increment ensure the second inequality). Property 2 in
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the correctness of bi holds if and only if all vertices accept the assertion at line
10 of RVerify(i, Li).

The proof that d is correct when i = 1 if and only if no vertex rejects
in lines 11–15 in RVerify(i, Li) is analogous to the argument in Lemma17.
Finally, it is clear that the per-round communication is constant, as is the space
requirement (assuming that only levels Li and Li+1 are stored). As for the run-
time, notice that Count(ctr,m, i) always terminates in time at most 2mti+1 by
the verification at lines 11–13 of Increment. Further, if no vertex fails during
the call to count Count, then Add and Send will similarly halt after 2ti+1 ≤ ti
rounds.

Proof (of Theorem 18). By Proposition 22, it suffices to prove the existence of a
verifier v of recursive acyclicity labels with the claimed communication, space,
and time. We induct on k−i (where k = log∗ n) that the correctness of Li can be
verified in the desired run-time, using constant communication and space. When
i = k, the correctness of labels is a local property (independent of the size of
the network). Thus, each vertex v can verify the correctness of Lk by analyzing
the state of Lk labels in N(v,O(1)), which can be accomplished in constant
time, space, and communication. Now suppose the correctness of Li+1 can be
verified in time O(t) using constant communication and space. By Lemma 23,
RVerify(i, Li) (Algorithm 2) is a verifier for Li. Further, RVerify(i, Li) runs in
time O(ti) ≤ O(log(t1)), uses constant communication, and space. Theorem18
the follows by running RVerify(k, Lk), followed by RVerify(k − 1, Lk−1) and
so on, up to RVerify(1, L1). The run-time is O(tk + tk−1 + · · · + t1) ≤ O(t1).

Remark 24. We can modify the recursive scheme described here to use only
finitely many levels of recursion, but with the tradeoff of using more memory
per-vertex. In particular, if only the labels of L1 are given, but each vertex has
access to a counter with log t bits of memory, we recover precisely the scheme of
Subsect. 4.2 in the case where t = Ω(log n). If we give labels in L1 and L2, and
each vertex has a counter with log log t bits of memory, then the scheme will still
be correct. However, we get a greater degradation of run-time due to round-off
errors in log log t. Specifically, if we have m − 1 < log log t ≤ m, then we obtain

22
m−1

< t ≤
(
22

m−1
)2

.

Thus, even if log log t is given truthfully as the size of the counter, the run-time
of RVerify may be quadratic in t if the L1 labels are improperly formed. Finally,
given labels L1, L2, and L3, and a counters of size log(3) t, the run-time may
vary exponentially from log n. Thus, our worst-case run-time is already only
O(n). The fully recursive scheme thus achieves the same worst-case run-time
with log∗ n memory per vertex.
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