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Abstract. Communication problems in ad hoc wireless networks have
been already widely studied under the SINR model, but a vast major-
ity of results concern networks with constraints on connectivity, so
called strongly-connected networks. What happens if the network is not
strongly-connected, e.g., it contains some long but still viable “shortcut
links” connecting transmission boundaries? Even a single broadcast in
such ad hoc weakly-connected networks with uniform transmission pow-
ers requires Ω(n) communication rounds, where n is the number of nodes
in the network. The best up-to-date (randomized) distributed algorithm,
designed by Daum et al. [10], accomplishes broadcast task in O(n log2 n).
In this work we show a novel deterministic distributed implementation of
token traversal in the SINR model with uniform transmission powers and
no restriction on connectivity. We show that it is efficient even in a very
harsh model of weakly-connected networks without GPS, carrier sensing
and other helping features. We apply this method to span a traversal tree
and accomplish broadcast in O(n log N) communication rounds, deter-
ministically, provided nodes are equipped with unique IDs in the range
[1, N ] for N ≥ n. This result implies an O(n log n)-round randomized
solution that does not require IDs, which improves the result from [10].
The lower bound Ω(n log N) for deterministic algorithms proved in our
work shows that our result is tight without randomization. Our imple-
mentation of token traversal routine is based on a novel implicit algo-
rithmic carrier sensing method and a new type of selectors, which might
be of independent interest.

Keywords: Wireless ad hoc networks · SINR · Token traversal
Broadcast · Deterministic and randomized algorithms
Algorithmic carrier sensing · Selectors · BTD trees

1 Introduction

We study distributed algorithms in ad hoc wireless networks in the SINR model
with uniform transmission powers. We consider an ad hoc setting, where both
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capability and knowledge of nodes are limited — nodes know only the basic
parameters of the SINR model (i.e., α, β,N , P, to be defined later). We assume
that each node knows its distinct ID and the range of IDs [N ] = {1, . . . , N}.
Such setting appears in networks without predefined infrastructure of base sta-
tions, access points, etc. It reflects various real scenarios, such as: large sets of
sensors distributed in an area of rescue operation, environment monitoring, or
prospective internet of things applications.

Token traversal. We focus on the problem of token traversal, in which a software-
defined token needs to visit all (or a subset of) nodes in the network. More
precisely, in the beginning there is a distinguished node, called a source, which
has a status of the token owner. In each round only one node can have a status
of the token owner. The ownership of the token can be passed to a neighbor
via a message; in wireless network, however, it can be challenging to select an
unvisited neighbor to which the token can be passed, due to ad hoc structure and
interferences. The token traversal is accomplished if every participating node has
been a token owner for at least one round. Token traversal is a fundamental task
in distributed system, and a tool of building algorithms to solve more complex
communication and computation tasks.

Broadcast problem. The broadcast problem was extensively studied in the model
of graph-based radio networks over the years, while distributed algorithms for
the SINR model have been presented only in recent years. However, all these
solutions were either randomized, or relied on the assumption that nodes of a
network know their own coordinates in a given metric space (GPS), or used
carrier sensing capabilities or the advantage of power control (ability to change
transmission power).

Challenges and our approach. Almost all communication algorithms analyzed in
the SINR model assumed strong connectivity of a network. That is, connectivity
of a network is guaranteed by links (u, v) such that efficient transmission from u
to v (and from v to u) is possible provided interference at v caused by other nodes
of a network is limited by some fixed constant. Our aim is to provide solutions
which work in the most harsh and general scenario, when connectivity might
rely on weak links and thus allow for efficient transmissions only in the case of
no other (or at least very small number of) transmitters in the whole network; it
is called a weakly-connectivity model, and subsumes the strong-connectivity one.
Moreover, we assume that communicating devices have very limited capabilities,
in particular, they do not use randomization, availability of locations, carrier
sensing, or power control. The key challenge in design of algorithms for the model
considered in this paper is the assumption that nodes of a network have initially
no information about network topology. The fact that nodes use a single wireless
channel and therefore their messages might collide is an additional obstacle for
efficient communication.

Our results. We present a deterministic algorithm that traverses a token along
any (even weakly-connected) wireless ad hoc network, under the uniform-power
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SINR, in amortized O(log N) rounds. More specifically, the token is propagated
along a specific spanning tree, called a BTD (Breadth-Then-Depth) tree in time
proportional to the number of participants multiplied by O(log N). It can be
applied to perform broadcast in weak connectivity ad hoc networks in O(n log N)
communication rounds, and is supported by a corresponding lower bound. Our
result implies O(n log n) randomized algorithm with high probability (i.e., with
probability polynomially close to 1), even if IDs are not available (see Sect. 7),
which improves the O(n log2 n) algorithm of Daum et al. [10].

We also introduce new tools, which might be applicable in different scenar-
ios and problems. Firstly, inspired by Echo procedure that simulates collision
detection in radio networks [33], we introduce a kind of implicit carrier sensing
allowing fast testing of emptiness of sets. Secondly, in order to efficiently select
nodes from dense areas of a network, we introduce a new combinatorial structure
called a witnessed strong selector.

Related work. The SINR model was extensively studied recently, both from
the perspective of its structural properties [17,25,26] and design of algorithms
[10,13–15,18,19,21,24,27,36,37]. First wave of algorithmic research on commu-
nication under SINR constraints focused on local problems. This includes in
particular the local broadcast and link scheduling [13,16,28,29,37].

Token-based algorithms were considered in related models of multiple-access
channel and radio networks, e.g., [3,31]. In radio networks, an O(log N) pro-
cedure of token passing was presented in [6,34], and combined with the BTD
tree traversal. In the SINR model of weak devices subsumed by and less com-
plex than the weak-connectivity model, efficient implementation of a token was
provided [31].

A few deterministic solutions are known for the broadcast problem, most of
them use information about location of nodes and assume strong connectivity.
Broadcast can be accomplished deterministically in time O(D log2 n) in such
setting [23,24], where D is the diameter of the communication graph. The ran-
domized results on broadcast in ad hoc settings include [10,22]. Solutions with
complexity, respectively O((D log n) logα+1 g) and O(D log2 n) are presented for
strong connectivity networks, where g is a parameter depending on the geometry
of the network. Recently Halldorsson et al. [14] proposed an algorithm which can
be faster assuming that nodes are equipped with some extra capabilities.

For weak connectivity networks Daum et al. have provided Ω(n) lower bound
for broadcast, even in 2-broadcastable networks. They also showed that the
problem can be solved in O(n log2 n) time with high probability.

In the related multi-hop radio network model on symmetric networks, the
broadcast problem is well examined [1,2,9,11,12,30,32,35].

Due to limited space, we defer some proofs to the full version of the paper.

2 The Network Model

We consider a wireless single-channel network consisting of nodes located on the
2-dimensional Euclidean plane, where interferences are modeled according to
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SINR (Signal-to-Interference-and-Noise Ratio) constraints. The model is deter-
mined by fixed parameters: path loss α > 2, threshold β > 1, ambient noise
N > 0 and transmission power P. Given nodes u, v and a set of concurrently
transmitting nodes T , the value of SINR(v, u, T ) is defined as

SINR(v, u, T ) =
P · d(v, u)−α

N +
∑

w∈T \{v} P · d(w, u)−α
(1)

where d(x, y) denotes the distance between locations of x and y.
A node u successfully receives a message from v iff v ∈ T and

SINR(v, u, T ) ≥ β, where T is the set of nodes transmitting at the same time.
Transmission range is the maximal distance at which a node can be heard pro-
vided there are no other transmitters in the network. Without loss of generality
we assume that the transmission range is equal to 1. This assumption implies
that the relationship P = Nβ holds. However, it does not affect generality and
asymptotic complexity of presented results.

Communication graph. The communication graph G = (V,E) of a given network
consists of all nodes from V and edges {v, u} between nodes that are within
distance of at most 1, i.e., {v, u} ∈ E iff d(u, v) ≤ 1. The communication graph,
defined as above, is a weak connectivity graph [10,20].

Synchronization and content of messages. We assume that algorithms work syn-
chronously in rounds. In a single round, a node can transmit or receive a message
from other node in the network and perform local computation. A message trans-
mitted by a node in a round might contain the original broadcast message and
additional information of size O(log N).

Knowledge of nodes. Each node has a unique identifier from the set [N ], where
N > n and n is the number of nodes in the network. The value of n or its
polynomial approximation is known to the nodes. Moreover, nodes know the
range of IDs space N , and the SINR parameters – P, α, β,N .

Considered problems. We consider a general token traversal problem defined
in Sect. 1. A node v �= s starts participating in an execution of an algorithm
only after receiving the first message from another node. (This is so-called non-
spontaneous wake-up model.) We also consider the broadcast problem which is
to deliver a message from the designated source node s to all the nodes in the
network, perhaps through relay nodes as not all nodes are within transmission
range of the source in multi-hop networks.

Complexity measure. Time (or round) complexity of an algorithm is the number
of rounds after which an execution of an algorithm is finished. We assume worst-
case complexity measure.
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Constructive vs non-constructive solutions. We say that an algorithm is con-
structive if the algorithm for a given value of N can be built in time polyno-
mial with respect to N . The algorithms delivered in this work are constructive,
because of the fact that our algorithms use combinatorial structures only for the
range of parameters guarantying polynomial time construction.

3 Preliminaries and Combinatorial Tools

The set of integers {1, 2, . . . , n} is denoted by [n] and {i, i + 1, . . . j} by [i, j].
A transmission schedule is defined by a sequence S = (S1, ..., St) of subsets

of [N ], where the ith set determines nodes transmitting in the ith round of the
schedule. That is, a node with ID(v) ∈ [N ] transmits in round i of an execution
of S if and only if v ∈ Si.

In the following, V denotes the set of nodes of a network on the plane. Thus,
each node v ∈ V is determined by its identifier ID(v) in [N ] and its coordinates
on the plane. In descriptions of algorithms, ID(v) is sometimes identified with v.
Let B(x, r) denote the ball of radius r around point x on the plane. We identify
B(x, r) with the set of nodes of the network that are located inside this ball on
the plane. For a node v ∈ V , Nv = {w ∈ V | d(v, w) ≤ 1} denotes the set of
neighbors of v in the communication graph. For a > b > 0, χ(a, b) denotes the
largest possible size of a set of points X included in a ball of radius b such that
d(x, y) > a for each distinct x, y ∈ X.

A node w is in the graph distance i from v if i is the length of a shortest path
connecting w and v in the communication graph. Assume that a distinguished
source node s ∈ V is fixed. Then, Li ⊆ V denotes the set of nodes in graph
distance i from s (layer i). Thus, e.g., L0 = {s} and L1 = Ns.

We say that a node v awakes w in an execution of an algorithm if the first
message successfully received by w is sent by v.

3.1 Combinatorial Tools

In this section we introduce combinatorial tools applied in our token traversal
algorithm. A set S ⊆ [N ] selects x ∈ X from X ⊆ [N ] when S ∩ X = {x}.
A sequence S = (S1, . . . , St) of sets over [N ] is called (N, k)-strongly selective
family (or (N, k)-ssf) if for each subset X ⊆ [N ] such that |X| ≤ k, and each
x ∈ X there is i ∈ [t] such that Si selects x from X.

Lemma 1 [8]. There exists a (N, k)-ssf of size O(min{k2 log(N/k), N}) for each
k ≤ N .

Now, we introduce the notion of a witnessed strong selector, which is a gen-
eralization of strongly selective families.



20 T. Jurdzinski et al.

Witnessed strong selector. A sequence S = (S1, . . . , Sm) of sets over [N ] satisfies
witnessed strong selection property for a set X ⊆ [N ], if for each x ∈ X and each
y �∈ X there is a set Si ∈ S such that X ∩ Si = {x} and y ∈ Si. A sequence
S = (S1, . . . , Sm) is a (N, k)-witnessed strong selector (or (N, k)-wss) of size m
if for every subset X ⊆ [N ] of size k the family S satisfies the witnessed strong
selection property for X.

Note that any (N, k)-wss is also, by definition, an (N, k)-ssf. Additionally,
(N, k)-wss guarantees that each element outside of a given set X of size k has
to be a “witness” of selection of every element from X. Below we state an upper
bound on the optimal size of (N, k)-wss.

Lemma 2. For each positive integers N and k ≤ N , there exists an (N, k)-wss
of size O(k3 log N).

Construction of witnessed strong selectors. We aim at the efficient algo-
rithm constructing a (N, k)-wss for a constant k. Our solution is inspired by
the algorithm of Clementi et al. [7], which employs the technique of conditional
probabilities.

Lemma 3. For each integers 0 < k < N , a (N, k)-wss of size O(k3 log N) can
be constructed in time NO(k); in particular, it can be constructed in polynomial
time for any k = O(1).

3.2 SINR Related Properties

We say that distinct nodes u, v ∈ A form a closest pair of nodes (u, v) in the set
A if d(u, v) = minx,y∈A,x �=y{d(x, y)} ≤ 1/2.1

Below, we state the fact that u can hear v if (u, v) is a closest pair, v is
transmitting and there is no other transmitter in distance O(d(u, v)), where the
constant hidden in the big-O notation is determined by SINR parameters.

Lemma 4. There exists a constant κ0 (which depends merely of the SINR para-
meters) which satisfies the following property. Let u, v be a closest pair of nodes,
d(u, v) = d < 1/2 in A. If u is the only transmitter in B(v, κ0 ·d), then v receives
the message from u.

Using Lemma 4, the bound on the optimal size of witnessed strong selectors
(Lemma 2) and the def. of a closest pair, one can obtaind the following corollaries.

Corollary 1. There exists a constant κ (which depends merely of the SINR
parameters) which satisfies the following property. Let u, v be a closest pair of
nodes in A, d(u, v) = d < 1/2. Then, there exists a set A′ ⊆ A such that
u, v ∈ A′, |A′| ≤ κ and v receives a message transmitted by u provided no other
element of A′ is sending a message at the same time.

Corollary 2. There exists a transmission schedule S of size O(log N) such that,
for each closest pair (u, v) from a set A, u receives a message from v during an
execution of S on A.
1 Note that there is no closest pair in A according to this definition if d(x, y) > 1/2

for each distinct x, y ∈ A.
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4 High Level Idea of the Algorithm

Our token traversal algorithm builds a spanning tree of the communication graph
of a network, where the source node s (the initial holder of the token) is the
root. Each node, after receiving the token, transmits the broadcast and awake
message. If a node u is awaken by v (i.e., u receives the first message from v), u
becomes a child of v and v is the parent of u. After sending the broadcast and
awake message, the token holder learns all its newly-awaken neighbors, who have
become its children. After that, the token holder passes the token sequentially
to all its children. Finally, it passes the token back to its parent. The algorithm
ends when the source receives the token back from all its children. A similar
approach, resembling both dfs and bfs, has appeared in the context of radio
networks [6] under the name Breadth-Then-Depth (BTD) search.

The most challenging part for a design of the above strategy in the model
considered in this paper is to learn the children of a token holder. To this aim,
we consider the full selection problem: for a given node v and a set X of its
neighbors unknown to v, the node v should learn the set X. Using appropriate
novel selectors, and the idea of local leader election in the uniform SINR model
[24], we can assure that full selection is done in O(log2 N + |X| log N) rounds.
As each node becomes the child of only one other node, an application of full
selection at each node (when it receives the token for the first time) would give
O

(∑
v∈V (log2 N + |children(v)| log N)

)
= O(n log2 N) time algorithm. In order

to improve time complexity to O(n log N), we will reduce full selection time from
O(log2 N + |X| log N) to O(log N + |X| log N). To this aim, we apply a kind of
implicit carrier sensing. Thanks to that tool, we can check whether X is empty
in O(log N) rounds and reduce complexity of full selection to O((|X|+1) log N).

Below, we discuss the technical ingredients of our solutions in more detail.

Network sparsification. As discussed above, each node v is supposed to deter-
mine its neighbors awaken by it after receiving the token, in the procedure called
the full selection (Algorithm5). To this aim we apply the sparsification technique
presented in Sect. 5.2. Assume that X �= ∅ is the set of neighbors of v which
should be learnt by v. The idea is to execute a short schedule (of size O(log N))
on X which guarantees that nodes from closest pairs (and possibly some other
nodes) exchange messages. Then, a graph defined by successful exchanges of mes-
sages is built and a non-empty matching is determined in this graph. Finally,
one node from each matched pair is chosen to be a member of a “sparsified” set.
As such a procedure gives the sparsified set of size at most |X|/2, r = O(log |X|)
repetitions of this procedure gives a set of size O(1). Then, the only element(s)
of the sparse set can report all r elements matched with them. Thus, r ele-
ments of X are reported in amortized time O(log N) per an element. In order to
implement this technique efficiently under SINR constraints, we have introduced
witnessed strong selectors (Sect. 3.1).

Implicit carrier sensing. As mentioned before, we use so-called implicit carrier
sensing in order to quickly verify whether the set of nodes awaken by a given
node v is (not) empty. More generally, implicit carrier sensing technique allows
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for checking emptiness of a set X ⊆ Nv, provided two auxiliary nodes v1, v2 are
known such that d(v, v1) ≤ 1, d(v1, v2) ≤ 1 and d(v, v2) > 1 (see Subsect. 5.1 for
details). Our implementation of the token traversal algorithm will assure that
d(v,parent(v)) ≤ 1 and d(v,parent(parent(v))) > 1 for each v in graph-distance
at least 2 from the source s. Thus, the auxiliary nodes can be v1 = parent(v)
and v2 = parent(parent(v)). This however does not apply to the source s (it does
not have the parent) and its neighbors (there is no parent(parent(v)) for each
v ∈ Ns). Therefore, we have to handle {s} ∪ Ns separately, using less efficient
emptiness test and a more complex algorithm.

5 Implicit Carrier Sensing and Network Sparsification

In this section we introduce key tools applied in our token-traversal algorithm:
implicit carrier sensing and sparsification. We present them separately, as we
think they might be applicable in other problems in wireless ad hoc networks.

5.1 Implicit Carrier Sensing

Consider the problem that a node v is going to verify quickly whether some set
X ⊆ Nv is empty. Each node x knows whether x ∈ X but nodes do not have
any information regarding other elements of X. At the end of an execution of
an algorithm, v should know whether X = ∅. This problem has been solved
efficiently by so-called Echo procedure in the symmetric radio networks model,
provided the node v knows some neighbor w �∈ X already [33]. We develop
an analogous tool for SINR networks, which provides a limited carrier sense
capability.

Assume that v, v1, v2 are fixed such that v is a neighbor of v1 and v1 is a
neighbor of v2. Moreover, at least one of distances d(v, v1), d(v1, v2) is not smaller
than 1/2. Then, we can test emptiness of X by checking if

– v receives the message from v1 when v1 transmits together with X, and
– v1 receives the message from v2 when v2 transmits together with X.

More precise description of the procedure is given as EmptinessTest below (see
Algorithm 1). The first idea is that successful transmissions in both rounds cor-
respond to the fact that X is empty. However, if X is small and v is very close
to v1 or v1 is very close to v2, it might be the case that interference from X does
not prevent successful transmissions in both rounds under SINR constraints.
Therefore, we need a more involved algorithm and analysis. The constant cα,β

in the algorithm is equal to the smallest number c such that c transmitting nodes
located in distance (at most) 2 from a given node u produce interference which
prevents reception by u of a message transmitted from distance ≥ 1/2.
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Algorithm 1. EmptinessTest(v, v1, v2,X)
Assumptions: d(v, v1) ≤ 1, d(v1, v2) ≤ 1, d(v, v1) ≥ 1/2 or d(v1, v2) ≥ 1/2, X � Nv,
v1, v2 �∈ X.
Let cα,β be the smallest natural number such that P/(1/2)α

N+cα,βP/2α < β.

1: Round 1: v1 and all elements of X transmit a message
2: Round 2: v2 and all elements of X transmit a message
3: Round 3: if v1 received a message in Round 2 then v1 transmits a message
4: if v received a message in Round 1 and v received a message in Round 3 then
5: execute (N, cα,β)-ssf on all elements of X
6: if v received a message: return false
7: else return true
8: else
9: return false

Lemma 5. EmptinessTest works in O(log N) rounds. Moreover, if d(v, v1) ≤ 1
and d(v1, v2) ≤ 1 and (d(v, v1) ≥ 1/2 or d(v1, v2) ≥ 1/2) then
EmptinessTest(v, v1, v2,X) returns true if and only if the set X ⊆ Nv is empty.

5.2 Network Sparsification

In this section we develop a tool for fast selection of elements of a set of nodes.
The particular problem of network sparsification is as follows: given a non-empty
set X of nodes inside B(v, 1) such that at least two nodes are within distance
1/2, choose a subset Y of X such that 1 ≤ |Y | ≤ |X|/2. The idea is to use a short
schedule which guarantees that close neighbors exchange messages (see Corol-
lary 2), implicitly build a graph corresponding to these two-way transmissions,
choose a non-empty matching in such a graph, and select one element from each
matched pair.

As a direct application of Corollary 2 does not give a satisfying time com-
plexity, we then introduce the notion of proximity graph and show how to build
it with aid of witnessed strong selectors efficiently.

Exchange graphs. We define the notion of exchange graph which describes all
possible exchange of messages between nodes during an execution of a schedule
T . For a given schedule T and the set of nodes V , an exchange graph GT is a
graph on V , such that {u,w} is an edge in GT iff there is a successful transmission
in both directions between u and w during T .

We say that a distributed protocol builds GT if, as a result of an execution
of this protocol on a given network, each node knows its neighbors in GT . Note
that, after a single execution of T , each node v knows nodes whose messages are
successfully received by v. However, in order to determine its neighbors in GT ,
v also needs to know which nodes received its message.

In order to provide this information to all nodes, we can apply the follow-
ing algorithm, called ExGraphConstructionT : first, each node v enumerates the
senders u1, . . . , up of all messages received during T ; then, one can repeat |T |
times the schedule T , where each node transmits ui in the ith repetition of T .
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Lemma 6. ExGraphConstructionT builds the exchange graph GT in O(|T |2)
rounds. Moreover, if the maximal degree δ of GT is known to nodes in advance,
the algorithm works in O(|T |δ).

Proximity graphs. The idea behind our network sparsification algorithm is to
build a graph on nodes of an input set X containing a closest pair as an edge,
find a matching in that graph and choose one element of each matched pair as
an element of the output Y . To do this, a fast protocol which produces a non-
empty graph is needed, provided there is a closest pair in the input set of nodes.
Let proximity graph of a given set of nodes be any graph on this set such that
vertices of each closest pair u, v are connected by an edge (while the graph may
contain more edges).

By Corollary 1 we know that, in an execution of (N,κ)-ssf, nodes of each clos-
est pair exchange messages. Thus, by Lemma 6, ExGraphConstructionT builds
a proximity graph in O(log2 N) rounds, where T is an (N,κ)-ssf of length
O(κ2 log N) = O(log N) (see Theorem 1).

Our goal is to build a proximity graph faster. Our construction builds on
the following observations. First, if u can hear v during an execution of T in a
round in which w is transmitting as well, then u,w is for sure not a closest pair.
Second, by Corollary 1, given a closest pair (u, v), u can hear v in a round in
which v transmits and none of the other κ closest to u nodes transmits.

Given an (N,κ)-wss S for the constant κ from Corollary 1, one can build
a proximity graph of degree κ = O(1) in O(log N) rounds using the following
distributed algorithm called ProximityGraphConstruction at a node v:

– Execute S.
– Determine the set Cv of all nodes u such that v has received a message from

u during S and v has not received any other message in rounds in which u is
transmitting (according to S).

– If |Cv| > κ, then remove all elements from Cv.
– Send information about the content of Cv to other nodes in consecutive |Cv|

repetitions of S.
– Choose as neighbors in the final graph the set Ev of all elements w ∈ Cv st

v ∈ Cw.

Lemma 7. Let X ⊆ V be a set of nodes. Then ProximityGraphConstruction
executed on X builds a proximity graph H(X) of constant degree in O(log N)
rounds.

Handshakes and sparsification. Let H(X) denote the proximity graph resulting
from the ProximityGraphConstruction procedure executed by nodes from X.
We assume that X contains nodes from a closest pair, thus H(X) contains at
least one edge (Lemma 7). Recall that our goal in this section is to choose a
nonempty subset of X of size at most |X|/2. The idea is to build a non-empty
matching on H(X) and choose exactly one node per each matched pair. We say
that nodes chosen by our procedure survive. For further applications, for each
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node v which survives the procedure, we store its removed counterpart in the
local variable p(v).

Algorithm 2 finds a non-empty matching in a proximity graph H(X) build by
ProximityGraphConstruction (provided the set of edges of H(X) is not empty)
by connecting each pair of neighbors (v, w) such that v is the local minimum
(its ID is smaller than IDs of its neighbors) and v has the smallest ID among
neighbors of w in H(X).

Algorithm 2. Handshake(X) � Remark: an execution at v ∈ X

1: v executes ProximityGraphConstruction(v) using (N, κ)-wss S � see L. 7
2: if Ev = ∅: v does not participate in further steps.
3: minv ← minu∈Ev {ID(u)}
4: Execute S, where:

if ID(v) < minv: v transmits the message m = 〈handshake, ID(v), minv〉
� v is a local minimum;

if ID(v) > minv: v transmits the message m = 〈match, ID(v), minv〉
5: if ID(v) < minv and v received the message 〈match, minv, ID(v), 〉 then
6: p(v) ← minv

7: status(v) ← survived
8: else
9: status(v) ← eliminated

10: v is switched off

Lemma 8. Let X ⊆ V be a subset of a network. Let Y ⊆ X be the set of nodes
that survived Handshake(X) (see line 7 of Algorithm2). If there exists a closest
pair in X then 1 ≤ |Y | ≤ |X|/2. Moreover, for each v ∈ Y , p(v) ∈ X \ Y . The
round complexity of Handshake procedure is O(log N).

6 Token Traversal Algorithm

In this section we describe our token traversal algorithm. As it gives also imme-
diate solution to the broadcasting problem, we present the algorithm in terms
of the broadcasting task.

At the beginning of the main algorithm (Algorithm3), the source s wakes up
all its neighbors (which become its children). Then, the general idea is that each
node v, after receiving the token, learns its children (nodes awaken by v) using
FullSelection (Algorithm 5) and passes the token to them. As our time bound for
FullSelection(v,X) for v ∈ L1 and X ⊆ Nv is O(log2 N + |children(v)| log N) –
see Lemma 10, this approach guarantees time O(n log2 N) (and it might be
Ω(n log2 N) if |L1| = Ω(n)). In order to achieve a better bound, the nodes from
L1 learn their children in a different way.

After the initial transmission by s, it learns the whole set of its neighbors
Ns = L1, using FullSelection. Then, s allows each v ∈ Ns = L1 to transmit
separately which wakes up all elements of L2 and set the parent from L1 for
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each element of L2. The goal of HandleSecondLayer is to select all elements of
L2, allow each of them to transmit separately which in turn gives information
to each w ∈ L1 about all its children. As mentioned earlier, we do not want to
implement this task by calling FullSelection for each v ∈ L1, as it would increase
time complexity to the order of n log2 N . We postpone the exact description of
HandleSecondLayer and discuss the remaining part of the algorithm and its sub-
routines. After handling the second layer, a standard token traversal algorithm
starts from the source (Algorithm 4), where each node from {s} ∪ L1 already
knows its children, while each other node v �∈ {s} ∪ L1 learns children(v) using
FullSelection.

Algorithm 3 contains pseudo-code of our main algorithm. Then, procedures
called in the main algorithm are presented in the top-down fashion.

Remark. In pseudo-codes, we use set theoretic operations, e.g., A ← X \Y . Such
notation describes local decisions of nodes and means that each x knows whether
it belongs to X and Y and therefore it can determine if it belongs to A.

Algorithm 3. BroadcastWithToken(s)
Initially for each node u parent(u) = ⊥ and layer(v) = 0.

1: Transmit 〈hello, s〉
2: FullSelection(s, L1)
3: HandleSecondLayer
4: TokenTraversal(s)

if a node w receives 〈hello, v〉 and parent(w) = ⊥ then
parent(w) ← v
layer(w) ← layer(v) + 1

Algorithm 4. TokenTraversal(v)
1: Transmit 〈hello, v〉
2: if layer(v) > 1 then
3: FullSelection(v, {w | parent(w) = v})

4: for each w ∈ children(v) do
5: Transmit 〈token, w〉 � pass the token to w
6: Wait until receiving a message 〈release, v〉 � Token is back at v

7: Transmit 〈release, parent(v)〉 � pass the token to the parent of v

In the following, we describe the main subroutine FullSelection called at
each node v �∈ L1. FullSelection(v,X) repeats procedure PartialSelection several
times, until all elements of X are selected, i.e., each of them transmits a message
received by v. An execution of PartialSelection(v,X) results in reporting r > 0
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elements of X in O(r log N) rounds, provided X is not empty. In the case that
X is empty, PartialSelection(v,X) ends in O(log N) rounds when v �∈ {s} ∪ L1

and in O((log n) · (log N)) rounds otherwise.
The procedure PartialSelection (Algorithm 6) executes Handshake several

times. (An alternative for partial selection might be e.g. by (N, k, k/2)-selectors
[4] for k = 2, 4, 8, . . . , 2log n. However, no constructive solutions with optimal
size are known for them.) Handshake(X) sparsifies the set X. As Handshake is
always executed on X ⊆ Nv for a reference node v, X is contained in a ball of
radius 1. Let m = |X|. If m is smaller than χ(1/2, 2), then each element of X
transmits separately (see line 6 of Algorithm 6). Otherwise, there exists a closest
pair of nodes in X, and some elements are removed from X such that the size
of X after the execution is in the range [1,m/2] (see Lemma 8). In this way at
least one element of X is selected in O(log |X|) executions of Handshake.

However, our goal is to select one element per each execution of Handshake
on the average. Fortunately, each node v which survives the ith execution of
Handshake has associated the unique element p(v) which has survived the first i−
1 executions of Handshake and has not survived the ith execution (see Lemma 8).
The node v stores such elements in P (v).

Algorithm 5. FullSelection(v,X) � v learns all elements of X

1: Y ← X, w ← v, children(v) ← ∅
2: while w �= ⊥ do
3: w ← PartialSelection(v, X)
4: Y ← P (w) � if w �= ⊥, w broadcasts P (w) in |P (w)| + 1 rounds
5: X ← X \ Y
6: children(v) ← children(v) ∪ Y � v learns Y in step 4

Lemma 9. 1. Assume that X ⊆ Nv is not empty. Then, PartialSelection(v,X)
is finished after O(r log N) rounds for 0 < r ≤ log n and v has received a message
from w ∈ X such that P (w) ⊆ X and |P (w)| = r.
2. PartialSelection(v,X) for X = ∅ works in O(log N) rounds for v �∈ L0 ∪ L1

and in O((log n) · (log N)) rounds for v ∈ L0 ∪ L1. Moreover, v is aware of the
fact that X = ∅ after the execution of PartialSelection(v,X) for X = ∅.

To summarize, we state the following properties of FullSelection.

Lemma 10. Let X ⊆ Nv. Then, v knows all elements of X after an execution
of FullSelection(v,X). Moreover, each u ∈ X transmits uniquely at some round
of FullSelection(v,X). The execution time is O(|X| log N+f(N)), where f(N) =
O(log N) if v �∈ L0 ∪ L1 and f(N) = O((log n) · (log N)) otherwise.

Handling the second layer. Recall that each node from L0 ∪ L1 is the only
transmitter in some round during steps 1. and 2. of the main algorithm (Algo-
rithm3). The nodes from L2 are awaken in this way and they know their parents
from L1.
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Algorithm 6. PartialSelection(v,X) � Assumption: X ⊆ Nv

1: if v �∈ L0 ∪ L1 then � L0 = {s}, L1 = Ns

2: if EmptinessTest(v, parent(v), parent(parent(v)), X): return ⊥
3: r ← 1
4: for each w ∈ X: P (w) ← ∅
5: repeat
6: Execute (N, k)-ssf on X for k = �χ(1/2, 1) + 1.
7: if v received a message from some node w during step 6 then
8: return w � i.e., v transmits a message which ends the procedure

9: Handshake(X)
10: for each w: if w survived Handshake(X): P (w) ← P (w) ∪ {p(w)}
11: for each w: if w did not survive Handshake(X): w remove itself from X
12: r ← r + 1
13: until r = log N � until r = log n if n is known
14: return ⊥

Now, we describe HandleSecondLayer subroutine which assures that each
node v ∈ L2 is a unique transmitter in some round (and it transmits ID of its
parent in each transmission). In this way the nodes from L1 learn about their
children.

To achieve the above stated goal, we repeat the following procedure. First,
the leader v in L2 is elected and, all elements of Nv ∩ L2 are selected using
FullSelection(v,Nv ∩ L2). Then, all selected elements are removed from consid-
eration and the process is repeated until no unselected elements in L2 remain.
As the consecutive leaders are in distance > 1 to each other, this process finishes
after at most χ(1, 2) elections of the leader. More formal presentation of this
idea is given in Algorithm7.

Algorithm 7. HandleSecondLayer � Assumption: each v knows if v ∈ L2

1: L ← L2 � Initially, L is the second layer
2: c ← χ(1, 2)
3: for i=1,2,. . . ,c do
4: v ← Leader(L)
5: v transmits 〈leader, v〉
6: X ← {w | w received the message leader}
7: FullSelection(v, X)
8: L ← L \ X

Now, we provide an efficient implementation of leader election in line 4 of
Algorithm 7. We require that exactly one element x ∈ X has the status leader
as a result of a leader election algorithm. (Observe that we do not require that
all elements of X know ID of the node with status leader.)
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The idea of the leader election procedure (Algorithm8) is to repeat Hand-
shake several times in order to sparsify the input set X, as in PartialSelection.
In this way, some node w ∈ X will be the only transmitter at some round, after
O(log N) repetitions of Handshake. The problem is that the unique transmitter
w might be unaware of its uniqueness. If all elements of X were also in Nv for a
distinguished node v, then v could confirm reception of a message from w and
inform in this way w that it was the leader2. As the set of nodes X ⊂ L2 exe-
cuting the leader election procedure is not necessarily a subset of Nv for any v,
PartialSelection does not give a solution to the leader election problem directly.
Instead, we use the fact that each node v ∈ X knows parent(v) ∈ L1. We assure
that each node v ∈ L1 that hears its child w ∈ L2, tries to report this fact to
the source. If the source node receives such a message at some time, it chooses w
to be the leader and passes this information through v = parent(w) to w. This
is guaranteed to happen when w was the unique transmitter in L2, and it will
happen eventually for some w ∈ L2 in at most log n) executions of the for-loop
in Algorithm 8.

Algorithm 8. Leader(L) � Assumption: parent(x) ∈ L1, x ∈ L2 for each x ∈ L

1: leader(v) ← false for all v ∈ L
2: elected ← false � elected is a local variable stored at s
3: for i = 1, 2, . . . , log n do
4: Execute (N, k)-ssf for k = �χ(1/2, 2) + 1, each transmission is followed by:

Round 1:
if w ∈ L1 received a message from its child x ∈ L2:

w transmits 〈leader-proposal, x, w〉
Round 2:
if elected=false and s received 〈leader-proposal, x, y〉:

s transmits 〈leader-elect, x, y〉; elected ← true
Round 3:
if w ∈ L1 received a message 〈leader-elect, x, w〉: w transmits 〈leader-elect, x〉.

5: if x ∈ L received a message 〈leader-elect, x〉 in Round 3: leader(x) ← true
6: Handshake(L)
7: L ← nodes from L which survived Handshake(L)

Proposition 1. Let L ⊆ L2 be a set of nodes such that parent(parent(x)) = s
and parent(x) ∈ L1 ∩ Nx for each x ∈ L. Then, Leader(L) solves the leader
election problem on L in O((log N) · (log n)) rounds.

Given the leader election procedure, we can prove that each node from L2

is the only transmitter in some round of HandleSecondLayer. This in turn gives
information to nodes from L1 about their children.
2 Note that, under SINR constraints, v can receive a message from some node x even

when x is not the unique transmitter in a round. However, as v “selects” the leader
and announces its choice, this does not cause any problem with uniqueness of the
leader.
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Lemma 11. Assume that parent(v) = s for each v ∈ L1 and parent(u) ∈ L1∩Nu

for each u ∈ L2. Then, each u ∈ L2 is the only transmitter in some round of
an execution of HandleSecondLayer. Moreover, HandleSecondLayer works in in
O(n log N) rounds. otherwise.

Theorem 1. BroadcastWithToken solves weak connectivity broadcast in the ad
hoc SINR model in O(n log N) rounds.

Proof. Lemmas 10 and 11 imply that steps 1–3 of the algorithm are finished
in time stated in the theorem. Then, the TokenTraversal algorithm builds a
spanning tree of a network, the token is passed once over each edge of this
tree in each direction which altogether takes O(n) rounds. Moreover, for each
node v �∈ L0 ∪ L1, FullSelection(v,X) is executed when v receives the token
for the first time, for X equal to the set of children of v. An execution of
FullSelection(v,X) takes O((|X|+1) log N) rounds, where X is the set of selected
elements. As each w ∈ V \ (L0 ∪ L1) is only once an element of X in an execu-
tion of FullSelection(v,X) (when v = parent(w)), the overall complexity of all
executions of FullSelection during TokenTraversal(s) is O(n log N).

7 Lower Bound and Extensions

Lower bound. Employing a similar approach as in [5], we build a network of
linear diameter such that it takes at least Ω(n log N) rounds to broadcast a
message.

Theorem 2. For any deterministic algorithm A and n < N/6, there exists a
network N of size 3n+1 on the plane such that it takes Ω(n log N) rounds before
A completes the broadcast in N in a weakly connected SINR network.

Randomized algorithm. In [10] the authors proposed a randomized algorithm
that solves broadcast in time O(n log2 n) and a lower bound of Ω(n). Our result
fits into the scenario presented therein provided each node picks a random ID
in range [1, n3] and performs the deterministic algorithm, which works as long
as the IDs are different (this is true with high probability). Thus, our solution
is O(n log n).

Constructive solution. We need (N, k)-wss only for constant values of para-
meter k. Thus, by Lemma 3, the actual algorithm for fixed N can be determined
in time polynomial with respect to N .

8 Conclusions

We presented a novel token traversal algorihm in weakly-connected ad hoc net-
works under the uniform-power SINR model, leading to asymptotically optimal
deterministic spanning tree and broadcast algorithm and a nearly-optimal ran-
domized solution improving [10]. The token traversal occurred to be efficient for
spanning tree and broadcast problem, therefore we conjecture that it could play
a substantial role in algorithmics in general class of ad hoc wireless networks.
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