
Shantanu Das · Sebastien Tixeuil (Eds.)

 123

LN
CS

 1
06

41

24th International Colloquium, SIROCCO 2017
Porquerolles, France, June 19–22, 2017
Revised Selected Papers

Structural Information
and Communication
Complexity

Lecture Notes in Computer Science 10641

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Shantanu Das • Sebastien Tixeuil (Eds.)

Structural Information
and Communication
Complexity
24th International Colloquium, SIROCCO 2017
Porquerolles, France, June 19–22, 2017
Revised Selected Papers

123

Editors
Shantanu Das
LIF
Aix-Marseille University
Marseille Cedex 9
France

Sebastien Tixeuil
LIP6
Université Pierre et Marie Curie -
Paris 6

Paris
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-72049-4 ISBN 978-3-319-72050-0 (eBook)
https://doi.org/10.1007/978-3-319-72050-0

Library of Congress Control Number: 2017960878

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at the 24th International Colloquium on
Structural Information and Communication Complexity: SIROCCO 2017, held during
June 19–21, 2017, at Porquerolles, France. SIROCCO is devoted to the study of the
interplay between structural knowledge, communication, and computing in decentral-
ized systems of multiple communicating entities. Special emphasis is given to inno-
vative approaches leading to better understanding of the relationship between
computing and communication. The typical areas of interest include distributed com-
puting, communication networks, game theory, parallel computing, social networks,
mobile computing (including autonomous robots), peer-to-peer systems, and commu-
nication complexity.

This year we received 41 submissions in response to the call for papers and the
Program Committee decided to accept 21 papers after a careful review and in-depth
discussions. Each submission was reviewed by at least three reviewers; we had a total
of 20 Program Committee members supported by 42 additional reviewers. The article
“Leader Election in SINR Model with Arbitrary Power Control,” by Magnus
M. Halldorsson, Stephan Holzer, and Evangelia Anna Markatou received the Best
Paper Award at SIROCCO 2017. Selected papers from the colloquium were invited to
a special issue of the Theoretical Computer Science journal.

In addition to the regular contributed talks, the conference program included invited
talks by Faith Ellen, Christian Scheideler, and Christoph Lenzen, and the award lecture
by Shmuel Zaks, who received the 2017 SIROCCO Prize for Innovation in Distributed
Computing. Short abstracts of all invited lectures, as well as a laudatio summarizing the
numerous important innovative contributions of the award recipient Shmuel Zaks, are
included in this volume.

We would like to thank all authors for their high-quality submissions and all
speakers for their excellent talks at the conference. We are specially grateful to the
Program Committee members and all additional reviewers who worked on a tight
schedule to deliver an excellent conference program. The preparation of this event was
guided by the SIROCCO Steering Committee, headed by Andrzej Pelc; we thank them
for their help and support. The local organization of the conference was possible due to
the efforts of the members of the Organizing Committee who were supported by the
staff from the Laboratoire d’Informatique Fondamentale (LIF) at the Aix-Marseille
University. The organizers of SIROCCO 2017 would like to acknowledge the financial
support of our sponsors: LIF—Laboratory of Theoretical Computer Science,
LabEx-Archimede Center of excellence, FRIIAM—Federation for research in Com-
puter Science and Interactions, CNRS France, and Aix-Marseille University. Springer

not only helped with the publication of these proceedings but also sponsored the best
paper award. The EasyChair system was used to handle the submission of papers,
manage the review process, and generate these proceedings.

August 2017 Shantanu Das
Sebastien Tixeuil

VI Preface

Organization

Program Committee

Dan Alistarh ETH Zurich, Switzerland
Silvia Bonomi Sapienza Università di Roma, Italy
Shantanu Das Aix-Marseille University, France
Yann Disser TU Darmstadt, Germany
Guy Even Tel Aviv University, Israel
Antonio Fernandez Anta IMDEA Networks Institute, Spain
Leszek Gasiniec University of Liverpool, UK
Rastislav Kralovic Comenius University, Slovakia
Danny Krizanc Wesleyan University, USA
Bernard Mans Macquarie University, Australia
Euripides Markou University of Thessaly, Greece
Jaroslav Opatrny Concordia University, Canada
Rotem Oshman Tel Aviv University, Israel
Marina Papatriantafilou Chalmers University of Technology, Sweden
Joseph Peters Simon Fraser University, Canada
Guiseppe Prencipe Università di Pisa, Italy
Stefan Schmid Aalborg University, Denmark and TU Berlin, Germany
Sebastien Tixeuil LIP6, UPMC Paris 6, France
Koichi Wada Hosei University, Japan
Yukiko Yamauchi Kyushu University, Japan

Steering Committee

Magnus Halldorsson Reykjavik University, Iceland
Andrzej Pelc Université du Quebec en Outaouais, Canada
Nicola Santoro Carleton University, Canada
Christian Scheideler University of Paderborn, Germany
Jukka Suomela Aalto University, Finland

Organizing Committee

Evangelos Bampas LIF, CNRS and Aix-Marseille University, France
Jérémie Chalopin LIF, CNRS and Aix-Marseille University, France
Shantanu Das LIF, CNRS and Aix-Marseille University, France
Emmanuel Godard LIF, CNRS and Aix-Marseille University, France
Damien Imbs LIF, CNRS and Aix-Marseille University, France
Christina Karousatou LIF, CNRS and Aix-Marseille University, France
Arnaud Labourel LIF, CNRS and Aix-Marseille University, France

Additional Reviewers

Abeliuk, Andres
Bampas, Evangelos
Bonnet, François
Bramas, Quentin
Chalopin, Jérémie
Chitnis, Rajesh
Dereniowski, Dariusz
Di Luna, Giuseppe Antonio
Dubois, Swan
Défago, Xavier
Feuilloley, Laurent
Förster, Klaus-Tycho
Gavoille, Cyril
Hackfeld, Jan
Hopp, Alexander Vincent
Izumi, Taisuke
Karousatou, Christina
Katayama, Yoshiaki
Keramatian, Amir
Kranakis, Evangelos
Najdataei, Hannaneh
Nanongkai, Danupon

Naves, Guyslain
Nicolaou, Nicolas
Nikolakopoulos, Yiannis
Ooshita, Fukuhito
Pagli, Linda
Panagiotou, Konstantinos
Patt-Shamir, Boaz
Peleg, David
Radzik, Tomasz
Sakavalas, Dimitris
Salem, Iosif
Savic, Vladimir
Schewior, Kevin
Schlöter, Miriam
Shibata, Masahiro
Sorella, Mara
Tudor, Valentin
Uznański, Przemysław
Viglietta, Giovanni
Yu, Dongxiao

VIII Organization

Laudatio

It is a pleasure to award the 2017 SIROCCO Prize for Innovation in Distributed
Computing to Shmuel Zaks. Shmuel’s contributions span an impressive range of
research areas in computer science and discrete mathematics, including classic dis-
tributed computing (leader election, combinatorial and graph problems, complexity,
impossibility, compact routing, self-stabilization, and more) and networking. Shmuel’s
work on networking has been performed during the past three decades; the first half of
this period was devoted to ATM networks, and the second to optical networks.

The prize is awarded for these lifetime achievements, but especially for his
pioneering research on algorithmic aspects of optical networks. In his seminal studies
Shmuel formulated new problems and identified new research directions. The problems
under investigation deal with a variety of aspects of optimization of the switching cost
in the network, measured by the use of ADMs (ADD-DROP Multiplexers) and
regenerators. Shmuel’s studies deal with all algorithmic aspects of optimization
problems that stem from optical networks, including the design and analysis of algo-
rithms (e.g., approximation algorithms and on-line algorithms), complexity, parame-
terized complexity, and inapproximability. Shmuel’s work initiated systematic studies
of a variety of problems where mostly heuristics and simulations were previously used.

Examples of areas in which Shmuel’s contributions to algorithmic aspects of
optical networks are the most important include: ADM minimization [1, 2], regenerator
placement [3, 4], traffic grooming [5], and the flex-grid model [6], where a lightpath has
to be assigned a number of colors, within a contiguous or a non-contiguous range.

The 2017 Award Committee1

Paola Flocchini University of Ottawa
Magnús M. Halldórsson University of Reykjavik
Thomas Moscibroda Microsoft Research
Andrzej Pelc (Chair) Université du Québec en Outaouais
Christian Scheideler University of Paderborn

1 We wish to thank the nominators for the nomination and for contributing significantly to this text.

Selected Publications Related to Shmuel Zaks’ Contribution

1. Tamar Eilam, Shlomo Moran and Shmuel Zaks, Lightpath Arrangement in Sur-
vivable Rings to Minimize the Switching Cost, IEEE Journal on Selected Areas in
Communications (JSAC), special issue on WDM-based network architectures,
20(1), January 2002, pp. 172–182.

2. Tamar Eilam, Shlomo Moran and Shmuel Zaks, Approximation Algorithms for
Survivable Optical Networks, Proceedings of the 14th International Workshop on
Distributed Algorithms (DISC), Toledo, Spain, October 2000, pp. 104–118.

3. Michele Flammini, Alberto Marchetti Spaccamela, Gianpiero Monaco, Luca
Moscardelli and Shmuel Zaks, On the Complexity of Placement of Regenerators in
Optical Networks, Proc. 21st ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), Calgary, Canada, August 2009, pp. 154–162.

4. George B. Mertzios, Ignasi Sau, Mordechai Shalom and Shmuel Zaks, Placing
Regenerators in Optical Networks to Satisfy Multiple Sets of Requests, Proc. 37th
International Colloquium on Automata, Languages and Programming (ICALP),
Bordeaux, France, July 2010, pp. 333–344. Best paper award.

5. Ignasi Sau, Mordechai Shalom and Shmuel Zaks, Traffic Grooming in Star Net-
works via Matching Techniques, Proc. 17th International Colloquium on Structural
Information and Communication Complexity (SIROCCO), Nesin Mathematics
Village, Şirince, Turkey, June 2010, pp. 41–56.

6. Mordechai Shalom, Prudence W.H. Wong and Shmuel Zaks, Profit Maximization
in Flex-Grid All-Optical Networks, Proc. 20th International Colloquium on Struc-
tural Information and Communication Complexity (SIROCCO), Ischia, Italy, July
2013, pp. 249–260.

X Laudatio

Invited Presentations

Online and Approximation Algorithms
for Optical Networks and Scheduling

Shmuel Zaks

Department of Computer Science, Technion, Haifa, Israel
zaks@cs.technion.ac.il

Abstract. We discuss two fundamental problems that stem from optical net-
works models: minimizing the number of Add-Drop Multiplexers (ADMs) and
regenerators. When also traffic grooming is allowed, then for a path topology
network these problems can be interpreted as scheduling problems. We discuss
various algorithmic aspects of several such optimization problems in offline and
online settings, following [3, 4, 7, 8].

Note: This is a brief summary of the talk presented in Sirocco 2017. As such and due to
space limitation, it contains neither a comprehensive reference list, nor a literature
survey, nor extensions that stem from either optical networks, or scheduling theory, or
the theory of algorithms; these all can be found, to a great extent, in the papers listed in
the reference list.

1 Introduction – Optical Networks and Problem Definition

Background: Optical wavelength-division multiplexing (WDM) is the most promising
technology today that enables us to deal with the enormous growth of traffic in com-
munication networks, like the Internet. A communication between a pair of nodes is
done via a lightpath, which is assigned a certain wavelength. In graph-theoretic terms, a
lightpath is associated with a simple path in the network and a wavelength with a color
assigned to it. We concentrate on the hardware cost, in terms of ADMs and
regenerators.
ADMs: Each lightpath uses two Add-Drop Multiplexers (ADMs), one at each end-
point. If two adjacent lightpaths, i.e. lightpaths sharing a common endpoint, are
assigned the same wavelength, then they can use the same ADM, provided their
concatenation is a simple path. An ADM may be shared by at most two lightpaths. The
total cost considered is the total number of ADMs. We thus want to color the lightpaths
while minimizing the total number of ADMs, which we term the minADM problem.
For a detailed technical explanation see [5].
Grooming: The problem of grooming is central in studies of optical networks. In
graph-theoretic terms, we are given g[0 and a set of simple paths, and we need to
assign colors to the paths so that the union of all paths that get a particular color is a
collection of disjoint simple paths in the graph, and such that at most g of them (g is

termed the grooming factor) can share the same edge. When the network topology is a
path, this corresponds to scheduling problems, where the path is interpreted as the time
axis, a lightpath as a job to be processed within the time interval represented by its
endpoints, and the grooming factor as the number of jobs that one machine can process
simultaneously. For a detailed technical explanation see [6].
Regenerators: The energy of the signal along a lightpath decreases and thus amplifiers
are used every fixed distance. Yet, as the amplifiers introduce noise into the signal there
is a need to place regenerators in nodes in the network along the lightpath every at most
d nodes, for a given parameter d. We thus want to color the lightpaths while mini-
mizing the total number of regenerators, which we term the minREG problem. As each
regenerator can serve only one lightpath, the basic problem is clearly optimized by
placing a regenerator after exactly d nodes on each lightpath separately. It becomes
very difficult in two scenarios. The first one is when traffic grooming is allowed. The
second one is when we are given p sets of lightpaths, and we want to place regenerators
so as to satisfy each of these sets separately. A theoretical model was suggested in [2],
where also a detailed technical explanation can be found.
Approximation Algorithms: Given an NP-hard minimization problem P, we say that
a polynomial-time algorithm A is an a-approximation algorithm, a� 1, if for any
problem instance A finds a feasible solution with cost at most a times the cost of an
optimal solution. The class APX (Approximable) contains all NP-hard problems that
can be approximated within a constant factor, and its subclass PTAS (Polynomial Time
Approximation Scheme) contains the problems that can be approximated in polynomial
time within a factor 1þ e for any fixed e[0; assuming P 6¼ NP this subclass is proper.
An APX-hardness result for a problem implies the non-existence of a PTAS (see [9]).
Online Algorithms: An online minimization algorithm is said to be c-competitive if for
any input, it produces a solution that is at most c times that used by an optimal offline
algorithm (see [1]).

2 Discussion

Four results are presented, as follows:

1. Following [8] we discuss the online version of the minADM problem. This corre-
sponds to scheduling jobs to machines, where the cost is associated with opening a
machine, closing a machine, or moving a machine from one job to another. We
show a competitive ratio of 7

4 for any network topology, including rings of size at
least four, 5

3 for a triangle network, and 3
2 for a path topology, and show that these

results are best possible.
2. Following [4] we discuss online algorithm for the minADM problem when

grooming is allowed. The cost of a coloring is the number of ADMs; in case
g lightpaths of the same wavelength enter through the same edge to one node, they
can all use the same ADM (thus saving g� 1 ADMs). This problem is NP-complete
even for g ¼ 1. Exact solutions are known for some specific cases, and approxi-
mation algorithms for certain topologies exist for g ¼ 1. We discuss an

XIV S. Zaks

approximation algorithm for this problem. For every value of g the running time
of the algorithm is polynomial in the input size, and its approximation ratio for a
wide variety of network topologies— including the ring topology— is shown to be
2lngþ oðlngÞ. This is the first approximation algorithm for the grooming problem
with a general grooming factor g.

3. Following [3] we discuss the minREG problem, when grooming is allowed. Recall
that in this setting a regenerator can serve up to g lightpaths, while in scheduling
this corresponds to the case in which up to g jobs can be processed simultaneously
by a single machine and the goal is to assign the jobs to machines so that the total
busy time is minimized. The problem is NP-hard already for g ¼ 2. We discuss an
algorithm whose competitive ratio is between 3 and 4.

4. Following [7], we discuss the minREG problem, where for given d[0 and p[0
sets of lightpaths, we need to place regenerators so that, for each of the p sets
separately, there is a regenerator on each of its lightpaths after at most d nodes. In
scheduling this corresponds to the case where we have p sets of jobs, each needs a
service within d time units, and we need to place a smallest number of machines
such that for each set A, each of the jobs in A is satisfied as desired. While this
problem can be easily solved when d ¼ 1 or p ¼ 1, we discuss that for any fixed
d; p� 2, it does not admit a PTAS, even if G has maximum degree at most 3 and the
lightpaths have OðdÞ lengths.

References

1. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge
University Press, Cambridge (1998)

2. Flammini, M., Marchetti-Spaccamela, A., Monaco, G., Moscardelli, L., Zaks, S.: On the
complexity of the regenerator placement problem in optical networks. IEEE/ACM Trans.
Netw. 19(2), 498–511 (2011)

3. Flammini, M., Monaco, G., Moscardelli, L., Shachnai, H., Shalom, M., Tamir, T., Zaks, S.:
Minimizing total busy time in parallel scheduling with application to optical networks. Theor.
Comput. Sci. 411(40–42), 3553–3562 (2010)

4. Flammini, M., Moscardelli, L., Shalom, M., Zaks, S.: Approximating the traffic grooming
problem. J. Discrete Algorithms 6(3), 472–479 (2008)

5. Gerstel, O., Lin, P., Sasaki, G.: Wavelength assignment in a wdm ring to minimize cost of
embedded sonet rings. In: INFOCOM 1998, Seventeenth Annual Joint Conference of the
IEEE Computer and Communications Societies (1998)

6. Gerstel, O., Ramaswami, R., Sasaki, G.: Cost effective traffic grooming in wdm rings. In:
INFOCOM 1998, Seventeenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies (1998)

7. Mertzios, G.B., Sau, I., Shalom, M., Zaks, S.: Placing regenerators in optical networks to
satisfy multiple sets of requests. IEEE Trans. Netw. 20(6), 1870–1879 (2012)

8. Shalom, M., Wong, P.W., Zaks, S.: Optimal on-line colorings for minimizing the number of
adms in optical networks. J. of Discrete Algorithms 8(2), 174–188 (2010)

9. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge
University Press (2011)

Online and Approximation Algorithms for Optical Networks and Scheduling XV

Ignorance is Bliss (for Proving Impossibility)

Faith Ellen

Department of Computer Science, University of Toronto, Canada
faith@cs.toronto.edu

This talk surveys techniques for proving uncomputability results and lower bounds in
message passing models. An uncomputability result tells us that a certain problem
cannot be solved in a particular model and a lower bound tells us that a certain problem
cannot be solved in a particular model when insufficient resources are available. All
of these impossibility results hinge on the processes’ continued ignorance of input
values, network parameters, or one another’s states. Ignorance can also arise from
asynchrony and faults.

The first problem considered is leader election. With anonymous processes, a
symmetry argument shows that this problem cannot be solved deterministically, even if
the system is synchronous, there are no faults, message sizes are unlimited, and all
processes know that the network is a cycle of a particular length [A90]. Moreover, there
is no randomized algorithm for leader election if all processes know that the network is
a cycle, but do not know its length [A90]. In asynchronous models where processes
have distinct identifiers, if at least half the processes can crash, then leader election is
shown to be uncomputable using a partition argument [BT85]. If fewer processes can
crash, then an adversary argument is presented which proves that the worst case
expected message complexity is quadratic in the number of processes in the network
[AGV15].

A simple reduction from leader election shows that the consensus problem is
unsolvable in an asynchronous message passing system if at least half the processes can
crash. But unlike the case for leader election, consensus remains unsolvable when only
one process might crash. The valency argument was introduced to prove this result
[FLP85]. One part of the proof is a chain argument, which establishes the existence of
a multivalent initial configuration in any consensus algorithm. The other part is an
adversary argument, showing that from any multivalent configuration and any step
which can be performed in that configuration, there is a finite execution starting from
that configuration and ending with that step which results in a multivalent
configuration.

For the remainder of the talk, we consider synchronous networks of nonfaulty
processes with distinct identifiers. When there is no bound on the size of the messages
processes can send to their neighbours, an information theoretic argument is used to
prove that, in a cycle of even length, the number of rounds needed to colour the
processes with two colours (so that no two adjacent processes have the same colour) is
linear in the length of the cycle [L92]. A simple distance argument shows that the
number of rounds necessary to determine the diameter of a network is equal to its
diameter.

Finally, in the CONGEST model, where each message is restricted to contain at
most B bits, a communication complexity argument is presented which proves that any
algorithm for determining the diameter of a network with n processes requires Xðn=BÞ
rounds, even if all processes know that the diameter is either two or three [FHW12].
The idea is to reduce the set disjointness problem, which is known to require a linear
number of bits of communication between two players, to determining the diameter of
a network from a specially designed class.

Many additional examples of impossibility proofs can be found in two survey
papers [L89, FR03] and a recent book [AE14].

References

[AGV15] Alistarh, D., Gelashvili, R., Vladu, A.: How to elect a leader faster than a tournament.
In: Proceedings of the 34th Annual ACM Symposium on Principles of Distributed
Computing, PODC 2015, pp. 365–374 (2015)

[A90] Angluin, D.: Local and global properties in networks of processors (Extended
Abstract). In: Proceedings of the 12th Annual ACM Symposium on Theory of
Computing, STOC 1980, pp. 82–93 (1980)

[AE14] Attiya, H., Ellen, F.: Impossibility Results for Distributed Computing. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Publishers (2014)

[BT85] Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM 32
(4), 824–840 (1985)

[FR03] Fich, F.E., Ruppert, E.: Hundreds of impossibility results for distributed computing.
Distrib. Comput. 16(2–3), 121–163 (2003)

[FLP85] Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus with
one faulty process. J. ACM 32(2), 374–382 (1985)

[FHW12] Frischknecht, S., Holzer, S., Wattenhofer, R.: Networks cannot compute their diam-
eter in sublinear time. In: Proceedings of the 23rd Annual ACM–SIAM Symposium
on Discrete Algorithms, SODA 2012, pp. 1150–1162 (2012)

[L92] Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201
(1992)

[L89] Lynch, N.A.: A hundred impossibility proofs for distributed computing. In: Pro-
ceedings of the 8th Annual ACM Symposium on Principles of Distributed Com-
puting, PODC 1989, pp. 1–28 (1989)

Ignorance is Bliss (for Proving Impossibility) XVII

Amoebots and Beyond: Models
and Approaches for Programmable Matter

Christian Scheideler

Department of Computer Science, Paderborn University, Germany
scheideler@upb.de

Abstract. “Programmable matter” is a term originally coined by Toffoli and
Margolus in 1991 to refer to an ensemble of fine-grained computing elements
arranged in space. Since then, there has been a significant amount of work on
programmable matter across multiple disciplines, including physics (e.g., crys-
tals and complex fluids), chemistry (e.g., metamaterials and shape-changing
molecules), bioengineering (DNA self-assembly and cell engineering), and
robotics (modular robotics and nano robotics). So one can imagine that someday
one can tailor-make programmable devices at nano-scale. However, before
producing such devices, basic research is needed on the right primitives for these
devices so that they can be used effectively in applications relevant for pro-
grammable matter. I will present the Amoebot model, which can be used
effectively for typical applications like shape formation and coating, and discuss
possible extensions of that model.

Keywords: Models • Self-organizing systems • Programmable matter

1 Introduction

Programmable matter promises to be a highly innovative technology with many
interesting applications, ranging from minimal invasive surgery and adaptive materials
to terraforming. Various models for programmable matter have already been proposed
in different communities using approaches that differ from each other but also share
some common ideas. For example, in the computational geometry community,
moteins, whose designs are motivated by the folding behaviors of proteins, have been
proposed to create complex shapes at the nanoscale [3]. Moteins consist of strings of
very simple robotic modules that can fold into any volumetric shape. Additionally,
motivated by computational origami, reconfigurable robots based on more complex
folding primitives have been proposed. In the distributed computing community, we
proposed Amoebots as a model for programmable matter that can adaptively form
shapes and coat objects [5]. Related approaches can be found, e.g., in [8, 11]. In the
DNA computing community, a number of DNA self-assembly models have been
proposed. In the most basic model, the abstract tile-assembly model (aTAM), there are
quadratic tiles with a specific glue on each side [9]. Equal glues have specific con-
nection strengths and may bind together. Standard problems are to minimize the tile
complexity (i.e., the number of different tile types) in order to form certain shapes and

to intrinsically perform computations which guide the assembly process. Whereas in
the aTAM only individual tiles can be attached to an existing assembly, in more
complex hierarchical assembly models, partial assemblies can also bind to each other
(e.g., [4]). Beyond these passive self-assembly models, active self-assembly models
based on molecular motors have been proposed, like the nubot model [12]. Finally, in
the swarm robotics community, various prototypes of modular robots such as AMAS
[10] and Mori [1] have been built in order to form complex robotic systems. In contrast
to the previously mentioned models, these modular robots are computationally pow-
erful devices. Much simpler robots have been proposed in the micro/nanorobotics field,
including DNA machines, synthetic bacteria, nanoparticles, and magnetic materials, but
these devices are designed and only useful for very specific tasks. More universal
approaches are still under investigation.

2 The Amoebot Model

The Amoebots may form any subgraph of the infinite triangular grid Geqt ¼ ðV ;EÞ,
where V represents all possible positions the Amoebots can occupy relative to their
structure, and E represents all possible atomic movements an Amoebot can perform as
well as all places where neighboring Amoebots can bond to each other. Figure 1(a)
illustrates the standard planar embedding of Geqt. We chose the triangular grid because
in contrast to the hexagonal and square grids it guarantees that any Amoebot on the
boundary of the Amoebot structure can move to an unoccupied neighboring node
where it is able to bond again to a neighboring Amoebot.

Each Amoebot occupies either a single node or a pair of adjacent nodes in Geqt, and
every node can be occupied by at most one Amoebot. Two Amoebots occupying
adjacent nodes are connected by a bond, and we refer to such Amoebots as neighbors.
The bonds not only ensure that the Amoebot system forms a connected structure, but
are also used for exchanging information.

Fig. 1. (a) shows a section of Geqt. Nodes of Geqt are shown as black circles. (b) shows five Amoebots
on Geqt. The underlying graph Geqt is depicted as a gray mesh. A Amoebot occupying a single node is
depicted as a black circle, and a Amoebot occupying two nodes is depicted as two black circles
connected by an edge. (c) depicts two Amoebots occupying two non-adjacent positions on Geqt. The
Amoebots have different offsets for their head port labelings.

Amoebots and Beyond: Models and Approaches for Programmable Matter XIX

Amoebots move through expansions and contractions: if an Amoebot occupies one
node (i.e., it is contracted), it can expand to an unoccupied adjacent node to occupy
two nodes. If an Amoebot occupies two nodes (i.e., it is expanded), it can contract to
one of these nodes to occupy only a single node. Figure 1(b) illustrates a set of
Amoebots (some contracted, some expanded) on the underlying graph Geqt. We chose
these kinds of movements since they allow Amoebots to stay connected while they
move and it is easy to resolve movement conflicts by retracting to the contracted state.
A handover allows two Amoebots to stay connected as they move. Two scenarios are
possible: (1) a contracted Amoebot p can “push” a neighboring expanded Amoebot
q and expand into a node previously occupied by q, forcing q to contract, or (2) an
expanded Amoebot p can “pull” a neighboring contracted Amoebot q to a node v it
occupies, causing q to expand into v and allowing p to contract.

Amoebots are anonymous; they have no unique identifiers. Instead, each Amoebot
has a collection of ports — one for each edge incident to the node(s) the Amoebot
occupies — that have unique labels from the Amoebot’s local perspective. We assume
that the Amoebots have a common chirality (i.e., a shared notion of clockwise direc-
tion), which allows each Amoebot to label its ports in clockwise order. This is justified
by the assumption that Amoebots can only bond with the same face up, which is also a
common assumption in DNA computing. However, Amoebots do not have a common
sense of global orientation and may have different offsets for their port labels, as in
Fig. 1(c). Whenever Amoebots p and q share a bond, we assume that p knows the label
of q’s port it bonds to and whether q’s port belongs to the head or tail of q.

Each Amoebot has a constant-size local memory that can be read and written to by
any neighboring Amoebot. Amoebots exchange information with their neighbors by
simply writing into their memory. An Amoebot always knows whether it is contracted
or expanded, and we assume that this information is also available to its neighbors (by
publishing it in its local memory). Due to the constant-size memory constraint,
Amoebots neither know the total number of Amoebots in the system nor any estimate
of this number.

We assume the standard asynchronous model, where the Amoebot system pro-
gresses through a sequence of Amoebot activations; i.e., only one Amoebot is active at
a time. Whenever a Amoebot is activated, it can perform an arbitrary bounded amount
of computation involving its local memory and the memories of its neighbors and can
perform at most one movement. A classical result under this model is that for any
asynchronous concurrent execution of atomic Amoebot activations, there exists a
sequential ordering of the activations which produces the same end configuration,
provided conflicts which arise from the concurrent execution are resolved. We define
an asynchronous round to be over once each Amoebot has been activated at least once.
For more details, we refer to [6].

3 Future Developments

The Amoebot approach is currently explored in two further directions: One of these
directions focuses on Amoebots that can sense and bond to other Amoebots but cannot

XX C. Scheideler

exchange information. Nevertheless, certain problems like the compression problem
can be solved [2]. Another approach focuses on the problem of rearranging tiles into a
specific shape using just a single Amoebot [7]. Many other variants are worth exploring
since issues like fault tolerance, energy supply and consumption, and 3D structures
have not been considered yet. So there is a large potential for future research in this
area.

References

1. Belke, C., Paik, J.: Mori: a modular origami robot. IEEE/ASME Trans. Mechatronics (2017,
to be published)

2. Cannon, S., Daymude, J., Randall, D., Richa, A.: A markov chain algorithm for compression
in self-organizing particle systems. In: Proceedings of the 35th ACM Symp. on Principles of
Distributed Computing, PODC 2016, pp. 279–288 (2016)

3. Cheung, K.C., Demaine, E., Bachrach, J.R., Griffith, S.: Programmable assembly with
universally foldable strings (moteins). IEEE Trans. Robot. 27(4), 718–729 (2011)

4. Demaine, E., Fekete, S., Scheffer, C., Schmidt, A.: New geometric algorithms for fully
connected staged self-assembly. Theoret. Comput. Sci. 671, 4–18 (2017)

5. Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A., Scheideler, C., Strothmann, T.: Brief
announcement: Amoebot - a new model for programmable matter. In: Proceedings of the
26th ACM Symp. on Parallelism in Algorithms and Architectures, SPAA 2014, pp. 220–222
(2014)

6. Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R., Richa, A., Scheideler, C.: Leader
election and shape formation with self-organizing programmable matter. In: Proceedings
of the 21st International Conference on DNA Computing and Molecular Programming,
DNA 2015, pp. 117–132 (2015)

7. Gmyr, R., Kostitsyna, I., Kuhn, F., Scheideler, C., Strothmann, T.: Forming tile shapes with
a single robot. In: European Workshop on Computational Geometry, EuroCG 2017 (2017)

8. Hurtado, F., Molina, E., Ramaswami, S., Sacristán, V.: Distributed reconfiguration of 2d
lattice-based modular robotic systems. Auton. Robots 38, 383–413 (2015)

9. Rothemund, P., Winfree, E.: The program-size complexity of self-assembled squares. In:
Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, STOC 2000,
pp. 459–468 (2000)

10. Terada, Y., Murata, S.: Automatic modular assembly system and its distributed control. Int.
J. Robot. Res. 27(3–4), 445–462 (2008)

11. Walter, J., Welch, J., Amato, N.: Distributed reconfiguration of metamorphic robot chains.
Distrib. Comput. 17(2), 171–189 (2004)

12. Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active
self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Innovations in
Theoretical Computer Science, ITCS 2016, pp. 353–354 (2013)

Amoebots and Beyond: Models and Approaches for Programmable Matter XXI

The Many Faces of Clock Synchronization

Christoph Lenzen

Max Planck Institute for Informatics, Saarland Informatics Campus

Abstract. Reliable and scalable clocking of hardware systems requires
fault-tolerant distributed clocking methods. A brief and incomplete overview of
contemporary challenges on this front is given here.

Today’s hardware has a number of characteristics that renders a multi-core system or
even a single chip a distributed system. A modern chip comprises billions of transistors,
which work in parallel, and operates at gigahertz speeds. This entails that the system
must be robust to both transient and permanent faults. Typically, the operation is
synchronized, i.e., the gates’ transitions are clocked. This requires to painfully accu-
rately distribute a clock signal throughout the chip, as already timing deviations in the
order of tens of picoseconds violate the specification under which the chip is guar-
anteed to operate correctly. The traditional solution are clock trees, which spread the
clock signal from a single source, e.g., a quartz oscillator, throughout the chip. How-
ever, clock trees suffer from limitations in scalability and introduce a single point of
failure.

Byzantine Fault-tolerant Clock Synchronization. To tackle these issues, one may
employ a clock synchronization algorithm to synchronize multiple clock sources,
which then each drive a small, local clock tree to run (possibly redundant) subsystems.
Referring to these clock domains as nodes, a classic distributed model for clock syn-
chronization arises. We assume (i) a fully connected system of n nodes, (ii) at most
f\n=3 Byzantine faults (i.e., arbitrary behavior), (iii) for each node a local clock
source of bounded drift (i.e., at all times running at a rate between 1 and #[1), and
(iv) bounded delay, i.e., each message takes between d � e and d time to arrive (where
computational delay is accounted for in d).

A classic algorithm in this model is due to Srikanth and Toueg [12], achieving a
skew of 2d, i.e., the maximum time difference between corresponding clock “ticks” of
non-faulty nodes is dþ e. It has been successfully implemented in hardware [5]. This
solution has two crucial downsides. First, the skew lower bound of XðeÞ [10] is not
matched, and second the algorithm is not self-stabilizing, i.e., correct operation is not
re-established after (an unbounded number of) transient faults.

Pulse Generation. With self-stabilization as an additional requirement, the problem has
been studied under the name Byzantine fault-tolerant self-stabilizing pulse generation.
Due to the substantial challenge this imposes, many algorithms need to communicate
large amounts of information. Thus, the amounts of bandwidth per node (number of
broadcasted bits per time unit) becomes an additional quality measure. The currently
best algorithms result from a recent framework for reducing the problem to

synchronous consensus was presented [9], resulting in a solution with stabilization time
and bandwidth polylog f . This reduction “translates” the running time of the consensus
algorithm to stabilization time and its message size to bandwidth, with at most a factor
Oðlog f Þ increase in each.

Open Problem 1 Is pulse synchronization at least as hard as consensus?

Metastability. The second issue of the Srikanth-Toueg algorithm, the potentially large
gap between the achieved skew and the lower bound of XðeÞ, has been addressed by
another classic synchronization algorithm, due to Lundelius Welch and Lynch [13]. We
implemented a variant of this algorithm in hardware [7], with surprisingly good results.
However, the achieved precision is still by roughly an order of magnitude worse than
that of a clock tree, necessitating further improvements. Doing so requires to overcome
a fundamental obstacle: metastability.Metastability is an unstable equilibrium state of a
bistable element (such as a register or flip-flop) that may occur when input signals are
“unclean” and violate timing constraints. Marino proved [11] that the possibility of
metastability cannot be avoided when measuring the skew between different clocks,
which naturally is necessary for any clock synchronization algorithm.

Usually, metastability is handled by simply waiting for the register, flip-flop, etc. to
recover a stable state with sufficiently high probability. However, when trying to run
the Lynch-Welch algorithm at sufficiently high frequency to achieve the desired skew
bound, there is insufficient time for this solution. Another issue is that a faulty node
could provide out-of-spec input signals to a correct node, possibly “infecting” it with
metastability.

We introduced an approach based on Kleene logic [4] modelling metastability in a
worst-case fashion. It represents “unclean” signals (intermediate voltages between
logical 0 and 1, oscillations, late transitions, etc.) by a third symbol M and extends the
gate function f : f0; 1gn ! f0; 1g of a basic gate to its metastable closure
fM : f0; 1;Mgn ! f0; 1;Mg. Defining for x 2 f0; 1;Mgn that ResðxÞ :¼ fx0 2
f0; 1gn jx0i 6¼ xi) xi 6¼ Mg, i.e., the set of strings x 2 f0; 1gn obtained by treating M as
“wildcard,” fM is given by fMðxÞ ¼ b 2 f0; 1g iff f ðx0Þ ¼ b for all x0 2 ResðxÞ and
fMðxÞ ¼ M else. It was shown that for any Boolean function f , fM can be implemented
using standard logic [4]. In particular, this makes it possible to implement the
Lynch-Welch algorithm in a way that avoids metastability-induced faults determinis-
tically. However, in general a circuit implementing fM may be of exponential size in n,
even if one for f is small.

Open Problem 2 For a Boolean function f , how large is a circuit that implements fM
on all inputs with up to k metastable bits?

Combining Self-stabilization and High Precision. In [6], it is shown how to couple (a
variant of) the Lynch-Welch algorithm with the solution from [2] to obtain a clock
synchronization algorithm of skew OðeÞ and stabilization time Oðf Þ. Unfortunately,
this results in a significant increase in the circuitry for a single node, which is likely to
increase the probability that an individual node fails. Therefore, it is desirable to find a

The Many Faces of Clock Synchronization XXIII

different coupling mechanism that ensures that the underlying pulse synchronization
algorithm is only relied on during stabilization.

Open Problem 3 Find coupling mechanisms that enable self-stabilization of the
Lynch-Welch algorithm without interfering with it after stabilization.

Distributing the Clock Signal. All of the above solutions assume full connectivity,
which is impractical across a whole system. Thus, a way of distributing the clock signal
reliably using a low-degree topology is required. HEX [1, 8] provides a first stab at the
problem, by ensuring both self-stabilization and resilience to one Byzantine fault in the
neighborhood of each node. More generally, one may aim at tolerating XðDÞ such local
faults in degree-D networks. However, HEX is not sufficiently precise to be considered
as general purpose clocking method.

Open Problem 4 Come up with competitive low-degree clock distribution networks
that combine self-stabilization and tolerate local Byzantine faults.

For further details on these challenges and others, please refer to our survey [3].

References

1. Dolev, D., Fuegger, M., Lenzen, C., Perner, M., Schmid, U.: HEX: scaling honeycombs is
easier than scaling clock trees. In: Proceedings Symposium on Parallelism in Algorithms and
Architectures, SPAA 2013 (2013)

2. Dolev, D., Fuegger, M., Lenzen, C., Schmid, U.: Fault-tolerant algorithms for
tick-generation in asynchronous logic: robust pulse generation. J. ACM 61(5), 30:1–30:74
(2014)

3. Dolev, D., Fugger, M., Lenzen, C., Schmid, U., Steininger, A.: Fault-tolerant distributed
systems in hardware. Bull. EATCS 116 (2015)

4. Friedrichs, S., Függer, M., Lenzen, C.: Metastability-containing circuits (2016). CoRR abs/
1606.06570

5. Függer, M., Schmid, U.: Reconciling fault-tolerant distributed computing and
systems-on-chip. Distrib. Comput. 24(6), 323–355 (2012)

6. Khanchandani, P., Lenzen, C.: Self-stabilizing Byzantine clock synchronization with optimal
precision. In: Proceedings of Symposium on Stabilization, Safety, and Security of Dis-
tributed Systems, SSS 2016 (2016)

7. Kinali, A., Huemer, F., Lenzen, C.: Faul-tolerant clock synchronization with high precision.
In: Symposium on VLSI, ISVLSI 2016 (2016)

8. Lenzen, C., Perner, M., Sigl, M., Schmid, U.: Byzantine self-stabilizing clock distribution
with HEX: implementation, simulation, clock multiplication. In: Proceedings of Conference
on Dependability, DEPEND 2013 (2013)

9. Lenzen, C., Rybicki, J.: Self-stabilising byzantine clock synchronisation is almost as easy as
consensus. In: Proceedings of 31st Symposium on Distributed Computing, DISC 2017
(2017, to appear)

10. Lundelius, J., Lynch, N.: An upper and lower bound for clock synchronization. Inf. Comput.
62(2–3), 190–204 (1984)

XXIV C. Lenzen

http://arxiv.org/abs/1606.06570
http://arxiv.org/abs/1606.06570

11. Marino, L.: General theory of metastable operation. IEEE Transac. Comput. C-30(2),
107–115 (1981)

12. Srikanth, T.K., Toueg, S.: Optimal clock synchronization. J. ACM 34(3), 626–645 (1987)
13. Welch, J.L., Lynch, N.A.: A new fault-tolerant algorithm for clock synchronization. Inf.

Comput. 77(1), 1–36 (1988)

The Many Faces of Clock Synchronization XXV

Contents

Wireless Networks

Leader Election in SINR Model with Arbitrary Power Control 3
Magnús M. Halldórsson, Stephan Holzer,
and Evangelia Anna Markatou

Token Traversal in Ad Hoc Wireless Networks via Implicit
Carrier Sensing . 15

Tomasz Jurdzinski, Michal Rozanski, and Grzegorz Stachowiak

Identifiers and Labelling

Short Labeling Schemes for Topology Recognition
in Wireless Tree Networks . 37

Barun Gorain and Andrzej Pelc

Space-Time Tradeoffs for Distributed Verification . 53
Rafail Ostrovsky, Mor Perry, and Will Rosenbaum

Approximate Proof-Labeling Schemes . 71
Keren Censor-Hillel, Ami Paz, and Mor Perry

Global Versus Local Computations: Fast Computing with Identifiers 90
Mikaël Rabie

On the Smallest Grain of Salt to Get a Unique Identity 106
Peva Blanchard and Rachid Guerraoui

Mobile Agents

A General Lower Bound for Collaborative Tree Exploration. 125
Yann Disser, Frank Mousset, Andreas Noever, Nemanja Škorić,
and Angelika Steger

Wireless Evacuation on m Rays with k Searchers . 140
Sebastian Brandt, Klaus-Tycho Foerster, Benjamin Richner,
and Roger Wattenhofer

Evacuation from a Disc in the Presence of a Faulty Robot 158
Jurek Czyzowicz, Konstantinos Georgiou, Maxime Godon,
Evangelos Kranakis, Danny Krizanc, Wojciech Rytter,
and Michał Włodarczyk

http://dx.doi.org/10.1007/978-3-319-72050-0_1
http://dx.doi.org/10.1007/978-3-319-72050-0_2
http://dx.doi.org/10.1007/978-3-319-72050-0_2
http://dx.doi.org/10.1007/978-3-319-72050-0_3
http://dx.doi.org/10.1007/978-3-319-72050-0_3
http://dx.doi.org/10.1007/978-3-319-72050-0_4
http://dx.doi.org/10.1007/978-3-319-72050-0_5
http://dx.doi.org/10.1007/978-3-319-72050-0_6
http://dx.doi.org/10.1007/978-3-319-72050-0_7
http://dx.doi.org/10.1007/978-3-319-72050-0_8
http://dx.doi.org/10.1007/978-3-319-72050-0_9
http://dx.doi.org/10.1007/978-3-319-72050-0_10

On Location Hiding in Distributed Systems . 174
Karol Gotfryd, Marek Klonowski, and Dominik Pająk

Probabilistic Algorithms

Parallel Search with No Coordination . 195
Amos Korman and Yoav Rodeh

Monitoring of Domain-Related Problems in Distributed Data Streams 212
Pascal Bemmann, Felix Biermeier, Jan Bürmann, Arne Kemper,
Till Knollmann, Steffen Knorr, Nils Kothe, Alexander Mäcker,
Manuel Malatyali, Friedhelm Meyer auf der Heide, Sören Riechers,
Johannes Schaefer, and Jannik Sundermeier

Killing Nodes as a Countermeasure to Virus Expansion 227
François Bonnet, Quentin Bramas, Xavier Défago,
and Thanh Dang Nguyen

Computational Complexity

Improved Distributed Algorithms for Coloring Interval Graphs
with Application to Multicoloring Trees. 247

Magnús M. Halldórsson and Christian Konrad

How Long It Takes for an Ordinary Node with an Ordinary
ID to Output? . 263

Laurent Feuilloley

How to Choose Friends Strategically . 283
Lata Narayanan and Kangkang Wu

Effective Edge-Fault-Tolerant Single-Source Spanners via Best (or Good)
Swap Edges . 303

Davide Bilò, Feliciano Colella, Luciano Gualà, Stefano Leucci,
and Guido Proietti

Dynamic Networks

A Generic Framework for Computing Parameters of Sequence-Based
Dynamic Graphs . 321

Arnaud Casteigts, Ralf Klasing, Yessin M. Neggaz,
and Joseph G. Peters

Gathering in Dynamic Rings . 339
Giuseppe Antonio Di Luna, Paola Flocchini, Linda Pagli,
Giuseppe Prencipe, Nicola Santoro, and Giovanni Viglietta

XXVIII Contents

http://dx.doi.org/10.1007/978-3-319-72050-0_11
http://dx.doi.org/10.1007/978-3-319-72050-0_12
http://dx.doi.org/10.1007/978-3-319-72050-0_13
http://dx.doi.org/10.1007/978-3-319-72050-0_14
http://dx.doi.org/10.1007/978-3-319-72050-0_15
http://dx.doi.org/10.1007/978-3-319-72050-0_15
http://dx.doi.org/10.1007/978-3-319-72050-0_16
http://dx.doi.org/10.1007/978-3-319-72050-0_16
http://dx.doi.org/10.1007/978-3-319-72050-0_17
http://dx.doi.org/10.1007/978-3-319-72050-0_18
http://dx.doi.org/10.1007/978-3-319-72050-0_18
http://dx.doi.org/10.1007/978-3-319-72050-0_19
http://dx.doi.org/10.1007/978-3-319-72050-0_19
http://dx.doi.org/10.1007/978-3-319-72050-0_20

On Liveness of Dynamic Storage . 356
Alexander Spiegelman and Idit Keidar

Author Index . 377

Contents XXIX

http://dx.doi.org/10.1007/978-3-319-72050-0_21

Wireless Networks

Leader Election in SINR Model with Arbitrary
Power Control

Magnús M. Halldórsson1, Stephan Holzer2, and Evangelia Anna Markatou2(B)

1 ICE-TCS, School of Computer Science, Reykjavik University, Reykjavik, Iceland
mmh@ru.is

2 TDS Group, Massachusetts Institute of Technology, Cambridge, USA
{holzer,markatou}@mit.edu

Abstract. In this article, we study the Leader Election Problem in the
Signal-to-Interference-plus-Noise-Ratio (SINR) model where nodes can
adjust their transmission power. We show that in this setting it is pos-
sible to solve the leader election problem in two communication rounds,
with high probability. Previously, it was known that Ω(log n) rounds
were sufficient and necessary when using uniform power, where n is the
number of nodes in the network.

We then examine how much power control is needed to achieve fast
leader election. We show that any 2-round leader election algorithm in
the SINR model running correctly w.h.p. requires a power range 2Ω(n)

even when n is known. We match this with an algorithm that uses power

range 2Õ(n), when n is known and 2Õ(n1.5), when n is not known. We
also explore tradeoffs between time and power used, and show that to
elect a leader in t rounds, a power range exp(n1/Θ(t)) is sufficient and
necessary.

Keywords: SINR · Leader election · Power control · Capture effect

1 Introduction

In this article we discuss what we can accomplish in a Signal-to-Interference-
plus-Noise-Ratio (SINR) network using power control, the ability of nodes to
transmit with variable transmission power, and the capture effect, a property of
SINR networks, where a transmission can be successful while other transmissions
within the communication range occur in the same round.

We study the leader election problem as a vehicle to explore this frontier.
Leader election, the problem of determining a unique leader among the nodes in a
network, is one of the oldest and most studied problems in distributed computing.
It provides a strong form of breaking symmetry within radio networks in an

M. M. Halldórsson is supported by Icelandic Research Fund grants 152679-05 and
174484-05. Stephan Holzer is supported by AFOSR FA9550-13-1-0042. Evangelia
Anna Markatou is supported by grants NSF CCF-1461559 and NSF CCF-0939370.

c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 3–14, 2017.
https://doi.org/10.1007/978-3-319-72050-0_1

4 M. M. Halldórsson et al.

initially unknown system, and is frequently used as a preliminary step in more
complex communication tasks.

The leader election problem was originally introduced in the 1970s, with the
publication of the ALOHA radio network paper [1]. In the following years, many
variations of the leader election problem have been extensively studied under a
variety of models and algorithmic constraints such as with collision detection in
the multiple access channel model [12], no collision detection in the SINR model
[7], or under a colored graph in the LOCAL model [6].

We treat the leader election problem in SINR networks, first studied by Gupta
and Kumar [9] for algorithmic purposes. In the SINR model, nodes operate in
synchronous rounds. In each round a node either broadcasts a message to its
neighbors or listens. A node v receives a message from node u depending on
the distance between u and v, the transmission power of u, and the interference
generated by other broadcasting nodes, as defined in Sect. 2.

The best solution known for this problem in an SINR network achieves
O(log n) runtime with high probability (w.h.p.) using uniform transmission
power [7]. In the classical radio network model, the leader election problem
requires Θ(log2 n) rounds w.h.p. [11]. Fineman et al. [7] show that O(log n)
rounds suffice to elect a leader in SINR networks without power control, and
show that Ω(log n) are also necessary when using uniform power. They suggest
that improved bounds may be possible using power control. Indeed, we show
that power control can provide the ultimate speedup.

Our Contributions: We present an algorithm that solves the leader election
problem in two rounds w.h.p.. We also present a multi-round leader election
algorithm that uses limited transmission power. Our work is complemented by
nearly matching lower bounds on the transmission power range for both two
round and multi-round leader election algorithms.

1.1 Related Work

The leader election problem was first studied with the publication of the ALOHA
radio network in the 1970s [1], and plenty of work considering this problem was
published in the following decade. Gallager [8] presents a good survey of early
work on leader election. Starting in the 1990s there was an increased interest
in the radio network models [4]. Under radio network models concurrent trans-
missions are lost due to collisions, and nodes do not know whether or not their
message was successfully received. In this model, the leader election problem can
be solved in Θ(log2 n) rounds w.h.p. [11] where n is the number of nodes in the
network. This bound can be improved to Θ(log n) w.h.p. assuming that nodes
can detect collisions [11], and to O(log nu) expected rounds assuming an upper
bound nu of n [2].

In the beginning of the new millennium came a renewed interest in fading
radio networks, captured with the SINR model, which claim to capture the real
behavior of systems better than previous models, as they take interference into
account in a more realistic way. Moscibroda and Wattenhofer [10] showed that

Leader Election in SINR Model with Arbitrary Power Control 5

algorithms on the fading radio networks model can achieve better runtimes than
algorithms for the radio networks model on certain problems, as SINR allows
for better spatial reuse.

In the SINR model the most efficient currently published leader election pro-
tocol is by Fineman et al. [7]. The authors present an algorithm that achieves
O(log n+log R) runtime w.h.p. in a single-hop network using uniform transmis-
sion power, where n is the number of nodes and R = O(poly(n)) is the ratio
between the longest and shortest link. Fineman et al. suggest that it may be
possible to achieve better performance using power control. Indeed, for prob-
lems like link scheduling and connectivity, power control has been shown to give
much better performance [10]. Power control has also been used in the SINR
setting to solve the link scheduling problem while conserving energy, e.g. [3,5].

To our knowledge, there has been no published work using power control to
optimize the runtime of the leader election problem, or examining the trade-offs
between the required communication complexity and power range of a leader
election algorithm.

2 Model and Problem Statement

Let V be a set of n nodes, deployed in a single-hop network, that represent
wireless devices. Every node can communicate with any other node using trans-
mission power P , in absence of interference from other nodes. Time is divided
into synchronous rounds. In each round, a node v can either transmit a message
of size O(log n) with some power Pv, or listen. Node v ∈ V can receive a message
transmitted by node u ∈ V , iff v is listening and

SINR(u, v, I) =
Pu

d(u,v)α

N +
∑

w∈I
Pw

d(w,v)α

≥ β, (1)

where I is the set of other nodes transmitting simultaneously. d(u, v) is the
distance between nodes v and u, and α, β,N are constants. Specifically, α is
the path-loss exponent, N is the non-zero ambient noise, and β is a hardware-
dependent minimum SINR threshold required for a successful message reception.
Our algorithms work for any β > 0, while the lower bounds use β ≥ 2.

In this paper, we consider the leader election problem.

Problem 1 (Leader Election Problem). Given n nodes in a network, eventually
elect exactly one node (called the leader), with all nodes knowing whether or not
they were elected to be the leader.

We denote by R the ratio of the longest to shortest distance between any
two nodes in the network. Similar to [7], we assume that R is bounded by a
polynomial in n, R ≤ nc, for some c ∈ N. Let γ be a constant such that γ ≥
max(1, cα + 1 + log β). We assume that the nodes know or can infer (an upper
bound on) γ.

6 M. M. Halldórsson et al.

The Õ-notation omits logarithmic factors. All logs are base 2. We consider
that an event happens with high probability (w.h.p.) if it happens with proba-
bility greater than 1 − 1/n.

We need the following version of Chernoff bounds.

Theorem 1 (Chernoff Bound). Let X1,X2, . . . , Xn be independent Bernoulli
random variables and X =

∑n
i=1 Xi. Then, Pr[X ≥ 2 · E[X]] ≤ 2−0.55E[X].

3 2-Round Leader Election Algorithm

In this section, we present a 2-round leader election algorithm. First, we give
some key ideas behind our algorithm. Then, we present a 2-round leader election
algorithm that requires no knowledge of n, followed by the analysis.

3.1 The Essence of Our Algorithm

Below we present a high level description of the key ideas behind our algorithm.

(i) Geometric random variable: The nodes use a geometric random variable
k to count the tails flipped in a sequence of coin flips before the first heads is
flipped. This geometric random variable allows some nodes to approximate
n with no prior knowledge of the instance. More specifically, at least one
and at most 8 log n nodes flip a coin more than log n − log log n − 2 times.

(ii) Random IDs: Each node chooses an ID (identification number) randomly
using k. The geometric random variable k ensures that exactly one node v
holds the maximum ID, which allows node v to break the symmetry of the
network and stand out as the leader.

(iii) The loudest node wins: Each broadcasting node v determines its trans-
mission power by evaluating power function f(IDv) = P · IDγIDv

v using its
identification number, IDv. Transmission power function f ensures that all
listening nodes receive a message exactly from the node with the largest
ID, as long as that ID is unique (see (ii)).

(iv) Feedback: In order to inform all nodes of the leader node v, we split the set
of nodes V into listeners and competitors. The competitors compete for the
leader position during the first round. The listeners inform the competitors
of the winner during the second round. Both rounds use the same protocol
with different message contents.

In summary, a geometric random variable allows the nodes to approximate
n with no prior knowledge of the instance, random IDs ensure that the node
v with the maximum ID stands out, arbitrary transmission power allows the
loudest node v to inform the other nodes it is the leader, and feedback makes
sure that all nodes know who the leader node is.

Leader Election in SINR Model with Arbitrary Power Control 7

3.2 Leader Election Algorithm

The algorithm proceeds as follows. Initially, each node v flips a coin (a Bernoulli
random variable) to determine its role, which is a competitor if heads are flipped,
and listener if tails. It then computes a geometric random variable (r.v.) kv,
which counts the tails flipped in a sequence of coin flips before the first heads
is flipped. The ID of the node, IDv, is an integer selected uniformly at random
from the range [J, 2 · J], where J = g(kv) := 2kvk4

v. Finally, the power Pv that v
uses for broadcast is given by f(IDv) := P · IDγIDv

v , where P is the minimum
power needed to reach all nodes in the network (overcoming the ambient noise).

During round 1, competitors transmit their ID using the assigned power Pv,
which is to be received by the listeners. In round 2, the roles are reversed, as the
listeners report back the ID of the purported leader that they received.

We shall argue that, with high probability, a unique competitor succeeds in
transmitting to all the listeners, and a unique listener succeeds in reporting back
to all the competitors. The leader is then that successful competitor.

Algorithm 1. 2-Round Leader Election Algorithm for node v

1: Rolev, a boolean Bernoulli(1
2
) random variable {‘competitor’ if heads, ’listener’ if

tails}
2: kv, a Geometric(1

2
) random variable, kv ∈ Z≥0

3: IDv, chosen uniformly at random from [J, 2 · J)], where J = g(kv) := 2kv k4
v,

IDv ∈ Z≥0

4: Pv, the transmission power, Pv = f(IDv) := P · (IDv)γIDv , Pv ∈ Z≥0

5: Leaderv, a string denoting the identity of the leader, initially empty
6: Round 1:
7: if Rolev = competitor then
8: Broadcast IDv using power Pv

9: else
10: Receive Leaderv

11: Round 2:
12: if Rolev = competitor then
13: Receive Leaderv

14: else
15: Broadcast Leaderv using power Pv

3.3 Analysis

We proceed by showing that the highest power used by a competitor is sufficient
to overpower all the other competitors, ensuring that this competitor is heard
by all the listeners. Identical arguments hold for the reporting back in round 2.

To this end, we first show that there is a competitor whose geometric r.v. is
nearly log n, and at most a logarithmic number of competitors have that large
value. We then show that all the O(log n) IDs at the high end of the spectrum

8 M. M. Halldórsson et al.

are unique, i.e., selected by a single node. The difference in power used by nodes
with different ID ensures that the competitor with highest ID will overpower all
the other competitors and be heard by all the listeners.

Lemma 1. Let k1 := log n − log log n − 2. For at least one and at most 8 log n
competitors v does it hold that kv ≥ k1, with probability greater than 1 − 1

8n .

Proof. Let t = �k1� = �log n − log log n − 2�. Let Av be the event that a given
node v is a competitor and has kv ≥ t. The probability of Av is Pr[Av] = 2−1−t =
2−1−�k1�. Thus,

2 log n

n
= 2−1−k1 ≤ Pr[Av] ≤ 2−k1 =

4 log n

n
.

The probability that no node satisfies Av is then at most

Pr

[
∧

v

Av

]

≤
(

1 − 2 log n

n

)n

≤ e−2 log n ≤ n−2.88 ≤ 1
16n

,

for n sufficiently large, establishing the first part of the claim.
Let X be the number of nodes v for which Av holds. Then 2 log n ≤ E[X] ≤

4 log n and by Chernoff bound (Theorem1),

Pr[X ≥ 8 log n] ≤ Pr[X ≥ 2E[X]] ≤ 2−0.55E[X] < 2−2.2 log n = n−2.2 ≤ 1
16n

,

for n large enough. I.e., at most 8 log n nodes satisfy Av, with probability greater
than 1 − 1

16n .
Combined, with probability at least 1− 1

8n , both of these claimed events hold.

The range from which the IDs are chosen is [J, 2J], for J ≥ g(k1), with high
probability. Observe that g(k1) = 2k1k4

1 ≥ n·log3 n
8 , for sufficiently large values

of n.

Lemma 2. A sole competitor receives the highest ID with probability greater
than 1 − 1

8n , given that at least one node calculated kv ≥ k1.

Proof. The ranges of IDs assigned to nodes of different kv values are disjoint.
The competitor receiving the highest ID will therefore necessarily be one with a
highest kv value, which we denote by K. Let Z be the set of competitors with
kv = K ≥ k1(= log n− log log n− 2). By Lemma 1, Z is non-empty and contains
at most 8 log n nodes.

The probability that a given pair of nodes in Z receive the same ID is inversely
proportional to the range of IDs sampled from, or 1/J ≤ 1

g(k1)
≤ 8

n·log3 n
. The

probability that some pair of nodes in Z are assigned the same ID is then, by
the union bound, at most

(|Z|
2

)

J
≤ (8 log n)2

n·log3 n
8

=
512

n log n
<

1
8n

,

for large enough n. In particular, all nodes in Z receive different IDs with prob-
ability greater than 1 − 1

8n .

Leader Election in SINR Model with Arbitrary Power Control 9

The highest ID received, IDw, is at least g(k1) ≥ n, for sufficiently large
values of n.

Lemma 3. If a sole competitor receives the highest ID, then its transmission is
received by all the listeners.

Proof. Let w be the sole competitor with the highest ID. For any other com-
petitor v it then holds that

Pw

Pv
≥ f(IDw)

f(IDw − 1)
≥ IDγ

w ≥ nγ ≥ βncα+1. (2)

Let u be a listener. We bound the noise and interference received by u in
terms of the signal Su := Pw/d(w, u)α it receives from w. Recall that d(w, u) ≤
R · d(v, u) ≤ nc · d(v, u), and thus d(w, u)α ≤ ncα · d(v, u)α, for any competitor
v. Hence, applying (2), the interference received from a competitor v is bounded
by

Iv :=
Pv

d(v, u)α
≤ Pw · ncα

βncα+1 · d(w, u)α
=

Su

βn
. (3)

The definition of minimum power P ensures that P/d(w,u)α

N ≥ β. Thus, we can
use (2) to bound the noise term by

N ≤ P

d(w, u)α · β
≤ Pw

d(w, u)α · nγ · β
=

Su

βnγ
≤ Su

βn
. (4)

Combining (3) and (4), we get that the SINR of w’s signal at receiver u is
bounded below by

Su

N +
∑

v∈X Iv
≥ βn

1 + |X| ≥ β,

where X is the set of competitors other than w. Thus, w overpowers all other
competitors at all the listeners.

Theorem 2. The 2-round leader election algorithm terminates with all nodes
agreeing on a common leader, w.h.p.

Proof. Adding up the error probabilities of Lemmas 1 and 2, we find that a
sole competitor w receives the highest ID, with probability at least 1 − 1

4n . By
Lemma 3, w then successfully informs all the receivers. All three lemmas work
identically for the reporting process in round 2. Hence, with probability at least
1 − 1

2n , the algorithm succeeds.

Remark 1. Leader election can be achieved in a single round if simultaneous
transmission and reception is possible. Such full-duplex radios operate by sub-
tracting the transmitted signal from the received one. While they are still rare,
being hard to implement, such technology has been progressing significantly in
recent years and may well become a commodity feature. With full-duplex, our
arguments apply unchanged to the success of reception by the other competitors,
thus succeeding after only a single round.

10 M. M. Halldórsson et al.

4 Range of Power Needed for a 2-Round Leader Election

Power control is the essential feature that allows our algorithms to work. That
begs the question how much power control is needed?

We say that an algorithm uses a power range X if the powers assigned fall in
the range [P, . . . , X · P]. The basic question is then how the power range must
grow as a function of n for leader election to work correctly.

4.1 Upper Bound

Theorem 3. Our 2-round leader election algorithm can be made to work cor-
rectly with a power range of 2Õ(n1.5), w.h.p.

Proof. The algorithm as is may select power assignments inducing a range of
2Õ(n2), since kv is no larger than 2 log n+2, with probability greater than 1− 1

2n .
However, if the range is bounded, we may assume that the nodes know the upper
bound of the range, Pmax. Thus, the algorithm would automatically truncate the
power assigned to be at most Pmax. We observe that this truncation can occur
for at most one vertex, for the node with the highest ID to succeed. Namely, the
probability that two or more nodes select a kv value greater than 1.5 log n is at
most (

n

2

)

2−3 log n ≤ 1
2n

.

The bound on the maximum power now follows immediately.

If nodes know n, we can work with a smaller power range as follows: We can
first sample the nodes with probability Θ(log n/n), and have each selected node
select ID uniformly at random from the range [J, 2J], where J = n log2 n. The
power used is f(IDv) as before, and the arguments are otherwise the same. This
results in a power range of at most 2(n log2 n)n log2 n = 2Õ(n).

Proposition 1. When nodes know n, a power range of 2Õ(n) suffices.

4.2 Lower Bound

We show that an exponential-size power range is actually necessary for any leader
election protocol running in (at most) two rounds.

Theorem 4. Every 2-round leader election algorithm in the SINR model run-
ning correctly w.h.p. requires a power range 2Ω(n). This holds even if the nodes
know n, the number of nodes in the network, and if the nodes are located in a
unit metric space (where all distances are equal).

Proof. Consider n nodes located in a unit metric. In the unit metric, either a
single message is received by all the listeners or none of them hear anything
(assuming β ≥ 1). Since the nodes don’t operate full-duplex, two rounds are

Leader Election in SINR Model with Arbitrary Power Control 11

needed to inform the transmitting nodes of the winner, and the winner must be
heard by all listeners in the first round.

We divide the available range of power into subranges, each within factor 2.
Namely, if Pmax is the maximum power available, then the i-th highest subrange
is [Pmax/2i, Pmax/2i−1]. If the highest range used is used by two or more nodes,
then the algorithm fails (assuming β ≥ 2). We shall bound from below the
probability that exactly two nodes use the highest subrange in use; this is clearly
a lower bound on the failure probability of the algorithm.

Let Xv
i be the event that node v transmits in the first round using the i-th

highest subrange. Since the nodes are identical, the same probability holds for
them all, so let pi = Pr[Xv

i]. Observe that the probability that no node transmits
in the round is at least 1 − n

∑
i pi, and since that can hold with probability at

most 1/n, it follows that
∑

i pi ≥ 1
n (1 − 1

n). Let q be the largest number such
that

q∑

i=1

pi ≤ 1
2n

. (5)

So, a subrange of rank at least q + 1 is in use.
Let Ai be the event that at least two nodes use the i-th highest subrange, Bi

be the event that no node transmits at subranges 1, 2, . . . , i−1, and Ci = Ai ∩Bi

be the event that both Ai and Bi occur, for i = 1, 2, Then, C =
⋃

i Ci is
the event that at least two nodes use the highest subrange in use. Observe that
Pr[Ai|Bi] ≥ Pr[Ai], since the non-use of the i − 1 highest subranges only makes
the event Ai more likely. Then,

Pr[Ci] = Pr[Ai ∩ Bi] = Pr[Ai|Bi] Pr[Bi] ≥ Pr[Ai] Pr[Bi].

We bound the probability of Ai, i ≤ q, by the first term of the binomial
expansion:

Pr[Ai] >

(
n

2

)

p2i (1 − pi)
n−2

>
n2

3
p2i

(

1 − 1
2n

)n−2

>
n2

3e
p2i .

Also, applying (5),

Pr[Bi] ≥ 1 − n

i−1∑

j=1

pi ≥ 1
2
.

Observe that the Ci’s are mutually exclusive and apply the Cauchy-Schwarz
inequality followed by (5) to obtain:

Pr[C] ≥
q∑

i=1

Pr[Ci] ≥ n2

3e

q∑

i=1

p2i · 1
2

≥ n2

6e

(
∑q

i=1 pi)2

q
≥ 1

24e · q
.

The algorithm fails when C holds, and thus we may assume that Pr[C] ≤ 1/n,
which implies that q ≥ n/(24e) = Ω(n). Hence, the claim.

Observe that for the case of known n, we obtain an essentially tight bound
of 2Θ̃(n) on the needed power range.

12 M. M. Halldórsson et al.

Remark 2. We note that a construction can be given in the Euclidean plane that
achieves the same result but with slightly weaker power tradeoffs. It consists of
n/2 well-separated node-pairs that are internally close. It, however, does not
avail itself to easy generalizations to protocols with greater number of rounds,
and is therefore omitted.

5 Trading Time for Power Range

In this section, we explore how much the power range can be reduced by increas-
ing the round complexity. We present a multi-round protocol that requires lim-
ited power range and derive a lower bound on the power range required by any
t-round leader election algorithm, for t ≥ 2.

5.1 Multi-round Protocol

When a smaller power range is available, we can give a protocol that uses a
larger number of rounds.

Our multi-round algorithm simply repeats the 2-round algorithm t times, for
a given number t ≥ 1, but using a slower-growing power function. Namely, we
change the ID-selection function to gt(k) = 2kk3t+1, and the power function to

ft(IDv) = P · ID
γ(IDv)

1/t

v . After each round-pair repetition, each competitor v
updates its leaderv value to the largest among those heard so far.

First, we observe that it suffices to succeed in one of the round-pairs.

Observation 1. If, in some round-pair, all receivers hear from a particular node
v, and the senders all get informed of v as a leader, then the algorithm success-
fully terminates with v as leader.

Proof. After this round-pair, all nodes have leaderv value set as w. Thus, all
broadcasts that follow use w for the value of leaderv.

Let U = n1/t. Suppose we can guarantee that the failure probability of an
individual round-pair is at most 1/U . Then, the probability that all t round-
pairs are unsuccessful is 1/U t = 1/n, as desired. Thus, it suffices to ensure
that the failure probability of each round be at most 1/(2U). Let Z be the set
of competitors with the highest kv value, and recall that |Z| ≤ 8 log n with
probability greater than 1 − 1

8n , by the same argument as in Lemma 1. Observe
that for success, it suffices that one node transmits with at least ncα|Z| ≤ ncα+1

times the power of any other transmitting node, as argued in Lemma3. A node
w with the highest ID will satisfy IDγ

w ≥ ncα+1, as g(kw) ≥ g(k1) (w.h.p.) It
also holds that ID

1/t
w ≥ n1/t.

Thus, what remains is to argue the counterpart of Lemma2.

Lemma 4. In a given round, with probability at least 1 − 1/(2U), some node w
receives an ID such that (IDw)1/t ≥ (IDv)1/t − 1, for all other nodes v.

Leader Election in SINR Model with Arbitrary Power Control 13

Proof. Let Z be the set of competitors with the largest kv-value. Recall that
IDs are allocated uniformly at random, and for nodes in Z, the range is of size
at least gt(k1) = 2log n−log log n−2(log n − log log n − 2)3t+1 ≥ n

8 log n (log n
2)3t+1 ≥

1
23t+1 n log3t n, for large enough n. The probability that a given pair of nodes u, v

in Z receive nearly equivalent IDs, with |(IDu)1/t − (IDv)1/t| ≤ 1, is at most
gt(k1)−1/t ≤ 2

n1/t log3 n
. Thus, the probability that some two nodes in Z receive

nearly equivalent IDs is at most
(|Z|

2

)

gt(k1)1/t
≤ 23 · 82 log2 n

n1/t log3 n
<

1
2n1/t

,

for sufficiently large n.

The correctness of the algorithm follows from the above observations.

Theorem 5. For each number t = O(log n/ log log n), there is a 2t-round algo-
rithm using a power range 2nO(1/t)

that correctly elects a leader, w.h.p.

5.2 Lower Bound for Multi-round Protocols

Theorem 6. Any t-round leader election algorithm in the SINR model running
correctly w.h.p. requires a power range 2Ω(t−1√n), t ≥ 2. This holds even if the
nodes know n, the number of nodes in the network, and the nodes are located in
a unit metric (where all distances are equal).

Proof. We consider n nodes located in a unit metric space. In this setting, after
any round of the algorithm either all listening nodes receive a message, or no
progress is made (assuming β ≥ 1). Since the nodes do not operate full-duplex,
any leader election algorithm requires at least two rounds, one round for the
winner to broadcast its message, and one round to be informed of the victory.

Let A be a t-round leader election algorithm in the SINR model that runs
correctly with probability greater than 1 − 1/n. Since at least two rounds of
successful communication are needed, Algorithm A fails when no listening node
receives a message during the first t − 1 rounds. This happens with probability∏t−1

r=1 pr, where pr denotes the probability that no listener receives a message in
round r. Since algorithm A succeeds with probability greater than 1 − 1/n,

1
n

>

t−1∏

r=1

pr.

Now, consider round r. Let q and C be as in Theorem 4. We can show by
a similar argument that Pr[C] ≥ 1

12e·q , assuming β ≥ 2. No listener receives a
message in round r when C holds, and thus Pr[C] ≤ pr, which implies that

q ≥ 1
12e · pr

.

It follows that 1/n ≥ (1
12eq)t−1, and therefore q ≥ t−1

√
n/(12e) = Ω(t−1

√
n).

Thus, algorithm A requires a power range 2Ω(t−1√n).

14 M. M. Halldórsson et al.

6 Conclusions and Acknowledgments

We have shown that power control can yield the ultimate speedup for leader
election in the SINR model. This is thanks to the capture effect, which is the
crucial property in which SINR differs from graphs-based models.

It would be exciting to see these techniques applied more widely. Multi-hop
settings and more restricted power ranges are natural directions to examine, as
well as problems beyond leader election. In general, the value of power control
and the capture effect is still not fully understood.

We thank Hsin-Hao Su and Nancy Lynch for helpful comments and
discussions.

References

1. Abramson, N.: The ALOHA system: another alternative for computer communica-
tions. In: Proceedings of the Fall Joint Computer Conference, AFIPS 1970 (Fall),
17–19 November 1970, pp. 281–285. ACM, New York (1970)

2. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast
in radio networks: an exponential gap between determinism randomization. In:
PODC, pp. 98–108. ACM (1987)

3. Borbash, S.A., Ephremides, A.: Wireless link scheduling with power control and
SINR constraints. IEEE Trans. Inf. Theory 52(11), 5106–5111 (2006)

4. Chlamtac, I., Kutten, S.: On broadcasting in radio networks-problem analysis and
protocol design. IEEE Trans. Commun. 33(12), 1240–1246 (1985)

5. Cruz, R.L., Santhanam, A.V.: Optimal routing, link scheduling and power control
in multihop wireless networks. In: INFOCOM, vol. 1, pp. 702–711 (2003)

6. Dereniowski, D., Pelc, A.: Topology recognition and leader election in colored net-
works. Theoret. Comput. Sci. 621, 92–102 (2016)

7. Fineman, J.T., Gilbert, S., Kuhn, F., Newport, C.: Contention resolution on a
fading channel. In: PODC, pp. 155–164. ACM (2016)

8. Gallager, R.G.: A perspective on multiaccess channels. Technical report, DTIC
Document (1985)

9. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. Theor.
46(2), 388–404 (2006)

10. Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless net-
works. In: INFOCOM (2006)

11. Newport, C.C.: Radio network lower bounds made easy. CoRR, abs/1405.7300
(2014)

12. Willard, D.E.: Log-logarithmic selection resolution protocols in a multiple access
channel. SIAM J. Comput. 15(2), 468–477 (1986)

Token Traversal in Ad Hoc Wireless Networks
via Implicit Carrier Sensing

Tomasz Jurdzinski(B), Michal Rozanski, and Grzegorz Stachowiak

Institute of Computer Science, University of Wroc�law, Wroc�law, Poland
tju@cs.uni.wroc.pl

Abstract. Communication problems in ad hoc wireless networks have
been already widely studied under the SINR model, but a vast major-
ity of results concern networks with constraints on connectivity, so
called strongly-connected networks. What happens if the network is not
strongly-connected, e.g., it contains some long but still viable “shortcut
links” connecting transmission boundaries? Even a single broadcast in
such ad hoc weakly-connected networks with uniform transmission pow-
ers requires Ω(n) communication rounds, where n is the number of nodes
in the network. The best up-to-date (randomized) distributed algorithm,
designed by Daum et al. [10], accomplishes broadcast task in O(n log2 n).
In this work we show a novel deterministic distributed implementation of
token traversal in the SINR model with uniform transmission powers and
no restriction on connectivity. We show that it is efficient even in a very
harsh model of weakly-connected networks without GPS, carrier sensing
and other helping features. We apply this method to span a traversal tree
and accomplish broadcast in O(n log N) communication rounds, deter-
ministically, provided nodes are equipped with unique IDs in the range
[1, N] for N ≥ n. This result implies an O(n log n)-round randomized
solution that does not require IDs, which improves the result from [10].
The lower bound Ω(n log N) for deterministic algorithms proved in our
work shows that our result is tight without randomization. Our imple-
mentation of token traversal routine is based on a novel implicit algo-
rithmic carrier sensing method and a new type of selectors, which might
be of independent interest.

Keywords: Wireless ad hoc networks · SINR · Token traversal
Broadcast · Deterministic and randomized algorithms
Algorithmic carrier sensing · Selectors · BTD trees

1 Introduction

We study distributed algorithms in ad hoc wireless networks in the SINR model
with uniform transmission powers. We consider an ad hoc setting, where both

The work of the first and the third author was supported by the Polish National
Science Centre grant DEC-2012/07/B/ST6/01534 and the work of the second author
was supported by the Polish National Science Centre grant 2014/13/N/ST6/01850.

c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 15–33, 2017.
https://doi.org/10.1007/978-3-319-72050-0_2

16 T. Jurdzinski et al.

capability and knowledge of nodes are limited — nodes know only the basic
parameters of the SINR model (i.e., α, β,N , P, to be defined later). We assume
that each node knows its distinct ID and the range of IDs [N] = {1, . . . , N}.
Such setting appears in networks without predefined infrastructure of base sta-
tions, access points, etc. It reflects various real scenarios, such as: large sets of
sensors distributed in an area of rescue operation, environment monitoring, or
prospective internet of things applications.

Token traversal. We focus on the problem of token traversal, in which a software-
defined token needs to visit all (or a subset of) nodes in the network. More
precisely, in the beginning there is a distinguished node, called a source, which
has a status of the token owner. In each round only one node can have a status
of the token owner. The ownership of the token can be passed to a neighbor
via a message; in wireless network, however, it can be challenging to select an
unvisited neighbor to which the token can be passed, due to ad hoc structure and
interferences. The token traversal is accomplished if every participating node has
been a token owner for at least one round. Token traversal is a fundamental task
in distributed system, and a tool of building algorithms to solve more complex
communication and computation tasks.

Broadcast problem. The broadcast problem was extensively studied in the model
of graph-based radio networks over the years, while distributed algorithms for
the SINR model have been presented only in recent years. However, all these
solutions were either randomized, or relied on the assumption that nodes of a
network know their own coordinates in a given metric space (GPS), or used
carrier sensing capabilities or the advantage of power control (ability to change
transmission power).

Challenges and our approach. Almost all communication algorithms analyzed in
the SINR model assumed strong connectivity of a network. That is, connectivity
of a network is guaranteed by links (u, v) such that efficient transmission from u
to v (and from v to u) is possible provided interference at v caused by other nodes
of a network is limited by some fixed constant. Our aim is to provide solutions
which work in the most harsh and general scenario, when connectivity might
rely on weak links and thus allow for efficient transmissions only in the case of
no other (or at least very small number of) transmitters in the whole network; it
is called a weakly-connectivity model, and subsumes the strong-connectivity one.
Moreover, we assume that communicating devices have very limited capabilities,
in particular, they do not use randomization, availability of locations, carrier
sensing, or power control. The key challenge in design of algorithms for the model
considered in this paper is the assumption that nodes of a network have initially
no information about network topology. The fact that nodes use a single wireless
channel and therefore their messages might collide is an additional obstacle for
efficient communication.

Our results. We present a deterministic algorithm that traverses a token along
any (even weakly-connected) wireless ad hoc network, under the uniform-power

Token Traversal in Ad Hoc Wireless Networks via Implicit Carrier Sensing 17

SINR, in amortized O(log N) rounds. More specifically, the token is propagated
along a specific spanning tree, called a BTD (Breadth-Then-Depth) tree in time
proportional to the number of participants multiplied by O(log N). It can be
applied to perform broadcast in weak connectivity ad hoc networks in O(n log N)
communication rounds, and is supported by a corresponding lower bound. Our
result implies O(n log n) randomized algorithm with high probability (i.e., with
probability polynomially close to 1), even if IDs are not available (see Sect. 7),
which improves the O(n log2 n) algorithm of Daum et al. [10].

We also introduce new tools, which might be applicable in different scenar-
ios and problems. Firstly, inspired by Echo procedure that simulates collision
detection in radio networks [33], we introduce a kind of implicit carrier sensing
allowing fast testing of emptiness of sets. Secondly, in order to efficiently select
nodes from dense areas of a network, we introduce a new combinatorial structure
called a witnessed strong selector.

Related work. The SINR model was extensively studied recently, both from
the perspective of its structural properties [17,25,26] and design of algorithms
[10,13–15,18,19,21,24,27,36,37]. First wave of algorithmic research on commu-
nication under SINR constraints focused on local problems. This includes in
particular the local broadcast and link scheduling [13,16,28,29,37].

Token-based algorithms were considered in related models of multiple-access
channel and radio networks, e.g., [3,31]. In radio networks, an O(log N) pro-
cedure of token passing was presented in [6,34], and combined with the BTD
tree traversal. In the SINR model of weak devices subsumed by and less com-
plex than the weak-connectivity model, efficient implementation of a token was
provided [31].

A few deterministic solutions are known for the broadcast problem, most of
them use information about location of nodes and assume strong connectivity.
Broadcast can be accomplished deterministically in time O(D log2 n) in such
setting [23,24], where D is the diameter of the communication graph. The ran-
domized results on broadcast in ad hoc settings include [10,22]. Solutions with
complexity, respectively O((D log n) logα+1 g) and O(D log2 n) are presented for
strong connectivity networks, where g is a parameter depending on the geometry
of the network. Recently Halldorsson et al. [14] proposed an algorithm which can
be faster assuming that nodes are equipped with some extra capabilities.

For weak connectivity networks Daum et al. have provided Ω(n) lower bound
for broadcast, even in 2-broadcastable networks. They also showed that the
problem can be solved in O(n log2 n) time with high probability.

In the related multi-hop radio network model on symmetric networks, the
broadcast problem is well examined [1,2,9,11,12,30,32,35].

Due to limited space, we defer some proofs to the full version of the paper.

2 The Network Model

We consider a wireless single-channel network consisting of nodes located on the
2-dimensional Euclidean plane, where interferences are modeled according to

18 T. Jurdzinski et al.

SINR (Signal-to-Interference-and-Noise Ratio) constraints. The model is deter-
mined by fixed parameters: path loss α > 2, threshold β > 1, ambient noise
N > 0 and transmission power P. Given nodes u, v and a set of concurrently
transmitting nodes T , the value of SINR(v, u, T) is defined as

SINR(v, u, T) =
P · d(v, u)−α

N +
∑

w∈T \{v} P · d(w, u)−α
(1)

where d(x, y) denotes the distance between locations of x and y.
A node u successfully receives a message from v iff v ∈ T and

SINR(v, u, T) ≥ β, where T is the set of nodes transmitting at the same time.
Transmission range is the maximal distance at which a node can be heard pro-
vided there are no other transmitters in the network. Without loss of generality
we assume that the transmission range is equal to 1. This assumption implies
that the relationship P = Nβ holds. However, it does not affect generality and
asymptotic complexity of presented results.

Communication graph. The communication graph G = (V,E) of a given network
consists of all nodes from V and edges {v, u} between nodes that are within
distance of at most 1, i.e., {v, u} ∈ E iff d(u, v) ≤ 1. The communication graph,
defined as above, is a weak connectivity graph [10,20].

Synchronization and content of messages. We assume that algorithms work syn-
chronously in rounds. In a single round, a node can transmit or receive a message
from other node in the network and perform local computation. A message trans-
mitted by a node in a round might contain the original broadcast message and
additional information of size O(log N).

Knowledge of nodes. Each node has a unique identifier from the set [N], where
N > n and n is the number of nodes in the network. The value of n or its
polynomial approximation is known to the nodes. Moreover, nodes know the
range of IDs space N , and the SINR parameters – P, α, β,N .

Considered problems. We consider a general token traversal problem defined
in Sect. 1. A node v �= s starts participating in an execution of an algorithm
only after receiving the first message from another node. (This is so-called non-
spontaneous wake-up model.) We also consider the broadcast problem which is
to deliver a message from the designated source node s to all the nodes in the
network, perhaps through relay nodes as not all nodes are within transmission
range of the source in multi-hop networks.

Complexity measure. Time (or round) complexity of an algorithm is the number
of rounds after which an execution of an algorithm is finished. We assume worst-
case complexity measure.

Token Traversal in Ad Hoc Wireless Networks via Implicit Carrier Sensing 19

Constructive vs non-constructive solutions. We say that an algorithm is con-
structive if the algorithm for a given value of N can be built in time polyno-
mial with respect to N . The algorithms delivered in this work are constructive,
because of the fact that our algorithms use combinatorial structures only for the
range of parameters guarantying polynomial time construction.

3 Preliminaries and Combinatorial Tools

The set of integers {1, 2, . . . , n} is denoted by [n] and {i, i + 1, . . . j} by [i, j].
A transmission schedule is defined by a sequence S = (S1, ..., St) of subsets

of [N], where the ith set determines nodes transmitting in the ith round of the
schedule. That is, a node with ID(v) ∈ [N] transmits in round i of an execution
of S if and only if v ∈ Si.

In the following, V denotes the set of nodes of a network on the plane. Thus,
each node v ∈ V is determined by its identifier ID(v) in [N] and its coordinates
on the plane. In descriptions of algorithms, ID(v) is sometimes identified with v.
Let B(x, r) denote the ball of radius r around point x on the plane. We identify
B(x, r) with the set of nodes of the network that are located inside this ball on
the plane. For a node v ∈ V , Nv = {w ∈ V | d(v, w) ≤ 1} denotes the set of
neighbors of v in the communication graph. For a > b > 0, χ(a, b) denotes the
largest possible size of a set of points X included in a ball of radius b such that
d(x, y) > a for each distinct x, y ∈ X.

A node w is in the graph distance i from v if i is the length of a shortest path
connecting w and v in the communication graph. Assume that a distinguished
source node s ∈ V is fixed. Then, Li ⊆ V denotes the set of nodes in graph
distance i from s (layer i). Thus, e.g., L0 = {s} and L1 = Ns.

We say that a node v awakes w in an execution of an algorithm if the first
message successfully received by w is sent by v.

3.1 Combinatorial Tools

In this section we introduce combinatorial tools applied in our token traversal
algorithm. A set S ⊆ [N] selects x ∈ X from X ⊆ [N] when S ∩ X = {x}.
A sequence S = (S1, . . . , St) of sets over [N] is called (N, k)-strongly selective
family (or (N, k)-ssf) if for each subset X ⊆ [N] such that |X| ≤ k, and each
x ∈ X there is i ∈ [t] such that Si selects x from X.

Lemma 1 [8]. There exists a (N, k)-ssf of size O(min{k2 log(N/k), N}) for each
k ≤ N .

Now, we introduce the notion of a witnessed strong selector, which is a gen-
eralization of strongly selective families.

20 T. Jurdzinski et al.

Witnessed strong selector. A sequence S = (S1, . . . , Sm) of sets over [N] satisfies
witnessed strong selection property for a set X ⊆ [N], if for each x ∈ X and each
y �∈ X there is a set Si ∈ S such that X ∩ Si = {x} and y ∈ Si. A sequence
S = (S1, . . . , Sm) is a (N, k)-witnessed strong selector (or (N, k)-wss) of size m
if for every subset X ⊆ [N] of size k the family S satisfies the witnessed strong
selection property for X.

Note that any (N, k)-wss is also, by definition, an (N, k)-ssf. Additionally,
(N, k)-wss guarantees that each element outside of a given set X of size k has
to be a “witness” of selection of every element from X. Below we state an upper
bound on the optimal size of (N, k)-wss.

Lemma 2. For each positive integers N and k ≤ N , there exists an (N, k)-wss
of size O(k3 log N).

Construction of witnessed strong selectors. We aim at the efficient algo-
rithm constructing a (N, k)-wss for a constant k. Our solution is inspired by
the algorithm of Clementi et al. [7], which employs the technique of conditional
probabilities.

Lemma 3. For each integers 0 < k < N , a (N, k)-wss of size O(k3 log N) can
be constructed in time NO(k); in particular, it can be constructed in polynomial
time for any k = O(1).

3.2 SINR Related Properties

We say that distinct nodes u, v ∈ A form a closest pair of nodes (u, v) in the set
A if d(u, v) = minx,y∈A,x �=y{d(x, y)} ≤ 1/2.1

Below, we state the fact that u can hear v if (u, v) is a closest pair, v is
transmitting and there is no other transmitter in distance O(d(u, v)), where the
constant hidden in the big-O notation is determined by SINR parameters.

Lemma 4. There exists a constant κ0 (which depends merely of the SINR para-
meters) which satisfies the following property. Let u, v be a closest pair of nodes,
d(u, v) = d < 1/2 in A. If u is the only transmitter in B(v, κ0 ·d), then v receives
the message from u.

Using Lemma 4, the bound on the optimal size of witnessed strong selectors
(Lemma 2) and the def. of a closest pair, one can obtaind the following corollaries.

Corollary 1. There exists a constant κ (which depends merely of the SINR
parameters) which satisfies the following property. Let u, v be a closest pair of
nodes in A, d(u, v) = d < 1/2. Then, there exists a set A′ ⊆ A such that
u, v ∈ A′, |A′| ≤ κ and v receives a message transmitted by u provided no other
element of A′ is sending a message at the same time.

Corollary 2. There exists a transmission schedule S of size O(log N) such that,
for each closest pair (u, v) from a set A, u receives a message from v during an
execution of S on A.
1 Note that there is no closest pair in A according to this definition if d(x, y) > 1/2

for each distinct x, y ∈ A.

Token Traversal in Ad Hoc Wireless Networks via Implicit Carrier Sensing 21

4 High Level Idea of the Algorithm

Our token traversal algorithm builds a spanning tree of the communication graph
of a network, where the source node s (the initial holder of the token) is the
root. Each node, after receiving the token, transmits the broadcast and awake
message. If a node u is awaken by v (i.e., u receives the first message from v), u
becomes a child of v and v is the parent of u. After sending the broadcast and
awake message, the token holder learns all its newly-awaken neighbors, who have
become its children. After that, the token holder passes the token sequentially
to all its children. Finally, it passes the token back to its parent. The algorithm
ends when the source receives the token back from all its children. A similar
approach, resembling both dfs and bfs, has appeared in the context of radio
networks [6] under the name Breadth-Then-Depth (BTD) search.

The most challenging part for a design of the above strategy in the model
considered in this paper is to learn the children of a token holder. To this aim,
we consider the full selection problem: for a given node v and a set X of its
neighbors unknown to v, the node v should learn the set X. Using appropriate
novel selectors, and the idea of local leader election in the uniform SINR model
[24], we can assure that full selection is done in O(log2 N + |X| log N) rounds.
As each node becomes the child of only one other node, an application of full
selection at each node (when it receives the token for the first time) would give
O

(∑
v∈V (log2 N + |children(v)| log N)

)
= O(n log2 N) time algorithm. In order

to improve time complexity to O(n log N), we will reduce full selection time from
O(log2 N + |X| log N) to O(log N + |X| log N). To this aim, we apply a kind of
implicit carrier sensing. Thanks to that tool, we can check whether X is empty
in O(log N) rounds and reduce complexity of full selection to O((|X|+1) log N).

Below, we discuss the technical ingredients of our solutions in more detail.

Network sparsification. As discussed above, each node v is supposed to deter-
mine its neighbors awaken by it after receiving the token, in the procedure called
the full selection (Algorithm5). To this aim we apply the sparsification technique
presented in Sect. 5.2. Assume that X �= ∅ is the set of neighbors of v which
should be learnt by v. The idea is to execute a short schedule (of size O(log N))
on X which guarantees that nodes from closest pairs (and possibly some other
nodes) exchange messages. Then, a graph defined by successful exchanges of mes-
sages is built and a non-empty matching is determined in this graph. Finally,
one node from each matched pair is chosen to be a member of a “sparsified” set.
As such a procedure gives the sparsified set of size at most |X|/2, r = O(log |X|)
repetitions of this procedure gives a set of size O(1). Then, the only element(s)
of the sparse set can report all r elements matched with them. Thus, r ele-
ments of X are reported in amortized time O(log N) per an element. In order to
implement this technique efficiently under SINR constraints, we have introduced
witnessed strong selectors (Sect. 3.1).

Implicit carrier sensing. As mentioned before, we use so-called implicit carrier
sensing in order to quickly verify whether the set of nodes awaken by a given
node v is (not) empty. More generally, implicit carrier sensing technique allows

22 T. Jurdzinski et al.

for checking emptiness of a set X ⊆ Nv, provided two auxiliary nodes v1, v2 are
known such that d(v, v1) ≤ 1, d(v1, v2) ≤ 1 and d(v, v2) > 1 (see Subsect. 5.1 for
details). Our implementation of the token traversal algorithm will assure that
d(v,parent(v)) ≤ 1 and d(v,parent(parent(v))) > 1 for each v in graph-distance
at least 2 from the source s. Thus, the auxiliary nodes can be v1 = parent(v)
and v2 = parent(parent(v)). This however does not apply to the source s (it does
not have the parent) and its neighbors (there is no parent(parent(v)) for each
v ∈ Ns). Therefore, we have to handle {s} ∪ Ns separately, using less efficient
emptiness test and a more complex algorithm.

5 Implicit Carrier Sensing and Network Sparsification

In this section we introduce key tools applied in our token-traversal algorithm:
implicit carrier sensing and sparsification. We present them separately, as we
think they might be applicable in other problems in wireless ad hoc networks.

5.1 Implicit Carrier Sensing

Consider the problem that a node v is going to verify quickly whether some set
X ⊆ Nv is empty. Each node x knows whether x ∈ X but nodes do not have
any information regarding other elements of X. At the end of an execution of
an algorithm, v should know whether X = ∅. This problem has been solved
efficiently by so-called Echo procedure in the symmetric radio networks model,
provided the node v knows some neighbor w �∈ X already [33]. We develop
an analogous tool for SINR networks, which provides a limited carrier sense
capability.

Assume that v, v1, v2 are fixed such that v is a neighbor of v1 and v1 is a
neighbor of v2. Moreover, at least one of distances d(v, v1), d(v1, v2) is not smaller
than 1/2. Then, we can test emptiness of X by checking if

– v receives the message from v1 when v1 transmits together with X, and
– v1 receives the message from v2 when v2 transmits together with X.

More precise description of the procedure is given as EmptinessTest below (see
Algorithm 1). The first idea is that successful transmissions in both rounds cor-
respond to the fact that X is empty. However, if X is small and v is very close
to v1 or v1 is very close to v2, it might be the case that interference from X does
not prevent successful transmissions in both rounds under SINR constraints.
Therefore, we need a more involved algorithm and analysis. The constant cα,β

in the algorithm is equal to the smallest number c such that c transmitting nodes
located in distance (at most) 2 from a given node u produce interference which
prevents reception by u of a message transmitted from distance ≥ 1/2.

Token Traversal in Ad Hoc Wireless Networks via Implicit Carrier Sensing 23

Algorithm 1. EmptinessTest(v, v1, v2,X)
Assumptions: d(v, v1) ≤ 1, d(v1, v2) ≤ 1, d(v, v1) ≥ 1/2 or d(v1, v2) ≥ 1/2, X � Nv,
v1, v2 �∈ X.
Let cα,β be the smallest natural number such that P/(1/2)α

N+cα,βP/2α < β.

1: Round 1: v1 and all elements of X transmit a message
2: Round 2: v2 and all elements of X transmit a message
3: Round 3: if v1 received a message in Round 2 then v1 transmits a message
4: if v received a message in Round 1 and v received a message in Round 3 then
5: execute (N, cα,β)-ssf on all elements of X
6: if v received a message: return false
7: else return true
8: else
9: return false

Lemma 5. EmptinessTest works in O(log N) rounds. Moreover, if d(v, v1) ≤ 1
and d(v1, v2) ≤ 1 and (d(v, v1) ≥ 1/2 or d(v1, v2) ≥ 1/2) then
EmptinessTest(v, v1, v2,X) returns true if and only if the set X ⊆ Nv is empty.

5.2 Network Sparsification

In this section we develop a tool for fast selection of elements of a set of nodes.
The particular problem of network sparsification is as follows: given a non-empty
set X of nodes inside B(v, 1) such that at least two nodes are within distance
1/2, choose a subset Y of X such that 1 ≤ |Y | ≤ |X|/2. The idea is to use a short
schedule which guarantees that close neighbors exchange messages (see Corol-
lary 2), implicitly build a graph corresponding to these two-way transmissions,
choose a non-empty matching in such a graph, and select one element from each
matched pair.

As a direct application of Corollary 2 does not give a satisfying time com-
plexity, we then introduce the notion of proximity graph and show how to build
it with aid of witnessed strong selectors efficiently.

Exchange graphs. We define the notion of exchange graph which describes all
possible exchange of messages between nodes during an execution of a schedule
T . For a given schedule T and the set of nodes V , an exchange graph GT is a
graph on V , such that {u,w} is an edge in GT iff there is a successful transmission
in both directions between u and w during T .

We say that a distributed protocol builds GT if, as a result of an execution
of this protocol on a given network, each node knows its neighbors in GT . Note
that, after a single execution of T , each node v knows nodes whose messages are
successfully received by v. However, in order to determine its neighbors in GT ,
v also needs to know which nodes received its message.

In order to provide this information to all nodes, we can apply the follow-
ing algorithm, called ExGraphConstructionT : first, each node v enumerates the
senders u1, . . . , up of all messages received during T ; then, one can repeat |T |
times the schedule T , where each node transmits ui in the ith repetition of T .

24 T. Jurdzinski et al.

Lemma 6. ExGraphConstructionT builds the exchange graph GT in O(|T |2)
rounds. Moreover, if the maximal degree δ of GT is known to nodes in advance,
the algorithm works in O(|T |δ).

Proximity graphs. The idea behind our network sparsification algorithm is to
build a graph on nodes of an input set X containing a closest pair as an edge,
find a matching in that graph and choose one element of each matched pair as
an element of the output Y . To do this, a fast protocol which produces a non-
empty graph is needed, provided there is a closest pair in the input set of nodes.
Let proximity graph of a given set of nodes be any graph on this set such that
vertices of each closest pair u, v are connected by an edge (while the graph may
contain more edges).

By Corollary 1 we know that, in an execution of (N,κ)-ssf, nodes of each clos-
est pair exchange messages. Thus, by Lemma 6, ExGraphConstructionT builds
a proximity graph in O(log2 N) rounds, where T is an (N,κ)-ssf of length
O(κ2 log N) = O(log N) (see Theorem 1).

Our goal is to build a proximity graph faster. Our construction builds on
the following observations. First, if u can hear v during an execution of T in a
round in which w is transmitting as well, then u,w is for sure not a closest pair.
Second, by Corollary 1, given a closest pair (u, v), u can hear v in a round in
which v transmits and none of the other κ closest to u nodes transmits.

Given an (N,κ)-wss S for the constant κ from Corollary 1, one can build
a proximity graph of degree κ = O(1) in O(log N) rounds using the following
distributed algorithm called ProximityGraphConstruction at a node v:

– Execute S.
– Determine the set Cv of all nodes u such that v has received a message from

u during S and v has not received any other message in rounds in which u is
transmitting (according to S).

– If |Cv| > κ, then remove all elements from Cv.
– Send information about the content of Cv to other nodes in consecutive |Cv|

repetitions of S.
– Choose as neighbors in the final graph the set Ev of all elements w ∈ Cv st

v ∈ Cw.

Lemma 7. Let X ⊆ V be a set of nodes. Then ProximityGraphConstruction
executed on X builds a proximity graph H(X) of constant degree in O(log N)
rounds.

Handshakes and sparsification. Let H(X) denote the proximity graph resulting
from the ProximityGraphConstruction procedure executed by nodes from X.
We assume that X contains nodes from a closest pair, thus H(X) contains at
least one edge (Lemma 7). Recall that our goal in this section is to choose a
nonempty subset of X of size at most |X|/2. The idea is to build a non-empty
matching on H(X) and choose exactly one node per each matched pair. We say
that nodes chosen by our procedure survive. For further applications, for each

Token Traversal in Ad Hoc Wireless Networks via Implicit Carrier Sensing 25

node v which survives the procedure, we store its removed counterpart in the
local variable p(v).

Algorithm 2 finds a non-empty matching in a proximity graph H(X) build by
ProximityGraphConstruction (provided the set of edges of H(X) is not empty)
by connecting each pair of neighbors (v, w) such that v is the local minimum
(its ID is smaller than IDs of its neighbors) and v has the smallest ID among
neighbors of w in H(X).

Algorithm 2. Handshake(X) � Remark: an execution at v ∈ X

1: v executes ProximityGraphConstruction(v) using (N, κ)-wss S � see L. 7
2: if Ev = ∅: v does not participate in further steps.
3: minv ← minu∈Ev {ID(u)}
4: Execute S, where:

if ID(v) < minv: v transmits the message m = 〈handshake, ID(v), minv〉
� v is a local minimum;

if ID(v) > minv: v transmits the message m = 〈match, ID(v), minv〉
5: if ID(v) < minv and v received the message 〈match, minv, ID(v), 〉 then
6: p(v) ← minv

7: status(v) ← survived
8: else
9: status(v) ← eliminated

10: v is switched off

Lemma 8. Let X ⊆ V be a subset of a network. Let Y ⊆ X be the set of nodes
that survived Handshake(X) (see line 7 of Algorithm2). If there exists a closest
pair in X then 1 ≤ |Y | ≤ |X|/2. Moreover, for each v ∈ Y , p(v) ∈ X \ Y . The
round complexity of Handshake procedure is O(log N).

6 Token Traversal Algorithm

In this section we describe our token traversal algorithm. As it gives also imme-
diate solution to the broadcasting problem, we present the algorithm in terms
of the broadcasting task.

At the beginning of the main algorithm (Algorithm3), the source s wakes up
all its neighbors (which become its children). Then, the general idea is that each
node v, after receiving the token, learns its children (nodes awaken by v) using
FullSelection (Algorithm 5) and passes the token to them. As our time bound for
FullSelection(v,X) for v ∈ L1 and X ⊆ Nv is O(log2 N + |children(v)| log N) –
see Lemma 10, this approach guarantees time O(n log2 N) (and it might be
Ω(n log2 N) if |L1| = Ω(n)). In order to achieve a better bound, the nodes from
L1 learn their children in a different way.

After the initial transmission by s, it learns the whole set of its neighbors
Ns = L1, using FullSelection. Then, s allows each v ∈ Ns = L1 to transmit
separately which wakes up all elements of L2 and set the parent from L1 for

26 T. Jurdzinski et al.

each element of L2. The goal of HandleSecondLayer is to select all elements of
L2, allow each of them to transmit separately which in turn gives information
to each w ∈ L1 about all its children. As mentioned earlier, we do not want to
implement this task by calling FullSelection for each v ∈ L1, as it would increase
time complexity to the order of n log2 N . We postpone the exact description of
HandleSecondLayer and discuss the remaining part of the algorithm and its sub-
routines. After handling the second layer, a standard token traversal algorithm
starts from the source (Algorithm 4), where each node from {s} ∪ L1 already
knows its children, while each other node v �∈ {s} ∪ L1 learns children(v) using
FullSelection.

Algorithm 3 contains pseudo-code of our main algorithm. Then, procedures
called in the main algorithm are presented in the top-down fashion.

Remark. In pseudo-codes, we use set theoretic operations, e.g., A ← X \Y . Such
notation describes local decisions of nodes and means that each x knows whether
it belongs to X and Y and therefore it can determine if it belongs to A.

Algorithm 3. BroadcastWithToken(s)
Initially for each node u parent(u) = ⊥ and layer(v) = 0.

1: Transmit 〈hello, s〉
2: FullSelection(s, L1)
3: HandleSecondLayer
4: TokenTraversal(s)

if a node w receives 〈hello, v〉 and parent(w) = ⊥ then
parent(w) ← v
layer(w) ← layer(v) + 1

Algorithm 4. TokenTraversal(v)
1: Transmit 〈hello, v〉
2: if layer(v) > 1 then
3: FullSelection(v, {w | parent(w) = v})

4: for each w ∈ children(v) do
5: Transmit 〈token, w〉 � pass the token to w
6: Wait until receiving a message 〈release, v〉 � Token is back at v

7: Transmit 〈release, parent(v)〉 � pass the token to the parent of v

In the following, we describe the main subroutine FullSelection called at
each node v �∈ L1. FullSelection(v,X) repeats procedure PartialSelection several
times, until all elements of X are selected, i.e., each of them transmits a message
received by v. An execution of PartialSelection(v,X) results in reporting r > 0

Token Traversal in Ad Hoc Wireless Networks via Implicit Carrier Sensing 27

elements of X in O(r log N) rounds, provided X is not empty. In the case that
X is empty, PartialSelection(v,X) ends in O(log N) rounds when v �∈ {s} ∪ L1

and in O((log n) · (log N)) rounds otherwise.
The procedure PartialSelection (Algorithm 6) executes Handshake several

times. (An alternative for partial selection might be e.g. by (N, k, k/2)-selectors
[4] for k = 2, 4, 8, . . . , 2log n. However, no constructive solutions with optimal
size are known for them.) Handshake(X) sparsifies the set X. As Handshake is
always executed on X ⊆ Nv for a reference node v, X is contained in a ball of
radius 1. Let m = |X|. If m is smaller than χ(1/2, 2), then each element of X
transmits separately (see line 6 of Algorithm 6). Otherwise, there exists a closest
pair of nodes in X, and some elements are removed from X such that the size
of X after the execution is in the range [1,m/2] (see Lemma 8). In this way at
least one element of X is selected in O(log |X|) executions of Handshake.

However, our goal is to select one element per each execution of Handshake
on the average. Fortunately, each node v which survives the ith execution of
Handshake has associated the unique element p(v) which has survived the first i−
1 executions of Handshake and has not survived the ith execution (see Lemma 8).
The node v stores such elements in P (v).

Algorithm 5. FullSelection(v,X) � v learns all elements of X

1: Y ← X, w ← v, children(v) ← ∅
2: while w �= ⊥ do
3: w ← PartialSelection(v, X)
4: Y ← P (w) � if w �= ⊥, w broadcasts P (w) in |P (w)| + 1 rounds
5: X ← X \ Y
6: children(v) ← children(v) ∪ Y � v learns Y in step 4

Lemma 9. 1. Assume that X ⊆ Nv is not empty. Then, PartialSelection(v,X)
is finished after O(r log N) rounds for 0 < r ≤ log n and v has received a message
from w ∈ X such that P (w) ⊆ X and |P (w)| = r.
2. PartialSelection(v,X) for X = ∅ works in O(log N) rounds for v �∈ L0 ∪ L1

and in O((log n) · (log N)) rounds for v ∈ L0 ∪ L1. Moreover, v is aware of the
fact that X = ∅ after the execution of PartialSelection(v,X) for X = ∅.

To summarize, we state the following properties of FullSelection.

Lemma 10. Let X ⊆ Nv. Then, v knows all elements of X after an execution
of FullSelection(v,X). Moreover, each u ∈ X transmits uniquely at some round
of FullSelection(v,X). The execution time is O(|X| log N+f(N)), where f(N) =
O(log N) if v �∈ L0 ∪ L1 and f(N) = O((log n) · (log N)) otherwise.

Handling the second layer. Recall that each node from L0 ∪ L1 is the only
transmitter in some round during steps 1. and 2. of the main algorithm (Algo-
rithm3). The nodes from L2 are awaken in this way and they know their parents
from L1.

28 T. Jurdzinski et al.

Algorithm 6. PartialSelection(v,X) � Assumption: X ⊆ Nv

1: if v �∈ L0 ∪ L1 then � L0 = {s}, L1 = Ns

2: if EmptinessTest(v, parent(v), parent(parent(v)), X): return ⊥
3: r ← 1
4: for each w ∈ X: P (w) ← ∅
5: repeat
6: Execute (N, k)-ssf on X for k = �χ(1/2, 1) + 1.
7: if v received a message from some node w during step 6 then
8: return w � i.e., v transmits a message which ends the procedure

9: Handshake(X)
10: for each w: if w survived Handshake(X): P (w) ← P (w) ∪ {p(w)}
11: for each w: if w did not survive Handshake(X): w remove itself from X
12: r ← r + 1
13: until r = log N � until r = log n if n is known
14: return ⊥

Now, we describe HandleSecondLayer subroutine which assures that each
node v ∈ L2 is a unique transmitter in some round (and it transmits ID of its
parent in each transmission). In this way the nodes from L1 learn about their
children.

To achieve the above stated goal, we repeat the following procedure. First,
the leader v in L2 is elected and, all elements of Nv ∩ L2 are selected using
FullSelection(v,Nv ∩ L2). Then, all selected elements are removed from consid-
eration and the process is repeated until no unselected elements in L2 remain.
As the consecutive leaders are in distance > 1 to each other, this process finishes
after at most χ(1, 2) elections of the leader. More formal presentation of this
idea is given in Algorithm7.

Algorithm 7. HandleSecondLayer � Assumption: each v knows if v ∈ L2

1: L ← L2 � Initially, L is the second layer
2: c ← χ(1, 2)
3: for i=1,2,. . . ,c do
4: v ← Leader(L)
5: v transmits 〈leader, v〉
6: X ← {w | w received the message leader}
7: FullSelection(v, X)
8: L ← L \ X

Now, we provide an efficient implementation of leader election in line 4 of
Algorithm 7. We require that exactly one element x ∈ X has the status leader
as a result of a leader election algorithm. (Observe that we do not require that
all elements of X know ID of the node with status leader.)

Token Traversal in Ad Hoc Wireless Networks via Implicit Carrier Sensing 29

The idea of the leader election procedure (Algorithm8) is to repeat Hand-
shake several times in order to sparsify the input set X, as in PartialSelection.
In this way, some node w ∈ X will be the only transmitter at some round, after
O(log N) repetitions of Handshake. The problem is that the unique transmitter
w might be unaware of its uniqueness. If all elements of X were also in Nv for a
distinguished node v, then v could confirm reception of a message from w and
inform in this way w that it was the leader2. As the set of nodes X ⊂ L2 exe-
cuting the leader election procedure is not necessarily a subset of Nv for any v,
PartialSelection does not give a solution to the leader election problem directly.
Instead, we use the fact that each node v ∈ X knows parent(v) ∈ L1. We assure
that each node v ∈ L1 that hears its child w ∈ L2, tries to report this fact to
the source. If the source node receives such a message at some time, it chooses w
to be the leader and passes this information through v = parent(w) to w. This
is guaranteed to happen when w was the unique transmitter in L2, and it will
happen eventually for some w ∈ L2 in at most log n) executions of the for-loop
in Algorithm 8.

Algorithm 8. Leader(L) � Assumption: parent(x) ∈ L1, x ∈ L2 for each x ∈ L

1: leader(v) ← false for all v ∈ L
2: elected ← false � elected is a local variable stored at s
3: for i = 1, 2, . . . , log n do
4: Execute (N, k)-ssf for k = �χ(1/2, 2) + 1, each transmission is followed by:

Round 1:
if w ∈ L1 received a message from its child x ∈ L2:

w transmits 〈leader-proposal, x, w〉
Round 2:
if elected=false and s received 〈leader-proposal, x, y〉:

s transmits 〈leader-elect, x, y〉; elected ← true
Round 3:
if w ∈ L1 received a message 〈leader-elect, x, w〉: w transmits 〈leader-elect, x〉.

5: if x ∈ L received a message 〈leader-elect, x〉 in Round 3: leader(x) ← true
6: Handshake(L)
7: L ← nodes from L which survived Handshake(L)

Proposition 1. Let L ⊆ L2 be a set of nodes such that parent(parent(x)) = s
and parent(x) ∈ L1 ∩ Nx for each x ∈ L. Then, Leader(L) solves the leader
election problem on L in O((log N) · (log n)) rounds.

Given the leader election procedure, we can prove that each node from L2

is the only transmitter in some round of HandleSecondLayer. This in turn gives
information to nodes from L1 about their children.
2 Note that, under SINR constraints, v can receive a message from some node x even

when x is not the unique transmitter in a round. However, as v “selects” the leader
and announces its choice, this does not cause any problem with uniqueness of the
leader.

30 T. Jurdzinski et al.

Lemma 11. Assume that parent(v) = s for each v ∈ L1 and parent(u) ∈ L1∩Nu

for each u ∈ L2. Then, each u ∈ L2 is the only transmitter in some round of
an execution of HandleSecondLayer. Moreover, HandleSecondLayer works in in
O(n log N) rounds. otherwise.

Theorem 1. BroadcastWithToken solves weak connectivity broadcast in the ad
hoc SINR model in O(n log N) rounds.

Proof. Lemmas 10 and 11 imply that steps 1–3 of the algorithm are finished
in time stated in the theorem. Then, the TokenTraversal algorithm builds a
spanning tree of a network, the token is passed once over each edge of this
tree in each direction which altogether takes O(n) rounds. Moreover, for each
node v �∈ L0 ∪ L1, FullSelection(v,X) is executed when v receives the token
for the first time, for X equal to the set of children of v. An execution of
FullSelection(v,X) takes O((|X|+1) log N) rounds, where X is the set of selected
elements. As each w ∈ V \ (L0 ∪ L1) is only once an element of X in an execu-
tion of FullSelection(v,X) (when v = parent(w)), the overall complexity of all
executions of FullSelection during TokenTraversal(s) is O(n log N).

7 Lower Bound and Extensions

Lower bound. Employing a similar approach as in [5], we build a network of
linear diameter such that it takes at least Ω(n log N) rounds to broadcast a
message.

Theorem 2. For any deterministic algorithm A and n < N/6, there exists a
network N of size 3n+1 on the plane such that it takes Ω(n log N) rounds before
A completes the broadcast in N in a weakly connected SINR network.

Randomized algorithm. In [10] the authors proposed a randomized algorithm
that solves broadcast in time O(n log2 n) and a lower bound of Ω(n). Our result
fits into the scenario presented therein provided each node picks a random ID
in range [1, n3] and performs the deterministic algorithm, which works as long
as the IDs are different (this is true with high probability). Thus, our solution
is O(n log n).

Constructive solution. We need (N, k)-wss only for constant values of para-
meter k. Thus, by Lemma 3, the actual algorithm for fixed N can be determined
in time polynomial with respect to N .

8 Conclusions

We presented a novel token traversal algorihm in weakly-connected ad hoc net-
works under the uniform-power SINR model, leading to asymptotically optimal
deterministic spanning tree and broadcast algorithm and a nearly-optimal ran-
domized solution improving [10]. The token traversal occurred to be efficient for
spanning tree and broadcast problem, therefore we conjecture that it could play
a substantial role in algorithmics in general class of ad hoc wireless networks.

Token Traversal in Ad Hoc Wireless Networks via Implicit Carrier Sensing 31

Acknowledgments. The authors would like to thank Darek Kowalski for fruitful
discussions and his comments on the paper.

References

1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. J.
Comput. Syst. Sci. 43(2), 290–298 (1991)

2. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: an exponential gap between determinism and random-
ization. J. Comput. Syst. Sci. 45(1), 104–126 (1992)

3. Bienkowski, M., Jurdzinski, T., Korzeniowski, M., Kowalski, D.R.: Distributed
online and stochastic queuing on a multiple access channel. In: Aguilera, M.K. (ed.)
DISC 2012. LNCS, vol. 7611, pp. 121–135. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33651-5 9

4. Bonis, A.D., Gasieniec, L., Vaccaro, U.: Optimal two-stage algorithms for group
testing problems. SIAM J. Comput. 34(5), 1253–1270 (2005)

5. Bruschi, D., Pinto, M.D.: Lower bounds for the broadcast problem in mobile radio
networks. Distrib. Comput. 10(3), 129–135 (1997)

6. Chlebus, B.S., Kowalski, D.R., Pelc, A., Rokicki, M.A.: Efficient distributed com-
munication in ad-hoc radio networks. In: Aceto, L., Henzinger, M., Sgall, J. (eds.)
ICALP 2011. LNCS, vol. 6756, pp. 613–624. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22012-8 49

7. Clementi, A.E.F., Crescenzi, P., Monti, A., Penna, P., Silvestri, R.: On computing
ad-hoc selective families. In: Goemans, M., Jansen, K., Rolim, J.D.P., Trevisan,
L. (eds.) APPROX/RANDOM-2001. LNCS, vol. 2129, pp. 211–222. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-44666-4 24

8. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks. In: SODA 2001, pp. 709–718 (2001)

9. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown
topology. In: FOCS, pp. 492–501. IEEE Computer Society (2003)

10. Daum, S., Gilbert, S., Kuhn, F., Newport, C.: Broadcast in the ad hoc SINR model.
In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 358–372. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41527-2 25

11. De Marco, G.: Distributed broadcast in unknown radio networks. SIAM J. Comput.
39(6), 2162–2175 (2010)

12. Emek, Y., Gasieniec, L., Kantor, E., Pelc, A., Peleg, D., Su, C.: Broadcasting
in UDG radio networks with unknown topology. Distr. Comput. 21(5), 331–351
(2009)

13. Goussevskaia, O., Moscibroda, T., Wattenhofer, R.: Local broadcasting in the phys-
ical interference model. In: DIALM-POMC 2008, pp. 35–44. ACM (2008)

14. Halldórsson, M.M., Holzer, S., Lynch, N.A.: A local broadcast layer for the SINR
network model. In: PODC 2015, ADM, pp. 129–138 (2015)

15. Halldórsson, M.M., Mitra, P.: Nearly optimal bounds for distributed wireless
scheduling in the SINR model. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6756, pp. 625–636. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22012-8 50

16. Halldórsson, M.M., Mitra, P.: Towards tight bounds for local broadcasting. In:
Kuhn, F., Newport, C.C. (eds.) FOMC, p. 2. ACM (2012)

17. Halldórsson, M.M., Tonoyan, T.: How well can graphs represent wireless interfer-
ence? In: STOC 2015, pp. 635–644 (ACM)

https://doi.org/10.1007/978-3-642-33651-5_9
https://doi.org/10.1007/978-3-642-33651-5_9
https://doi.org/10.1007/978-3-642-22012-8_49
https://doi.org/10.1007/978-3-642-22012-8_49
https://doi.org/10.1007/3-540-44666-4_24
https://doi.org/10.1007/978-3-642-41527-2_25
https://doi.org/10.1007/978-3-642-22012-8_50
https://doi.org/10.1007/978-3-642-22012-8_50

32 T. Jurdzinski et al.

18. Hobbs, N., Wang, Y., Hua, Q.-S., Yu, D., Lau, F.C.M.: Deterministic distributed
data aggregation under the SINR model. In: Agrawal, M., Cooper, S.B., Li, A.
(eds.) TAMC 2012. LNCS, vol. 7287, pp. 385–399. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29952-0 38

19. Jurdzinski, T., Kowalski, D.R.: Distributed backbone structure for algorithms
in the SINR model of wireless networks. In: Aguilera, M.K. (ed.) DISC 2012.
LNCS, vol. 7611, pp. 106–120. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33651-5 8

20. Jurdzinski, T., Kowalski, D.R.: Distributed randomized broadcasting in wire-
less networks under the SINR model. In: Kao, M.-Y. (ed.) Encyclopedia of
Algorithms, pp. 577–580. Springer, New York (2016). https://doi.org/10.1007/
978-1-4939-2864-4 604

21. Jurdzinski, T., Kowalski, D.R., Rozanski, M., Stachowiak, G.: Distributed random-
ized broadcasting in wireless networks under the SINR model. In: Afek, Y. (ed.)
DISC 2013. LNCS, vol. 8205, pp. 373–387. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-41527-2 26

22. Jurdzinski, T., Kowalski, D.R., Rozanski, M., Stachowiak, G.: On the impact of
geometry on ad hoc communication in wireless networks. In: PODC 2014, pp.
357–366. ACM (2014)

23. Jurdzinski, T., Kowalski, D.R., Stachowiak, G.: Distributed deterministic broad-
casting in uniform-power ad hoc wireless networks. In: G ↪asieniec, L., Wolter, F.
(eds.) FCT 2013. LNCS, vol. 8070, pp. 195–209. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40164-0 20

24. Jurdzinski, T., Kowalski, D.R., Stachowiak, G.: Distributed deterministic broad-
casting in wireless networks of weak devices. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 632–644.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2 55

25. Kantor, E., Lotker, Z., Parter, M., Peleg, D.: The minimum principle of SINR: a
useful discretization tool for wireless communication. In: FOCS 2015, pp. 330–349.
IEEE (2015)

26. Kantor, E., Lotker, Z., Parter, M., Peleg, D.: The topology of wireless communi-
cation. J. ACM 62(5), 37:1–37:32 (2015)

27. Kesselheim, T.: A constant-factor approximation for wireless capacity maximiza-
tion with power control in the SINR model. In: SODA 2011, pp. 1549–1559. SIAM
(2011)

28. Kesselheim, T.: Dynamic packet scheduling in wireless networks. In: PODC 2012,
pp. 281–290. ACM (2012)

29. Kesselheim, T., Vöcking, B.: Distributed contention resolution in wireless networks.
In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 163–
178. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15763-9 16

30. Kowalski, D.R.: On selection problem in radio networks. In: PODC 2005, pp. 158–
166. ACM (2005)

31. Kowalski, D.R., Moses Jr., W.K., Vaya, S.: Deterministic backbone creation in an
SINR network without knowledge of location. CoRR, abs/1702.02460 (2017)

32. Kowalski, D.R., Pelc, A.: Broadcasting in undirected ad hoc radio networks. In:
PODC 2003, pp. 73–82. ACM (2003)

33. Kowalski, D.R., Pelc, A.: Faster deterministic broadcasting in ad hoc radio net-
works. SIAM J. Discrete Math. 18(2), 332–346 (2004)

34. Kowalski, D.R., Pelc, A.: Time of deterministic broadcasting in radio networks
with local knowledge. SIAM J. Comput. 33(4), 870–891 (2004)

https://doi.org/10.1007/978-3-642-29952-0_38
https://doi.org/10.1007/978-3-642-33651-5_8
https://doi.org/10.1007/978-3-642-33651-5_8
https://doi.org/10.1007/978-1-4939-2864-4_604
https://doi.org/10.1007/978-1-4939-2864-4_604
https://doi.org/10.1007/978-3-642-41527-2_26
https://doi.org/10.1007/978-3-642-41527-2_26
https://doi.org/10.1007/978-3-642-40164-0_20
https://doi.org/10.1007/978-3-642-39212-2_55
https://doi.org/10.1007/978-3-642-15763-9_16

Token Traversal in Ad Hoc Wireless Networks via Implicit Carrier Sensing 33

35. Kushilevitz, E., Mansour, Y.: An Ω(DLog(N/D)) lower bound for broadcast in
radio networks. In: PODC 1993, pp. 65–74. ACM (1993)

36. Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless net-
works. In: INFOCOM 2006. IEEE (2006)

37. Yu, D., Hua, Q., Wang, Y., Lau, F.C.M.: An o(log n) distributed approximation
algorithm for local broadcasting in unstructured wireless networks. In: DCOSS
2012, pp. 132–139. IEEE (2012)

Identifiers and Labelling

Short Labeling Schemes for Topology
Recognition in Wireless Tree Networks

Barun Gorain1(B) and Andrzej Pelc2

1 Indian Institute of Information Technology Vadodara,
Gandhinagar 382028, Gujarat, India

baruniitg123@gmail.com
2 Département d’informatique, Université du Québec en Outaouais,

Gatineau, Québec J8X 3X7, Canada
pelc@uqo.ca

Abstract. We consider the problem of topology recognition in wireless
(radio) networks modeled as undirected graphs. Topology recognition is a
fundamental task in which every node of the network has to output a map
of the underlying graph i.e., an isomorphic copy of it, and situate itself
in this map. In wireless networks, nodes communicate in synchronous
rounds. In each round a node can either transmit a message to all its
neighbors, or stay silent and listen. At the receiving end, a node v hears
a message from a neighbor w in a given round, if v listens in this round,
and if w is its only neighbor that transmits in this round. Nodes have
labels which are (not necessarily different) binary strings. The length
of a labeling scheme is the largest length of a label. We concentrate on
wireless networks modeled by trees, and we investigate two problems.

– What is the shortest labeling scheme that permits topology recogni-
tion in all wireless tree networks of diameter D and maximum degree
Δ?

– What is the fastest topology recognition algorithm working for all
wireless tree networks of diameter D and maximum degree Δ, using
such a short labeling scheme?

We are interested in deterministic topology recognition algorithms. For
the first problem, we show that the minimum length of a labeling scheme
allowing topology recognition in all trees of maximum degree Δ ≥ 3 is
Θ(log log Δ). For such short schemes, used by an algorithm working for
the class of trees of diameter D ≥ 4 and maximum degree Δ ≥ 3, we show
almost matching bounds on the time of topology recognition: an upper
bound O(DΔ), and a lower bound Ω(DΔε), for any constant ε < 1.

Our upper bounds are proven by constructing a topology recognition
algorithm using a labeling scheme of length O(log log Δ) and using time
O(DΔ). Our lower bounds are proven by constructing a class of trees for
which any topology recognition algorithm must use a labeling scheme of
length at least Ω(log log Δ), and a class of trees for which any topology
recognition algorithm using a labeling scheme of length O(log log Δ) must
use time at least Ω(DΔε), on some tree of this class.

A. Pelc—Partially supported by NSERC discovery grant 8136–2013 and by the
Research Chair in Distributed Computing at the Université du Québec en Outaouais.

c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 37–52, 2017.
https://doi.org/10.1007/978-3-319-72050-0_3

38 B. Gorain and A. Pelc

Keywords: Topology recognition · Wireless network
Labeling scheme · Feasibility · Tree · Time

1 Introduction

The model and the problem. Learning the topology of an unknown network
by its nodes is a fundamental distributed task in networks. Every node of the
network has to output a map of the underlying graph, i.e., an isomorphic copy
of it, and situate itself in this map. Topology recognition can be considered as a
preprocessing procedure to many other distributed algorithms which require the
knowledge of important parameters of the network, such as its size, diameter or
maximum degree. It can also help to determine the feasibility of some tasks that
depend, e.g., on symmetries existing in the network.

We consider wireless networks, also known as radio networks. Such a network
is modeled as a simple undirected connected graph G = (V,E). As it is usually
assumed in the algorithmic theory of radio networks [2,12,13], all nodes start
simultaneously and communicate in synchronous rounds. In each round, a node
can either transmit a message to all its neighbors, or stay silent and listen. At
the receiving end, a node v hears a message from a neighbor w in a given round,
if v listens in this round, and if w is its only neighbor that transmits in this
round. We do not assume collision detection: if more than one neighbor of a
node v transmits in a given round, node v does not hear anything (except the
background noise that it also hears when no neighbor transmits).

In this paper, we restrict attention to wireless networks modeled by trees,
and we are interested in deterministic topology recognition algorithms. Topology
recognition is formally defined as follows. Every node v of a tree T must output
a tree T ′ and a node v′ in this tree, such that there exists an isomorphism
f from T to T ′, for which f(v) = v′. Topology recognition is impossible, if
nodes do not have any a priori assigned labels, because then any deterministic
algorithm forces all nodes to transmit in the same rounds, and no communication
is possible. Hence we consider labeled networks. A labeling scheme for a network
represented by a tree T = (V,E) is any function L from the set V of nodes into
the set S of finite binary strings. The string L(v) is called the label of the node
v. Note that labels assigned by a labeling scheme are not necessarily distinct.
The length of a labeling scheme L is the maximum length of any label assigned
by it. We investigate two problems.

– What is the shortest labeling scheme that permits topology recognition in all
wireless tree networks of diameter D and maximum degree Δ?

– What is the fastest topology recognition algorithm working for all wireless
tree networks of diameter D and maximum degree Δ, using such a short
labeling scheme?

Our results. For the first problem, we show that the minimum length of a
labeling scheme allowing topology recognition in all trees of maximum degree
Δ ≥ 3 is Θ(log log Δ). For such short schemes, used by an algorithm working

Short Labeling Schemes for Topology Recognition in Wireless Tree Networks 39

for the class of trees of diameter D ≥ 4 and maximum degree Δ ≥ 3, we show
almost matching bounds on the time of topology recognition: an upper bound
O(DΔ), and a lower bound Ω(DΔε), for any constant ε < 1.

Our upper bounds are proven by constructing a topology recognition algo-
rithm using a labeling scheme of length O(log log Δ) and using time O(DΔ). Our
lower bounds are proven by constructing a class of trees for which any topology
recognition algorithm must use a labeling scheme of length at least Ω(log log Δ),
and a class of trees for which any topology recognition algorithm using a labeling
scheme of length O(log log Δ) must use time at least Ω(DΔε), on some tree of
this class.

These main results are complemented by establishing complete answers to
both problems for very small values of D or Δ. For trees of diameter D = 3
and maximum degree Δ ≥ 3, the fastest topology recognition algorithm using
a shortest possible scheme (of length Θ(log log Δ)) works in time Θ(log Δ

log log Δ).
The same holds for trees of diameter D = 2 and maximum degree at most Δ,
for Δ ≥ 3. Finally, if Δ = 2, i.e., for the class of lines, the shortest labeling
scheme permitting topology recognition is of constant length, and the best time
of topology recognition using such a scheme for lines of diameter (length) at
most D is Θ(log D).

Our results should be contrasted with those from [11], where topology recog-
nition was studied in a different model. The authors of [11] considered wired
networks in which there are port numbers at each node, and communication
proceeds according to the LOCAL model [21], where in each round neighbors
can exchange all available information without collisions. In this model, they
showed a simple topology recognition algorithm working for a labeling scheme
of length 1 in time O(D). Thus there was no issue of optimality: both the length
of the labeling scheme and the topology recognition time for such a scheme were
trivially optimal. Hence the authors focused on tradeoffs between the length of
(longer) schemes and the time of topology recognition. In our scenario of wireless
networks, the labeling schemes must be longer and algorithms for such schemes
must be slower, in order to overcome collisions.

Related work. Algorithmic problems in radio networks modeled as graphs were
studied for such tasks as broadcasting [2,13], gossiping [2,12] and leader election
[19]. In some cases [2,12] the topology of the network was unknown, in others
[13] nodes were assumed to have a labeled map of the network and could situate
themselves in it.

Providing nodes of a network or mobile agents circulating in it with informa-
tion of arbitrary type (in the form of binary strings) that can be used to perform
network tasks more efficiently has been proposed in [1,3–10,14,16–18,20]. This
approach was referred to as algorithms using informative labeling schemes, or
equivalently, algorithms with advice. When advice is given to nodes, two varia-
tions are considered: either the binary string given to nodes is the same for all of
them [15] or different strings may be given to different nodes [9,11], as in the case
of the present paper. If strings may be different, they can be considered as labels
assigned to nodes. Several authors studied the minimum size of advice (length

40 B. Gorain and A. Pelc

of labels) required to solve the respective network problem in an efficient way.
The framework of advice or labeling schemes permits to quantify the amount of
information that nodes need for an efficient solution of a given network problem,
regardless of the type of information that is provided.

In [3] the authors investigated the minimum size of advice that has to be
given to nodes to permit graph exploration by a robot. In [18], given a distributed
representation of a solution for a problem, the authors investigated the number
of bits of communication needed to verify the legality of the represented solution.
In [7] the authors compared the minimum size of advice required to solve two
information dissemination problems, using a linear number of messages. In [8]
the authors established the size of advice needed to break competitive ratio 2
of an exploration algorithm in trees. In [9] it was shown that advice of constant
size permits to carry on the distributed construction of a minimum spanning
tree in logarithmic time. In [12] short labeling schemes were constructed with
the aim to answer queries about the distance between any pair of nodes. In [5]
the advice paradigm was used for online problems. In the case of [20] the issue
was not efficiency but feasibility: it was shown that Θ(n log n) is the minimum
size of advice required to perform monotone connected graph clearing. In [16]
the authors studied radio networks for which it is possible to perform centralized
broadcasting in constant time. This is the only paper studying the size of advice
in the context of radio networks. In [11] the authors studied the task of topology
recognition in wired networks with port numbers. The differences between this
scenario and our setting of radio networks, in the context of topology recognition,
was discussed in the previous section.

2 Preliminaries and Organization

Throughout the paper, D denotes the diameter of the tree and Δ denotes its
maximum degree. The problem of topology recognition is non-trivial only for
D,Δ ≥ 2, hence we make this assumption from now on.

According to the definition of labeling schemes, a label of any node should
be a finite binary string. For ease of comprehension, we present our labels in
a more structured way, as either finite sequences of binary strings, or pairs of
such sequences, where each of the component binary strings is later used in
the topology recognition algorithm in a particular way. It is well known that a
sequence (s1, . . . , sk) of binary strings or a pair (σ1, σ2) of such sequences can
be unambiguously coded as a single binary string whose length is a constant
multiple of the sum of lengths of all binary strings si that compose it. Hence,
presenting labels in this more structured way and skipping the details of the
encoding does not change the order of magnitude of the length of the constructed
labeling schemes.

Let T be any rooted tree with root r, and let L(T) be a labeling scheme for
this tree. We say that a node u in T reaches r within time τ using algorithm
A if there exists a simple path u = u0, u1, · · · , uk−1, uk = r and a sequence of
integers t0 < t1 < · · · < tk−1 ≤ τ , such that in round ti, the node ui is the only

Short Labeling Schemes for Topology Recognition in Wireless Tree Networks 41

child of its parent ui+1 that transmits and the node ui+1 does not transmit in
round ti, according to algorithm A.

We define the history H(A, τ) of the root r of the tree T as the labeled
subtree of T which is spanned by all the nodes that reach r within time τ , using
algorithm A. The history H(A, τ) is the total information that node r can learn
about the tree T in time τ , using algorithm A.

3 A Lower Bound on the Length of Labeling Schemes

As mentioned in the Introduction, topology recognition without any labels can-
not be performed in any tree because no information can be successfully trans-
mitted in an unlabeled radio network. Hence, the length of a labeling scheme
permitting topology recognition must be a positive integer. In this section we
show a lower bound Ω(log log Δ) on the length of labeling schemes that permit
topology recognition for all trees with maximum degree Δ ≥ 3.

Let S be a star with the central node r of degree Δ. Denote one of the leaves
of S by a. For �Δ

2 � ≤ i ≤ Δ − 1, we construct a tree Ti by attaching i leaves to
a. The maximum degree of each tree Ti is Δ. Let T be the set of trees Ti, for
�Δ
2 � ≤ i ≤ Δ − 1. Hence the size of T is at least Δ

2 .
The following result shows that any labeling scheme allowing topology recog-

nition in trees of maximum degree Δ must have length Ω(log log Δ).

Theorem 1. For any tree T ∈ T consider a labeling scheme LABEL(T). Let
TOPO be any topology recognition algorithm that solves topology recognition for
every tree T ∈ T using the scheme LABEL(T). Then there exists a tree T ′ ∈ T ,
for which the length of the scheme LABEL(T ′) is Ω(log log Δ).

4 Time for Maximum Degree Δ ≥ 3 and Diameter D ≥ 4

In this section, we present our main results on the time of topology recognition,
using the shortest possible labeling schemes (those of length Θ(log log Δ)) for
trees of maximum degree Δ ≥ 3 and diameter D ≥ 4. We propose an algorithm
using a labeling scheme of length Θ(log log Δ) and working in time O(DΔ), and
prove an almost matching lower bound Ω(DΔε) on the time of such schemes,
for any constant ε < 1.

4.1 The Main Algorithm

Let T be a rooted tree of diameter D and maximum degree Δ. It has either a
central node or a central edge, depending on whether D is even or odd. If D
is even, then the central node is the unique node in the middle of every simple
path of length D, and if D is odd, then the central edge is the unique edge in the
middle of every simple path of length D. For the sake of description, we choose
the central node or one of the endpoints of the central edge as the root r of T .

42 B. Gorain and A. Pelc

Let h = �D/2� be the height of this tree. The level of any node v is its distance
from the root. For any node v we denote by Tv the subtree of T rooted at v.

We propose an algorithm that solves topology recognition in time O(DΔ),
using a labeling scheme of length O(log log Δ). The structure of the tree will be
transmitted bottom up, so that the root learns the topology of the tree, and
then transmits it to all other nodes. The main difficulty is to let every node
know the round number ρ in which it has to transmit, so that it is the only node
among its siblings that transmits in round ρ, and consequently its parent gets
the message. Due to very short labels, ρ cannot be explicitly given to the node
as a part of its label. We overcome this difficulty by carefully coding ρ for a node
v, using the labels given to the nodes of the subtree rooted at v, so that v can
unambiguously decode ρ.

A node v in T is called heavy, if |V (Tv)| ≥ 1
4 (�log Δ� + 1). Otherwise, the

node is called light. Note that the root is a heavy node. For a heavy node v,
choose a subtree T ′

v of Tv rooted at v, of size � 1
4 (�log Δ� + 1)�.

First, we define the labeling scheme Λ. The label Λ(v) of each node v contains
two parts. The first part is a vector of markers that are binary strings of constant
length, used to identify nodes with different properties. The second part is a
vector of 5 binary strings of length O(log log Δ) that are used to determine the
time when the node should transmit.

Below we describe how the markers are assigned to different nodes of T .

1. Mark the root r by the marker 0, and mark one of the leaves at maximum
depth by the marker 1.

2. Mark all the nodes in T ′
r by the marker 2.

3. Mark every heavy node by the marker 3, and mark every light node by the
marker 4.

4. For every heavy node v all of whose children are light, mark all the nodes of
T ′

v by the marker 5.
5. For every light node v whose parent is heavy, mark all the nodes in Tv by the

marker 6.

The first part of every label is a binary string M of length 7, where the
markers are stored. Note that a node can be marked by multiple markers. If the
node is marked by the marker i, for i = 0, . . . , 6, we have M(i) = 1; otherwise,
M(i) = 0.

In order to describe the second part of each label, we define an integer tv for
every heavy node v 	= r, and an integer zv, for every light node v whose parent is
heavy. We define tv, for a heavy node v at level l > 0, to identify the time slot in
which v will transmit according to the algorithm. The definition is by induction
on l. For l = 1, let v1, v2, . . . , vx, be the heavy children of r. Set tvi

= i. Suppose
that tv is defined for every heavy node v at level l. Let v be a heavy node at
level l. Let u1, u2, . . . , uy be the heavy children of v. We set tu1 = tv, and we
define tuj

, for 2 ≤ j ≤ y, as distinct integers from the range {1, . . . , y} \ {tv}.
This completes the definition of tv, for all heavy nodes v 	= r.

We now define zv, for a light node v whose parent is heavy, to identify
the time slot in which v will transmit according to the algorithm. Let Si be

Short Labeling Schemes for Topology Recognition in Wireless Tree Networks 43

a maximal sequence of non-isomorphic rooted trees of i nodes. There are at
most 22(i−1) such trees. Let S be the sequence which is the concatenation of
S1, S2, . . . , S� 1

4 (�log Δ�+1)�−1. Let q be the length of S. Then q ≤ 22(
1
4 (�log Δ�+1)) ≤√

2Δ. Note that the position of any tree of i nodes in S is at most 22i−1. Let
S = (T1, T2, . . . , Tq). For a light node v whose parent is heavy, we define zv = k,
if Tv and Tk are isomorphic.

The second part of each label is a vector L of length 5, whose terms L(i) are
binary strings of length O(log log Δ). Initialize all terms L(i) for every node v to
0. We now describe how some of these terms are changed for some nodes. They
are defined as follows.

1. All the nodes which get M(2) = 1 are the nodes of T ′
r. There are exactly

� 1
4 (�log Δ�+1)� nodes in T ′

r. All nodes in T ′
r are assigned distinct ids which are

binary representations of the integers 1 to � 1
4 (�log Δ�+1)�. Let s be the string

of length (�log Δ�+1) which is the binary representation of the integer Δ. Let
b1, b2, · · · , b� 1

4 (�log Δ�+1)� be the substrings of s, each of length at most 4, such
that s is the concatenation of the substrings b1, b2, · · · , b� 1

4 (�log Δ�+1)�. The
term L(0) corresponding to a node whose id is i, is set to the pair (B(i), bi),
where B(i) is the binary representation of the integer i. The intuitive role of
the term L(0) is to code the integer Δ in the nodes of the tree T ′

r.
2. Let v be a node with M(3) = 1, and M(5) = 1, i.e., let v be a heavy node

whose all children are light. All nodes in T ′
v are assigned distinct ids which are

binary representations of integers 1 to � 1
4 (�log Δ�+1)�. Let s be the string of

length (�log Δ� + 1) which is the binary representation of the integer tv. Let
b1, b2, · · · , b� 1

4 (�log Δ�+1)� be the substrings of s, each of length at most 4, such
that s is the concatenation of the substrings b1, b2, · · · , b� 1

4 (�log Δ�+1)�. The
term L(1) corresponding to a node whose id is i, is set to the pair (B(i), bi),
where B(i) is the binary representation of the integer i. The intuitive role of
the term L(1) is to code the integer tv, for a heavy node v whose all children
are light, in the nodes of the tree T ′

v.
3. Let v be a node with M(3) = 1, i.e., a heavy node. Let u be the parent of v.

If tu = tv, set L(2) = 1 for the node v. The intuitive role of the term L(2) at
a heavy node v is to tell its parent u what is the value of tu.

4. Let v be a node with M(4) = 1 and M(6) = 1, i.e., let v be a light node
whose parent is heavy. All nodes in Tv are assigned distinct ids which are
binary representations of the integers 1 to p, where p is the size of Tv. Let s
be the string of length at most 2p which is the binary representation of the
integer zv. Let b1, b2 · · · , bp be the substrings of s, each of length at most 2,
such that s is the concatenation of the substrings b1, b2 · · · , bp. The term
L(3) of the node whose id is i is set to the pair (B(i), bi), where B(i) is the
binary representation of the integer i. The intuitive role of the term L(3) is
to code the integer zv, for a light node v whose parent is heavy, in the nodes
of the tree Tv.

5. Let v be a node with M(3) = 1, i.e., a heavy node. Partition all light children
u of v into sets with the same value of zu. Consider any set {u1, u2, . . . , ua}
in this partition. Let s be the binary representation of the integer a and let

44 B. Gorain and A. Pelc

b1, b2, · · · , b� 1
4 (�log a�+1)� be the substrings of s, each of length at most 4, such

that s is the concatenation of the substrings b1, b2, · · · , b� 1
4 (�log a�+1)�.

For node ui, where i ≤ � 1
4 (�log a� + 1)�, the term L(4) is set to the pair

(B(i), bi), where B(i) is the binary representation of the integer i, for 1 ≤
i ≤ �log a� + 1, and bi is the ith bit of the binary representation of a. The
intuitive role of the term L(4) is to force two light children v1 and v2 of the
same heavy parent, such that zv1 = zv2 , to transmit in different rounds.

6. For any node v the term L(5) is set to the binary representation of the integer
� 1
4 (�log Δ� + 1)�. This term will be used in a gossiping algorithm that plays

the role of a subroutine in our algorithm.

Notice that the length of each L(j) defined above is of length O(log log Δ) for
every node, and there is no ambiguity in setting these terms, as every term for
a node is modified at most once. This completes the description of our labeling
scheme whose length is O(log log Δ).

Algorithm Tree Topology Recognition
The algorithm consists of four procedures, namely Procedure Parameter
Learning, Procedure Slot Learning, Procedure T-R and Procedure Final.
They are called in this order by the algorithm. In the first two procedures we
will use the simple gossiping algorithm Round-Robin which enables nodes of any
graph of size at most m with distinct ids from the set {1, . . . , m} to gossip in
time m2, assuming that they know m and that each node with id i has an initial
message μi. The time segment 1, . . . ,m2 is partitioned into m segments of length
m, and the node with id i transmits in the ith round of each segment. In the first
time segment, each node with id i transmits the message (i, μi). In the remaining
m − 1 time segments, nodes transmit all the previously acquired information.
Thus at the end of algorithm Round-Robin, all nodes know the entire topology
of the network, with nodes labeled by pairs (i, μi).

Procedure Parameter Learning
The aim of this procedure is for every node of the tree to learn the maximum
degree Δ, the level of the tree to which the node belongs, and the height h of
the tree.

The procedure consists of two stages. The first stage is executed in rounds
1, . . . ,m2, where m = � 1

4 (�log Δ� + 1)�, and consists of performing algorithm
Round-Robin by the nodes with M(2) = 1, i.e., the nodes in T ′

r. Each such node
uses its id i written in the first component of the term L(0), uses its label as μi,
and takes m as the integer whose representation is given in the term L(5).

After this stage, the node with M(0) = 1, i.e., the root r, learns all pairs
(B(1), b1), . . . , (B(m), bm), where B(i) is the binary representation of the inte-
ger i, corresponding to the term L(0) at the respective nodes. It computes the
concatenation s of the strings b1, b2, . . . , bm. This is the binary representation
of Δ.

The second stage of the procedure starts in round m2 + 1. In round m2 + 1,
the root r transmits the message μ that contains the value of Δ. A node v, which
receives the message μ at time m2 + i for the first time, sets its level as i and

Short Labeling Schemes for Topology Recognition in Wireless Tree Networks 45

transmits μ. When the node u with M(1) = 1, i.e., a deepest leaf, receives μ in
round m2+j, it sets its level as h = j, learns that the height of the tree is h, and
transmits the pair (h, h) in the next round. Every node at level l, after receiving
the message (h, l + 1) (from a node of level l + 1) learns h and transmits the
pair (h, l). After receiving the message (h, 1), the root r transmits the message
μ′ that contains the value h. Every node learns h after receiving it for the first
time and retransmits μ′, if its level is less than h. The stage, and hence the entire
procedure, ends in round m2 + 3h.

Procedure Slot Learning
The aim of this procedure is for every heavy node all of whose children are light,
and for every light node whose parent is heavy, to learn the time slot in which
it should transmit. Moreover, at the end of the procedure, every light node v
learns Tv.

Let t0 = m2 + 3h, where m = � 1
4 (�log Δ� + 1)�. The total number of rounds

reserved for this procedure is 2m2. The procedure starts in round t0 + 1 and
ends in round t0 + 2m2. The procedure consists of two stages. The first stage
is executed in rounds t0 + 1, . . . , t0 + m2, and consists of performing algorithm
Round-Robin by the nodes with L(1) 	= 0, i.e., the nodes in T ′

v, for a heavy
node v all of whose children are light. Each such node uses its id i written in
the first component of the term L(1), uses its label as μi, and takes m as the
integer whose representation is given in the term L(5). After this stage, each
node v with M(3) = 1 and M(5) = 1, i.e., a heavy node all of whose children
are light, learns all pairs (B(1), b1), . . . , (B(m), bm), where B(i) is the binary
representation of the integer i, corresponding to the term L(1) at the respective
nodes. It computes the concatenation s of the strings b1, b2, . . ., bm. This is the
binary representation of the integer tv, which will be used to compute the time
slot in which node v will transmit in the next procedure.

The second stage is executed in rounds t0+m2+1, . . . , t0+2m2, and consists
of performing algorithm Round-Robin by the nodes with L(2) 	= 0, i.e., the nodes
in Tv, for a light node v whose parent is heavy. Each such node uses its id i written
in the first component of the term L(3), uses its label as μi, and takes m as the
integer whose representation is given in the term L(5). After this stage, each
node v with M(4) = 1 and M(6) = 1, i.e., a light node whose parent is heavy,
learns all pairs (B(1), b1), . . . , (B(k), bk), where k < m and B(i) is the binary
representation of the integer i, corresponding to the term L(3) at the respective
nodes. Node v computes the concatenation s of the strings b1, b2, . . ., bk. This is
the binary representation of the integer zv, which will be used to compute the
time slot in which node v will transmit in the next procedure. Moreover, each
node w in Tv learns Tw because it knows the entire tree Tv with all id’s. The
stage, and hence the entire procedure, ends in round t1 = t0 + 2m2.

Procedure T-R
The aim of this procedure is learning the topology of the tree by the root.

All heavy nodes and all light nodes whose parent is heavy transmit in this pro-
cedure. The procedure is executed in h epochs. The number of rounds reserved
for an epoch is 2Δ. The first Δ rounds of an epoch are reserved for transmissions

46 B. Gorain and A. Pelc

of heavy nodes and the last Δ rounds of an epoch are reserved for transmissions
of light nodes whose parent is heavy. The epoch j starts in round t1+2(j−1)Δ+1
and ends in round t1 + 2jΔ. All the nodes at level h − i + 1 which are either
heavy nodes or light nodes with a heavy parent transmit in the epoch i. When
a node v transmits in some epoch, it transmits a message (Λ(v), Tv, C), where
C = tv, if v is a heavy node, and C = 0, if it is a light node. Below we describe
the steps that a node performs in the execution of the procedure, depending on
its label.

Let v be a node with M(4) = 1 and M(6) = 1, i.e., v is a light node whose
parent is heavy. The node v transmit in this procedure if L(4) 	= 0. Let the
level of v (learned in the execution of Procedure Parameter Learning) be l.
Let the first component of the term L(4) be the binary representation of the
integer c > 0. The node v already knows the value zv which it learned in the
execution of Procedure Slot Learning. Knowing Δ, node v computes the list
S = (T1, T2, . . . , Tq) of trees (defined above) which unambiguously depends on
Δ. The node v transmits the message (Λ(v), Tzv

, 0) in round t1 + 2(h − l)Δ +
Δ + (zv − 1)� 1

4 (�log Δ� + 1)� + c. We will show that node v is the only node
among its siblings that transmits in this round.

Let v be a node with M(3) = 1 and M(5) = 1, i.e., v is a heavy node all of
whose children are light. Let l be the level of v. All the children of v are light
nodes with a heavy parent. They are at level l − 1. Let u1, u2, . . . , uk be those
children from which v received messages in the previous epoch. First, the node
v partitions the nodes u1, u2, . . ., uk into disjoint sets R1, R2, · · · , Re such that
all nodes in the same set have sent the message with same tree Q. For each such
set Rd, 1 ≤ d ≤ e, let Qd be the tree sent by nodes from Rd. The node v got
all pairs (B(1), b1), . . . , (B(x), bx), where x = |Rd| < m and B(i) is the binary
representation of the integer i, corresponding to the term L(4) at its children
in Rd. Node v computes the concatenation s of the strings b1, b2, . . . , bk. Let yd

be the integer whose binary representation is s. After computing all yd’s, for
1 ≤ d ≤ e, v computes the tree Tv, by attaching yd copies of the tree Qd to
v for d = 1, . . . , e. The node v transmits the message (Λ(v), Tv, tv) in round
t1 +2(h− l)Δ+ tv. We will show that node v is the only node among its siblings
that transmits in this round.

Let v be a node with M(3) = 1 and M(5) = 0, i.e., v is a heavy node who has
at least one heavy child. Let u1, . . . , uk1 be the light children of v from which
v received a message in the previous epoch, and let u′

1, . . . , u
′
k2

be the heavy
children of v from which v received a message in the previous epoch. The node
v computes the tree Tv rooted at v as follows. It first attaches trees rooted at
its light children, using the messages it received from them, in the same way
as explained in the previous case. Then, it attaches trees rooted at its heavy
children. These trees are computed from the code β in the message from each of
the heavy children of v. Let u′ be the unique heavy child of v for which the term
L(5) = 1. The node v computes tv which is equal to the term C in the message
it received from the node u′. The node v transmits the message (Λ(v), Tv, tv) in
round t1 + 2(h − l)Δ + tv. We will show that node v is the only node among its
siblings that transmits in this round.

Short Labeling Schemes for Topology Recognition in Wireless Tree Networks 47

Procedure Final
The aim of this procedure is for every node of the tree to learn the topology of
the tree and to place itself in the tree. The procedure starts in round t1+2hΔ+1
and ends in round t1 + 2hΔ + h. In round t1 + 2hΔ + 1, the root r transmits
the message that contains the tree Tr. In general, every node v transmits a
message exactly once in Procedure Final. This message contains the sequence
(Tr, Twp

, . . . , Tw1 , Tv), where wi is the ancestor of v at distance i. In view of the
fact that every node v already knows Tv at this point, after receiving a message
containing the sequence (Tr, Twp

, . . . , Tw1) in round j, a node v transmits the
sequence (Tr, Twp

, . . . , Tw1 , Tv) in round j + 1, if its level is less than h.
A node v outputs the tree Tr, and identifies itself as one of the nodes in Tr

for which the subtrees rooted at their ancestors in each level starting from the
root are isomorphic to the trees in the sequence (Tr, Twp

, . . . , Tw1 , Tv). (Notice
that there may be many such nodes). The procedure ends in round t1+2hΔ+h,
when all nodes place themselves in Tr and output Tr.

Theorem 2. Upon completion of Algorithm Tree Topology Recognition, all
nodes of a tree correctly output the topology of the tree and place themselves in
it. The algorithm uses labels of length O(log log Δ) and works in time O(DΔ),
for trees of maximum degree Δ and diameter D.

4.2 The Lower Bound

In this section, we prove that any topology recognition algorithm using a labeling
scheme of length O(log log Δ) must use time at least Ω(DΔε), for any constant
ε < 1, on some tree of diameter D ≥ 4 and maximum degree Δ ≥ 3. We split
the proof of this lower bound into three parts, corresponding to different ranges
of the above parameters, as the proof is different in each case.

Case 1: Δ bounded, D unbounded. In this case we need to show a lower
bound Ω(D).

Lemma 1. Let D ≥ 4 be any integer, let Δ ≥ 3 be any integer constant and
let c > 1 be any real constant. For any tree T of maximum degree Δ consider
a labeling scheme LABEL(T) of length at most c log log Δ. Let TOPO be any
algorithm that solves topology recognition for every tree T of maximum degree Δ
using the labeling scheme LABEL(T). Then there exists a tree T of maximum
degree Δ and diameter D for which TOPO must take time Ω(D).

Case 2: Δ unbounded, D bounded. In this case, we need to show a lower
bound Ω(Δε), for any constant ε < 1. The following lemma proves a stronger
result.

Lemma 2. Let Δ ≥ 3 be any integer, let D ≥ 4 be any integer constant, and
let c > 0 be any real constant. For any tree T of maximum degree Δ, consider
a labeling scheme LABEL(T) of length at most c log log Δ. Let TOPO be an
algorithm that solves topology recognition for every tree of maximum degree Δ

48 B. Gorain and A. Pelc

and diameter D using the labeling scheme LABEL(T). Then there exists a tree
T of maximum degree Δ and diameter D for which TOPO must take time
Ω(Δ

(log Δ)c).

Case 3: unbounded Δ and D. Let Δ ≥ 3, D ≥ 4 be integers. We first assume
that D is even. The case when D is odd will be explained later. It is enough
to prove the lower bound for D ≥ 6. Let h = �D

6 � and g = D
2 − h. Then

2h ≤ g ≤ 2h + 2. Let P be a line of length g with nodes v1, v2, · · · , vg+1, where
v1 and vg+1 are the endpoints of P . We construct from P a class of trees called
sticks as follows.

Let x = (x1, x2, · · · , xg) be a sequence of integers, with 0 ≤ xi ≤ Δ − 2.
Construct a tree Px by attaching xi leaves to the node vi for 1 ≤ i ≤ g. Let
P be the set of all sticks constructed from P . Then |P| = (Δ − 1)g. Let P =
{P1, P2, · · · , P(Δ−1)g}.

Let S be a rooted tree of height h, with root r of degree Δ − 1, and with
all other non-leaf nodes of degree Δ. The nodes in S are called basic nodes. Let
Z = {w1, w2, · · · , wz}, where z = (Δ − 1)h, be the set of leaves of S. Consider a
sequence y = (y1, y2, · · · , yz), for 1 ≤ yi ≤ (Δ−1)g. We construct a tree Ty from
S by attaching to it the sticks in the following way: each leaf wi is identified
with the node v1 of the stick Pyi

, for 1 ≤ i ≤ z. We will say that the stick Pyi
is

glued to node wi. The diameter of each tree Ty is D. For odd D, do the above
construction for D − 1 and attach one additional node of degree 1 to one of the
leaves.

Let T (Δ,D) be a maximal set of pairwise non-isomorphic trees among the
trees Ty. Then, |T (Δ,D)| ≥ ((Δ−1)g)z

z! ≥ ((Δ−1)g)z

z! ≥ (Δ − 1)h(Δ−1)h

.
Consider any time τ > 0. For any tree T ∈ T (Δ,D), consider any labeling

scheme L(T) and let A be any algorithm that solves topology recognition in
every tree T ∈ T (Δ,D) in time τ , using the labeling scheme L(T). The following
lemma gives an upper bound on the number of basic nodes that can belong to
a history of the root r.

Lemma 3. Let B be the number of basic nodes of level i that can reach r within
time τ , according to algorithm A. Then B ≤ τ i

i! if τ ≥ i, and B = 0, otherwise.

The next lemma gives a lower bound on the time of topology recognition for
the class T (Δ,D).

Lemma 4. Let ε < 1 be any positive real constant, and let c > 1 be any real
constant. For any tree T ∈ T (Δ,D), consider a labeling scheme LABEL(T) of
length at most c log log Δ. Then there exist integers Δ0,D0 > 0 such that any
algorithm that solves topology recognition for every tree T ∈ T (Δ,D), where
Δ ≥ Δ0 and D ≥ D0, using the scheme LABEL(T), must take time Ω(DΔε)
for some tree T ∈ T (Δ,D).

Proof. Wee first do the proof for even D. Consider an algorithm TOPO that
solves topology recognition for every tree T ∈ T (Δ,D) in time τ ≤ (D

6 −1)Δε ≤
hΔε with a labeling scheme LABEL(T) of length at most c log log Δ. For a

Short Labeling Schemes for Topology Recognition in Wireless Tree Networks 49

scheme of this length, there are at most 2c log log Δ+1 = 2(log Δ)c different pos-
sible labels. According to Lemma 3, for 1 ≤ i ≤ h the number of basic nodes of
level i, that reach r within time τ is at most τ i

i! , if τ ≥ i, otherwise there are no
such nodes.

Denote by q the total number of basic nodes that reach r within time τ . If
τ ≥ h, then q ≤

∑h
i=1

τ i

i! ≤ h τh

h = h (hΔε)h

h! . We know that log(h!) = h log h −
h

ln 2 + 1
2 log h+O(1) ≥ h log h− h

ln 2 . Since ln 2 > 1
2 , we have log(h!) > h log h−2h.

Therefore, h! > hh

2−2h , and hence q ≤ hΔhε22h. If τ < h, then q ≤
∑τ

i=1
τ i

i! ≤
τΔτε22τ ≤ hΔhε22h. Therefore, q ≤ hΔhε22h, for all τ > 0.

The number of different unlabeled sticks is at most (Δ − 1)2h+2. Nodes of
each such stick can be labeled with labels of length at most �c log log Δ� in at
most (2(log Δ)c)(2h+2)Δ ways, because each stick can have at most (2h + 2)Δ
nodes. Therefore, the number of different labeled sticks is at most p = (Δ −
1)2h+2 (2(log Δ)c)(2h+2)Δ.

The history of the root r of a tree T ∈ T (Δ,D) may include some nodes from
a stick in T only if the basic node at level h to which this stick is glued is a node
in the history. The maximum information that the root can get from a basic
node v at level h, but not from any other node at this level, is the information
about the whole labeled stick glued to v.

The number of possible histories H(TOPO, τ) of the node r is at most
the product of the number of possible labelings of the basic nodes in
H(TOPO, τ) and the number of possible gluings of labeled sticks to them.
Since there are at most q basic nodes in H(TOPO, τ), there are at most
(2(log Δ)c)q possible labelings of these nodes. Since there are at most p labeled
sticks to choose from, the number of possible gluings of labeled sticks to
the basic nodes in H(TOPO, τ) is at most pq. Therefore, the number of
possible histories H(TOPO, τ) of the node r is at most 2q(log Δ)cqpq =
(2p(log Δ)c)q. Let X = (2p(log Δ)c)q. We have log X = q(log p + 1 +
c log log Δ) = q + q log p + qc log log Δ. Also, log p = (2h + 2) log(Δ − 1) +
(2h + 2)Δ(1 + c log log Δ). Therefore, log X = q(1 + log p + c log log Δ) =
q (1 + (2h + 2) log(Δ − 1) + (2h + 2)Δ(1 + c log log Δ) + c log log Δ) ≤ 5qc(2h+
2)Δ log Δ ≤ 5hΔhε+122hc(2h+2) log Δ. Also, log |T (Δ,D)| ≥ h(Δ−1)h log(Δ−
1). Now, for any Δ and for sufficiently large h, we have 5hΔhε+122hc(2h + 2) <
1
2hΔh. Therefore, 5hΔhε+122hc(2h+2) log Δ < 1

2hΔh log Δ < h(Δ−1)h log(Δ−
1), for sufficiently large Δ and sufficiently large h.

It follows that, for sufficiently large h and Δ, we have log X < log |T (Δ,D)|.
Therefore, there exist integers Δ0 and D0 such that X < |T (Δ,D)|, for all
Δ ≥ Δ0 and D ≥ D0. Hence, for Δ ≥ Δ0 and D ≥ D0, there exist two trees
T1 and T2 in T (Δ,D) whose roots have the same history. Therefore, the root
r in T1 and the root r in T2 output the same tree as the topology, within time
τ . This is a contradiction, which proves the lemma for even D. For odd D, the
same proof works with D replaced by D − 1. ��

Lemmas 1, 2, and 4 imply the following theorem.

50 B. Gorain and A. Pelc

Theorem 3. Let ε < 1 be any positive real number. For any tree T of maxi-
mum degree Δ ≥ 3 and diameter D ≥ 4, consider a labeling scheme of length
O(log log Δ). Then any topology recognition algorithm using such a scheme for
every tree T must take time Ω(DΔε) for some tree.

5 Time for Small Maximum Degree Δ or Small
Diameter D

In this section we solve our problem for the remaining cases of small parameters
Δ and D, namely, in the case when Δ ≤ 2 or D ≤ 3. We start with the case of
small diameter D.

5.1 Diameter D = 3

Theorem 4. The optimal time for topology recognition in the class of trees of
diameter D = 3 and maximum degree Δ ≥ 3, using a labeling scheme of length
Θ(log log Δ), is Θ(log Δ

(log log Δ)).

5.2 Diameter D = 2

We now consider the case of trees of diameter 2, i.e., the class of stars. Since
there is exactly one star of a given maximum degree Δ, the problem of topology
recognition for D = 2 and a given maximum degree Δ is trivial. A meaningful
variation of the problem for D = 2 is to consider all trees (stars) of maximum
degree at most Δ, for a given Δ.

Theorem 5. The optimal time for topology recognition in the class of trees of
diameter D = 2 (i.e., stars) and maximum degree at most Δ, where Δ ≥ 3,
using a labeling scheme of length Θ(log log Δ), is Θ(log Δ

(log log Δ)).

5.3 Maximum Degree Δ = 2

We finally address the case of trees of maximum degree Δ = 2, i.e., the class
of lines. Since there is exactly one line of a given diameter D, the problem
of topology recognition for Δ = 2 and for a given diameter D is trivial. A
meaningful variation of the problem for Δ = 2 is to consider all trees (lines) of
diameter at most D, for a given D.

We first propose a topology recognition algorithm for all lines of diameter at
most D, where D ≥ 4, using a labeling scheme of length O(1) and working in
time O(log D).

Algorithm Line-Topology-Recognition
Let T be a tree of maximum degree 2 and diameter at most D, i.e., a line of
length at most D. Let v1, v2, . . . , vk+1, for k ≤ D, be the nodes of T , where
v1 and vk+1 are the two endpoints. At a high level, we partition the line into

Short Labeling Schemes for Topology Recognition in Wireless Tree Networks 51

segments of length O(log k) and assign labels, containing (among other terms)
couples of bits, to the nodes in each segment. This is done in such a way that
the concatenation of the first bits of the couples in a segment is the binary
representation of the integer k, and the concatenation of the second bits of the
couples in a segment is the binary representation of the segment number. In time
O(log k), every node learns the labels in each segment, and computes k and the
number j ≥ 0 of the segment to which it belongs. It identifies its position in this
segment from the round number in which it receives a message for the first time.
Then a node outputs the line of length k with its position in it.

The following lemma gives a lower bound on the time of topology recognition
for lines, matching the performance of Algorithm Line-Topology-Recognition.

Lemma 5. Let D ≥ 3 be any integer, and let c > 0 be any real constant. For any
line T , consider a labeling scheme LABEL(T) of length at most c. Let TOPO be
any algorithm that solves topology recognition for every line of diameter at most
D using the labeling scheme LABEL(T). Then there exists a line of diameter at
most D, for which TOPO must take time Ω(log D).

In view of the performance of Algorithm Line-Topology-Recognition and
of Lemma 5, we have the following result.

Theorem 6. The optimal time for topology recognition in the class of trees of
maximum degree Δ = 2 (i.e., lines) of diameter at most D, using a labeling
scheme of length O(1), is Θ(logD).

6 Conclusion

We established a tight bound Θ(log log Δ) on the minimum length of labeling
schemes permitting topology recognition in trees of maximum degree Δ, and we
proved upper and lower bounds on topology recognition time, using such short
schemes. These bounds on time are almost tight: they leave a multiplicative
gap smaller than any polynomial in Δ. Closing this small gap is a natural open
problem. Another interesting research topic is to extend our results to the class of
arbitrary graphs. We conjecture that such results, both concerning the minimum
length of labeling schemes permitting topology recognition, and concerning the
time necessary for this task, may be quite different from those that hold for
trees.

References

1. Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for ancestor queries.
In: Proceedings of 12th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2001), pp. 547–556 (2001)

2. Chrobak, M., Gasieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio
networks. J. Algorithms 43, 177–189 (2002)

52 B. Gorain and A. Pelc

3. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph
exploration by a finite automaton. ACM Trans. Algorithms 4, 42 (2008)

4. Dereniowski, D., Pelc, A.: Drawing maps with advice. J. Parallel Distrib. Comput.
72, 132–143 (2012)

5. Emek, Y., Fraigniaud, P., Korman, A., Rosen, A.: Online computation with advice.
Theoret. Comput. Sci. 412, 2642–2656 (2011)

6. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed computing with
advice: information sensitivity of graph coloring. Distrib. Comput. 21, 395–403
(2009)

7. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Communication algorithms with advice. J.
Comput. Syst. Sci. 76, 222–232 (2010)

8. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with advice. Inf. Comput.
206, 1276–1287 (2008)

9. Fraigniaud, P., Korman, A., Lebhar, E.: Local MST computation with short advice.
Theory Comput. Syst. 47, 920–933 (2010)

10. Fusco, E., Pelc, A.: Trade-offs between the size of advice and broadcasting time in
trees. Algorithmica 60, 719–734 (2011)

11. Fusco, E., Pelc, A., Petreschi, R.: Topology recognition with advice. Inf. Comput.
247, 254–265 (2016)

12. Gasieniec, L., Pagourtzis, A., Potapov, I., Radzik, T.: Deterministic communica-
tion in radio networks with large labels. Algorithmica 47, 97–117 (2007)

13. Gasieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology radio
networks. Distrib. Comput. 19, 289–300 (2007)

14. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J. Algo-
rithms 53, 85–112 (2004)

15. Glacet, C., Miller, A., Pelc, A.: Time vs. information tradeoffs for leader election
in anonymous trees. In: Proceedings of 27th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2016), pp. 600–609 (2016)

16. Ilcinkas, D., Kowalski, D., Pelc, A.: Fast radio broadcasting with advice. Theoret.
Comput. Sci. 411, 1544–1557 (2012)

17. Katz, M., Katz, N., Korman, A., Peleg, D.: Labeling schemes for flow and connec-
tivity. SIAM J. Comput. 34, 23–40 (2004)

18. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22,
215–233 (2010)

19. Kowalski, D., Pelc, A.: Leader election in ad hoc radio networks: a keen ear helps.
J. Comput. Syst. Sci. 79, 1164–1180 (2013)

20. Nisse, N., Soguet, D.: Graph searching with advice. Theoret. Comput. Sci. 410,
1307–1318 (2009)

21. Peleg, D.: Distributed Computing, a Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Mathematics and Applications. SIAM, Philadelphia (2000)

Space-Time Tradeoffs for Distributed
Verification

Rafail Ostrovsky1, Mor Perry2, and Will Rosenbaum2(B)

1 Department of Computer Science and Department of Mathematics,
University of California, Los Angeles, Los Angeles, CA, USA

2 School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
will.roenbaum@gmail.com

Abstract. Verifying that a network configuration satisfies a given
boolean predicate is a fundamental problem in distributed computing.
Many variations of this problem have been studied, for example, in the
context of proof labeling schemes (PLS), locally checkable proofs (LCP),
and non-deterministic local decision (NLD). In all of these contexts, ver-
ification time is assumed to be constant. Korman et al. [16] presented a
proof-labeling scheme for MST, with poly-logarithmic verification time,
and logarithmic memory at each vertex.

In this paper we introduce the notion of a t-PLS, which allows the
verification procedure to run for super-constant time. Our work analyzes
the tradeoffs of t-PLS between time, label size, message length, and com-
putation space. We construct a universal t-PLS and prove that it uses
the same amount of total communication as a known one-round univer-
sal PLS, and t factor smaller labels. In addition, we provide a general
technique to prove lower bounds for space-time tradeoffs of t-PLS. We
use this technique to show an optimal tradeoff for testing that a net-
work is acyclic (cycle free). Our optimal t-PLS for acyclicity uses label
size and computation space O((log n)/t). We further describe a recursive
O(log∗ n) space verifier for acyclicity which does not assume previous
knowledge of the run-time t.

1 Introduction

A fundamental problem in distributed computing is to determine if a network
configuration satisfies some predicate. In the distributed setting, a network con-
figuration is represented by an underlying graph, where each vertex represents
a processor, edges represent communication links between processors, and each

R. Ostrovsky—Research supported in part by NSF grant 1619348, DARPA, US-
Israel BSF grant 2012366, OKAWA Foundation Research Award, IBM Faculty
Research Award, Xerox Faculty Research Award, B. John Garrick Foundation
Award, Teradata Research Award, and Lockheed-Martin Corporation Research
Award. The views expressed are those of the authors and do not reflect position
of the Department of Defense or the U.S. Government.
M. Perry—Partially supported by Apple Graduate Fellowship.

c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 53–70, 2017.
https://doi.org/10.1007/978-3-319-72050-0_4

54 R. Ostrovsky et al.

vertex has a state. For example, the state of every vertex can be a color, and
the predicate signifies that the coloring is proper, i.e., that every edge has its
endpoints colored differently. Processors learn about the network by exchang-
ing messages along the edges. Some properties are local by nature and easy to
verify, yet many natural problems—for example, testing if the network contains
cycles—cannot be tested in less than diameter time, even if message size and
local computational power are unbounded.

In order to cope with strong time lower bounds, Korman et al. introduced
in [17] a computational model, called proof-labeling schemes (PLS), where ver-
tices are given auxiliary global information in the form of labels. This auxiliary
information may allow vertices to verify that a property is satisfied more effi-
ciently than could be achieved without the aid of labels. Specifically, a PLS
consists of two components: a prover and a verifier. The prover is an oracle that
assigns labels to vertices. The verifier is a distributed algorithm that runs on the
labeled configuration and outputs true or false at each vertex as a function
of its state, its label, and the labels it receives. A PLS is complete if for every
legal configuration (satisfying the predicate), the prover can assign labels such
that all vertices output true. The PLS is sound if for every illegal configuration
(which does not satisfy the predicate) for every labeling, some vertex outputs
false.

Schemes for verifying a predicate are useful in many applications. One such
application is checking the output of a distributed algorithm [3,12]. For exam-
ple, if a procedure is meant to output a spanning-tree of the network, it may
be useful to periodically verify that the output does indeed not contain cycles.
If the original procedure which finds the spanning-tree can additionally pro-
duce labels, verification may be achieved substantially faster than diameter time
required without the aid of labels. A simple procedure for checking the legality
of the current state is very useful in the construction of self stabilizing algo-
rithms [1,2,7,16]. Other applications include estimating the complexity of logics
required for distributed run-time verification [12], establishing a general distrib-
uted complexity theory [11], and proving lower bounds on the time required
for distributed approximation [8]. Local verification was recently applied in the
design and analysis of software defined networks (SDN) in [18].

Distributed verification has been formalized in various models to suit its myr-
iad applications. These models include proof-labeling schemes (PLS) [17], locally
checkable proofs (LCP) [13], and non-deterministic local decision (NLD) [11].
We refer the reader to [9] for a detailed comparison of these models. All three of
these models are local in the sense that verification requires a constant number
of rounds, independent of the size of the graph. PLS differs from LCP and NLD
in that verification in (traditional) PLS occurs in a single communication round,
while the LCP and NLD models allow verification in a fixed constant number
of rounds. While a fast procedure is certainly a desirable feature in verifica-
tion algorithms, it may be the case that other computational resources—space
or communication—must also be considered. For example, in the case of PLS,
deterministically verifying a sub-graph is acyclic requires labels of size Ω(log n)

Space-Time Tradeoffs for Distributed Verification 55

per vertex [17]. However, specifying a sub-graph only requires O(Δ) space (the
maximum degree of a vertex) per vertex. Thus, if we restrict attention to local
verification algorithms, the space requirement to store labels may be unbound-
edly larger than the space required to specify the instance.

Korman et al. [16] presented a PLS for minimum spanning-tree with poly-
logarithmic verification time and logarithmic memory at each vertex. In the
present work we also consider super-constant time verification and address
tradeoffs between computational resources in distributed verification algorithms:
label size, communication, computation space, and time. Specifically, we address
the following questions: If verification algorithms are allowed to run in super-
constant time, can labels be significantly shorter? What are the tradeoffs between
label size and verification time? Can verification be achieved using (per proces-
sor) space which is linear in the label size? We focus on the acyclicity problem
and prove that labels can indeed be shortened by a factor of t—the run-time
of the algorithm—compared to constant-round verification. Moreover, computa-
tion space for each vertex can be made linear in the label size. Note that in this
model it does not trivially hold that each message contains exactly one label,
since in each round every vertex receives a (potentially different) label from each
neighbor, and the scheme should specify the message to be sent in the following
round. We show that in our schemes messages are small enough so that the total
communication is the same as in one-round verification.

1.1 Our Contributions

In this paper we consider proof-labeling schemes with super-constant verification
time, and analyze tradeoffs between time, label size, message size, and compu-
tation space. Many of the results presented here were announced without proof
in [5]. In Subsect. 3.1, we describe a universal scheme which can verify any prop-
erty P. Suppose Gs, with n vertices, m edges, and each state can be represented
using s bits. Then for every t ∈ O(diam(Gs)), our scheme verifies P in t rounds
using labels and messages of size O((ns + min{n2,m log n})/t). For t = 1 this is
the known universal scheme [4,13,17]. When t ∈ Ω(n), we obtain labels and mes-
sages of size O(s+min{n, (m/n) log n}). Overall, labels are significantly smaller,
and total communication is the same. Subsect. 3.2 proves a general lower bound
technique for label size of t-round schemes.

In Sect. 4 we consider the problem determining if a graph is acyclic. Using
the lower bound technique of Subsect. 3.2, we prove in Subsect. 4.1 that labels
of size Ω((log n)/t) are required for the acyclic problem. Subsect. 4.2 shows
that this lower bound is tight. Our scheme for acyclic additionally uses opti-
mal space and messages of size O((log n)/t). In particular, by taking t to be
a sufficiently large constant, our upper bound (along with the Ω(log n) lower
bound for acyclic in [17]) implies separation between the PLS and LCP mod-
els for acyclicity (see [9]). The verifier for acyclic assumes that vertices are
given some truthful information about the round number, for example, by being
told when (a multiple of) t rounds have elapsed. We show that such information
is necessary for any super-constant and sub-linear time distributed algorithm.

56 R. Ostrovsky et al.

In Subsect. 4.3, we describe a recursive scheme for acyclic which uses space
O(log∗ n) and constant communication per vertex per round. The recursive ver-
ifier runs in time O(n) in the worst case, but there are always correct labels
which will be accepted in time O(log diam(G)). We note that in order to break
the logarithmic space barrier, our schemes in Subsects. 4.2 and 4.3 crucially do
not rely upon unique identifiers for the vertices. Conversely, the lower bounds
of Subsects. 3.2 and 4.1 hold for a stronger model where vertices have unique
identifiers, and labels may depend on the unique identifiers.

1.2 Related Work

Distributed verification has been studied extensively. It was studied and used
in the design of self stabilizing algorithms, first in [1], where the notion of local
detection was introduced, and recently in [16], where a super-constant time veri-
fication scheme was presented. Both papers use verification in the design of a self
stabilizing algorithm for constructing a minimum spanning-tree. Verification has
also received attention of its own. For example, [15] presented tight bounds for
minimum spanning-tree verification. In [17], Korman et al. formalized the con-
cept of local verification and introduced the notion of proof-labeling schemes. In
their paper, verification is defined to use one communication round, and among
other results they show a Θ(log n) bound on the complexity (label size and com-
munication) for acyclic. Recently, [4] suggested using randomization in order
to break the lower bounds of deterministic schemes, and among other results
they show a Θ(log log n) bound on the communication complexity of acyclic-
ity. In this paper, we show that if we use super-constant verification time, we
can break the lower bound of space consumption (label size and computation
space), while the total amount of communication is the same as in one deter-
ministic verification round. Proof-labeling schemes with constant, greater than
one, verification time was studied in [13], and with super-constant verification
time was presented in [16]. In [10], the authors consider verification of acyclicity
and related problems in various models for directed graphs.

The question of what properties can be verified using a constant verifica-
tion time was studied in [11], and several complexity classes were presented,
including LD—local decision—which includes all properties that can be decided
using constant number of rounds and no additional information, and NLD—non-
deterministic local decision—which includes all properties that can be decided
in a constant number of rounds with additional information in the form of a
certificate given to each vertex. While NLD and PLS are closely related, they
differ in that NLD certificates are independent of vertex identifiers. Since PLS
labels may depend on vertex identifiers, there is a PLS for every sequentially
decidable property on ID based networks, while not all sequentially decidable
properties are in NLD. Our lower bounds in Subsects. 3.2 and 4.1 allow labels
to depend on unique vertex identifiers, so our arguments give identical lower
bounds for certificate sizes in the weaker NLD model. Nonetheless, the schemes
for acyclic in Subsects. 4.2 and 4.3 do not require unique identifiers.

Space-Time Tradeoffs for Distributed Verification 57

Awerbuch and Ostrovsky describe a log∗ n-space distributed acyclicity ver-
ifier in [2]. Our scheme described in Sect. 4.3 achieves the same space usage
per node, but improves on the algorithm of [2] in several ways. The worst-
case runtime of our acyclicity verifier is O(n), whereas that in [2] requires time
O(n log2 n). Further, in our scheme there are always correct labels which are
accepted in time O(log n). This runtime nearly matches the Ω((log n)/ log∗ n)
time lower bound implied by Theorem7. We leave it as an open question if it is
possible to verify acyclic using constant space and worst case runtime O(log n).

2 Model and Definitions

2.1 Computational Framework

A graph configuration Gs consists of an underlying graph G = (V,E), and a
state assignment function ϕ : V → S, where S is a state space. The state of a
vertex includes all of its local information. It may include the vertex’s identity
(in an ID based configuration), the weight of its adjacent edges (in a weighted
configuration), or the result of an algorithm executed on the graph, for example,
its color according to a coloring algorithm.

In a proof-labeling scheme, an oracle assigns labels � : V → L. Verification is
performed by a distributed algorithm on the labeled configuration in synchronous
rounds. In each round every vertex receives messages from all of its neighbors,
performs local computation, and sends a message to all of its neighbors. At the
beginning of each round, a vertex scans its messages in a streaming fashion,
and the computational space is the maximum space required by a vertex
in its local computation. Each vertex may send different messages to different
neighbors in a round. When a vertex halts, it outputs true or false. If the
vertex labels contain unique identifiers, then we require that an algorithm has
the same output for all legal assignments of unique IDs.

2.2 Proof-Labeling Schemes and t-PLS

We start with a short description of proof-labeling schemes (PLS) as introduced
in [17]. Given a family F of configurations, and a boolean predicate P over F ,
a PLS for (F ,P) is a mechanism for deciding P(Gs) for every Gs ∈ F . A PLS
consists of two components: a prover p, and a verifier v. The prover is an
oracle which, given any configuration Gs ∈ F , assigns a bit string �(v) to every
vertex v, called the label of v. The verifier is a distributed algorithm running
concurrently at every vertex. The verifier v at each vertex outputs a boolean. If
the outputs are true at all vertices, v is said to accept the configuration, and
otherwise (i.e., v outputs false in at least one vertex) v is said to reject the
configuration. For correctness, a proof-labeling scheme (p,v) for (F ,P) must be
(1) complete and (2) sound . Formally, for every Gs ∈ F , we say (p,v) is

1. complete if whenever P(Gs) = true then, using the labels assigned by p,
the verifier v accepts Gs, and

58 R. Ostrovsky et al.

2. sound if whenever P(Gs) = false then, for every label assignment, the
verifier v rejects Gs.

The verification complexity of a proof-labeling scheme (p,v), according
to [17], is the maximal label size—the maximal length of a label assigned by the
prover p on a legal configuration (satisfying P). A PLS is defined to use one
verification round, in which neighbors exchange labels. In this case, label size
and message size are the same.

In this paper we consider proof-labeling schemes with more than one verifi-
cation round, in particular it can use super-constant time, and hence we define
the message size of the scheme (p,v) to be the largest message a vertex sends
during the execution of v on a legal configuration with the labels assigned by p.
We denote a proof-labeling scheme with t-round verification by t-PLS.

3 General Space-Time Tradeoff Results

In this section we give general results for label size reduction and message size
in a t-PLS. The idea is to take a 1-PLS, and break it into smaller shares where
vertices are assigned only a single share of the original label. We refer to this
technique as label sharing . In particular, we present a universal scheme and
provide a tool for obtaining lower bounds. We first observe that if there exists
a PLS for (F ,P) with label size κ (and hence, message size κ), then there
exists a t-PLS for (F ,P) with label size κ and message size κ/t. Indeed, vertices
can communicate their κ-bit label in t different shares of size κ/t, where the
original label is simply the concatenation of the shares. In the universal scheme
described below, the oracle assigns each vertex only a single share. Each vertex
then reconstructs the original (1-PLS) labeling from the shares received from
neighbors in t communication rounds.

3.1 Universal t-PLS

A universal scheme is a scheme that verifies every sequentially decidable prop-
erty. In this subsection we assume that every vertex has an identifier, and iden-
tifiers in the same configuration are pairwise distinct. We give an upper bound
on the label and message size of a universal scheme that uses t communication
rounds.

Theorem 1. Let F be a family of configurations with states set S and diameter
at least D, let P be a boolean predicate over F and suppose that every state in
S can be represented using s bits. For every t ∈ Ω(D) there exists a t-PLS for
(F ,P) with label and message size O((ns + min{n2,m log n})/t) where n is the
number of vertices, and m is the number of edges in the graph.

In the proof of this theorem we use a known universal PLS [4,13,17].
Labels consist of the entire representation of the graph configuration. Nodes

Space-Time Tradeoffs for Distributed Verification 59

then verify that they have the same representation, and that it is consis-
tent with its local view. Finally, they verify individually that the label repre-
sents a legal configuration. Since every configuration can be represented using
O(ns + min{n2,m log n}) bits—by listing the state of each vertex and an adja-
cency matrix or an edge list—this is the label (and message) size of this scheme.

The idea of the universal t-PLS is to disperse the configuration representation
into shares such that each vertex can collect the purported graph configuration
from its t-neighborhood. The details and the formal proof appear in the full
version of this paper [6].

3.2 Lower Bound Tool

We start with some definitions. Although we consider only networks represented
by undirected graphs, we will define an orientation on an edge to indicate a
specific ordering of its endpoints. We denote by H(e) the head of a directed edge
e, and by T (e) the tail of e.

Definition 2 (Edge Crossing). Let G = (V,E) be a graph, and e1, e2 ∈ E be
two directed edges. The edge crossing of e1 and e2 in G, denoted by C(e1, e2, G),
is the graph obtained from G by replacing e1 and e2, by the edges (T (e1),H(e2))
and (T (e2),H(e1)).

Edge crossings were used many times before, and were formalized as a tool
for proving lower bounds of verification complexity in [4]. We now show how to
use edge crossing in order to prove lower bounds for label size of t-PLS.

Definition 3 (Edge k -neighborhood). Let G = (V,E) be a graph, and e =
(u, v) ∈ E. The k-neighborhood of e in G, denoted by Nk(e,G), is the subgraph
(V ′, E′) of G satisfying

1. w ∈ V ′ if and only if w ∈ V and min(dist(w, u),dist(w, v)) ≤ k, and
2. e′ ∈ E′ if and only if e′ ∈ E ∩ (V ′ × V ′).

Proposition 4. Let (p,v) be a deterministic t-PLS for (F ,P) with label size
|�|. Suppose that there is a configuration Gs ∈ F which satisfies P and contains
r directed edges e1, . . . , er, whose t-neighborhoods Nt(e1, Gs), . . . , Nt(er, Gs) are
pairwise disjoint, contain q vertices each, and there exist r state preserving
isomorphisms σi : V (Nt(e1, Gs)) → V (Nt(ei, Gs)) for i = 1, . . . , r such that
σi(H(e1)) = H(ei) and σi(T (e1)) = T (ei). If |�| < (log r)/q, then there exist
i, j with 1 ≤ i < j ≤ r such that every connected component of C(ei, ej , Gs) is
accepted by (p,v).

Proof. Let (p,v) and Gs be as described above, and assume that |�| < (log r)/q.
Consider a collection {σi : V (Nt(e1, Gs)) → V (Nt(ei, Gs)), i = 1, . . . , r} of r
state preserving isomorphisms, such that σi(H(e1)) = H(ei) and σi(T (e1)) =
T (ei). Order the vertices of Nt(e1, Gs) arbitrarily. For every i, consider the con-
catenation of labels given by p to the vertices of Nt(ei, Gs), in the order induced

60 R. Ostrovsky et al.

by the ordering of Nt(e1, Gs) and σi. Denote this concatenated string Li. By
label size assumption, it holds that |Li| < log r for every i, and thus there
are less than r different options for Li. Therefore, by the pigeonhole principle,
there are i �= j such that Li = Lj . Denote C(ei, ej , Gs) by G′

s, and consider
the labels provided by p to Gs. For every vertex v /∈ Nt(ei, Gs) ∪ Nt(ej , Gs),
its t-neighborhood is the same in Gs and in G′

s. Nt(ei, Gs) and Nt(ej , Gs) are
disjoint, isomorphic, and have the same states and labels according to some iso-
morphism which maps H(ei) to H(ej) and T (ei) to T (ej). Thus, for every vertex
v ∈ Nt(ei, Gs)∪Nt(ej , Gs), its t-neighborhood in Gs is the same as in G′

s. Since
the output of the verifier v at each vertex in Gs is only a function of the states
and labels at its t-neighborhood, if the output of v in Gs is true at all vertices,
then the output of v in every connected component of G′

s must be true, and
the proposition follows.

The following theorem, which is a consequence of Proposition 4, is the tool
we use to prove lower bounds of label size in a t-PLS.

Theorem 5. Let F be a family of configurations, and let P be a boolean predi-
cate over F . Suppose that there is a configuration Gs ∈ F which satisfies

1. P(Gs) = true,
2. Gs contains r directed edges e1, . . . , er, whose t-neighborhoods Nt(e1, Gs), . . . ,

Nt(er, Gs) are pairwise disjoint, contain q vertices each, and there exist r state
preserving isomorphisms {σi : V (Nt(e1, Gs)) → V (Nt(ei, Gs)), i = 1, . . . , r}
such that σi(H(e1)) = H(ei) and σi(T (e1)) = T (ei), and

3. for every i �= j, there exists a connected component Hs of C(ei, ej , Gs) such
that P(Hs) = false.

Then the label size of any t-PLS for (F ,P) is Ω((log r)/q).

4 Acyclicity

In this section we focus on the acyclicity property, and give tight t-PLS lower and
upper bounds. The lower bounds of Subsect. 4.1 hold in the computational model
where vertices have unique identifiers, and the labels are allowed to depend on
the ID of a vertex. The upper bounds presented in Subsects. 4.2 and 4.3 still
apply in a weaker computational model where vertices do not have unique IDs.

Definition 6 (Acyclicity). Let F be the family of all connected graphs. Given
a graph configuration Gs ∈ F , acyclic(Gs) = true if and only if the underlying
graph G is cycle free.

4.1 Lower Bound for ACYCLIC

Theorem 7. Every scheme which verifies acyclic in t communication rounds
requires labels of size Ω ((log n)/t).

Space-Time Tradeoffs for Distributed Verification 61

Proof. We will show a configuration as described in Theorem 5, with r = Ω (n/t)
and q = O(t), to derive the stated lower bound on label size of any scheme that
verifies acyclic. Let Gs be the n-vertex path v0−v1−· · ·−vn−1 where all states
are the empty string. Obviously acyclic(Gs) = true. Let r = �n/(2t + 2)	−1,
and consider the set {ei = (v(2t+2)i, v(2t+2)i+1) | 1 ≤ i ≤ r} of r directed edges.
Each Nt(ei, Gs) contains exactly 2t + 2 vertices, and thus q = 2t + 2. Every
pair of t-neighborhoods Nt(ei, Gs) and Nt(ej , Gs), for i �= j, is disjoint since
the distance between ei and ej is at least 2t + 1. For every i < j, C(ei, ej , Gs)
contains exactly two connected components. One of them is the cycle Hs =
vqi+1 − vqi+2 − · · · − vqj − vqi+1 where all its edges are marked. By definition,
P(Hs) = false. Hence, the conditions of Theorem 5 are satisfied, and the lower
bound follows.

4.2 Upper Bound for ACYLCLIC

In this section, we describe a t-PLS for acyclic which matches the lower bound
presented in Theorem 7.

Theorem 8. Suppose G = (V,E) is a graph with diameter D. For every t ≤
min {log n,D}, there exists an O(t)-PLS for acyclic with label and messages
of size O((log n)/t). Further, the verifier v uses space of size O((log n)/t).

Remark 9. In this subsection, we assume that each vertex has access to some
means of deciding (correctly) when t communication rounds have elapsed. This
can be achieved either by allowing each vertex a log t bit counter, or by giving
each vertex access to an oracle which alarms when (an integer multiple of) t
rounds have elapsed. We discuss the necessity of this assumption in Subsect. 4.3.

The following scheme can be used to verify that the graph contains no cycles
using labels of size O(log n) in a single round. The label of a vertex v consists of
an integer d(v) which encodes the distance from v to a root vertex (which has
d(v) = 0). Vertices verify the correctness of the labels in a single communication
round. If v satisfies d(v) = 0 (i.e., v is a root), then it accepts the label if all of
its neighbors w satisfy d(w) = 1. If v satisfies d(v) �= 0 then v verifies that v has
exactly one neighbor u with d(u) = d(v) − 1 while all other neighbors w satisfy
d(w) = b(v) + 1. This scheme is used, for example, in [2,3,14]. The correctness
of the scheme is a consequence of the following definition and lemma.

Definition 10. Suppose G = (V,E) is a graph and L = {0, 1, . . . , s − 1} with
s ≥ 3. We call function � : V → L an s-cyclic labeling of G if for every v ∈ V ,
v has at most one neighbor P (v)—the parent of v—such that �(P (v)) ≡ �(v)−1
mod s, while the v’s other neighbors w satisfy �(w) ≡ �(v) + 1 mod s.

Remark 11. An s-cyclic labeling induces an orientation on G where an edge
(u, v) is oriented such that u = P (v). That is, each edge is oriented away from
the parent.

62 R. Ostrovsky et al.

id = 0
a = 0
b = head

c = 0
d = 00

id = 44
a = 2
b = tail

c = 0
d = 10

id = 45
a = 0
b = head

c = 1
d = 01

id = 46
a = 1
b = mid

c = 1
d = 11

id = 47
a = 2
b = tail

c = 1
d = 10

id = 48
a = 0
b = head

c = 0
d = 00

Fig. 1. Acyclicity labels for a graph consisting of a path rooted at its left endpoint.
We have given the nodes identifiers 0, 1, . . . from left to right, although the labeling
need not include the id of the vertices. For this configuration, the orientation labels
a(v) simply count the distance from v to the root (with id 0) modulo 3. The nodes
with ids 45 6, and 47 form a single block, whose head (45) and tail (47) are indicated
by the corresponding block labels. The color of this block is 1 because it is the 15th
block from the root (45/3 = 15), and 15 ≡ 1 mod 2. Finally, the concatenation of the
distance labels in this block is d(47)d(46)d(45) = 101101, which encodes the distance
of the block’s head to the root (45) in binary.

Lemma 12. Suppose G = (V,E) is a connected graph and � an s-cyclic labeling.
Then either G is acyclic or G contains a unique cycle of length k, where s divides
k. Further, if G contains a cycle, C, then C is an oriented cycle in the orientation
induced by �, and all oriented paths in G are oriented away from vertices in C.

Proof. Suppose C = (v0, v1, . . . , vk−1) is a cycle in G. In the orientation
described in Remark 11, every vertex has in-degree at most 1. Let degin(vi)
denote the in-degree of vi in C and similarly degout(vi) is vi’s out-degree
in C. Then degin(vi) − degout(vi) ≤ 0 for all vi. However, we must have∑

i degin(vi) − degout(vi) = 0, implying that in fact degin vi = degout(vi) = 1
for all i. Thus, C is an oriented cycle. As a consequence, for all i, either
�(vi) ≡ �(vi+1) + 1 mod s or �(vi) ≡ �(vi+1) − 1 mod s. In the former case,
we have �(vk−1) − �(v0) ≡ k ≡ 0 mod s, implying that s divides k. In the latter
case, �(vk−1) − �(v0) ≡ −k ≡ 0 mod s, and the desired result holds.

Since every vertex vi ∈ C has in-degree 1 in C, all edges that leave C must be
oriented away from vertices in C. Similarly, any path w0, w1, . . . , wj with w0 ∈ C
and wi /∈ C for i ≥ 1 must be oriented away from C. Thus no such path may
lead to another cycle C ′, nor could another cycle C ′ share a path with C. Thus
since G is connected C must the unique cycle.

To achieve labels of length O((log n)/t) for acyclic, we simulate the
“distance-to-root” scheme described above. The idea is to break the O(log n)-bit
labels indicating the distance to the root into shares of size O((log n)/t). Unlike
the universal scheme described in Subsect. 3.1, vertices do not reconstruct the
(log n)-bit distance-to-root labels directly, but check the labeling is correct dis-
tributively. Thus the verifier v only uses space linear in the label size.

Formally, for a vertex v, an acyclicity label consists of:

– an orientation label a(v) ∈ {0, 1, 2} which defines an orientation on edges
away from the root of the tree,

Space-Time Tradeoffs for Distributed Verification 63

– a block label b(v) ∈ {head,mid,tail} which indicates v’s position within a
block,

– a block color c(v) ∈ {0, 1}, and
– a distance label d(v) ∈ {0, 1}(log n)/t which encodes a share of a distance to

the root.

See Fig. 1 for an example of correctly formed labels. It is clear that an acyclicity
label can be recorded in O((log n)/t) bits. The semantics of acyclicity labels are
described below.

Correct orientation labels. The orientation labels a(v) are correct if every
v ∈ V has at most one neighbor P (v)—the parent of v—such that a(P (v)) ≡
a(v) − 1 mod 3. The remaining neighbors w of v—v’s children—satisfy
a(w) ≡ a(v) + 1 mod 3. If P (v) = ∅, we call v a root . Correct orienta-
tion labels induce an orientation on G where the oriented edges (v, w) satisfy
a(w) ≡ a(v) + 1 mod 3. Thus, edges are oriented away from roots (if any).

Correct block labels. Block labels must be assigned in the following manner
1. b(v) = head if and only if either P (v) = ∅ or b(P (v)) = tail
2. b(v) = tail if and only if there exists an oriented path of length t,

v0, v1, . . . , vt−1 = v such that b(v0) = head. We refer to such a path
as a block .

3. In all other cases, b(v) = mid.
4. For every v, there exists an oriented path w0, w1, . . . , wk−1 = v of length

k < t such that b(w0) = head.

Definition 13. Let B = (v0, v1, . . . , vt−1) be a block. We define the value of
B, denoted D(B), to be the integer whose binary expansion is the concatenation
d(vt−1)d(vt−2) · · · d(v0). That is, v0 holds the least significant bits of D(B), while
vt−1 holds the most significant bits. If B′ = (w0, w1, . . . , wt−1) is another block,
we say that B is the parent of B′ and B′ is a child of B if P (w0) = vt−1. If
there exists i such that vi = wi, we say that B and B′ overlap.

Correct block coloring. The block coloring c is correct if
1. for every block B and v, w ∈ B we have c(v) = c(w), and
2. for every blocks B,B′ such that B is the parent of B′, and v ∈ B, w ∈ B′,

we have c(v) �= c(w).
Correct distance labels. The distance labels d are correct if

1. for every block, B = (v0, v1, . . . , vt−1), D(B) = 0 if and only if v0 is a
root, and

2. for every pair of blocks B and B′ with B the parent of B′, we have
D(B′) = D(B) + t.

Definition 14 (Correct acyclicity labeling). Suppose � is a family of
acyclicity labels for a graph G = (V,E). We say that the family � is correct
if a, b, c, and d are correct orientation labels, correct block labels, correct block
colorings, and correct distance labels as described above.

64 R. Ostrovsky et al.

Remark 15. If blocks B = (v0, . . . , vt−1) and B′ = (w0, . . . , wt−1) overlap,
then we must have w0 = v0 and D(B) = D(B′). The first equality holds because
each vertex vi has at most one parent, so if wi = vi we must have wj = vj for
0 ≤ j ≤ i. The second equation holds because either B and B′ contain a root, in
which case D(B) = D(B′) = 0, or there is a B′′ which is the parent of both B
and B′. In the latter case, D(B) = D(B′′) + t = D(B′).

Proposition 16. Let G = (V,E) be a graph. Then G is acyclic if and only if it
admits a correct labeling �.

Proof. If G is acyclic, then we can form labels � in the following way. Choose
an arbitrary vertex u to be the root. For all v define d′(v) = dist(v, u) (the
length of the unique path from v to u), and take a(v) = d′(v) mod 3. Define
b(v) by b(v) = head if d′(v) ≡ 0 mod t, b(v) = tail if d′(v) ≡ −1 mod t, and
d(v) = mid otherwise. Finally, assign distance labels d(v) in such a way that in
each block B with first element v0, D(B) = d′(v0). It is easy to verify that these
labels � constructed in this way will satisfy all the provisions of Definition 14.

Conversely, suppose G admits a correct family of acyclicity labels. Suppose
towards a contradiction that C = (w0, w1, . . . , wk−1) is a cycle. Since the orien-
tation labels a(v) are correct (hence form a 3-cyclic labeling), C must be an ori-
ented cycle (as in the proof of Lemma12). The final provision in the correctness
of b and the fact that each vertex wi has a unique parent guarantee some wi must
have b(wi) = head. Without loss of generality, assume that b(w0) = head, and
let B0 be the block containing w0 and contained in C. Inductively define blocks
B1, B2, . . . ⊆ C such that Bi+1 is a child of Bi. By the pigeonhole principle, we
must have Bi = Bj for some i < j. However, the correctness of the distance labels
implies that D(Bi) < D(Bi+1) < · · · < D(Bj) = D(Bi), a contradiction.

In order to prove Theorem 8, by Proposition 16, it suffices to show there is
a verifier v for acyclicity labels which runs in time O(t) using messages and
memory of size O((log n)/t). Verification of the correctness of the orientation
labels a, block coloring c, and conditions 1 and 3 in the correctness of the block
labels b can be accomplished in a single communication round with constant
communication. Thus, we must verify conditions 2 and 4 in the correctness of
the block labels as well as the correctness of distance labels.

After the initial sharing of labels with neighbors in the first round, the ver-
ification algorithm Verify(v, a, b, c, d) continues as follows (see Algorithm 1 for
pseudo-code). For t − 1 steps, each vertex relays the message from its parent
to all of its children. At the end of t rounds, each vertex verifies that at some
point, it received a message from a head vertex. If a vertex v received a mes-
sage from a root vertex, it verifies that d(v) = 0. Otherwise, let b(w), c(w), and
d(w) be labels received by v in the t-th round. Then v checks that b(w) = b(v),
c(w) �= c(v). The block heads increment the distance labels d(w) t times, sending
carry bits (if any) to their children. When children receive carry bits, they incre-
ment their d(w)’s accordingly, sending further carry bits to their children. After
this incrementation procedure, vertex v verifies that the incremented d(w)’s sat-
isfy d(v) = d(w).

Space-Time Tradeoffs for Distributed Verification 65

Algorithm 1. Verify(v, a, b, c, d): Verifies correctness of acyclicity labels.

1: send a(v), b(v), and c(v) to all neigh-
bors

2: verify correctness of a and c, and con-
ditions 1 and 3 in correctness of b

3: head check ← false
4: if b(v) = tail then
5: is zero ← true
6: end if
7: for i = 1 to t-1 do
8: M ← (b(w), c(w), d(w)) or ∅

received from P (v)
9: if b(w) = head then

10: head check ← true
11: end if
12: if b(v) = tail then
13: if d(w) �= 0 then
14: is zero ← false
15: end if
16: if i = t − 1 then
17: assert: b(w) = head

18: end if
19: end if
20: send M to all children {if v is a leaf,

ignore}
21: end for
22: if M = ∅ then
23: assert: d(v) = 0 {head of v’s block

is root}
24: else
25: for i = 1 to t do
26: Increment(d(w), |d(w)| , 1)
27: end for
28: assert: b(w) = b(v)
29: assert: c(w) �= c(v)
30: assert: d(w) = d(v)
31: if b(v) = tail then
32: assert: is zero = false
33: end if
34: end if
35: assert: head check = true

Lemma 17. Let � be a family of acyclicity labels on a graph G = (V,E). Then
� is correct if and only if every vertex v accepts in Algorithm1.

Proof. By induction, each vertex receives the message from its (unique) i-th
ancestor in the i-th communication round. Therefore, every tail accepts at lines
16–18 if and only if every tail is at (oriented) distance t−1 from a head. Similarly,
every vertex v is at (oriented) distance iv < t from a head if and only if it accepts
at line 35 (see lines 9–11). Thus, the block labels are correct if and only if every
vertex accepts at lines 2, 17, and 35.

Note that b(w) = ∅ if and only if the head of the block containing v is a
root. Thus, every vertex accepts at line 23 if and only if all blocks B containing
a root satisfy D(B) = 0. Conversely, if B does not contain a root, then by the
assertion at line 32 (and the check at lines 13–15), then D(B) �= 0. Thus the
checks at lines 23 and 32 are satisfied if and only if condition 1 in the correctness
of distance labels is satisfied.

Suppose block B = (w0, . . . , wt−1) is the parent of B′ = (v0, . . . , vt−1), then
the distance label received by each vi is d(wi). Thus, after incrementing the labels
d(w0)d(w1) · · · d(wt−1) t times, the incremented labels will have value D(B) + t.
Therefore, all vertices in B′ accept at line 31 if and only if D(B′) = D(B) + t,
if and only if condition 2 of correct distance labels is satisfied.

Proof (of Theorem 8). Lemma 17 implies that the Verify routine (Algorithm 1)
is a correct verifier for acyclicity labels. Thus we must only argue that Verify

66 R. Ostrovsky et al.

achieves the claimed time, space, and communication bounds. In each commu-
nication round, each vertex broadcasts a single label (in line 20) or a single bit
(in Increment) to its neighbors. Thus, the communication in each round is
O((log D)/t) per edge. In each iteration of the algorithm, each vertex stores at
most a constant number of labels, hence the memory usage is O((log D)/t) as
well. Finally, the overall run-time is 3t. The label sending procedure in lines
7–21 is accomplished in t rounds, while the incrementation procedure in lines
25–7 requires at most 2t rounds: t rounds where the head vertices increment,
and another t to propagate carries. In particular, the run-time is O(t).

4.3 Recursive Acyclicity Checking

The scheme described in Subsect. 4.2 gives asymptotically optimal label size for
t ≤ log n. Further, the communication per round and local memory usage is
linear in the label size. However, the scheme above crucially requires each vertex
to be given a truthful representation of the parameter t. In the full version of
this paper [6, Appendix A], we show that achieving a runtime t ∈ ω(1) ∩ o(n)
requires that vertices are given some truthful information about t (or n).

In this subsection, we describe a verifier for acyclic that only assumes that
the space provided to each processor is O(log∗ n). The tradeoff is that our algo-
rithm runs in time which may be linear in n in the worst case.

Theorem 18. There exists a O(n)-PLS for acyclic which uses labels and space
of size O(log∗ n). In each round, the communication per-edge is O(1).

Remark 19. While verification time in Theorem18 is O(n) in the worst case,
the actual time depends on the labels given to the vertices. In particular, for
every acyclic graph G there exists a correct labeling which will be accepted in
time O(log D). Thus there is a tradeoff between the time of the algorithm and
the amount of truthful information about t given to the vertices.

The idea of the algorithm is to simulate the verifier Verify (Algorithm 1)
without the benefit of truthful information about t. As before, the labels des-
ignate blocks of length t. Within each block, the vertices store shares of the
distance of that block to the root, where in this case, the shares consist of a sin-
gle bit. Since t (the length of the block) is not known to the vertices in advance,
they must first compute t. However, storing t requires log t bits, so the computed
value of t is stored in shares in sub-blocks of length log t. In order to verify the
correctness of the sub-blocks, the vertices must count to log t using log log t
bits of memory. This value is again stored in shares in sub-sub-blocks of length
log log t. This process of recursively verifying the lengths of blocks continues until
the block length is constant. Thus log∗ n levels of recursion suffice.

Formally, in our recursive scheme, recursive acyclicity labels closely
resemble those in Subsect. 4.2. For each vertex v and each level i = 1, 2, . . . , k =
log∗ n, we have an associated block label bi(v) and block color ci(v). We refer to
the labels associated to each i as a level , denoted Li. The top level L1 addition-
ally contains orientation labels, a(v) and distance labels d(v) for each vertex.

Space-Time Tradeoffs for Distributed Verification 67

Each level i has an associated length, denoted by ti. We emphasize that the ti
are not initially known to the vertices at the beginning of an execution. The
semantics and correctness of the block labels bi and block colors ci are precisely
the same as those described in Subsect. 4.2, where blocks at level i have length
ti. As before, the distance labels d(v) encode (a share of) the purported distance
of the L1 block containing v to the root.

Definition 20. Suppose � is a family of recursive acyclicity labels for a graph
G = (V,E). We say that a family � of recursive acyclicity labels is correct if the
L1 labels are correct as in Definition 14, and for i ≥ 2 the block labels in bi and
block colors ci are correct as in Definition 14 with ti = �log ti−1	.
Remark 21. For simplicity of presentation, we assume that for all i ≥ 2 that ti
divides ti−1. Thus, each block in Li−1 contains an integral number of sub-blocks.
The general case can be obtained by allowing “overlap” of the last sub-block of
B in level i with the first sub-block of B′ in i where B is the parent block of B′.

Analogously to Proposition 16, we obtain the following result.

Proposition 22. Let G = (V,E) be a graph. Then G is acyclic if and only if it
admits a correct family C of recursive acyclicity labels.

It is clear that recursive acyclicity labels are of length O(log∗ n). Indeed, each
of the labels in the log∗ n recursive levels has length O(1).

Lemma 23. Let G = (V,E) be a graph, and C a family of recursive acyclic-
ity labels on G. Suppose that for some i, the labels in Li+1 are correct. Then
there exists a verifier vi for the labels in Li with run-time O(2ti+1), constant
communication per round, and constant space.

Algorithm 2. RVerify(i, Li)

1: verify a is correct
2: verify properties 1 and 3 of correctness

of bi correctness of ci
3: if i = log∗ n then
4: verify correctness of bi and ci
5: return
6: end if
7: tcounti+1 ← 0

8: Count(tcounti+1, 1, i)
9: Send(tcounti+1,rec, i + 1)

10: assert: reci+1 = tcounti+1

11: if i = 1 then
12: Add(d(v),tcount2,dcount, 1)
13: Send(dcount,dcount, 1)
14: assert: dcount = d(v)
15: end if

We describe a verifier RVerify (Algorithm 2) for Li assuming Li+1 is correct.
Suppose B is a block in level i, and B1, B2, . . . , Bs its sub-blocks for s = ti/ti+1,
with Bj the parent of Bj+1. By assumption, the block labels for the Bj are
correct. The head v0 of B verifies that it is also the head of B1, and sends a

68 R. Ostrovsky et al.

token Tcount to all of its children. The vertices in B bounce Tcount to the tail,
which then bounces Tcount back up to v0. Meanwhile, the vertices of each Bj

hold shares of a counter tcountj , which computes ti by incrementing itself until
Tcount returns to the head. If the counter tcountj ever exceeds 2ti+1 (i.e., if
the bit held by the tail of Bj is ever incremented twice), then the vertices in
Bj will halt and reject the label. It is clear that this step of the verification will
always halt in time O(2ti+1). After counting, the blocks in Li+1 verify that they
agree on tcountj . Further, tails of Bj verify that their share of tcount is 1,
implying that 2ti−1−1 < ti ≤ 2ti−1 .

There is a slight complication in the verification algorithm described above
that arises when a block B terminates prematurely in a leaf (a vertex of degree
1) which is not a tail. In correct block labels, if v0 is the head of overlapping
complete blocks (i.e., all have tails at distance ti from the head) then v0 should
receive Tcount from all of its children at the same time, 2ti. However, if some
block containing v0 is incomplete (terminates prematurely with a leaf) then v0
may receive messages from its children in different rounds. To avoid this problem,
leaves which are not labeled tail respond with a token Tleaf to their parent upon
receiving Tcount. The parent then knows not to expect a Tcount from this child.
Similarly, if an internal vertex receives Tleaf from all of its children (perhaps
in different rounds), it sends Tleaf to its parent. Then vertices check that they
receive Tcount from all children at the same time, except those which have sent
Tleaf if a previous round.

Finally, if i = 1, the vertices must additionally verify the correctness of the
distance labels d(v). Suppose B = (v0, . . . , vt−1) and B′ = (w0, . . . , wt−1) are
blocks with B the parent of B′. The tail vt−1 sends b(vt−1), c(vt−1), and d(vt−1)
to its children, and sends the token Tstart to its parent, vt−2. The vertices
continue to echo any messages received from their parents to their children, and
if a vertex v receives Tstart from its children, it additionally sends b(v), c(v),
and d(v) to its children. When wt−1 (the tail of B′) receives d(vt−1), it saves this
value and sends Tstop to its parent. When a vertex w receives Tstop, it saves
the value d(v) in the message it received from its parent such that c(v) �= d(v),
and echos Tstop to its parent. After 2t rounds, the procedure terminates, and
every wi holds d(vi). In a further 3t rounds, B′ distributively increments the
d(vi), and verify that the incremented d(vi) are equal to d(wi), thus ensuring
the distance labels are correct.

Proof (of Lemma 23). We prove that RVerify(i, Li) (Algorithm 2) is a verifier
for Li whenever Li+1 is a correct. As in the proof of Lemma 17, we focus on
verifying properties 2 and 4 in the correctness of bi. Properties 1 and 3 of the
correctness of bi, as well as the correctness of ci can be trivially verified in a
single communication round with constant communication. Let v0 be a root in
Li. By induction, every vertex at distance τ from v0 receives Tcount at time τ .
Thus, property 4 of the correctness of bi is satisfied if and only if no vertex fails
in a call to Count(tcounti+1, 1, i), which occurs if and only if each 2ti+1−1 <
tcounti+1 ≤ 2ti+1 (line 20 of Count ensures the first inequality, while the
check in lines 11–13 of Increment ensure the second inequality). Property 2 in

Space-Time Tradeoffs for Distributed Verification 69

the correctness of bi holds if and only if all vertices accept the assertion at line
10 of RVerify(i, Li).

The proof that d is correct when i = 1 if and only if no vertex rejects
in lines 11–15 in RVerify(i, Li) is analogous to the argument in Lemma17.
Finally, it is clear that the per-round communication is constant, as is the space
requirement (assuming that only levels Li and Li+1 are stored). As for the run-
time, notice that Count(ctr,m, i) always terminates in time at most 2mti+1 by
the verification at lines 11–13 of Increment. Further, if no vertex fails during
the call to count Count, then Add and Send will similarly halt after 2ti+1 ≤ ti
rounds.

Proof (of Theorem 18). By Proposition 22, it suffices to prove the existence of a
verifier v of recursive acyclicity labels with the claimed communication, space,
and time. We induct on k−i (where k = log∗ n) that the correctness of Li can be
verified in the desired run-time, using constant communication and space. When
i = k, the correctness of labels is a local property (independent of the size of
the network). Thus, each vertex v can verify the correctness of Lk by analyzing
the state of Lk labels in N(v,O(1)), which can be accomplished in constant
time, space, and communication. Now suppose the correctness of Li+1 can be
verified in time O(t) using constant communication and space. By Lemma 23,
RVerify(i, Li) (Algorithm 2) is a verifier for Li. Further, RVerify(i, Li) runs in
time O(ti) ≤ O(log(t1)), uses constant communication, and space. Theorem18
the follows by running RVerify(k, Lk), followed by RVerify(k − 1, Lk−1) and
so on, up to RVerify(1, L1). The run-time is O(tk + tk−1 + · · · + t1) ≤ O(t1).

Remark 24. We can modify the recursive scheme described here to use only
finitely many levels of recursion, but with the tradeoff of using more memory
per-vertex. In particular, if only the labels of L1 are given, but each vertex has
access to a counter with log t bits of memory, we recover precisely the scheme of
Subsect. 4.2 in the case where t = Ω(log n). If we give labels in L1 and L2, and
each vertex has a counter with log log t bits of memory, then the scheme will still
be correct. However, we get a greater degradation of run-time due to round-off
errors in log log t. Specifically, if we have m − 1 < log log t ≤ m, then we obtain

22
m−1

< t ≤
(
22

m−1
)2

.

Thus, even if log log t is given truthfully as the size of the counter, the run-time
of RVerify may be quadratic in t if the L1 labels are improperly formed. Finally,
given labels L1, L2, and L3, and a counters of size log(3) t, the run-time may
vary exponentially from log n. Thus, our worst-case run-time is already only
O(n). The fully recursive scheme thus achieves the same worst-case run-time
with log∗ n memory per vertex.

70 R. Ostrovsky et al.

References

1. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its application
to self-stabilization. Theor. Comput. Sci. 186(1–2), 199–229 (1997)

2. Awerbuch, B., Ostrovsky, R.: Memory-efficient and self-stabilizing network reset
(extended abstract). In: Proceedings of 13th Annual ACM Symposium on Princi-
ples of Distributed Computing, PODC 1994, pp. 254–263. ACM, New York (1994)

3. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking
and correction. In: 32nd Symposium on Foundations of Computer Science (FOCS),
pp. 268–277. IEEE (1991)

4. Baruch, M., Fraigniaud, P., Patt-Shamir, B.: Randomized proof-labeling schemes.
In: Proceedings of 2015 ACM Symposium on Principles of Distributed Computing,
PODC, pp. 315–324 (2015)

5. Baruch, M., Ostrovsky, R., Rosenbaum, W.: Brief announcement: space-time trade-
offs for distributed verification. In: Proceedings of 2016 ACM Symposium on Prin-
ciples of Distributed Computing, PODC 2016, pp. 357–359. ACM, New York (2016)

6. Baruch, M., Ostrovsky, R., Rosenbaum, W.: Space-time tradeoffs for distributed
verification. CoRR, arXiv:1605.06814 (2016)

7. Blin, L., Fraigniaud, P., Patt-Shamir, B.: On proof-labeling schemes versus
silent self-stabilizing algorithms. In: Felber, P., Garg, V. (eds.) SSS 2014.
LNCS, vol. 8756, pp. 18–32. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11764-5 2

8. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)

9. Feuilloley, L., Fraigniaud, P.: Survey of distributed decision. Bull. EATCS, 119
(2016)

10. Foerster, K.-T., Luedi, T., Seidel, J., Wattenhofer, R.: Local checkability, no strings
attached. In: Proceedings of 17th International Conference on Distributed Com-
puting and Networking, ICDCN 2016, pp. 21:1–21:10. ACM, New York (2016)

11. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local dis-
tributed computing. J. ACM 60(5), 35 (2013)

12. Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and checkability in wait-free
computing. Distrib. Comput. 26(4), 223–242 (2013)

13. Göös, M., Suomela, J.: Locally checkable proofs. In: 30th ACM Symposium on
Principles of Distributed Computing (PODC), pp. 159–168 (2011)

14. Itkis, G., Levin, L.: Fast and lean self-stabilizing asynchronous protocols. In: Pro-
ceedings of 35th Annual Symposium on Foundations of Computer Science, SFCS
1994, pp. 226–239. IEEE Computer Society, Washington, DC (1994)

15. Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. Dis-
trib. Comput. 20, 253–266 (2007)

16. Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing verifica-
tion, computation, and fault detection of an MST. In: 30th Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC), pp. 311–320 (2011)

17. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),
215–233 (2010)

18. Schmid, S., Suomela, J.: Exploiting locality in distributed SDN control. In: Pro-
ceedings of 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, HotSDN 2013, pp. 121–126. ACM, New York (2013)

http://arxiv.org/abs/1605.06814
https://doi.org/10.1007/978-3-319-11764-5_2
https://doi.org/10.1007/978-3-319-11764-5_2

Approximate Proof-Labeling Schemes

Keren Censor-Hillel1(B), Ami Paz1, and Mor Perry2

1 Department of Computer Science, Technion, Haifa, Israel
{ckeren,amipaz}@cs.technion.ac.il

2 Department of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
mor@eng.tau.ac.il

Abstract. We study a new model of verification of boolean predicates
over distributed networks. Given a network configuration, the proof-
labeling scheme (PLS) model defines a distributed proof in the form
of a label that is given to each node, and all nodes locally verify that the
network configuration satisfies the desired boolean predicate by exchang-
ing labels with their neighbors. The proof size of the scheme is defined
to be the maximum size of a label.

In this work, we extend this model by defining the approximate proof-
labeling scheme (APLS) model. In this new model, the predicates for
verification are of the form ψ ≤ ϕ, where ψ, ϕ : F → N for a family
of configurations F . Informally, the predicates considered in this model
are a comparison between two values of the configuration. As in the PLS
model, nodes exchange labels in order to locally verify the predicate, and
all must accept if the network satisfies the predicate. The soundness con-
dition is relaxed with an approximation ration α, so that only if ψ > αϕ
some node must reject.

We show that in the APLS model, the proof size can be much smaller
than the proof size of the same predicate in the PLS model. Moreover,
we prove that there is a tradeoff between the approximation ratio and
the proof size.

Keywords: Distributed graph algorithms · Distributed verification
Approximation algorithms · Primal-dual algorithms

1 Introduction

1.1 Context and Objective

Verification of a given property in decentralized systems finds applications in
various domains, such as, checking the result obtained from the execution of a
distributed program [5,20], establishing lower bounds on the time required for
distributed approximation [11], estimating the complexity of logic required for
distributed run-time verification [21], general distributed complexity theory [19],
and the construction of self stabilizing algorithms [8,26].

K. Censor-Hillel and A. Paz—Supported by ISF individual research grant 1696/14.
M. Perry—Partially supported by Apple Graduate Fellowship.

c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 71–89, 2017.
https://doi.org/10.1007/978-3-319-72050-0_5

72 K. Censor-Hillel et al.

In the distributed setting, a network configuration Gs is represented by an
underlying graph and a state assignment. The nodes of the underlying graph
represent processors and the edges represent communication links between pairs
of processors. The state assignment is the state of each node, which can contain a
unique identifier, edge weights, a specified subset of incident edges, an output of
a distributed algorithm and more. In order to verify that a network configuration
has a specified property, nodes exchange messages along the edges and output
either TRUE or FALSE depending on whether the local configuration is consistent
with a legal state of the network. The distributed verification process is correct if
all nodes return TRUE on legal configurations, and on every illegal configuration
at least one node returns FALSE. Some properties are local by nature and easy
to verify, for example, whether a specified subset of edges is a matching in the
graph. However, many other properties cannot be verified in less than diameter
time, even if message size and local computational power are unbounded, for
example, whether a specified matching is of maximum cardinality.

In order to cope with strong time lower bounds, Korman et al. [27] have
introduced the proof-labeling schemes (PLSs) computational model, where nodes
are given auxiliary global information in the form of labels. A proof-labeling
scheme for a predicate P consists of a prover and a verifier. For every legal
state of the network, the prover assigns a label to every node. The verifier is
a distributed algorithm, in which nodes exchange labels with their immediate
neighbors and then output TRUE or FALSE at each node, as a function of the
state and label of the node and the labels it receives from its neighbors. A PLS
satisfies completeness if for every legal configuration, with the labels assigned by
the prover, all nodes output TRUE, and it satisfies soundness if for every illegal
configuration and every label assignment, some node outputs FALSE.

When designing a PLS, we wish to minimize the maximum size of a label,
which is called the proof size. It is known that, for every sequentially decidable
graph property, there exists a PLS with proof size O(m log n) where n is the
number of nodes and m is the number of edges in the network [6,22,27]. For some
properties, lower bounds on the proof size have been proven in this model, for
example Ω(log n) for verification of a spanning-tree [27] and bi-connectivity [6],
Ω(n2/ log n) for verifying that the graph is not 3-colorable [22], and Ω(log2 n) for
verification of a minimum-weight spanning-tree [25], assuming that the maximal
edge-weight W satisfies log n < W ≤ nc for some constant c.

As in the computational framework, variations of the model may allow us to
break known lower bounds. It has been suggested to use super-constant number
of rounds in verification [7,26]. In the former, a linear reduction of proof size
is proven for acyclicity and the universal scheme. In the latter, they present a
scheme for minimum-weight spanning-tree with O(log n) proof size and O(log2 n)
rounds. In [6] it was suggested to distinguish between labels and communication
in the verification process, and to use randomization in order to reduce the
communication complexity of verification. They show an exponential reduction
in the communication complexity of every scheme at the cost of increasing the
proof size by a factor of the maximum degree.

Approximate Proof-Labeling Schemes 73

Table 1. APLS for (D ≤ k) on general graphs—upper and lower bounds on proof size.

Approximation ratio Upper bound Lower bound

Exact O (n log n) (Section 3) Ω (n/k) (Theorem 1)

3/2 − ε Ω
(
n/ log2 n

)
(Theorem 3)

3/2 O
(√

n log2 n
)

(Theorem 2)

2 O (log n) (Theorem 4)

Yet, some properties are still harder. In Sect. 3 we show that any PLS for
D ≤ k must have labels of Ω(n) bits, where D is the diameter of the graph
and k ∈ N is a constant. A natural way to circumvent this lower bound is
through approximation, e.g., by defining a 2-approximation for the problem by
the predicate D ≤ 2k, and hoping for smaller proof size. However, this approach
is bound to fail: any PLS for D ≤ 2k is also a PLS for D ≤ k′, for k′ = 2k, so
the same lower bound holds for this definition of approximation.

Inspired by the above example, we present and investigate a new concept of
approximate proof-labeling schemes (APLSs for short) for optimization prob-
lems. Let ψ,ϕ : F → N be two functions from a family of configurations
to the natural numbers. Assume that we are interested in verifying for every
Gs ∈ F whether ψ(Gs) ≤ ϕ(Gs), and let α > 1 be the approximation ratio. If
ψ(Gs) ≤ ϕ(Gs) then there is an assignment of labels such that all nodes output
TRUE, and if ψ(Gs) > αϕ(Gs) then for every label assignment at least one node
outputs FALSE. If ϕ(Gs) < ψ(Gs) ≤ αϕ(Gs), we do not have any promise. Put
differently, we are promised that if all nodes output TRUE, then ψ(Gs) ≤ αϕ(Gs),
i.e., the approximation holds. This concept indeed allows us to find schemes with
shorter labels: we show a 2-APLS for D ≤ k with proof size of only O(log n)
bits, and a 3/2-APLS for D ≤ k with proof size of O(

√
n log2 n) bits.

1.2 Our Contribution

In this paper we introduce and formalize the concept of approximate proof-
labeling schemes. We study the complexity of verification of two fundamental
problems in this model: diameter and maximum weight matching. We start by
considering the verification of a specified upper bound k on the network diameter
D (see summary of results in Table 1), and show that for every k = k(n), the
proof size of any PLS for D ≤ k is Ω(n/k). In the APLS model, as outlined above,
we present a 3/2-APLS for D ≤ k with O(

√
n log2 n) proof size, and prove that

we cannot obtain a better approximation ratio with the same asymptotic proof
size. Specifically, we prove that for every k there exists an ε ∈ Θ(1/k) such that
the proof size of any (3/2 − ε)-APLS for D ≤ k is Ω(n/ log2 n). Then, we turn
to show that if we increase the approximation ratio we can construct an even
more efficient scheme. In particular, we show a simple 2-APLS for D ≤ k with
proof size O(log n). To our knowledge, the problem of verifying an upper bound
on the diameter in general graphs has not been studied before in the context
of PLSs.

74 K. Censor-Hillel et al.

Table 2. APLS for (w(M) ≥ w(MWM))—upper and lower bounds on proof size.

Approximation ratio Graph family Upper bound Lower bound

Exact Paths O(log n + log W) [27]

Exact Bipartite O(log W) [22]

2 Trees O(log n + log W) [27]

2 Any graph O(log W) (Theorem 6)

Any Any graph Ω(1) (Sect. 4)

The second property we consider is verifying that a specified matching M
have the maximum possible weight (see summary of results in Table 2). For this
property we are interested in bounding from below the weight of the matching
w.r.t. the weight of the maximum matching w(MWM). We present a 2-APLS for
w(M) ≥ w(MWM) with O(log W) proof size, where W is the maximum edge-
weight in the network. This improves upon a previous result presented in [27],
with O(log n + log W) proof size for a 2-approximation of the maximum weight
matching on trees. We note that the notion of approximation in [27] is different
from our definition: they argue that there exists a subset of 2-approximated
configurations that the scheme verifies, but do not promise that any configuration
with an optimal matching is verified successfully.

We use various techniques to obtain our results. The lower bounds for proof
complexity are achieved using reductions for nondeterministic communication
complexity [22], a lower bound graph presented in [23] and a recent construc-
tions of [1]. The APLSs’ design is based on approximation algorithms for the
diameter problem [2], and on complementary slackness conditions for primal-
dual problems.

1.3 Related Work

Approximation algorithms were studied extensively in both sequential and
distributed computing. In the sequential model, unless P = NP, there are no
polynomial-time algorithms for NP-hard problems, and thus efficient approxi-
mation algorithms for the related optimization problems are widely studied [31].
Moreover, even for problems for which polynomial time algorithms exist, there
is sometimes a need for faster algorithms that give an approximate solution.

One example is the problem of determining the diameter of a graph. While the
problem is solvable in polynomial time, faster approximation algorithms are stud-
ied. A trivial 2-approximation algorithm in unweighted graphs goes through build-
ing a single BFS tree in O(n+m) time, and measuring its depth. An Õ(m

√
n+n2)-

time 3/2-approximation algorithm for the diameter was presented in [2], and was
later improved in [30] to Õ(m

√
n) time algorithms using randomization. A deter-

ministic improvement to [2] was presented in [9]. Distributed algorithms for com-
puting the diameter were presented in [23,29], and both also provide approxima-
tion algorithms for the problem. Lower bounds on computing and approximating
the diameter in the CONGEST model were presented in [1,24].

Approximate Proof-Labeling Schemes 75

Distributed decision and verification schemes deal with verifying that a given
instance satisfies some given boolean predicate. These were formalized in vari-
ous models to suit its myriad applications, which include proof-labeling schemes
(PLSs) [27], locally checkable proofs (LCP) [22], and several complexity classes
[19]. The complexity classes presented in the latter include LD—local decision—
which includes all properties that can be decided using a constant number
of rounds and no additional information, and NLD—non-deterministic local
decision—which includes all properties that can be decided in a constant num-
ber of rounds with additional information in the form of a certificate given to
each node. While NLD and PLS are closely related, they differ in that NLD
certificates are independent of node identifiers. Since PLS labels may depend on
node identifiers, there is a PLS for every sequentially decidable property on ID
based networks, while not all sequentially decidable properties are in NLD. For
more details, we refer the reader to a survey of this field of research [12].

The concept of PLS was introduced by Korman et al. in [27]. Among other
results, they show a Θ(log n) bound on the proof size of the diameter of trees,
and the same bound also for the proof size of a lower bound on the diameter in
general graphs. In addition, they present two O(log n+log W) schemes to verify
a maximum weight matching: one on paths, and the other is a 2-approximation
of maximum weight matching on trees.

Proof labeling schemes where nodes may communicate to a constant distance
that is greater than 1 were studied in [22]. For the maximum cardinality matching
problem, they show that the proof size on the family of bipartite graphs is Θ(1),
and on the family of cycle graphs is Θ(log n). For maximum weight matching,
they present a scheme for the family of bipartite graphs, with O(log W) proof
size, using techniques similar to the ones we use. Moreover, [22] was the first
to use nondeterministic communication complexity lower bounds in order to
achieve lower bounds on the verification complexity of a PLS.

Schemes with super-constant verification time were presented in [26]. Verifi-
cation processes in which the global result is not restricted to be the conjunction
of local outputs had been studied in [3,4]. The role of unique node identifiers
in local decision and verification was extensively studied in [16–18]. The use of
randomization in verification process in order to reduce communication was pre-
sented in [6]. Proof-labeling schemes in directed networks were studied in [14],
where both one-way and two-way communication over directed edges had been
considered. Verification schemes for dynamic networks, where edges may appear
or disappear after label assignment and before verification, were studied in [15].
Finally, a hierarchy of local decision as an interaction between a prover and a
disprover was presented in [13].

2 Model and Definitions

2.1 Computational Framework

A network is modeled by a connected, undirected, simple graph G = (V,E), with
|V | = n nodes and |E| = m edges. Each node represents a processor, and each

76 K. Censor-Hillel et al.

edge represents a communication link. We do not assume the a processor initially
knows to which other processors it is connected, but only that its communication
links are enumerated by port numbers. A configuration Gs is graph G = (V,E)
along with a state assignment function s : V → S, where S is called the state
space. The state s(v) of a node v includes all local input to v. In particular,
the state includes port numbers of adjacent edges, the node’s identity (if the
network is not anonymous) or other data, e.g., the result of an algorithm. We
sometimes consider weighted networks, in which the graph is accompanied with
an edge weight function w : V → {1, . . . , W}, in which case the state of a node
includes the weights of its adjacent edges.1

In this work, we always assume non-anonymous networks, i.e., every node v
is provided with a unique identity ID(v), which is part of the state of v.

2.2 Proof-Labeling Schemes

Given a family F of network configurations and a boolean predicate P over F ,
a proof-labeling scheme (PLS) for (F ,P) is a mechanism for deciding P(Gs) for
every Gs ∈ F . A PLS consists of two components: a prover p, and a verifier
v. Given any legal configuration Gs ∈ F (i.e., a configuration satisfying P), the
prover assigns a bit string �(v) to every node v, called the label of v. The verifier
is a local distributed algorithm running concurrently at every node. At each
node v, it takes as input the state s(v) of v, its label �(v) and the labels of all its
neighbors, i.e., the list (�(v1) . . . �(vd)), where d is the degree of v, and vi is the
neighbor of v reachable from port number i. The outputs of the verifier at each
node is a boolean value. If the outputs are TRUE at all nodes, v is said to accept
the configuration, and otherwise (i.e., v outputs FALSE in at least one node) v
is said to reject the configuration. For correctness, a PLS (p,v) for (F ,P) must
satisfy the following requirements, for every Gs ∈ F :

– If P(Gs) = TRUE then, using the labels assigned by p, the verifier v accepts
Gs.

– If P(Gs) = FALSE then, for every label assignment, the verifier v rejects Gs.

The proof size of a PLS (p,v) is the maximum length of a label assigned by the
prover p on a legal configuration Gs ∈ F .

2.3 The New Model: Approximate Proof-Labeling Schemes

In this paper we focus on predicates that represent minimization or maximization
problems. Formally, we are given two functions ψ,ϕ : F → N, and we are
interested in the predicate ψ(Gs) ≤ ϕ(Gs). Note that ψ or ϕ may be constant,
e.g., in verifying an upper bound on the diameter of the graph, one can be
interested in verifying D(Gs) ≤ k. In some cases, classic verification might be
too expansive, as proven in Sect. 3, and so we extend the definition of PLSs to
1 Recall that W is the maximum weight of an edge in the graph. If W = 1, we interpret

O(log W) as O(1).

Approximate Proof-Labeling Schemes 77

approximate proof-labeling schemes (APLSs). We relax the requirements of a
PLS so that a configuration for which the inequality ψ(Gs) ≤ ϕ(Gs) holds is
guaranteed to be accepted by the scheme, while a configuration for which ψ(Gs)
much larger than ϕ(Gs) is guaranteed to be rejected. Formally, for α ≥ 1, an α-
APLS (p,v) for (F , (ψ ≤ ϕ)) must satisfy the following requirements, for every
Gs ∈ F :

– If ψ(Gs) ≤ ϕ(Gs) then, using the labels assigned by p, the verifier v accepts
Gs.

– If ψ(Gs) > αϕ(Gs) then, for every label assignment, the verifier v rejects Gs.

The proof size of an APLS is defined similarly to that of a PLS. Our definitions
naturally extend to predicates of the form ψ ≥ ϕ, ψ < ϕ and ψ > ϕ.

Finally, we note that although the definition of an APLS might seem to
resemble definitions from the field of property testing, they are inherently dif-
ferent. Our measure for how close a graph is to satisfy a property is entirely
algebraic, and has nothing to do with changing the graph by adding or removing
edges. Moreover, all schemes presented in this paper are deterministic.

2.4 Problem Definitions

Diameter. Given a configuration Gs with an underlying graph G = (V,E) and
an edge weight function w, for every two nodes u, v ∈ V denote by dist(u, v)
the length of the shortest (unweighted) path between u and v in Gs, and by
distw(u, v) the minimum weight of a path between u and v in Gs. The unweighted
diameter of Gs, denoted by D(Gs), is defined as max {dist(u, v) | u, v ∈ V }.
Similarly, The weighted diameter of Gs, denoted by Dw(Gs), is defined as
max {distw(u, v) | u, v ∈ V }.

The first set of problems we consider in this work are problems of bounding
the weighted and unweighted diameters from above.

Definition 1. Let F be the family of all weighted connected undirected config-
urations and let Gs ∈ F . For every integer k = k(n), we define the problems
(F , (D ≤ k)) and (F , (Dw ≤ k)).

A breadth-first search (BFS) tree in a weighted or unweighted graph Gs from
a root r ∈ V is a tree consisting of a shortest (unweighted) path from r to every
node in V . If the graph is weighted, we are also interested in a shortest weighted
distance tree consisting of a shortest weighted path from a root node r to every
node in V . Throughout the paper, we use known schemes for verification of a
BFS tree and a shortest weighted distance tree [27]. They prove that for the
verification of these trees it is enough to give every node the identity of the root
and the distance from the root. Therefore, proof size is O(log n) for a BFS tree
and O(log n + log W) for a shortest weighted distance tree.

78 K. Censor-Hillel et al.

Matchings. Given a configuration Gs with an underlying graph G = (V,E), an
edge weight function w, and an edge subset M ⊂ E, M is a matching in G if no
two edges in M share a node. The weight of a matching M , denoted by w(M), is
the sum of weights of all edges in M . We say that a matching M is a maximum
weight matching (MWM) if w(M) ≥ w(M ′) for every matching M ′ in G.

Another problem we consider, of a different flavor, is to verify that a specified
matching is a maximum weight matching.

Definition 2. Let FM be the family of all weighted connected undirected config-
urations with a specified matching M . Let Gs ∈ F and let MWM be a maximum
weight matching in Gs. We define the problem (FM , (w(M) ≥ w(MWM))).

Note that although w(M) > w(MWM) is not possible (since M is promised
to be a matching), the problem is defined to follow the structure of APLSs.

2.5 Two-Party Communication Complexity

Given two vectors x, y ∈ {0, 1}s, we say the vectors are not disjoint, and write
DISJ(x, y) = FALSE, if there exists an index i ∈ [s] such that xi = yi = 1. Other-
wise, the vectors are disjoint, and DISJ(x, y) = TRUE. In the Set-Disjointness
two-party communication problem, two players denoted Alice and Bob are
given two vectors, x, y ∈ {0, 1}s respectively, and they need to decide whether
DISJ(x, y) = TRUE or DISJ(x, y) = FALSE. (See [28] for complete definitions and
discussion.)

Given their inputs, the players communicate by a deterministic protocol, and
eventually output DISJ(x, y) = TRUE or DISJ(x, y) = FALSE. A well known result
in communication complexity asserts that in any protocol, Alice and Bob must
exchange Ω(s) bits in order to correctly determine the value of DISJ(x, y).2

In the nondeterministic case of the problem, Alice and Bob use auxiliary
bit strings, which each of them nondeterministically chooses, and then run a
deterministic protocol in order to determine the value of DISJ(x, y). We are
interested in the best assignment of auxiliary strings, i.e. the one that allows the
players to minimize the number of bits exchanged. For example, if DISJ(x, y) =
FALSE and Alice and Bob both use the index i such that xi = yi = 1 as an
auxiliary string, then they only need to exchange O(log s), to verify they have
the same index. On the other hand, a celebrated result [28] asserts that when
DISJ(x, y) = TRUE, Alice and Bob must communicate Ω(s) even with an optimal
assignment of auxiliary strings, i.e. nondeterminism cannot help Alice and Bob
in asymptotically minimizing the communication.

3 PLS and APLS for Diameter

Verifying that the diameter of the graph is bounded from above by a specified
value can be done by a PLS with O(n log n) proof size (and O(n(log n+ log W))
2 This lower bound holds also for randomized protocols, which we do not discuss in

this work.

Approximate Proof-Labeling Schemes 79

a1

a2

a3

a5

a4

a6 b6

b5

b4

b3

b2

b1

x16 = 1

x34 = 0

y16 = 1

k − 1 edges

k − 1 edges

k − 1 edges

k − 1 edges

k − 1 edges

k − 1 edges

k − 1 edges

a b

Fig. 1. The diameter lower bound construction for s = 6. Here, x =
(

0 1 1
1 1 1
0 0 0

)
and

y =
(

0 0 1
0 0 0
1 1 1

)
, where the matrix rows are indexed by {1, 2, 3} and the columns by

{4, 5, 6}. Since x16 = y16 = 1, the dotted edges are missing and the distance between
a1 and b6 is greater than k.

for weighted diameter). Simply construct a BFS tree (respectively, a shortest
weighted distance tree) from every node, verify it and locally verify at each node
that all of its distances are bounded by the specified value. We now show that
in the PLS model, for a constant bound k, the proof size cannot be improved by
more than a Θ(log n) factor, i.e., it must have an Ω(n) proof size. Moreover, for
every k = k(n), we show a lower bound for the PLS proof size.

Consider the following graph family {Gx,y} over n nodes (Fig. 1). Assume
s = n

k − 1 is an even integer, and let A1 = a1, ..., as/2, A2 = as/2+1, ..., as, B1 =
b1, ..., bs/2, and B2 = bs/2+1, ..., bs be four cliques, where each ai is connected
to bi with a path of length k − 1, consisting of ai, bi, and k − 2 new nodes
unique to this path. An additional node a is connected to every ai by an edge,
an additional node b is connected to every bi by an edge, and there is a (k − 1)-
node path connecting a and b with another new k − 2 nodes. Given an instance
(x, y) of the Set-Disjointness problem over (s/2)2 elements, enumerate Alice’s
input as xij with i ∈ {1, . . . , s/2} and j ∈ {s/2 + 1, . . . , s}, and similarly for
Bob’s input, yij . To complete the construction of Gx,y, add an edge (ai, aj) if
and only if xij = 0, and we add an edge (bi, bj) if and only if yij = 0.

If n
k −1 is not an even integer, we choose s to be the largest even integer such

that s < n
k − 1, add nodes to described construction to complement the number

of nodes to n, and connect all additional nodes to all neighbors of b.

80 K. Censor-Hillel et al.

Lemma 1. D(Gx,y) ≤ k if and only if DISJ(x, y) = TRUE.

Proof. If DISJ(x, y) = TRUE, then for each {i, j}, at least one of the edges (ai, aj)
or (bi, bj) exists in Gx,y. Let u and v be any two nodes in Gx,y. Suppose that u is
on the path (ai � bi) and v is on the path (aj � bj), where i, j ∈ {1, . . . , s/2}.
If i = j, clearly, dist(u, v) ≤ k − 1. Otherwise, by assumption, either the cycle
(a → ai � bi → bj � aj → a) or the cycle (b → bj � aj → ai � bi → b) exists
and its length is 2k + 1. Hence, every two nodes in the cycle are at distance at
most k from each other, and dist(u, v) ≤ k. Suppose now that either u or v is
on the path (a � b) and the other node is on the path (ai � bi), i ∈ {1, . . . , s}.
The length of the cycle (a → ai � bi → b � a) is 2k, and since u and v are
on this cycle, dist(u, v) ≤ k. Finally, if both u and v are on the path (a � b),
clearly, dist(u, v) ≤ k − 1, and we conclude that D(Gx,y) ≤ k.

If DISJ(x, y) = FALSE, then there exist i ∈ {1, . . . , s/2} and j ∈
{s/2 + 1, . . . , s} such that xij = yij = 1, and by the construction of Gx,y,
both edges (ai, aj) and (bi, bj) are absent. Every path from ai to bj must go
through some (a′ � b′) path of length k − 1, and if dist(ai, bj) ≤ k then the
shortest path connecting ai and bj can only contain one more edge. However,
since the edges (ai, aj) and (bi, bj) are both absent in Gx,y, no such path exists,
so dist(ai, bj) > k, which implies that D(Gx,y) > k. �	
Theorem 1. For every k, the proof size of any PLS for (F , (D ≤ k)) is Ω(n/k).

Proof. Consider any PLS for (F , (D ≤ k)), and construct a nondeterministic
protocol for DISJ(x, y) as follows. Alice and Bob simulate the verification of
D(Gx,y) ≤ k using the PLS, such that Alice simulates the nodes in A = A1 ∪
A2 ∪ a, and Bob simulates the rest of the nodes, denoted by B. Each of the players
nondeterministically chooses the labels of its nodes as his auxiliary bit-string.
Alice and Bob then exchange the labels corresponding to the nodes touching the
cut, and simulate the verification process in all nodes. Then, they compute a and
b, the conjunction of the returned values of A and B respectively. Finally, Alice
sends a to Bob, Bob sends b to Alice, and they both output the conjunction a∧b
as the solution for DISJ(x, y).

If DISJ(x, y) = TRUE then D(Gx,y) ≤ k, there is an assignment of labels
to the nodes such that all nodes output TRUE, and if both players choose these
labels as their bit-strings then they both output DISJ(x, y) = TRUE. On the
other hand, if DISJ(x, y) = FALSE then D(Gx,y) > k, for every assignment of
labels to the nodes at least one node outputs FALSE, and Alice and Bob output
DISJ(x, y) = FALSE in all executions.

Thus, the simulation we presented is a nondeterministic protocol for deciding
DISJ(x, y). We know that in any nondeterministic protocol for Set-Disjointness
(s/2)2 elements, Alice and Bob must exchange Ω((s/2)2) bits. The number of
edges in the cut of Gx,y induced by the partition of the nodes between Alice
and Bob in the simulation is s + 1. Therefore, the proof size of any PLS for
(F , (D ≤ k)) is Ω(s) ∈ Ω(n/k). �	

We now show that in the APLS model there are schemes with much smaller
proof size. We start with a 3/2-APLS and construct a scheme that is based on

Approximate Proof-Labeling Schemes 81

the randomized algorithm for a 3/2-approximation of the diameter presented in
[30]. We use the following two lemmas.

Lemma 2. Let G = (V,E) be a graph, let S,N ⊆ V be two sets of nodes, and
consider a node w ∈ V . Assume that N is the set of z nodes closest to w for
some parameter z, w is the farthest node from the set S, and N ∩S is non-empty.
Then, the largest depth D′ of a BFS tree rooted at a node in R = N ∪ S ∪ {w}
satisfies 2

3D ≤ D′ ≤ D.

Lemma 3. Let G = (V,E) be a graph and z ∈ N a parameter. For each v ∈ V ,
let Nz(v) be the set of z nodes closest to v. Then, there exists a hitting set for
{Nz(v) | v ∈ V }, of size O(n log n/z).

Lemma 2 corresponds to an adapted version of Lemma 4 of [30], and Lemma
3 is a corollary of Theorem 2.7 of [2]. We obtain the following result.

Theorem 2. There exists a 3/2-APLS for (F , (D ≤ k)) with proof size
O(

√
n log2 n).

Proof. Our scheme is based on Lemma 2: it consists of a node w, sets N and
S and all the BFS trees rooted at R = N ∪ S ∪ {w}. In addition, there is a
node w′ that is used to verify that the largest depth of a BFS tree rooted in R
is as claimed, and a BFS tree rooted at w′. The main task in our scheme is to
verify the BFS trees described above, and that the diameter estimation, i.e., the
maximum depth of the trees, is at most k. Since a BFS tree verification is known
from previous work, the challenges in the scheme construction is to verify locally
that w is indeed the farthest node from the set S, that N is the neighborhood
of w, and that the estimation is indeed the maximum depth of a tree.

Formally, let Gs ∈ F be a configuration with the underlying graph G = (V,E)
and D(Gs) ≤ k. For every v ∈ V , denote by N√

n(v) the
√

n nodes closest to v
(break ties according to IDs), and let S ⊂ V be a set of O(

√
n log n) nodes such

that S hits
{
N√

n(v) | v ∈ V
}
, whose existence follows from Lemma 3.

Let h(v) = min {dist(v, u) | u ∈ S}, the distance of v from the set S, and let
w be the farthest node from S, i.e., h(w) ≥ h(v) for every v ∈ V . Let q(w) be
the largest distance from w to any node in N√

n(w). Let R = S ∪ {w} ∪ N√
n(w)

be a set of |R| = O(
√

n log n) nodes, and consider the set RBFS of BFS trees
rooted at nodes in R. Let dmax be the maximum depth of a tree in RBFS and
let w′ be a node at distance dmax from one of the roots.

The label assigned to a node v ∈ V is

�(v) = (�BFSs:S(v), �BFSs:N (v), �BFS:w(v), �BFS:w′(v), �hw(v), �qw(v), �maxdist(v))

where �BFSs:S(v) is a set of O(
√

n log n) pairs {(ID(u),dist(v, u)) | u ∈ S};
�BFSs:N (v) is a set of

√
n pairs

{
(ID(u),dist(v, u)) | u ∈ N√

n(w)
}
; �BFS:w(v) =

(ID(w),dist(v, w)); and �BFS:w′(v) = (ID(w′),dist(v, w′)). Every pair mentioned
above is the label needed in order to verify the correct structure of the corre-
sponding BFS tree. In order to verify that w is indeed the farthest node from
S, every node is given the distance of w from S, �hw(v) = h(w); To verify

82 K. Censor-Hillel et al.

the consistency of N√
n(w), every node is given the radius of this neighborhood

�qw(v) = q(w); and �maxdist(v) = dmax is given in order to verify the existence
and maximality of the estimation dmax.

In the verification process, a node v exchanges labels with all its neighbors,
and verifies the following conditions:

1. Consistency of global parameters: For every neighbor v′ of v, it holds that
�hw(v′) = �hw(v), �qw(v′) = �qw(v), and �maxdist(v′) = �maxdist(v).

2. All distances are bounded by dmax and k: For every pair (ID, d) in
�BFSs:S(v) ∪ �BFSs:N (v) ∪ {�BFS:w(v)} ∪ {�BFS:w′(v)}, it holds that 0 ≤
d ≤ �maxdist(v) ≤ k.

3. Existence of a BFS tree of depth dmax: If �BFS:w′(v) = (ID(v), 0) then there
exists a pair (ID, d) ∈ �BFSs:S(v) ∪ �BFSs:N (v) ∪ {�BFS:w(v)} such that d =
�maxdist(v).

4. Only one pair for each node in S and in N√
n(w): For every two pairs

(ID, d), (ID′, d′) ∈ �BFSs:X(v), for X ∈ {S,N}, if d �= d′ then ID �= ID′.
5. BFS structures: For every neighbor v′ of v and X ∈ {S,N}, the follow-

ing holds. There exists a pair (ID, d) ∈ �BFSs:X(v), for some d if and
only if there exists a pair (ID, d′) ∈ �BFSs:X(v′) with the same ID and
d′ ∈ {d − 1, d, d + 1}. For x ∈ {w,w′}, �BFS:x(v) = (ID, d) for some d if
and only if �BFS:x(v′) = (ID, d′) for d′ ∈ {d − 1, d, d + 1}.

6. Existence of roots: For every X ∈ {S,N} and pair (ID, d) ∈ �BFSs:X(v), if
d > 0 then there exists a neighbor v′ of v with (ID, d − 1) ∈ �BFSs:X(v′). For
x ∈ {w,w′}, if �BFS:x(v) = (ID, d) and d > 0 then there exists a neighbor v′

of v with �BFS:x(v′) = (ID, d − 1).
7. Unique roots: For every pair (ID, d) in �BFSs:S(v) ∪ �BFSs:N (v) ∪

{�BFS:w(v)} ∪ {�BFS:w′(v)}, if d = 0 then ID = ID(v).
8. Non-empty intersection of S and N√

n(w): There exists a pair (ID, d) ∈
�BFSs:S(v) ∩ �BFSs:N (v).

9. Maximality and correctness of h(w): There exists a pair (ID, d) ∈ �BFSs:S(v)
such that d ≤ �hw(v), and if �BFS:w(v) = (ID(v), 0) then there exists no pair
(ID, d) ∈ �BFSs:S(v) such that d < �hw(v).

10. The neighborhood of w: Let �BFS:w(v) = (ID, d). If d < �qw(v) then there
exists a pair (ID(v), 0) ∈ �BFSs:N (v), and if d > �qw(v) then there exists no
pair (ID(v), 0) ∈ �BFSs:N (v).

The completeness of this 3/2-APLS follows from the fact that if D(Gs) ≤ k
then the maximum depth of any BFS tree in Gs is at most k.

For the soundness, consider a configuration Gs ∈ F with the underlying
graph G = (V,E) and label assignment �, and assume that all nodes output
TRUE. By (1), all nodes have the same values �hw, �qw and �maxdist. By (4), (5), (6)
and (7) for every node v ∈ V and every pair (ID, d) ∈ �BFSs:S(v) ∪ �BFSs:N (v) ∪
{�BFS:w(v)} ∪ {�BFS:w′(v)}, there exists a node u such that ID = ID(u) and it
holds that d = dist(v, u).

Let S(v) be the collection of IDs in �BFSs:S(v), let N(v) be the collection
of IDs in �BFSs:N (v), let w(v) be the ID in �BFS:w(v) and let w′(v) be the ID

Approximate Proof-Labeling Schemes 83

in �BFS:w′(v). By (5), for every two nodes v and u it holds that S(v) = S(u),
N(v) = N(u), w(v) = w(u) and w′(v) = w′(u). We denote these values by S,
N , w and w′ respectively. By (10), N is the set of closest nodes to w; by (9), w
is the farthest node from the set S; and by (8), there exists some node in the
intersection of N and S. By (3), the collection of pairs �BFS:w′(v) of all nodes
v ∈ V indicates a BFS rooted at w0 with distance �maxdist to one of the nodes
in S ∪ N ∪ {w}, and by (2) we know that this is the largest distance from any
node to one of the nodes in S ∪ N ∪ {w} and this distance is at most k.

Overall, we have a collection of BFS trees with depth at most �maxdist ≤ k.
Therefore, all conditions of Lemma 2 are satisfied, and we have (2/3)D(Gs) ≤
�maxdist. Hence, D(Gs) ≤ (3/2)k as desired.

The proof size follows from Lemma 3, which implies that there exists a set
S of size O(

√
n log n) that is a hitting set for

{
N√

n(v) | v ∈ V
}
. In particular,

the intersection N√
n(w) ∩ S, where w is the farthest node from S, is not empty.

Therefore, the label consists of O(
√

n log n) sub-labels of size O(log n) each. �	
The following result shows that with the proof size we obtain for 3/2-APLS

we cannot have a better approximation ratio that is correct for all possible
bounds k. To get a better approximation ratio, one needs to use labels that are
almost as large as the labels used for exact PLS.

Let x and y be two s-bit strings, s ∈ Ω(n/ log n). Our lower bound follows
the recent construction of Abboud et al. [1].3

Lemma 4 [1]. Given two strings x, y ∈ {0, 1}s, there exists a graph Gx,y =
(V,E) and a partition of V into VA and VB such that:

1. The number of nodes in Gx,y is n ∈ Θ(s log s).
2. All the edges depending on x are between nodes in VA.
3. All the edges depending on y are between nodes in VB.
4. The number of edges between nodes in VA and VB is in Θ(log s).
5. If DISJ(x, y) = TRUE then D(Gx,y) ≤ k, and otherwise D(Gx,y) > 3k/2 − 9.

From this construction we derive the following lower bound.

Theorem 3. For every k, there exists an ε ∈ Θ(1/k) such that the proof size of
any (3/2 − ε)-APLS for (F , (D ≤ k)) is Ω(n/ log2 n).

Proof. Consider a (3/2 − 9/k)-APLS for (F , (D ≤ k)), and an instance (x, y) of
the DISJ problem over s bits. Construct the graph Gx,y as in Lemma 4, with
the same partition to VA and VB . Alice and Bob nondeterministically choose the
labels for the nodes of VA and VB , simulate the verification algorithm together,
and then compute a and b, the conjunction of the returned values of VA and VB.
Finally, Alice sends a to Bob, Bob sends b to Alice, and they both output the
conjunction a ∧ b as the solution for DISJ(x, y).

By Lemma 4, if DISJ(x, y) = TRUE then D ≤ k, all nodes must accept and
Alice and Bob return TRUE. On the other hand, If DISJ(x, y) = FALSE then

3 See Chap. 2.2 of [1]. We use P = �(k − 2)/4�.

84 K. Censor-Hillel et al.

D > (3/2 − 9/k)k, at least one node rejects, and Alice and Bob return FALSE.
Thus, Alice and Bob correctly solve the Set-Disjointness problem over s elements.

Note that log n = Θ(log s). Alice and Bob must communicate Ω(s) =
Ω(n/ log n) bits, and there are O(log n) nodes touching the cut, so the proof
size is Ω(n/ log2 n). �	

To further study the tradeoff between the approximation ratio and the proof
size, we now prove that if we increase the approximation ratio we can construct
an even more efficient scheme.

Theorem 4. There exists a 2-APLS for (F , (Dw ≤ k)) with proof size O(log n+
log W).

Proof. Let Gs ∈ F such that Dw(Gs) ≤ k, and let r ∈ V be some node. The
label assigned to every node v ∈ V is �(v) = (�dist(v), �root(v)), where �dist(v) =
distw(r, v) and �root(v) = ID(r). To verify that Dw(Gs) ≤ k, a node v exchanges
labels with all its neighbors, and verifies the following conditions:

1. For every neighbor u of v, it holds that �root(u) = �root(v).
2. 0 ≤ �dist(v) ≤ k.
3. If �dist(v) > 0 then v has at least one neighbor u with �dist(u) = �dist(v) −

w(u, v).
4. If �dist(v) = 0 then �root(v) = ID(v).

The completeness of this 2-APLS is clear: If Dw(Gs) ≤ k and labels are
assigned as described above, all nodes output TRUE.

For the soundness, consider a configuration Gs with label assignment �, such
that all nodes output TRUE. For a node v in the graph, follow the path from v
constructed by repeatedly going from a node v′ to its neighbor u with �dist(u) =
�dist(v′)−w(u, v′), whose existence is guaranteed by Condition (3). By conditions
(2) and (3), this path must end after traversing a weight of at most k, at a node
r with �dist(r) = 0, and this node is unique by Conditions (1) and (4). As this
claim can be applied to each node in the graph, every two nodes in the graph
are connected to each other by a path through r, of weighted distance at most
2k, and Dw(Gs) ≤ 2k as desired. �	

The following corollary directly follows Theorem 4 for the unweighted case.

Corollary 1. There exists a 2-APLS for (F , (D ≤ k)) with proof size O(log n).

4 Maximum Weight Matching

Given a configuration Gs ∈ FM with the underlying graph G = (V,E), an
edge weight function w, and a specified matching M ⊂ E, we wish to verify
(FM , (w(M) ≥ w(MWM))). Göös and Suomela [22] present a PLS for this
problem in bipartite graphs, using a linear programming (LP) formulation. Here,
we extend their technique to present a 2-APLS for (FM , (w(M) ≥ w(MWM)))
on general graphs.

Approximate Proof-Labeling Schemes 85

Our 2-APLS is simple: the label of a matched node is the weight of its
matched edge, and the label of an unmatched node is 0. The verification process,
and the proof that this is indeed a 2-APLS are slightly more involved, and use a
relaxation of the complementary slackness conditions of a relaxation of a linear-
programming formulation for the problem.

Consider the next integral-LP formulation of the MWM problem (cf. [10,
Chap. 5]):

Maximize
∑

e∈E w(e)xe

Subject to
∑

{e|v∈e} xe ≤ 1, ∀v ∈ V

xe ∈ {0, 1} , ∀e ∈ E,

and the LP obtained by relaxing the integrality condition into:

xe ≥ 0, ∀e ∈ E.

The dual linear-program of the relaxed problem is

Minimize
∑

v∈V yv
Subject to yu + yv ≥ w(e), ∀e = (u, v) ∈ E.

Given a pair consisting of a primal and a dual feasible solutions, their optimal-
ity can be verified by checking several conditions derived from the LP, conditions
that are known as the complementary slackness conditions. For the aforemen-
tioned LP, the conditions are:

xe > 0 =⇒ yu + yv = w(e), e = (u, v) ∈ E; and
yv > 0 =⇒ ∑

{e|v∈e} xe = 1, v ∈ V.

If G is bipartite, then any pair of feasible optimal solutions satisfy the com-
plementary slackness conditions, a fact that lies at the heart of the PLS presented
by Göös and Suomela [22].

For general graphs, the same method fails miserably. The inherent obstacle
that this approach faces is the integrality gap of the LP formulation: a fractional
solution to the problem may be twice as large as the maximum integral solution.
While there are LP formulations of the problem with an integrality gap of 1, it
is not clear how to translate them into a PLS, since the number of dual variables
in these LPs is substantially larger.

However, we observe that a relaxed version of these conditions is enough to
prove that a primal solution is an approximation of the MWM.

Theorem 5 (See [31, Sect. 15.1]). If x and y are feasible primal and dual
solutions in a graph G satisfying

xe > 0 =⇒ w(e) ≤ yu + yv ≤ 2w(e), e = (u, v) ∈ E; and
yv > 0 =⇒ ∑

{e|v∈e} xe = 1, v ∈ V,

then x is a 2-approximation of the MWM in G.

86 K. Censor-Hillel et al.

Unlike the case of bipartite graphs, here the opposite implication does not hold:
not every pair of 2-approximate solutions fulfill the conditions. Thus, given a
matching represented by a vector x, we explicitly build a dual solution y such
that x and y satisfy above conditions. This dual solution y will serve as a 2-APLS
for (FM , (w(M) ≥ w(MWM))) in a general graph.

Theorem 6. There exists a 2-APLS for (FM , (w(M) ≥ w(MWM))) with proof
size O(log W).

Proof. Let G be a weighted graph with weights in {1, . . . , W} and M a maximum
weight matching in G. Let (xe)e∈E be the indicator vector of M . Define the values
of the dual variables (yv)v∈V by yv = w(e) if there exist an edge e ∈ M such
that v ∈ e, and yv = 0 otherwise. The label of a node v is set to be yv.

To verify (FM , (w(M) ≥ w(MWM))), a node v exchanges labels with its
neighbors and check the next feasibility condition:

– For each neighbor u of v, yu + yv ≥ w(u, v).

We start by showing that if M is indeed a MWM, then the relaxed comple-
mentary slackness conditions hold. Let e = (u, v) be an edge satisfying xe > 0,
i.e. e ∈ M , then yu = yv = w(e) and indeed w(e) ≤ yu + yv ≤ 2w(e). For the
second complementary slackness condition, let v be a node with yv > 0, so there
is exactly one edge (u, v) ∈ M with x(u,v) = 1, while for every other neighbor u′

of v, x(u′,v) = 0, so
∑

{e|v∈e} xe = 1.
For the feasibility, the input is a feasible matching, so

∑
{e|v∈e} xe ≤ 1 for

each node v and xe ≥ 0 for each edge e, and the primal solution x is feasible.
For the dual solution y, assume towards contradiction that there is an edge
e = (u, v), e /∈ M , such that yu + yv < w(e). Then, the matching obtained by
removing any edge in M that touches u or v and adding e to M has a weight
w(M) − (yu + yv) + w(e) > w(M), which contradicts the maximality of M . The
case of e ∈ M was considered in the previous paragraph. Thus, we have a pair
of feasible primal and dual solutions satisfying the relaxed slackness conditions,
and the solutions are 2-approximations of the optimal solutions.

Finally, consider a configuration Gs with label assignment (xe), such that all
nodes output TRUE. The labels represent a dual solution that satisfies all the
relaxed complementary slackness conditions, so by Theorem 5 the solution is a
2-approximation of the MWM. �	

We are unaware of any lower bound for the MWM problem in the PLS
model, nor in the CONGEST and LOCAL models. We note that for every
approximation ratio α ≥ 1, some communication is needed in any α-APLS for
(FM , (w(M) ≥ w(MWM))). This is true since, for every configuration Gs with
an empty matching M = ∅ (not any approximation of MWM), the local view of
every node is consistent with some legal configuration with matching M ′, where
w(M ′) = w(MWM). Let v be a node and let u1, . . . , ud be the neighbors of v
where the weight of every edge (v, ui) is wi. The construction of the legal con-
figuration Gv

s for v is as follows. Add nodes z1, . . . , zd and an edge ei = (zi, ui)

Approximate Proof-Labeling Schemes 87

of weight wi + 1 for every 1 ≤ i ≤ d. Finally, define M ′ = {ei | 1 ≤ i ≤ d}. It is
easy to verify that there is no augmenting path for M ′ in this configuration, i.e.,
w(M ′) = w(MWM). However, the local view of v in Gs and in Gv

s is the same.
Therefore, without communication, v must output TRUE. Since the same holds
for every node, we conclude that some communication is necessary, regardless of
the desired approximation ratio.

5 Discussion

This paper presents the new model of approximate proof-labeling schemes. We
illustrate the power of the APLS model with the D ≤ k predicate. We prove a
tight lower bound (up to a logarithmic factor) in the PLS model, and present
two, more efficient, APLSs for this predicate. The two APLSs show a non-trivial
tradeoff between the approximation ratio and the proof size.

We also present a 2-APLS for the predicate w(M) ≥ w(MWM) on general
graphs, a problem for which it is unknown if a non-trivial PLS exists. Presenting
an efficient PLS for this problem, showing that a PLS with small proof size does
not exist, or presenting an APLS with different approximation ratio or different
proof size are interesting questions left open.

It would be interesting to study the APLS model on other graph predicates.
For example, the chromatic number χ(G) of a graph G is the minimal number of
colors in a proper node coloring of G. A PLS for χ ≤ k with proof size O(log k)
exists, where the proof is a proper coloring of the graph. However, it was proven
in [22] that any PLS for χ > 3 must have Ω̃(n2) proof size. Hence, also for this
problem, the APLS model may allow a more efficient verification.

Finally, the idea of approximation in verification we present in this paper
can be extended to other decision and verification schemes, such as the com-
plexity classes LD and NLD, generating a different classification of problems.
For example, our 2-APLS for w(M) ≥ w(MWM) on general graphs can also be
used for 2-approximate NLD, under the relevant definitions, since the labels can
be locally computed by the nodes.

Acknowledgment. We thank Gilad Kutiel, Seffi Naor and Dror Rawitz for discus-
sions of the primal-dual method, and the anonymous reviewers of SIROCCO 2017 for
valuable comments.

References

1. Abboud, A., Censor-Hillel, K., Khoury, S.: Near-linear lower bounds for distributed
distance computations, even in sparse networks. In: Gavoille, C., Ilcinkas, D. (eds.)
DISC 2016. LNCS, vol. 9888, pp. 29–42. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53426-7 3

2. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter
and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–
1181 (1999)

https://doi.org/10.1007/978-3-662-53426-7_3
https://doi.org/10.1007/978-3-662-53426-7_3

88 K. Censor-Hillel et al.

3. Arfaoui, H., Fraigniaud, P., Ilcinkas, D., Mathieu, F.: Distributedly testing cycle-
freeness. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 15–28.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12340-0 2

4. Arfaoui, H., Fraigniaud, P., Pelc, A.: Local decision and verification with bounded-
size outputs. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M.,
Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 133–147. Springer, Cham
(2013). https://doi.org/10.1007/978-3-319-03089-0 10

5. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking
and correction. In: FOCS, pp. 268–277. IEEE (1991)

6. Baruch, M., Fraigniaud, P., Patt-Shamir, B.: Randomized proof-labeling schemes.
In: PODC, pp. 315–324 (2015)

7. Baruch, M., Ostrovsky, R., Rosenbaum, W.: Space-time tradeoffs for distributed
verification. CoRR, arXiv:1605.06814 (2016)

8. Blin, L., Fraigniaud, P., Patt-Shamir, B.: On proof-labeling schemes versus
silent self-stabilizing algorithms. In: Felber, P., Garg, V. (eds.) SSS 2014.
LNCS, vol. 8756, pp. 18–32. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11764-5 2

9. Chechik, S., Larkin, D.H., Roditty, L., Schoenebeck, G., Tarjan, R.E., Williams,
V.V.: Better approximation algorithms for the graph diameter. In SODA, pp. 1041–
1052 (2014)

10. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial
Optimization. Wiley, New York (1998)

11. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)

12. Feuilloley, L., Fraigniaud, P.: Survey of distributed decision. Bull. EATCS 119
(2016)

13. Feuilloley, L., Fraigniaud, P., Hirvonen, J.: A hierarchy of local decision. In: ICALP,
pp. 118:1–118:15 (2016)

14. Foerster, K.-T., Luedi, T., Seidel, J., Wattenhofer, R.: Local checkability, no strings
attached. In: ICDCN, pp. 21:1–21:10. ACM (2016)

15. Foerster, K.-T., Richter, O., Seidel, J., Wattenhofer, R.: Local checkability in
dynamic networks. In: ICDCN, pp. 4:1–4:10. ACM (2017)

16. Fraigniaud, P.: Göös, M., Korman, A., Suomela, J.: What can be decided locally
without identifiers? In: PODC, pp. 157–165. ACM (2013)

17. Fraigniaud, P., Halldórsson, M.M., Korman, A.: On the impact of identifiers on
local decision. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012.
LNCS, vol. 7702, pp. 224–238. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-35476-2 16

18. Fraigniaud, P., Hirvonen, J., Suomela, J.: Node labels in local decision. In:
Scheideler, C. (ed.) Structural Information and Communication Complexity.
LNCS, vol. 9439, pp. 31–45. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-25258-2 3

19. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local dis-
tributed computing. J. ACM 60(5), 35 (2013)

20. Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and checkability in wait-free
computing. Distrib. Comput. 26(4), 223–242 (2013)

21. Fraigniaud, P., Rajsbaum, S., Travers, C.: On the number of opinions needed for
fault-tolerant run-time monitoring in distributed systems. In: Bonakdarpour, B.,
Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 92–107. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11164-3 9

https://doi.org/10.1007/978-3-319-12340-0_2
https://doi.org/10.1007/978-3-319-03089-0_10
http://arxiv.org/abs/1605.06814
https://doi.org/10.1007/978-3-319-11764-5_2
https://doi.org/10.1007/978-3-319-11764-5_2
https://doi.org/10.1007/978-3-642-35476-2_16
https://doi.org/10.1007/978-3-642-35476-2_16
https://doi.org/10.1007/978-3-319-25258-2_3
https://doi.org/10.1007/978-3-319-25258-2_3
https://doi.org/10.1007/978-3-319-11164-3_9

Approximate Proof-Labeling Schemes 89

22. Göös, M., Suomela, J.: Locally checkable proofs in distributed computing. Theory
Comput. 12(1), 1–33 (2016)

23. Holzer, S., Peleg, D., Roditty, L., Wattenhofer, R.: Distributed 3/2-approximation
of the diameter. In: DISC, pp. 562–564 (2014)

24. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and appli-
cations. In: PODC, pp. 355–364 (2012)

25. Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. Dis-
trib. Comput. 20, 253–266 (2007)

26. Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing verifica-
tion, computation, and fault detection of an MST. In: PODC, pp. 311–320 (2011)

27. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),
215–233 (2010)

28. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, New York (1997)

29. Peleg, D., Roditty, L., Tal, E.: Distributed algorithms for network diameter and
girth. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP
2012. LNCS, vol. 7392, pp. 660–672. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31585-5 58

30. Roditty, L., Williams, V.V.: Fast approximation algorithms for the diameter and
radius of sparse graphs. In: STOC, pp. 515–524 (2013)

31. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001). https://
doi.org/10.1007/978-3-662-04565-7

https://doi.org/10.1007/978-3-642-31585-5_58
https://doi.org/10.1007/978-3-642-31585-5_58
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7

Global Versus Local Computations:
Fast Computing with Identifiers

Mikaël Rabie(B)

LIP, ENS de Lyon, 69007 Lyon, France
mikael.rabie@ens-lyon.org

Abstract. This paper studies what can be computed by using prob-
abilistic local interactions with agents with a very restricted power in
polylogarithmic parallel time.

It is known that if agents are only finite state (corresponding to the
Population Protocol model by Angluin et al.), then only semilinear pred-
icates over the global input can be computed. In fact, if the population
starts with a unique leader, these predicates can even be computed in a
polylogarithmic parallel time.

If identifiers are added (corresponding to the Community Protocol
model by Guerraoui and Ruppert), then more global predicates over the
input multiset can be computed. Local predicates over the input sorted
according to the identifiers can also be computed, as long as the iden-
tifiers are ordered. The time of some of those predicates might require
exponential parallel time.

In this paper, we consider what can be computed with Community
Protocol in a polylogarithmic number of parallel interactions. We intro-
duce the class CPPL corresponding to protocols that use O(n logk n),
for some k, expected interactions to compute their predicates, or equiv-
alently a polylogarithmic number of parallel expected interactions.

We provide some computable protocols, some boundaries of the class,
using the fact that the population can compute its size. We also prove
two impossibility results providing some arguments showing that local
computations are no longer easy: the population does not have the time
to compare a linear number of consecutive identifiers. The Linearly Local
languages, such that the rational language (ab)∗, are not computable.

1 Introduction

Population Protocols, introduced by Angluin et al. in 2004 [3], corresponds to
a model of finite states devices with a very restricted memory using pairwise
interactions to communicate and compute a global result. Predicates computable
by population protocols have been characterized as being precisely the semi-
linear predicates; i.e. those equivalent to be definable in first-order Presburger
arithmetic [1,3]. Semi-linearity was shown to be sufficient, and necessary. Those
predicates use the global multiset of the input.

Later works on population protocols have concentrated on characterizing
what predicates on the input configurations can be stably computed in different
c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 90–105, 2017.
https://doi.org/10.1007/978-3-319-72050-0_6

Global Versus Local Computations: Fast Computing with Identifiers 91

variants of the models and under various assumptions. Variants of the origi-
nal model considered so far include restriction to one-way communications [1],
restriction to particular interaction graphs [2]. Various kinds of fault toler-
ance have been studied for population protocols [12], including the search for
self-stabilizing solutions [5]. Some works also include the Probabilistic Popula-
tion Protocol model that makes a random scheduling assumption for interac-
tions [4,13].

Some works extend this model. The edges of the interaction graph may have
states that belong to a constant-size set. This model called the mediated popu-
lation protocol is presented in [19]. The addition on Non-Determinism has been
studied in [8]. The research of Self-Stabilization (over some fairness assumption)
has been explored in [5,7]. An extension with sensors offering a cover-time notion
was also studied in [6]. A recent study in [18] also focused on finding the median
agent in an extension of the model called Arithmetic Population Protocols.

More generally, the population protocol model shares many features with
other models already considered in the literature. In particular, models of pair-
wise interactions have been used to study the propagation of diseases [17], or
rumors [11]. In chemistry, the chemical master equation has been justified using
(stochastic) pairwise interactions between the finitely many molecules [15,20].
The variations over the LOCAL model [14] can be seen as a restriction over the
interactions (using a graph) but with a set of possible improvements in agents’
capacities.

Agents have been endowed with even stronger tools in different models. The
passively mobile protocols introduced by Chatzigiannakis et al. [10] constitutes
a generalization of the population protocol model where finite state agents are
replaced by agents that correspond to arbitrary Turing machines with O(S(n))
space per-agent, where n is the number of agents. As agents remain initially
anonymous, only functions over the global input can be computed.

The community protocols introduced by Guerraoui and Ruppert [16] are
closer to the original population protocol model, assuming a priori agents with
individual very restricted computational capabilities. In this model, agents are
no longer anonymous: each agent has a unique identifier and can only remember
O(1) other agent identifiers. Guerraoui and Ruppert [16] using results about the
so-called storage modification machines [21], proved that such protocols simulate
Turing machines: Predicates computed by this model with n agents are precisely
the predicates in NSPACE(n log n). The sorted input symbols according to the
identifiers can be analysed locally by the protocols to compute the right output.
In [9], the possibility that identifiers are no longer unique is explored through
the homonym population protocols model.

Motivation

Angluin et al. in [4], prove that any computable predicate by a Population Pro-
tocol can be computed in O(n log5 n) expected interactions, as long as there is
a unique leader at the beginning. This article includes some arguments lead-
ing to the idea that there might exist protocols computing a leader election in

92 M. Rabie

O(n log n) expected interactions. Doty and Soloveichik proved in [13] that there
cannot be a protocol computing a leader so fast. They proved that a protocol
needs Ω(n2) expected interactions to get to a configuration with a single leader,
if every agent is a potential candidate at the beginning.

The exact characterization of what can be computed by populations hav-
ing unique leaders gave the motivation to look to what can be computed in
O(n logk n) expected interactions (for any k > 0), with the Community Proto-
cols model [16]. We consider, as in [4], that each pair of agents (or identifiers)
have the same probability to be chosen at each step of a computation. In [4], it
is considered that dividing the number of expected interaction by n provides the
expected number of parallel interactions.

Community protocols can be seen as interactions controlled by devices in a
social group. For example, identifiers can correspond to phone numbers, and the
devices can be applications on smartphones. In this vision, it seems intuitive to
consider that a group of individuals do not want to stay too long together to
compute some global information. Sorting a group of people depending on phone
numbers to look for patterns does not seem intuitive, and hence useful.

This paper introduces the class CPPL, corresponding to what can be com-
puted with Community Protocols in a polylogarithmic number of expected paral-
lel interactions (which corresponds to a number of expected interactions bounded
above by n logk n for some k), or a polylogarithmic number of epidemics or broad-
casts. We introduce some protocols, proving that the size of the population (or
some subset) can be computed in some sense to be explained.

We then show the weakness of this model based on the fact that local compu-
tation cannot be performed over the whole input. More precisely, we prove that
only a polylogarithmic number of agents can find the next or previous identifier
to their own. We also introduce the class of linearly local languages, contain-
ing the rational language (ab)∗, and prove that none of its elements cannot be
computed.

We finish with some comparisons with other computational classes. We intro-
duce a class of Turing Machine trying to match the expressive power of CPPL.
Those machines use a polylogarithmic space of computation, and is able to use
the tools we found. This machine has access to global informations of the input,
but can focus locally only on a polylogarithmic number of regions of the input.

The paper is organized as follows: Sect. 2 provides the Community Protocol
model introduced in [16] and includes some examples. Section 3 provides some
elements and results about fast computing with Population Protocols from [4].
Section 4 explains a way to keep the fairness of our protocols and describes a
way to compute the size of the population. Section 5 introduces the notion of
Linearly Local languages and proves that these languages are not in CPPL.
Section 6 provides some complexity bounds on the class CPPL.

2 Model

We present now the model introduced by Guerraoui and Ruppert in [16]: Agents
have unique identifiers, and can store a fixed number of them. Agents can com-

Global Versus Local Computations: Fast Computing with Identifiers 93

pare 2 identifiers. We consider that, unlike in [9], agents cannot know when two
identifiers are consecutive.

This model has been proved in [16] to correspond to NSPACE(n log n), even
when we add a fixed number of byzantine agents. We will not consider byzantine
agents in this paper.

Definition 1. A Community Protocol is given by seven elements
(U,B, d,Σ, ι, ω, δ) where:

– U is the infinite ordered set of identifiers.
– B is a finite set of basic states.
– d ∈ N is the number of identifiers that can be remembered by an agent.
– Σ is the finite set of entry symbols.
– ι is an input function Σ → B.
– ω is an output function B → {True, False}.
– δ is a transition function Q2 → Q2, with Q = B × U × (U ∪ { })d.

The set Q = B × U × (U ∪ { })d of possible states each agents can have is such
that each agent carries three elements: its identifier, its state, and d slots for
identifiers.

The transition function δ has two restrictions: Agents cannot store identifiers
that they never heard about, and the transitions must only depend on relative
position of the identifiers in the slots and on the state in B. More formally, we
have:

1. if δ(q1, q2) = (q′
1, q

′
2), and id appears in q′

1 or q′
2 then id must appear in q1 or

in q2.
2. whenever δ(q1, q2) = (q′

1, q
′
2), let u1 < u2 < · · · < uk be the distinct identifiers

that appear in any of the four states q1, q2, q
′
1, q

′
2. Let v1 < v2 < · · · < vk

be distinct identifiers. If ρ(q) is the state obtained from q by replacing all
occurrences of each identifier ui by vi, then we require that δ(ρ(q1), ρ(q2)) =
(ρ(q′

1), ρ(q′
2)).

We also add the fact that δ cannot change the identifier of an agent.
As a convention, we will often call an agent of initial identifier id ∈ U the

agent id. We will sometimes write Idk for the kth identifier present in the pop-
ulation. An agent with identifier id, in state q and with a list of d identifiers
L = id1,. . . , idd will be written in what follows qid,id1,...,idd

.

Example 1 (Leader Election). It is possible to compute a Leader Election (a
protocol where all agents start in state L from which we want to reach a config-
uration with a single L: the leader), where the leader will be the agent with the
smallest identifier, with O(n log n) expected interactions. As a reminder, without
identifiers, a protocol needs Ω(n2) expected interactions to elect a leader [13].

Agents will store the identifier of their leader. Here is the protocol, using
above notations for rules:

94 M. Rabie

– B = {L,N}.
– d = 1.
– Σ = L, ι(L) = L and ω(L) = ω(N) = True.
– δ is such that the non-trivial rules (i.e. where at least one state changes) are:

Lida, Lidb, → Lida, Nidb,ida
with ida < idb

Lida, Nidb,idc
→ Lida, Nidb,ida

with ida < idc
Lida, Nidb,idc

→Nida,idc
Nidb,idc

with idc < ida
Nida,idb

Nidc,idd
→Nida,idb

Nidc,idb
with idb < idd

To determine the speed of this protocol, it suffices to realize that the final
leader actually does an epidemic to spread its identifier (epidemic is defined
in Definition 4). An epidemic takes O(n log n) expected interactions. Thus, the
leader election can be performed in O(n log n) expected interactions. The notions
of time and computation are defined in what follows.

Remark 1. To ensure that at some point, a single leader remains in the popu-
lation, Gerraoui et al. uses the notion of Fairness introduced in the Population
Protocols model [3]. As we work here with probabilistic interaction (each pair
of agents has the same probability to interact), the fairness notion will not be
needed.

Definition 2. An Input is a subset of U × Σ such that any element of U (the
elements of U being called Identifiers) can appear at most once. Inputs will often
be seen as words of Σ∗, as it is possible to sort the input elements according to
the identifiers (recall that we consider that U is ordered). An input u = u1 . . . un

is such that the agent with the smallest identifier has input u1, the second has
input u2. . .

The Initial State of an agent assigned with the identifier id and the input s
is (ι(s), id, d), where d states for d repetitions of the empty slot .

A Configuration is a subset of Q where two elements cannot have the same
first identifier (i.e. two agents must have two distinct identifiers).

A Step is the transition between two configurations C → C ′, where only
two agents’ states may change: we apply to the two agents a1 and a2 the rule
corresponding to their respective state q1 and q2, i.e. if δ(q1, q2) = (q′

1, q
′
2) (also

written by rule q1 q2 → q′
1 q′

2), then in C ′ the respective states of a1 and a2 are
q′
1 and q′

2. All other agents have the same state in C and C ′.
A configuration has an Output y ∈ {True, False} if for each state b ∈ B

present in the population, ω(b) = y. A configuration C is said Output Stable if
it has an output y and if, for any C ′ reachable from C, C ′ has also the output y.

An input w ∈ Σ∗ has an Output y ∈ Y if from any reachable configuration
from the initial configuration, we can reach an output stable configuration of
output y. It means that from the input, the protocol will reach with probability
1 an output stable configuration, and there is a single output y reachable. The
input is Accepted if and only if it has output True.

A protocol Computes a set L if, for any input word w ∈ Σ∗, the protocol
provides an output, and the protocol accepts w if and only if w ∈ L. We then say

Global Versus Local Computations: Fast Computing with Identifiers 95

that L is Computable. We will sometimes say that the protocol is Las Vegas, as
it will always succeed to provide an output with probability 1.

A language is Computed in f(n) Expected Interactions if, for any input w,
the expected number of interactions to reach an output stable configuration is
bounded above by f(|w|).

The Community Protocols model has been fully characterized:

Theorem 1 [16]. The decisions problems computable by community protocols
correspond exactly to the class NSPACE(n log n).

The set of languages computable by community protocols is
NSPACE(n log n).

Let us introduce now the class we will work with in this paper:

Definition 3. We define the class CPPL as the sets of languages that can be
recognized by a Community Protocol with O(n logk n) expected interactions for
some k ∈ N, where each pair of agents has the same probability to interact at
each moment.

We say that a function f is n-polylog if there exists some k such that we
have f(n) ≤ n logk n.

3 Fast Computing Known Results

We introduce here some of the elements and results in [4] by Angluin et al.
These elements are on the Population Protocols model. It corresponds to the
case where agents do not have identifiers.

The results are based under the assumption that the population starts with
a unique leader. With community protocols, this assumption will no longer be
used, we will always consider the leader to be the agent with the smallest iden-
tifier (see Example 1).

We introduce the main result and some tools from [4] that will be used in this
paper. We first introduce the notion of epidemics, which will be our main tool
to perform computations. We will quickly talk about the Phase Clock Protocol
that permits to be sure with high probability that an epidemic had the time to
happen. We finish with a complexity result.

3.1 Epidemics

The epidemic is the most important probabilistic protocol. Its purpose is to
spread or gather information. It will permit for example to get an identifier, to
check the state of an agent of a given identifier, to check if there exists some
agent in a given state. . .

The important element with this tool is that an epidemic takes O(n log n)
expected interactions. Intuitively, in parallel, at each step, the number of agents
aware of the epidemic doubles, using O(log n) parallel steps to spread.

96 M. Rabie

Definition 4 [4]. An Epidemic Protocol is a protocol who spreads some infor-
mation through an epidemic. The purpose is, for a leader, to Infect each agent.
More formally, if 0 represents the not infected state and 1 the infected one, there
is just a non trivial rule:

1 0→1 1

Most of the time, it will be a leader who will start a spreading of some infor-
mation. The computation will start in the configuration 10n−1 (one agent in
state 1, the others being in state 0), where 1 represents the leader.

Proposition 1 [4]. Let T be the expected number of interactions before an epi-
demic protocol starting with a single infected agent infects all the other ones. For
any fixed c > 0, there exist positive constants c1 and c2 such that, for sufficiently
large n, with probability at most 1 − n−c:

c1n log n ≤ T ≤ c2n log n

From this theorem, we know that any epidemic protocol will take Θ(n log n)
expected interactions. If we are (almost) sure that more than c2n log n interac-
tions occurred, we will be (almost) sure that an epidemic has finished.

To be almost sure that at least c2n log n interactions have occurred, [4] intro-
duced the Phase Clock Protocol. The leader runs a clock between 0 and m for
some m > 0. Each agent tries to store the current time, following some updating
rules. Each time the clock loops (i.e. the leader reaches m and resets the clock),
the population is almost sure that at least c2n log n interactions have occurred.

Proposition 2 [4]. For any fixed c, d1 > 0, there exist two constants m and
d2 such that, for all sufficiently large n, with probability at least 1 − n−c the
phase clock protocol with parameter m, completes nc rounds, where the minimum
number of interactions in any of the nc rounds is at least d1n log n and the
maximum is at most d2n log n.

This result permits to be sure, with high probability, that for nc rounds, in
each round, an epidemic had the time to occur.

3.2 Presburger’s Arithmetic

The main result from [4] is that, if the population starts with a unique leader, any
computable predicate by a population protocol can be computed with O(n log5 n)
expected interactions.

Theorem 2 [4]. For any predicate P definable in Presburger’s Arithmetic, and
for any c > 0, there is a probabilistic population protocol with a leader to compute
P without error that converges in O(n log5 n) interactions with probability at least
1 − n−c.

Global Versus Local Computations: Fast Computing with Identifiers 97

As a reminder, those predicates correspond to boolean combinations of:

– Threshold Predicate:
∑

aixi ≥ b, with a1, . . . , an, b ∈ Z
n+1.

– Modulo Predicate:
∑

aixi ≡ b[c], with a1, . . . , an, b, c ∈ Z
n+2.

where xi corresponds to the number of agents with input i ∈ Σ. This also
corresponds to semilinear sets.

Corollary 1. Any predicate definable in Presburger’s Arithmetic is in CPPL.

Proof. We use the two following facts:

– The Leader Election can be performed in O(n log n) (see Example 1).
– Any predicate definable in Presburger’s Arithmetic can be computed in

O(n log5 n) expected interactions (see Theorem 2), as long as there is a single
leader.

Each agent stores the smallest identifier it has heard about in its Leader slot.
It links its internal clock to the leader: if it meets an agent storing a smallest
identifier, it acts as if its own clock was at 0, and performs the interaction with
the other agent accordingly. Hence, each agent will act as in the protocols of [4]
as soon as it hears about the right leader’s identifier (in [4], agents start their
role in the computation as soon as they get instruction from the leader, or from
someone who transmits leader’s instruction through an epidemic).

4 Some Computable Protocols

We are now able to introduce some probabilistic protocols, including a complex
one that encodes the size of the population. Let first introduce the following
notion:

Definition 5. We will often talk about Next and Previous. Those are two func-
tions U → U that provides, to a given identifier, the next one/previous one
present in the population. More formally:

– Next(ida) = min{idb : idb > ida}.
– Previous(ida) = max{idb : idb < ida}.
By convention, Next of the highest identifier is the smallest, and Previous of
the smallest identifier is the highest one. Thus, these two functions are bijective.

Sometimes, Next and Previous will be slots in protocols, with the purpose to
find the right identifier corresponding to the function. “Finding its Next” means
that the agent needs to put the right identifier in its slot Next.

98 M. Rabie

4.1 From Monte Carlo to Las Vegas Protocols

We considered in the previous section Monte Carlo protocols (i.e. protocols hav-
ing eventually a probability of failure). We accept that the protocols might have
some probability of failure, as long as we can minimize it as much as needed
(we use the same bound of 1 − n−c as in [4]). Those protocols alone do not
compulsory compute any set.

We provide in this paper Monte Carlo descriptions of the protocols. We
consider that the protocols also run in parallel a Las Vegas protocol providing
the right output with probability 1 (the corresponding Las Vegas protocols exist,
as a consequence of Theorem 1). The protocol detects, as in [4], when the Las
Vegas protocol should have finished to find the output. At this point, each agent
switches its output from the Monte Carlo protocol’s to the Las Vegas protocol’s.
With probability at least 1 − n−c, this will not change the output.

Here is a small result to justify that we can transform our protocols pre-
sented in this paper in Las Vegas ones by multiplying the expected number of
interactions by n3:

Proposition 3. Let be a population where all agents has found their Next (see
Definition 5). There exists a protocol that simulates an epidemic spread from an
agent taking O(n3) expected interactions, with a success of probability 1. In the
new protocol, the agent meets all the other ones in the population.

Proof. We suppose that all agents have already found their Next, and we sup-
pose all agents know the leader’s identifier, being the smallest identifier in the
population. The agent needs to meet the leader, then remembers the Next of
the leader, meets it, remembers its Next. . . until it finds the agent having as
Next the leader’s identifier. At this point, the agent has met all agents in the
population.

Each step takes n(n−1)
2 expected interactions, and we have n steps. Hence,

this protocol takes O(n3) expected interactions to derandomize the epidemic
from the initial agent.

Finding each Next needs at most O(n2 log n) expected interactions (which
corresponds to the number of interactions expected before every possible inter-
action has occurred at least once). Detecting when an agent found a new Next
is easy: the corresponding agent goes to find the leader to give the information.
This latter then resets its computation, spreading the information as in the pre-
vious proof. With probability 1, at some point, all agents will have found the
right Next and the leader will then reset for the last time the computation.

We will also use some protocols of [4]. Even though some parts use only
epidemics, others are trying to detect when something has finally occurred (for
example, detect when some state no longer appears in the population). When
our Las Vegas protocol will run this detection, it will iterate the epidemic part
until it detects the desired fact. In [4], those elements are proved to happen with
high probability in a single epidemic. Hence, our expectation will not grow here.

Global Versus Local Computations: Fast Computing with Identifiers 99

We can prove that this protocol takes at most O(n2 log n+n2 log n+n3) (i.e.
O(n3)) expected interactions to reset for the last time the computation. Then,
we add a factor of n3 to the expected number of interactions taken by the Monte
Carlo protocol to make it Las Vegas.

As the Monte Carlo protocol fails with probability at most n−c and that the
expected number of interactions of the Las Vegas protocol is polynomial, the
parallel expectation is still polylogarithmic.

4.2 The Size of the Population

The purpose of the following section is to find a way to compute the size of the
population. As each agent can only contain a finite state, each agent will store
one bit, and the log n first agents (according to their identifiers) will ultimately
have the size written in binary when you align their bits according to their order.
This way to encode an input size was also used in [9].

The protocol uses a sub-protocol that computes the median identifier of a
given subset of agents. Used on the whole population, we get the first bit of the
size (depending on if we have the same number of identifiers bigger and smaller
to this identifier or not). We can then work on half the population. We iterate
the protocol on the new half to get a new bit and a new half.

Theorem 3. Finding the median identifier can be done in a polylogarithmic
number of parallel interactions. The median identifier is the identifier Med such
that:

|{id : id ≤ Med}| − |{id : id > Med}| ∈ {0, 1}
Proof. We will give an idea here of the protocol.

The protocol works by dichotomy. It keeps and updates two identifiers Min
and Max that bounds the median identifier. Here is a quick description of the
steps of the protocol:

1. We initialize Min and Max by finding through an epidemic the smallest and
the highest identifier present in the population.

2. The leader takes at random an identifier Cand in]Min,Max[, by picking the
first identifier in the interval it hears about (spreading the search of such an
identifier and the reception takes two epidemics).

3. The leader performs the predicates |x≤Cand − x>Cand| = 0,
|x≤Cand − x>Cand| = 1 and |x≤Cand − x>Cand| ≥ 2, using protocols from
[4] (see Theorem 2), where x≤Cand is the number of agents with an identifier
smaller or equal to Cand and x>Cand is the number of agents with an identifier
higher than Cand.

– If the answer is True for one of the two first predicates, Cand is the median
identifier. The algorithm is over.

– If the answer for the third predicate is True, we have the following inequality:
Min < Cand < Med < Max. We replace Min with Cand and go back to
Step 2.

100 M. Rabie

– Else, we know that Min < Med < Cand < Max. We replace Max with
Cand and go back to Step 2.

We proved that there is a probability greater than 1
4 to divide by 4

3 the num-
ber of identifiers in the interval]Min,Max[after one loop of the algorithm. This
permits to conclude that this algorithm will take O(log n) expected iterations.

Each iteration using O(n log5 n) expected interactions, we get that this pro-
tocol is in CPPL.

The previous protocol will be used as a tool to write the size of the population
on the log n first agents. It still work on any subset of agents.

Theorem 4. There exists a protocol that writes in binary on the first log n
agents the size of the population.

Proof. To build this protocol, we first adapt the previous one as follows:

– The Median protocol can be used on a segment:
Instead on working on the whole population, we accept to launch it with two
identifiers A and B. We will look on the median identifiers among those who
are in [A,B].

– The protocol needs to check if the number of agents in the segment [A,B] is
even or odd. This corresponds to check whether the integer
|{A ≤ id ≤ Med}| − |{B ≥ id > Med}| is equal to 0 or 1.

Each agent stores a bit Size set to 0. The bits of the size are computed from
the right to the left as follows:

1. Let min (resp. max) be the smallest (resp. higher) identifier present in the
population. We initialize A and B with, respectively, min and max. We also
initialize an identifier C to min, it will represent the cursor pointing to which
agent we write the bit of the size of the population when it is computed.

2. We compute Med, the median agent in [A,B], and write the parity on the
bit Size of agent C.

3. We update the identifiers as follows: B ← Med, C ← Next(C).
4. If A 	= B, we come back to step 2, else the computation is over.

When this protocol is over, we have

n =
log n∑

i=0

2iSizeNexti(min).

where SizeNexti(min) is the bit Size of the (i + 1)th agent.
The Median protocol will be iterated exactly log n times. This concludes the

proof.

Global Versus Local Computations: Fast Computing with Identifiers 101

5 Impossibility Results

In this section, we provide two results that motivate the idea that the population
cannot take into consideration precisely the sub-words in the population (and
hence, focus locally on the input). More precisely, only a polylogarithmic number
of agents may know what there is exactly on their “neighbors”. It is supported
by the fact that only a polylogarithmic number of agents will know the identifier
next of their own (Theorem5).

The proof that Linearly Local Languages (see Definition 6) are not in CPPL
(Theorem 6) is based on the fact that there is a pair of consecutive identifiers
such that, with high probability, the population will not be able to differentiate
them, as these identifiers will not appear in a common interaction during the
computation.

Theorem 5. Any population protocols needs at least Ω (n
√

n) expected interac-
tions until each agent has found its Next.

We bring now another impossibility result. We show that Community Pro-
tocols cannot link a linear number of consecutive identifiers in CPPL. To prove
this, we introduce a new class of languages:

Definition 6. Let u = u1 . . . uN a word of size N and i < N . We call σi(u)
the word u where the ith letter is permuted with the next one. More formally, we
have:

σi(u) = u1 . . . ui−1ui+1uiui+2 . . . uN

We say that a language L is Linearly Local if there exists some α ∈]0, 1] such
that, for any n, there exists some u ∈ L and some I ⊂ N such that:

u = u1 . . . uN with N ≥ n, ∃I ⊂ [1, N − 1], |I| ≥ αN and for all i ∈ I,
σi(u) 	∈ L.

These languages are said linearly local as, for any size of input, we can find
words that have a linear number of local regions where a small permutation of
letter leads to a word not in the language.

Theorem 6. There is no linearly local language in CPPL.

To prove this result, the idea is to prove that for any protocol, and for any
n, there exists some u in the language of length at least n and i ∈ I such that
there is a high enough probability that the protocol acts the same way on the
inputs u and σi(u).

Let α ≤ 1, and let (In)n∈N be a sequence such that, for any n ∈ N, we have
In ⊂ [1, n] and |In| ≥ αn.

We work on pairs (Idi, Idi+1)i∈In . We want to prove that, for any n, there
is some i ∈ In such as, with high probability, the identifiers Idi and Idi+1 never
appeared in the same interaction after any n-polylog number of interactions.
In the proof, Idi meets Idi+1 means both identifiers appear in the slots of two
interacting agents when the interaction occurs.

To prove that, we first introduce the 3 following lemmas. Only the last one
will be proved.

102 M. Rabie

Lemma 1. Let f a n-polylog function and let α > 0.
To each identifier id, we define the set Eid and value Mid as

– Eid = {Agents having had id in one of its register after f(n) steps}
– Mid = |Eid|.

There exists some polylogarithmic function g such that, for n large enough,
after f(n) steps:

E(|{id : Mid ≤ g(n)}|) ≥
(
1 − α

2

)
n

With this first result, we deduce that at most a small fraction of the pairs
(Idi, Idi+1) could have met after n-polylog number of steps. This means that
Idi and Idi+1 never appeared in the slots of two agents that interacted together,
when they interacted.

Lemma 2. Let f be a n-polylog function. For n big enough, after f(n) steps:

E(|{i ∈ In : Idi and Idi+1were in a same interaction}|) ≤ 3
4
αn

Lemma 3. Let f be a n-polylog function. For any n large enough, there exists
i ∈ In such as:

Pr(Idi met Idi+1) ≤ 3
4

Proof. Let suppose that for any i, Pr(Idi met Idi+1) ≥ 3
4 .

That implies, E(N) =
∑

i∈In

Pr(Idi met Idi+1) ≥ 3
4αn.

This is a direct contradiction of the previous lemma.

To prove our theorem, we need to prove the following proposition:

Proposition 4. For any protocol, for any n-polylog function f , for any input
of size n large enough, there exists some i ∈ In such that the probability that the
identifiers Idi and Idi+1 never appeared on a same interaction after f(n) steps
is greater than 1

4 .

This proposition is a direct corollary of previous lemma. With this proposi-
tion, the proof of Theorem6 can be done as follows:

Proof. Let L be a linearly local language with parameter α > 0. Let P be
a protocol computing L in less than n logm n expected interactions for some
m ∈ N. Let choose n large enough to have the property of Proposition 4 with
f(n) = 9n logm n. Let u be a word of size N ≥ n such that the corresponding I
has a size greater than αN .

We have, from Markov’s Inequality that:
Pr(number of steps to compute u ≤ 9N logm N) ≥ 8

9 .
It implies that at least 8

9 of the sequences of configurations of length
9N logm N provides the right output.

Global Versus Local Computations: Fast Computing with Identifiers 103

By applying the previous proposition, we obtain the existence of some i ∈ I
such that the probability that the identifiers Idi and Idi+1 never appeared on a
same interaction after 9N logm N steps is greater than 1

4 .
This implies that in at least 1

4 of the sequences of configurations of length
9N logm N , Idi and Idi+1 were never in a common interaction.

Hence, if Idi and Idi+1 never appear on a same interaction, then P will not
see any difference between the two inputs u and σi(u).

Between the 8
9 of the sequences that provides the right output on these two

inputs, at least 7
9 are common (two sequences are here said to be common if the

sequence of the interacting identifiers are equals).
As 7

9 ≥ 1 − 1
4 , amongst those common sequences, some of them does not

involve Idi and Idi+1 in a same interaction. As the protocol cannot differentiate
those two inputs during those sequences, it cannot bring the right output.

This provides a contradiction. There is no protocol in CPPL that com-
putes L.

Corollary 2. The rational language (ab)∗, the rational language of words not
containing the subword (ab), the well-formed parenthesis language and the palin-
drome language are not in CPPL.

Proof. For the first language, to each n we can associate u = (ab)n, with α = 1/2.
Same thing with the third one, replacing a with the opening parenthesis and b
with the closing one. For the fourth, (ab)na works the same way. Finally, for the
second one, (bac)n and α = 1/3 works.

6 Set Considerations

We provide finally, in this section, set comparisons with CPPL. We first give a
large upper bound:

Theorem 7.

CPPL ⊂ NSPACE(n log n) ∩
⋃

k∈N

SPACE(n logk n)

We now provide a class of Turing Machines that computes everything we
found to be computable yet. This class of machines is capable of computing
global properties, through the ability to work on subsets of agents. It is capable
to compute the size of sets of agents. It can perform any polylogarithmic number
of steps of a regular Turing Machine.

This machines are capable of focusing only on a polylogarithmic regions of
agents. It motivates the belief that Community Protocols are not capable of local
knowledge on too much places.

Theorem 8. Let MT a Turing Machine on alphabet Γ recognizing the language
L having the following restrictions. There exists some k ∈ N such that

104 M. Rabie

– MT has 4 tapes. The first one is for the input x.
– The space of work is restricted as follows:

• The first tape uses only the input space of |x| cells.
• The 2nd and the 3rd use at most a space of log |x| cells.
• The 4th uses at most a space of logk |x| cells.

– MT can only do at most logk |x| unitary operations among the following ones:
1. A regular Turing Machine step.
2. Mark/Unmark the cells that have the symbol γ ∈ Γ .
3. Write in binary on the 2nd tape the number of marked cells.
4. Go to the cell of the number written on the 3rd tape if this number is

smaller than |x|.
5. Mark/Unmark all the cells left to the pointing head on the first tape.
6. Turn into state γ′ all the marked cells in state γ ∈ Γ .
7. Select homogeneously a random number between 1 and the number written

on the 3rd tape if this number is smaller than |x|.
Then we have L ∈ CPPL.

References

1. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distrib. Comput. DISC 20, 279–304 (2007)

2. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably
computable properties of network graphs. In: Prasanna, V.K., Iyengar, S.S., Spi-
rakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 63–74. Springer,
Heidelberg (2005). https://doi.org/10.1007/11502593 8

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation
in networks of passively mobile finite-state sensors. In: Principles of Distributed
Computing, PODC, July 2004

4. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. Distrib. Comput. DISC 21, 183–199 (2008)

5. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population pro-
tocols. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005.
LNCS, vol. 3974, pp. 103–117. Springer, Heidelberg (2006). https://doi.org/10.
1007/11795490 10

6. Beauquier, J., Blanchard, P., Burman, J., Delaët, S.: Computing time complexity of
population protocols with cover times - the zebranet example. In: Défago, X., Petit,
F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 47–61. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24550-3 6

7. Beauquier, J., Burman, J., Kutten, S.: Making population protocols self-stabilizing.
In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 90–104. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-05118-0 7

8. Beauquier, J., Burman, J., Rosaz, L., Rozoy, B.: Non-deterministic popula-
tion protocols. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012.
LNCS, vol. 7702, pp. 61–75. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-35476-2 5

9. Bournez, O., Cohen, J., Rabie, M.: Homonym population protocols. In: Bouajjani,
A., Fauconnier, H. (eds.) NETYS 2015. LNCS, vol. 9466, pp. 125–139. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26850-7 9

https://doi.org/10.1007/11502593_8
https://doi.org/10.1007/11795490_10
https://doi.org/10.1007/11795490_10
https://doi.org/10.1007/978-3-642-24550-3_6
https://doi.org/10.1007/978-3-642-05118-0_7
https://doi.org/10.1007/978-3-642-35476-2_5
https://doi.org/10.1007/978-3-642-35476-2_5
https://doi.org/10.1007/978-3-319-26850-7_9

Global Versus Local Computations: Fast Computing with Identifiers 105

10. Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.: Pas-
sively mobile communicating machines that use restricted space. In: International
Workshop on Foundations of Mobile Computing, FOMC 2011 (2011)

11. Daley, D.J., Kendall, D.G.: Stochastic rumours. IMA J. Appl. Math. 1, 42–55
(1965)

12. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: When birds die:
making population protocols fault-tolerant. In: Gibbons, P.B., Abdelzaher, T.,
Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 51–66. Springer,
Heidelberg (2006). https://doi.org/10.1007/11776178 4

13. Doty, D., Soloveichik, D.: Stable leader election in population protocols requires
linear time. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 602–616. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48653-5 40

14. Fraigniaud, P., Korman, A., Lebhar, E.: Local MST computation with short advice.
In: Symposium on Parallelism in Algorithms and Architectures, SPAA (2007)

15. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Phys. A
188, 404–425 (1992)

16. Guerraoui, R., Ruppert, E.: Names trump malice: tiny mobile agents can tolerate
byzantine failures. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikolet-
seas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 484–495. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02930-1 40

17. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653
(2000)

18. Mertzios, G.B., Nikoletseas, O.E., Raptopoulos, C.L., Spirakis, P.G.: Stably com-
puting order statistics with arithmetic population protocols. In: Mathematical
Foundations of Computer Science, MFCS (2016)

19. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols.
Theor. Comput. Sci. 412, 2434–2450 (2011)

20. Murray, J.D.: Mathematical Biology. I: An Introduction, 3rd edn. Springer, Hei-
delberg (2002). https://doi.org/10.1007/b98868

21. Schönhage, A.: Storage modification machines. SIAM J. Comput. 9, 490–508 (1980)

https://doi.org/10.1007/11776178_4
https://doi.org/10.1007/978-3-662-48653-5_40
https://doi.org/10.1007/978-3-642-02930-1_40
https://doi.org/10.1007/b98868

On the Smallest Grain of Salt
to Get a Unique Identity

Peva Blanchard(B) and Rachid Guerraoui

EPFL, Lausanne, Switzerland
{peva.blanchard,rachid.guerraoui}@epfl.ch

Abstract. We study the fundamental enumeration problem in asyn-
chronous message-passing networks. Anonymous processes have to even-
tually decide on pairwise distinct identifiers, despite all starting in the
same initial state. It is known since Angluin’s seminal result [2] that some
grain of salt is required for distributed algorithms to solve the problem,
e.g., the system needs to have a non-symmetrical topology or unbiased
independent random bits.

The starting point of this paper is the observation that these
approaches demand too strong assumptions. In short, by adding time
to the picture, we show that the enumeration problem can be solved
with far less. The idea is to consider a schedule of events in a distributed
system as a space-time structure that is gradually learnt by the processes.
We introduce the notion of divergence time which essentially measures
the time by which the causal order induced by the system schedule has
differentiated all the processes.

We prove lower bounds on the running time of any algorithm solving
enumeration in terms of divergence time. In particular, we show that
any adversary scheduler against which the enumeration problem can be
solved necessarily selects schedules with finite divergence time.

We prove that this last condition is sufficient : we present the Torche
algorithm which solves enumeration for all schedules with finite diver-
gence time. In this sense, having finite divergence time is the smallest
grain of salt required to solve the enumeration problem.

1 Introduction

Process identifiers are crucial in distributed systems, and are implicitly assumed
in most distributed algorithms. The problem of assigning distinct identifiers to
processes, however, is not trivial. This problem, called enumeration, has received
a lot of attention in the past decades [1,2,6,9,11,16,21–23].

The problem consists for a set of n processes, starting identically (in the
same initial state), to each decide a value (an integer in the range {1, . . . , n})
that is different from all the values decided by the other processes. The core dif-
ficulty has been pinpointed in Angluin’s seminal paper [2]. In short, the problem
is impossible to solve deterministically in any network with spatial symmetry.
Roughly speaking, two processes in the network are said to be related by a spa-
tial symmetry if they have the exact same view of their surrounding. To get
c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 106–121, 2017.
https://doi.org/10.1007/978-3-319-72050-0_7

On the Smallest Grain of Salt to Get a Unique Identity 107

an intuition of Angluin’s argument, consider a deterministic algorithm running
on an even-sized oriented network of processes. Assume, for the sake of simplic-
ity, that when a process is activated, the process atomically reads the states of
all its neighbours in the network, and updates deterministically its own state
accordingly. Initially, all the processes have the same state. The neighbourhood
of any process p is thus similar to the neighborhood of the diametrically opposite
process q. If p and q are concurrently activated, then their states are updated to
the same value. By repeating this kind of activation, one can design schedules
of events during which no process is distinguishable from the opposite process,
thus preventing enumeration.

The only way to circumvent Angluin’s argument is to assume that the dis-
tributed system contains some grain of salt, i.e., that there is some breaking of
symmetry somewhere which could be exploited by distributed algorithms to enu-
merate. So far, two sorts of grain of salts have been considered in the literature.
One approach (I), adopted in [6,9,16], assumes that the topology of the network
has no non-trivial spatial symmetries. Another approach (II) is the use of ran-
domization [1,11], with processes having local access to unbiased independent
random bits.

The starting point of this paper is the observation that these approaches are
not necessary. The idea is to consider a schedule of events in a distributed system
as a space-time structure that is gradually learnt by the processes.

Instead of considering that only the spatial part (i.e. the network topology)
has no non-trivial symmetries, we consider the much weaker assumption that
the space-time structure, taken as a whole, has no non-trivial symmetries. Our
approach encompasses naturally the two previous approaches. First, if the spatial
part has no non-trivial symmetries, then the space-time structure necessarily
lacks non-trivial symmetries; second, the use of independent random bits ensures,
with probability one, that the space-time structure lacks non-trivial symmetries.

We consider a general asynchronous distributed system model where
processes communicate with their neighbours by sending and/or receiving mes-
sages through communication channels. Moreover, the processes may have access
to unreliable1 sources of randomness. The different possibilities of scheduling
events are chosen by some external entity, called the adversary scheduler.

Our main conceptual contributions are twofold. First, we introduce the notion
of divergence time of a schedule S of events, which, roughly speaking, measures
the time by which all the processes have differentiated2. We then exhibit lower
bounds on the running time of any algorithm solving the enumeration problem,
in terms of divergence time. In particular, we show that any adversary scheduler
against which it is possible to solve the enumeration problem can only select
schedules that have finite divergence time. In other words, the finite divergence
time condition is a necessary condition for solving the enumeration problem.

1 The bits used by the processes may, to some extent, be correlated, across the network
and through time.

2 More precisely, they have pairwise non-isomorphic causal pasts. See details below.

108 P. Blanchard and R. Guerraoui

Second, we prove that the finite divergence time condition is actually suffi-
cient. We present an algorithm, we call Torche, that solves the enumeration
problem over all the schedules with finite divergence time, assuming only the
knowledge of the network size3.

The main consequence of the existence of this algorithm is that the finite
divergence time condition is indeed the smallest grain of salt required to solve
the enumeration problem. By “smallest grain of salt”, we mean that any other
grain of salt, i.e., any other property of the schedules which allows to break
symmetry and solve enumeration (e.g., topology without symmetries, or use of
randomness) necessarily implies that the divergence time is finite.

Two new techniques are involved in the design of Torche: folded causal past
reconstruction and phylogenetic tree extraction.

– First, the folded causal past reconstruction technique consists for each process
p to maintain a compressed estimate of its causal past, by gluing together
the estimates of its neighbours, and folding together the events that have
isomorphic causal pasts. This technique may be seen as the spatio-temporal
generalization of the compressed view technique from [20].

– Second, Each process p can extract from the folded estimate of its causal past
a phylogenetic tree which, roughly speaking, represents the various differenti-
ations that have occurred, as far as process p knows. The number of vertices
that lies in the same level in this tree somehow gives the effective number of
distinct processes, i.e., the number of distinguishible (groups of) processes.
Assuming that the schedule has finite divergence time, this tree eventually
has n branches, where n is the network size. Process p can then detect the
end of this divergence period, and, since p knows on which branch of the tree
it lies, process p can also decide on a unique identifier.

Our Torche algorithm has several interesting properties. The running time
is tight in the sense that processes decide right after the divergence time plus the
time for the information at any process to reach the whole network (cover time).
The space required for storing the process states and messages is polynomial in
the network size, the divergence and cover time.

(Paper organization). We present our computational model, as well as the
notions of divergence time in Sect. 2. We present our lower bounds on the running
time of any algorithm solving the enumeration problem in Sect. 3. In Sect. 4, we
present the Torche algorithm, and prove its main properties. In Sect. 5, we show
how our notion of divergence time encompasses other notions used to circumvent
Angluin’s argument in previous work, namely fiber-minimal networks, and the
use of random bits. Finally, we discuss the related work in Sect. 6.

2 Model and Definitions

We consider a general asynchronous model of computation where anonymous
processes communicate by message passing.
3 The knowledge of the network size, or any similar property, is a common assumption

in the literature [21,22].

On the Smallest Grain of Salt to Get a Unique Identity 109

2.1 Algorithms

(Graphs). We consider directed graphs with (possibly) multiple arrows between
two vertices, and (possibly) self-loops. Formally, a graph G is given by a set VG
of vertices, a set AG of arrows, and maps s, t : AG → VG specifying the source
and target vertices of each arrow. A vertex-labeling (resp. arrow-labeling) is a
map VG → X (resp. AG → Λ). A path is a sequence a1 . . . al of arrows such
that t(ai) = s(ai+1) for 1 ≤ i < l. This path is a cycle if moreover t(al) = s(a1).
The graph G is acyclic if it does not contain any cycle.

A morphism φ : G → H is given by a vertex function φV : VG → VH,
and an arrow function φA : AG → AH such that s(φA(a)) = φV (s(a)) and
t(φA(a)) = φV (t(a)) for every arrow a ∈ AG. If moreover the graphs G and H
are equipped with a vertex-labeling and an arrow-labeling, it is also required
that φV and φA preserve the labels. The morphism φ is an isomorphism if both
φV and φA are bijective. We denote by G � H the statement that G and H are
isomorphic.

(Networks). A network is N simply modeled as a graph with at most one
arrow from one vertex to another, and without self-loops. The vertices represent
the processes. An arrow with source p and target q represents a communication
channel transporting messages from p to q. For each process p, we denote by Np

the set of neighbour processes with arrow towards process p.

Algorithm 1. Normal Form - process p

1 variables:
2 state sp of p initially set to some common value
3 set tp of triples (ω, z) where ω ∈ Λp and z is a state value
4 variable bp for random bits

5 for round r = 0, 1, . . .
6 tp ← scan() /* scan neighbours */

7 bp ← rand() /* ‘‘random’’ bits */

8 sp ← new-state(sp, tp, bp) /* update state */

(Processes). The processes are anonymous (no identifiers), they start in the
same initial state, and all execute the same algorithm. We also assume that each
process can read some bits from some local source of information. These bits can
be thought as “random” bits, but we insist on the fact that, in the most general
case, these bits may be correlated (both in time and across the network) in any
possible way.

Each process p performs an infinite series of asynchronous rounds. Each
round comprises two phases: a scan phase, and an update phase. The scan
phase collects the (possibly not up to date) states of its neighbours and returns
the multiset tp of couples (ω, z) where z is the state of a neighbour q received
along the incoming arrow a with label ω and source q. Then, during the update

110 P. Blanchard and R. Guerraoui

phase, process p reads some bit-string bp from its local source of information,
and updates its state by applying a deterministic transition function new-state
to the tuple formed by its current state, the multiset tp collected during the
scan phase, and the bit-string bp. Algorithm 1 sums up the normal form of an
algorithm.

2.2 Schedules

We model a (finite or infinite) schedule S on a network N as a (finite or infinite)
acyclic graph equipped with a labeling of the vertices with bit-strings, and a
labeling of the arrows with the same set of arrow labels as the network N . The
vertices of the schedule are couples (p, r) where p is a process, r ≥ 0 is an integer.
We refer to (p, r) as an event at p in S. Each (p, r) with r ≥ 1 is labeled with a
bit-string b representing the “random” bit-string read by p during round r − 1.
Intuitively, each event (p, r) represents the state of p at the beginning of round
r at p. This state is the result of the previous update phase at round r − 1, and
depends on the previous state of p, as well as the state values collected during
the previous scan operation. These dependencies are modeled by arrows between
events.

More precisely, if during round r, process p received the state associated with
the round s of the neighbour q, then there is an arrow (q, s) → (p, r) labeled
with the same label as the arrow from q to p in the network. For every r ≥ 0,
there is also an arrow (p, r) → (p, r + 1) labeled with the distinguished symbol
ε. Figure 1 gives an example of a schedule.

Fig. 1. Schedule - process c in round 2 reads the initial state of process a, and the state
at the beginning of round 1 of process b. Note (on the right) that a scan may return
values older than the values returned by the previous scan. The labels of the arrows
are omitted.

(Causality). For any two events e, e′ in S, e causally precedes e′ in S if there
exists a path from e to e′ in S. The causal past of an event e in S is the schedule
which is the sub-graph of S spanned by e and all the events causally preceding
e in S. Given a finite schedule S, for any process q participating in S, we refer
to the causal past of the latest event at q in S as the causal past of q in S.
A past cone atp is a finite schedule P which is the causal past of some event
e = (p, r) ∈ VP . The event e is necessarily unique, and is referred to as the apex

On the Smallest Grain of Salt to Get a Unique Identity 111

of P . The causal height, or simply height, of an event e in S is the length of
the longest directed path in S reaching e. The height of a finite schedule S is
the maximum height of its events, i.e., the length of the longest directed path
contained in S. Note that the height of a past cone is the height of its apex.

(Cut). A cut C of a schedule S is a set of events in S such that each process of
the network participates exactly once in C. For each process p, we denote by C[p]
the height of the event (p, r) in C. The initial cut is defined by {(p, 0) | p ∈ NV }.
Cuts are partially ordered: C � C ′ if, for all p, C[p] ≤ C ′[p]. Equipped with this
partial order, the set of cuts of a schedule form a lattice.

(Segment). Given two cuts C � C ′ in a schedule S, the segment K = [C,C ′]
is the sub-schedule of S comprising all the events (p, r) with height C[p] ≤ h ≤
C ′[p], where p runs over all the processes. The height of the segment K is the
length of the longest causal chain in K. The prefix [0, C] is the sub-schedule of
S comprising all the events (p, r) with height at most C[p]. The suffix [C,∞) is
the sub-schedule of S comprising all the events (p, r) with height at least C[p].

(Fairness). The schedule S is fair if, for any two processes p and q, for all t ≥ 1,
there is a cut C such that ∀p,C[p] ≥ t and [C,∞) contains a path from some
event at p to some event at q. Unless stated otherwise, all infinite schedules are
assumed to be fair.

(Adversary scheduler). An adversary scheduler is modeled as a set of
(fair)infinite schedules. Adversary A is stronger than adversary B if B ⊆ A.

(Divergence cut). The divergence cut of a schedule S is the minimum cut
Cdv(S) such that, for all cuts C � Cdv(S) in S, the causal pasts of any two
distinct events in C are not isomorphic. The divergence time of a schedule S
is defined as τdv(S) = maxp Cdv[p]. If the divergence cut is undefined, we write
Cdv(S) = ∞ and τdv(S) = ∞. We say that the schedule S has finite divergence
time if the divergence cut exists. When it is clear from the context, we simply
write Cdv and τdv, omitting the reference to the schedule S.

(Cover cut function). The cover cut function of a schedule S is defined as
follows. For any cut C in S, Ccv(C,S) is the minimum cut C ′ such that, for any
two processes p, q, there is a path in [C,C ′] from some event at p to some event
at q. When it is clear from the context, we simply write Ccv(C), omitting the
reference to the schedule S.

(Decision event). Any process p is assumed to be able to trigger a decide
action. Afterwards, its state remains unchanged. It is assumed that each process
can trigger this action at most once during the execution. The event at p at
which this action is performed is the decision event at p.

(Decision cut). The decision cut is the cut formed by the decision events of
all the processes. If some process never decides, the decision cut is undefined.

112 P. Blanchard and R. Guerraoui

3 Lower Bounds on the Running Time

In this section, we present lower bounds on the (causal) height of the decision
events of the processes, in terms of divergence and cover cuts. The following
proposition states that any adversary scheduler against which enumeration is
solvable necessarily provides schedules with finite divergence time. More pre-
cisely, it is impossible for all processes to decide strictly before the divergence
cut.

Proposition 1. Let A be a set of schedules over the network N . Consider an
algorithm solving enumeration over all the schedules in A. Then all schedules in
A have finite divergence time. And, more precisely, for any schedule in A, the
cut C defined by the decision events satisfies

∃p ∈ N , C[p] ≥ Cdv[p]

Proof. Consider a schedule S in A. Let C denote the decision cut. Assume first
that the divergence cut of S is undefined. By definition, this implies that there
exists a cut D � C, and two distinct events in D, at two distinct processes p, q,
with isomorphic causal pasts. In particular, p and q must have decided on the
same value; whence a contradiction. Thus, S has finite divergence time.

Assume now that C ≺ Cdv, i.e., for all processes p, C[p] < Cdv[p]. By defini-
tion of the divergence cut, this means that there exist two distinct processes p, q
such that the causal pasts of their decision events are isomorphic. This implies
that p and q decide on the same value; whence a contradiction. �

The following states that, in general, at least some process has to wait until
it notices that all processes have differentiated.

Proposition 2. Consider an algorithm solving enumeration. Then there exists
a network N and a schedule on N such that the cut C defined by the decision
events of the processes satisfies

∃p ∈ N , C[p] ≥ Ccv(Cdv)[p]

Proof. We consider a linear network N of 3 vertices, and the schedules S1 and
S2 in Fig. 2. The figure also depicts the divergence and cover cuts for schedule
S1. We claim that, in S1, process c cannot decide before its second event. Indeed,
assume that process c decides at its first event. However, at this point, S1 and
S2 are indistinguishable for process c. In S2, the first events of a and c have
isomorphic causal pasts. Thus, in S2, process a decides on the same value as c;
whence a contradiction. In particular, the decision cut C(S1) in S1 satisfisfies
C(S1)[c] ≥ Ccv(Cdv, S1)[c]. �

On the Smallest Grain of Salt to Get a Unique Identity 113

Fig. 2. Proof of Proposition 2 - process c cannot decide before its second event.

4 The TORCHE Algorithm

Proposition 1 states that, in order to solve the enumeration problem, it is nec-
essary that the schedules chosen by the adversary scheduler have a finite diver-
gence time. In this section, we prove that having a finite divergence time is a
sufficient condition for solving the enumeration problem. In this sense, having a
finite divergence time is indeed the smallest grain of salt required to solve the
enumeration problem.

The main idea underlying our approach consists in having processes trying
to get an estimate, as accurate as possible, of their causal pasts. For the sake
of simplicity, let us consider how a naive version of a full information algorithm
would work. Process p starts in its initial state, represented as a single vertex. In
the next round, process p collects the states of (some of) its neighbours, draws
a random value b (if any), and updates its own state. In a naive full-information
algorithm, this new state is encoded as a tree. The root corresponds to the new
round that p has just performed, and is labeled with the value b that has been
drawn. The root’s children are the trees received from the neighbours, as well
as the tree corresponding to the previous state of p. If p has received the (tree)
state of q along the incoming arrow q

ω−→ p, then the arrow connecting the tree
of q to the root is labeled with ω as well. The arrow connecting the previous tree
of p to the root is labeled with the distinguished symbol ε. The first row in Fig. 4
illustrate how the full-information trees evolve along the schedule of Fig. 3.

An ε-path is a path whose edges are all labeled with ε. A maximalε-path is an
ε-path which cannot be extended to a longer ε-path. A first observation is that,
from the designer’s point of view, the maximal ε-paths can be mapped to process
identities. However, the tree structure has a lot of redundancy. For example, if p
sees q′ which has seen p before, then there are two maximal ε-paths that can be
associated with p. For instance, in Fig. 4, the tree T 3

p contains two copies of T 1
p .

This example leads to a second observation: the tree of p that was observed
by q is isomorphic to a sub-tree of the latest tree of p. A third observation is
that there is one-to-one correspondence between such trees and the causal pasts
that led to them. In particular, two processes have isomorphic causal pasts if
and only if the corresponding trees are isomorphic.

From these observations, we adopt the following approach. We fold the tree by
identifying vertices whose sub-trees are isomorphic. This amounts to identifying

114 P. Blanchard and R. Guerraoui

events in the schedule that have isomorphic causal pasts. Let W be the graph
obtained this way. Since it is possible that two distinct processes have lived
isomorphic causal pasts, this folding operation may identify them. See the second
row in Fig. 4. Moreover, the ε-paths in W form a tree we call the phylogenetic
tree associated with W . This phylogenetic tree is interpreted as follows. Initially,
all the processes are in the same initial state, so the effective number of distinct
processes is 1, and is encoded by the fact that the ε-tree has a single root. As
time flows, processes undergo specific events that differentiate them, and the tree
branches. The number of leaves of this tree gives the effective number of distinct
processes at the end of the schedule, or, mathematically speaking, the number of
isomorphism classes of maximal causal pasts in the schedule. In particular, the
number of leaves is at most n. By the assumption that the divergence time is
finite, any two processes eventually have non isomorphic causal pasts, and thus,
the number of leaves eventually reaches n.

Fig. 3. Schedule with processes p, q and q′. Four cuts are represented. See Fig. 4 for
the states of the processes at these cuts.

Fig. 4. Evolution of the full-information trees (first row) and their respective folding
(second row) at the cuts from Fig. 3. Due to space limitations, at cut C3, we only
represent the tree and folded tree of process p.

On the Smallest Grain of Salt to Get a Unique Identity 115

As we assume that the processes know the size n of the network, process p can
detect that all processes have differentiated (i.e., have pairwise non isomorphic
causal pasts). Moreover, p is aware of the leaf representing itself: it is the leaf
with the highest height. Roughly speaking, process p finally sorts the leaves of
W and decides on the rank of its leaf.

4.1 Fold Operation

Let P be a schedule. Recall that some arrows may be labeled with the distin-
guished symbol ε. There is a partial order on the vertices: u � v if there is a
path from u to v. We define ↓ v as the subgraph of P induced by the vertices
u � v. We define an equivalence relation on the vertices: u ∼ v if the the graphs
↓ u and ↓ v are isomorphic. We denote by [u] the equivalence class of u. We also

define an equivalence relation on the arrows: u
ω−→ v ∼ u′ ω′

−→ v′ if there is some

isomorphism between ↓ v and ↓ v′ mapping the arrow u
ω−→ v to u′ ω′

−→ v′. This
implies v ∼ v′, u ∼ u′ and ω = ω′. We denote by [u ω−→ v] the equivalence class
of u

ω−→ v.
The graph W = fold(P) is defined as follows. The vertices of W are the

equivalence classes [u] with u ∈ VP . The arrows of W are the equivalence classes
[u ω−→ v] with u

ω−→ v ∈ AP . The source (resp. target) of [u ω−→ v] is [u] (resp.
[v]). The complexity of the fold operation is related to the complexity of graph
isomorphism. Isomorphism of trees can be tested in linear time. However, the
same problem for directed acyclic graphs is equivalent to the classic (undirected)
graph isomorphism problem. By the recent work of [4], W can be computed from
P in quasi-polynomial time.

Lemma 1. The map Φ : P → fold(P) defined on the vertices by u �→ [u] and
on the arrows by u

ω−→ v �→ [u ω−→ v] is a graph morphism preserving the labels of
the vertices and arrows. Moreover, Φ also preserves the height of the vertices.

Proof. The claim follows from the definition of fold(P). �
Lemma 2. Let P be a schedule. Let W = fold(P). The number of maximal
ε-paths in W equals the number of isomorphism classes of the maximal causal
pasts of the processes in P . In particular, this number is at most the number n
of processes in the network.

Proof. Let E denote the set of maximal events in P , i.e., the events e which
do not causally precede any other event. The set E can be partitioned into
equivalence classes. Each maximal ε-path π in W can be identified with the
last vertex l along this path (equivalently, the corresponding leaf in the tree
formed by the maximal ε-paths). By definition of fold, the vertex l denotes an
equivalence class of events in P . An event e in the class l is maximal, as otherwise
(since the map Φ preserves the height) l would not be the last vertex along π.
Therefore, there is one-to-one correspondence between the equivalence classes
partitioning E and the final vertices of maximal ε-paths in W . �

116 P. Blanchard and R. Guerraoui

4.2 Algorithm Details

Each process p maintains an estimate Wp of its folded causal past. At the begin-
ning of a round, process p scans the set Np of its neighbours, and pulls their
estimates (Wq)q∈Np

. Process p then forms the disjoint union of these graphs,
including its previous estimate, adds a new vertex (r, b) labeled with the cur-
rent round number r and a random value b (if any), and connects the apex of
each estimate Wq with the new vertex (r, b); this arrow being labeled with the
same label ω as the one connecting q to p. We denote this whole operation by(⊔

q∈Np∪{p} Wq

)
⊕ (r, b). The variable Wp is updated by folding the aforemen-

tioned graph.
As will be shown below, Wp is isomorphic to the folding of the causal past

of process p. Process p derives the phylogenetic tree associated with Wp and
counts the number c of maximal ε-paths. If process p notices that c = n, i.e.,
that all processes have differentiated, then process p computes the shortest prefix
Kp of Wp whose phylogenetic tree still has n leaves (maximal ε-paths). Process
p sorts the maximal ε-paths of Kp (according to any predefined total order),
and decides on the rank corresponding to its own ε-path (necessarily the longest
ε-path in Wp).

Algorithm 2. Torche- process p

1 initial knowledge:
2 the network size n;
3 variables:
4 Wp : acyclic graph, reduced estimate of causal past, initially set to a single

vertex (0, ⊥)

5 for round r = 1, 2, . . .
6 (Wq)q∈Np ← scan()
7 b ← rand() /* possibly poor quality random bits */

8 Wp ← fold
((⊔

q∈Np∪{p} Wq

)
⊕ (r, b)

)

9 let c be the number of maximal ε-paths in Wp

10 if c = n then
11 let Kp be the shortest prefix of Wp with n maximal ε-paths
12 sort the maximal ε-paths of Kp

13 decide on the rank of the ε-path corresponding to self

Lemma 3. Let P be a past cone at p. Then, at the end of P , there is an iso-
morphism Wp � fold(P).

Proof. In this proof, we denote by W r
p the value of the variable Wp at the

beginning of round r. We prove the claim by induction on the height h of P .
If h = 0, i.e., P is reduced to a single vertex (p, 0) labeled with ⊥, then, since
Wp is initialized to a single vertex labeled with ⊥, the folded graph fold(W 0

p)

On the Smallest Grain of Salt to Get a Unique Identity 117

equals W 0
p and the claim holds. Assume the result holds for all causal pasts of

height at most h. Let P be a causal past at p of height h + 1. Then, P can be
written as P =

(⋃
q∈Np∪{p} Jq

)
⊕ (p, r+1), where Jq is the maximal causal past

of height at most h at q in P , and r + 1 is the round number at p at the end of
P . For every q ∈ Np ∪ {p}, let rq be the round number of process q at the end
of Jq. By the induction hypothesis, we have ∀q ∈ Np ∪ {p}, W

rq
q � fold(Jq).

Moreover, according to Algorithm 2 (line 8), we have

W r+1
p = fold

⎛
⎝

⎛
⎝ ⊔

q∈Np∪{p}
W rq

q

⎞
⎠ ⊕ (r + 1, b)

⎞
⎠

� fold

⎛
⎝

⎛
⎝ ⊔

q∈Np∪{p}
fold(Jq)

⎞
⎠ ⊕ (r + 1, b)

⎞
⎠

� fold(P).

�
Proposition 3. Given that the processes know the network size n, the Torche
algorithm solves enumeration. Moreover, for every fair schedule S with finite
divergence time: (i) the height of the decision event at p is at most Ccv(Cdv)[p],
(ii) state and message size is O(n2 · T 2) where T = maxp{Ccv(Cdv)[p]}.
Proof (Termination). Let P be a past cone at p of height Ccv(Cdv)[p]. By the
definition of the cover time function, all processes participate in P . By definition,
any two distinct events in Cdv have non isomorphic causal pasts. Therefore, by
Lemma 2, the number of maximal ε-paths in W = fold(P) is n. Thus p decides
at most at the end of P .

(Uniqueness). Let p1, p2 be two distinct processes. Let P1, P2 the causal pasts
of their decision events respectively. Let Z = [0, Cdv] be the prefix corresponding
to the divergence cut. Necessarily, Z is a prefix of P1 and P2. By Lemma 3,
the values K1 and K2 computed at line 11 in Algorithm2 both correspond
to fold(Z), thus K1 = K2 =

def
K. In particular, processes p1 and p2 sort the

maximal ε-paths of K the same way. And they decide on the ranks of two distinct
ε-paths.

(State and message size). When a process decides, the variable Wp is (iso-
morphic to) the folding of a past cone of height at most T . Thus, it is possible
to encode Wp as an adjacency matrix of dimension n ·T at most, which requires
O(n2T 2) bits. �

5 Encompassing Previous Approaches

In this section, we explain how previous approaches can be understood in terms
of divergence time. More precisely, we explain how the underlying assumptions

118 P. Blanchard and R. Guerraoui

(lack of symmetry in the network topology, or use of independent random bits)
imply that the divergence time is finite. Other conditions may be assumed. But
were they sufficient to solve enumeration, they would necessarily imply that the
divergence time is finite.

(Fiber minimal networks). As we pointed out, previous work [2,7–9,21–23]
mainly focused on the spatial aspect: the topology of the network. We briefly
recall the definition of a fibration. A fibration Ψ : N → G is a surjective graph
morphism (preserving labels if any) such that, for any vertex v in G, for any
vertex q in Ψ−1(v) (the fiber over v), Ψ induces a bijection (preserving labels if
any) between the set of arrows into v and the set of arrows into q. The network
N is fiber-minimal if any fibration Ψ : N → G is an isomorphism. Refer to
[7] for further details. The notion of fibration captures the “spatial similarities”
among the vertices of a network. The following proposition relates the concept
of fibration with that of divergence time.

For the sake of simplicity, we consider, in this section, networks with port-
awareness, i.e., the processes are able to distinguish their incoming arrows. For-

mally, given q
ω−→ p and q′ ω′

−→ p, then q = q′ iff ω = ω′.

Proposition 4. A network N with port-awareness is fiber-minimal if and only
if all fair schedules have a finite divergence time.

Proof. If the network N is not fiber-minimal, then [6,7] have shown how to
design a schedule in which at least two processes are always indistinguishable,
i.e., for any height h, their respective causal pasts of height h are isomorphic.
In particular, this schedule has an infinite divergence time. We proceed to prove
the other direction: if there exists a schedule S with infinite divergence time then
the network is not fiber-minimal.

Let S be a fair schedule with infinite divergence time on a network N . Let
Φ : S → W = fold(S) be the surjective graph morphism as defined in Lemma 1.
Let k denote the number of infinite ε-paths in W . By assumption, k < n. We
define a network G. The vertices of G are the infinite ε-paths in W . For any
two vertices u, v in G, there is an arrow u

ω−→ v if and only if u = u1
ε−→ u2 . . . ,

v = v1
ε−→ v2 . . . , there exist i, j ≥ 1 such that ui

ω−→ vj . Naturally, there is a
surjective graph morphism Ψ : N → G. This morphism maps a vertex p in N to
the infinite ε-path in W obtained as the image of the infinite ε-path associated
with p in S under the folding operation. We claim that Ψ is a fibration. Indeed, let
q be a vertex in N . Let b = b1

ε−→ b2 . . . be the infinite ε-path in S corresponding
to process q, and v = Φ(b) = Ψ(q) = v1

ε−→ v2 . . . the corresponding infinite
ε-path in W . Let u

ω−→ v be a neighbour of v in G. We have to prove that there
exists a unique arrow p

ω−→ q in N such that ψ(p) = u.
We write u = u1

ε−→ u2 By definition, there exist i, j ≥ 1 such that
ui

ω−→ vj in W . The existence of the arrow ui
ω−→ vj implies that there exist

vertices (events) a′
i, b

′
j in S such that Φ(a′

i) = ui, Φ(b′
j) = vj and a′

i
ω−→ b′

j . We
also have Φ(bj) = vj , that is, the events bj and b′

j have isomorphic causal pasts.
In particular, there exists an event ai in S such that Φ(ai) = ui and ai

ω−→ bj .

On the Smallest Grain of Salt to Get a Unique Identity 119

Let p be the process in N at which the event ai occurs. We have p
ω−→ q, and,

by the fact that incoming edges have pairwise distinct labels, p is the unique
neighbour of q with such an arrow. It remains to show that Ψ(p) = u. Then
p

ω−→ q. Moreover, the infinite ε-path a = a1
ε−→ a2 . . . in S corresponding to p is

the one going through the event ai. The infinite ε-path Φ(a) in W is necessarily
the path u, because, by definition, ui is such that ai occurs in [Ck,∞), and thus
there is a unique infinite ε-path in W going through ui. In particular, Ψ(p) = u.

To conclude, we have shown that Ψ : N → G is a fibration. Since G has
strictly less vertices (k < n), N is not fiber-minimal. �

(Randomness). We argue that the main purpose of using randomness is to
have a finite divergence with high probability. For the sake of simplicity, we
consider the case of synchronous bidirectional complete network (without arrow
labels). At every round r, process p reads a random bit br

p.

Proposition 5. Assuming that (br
p)p∈VN ,r∈N are mutually independent uniform

random bits, we have τdv = maxp{Cdv[p]} = O(log n) with high probability.

Proof. Fix an arbitrary integer k. Consider, for each process p, the sequence
wp = (b1p, . . . , b

k
p) of the k bits read during the first k rounds. The problem of

computing the probability α that wp = wq for at least two distinct processes p, q
is an instance of the birthday paradox (n people with 2k possible birthday dates).

This yields α � 1 − e− n2

2k+1 . Setting k = O(log n), we obtain α � 1 − e−O(n). �

6 Related Work

Our computational model is the classical asynchronous message-passing model
[14]. Our formulation of this model can be seen as the asynchronous generaliza-
tion of the LOCAL model of Linial [13]. Many approaches have addressed the
issue of symmetry breaking in the LOCAL model. Leveraging the synchronous
nature of LOCAL, these approaches have mainly focused on computing the time
complexity of problems like maximum independent set, maximal matching, color-
ing or network decomposition [3,5,10,13,17–19]. In most cases, these approaches
assume processes with identifiers [3,17]. Our paper addresses the question of
symmetry breaking in the more general settings of asynchronous computation in
purely anonymous networks (no identifiers). In particular, we address the fun-
damental problem of enumeration on arbitrary networks. As explained in the
introduction, the main obstacle to symmetry breaking problems in anonymous
networks has been formulated by Angluin in [2], under the form of graph cover-
ings, a concept borrowed from algebraic topology [15]. Later on, Yamashita and
Kameda [21–23] extended Angluin’s work, and inspired by the work of Johnson
and Schneider [12], introduced the notion of view of a process, to encode all
the information accessible to a process as the rooted tree of the finite labeled
walks in the network from that process. In [20], the author presents a method
to compress a view, thereby enhancing the space and time complexity of some

120 P. Blanchard and R. Guerraoui

symmetry breaking algorithms. In [6], Boldi et al. considered several synchro-
nous and asynchronous models, and provided a characterization based on the
notion of graph fibration [7], another concept borrowed from algebraic topology,
which refines that of graph covering. In [8,9], Chalopin et al., inspired by the
work of Mazurkiewicz [16], studied symmetry breaking in message-passing, and
presented message-efficient algorithms in the context of networks without spatial
symmetries.

Acknowledgment. This work has been supported in part by the European ERC
Grant 339539 - AOC.

References

1. Afek, Y., Matias, Y.: Elections in anonymous networks. Inf. Comput. 113(2), 312–
330 (1994)

2. Angluin, D.: Local and global properties in networks of processors. In: 12th Sym-
posium on the Theory of Computing, pp. 82–93. ACM (1980)

3. Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network decomposition
and locality in distributed computation. In: 30th Annual Symposium on Foun-
dations of Computer Science, Research Triangle Park, North Carolina, USA, 30
October–1 November 1989, pp. 364–369 (1989)

4. Babai, L.: Graph isomorphism in quasipolynomial time [extended abstract]. In:
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2016, Cambridge, MA, USA, 18–21 June 2016, pp. 684–697 (2016)

5. Barenboim, L., Elkin, M., Kuhn, F.: Distributed (Δ + 1)-coloring in linear (in Δ)
time. SIAM J. Comput. 43(1), 72–95 (2014)

6. Boldi, P., Shammah, S., Vigna, S., Codenotti, B., Gemmell, P., Simon, J.: Symme-
try breaking in anonymous networks: characterizations. In: Israel Symposium on
Theory of Computing and Systems, pp. 16–26 (1996)

7. Boldi, P., Vigna, S.: Fibrations of graphs. Discrete Math. 243(1–3), 21–66 (2002)
8. Chalopin, J., Métivier, Y.: An efficient message passing election algorithm based

on Mazurkiewicz’s algorithm. Fundamenta Informaticae 80(1–3), 221–246 (2007)
9. Chalopin, J., Métivier, Y., Morsellino, T.: Enumeration and leader election in par-

tially anonymous and multi-hop broadcast networks. Fundamenta Informaticae
120(1), 1–27 (2012)

10. Hanckowiak, M., Karonski, M., Panconesi, A.: On the distributed complexity of
computing maximal matchings. SIAM J. Discrete Math. 15(1), 41–57 (2001)

11. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. In: 22nd Annual
Symposium on Foundations of Computer Science, Nashville, Tennessee, USA, 28–
30 October 1981, pp. 150–158 (1981)

12. Johnson, R.E., Schneider, F.B.: Symmetry and similarity in distributed systems. In:
Proceedings of the Fourth Annual ACM Symposium on Principles of Distributed
Computing, PODC 1985, pp. 13–22. ACM, New York (1985)

13. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–
201 (1992)

14. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., Burlington
(1997)

15. Massey, W.S.: A Basic Course in Algebraic Topology. Springer, New York (1991)

On the Smallest Grain of Salt to Get a Unique Identity 121

16. Mazurkiewicz, A.: Distributed enumeration. Inf. Process. Lett. 61(5), 233–239
(1997)

17. Panconesi, A., Srinivasan, A.: On the complexity of distributed network decompo-
sition. J. Algorithms 20(2), 356–374 (1996)

18. Schneider, J., Wattenhofer, R.: An optimal maximal independent set algorithm for
bounded-independence graphs. Distrib. Comput. 22(5–6), 349–361 (2010)

19. Szegedy, M., Vishwanathan, S.: Locality based graph coloring. In: Proceedings of
the Twenty-Fifth Annual ACM Symposium on Theory of Computing, San Diego,
CA, USA, 16–18 May 1993, pp. 201–207 (1993)

20. Tani, S.: Compression of view on anonymous networks - folded view -. IEEE Trans.
Parallel Distrib. Syst. 23(2), 255–262 (2012)

21. Yamashita, M., Kameda, T.: Computing on anonymous networks: part I - charac-
terizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89 (1996)

22. Yamashita, M., Kameda, T.: Computing on anonymous networks: part II - decision
and membership problems. IEEE Trans. Parallel Distrib. Syst. 7(1), 90–96 (1996)

23. Yamashita, M., Kameda, T.: Leader election problem on networks in which proces-
sor identity numbers are not distinct. IEEE Trans. Parallel Distrib. Syst. 10(9),
878–887 (1999)

Mobile Agents

A General Lower Bound for Collaborative Tree
Exploration

Yann Disser1(B), Frank Mousset2, Andreas Noever2, Nemanja Škorić2,
and Angelika Steger2

1 Institute of Mathematics, Graduate School CE, TU Darmstadt,
Darmstadt, Germany

disser@mathematik.tu-darmstadt.de
2 Department of Computer Science, ETH Zurich, Zurich, Switzerland

{moussetf,anoever,nskoric,steger}@inf.ethz.ch

Abstract. We consider collaborative graph exploration with a set of k
agents. All agents start at a common vertex of an initially unknown
graph with n vertices and need to collectively visit all other vertices. We
assume agents are deterministic, moves are simultaneous, and we allow
agents to communicate globally. For this setting, we give the first non-
trivial lower bounds that bridge the gap between small (k ≤ √

n) and
large (k ≥ n) teams of agents. Remarkably, our bounds tightly connect
to existing results in both domains.

First, we significantly extend a lower bound of Ω(log k/ log log k) by
Dynia et al. on the competitive ratio of a collaborative tree exploration
strategy to the range k ≤ n logc n for any c ∈ N. Second, we provide a
tight lower bound on the number of agents needed for any competitive
exploration algorithm. In particular, we show that any collaborative tree
exploration algorithm with k = Dn1+o(1) agents has a competitive ratio
of ω(1), while Dereniowski et al. gave an algorithm with k = Dn1+ε

agents and competitive ratio O(1), for any ε > 0 and with D denoting
the diameter of the graph. Lastly, we show that, for any exploration
algorithm using k = n agents, there exist trees of arbitrarily large height
D that require Ω(D2) rounds, and we provide a simple algorithm that
matches this bound for all trees.

1 Introduction

Graph exploration captures the problem of navigating an unknown terrain with
a single or multiple autonomous robots. In the abstract setting, we take the
perspective of an agent that is located at some vertex of an initially unknown

Y. Disser—Supported by the ‘Excellence Initiative’ of the German Federal and State
Governments and the Graduate School CE at TU Darmstadt.
F. Mousset—Supported by grant no. 6910960 of the Fonds National de la Recherche,
Luxembourg.
A. Noever—Supported by grant no. 200021 143338 of the Swiss National Science
Foundation.

c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 125–139, 2017.
https://doi.org/10.1007/978-3-319-72050-0_8

126 Y. Disser et al.

graph, can locally distinguish edges at its current location, and can choose an
edge to traverse in its next move. Various scenarios for graph exploration have
been studied in the past, for different graph classes and different capabilities
of the agent(s). A fundamental goal of exploration is to systematically visit all
vertices/edges of the underlying graph. For settings where exploration is possible,
we typically ask for efficient exploration algorithms, e.g., in terms of the number
of edge traversals.

In this paper, we consider collaborative exploration, where a set of k agents
are initially located at some vertex of an unknown undirected graph. We assume
agents to move deterministically, allow them to freely communicate at all times,
and to have unlimited computational power and memory at their disposal. In
every round each agent may traverse any edge incident to its current location,
where the edges incident to a vertex are revealed when that vertex is visited for
the first time. The goal is to visit all vertices while minimizing the number of
rounds. More precisely, we are interested in the competitive ratio of an explo-
ration strategy, i.e., the worst case ratio between the total number of rounds it
needs and the minimum total number of rounds needed to visit all vertices of the
same graph, assuming it is known beforehand. We prove new lower bounds for
the best-possible competitive ratio of any collaborative exploration algorithm.
Our bounds hold even for the much simpler setting of tree exploration. Note
that since our results concern trees, it makes no difference whether nodes can
be distinguished, and whether the agents need to visit all edges or not.

Let Tn,D denote set of all rooted trees with n vertices and height D. Each
such tree corresponds to an instance of the tree exploration problem in which
all k agents start at the root of the tree. Clearly, any offline exploration algorithm
needs Ω(n/k+D) rounds to explore a tree in Tn,D using k agents. This is shown
to be tight by the following offline exploration algorithm that explores the tree
in Θ(n/k + D) rounds: start with the tree T , double its edges, find an Eulerian
tour C (of length 2n − 2), distribute the agents evenly on C (this takes at most
D rounds), and explore T by letting each agent walk along C for O(n/k) rounds.

In the online setting, we can explore a tree in Tn,D with a single agent using
a depth-first traversal in time O(n) and thus we trivially have a competitive
ratio of O(1) when k is constant. On the other hand, with k ≥ ΔD agents,
where Δ is the maximum degree of the tree, we can simply perform a breadth-
first traversal, which takes O(D) steps and thus also has competitive ratio O(1).
Observe that in the first case n/k dominates the lower bound on the offline
optimum, while in the second case D is dominating. We are interested in the
best-possible competitive ratios between these two extreme cases.

Surprisingly, Dereniowski et al. [12] showed that already a polynomial number
k = Dn1+ε of agents allows for a BFS-like algorithm that achieves a constant
competitive ratio. For smaller teams of agents, Fraigniaud et al. [18,20] gave a
collaborative algorithm with competitive ratio O(k/ log k). This is only slightly
better than the trivial upper bound of O(k) that we get by performing a depth
first traversal with a single agent. Ortolf and Schindelhauer [23] improved this
competitive ratio to ko(1) for k = 2ω(

√
log D log log D) and n = 2O(2

√
log D). The

A General Lower Bound for Collaborative Tree Exploration 127

only non-trivial lower bound for collaborative tree exploration was given by
Dynia et al. [16]. They showed that any deterministic exploration algorithm for
k <

√
n agents has competitive ratio Ω(log k/ log log k).

Our Results

We give the first non-trivial lower bounds on the competitive ratio for collab-
orative tree exploration in the domain k ≥ √

n (cf. Fig. 1). More precisely, we
show that for every constant c ∈ N, any given deterministic exploration strategy
with k ≤ n logc n agents has competitive ratio Ω(log k/ log log k) on the set of
all trees on n vertices. Note that this extends the range of the bound by Dynia
et al. [16] for k <

√
n significantly.

Secondly, we show that for every constant ε > 0, there is a constant D =
D(ε) such that for any exploration algorithm with k ≤ Dn1+ε agents, there
exists a tree in Tn,D on which the algorithm needs at least D/(5ε) rounds. This
(almost) tightly matches the algorithm of Dereniowski et al. [12], which can
explore any tree in at most (1 + o(1))D/ε rounds using k = Dn1+ε agents. Our
result implies that any exploration algorithm with k = Dn1+o(1) agents has
competitive ratio ω(1). More precisely, we get that for any function 0 ≤ f(n) ≤
o(1), there is a function D = D(n) such that every exploration algorithm with
k = Dn1+f(n) agents has competitive ratio ω(1) on the trees in Tn,D. In contrast,
the algorithm of Dereniowski et al. shows that k = Dn1+ε agents are sufficient
to get a competitive ratio O(1) on such trees.

Finally, for every exploration algorithm with k = n, we construct a tree of
height D = ω(1) where the algorithm needs O(D2) rounds. We give a simple
algorithm that achieves this bound in general.

Further Related Work

Many variants of graph exploration with a single agent have been studied in
the past. Any (strongly) connected graph with distinguishable vertices can eas-
ily be explored in polynomial time by systematically building a map of the
graph. Regarding the exploration of undirected graphs with indistinguishable
vertices, Aleliunas et al. [2] showed that a random walk explores any graph in
O(n3Δ2 log n) steps, with high probability. In order to turn this into a terminat-
ing exploration algorithm the agent needs Ω(log n) bits of memory. Fraigniaud
et al. [19] showed that every deterministic algorithm needs Ω(log n) bits of mem-
ory, and Reingold [25] gave a matching upper bound. Disser et al. [14] showed
that alternatively Θ(log log n) pebbles and bits of memory are necessary and
sufficient for exploration, where a pebble is a device that can be dropped to
make a vertex distinguishable and that can be picked up and reused later. Diks
et al. [13] showed that trees can be explored with O(log Δ) memory, and that
Ω(log n) memory is required if the agent needs to eventually terminate at the
start vertex. Ambühl et al. [4] gave a matching upper bound for the latter result.

For the case of directed graphs with distinguishable vertices, Albers and
Henzinger [1] gave an exploration algorithm with subexponential running time

128 Y. Disser et al.

O(1) Dε
√

n n logc n Dn1+ε ΔD

O(1)

O(k)

k/ log k [18,
20]

k
o(1) [23]

O(1) [12]

Ω(1)
Ω(log k/ log log k) [16]

ω(1)

co
m

p
.
ra

ti
o

k

Fig. 1. State of the art in collaborative tree exploration. The top curve shows upper
and the bottom curve lower bounds. Thick lines show our results.

dO(log d)m that learns a map of the graph. Here m denotes the number of edges
and d is the deficiency of the graph, i.e., the number of edges missing to make the
graph Eulerian. This results narrows the gap between a quadratic lower bound
and an exponential upper bound introduced by Deng and Papadimitriou [11].

An even more challenging setting (for the agent) is the exploration of directed,
strongly connected graphs with indistinguishable vertices. In general the agent
needs exponential time to explore a graph in this setting. On the other hand,
Bender and Slonim [7] showed that two agents can explore any directed graph in
polynomial time, using a randomized strategy. Bender et al. [6] showed that to
accomplish this with a single agent we need Θ(log log n) pebbles, i.e., “a friend
is worth O(log log n) pebbles”. Remarkably, Bender et al. [6] also showed that if
the number of vertices is known beforehand, a deterministic agent with a single
pebble can explore any directed graph in polynomial time O(n8Δ2).

The lower bounds for collaborative tree exploration discussed above carry
over to the collaborative exploration of general undirected graphs with distin-
guishable vertices. Also, the algorithm of Dereniowski et al. [12] for k = Dn1+ε

works on general graphs. Additionally, Ortolf and Schindelhauer [22] gave a
lower bound on the best-possible competitive ratio for randomized algorithms of
Ω(

√
log k/ log log k) for k =

√
n. Collaborative exploration by multiple random

walks without communication has been considered by Alon et al. [3], Elsässer
and Sauerwald [17], and Ortolf and Schindelhauer [24].

Graph exploration has been studied in many other settings. Examples include
tethered exploration or exploration with limited fuel [5,15], exploration of mazes
[8,21], and exploration of polygonal environments [9,10].

A General Lower Bound for Collaborative Tree Exploration 129

2 Results

Our first result extends the lower bound for k <
√

n agents of Dynia et al. [16]
to the much larger range k ≤ n logO(1) n. We prove the following theorem:

Theorem 1. Let c be any positive integer constant. Then for every n and every
1 ≤ k ≤ n logc n there is some D = D(n, k, c) such that the following holds: for
any given deterministic exploration strategy with k agents, there exists a tree T
on n vertices and with height D on which the strategy needs

Ω
(log k

log log k
· (n/k + D)

)

rounds.

As mentioned above, there is an offline algorithm that explores any graph
with n vertices and height D in time Θ(n/k + D). From this, we obtain the
following corollary to Theorem1:

Corollary 1. Let c be any positive integer constant. Then any deterministic
exploration strategy using k ≤ n logc n agents has a competitive ratio of

Ω
(log k

log log k

)
.

Our second main result shows that the algorithm of Dereniowski et al. [12]
that explores a graph with k = Dn1+ε agents in time (1 + o(1))D/ε is almost
optimal: using k ≤ Dn1+ε agents it is generally impossible to explore the graph
in fewer than D/(5ε) rounds.

Theorem 2. Given any constant ε > 0 there is an integer D = D(ε) such that
for sufficiently large n and for every deterministic exploration strategy using
k ≤ D ·n1+ε agents, there exists a tree on n vertices and with height D on which
the strategy needs at least D/(5ε) rounds.

In the range where k ≥ n, the offline optimum is determined by the height D
of the tree. Therefore, the result of Dereniowski et al. mentioned above implies
that the competitive ratio is constant when k = D · n1+Ω(1). Theorem 2 shows
in particular that this is tight in the following sense:

Corollary 2. For any function 0 ≤ f(n) ≤ o(1), there is a function D = D(n)
such that the competitive ratio of any deterministic exploration strategy using
k = D · n1+f(n) agents is ω(1) on the set Tn,D of all rooted trees with n vertices
and height D.

However, note that here we have no control over the height of the worst-
case example: for instance, it could be that there are ranges for D where the
algorithm of Dereniowski et al. may be improved.

130 Y. Disser et al.

Finally, it is possible for k = n agents to explore any tree on n vertices
and of height D in D2 rounds using a breadth-first exploration strategy. More
precisely, we can split the D2 rounds in D phases of length D, and in each phase
1 ≤ i ≤ D do the following. Let Ai be the set of unvisited leaves of the tree
that is known to the agents at the start of phase i. Then we send one agent to
each vertex in Ai along a shortest path. This is clearly doable in D rounds, and
constitutes a single phase. After phase i, the agents have explored all vertices
at distance at most i from the root. Therefore, after D such phases, the tree is
completely explored. We show that the running time of D2 is optimal up to a
constant factor:

Theorem 3. For every n and every deterministic exploration strategy using k =
n agents, there exists a tree T on n vertices and with height D = ω(1) such that
the strategy needs at least D2/3 rounds to explore T .

In all the results above, we have considered the worst-case performance of
an exploration strategy on any tree. However, by looking at the proofs of Theo-
rems 1 and 2, one can see that the heights of our lower bound constructions are
typically quite small. We believe it is also natural to ask about the competitive
ratio on the set of trees of height at least D, for a given D. We show that at
least for subpolynomial heights, the competitive ratio with k = Θ(n) agents is
unbounded:

Theorem 4. For any function D ≤ no(1) and any exploration strategy using
k = Θ(n) agents, the competitive ratio on the set of all trees of size n and height
at least D is ω(1).

We stress that Theorem 4 differs from the other results in that it gives a
measure of control over the height of the adversarial example, while the other
results merely state that there exists some height on which the algorithm must
perform poorly.

3 Tree Exploration Games

In order to prove a lower bound on the competitive ratio, we consider a tree
exploration game defined as follows. By a tree exploration game with k agents
we mean a game with two players, the explorer (the online algorithm) and the
revealer (the adversary), played according to the following rules. The game pro-
ceeds in rounds which we index by the variable t (‘time’), the first round being
t = 0. The state of the game at time t is described by a triple (Tt, At, φt),
where Tt is a rooted tree (the tree revealed at the beginning of round t), At

is a subset of the vertices of Tt (the subset of visited vertices by round t), and
φt : {1, . . . , k} → At is an assignment of the agents to the vertices (where φt(i)
is the location of the i-th agent at time t). In round t = 0 the revealer decides
on the initial tree T0. The state at time 0 is then given by (T0, A0, φ0) where
A0 = {root(T0)} and φ0(x) = root(T0) for all 1 ≤ x ≤ k – that is to say, all

A General Lower Bound for Collaborative Tree Exploration 131

agents are initially at the root of T0. In every round t > 0, each player can
make a move. First, the explorer creates a new assignment φt by moving each
agent i to a neighbor of φt−1(i) in Tt−1 or by keeping the location of the agent
same, i.e., φt(i) = φt−1(i). Then the revealer decides on the new tree Tt, where
Tt must be obtained from Tt−1 by attaching (possibly empty) trees at some
vertices v ∈ V (Tt−1) \ At−1, where V (Tt−1) is the set of vertices of Tt−1. We
then let At = At−1 ∪ Nt where Nt = {φt(i) : 1 ≤ i ≤ k} is the set of the new
agent locations. The game ends in round t∗ if all vertices of Tt∗ are visited at
the beginning of round t∗, i.e., if At∗ = V (Tt∗).

This type of game naturally lends itself to proving lower bounds for the
time in which k agents can explore an unknown tree. Specifically, consider any
deterministic strategy for exploring an unknown tree T with k agents. Such a
strategy can be interpreted as a strategy for the explorer in the tree exploration
game with k agents. If the revealer can play so that the game lasts for at least t∗

rounds, then this means that the proposed exploration strategy needs t∗ rounds
to explore the tree Tt∗ . We will use this observation to prove lower bounds for
the online graph exploration in the following section.

As a side remark, here it is crucial that the strategy is deterministic: if the
strategy were allowed to make random choices, then the tree Tt∗ would turn
out to be a random variable that might be highly correlated with the random
choices made by the explorer, and it could not serve as an instance on which the
strategy performs badly.

4 Lower Bound Construction

We now give our lower bound construction that establishes the following tech-
nical lemma.

Lemma 1. Let n,L,m be positive integers such that n ≥ L · 16m. Then for any
deterministic exploration strategy using

k ≤ n1+1/m

6L(m + 1)2(2L)1/m

agents, there exists a tree T on n vertices and of height Lm such that the strategy
needs at least L

(
m
2

)
rounds to explore T .

The parameter L is mostly there to force a large diameter. For a first under-
standing it does not hurt to imagine that L = 1 and to think of m as being a
function tending to infinity very slowly as n grows. Then the lemma shows that
n1+o(1) vertices need ω(1) rounds to explore the tree.

Proof. Assume that integers n, L and m as above are given. Let k be any integer
such that 1 ≤ k ≤ n1+1/m/(6L(m + 1)2(2L)1/m). To prove the lemma, we will
describe a strategy for the revealer in the tree exploration game with k agents
such that

132 Y. Disser et al.

– the game does not end before round t∗ := L ·
(
m
2

)
, and

– the tree Tt∗ has height Lm and at most n vertices,

where the notation is as in Sect. 3. Note that this is enough to prove the lemma.
The main difficulty is that there are several trade-offs involved. On the one

hand, the game has to keep going for t∗ rounds, that is, it must not happen that
the agents explore the whole tree at any time before t∗. This requires us to grow
the tree at several critical times, when the agents may come close to exploring
everything. On the other hand, we do not want to grow the tree too often, or too
much, because the final tree must consist of at most n vertices. Lastly, there is
the (less severe) constraint that we want the constructed tree to have a certain
height, which we must keep in mind.

Before explaining the strategy, we fix some notation. Let

α := (2L/n)1/m and ti := L ·
(

i + 1
2

)

for 0 ≤ i < m. For each t ≥ 0 we can consider the equivalence relation ∼t on
V (Tt) where u ∼t v if there exists a path between u and v in Tt that avoids
the root of Tt (i.e., if they have a common ancestor that is not the root). Since
T0 ⊆ T1 ⊆ T2 ⊆ . . . are trees with the same root, we will just write u ∼ v instead
of u ∼t v without causing confusion. Then we define at(v) := |{x | φt(x) ∼ v}|.
In other words, at(v) counts the total number of agents that could reach vertex
v without passing through the root (under the assignment φt). We think of those
agents as being ‘near’ the vertex v.

The times t1, t2, t3, . . . are our ‘critical times’ at which the tree grows. The
general idea is very natural: at every critical time ti, we grow the tree in those
places where there are the fewest agents nearby. When doing this, we add suffi-
ciently many vertices so that the agents that are currently nearby cannot explore
the newly added subtrees in before the next critical time ti+1. Similarly, every-
thing is set up so that the agents that are not nearby are unable to reach the
location before the time ti+1. Thus, the game keeps going until round ti+1. The
parameter α enforces a sort of ‘iterative thinning’ of the tree, which allows us to
be economical with the vertices. A precise description of the revealing strategy
is given in Algorithm 1.

The set Si is the set of vertices where we grow the tree at time ti. For a better
intuition, we refer the reader to Fig. 2, which shows what the tree constructed
by this strategy might look like. We establish three claims which are used to
show that the algorithm indeed runs for at least t∗ = tm−1 rounds and that the
tree constructed in this way has the right properties.

Claim 1. For every 0 ≤ i < m the following holds. The height of Tti is at most
L · (i + 1). Moreover, if S1, . . . , Si are all non-empty, then the height of Tti is
exactly L · (i + 1).

Proof. The tree Tti differs from Tti−1 if and only if Si is non-empty, and in this
case it is obtained by attaching trees of height L at some vertices with distance

A General Lower Bound for Collaborative Tree Exploration 133

Algorithm 1. The strategy for the revealer.
begin

let T0 be a ‘star’ consisting of �n/(2L)� paths of length L from the root;
foreach round t = 1, 2, 3, . . . do

let the explorer choose φt;
if t = ti for some 1 ≤ i < m then

let Ki be a maximal set of vertices in V (Tti−1) \ Ati−1 s.t.

(i) every vertex in Ki has distance L · i to the root in Tti−1

(ii) there are no two distinct vertices u, v ∈ Ki with u ∼ v.

let Si ⊆ Ki be the �α|Ki|� vertices v ∈ Ki with least ati(v);
define Tti by attaching at each v ∈ Si a path of length L − 1 with a
star with L · (i + 1) · ati(v) leaves at the end;

else
let Tt = Tt−1;

end

end

end

L · i to the root in Tti−1 . Since Tt0 = T0 has height L, this implies the claim by
induction.
�

Claim 2. For all 1 ≤ i < m and every v ∈ Si, there exists at least one descendant
of v at depth L · (i+1) in Tti+1−1 that does not belong to Ati+1−1. In particular,
for all 1 ≤ i < m we have |Ki+1| = |Si|.

Proof. Each vertex at depth L(i + 1) is a descendant of some vertex v ∈ Si.
Moreover, we have u � v for any two distinct u, v ∈ Si. Thus, the second claim
follows directly from the first.

For the first claim, consider any 1 ≤ i < m and v ∈ Si. Note that

(1) at time ti we create L · (i + 1) · ati(v) descendants of v at depth L · (i + 1);
(2) ti+1 − ti = L · (i + 1).

Because of this, no agent passing through the root can visit any descendant of v
at depth L · (i + 1) before round ti+1. On the other hand, the ati(v) agents that
could visit a descendant at this depth without passing through the root cannot
visit all descendants before round ti+1. Thus at least one descendant at depth
L · (i + 1) must be unvisited at the end of round ti+1 − 1.
�

Claim 3. For every 1 ≤ i < m we have the bounds

|Si| ≥ αin

2L
≥ 1

α
and |Si| ≤ (2α)in

2L
.

134 Y. Disser et al.

S1 S1S1

S2

L

L − 1

L − 1

Fig. 2. A sketch of the tree generated by the revealing strategy, for artificial values
α = 1/3 and �n/(2L)� = 9 (degrees in the actual construction are much larger). The
actual shape depends on the distribution of the agents at times t1, t2. Dashed lines
represent paths of the specified length.

Proof. By definition we have α = (2L/n)1/m < 1 and thus αm = 2L/n, which
gives us

αin

2L
≥ αm−1n

2L
= 1/α

for all 1 ≤ i < m.
For the lower bound, note that since A0 contains only the root, we have

|K1| = �n/(2L). By the definition of Si, we have |Si| ≥ α|Ki| for all 1 ≤ i < m.
Moreover, if 2 ≤ i < m then by Claim 2 we have |Ki| = |Si−1|. The lower bound
then follows by induction.

For the upper bound, note that K1 ≤ n/(2L) + 1 ≤ n/L, where the last
inequality uses n ≥ 2L. Moreover, using |Ki| ≥ 1/α we have |Si| ≤ α|Ki| + 1 ≤
2α|Ki| for all 1 ≤ i < m. Finally, if 2 ≤ i < m then |Ki| = |Si−1| by Claim 2,
and the upper bound follows by induction.
�

Since |Si| > 0 implies in particular that Ati−1 �= V (Tti−1), we conclude from
Claim 3 that the game does not stop before reaching round tm−1 = L ·

(
m
2

)
= t∗.

Moreover, from Claims 1 and 3 we see that Ttm−1 is a tree with height L · m. To
complete the proof we need to show that |V (Ttm−1)| ≤ n. We have

|V (Ttm−1)| ≤ �n/(2L) · L + 1 +
m−1∑
i=1

∑
v∈Si

(L − 1 + L · (i + 1) · ati(v))

A General Lower Bound for Collaborative Tree Exploration 135

≤ n/2 + L + 1 +
m−1∑
i=1

L(i + 1)
∑
v∈Si

ati(v) +
m−1∑
i=1

|Si|(L − 1). (1)

To bound the double sum note that |Ki| ≥ |Si| ≥ 1/α (Claim 3) implies that
�α|Ki| ≤ 2α|Ki|. Note also that the sum

∑
v∈Ki

ati(v) in (1) is at most k, as no
two vertices u, v from Ki are in the same subtree, i.e., u �∼ v. Since Si contains
the �α|Ki| ≤ 2α|Ki| vertices of Ki with least ati(v), we thus have

∑
v∈Si

ati(v) ≤ 2α
∑

v∈Ki

ati(v) ≤ 2αk,

and therefore
m−1∑
i=1

L(i + 1)
∑
v∈Si

ati(v) ≤ L(m + 1)2αk. (2)

To bound the simple sum in (1), we use the upper bound from Claim3 and
obtain

m−1∑
i=1

|Si|(L − 1) ≤ (L − 1)
∞∑

i=1

(2α)in

2L
=

L − 1
2L

· 2αn
∞∑

i=0

(2α)i ≤ 2αn

2 − 4α
. (3)

Combining (1) with (2) and (3), we get

|V (Ttm−1)| ≤ n/2 + L + 1 + L(m + 1)2αk +
2αn

2 − 4α
. (4)

Since n ≥ L · 16m ≥ 12L we have L + 1 ≤ 2L ≤ n/6. By the definition α =
(2L/n)1/m and the assumption k ≤ n1+1/m/(6L(m + 1)2(2L)1/m) we have

L(m + 1)2αk = L(m + 1)2(2L/n)1/mk ≤ n/6.

Finally, n ≥ L · 16m implies that α ≤ 1/8 and so the last term in (4) is also at
most n/6. Hence |V (Ttm−1)| ≤ n/2 + 3n/6 = n.
�

5 Consequences for Competitiveness

We now use Lemma 1 to derive consequences for best-possible competitive ratios
of collaborative tree exploration algorithms. In the proofs below, log is always
to the natural base e.

Theorem 1. Let c be any positive integer constant. Then for every n and every
1 ≤ k ≤ n logc n there is some D = D(n, k, c) such that the following holds: for
any given deterministic exploration strategy with k agents, there exists a tree T
on n vertices and with height D on which the strategy needs

Ω
(log k

log log k
· (n/k + D)

)

rounds.

136 Y. Disser et al.

Proof. By the result of Dynia et al. [16] it suffices to consider the case where
k ≥ √

n. Let c > 0 be a constant and assume k ≤ n logc n. We apply Lemma 1
with m = � log n

(8+c) log log n and L = �n/(mk). Using k ≥ √
n, we have L = O(

√
n)

and m = o(log n) and thus n ≥ L · 16m holds for sufficiently large n. The lemma
states that if

k ≤ n1+1/m

6L(m + 1)2(2L)1/m
(5)

then there is a tree of height D := Lm on which the strategy needs at least
L

(
m
2

)
= Ω((n/k+D) · log k/ log log k) rounds. To complete the proof, we need to

show that (5) holds for all 1 ≤ k ≤ n logc n. We split the analysis to two cases.
Let us first assume k ≥ n/m and thus L = 1. This implies

n1+1/m

6L(m + 1)2(2L)1/m
≥ n1+1/m

24m2
≥ n log8+c n

24 log2 n
≥ k,

when k ≤ n logc n and for sufficiently large n.
Now we consider the case k < n/m. Using that assumption and the definition

of L we obtain L(m + 1)2 ≤ 4mn/k and 2L ≤ 4n/(mk). Putting it all together
we have

n1+1/m

6L(m + 1)2(2L)1/m
=

n

6L(m + 1)2
(n

2L

)1/m

≥ k

24m

(
mk

4

)1/m

≥ k,

where the last inequality holds for k ≥ √
n because, for sufficiently large n,

(mk)1/m ≥ k1/m ≥ e
log n
2m ≥ e

(8+c) log log n
4 ≥ (log n)2 ≥ 100m.

�

Theorem 2. Given any constant ε > 0 there is an integer D = D(ε) such that
for sufficiently large n and for every deterministic exploration strategy using
k ≤ D ·n1+ε agents, there exists a tree on n vertices and with height D on which
the strategy needs at least D/(5ε) rounds.

Proof. We choose L = 1 and m = �1/2ε in Lemma 1. The claim is trivial unless
ε < 1/5, so we can eliminate rounding and assume generously that 1/m ≥ 1.4ε.
The condition n ≥ L · 16m is clearly satisfied for sufficiently large n.

By Lemma 1, there is a tree T of height m that needs time
(
m
2

)
≥ m/(5ε) to

be explored, provided the team has size at most (for n sufficiently large)

k ≤ n1+1.4ε/(12(m + 1)2) ≤ m · n1+ε = D · n1+ε.

�

Theorem 3. For every n and every deterministic exploration strategy using k =
n agents, there exists a tree T on n vertices and with height D = ω(1) such that
the strategy needs at least D2/3 rounds to explore T .

A General Lower Bound for Collaborative Tree Exploration 137

Proof. We choose L = 1 and m = �
√

log n in Lemma 1. Then n ≥ L ·16m holds
for sufficiently large n. Note also that for sufficiently large n,

n1+1/m

12(m + 1)2
= Ω(n · e

√
log n/ log n) ≥ n.

The lemma now states that there exists a tree T of height m such that the given
strategy with k = n agents needs at least

(
m
2

)
rounds to explore T . Since for

large enough n we have
(
m
2

)
≥ m2/3, this implies the theorem.
�

Theorem 4. For any function D ≤ no(1) and any exploration strategy using
k = Θ(n) agents, the competitive ratio on the set of all trees of size n and height
at least D is ω(1).

Proof. Suppose that D ≤ no(1), i.e., D = n1/f(n), where f(n) is a function which
tends to infinity with n. Let L = D and note that we have

16L1/m

n1/m
≤ L1+1/m(m + 1)2

n1/m
≤ 4m2n2/f(n)

n1/m
.

If we choose m = m(n) = ω(1) as a function growing sufficiently slowly such
that we have m ≤ min{(f(n))1/2, (log n)1/2}, then the following is true:

4m2n2/f(n)

n1/m
= 4 · e2 log m+2(log n)/f(n)−log n/m → 0.

This implies 16L1/m = o(n1/m) and L1+1/m(m + 1)2 = o(n1/m). In particular,
n ≥ L ·16m for sufficiently large n. Moreover, if n is large enough then k = Θ(n)
implies

n1+1/m

6L(m + 1)2(2L)1/m
=

n1+1/m

o(n1/m)
≥ k.

By Lemma 1, there exists a tree T with height Lm ≥ D on which the strategy
needs L

(
m
2

)
= ω(Lm) rounds. Since k = Θ(n), the offline optimum is O(Lm +

n/k) = O(Lm), so the competitive ratio on the set of trees of height at least D
is ω(1), as claimed.
�

6 Conclusions

In this paper we presented new lower bounds for collaborative tree exploration.
Including our results, the following bounds are now known. For k = O(1) or
k ≥ D ·n1+ε agents, a competitive ratio of Θ(1) can be achieved. For ω(1) ≤ k ≤
n logc n, the best-possible competitive ratio is bounded by Ω(log k/ log log k),
and no constant competitive ratio is possible when n logc n ≤ k ≤ D · n1+o(1).
On the other hand, the best exploration algorithms for trees in the domain
k ≤ D · n1+o(1) stay close to the trivial competitive ratio of k (the best ratios
are k/ log k and ko(1), depending on the domain).

In summary, we now fully understand the domain where constant competitive
ratios are possible, but, outside this domain, a wide gap persists.

Acknowledgments. We would like to thank Rajko Nenadov for useful discussions.

138 Y. Disser et al.

References

1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput.
29(4), 1164–1188 (2000)

2. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks,
universal traversal sequences, and the complexity of maze problems. In: Proceed-
ings of the 20th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 218–223 (1979)

3. Alon, N., Avin, C., Koucký, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many random
walks are faster than one. Comb. Probab. Comput. 20(4), 481–502 (2011)

4. Ambühl, C., G ↪asieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with
logarithmic memory. ACM Trans. Algorithms 7(2), 1–21 (2011)

5. Awerbuch, B., Betke, M., Rivest, R.L., Singh, M.: Piecemeal graph exploration by
a mobile robot. Inf. Comput. 152(2), 155–172 (1999)

6. Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.: The power of a
pebble: exploring and mapping directed graphs. Inf. Comput. 176(1), 1–21 (2002)

7. Bender, M.A., Slonim, D.K.: The power of team exploration: two robots can learn
unlabeled directed graphs. In: Proceedings of 35th Annual Symposium on Foun-
dations of Computer Science (FOCS), pp. 75–85 (1994)

8. Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier to
search than graphs). In: Proceedings of the 19th Annual Symposium on Founda-
tions of Computer Science (FOCS), pp. 132–142 (1978)

9. Chalopin, J., Das, S., Disser, Y., Mihalák, M., Widmayer, P.: Mapping simple
polygons: how robots benefit from looking back. Algorithmica 65(1), 43–59 (2011)

10. Chalopin, J., Das, S., Disser, Y., Mihalák, M., Widmayer, P.: Mapping simple
polygons. ACM Trans. Algorithms 11(4), 1–16 (2015)

11. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theory
32(3), 265–297 (1999)

12. Dereniowski, D., Disser, Y., Kosowski, A., Paj ↪ak, D., Uznański, P.: Fast collabo-
rative graph exploration. Inf. Comput. 243, 37–49 (2015)

13. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little mem-
ory. J. Algorithms 51(1), 38–63 (2004)

14. Disser, Y., Hackfeld, J., Klimm, M.: Undirected graph exploration with Θ(log log n)
pebbles. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 25–39 (2016)

15. Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph explo-
ration. ACM Trans. Algorithms 2, 380–402 (2006)

16. Dynia, M., �Lopuszański, J., Schindelhauer, C.: Why robots need maps. In:
Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72951-8 5

17. Elsässer, R., Sauerwald, T.: Tight bounds for the cover time of multiple random
walks. Theor. Comput. Sci. 412(24), 2623–2641 (2011)

18. Fraigniaud, P., G ↪asieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration.
Networks 48(3), 166–177 (2006)

19. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a
finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)

20. Higashikawa, Y., Katoh, N., Langerman, S., Tanigawa, S.I.: Online graph explo-
ration algorithms for cycles and trees by multiple searchers. J. Comb. Optim. 28(2),
480–495 (2012)

https://doi.org/10.1007/978-3-540-72951-8_5

A General Lower Bound for Collaborative Tree Exploration 139

21. Hoffmann, F.: One pebble does not suffice to search plane labyrinths. In: Proceed-
ings of the 3rd International Symposium on Fundamentals of Computation Theory
(FCT), pp. 433–444 (1981)

22. Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with
rectangular obstacles. In: Proceedings of the 24th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pp. 27–36 (2012)

23. Ortolf, C., Schindelhauer, C.: A recursive approach to multi-robot exploration of
trees. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 343–354.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09620-9 26

24. Ortolf, C., Schindelhauer, C.: Strategies for parallel unaware cleaners. Theor. Com-
put. Sci. 608, 178–189 (2015)

25. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 1–24 (2008)

https://doi.org/10.1007/978-3-319-09620-9_26

Wireless Evacuation on m Rays with k Searchers

Sebastian Brandt1, Klaus-Tycho Foerster2(B), Benjamin Richner1,
and Roger Wattenhofer1

1 ETH Zürich, Zürich, Switzerland
{brandts,wattenhofer}@ethz.ch, benri@bluewin.ch

2 Aalborg University, Aalborg, Denmark
ktfoerster@cs.aau.dk

Abstract. We study the online problem of evacuating k robots on m
concurrent rays to a single unknown exit. All k robots start on the same
point s, not necessarily on the junction j of the m rays, move at unit
speed, and can communicate wirelessly. The goal is to minimize the com-
petitive ratio, i.e., the ratio between the time it takes to evacuate all
robots to the exit and the time it would take if the location of the exit
was known in advance, on a worst-case instance.

When k = m, we show that a simple waiting strategy yields a com-
petitive ratio of 4 and present a lower bound of 2 +

√
7/3 ≈ 3.52753

for all k = m ≥ 3. For k = 3 robots on m = 3 rays, we give a class
of parametrized algorithms with a nearly matching competitive ratio of
2 +

√
3 ≈ 3.73205. We also present an algorithm for 1 < k < m, achiev-

ing a competitive ratio of 1 + 2 · m−1
k

·
(
1 + k

m−1

)1+m−1
k

, obtained by

parameter optimization on a geometric search strategy. Interestingly, the
robots can be initially oblivious to the value of m > 2.

Lastly, by using a simple but fundamental argument, we show that
for k < m robots, no algorithm can reach a competitive ratio better than
3 + 2 �(m − 1)/k�, for every k, m with k < m.

1 Introduction

Searching for an unknown target is a fundamental problem in computer science
and mathematics, especially in the area of robotics. The standard toolkit to
analyze this class of problems is competitive analysis [32], i.e., our goal is to
design online algorithms with a small competitive ratio, which compares the
performance of the online algorithm to an optimal offline solution which knows
the target location beforehand.

As pointed out by Hammar et al. [22], “A problem with paradigmatic status
in this framework is searching on m concurrent rays,” which is the focus of this
paper. More precisely, we study the problem of evacuating k ≤ m robots on m
concurrent rays (i.e., semi-infinite lines) to an unknown exit z [23,26], with the
robots communicating wirelessly [14,18].

The seminal forefather of this problem is the linear search problem, also
known as the cow path problem, first posed by Beck [6] and Bellman [8]: A
c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 140–157, 2017.
https://doi.org/10.1007/978-3-319-72050-0_9

Wireless Evacuation on m Rays with k Searchers 141

searcher has to find an object of unknown location on the infinite line (i.e., 2
concurrent rays). The optimal online algorithm achieves a competitive ratio of
9, in each iteration doubling the search depth 1, 2, 4, . . . on each side of the
starting point s [7]. Gal [21] and Baeza-Yates et al. [4] then extended their
results to the model of m concurrent rays, where the optimal strategy is to,
instead of doubling the search depth, use a factor of m/(m − 1), yielding an
optimal competitive ratio of 1 + 2mm/(m − 1)m−1 [29]. If k robots can search
for the exit, and one robot finding it terminates the search, a competitive ratio
of 1 + 2(m/k − 1)/(m/(m − k))m/k is optimal [30].

The concepts of collaborative evacuation and wireless communication are more
recent additions in this field. In the case of the (unit speed) robots only being
able to communicate when they meet, for k = m a competitive ratio of 9 is again
optimal [23] if there is a minimum distance to the exit, else 1 + 2(p + 1)p+1/pp

for p = �log m� is optimal. In the special case of m = 2 and k > m, 9 is opti-
mal as well [12]. Baeza-Yates and Schott studied wireless communication in this
context: Even though most of their paper “Parallel searching in the plane” [5] is
about searching the plane, they also considered the evacuation problem with two
searchers on the line, pointing out that a competitive ratio of 3 is then optimal for
k ≥ m = 2. Further collaborative robot evacuation studies in geometric settings
have been performed by Czyzowicz et al.: Evacuating the circle with k = 2 [13],
the line with faulty robots [17], the disk [14–16] (see also [11]), and equilateral
triangles and squares [18], with [15,18] also studying wireless communication.

Contributions. In this paper, we extend the model of Baeza-Yates and Schott [5]
beyond the infinite line (i.e., m = 2), by examining the problem of evacuating
1 < k ≤ m robots on m rays with wireless communication, which has not been
studied before to the best of our knowledge. We also study the case that the k
robots do not start on the junction j of the m rays.

When starting on the junction with k = m > 2 robots, we show that a
competitive ratio of 3 is still optimal, and starting away from the junction allows
for a 4-competitive algorithm. For the special case of k = m = 3, we present a
class of parametrized algorithms with a competitive ratio of 2 +

√
3 ≈ 3.73205.

We also give lower bounds of 2 +
√

7/3 ≈ 3.52753, for every k = m ≥ 3.
Furthermore, we consider the case of less robots than rays, i.e., collab-

orative wireless evacuation with 1 < k < m robots. Even though the k
robots are oblivious to the number of m > 2 rays, our optimization of
parametrized geometric search strategy yields a competitive ratio of at most

1 + 2 · m−1
k ·

(
1 + k

m−1

)1+m−1
k

. Moreover, as we show, even when starting on the
junction, no algorithm can have a better competitive ratio than 3+2 �(m − 1)/k	,
for any k,m with k < m.

Paper Organization. In the following paragraph we discuss further related work,
before introducing the necessary formal preliminaries in Sect. 2. We then consider
the case of m robots on m rays in Sect. 3, with an in-depth focus of 3 robots on 3
rays. Afterwards, we study the more general case of 1 < k < m robots on m rays

142 S. Brandt et al.

in Sect. 4, also detailing a lower bound for k < m with a simple but fundamental
argument. Lastly, we conclude in Sect. 5.

Further Related Work. Results for the search problem on m rays can be used
for showing competitive bounds for search problems in various classes of simple
polygons, cf. [23,29], with further applications in hybrid [26] and interruptible [1]
algorithms. The classic linear search or cow path problem has moreover been
studied in a multitude of models, e.g., adding turn costs [9,19] (also with multiple
searchers on rays [2]), with a single [25] or multiple error prone robots [17], or
a moving target [9]. Bose et al. [10] gave tight bounds on the competitive ratio
with distance bounds to the target, showing that the optimal search strategy is
then unique.

Searching on m rays has furthermore been considered with multiple tar-
gets [3], with only one robot being allowed to move at a time [26], regarding
advice complexity [24], and randomized algorithms [27,31] – cf. the survey by
Tate [33] for an overview of the latter.

On graphs, the problem of finding a specified node in an online fashion is
also known as treasure hunt or as the node searching problem [20,28].

2 Preliminaries

We consider the problem of collaboratively evacuating k robots R0, . . . , Rk−1 on
m concurrent rays a0, . . . , am−1, joined at a common junction j. All robots start
at the same point s, w.l.o.g. on ray a0, where s does not have to be the junction
j. All robots have to reach the single exit z on some ray az, the location and ray
of z is unknown until one robot reaches the location of the exit z. We denote
the distance of the junction j to the start s by js. The robots have the same
unit maximum speed and can communicate wirelessly, instantaneously sharing
their information. As thus, we can assume that one central algorithm controls all
robots. Unless otherwise noted, we assume that the robots travel at unit speed
when moving.

The goal is to minimize the time needed for all robots to reach the exit,
compared to the minimum time needed if all information about the environment
would be revealed initially. Hence, we study this problem using competitive
analysis: The competitive ratio of an online (evacuation) algorithm is measured
as the supremum of the ratio of the time needed for all robots to reach the exit
and the distance Z from s to z, for all start and exit locations.

If the distance between the start s and the exit z is allowed to be arbitrarily
small, no online algorithm (without infinitesimal steps) can achieve a constant
competitive ratio for k < m: As thus, we use the common assumption of at least
unit distance between start s and exit z, cf. [1].

3 m Robots on m Rays

We start our study of robot evacuation by considering one robot for each ray. In
Subsect. 3.1 we gather some basic observations. Note that Observations 1 and 2

Wireless Evacuation on m Rays with k Searchers 143

s
1 1

z?z?

Fig. 1. As the robots starting on s are oblivious to the direction of the exit z, both
points of distance 1 need to be explored by at least one robot, meaning that at least one
robot takes a time of t = 3 to reach the exit (in this case all robots can also evacuate
the graph at a time of t = 3).

can be found with similar arguments for k = 2 in [5]. We further examine the
case of 3 robots on 3 rays in Subsect. 3.2.

3.1 The General Case of m Robots on m Rays

If all m robots start on the junction j, then each robot Ri can explore ray ai

at unit speed, with some robot finding z at time t = Z. Then, all other robots
are at distance 2Z from z, inducing a total evacuation time of t = 3Z if they all
directly travel to the exit. Trivially, in the case of k = 1, a single robot starting
on the end of a single ray will find the exit in optimal time.

Observation 1. Let s = j and k = m, with m > 1. There exists an online
algorithm evacuating the m robots with a competitive ratio of 3.

For m > 1, no better ratio than 3 is possible (cf. also Fig. 1): Assume all
2 ≤ k ≤ m robots start on the junction j and the exit is at distance Z = 1. In
the worst case, the exit will be on the last ray explored until distance 1 (which
could coincide with the first ray being explored until distance 1), so at least one
robot will need a time of t = 3Z to reach the exit z.

Observation 2. For every 2 ≤ k ≤ m: No online algorithm can achieve a better
competitive ratio than 3 for evacuating the k robots.

The situation is more difficult when the robots do not start on the junction
j and m > 2.1 If we knew the initial direction of the junction, we could send
m − 1 robots there, again obtaining a competitive ratio of 3 as before.

The following algorithm yields an upper bound of 4 for the competitive ratio
even when the direction of the junction is not known: Send two robots R0, R1

in opposing directions until either the exit z or the junction j is found, with
the remaining m − 2 robots waiting at the start s. If the exit z is found first
(or simultaneously), a competitive ratio of 3 can again be achieved by directly
sending all robots to the exit z. If the junction is found first, we stop the robots
R0, R1 for a duration of js, while the other m − 2 robots travel to the junction.
We then proceed as if s was the point from which all rays emanate and the section
between s and j was actually comprised of the first parts of m− 1 rays that just
happened to be glued together. According to this equivalent consideration, at
1 If m = 2, then a competitive ratio of 3 can be reached again, as every point can be

seen as the junction.

144 S. Brandt et al.

time 2js, all robots are on their rays at distance js from s and then continue
to explore their assigned rays. When the exit z is found by one robot at time
js + Z, all other robots move to the exit z in time 2Z, obtaining a competitive
ratio of (js + 3Z)/Z < 4.

Observation 3. Let k = m, m > 2. There exists an online algorithm evacuating
the m robots with a competitive ratio of at most 4.

We will later show a lower bound of 2 +
√

7/3 ≈ 3.52753 in Corollary 2, for
all k = m ≥ 3.

3.2 The Case of 3 Robots on 3 Rays

We start with a lower bound for the competitive ratio of evacuating 3 robots
from 3 rays, before giving a nearly matching upper bound in Theorem3.

Theorem 1 (Lower bound of 2 +
√
7/3 for 3 robots on 3 rays). No online

algorithm can achieve a better competitive ratio than 2 +
√

7/3 ≈ 3.52753 for
evacuating 3 robots on 3 rays.

Proof. As evacuating 3 robots on 3 rays has a competitive ratio of 3 when s = j,
we assume that s
= j, s ∈ a0, and Z > js. Also, we can assume in a worst-case
fashion that the junction j lies on the side of s that ensures that at time js at
most one of the three robots is closer to j than in the beginning, i.e., closer to
j than js.

It follows that the earliest time when the 2 points of distance 3/2 · js from s
on a1, a2 have been visited is at time 5/2 · js: Only the robot that is (possibly)
closer to j at time js than in the beginning can visit any of these 2 points before
time 5/2 · js; however, since it can visit the first of the two at time 3/2 · js at
the earliest, it cannot visit the other one before time 5/2 · js.

W.l.o.g., let R2 be a robot who has (possibly previously) visited a point p
farthest away from the junction on the starting ray a0 at time t = 5/2 · js. We
will now show Theorem 1 by case distinction for a point y, denoting where R2 is
at time 5/2 · js. The case distinction will depend on a “border”-value b, later to
be optimized. We refer to Fig. 2 for an overview of the construction.

We start with the first case of jy ≥ b + js and y lies on a0: Then, we
place the exit z at one of the points of distance 3/2 · js from s on a1, a2 that
is visited last by the strategy used by the three robots. As the exit cannot
have been found before time 5/2 · js, robot R2 will need (in the best case)
5/2 · js + sy + 3/2 · js = 4 · js + sy ≥ 4 · js + b total time to reach the exit z.
Note that in this case, the optimal time is Z = 3/2 · js.

Next, we consider the second and remaining case of jy < b + js or y not
lying on a0. To still reach y at time 5/2 · js, R2 could have moved at most to a
p with ps ≤ 5/4 · js + b/2. We now place the exit z a distance of ε “behind” one
of the three points of distance 5/4 · js + b/2 to the start s which will be reached
last. Note that, as shown before, the earliest time when both of these points on
a1, a2 can be reached is at time 5/2 · js + b/2 + ε, and the earliest time when

Wireless Evacuation on m Rays with k Searchers 145

j s
js

1/2 · js

1/2
· js

y p
b

Fig. 2. The robots R1, R2, R3 start on s and have to find the unknown exit z. Point p
depicts the farthest any robot has been away from the junction on the starting ray a0

until time 5/2·js, and y where a robot visiting p is at time 5/2·js. Depending on if y is at
least js+b away from the junction j or not, we give two different arguments in the proof
of Theorem 1, resulting in a (normalized to js) value of b of −1 +

√
21/2 ≈ 1.29129 and

a lower bound of 2 +
√

7/3 ≈ 3.52753.

the respective point on a0 can be reached (assuming both points on a1, a2 were
reached) is not before time 5/2 · js+5/4 · js+ b/2+ ε− b. As thus, for all robots
to evacuate to the exit, a time of at least 5/2 · js + (5/4 · js + b/2 + ε − 3/2) +
5/4 · js + b/2 + ε + 5/4 · js + b/2 + ε = 19/4 · js + 3/2 · b + 3 · ε is needed, with
the optimal solution taking time Z = 5/4 · js + b/2 + ε.

To optimize the lower bound in respect to b, we solve 19/4·js+3/2·b+3·ε
5/4·js+b/2+ε

=
4·js+b

3/2·js
for b. By normalizing js to unit value and restricting b > 0, solving the

above equation gives us the parameter b = −1− ε+1/2 ·√21 + 12ε + 4ε2, which
is approximately 1.29129 for ε → 0 for our proof, as the functions defined by the
terms on the individual sides of the equation are monotonically decreasing and
increasing, respectively.

Observe that −1−ε+1/2 ·√21 + 12ε + 4ε2 is monotonically decreasing when
considered as a function of ε, i.e., for all values of ε > 0, we obtain the supremum
at −1 +

√
21/2 ≈ 1.29129.

Therefore, we achieve a lower bound of 4−1+
√
21/2

3/2 = 2 +
√

7/3 ≈ 3.52753.�
We note that the construction from the above proof can be extended to

k = m > 3 robots and rays, as at time t = js, at most �m/2	 robots can be
guaranteed to be at the junction j.

Corollary 2. For every k = m ≥ 3 holds: No online algorithm can achieve a
better competitive ratio than 2 +

√
7/3 ≈ 3.52753 for evacuating k = m robots

on m rays.

We now give an algorithm with a nearly matching competitive ratio for 3 robots:

Theorem 3. There exists an online algorithm evacuating 3 robots on 3 rays
with a competitive ratio of 2 +

√
3 ≈ 3.73205.

146 S. Brandt et al.

Proof. We know from Observation 1 that there is an algorithm with a competitive
ratio of 3 when starting on the junction j, so suppose that j
= s. We prove The-
orem 3 by giving a whole class of algorithms, all reaching the desired competitive
ratio. To describe these strategies, we develop a parametrized approach by com-
posing an algorithm that moves the robots according to certain parameters and
then optimizing the competitive ratio over the parameter space. More specifically,
the algorithm depends on two parameters α and β which are constrained by the
inequalities 0 ≤ β ≤ α ≤ 1

2 and 2α ≤ β+ 1
2 and moves the three robots R0, R1, R2

as described in the following. We note that if one robot finds the exit, all the other
robots abandon their strategy and take the shortest path to the exit z.

Figure 3 serves as a visual aid to understand the parameters and the respec-
tive strategies. We send R0 in one direction, R1 in the other, and R2 waits until
the junction j (or the exit) is found. W.l.o.g. suppose R0 reaches the junction j
after js time passed, i.e., R1 is at distance js to s on the other side of ray a0,
and R2 is still on the start s. Then, R0 moves for α · js time into one of the two
branching rays a1, a2, returns back to the junction j, and moves into the other
ray of a1, a2. Meanwhile, at time js, R1 starts to move deeper into the ray a0

away from the junction j by β · js before turning around and walking backwards
until it reaches the same distance to the junction j as r3, which starts moving
towards the junction at time js and then moves into the ray R0 explored first
(and left by the time R2 arrives at the junction). The three robots continue to
move straight to a distance of js + β · js to s on their respective ray, and those
that arrive early wait for the others. Then, they all move uniformly outwards at
equal distance to the start s.

We will now start analyzing the competitive ratio of the above algorithm:
Until the junction is found, any exit found will lead to a competitive ratio of 3.
Observe that until all three robots move outwards from the start s on the three
rays, the following three points, with additional ε distance to s, are worst case
points regarding the competitive ratio of the algorithm (cf. Fig. 3), i.e., the time
when a robot visits them for the first time will determine the competitive ratio:
p2, the point where R0 turns around to go back to the junction, p1, the point
where R1 turns around to go back to the start, and p0, the junction itself. After
that, the competitive ratio of any exit placement can only be lower, as now any
remaining distance of x to the exit will be covered in x time by one robot.

For ease of readability, we are going to omit the additional εs in the following
calculations, as we are later going to consider the supremum of the competitive
ratio anyway.

The three points will be reached at the following times: p0 at time js+2 ·αjs
by R0, p1 at time 2 · js + βjs by R1, and p2 at time 2 · js + αjs. If all other
robots divert directly to the exit z when it is found, they will reach the exit with
the following additional time: p0 with time 2 · js − 2 · αjs + 2 · βjs, p1 with time
2 · js + 2 · βjs, and p2 with time 2 · js + 2 · αjs.

Hence, the competitive ratio induced by the three points is adding both times
above, divided by the distance of the exit to the start, i.e., 3+2 ·β for p0, 3+ 1

1+β

for p1, and 3+ 1
1+α for p2. Note that 3+ 1

1+α ≤ 3+ 1
1+β due to initially choosing

β ≤ α.

Wireless Evacuation on m Rays with k Searchers 147

sjs js βjs

p0 p1

p2

R2

R1R0

αjs

Fig. 3. A depiction of the parameters α and β on the 3-ray and the strategies of the 3
robots (waiting is not indicated). The three worst case points p0, p1, p2 are also marked.

As 3+2 ·β is strictly monotonically increasing and 3+ 1
1+β strictly monotoni-

cally decreasing, the desired solution can be obtained by equalizing both terms in
the parameter range, with β =

√
3−1
2 . As α can be chosen freely in the parameter

space, we have generated a whole class of algorithms with identical competitive
ratio of minβ max

(
3 + 2 · β, 3 + 1

1+β

)
= 2 +

√
3. �

4 1 < K < m Robots on m Rays

In this section, we continue our study of collaborative robot evacuation by con-
sidering the case of 1 < k < m robots on m rays. Since in this case the number
of robots is not sufficient anymore to assign a ray to each robot, a more intricate
scheme than before is required in order to achieve a good competitive ratio. In
the literature, similar problems have been tackled by using geometric search. We
show that this general idea can also be applied in our setting and present an
upper bound for the competitive ratio where the factor that governs the expo-
nential growth is chosen in a way that minimizes the bound. We complement this
result with a lower bound for all wireless evacuation algorithms where k < m.

4.1 An Upper Bound on the Competitive Ratio

We start by developing GeomSearch(α, β), an algorithm for evacuating k robots
from m rays where the robots start in the junction j. The algorithm depends on
two parameters α and β which we will determine later. It proceeds as follows:

Each robot explores the m rays in so-called exploration steps where each
exploration step consists of exploring some ray up to some depth and then
returning to the junction. More specifically, robot Ri starts by exploring ray

148 S. Brandt et al.

ai up to depth αβi upon which it returns to the junction. Then it explores
ray ai+k (mod m) up to depth αβi+k, returns to the junction, explores ray
ai+2k (mod m) up to depth αβi+2k, and so on. In other words, robot Ri performs
its qth exploration step on ray ai+(q−1)k (mod m) with a depth of αβi+(q−1)k.
Note that in each exploration step of robot Ri the explored depth increases by a
factor of βk and that it always chooses the ray to be explored next by increasing
the ray index by k (modulo m). If a robot finds the exit z it immediately informs
all other robots, upon which each robot immediately aborts its exploration and
heads straight for z.

From the definition of the exploration steps it follows that for any two robots
Rh and Ri with h < i and any positive integer q, the qth exploration step of Ri

takes strictly more time than the qth exploration step of Rh and the (q + 1)th
exploration step of Rh takes strictly more time than the qth exploration step of
Ri. Thus, we obtain the following observation which sheds light on the order in
which the robots take their exploration steps.

Observation 4. Let h, i and q be integers satisfying 0 ≤ h < i ≤ k − 1 and
q ≥ 1. Then robot Rh finishes its qth exploration step before Ri finishes its qth
exploration step, and Ri finishes its qth exploration step before Rh finishes its
(q + 1)th exploration step.

In order to prove an upper bound on the competitive ratio of Algorithm
GeomSearch(α, β) for suitably chosen α and β, we need a technical lemma,
given in the following.

Lemma 4. Let β =
(
1 + k

m−1

)1/k

. Then 1 + 2
βm+k−1

βk − 1
≥ 3 + 2

βm

βk − 1
.

Proof. For a contradiction, assume that the statement is false. We obtain the
following series of implications:

3 + 2
βm

βk − 1
> 1 + 2

βm+k−1

βk − 1
=⇒ βk − 1 > βm(βk−1 − 1)

=⇒ k

m − 1
>

(
1 +

k

m − 1

)m/k
((

1 +
k

m − 1

)(k−1)/k

− 1

)

=⇒ k

m − 1
>

(
1 +

m

m − 1

)((
1 +

k

m − 1

)(k−1)/k

− 1

)

=⇒ 2m + k − 1
2m − 1

>

(
m + k − 1

m − 1

)(k−1)/k

=⇒ 2m − 1
2m + k − 1

<

(
m − 1

m + k − 1

)(k−1)/k

=
(

1 +
−k

m + k − 1

)(k−1)/k

Wireless Evacuation on m Rays with k Searchers 149

=⇒ 2m − 1
2m + k − 1

< 1 +
−(k − 1)
m + k − 1

=
m

m + k − 1
=⇒ mk + 1 < 2m + k

For the third and sixth implication we used the generalized version of
Bernoulli’s inequality which says that for any two real numbers b > −1 and
c ≥ 0 it holds that (1 + b)c ≥ 1 + bc if c ≥ 1, and (1 + b)c ≤ 1 + bc if 0 ≤ c ≤ 1.
Since m > k ≥ 2, the obtained statement implies k = 2. Going back to the result
after the fourth implication and plugging in k = 2, we obtain the following new
implications:

2m + 1
2m − 1

>

(
m + 1
m − 1

)1/2

=⇒ (2m+1)2(m−1) > (2m−1)2(m+1) =⇒ −1 > 1.

We obtain a contradication, which proves the lemma statement. �
Now we can finally prove the desired upper bound.

Theorem 5. Let β =
(
1 + k

m−1

)1/k

and let α be chosen such that αβm−1 < 1.
Then the competitive ratio of Algorithm GeomSearch(α, β) is at most

1 + 2 · m − 1
k

·
(

1 +
k

m − 1

)1+m−1
k

.

Proof. Let Rh be the robot that finds the exit and assume that Rh finds the exit
in its qth exploration step. It follows from the design of our algorithm that the
exit lies on ray ah+(q−1)k (mod m). Note that since αβm−1 < 1 and the exit has
a distance of at least 1 from the junction, we have that q ≥ 2. Let t0 denote the
point in time at which Rh reaches the point on ah+(q−1)k (mod m) with largest
depth that has been explored before by some robot. Let Δt denote the time Rh

travels on ah+(q−1)k (mod m) between t0 and finding the exit, i.e., Rh finds the
exit at time t0 + Δt. Furthermore, for each Ri with i
= h, let Ei denote the
exploration step Ri is performing at the time when Rh starts its qth exploration
step, and let t1(i) denote the point in time at which Ri finishes exploration step
Ei. We note that at time t0, the distance between Rh and the junction is the
depth of the previous exploration step of a robot on ray ah+(q−1)k (mod m) which
is αβh+(q−1)k−m, by the definition of the exploration steps.2 Now, we consider
two cases for each robot Ri:

First, consider the case that t0 ≥ t1(i). Then, at time t0, Ri has finished
exploration step Ei and has started with its next exploration step. This implies
that the distance between Ri and the junction at time t0 is smaller than the
distance between Rh and the junction at time t0, i.e., smaller than αβh+(q−1)k−m.
Thus, at time t0 + Δt, the distance between Ri and the junction is smaller than
αβh+(q−1)k−m +Δt. We conclude that it takes Ri at most 2(αβh+(q−1)k−m +Δt)
2 Here we implicitly use that αβm−1 < 1 which ensures that the ray on which Rh

finds the exit, has been previously explored by some robot.

150 S. Brandt et al.

time to reach the exit after the exit has been found at time t0 + Δt. Since Rh

finishes its first q − 1 exploration steps in time

x=q−2∑

x=0

2αβh+xk = 2αβh

x=q−2∑

x=0

(
βk

)x
= 2αβh β(q−1)k − 1

βk − 1

and it takes Rh another αβh+(q−1)k−m + Δt time to find the exit, we hence
obtain an upper bound of

2αβh β(q−1)k − 1
βk − 1

+ 3(αβh+(q−1)k−m + Δt)

for the time it takes Ri to reach the exit.
In order to obtain an upper bound for the competitive ratio (for our first

case), we divide by the length Z of the shortest path from s to z. Note that Δt
appears with a factor of 3 in the numerator whereas it appears with a factor
of 1 in the denominator. Since the competitive ratio we obtain is larger than 3,
making Δt larger decreases the competitive ratio (towards 3). Hence, by setting
Δt = 0, we obtain an upper bound of

2αβh β(q−1)k−1
βk−1

+ 3αβh+(q−1)k−m

αβh+(q−1)k−m
= 3 + 2

β(q−1)k − 1
(βk − 1) β(q−1)k−m

= 3 + 2
βm

βk − 1
− 2

(βk − 1) β(q−1)k−m

for the competitive ratio, which implies an upper bound of 3 + 2βm/(βk − 1).
Note that the last simplification does not increase the upper bound more than
necessary: The term 2/((βk − 1)β(q−1)k−m) can be made arbitrarily small by
increasing q, i.e., by choosing the exit location accordingly.

Now consider the second case, namely, that t0 < t1(i). Then, Ri is still
performing exploration step Ei at time t0. It follows that at the time the exit is
found, Ri is still performing Ei or Ri has distance at most Δt from the junction.
Thus, we can bound (from above) the total time it takes Ri to reach the exit by
the sum of (1) the time it takes Ri to perform its exploration steps up to and
including Ei, (2) two times Δt, which bounds the time between reaching the
junction after Ei and reaching the junction possibly again after being told the
location of the exit and (3) αβh+(q−1)k−m +Δt, the time it takes Ri to reach the
exit from the junction. The first of the three summands in turn can be bounded
by the time it takes Rh−1 (mod m) to perform its exploration steps up to and
including Eh−1 (mod m), by the definition of Ei and Observation 4.3 Hence, we
obtain an upper bound of

3 For the following calculation of the upper bound, we assume for simplicity that if
h = 0, then Rh−1 (mod m) performs a 0th exploration step of length αβ−1 before its
1st exploration step. Since this can only increase the upper bound, the given bound
also holds if h = 0.

Wireless Evacuation on m Rays with k Searchers 151

x=q−1∑

x=0

2αβh−1+xk + 2Δt + αβh+(q−1)k−m + Δt

= 2αβh−1 βqk − 1
βk − 1

+ αβh+(q−1)k−m + 3Δt

for the time it takes Ri to reach the exit. By an argumentation analogous to the
one in the previous case, we obtain an upper bound of 1+2βm+k−1/(βk −1) for
the competitive ratio. By Lemma 4, this upper bound is larger than the upper
bound for the competitive ratio obtained in the first case. Now replacing β by
(1 + k/(m − 1))1/k yields the lemma statement. �

We note that the choice of β in Theorem 5 is not arbitrary: The given β
precisely minimizes the obtained upper bound of 1+2(βm+k−1)/(βk − 1) as can
be shown by taking the derivative.

Interestingly, for k = 1, our upper bound coincides with the competitive ratio
of 1+2mm/(m−1)m−1 from the optimal search strategy for a single robot, given
in [4,21].

We now extend GeomSearch(α, β) to the setting where the robots are not
required to start in the junction. As we will prove, even if the robots do not
know the number of rays when they start, they can still achieve a competitive
ratio of at most

1 + 2 · m − 1
k

·
(

1 +
k

m − 1

)1+m−1
k

. (1)

Before describing the extension of GeomSearch(α, β), we present a lemma
claiming that at a certain point in time during Algorithm GeomSearch(α, β),
the distribution of the robots satisfies certain properties that will be of great use
later on.

Lemma 6. Let x be some positive real number. Consider GeomSearch(α, β) for

β =
(

1 +
k

m − 1

)1/k

and α =
x

(
1 + k

m−1

)2 .

Let t0 denote the time at which R0 is at the tip (i.e., exactly in the middle) of
its third exploration step. Then, at time t0, each robot has a distance of at most
x from the junction and no robot Ri with i ≥ 1 is on the same ray as R0, except
possibly in the junction.

Proof. By the definition of the exploration steps,

t0 = 2αβ0 + 2αβk + αβ2k >
2x

(
1 + k

m−1

) + x ≥ 2x.

Moreover, at time t0, robot R0 is exactly in distance x from the junction. By
Observation 4, this implies that the distance of Ri from the junction is at most

152 S. Brandt et al.

x, for any 1 ≤ i ≤ k − 1. The fact that at time t0, R0 is the only robot on the
ray it currently occupies, follows directly from the definition of the exploration
steps in conjunction with Observation 4. �

We call the distribution of the robots at time t0 in Lemma 6 the third dis-
tribution. The general idea of our extended algorithm is that the robots sim-
ulate Algorithm GeomSearch(α, β) where they consider s as the junction and
the path between s and j as m − 1 separate paths (that just happen to be
glued together). In order to be able to compute the appropriate β in Algorithm
GeomSearch(α, β), they first have to determine the number of rays, which they
do by exploring the ray they are on in both directions until they find the junc-
tion. At the point in time when the junction is found, the robots have already
“wasted” some time; therefore they do not return to the junction and only then
start the simulation of GeomSearch(α, β), but instead jump into a hypotheti-
cal execution of GeomSearch(α, β), i.e., they move to a configuration of points
that will be reached by GeomSearch(α, β) (for some suitably chosen α) at some
point in time. From there, they simply follow GeomSearch(α, β). For a formally
correct description of the extended version of GeomSearch(α, β) we need some
notation:

Let a0 be the ray on which s is located and a1, . . . , am−1 the remaining m−1
rays. We denote the path obtained by deleting sj from a0 by a′

0 and the paths
obtained by appending a1, . . . , am−1 to js by a′

1, . . . , a
′
m−1, respectively. We may

now consider s as the junction of the m rays a′
0, . . . , a

′
m−1. Therefore, provided

we know m, any m-ray algorithm where the robots start in the junction can be
simulated on our given input where s plays the role of the junction. In particular,
the achieved competitive ratio of the simulation on our input is the same as the
competitive ratio of the simulated m-ray algorithm. In the following, we describe
the extension of GeomSearch(α, β) more formally:

Robots R0 and R1 start by exploring the ray they are located on in opposite
directions until one of the two finds the exit or the junction (while everyone else
simply stays in s). If the exit is found before or at the same time as the junction,
then all robots immediately travel to the exit, which yields a competitive ratio
of 3 (which is clearly smaller than the term given in (1), for any 2 ≤ k < m).
Thus, in the following, assume that the junction is found before the exit. W.l.o.g.
assume that R1 finds the junction (which happens at time sj). From here, the
robots move as quickly as possible to a configuration of points that corresponds
to the third distribution4 in the (hypothetical) execution of GeomSearch(α, β)
on the m rays a′

0, . . . , a
′
m−1 where

β =
(

1 +
k

m − 1

)1/k

and α =
sj

(
1 + k

m−1

)2 .

4 Here, a detail has to be mentioned: By changing the mapping of the m labels
a′
0, . . . , a

′
m−1 to the m actual rays, we can change which robot is on which ray.

We assume that the labels are changed in a way that ensures that R0 is actually on
ray a0 in the third distribution.

Wireless Evacuation on m Rays with k Searchers 153

By Lemma 6 moving to this configuration from the situation where the junction
has just been found takes at most time sj, i.e. the robots reach this config-
uration in a total time of at most 2sj. By the proof of Lemma6 the (hypo-
thetical) execution of GeomSearch(α, β) needs at least time 2sj to reach the
third distribution, i.e., this configuration. Thus, the robots can just wait in the
reached configuration until time 2sj (if they should have reached their respective
points early) and then simulate the execution of GeomSearch(α, β) mentioned
above, thereby reaching any point at least as fast as the (original) execution of
GeomSearch(α, β) and hence achieving a smaller or equal competitive ratio as
the one in Theorem 5.

Here two remarks are in order: First, since we assume that the junction is
closer to s than the exit is to s, the exit can only be found after the robots moved
to the third distribution. Hence, it is indeed enough to consider only the exits
found (and therefore the competitive ratios achieved) during the simulation of
GeomSearch(α, β). Second, so far, for the sake of the exposition, we ignored the
detail that Theorem 5 actually requires αβm−1 < 1. This can easily be remedied
by dividing the current α repeatedly by βk until αβm−1 < 1 holds. Note that
Lemma 6 then still holds with an analogous argumentation. Essentially, the only
resulting change in the above considerations is that it takes GeomSearch(α, β)
even longer to get to the configuration of points with which the above simulation
starts.

By our above considerations, we obtain the following theorem:

Theorem 7. There is an extension of Algorithm GeomSearch(α, β) for the case
where the robots are not required to start in the junction that achieves a compet-
itive ratio of at most

1 + 2 · m − 1
k

·
(

1 +
k

m − 1

)1+m−1
k

.

4.2 A Lower Bound on the Competitive Ratio

In this section, we use a simple but fundamental technique to bound the com-
petitive ratio for the general case of k robots on m > k rays from below.

Theorem 8. There is no wireless evacuation algorithm for k robots on m > k
rays that achieves a competitive ratio of less than 3 + 2�(m − 1)/k	.
Proof. Set x = �(m − 1)/k	. Consider any wireless evacuation algorithm A for
k robots on m > k rays. We assume that all robots start in the junction (which
we may choose to be the case as we are going to prove a lower bound). Since A
solves the problem of wireless evacuation, there must be a point in time where all
rays have been explored up to some depth that is strictly larger than 1, provided
that the exit has not been found so far. Consider the last point in time where
at least one ray has not been explored up to some depth > 1, and denote the
point in time one time unit earlier by t0. It follows that at time t0 there must

154 S. Brandt et al.

be some robot Ri at the junction or on a ray which at time t0 + 1 has not been
explored up to some depth > 1.

Let ε > 0. Let P be the set of points in distance t0/(2x)+ε from the junction
and observe that t0/(2x) ≥ 1 since t0 ≥ 2�(m − 1)/k	. We claim that at time
t0 + t0/(2x), robot Ri has explored at most x − 1 points in P : Since Ri starts
in the junction and, at time t0, is again in the junction or on a ray where the
corresponding point from P will not be explored up to and including time t0+1,
it must travel a total distance of at least 2y(t0/(2x) + ε) in order to explore y
points from P up to time t0. Thus, we obtain 2y(t0/(2x)+ ε) ≤ t0 which implies
y < x and thereby proves the claim. Note that robot Ri cannot explore a point
from P between t0 and t0 + t0/(2x) because of its location at time t0.

Moreover, we claim that at time t0 + t0/(2x), any robot Rh with h
= i has
explored at most x points in P : Similarly to above, in order to explore y points
from P starting in the junction, robot Rh has to travel a distance of at least
(2y−1)(t0/(2x)+ε). We obtain (2y−1)(t0/(2x)+ε) ≤ t0+t0/(2x) which implies
y < x + 1 and thereby proves the claim. Hence, at time t0 + t0/(2x), at most
kx − 1 ≤ m − 2 points from P have been explored in total. Thus, there exist
two points p1, p2 ∈ P that have not been explored at time t0 + t0/(2x). Let t1
and t2 be the points in time when p1 and p2 are explored (for the first time),
respectively. W.l.o.g. assume that t1 ≤ t2.

Now consider the input instance where the exit is at point p2. Since some
robot is at p1 at time t1 ≥ t0 + t0/(2x), this robot cannot be at p2 before time
t1 + 2(t0/(2x) + ε), by the definition of P . We obtain a lower bound of

t0 + t0
2x + 2(t0

2x + ε)
t0
2x + ε

= 2 +
2x + 1
1 + 2εx

t0

for the competitive ratio. By making ε arbitrarily small our lower bound
gets arbitrarily close to 3 + 2x = 3 + 2�(m − 1)/k	 which proves the theorem
statement. �

5 Concluding Remarks

We studied the problem of collaboratively evacuating k robots on m concurrent
rays, using wireless communication. To the best of our knowledge, our work
is the first that considers not starting on the junction j of the m rays, and
also to consider k < m robots for the specific problem of wireless collaborative
evacuation on m rays.

For the case of k = m robots, a simple waiting strategy gives a competitive
ratio of 4, with a constructive lower bound of 2 +

√
7/3 ≈ 3.52753 for every

k = m ≥ 3. For the specific case of k = m = 3, we develop a parametrized class
of algorithms with a nearly matching competitive ratio of 2 +

√
3 ≈ 3.73205,

where the parameter choice decides on the first search depth beyond the junction
j, once the junction is found.

Wireless Evacuation on m Rays with k Searchers 155

Unlike prior work, not starting on the junction j allows to consider the sce-
nario of the robots being initially oblivious to the number of rays. Our optimiza-
tion over the parameter space of a geometric search strategy yields an algorithm

with a competitive ratio of 1 + 2 · m−1
k ·

(
1 + k

m−1

)1+m−1
k

. For a lower bound,
we give a simple but fundamental argument, resulting in the fact that no algo-
rithm can obtain a better competitive ratio than 3 + 2 �(m − 1)/k	 for every
combination of k,m with k < m – even when starting on j.

Acknowledgments. We would like to thank the anonymous reviewers for their help-
ful comments. Klaus-Tycho Foerster is supported by the Danish VILLUM FONDEN
project ReNet.

References

1. Angelopoulos, S.: Deterministic searching on the line. In: Kao, M.-Y. (ed.) Ency-
clopedia of Algorithms, pp. 531–533. Springer, New York (2016). https://doi.org/
10.1007/978-3-642-27848-8 106-2

2. Angelopoulos, S., Arsénio, D., Dürr, C., López-Ortiz, A.: Multi-processor search
and scheduling problems with setup cost. Theory Comput. Syst. 60, 1–34 (2016)

3. Angelopoulos, S., López-Ortiz, A., Panagiotou, K.: Multi-target ray searching prob-
lems. Theor. Comput. Sci. 540, 2–12 (2014)

4. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inf.
Comput. 106(2), 234–252 (1993)

5. Baeza-Yates, R.A., Schott, R.: Parallel searching in the plane. Comput. Geom. 5,
143–154 (1995)

6. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)
7. Beck, A., Newman, D.J.: Yet more on the linear search problem. Israel J. Math.

8(4), 419–429 (1970)
8. Bellman, R.: An optimal search. SIAM Rev. 5(3), 274 (1963)
9. Bose, P., De Carufel, J.-L.: A general framework for searching on a line. In:

Kaykobad, M., Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 143–
153. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30139-6 12

10. Bose, P., De Carufel, J.-L., Durocher, S.: Searching on a line: a complete charac-
terization of the optimal solution. Theoret. Comput. Sci. 569, 24–42 (2015)

11. Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration with-
out communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis,
A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57586-5 10

12. Chrobak, M., G ↪asieniec, L., Gorry, T., Martin, R.: Group search on the line. In:
Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer,
R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46078-8 14

13. Czyzowicz, J., Dobrev, S., Georgiou, K., Kranakis, E., MacQuarrie, F.: Evacuat-
ing two robots from multiple unknown exits in a circle. In: Proceedings of 17th
International Conference on Distributed Computing and Networking, Singapore,
4–7 January 2016, pp. 28:1–28:8. ACM (2016)

https://doi.org/10.1007/978-3-642-27848-8_106-2
https://doi.org/10.1007/978-3-642-27848-8_106-2
https://doi.org/10.1007/978-3-319-30139-6_12
https://doi.org/10.1007/978-3-319-57586-5_10
https://doi.org/10.1007/978-3-662-46078-8_14

156 S. Brandt et al.

14. Czyzowicz, J., G ↪asieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.:
Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014.
LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45174-8 9

15. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J.,
Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communica-
tion (extended abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015.
LNCS, vol. 9079, pp. 140–152. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18173-8 10

16. Czyzowicz, J., Godon, M., Kranakis, E., Godon, M., Krizanc, D., Rytter, W.,
Wlodarczyk, M.: Evacuation from a disc in the presence of a faulty robot. In:
Proceedings of SIROCCO (2017)

17. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a
line with faulty robots. In: Giakkoupis, G. (ed.) Proceedings of 2016 ACM Sym-
posium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA,
25–28 July 2016, pp. 405–414. ACM (2016)

18. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.:
Wireless autonomous robot evacuation from equilateral triangles and squares. In:
Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp.
181–194. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6 13

19. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theor. Com-
put. Sci. 361(2–3), 342–355 (2006)

20. Foerster, K.-T., Wattenhofer, R.: Lower and upper competitive bounds for online
directed graph exploration. Theor. Comput. Sci. 655, 15–29 (2016)

21. Gal, S.: Minimax solutions for linear search problems. SIAM J. Appl. Math. 27(1),
17–30 (1974)

22. Hammar, M., Nilsson, B.J., Schuierer, S.: Parallel searching on m rays. In: Meinel,
C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 132–142. Springer, Heidel-
berg (1999). https://doi.org/10.1007/3-540-49116-3 12

23. Hammar, M., Nilsson, B.J., Schuierer, S.: Parallel searching on m rays. Comput.
Geom. 18(3), 125–139 (2001)

24. Jaillet, P., Stafford, M.: Online searching. Oper. Res. 49(4), 501–515 (2001)
25. Kamphans, T., Langetepe, E.: Optimal competitive online ray search with an error-

prone robot. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 593–596.
Springer, Heidelberg (2005). https://doi.org/10.1007/11427186 51

26. Kao, M.-Y., Ma, Y., Sipser, M., Yin, Y.L.: Optimal constructions of hybrid algo-
rithms. J. Algorithms 29(1), 142–164 (1998)

27. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an opti-
mal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79
(1996)

28. Komm, D., Královič, R., Královič, R., Smula, J.: Treasure hunt with advice.
In: Scheideler, C. (ed.) Structural Information and Communication Complexity.
LNCS, vol. 9439, pp. 328–341. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-25258-2 23

29. López-Ortiz, A., Schuierer, S.: The ultimate strategy to search on m rays? Theoret.
Comput. Sci. 261(2), 267–295 (2001)

30. López-Ortiz, A., Schuierer, S.: On-line parallel heuristics, processor scheduling and
robot searching under the competitive framework. Theoret. Comput. Sci. 310(1–
3), 527–537 (2004)

https://doi.org/10.1007/978-3-662-45174-8_9
https://doi.org/10.1007/978-3-662-45174-8_9
https://doi.org/10.1007/978-3-319-18173-8_10
https://doi.org/10.1007/978-3-319-18173-8_10
https://doi.org/10.1007/978-3-319-19662-6_13
https://doi.org/10.1007/3-540-49116-3_12
https://doi.org/10.1007/11427186_51
https://doi.org/10.1007/978-3-319-25258-2_23
https://doi.org/10.1007/978-3-319-25258-2_23

Wireless Evacuation on m Rays with k Searchers 157

31. Schuierer, S.: A lower bound for randomized searching on m rays. In: Klein, R., Six,
H.-W., Wegner, L. (eds.) Computer Science in Perspective. LNCS, vol. 2598, pp.
264–277. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36477-3 20

32. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985)

33. Tate, S.R.: Randomized searching on rays or the line. In: Kao, M.-Y. (ed.) Ency-
clopedia of Algorithms, pp. 1757–1759. Springer, New York (2016). https://doi.
org/10.1007/978-0-387-30162-4 328

https://doi.org/10.1007/3-540-36477-3_20
https://doi.org/10.1007/978-0-387-30162-4_328
https://doi.org/10.1007/978-0-387-30162-4_328

Evacuation from a Disc in the Presence
of a Faulty Robot

Jurek Czyzowicz1, Konstantinos Georgiou2, Maxime Godon1,
Evangelos Kranakis3(B), Danny Krizanc4, Wojciech Rytter5,

and Micha�l W�lodarczyk5

1 Departement d’Informatique, Université du Québec en Outaouais,
Gatineau, Canada

2 Department of Mathematics, Ryerson University, Toronto, ON, Canada
3 School of Computer Science, Carleton University, Ottawa, ON, Canada

kranakis@cs.carleton.ca
4 Department of Mathematics, Wesleyan University, Middletown, CT, USA

5 Institute of Informatics, University of Warsaw, Warsaw, Poland

Abstract. We consider the evacuation problem on a circle for three
robots, at most one of which is faulty. The three robots starting from
the center of a unit circle search for an exit placed at an unknown location
on the perimeter (of the circle). During the search, robots can commu-
nicate wirelessly at any distance. The goal is to minimize the time that
the latest non-faulty robot reaches the exit.

Our main contributions are two intuitive evacuation protocols for the
non-faulty robots to reach the exit in two well-studied fault-models,
Crash and Byzantine. Moreover, we complement our positive results by
lower bounds in both models. A summary of our results reads as follows:

– Case of Crash Faults:
Lower Bound ≈5.188; Upper Bound ≈6.309,

– Case of Byzantine Faults:
Lower Bound ≈5.948; Upper Bound ≈6.921,

For comparison, it is known (see [11]) that in the case of three non-faulty
robots with wireless communication we have a lower bound of 4.159, and
an upper bound of 4.219 for evacuation, while for two non-faulty robots
1 + 2π/3 +

√
3 ≈ 4.779 is a tight upper and lower bound for evacuation.

Keywords: Algorithm · Byzantine faulty · Crash faulty · Evacuation
Robot · Search

J. Czyzowicz, K. Georgiou, and E. Kranakis—Research supported in part by NSERC
Discovery grant.
J. Czyzowicz and W. Rytter—Supported in part by grant NCN2014/13/B/ST6/
00770 of the Polish Science Centre.
M. W�lodarczyk—Supported in part by the National Science Centre of Poland Grant
UMO-2016/21/N/ST6/00968.

c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 158–173, 2017.
https://doi.org/10.1007/978-3-319-72050-0_10

Evacuation from a Disc in the Presence of a Faulty Robot 159

1 Introduction

Searching an environment to find an exit (or target) placed at an unknown
location has been studied extensively in computer science and robotics. The
searchers are autonomous robots which (may) cooperate during their search
by exchanging messages so that at least one of them can find the target in
minimum possible time. Another form of search recently introduced in [11] is
called evacuation and it has the additional requirement that all the robots must
go to the exit. Thus, optimality in evacuation is measured by the time it takes
for the last robot to reach the exit, whereas in traditional search, optimality is
measured by the time it takes the first robot to reach the exit.

In this paper we consider an evacuation problem for three robots which are
able to communicate wirelessly. Initially, the robots are located at the center of
a disc of radius one and must find an exit located on the circumference of the
disc and then gather at the location of the exit. We consider two scenarios in
which exactly one robot is faulty. In the first scenario, one robot can experience
crash faults, which prevents it from either communicating or locating the exit.
In the second scenario, one robot can experience Byzantine faults, which allow
it to lie, e.g., to claim to have found an exit–where there is none–or even to fail
to report (communicate) the location of the exit to the other robots. Note that
the evacuation problem is considered to be solved when both non-faulty robots
find the exit. For both scenarios, we provide upper and lower bounds.

1.1 Preliminaries/The Model

There are three robots initially located at the center of a unit disc. The robots
can move with maximum speed 1 (thus, they may stop or change direction at no
cost), and are required to find an exit (whose location is unknown to the robots)
located somewhere on the circumference of the disc and then gather at this
location as fast as possible. On the perimeter of the disc the robots have a sense of
direction and can distinguish between clockwise and counterclockwise direction
of movement. A robot can find the exit only when it is in the same location as
the exit. During their search the robots employ a wireless communication model,
which means that they can exchange information instantaneously and at no cost
and at any time, no matter the distance that separates them during their search.

The search problem to be studied is concerned with all non-faulty robots
evacuating from the (unknown) exit. The search task is complicated by the fact
that one of the three robots, chosen by an adversary, experiences faults, chosen
by the adversary as well. We consider two scenarios. In the first scenario, the
faulty robot experiences crash faults while in the second the robot experiences
Byzantine faults. In both cases, the goal is to minimize the time till the last
non-faulty robot reaches the exit.

– Crash-Evacuation: A crash fault can be thought of as a passive fault rend-
ing: a robot is either unable or incapable to either detect or report the exit
when it reaches it. Thus, such a robot is not expected to find the exit, only

160 J. Czyzowicz et al.

non-faulty robots can. However, we assume that in other aspects, a faulty
robot moves like a non-faulty robot, and thus non-faulty robots cannot detect
which robots are faulty.

– Byzantine-Evacuation: A Byzantine faulty robot not only can fail to detect
or report the target even after reaching it, it can also make malicious claims
about having found the target when in fact it has not. Given the presence
of such a faulty robot, the search for the target can only be concluded when
the two non-faulty robots have sufficient verification that the target has been
found.

All the messages being transmitted by the robots are tagged with the robot’s
unique identifier, which cannot be altered.

1.2 Related Work

Searching an environment to find an exit placed at an unknown location is
a well studied problem in computer science and robotics. The searchers are
autonomous mobile robots that may also possess partial knowledge of their envi-
ronment. Many researchers, starting with the seminal work of Bellman [5] and
Beck [4], have studied the optimal (length) trajectory traced by a single robot
when searching for a target placed at an unknown location on a line. The aim
of the algorithmic designer is to minimize the competitive ratio, that is, the
supremum, over all possible target locations, of the ratio between the distance
traveled by the robot until it finds the exit, and the distance of the exit from
the robot’s starting position. For the case of a single robot on a line, the optimal
trajectory uses a zig-zag, doubling strategy according to which if the robot fails
to find the exit after travelling a certain distance in a particular direction it
returns to its starting position and doubles its searching distance in the opposite
direction. This trajectory has a competitive ratio of 9 and this can be shown to
be optimal (e.g., see Baeza-Yates and Schott [3]).

Several authors considered the problem of searching in the two-dimensional
plane by one or more searchers, including [2,3]. The evacuation problem on a
unit disc for multiple robots considered in our present work is a form of two-
dimensional search that was first considered in [11]. In that paper the authors
studied evacuation algorithms in the wireless and face-to-face communication
models. New algorithms for the face-to-face communication model were subse-
quently analyzed for two robots in [14] and later in [7]. The problem has also
been considered in other domains, like triangles and squares in [16]. However,
all these papers concern evacuation only for non-faulty robots.

One of the novelties of our current work is that we consider the two-
dimensional evacuation problem with fault tolerance. There are numerous stud-
ies of fault tolerance in distributed computing, (see, e.g., [19,22,23]). Network
failures were most frequently related to static elements of the networked environ-
ment (i.e., nodes and links) as opposed to its mobile components. Malfunctions of
this kind were sometimes modelled by dynamic alteration of the network [8,21].
Distributed computation arising when having some of the mobile robots are
faulty were investigated in the context of the problems of gathering [1,17,18,24],

Evacuation from a Disc in the Presence of a Faulty Robot 161

convergence [6,9], flocking [25], and patrolling [12]. Several researchers also inves-
tigated the case of unreliable or inaccurate robot sensing devices, e.g., [10,20,24].
Related to our study is also the research in [12], where a collection of robots,
some of which are unreliable, perform efficient patrolling of a fence. Most rele-
vant to our current study for its perspective on search and fault tolerance is the
research of [13,15] which propose search algorithms for faulty robots that may
suffer from crash and Byzantine faults, respectively.

1.3 Outline and Results of the Paper

An outline of this paper can be described as follows. Section 2 is dedicated
to upper bounds. In Sects. 2.1 and 2.2 we provide evacuation protocols along
with their (worst case) analyses for the Crash-Evacuation problem and the
Byzantine-Evacuation problem, respectively. Then, in Sect. 3 we give lower
bounds for both problems. Section 4 gives a discussion of possibilities for further
research. The main results of the paper are summarized in Table 1. Notably,
since the optimal offline algorithm for both problems Crash-Evacuation and
Byzantine-Evacuation would have the robots move directly to the exit at
time 1, the time bounds of Table 1 can be also understood as bounds for the
competitive ratio of the underlying online problems.

Table 1. Comparison of Crash vs Byzantine: the first column gives the type of fault, the
middle column lower bounds, and the right column upper bounds for the corresponding
type of faults.

Problem Lower bound Upper bound

Crash-Evacuation ≈5.188 (Theorem 3) ≈6.309 (Theorem 1)

Byzantine-Evacuation ≈5.948 (Theorem 3) ≈6.921 (Theorem 2)

It is interesting to compare the results obtained in our paper to the case of
non-faulty robots. It is known (see [11]) that in the case of three non-faulty robots
with wireless communication we have a lower bound of 4.159, and an upper
bound of 4.219 for evacuation, while for two non-faulty robots 1 + 2π/3 +

√
3 ≈

4.779 is a tight upper and lower bound for evacuation.

2 Evacuation Protocols

In this section we propose evacuation algorithms for crash and Byzantine faults,
respectively.

2.1 Evacuating with Crash-Faults

The main contribution is as follows.

Theorem 1. Crash-Evacuation can be solved in time ≈6.309.

162 J. Czyzowicz et al.

We prove Theorem 1 by identifying the best among a special family of natural
algorithms that we call persistent. These are algorithms that force all robots to
immediately go to the circumference of the disc, and only allow a robot to stop
exploring its segment of the disc (either by changing direction, by becoming idle
or by leaving the circumference entirely) when it receives information about the
exit. Since in this model, a faulty robot can only stay silent, any report about
the exit has to be valid. As such, once the location of the exit is received by a
robot, the robot moves along the shortest chord toward the reported exit, and
evacuates.

We further classify persistent algorithms in two categories: the symmetric-
persistent that have all the robots begin their exploration in the same direction
(either all clockwise or all counter-clockwise), and the asymmetric-persistent that
have one robot go in a direction, and the other two robots go in the opposite
direction. It turns out that the best asymmetric-persistent algorithm outperforms
the best symmetric-persistent algorithm (and also proves Theorem1). Neverthe-
less, and as a warm-up, we begin by providing a tight analysis for the family of
symmetric-persistent algorithms.

Lemma 1. The best symmetric-persistent algorithms deploys the three robots
at equidistant points on the disk (at arc-distance 4π/3), and its performance is
1 + 4π

3 +
√

3.

Proof (Lemma 1). Consider a symmetric-persistent algorithm that deploys
robots r1, r2, r3 so that their pairwise anti-clock-wise distance is β, γ and α
respectively, as also depicted in Fig. 1 (where also arcs A,B,C are defined).
Without loss of generality, assume the robots move in clockwise direction.

r1

r2

r3

α

β

γ

A

B

C

Fig. 1. All robots move counter-clockwise. Arc A includes r3 and excludes r1; arc B
includes r1 and excludes r2; and arc C includes r2 and excludes r3.

Consider the case where r1 is faulty and the robots traverse the arcs depicted
in Fig. 1. Clearly, there are two cases to consider depending on whether the exit

Evacuation from a Disc in the Presence of a Faulty Robot 163

is located in one of the arcs A or B, or the exit is located on arc C. If the
exit is located in one of the arcs A or B, then r3 will discover it. If the exit is
located in C, then r2 will discover it. We say that the exit is either located at
a counter-clockwise arc distance of 0 ≤ x < γ from r2 if r2 discovers the exit,
or a counter-clockwise arc distance of 0 ≤ y < α + β from r3 if r3 discovers the
exit. Therefore, the total amount of time required to find the exit is given by
the formula

1 + max

{
sup

0≤x<γ

(
x + 2 sin

γ

2

)
, sup
0≤y<α+β

(
y + 2 sin

α + β

2

)}

= 1 + max {f(γ), f(α + β)} ,

where we define f(x) := x + 2 sin x
2 .

Similarly, if r2 or r3 is faulty, then the algorithm terminates in time 1 +
max {f(γ), f(β + γ)} and 1 + max {f(β), f(α + γ)} respectively. We conclude
that the best symmetric-adaptive algorithm would choose α, β, γ (partitioning
the perimeter of the circle, of length 2π) so as to minimize quantity

1 + max {f(α), f(β), f(γ), f(α + β), f(β + γ), f(α + γ), } (1)

By choosing α = β = γ = 4π
3 , expression (1) gives completion time 1 + 4π

3 +
√

3
as promised.

Finally, we argue that no values of α, β and γ respecting α, β and γ ≥ 0
and α + β + γ = 2π can improve on this bound. Say, we set α > 2π

3 . Then it is
clear that either α + β > 4π

3 or α + γ > 4π
3 , since α + β + γ = 2π. Observe that

function α+β +2 sin α+β
2 is increasing in α+β, and when α+β = 4π

3 , then (1)
is upper bounded by 1+ 4π

3 +
√

3. Observe also that function α+γ +2 sin α+γ
2 is

increasing in α + γ, and when α + γ = 4π
3 , then expression (1) is upper bounded

by 1 + 4π
3 +

√
3. We conclude that function (1) strictly increases for α > 2π

3 . A
similar argument shows that function (1) increases if either β or γ exceed 2π

3 .
This completes the proof of Lemma 1. ��

In order to proceed with the analysis of asymmetric-persistent algorithms,
we need a simple technical lemma, providing a worst case analysis for a special
configuration of healthy searching robots.

Lemma 2. Consider two robots at arc distance 2π − s that are about to explore
an arc of length s moving in opposing directions (toward each other). Assume
also that an exit is located somewhere at the arc of length s. Then, the worst
case termination time g(s) is given by the formula

g(s) =
{

2 sin(s/2) , if s < 2π/3
s/2 − π/3 +

√
3 , otherwise.

Proof (Lemma 2). By symmetry, we may assume that the exit is found after time
x by one of the robots, where 0 ≤ x ≤ s/2 (see Fig. 2). When the message is
transmitted that the exit is found, the two robots are at the endpoints of an arc

164 J. Czyzowicz et al.

Fig. 2. Exit found and reported after time x. Worst case is x = 0, if s ≤ 2π/3, and
x = s/2 − π/3 otherwise.

of length s − 2x, hence at chord distance 2 sin(s/2 − x). Hence, the time elapsed
till both robots reach the exit is x + 2 sin (s/2 − x). The claim follows by the
monotonicity of the latest function with respect to x in the interval [0, s/2]. This
completes the proof of Lemma 2. ��

We are now ready to prove Theorem 1, by determining the optimal
asymmetric-persistent algorithm.

Lemma 3. The best asymmetric-persistent algorithm has performance ≈6.309.
The algorithm achieving this bound deploys two robots to the same location on
the disc, which they explore in opposing directions. The third robot is deployed at
arc-distance β0 from any of the robots, and starts exploring in opposite direction
of the closest robot, where β0 is the unique root of 3β/2+

√
3 = 4π/3+2 sin(β/2)

in the interval [0, 2π].

Proof (Lemma 3). Consider an asymmetric-persistent algorithm that deploys
robots r1, r2, r3 as depicted in Fig. 3, where α, β > 0 (the case β = 0 can be
easily seen to induce worse termination time, while the case α = 0 is identical
to γ = 0).

There are a number of cases as to which the faulty robot is and where the
exit is located. All the cases are summarized in Table 2, where identical cases
are also grouped together.

For each case we will determine the worst case running time. Then we will
choose α, β, γ so as to minimize the maximum of all these running times.

– Case 1. After time γ, robots r2, r3 will be at arc distance γ and they will
be about to explore an arc of length α + β = 2π − γ moving in opposing
directions. Also the exit is located somewhere at the arc of length 2π − γ.

Evacuation from a Disc in the Presence of a Faulty Robot 165

Fig. 3. Robots r1 and r2 move counter-clockwise; r3 moves clockwise. A excludes the
starting position of r1 and r3; B excludes the starting position of r2, but includes the
starting position of r1; C includes the starting position of both r2 and r3.

Table 2. The columns indicate the location of the exit. The rows indicate the faulty
robot. r1’s initial search position is in B, r2 and r3’s initial search position are in C.

A B C

r1 Case 1 Case 1 Case 2

r2 Case 3 Case 4 Case 4

r3 Case 5 Case 6 Case 5

Hence, by Lemma 2, the (worst case) total termination time will be 1 + γ +
g(2π − γ) which simplifies to

e(γ) :=
{

1 + γ + 2 sin(γ/2) , if γ > 4π/3
1 + γ/2 + 2π/3 +

√
3 , otherwise.

Also, it is easy to see that e(γ) is strictly increasing, a fact we will use later on.
– Case 2. The setup is identical to that of Lemma 2 where the arc that holds

the exit has arc length s = γ. Hence, the (worst case) total termination time
will be 1 + g(γ), which is easily seen to be dominated by e(γ) of case 1, for
every 0 ≤ γ ≤ 2π.

– Case 3. This situation is similar to Case 1, where (instead of γ) robots are
at distance β + γ, and they are moving toward each other, and in an arc
segment that does not contain the exit. Hence, the worst case termination
time is equal to e(β + γ). Since e(·) is strictly increasing, this case dominates
the cost of case 1.

– Case 4. This situation is similar to Case 2, where (instead of γ) robots are
at distance β + γ and they are moving toward one another and toward the
segment that contains the exit. The maximal total required time is therefore

166 J. Czyzowicz et al.

given by the function 1 + g(β + γ), which is easily seen to be dominated by
e(β + γ) of case 3, for all 0 ≤ β + γ ≤ 2π.

– Case 5. We treat the case when r3 is faulty and the exit is either in C or
A together. It is clear that r2 will be the robot that finds the exit. Assume
that the exit is located at distance 0 ≤ x < α + γ from the initial searching
position of r2 (to ensure that the exit is located in A). Then the total required
search time is given by 1 + x + 2 sin β

2 , since the distance between r1, r2
remains invariant. Clearly, in the worst case, the total required search time
is 1 + α + γ + 2 sin β

2 .
– Case 6. This case is identical to case 5, where r1 will find the exit (instead

of r2, but still β remains their invariant distance), and where the arc that
contains the exit has length β (instead of α+γ). Hence, worst case termination
time is equal to 1 + β + 2 sin β

2 .

It follows that the best asymmetric-persistent algorithm is determined by
α, β, γ that minimize

max {e(β + γ), 1 + α + γ + 2 sin(β/2), 1 + β + 2 sin(β/2)} ,

i.e. the costs of cases 3, 5, and 6.
First we show that the promised upper bound is achievable. Indeed, we set

γ = 0, so that α + β = 2π. Now we define β0, by equating the costs of cases
3, 5, i.e. as the root of the equation e(β) = 1 + 2π − β + 2 sin(β/2). Numer-
ical calculations yield that β0 ≈ 2.96603, or in other words (by looking at
the definition of function e(β)), β0 is defined as the solution to the equation
3β/2+

√
3 = 4π/3+2 sin(β/2). We conclude that γ = 2π−β0 ≈ 3.31716 < 4π/3,

which induces worst termination time to be the same in cases 3, 5 and equal to
1 + 2π − β0 + 2 sin(β0/2) ≈ 6.30946, as promised.

Now we prove the above choices are optimal. Indeed, if β+γ > 4π/3, then the
total termination time cannot be better than the situation where cases 3, 5 induce
the same cost. Equating the resulting costs, we obtain that β + γ + 2 sin((β +
γ)/2) = α + γ + 2 sin(α/2). Using that β + γ = 2π − α, the previous equation
yields β − 2 sin(β/2) = α − 2 sin(α/2), i.e. that α = β. But then γ = 0 as well.
Since β > 4π/3, the induced cost, by case 3, is at least 1+4π/3+

√
3 ≈ 6.92084.

Finally, assume that β + γ ≤ 4π/3. For any fixed γ, the total termination
time cannot be better than the situation where cases 3, 5 induce the same cost.
Equating the resulting costs, we obtain that (β + γ)/2 + 2π/3 +

√
3 = α + γ +

2 sin(β/2). Since α = 2π−β−γ, the optimal choice for β should be βγ satisfying
3βγ/2 + γ/2 +

√
3 = 4π/3 + 2 sin(βγ/2). Note that βγ is a function of γ, hence

differentiating both sides of last equation with respect to γ, and after elementary
calculations, we obtain that β′

γ(3/2−cos(βγ/2)) = −1/2. Since βγ > 0, we obtain
that cos(βγ/2) < 1 and hence β′

γ > −1. This implies that expression βγ + γ is
strictly increasing in γ, and this linear term appear in the termination time of
case 3. Hence, choosing γ = 0 is indeed optimal. This concludes the proof of
Lemma 3. ��

Evacuation from a Disc in the Presence of a Faulty Robot 167

2.2 Evacuating in the Presence of Byzantine Faults

The main contribution is as follows.

Theorem 2. Byzantine-Evacuation can be solved in time 1 + 4π
3 +

√
3 ≈

6.92084.

Proof (Theorem 2). The analysis relies on Fig. 4. Assume that all three robots
rk, for k ∈ {1, 2, 3}, execute the main evacuation Algorithm 1.

The idea of the algorithm is for the robots to traverse the circumference of
the disk for a time of 2π/3. Depending on the calls that have been received,
the robots have information to either go to the exit or continue traversing the
circumference of the disk for another period of time 2π

3 . They can now verify
conflicting messages of the correct location of the exit based on the calls that
have been made by the other robots so far. Details are being discussed in the
sequel.

Algorithm 1. Evacuation with Byzantine Faults
1 Go to the circumference, at position 2πk

3
;

2 while rk’s location is not the same as the exit’s location do

3 for 2π
3

do

4 follow the circumference clockwise

5 if One robot claims to have found more than one exit then
6 Continue execution of algorithm as though the robot remained silent

7 if No information about exit then

8 for 2π
3

do

9 follow the circumference clockwise till exit is either found or reported.
Finish

10 if One robot claims to have found the exit then
11 Go to closest part of the segment that is claimed to contain the exit;

12 Explore entire segment. Finish.

13 if Two robots claim to have found the exit then
14 Investigate both exits. Finish.

15 Inform all robots of the location of the exit.

First note that one time unit is required to reach the circumference of the
disc. After 2π

3 additional time units, the entire disc has been explored once. The
areas explored by the robots are contiguous but not overlapping. Observe that
a Byzantine robot that claims to have found more than one exit is immediately
identified as faulty by the healthy robots. Both potential exits are ignored, and
the algorithm continues as though the robot had remained silent. If a non-faulty
robot finds the exit, it immediately informs all other robots, then stop its explo-
ration. Say without loss of generality that r1 is healthy. If r1 finds the exit during
the first 2π

3 part of the exploration, then it stops and is done with the execution
of its algorithm, in a time at most 1 + 2π

3 . If it does not find an exit during the
first 2π

3 part of the exploration, then we must consider three cases:

168 J. Czyzowicz et al.

r1

r2

r3

2π
3

2π
3

2π
3

A

B

C

Fig. 4. The initial searching position for r1, r2 and r3 in the Byzantine faults model

– No exit location reported: If no exit was found, then keep exploring the circum-
ference of the disk for time 2π

3 . Notice that this means that the exit cannot
be in B. If the exit is in C, then r1 has found the exit, and its execution is
complete in a time at most 1 + 4π

3 . If the exit is in A, then we learn that r3
is Byzantine (otherwise, it would have claimed to have found the exit during
the first 1 + 2π

3 of the execution of the algorithm), and r2 will have correctly
identified the location of the exit (Notice that r1 needs to finish exploring the
second arc C to make sure that it was r3 that lied.) Say the exit is located
at an arc distance of 0 < x < 2π

3 from r1’s current position. Then 2 sin x
2

is required for r1 to reach the exit. Since this function is monotone in x for
x ≤ π, r1 can reach the exit in a total time of at most 1 + 4π

3 +
√

3.
– One exit location reported: If one robot other than r1 claims to have found

the exit, we consider two situations: (1) the robot is healthy, in which case
the exit is indeed located on the segment where the announcement was made;
or (2) the robot is Byzantine, in which case the other two segments have been
entirely explored by healthy robots (and are therefore reliably proven to be
empty), and the exit is located on the segment where the announcement was
made. Notice that in both situations, the only possible location for the exit is
on the segment where the announcement was made. If the announcement was
made on the segment C, then r1 explores C immediately, for a total time of at
most 1 + 4π

3 . If the announcement was made on the segment A, then r1 must
first reach one end of segment A, which requires 2 sin 2π

3 =
√

3 (both ends
of the segment are equidistant from r1’s position), then explore the segment,
for a total time of at most 1 + 4π

3 +
√

3.
– Two exit locations reported: If both r2 and r3 claim to have found an exit, then

we know that one of those two claims is true. r1 will investigate both claims,
starting by the closest one. Say r2 claims to have found the exit at a distance
x from its initial searching position, and r3 claims to have found the exit at a
distance y of its initial searching position. Then r1 must travel an additional

Evacuation from a Disc in the Presence of a Faulty Robot 169

2 sin x
2 + 2 sin

2π
3 −x+y

2 to reach both exits. This function is maximised for
x = y = 2π

3 , for a total time of at most 1 + 2π
3 + 2

√
3.

Observe that both robots r2 and r3 execute the same algorithm, and the
maximal time required is therefore the same. The adversary will choose the
location of the exit and the Byzantine robot in such way as to maximise the
total time of execution of the algorithm. Therefore, since

√
3 < 2π

3 , this algorithm
solves the evacuation problem in total time 1+ 4π

3 +
√

3. This completes the proof
of Theorem 2. ��

3 Lower Bounds for Evacuation Protocols

This section is devoted to proving our main negative results.

Theorem 3. The following lower bounds are valid.

(a) Problem Crash-Evacuation requires time at least 1 + 4π/3 ≈ 5.188.
(b) Problem Byzantine-Evacuation requires time at least 5.948.

Proof (Theorem 3). We separate the proofs of the two parts of Theorem3 on
crash and Byzantine faults, respectively.

Lower Bound for Crash-Faults. The lower bound proof for Crash faults is simple.
Every point on the perimeter must be visited by at least two robots (if not, the
adversary will place the exit at that point and make the robot visiting it crash
faulty). Since there are three robots at least one of the robots will take time at
least 4π/3 after visiting the perimeter. This proves the lower bound.

Lower Bound for Byzantine-Faults. This case is harder to analyze and we will
first consider a few preliminary lemmata below.

It is easy to observe that if we consider three robots starting from the center
of a unit disc then for any ε > 0, at time 1+ 2π

3 −ε there is an equilateral triangle
inscribed in the circle not all of whose vertices have been explored by a robot.
However, in the main proof we will make use of an even stronger property of the
three robots.

Next we define a useful property P (T), where T > 0 denotes time, to be used
in the rest of the proof for a lower bound.

Definition 1 (Property P (T)). For any algorithm and any time less than T
there are two points on the circle at distance at least

√
3 and each of which was

visited at most once by anyone of the three robots.

Since Property P (T) ensures the existence of two points at distance at least√
3 which have been visited at most once by the robots, a simple adversarial

argument will guarantee that T +
√

3 is a lower bound on evacuation for Byzan-
tine faults (see Lemma 5). However, before proving these last statements, we are
interested to find a T which satisfies property P (T).

170 J. Czyzowicz et al.

Note that property P (T) is monotone increasing in T , in that P (T) ∧ T ′ ≤
T ⇒ P (T ′). Hence, the larger the value of the parameter T for which P (T) is
valid the better the lower bound that can be derived.

Lemma 4. Property P (1 + 13
√

3/7) is valid.

Proof (Lemma 4). In the sequel, to help our intuition, we prove first the weaker
statement that P (4) is valid and then we improve this to P (1+13

√
3/7). Let us

consider some algorithm at time < T , where T = 4, and assume by contradiction
that all points that have been visited at most once by a robot are at distance less
than

√
3 from each other. Clearly, all these points must lie on an arc of length

less than 2π/3. Therefore looking at the complement of this arc we find an arc
of length longer than 4π/3. In turn, this gives rise to a regular hexagon with five
of its vertices inside this last arc each visited twice by a robot. Therefore these
five vertices of the hexagon have been visited ten times in total by the three
robots. Since there are three robots, it follows that at least one robot must have
visited four of these vertices. However this is impossible as T = 4. It follows that
property P (4) is valid.

Now we derive the main result of the lemma by showing that P (1+13
√

3/7)
is valid. We argue as in the previous paragraph, however, instead of selecting
five vertices of a regular hexagon we will choose the five points more carefully.

As in the proof of P (4) above, let three points A,B,C be vertices of an
equilateral triangle such that every point in the perimeter of the disc which is
visited by at most one of the three robots is in the arc clockwise between A and
B (Fig. 5).

In turn, this will give rise to five points on the circumference of the disc with
each of its vertices visited twice by a robot; namely choose a point D located
between A and C and a point E between B and C so that the length of arc AD
is x and this is equal to the length of arc EB (the choice of x will be based on
maximizing the length of a path visiting these vertices and will be made precise

Fig. 5. Evacuation of the second truth telling robot.

Evacuation from a Disc in the Presence of a Faulty Robot 171

in the next paragraph). Since there are ten visitations by three robots one of the
robots must have visited four consecutive points at least once.

We will show that visiting four vertices among A,B,C,D,E takes time at
least 13

√
3/7 ≈ 3.21. If x < π/3 then there are 2 candidates for the shortest

four-point walk, namely

either D → A → B → E or A → D → C → E.

Taking into account the lengths of the corresponding chords in these two paths,
it turns out that we need to maximize the function f(x) defined by the equation
below.

f(x) := min{
√

3 + 4 sin(x/2), 2 sin(x/2) + 4 sin(π/3 − x/2)}.

It is easily seen that the maximum of f is equal to 1+13
√

3/7 and it is obtained
at x = 4/ arctan(1/(3

√
3)). The rest of the reasoning is the same as for T = 4

in the first paragraph of the proof. This completes the proof of Lemma4. ��
Now we can conclude the proof of Part (b) which follows as a corollary of

Lemma 5 below.

Lemma 5. If property P (T) holds then we can achieve a lower bound of T +
√

3
on evacuation in the presence of a Byzantine robot.

Proof (Lemma 5). Identify two points A, B at distance ≥ √
3 each of which

was visited at most once by anyone of the three robots. Assume without loss of
generality that r1 visited A. Then we have two possibilities to consider: either
r1 also visited B, or (say) r2 visited B.

If r1 visited both points, set r1 to be Byzantine, then wait until either r2 or
r3 visit either A or B. Once this first visit happens, claim that the exit is located
at the other point. The robot that visited the first point will require at least

√
3

to reach the other point, which proves the lemma in this case.
If, say, r2 visited point B, then have r1 claim that the exit is located at point

B, and r2 claim that the exit is located at point A (which will happen as soon
as the robots reach those points). Then r3 will have to visit both points to find
the real exit, since it has no means of distinguishing the reliable robot from the
Byzantine robot. Choose the first point visited by robot r3 not to have the exit,
and set the exit at the location of the other point. Then r3 requires at least

√
3

to reach the other point, which proves the lemma in this case as well.
Combining these two cases, this completes the proof of Lemma 5. ��
If we note the following approximations for the quantities arising in Lemma4:

1 + 13
√

3/7 ≈ 4.21 and 4/ arctan(1/(3
√

3)) ≈ 0.76, then the proof of Theorem3
is complete. ��

4 Discussion and Open Problems

In this paper we considered the evacuation problem on a disc for three robots
exactly one of which has either crash or Byzantine faults. We analyzed the

172 J. Czyzowicz et al.

problem in both fault scenarios and gave lower bounds as well as evacuation
algorithms resulting in upper bounds. There are several challenging open prob-
lems. In addition to closing the gaps between the upper and lower bounds for
either robot fault (either crash or Byzantine) model with wireless communica-
tion presented in our paper, it would be interesting to investigate the evacuation
problem

(a) for other types of communication models (e.g., face-to-face, or even limited
visibility),

(b) for n robots f of which may be faulty (either crash or Byzantine), for some
1 ≤ f ≤ n − 2, and derive asymptotic bounds similar to the results of [11],
and

(c) for robots with not necessarily identical maximum speeds.

Despite the fact that obtaining tight bounds for evacuation problems are known
often to lead to functions which can be a challenge to optimize, the algorithmic
insights derived by this interaction between robot mobility and communication
can lead to rewarding applications of distributed computing in search and evac-
uation.

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM J. Comput. 36(1), 56–82 (2006)

2. Baeza-Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput.
106(2), 234–252 (1993)

3. Baeza-Yates, R., Schott, R.: Parallel searching in the plane. Comput. Geom. 5(3),
143–154 (1995)

4. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)
5. Bellman, R.: An optimal search. SIAM Rev. 5(3), 274–274 (1963)
6. Bouzid, Z., Potop-Butucaru, M.G., Tixeuil, S.: Optimal byzantine-rezilient con-

vergence in uni-dimensional robot network. Theoret. Comput. Sci. 411(34–36),
3154–3168 (2010)

7. Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration with-
out communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis,
A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57586-5 10

8. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW
2011. LNCS, vol. 6811, pp. 346–359. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22450-8 27

9. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in
asynchronous robot systems. SIAM J. Comput. 41(1), 1516–1528 (2005)

10. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate
sensors and movements. SIAM J. Comput. 38(1), 276–302 (2008)

11. Czyzowicz, J., G ↪asieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.:
Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014.
LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45174-8 9

https://doi.org/10.1007/978-3-319-57586-5_10
https://doi.org/10.1007/978-3-642-22450-8_27
https://doi.org/10.1007/978-3-642-22450-8_27
https://doi.org/10.1007/978-3-662-45174-8_9
https://doi.org/10.1007/978-3-662-45174-8_9

Evacuation from a Disc in the Presence of a Faulty Robot 173

12. Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.:
When patrolmen become corrupted: monitoring a graph using faulty mobile robots.
In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 343–354.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48971-0 30

13. Czyzowicz, J., Georgiou, K., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.,
Shende, S.: Search on a line by byzantine robots. In: 27th International Symposium
on Algorithms and Computation, ISAAC 2016, 12–14 December 2016, Sydney,
Australia, pp. 27:1–27:12 (2016)

14. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhu-
ber, B.: Evacuating robots from a disk using face-to-face communication (extended
abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp.
140–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18173-8 10

15. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a
line with faulty robots. In: Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25–28, pp. 405–414
(2016)

16. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.:
Wireless autonomous robot evacuation from equilateral triangles and squares. In:
Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp.
181–194. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6 13

17. Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and
self-stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol.
4167, pp. 46–60. Springer, Heidelberg (2006). https://doi.org/10.1007/11864219 4

18. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algo-
rithms (TALG) 11(1), 1 (2014)

19. Hromkovič, J., Klasing, R., Monien, B., Peine, R.: Dissemination of information in
interconnection networks (broadcasting & gossiping). In: Du, D.Z., Hsu, D.F. (eds.)
Combinatorial Network Theory, pp. 125–212. Springer, Boston (1996). https://doi.
org/10.1007/978-1-4757-2491-2 5

20. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita,
M.: The gathering problem for two oblivious robots with unreliable compasses.
SIAM J. Comput. 41(1), 26–46 (2012)

21. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: Proceedings of the Forty-second ACM Symposium on Theory of Computing,
pp. 513–522. ACM (2010)

22. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)

23. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)
24. Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with

inaccurate compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 333–349. Springer, Heidelberg (2006). https://doi.org/10.1007/
11945529 24

25. Yang, Y., Souissi, S., Défago, X., Takizawa, M.: Fault-tolerant flocking for a group
of autonomous mobile robots. J. Syst. Softw. 84(1), 29–36 (2011)

https://doi.org/10.1007/978-3-662-48971-0_30
https://doi.org/10.1007/978-3-319-18173-8_10
https://doi.org/10.1007/978-3-319-19662-6_13
https://doi.org/10.1007/11864219_4
https://doi.org/10.1007/978-1-4757-2491-2_5
https://doi.org/10.1007/978-1-4757-2491-2_5
https://doi.org/10.1007/11945529_24
https://doi.org/10.1007/11945529_24

On Location Hiding in Distributed Systems

Karol Gotfryd(B), Marek Klonowski, and Dominik Paj ↪ak

Department of Computer Science, Wroc�law University of Science and Technology,
Wybrzeże Wyspiańskiego 27, 50-370 Wroc�law, Poland

{karol.gotfryd,marek.klonowski,dominik.pajak}@pwr.edu.pl

Abstract. We consider the following problem – a group of mobile agents
perform some task on a terrain modeled as a graph. In a given moment
of time an adversary gets access to the graph and agents’ positions.
Shortly before adversary’s observation the devices have a chance to relo-
cate themselves in order to hide their initial configuration, as the ini-
tial configuration may possibly reveal to the adversary some information
about the task they performed. Clearly agents have to change their loca-
tions in possibly short time using minimal energy. In our paper we intro-
duce a definition of a well hiding algorithm in which the starting and
final configurations of the agents have small mutual information. Then
we discuss the influence of various features of the model on running time
of the optimal well hiding algorithm. We show that if the topology of
the graph is known to the agents, then the number of steps proportional
to the diameter of the graph is sufficient and necessary. In the unknown
topology scenario we only consider a single agent case. We first show
that the task is impossible in the deterministic case if the agent has no
memory. Then we present a polynomial randomized algorithm. Finally in
the model with memory we show that the number of steps proportional
to the number of edges of the graph is sufficient and necessary. In some
sense we investigate how complex is the problem of “losing” information
about location (both physical and logical) for different settings.

Keywords: Location hiding · Mobile agents · Random walks · Graphs

1 Introduction

In the present paper we investigate how to hide our location quickly with minimal
effort. As our primary motivation we focus on networks consisting of mobile
objects, but we believe that our results can also be applied for efficient “losing”
information about current state in various systems, even non-physical.

Let us consider a group of mobile devices or sensors called agents performing
a task on a given area. The task could be for example collecting/detecting some

The work of the second author was supported by Polish National Science Center
grant 2013/09/B/ST6/02258. The work of the third author was supported by Polish
National Science Center grant 2015/17/B/ST6/01897.

c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 174–192, 2017.
https://doi.org/10.1007/978-3-319-72050-0_11

On Location Hiding in Distributed Systems 175

valuable resource, mounting detectors or installing mines. In all aforementioned
examples the system’s owner may want to hide the location of the agents against
an adversary observing the terrain from the satellite or a drone. That is, location
of the devices may leak sensitive information to the adversary. If we assume that
the adversary’s surveillance of the terrain is permanent and precise then clearly
no information can be concealed. Hence in our scenario there are periods of time
when the adversary cannot observe the system during which the actual tasks are
performed. Upon the approaching adversary, the devices launch an algorithm to
hide their location, i.e. change their positions to mislead the observer. Clearly
in many real life scenarios the additional movement dedicated for hiding their
previous position should be possibly short for the sake of saving energy and time.
It is also clear that the devices may want to return to their original positions in
order to resume their activities when the adversary stops surveillance. On the
other hand it is intuitively clear that a very short move may be not sufficient for
“losing” the information about the starting positions.

The outlined description is an intuitive motivation for the research presented
in our paper. Exactly the same problem can be however considered in many
other settings when we demand “quick” reconfiguration of a system such that the
observed configuration should say possibly small about the initial state. For that
reason we decided to use quite general mathematical model, where the agents are
placed in vertices of a graph and can move only through the edges (single edge
in a single round). Our aim is to design an algorithm that governs the agents’
movement to change their initial locations in such a way that the adversary given
the final assignment of agents cannot learn their initial positions.

At hand one can point the following strategy – every agent chooses inde-
pendently at random some vertex on the graph and moves to this location.
Clearly (but informally) the new location does not reveal any information about
the initial one and the initial locations of agents are perfectly hidden from the
adversary. The same effect can also be obtained if all agents go to a single, fixed
in advance vertex. In this case again the final and initial configurations are sto-
chastically independent. These strategies require however that agents know the
topology of the graph. Intuitively, similar effect can be achieved if each agent
starts a random walk and stops in a vertex after some number of steps. In this
approach, the knowledge of the graph is not necessary, however one can see that
the state after any number of steps reveals some knowledge about the initial posi-
tions (at least in some graphs). Moreover this strategy requires randomization.
To summarize, there are many different methods for hiding the initial locations.
It turns out that possible solutions and their efficiency depend greatly on the
assumed model – if the graph is known to the agents, what memory is available,
if the agents can communicate and if they have access to a source of random bits.
Our paper formalizes this problem and discusses its variants in chosen settings.

Organization of the Paper. In Sect. 2 we describe the problem and the formal
model. Section 3 summarizes the obtained results. The most important related
work is mentioned in Sect. 4. In Sect. 5 we present results for the model wherein
stations know the topology of the graph representing the terrain. We show both

176 K. Gotfryd et al.

optimal algorithms as well as respective lower bounds. The case with unknown
topology is discussed in Sect. 6. We conclude in Sect. 7. Some basic facts and
definitions from Information Theory and theory of Markov chains are recalled
in Appendix 1 and Appendix 2, respectively.

2 Model

The Agents in the Network. We model the network as a simple, undirected,
connected graph with n vertices, m edges and diameter D. The nodes of the
graph are uniquely labeled with numbers {1, 2, . . . , n}. We have also k ≥ 1
agents representing mobile devices. Time is divided into synchronous rounds. At
the beginning of each round each agent is located in a single vertex. In each round
the agent can change its position to any of neighboring vertices. We allow many
agents to be in a single vertex in the same round. The agents need to locally
distinguish the edges in order to navigate in the graph hence we assume that the
edges outgoing from a node with degree d are uniquely labeled with numbers
{1, 2, . . . , d}. We assume no correlation between the labels on two endpoints of
any node. A graph with such a labeling is sometimes called port-labeled.

When an agent is located in a vertex we assume that it has access to the
degree of the node and possibly the value or the estimate of n and to some
internal memory sufficient for local computations it performs. In our paper we
consider various models of mobile agents depending on the resources at their
disposal. This will involve settings where the devices have or have not an access
to a source of random bits and they are given a priori the topology of the network
or they have no such knowledge. In the latter case we will consider two different
scenarios depending on whether the agent has an access to operational memory
that remains intact when it traverses an edge or its memory is very limited and
does not allow to store any information about the network gathered while it
moves from one vertex to another.

Our primary motivation is the problem of physical hiding of mobile devices
performing tasks in some terrain. Nevertheless, our work aims for formalizing the
problem of losing information on agents’ initial placement in a given network.
Thus, we focus on proposing a theoretical model related to the logical topology.

Model of the Adversary. From the adversary’s point of view, the agents
are indistinguishable and the nodes of the underlying graph are labeled. The
assumption on indistinguishability is adequate for systems with very similar
devices. Thus the state of the system in a given round t can be seen as a graph
G and a function nt(v) denoting the number of agents located at node v. Let Xt,
t ∈ {0, 1, . . .}, represents the state of the network at the beginning of tth round.

We assume that in round 0 the agents complete (or interrupt due to approach-
ing adversary) their actual tasks and run hiding algorithm A that takes T rounds.
Just after the round T the adversary is given the final state XT and, roughly
speaking, its aim is to learn as much as possible about the initial state X0. That
is, the adversary gets an access to a single configuration (representing a single

On Location Hiding in Distributed Systems 177

view of the system). Note that the adversary may have some a priori knowledge
that is modeled as a distribution of X0. In randomized settings the adversary
has no information about agents’ local random number generators. On the other
hand, the aim of agents is to make learning the adversary X0 from XT impos-
sible for any initial state (or distributions of states).1 Moreover the number of
rounds T should be as small as possible (we need to hide the location quickly).
We also consider energy complexity understood as the maximal number of moves
(i.e. moving to a neighboring vertex) over all agents in the execution of A. Such
definition follows from the fact that we need to have all agents working and
consequently we need to protect the most loaded agent against running out of
batteries. As we shall see, in all cases considered in this paper the energy com-
plexity is very closely related to the time of getting to the “safe” configuration
by all devices, namely it is asymptotically equal T .

Security Measures. Let X0 be a random variable representing the knowledge
of the adversary about the initial state and let XT denotes the final configura-
tion of the devices after executing algorithm A. We aim to define a measure of
efficiency of algorithm A in terms of location hiding. In case of problems based
on “losing” knowledge, there is no single, commonly accepted definition. This
is reflected in dozens of papers including [6] and [18]. Nevertheless the good
security measure needs to estimate “how much information” about X0 is in XT .

Let X ∼ L be a random variable with probability distribution L. We denote
by E [X] the expected value of X. By Unif(A) we denote the uniform distribution
over the set A and by Geo(p) the geometric distribution with parameter p.
An event E occurs with high probability (w.h.p.) if for an arbitrary constant
α > 0 we have Pr[E] ≥ 1 − O (n−α). Let H (X) denotes the entropy of the
random variable X, H (X|Y) denotes conditional entropy and I (X,Y) mutual
information. All that notations and definitions are recalled in Appendix 1.

Our definition is based on the following notion of normalized mutual infor-
mation, also known as uncertainity coefficient (see e.g. [20], Chap. 14.7.4)

U (X|Y) =
I (X,Y)
H (X)

.

From the definition of mutual information it follows that U (X|Y) = 1− H(X|Y)
H(X)

and 0 ≤ U (X|Y) ≤ 1. The uncertainity coefficient U (X|Y) takes the value 0
if there is no association between X and Y and the value 1 if Y contains all
information about X. Intuitively, it tells us what portion of information about
X is revealed by the knowledge of Y . H (X) = 0 implies H (X|Y) = 0 and we
may use the convention that U (X|Y) = 0 in that case. Indeed, in such case we
have stochastic independence between X and Y and the interpretation in terms
of information hiding can be based on the simple observation that H (X) = 0
means that there is nothing to reveal about X (as we have full knowledge of X)
and Y does not give any extra information.
1 That is, we consider the worst case scenario implying strongest security guarantees.

178 K. Gotfryd et al.

Definition 1. The algorithm A is ε-hiding if for any distribution of the initial
configuration X0 with non-zero entropy (i.e. H (X0) > 0) and for any graph G
representing the underlying network

U (X0|XT) =
I (X0,XT)

H (X0)
≤ ε, (1)

where XT is the state just after the execution of the algorithm A.

Definition 2. We say that the algorithm A is

– well hiding if it is ε-hiding for some ε(n) = ε ∈ o (1);
– perfectly hiding if it is 0-hiding.

Intuitively, this definition says that the algorithm works well if the knowledge
of the final state reveals only a very small fraction of the total information about
the initial configuration regardless of the distribution of initial placement of
devices. Let us mention that these definitions state that any hiding algorithm
should work well regardless of the network topology. If an algorithm A is ε-hiding,
then for any simple connected graph G and for any probability distribution of
agents’ initial positions X0 with non-zero entropy the final configuration XT

Fig. 1. Positions of k = 4 agents (represented by black dots) in consecutive steps of
sample execution of location hiding algorithm in a network with n = 8 nodes.

On Location Hiding in Distributed Systems 179

after A terminates should fulfill (1). Notice also that there are some cases when
it is not feasible to hide the initial location in a given graph. Assuming the
adversary knows the agents’ initial distribution X0, H (X0) = 0 means that the
agents with probability 1 are initially placed in some fixed locations which are
known to the adversary. In particular, this is the case when the graph has only
one vertex (it can be a model of system with exactly one state). All devices must
be then located in that vertex and no hiding algorithm exists for this setting.

The main idea of location hiding algorithms is depicted in Fig. 1. The agents
are initially placed in vertices of a graph G (Fig. 1a) according to some known
distribution of initial state X0. In each step every agent located in some vertex vi

can move along an edge incident to vi or stay in vi. After T steps the algorithm
terminates resulting in a final configuration XT (Fig. 1d). Our goal is to ensure
that any adversary observing the positions XT of devices after execution of an
location hiding algorithm can infer as small information as possible about their
actual initial placement X0, regardless of G and the distribution of X0.

3 Our Results

Most of our results apply to the single-agent case. We first show that if the
topology is known then any well-hiding algorithm in a graph with n nodes, m
edges and diameter D requires Ω(D) steps and there exists a perfectly hiding
algorithm that needs O(D) steps. Then we generalize this result to multi-agent
scenario. Secondly we consider the case with unknown network topology. We
show that in the model with no memory there exists no deterministic well hiding
algorithm and for the randomized setting we present a well-hiding algorithm
whose expected running time is ˜O(n3) w.h.p. Finally if the agents have unlimited
memory then Θ(m) steps is sufficient and necessary for well-hiding algorithms.
Table 1 summarizes our results.

Table 1. Overview of our results

Deterministic Randomized

Known topology Θ(D) (Theorem 1) Θ(D) (Theorem 1)

Unknown topology No memory impossible (Theorem 3) ˜O(n3) w.h.p. (Theorem 2)

Unlimited memory Θ(m) (Theorems 4 and 5) Θ(m) (Theorems 4 and 5)

Let us mention that in the considered models it is feasible to “lose” infor-
mation about the initial state not only in a randomized manner, but also fully
deterministically. As we shall show, the algorithms are completely different. We
find this property somehow surprising. Moreover, let us note that possible rate
of losing information as well as the adequate algorithms strongly depend on the
assumed model and agents’ capabilities (knowledge of the topology, memory).

180 K. Gotfryd et al.

4 Previous and Related Work

The problems of security and privacy protection in distributed systems have
received a lot of attention. Various security aspects of such systems have been
extensively discussed and a lot of novel solutions for some practical settings have
been proposed over the last years. One of the major examples is the problem
of designing routing protocols for wireless ad hoc networks which can hide the
network topology from potential external and internal adversaries (see e.g. [16,
24]). The goal of such protocols is to find reliable routes between the source
and destination nodes in the network which are as short as possible, reducing
exposure of the network topology to malicious nodes by data transmitted in the
packets. This will prevent adversaries (at least to some extent) for launching
some kinds of attacks requiring the knowledge of the network topology which
may be particularly harmful for the whole network and the tasks performed.

Another important line of research is assuring privacy of the users of mobile
applications relying on location-based services and hence gathering information
of their location. The examples are applications providing various information
related to the user’s current location (e.g. real-time traffic information, places to
visit) or activity-based social networks where users share the information about
location-based activities they perform (cf. [19]). Various protocols for protect-
ing location data together with some formal models and privacy metrics were
proposed (see e.g. [12,14]). However, in some cases the performance of designed
protocols is evaluated only experimentally and the discussion of their security
properties is informal, without referring to any theoretical model (cf. [16,19]).

To the best of our knowledge, there is no rigid and formal analysis on the
problem of location hiding in graphs and it has never been studied before in the
context considered in this paper. The problems of ensuring security and privacy
in distributed systems mentioned above are similar to our only to a certain
extent. The aim of our approach is to propose a general formal model of hiding
the positions of a set of mobile agents from an external observer and consider
its basic properties and limitations. However, the problem considered by us is
closely related to some of the most fundamental agent-based graph problems.

First of all observe the relation to the exploration that comes from the global
nature of our problem. Clearly if the agent has at least logarithmic memory then
we can use algorithms for graph exploration. Indeed, since the graph is labeled,
it is sufficient to explore the graph and move to a vertex with minimum ID.
Hence the vast body of literature about exploration in various models applies
to our problem. In particular there exist polynomial deterministic algorithms
(using Universal Sequences) that need only logarithmic memory [1,21].

In the randomized setting, location hiding becomes related to the problem of
reaching the stationary distribution by a Markov Chain (Mixing Time) as well
as visiting all the states (Cover Time), i.e. the expected number of steps that are
needed by a random walk to visit all the vertices. It is known that for a (unbi-
ased) random walk, the cover time is between Ω(n log n) [10] and O(n3) [11],
depending on the underlying graph structure. There exist biased random walks
that achieve worst-case cover time of ˜O(n2) [17], however in order to implement

On Location Hiding in Distributed Systems 181

them the agent requires an access to some memory to acquire information neces-
sary to compute the transition probabilities. It has been recently shown that in
some graphs multiple random walks are faster than a single one [2,8,9]. Another
interesting line of work is deriving biased random walks [3,23].

5 Location Hiding for Known Topology

Let us first focus on the setting where the topology of the underlying network is
known to the agents and consider one of the simplest possible protocols, namely
every mobile agent goes from its initial positions to some fixed vertex v∗ ∈ V
(this is possible, because in the considered scenario the vertices in the graph
have unique labels known to all the agents). One can easily see that this simple
protocol is perfectly hiding. Indeed, regardless of the distribution of the agents’
initial placement, after executing the protocol all devices are always located in
the same vertex known in advance. Hence, XT and X0 are independent and
I (X0,XT) = 0 (and therefore U (X0|XT) = 0, as required). But this approach
leads to the worst case time and energy complexity for a single device of order
Θ(D), where D is the graph diameter. Appropriate selection of the vertex v∗ as
an element of the graph center can reduce the worst case complexity only by a
constant, but it does not change its order. The natural question that arises in this
context is whether there exist a perfectly hiding (or at least well hiding) protocol
that requires asymptotically smaller number of rounds for ensuring privacy than
the simple deterministic protocol discussed above. In general, we are interested
in determining the minimal number of steps required by any location hiding
protocol in considered scenarios for ensuring a given level of security (in terms
of the amount of information being revealed) for arbitrary distribution of initial
configuration of the agents and for arbitrary underlying network.

5.1 Single Agent Scenario

Let us consider the simple scenario where there is only one mobile device in
the network located in some vertex v ∈ V according to some known probability
distribution L over the set of vertices. Assume that the network topology is
known to the agent. Our goal is to find the lower bound on the number of steps
that each well hiding protocol requires to hide the original location of the device
in this scenario for arbitrary graph G and initial distribution L.

We will start with a general lemma showing that if within t steps the sets of
vertices visited by the algorithm starting from two different vertices are disjoint
with significant probability, then the algorithm is not well hiding within time t.

Lemma 1. Let A be any hiding algorithm and G = (V,E) be an arbitrary graph.
Suppose that for some t > 0 and some positive constant γ there exist two distinct
vertices u, v ∈ V s.t. with probability at least 1/2+γ the following property holds:
sets V1 and V2 of vertices reachable after execution of t steps of A when starting
from u and v, respectively, are disjoint. Then A is not well hiding in time t.

182 K. Gotfryd et al.

Proof. Fix an arbitrary graph G = (V,E) with |V | = n and hiding algorithm A.
Let u, v ∈ V be two vertices such that the sets V1 and V2 of possible location of
the agent after performing t steps of A when starting in u and v, respectively, are
disjoint with probability at least 1/2+γ for some constant γ > 0 regardless of the
starting point, i.e. Pr[ξV = 1] ≥ 1/2+γ, where ξV is an indicator random variable
of the event V1 ∩ V2 = ∅. Consider the following two-point distribution L of the
agents’ initial location X0: Pr[X0 = u] = Pr[X0 = v] = 1/2, Pr[X0 = w] = 0
for w ∈ V \ {u, v}. We will prove that such A does not ensure that the initial
position X0 of the device is well hidden at time t when X0 ∼ L.

Because H (X0) = 1, U (X0|Xt) = I (X0,Xt) and it suffices to show that
the mutual information I (X0,Xt) ≥ η > 0 for some positive constant η. This is
equivalent to H (X0|Xt) ≤ 1 − η, as follows from Fact 4. Clearly, for y ∈ V1

Pr[X0 = u|Xt = y] ≥ Pr[X0 = u, ξV = 1|Xt = y] ≥ 1/2 + γ (2)

and the same holds after replacing u with v. Moreover Pr[X0 = v|Xt = y] =
1 − Pr[X0 = u|Xt = y]. Denoting Pr[X0 = u|Xt = y] by pu|y we have

H (X0|Xt) = −
∑

y∈V

Pr[Xt = y]
∑

x∈V

Pr[X0 = x|Xt = y] log(Pr[X0 = x|Xt = y])

(3)

= −
∑

y∈V

Pr[Xt = y]
(

pu|y log(pu|y) + (1 − pu|y) log(1 − pu|y)
)

.

Let us consider the function f(p) = −(p log(p)+ (1−p) log(1−p)) for p ∈ (0, 1).
Clearly, limp→0 f(p) = limp→1 f(p) = 0 and f(p) has its unique maximum on the
interval (0,1) equal to 1 at p = 1/2. From (2) we have (∀y ∈ V1)(pu|y ≥ 1/2 + γ)
and (∀y ∈ V2)(pu|y ≤ 1/2 − γ). Therefore, there exists some positive constant η
such that f(pu|y) ≤ 1−η. From the definition of the sets V1 and V2 we also have
Pr[Xt = y /∈ V1 ∪ V2] = 0. Using these facts, (3) can be rewritten as

H (X0|Xt) =
∑

y∈V1

Pr[Xt = y]f(pu|y) +
∑

y∈V2

Pr[Xt = y]f(pu|y)

≤ (1 − η) Pr[Xt ∈ V1 ∪ V2] = 1 − η

for some constant η > 0, as required. Hence, the lemma is proved.
�
From the Lemma 1 we get the lower bound of Ω(D) on the expected number

of steps needed by any well hiding algorithm in the model with known topology.
Note that the lower bound matches the simple O(D) upper bound.

Theorem 1. For a single agent and known network topology and for an arbi-
trary graph G there exists a distribution L of agent’s initial position such that any
well hiding algorithm A needs to perform at least �D/2 steps with probability
c ≥ 1/2 − o (1), where D is the diameter of G.

On Location Hiding in Distributed Systems 183

Proof. We will show that for each graph G there exist a distribution of the initial
state of the mobile agent such that each well hiding algorithm A needs at least
�D/2 rounds with some probability c ≥ 1/2 − o (1).

Fix an arbitrary graph G = (V,E) with |V | = n. Let u, v ∈ V be two vertices
such that d(u, v) = D. Denote by δ = �D/2 and consider the following two-point
distribution L of the agents’ initial location X0: Pr[X0 = u] = Pr[X0 = v] = 1/2,
Pr[X0 = w] = 0 for w ∈ V \ {u, v}. Suppose that some hiding algorithm A
terminates with probability at least 1/2+γ for some constant γ > 0 after T < δ
steps regardless of the starting point, i.e. Pr[T < δ] ≥ 1/2 + γ.

Obviously there is no z ∈ V such that d(u, z) < δ and d(v, z) < δ (if so,
D = d(u, v) < 2 �D/2 ≤ D and we will get a contradiction). Let us define
B(u, δ) = {y ∈ V : d(u, y) < δ} and B(v, δ) = {y ∈ V : d(v, y) < δ}. It is clear
that B(u, δ)∩B(v, δ) = ∅. From the assumptions on the running time of A with
probability at least 1/2 + γ the sets V1 and V2 of vertices reachable from u and
v, respectively, fulfills V1 ⊆ B(u, δ) and V2 ⊆ B(v, δ), therefore they are disjoint.
Hence it suffices to apply the results from Lemma 1 to complete the proof.
�

5.2 Location Hiding for k Agents and Known Network Topology

Let us recall that the energy complexity of an algorithm A in the multi-agent
setting is defined as the maximal distance covered (i.e. number of moves) in
the execution of A over all agents. This allows us for direct translation of results
from single-device setting, as presented below.

In the general scenario considered in this section a similar result holds as
for the single-agent case. Namely, each algorithm which ensures the well hiding
property regardless of the distribution of agents’ initial placement requires in
the worst case Ω(D) rounds.

Lemma 2. For known network topology and k > 1 indistinguishable agents ini-
tially placed according to some arbitrary distribution L, any well hiding algorithm
for an arbitrary underlying graph G has energy complexity at least �D/2 with
probability c ≥ 1/2 − o (1), where D is the diameter of G.

The proof of the Lemma 2 proceeds in the same vein as in Theorem 1. We
choose two vertices u, v in distance D and put all agents with probability 1/2 in
any of these vertices. Denoting by Ti, 1 ≤ i ≤ k, the number of steps performed
by the agent i and by T = max1≤i≤k Ti the energy complexity of the algorithm
we consider a hiding algorithm A such that Pr[T < δ] ≥ 1/2 + γ for δ = �D/2
and some positive constant γ > 0. The only difference is that instead of the sets
B(u, δ) = {y ∈ V : d(u, y) < δ} and B(v, δ) = {y ∈ V : d(v, y) < δ} itself we
consider the subsets S1 and S2 of the state space consisting of such states that
all of the agents are located only in the vertices from the set B(u, δ) or B(v, δ),
respectively. Similar calculations as previously led to the conclusion that any
such algorithm cannot ensure the well hiding property.

184 K. Gotfryd et al.

6 Location Hiding for Unknown Topology

6.1 No Memory

If no memory and no information about the topology is available, but the agent
is given access to a source of randomness, it can perform a random walk in order
to conceal the information about its starting position. However, the agent would
not know when to stop the walk. If in each step it would choose to terminate
with probability depending on the degree of the current node, one could easily
construct an example in which the agent would not move far from its original
position (with respect to the network size). Hence in this section we assume that
the size of the network is known. Then the problem becomes feasible. Consider
the following Algorithm 1: in each step we terminate with probability q (roughly
n−3) and with probability 1 − q we make one step of a lazy random walk. We
will choose q later. Let us note that letting the walk to stay in current vertex
with some fixed constant probability is important for ensuring aperiodicity of
the Markov chain (see e.g. [13,15]). Otherwise we can easily provide an exam-
ple where such algorithm does not guarantee the initial position to be hidden.
Namely, consider any bipartite graph and any initial distribution s.t. the agent
starts with some constant probability either in a fixed black or white vertex. If the
adversary is aware only of the running time (i.e. the number of steps the agent
performed), when observing the network after T steps it can with probability
1 identify agent’s initial position depending on T is even or odd. Nevertheless,
the probability of remaining in a given vertex can be set to arbitrary constant
0 < c < 1. For the purposes of analysis we let c = 1/2 which leads to the classical
definition of lazy random walk (see Definition 10 and Fact 8 in Appendix 2).

Algorithm 1. A(q) [randomization, no memory, no topology, knowledge of n]
In each round:

1: With probability q: terminate the algorithm.
2: With probability 1

2
: remain in the current vertex until the next round.

3: With probability 1
2
− q: move to a neighbor chosen uniformly at random.

Theorem 2. The algorithm A(q) based on random walk with termination prob-
ability q = f(n)

n3 log h(n) for any fixed f(n) = o (1) and h(n) = ω
(

max{n2, 1
H(X0)

}
)

is well hiding for any graph G and any distribution of agent’s initial location X0.

Proof. Fix ε > 0. Let tmix (ε) denote the mixing time and π the stationary
distribution of the random walk performed by the algorithm according to Defi-
nition 9. We will choose the exact value for ε later. Let X0 and XT be the initial
and final configuration, respectively. To prove the lemma it suffices to show that
H(X0|XT)

H(X0)
= 1 − o (1), what is equivalent to limn→∞

H(X0|XT)
H(X0)

= 1. This implies
that U (X0|XT) = o (1) as required by Definition 2. Let ξε = 1[T > tmix (ε)] be

On Location Hiding in Distributed Systems 185

the indicator random variable taking value 1 if T > tmix (ε) and 0 otherwise. We
need to ensure that the algorithm A will stop with probability at least 1 − o (1)
after tmix (ε) steps. The time T when A terminates follows Geo(q) distribution,
hence Pr[ξε = 1] = (1− q)tmix(ε). Letting q = f(n)/tmix (ε) for some f(n) = o (1)
implies Pr[ξε = 1] = 1 − o (1), as required.

Let us consider H (X0|XT). By Fact 1 (see Appendix 1) we have

H (X0|XT) ≥ H (X0|XT , ξε) ≥ H (X0|XT , ξε = 1) Pr[ξε = 1]

= (1 − o (1)) H (X0|XT , ξε = 1) ≥ (1 − o (1)) H
(

X0|Xtmix(ε)

)

,

where the last inequality follows directly from Fact 9 in Appendix 1.
Let p0(x) = Pr[X0 = x], pt(y) = Pr[Xtmix(ε) = y], p0(x|y) = Pr[X0 =

x|Xtmix(ε) = y] and pt(y|x) = Pr[Xtmix(ε) = y|X0 = x]. As p0(x|y) = pt(y|x)
pt(y)

p0(x),

H
(

X0|Xtmix(ε)

)

= −
∑

y∈V

pt(y)
∑

x∈V

p0(x|y) log p0(x|y)

= −
∑

y∈V

∑

x∈V

pt(y|x)p0(x) log p0(x) (4)

−
∑

y∈V

∑

x∈V

pt(y|x)p0(x) log
pt(y|x)
pt(y)

.

The properties of mixing time imply that there exist {ε
(1)
y }y∈V and {ε

(2)
y }y∈V

such that
∑

y∈V ε
(i)
y ≤ 2ε for i ∈ {1, 2} and π(y) − ε

(1)
y ≤ pt(y|x) ≤ π(y) + ε

(1)
y

and π(y)− ε
(2)
y ≤ pt(y) ≤ π(y)+ ε

(2)
y . Let εy = max{ε

(1)
y , ε

(2)
y }. As for any y ∈ V

π(y) ≥ 1/n2, letting ε being arbitrary ε(n) = o
(

min{ 1
n2 ,H (X0)}

)

we get

pt(y|x)
pt(y)

≤ π(y) + εy

π(y) − εy
= 1 + o (min{1,H (X0)}) .

Thus, the above relations allow us to find the lower bound on the conditional
entropy H

(

X0|Xtmix(ε)

)

. The first sum in (4) gives us

−
∑

y∈V

∑

x∈V

pt(y|x)p0(x) log p0(x) ≥
∑

y∈V

(π(y) − εy)H (X0) ≥ H (X0) (1 − 4ε)

= H (X0) (1 − o (1)), (5)

whereas the second sum can be expressed as

−
∑

y∈V

∑

x∈V

pt(y|x)p0(x) log
pt(y|x)
pt(y)

= −
∑

x∈V

p0(x)
∑

y∈V

pt(y|x) log
pt(y|x)
pt(y)

= −
∑

x∈V

p0(x)D (pt(y|x)||pt(y)) ,

where D (·||·) is relative entropy recalled in Definition 5 in Appendix 1.

186 K. Gotfryd et al.

Applying the upper bound on the relative entropy from Fact 3 we get

∑

x∈V

p0(x)D (pt(y|x)||pt(y)) ≤
∑

x∈V

p0(x)
1

ln 2

⎛

⎝

∑

y∈V

(pt(y|x))2

pt(y)
− 1

⎞

⎠

≤ 1
ln 2

∑

x∈V

p0(x)
∑

y∈V

(

(π(y) + εy)2

π(y) − εy
− π(y)

)

(6)

= o (H (X0)) .

Combining the estimations (5) and (6) we obtain H
(

X0|Xtmix(ε)

) ≥ H (X0) (1−
o (1)) − o (H (X0)), what results in

H (X0|XT)
H (X0)

≥ H (X0) (1 − o (1)) − o (H (X0))
H (X0)

= 1 − o (1) ,

as required.
In the above we have set q = f(n)/tmix (ε) for arbitrary fixed f(n) = o (1)

and ε = o
(

min{n−2,H (X0)}
)

. From Fact 7 and Fact 8 we have tmix (ε) ≤
n3 log ε−1. Hence, there exists some g(n) = ω

(

max{n2,H (X0)
−1}

)

dependent

on ε such that tmix (ε) ≤ n3 log g(n) and q =
(

h(n) · n3 log g(n)
)−1, where h(n) =

1/f(n) = ω (1).
�
As previously mentioned, the running time T of the considered hiding algo-

rithm follows geometric distribution with parameter q, hence the expected run-
ning time is E [T] = 1/q = h(n) · n3 log g(n), where h(n) and g(n) are as in
the proof of Theorem 2. If H(X0) = Ω

(

1
n2

)

, as in the case of most distribution
considered in practice, we can simply select f(n) to be some function decreasing
to 0 arbitrary slowly and ε such that g(n) = cn3 log n for some constant c > 0.
In such cases the entropy of the distribution of agent’s initial position has no
impact on the upper bound on the algorithm’s running time.

Algorithm 1 works also for the scenario with many agents (each agent can
run independent walk). The interesting question is whether it is possible to hide
the initial state in multi-agent case faster by taking advantage of performing
simultaneously many random walks. As the speedup of multiple random walks
in any graph remains a conjecture [2], we leave this as an open question.

We conclude this section with a simple observation that the agent must have
access to either memory, source of randomness or the topology of the network
in order to hide.

Theorem 3. In the model with unknown topology and with no memory there
exists no well-hiding deterministic algorithm.

Proof. Take any hiding algorithm. If this algorithm never makes any move it
obviously is not well-hiding. Otherwise observe that in the model without mem-
ory the move is decided only based on local observations (degree of the node)
and some global information (value of n), hence every time the agent visits a

On Location Hiding in Distributed Systems 187

node it will make the same decision. Assume that the agent decides to move
from a node of degree d via port p. We construct a graph from two stars with
degree d joined by an edge e with port p on both endpoints. Since the agent
has no memory and no randomness it will end up in an infinite loop traversing
edge e. Hence this algorithm cannot be regarded as well-hiding since it never
terminates.
�

6.2 Unlimited Memory

In this section we assume that the agent is endowed with unlimited memory
that remains intact when the agent traverses an edge. We first observe that a
standard search algorithm (e.g. DFS) can be carried out in such a model.

Theorem 4. There exists a perfectly hiding algorithm in the model with unlim-
ited memory that needs O(m) steps in any graph.

Proof. The algorithm works as follows: it runs a DFS search of the graph (it is
possible if the agent has memory) and moves to the node with minimum ID.
�

Now we would like to show that Ω(m) steps are necessary for any well-hiding
algorithm in this model. We will construct a family of graphs such that for any
well-hiding algorithm and any n and m we can find a graph with n nodes and m
edges in this family such that this algorithm will need on average Ω(m) steps.

Theorem 5. For a single agent and unknown network topology, for any n and
m and any well hiding algorithm A there exists a port labeled graph G with n
vertices and m edges representing the network and a distribution L of agent’s
initial position on which the agent needs to perform Ω(m) steps in expectation.

Proof. If m = O(n) we can construct a graph in which D = Ω(m) and use
Theorem 1. Now assume that m = ω(n) and consider a graph constructed by
connecting a chain of y cliques of size x. If m = ω(n) we can find such x, y that
x = Θ(m/n) and y = Θ(n2/m). The adjacent cliques are connected by adding
an vertex on two edges (one from each clique) and connecting these new vertices
by an additional edge. We call this edge by bridge and the vertices adjacent to
a bridge by bridgeheads. Let Gx,y be the family of all such chains of cliques on n
nodes and m edges (note that we take only such chains in which an edge has at
most one bridgehead). We want to calculate the expected time that A needs to
reach the middle of the chain (if y is even then it is the middle bridge, otherwise
it is the middle clique) on a graph chosen uniformly at random from Gx,y.

When the agent is traversing edges of the clique, each edge contain a bridge-
head with probability

((

x
2

) − 1)
)−1, hence with probability at least 1

2 the agent
needs to traverse

((

x
2

) − 1
)

/2 different edges. As in each clique bridgeheads are
chosen independently, we can choose the constants so that by the Chernoff Bound
the time to reach the middle of the chain is Ω

(

y · x2
)

= Ω (m) with probability
at least 3

4 if G is chosen uniformly at random from Gx,y. By symmetry, this holds
for both endpoints (reaching middle from the first or the y-th clique). Hence,

188 K. Gotfryd et al.

there exists G∗ ∈ Gx,y such that with probability at least 3
4 the time of A to

reach the middle from both endpoints is at least c · m for some constant c > 0.
By Lemma 1, A is not well-hiding on G∗ if the number of steps is at most c ·m.
�

7 Conclusions and Further Research

We introduced the problem of location hiding, discussed efficient algorithms and
lower bounds for some settings. Nevertheless, some questions are left unanswered.

The model considered by us encompasses wide range of scenarios with large
variety of possible agents arrangements. Moreover, some natural classes of graphs
may provide reasonable approximation in the cases where terrain should be
modeled as a connected region on a plane. Some examples of such graphs are
those from families of grid-like graphs. They contain edges joining only those
pairs of vertices which are close to each other (in the sense that they have small
euclidean distance after embedding the graph on a plane). Increasing the number
of vertices leads then to more close resemblance to connected continuous regions.
It would be, however, an interesting line of research to fully extend our approach
to continuous connected terrains and derive analogous results for that model.

Another line of research is the model with dynamic topology that may change
during the execution of the protocol. Similarly, we believe that it would be
interesting to investigate the model with the weaker adversary that is given only
partial knowledge of the graph topology and the actual assignment of agents. On
the other hand, one may study more powerful adversaries being able to observe
some chosen part of the network for a given period of time. It would be also
worth considering how high level of security can be achieved if each agent is able
to perform only O (1) steps. Motivated by the fact that the mobile devices are in
fact similar objects, we considered the setting where they are indistinguishable.
It would be useful to study the case when the adversary can distinguish between
different agents. We also plan to deeper understand the relation of location hiding
problem with classic, fundamental problems like rendez-vous or patrolling.

We defined the energy complexity as maximal energetic expenditure over
all agents. In some cases, however, it would be more adequate to consider total
energy used by all stations. Finally, it would also be interesting to construct more
efficient protocols for given classes of graphs with some common characteristic
(e.g., lines, trees) and algorithms desired for restricted distributions of X0.

Acknowledgments. The authors of this paper would like to thank to anonymous
reviewers for their valuable comments, suggestions and remarks.

Appendix 1: Information Theory

We recall some basic definitions and facts from Information Theory that can be
found e.g. in [5]. In all cases below log will denote the base-2 logarithm.

Definition 3 (Entropy). For a discrete random variable X : X → R the
entropy of X is defined as H (X) = −∑

x∈X Pr[X = x] log Pr[X = x].

On Location Hiding in Distributed Systems 189

Definition 4 (Conditional entropy). If X : X → R and Y : Y → R are two
discrete random variables, we define the conditional entropy as

H (X|Y) = −
∑

y∈Y
Pr[Y = y]

∑

x∈X
Pr[X = x|Y = y] log Pr[X = x|Y = y].

Fact 1. For any random variables X and Y H (X|Y) ≤ H (X) and the equality
holds if and only if X and Y are independent.

Definition 5 (Relative entropy). Let X and Y be two discrete random vari-
ables defined on the common space X with pmf p(x) and q(x), respectively. The
relative entropy (Kullback-Leibler distance) between p(x) and q(x) is

D (p||q) =
∑

x∈X
p(x) log

p(x)
q(x)

.

Fact 2 (Information inequality). Let p(x) and q(x) be probability mass func-
tions of two discrete random variables X,Y : X → R. Then D (p||q) ≥ 0 with
equality if and only if ∀x ∈ X p(x) = q(x).

Fact 3 (Theorem 1 in [7]). Let p(x), q(x) > 0 be probability mass functions
of two discrete random variables X and Y , respectively, defined on the space X .
Then

D (p||q) ≤ 1
ln 2

(

∑

x∈X

p2(x)
q(x)

− 1

)

.

Definition 6 (Mutual information). If X and Y are two discrete random
variables defined on the spaces X and Y, respectively, then the mutual informa-
tion of X and Y is defined as

I (X,Y) =
∑

x∈X

∑

y∈Y
Pr[X = x, Y = y] log

(

Pr[X = x, Y = y]
Pr[X = x] Pr[Y = y]

)

. (7)

Fact 4. For any discrete random variables X,Y

– 0 ≤ I (X,Y) ≤ min{H (X) ,H (Y)} and the first equality holds if and only if
random variables X and Y are independent,

– I (X,Y) = I (Y,X) = H (X) − H (X|Y) = H (Y) − H (Y |X).
– I (X,Y) = D (p(x, y)||p(x)p(y)) where p(x, y) denotes the joint distribution,

and p(x)p(y) the product distribution of X and Y .

Appendix 2: Markov Chains

We recall some definitions and facts from the theory of Markov chains. They can
be found e.g. in [5,13,15]. Unless otherwise stated, we will consider only time-
homogeneous chains, where transition probabilities do not change with time.

190 K. Gotfryd et al.

Definition 7 (Total variation distance). For probability distributions μ and
ν on the space X we define the total variation distance between μ and ν as
dTV (μ, ν) = maxA⊆X |μ(A) − ν(A)|.
Fact 5. Let μ and ν be two probability distributions on common space X . Then
we have dTV (μ, ν) = 1

2

∑

x∈X |μ(x) − ν(x)|.
Definition 8. Let P t(x0, ·) denote the distribution of an ergodic Markov chain
on finite space X in step t when starting in the state x0. Let π be the sta-
tionary distribution of M . We define d(t) = maxx∈X dTV (P t(x, ·), π) and
d̄(t) = maxx,y∈X dTV (P t(x, ·), P t(y, ·)).
Fact 6. Let P be the family of all probability distributions on X . Then

– d(t) ≤ d̄(t) ≤ 2d(t),
– d(t) = supμ∈P dTV (μP t, π) = supμ,ν∈P dTV (μP t, νP t).

Definition 9 (Mixing time). For an ergodic Markov chain M on finite space
X we define the mixing time as tmix (ε) = min{t : d(t) ≤ ε} and tmix = tmix (1/4).

Fact 7. For any ε > 0, tmix (ε) ≤ ⌊

log ε−1
⌋

tmix.

Definition 10 (Random walk). The random walk on a graph G = (V,E)
with n nodes and m edges is a Markov chain on V with transition probabilities

pij = Pr[Xt+1 = vj |Xt = vi] =

{

1/deg (vi) , if {vi, vj} ∈ E,

0, otherwise.

The lazy random walk is the random walk which, in every time t, with probability
1/2 remains in current vertex or performs one step of a simple random walk.

The following Fact 8 gives an upper bound on the mixing time for random
walks. It follows e.g. from Theorem 10.14 in [13] and the properties of cover time
and its relation to mixing time (see [11]).

Fact 8. For a lazy random walk on an arbitrary connected graph G with n ver-
tices tmix = O

(

n3
)

.

Fact 9 (cf. [4,5,22]). Let M = (X0,X1, . . .) be an ergodic Markov chain on
finite space X with transition matrix P and stationary distribution π.

– For any two probability distributions μ and ν on space X the relative entropy
D (μP t||νP t) decreases with t, i.e. D (μP t||νP t) ≥ D

(

μP t+1||νP t+1
)

.
– For any initial distribution μ the relative entropy D (μP t||π) decreases with

t. Furthermore, limt→∞ D (μP t||π) = 0.
– The conditional entropy H (X0|Xt) is increasing in t.

On Location Hiding in Distributed Systems 191

References

1. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks,
universal traversal sequences, and the complexity of maze problems. In: FOCS, pp.
218–223 (1979)

2. Alon, N., Avin, C., Koucký, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many random
walks are faster than one. Comb. Probab. Comput. 20(4), 481–502 (2011)

3. Boyd, S.P., Diaconis, P., Xiao, L.: Fastest mixing Markov chain on a graph. SIAM
Rev. 46(4), 667–689 (2004)

4. Cover, T.M.: Which processes satisfy the second law. In: Halliwell, J.J., Pérez-
Mercader, J., Zurek, W.H. (eds.) PhysicaL Origins of Time Asymmetry, pp. 98–107
(1994)

5. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley,
Hoboken (2006)

6. Dı́az, C.: Anonymity metrics revisited. In: Anonymous Communication and Its
Applications, 09–14 October 2005 (2005)

7. Dragomir, S., Scholz, M., Sunde, J.: Some upper bounds for relative entropy and
applications. Comput. Math. Appl. 39(9), 91–100 (2000)

8. Efremenko, K., Reingold, O.: How well do random walks parallelize? In: Dinur,
I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX/RANDOM - 2009. LNCS,
vol. 5687, pp. 476–489. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03685-9 36

9. Elsässer, R., Sauerwald, T.: Tight bounds for the cover time of multiple random
walks. Theor. Comput. Sci. 412(24), 2623–2641 (2011)

10. Feige, U.: A tight lower bound on the cover time for random walks on graphs.
Random Struct. Algorithms 6(4), 433–438 (1995)

11. Feige, U.: A tight upper bound on the cover time for random walks on graphs.
Random Struct. Algorithms 6(1), 51–54 (1995)

12. Gao, K., Zhu, Y., Gong, S., Tan, H.: Location privacy protection algorithm for
mobile networks. EURASIP J. Wirel. Commun. Netw. 2016(1), 205 (2016)

13. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. AMS,
Providence (2009)

14. Li, M., Zhu, H., Gao, Z., Chen, S., Yu, L., Hu, S., Ren, K.: All your location are
belong to us: breaking mobile social networks for automated user location tracking.
In: MobiHoc, pp. 43–52. ACM, New York (2014)

15. Lovász, L.: Random walks on graphs: a survey. Comb. Paul Erdos Eighty 2(1),
1–46 (1993)

16. Niroj Kumar Pani, B.K.R., Mishra, S.: A topology-hiding secure on-demand rout-
ing protocol for wireless ad hoc network. Int. J. Comput. Appl. 144(4), 42–50
(2016)

17. Nonaka, Y., Ono, H., Sadakane, K., Yamashita, M.: The hitting and cover times
of metropolis walks. Theor. Comput. Sci. 411(16–18), 1889–1894 (2010)

18. Pfitzmann, A., Köhntopp, M.: Anonymity, unobservability, and pseudonymity —
a proposal for terminology. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 1–9. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44702-4 1

19. Pham, A., Huguenin, K., Bilogrevic, I., Hubaux, J.P.: Secure and private proofs
for location-based activity summaries in urban areas. In: UbiComp, pp. 751–762.
ACM, New York (2014)

https://doi.org/10.1007/978-3-642-03685-9_36
https://doi.org/10.1007/978-3-642-03685-9_36
https://doi.org/10.1007/3-540-44702-4_1
https://doi.org/10.1007/3-540-44702-4_1

192 K. Gotfryd et al.

20. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
3rd Edition: The Art of Scientific Computing, 3rd edn. Cambridge University Press,
New York (2007)

21. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17 (2008)
22. Rényi, A.: On measures of entropy and information. In: Proceedings of the Fourth

Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 547–
561. University of California Press (1961)

23. Sun, J., Boyd, S.P., Xiao, L., Diaconis, P.: The fastest mixing markov process on
a graph and a connection to a maximum variance unfolding problem. SIAM Rev.
48(4), 681–699 (2006)

24. Zhang, Y., Yan, T., Tian, J., Hu, Q., Wang, G., Li, Z.: TOHIP: a topology-hiding
multipath routing protocol in mobile ad hoc networks. Ad Hoc Netw. 21, 109–122
(2014)

Probabilistic Algorithms

Parallel Search with No Coordination

Amos Korman1(B) and Yoav Rodeh2

1 CNRS, University Paris Diderot, Paris, France
amos.korman@irif.fr

2 Weizmann Institute of Science, Rehovot, Israel

Abstract. We consider a parallel version of a classical Bayesian search
problem. k agents are looking for a treasure that is placed in one of the
boxes indexed by N

+ according to a known distribution p. The aim is to
minimize the expected time until the first agent finds it. Searchers run in
parallel where at each time step each searcher can “peek” into a box. A
basic family of algorithms which are inherently robust is non-coordinating
algorithms. Such algorithms act independently at each searcher, differ-
ing only by their probabilistic choices. We are interested in the price
incurred by employing such algorithms when compared with the case of
full coordination.

We first show that there exists a non-coordination algorithm, that
knowing only the relative likelihood of boxes according to p, has expected
running time of at most 10 + 4(1 + 1

k
)2T , where T is the expected

running time of the best fully coordinated algorithm. This result is
obtained by applying a refined version of the main algorithm suggested by
Fraigniaud, Korman and Rodeh in STOC’16, which was designed for the
context of linear parallel search.

We then describe an optimal non-coordinating algorithm for the case
where the distribution p is known. The running time of this algorithm
is difficult to analyse in general, but we calculate it for several exam-
ples. In the case where p is uniform over a finite set of boxes, then the
algorithm just checks boxes uniformly at random among all non-checked
boxes and is essentially 2 times worse than the coordinating algorithm.
We also show simple algorithms for Pareto distributions over M boxes.
That is, in the case where p(x) ∼ 1/xb for 0 < b < 1, we suggest the fol-
lowing algorithm: at step t choose uniformly from the boxes unchecked
in {1, . . . , min(M, �t/σ�)}, where σ = b/(b + k − 1). It turns out this
algorithm is asymptotically optimal, and runs about 2 + b times worse
than the case of full coordination.

1 Introduction

We consider a parallel variant of the classical Bayesian search problem, typically
attributed to Blackwell [6]. A treasure is placed in one of the boxes indexed by N

+

This work has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 648032).

c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 195–211, 2017.
https://doi.org/10.1007/978-3-319-72050-0_12

196 A. Korman and Y. Rodeh

according to some known distribution p. As p is known, we can assume that the
boxes are ordered so that p is non-increasing. Denote M = max {x | p(x) > 0},
which can be ∞. There are k agents that search for the treasure, aiming to
minimize the expected time until the first one finds it, where looking into a box
takes one unit of time. We shall assume that algorithms know the number of
searchers k.

If coordination is allowed, a simple application of the rearrangement inequal-
ity shows that letting agent i peek into box (t − 1)k + i at time t is an optimal
algorithm (a formal proof can be found in [20]). Denote this algorithm Acord,
and note that its expected running time is

∑
x p(x)�x/k�, giving a speedup of

essentially k compared to just one searcher. However, as simple as this algorithm
is, it is very sensitive to faults of all sorts. For example, if one searcher crashes
at some point during the execution then the searchers may completely miss the
treasure, unless the protocol employs some mechanism for detecting such faults1.

A class of search algorithms which is of particular interest is non-coordinating
algorithms [1,17]. In such an algorithm, all searchers operate independently,
executing the same protocol, differing only in the outcome of the flips of their
random coins. With such a strong restriction on the coordination, one cannot
expect that many search problems could be efficiently parallelized. However,
when such a parallelization can be achieved, the benefit can potentially be high,
not only in terms of saving in communication and overhead in computation,
but also in terms of robustness. To get some intuition, assume that an oblivious
adversary is allowed to crash at most f out of the k searchers at arbitrary points
in time during the execution. To overcome the presence of at most f faults, one
can simply run the non-coordinating algorithm that is designed for the case of
k − f searchers. If the running time of a non-coordinating algorithm without
crashes is T (k), then the running time of the new robust algorithm would be
at most T (k − f). This is because the correct operation as well as the running
time of a non-coordinating algorithm can only improve if more searchers than
planned are actually being used. Note that even when coordination is allowed,
one cannot expect to obtain robustness at a cheaper price since the number of
searchers that remain alive is in the worst case k − f .

For an algorithm A, and k ≥ 2, denote by Tk(A, x) the expected running
time if the treasure is placed at x, when running algorithm A with k searchers.
Note that by “running time” we actually mean the expected number of boxes
peeked into by each searcher, as we are mostly interested in query complexity.
Further, for a distribution p over the boxes, denote the expected time to find
the treasure when it is placed in one of the boxes according to p:

Tp,k(A) =
∑

x

p(x)Tk(A, x)

1 It is actually an interesting and non trivial question to find efficient and robust
algorithms that are allowed to coordinate [8]. Of course, our non-coordinating algo-
rithms fall under this category, but one may potentially improve the running time
by allowing coordination.

Parallel Search with No Coordination 197

In this notation, the expected running time of the optimal coordinating algorithm
is Tp,k(Acord). We are interested in the connection between these two terms, and
specifically in identifying non-coordinating algorithms that minimize the additive
and multiplicative factors a and b such that:

Tp,k(A) ≤ a + bTp,k(Acord)

We remark, for readability’s sake, the subscripts above, as well as most subscripts
in the text that follows, will be dropped when clear from context. Also, the
number of agents k ≥ 2 will be fixed and so omitted from formal statements.
This will many times go for p as well. Also note that there are distributions
where no algorithm can achieve finite running time, such as p(x) = c/x2, where
the expected placement of the treasure is unbounded. We shall therefore always
assume that

∑
x p(x)x < ∞, and so, for example, T(Acord) is always defined.

1.1 Our Results

We first show that there exists a simple and highly efficient algorithm, denoted
Auniversal, which for large k enjoys a multiplicative factor that tends to 4. In this
algorithm, each agent, at phase t, checks two different uniformly chosen boxes of
those it did not check yet in {1, . . . , t(k + 1)}. This algorithm is universal in the
sense that it does not depend on the details of the distribution p, and assumes
only the knowledge of the relative likelihood of the boxes, that is, their order.

Theorem 1. T(Auniversal) ≤ 10 + 4
(
1 − 1

k+1

)2

T(Acord)

Note that this gives improvement over the trivial one searcher for every k. Even
for k = 2 we get that for large enough x, this runs at 8/9’s the time of the lone
searcher.

Algorithm Auniversal remembers all the boxes it checked and so needs memory
which is linear in its running time. We also consider Amemory which at phase t
chooses uniformly two boxes in {1, . . . , tk}. This algorithm uses only logarithmic
memory in its running time, and for large number of searchers performs almost
as well:

Theorem 2. T(Amemory) ≤ 2 + 4T(Acord)

Both algorithms Auniversal and Amemory where actually given in [17] to tackle the
setting of linear search with an adversarially placed treasure. We note, however,
that when applied in our context, the bounds established in [17] only guarantee
that the additive term is some unknown, possibly large constant. To prove that
this constant is in fact small we had to refine the upper bound analysis of [17],
and prove tighter bounds on the Gamma function.

We next present Algorithm A�, that given access to the exact distribution p
(and not only the order of the boxes), gives the optimal expected running time:

Theorem 3. For every non-coordinating algorithm A, T(A�) ≤ T(A).

198 A. Korman and Y. Rodeh

An interesting property satisfied by this algorithm, is that at any time during
the execution, all boxes that previously received a positive probability to be
checked, are now going to be checked with equal probability.

Calculating the running time of A� can become challenging for specific distri-
butions, and the rest of the paper shows a few interesting examples. A simple one
is when p is the uniform distribution over a finite domain. In this case, running
A�, at each step each agent chooses a box uniformly among those it did not check
yet. This natural choice for an algorithm therefore turns out to be optimal, and
yields a multiplicative factor of essentially 2 when compared to Acord (when the
number of searchers is large).

On the other extremity there are exponential distributions. Such distribu-
tions strongly concentrate the probability on the first few boxes, and so a good
algorithm would invest in optimizing the parallel performance on a constant
number of boxes. As we are concerned with non-trivial behavior over many
boxes, we turn our attention to investigate Pareto distribution, which spread
the distribution more gradually.

Specifically, we consider the family of Pareto distributions over M boxes,
thinking of M as large. Here, for some 0 < b < 1, for all x ≤ M , p(x) = I/xb,
where I is the normalization factor, and p(x) = 0 for larger x. While A� is opti-
mal, it is quite complex and difficult to analyse. We present a simple algorithm
Apareto that is asymptotically optimal. In Apareto, at step t, an agent chooses
uniformly from one of the boxes it did not check yet in {1, . . . ,min(M, �t/σ�)},
where σ = b/(b + k − 1).

Theorem 4. For 0 < b < 1,

lim
M→∞

TrM,b
(Apareto)

TrM,b
(Acord)

= kσ(2 − σ) +
k

k + 1
(2 − b)(1 − σ)2.

Furthermore, no non-coordinating algorithm can achieve a better limit bound.

When b is close to 1, then σ ≈ 1/k and the factor becomes (3k − 1)/(k + 1).
For k = 2 this is 5/3 compared to 16/9 achieved by Auniversal, and for large k
this tends to 3 as opposed to 4. For smaller b’s the result is not as clean, but
assuming k is large, then σ ≈ b/k, and we get that the ratio is about 2 + b. This
makes sense, as when b approaches 0, the distribution becomes uniform, where
we already know that this factor is 2 for large k.

Finally, we note that most of our algorithms are very simple and hence
applicable. From the technical point of view, our results illustrate deep connec-
tions between the general probabilistic parallel search setting considered here,
and the setting of parallel linear search studied in [17].

1.2 Related Work

The study of parallel search by non-coordinating algorithms has recently been
advocated by Fraigniaud et al. as a simple way to obtain robustness while avoid-
ing communication overheads [17]. The setting therein, however, differs from

Parallel Search with No Coordination 199

ours by two fundamental characteristics: First, they assumed that the treasure
is placed by an adversary. The second major difference is that they focused on
a linear search setting (see also [4,5,9]), in which the boxes are linearly ordered
and the objective is to find a treasure placed in a box in time that is compared
to its index. That is, if the treasure is placed in index x, then the running time
of the parallel algorithm should be compared to x/k. Although this linear search
setting may seem somewhat specific compared to the setting studied in the cur-
rent paper, it turns out that there are important connections between the two
settings, both in terms of techniques and results. See Sect. 2 for more details.

The case of a single searcher that searches for a randomly pleased treasure has
receives significant amount of attention from the communities of statistics, oper-
ational research and computer science, see e.g., [6,11,21], and has been studied
under various settings, including the case that there are different costs associated
with queries, that queries can be noisy, and that the target may be mobile, see
the book [23]. As we initiate its parallel version, we consider only the most basic
form of the problem, yet, we note that most of our results can be extended to
the case in which weighted costs are associated with queries.

In general, when it comes to parallel search, most of the literature deals with
mobile agents that search graphs of different topologies, and typically employ
some form of communication between themselves. The literature on this subject
is vast, and some good references can be found, e.g., in [2,3,10,16,22]. The
major difference between our setting and the mobile agent setting, is that we
allow “random access” to the different boxes. That is, our searcher can jump
between different boxes at no cost. In other words, our focus is on the query
complexity rather than the move complexity.

Multiple random walkers are a special case of non-coordinating searchers. In a
series of papers [1,7,12,13] several results regarding hitting time, cover time and
mixing times are established, such as a linear speedup for several graph families
including expanders and random graphs. Non-coordinating searchers have also
been studied in the context of the ANTS problem, a parallel variant of the
cow-path problem on the grid [4,19], which was introduced in [14,15] motivated
by applications to central search foraging by desert ants. For example, it was
shown in [14,15] that a speedup of O(k) can be achieved with k non-coordinating
searchers, and that a linear speedup cannot be achieved unless the agents have
some knowledge of k.

Finally, BOINC [18] (Berkeley Open Infrastructure for Network Computing)
is a platform for volunteer computing supporting dozens of projects including the
famous SETI@home analyzing radio signals for identifying signs of extra terres-
trial intelligence. Most projects maintained at BOINC use parallel search mech-
anisms where a central server controls and distributes the work to volunteers.
The framework in this paper is a potential abstraction for projects operated at
platforms similar to BOINC with hundreds of thousands distributed searchers.

200 A. Korman and Y. Rodeh

2 Ordering of Boxes is Known

In [17], the authors consider a somewhat different scenario. The boxes are ordered
linearly by some predefined importance, and the treasure is placed in one of them
by an adversary. In such a situation, a lone searcher will check the boxes accord-
ing to their order, and so box x will be checked by time x. They present algorithm
Auniversal, in which each agent, at phase t, checks two different uniformly chosen
boxes of those it did not check yet in {1, . . . , t(k + 1)}. It is shown there that:

lim sup
x→∞

T(Auniversal, x)
x

=
4k

(k + 1)2

and that it is in fact optimal in this way. That is, in that setting, it has the best
speedup compared to the lone searcher when taking large enough x.

If Auniversal would give this result for all x and not only large ones, it will
solve the case of a randomly placed treasure with surprising efficiency. All one
has to do is set the importance of the boxes according to the likelihood of the
treasure being placed there.

The proof of the next lemma follows a refined analysis of that done in [17],
and shows that the limsup only hides a small additive term:

Lemma 1. For all x, T(Auniversal, x) ≤ 10 + 4k
(k+1)2 x.

A major ingredient in the proof is the following lemma, whose proof appears
in [20].

Lemma 2. For integers b ≥ a ≥ 1, and 0 < φ ≤ 1,
∏b

i=a
i

i+φ ≤ (
a
b

)φ.

Using properties of the Gamma function it is easy to see that the two sides of
the equation are asymptotically equal, but this is not enough to prove our result
as we need the inequality for small a and b as well.

Proof (of Lemma 1). Count the time in steps of size 2, so at each step Auniversal
chooses two new boxes. The algorithm might actually end mid-step, but this just
means that this is an over approximation.

The number of elements the algorithm chooses from at step t is (k + 1)t −
2(t − 1) = (k − 1)t + 2. Box x starts to have some probability of being checked
at time s = �x/(k + 1)�, and for t ≥ s the probability of x not being checked by
time t is:

t∏

i=s

(
1 − 2

(k − 1)i + 2

)k

=

t∏

i=s

(
(k − 1)i

(k − 1)i + 2

)k

=

t∏

i=s

(
i

i + 2
k−1

)k

≤
(

s + 1

t

) 2k
k−1

where the last step is by Lemma 2. Denoting a = 2k/(k − 1) the total running
time for x is then at most (times 2):

s + 2 +
∞∑

t=s+2

(
s + 1

t

)a

Parallel Search with No Coordination 201

As ((s + 1)/t)a is decreasing, we can bound the sum from above by taking the
integral but starting it at s + 1 and not s + 2. This gives the upper bound of:

s + 2 +
∫ ∞

s+1

(
s + 1

t

)a

dt = s + 2 + (s + 1)
∫ ∞

1

t−a dt = s + 2 +
s + 1
a − 1

= 1 + (s + 1)

(

1 +
1

2k
k−1 − 1

)

= 1 +
(⌈

x

k + 1

⌉

+ 1
)(

1 +
k − 1
k + 1

)

≤ 1 +
(

x

k + 1
+ 2

)(
2k

k + 1

)

≤ 5 +
2k

(k + 1)2
s

Multipying by 2 gives the result.
�
Using Lemma 1 the proof of Theorem 1 becomes straightforward, as follows:

Proof.

T(Auniversal) =
∑

x

p(x)Tk(Auniversal, x) ≤ 10 +
4k

(k + 1)2
∑

x

p(x)x

≤ 10 +
4k2

(k + 1)2
∑

x

p(x)
⌈x

k

⌉
= 10 + 4

(

1 − 1
k + 1

)2

T(Acord)

�
At [17], the authors introduce a memory efficient version of Auniversal, which we
present here, slightly altered, as Amemory. In it, each agent, at phase t, checks
two uniformly chosen boxes of those in {1, . . . , kt}.

Lemma 3. For all x, T(Amemory, x) ≤ 2 + 4
⌈

x
k

⌉
.

Proof. The proof proceeds in very similar to that of Lemma 1, yet is in fact a
little simpler. Count the time in steps of size 2.

Box x starts to have some probability of being checked at time s = �x/k�,
and for t ≥ s the probability of x not being checked by time t is:

t∏

i=s

((

1 − 1
ki

)2
)k

≤
t∏

i=s

(

1 − 1
ki + 1

)2k

=
t∏

i=s

(
i

i + 1
k

)2k

≤
(s

t

)2

where the last step is by Lemma 2. The total running time for x is then at most
(times 2):

s + 1 +
∞∑

t=s+1

(s

t

)2

As (s/t)2 is decreasing, we can bound the sum from above by taking the integral
but starting it at s and not s + 1. This gives the upper bound of:

s + 1 +
∫ ∞

s

(s

t

)2

dt = s + 1 + s

∫ ∞

1

1
t2

dt = 2s + 1

Multipying by 2 gives the result.
�

202 A. Korman and Y. Rodeh

Note that for k ≤ 4 Lemma 3 is of no use, as running the trivial one searcher
will do better.

Lemma 3 immediately proves Theorem 2. While Amemory is not optimal as
Auniversal is, as k grows the difference between them grows smaller, and Amemory’s
simplicity and efficiency make it an outstanding candidate for real life purposes.

3 Exact Distribution is Known

Ignoring the small additive term in Theorem 1, as k grows larger we get that
Auniversal is about 4 times worse than the best coordinating algorithm. In the
remainder of the paper we show it is possible to improve on this if the exact
distribution is known.

3.1 Preliminaries

Consider a non-coordinated algorithm A that is running on k agents. Focusing
on just one agent, denote by A(x, t) the probability that by time t, box x was not
already checked by this agent. Hence, the probability that none of the k agents
checked x by time t is A(x, t)k. In fact, as we shall soon see, the information
encoded in this functional view of A is all that is needed to assess its running
time. First note:

Observation 5. The function corresponding to algorithm A satisfies A(x, 0) =
1 for all x. Also, for all x and t ≥ 1:

A(x, t) = A(x, t − 1) · Pr
[
x wasn’t checked
at time t

∣
∣
∣
∣
x wasn’t checked
prior to time t

]

Let us now consider such functions on their own, possibly without a corre-
sponding algorithm. Let2 N : N+ × N → [0, 1]. For time t, denote:

CN (t) =
∑

x

1 − N(x, t)

In the case of an algorithm A, CA(t) is the expected number of elements that
were checked by time t by just one of the searchers running A, and is therefore
at most t. We say that N satisfies the column requirement at time t if CN (t) ≤ t.
Also, define the set of valid functions as:

V =
{
N : N+ × N → [0, 1]

∣
∣ ∀t, CN (t) ≤ t

}

and so functions corresponding to algorithms are always valid. Finally, the “run-
ning time” of N :

Tp,k(N) =
∑

x

p(x)
∑

t

N(x, t)k =
∑

t

∑

x

p(x)N(x, t)k

2 The letter N stands for “probability of not being checked up to time”.

Parallel Search with No Coordination 203

The sum on t is from 0 to ∞, and these limits will be omitted whenever clear
from context. This is clearly defined so that T(A) is indeed the expected running
time of algorithm A, as

T(A, x) =
∑

t

Pr [xwasn’t found by time t] =
∑

t

A(x, t)k.

To lower bound the running time of algorithms, we find the optimal N ∈ V,
in the sense that it minimizes T(N). For that, we introduce a generalized version
of the main Lemma of [17] which we prove in [20]. At this point we only need a
very simple version of the lemma, yet we present it in its full glory, as we will
need it later in the paper. The current version improves on the original lemma of
[17] as it applies to general measurable functions, instead of only continuous and
bounded ones. In addition, the measure theoretic proof is much more elegant
and concise than the original one.

3.2 Main Lemma

The notation that follows is in measure theory style. Fix some k ≥ 2 and let
(X,X , μ) be a measure space. For T ≥ 0, denote by V (T) the set of measurable
functions f : X → [0, 1] such that

∫
1 − f dμ ≤ T . For a measurable function

c : X → [0,∞), and α ≥ 0 define the function fc,α : X → [0, 1] as:

fc,α(x) =

{
1 c(x) = 0

min
(
1, αc(x)− 1

k−1

)
otherwise

Lemma 4. For a given c and T as above, if there is some h ∈ V (T) such that∫
chk dμ < ∞, then there exists α ≥ 0, such that fc,α ∈ V (T), and for every

g ∈ V (T),
∫

cfk
c,α dμ ≤ ∫

cgk dμ. Furthermore, this α is minimal among those
satisfying fc,α ∈ V (T).

Towards finding the optimal N ∈ V, fix some t, and then N ∈ V, means
∑

x 1 −
N(x, t) ≤ t, and the aim is to minimize

∑
x p(x)N(x, t)k. As this can be done

for each t completely separately, Lemma 4 comes into play.

Lemma 5. The following function L is in V, and achieves minimal T(·) over
all valid functions.

Lp,k(x, t) =

{
1 p(x) = 0
min(1, α(t)q(x)) otherwise

where q(x) = p(x)− 1
k−1 , and for all t, α(t) ≥ 0 is the minimal such that Lp,k ∈ V.

Proof. Fix t. Setting X = N
+ with the trivial measure μ(x) = 1 for all x, T = t

and c = p, Lemma 4 gives the values of the optimal N for this specific t. To
check the condition of the lemma, take the constant function h(x) = 1. Clearly
h ∈ V (t), and

∫
chk dμ =

∑
x p(x) = 1 < ∞.
�

204 A. Korman and Y. Rodeh

The following basically says that L, if thought of as an algorithm, never
rechecks a box.

Observation 6. For every t < M , CL(t) = t, and for t ≥ M , L(x, t) = 0
everywhere.

Proof. For t ≥ M , α(t) = 0 satisfies the column requirement, and is as required.
Next assume that 0 < t < M . Clearly, in this case α(t) �= 0, as otherwise the
column requirement is violated. Assume by contradiction that CL(t) �= t, and
since L is valid this means that CL(t) < t.

Note that since p(x) goes to zero, q(x) goes to infinity, and so there are only
a finite number of x’s where α(t)q(x) < 2. As α(t) > 0, we can reduce it slightly,
and this will only affect the value of L at these x’s. Making this change small
enough, will maintain the inequality CL(t) < t, and keep L valid. As this change
can only decrease L(x, t) at these points, T(L) does not increase. Contradicting
the minimality of α(t).

t→
x↓ 0 1 2 3
1 1 2/5 2/11 0
2 1 3/5 3/11 0
3 1 1 6/11 0

As an illustration consider a simple example:
k = 2, p(1) = 1/2, p(2) = 1/3, and p(3) = 1/6.
In this case, q(1) = 2, q(2) = 3 and q(3) = 6,
and some quick calculations show that α(1) = 1/5,
α(2) = 1/11, and α(3) = 0. From these we get
the matrix L on the right. Note that Observation
6 holds, as the sum of column t is indeed equal to
M − t.

3.3 Optimal Algorithm

Although it may seem that every valid function N has a corresponding algo-
rithm, it is not at all clear, because the conditional probabilities arising from
Observation 5 quickly become complicated for general N . However, it turns out
that because of the specific structure L has, there is in fact an algorithm that
has it as its function.

For instance, a corresponding algorithm for the example above is: (1) choose
box 1 w.p. 0.6, and otherwise choose box 2. (2) choose box 3 w.p. 5/11, and
otherwise the unchosen box of 1 and 2. (3) choose the last remaining box. Note
especially step (2), where the remaining probability of 6/11 is used to check
the unchosen box B from 1 and 2, and indeed, by Observation 5, (2/11)/0.4 =
(3/11)/0.6 = 5/11, which is the probability of not checking B given that it was
not checked up to this point.

In this section we present Algorithm A�, which given p, calculates the function
L, and randomly chooses boxes so as to get L as its function. Based on Lemma
5, this will show that T(A�) ≤ T(A) for every non-coordinating algorithm A, and
hence establish Theorem 3.

We next provide an intuitive explanation for why A� implements L(x, t). At
step t, the first thing A� does is calculate the values of L(x, t) for all x, so that it

Parallel Search with No Coordination 205

Algorithm A�

ac(0) ← 0
for t ← 1 to M do

y ← ac(t − 1) � Calculate ac(t)
while y < M and

∑y+1
x=1 1 − q(x)/q(y) ≤ t do

y ← y + 1

ac(t) ← y
α(t) ← (ac(t) − t)/

∑
x≤ac(t) q(x) � Calculate α(t)

from unchecked boxes x ≤ ac(t) � Choose one box
if x ≤ ac(t − 1) then

Check x w.p. 1 − α(t)/α(t − 1)
else

Check x w.p. 1 − α(t)q(x)

can recreate them with its random choices. For that it needs to calculate α(t),
which by Observation 6 means solve the equation:

t =
∑

x

1 − L(x, t) =
∑

x

1 − min(1, α(t)q(x)) (1)

The first step is to figure out which x’s actually contribute something to this
sum. Say box x is active at time t if L(x, t) < 1. As L is non-decreasing in x,
there is some ac(t), s.t. the set of active boxes at time t is {1, . . . , ac(t)}. To
calculate ac(t), A� gradually decreases α(t), while keeping the column require-
ment satisfied. The point is, x is active when α(t) < 1/q(x), and so to see who
is active, it needs to only check α(t) = 1/q(1), 1/q(2), Once ac(t) is found,
solving (1) and finding α(t) is straightforward.

Now that L(x, t) is calculated, A� randomly chooses a box to check according
to it, using the fact that up to this point, the probability that box x was not
checked is L(x, t − 1). If a box was not active, and now is, then clearly it should
be checked with probability 1 − q(x)α(t). If it was already active, then it should
change from q(x)α(t − 1) to q(x)α(t), which by Observation 5 means it should
be checked with probability 1−α(t)/α(t−1). Fortunately, all these probabilities
sum up to 1.

We next formalize the aforementioned intuitive description thus establishing
the optimality of A�.

Proof (of Theorem 3). As mentioned, based on Lemma 5, it is enough to prove
that indeed A� implements L(x, t). First, A� calculates α(t) and ac(t). Note that
y ≤ ac(t) iff α(t) < 1/q(y), and so, to calculate ac(t), it is enough to check
values for α(t) that are equal to 1/q(y) for y > ac(t − 1). Once we know ac(t),
by Observation 6:

t =
∑

x≤ac(t)

1 − α(t)q(x)

Solving this for α(t) is what the algorithm does.

206 A. Korman and Y. Rodeh

To show that the next part of A� is at all valid, we show that the probabilities
of each step add up to at most 1. The number of boxes that were already active
at t − 1, and were not checked yet at time t is ac(t − 1) − (t − 1). So, summing
all the probabilities of the different boxes:

(ac(t − 1) − t + 1)
(

1 − α(t)
α(t − 1)

)

+
∑

ac(t−1)<x≤ac(t)

1 − α(t)q(x) (2)

By Observation 6:
∑

x≤ac(t−1)

1 − α(t − 1)q(x) = t − 1 =⇒
∑

x≤ac(t−1)

α(t − 1)q(x) = ac(t − 1) − t + 1

Plugging this is (2):
∑

x≤ac(t−1)

(α(t − 1) − α(t))q(x) +
∑

ac(t−1)<x≤ac(t)

1 − α(t)q(x)

=
∑

x≤ac(t)

1 − α(t)q(x) −
∑

x≤ac(t−1)

1 − α(t − 1)q(x)

By Observation 6 the first sum is t and the second is t − 1, and so the sum of
probabilities is indeed 1.

The last bit is to show that indeed A� = L. This is proved by induction on
t. For t = 0, L(x, 1) = A�(x, 1) for all x. Assume equality for t − 1 and we prove
it for t. For x ≤ ac(t − 1), A�(x, t − 1) = L(x, t − 1) = α(t − 1)q(x). Using
Observation 5:

A�(x, t) = A�(x, t − 1) · α(t)
α(t − 1)

= α(t − 1)q(x) · α(t)
α(t − 1)

= L(x, t)

For ac(t − 1) < x ≤ ac(t), it is straightforward.
�
As an interesting side note, observe that at each step, all previously active

yet unchecked boxes get the same probability of being checked. Moreover, this
probability does not depend at all at the previous choices made by the algorithm.
This point sounds counter-intuitive from a Bayesian point of view, as we would
expect a rescaling of the probabilities that differs according to the history we’ve
already seen.

An important point is that A� has at each step a finite set of boxes to choose
from. As p goes to 0, q goes to infinity, and so if there are an infinite number
of active boxes, then α must be 0, but that means that all boxes were surely
checked.

How does algorithm A� look for example distributions, and how does it com-
pare to Auniversal? In general it is quite difficult to analyse the exact running
time of this algorithm, but sometimes it can be done, as we shall see.

Parallel Search with No Coordination 207

3.4 Uniform Distribution

The first example that comes to mind is when the treasure is uniformly placed
in one of the boxes {1, . . . ,M}. As q(x) is equal for all boxes, an agent running
A� will at the first step choose among them uniformly, and continue to do so
at each step, choosing from those that it did not check yet. This algorithm is
the most natural choice in this case, and indeed, by Theorem 3 it is optimal.
Analysis is simple, and we do approximate it here for the case where M � k:

T(A�) =
M∑

t=0

Pr [not found by time t] =
M∑

t=0

t−1∏

i=0

(

1 − 1
M − i

)k

=

M∑

t=0

t−1∏

i=0

(
M − i − 1

M − i

)k

=
M∑

t=0

(
M − t

M

)k

=
1

Mk

M∑

i=0

ik ≈ 1
Mk

Mk+1

k + 1
=

M

k + 1

Note that with coordination, the expected running time would be about M/2k,
so we lose about a factor of 2 by non-coordination as opposed to 4 in the case
of Algorithm Auniversal. This algorithm is memory intensive, yet if we choose to
simplify and just choose uniformly at random a box from all boxes at each step,
we get that the running time is practically the same for large M :

∞∑

t=0

(

1 − 1
M

)kt

=
1

1 − (
1 − 1

M

)k
≈ M

k

4 Pareto Distributions

A� is optimal, but it is a complex algorithm. For a large family of Pareto distri-
butions we present a simplified algorithm that approximates the performance of
A� well. Let rb,M be the Pareto distribution with parameter b > 0 on M boxes.
Denote b(x) = 1/xb, and then rb,M (x) = I/b(x), where I = 1/

∑M
x=1 b(x) is the

normalization factor. Note that the function b(·) will be important on its own
right. We will especially be interested in the case3 where b < 1, as when M
grows, the fraction of the weight any specific box has goes to 0. For b > 1 that
is not true, and so we are left with too little leeway for simplifying A�.

In Algorithm Apareto, each agent, at its t-th step, chooses uniformly from
one of the boxes it did not check yet in {1, . . . ,min(M, �t/σ�)}, where σ =
b/(b + k − 1). While Apareto is not optimal, asymptotically it is. All missing
proofs of the section appear in [20]. In what follows, o(1) means an expression
that tends to 0 as M goes to infinity.
3 In fact, our lower bound result also hold for b = 1, but our upper bound proof does

not work for this case. However, we strongly believe the theorem to be true for b = 1
as well.

208 A. Korman and Y. Rodeh

4.1 Lower Bound

The lower bound part of Theorem 4 is proved for all non-coordinating algorithms.
For that, instead of the set of functions in V, we consider a more general class
of functions and so lower bound the original question. For a measurable set X
denote:

F(X) = {N : X × [0,∞] → [0, 1] | N(·, t)is measurable for every fixed t}
For an N ∈ F(X), we say that N satisfies the column requirements if for all t:
CN (t) =

∫
X

1 − N(x, t) dx ≤ t. Such a function is called valid, and V(X) is the
set of all valid functions. Given an integer k ≥ 2 and some measurable function
p : X → [0,∞), define:

Up,k(N) =
∫ ∞

0

∫

X

p(x)N(x, t)k dxdt

This is a sort of equivalent of the T of algorithms, but is “unnormalized”, as p is
not necessarily a distribution. The following claim shows a connection between
algorithms and functions:

Proposition 1. For every distribution p on {1, 2, . . . ,M} and algorithm A on
the M boxes, there is a function N ∈ V([1,M +1]) such that Up′,k(N) ≤ Tp,k(A),
where p′ : [1,M + 1] → [0,∞) is any non-increasing measurable function that
agrees with p.

It is proved quite directly by taking N(x, t) = A(�x�, �t�). This shows that lower
bounding the “running time” of functions in V([1,M + 1]) will lower bound the
running time of algorithms on M boxes. Next, fix some 0 < b < 1, and so the
function b(x) = 1/xb.

Observation 7. Let X be a finite interval of R+. Among all functions of N ∈
V(X) there is one that minimizes Ub,k(N). Denote it OPTb,X .

The proof of this observation uses the full power of Lemma 4 by finding the
optimal function of x for each specific t, in a very similar way to the optimality
proof of A�. Next, we introduce the important tool of zooming, which is used a
couple of times in what follows.

Definition 1. Given some N ∈ F(X) and u, v > 0, define the zooming of N by
(u, v) as: N−→u,v(x, t) = N(x/u, t/v), where N−→u,v(x, t) ∈ F(uX).

The intuitive meaning of it is that the algorithm is expanded to work on a
domain of size u times the original one, and slowed down by a factor of v. What
happens to the column requirement integrals and to the time?

Lemma 6. For N ∈ F(X) and u, v > 0, U(N−→u,v) = u1−bvU(N), and for all t,
CN−−→u,v

(t) = uCN

(
t
v

)
.

This Lemma reduces our question to the running time of a specific set of optimal
functions:

Parallel Search with No Coordination 209

Lemma 7. For any Algorithm A that works on M boxes, denoting r = rb,M ,
and ε = 1/(M + 1):

Tr(A)
Tr(Acord)

≥ (1 − o(1)) · k(2 − b) · Ub(OPT[ε,1])

To use Lemma 7 one should figure out who is OPT[ε,1]. This is possible using
Lemma 4, but the equations that calculate α(t) are differential and it is not
clear how to solve them. However, assuming M is large, we can trick our way
out of this via a clever use of zooming, and so reduce the problem to calculating
OPT(0,1] which is much simpler. Denote OPT = OPT(0,1]. Then:

Lemma 8. limε→0

(
U(OPT[ε,1])/U(OPT)

)
= 1

All that is left to do, is figure out OPT and calculate its running time:

Lemma 9. Denote σ = b/(b + k − 1). Then, U(OPT) = σ(2−σ)
2−b + (1−σ)2

k+1 .

Finally, we can prove the lower bound and optimality part of Theorem 4. By
Lemmas 7, 8 and 9, for every algorithm A:

lim
M→∞

T(A)
T(Acord)

≥ k(2 − b) lim
M→∞

U(OPT[1/(M+1),1]) =

k(2 − b)U(OPT) = kσ(2 − σ) +
k(2 − b)(1 − σ)2

k + 1

4.2 Upper Bound

Below we describe the high level structure of the proof of the upper bound part
of Theorem 4. A simple analysis of Acord and gives:

Lemma 10.

T(Apareto)
T(Acord)

≤ k(2 − b)
M2−b

∑

t

M∑

x=1

1
xb

Apareto(x, t)k

Since Apareto chooses uniformly from a set of unopened boxes at each stage, by
Observation 5, when x is in this set then:

Apareto(x, t) = Apareto(x, t − 1) ·
(

1 − 1
|interval chosen from| − (t − 1)

)

Applying generously and then using Lemma 2, one gets:

Proposition 2.

Apareto(x, t) ≤ (1 + o(1)) ·

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 t < �σx�
(

�σx	
t

) b
k−1 �σx� ≤ t < �σM�

1
1−σ

(
1 − t

M

) (
�σx	
σM

) b
k−1 �σM� ≤ t < M

0 t ≥ M

210 A. Korman and Y. Rodeh

The point of this is that completely ignoring the rounding up operations, this is
exactly OPT(x/M, t/M). Indeed, using very careful needlework math to get rid
of these roundings, we show what would otherwise be a simple claim:

Proposition 3.

1
M2−b

M∑

t=0

M∑

x=1

1
xb

Apareto(x, t)k ≤ (1 + o(1))U(OPT)

Plugging this into Lemma 10 gives:

T(Apareto)
T(Acord)

≤ (1 + o(1))k(2 − b)U(OPT)

Lemma 9 gives the value of U(OPT), and concludes the upper bound proof of
Theorem 4 in exactly the same fashion as the end of the lower bound proof of
this theorem.

References

1. Alon, N., Avin, C., Koucky, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many random
walks are faster than one. In: Proceedings of the Twentieth Annual Symposium on
Parallelism in Algorithms and Architectures, SPAA 2008, New York, NY, USA,
pp. 119–128. ACM (2008)

2. Alpern, S., Fokkink, R., Gasieniec, L.A., Lindelauf, R., Subrahmanian, V.S.
(eds.): Search Theory: A Game Theoretic Perspective. Springer, New York (2013).
https://doi.org/10.1007/978-1-4614-6825-7

3. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. International
Series in Operations Research & Management Science. Springer, Heidelberg (2003).
https://doi.org/10.1007/b100809

4. Baezayates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inf.
Comput. 106(2), 234–252 (1993)

5. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)
6. Blackwell, D.: Notes on Dynamic Programming. Unpublished notes, University of

California, Berkeley (1962)
7. Cooper, C., Frieze, A.M., Radzik, T.: Multiple random walks in random regular

graphs. SIAM J. Discrete Math. 23(4), 1738–1761 (2009)
8. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a

line with faulty robots. In: Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, PODC 2016, New York, NY, USA, pp. 405–414. ACM
(2016)

9. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.M.:
Linear search with terrain-dependent speeds. CoRR, abs/1701.03047 (2017)

10. Das, S.: Mobile agents in distributed computing: network exploration. Bull. Eur.
Assoc. Theor. Comput. Sci. (EATCS) 109, 54–69 (2013)

11. David, A., Shmuel, Z.: Optimal sequential search: a Bayesian approach. Ann. Stat.
13(3), 1213–1221 (1985)

https://doi.org/10.1007/978-1-4614-6825-7
https://doi.org/10.1007/b100809

Parallel Search with No Coordination 211

12. Efremenko, K., Reingold, O.: How well do random walks parallelize? In: Dinur,
I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX/RANDOM -2009. LNCS,
vol. 5687, pp. 476–489. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03685-9 36

13. Elsässer, R., Sauerwald, T.: Tight bounds for the cover time of multiple random
walks. Theor. Comput. Sci. 412(24), 2623–2641 (2011)

14. Feinerman, O., Korman, A.: Memory lower bounds for randomized collabora-
tive search and implications for biology. In: Aguilera, M.K. (ed.) DISC 2012.
LNCS, vol. 7611, pp. 61–75. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33651-5 5

15. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.-S.: Collaborative search on the
plane without communication. In: ACM Symposium on Principles of Distributed
Computing, PODC 2012, Funchal, Madeira, Portugal, 16–18 July 2012, pp. 77–86
(2012)

16. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots. Morgan & Claypool Publishers, San Rafael (2012)

17. Fraigniaud, P., Korman, A., Rodeh, Y.: Parallel exhaustive search without coordi-
nation. In: Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, 18–21 June 2016, pp. 312–323
(2016)

18. BOINC. https://boinc.berkeley.edu/
19. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an opti-

mal randomized algorithm for the cow-path problem. In: Proceedings of the Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1993, Philadel-
phia, PA, USA, pp. 441–447. Society for Industrial and Applied Mathematics
(1993)

20. Korman, A., Rodeh, Y.: Parallel search with no coordination. CoRR,
abs/1705.05704 (2017)

21. Chew, M.C.: A sequential search procedure. Ann. Math. Stat. 38(2), 494–502
(1967)

22. Prencipe, G.: Autonomous mobile robots: a distributed computing perspective. In:
Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSEN-
SORS 2013. LNCS, vol. 8243, pp. 6–21. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-45346-5 2

23. Stone, L.D.: Theory of Optimal Search, 2nd edn. Topics in Operations Research
Series. Military Applications Section (1989)

https://doi.org/10.1007/978-3-642-03685-9_36
https://doi.org/10.1007/978-3-642-03685-9_36
https://doi.org/10.1007/978-3-642-33651-5_5
https://doi.org/10.1007/978-3-642-33651-5_5
https://boinc.berkeley.edu/
https://doi.org/10.1007/978-3-642-45346-5_2
https://doi.org/10.1007/978-3-642-45346-5_2

Monitoring of Domain-Related Problems
in Distributed Data Streams

Pascal Bemmann, Felix Biermeier, Jan Bürmann, Arne Kemper,
Till Knollmann, Steffen Knorr, Nils Kothe, Alexander Mäcker,

Manuel Malatyali(B), Friedhelm Meyer auf der Heide, Sören Riechers,
Johannes Schaefer, and Jannik Sundermeier

Computer Science Department, Heinz Nixdorf Institute, Paderborn University,
Paderborn, Germany

{pbemmann,felixbm,jbuerman,kempera,tillk,stknorr,nkothe,amaecker,
malatya,fmadh,soerenri,jschaef,janniksu}@mail.uni-paderborn.de

Abstract. Consider a network in which n distributed nodes are con-
nected to a single server. Each node continuously observes a data stream
consisting of one value per discrete time step. The server has to continu-
ously monitor a given parameter defined over all information available at
the distributed nodes. That is, in any time step t, it has to compute an
output based on all values currently observed across all streams. To do
so, nodes can send messages to the server and the server can broadcast
messages to the nodes. The objective is the minimisation of communica-
tion while allowing the server to compute the desired output.

We consider monitoring problems related to the domain Dt defined to
be the set of values observed by at least one node at time t. We provide
randomised algorithms for monitoring Dt, (approximations of) the size
|Dt| and the frequencies of all members of Dt. Besides worst-case bounds,
we also obtain improved results when inputs are parameterised accord-
ing to the similarity of observations between consecutive time steps. This
parameterisation allows to exclude inputs with rapid and heavy changes,
which usually lead to the worst-case bounds but might be rather artificial
in certain scenarios.

1 Introduction

Consider a system consisting of a huge amount of nodes such as a distributed
sensor network. Each node continuously observes its environment and measures
information such as temperature, pollution or similar parameters. Given such a
system, we are interested in aggregating information and continuously monitor-
ing properties describing the current status of the system at a central server.

This work was partially supported by the German Research Foundation (DFG)
within the Priority Program “Algorithms for Big Data” (SPP 1736) and by the Fed-
eral Ministry of Education and Research (BMBF) as part of the project “Resilience
by Spontaneous Volunteers Networks for Coping with Emergencies and Disaster”
(RESIBES), (grant nos. 13N13955 to 13N13957).

c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 212–226, 2017.
https://doi.org/10.1007/978-3-319-72050-0_13

Monitoring of Domain-Related Problems in Distributed Data Streams 213

To keep the server’s information up to date, the server and the nodes can com-
municate with each other. In sensor networks, however, the amount of such
communication is particularly crucial, as communication translates to energy
consumption, which determines the overall lifetime of the network due to limited
battery capacities. Therefore, algorithms aim at minimizing the communication
required for monitoring the respective parameter at the server.

One very basic parameter is the domain of the system defined to be the val-
ues currently observed across all nodes. We consider different notions related to
the domain and propose algorithms for monitoring the domain itself, (approxi-
mations of) its size and (approximations of) the frequencies of values comprising
the domain, respectively. Each of these parameters can provide useful informa-
tion, e.g. the information about the (approximated) frequency of each value
allows to approximate very precisely the histogram of the observed values, and
this allows to determine (approximations of) several functions of the input, e.g.
heavy hitters, quantiles, top-k, frequency moments or threshold problems.

1.1 Model and Problems

We consider the continuous distributed monitoring setting, introduced by
Cormode et al. [1], in which there are n distributed nodes, each uniquely iden-
tified by an identifier (ID) from the set {1, . . . , n}, connected to a single server.
Each node observes a stream of values over time and at any discrete time step t
node i observes one value vt

i ∈ {1, . . . , Δ}. The server is asked to, at any point t

in time, compute an output f(t) which depends on the values vt′
i (for t′ ≤ t, and

i = 1, . . . , n) observed across all distributed streams up to the current time step
t. The exact definition of f(·) depends on the concrete problems under consider-
ation, which are defined in the section below. For the solution of these problems,
we are usually interested in approximation algorithms. An ε-approximation of
f(t) is an output f̃(t) of the server such that (1 − ε)f(t) ≤ f̃(t) ≤ (1 + ε)f(t).
We call an algorithm that, for each time step, provides an ε-approximation with
probability at least 1− δ, an (ε, δ)-approximation algorithm. To be able to com-
pute the output, the nodes and the server can communicate with each other by
exchanging single cast messages or by broadcast messages sent by the server and
received by all nodes. Both types of communication are instantaneous and have
unit cost per message. That is, sending a single message to one specific node
incurs cost of one and so does one broadcast message. Each message has a size
of O(log Δ + log n + log log 1

δ) bits and will usually, besides a constant number
of control bits, consist of a value from {1, . . . , Δ}, a node ID and an identifier
to distinguish between messages of different instances of an algorithm applied
in parallel (as done when using standard probability amplification techniques).
Having a broadcast channel is an extension to [1], which was originally pro-
posed in [2] and afterwards applied in [7,8]. For ease of presentation, we assume
that not only the server can send broadcast messages, but also the nodes. This
changes the communication cost only by a factor of at most two. Between any
two time steps we allow a communication protocol to take place, which may use
polylogarithmic O(logc n) rounds, for some constant c. The optimisation goal is

214 P. Bemmann et al.

the minimisation of the communication cost, given by the number of exchanged
messages, required to monitor the considered problem.

Monitoring of Domain-Related Functions. In this paper, we consider the
monitoring of different problems related to the domain of the network. The
domain at time t is defined as Dt := {v ∈ {1, . . . , Δ} | ∃i with vt

i = v}, the set
of values observed by at least one node at time t. We study the following three
problems related to the domain:

• Domain Monitoring. At any point in time, the server needs to know the
domain of the system as well as a representative node for each value of the
domain. Formally, monitor Dt = {v1, . . . , v|Dt|} ⊆ {1, . . . , Δ}, at any point t
in time. Also, maintain a sequence Rt = (j1, . . . , jΔ) of nodes such that for
all observed values v ∈ Dt a representative i is determined with jv = i and
vt

i = v. For each value v /∈ Dt which is not observed, no representative is
given and jv = nil.

• Frequency Monitoring. For each v ∈ Dt monitor the frequency |Nv
t | of

nodes in Nv
t := {i ∈ {1, . . . , n} | vt

i = v} that observed v at t, i.e. the number
of nodes currently observing v.

• Count Distinct Monitoring. Monitor |Dt|, i.e. the number of distinct val-
ues observed at time t.

We provide an exact algorithm for the Domain Monitoring Problem and (ε, δ)-
approximations for the Frequency and Count Distinct Monitoring Problem.

1.2 Our Contribution

For the Domain Monitoring Problem, an algorithm which uses Θ(
∑

t∈T |Dt|)
messages in expectation for T time steps is given in Sect. 2. This is asymptotically
optimal in the worst-case in which Dt ∩ Dt+1 = ∅ holds for all t ∈ T . We also
provide an algorithm and an analysis based on the minimum possible number
R∗ of changes of representatives for a given input. It exploits situations where
Dt ∩ Dt+1 �= ∅ and uses O(log n · R∗) messages in expectation.

For an (ε,δ)-approximation of the Frequency Monitoring Problem for T time
steps, we first provide an algorithm using Θ(

∑
t∈T |Dt| 1

ε2 log |Dt|
δ) messages

in expectation in Sect. 3. We then improve this bound for instances in which
observations between consecutive steps have a certain similarity. That is, for
inputs fulfilling the property that for all v ∈ {1, . . . , Δ} and some σ ≤ 1/2,
the number of nodes observing v does not change by a factor larger than σ
between consecutive time steps, we provide an algorithm that uses an expected
amount of O(|D1|(max(δ, σ)T + 1) 1

ε2 log |D1|
δ) messages. In Sect. 4, we provide

an algorithm using Θ(T · 1
ε2 log 1

δ) messages in expectation for the Count Dis-
tinct Monitoring Problem for T time steps. For instances which exhibit a cer-
tain similarity an algorithm is presented which monitors the problem using
Θ

(
(1 + T · max{2σ, δ}) log(n)·R∗

dmin·ε2 log 1
δ

)
messages in expectation, where dmin

denotes the minimal size of |Dt| within T time steps.

Monitoring of Domain-Related Problems in Distributed Data Streams 215

1.3 Related Work

The basis of the model considered in this paper is the continuous monitoring
model as introduced by Cormode et al. [1]. In this model, there is a set of n
distributed nodes each observing a stream given by a multiset of items in each
time step. The nodes can communicate with a central server, which in turn has
the task to continuously, at any time t, compute a function f defined over all
data observed across all streams up to time t. The goal is to design protocols
aiming at the minimisation of the number of bits communicated between the
nodes and the server. In [1], the monitoring of several functions is studied in
their (approximate) threshold variants, in which the server has to output 1 if
f ≥ τ and 0 if f ≤ (1 − ε)τ , for given τ and ε. Precisely, algorithms for the
frequency moments Fp =

∑
i mp

i where mi denotes the frequency of item i for
p = 0, 1, 2 are given. F1 represents the simple sum of all items received so far
and F0 the number of distinct items received so far. Since the introduction of the
model, monitoring of several functions has been studied such as the monitoring
of frequencies and ranks by Huang et al. [5]. The frequency of an item i is defined
to be the number of occurrences of i across all streams up to the current time.
The rank of an item i is the number of items smaller than i observed in the
streams. Frequency moments for any p > 2 are considered by Woodruff and
Zhang in [9]. A variant of the Count Distinct Monitoring Problem is considered
by Gibbons and Tirthapura in [4]. The authors study a model in which each
of two nodes receives a stream of items and at the end of the streams a server
is asked to compute F0 based on both streams. A main technical ingredient is
the use of so called public coins, which, once initialized at the nodes, provide
a way to let different nodes observe identical outcomes of random experiments
without further communication. We will adopt this technique in Sect. 4. Note
that the previously mentioned problems are all defined over the items received
so far, which is in contrast to the definition of monitoring problems which we
are going to consider and which are all defined only based on the current time
step. This fact has the implication that in our problems the monitored functions
are no longer monotone, which makes its monitoring more complicated.

Concerning monitoring problems in which the function tracked by the server
only depends on the current time step, there is also some previous work to
mention. In [6], Lam et al. study a setting in which the server needs to know,
at any time, the order type of the values currently observed. That is, the server
needs to know which node observes the largest value, second largest value and so
on at time t. In [10], Yi and Zhang consider a system only consisting of one node
connected to the server. The node continuously observes a d-dimensional vector
of integers from {1, . . . , Δ}. The goal is to keep the server informed about this
vector up to some additive error per component. In [3], Davis et al. consider the
following resource allocation problem: n nodes observe streams of required shares
of a given resource. The server has to assign, to each node, in each time step, a
share of the resource that is as least as large as the required share. The objective
is then given by the minimization of communication necessary for adapting the
assignment of the resource over time.

216 P. Bemmann et al.

2 The Domain Monitoring Problem

We start by presenting an algorithm to solve the Domain Monitoring Problem for
a single time step. We analyse the communication cost using standard worst-case
analysis and show tight bounds. By applying the algorithm for each time step,
we then obtain tight bounds for monitoring the domain for any T time steps.
The basic idea of the protocol as given in Algorithm 1 is quite simple: Applied
at a time t with a value v ∈ {1, . . . , Δ}, the server gets informed whether v ∈ Dt

holds or not. To do so, each node i with vt
i = v essentially draws a value from

a geometric distribution and then those nodes having drawn the largest such
value send broadcast messages. By this, one can show that in expectation only
a constant number of messages is sent.

Furthermore, if applied with v = nil, the server can decide whether v′ ∈ Dt

for all v′ ∈ {1, . . . , Δ} at once with Θ(|Dt|) messages in expectation. To this end,
for each v′ ∈ {1, . . . , Δ} independently, the nodes i with vt

i = v′ drawing the
largest value from the geometric distribution send broadcast messages. In the
presentation of Algorithm 1, we assume that vt

i = v is always true if v = nil. Also,
in order to apply it to a subset of nodes, we assume that each node maintains
a value statusi ∈ {0, 1} and only nodes i take part in the protocol for which
statusi = status holds.

Algorithm 1. ConstantResponse(v, status) [for fixed time t]
1. Each node i for which statusi = status and

(
v �= nil ⇒ vt

i = v
)

hold, draws a value

ĥi from a geometric distribution with success probability p := 1/2.
2. Let hi = min{log n, ĥi}.
3. Node i broadcasts its value in round log n − hi unless a node i′ with vt

i = vt
i′ has

broadcasted before.

We have the following lemma, which bounds the expected communica-
tion cost of Algorithm 1 and has already appeared in a similar way in [8]
(Lemma III.1).

Lemma 1. Applied for a fixed time t, ConstantResponse(v, 1) uses Θ(1)
messages in expectation if v �= nil and Θ(|Dt|) otherwise.

In order to solve the domain monitoring problem for T time steps, the server
proceeds as follows: In each step t the server calls ConstantResponse(nil, 1) to
identify all values belonging to Dt as well as a valid sequence Rt. By the previous
lemma we then have an overall communication cost of Θ(|Dt|) for each time step
t. For monitoring T time steps, the cost is Θ(

∑
t∈T |Dt|). This is asymptotically

optimal in the worst-case since on instances where Dt ∩ Dt+1 = ∅ for all t, any
algorithm has cost Ω(

∑
t∈T |Dt|).

Theorem 1. Using ConstantResponse(v, 1), the Domain Monitoring Prob-
lem for T time steps can be solved using Θ(

∑
t∈T |Dt|) messages in expectation.

Monitoring of Domain-Related Problems in Distributed Data Streams 217

A Parameterised Analysis

Despite the optimality of the result, the strategy of computing a new solution
from scratch in each time step seems unwise and the analysis does not seem
to capture the essence of the problem properly. It often might be the case that
there are some similarities between values observed in consecutive time steps
and particularly, that Dt ∩ Dt+1 �= ∅. In this case, there might be the chance
to keep a representative for several consecutive time steps, which should be
exploited. Due to these observations we next define a parameter describing this
behavior and provide a parameterised analysis. To this end, we consider the
number of component-wise differences in the sequences of nodes Rt−1 and Rt

and call this difference the number of changes of representatives in time step t.
Let R∗ denote the minimum possible number of changes of representatives (over
all considered time steps T). The formal description of our algorithm is given in
Algorithm 2. Roughly speaking, the algorithm defines, for each value v, phases,
where a phase is defined as a maximal time interval during which there exists one
node observing value v throughout the entire interval. Whenever a node being
a representative for v changes its observation, it informs the server so that a
new representative can be chosen (from those observing v throughout the entire
phase, which is indicated by statusi = 1). If no new representative is found
this way, the server tries to find a new representative among those observing v
and for which statusi = 0 and ends the current phase. Additionally, if a node
observes a value v at time t for which v /∈ Dt, a new representative is determined
among these nodes. Note that this requires each node to store Dt at any time t
and hence a storage of O(Δ).

Theorem 2. DomainMonitoring as described in Algorithm 2 solves the
Domain Monitoring Problem using O(log n · R∗) messages in expectation, where
R∗ denotes the minimum possible number of changes of representatives.

Proof. We consider each value v ∈ ⋃
t Dt separately. Let Nt1,t2 := {i | vt

i =
v ∀t1 ≤ t ≤ t2} denote the set of nodes that observe the value v at each point
in time t with t1 ≤ t ≤ t2. Consider a fixed phase for v and let t1 and t2 be the
points in time where the phase starts and ends, respectively. A phase only ends
in Step 3), hence there was no response from ConstantResponse(v, 1), which
implies Nv

t1,t2 = ∅. Thus, to each phase for v we can associate a cost of at least
one to R∗ and this holds for each v ∈ ⋃

t Dt. Therefore, R∗ is at least the overall
number of phases of all values.

Next we analyze the expected cost of Algorithm 2 during the considered
phase for v. Let w.l.o.g. Nt1 := Nt1,t1 = {1, 2, . . . , k}. With respect to the fixed
phase, only nodes in Nt1 can communicate and the communication is bounded
by the number of changes of the representative for v during the phase. Let t′i
be the first time after t1 at which node i does not observe v. Let the nodes be
sorted such that i < j implies t′i ≥ t′j . Let a1, . . . , am be the nodes Algorithm 2
chooses as representatives in the considered phase. We want to show that E[m] =
O(log k). To this end, partition the set of time steps t′i into groups Gi. Intuitively,
Gi represents the time steps in which the nodes continuously observe value v

218 P. Bemmann et al.

Algorithm 2. DomainMonitoring

(Node i)

1. Define statusi := 1.
2. If at some time t, vt

i �= vt−1
i , then

2.1 If vt
i /∈ Dt−1, set statusi = 0 and apply ConstantResponse(vt

i , 0).
2.2 If vt

i ∈ Dt−1, set statusi = 0. Additionally inform server in case i ∈ Rt−1.
2.3 If server starts a new phase for v = vt

i , set statusi = 1.

(Server)

[Initialisation]
Call ConstantResponse(nil, 1) to define D0 and for each v ∈ D0 choose a represen-
tative uniformly at random from all nodes which have sent v.

[Maintaining Dt and Rt at time t]
Start with Dt = Dt−1 and Rt = Rt−1 and apply the following rules:

• [Current Phase, (try to) find new representative]
If informed by representative of a value v ∈ Dt−1,
1) Call ConstantResponse(v, 1).
2) If node(s) respond(s), choose new representative among the responding sensors

uniformly at random.
3) Else call ConstantResponse(v, 0). End current phase for v and, if there is

no response, delete v from Dt and the respective representative from Rt.
• [If ConstantResponse(v, 0) leads to received message(s), start new phase]

Start a new phase for value v if message from an application of ConstantRe-
sponse(v, 0) (by Step 3) initialised by the server or initialised in Step 2.1. by a
node) is received. Add or replace respective representative in Rt by choosing a
node uniformly at random from those responding to ConstantResponse(v, 0).

since time t1 and the size of the initial set of nodes that observed v is halved i
times. Formally, Gi contains all time steps t�i−1+1, . . . , t�i

(where 	−1 := 0 for
convenience) such that 	i is the largest integer fulfilling |Nt1,t′

�i
| ∈ (k/2i+1, k/2i].

Let Si be the number of changes of representatives in time steps belonging to
Gi. We have E[m] =

∑log k
i=0 E[Si]. Consider a fixed Si. Let Ej be the event that

the j-th representative chosen in time steps belonging to Gi is the first one with
an index in

{
1, . . . , � k

2i+1 �}. Observe that as soon as this happens, the respective
representative will be the last one chosen in a time step belonging to group Gi.

Now, since the algorithm chooses a new representative uniformly at random
from the index set

{
1, . . . , � k

2i �
}
, the probability that it chooses a representative

from
{
1, . . . , � k

2i+1 �} is at least 1/2 except for the first representative of v, where
it might be slightly smaller due to rounding errors. Ej occurs only if the first
j − 1 representatives were each not chosen from this set, i.e. Pr [Ej] ≤ (

1
2

)j−2.
Hence, E[Si] =

∑
j E[Si|Ej] · Pr[Ej] ≤ ∑

j j · (12)j−2 =
∑

j
j

2j−2 = O(1). �

Monitoring of Domain-Related Problems in Distributed Data Streams 219

3 The Frequency Monitoring Problem

In this section we design and analyse an algorithm for the Frequency Monitor-
ing Problem, i.e. to output (an approximation) of the number of nodes currently
observing value v. We start by considering a single time step and present an algo-
rithm which solves the subproblem to output the number of nodes that observe v
within a constant multiplicative error bound. Afterwards, and based on this sub-
problem, a simple sampling algorithm is presented which solves the Frequency
Monitoring Problem for a single time step up to a given (multiplicative) error
bound and with demanded error probability.

While in the previous section we used the algorithm ConstantResponse
with the goal to obtain a representative for a measured value, in this section
we will use the same algorithm to estimate the number of nodes that measure
a certain value v. Observe that the expected maximal height of the geometric
experiment increases with a growing number of nodes observing v. We exploit
this fact and use it to estimate the number of nodes with value v, while still
expecting constant communication cost only. For a given a time step t and a
value v ∈ Dt, we define an algorithm ConstantFactorApproximation as
follows: We apply ConstantResponse(v, 1) with statusi = 1 for all nodes i.
If the server receives the first response in communication round r ≤ log n, the
algorithm outputs ñv

const = 2r as the estimation for |Nv
t |.

We show that we compute a constant factor approximation with constant
probability. Then we amplify this probability using multiple executions of the
algorithm and taking the median (of the executions) as a final result.

Lemma 2. The algorithm ConstantFactorApproximation estimates the
number |Nv

t | of nodes observing the value v at time t up to a factor of 8, i.e.
ñv

const ∈ [|Nv
t |/8, |Nv

t | · 8] with constant probability.

Proof. Let nv be the number of nodes currently observing value v, i.e. nv := |Nv
t |.

Recall that the probability for a single node to draw height h is Pr[hi = h] = 1
2h ,

if h < log n, and Pr[hi = h] = 2
2h , if h = log n. Hence, Pr[hi ≥ h] = 1

2h−1 for all
h ∈ {1, . . . , log n}.

We estimate the probability of the algorithm to fail, by analysing the cases
that ñv

const is larger than log nv + 3 or smaller than log nv − 3.
We start with the first case and by applying a union bound we obtain Pr[∃i :

hi > log nv + 3] ≤ Pr[∃i : hi ≥ �log nv� + 3] = nv · (
1
2

)�log nv�+2 ≤ 1
4 .

For the latter case we bound the probability that each node has drawn a
height strictly smaller than log nv − 3 by Pr[∀i : hi < log nv − 3] ≤ ∏

i Pr[hi <

�log nv� − 3] =
(
1 − 1

2�log nv�−4

)nv

≤ (
1 − 8

nv

)nv

≤ 1
e8 .

Thus, the probability that we compute an 8-approximation is lower bounded
by Pr

[
nv

8 ≤ 2hi ≤ 8nv
]

= 1−(
Pr[∃i : hi > log nv+3]+Pr[∀i : hi < log nv−3]

) ≥
1 − (

1
4 + 1

e8

)
> 0.7 �

220 P. Bemmann et al.

We apply an amplification technique to boost the success probability to arbi-
trary 1 − δ′ using Θ(log 1

δ′) parallel executions of the ConstantFactorAp-
proximation algorithm and choose the median of the intermediate results as
the final output.

Corollary 1. Applying Θ
(
log 1

δ′
)
independent, parallel instances of Constant-

FactorApproximation, we obtain a constant factor approximation of |Nv
t | with

success probability at least 1 − δ′ using Θ
(
log 1

δ′
)
messages in expectation.

To obtain an (ε, δ)-approximation, in Algorithm 3 we first apply the Con-
stantFactorApproximation algorithm to obtain a rough estimate of |Nv

t |.
It is used to compute a probability p, which is broadcasted to the nodes, so
that every node observing value v sends a message with probability p. Since
the ConstantFactorApproximation result ñv

const in the denominator of p
is close to |Nv

t |, the number of messages sent in expectation is independent of
|Nv

t |. The estimated number of nodes observing v is then given by the number
of responding nodes n̄v divided by p, which, in expectation, results in |Nv

t |.

Algorithm 3. EpsilonFactorApprox(v ∈ Dt, ε, δ) [for fixed time t]
(Node i)
1. Receive p from the server.
2. Send a response message with probability p.

(Server)
1. Set δ′ := δ

3

2. Call ConstantFactorApproximation(v, δ′) to obtain ñv
const.

3. Broadcast p = min
(
1, 24

ε2ñv
const

· ln 1
δ′

)
.

4. Receive n̄v messages.
5. Compute and output estimated number of nodes in Nv

t as ñv = n̄v/p.

Lemma 3. The algorithm EpsilonFactorApprox as given in Algorithm 3
provides an (ε,δ)-approximation of |Nv

t |.
Proof. The algorithm obtains a constant factor approximation ñv

const with prob-
ability 1 − δ′. The expected number of messages is E [n̄v] = nv · p.

We start by estimating the conditional probability that more than (1 + ε)nvp
responses are sent under the condition that ñv

const ≤ 8nv and p < 1. In this case
we have p = 24

ε2ñv
const

· ln 1
δ′ ≥ 3

ε2nv · ln 1
δ′ , hence using a Chernoff bound it follows

p1 := Pr [n̄v ≥ (1 + ε)nvp |ñv
const ≤ 8nv ∧ p < 1] ≤ e− ε2

3 nv· 3
ε2nv ·ln 1

δ′ = δ′. Like-
wise the probability that less than (1−ε)nvp messages are sent under the condition
that ñv

const ≤ 8nv and p < 1 is p2 := Pr [n̄v ≤ (1 − ε)nvp |ñv
const ≤ 8nv ∧ p < 1]

≤ e− ε2
2 nv· 3

ε2nv ·ln 1
δ′ ≤ e− 3

2 ln 1
δ′ < δ′. Next consider the case that ñv

const > 8nv and
p < 1 holds. Using Pr [ñv

const > 8nv] ≤ Pr
[
ñv
const > 8nv ∨ ñv

const < nv

8

] ≤ δ′ and
pi · Pr [ñv

const ≤ 8nv] ≤ pi for i ∈ {1, 2}, Pr [(1 − ε)nvp < n̄v < (1 + ε)nvp |p < 1]
≥ 1 − (Pr [ñv

const > 8nv] + (p1 + p2)) ≥ 1 − 3δ′ = 1 − δ. For the last case p = 1,

Monitoring of Domain-Related Problems in Distributed Data Streams 221

we have Pr [(1 − ε)nvp < n̄v < (1 + ε)nvp |p ≥ 1] = 1, by using n̄v = nv. Now,
Pr [(1 − ε)nvp < n̄v < (1 + ε)nvp] ≥ 1 − δ directly follows. �
Lemma 4. Algorithm EpsilonFactorApprox as given in Algorithm 3 uses
Θ(1

ε2 log 1
δ) messages in expectation.

Theorem 3. There exists an algorithm that provides an (ε,δ)-approximation
for the Frequency Monitoring Problem for T time steps with an expected number
of Θ

(∑
t∈T |Dt| 1

ε2 log |Dt|
δ

)
messages.

Proof. In every time step t we first identify Dt by applying ConstantResponse
using Θ (|Dt|) messages in expectation. On every value v ∈ Dt we then per-
form algorithm EpsilonFactorApprox(v,ε, δ

|Dt|), resulting in an amount of

Θ
(
|Dt| 1

ε2 log |Dt|
δ

)
messages in expectation for a single time step, while achiev-

ing a probability (using a union bound) of 1 − |D0|δ
|D0| = 1 − δ that in one time

step the estimations for every v are ε-approximations. Applied for each of the T
time steps, we obtain a bound as claimed. �

A Parameterised Analysis

Applying EpsilonFactorApprox in every time step is a good solution in worst
case scenarios. But if we assume that the change in the set of nodes observing a
value is small in comparison to the size of the set, we can do better.

We extend the EpsilonFactorApprox such that in settings where from
one time step to another only a small fraction σ of nodes change the value
they measure, the amount of communication can be reduced, while the quality
guarantees remain intact. We define σ such that

∀t : σ ≥ |Nv
t−1 \ Nv

t | + |Nv
t \ Nv

t−1|
|Nv

t | .

Note that this also implies that Dt = Dt−1 holds for all time steps t, i.e. the set
of measured values stays the same over time.

The extension is designed so that compared to EpsilonFactorApprox,
also in settings with many changes the solution quality and message complexity
asymptotically does not increase. The idea is the following: For a fixed value v,
in a first time step EpsilonFactorApprox is executed (defining a probability
p in Step 3 of Algorithm 3). In every following time step, up to 1/δ consecutive
time steps, nodes that start or stop measuring a value v send a message to the
server with the same probability p, while nodes that do not observe a change in
their value remain silent. In every time step t, the server uses the accumulated
messages from the first time step and all messages from nodes that started
measuring v in time steps 2 . . . t, while subtracting all messages from nodes that
stopped measuring v in the time steps 2 . . . t. This accumulated message count is
then used similarly as in EpsilonFactorApprox to estimate the total number
of nodes observing v in the current time step. The algorithm starts again if (a)

222 P. Bemmann et al.

1/δ time steps are over, so that the probability of a good estimation remains
good enough, or (b) the sum of estimated nodes to start/stop measuring value v
is too large. The latter is done to ensure that the message probability p remains
fitting to the number of nodes, ensuring a small amount of communication, while
guaranteeing an (ε, δ)-approximation.

Let n+
t , n−

t be the number of nodes that start measuring v in time step t or
that stop measuring it, respectively, i.e. n+

t = |Nv
t \ Nv

t−1|, n−
t = |Nv

t−1 \ Nv
t |,

and n̄+
t and n̄−

t the number of them that sent a message to the server in time
step t. In the following we call nodes contributing to n+

t and n−
t entering and

leaving, respectively.

Algorithm 4. ContinuousEpsilonApprox(v, ε, δ)
(Node i)
1. If t = 1, take part in EpsilonFactorApprox called in Step 2 by the server.
2. If t > 1, broadcast a message with probability p if vt−1

i = v ∧ vt
i �= v

or vt−1
i �= v ∧ vt

i = v.

(Server)
1. Set δ′ := δ2.
2. Set t := 1 and run EpsilonFactorApprox(v, ε/3, δ) to obtain n̄1, p.
3. Output ñ1 = n̄1

p
.

4. Repeat at the beginning of every new time step t > 1:
4.1 Receive messages from nodes changing the observed value to obtain n̄+

t and
n̄−

t .
4.2 Break if t ≥ 1/δ or

(∑t
i=1 n̄+

i +
∑t

i=1 n̄−
i

)
/p ≥ n̄1/2.

4.3 Output ñt =
(
n̄1 +

∑t
i=1 n̄+

i −∑t
i=1 n̄−

i

)
/p.

5. Go to Step 2.

Lemma 5. For any v ∈ D1, the algorithm ContinuousEpsilonApprox pro-
vides an (ε,δ)-approximation of |Nv

t |.
Lemma 6. For a fixed value v and T ′ = min{ 1

2σ , 1
δ }, σ ≤ 1

2 , time steps, Con-
tinuousEpsilonApprox uses Θ

(
1
ε2 log 1

δ

)
messages in expectation.

Theorem 4. There exists an (ε,δ)-approximation algorithm for the Frequency
Monitoring Problem for T consecutive time steps which uses an amount of
Θ

(
|D1| (1 + T · max{2σ, δ}) 1

ε2 log |D1|
δ

)
messages in expectation, if σ ≤ 1/2.

Proof. The algorithm works by first applying ConstantResponse(nil,1) to
obtain D1 and then applying ContinuousEpsilonApprox(v, ε, δ/|D1|) for
every v ∈ D1. By Lemma 5 we know that in every time step and for all v ∈ D1,
the frequency of v is approximated up to a factor of ε with probability 1−δ/|D1|.
We divide the T time steps into intervals of size T ′ = min{ 1

2σ , 1
δ } and perform

ContinuousEpsilonApprox on each of them for every value v ∈ D1. There
are � T

T ′ � ≤ 1 + T · max{2σ, δ} such intervals. For each of those, by Lemma 6

Monitoring of Domain-Related Problems in Distributed Data Streams 223

we need Θ
((

1 + min{ 1
2σ , 1

δ }σ
) · 1/ε2 log |D1|

δ

)
messages in expectation for each

v ∈ D1. This yields a complexity of Θ
(
|D1| (1 + T · max{2σ, δ}) 1

ε2 log |D1|
δ

)
due

to min{ 1
2σ , 1

δ }σ ≤ 1
2σ · σ = Θ(1). Using a union bound over the fail probability

for every v ∈ D1, a success probability of at least 1 − |D1|δ
|D1| = 1 − δ follows. �

By Theorem 3, trivially repeating the single step algorithm EpsilonFac-

torApprox needs Θ
(
T |D1| 1

ε2 log |D1|
δ

)
messages in expectation for T (because

the number of nodes in Nv
t for any v ∈ D1 is at least Nv

1 /2 in every time step of
that interval). Hence, the number of messages sent when using ContinuousEp-
silonApprox is reduced in the order of max{2σ, δ}.

4 The Count Distinct Monitoring Problem

In this section we present an (ε,δ)-approximation algorithm for the Count Dis-
tinct Monitoring Problem. The basic approach is similar to the one presented in
the previous section for monitoring the frequency of each value. That is, we first
estimate |Dt| up to a (small) constant factor and then use the result to define a
protocol for obtaining an (ε, δ)-approximation. If we could assume that, at any
fixed time t, each value was observed by at most one node, it would be possible
to solve this problem with expected communication cost of O(1

ε2 log 1
δ) (per time

step t and per value v ∈ Dt) using the same approach as in the previous section.
Since this assumption is generally not true, we aim at simulating such behaviour
that for each value in the domain only one random experiment is applied. We
apply the concept of public coins, which allows nodes measuring the same value
to observe identical outcomes of their random experiments. To this end, nodes
have access to a shared random string R of fully independent and unbiased bits.
This can be achieved by letting all nodes use the same pseudorandom number
generator with a common starting seed, adding a constant number of messages
to the bounds proven below. We assume that the server sends a new seed in
each phase by only loosing at most a constant factor in the amount of commu-
nication used. However, we can drop this assumption by checking whether there
are nodes that changed their value such that only in rounds in which there are
changes new public randomness is needed. The formal description of the algo-
rithm for a constant factor and an ε-approximation are given in Algorithms 5
and 6, respectively.

We consider the access of the public coin to behave as follows: Initialised with
a seed, a node accesses the sequence of random bits R bitwise, i.e. after reading
the j’th bit, the node next accesses bit j + 1. Observe the crucial fact that as
long as each node accesses the exact same number of bits, each node observes the
exact same random bits simultaneously. Algorithm 5 essentially works as follows:
In a first step, each node draws a number from a geometrical distribution using
the public coin. By this, all nodes observing the same value v obtain the same
height hv. In the second step we apply the strategy as in the previous section
to reduce communication if lots of nodes observe the same value: Each node i

224 P. Bemmann et al.

draws a number gi from a geometrical distribution without using the public coin.
Afterwards, all nodes with the largest height gi among those with the largest
height hv broadcast their height hv.

Algorithm 5. ConstantFactorApproximation [for fixed time t]
(Node i, observes value v = vi)
1. Draw a random number hv as follows:

Consider the next Δ·log n random bits b1, . . . , bΔ·log n from R. Let h be the maximal
number of bits bv·log n+1, . . . , bv·log n+1+h that equal 0. Define hv := min{h, log n}.

2. Let g′
i be a random value drawn from a geometric distribution with success-

probability p = 1/2 and define gi = min(g′
i, log n) (without accessing public coins).

3. Broadcast drawn height hv in round r = log2 n − (hv − 1) · log n − gi unless a node
i′ has broadcasted before.

(Server)
1. Receive a broadcast message containing height h in round r.
2. Output d̂t = 2h.

Note that only (at most n) nodes that observe value v with hv = maxv′ hv′

may send a message in Algorithm 5. Now, all nodes observing the same value
observe the same outcome of their random experiments determining hv. Hence,
by a similar reasoning as in Lemma 2, one execution of the algorithm uses O(1)
messages in expectation.

Using the algorithm given in Algorithm 5 and applying the same idea as in
the previous section, we obtain an (ε, δ)-approximation as given in Algorithm 6:
Each node tosses a coin with a success probability depending on the constant
factor approximation (for which we have a result analogous to Corollary 1).
Again, all nodes use the public coin so that all nodes observing the same value
obtain the same outcome of this coin flip. Afterwards, those nodes which have
observed a success apply the same strategy as in the previous section, that is,
they draw a random value from a geometric distribution, and the nodes having
the largest height send a broadcast.

Using arguments analogous to Lemmas 3 and 4 and applying EpsilonFac-
torApprox for T time steps, we obtain the following theorem.

Theorem 5. There exists an (ε, δ)-approximation algorithm for the Count Dis-
tinct Monitoring Problem for T time steps using O(T · 1

ε2 log 1
δ) messages in

expectation.

A Parameterised Analysis

In this section we consider the problem for multiple time steps and parameterise
the analysis with respect to instances in which the domain does not change arbi-
trarily between consecutive time steps. Recall that for monitoring the frequency
from a time step t−1 to the current time step t, all nodes that left and all nodes

Monitoring of Domain-Related Problems in Distributed Data Streams 225

Algorithm 6. EpsilonFactorApprox [for fixed time t]
(Node i)

1. Flip a coin with success probability p = 2−q = c log 1/δ

ε2d̂t
, q ∈ N as follows:

Consider the next Δ ·q random bits b1, . . . bΔ·q. The experiment is successful if and
only if all random bits bv·q+1, . . . , bv·q+q equal 0. The node deactivates (and does
not take part in Steps 2. and 3.) if the experiment was not successful.

2. Draw a random value h′
i from a geometric distribution and define hi =

min(h′
i, log n) (without accessing public coins).

3. Node i broadcasts its value in round log n − hi unless a node i′ with vt
i = vt

i′ has
broadcasted before.

(Server)
1. Let St be the set of received values.
2. Output d̃t := |St|/p

that entered toss a coin to estimate the number of changes. However, to identify
that a node observes a value which was not observed in the previous time step,
the domain has to be determined exactly.

We apply the following idea instead: For each value v ∈ {1, . . . , Δ} we flip a
(public) coin. We denote the set of values with a successful coin flip as the sample.
Afterwards, the algorithm only proceeds on the values of the sample, i.e. in cases
in which a node observes a value with a successful coin flip and no node observed
this value in previous time steps, this value contributes to the estimate d̃+

t at
time t. Regarding the (sample) of nodes that leave the set of observed values, the
DomainMonitoring algorithm is applied to identify which (sampled) values
are not observed any longer (and thus contribute to d̃−

t). Analogous to Lemma
5, we have the following lemma.

Algorithm 7. ContinuousEpsilonApprox(ε, δ)
1. Compute δ′ = 2 δ2

2. Broadcast a new seed value for the public coin.
3. Compute an (ε, δ′)-approximation d̃1 of |D1| using Algorithm 6. Furthermore,

obtain the success-probability p.
4. Repeat for each time step t > 1:

4.1 Each node i applies Algorithm 2 if the observed value vi is in the sample set.
Let d̂−

t be the number of values (in sample set) which left the domain and d̂+
t

the number of nodes that join the sample.
4.2 Server computes d̃t = d̃1 +

∑t
i=2 d̂+

i /p −∑t
i=2 d̂−

i /p.

4.3 Break if t = 1/δ or
(∑t

i=2 d̃+
i +
∑t

i=2 d̃−
i

)
/p exceeds d̃1/2.

5. Set t = 1 and go to Step 2.

Lemma 7. ContinuousEpsilonApprox achieves an (ε,δ)-approximation of
|Dt| in any time step t.

226 P. Bemmann et al.

For the number of messages, we argue based on the previous section. However,
in addition the DomainMonitoring algorithm is applied. Observe that the size
of the domain changes by at most n/2, and consider the case that this number
of nodes observed the same value v. The expected cost (where the expectation is
taken w.r.t. whether v is within the sample) is O(log n·R∗ ·p) = O(

log n·R∗

dmin·ε2 log 1
δ

)
,

with dmin := mint |Dt|. Similar to Theorem 4, we then obtain this theorem.

Theorem 6. ContinuousEpsilonApprox provides an (ε, δ)-approximation
for the Count Distinct Monitoring Problem for T time steps using an amount of
Θ

(
(1 + T · max{2σ, δ}) log(n)·R∗

dmin·ε2 log 1
δ

)
messages in expectation, if σ ≤ 1/2.

References

1. Cormode, G., Muthukrishnan, S., Yi, K.: Algorithms for distributed functional
monitoring. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 2008), pp. 1076–1085. SIAM (2008)

2. Cormode, G., Muthukrishnan, S., Yi, K.: Algorithms for distributed functional
monitoring. ACM Trans. Algorithms 7(2), 21:1–21:20 (2011)

3. Davis, S., Edmonds, J., Impagliazzo, R.: Online algorithms to minimize resource
reallocations and network communication. In: Dı́az, J., Jansen, K., Rolim, J.D.P.,
Zwick, U. (eds.) APPROX/RANDOM -2006. LNCS, vol. 4110, pp. 104–115.
Springer, Heidelberg (2006). https://doi.org/10.1007/11830924 12

4. Gibbons, P.B., Tirthapura, S.: Estimating simple functions on the union of data
streams. In: Proceedings of the 13th annual ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA 2001), pp. 281–291. ACM (2001)

5. Huang, Z., Yi, K., Zhang, Q.: Randomized algorithms for tracking distributed
count, frequencies, and ranks. In: Proceedings of the 31st ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS 2012), pp. 295–
306. ACM (2012)

6. Lam, T.-W., Liu, C.-M., Ting, H.-F.: Online tracking of the dominance relationship
of distributed multi-dimensional data. In: Jansen, K., Solis-Oba, R. (eds.) WAOA
2010. LNCS, vol. 6534, pp. 178–189. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-18318-8 16

7. Mäcker, A., Malatyali, M., auf der Heide, F.M.: Online Top-k-position monitoring
of distributed data streams. In: Proceedings of the 2015 IEEE International Parallel
and Distributed Processing Symposium (IPDPS 2015), pp. 357–364. IEEE (2015)

8. Mäcker, A., Malatyali, M., auf der Heide, F.M.: On competitive algorithms for
approximations of Top-k-position monitoring of distributed streams. In: Proceed-
ings of the 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS 2016), pp. 700–709. IEEE (2016)

9. Woodruff, D.P., Zhang, Q.: Tight bounds for distributed functional monitoring.
In: Proceedings of the 44th Symposium on Theory of Computing (STOC 2012),
pp. 941–960. ACM (2012)

10. Yi, K., Zhang, Q.: Multidimensional online tracking. ACM Trans. Algorithms 8(2),
12 (2012)

https://doi.org/10.1007/11830924_12
https://doi.org/10.1007/978-3-642-18318-8_16
https://doi.org/10.1007/978-3-642-18318-8_16

Killing Nodes as a Countermeasure
to Virus Expansion

François Bonnet1, Quentin Bramas2(B), Xavier Défago3,
and Thanh Dang Nguyen4

1 Graduate School of Engineering, Osaka University, Suita, Japan
francois@cy2sec.comm.eng.osaka-u.ac.jp

2 Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606,
4 Place Jussieu, 75005 Paris, France

quentin.bramas@lip6.fr
3 School of Computing, Tokyo Institute of Technology, Tokyo, Japan

defago@c.titech.ac.jp
4 University of Chicago, Chicago, USA

thanhnd@uchicago.edu

Abstract. The spread of a virus and the containment of such spread
have been widely studied in the literature. These two problems can be
abstracted as a two-players stochastic game in which one side tries to
spread the infection to the entire system, while the other side aims to
contain the infection to a finite area. Three parameters play a partic-
ularly important role: (1) the probability p of successful infection, (2)
the topology of the network, and (3) the probability α that a strategy
message has priority over the infection.

This paper studies the effect of killing strategies, where a node sacri-
fices itself and possibly some of its neighbors, to contain the spread of
a virus in an infinite grid. Our contribution is threefold: (1) We prove
that the simplest killing strategy is equivalent to the problem of site
percolation; (2) when killing messages have priority, we prove that there
always exists a killing strategy that contains a virus, for any probability
0 ≤ p < 1; in contrast, (3) when killing message do not have priority,
there is not always a successful killing strategy, and we study the virus
propagation for various 0 ≤ α < 1.

1 Introduction

Consider the propagation of a virus in a large distributed system, such as the
Internet, a sensor network, or a social network. An epidemic starts with an arbi-
trary node being initially infected, and then continues with each newly infected
node attempting to infect its neighbors. If nothing is done, all connected nodes
are eventually infected, and the time it takes only depends on the infection rate
(i.e., the probability of success for each infection attempt), the topology of the
network, and the location of the initial node.

Consider now that, upon an unsuccessful infection attempt, the targeted node
has a chance to detect the attempt and react to it. One simple strategy consists
c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 227–243, 2017.
https://doi.org/10.1007/978-3-319-72050-0_14

228 F. Bonnet et al.

in ordering that node to inform its neighbors of the presence of the virus and then
to kill itself. The informed node can have the same behavior so that the infection
can no longer spread through them. The hope is that, given enough nodes are
killed, they could actually isolate the infected nodes from the sane ones, thus
containing the spread of the virus. The chance of this happening depend mainly
on the following factors: (1) the infection rate p, (2) the detection probability,
(3) the probability α that killing messages have priority over the infection, and
(4) the topology of the network. In this paper we suppose that a node always
detect the virus when the infection fails (the detection probability equals 1− p).

Such systems are notoriously known to exhibit a critical threshold, that is,
the spread is almost surely contained if the infection rate is below the threshold,
but is very unlikely otherwise. This is reminiscent of another problem, known as
percolation [2], where the same phase transition occurs.

In this paper, we look at the following question: is there always a strategy to
contains the spread of a virus? We answer this question when the topology of
the network is a grid and for 0 ≤ α ≤ 1.

In our recent work [19], we have studied this question and the impact of sev-
eral containment strategies in various topologies, by relying on extensive simu-
lations. We found that containment strategies do have an impact on the critical
threshold of the system, and so does the topology. In this paper we formalize
and prove some of those observations.

Our Contributions. The contribution of this paper is threefold. First, we show
an equivalence between infection rate threshold with the simplest killing strategy
and percolation threshold for the same topology. Second, we prove that, in the
infinite grid and when killing message have priority, there is always a killing
strategy such that the spread is contained with probability one, for any infection
rate 0 ≤ p < 1. Third, we prove that, in the infinite grid and when killing message
do not have priority, we give a lower bound on the threshold of the infection
probability, above which the virus spreads infinitely with a positive probability.

The rest of the paper is structured as follows. Section 2 gives a brief overview
of the state-of-the-art on epidemic research. Section 3 defines the model, the
topology, and the killing strategies considered in the paper. Section 4 proves the
equivalence between the simplest killing strategy and percolation. Finally, Sect. 5
proves that containment is always possible in an infinite grid, and Sect. 6 shows
a lower bound on the threshold of the infection probability.

2 Related Work

On the Spread of a Virus. Starting from the epidemiology in human commu-
nity, much research has been conducted on propagation. The first mathematical
models appeared in the 18th century, but modern models were essentially devel-
oped in the middle of the 20th century (e.g., [1,12,17]). While original models
did not consider geographic distributions, more recent epidemic models consider
geographic topologies, such as an infinite grid [6]).

Killing Nodes as a Countermeasure to Virus Expansion 229

Kephart and White [10] propose a birth-death model to study the spread of
computer viruses in homogeneous sparse graphs and conclude that a pandemic
occurs only when the infection rate exceeds a finite threshold that depends on
the connectivity of the network (phase transition). They also extend their model
to allow doing a virus scan [11].

Later, many works improve the results on the birth-death model and compute
new epidemic thresholds. Pastor-Satorras and Vespignani [20,21] look at the
dynamics of epidemics in power-law scale free networks for which they find the
critical threshold. Chakrabarti et al. [4] study an epidemic model with recovery
and find that the propagation threshold is related to the eigenvalues of the
adjacency matrix of the network. Lately, Van Mieghem et al. [24,25] use mean
field approximation to transform from individual random infection rates into an
average infection rate. Their model is called N -intertwined Markov chain.

In another direction, after the propagation of Code Red in 2001, many
researches look for the most accurate model to reflect the spread of different
kinds of viruses in the Internet. They propose different models from the scan-
ning worms [23,27,30] to the event-based worms [28,31], where the question is
to predict, as accurately as possible, the evolution of the expected number of
infected entities in the network after the virus starts propagating.

On Defense Against a Virus Propagation. In virus defense area, there are
many works studying how to contain or quarantine the virus or worms in different
network environments [18,29,31]. The containment strategies can be classified
into two main classes; proactive or reactive. In the first one, some nodes are
initially immune to the virus and only other nodes can be infected. In the latter,
all nodes are initially susceptible, but eventually any node may become immune
if it detects the virus (or receive some informations from other nodes).

Several work [29,31] consider the spread viruses against proactive contain-
ment strategy, where the goal is to study the impact of the choice of the set of
immune nodes on the spread of the virus.

Moore et al. [18] proposed a model for scanning worms in complete graph
topology and give a comparison between two reactive strategies; (1) blacklisting,
upon detection of an infection, a node adds the attacker into a blacklist; and (2)
filtering-content, upon detection of a virus, a node transmits its signature to all
other nodes. They assume that when a node detects an infection, the information
(blacklisted IP address, or virus’ signature) will be available to all other nodes
after some time. They study the efficiency of both strategies when this delay
varies.

In all these work, immune nodes can always detect virus attack successfully.
However, with a polymorphic (such as Sality [5]) or metamorphic virus, it may
not be always possible to detect the virus correctly. In this context, several
detectors are introduced in [3,13,15]. We call imperfect detection the ability to
detect a virus but not always successfully. The problem of the containment of a
virus, when nodes are provided with an imperfect detector, remains open.

230 F. Bonnet et al.

Flooding and Percolation. This containment problem is related to proba-
bilistic broadcast (or information flooding) albeit with an opposite objective.
Sasson et al. [22] and later Hu et al. [7] both study the question and show the
relationship with the theory of percolation [2].

3 Model and Definitions

Let G = (V,E) be a connected undirected infinite graph, where V is the set of
vertices, and E the set of edges. Vertices model the nodes in the system, and
edges the bidirectional communication links between a pair of nodes. Thus, edge
eij ∈ E represents a communication link between the two nodes i, j ∈ V .

The system evolves in numbered synchronous rounds, also called timeslots.
During a round, every node can exchange messages with its direct neighbors.
Time is discrete and measured according to the round number.

A node can be in one of four states:

– infected : the node is compromised by the virus and acts as an infectious agent.
– killed : the node no longer sends or receives any message.
– susceptible: the node is neither infected nor killed, but can still be affected in

the future.
– sane: after the spread of the virus if over and no more nodes can be infected,

the remaining susceptible nodes are said to be sane.

Initially (t = 1), all nodes are susceptible, except for a single node which is
initially infected. Then, at each timeslot, the virus can propagate via communi-
cation links, from every infected nodes to its susceptible neighbors.

Let p be a parameter of the system denoting the infection probability. At
each round, an infected node attacks and attempts to infect each of its suscep-
tible neighbors. For each attack, the susceptible node targeted is infected with
probability p. Conversely, with probability 1− p, the node detects the attack, in
which case it starts a containment strategy.

Killing Strategies. When a susceptible node is victim of a failed attack, it
detects the attempt and can initiate a containment strategy. This paper considers
a family of killing strategies, in which a certain number of nodes are killed to
act as an obstacle to the spread.

We consider killing strategies that differ in the extent to which neighboring
nodes are deactivated/killed. Strategy Kh-Hop is defined for any non-negative
value of h, such that the detector (i.e., the node detecting the infection attempt)
send messages to kill all nodes in its h-hops neighborhood, and then kills itself.

The behavior of a node receiving such a message depends on its current state:

– A susceptible node sacrifices itself as requested by the message, after having
potentially relayed the message as requested by the strategy.

– An infected nodes ignores the message; it neither forward the message nor
sacrifice itself.

Killing Nodes as a Countermeasure to Virus Expansion 231

– A killed node neither receives nor forwards the message, and cannot be
infected.

When a node receives both a killing message and an infection message, there
is a probability α that the strategy messages take precedence over infection
messages. When α = 1 we say that killing messages have priority.

An example of virus propagation and its containment by K1-Hop strategy is
given in AppendixA.1.

Infinite Grid. The infinite grid corresponds to the graph G = (V,E) where
nodes are located on the square lattice. Each node is connected to the nodes
at distance one in each of the four cardinal directions. V = Z × Z and E =
{ei,j |i ∈ V ∧ j ∈ V ∧ dist(i, j) = 1}.

4 Equivalence of Site Percolation and K0-Hop Strategy

In this section we show that site percolation and strategy K0-Hop have the same
threshold, below which propagation is contained with probability one and above
which it is not contained with non zero probability.

Site Percolation. Given an infinite graph and a probability p such that any
site (i.e., node) is occupied with probability p (resp., empty with probability
1 − p), let us consider the random variable Xp that equals 1 Equivalence of Site
Percolation and K0-Hop Strategycomponent of occupied nodes and 0 otherwise.

There exists a threshold τ (called the percolation threshold) such that [2,14]:
{
P[Xp = 1] = 0 if 0 ≤ p < τ
P[Xp = 1] = 1 if τ < p ≤ 1

In other words, with probability 1, there is an infinite connected component of
occupied nodes when the probability p is above τ . Respectively, there is no such
component when p is below the threshold. When p exactly equals the threshold,
the situation is unclear.

Strategy K0-Hop. Given a probability p of infection and an infinite graph,
consider a spread against the K0-Hop containment strategy. Let Yp be a random
variable that equals 1 if the spread never stops and 0 otherwise.

For the two extreme values of p, the distribution of Yp is trivial: when p = 0,
the spread is immediately contained and P[Y0 = 1] = 0; conversely, when p =
1, all nodes are infected and P[Y1 = 1] = 1. Moreover, by a simple coupling
argument, it is also clear that the function p �→ P [Yp = 1] is non-decreasing.
Therefore, there exists a unique threshold τ0 such that:

{
P[Yp = 1] = 0 if 0 ≤ p < τ0
P[Yp = 1] > 0 if τ0 < p ≤ 1

232 F. Bonnet et al.

Of course, it is also possible that either P[Yp = 1] > 0 for all p > 0 (τ0 = 0)
or P[Yp = 1] = 0 for all p < 1 (τ0 = 1). It is important to note the inequality.
Contrary to the random variable Xp associated to site percolation, Yp does not
“jump directly from 0 to 1”. In fact, Yp equals 1 if and only if p = 1. For any
probability of infection p strictly lower than one, there is a non-zero probability
that strategy K0-Hop contains the spread. Indeed, if all neighbors of the initially
infected node detect the infection, the propagation stops immediately. This case
happens with probability (1 − p)δ, where δ > 0 is the degree of the initial node,
and thus P[Yp = 1] ≤ 1 − (1 − p)δ.

Theorem 1. Site percolation and strategy K0 have the same thresholds: τ = τ0.

We can observe that, if the probability of infection of a node depends on the
state of its neighbors (if the events are not independent), then the result may be
different, but, with some bound on the probability of infection, we still obtain
the following corollary.

Corollary 1. Given a graph G = (V,E), and let τ be the site percolation thresh-
old on G. If, for all u ∈ V and t ∈ N, the probability pu,t that a susceptible node
u is infected at time t is bounded by τ , then the K0-Hop strategy contains the
propagation of the virus with probability one.

5 Virus Containment with Priority Killing Messages

In this section, we prove that it is always possible to contain the propagation in an
infinite grid, provided that we use a killing strategy that sacrifices enough nodes
(i.e., a strategy Kh-Hop with h large enough). The proof is done by reduction
to strategy K0-Hop so that we can apply Theorem 1 and use the existence of a
percolation threshold for a specific topology.

Theorem 2. Given a virus spread with infection probability p, where 0 ≤ p < 1,
there exists a killing strategy that contains the virus spread.

5.1 Definitions and Explanations

General Idea of the Proof. Based on the infinite grid, we define the notion of
super nodes to encompass a squared subset of nodes. Super nodes are considered
as infected, killed, or sane depending on the states of their internal nodes. By
choosing an appropriate size for the super nodes and an adequate containment
strategy, we can show that, at the super node level, the propagation of the
virus behaves similarly as when strategy K0-Hop is executed. From there, we
can deduce that the infection is contained at the super node level, which then
implies containment at the lower level.

Killing Nodes as a Countermeasure to Virus Expansion 233

Super Node. Given a strictly positive integer h and the infinite grid G(V,E)
with V = Z × Z, we partition the nodes into super nodes of size h. Each super
node is a subset of h2 nodes organized in a square of side h. The super node at
column x and row y, denoted g(x, y), corresponds to the following subset of V :

g(x, y) = {(hx + i, hy + j) ∈ V | 0 ≤ i, j < h}

Similarly to nodes, super nodes may be infected, killed, or susceptible. We
say a super node is infected if all nodes in at least one of its sides are infected. If
a super node is not infected, we say it is killed if it contains at least a killed node,
otherwise, we say it is susceptible (or sane if the spread is over). For simplicity,
we assume that the super node containing the initial infected node (at (0, 0)
without loss of generality) is also infected.

Containment Strategy. Given a super nodes of size h, we study the strategy
K2h-Hop. For the analysis we consider a slightly modified version of the K2h-
Hop strategy: nodes do not send killing messages to neighbors belonging to
different super nodes. Thus, the killing strategy affects only nodes contained in
the same super node as the detector. This modification favors the propagation;
it weakens the containment strategy and helps the virus propagate and therefore
has no impact on our result. Indeed, if the spread is contained with the modified
version, it is also contained with the standard K2h-Hop strategy.

x

y

(a) at node level

x

y

(b) at super node level

Fig. 1. Example of infection

Figure 1 provides an example of infection at the nodes level and at the super
nodes level. At the super node level, it is worth noting that, unlike what happens
at node level, an infection may be transmitted in “diagonal”: in the figure, the
central super node has infected the super node located at the lower left corner.

234 F. Bonnet et al.

Since an infection can be propagated via the diagonals, the infection in super
nodes can be seen as an infection in the lattice where every node has 8 neighbors.
This lattice is called Moore’s neighborhood [16]. In this section, the neighbors
of a super node are the neighbors according to Moore’s neighborhood and the
neighbors of normal node are the four neighbors in the default model (Von
Neumann’s neighborhood).

Also, one can observe that when a node in a super node U detects an attack,
then it broadcast killing messages in the whole super node (because all the nodes
in the super node are at distance at most 2 h from one another). So that if one
node is attacked, then all the other nodes in its super node are either killed or
infected. Therefore, a super node is either sane, or contains no sane node.

Small-Four. Based on the previous observation, we introduce the notion of
“Small Four”. For any group of four super nodes arranged in a 2 × 2 grid, let
us call “Small-Four” the group of four normal nodes that connect these four
super nodes by their corners. In Fig. 1a, the group of four nodes (0, 0), (0,−1),
(−1, 0), (−1,−1) located in the small black square is an example of the “Small-
Four” that connects the four super nodes g(0, 0), g(0,−1), g(−1, 0), g(−1,−1).

Rectangle. In the remaining of the section, the distance d(u, v) between two
nodes u and v, denotes the length of a shortest path between u and v. For two
nodes u and v, Rect(u, v) denotes the set of nodes in the rectangle delimited by
u and v: Rect(u, v) = {w ∈ V | d(u,w) + d(w, v) = d(u, v)}.

5.2 Proof

Now, we prove several Lemmas to analyze the propagation of the infection within
a super node (and its origin), then we prove that the propagation of the virus
at the super node level is a simple virus propagation in the square lattice with
Moore’s neighborhood against the K0-Hop strategy. Finally, we conclude by a
proof of the theorem using the equivalence proved in the previous section.

Lemma 1. Let u be a node, in a super node U , infected for the first time at
time t. Let v be a node in U , at distance dv ≥ 0 from u. Then, v is susceptible
at time t′ < t − dv, and cannot be killed at time t − dv.

Proof. First, suppose by contradiction that there exists a node v in U and at
distance dv from u that detects a failed attack at time t − dv. Then, the killing
messages sent by v reach u at time t, killing node u before it gets infected. So,
each node in U at distance d from u cannot detect an attack at time t − d or
before. Moreover, if a v is infected at time t − dv − 1, then the infection reaches
u before time t, a contradiction, so v is susceptible at time t′ < t − dv.

Lemma 2. Let u be a node, in a super node U , infected for the first time at time
t. Let v be a node in U , at distance dv ≥ 0 from u, that is infected at time t − dv.
Then, each node in Rect(u, v) and at distance d from u is infected at time t − d.

Killing Nodes as a Countermeasure to Virus Expansion 235

Proof. Let v be a node in U at distance dv from u that is at infected at time
t − dv. Let w1 be a node in the rectangle Rect(u, v) that is at distance 1 from v
(thus at distance dv − 1 from u). By Lemma 1, we know that w does not detect
an infection at time t − (dv − 1), then the infection from v is successful and w1

is infected at time t − (dv − 1). Again, if w2 is a node in Rect(u, v) at distance
2 from v then w2 has a neighbor that is infected at time t − (dv − 1) (a node
that is in Rect(u, v) and at distance 1 from v). Therefore, w2 is infected at time
t − (dv − 2). Recursively, each node in Rect(u, v) at distance d from u (and at
distance dv − d from v) is infected at time t − d.

According to the previous Lemma, we can define formally what we mean by
the origin of the infection of a node: the infection of a node u originates from a
node v (in the same super as u) if u is infected for the first time at time t and
each node in Rect(u, v) and at distance d from u is infected at time t − d.

One can observe that the origin of the infection may not be unique as we can
say the infection of u may originates from any node in the rectangle Rect(u, v).
The interesting origin of the infection (in the super node) may be the first
infected node with such property. Its clear that the first infected origin of the
infection is on one side of the super node, and the next lemma proves that it is
actually always a corner.

Lemma 3. The infection of any node u, in a super node U , originates from a
corner of U .

Proof. The Lemma is proved by induction on the time t of the first infection of
u. At time 0, the lemma is proved for node (0, 0) as it is in the corner itself.

Now let u be a node infected for the first time at time t and suppose the
Lemma proved for every node that is infected before time t. Let U be the super
node of u. Let v be one of the first infected node on the side of U such that the
infection of u originates from v. If v is first infected at time tv, then it is a distance
t − tv from u. Thus, all the neighbors of v in U are not infected at time tv − 1
(otherwise, such neighbor would be an origin of the infection of u in U , which
contradicts the fact that v is the first one). So that v has a neighbor outside U ,
call it w, that is infected at time tw = tv − 1. By hypothesis, the infection of w
in its super node W originates from a corner of W . For all possible corner c of
W , the rectangle Rect(w, c) contains a corner c0 of W that is also a neighbor of
a corner b0 of U (see Fig. 2). Let db be the distance from u to b0 and dc be the
distance from c0 to w (which is also the distance from v to b0). See Fig. 2 for an
illustration of the configuration.

By Lemma 2, c0 is infected at time tw−dc. So that at time tw−dc+1 = tv−dc,
node b0 is either killed (it has detected the attack from c0) or infected.

By the triangular inequality, we have db ≤ dv+dc so that tv−dc = t−dv−dc ≤
t−db and by Lemma 1, b0 cannot be killed at time tv −dc. Therefore, the corner
b0 of U is infected at time tv − dc. Since b0 is at distance at most dv + dc from
u then, by Lemma 2, the infection of u originates from b0. By hypothesis, b0
cannot be infected before v so tv − dc = tv i.e., dc = 0, which means v = b0 and
v is in a corner of U .

236 F. Bonnet et al.

u

v w

c0 cb0

U W

d
c

Fig. 2. The infection of a node u originates from a corner of its super node.

Lemma 4. The first infected node in a “Small-Four” belongs to an infected
super node, or is the node (0, 0) and the source of the infection.

Proof. Consider a “Small-Four” composed of the following set of nodes S =
{(hx, hy), (hx − 1, hy), (hx − 1, hy − 1), (hx, hy − 1)}. Assume that u ∈ S is
the first infected node among the four nodes and belongs to the super node U .
Because the three other nodes of S are infected after node u, either u = (0, 0) is
the source of the infection or u is infected by another node inside U . In the latter
case, according to Lemma 3, the infection of node u originates from a corner of U
distinct from u (because u is infected by a node inside U). One can observe that
the infection originates from a corner that is adjacent (i.e., on the same side of
the super node) to the corner u. Indeed, if it originates from the opposite corner,
it also originates by definition from any node in the super node, including the
adjacent corners. This means that, at least one side of super node U is entirely
infected i.e., U is infected.

Lemma 5. A super node (distinct from g(0, 0)) may be infected only if it is a
direct or diagonal neighbor of a previously infected super node. Moreover, in this
situation, the probability of being infected is bounded by 4ph.

Proof. According to Lemma 3, if a super node U is infected, the attack originates
from a corner. The node u in this corner was infected by a neighbor outside U ,
thus by a node that belongs to the same “Small-Four”. By Lemma4, the first
infected node of this “Small-Four” belongs to an infected super node, or to g(0, 0)
(which is considered infected). Hence, one neighbor (direct or diagonal) of super
node U is infected.

Let us recall that p is the probability that a normal node in the grid is
infected. To become infected, a super node must have one of its sides entirely
infected. For a given side, the probability that it becomes infected is exactly by
ph since any of the h nodes has a probability p of being infected. The events
corresponding to the entire infection of each side are not independent (two adja-
cent sides have a node in common), but the probability that a super node has
at least one side entirely infected is bounded by 4ph.

In more details the probability that a super node is infected depends on the
way its neighbors are infected. Indeed, when considering a super node U , if only

Killing Nodes as a Countermeasure to Virus Expansion 237

one side of a neighbor is infected, and if this side is not connected to U then U
is not attacked by this neighbor and the probability that U is infected is 0. But,
if a unique node effectively attacks U , then the probability that U is infected is
exactly 2ph −p2h−1, which is the probability that at least one of the two sides of
U adjacent to the attacked corner gets entirely infected. Since U can be attacked
from different corner at different time, we simply bound the probability that U
is infected by 4ph.

Proof (Proof of Theorem 2). According to Lemma 5, the set of infected super
nodes forms a single connected component, with the Moore’s neighborhood (two
diagonal super nodes are considered connected).

Since every neighbor of an infected super node has a bounded probability to
be infected, the infection spreading through super nodes can be seen as strategy
K0 on an infinite lattice with Moore’s neighborhood.

According to Corollary 1, if we choose p such that the probability that a node
gets infected is smaller than the percolation threshold, then the propagation of
the virus is contained by the K0-Hop with probability one. According to Malarz
and Galam [16], there exists a percolation threshold in an infinite lattice with
Moore’s neighborhood. Let ρMoore

c be the percolation threshold in an infinite
lattice with Moore’s neighborhood.

Let h ∈ N be such that h >
log(ρMoore

c /4)
log p . The virus spreading with infection

probability p against the K2h-Hop strategy can be seen as the propagation of
virus via super nodes of size h with probability bounded by 4ph < ρMoore

c against
strategy K0-Hop. By Corollary 1 such propagation is contained, so that the virus
propagation with infection probability p is contained by strategy K2h-Hop in
an infinite grid.

6 The Case of Non-Priority Killing Message

When the killing messages do not have priority (α < 1) then the analysis of
the previous section does not hold. In this Section we study the behavior of the
best possible strategy, which is K∞-Hop. Even though this strategy may not be
applied in practice, as all nodes in the network are killed if a virus is detected,
it has theoretical interest. Indeed, if the virus is not contained when using the
K∞-Hop strategy, then, no strategy contains the virus.

First, one can observe that, since we consider the K∞-Hop strategy, at time-
slot t ∈ N all the nodes at distance t from the origin are either infected or killed.
Those nodes form a square whose vertices are nodes (t, 0), (0, t), (−t, 0) and
(0,−t). Therefore, we can restrict our analysis on a quarter of the grid: if the
virus is contained with probability one (resp. smaller than one) on a quarter of
the grid, it is contained with probability one (resp. smaller than one) on the
whole grid. Also, we can order the nodes and say that the two predecessors of
a node are its neighbors that are closer to the origin. Figure 3 represents an
execution of K∞-Hop starting from an initial infected node at (0, 0).

We know from the previous Section that, when α = 1, K∞-Hop strategy
successfully contains the virus. However, when α = 0, it depends on the prob-
ability p. Indeed, when α = 0, a node becomes infected if at least one of its

238 F. Bonnet et al.

(0, 0)

Fig. 3. An execution of K∞-Hop
on the upper right quarter of an
infinite grid. Red, green, and black
nodes are resp. infected, detector,
and killed. (Color figure online)

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1
p

α
α

Simulations
Lower bound

Fig. 4. Threshold of the probability pα to con-
tain the virus, depending on the value of α.

two predecessors is infected. This model is exactly a directed site percolation on
the square lattice. The percolation threshold for this model is around 0.7054852
[8,9,26] (computed by simulations). Thus K∞-Hop strategy contains the virus if
p is above this threshold. Now, the main result of this Section, is to give a lower
bound on the the value of the percolation threshold pα, depending on the value
of α. Figure 4 depicts the lower bound and an approximation of the threshold
that we computed by simulations.

Theorem 3. If p < min
(
1, 2

3−2α

)
, the virus is contained. In particular, the

virus is always contained if α ≥ 0.5 and p 	= 1.

Proof. On Fig. 3, the blue box encompasses the nodes that were infected/killed
at round 6. We are interested in the evolution of the nodes in the diagonal over
the time, see Fig. 5. One can observe that if there are k killed nodes at one
extremity of the diagonal, then there will be also at least k killed nodes on the
same extremity of the next diagonal.

Fig. 5. The spread of the virus on the diagonal (k1 = 1 and k2 = 3)

Consider a diagonal of size d, which contains k1 killed nodes at one extremity
and k2 at the other. Let us define the central part of the diagonal as the n =

Killing Nodes as a Countermeasure to Virus Expansion 239

d − k1 − k2 nodes between the two extremal blocks of killed nodes. At the next
round of the execution, the new diagonal contains d + 1 nodes and its central
part contains n − 1, n, or n + 1 nodes.

The proof of the theorem is the result of the two following Claims, that are
true for an arbitrary constant X ∈ N:

– Claim 1: if the central part has at most 2X nodes, the probability the virus
is contained in the next round is greater than a fixed constant CX > 0.

– Claim 2: if the central part has more than 2X nodes and if p < 2
3−2α+f(X)

(with limX→∞ f(X) = 0), then eventually the central part has size at most
2X.

Indeed, if p < 2
3−2α we can choose X large enough so that p < 2

3−2α+f(X) .
Then, by the second Claim, there cannot be an infinite execution without the
condition of the first Claim being verified, so that we always have a strictly
positive probability that the virus is contained i.e., the virus is always contained.

The proof of the first Claim is straightforward as there is a probability at
least CX = (1−p)2X+1 > 0 that all nodes on the next diagonal detect the virus.

The proof of the second Claim is a by studying the expectation E of the
reduction of the size of the central part after one round, on one side of the
diagonal (since the other side has the same behavior).

The central part decreases by k nodes when the node in the extremity is
killed (not infected or receives the killing message from one of its neighbors),
k − 1 other nodes detect the attack and the next node is infected. This event
occurs with probability (1 − (1 − α)p)(1 − p)k−1p. We consider only the case
k ≤ X because we are on one side of a diagonal of length at least 2X. Then

E = (1 − (1 − α)p) p
X∑

k=0

k(1 − p)k−1.

For p < 1,

∞∑
k=0

k(1 − p)k−1 =
1
p2

, therefore E = (1 − (1 − α)p) p

(
1
p2

− g(X)
)

with limX→∞ g(X) = 0. The size d of the diagonal increases by 1 every round.
Since we considered only one side of the diagonal, we need to solve E > 1/2 to
determine when containment is possible, which gives the following bound:

p <
2

3 − 2α + f(X)
with lim

X→∞
f(X) = 0

7 Conclusion

We considered the virus propagation problem where nodes that detect a failed
infection attempt can broadcast a deactivation message to their neighbors to
contain the propagation. We first show that the strategy consisting in deacti-
vating itself when an attack is detected (without alerting its neighbors) has the

240 F. Bonnet et al.

same behavior as the site percolation, in the sense that both problems have the
same critical probability threshold. Then, we prove that in an infinite grid graph
the propagation of a virus can always be contained when the killing message have
priority, for all value of 0 ≤ p < 1, by choosing an adequate strategy. Finally,
when killing messages do not have priority, we showed a lower bound on the
threshold of the infection probability, above which the virus spreads infinitely
with a positive probability.

Acknowledgments. This work is partially supported by JSPS KAKENHI Grant
(C)(JP15K00183) and (JP15K00189) and Japan Science and Technology Agency,
CREST (JPMJCR1404) and Infrastructure Development for Promoting International
S&T Cooperation and Project for Establishing a Nationwide Practical Education Net-
work for IT Human Resources Development, Education Network for Practical Infor-
mation Technologies.

A Appendix

A.1 K1-Hop Strategy Example

Figure 6 depicts a step-by-step execution of strategy K1-Hop in a 3× 5 grid. An
infected node attacks its neighbors at timeslot t; the right neighbor detects the
attack, the left and the top ones become infected. Following strategy K1-Hop,
the right neighbor (detector) sends kill messages to its own neighbors and kills
itself; its two neighbors (top and right) react accordingly, even though the top
one is attacked at the same time. Two other nodes detect the attack at time t+1.
At time t + 2, one of the kill message reaches an infected node and is ignored.
The state of the nodes at time t + 2 is final, and the network is partitioned i.e.,
the spread is contained.

(a) Timeslot t − 1 (b) Timeslot t (c) Timeslot t + 1 (d) Timeslot t + 2

Fig. 6. Example of the spread of a virus against the strategy K1-Hop

A.2 Omitted Proof

Theorem 1 (restated). Site percolation and strategy K0 have the same thresh-
olds: τ = τ0.

Proof. The proof consists in showing that Yp and Zx
p follow the same distribution

for any p and any occupied node x. To prove the claim, consider the following
(intuitive) link between both models in Fig. 7a.

Killing Nodes as a Countermeasure to Virus Expansion 241

strategy K0 site-percolation

infected node occupied node
killed node empty node
sane node — (no equivalent)

initial infected node any occupied node x

(a) Intuitive link between K0 and site-
percolation

(b) Strategy K0-Hop

x

(c) Site-percolation

Fig. 7. “Equivalence” between strategy K0-Hop and site-percolation model (Color
figure online)

With site percolation, all nodes are randomly set to the occupied state (with
probability p) or to the empty state (with probability 1− p). With strategy K0-
Hop, some nodes are randomly set to the infected state (with probability p) or
to the killed state (with probability 1 − p) , but some other nodes are not set
in one of these states. Indeed, any node that is neither an infected node, nor a
neighbor of an infected node, remains in a sane state (see Sect. 3).

However, sane nodes do not have any effect on the random variable Yp since
they are disconnected from the initially infected node. The value of Yp depends
only on the infected (red nodes on Fig. 7b) and killed nodes (gray nodes): all
infected nodes are connected and therefore Yp reflects the infiniteness of this
infected component.

With site percolation, for a given occupied vertex x, the same observation
applies to the random variable Zx

p . It depends only on the occupied nodes (black
nodes on Fig. 7c) that are connected to x or the empty nodes (white nodes) that
are around these occupied nodes. Other nodes (light gray nodes) do not have
any effect on Zx

p ; they could be occupied or empty; it will not change the value
of Zx

p .
Since (1) nodes are infected or occupied with the same probability p starting

from an initial infected node or an arbitrary occupied node x, and (2) Yp = Zx
p ,

it follows that τ = τ0.

242 F. Bonnet et al.

References

1. Anderson, R.M., May, R.M.: Population biology of infectious diseases: part I.
Nature 280(5721), 361–367 (1979)

2. Bollobás, B., Riordan, O.: Percolation. Cambridge University Press, Cambridge
(2006)

3. Brumley, D., Newsome, J., Song, D., Wang, H., Jha, S.: Towards automatic gen-
eration of vulnerability-based signatures. In: Proceedings of the 27th IEEE Sym-
posium on Security and Privacy, S&P 2006, pp. 2–16, May 2006

4. Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., Faloutsos, C.: Epidemic thresh-
olds in real networks. ACM Trans. Inf. Syst. Secur. 10(4), 1 (2008)

5. Falliere, N.: Sality: story of a peer-to-peer viral network, July 2011. http://www.
symantec.com/connect/sites/default/files/sality peer to peer viral network.pdf

6. Grassberger, P.: On the critical behavior of the general epidemic process and
dynamical percolation. Math. Biosci. 63(2), 157–172 (1983)

7. Hu, R., Sopena, J., Arantes, L., Sens, P., Demeure, I.: Fair comparison of gossip
algorithms over large-scale random topologies. In: Proceedings of the 31st IEEE
International Symposium on Reliable Distributed Systems (SRDS 2012), pp. 331–
340, October 2012

8. Jensen, I.: Low-density series expansions for directed percolation: II. The
square lattice with a wall. J. Phy. A: Math. Gen. 32(33), 6055 (1999).
https://stacks.iop.org/0305-4470/32/i=33/a=304

9. Jensen, I.: Low-density series expansions for directed percolation: III. Some
two-dimensional lattices. J. Phy. A: Math. Gen. 37(27), 6899 (2004).
http://stacks.iop.org/0305-4470/37/i=27/a=003

10. Kephart, J.O., White, S.R.: Directed-graph epidemiological models of computer
viruses. In: Proceedings of the 12th IEEE Symposium on Security and Privacy,
S&P 1991, pp. 343–361 (1991)

11. Kephart, J.O., White, S.R.: Measuring and modeling computer virus prevalence.
In: Proceedings of the 14th IEEE Symposium on Security and Privacy, S&P 1993,
pp. 2–15 (1993)

12. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of
epidemics. In: Proceedings of the Royal Society of London. Series A, Containing
Papers of a Mathematical and Physical Character, vol. 115, no. 772, pp. 700–721
(1927)

13. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm
detection using structural information of executables. In: Valdes, A., Zamboni,
D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 207–226. Springer, Heidelberg (2006).
https://doi.org/10.1007/11663812 11

14. Lee, M.J.: Pseudo-random-number generators and the square site percolation
threshold. Phy. Rev. E 78(3), 031131 (2008)

15. Li, Z., Sanghi, M., Chen, Y., Kao, M.Y., Chavez, B.: Hamsa: fast signature gener-
ation for zero-day polymorphic worms with provable attack resilience. In: Proceed-
ings of the 27th IEEE Symposium on Security and Privacy, S&P 2006, pp. 32–47,
May 2006

16. Malarz, K., Galam, S.: Square-lattice site percolation at increasing ranges of neigh-
bor bonds. Phys. Rev. E 71, 016125 (2005). https://doi.org/10.1103/PhysRevE.
71.016125

17. May, R.M., Anderson, R.M.: Population biology of infectious diseases: part II.
Nature 280(5722), 455–461 (1979)

http://www.symantec.com/connect/sites/default/files/sality_peer_to_peer_viral_network.pdf
http://www.symantec.com/connect/sites/default/files/sality_peer_to_peer_viral_network.pdf
https://stacks.iop.org/0305-4470/32/i=33/a=304
http://stacks.iop.org/0305-4470/37/i=27/a=003
https://doi.org/10.1007/11663812_11
https://doi.org/10.1103/PhysRevE.71.016125
https://doi.org/10.1103/PhysRevE.71.016125

Killing Nodes as a Countermeasure to Virus Expansion 243

18. Moore, D., Shannon, C., Voelker, G., Savage, S.: Internet quarantine: requirements
for containing self-propagating code. In: Proceedings of the 22nd Annual Joint Con-
ference of the IEEE Computer and Communications Societies, INFOCOM 2003,
vol. 3, pp. 1901–1910, Mar 2003

19. Nguyen, T.D., Bonnet, F., Défago, X.: Analyzing the impact of mitigation strate-
gies on the spread of a virus. Research Report IS-RR-2014-002, Japan Advanced
Institute of Science and Technology (JAIST), May 2014

20. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in
complex networks. Phys. Rev. E 63(6), 066117 (2001)

21. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks.
Phys. Rev. Lett. 86, 3200–3203 (2001)

22. Sasson, Y., Cavin, D., Schiper, A.: Probabilistic broadcast for flooding in wireless
mobile ad hoc networks. In: Proceedings of the IEEE Wireless Communications
and Networking, WCNC 2003, pp. 1124–1130 (2003)

23. Staniford, S., Paxson, V., Weaver, N.: How to own the internet in your spare time.
In: Proceedings of the 11th USENIX Security Symposium, USENIX-Security 2002,
pp. 149–167. USENIX Association, Berkeley, CA, USA (Aug 2002)

24. Van Mieghem, P.: The N -intertwined SIS epidemic network model. Computing
93(2–4), 147–169 (2011)

25. Van Mieghem, P., Omic, J., Kooij, R.E.: Virus spread in networks. IEEE/ACM
Trans. Networking 17(1), 1–14 (2009)

26. Wang, J., Zhou, Z., Liu, Q., Garoni, T.M., Deng, Y.: High-precision Monte Carlo
study of directed percolation in (d+1) dimensions. Phys. Rev. E 88, 042102 (2013).
https://doi.org/10.1103/PhysRevE.88.042102

27. Xia, J., Vangala, S., Wu, J., Gao, L., Kwiat, K.: Effective worm detection for
various scan techniques. J. Comput. Secur. 14(4), 359–387 (2006)

28. Xu, W., Zhang, F., Zhu, S.: Toward worm detection in online social networks.
In: Proceedings of the 26th Annual Computer Security Applications Conference,
ACSAC 2010, pp. 11–20. ACM, New York, December 2010

29. Zhou, L., Zhang, L., McSherry, F., Immorlica, N., Costa, M., Chien, S.: A first look
at peer-to-peer worms: threats and defenses. In: Castro, M., van Renesse, R. (eds.)
IPTPS 2005. LNCS, vol. 3640, pp. 24–35. Springer, Heidelberg (2005). https://
doi.org/10.1007/11558989 3

30. Zou, C.C., Gong, W., Towsley, D.: Code red worm propagation modeling and analy-
sis. In: Proceedings of the 9th ACM Conference on Computer and Communications
Security, CCS 2002, pp. 138–147. ACM, New York (2002)

31. Zou, C.C., Towsley, D., Gong, W.: Modeling and simulation study of the prop-
agation and defense of internet e-mail worms. IEEE Trans. Dependable Secure
Comput. 4(2), 105–118 (2007)

https://doi.org/10.1103/PhysRevE.88.042102
https://doi.org/10.1007/11558989_3
https://doi.org/10.1007/11558989_3

Computational Complexity

Improved Distributed Algorithms for Coloring
Interval Graphs with Application

to Multicoloring Trees

Magnús M. Halldórsson1 and Christian Konrad2(B)

1 ICE-TCS, School of Computer Science, Reykjavik University, Reykjavik, Iceland
mmh@ru.is

2 Department of Computer Science,
Centre for Discrete Mathematics and its Applications (DIMAP),

University of Warwick, Coventry, UK
c.konrad@warwick.ac.uk

Abstract. We give a distributed (1+ε)-approximation algorithm for the
minimum vertex coloring problem on interval graphs, which runs in the
LOCAL model and operates in O(1

ε
log∗ n) rounds. If nodes are aware of

their interval representations, then the algorithm can be adapted to the
CONGEST model using the same number of rounds. Prior to this work,
only constant factor approximations using O(log∗ n) rounds were known
[12]. Linial’s ring coloring lower bound implies that the dependency on
log∗ n cannot be improved. We further prove that the dependency on 1

ε

is also optimal.
To obtain our CONGEST model algorithm, we develop a color rota-

tion technique that may be of independent interest. We demonstrate
that color rotations can also be applied to obtain a (1 + ε)-approximate
multicoloring of directed trees in O(1

ε
log∗ n) rounds.

1 Introduction

Vertex coloring problems are central in distributed computing. Given a graph
G = (V,E), the objective is to compute an s-coloring γ : V → {1, 2, . . . , s}
in a distributed fashion, for an integer s, i.e., to assign each vertex one of s
colors so that adjacent nodes receive different colors. A substantial amount of
research has been carried out on computing (Δ + 1)-colorings, where Δ is the
maximum degree of the input graph. This is an attractive bound, since it is easy
to see that Δ+1 colors always suffice to color a graph. The quantity Δ+1 may
however be an arbitrarily poor approximation of the chromatic number χ(G) of
a graph G, which is the minimum number of colors needed in any coloring1. In

M. M. Halldórsson is supported by grants 152679-05 and 174484-05 from the
Icelandic Research Fund. C. Konrad is supported by the Centre for Discrete Mathe-
matics and its Applications (DIMAP) at Warwick University and by EPSRC award
EP/N011163/1.

1 For example a complete bipartite graph G = (A, B, E) with |A| = |B| = n can be
colored with 2 colors while Δ = n.

c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 247–262, 2017.
https://doi.org/10.1007/978-3-319-72050-0_15

248 M. M. Halldórsson and C. Konrad

this paper, we are therefore interested in distributed approximation algorithms
for the minimum vertex coloring problem, which asks for a coloring with χ(G)
colors.

Computational Models. We consider the LOCAL and CONGEST models of
distributed computation. The input graph G = (V,E) models a communication
network, where computational units are located at every node v ∈ V . Graph
G also constitutes the problem input. The goal of a distributed coloring algo-
rithm is to compute a (global) coloring, where every node reports its color upon
termination of the algorithm. Every node v ∈ V has a unique identifier ID(v)
and, initially, besides their identifiers, nodes are aware of the identifiers of their
neighbors (and hence also of its degree). Messages are exchanged in synchro-
nous communication rounds, where a node may exchange individual messages
with each of its neighbors. In the LOCAL model, messages of unbounded sizes
may be exchanged, while in the CONGEST model, message sizes are limited to
O(log n), where n is the number of nodes in the input graph. In both models
the objective is to minimize the number of communication rounds required to
complete the algorithm.

Minimum Vertex Coloring Problem. On general graphs, the minimum ver-
tex coloring problem is NP-complete [14] and even hard to approximate within
a factor of n1−ε [23]. Nevertheless, since many distributed models focus on the
number of communication rounds rather than the runtime of individual network
nodes, it is possible to compute a O(nε)-approximation in exp

(
O(1ε)

)
communi-

cation rounds on general graphs [5]. Linial presented a lower bound showing that
coloring unoriented d-regular trees with o(

√
d) colors2 requires Ω(logd n) rounds

[16]. This result shows that for every graph class that contains trees, computing
a C-approximation requires Ω(log n) rounds, for every constant C.

Multicoloring. There are conceptual links between graph coloring and graph
multicoloring:

Definition 1. Let G = (V,E,w) be a graph with vertex weights w : V → N.
For an integer k ≥ 1, a k-multicoloring of G is an assignment φ : V → 2[k] such
that:

1. For every v ∈ V : |φ(v)| = w(v), and
2. For every pair of adjacent vertices u, v ∈ V : φ(u) ∩ φ(v) = ∅.

The multichromatic number χm(G) is the largest number of colors needed in
every multicoloring of G. In the minimum vertex multicoloring problem, the goal
is to find a multicoloring that uses χm(G) colors. Distributed algorithms for
graph multicoloring find applications in computing MAC schedules (see [15] and
the references therein). Kuhn [15] studied a distributed multicoloring problem
on general graphs, where a node v of degree deg(v) receives a (1 − ε) 1

deg(v)+1

fraction of all colors. Similar to the notion of a (Δ + 1)-coloring, this quality
2 Chang et al. argue in [8] that using a graph construction by Bollobás [7], the same
lower bound holds even for colorings with o(d/ log d) colors.

Improved Distributed Algorithms for Coloring Interval Graphs 249

bound is given by the degrees of the vertices alone and may be arbitrarily far
from an optimal multicoloring.

Results. In this paper, we primarily address the minimum vertex coloring prob-
lem in interval graphs, which are the intersection graphs of intervals on the line.
Interval graphs do not contain trees and the previously mentioned lower bound
thus does not apply. In a previous work, we gave a distributed 8-approximation
algorithm that runs in O(log∗ n) in the LOCAL, and an extension of the algo-
rithm to the CONGEST model if the representation of the intervals are known
by the network nodes [12]. We improve on [12] and give distributed (1 + ε)-
approximation algorithms for coloring interval graphs for both the LOCAL
and CONGEST models, which run in O(1ε log∗ n) rounds. Similar to [12], our
CONGEST model algorithm requires that nodes are aware of their interval
boundaries.

Our CONGEST model algorithm uses a color rotation technique that may
be of independent interest. In the full version, we leverage this color rotation
technique to give a (1 + ε)-approximation algorithm for multicoloring directed
trees, running in in O(1ε log∗ n) rounds in the CONGEST model. This is the first
distributed algorithm for multicoloring problems with non-trivial approximation
guarantee. Our lower bound construction also shows that obtaining a (1 + ε)-
approximation of multicoloring paths requires Ω(1/ε) rounds.

Techniques. The LOCAL model algorithm of [12] simulates the sequential
Greedy coloring algorithm, which traverses the vertices in an arbitrary order
and assigns the smallest color possible. The approximation guarantee of their
algorithm follows from the fact that a Greedy coloring of interval graphs gives
an 8-approximation [21]. They construct a dominating set, which can be colored
using few colors, via a somewhat technical algorithm.

Our strategy is arguably simpler. We first compute a maximal distance k-
independent set I (k = Θ(1ε)) using an algorithm of Schneider and Wattenhofer
[19]. Then, nodes of I color their inclusive neighborhoods optimally. Notice that
every inclusive neighborhood Γ [v] of a vertex v is a separator in interval graphs.
The set of yet uncolored nodes thus form connected components of diameter
Θ(k). Using a theorem about the chromatic number of circular arc graphs by
Valencia-Pabon [22], we show that there exists a completion of the current par-
tial coloring to a (1 + ε)-approximate coloring of the entire graph. Nodes of I
then color the connected components of uncolored nodes using the optimal color
completion.

This approach relies heavily on the ability to send messages of unbounded
sizes. When nodes of I color connected components of uncolored nodes, they
first need to collect the topology of entire components, which cannot be done in
the CONGEST model. To overcome this difficulty, we develop a color rotation
technique: Let u, v ∈ I be nodes of the distance-k maximal independent set
such that u is located left of v and there is no other node of I between them
(the distance between u and v is thus at most 2k). Suppose that their local
neighborhoods have already been colored optimally. We show that a Greedy
left-to-right coloring sweep can be initiated at u that respects the colors of

250 M. M. Halldórsson and C. Konrad

u’s neighborhood and colors all nodes between u and v. This coloring however
does not necessarily respect the colors of v’s neighborhood. Similarly, a right-
to-left coloring with similar properties is initiated by v. Since a Greedy coloring
that processes the vertices with increasing left boundaries (or decreasing right
boundaries) gives an optimal coloring in interval graphs, the two coloring sweeps
produce optimal colorings. We then apply our color rotation technique: Guided
by the right-to-left coloring, we perform color rotations using few additional
colors that transform the left-to-right coloring into a coloring that respects the
colors of the neighborhood of v, giving a (1 + ε)-approximation.

We demonstrate that the color rotation technique can be applied for multi-
coloring directed trees as well. Our algorithm first computes a partitioning of
the input tree into subtrees, which are then colored independently. The potential
color conflicts between subtrees are then resolved via color rotations. In order to
obtain the partitioning of the input tree into subtrees, we develop an algorithm
for computing a particular ruling set, which may be of independent interest.

Further Related Work. To our best knowledge, the only works that explicitly
address distributed algorithms for the minimum vertex coloring problem are the
already mentioned algorithms by Barenboim et al. [5] for general graphs and
our previous work on coloring interval graphs [12]. Goldberg et al. [11] gave
a 7-coloring algorithm of planar graphs, which runs in O(log n) rounds, and a
5-coloring algorithm, which runs in O(log n log log n) rounds and requires the
planar representation of the input graph. Barenboim and Elkin [3] gave a (�(2+
ε)a� + 1)-coloring algorithm for graphs of arboricity a, which runs in O(a log n)
rounds and thus subsumes the previously mentioned 7-coloring algorithm (planar
graphs have arboricity at most 3). Schneider et al. gave a ((1 − O(χ(G)))Δ)-
coloring algorithm whose runtime depends on the chromatic number χ(G) [18].

Due to the similarity in the problem statement, we also expand on distributed
(Δ+1)-coloring algorithms: The first randomized (Δ+1)-coloring algorithm uses
a reduction to the maximal independent set problem given by Luby [17]. Since
the maximal independent set problem can be solved in O(log n) time via the
algorithms of Luby [17] or Alon et al. [1], a O(log n) rounds algorithm is obtained.
Improved randomized algorithms were given by Schneider and Wattenhofer [20],
which runs in O(log Δ +

√
log n) rounds, and later by Barenboim et al. [6],

which runs in O(log Δ)+2O(
√
log log n) rounds. Very recently, the first randomized

algorithm, which runs in o(log n) rounds for any value of Δ, was presented. Harris
et al. showed that O(

√
log Δ) + 2O(

√
log log n) suffice [13]. Deterministic (Δ + 1)-

coloring algorithms have been extensively studied as well. The currently fastest
algorithm is by Fraigniaud et al. [10] and uses O(

√
Δ log2.5 Δ + log∗ n). This

result improved on Barenboim’s algorithm [2], which uses O(Δ
3
4 log Δ + log∗ n)

rounds and was the first deterministic (Δ+1)-coloring algorithm which achieved
a sublinear in Δ number of rounds. Faster (Δ + 1)-colorings can be achieved on
special graph classes. The well-known Cole-Vishkin algorithm [9] colors cycles
(and directed trees) using 3 colors in O(log∗ n) rounds, which is best possible
due to a lower bound given by Linial [16]. This algorithm has been extended to
bounded-independence graphs by Schneider and Wattenhofer [19]. For further

Improved Distributed Algorithms for Coloring Interval Graphs 251

references, we refer the reader to the survey by Barenboim and Elkin [4] and the
references therein.

Outline. We give notations and definitions in Sect. 2. Then we present our
coloring algorithms for interval graphs in Sect. 3 and our lower bound in Sect. 4.
Finally, we conclude in Sect. 5.

2 Preliminaries

Definitions. A distance-k independent set in a graph G = (V,E) is a subset
of vertices I ⊆ V such that every pair of vertices v1, v2 ∈ I is at distance at
least k. A distance-k independent set I is maximal if I ∪ v is not a distance-k
independent set, for all v ∈ V \ I. We call a distance-2 independent set simply
independent set. For an integer k, a distance-k-coloring of a graph G = (V,E) is
an assignment γ : V → {1, . . . , s} of s colors to the vertices such that every pair
of vertices at distance at most k receives different colors. A partial coloring of a
graph G = (V,E) is an assignment γ : V → {1, . . . , s} ∪ {⊥}, where uncolored
nodes are assigned the symbol ⊥.

For simplicity, we assume that the input graphs are connected. The neighbor-
hood of a vertex v in graph G is denoted by ΓG(v), and we define the inclusive
neighborhood of v by ΓG [v] = ΓG(v) ∪ {v}. For a subset V ′ ⊆ V , we write
ΓV ′(v) to denote ΓG(v) ∩ V ′. Furthermore, the k-neighborhood of a vertex v is
the set of nodes that are within distance at most k from v (excluding v), and
we denote it by Γ k

G(v). Then Γ 1
G(v) = ΓG(v). For a vertex v ∈ V , we denote

by degG(v) the degree of v in G. For a subset V ′ ⊆ V , we may also write
degV ′(v) for the degree of v in the subgraph of G induced by the nodes V ′, that
is, degV ′(v) := degG|V ′ (v).

Interval Graphs. Let V = {v1, . . . , vn} be a set of intervals with vj = (aj , bj)
for all 1 ≤ j ≤ n and real numbers aj , bj such that aj < bj . We assume that
all ai, bi are distinct. Let G = (V,E) be the corresponding interval graph, i.e.,
there is an edge between vertices (intervals) vj , vk if the two intervals intersect.
We denote the number of edges by m.

We say that an interval v is proper if no other interval u satisfies ΓG [v] �

ΓG [u]. For an interval graph G = (V,E), we denote by GP = (VP , E|VP
) the

subgraph of G induced by the proper intervals of G. It is easy to see that GP is
connected if G is connected as well.

Graph GP is of bounded-independence, a property that restricts the sizes of
maximum independent sets in local neighborhoods, formally defined as follows:

Definition 2 (Bounded-independence Graphs). A graph G = (V,E) is of
bounded-independence if there is a bounding function f(r) such that for each
node v ∈ V , the size of a maximum independent set in the r-neighborhood of v
is at most f(r),∀r ≥ 0.

252 M. M. Halldórsson and C. Konrad

Schneider and Wattenhofer [19] gave a distributed maximal independent set
algorithm for graphs of bounded-independence that runs in time O(log∗ n). We
denote this algorithm by MisBI. It can be implemented in the CONGEST
model.

3 Algorithms for Coloring Interval Graphs

We first give our algorithm for the LOCAL model in Sect. 3.1 and then show
how to extend the algorithm to the CONGEST model in Sect. 3.2.

3.1 Algorithm in the LOCAL model

Our algorithm is depicted and explained in Algorithm1. It is parametrized by
an integer k, which determines the approximation guarantee and whose precise
value is determined later.

Algorithm 1. Algorithm for Coloring Interval Graphs in the LOCAL Model
1. Identify the subgraph GP of proper intervals: Each node v checks if it

has a neighbor u with ΓG [u] � ΓG [v]. If no such neighbor exists then v is in
GP . This involves a single communication round where v sends the list of its
neighbors to all its neighbors. In one additional round, each node v informs
its neighbors whether v ∈ GP .

2. Compute a distance-k maximal independent set J of GP : The nodes
simulate MisBI on graph Gk

P , where nodes are adjacent if they are at distance
at most k in GP , in O(k · log∗ n) rounds. The result is a distance-k maximal
independent set J of GP .

3. Color inclusive neighborhoods of J: Each dominator v ∈ J colors its
inclusive neighborhood ΓG[v] optimally using at most χ(G) colors.

4. Color remaining nodes: For any two dominators u, v with dist(u, v) < 2k
and ID(u) > ID(v), u colors all uncolored nodes between u and v in O(k)
rounds as follows: u collects its 2k-neighborhood including the color con-
straints given by the already colored neighborhood of v. The best coloring of
the remaining nodes is computed locally and newly colored nodes are informed
of their color.

The key part of our analysis is to show that Step 4 of the algorithm does not
require too many colors. To this end, we employ a result by Valencia-Pabon [22]
on coloring circular-arc graphs, which are the intersection graphs of a set of arcs
on a circle. Given a circular arc graph F , the load L(F) is the cardinality of the
largest subset of arcs containing the same point. The circular-cover l(F) is the
cardinality of the smallest subset of arcs that cover the entire circle. See Fig. 1
for an example.

Improved Distributed Algorithms for Coloring Interval Graphs 253

L(F) = 3

Fig. 1. A 3-colorable circular arc graph F with load L(F) = 3 and circular-cover
l(F) = 6. The vertices of a circular-cover are illustrated in bold. The result of Valencia-
Pabon (Theorem1) gives an upper bound of four colors.

Theorem 1 (Valencia-Pabon [22]). Let F be a circular arc graph with load
L and circular-cover l ≥ 4. Then �

(
1 + 1

l−2

)
L� + 1 colors suffice to color F .

Equipped with Theorem1, we prove now the existence of a good coloring
that is required in Step 4 of our algorithm.

Lemma 1. Let G = (V,E) be an interval graph, C1, C2 ⊆ V disjoint maximal
cliques such that dist(v1, v2) ≥ l for every pair of nodes v1 ∈ C1, v2 ∈ C2, for an
integer l ≥ 5. Let G′ = G[C1∪C2∪D], where D ⊆ V is the set of intervals located
between C1 and C2. Let γ be a partial coloring of G′ such that γ(v) ∈ [χ(G′)]
for every v ∈ C1 ∪ C2, and γ(v) = ⊥ for v ∈ D. Then, γ can be extended to a
coloring that employs at most �(1 + 1

l−3)χ(G′)� + 1 colors.

Proof. Let F be the graph obtained from G′ by contracting every pair of vertices
v1 ∈ C1, v2 ∈ C2 with γ(v1) = γ(v2). We will argue that F is a circular arc graph
with load χ(G′) and circular-cover l−1. Our result then follows from Theorem 1.

A representation of F with circular arcs can be obtained by, first, wrapping
the line segment that contains all intervals of G′ onto an arc A � C of a circle
C, and then replacing every pair of intervals/arcs v1 ∈ C1, v2 ∈ C2 with γ(v1) =
γ(v2) with an arc of minimal length that includes v1, v2 and all points of C \ A.
See Fig. 2 for an illustration.

Since we replaced at most χ(G′) pairs of arcs with arcs that cover C\A, every
point of the arc C \ A is covered by at most χ(G′) arcs. Furthermore, since all
points on the arc A are covered by at most χ(G′) arcs, we obtain L(F) = χ(G′).
The circular-cover is at least the length of the shortest path in G′ from C1 to C2

minus one, i.e., l − 1, since all arcs of D need to be covered, and pairs of nodes
of C1 and C2 are contracted in F . ��

Using Lemma 1, we show next that our algorithm gives a (1 + ε)-
approximation guarantee:

Theorem 2. Let G = (V,E) be an interval graph and suppose that ε ≥ 2
χ(G) .

Then, there is a deterministic (1+ε)-approximation algorithm for coloring inter-
val graphs in the LOCAL model that runs in O(1ε log∗ n) rounds.

254 M. M. Halldórsson and C. Konrad

C1 C2
2

1
1

2

(1) Interval graph

AC1 C2

2

1

2

1

(2) Mapping onto circular arc

AC1 C2

(3) Connecting C1 with C2

A

(4) Rearranging

Fig. 2. Construction used in the proof of Lemma 1. Edges of the maximal cliques C1

and C2 are illustrated in bold. The colors of the intervals in C1 and C2 are indicated by
the small numbers next to the intervals. In this example, a path of length 7 is mapped
onto an arc A. Then pairs of vertices with the same color of the maximal cliques C1

and C2 are connected, which gives a cycle of length 5. Every coloring of C5 requires 3
colors.

Proof. Let k = � 2
ε �+5. Our algorithm computes a distance-k maximal indepen-

dent set J in the subgraph of proper intervals. Observe that J is also a distance-k
independent set in G, since for every shortest path in G between two nodes of
VP , there is one that only traverses edges of GP . Let u, v be two nodes as in step
4 of the algorithm such that u is left of v. Let C1 be the set of intervals that
intersect u’s right boundary, and let C2 be the set of intervals that intersect v’s
left boundary. Then, C1 and C2 are maximal cliques and were colored in step 3
of the algorithm. Since J is a distance-k independent set, every pair of nodes of
C1 and C2 are at a distance of at least k − 2. Then, by Lemma 1, the coloring
can be completed using χ(G)(1 + 1

(k−2)−3) + 1 = χ(G)(1 + 1/� 2
ε �) + 1 colors,

which simplifies to:

χ(G)(1 +
1

� 2
ε �

) + 1 ≤ χ(G)(1 +
ε

2
) +

εχ(G)
2

≤ (1 + ε)χ(G),

where we used the assumption ε > 2
χ(G) which implies 1 ≤ χ(G)ε

2 . The runtime
of the algorithm is dominated by the computation of the distance-k maximal
independent set in step 2, which runs in O(k · log∗ n) = O(1ε log∗ n) rounds. ��

3.2 Adapting the Algorithm to the CONGEST Model

We now adapt the previous algorithm to the CONGEST model when each node
vi ∈ V knows its interval representation boundaries ai, bi. We assume that rep-
resenting the numbers ai, bi uses logarithmic space.

Improved Distributed Algorithms for Coloring Interval Graphs 255

We reuse Steps 1 and 3 from our previous algorithm. Step 2, i.e., finding a
distance-k maximal independent set in GP by running MisBI on Gk

P cannot be
implemented in the CONGEST model, since the nodes cannot collect their full
distance-k neighborhoods quickly. Instead, we replace this step by a subroutine
that finds a (k, 3k/2 + 1)-ruling set. A (p, q)-ruling set in graph G = (V,E) is
a subset of vertices I ⊆ V such that every pair of vertices in I are at distance
at least p, while every vertex outside I is at distance at most q from a vertex in
I. We will argue that such a set can be computed in the CONGEST model in
O(k log∗ n) rounds on graph GP . Step 4 is replaced by a more technical coloring
process.

Regarding Step 1, exchanging interval boundaries is enough in order to deter-
mine whether a node v ∈ V is also in VP . For a node v ∈ J to color its neigh-
borhood optimally in Step 3, it requires only the interval representation of its
neighboring nodes in order to determine the neighborhood relations among them.
This information can be exchanged in one round in the CONGEST model.

Computing a (k, 3k/2+1)-ruling set in GP . We next argue how to compute
a (k, 3k/2 + 1)-ruling set in GP , the subgraph of proper intervals. First, we
compute a maximal independent set I1 in GP using MisBI. We then proceed
inductively. Let v1, v2, . . . denote the intervals of Ij ordered from left to right.
We build an auxiliary graph Gj on vertex set Ij , where node vi is adjacent to
nodes vi−1 and vi+1. Notice that Gj is an interval graph (it is in fact a path).
We then compute a maximal independent set Ij+1 in graph Gj using MisBI (or
for example the Cole-Vishkin algorithm [9]).

We now argue that I�log k� is a (k, 3k/2+1)-ruling set in GP , and the compu-
tation of Ik can be implemented in the CONGEST model in O(k log∗ n) rounds.
Let v1, v2, . . . denote the intervals of Ij ordered from left to right. Let lj and uj

denote the minimum and maximum distance between vertices in Ij , respectively.
Since I1 is a maximal independent set, we have l1 ≥ 2 and u1 ≤ 3. Then, it is
easy to see that lj+1 ≥ 2lj ≥ 2j+1 and uj+1 ≤ 2uj ≤ 3 ·2j . Thus, l�log k� ≥ k and
u�log k� ≤ 3k. Furthermore, every vertex outside I�log k� is at distance at most
3k/2 + 1 from a vertex of I�log k�.

Concerning the runtime, simulating the run of MisBI on Gj increases the
runtime of MisBI by a factor of uj . Hence, computing Gj requires O(3 ·
2j−1 log∗ n) = O(2j log∗ n) rounds. Overall the runtime for computing I�log k�
is

∑
j≤�log k� O(2j log∗ n) = O(k log∗ n) rounds.

Coloring. After Step 3 of the algorithm, we have computed a (k, 3k/2 + 1)-
ruling set J and a partial coloring γ such that nodes ∪w∈JΓG[w] are colored
while all other nodes are uncolored, i.e., γ(z) ∈ [χ(G)], if z ∈ ∪w∈JΓG[w], and
γ(z) = ⊥, otherwise. Every pair of adjacent nodes u, v ∈ J with u located left
of v executes the coloring procedure presented in the following in order to color
the uncolored nodes located between them.

Fix two nodes u, v ∈ J as described above. In the description of our algorithm,
we use the following notations. Denote by C1 (C2) the maximal clique consisting
of intervals that intersect u’s right boundary (resp. v’s left boundary). Let D be

256 M. M. Halldórsson and C. Konrad

the set of intervals outside C1∪C2 located between u and v. Let Ni ⊆ C1∪C2∪D
be the set of nodes at distance i from u, and let N≥i = ∪j≥iNj . We also ensure
that every node a ∈ D learns its distance from u (and thus the index i such
that a ∈ Ni). This can be established by flooding the network with a token
initially broadcasted by u, and the number of rounds it takes until the token
reaches node a ∈ D equals distG(a, u). Denote by ni the interval of Ni that
reaches out furthest to the right. Nodes of Ni can identify this interval easily by
communicating their interval boundaries to their neighbors.

Our coloring procedure requires an implementation of the Greedy coloring
algorithm as a subroutine in the CONGEST model.

Greedy Coloring Subroutine. W.l.o.g. we present a left-to-right coloring ini-
tiated by node u; a right-to-left coloring initiated by v can be obtained similarly.
First, node n1 colors the uncolored nodes of its neighborhood: It traverses its
uncolored neighbors with increasing left interval boundary and assigns the small-
est possible color. Then, n2 continues with the same process. The coloring carries
on until all ni have colored their neighborhoods. The runtime of this procedure
is O(distG(u, v)) = O(k).

Coloring Process. Node u initiates a left-to-right Greedy coloring γ1 that
respects the colors given by γ of C1 (and not necessarily the colors of C2), and
simultaneously, v initiates a right-to-left Greedy coloring γ2 that respects the
colors given by γ of C2 (and not necessarily the colors of C1). We then transform
the coloring γ1 into one that respects the colors γ2 on C2.

Our algorithm operates in p phases, each consisting of three recoloring steps.
In phase i, we alter the coloring γ1 of nodes N≥3i such that γ1 is non-conflicting
with colors Ti = {(i − 1)B + 1, . . . , iB} of γ on C2, where B = �χ(G)

p �. To this
end, nodes of N≥3i with a color of Ti recolor themselves to new colors [χ(G) +
1, χ(G)+B] by adding χ(G)−(i−1)B to their own color. Then, nodes of N≥3i+1

with a target color (the color given by γ2) in Ti recolor themselves to their target
color. Last, we initiate a Greedy recoloring sweep at node n3i+2 that recolors all
nodes of N≥3i+2 with a current color > iB to colors in {iB + 1, . . . , χ(G)}.

We prove correctness of this algorithm in the following lemma.

Lemma 2. After phase i of the previous coloring process, the following holds:

1. ∀w ∈ N≥3i+2 : γ1(w) ∈ [χ(G)],
2. ∀w ∈ N≥3i+1 : γ2(w) ≤ iB ⇒ γ1(w) = γ2(w),
3. γ1 is legal.

Proof. Before iteration one (i.e. i = 0), all three items are trivially true. The first
recoloring step of phase i assigns nodes of N≥3i with current color in Ti a color
larger than χ(G). Note that this leads to a legal coloring, since by Item 1, none
of the nodes of N3i−1 are colored with a color larger than χ(G). In the second
recoloring step, nodes of N≥3i+1 with target color in Ti receive their target color
(which gives Item 2). Again, γ1 remains legal since after the first recoloring step,
none of the nodes of N3i are colored with a color in Ti. In the third recoloring

Improved Distributed Algorithms for Coloring Interval Graphs 257

step, the Greedy coloring algorithm is executed on the subgraph induced by
nodes Vi = {v ∈ N≥3i+2 : γ1(v) ≥ iB+1}. We claim that the algorithm recolors
Vi with colors in [χ(G)]. Indeed, first note that χ(G[Vi]) ≤ χ(G) − iB, since γ2
restricted to Vi gives such a coloring. Next, since the Greedy coloring algorithm
processes the intervals with increasing left boundary, all color constraints when
coloring an interval x are imposed by intervals that intersect x’s left boundary
(note that for two intervals x ∈ Nj , y ∈ Nj+1 we always have l(x) < l(y)). Since
there are at most ω(G[Vi]) − 1 = χ(G[Vi]) − 1 such intervals, there is always
an available color for x in [χ(G)], which proves Item 1. Since legality of γ1 is
preserved throughout the three recoloring steps, Item 1 follows. ��

This gives the following theorem:

Theorem 3. Let G = (V,E) be an interval graph and suppose that ε ≥ 2
χ(G) .

Then, there is a deterministic (1+ε)-approximation algorithm for coloring inter-
val graphs in the CONGEST model that runs in O(1ε log∗ n) rounds.

Proof. Correctness of the algorithm was established in Lemma 2. By construc-
tion, the algorithm uses at most χ(G)(1 + 1

p) + 1 colors. Thus, we set p = � 2
ε �

which implies that the number of colors is bounded by (1+ε)χ(G), which proves
the approximation guarantee. In order to execute p phases of the color rotation
algorithm, it is necessary that adjacent nodes of J are far enough apart. To this
end, we set parameter k to k = 3p + 2 = O(1ε).

Concerning the runtime of the algorithm, besides an O(k log∗ n) term for the
computation of the (k, 3k/2 + 1)-ruling set, an additive O(k2) term is incurred
by the Greedy coloring algorithm: In each of the O(k) phases, we execute the
Greedy coloring algorithm which requires O(k) steps. We argue now that the k2

term can be reduced to k by pipelining the Greedy recoloring sweeps. Iteration
i can be started as soon as nodes N3i+2 have been recolored by the recoloring
sweep initiated in iteration i − 1. After the initiation of the recoloring sweep of
iteration i − 1, it takes only a constant number of iterations until this sweep
reaches nodes N3i+2. Thus, iteration i can be started after a constant number of
iterations after the start of iteration i−1. Thus, by induction, iteration k can be
started O(k) iterations after iteration 1 has been started. The overall runtime is
thus O(k log∗ n + k) = O(1ε log∗ n). ��

Remark: In the recoloring step, we assume that nodes know χ(G). This can
be circumvented as follows: The initial left-to-right coloring γ1 is an optimal
coloring of nodes C1 ∪ C2 ∪ D. Nodes in C1 ∪ C2 ∪ D compute the largest color
employed by γ1. This value replaces χ(G) in the algorithm.

4 Lower Bound for Coloring Interval Graphs
in the LOCAL Model

Linial’s lower bound shows that every distributed algorithm for coloring the n-
cycle with three colors requires time Ω(log∗ n). Since it is possible to decrement

258 M. M. Halldórsson and C. Konrad

the number of colors of a c-coloring, for c ≥ Δ + 2, in a single communication
rounds using a standard method, Linial’s lower bound even holds for coloring the
ring with O(log∗ n) colors. Furthermore, this lower bound can easily be adapted
to hold for a path of length n (which is also an interval graph and can be colored
with two colors). it follows that computing a O(log∗ n)-approximate interval
coloring requires Ω(log∗ n) rounds.

We present now a different lower bound argument that holds for interval
graphs with arbitrary chromatic number. Specifically, we show that every distrib-
uted (1+ ε)-approximation algorithm for interval coloring requires Ω(1ε) rounds.

To this end, we give a lower bound for multicoloring a path and provide a
reduction between coloring intervals and path multicoloring.

Let G(V,E,w) be a weighted path on n vertices with w(v) = k, for every
v ∈ V . Then the multichromatic number of G is χm(G) = 2k: alternate between
the first k and the second k colors while traversing the path from left to right.
We prove now that if φ is a (1 + ε)-approximate multicoloring of G, then the
color sets of nodes at even distances have a large intersection and the color sets
of nodes at odd distances have small intersection.

Lemma 3. Let φ : V → 2N be a (1 + ε)-approximate multicoloring of a path
G = (V,E,w) with w(v) = k, for every v ∈ V . Then, for u, v ∈ V and an
integer r ≥ 1:

1. If dist(u, v) = 2r then |φ(u) ∩ φ(v)| ≥ k − 2krε,
2. If dist(u, v) = 2r + 1 then |φ(u) ∩ φ(v)| ≤ 2krε.

Proof. Since φ is a (1 + ε)-approximate multicoloring of G, we have |φ(V)| ≤
2(1 + ε)k. Let v0, v1, . . . denote the vertices of the path so that vi and vi+1 are
adjacent. Then, by Item 1 of Definition 1, it holds that |φ(vi) ∩ φ(vi+1)| = 0.
We further have |φ(vi) ∩ φ(vi+2)| ≥ k − 2εk, since the total number of colors
employed is bounded by

2(1 + ε)k ≥ |φ(vi+1)| + |φ(vi)| + |φ(vi+2)| − |φ(vi) ∩ φ(vi+2)|
= 3k − |φ(vi) ∩ φ(vi+2)|,

which implies the claimed bound. Next, we use the relationship

|φ(v0) ∩ φ(v2r)| ≥ |φ(v0) ∩ φ(v2r−2)| − |φ(v2r) \ φ(v2r−2)|
= |φ(v0) ∩ φ(v2r−2)| − (k − |φ(v2r) ∩ φ(v2r−2)|)
≥ |φ(v0) ∩ φ(v2r−2)| − 2εk,

which implies |φ(v0)∩φ(v2r)| ≥ k(1−2rε) and proves Item 1. Last, since |φ(v0)∩
φ(v1)| = 0 and |φ(v1) ∩ φ(v2r+1)| ≥ k(1 − 2rε), we obtain

|φ(u) ∩ φ(v2r+1)| ≤ |φ(v2r+1) \ φ(v1)| ≤ k − |φ(v1) ∩ φ(v2r+1)| = 2krε,

which proves Item 2. ��

Improved Distributed Algorithms for Coloring Interval Graphs 259

Equipped with Lemma3 we are ready to prove our lower bound on computing
a multicoloring on the path. Let G = (V,E,w) denote the path of length n with
w(v) = k, for every v ∈ V , and suppose that every vertex v receives a unique
label L(v), where L is chosen uniformly at random from the set of bijections
between V and {1, . . . , n}.

Theorem 4. Every possibly randomized distributed algorithm with error proba-
bility at most 1/3 that computes a (1 + ε)-approximate multicoloring on a path
G = (V,E,w) with vertex weights w(v) = k, for every v ∈ V , requires at least
1
4ε − 1

2 rounds.

Proof. Let v1, . . . , vn denote the vertices of G such that vi and vi+1 are adjacent,
and let φ denote the output multicoloring of the algorithm. Suppose that the
algorithm runs in r rounds. Consider an index j such that r+1 ≤ j ≤ n−3r−2.
Then, since the error probability of the algorithm is at most 1/3 and by applying
Lemma 3, we obtain

P [|φ(vj) ∩ φ(vj+2r+2)| ≥ k − 2k(r + 1)ε] ≥ 2/3 , (1)
P [|φ(vj) ∩ φ(vj+2r+1)| ≤ 2krε] ≥ 2/3 , (2)

where the probabilities are taken over the coin flips of the nodes and the labeling
function L. Since the outputs of two nodes at distance at least 2r + 1 are inde-
pendent (the output of a node is a function of the labels and random coin flips in
its r-neighborhood), for every integer c we obtain P [|φ(vj) ∩ φ(vj+2r+2)| = c] =
P [|φ(vj) ∩ φ(vj+2r+1)| = c] . Thus, Inequality 1 implies

P [|φ(vj) ∩ φ(vj+2r+1)| ≥ k − 2k(r + 1)ε] ≥ 2/3 . (3)

Suppose now that r < 1
4ε − 1

2 . Then, Inequality 3 gives

P

[
|φ(vj) ∩ φ(vj+2r+1)| > k(

1
2

+ ε)
]

≥ 2/3 ,

while Inequality 2 gives P

[
|φ(vj) ∩ φ(vj+2r+1)| < k(12 + ε)

]
≥ 2/3, a contradic-

tion. Thus, r ≥ 1
4ε − 1

2 holds which completes the proof. ��

Finally, we provide a reduction from multicoloring the path to interval col-
oring.

Theorem 5. Every possibly randomized distributed (1 + ε)-approximation algo-
rithm with error probability 1/3 for coloring interval graphs requires Ω(1ε +log∗ n)
rounds.

Proof. The Ω(log∗ n) part of the lower bound follows from Linial’s ring coloring
lower bound [16] (see also [12]).

260 M. M. Halldórsson and C. Konrad

To obtain the Ω(1ε) part of the lower bound, consider an algorithm A as
described in the statement of the theorem. Then, A can be used to compute
a multicoloring of the path G = (V,E,w) with w(v) = k, for any integer k,
as follows: The nodes v ∈ V simulate a fat path G′ = (V ′, E′) where every
vertex v ∈ V is replaced by a clique C(v) of size k and two cliques C(v) and
C(u) are adjacent if and only if u and v are adjacent in G. Such a fat path
constitutes an interval graph and thus algorithm A can be simulated to compute
a (1 + ε)-approximate coloring γ. We then set φ(v) = ∪v′∈C(v)γ(v′) which gives
a (1 + ε)-approximation to the multicoloring problem. The simulation can be
implemented with a constant factor blow-up on the number of communication
rounds. The lower bound of Theorem4 thus translates within a constant factor.

��

5 Conclusion

In this paper, we have presented a distributed (1 + ε)-approximation algorithm
for coloring interval graphs, which runs in O(1ε log∗ n) rounds. It runs in the
LOCAL model and can also be implemented in the CONGEST model if nodes
are aware of their interval representations. We also gave a lower bound of Ω(1ε).
We further demonstrated that the color rotation technique employed in our
CONGEST model algorithm can be useful for other coloring problems as well.

How can we extend our results to more general graph classes such as chordal
graphs, which are a superclass of interval graphs? Since chordal graphs contain
trees, Linial’s lower bound on coloring trees [16] shows that every constant factor
approximation algorithm for coloring chordal graphs requires Ω(log n) rounds.
Can we obtain a (1 + ε)-approximation on chordal graphs using O(poly(1ε) ·
polylog n) rounds in the LOCAL model? If nodes are aware of their index in a
perfect elimination ordering of the chordal graph, can we obtain for example a
O(poly(1ε) · log∗ n) rounds algorithm?

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

2. Barenboim, L.: Deterministic (Δ + 1)-coloring in sublinear (in Δ) time
in static, dynamic, and faulty networks. J. ACM 63(5), 47:1–47:22 (2016).
http://dl.acm.org/citation.cfm?id=2979675

3. Barenboim, L., Elkin, M.: Sublogarithmic distributed MIS algorithm for sparse
graphs using Nash-Williams decomposition. Distrib. Comput. 22(5), 363–379
(2010)

4. Barenboim, L., Elkin, M.: Distributed graph coloring: fundamentals and
recent developments. Synthesis Lectures on Distributed Computing Theory.
Morgan & Claypool Publishers (2013). http://dx.doi.org/10.2200/S00520ED1
V01Y201307DCT011

http://dl.acm.org/citation.cfm?id=2979675
http://dx.doi.org/10.2200/S00520ED1V01Y201307DCT011
http://dx.doi.org/10.2200/S00520ED1V01Y201307DCT011

Improved Distributed Algorithms for Coloring Interval Graphs 261

5. Barenboim, L., Elkin, M., Gavoille, C.: A fast network-decomposition algorithm
and its applications to constant-time distributed computation. In: Scheideler, C.
(ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp.
209–223. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25258-2 15

6. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed
symmetry breaking. J. ACM 63(3), 20:1–20:45 (2016). https://doi.org/10.1145/
2903137

7. Bollobás, B.: Chromatic number, girth and maximal degree. Discrete Math. 24(3),
311–314 (1978)

8. Chang, Y.J., Kopelowitz, T., Pettie, S.: An exponential separation between ran-
domized and deterministic complexity in the local model. In: Proceedings 57th
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 615–624
(2016)

9. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal
parallel list ranking. Inf. Control 70(1), 32–53 (1986). https://doi.org/10.1016/
S0019-9958(86)80023-7

10. Fraigniaud, P., Heinrich, M., Kosowski, A.: Local conflict coloring. In: IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS 2016, 9–11 Octo-
ber 2016. Hyatt Regency, New Brunswick, New Jersey, USA, pp. 625–634 (2016).
http://dx.doi.org/10.1109/FOCS.2016.73

11. Goldberg, A.V., Plotkin, S.A., Shannon, G.E.: Parallel symmetry-breaking in
sparse graphs. SIAM J. Discrete Math. 1(4), 434–446 (1988). https://doi.org/10.
1137/0401044

12. Halldórsson, M.M., Konrad, C.: Distributed algorithms for coloring interval graphs.
In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 454–468. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45174-8 31

13. Harris, D.G., Schneider, J., Su, H.H.: Distributed ()-coloring in sublogarithmic
rounds. In: Proceedings of the Forty-eighth Annual ACM Symposium on Theory
of Computing, STOC 2016, pp. 465–478. ACM, New York (2016). http://doi.acm.
org/10.1145/2897518.2897533

14. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press, NewYork (1972)

15. Kuhn, F.: Local multicoloring algorithms: computing a nearly-optimal TDMA
schedule in constant time. In: 26th International Symposium on Theoretical
Aspects of Computer Science, STACS 2009, 26–28 February 2009, Freiburg, Ger-
many, Proceedings, pp. 613–624 (2009). http://dx.doi.org/10.4230/LIPIcs.STACS.
2009.1852

16. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–
201 (1992). https://doi.org/10.1137/0221015

17. Luby, M.: A simple parallel algorithm for the maximal independent set problem. In:
Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing,
STOC 1985, pp. 1–10. ACM, New York (1985). http://doi.acm.org/10.1145/22145.
22146

18. Schneider, J., Elkin, M., Wattenhofer, R.: Symmetry breaking depending on the
chromatic number or the neighborhood growth. Theor. Comput. Sci. 509, 40–50
(2013). https://doi.org/10.1016/j.tcs.2012.09.004

19. Schneider, J., Wattenhofer, R.: An optimal maximal independent set algorithm for
bounded-independence graphs. Distrib. Comput. 22, 349–361 (2010)

https://doi.org/10.1007/978-3-319-25258-2_15
https://doi.org/10.1145/2903137
https://doi.org/10.1145/2903137
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1109/FOCS.2016.73
https://doi.org/10.1137/0401044
https://doi.org/10.1137/0401044
https://doi.org/10.1007/978-3-662-45174-8_31
http://doi.acm.org/10.1145/2897518.2897533
http://doi.acm.org/10.1145/2897518.2897533
http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1852
http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1852
https://doi.org/10.1137/0221015
http://doi.acm.org/10.1145/22145.22146
http://doi.acm.org/10.1145/22145.22146
https://doi.org/10.1016/j.tcs.2012.09.004

262 M. M. Halldórsson and C. Konrad

20. Schneider, J., Wattenhofer, R.: A new technique for distributed symmetry break-
ing. In: Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, PODC 2010, pp. 257–266. ACM, New York (2010).
http://doi.acm.org/10.1145/1835698.1835760

21. Smith, D.A.: The first-fit algorithm uses many colors on some interval graphs.
Ph.D. thesis, Arizona State University, Tempe, AZ, USA (2010). aAI3428197

22. Valencia-Pabon, M.: Revisiting Tucker’s algorithm to color circular arc graphs.
SIAM J. Comput. 32(4), 1067–1072 (2003)

23. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory Comput. 3(1), 103–128 (2007)

http://doi.acm.org/10.1145/1835698.1835760

How Long It Takes for an Ordinary Node
with an Ordinary ID to Output?

Laurent Feuilloley(B)

Institut de Recherche en Informatique Fondamentale (IRIF),
CNRS and University Paris Diderot, Paris, France

feuilloley@irif.fr

Abstract. In the context of distributed synchronous computing, proces-
sors perform in rounds, and the time complexity of a distributed algo-
rithm is classically defined as the number of rounds before all computing
nodes have output. Hence, this complexity measure captures the run-
ning time of the slowest node(s). In this paper, we are interested in the
running time of the ordinary nodes, to be compared with the running
time of the slowest nodes. The node-averaged time-complexity of a dis-
tributed algorithm on a given instance is defined as the average, taken
over every node of the instance, of the number of rounds before that
node output. We compare the node-averaged time-complexity with the
classical one in the standard LOCAL model for distributed network com-
puting. We show that there can be an exponential gap between the node-
averaged time-complexity and the classical time-complexity, as witnessed
by, e.g., leader election. Our first main result is a positive one, stating
that, in fact, the two time-complexities behave the same for a large class
of problems on very sparse graphs. In particular, we show that, for LCL
problems on cycles, the node-averaged time complexity is of the same
order of magnitude as the “slowest node” time-complexity. In addition,
in the LOCAL model, the time-complexity is computed as a worst case
over all possible identity assignments to the nodes of the network. In
this paper, we also investigate the ID-averaged time-complexity, when
the number of rounds is averaged over all possible identity assignments
of size O(log n). Our second main result is that the ID-averaged time-
complexity is essentially the same as the expected time-complexity of
randomized algorithms (where the expectation is taken over all possible
random bits used by the nodes, and the number of rounds is measured for
the worst-case identity assignment). Finally, we study the node-averaged
ID-averaged time-complexity. We show that 3-colouring the n-node ring
requires Θ(log∗ n) rounds if the number of rounds is averaged over the
nodes, or if the number of rounds is averaged over the identity assign-
ments. In contrast, we show that 3-colouring the ring requires only O(1)
rounds if the number of rounds is averaged over the nodes, and over the
identity assignments.

The author received additional support from ANR project DESCARTES, and Inria
project GANG.

c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 263–282, 2017.
https://doi.org/10.1007/978-3-319-72050-0_16

264 L. Feuilloley

1 Introduction

The LOCAL model [22] is a standard model of distributed network computing.
In this model, the network is abstracted as a graph, and the nodes perform in
rounds to solve some task. At each round, each node can send messages to its
neighbours in the graph, receive messages and perform some computation. The
complexity of an algorithm solving some task is measured by the number of
rounds before the task is completed, which usually depends on the size of the
network, that is, its number of nodes.

A classic assumption in the LOCAL model is that the nodes know the size
of the network a priori. As a consequence, in many algorithms, each node can
compute from the start how many rounds are needed to solve the task, and
stops after that number of rounds. There have been efforts to remove such a
priori knowledge of the parameters of the graph (e.g. the arboricity [3] and
the maximum degree [19]). Quite recently a general technique, called pruning
algorithms, has been developed to remove the assumption that nodes know the
size n of the network [15]. In other words, [15] provides a method to transform
a non-uniform algorithm into a uniform algorithm. The basic idea is to guess
the number of nodes and to apply a non-uniform algorithm with this guess. The
output can be incorrect, as the algorithm is only certified to be correct when it is
given the actual number of nodes in the graph. The technique consists in virtually
removing from the graph the nodes that have correct outputs, and to repeat the
previous procedure with a new guess that is twice as large as the previous guess.
Eventually all nodes have an output after a certain number of iterations, and
the solution that is computed is correct. Note that with the resulting uniform
algorithm some nodes can output very quickly, and some others can output
much later. So far, only the classic measure of complexity, i.e. the time before
all nodes stop and output, has been studied, even for such algorithms. In other
words, only the behaviour of the slowest node has been considered. In this paper,
we introduce a new measure of complexity, which is the average measure, in
opposition to the usual measure which is a worst-case measure. More precisely,
we define the running time of a node as the number of rounds before it outputs,
and consider the average of the running times of the nodes. We argue that, when
studying the locality of problems and of algorithms, it is worth to also consider
this measure. Indeed it describes the typical local behaviour of the algorithm,
that is, the behaviour of an ordinary node.

In some contexts partial solutions are useful. For example, consider the sce-
nario in which two tasks are to be performed one after the other. In such case,
it may happen that, on some part of the graph a partial solution for the first
task is computed quickly. We can take advantage of this to start the second task
in that part of the network, while the other nodes are still working on the first
task. Note that knowing if the first task is finished can be impossible locally,
and one has to design the second algorithms such it start at different rounds on
different nodes. Consider a second scenario in which a global operator has to
take a decision based on the outcome of a local algorithm. In that case, a partial
solution may also be sufficient. For example the operator can detect that the

How Long It Takes for an Ordinary Node with an Ordinary ID to Output? 265

network is in a bad state, and start immediately a recovery procedure without
waiting for all nodes to finish. Such situations are a motivation for the study
of graph property testing, where a centralized algorithm probes the network on
a sublinear number of nodes and take a decision based on this partial knowl-
edge. We refer to the survey on graph property testing [13] for more examples
of applications. When such partial solutions are useful, one would like to design
algorithm that stop as soon as possible, and the average of the running time of
the nodes is then a measure one would like to minimize.

Another classical assumption in the LOCAL model is that the nodes are given
distinct identifiers. These identifiers (or IDs for short), are distinct binary strings
on O(log n) bits, that is, distinct integers from a polynomially large space. The
usual way to measure the complexity of an algorithm is again to consider its the
worst-case behaviour, that is, the performance of the algorithm on the worst ID
assignment. We argue that the average performances over all ID assignments, is
also worth considering. Indeed many lower bounds are based on the fact that,
as the identifiers can be viewed as set by an adversary, they do not really help
to break symmetry. For example, on a path, one may consider the identifier
assignment 1, 2, ..., n, and argue that if nodes only consider the relative ordering
of the identifiers in their neighbourhoods, then many nodes have the same view,
and thus they cannot break symmetry. It is interesting to study if such specific
constructions are required, or if one can design lower bounds that are robust
against arbitrary ID assignment. We cannot expect that IDs are always set in
a perfect way for the task we consider, but it may seem excessive to consider
that they are set in an adversarial way, which naturally leads to the question
of random assignments. We study the complexity of algorithms on random ID
assignment, as the average over all possible ID assignment of the running time of
the slowest node. Finally, the typical behaviour of an algorithm can arguably be
the expected running time of an ordinary node on a random ID assignment. That
is, the standard complexity but averaged on both nodes and ID assignments.

For the sake of concreteness, here is an example of the type of questions
tackled in this paper. Consider the classic task of 3-colouring a ring of n nodes.
It is known that this task requires Ω(log∗ n) rounds [16]. This bound also holds
for randomized algorithms [20]. The question tackled in this paper are of the fol-
lowing form: is it the case that a node typically outputs after a constant number
of rounds, or is the Ω(log∗ n) lower bound robust to this spatial averaging? And
what about the complexity of the problem on a random ID assignment?

Our results. Our first result is that averaging on the nodes can have a dramatic
effect on the time complexity of solving a task in the LOCAL model. Indeed, for
leader election on cycles, there is an exponential gap between the node-averaged
complexity and the classic complexity. That is the slowest node outputs after a
number of rounds that is exponentially larger than the time complexity of an
ordinary node. This contrasts with our next result, for very sparse graphs. We
say that a graph is q-sparse, if every ball of radius r has at most q.r nodes. For
q-sparse graphs, we show that, for many classic tasks, the two measures are of
the same order of magnitude. More precisely for a class of tasks that generalizes

266 L. Feuilloley

the class of locally checkable labellings (LCL for short) [21], we show the following
lemma, that we call local average lemma. For a given algorithm, either no node
has a running time much larger than the average in its neighbourhood, or there
exists an algorithm that is strictly better, that is an algorithm that has smaller
running time for every node in every graph. As a consequence when proving
lower bounds for these problems, one can use the fact that there is no peak
in the distribution of the running times of the nodes. Then, to show that the
average running time is large, it suffices to show that there is a large enough
number of nodes that are far enough one from the other and that have large
running time . This local average lemma can be used to show, for example, that
for LCL problems on cycles, the landscape of complexities for an ordinary node
and for the slowest node is the same, that is, for every problem the complexity
is either Θ(1), Θ(log∗ n) or Θ(n).

We then move on to averaging on the identifier assignments. That is, we con-
sider the expected behaviour of deterministic algorithms on random ID assign-
ments. This topic happens to be related with the expected complexity of ran-
domized algorithms. We show that even though these two models have specific
properties, namely the independence of the random strings for the randomized
algorithms, and the uniqueness of the identifiers for random ID assignment, the
complexities are essentially the same. It follows that the results known for ran-
domized algorithms can be translated to average over the identifiers.

Finally we prove that averaging on both nodes and IDs, can have an impor-
tant effect on the complexity. We take the example of 3-colouring an n-node
cycle. From the previous results of the paper, and from the literature, we know
that this task has complexity Ω(log∗ n) for both the average on the nodes and
the average on the identifiers. Quite surprisingly, when averaging on both the
nodes and the ID assignment, the complexity becomes constant. In other words,
deterministic and randomized complexity of ordinary nodes are clearly sepa-
rated. Such separation contrast with the situation when considering the classic
measure, as randomized constant-time algorithms for LCL, can be derandomized
to get constant-time deterministic algorithms [21].

Related works. The LOCAL model was defined in [16], and a standard book on
the topic is [22]. The problem of leader election, studied in Sect. 3, is a classic
problem in distributed computing [2,18].

Deterministic algorithms stopping after different number of rounds on differ-
ent nodes have been studied in contexts where the parameters of graphs, such as
the degree or the number of vertices, are unknown. Such algorithms are called
uniform algorithm, because it is the same algorithms that is run on every graph,
independently of the parameters. A work that is particularly relevant to us is
[15]. In this paper the authors prove that for a wide class of problems, one can
remove the assumption that the nodes know the size n of the network. This is
done by applying a general method to transform a non-uniform algorithm into
a uniform algorithm, without increasing of the asymptotic running time. In this
framework, called pruning algorithms, some nodes may stop very early and some

How Long It Takes for an Ordinary Node with an Ordinary ID to Output? 267

may run for much longer time. Such algorithms justify the study of the behaviour
of an ordinary node and not only of the behaviour of the slowest node.

The local average lemma of Sect. 4 applies to problems that are local in the
sense that the nodes can check in constant time if a given solution is correct.
This is an extension of the well-studied notion of locally checkable labelling (or
LCL for short) [21], which is similar but requires in addition that the size of the
inputs and of the outputs are bounded. Also the set of correct labellings usually
studied, e.g. in distributed decision [9], including in LCL, do not depend on the
identifiers of the graph, a restriction that is not needed here.

Randomized algorithms that turn out to be equivalent to algorithms working
on random ID assignment form a well-studied subject, going back to the 80s
with algorithms for maximal independent sets [1,17]. Recently, improvements on
classic problems have been obtained [12,14] along with an exponential separation
between randomized and deterministic complexity [6] (see also [4]). In [12], the
author, by advocating the study of the so-called local complexity for a randomized
algorithms, conveys the same message as the current paper: the behaviour of a
typical node is worth considering, even if some nodes of the graph have much
worst behaviour.

In this paper, we consider two relaxations of the measure of complexity, from
worst-case to average, on the nodes and on the IDs. An aspect that we do not
consider is the structure of the graph. We refer to [11] and references therein,
for the topic of local algorithms on random graphs.

Finally, part of the results of this paper appeared in a brief announcement
at PODC 2015 by the current author [8].

2 Model and Definitions

The graph considered in this paper are simple connected graphs, and throughout
the text n will denote the number of nodes in the graph. The distance between
two nodes is the number of edges on a shortest path between these nodes, that
is, the hop-distance. The k-neighbourhood of a node v in a graph G, is the graph
induced by the nodes at distance at most k from v. Every node is given a distinct
identifier on O(log n) bits, or equivalently an integer from a polynomially large
range.

The algorithms studied in this paper can be defined in two ways. In both
definitions, the nodes are synchronized and work in rounds, and for both the
computational power of the nodes is unbounded. In the first definition, at each
round, every node can exchange messages with its neighbours, and perform some
computation. There is no bound on the size of the messages. A given node chooses
an output after some number of rounds, and different nodes can stop at different
rounds. After the output, a node can continue to transmit messages and perform
computations, but it cannot change its output. In other words, the nodes do not
go to a sleep mode once they have output, but the output is irrevocable. In the
second definition, each node starts with the information of its 0-neighbourhood,
and increases the size of this view at each round. That is, after k rounds, it

268 L. Feuilloley

knows its k-neighbourhood, that is it knows the structure of the graph in this
neighbourhood, along with the identifiers and the inputs of the nodes. At some
round, it chooses an output and stops. These two definitions are equivalent. On
one hand, if we start from the first definition, we can assume that each round
every node sends to its neighbours all the information it has about the graph
(remember that the message size is unbounded)1. Then after k rounds, a node
has gathered the information about its k-neighbourhood. On the other hand,
given a k-neighbourhood, a node can simulate the run of the other nodes, and
compute the messages that it would receive if the nodes were using a message-
passing algorithm.

The running time of a node is the number of rounds before it outputs. With
the second definition, the running time of the algorithm can be described in a
more combinatorial way: it is the minimum k such that the node can choose
an output with a view of radius k. Given a graph G, an identifier assignment I
(from the set of legal ID assignments that we denote ID), an algorithm A, and
a node v, we denote by rG,I,A(v) the running time of node v in this context.
When the context is clear, we simply use r(v). We now define the different
measures of complexity used in this paper. Given a graph G, and an algorithm
A, we call complexity of the slowest node complexity or classical complexity, and
complexity of an ordinary node or node-averaged complexity respectively, the
following quantities:

max
I∈ID

max
v∈G

rG,I,A(v) and max
I∈ID

1
n

∑

v∈G

rG,I,A(v)

In the second part of this paper, we consider the average on the identifier
assignments and the average on both the identifiers and the nodes, that is, the
following measures:

1
|ID|

∑

I∈ID

(
max
v∈G

rG,I,A(v)
)

and
1

|ID|
∑

I∈ID

(
1
n

∑

v∈G

rG,I,A(v)

)

The tasks or problems that we want to solve in a distributed manner, are
formalized with the notion of language. A language L is a set of configurations
of the form (G, I, x, y), where G is a graph, I an identifier assignment, and
x and y are functions from the nodes of the graph to a set of labels. We are
interested in constructing these languages, which means that given a graph G,
an ID assignment I and inputs given by the function x, we want to compute
locally a function y such that (G, I, x, y) is in the language L. The languages
considered are such that for every (G, I, x), there exists a legal output y. Note
that usually, the identifier assignment is not part of the language [9,10,21], but
our results hold for this more general version.
1 There is a subtlety here, which is that after k rounds in the message-passing algo-

rithm a node cannot know the edges that are between nodes at distance exactly k
from it. For the sake of simplicity, we consider the proper k-neighbourhoods, as it
does not affect the asymptotic of the algorithms.

How Long It Takes for an Ordinary Node with an Ordinary ID to Output? 269

In Sect. 3, we use the most general option regarding the knowledge of n
by the nodes, we assume such knowledge for lower bounds, whereas for upper
bounds we do not require it. For Sect. 4, we assume that nodes do not have the
knowledge of n. For the randomized part we assume this knowledge for the sake
of simplicity, and refer the reader to Subsect. 4.4 of [15] for a technique to remove
such assumption for randomized algorithm.

Throughout the paper, the expression with high probability means with prob-
ability at least 1 − 1/n.

3 Exponential Gap for a Global Language

The complexity of an ordinary node is bounded by the complexity of the slowest
node by definition. In this section, we show that the gap between these two
quantities can be exponential.

Theorem 1. The gap between the averaged-node complexity and the classical
complexity can be exponential.

We illustrate this phenomenon on the classic problem of leader election. The
language of leader election is the set of graphs, with no inputs and binary out-
puts, such that exactly one node has label 1, and the others have label 0. It does
not depend on the ID assignment. It is folklore that this problem has classic
complexity Θ(n).

Proposition 1 (Folklore). Leader election on an n-node ring requires Θ(n)
rounds (for the slowest node).

We prove this statement for completeness. The complexity of leader election
in various models is discussed in [2,18].

Proof. Let A be an algorithm for leader election, which has access to the size of
the graph. Suppose that the slowest node complexity of A is c(n) ∈ o(n). Let n0

be a large enough constant such that 2c(n0) + 1 < n0/2. Consider a ring R1 of
length n0. After running the algorithm A on R1, a node v1 is elected to be the
leader. This node v1 outputs 1, after at most c(n0) steps. That is, v1 outputs
based on a view that contains at most 2c(n0)+1 nodes. Because of the definition
of n0, this view contains less than n0/2 nodes. Let I1 be the set of identifiers
in this view. Now consider another ring R2 of length n0, whose set of identifiers
does not contain any of the IDs of I1. Again, a node v2 is designated as the
leader, and its view contains less than n0/2 nodes. Now consider the ring made
by concatenating the two views, and adding dummy nodes with fresh identifiers,
to make sure that the ring has size n0. Because the identifiers are all distinct,
this is a proper instance. Then, as v1 and v2 have the same view as in R1 and
R2 respectively, with the same graph size n0, they output the same as in R1 and
R2. That is, they both output 1, and thus produce a configuration that is not
in the language, which a contradiction. ��

270 L. Feuilloley

Proposition 2. The complexity of an ordinary node for leader election on an
n-node ring is O(log n).

Proof. Consider the following algorithm. Each node increases its radius until one
of the two following situation occurs. First, if it detects an ID that is larger than
its own, then it outputs 0. Second, if it can see the whole ring and that no ID
is larger than its own, then it outputs 1. It is easy to see that this algorithm
is correct as only the node with maximum ID can output 1. Note that this
algorithm is order-invariant in the sense of [21], i.e. the algorithm does not take
into account the identifiers themselves, but only their relative ordering in its
view. In particular, the algorithm does not require the knowledge of n. We show
that the averaged-node complexity of this algorithm is logarithmic in n.

Let us first make an observation. Consider the nodes with the k largest
identifiers, and mark them. The nodes that are not marked form k paths, some
of them possibly empty. A key property is that the behaviour of the algorithm
on one path is independent of the other paths. More precisely, we claim that on a
given path the algorithm will have the same behaviour whatever the sizes and the
identifier distributions of the other paths are. Fix a path, and a node v, in this
path. By definition, v has an identifier that is smaller than the ones of the two
marked nodes at the endpoints of the path. Therefore, it stops either before, or
just when reaching one of the marked nodes, and it outputs 0. As a consequence
it will never get to know the rest of the cycle. This simple observation implies
that we can study the behaviour of the algorithm on each path separately. Let
p be integer, and let us consider a path of length p with two additional marked
nodes at each endpoint. In order to study the behaviour of the algorithm on
this path, it is sufficient to consider all the relative ordering of identifiers on this
path, because it is an order-invariant algorithm. Marked nodes can be replaced
by nodes with IDs larger than every ID in the path. Let a(p) be the maximum
over all these identifier assignments of the sum of the running time of the nodes.
We claim that this function obeys the following recursion formula:

a(p) = max
1≤k≤�p/2�

{k + a(k − 1) + a(p − k)} .

Consider the node v with the largest identifier in the path. It must reach one of
the endpoints to stop. Then if we mark this node, the behaviour of the algorithm
on the two subpath is independent of the context, and the maximum sums of
running times in each path is a(p1) and a(p2) for the first subpath of length p1
and the second of length p2 respectively. Then the only parameter is the distance
k from v to the closest endpoint. Given such an integer k, a(p) is then equal to
k + a(k − 1) + a(p − k). One can then check by induction that this maximum is
always met for the value k = �p/2�. Then an alternative formula is:

a(p) =
⌈p

2

⌉
+ a

(⌈p

2

⌉)
+ a

(⌈p

2

⌉
− 1

)

The sequence a(n), defined by the induction formula above, along with initial
values a(0) = 0 and a(1) = 1, is known to be in θ(n log n). For references and

How Long It Takes for an Ordinary Node with an Ordinary ID to Output? 271

more information about this sequence, see [25]. Consequently, the sum of the
running times of the nodes is equal to the sum of the running time of the leader,
which is n/2, and of a(n−1). This is because, we can mark the node that has the
largest ID, and consider the rest of graph as a path. Thereafter, the complexity
of an ordinary node is logarithmic in n. ��

Note that analysis of the same flavour already exist in the literature, see for
example [24] p. 125. Theorem 1 follows from Propositions 1 and 2.

4 Local Average Lemma and Application

This section is devoted to proving that, for local languages on very sparse graphs,
the complexity of an ordinary node is basically the same as the one of the
slowest node. This proof is based on a local average lemma. Given a graph and
an algorithm, let us define informally a peak, as a node with high running time,
whose neighbours at some distance have much smaller running times in average.
The lemma states that, for local languages, and for algorithm that are somehow
optimal, there is no such peak.

In order to give an intuition of this lemma, let us use the example of the
3-colouring a cycle. Consider an algorithm for the problem, and three adja-
cent nodes u, v and w, in this order, in a cycle. We claim that if r(v) >
max(r(u), r(w)) + 1, then the algorithm can be speeded up. Indeed after
max(r(u), r(w)) + 1 steps, v can simulate the computation of u and w, deduce
the colours they output, and output a non-conflicting colour. As a consequence
if one wants to prove a lower bound on the average of the running times, one can
assume that, for every node, at least one of its neighbours has a similar running
time, namely at least its running time minus one.

In this section the algorithm do not have the knowledge of n. In order to
state the lemma we need to introduce a few notions.

Class LCL∗. We consider a large class of distributed problems that we call LCL∗,
which includes the well-known class of LCL problems [21], and the more general
class LD [10]. A language L is in LCL∗, if there exists a constant-time verification
algorithm. That is, an algorithm V performing in a constant number of rounds,
with binary output, accept or reject, such that for every configuration (G, I, x, y),
V accepts at every node, if and only the graph is in the language L. The running
time of V is called the verification radius. No bound on the size of the inputs
and output is necessary, and the language can depend on the identifiers.

q-sparse graphs. A graph is q-sparse if any ball of radius r contains at most qr
nodes. For example a cycle is 3-sparse.

Minimal algorithms. The lemma has the following shape: given a node v whose
running time is r, the nodes of its neighbourhood have running times whose
average is roughly r. This type of statement cannot hold in general as we could
artificially increase the radius of a node by modifying the algorithm. But as we

272 L. Feuilloley

are interested in lower bounds for the node-averaged complexity, we can consider
algorithms that are in some sense minimal. More precisely, let A and A′ be two
distributed algorithms for some language L. We say that A is smaller than A′,
if on every graph, every ID assignment and inputs, and on every node, the
running time of A is at most the running time of A′. For lower bounds on the
node-averaged complexity, it is sufficient to study algorithms that are minimal
for this ordering. Indeed, if an algorithm that is not minimal has low complexity,
then there exists a minimal algorithms that has at most this complexity.

Lemma 1 (Local average lemma). Let L be a language in LCL∗ with verifi-
cation radius t, and A be a minimal algorithm for L. There exists two positive
constants α and β, such that on any q-sparse graph, ID assignment, inputs, and
node v, the average of the running times of the nodes at distance at most r(v)/2
from v, is at least α.r(v) − β.

Let us denote by B(v, k,G, I, x) the subgraph of G, with identifiers I, and
inputs x, induced by the nodes at distance at most k from a node v. Likewise,
given two integers k1 < k2, let S(v, k1, k2, G, I, x) be the induced graphs with IDs
and inputs, induced by the set of nodes whose distance to v is at least k1 and at
most k2. When the context is unambiguous, we omit the information G, I and x.

Let L be a language of LCL∗. There exists a verification algorithm V, such
that a configuration (G, I, x, y) is in the language L if and only if V accepts
at all node. Let t be the verification radius of V. Let L, A, G, I, v and x be
respectively, a language, a minimal algorithm, a graph and an ID assignment, a
node and an input assignment as in the lemma.

In order to prove the lemma, we will first prove the following claim.

Claim. For every integer k:

r(v) ≤ 2k + 2t + max
u∈S(v,k,k+2t)

r(u)

Proof. Suppose the inequality does not hold for some k. Let us use the following
notations:

M = max
u∈S(v,k,k+2t,G,I,x)

r(u) and B = B(v, k + 2t + M,G, I, x).

As in the example of 3-colouring at the beginning of this section, we define a
new algorithm A′, designed to be smaller than A. On a node w of a graph G′,
with ID assignment I ′, and inputs x′, the behaviour of A′ differs from the one
of A only if the following conditions are fulfilled:

(1) The running time of w, rG′,I′,A(w), is at least 2k + 2t + M ;
(2) The node w is at distance at most k from a node whose neighbourhood at

distance k + 2t + M is exactly B(v, k + 2t + M,G, I, x).

See Fig. 1. When the two conditions are fulfilled, let wG be the node of G,
whose position in B, ID, and input, are the same as the ones of w in G′. In that

How Long It Takes for an Ordinary Node with an Ordinary ID to Output? 273

B

G

M

2t
k v

B

G

w
2k + 2t
+M

Fig. 1. This figure illustrates the definition of the algorithm A′ in the proof of Lemma 1.
On the left is the original graph G with node v, along with the ball B around it. The
behaviour algorithm A′ differs from the algorithm A only if it is in the situation of the
node w on the right: it has running time at least 2k + 2t + M , and it is at distance at
most k from a node whose (k + 2t + M)-neighbourhood is exactly B.

case, the algorithm A′ stops at round 2k + 2t + M , and outputs the same label
as A does on wG, in (G, I, x).

The algorithm A′ is correct on G by construction, as it has exactly the same
outputs as A. We prove that A′ is correct on any graph. Consider the behaviour
of the verification algorithm V, on a node z of a graph G′, with IDs I ′ after the
run of A′. This node may reject, only if it can detect a difference between the
outputs of A and A′. That is, only if A′ has an output that is different from the
output of A, on a node y of the t-neighbourhood of z. Because of the condition
(2) in the definition of A′, y is at distance at most k from a node v′ whose
neighbourhood at distance k + 2t + M is exactly B. Then z is at distance at
most t + k from this node v′. It is then sufficient to show that the algorithm A′

has correct outputs on the ball that is centred in v′ and has radius k +2t, as the
whole view of V on z is contained in this ball.

First note that, the nodes at distance at most k from v′ in G′, have the
same output with A′, as the nodes at distance at most k from v in G with A.
This is by definition A′. Second, remember that M = maxu∈S(v,k,k+2t,G,I) r(u).
As a consequence, in G, the nodes of S(v, k, k + 2t,G, I) stop before they see
nodes outside of B. The same holds in G′: as the (k + 2t + M)-neighbourhood
of v′ is also B, the nodes of S(v′, k, k + 2t,G′, I ′) have the same behaviour as
is in the previous case, that is, they stop before they discover that they are not
in G. Therefore, the nodes of S(v′, k, k + 2t,G′, I ′) output as if they were in
S(v, k, k + 2t,G, I).2 Then A′ has the same outputs as A, and as A is correct,
A′ is correct.

The algorithm A′ is strictly smaller that A, indeed no running time has been
increased, and the running time of v in G has been reduced to 2k + 2t + M .
Consequently A is not minimal, which is a contradiction. ��

2 Remember that the nodes do not have the knowledge of the size of the network, thus
they have exactly the same information in G and G′.

274 L. Feuilloley

The final step of the proof Lemma 1, requires some computations, and to
give more insights, we first give an intuition of this step, considering a simplified
version of the inequality of Claim 4. Suppose we have the following inequality:
r(v) ≤ maxSk

r(u) where Sk is the set of nodes at distance exactly k. The
quantity maxSk

r(u) is upper bounded by
∑

Sk
r(u). Then, summing both terms

of the inequality, for k ranging from 1 to r(v), one gets r(v)2 ≤ ∑
S r(u), where

S is the ball of radius r(v), without v. Now because of q-sparsity, there are at
most qr(v) nodes in S, and then

∑
S r(u) ≤ qaSr(v), where aS is the average

running time in S. Then r(v) ≤ q.aS .
We now finish the proof of the lemma. From Claim 4, for every k,

r(v) − 2k − 2t ≤ max
u∈S(v,k,k+2t)

r(u).

The following inequality follows:

r(v) − 2k − 2t ≤
∑

u∈S(v,k,k+2t)

r(u).

Let us sum the inequality above, for k ranging from 1 to r(v)/2−2t. We assume
without loss of generality that t and r(v) are positive. The left-hand term is
then:

r(v)/2−2t∑

k=1

(r(v) − 2k − 2t) =
r(v)2

4
− tr(v) +

r(v)
2

− 2t ≥ r(v)2

4
− 3tr(v).

The right-hand term is:

r(v)/2−2t∑

k=1

∑

u∈S(v,k,k+2t)

r(u) ≤ (2t + 1) ×
∑

u∈S(v,1,r(v)/2)

r(u).

Because of q-sparsity, the number of nodes in S(v, 1, r(v)/2) is bounded by
(r(v)/2).q, thus

(2t + 1) ×
∑

u∈S(v,1,r(v)/2)

r(u) ≤ (2t + 1)
qr(v)

2|S(v, 1, r(v)/2)|
∑

u∈S(v,1,r(v)/2)

r(u).

Putting the pieces together, and simplifying the terms, we get:

r(v)2

4
− 3tr(v) ≤ 2tqr(v)

1
|S(v, 1, r(v)/2)|

∑

u∈S(v,1,r(v)/2)

r(u).

Dividing by r(v), and defining α = 1
8tq and β = 3t

2q , we get:

α.r(v) − β ≤ 1
|S(v, 1, r(v)/2)|

∑

u∈S(v,1,r(v)/2)

ru

Which is the desired formula, as the right-hand term is the node-averaged com-
plexity, and as t and q are constants. ��

How Long It Takes for an Ordinary Node with an Ordinary ID to Output? 275

4.1 Applications

Thanks to the lemma, establishing a lower bound for node-averaged complexity
of languages in LCL∗ for very sparse graphs, boils down to show a simpler fact.
It is sufficient to prove that a constant fraction of the nodes are close enough to
nodes with running times similar to the running time of the slowest node. We
illustrate this type of proof with LCL problems on cycles. It is known that for such
problems, the slowest node complexity can only take three forms: O(1), Θ(log∗ n)
or Θ(n). See for example [5] for a recent presentation of this classification.3 We
prove that the landscape is the same for ordinary nodes.

Theorem 2. For LCL on cycles, the node-averaged complexity has the same
asymptotic classification as the slowest node complexity.

Proof. Remember that the slowest node complexity is an upper bound on the
average node complexity. Thereafter, it is sufficient to only prove the two lower
bounds: Ω(log∗ n) and Ω(n).

Let us first focus on the case Θ(n). In this case, there exists a constant γ,
such that on every cycle on n nodes, for large enough n, at least one node v has
a running time at least γn. As we consider a lower bound, we can assume that
the algorithm is minimal. As Lemma 1 applies, the average complexity in the
(γn/2)-neighbourhood of v is at least αγn − β, where α and β are constants.
Thereafter, the sum of the running time, in the (γn/2)-neighbourhood of v is
bounded from below by αγ2n2 − βγn (or n2). Hence the average complexity for
the whole cycle is in Ω(n).

Now let us now consider the case of classical complexity Θ(log∗ n). Consider
any minimal algorithm A for the language L we consider. Again, let γ be a
constant, such that the slowest node complexity is at least γ log∗ n, for large
enough n. There exists a ring R1 on n nodes, such that a node v1 has running
time r1 ≥ γ log∗(n). Then let H1 be the graph that is composed of only the
r1-neighbourhood of v1, and let I1 be the set of identifiers of this segment. Now
consider another ring R2 on n nodes, with no identifiers from I1, such that there
exists a node v2 with running time r2 ≥ γ log∗(n). Let H2 be H1 concatenated
with the r1-neighbourhood of v1. Note that because no identifier from I1 is
present in R2, H2 has distinct identifiers. This operation can be repeated, until
Hk has more than n/2 nodes. Let H be Hk, completed in an arbitrary way to
get a full cycle of size n with distinct identifiers.

Note that as we performed the operation at most a linear number of times,
the fact of removing some identifiers at each step is harmless as the identifier
space is supposed to be polynomially large. Also note that the Θ(log∗ n) lower
bound for the classical complexity is not affected by the constraints we add on
the identifier space. This is because the lower bounds proofs do not rely on the
particular shape of this space, which can even be assumed to be {1...n}[16].
3 Even if not stated explicitly in [5], this classification also holds in the context where

no knowledge of n is assumed. This is because the Θ(log∗ n) bound relies on the
construction of a maximal independent set, and that MIS is a problem for which the
construction of [15] works.

276 L. Feuilloley

We claim that on this cycle H with this ID assignment, the average node
complexity is δ log∗(n) for some constant δ. Indeed the nodes vi, for i ranging
from 1 to k, have the same neighbourhood as in Ri respectively, thus have
running times ri respectively. Then using lemma 1 we get for every i the nodes
at distance at most ri/2 from vi have running time at least αri − β. And by
construction there is a constant fraction of the nodes of H that are in this case.
As for every i, ri ≥ γ log∗(n), the node-averaged complexity is in Ω(log∗ n). ��

This “extract and glue” technique works on other class of graphs, and similar
bounds can thus be achieved. Nevertheless it is not true that, for any LCL prob-
lem and any graph class, the classic complexity is the same as the node-averaged
complexity, as the following proposition shows.

Proposition 3. There exists a graph class C for which 3-colouring has slowest
node complexity Ω(log∗ n) but node-averaged complexity in O(1).

Proof. Consider first the following construction. Start with a path of even length
k, and index the nodes along the path from v1 to vk. Create three new nodes
and link them to the node vk. Now for the nodes vi with 1 < i < k, if the index
i is even, then add a node v′

i and the edge (vi, v′
i). We call this construction a

short leg. If the index i is odd, add two nodes v′
i and v′′

i , and two edges (vi, v′
i)

and (v′
i, v

′′
i). This is a long leg. For both construction, the node vi is called the

basis of the leg. Let us call such a graph an even-odd caterpillar. Now the graphs
of C are the ones that can be constructed the following way: take an even-odd
caterpillar based on a path of length k, and a cycle of length α log∗ k (where α
is a large enough constant), and add an edge between an arbitrary node of the
cycle and v1. See Fig. 2.

Every algorithm must colour the α log∗ k cycle, and as the size of the graph
is linear in k, the identifiers space is polynomial in k. Then Linial’s lower bound
applies on the cycle, and the slowest node complexity is Ω(log∗ k).

Let us now show that there exists an algorithm with constant node-averaged
complexity for 3-colouring in this graph class. Every node first gathers its 3-hop
neighbourhood. From this view it can deduce its position in the graph, and its
behaviour for the following steps. More precisely, for every node v:

– if all the (direct) neighbours of v have degree two, then it is a node of the
cycle, then it runs the Cole-Vishkin procedure for 3-colouring a cycle [7]. It
does not take into account the rest of the graph;

– if it is the basis of a short leg, or the middle of a long leg, then it takes colour
1;

– if it is the basis of a long leg, or has degree 1, then it takes colour 2;
– if it has degree four, then it is vk and it takes colour 1;
– if it has degree two and both its neighbours have degree three, then it is v1,

and it waits until both its neighbours have output, and it outputs a non-
conflicting colour.

How Long It Takes for an Ordinary Node with an Ordinary ID to Output? 277

See Fig. 2.

Fig. 2. The figure illustrates proof of Proposition 3. It takes O(log∗ n) rounds to 3-
colour the cycle on the left, but it take constant time to colour the even-odd caterpillar
on the right, as a 2-colouring is hard-coded in the structure of the graph. In this picture,
colour 1 is blue, colour 2 is red, and colour 3 is yellow. (Color figure online)

This algorithm uses at most log∗ n rounds on the cycle and v1, and constant
time in the even-odd caterpillar. As the cyclic part has negligible size, the average
node complexity is constant. ��

5 Random ID Assignments and Randomized Algorithms

We move on to the second topic of this paper, where the randomized aspects
are considered. The standard definition of the complexity in the LOCAL model
not only considers the slowest node, but also the worst-case distribution of the
identifiers. In this section we investigate the impact of replacing this measure
by the running time of the slowest node, on a random ID assignments. In other
words, given a graph, we consider the average of the slowest-node running time
over all possible ID assignments.

The main result is the equivalence between such measure, and the complexity
of randomized algorithms. Here, the complexity of a randomized algorithm is the
expectancy of the number of rounds before every node finishes. Note that the two
concepts have similar flavour, but are distinct On one hand, the random inputs
of a randomized algorithm are independent, while in a random ID assignment,
the identifiers are not independent. On the other hand, the IDs are distinct, while
the random inputs can be equal. On a high level, the equivalence is similar to
Yao’s principle [26], that relates the performance of a randomized algorithm on a
worst-case instance, and the complexity of a deterministic algorithm on a random
instance. Also note that in the literature, the usual complexity of randomized
algorithms is not the one we consider, but the time needed to output a correct
solution with high probability. That is, Monte-Carlo algorithms are considered
instead of Las Vegas algorithms. We discuss briefly this point at the end of the
section.

For the following theorem, randomized algorithms are given random strings
of size O(log n), and not infinite such strings. This hypothesis is not excessive as

278 L. Feuilloley

most algorithm use a small amount of randomness. For example the celebrated
MIS algorithm of [17] for bounded degree graphs, can be described as using
random strings of size bounded by O(log n).

Theorem 3. Given a problem, the expected slowest-node complexity of random-
ized algorithms, is equal to the expected deterministic slowest-node complexity on
identifier assignment taken uniformly at random.

Proof. It is part of the folklore that randomized algorithms do not need identi-
fiers: they can generate such IDs with high probability by taking a integer in a
cubic range uniformly at random. Here a probability of success equal to 1 − 1/n
would be slightly too weak, so we make it 1 − 1/n2.

Lemma 2. If n numbers are taken independently uniformly at random between
1 and n4, these numbers are pairwise distinct with probability 1 − 1/n2.

Proof. The probability of two fixed numbers being equal is 1/n4. Then by union
bound, the probability that a pair of numbers have the same value is bounded by
the number of such pairs n(n − 1)/2 multiplied by the former probability. Then
the probability of collision is bounded by 1/n2, thus with probability 1 − 1/n2

the numbers are pairwise distinct. ��
Remember that a randomized algorithm can be formalized as a deterministic

algorithm having an auxiliary input, this input being a large enough random
number. We consider an algorithm A with an auxiliary input that can either be
the ID or the random bits, and show that with high probability the behaviour
is the same.

As stated in Proposition 2, taking independently and uniformly at random
n numbers from [n4] provides a list of distinct numbers with probability 1 −
1/n2. Also when this sampling succeeds, that is when the numbers are distinct,
the outcome is uniform among all distinct identifiers assignments, because the
identifiers are taken independently uniformly at random.

Let D be a deterministic algorithm, and let c be its average slowest-node
complexity on identifier assignments taken uniformly at random. Let R be a
randomized algorithm, that first picks random numbers in [n4], and then runs
D, until D stops or until the node basically sees whole graph, and in the last
case it outputs a colour such that the colouring is correct. The algorithm R has
probability at least (1 − 1/n2) to stop with D that has expected runtime c, and
probability at most 1/n2 to stop after at most n rounds. Then the expected
runtime is upper bounded by (1 − 1/n2)c + 1/n2.n which asymptotically is c.
Conversely, suppose that a randomized algorithm has expected complexity c.
We claim that using the same algorithm using the identifier as random strings
provides a deterministic algorithm with average complexity c. Suppose it is not
the case. Then, the randomized algorithm must have complexity c when the
numbers are distinct, and c′ when they are non-distinct. The expected runtime
is (1 − 1/n2)c + 1/n2c′, which is asymptotically c as c′ can be assumed to be at
most n, which is a contradiction.

How Long It Takes for an Ordinary Node with an Ordinary ID to Output? 279

Thus Theorem 3 holds. ��
A similar result can be obtained for the more classic context of Monte-Carlo

algorithm. That is, when one considers the time before the nodes have stopped
and output a proper solution with high probability, then the complexity of ran-
domized algorithms and of deterministic algorithm on random identifiers are the
same.

A related topic is to minimize the amount of randomness used by randomized
algorithms. The amount of random bits necessary to perform a computation
is usually not considered as a resource to be minimized in the LOCAL model.
Whereas it is considered in centralized computing, see [23] for a precise example.
Here, it is possible to do a small step in that direction, if we consider algorithms
and languages that are local. In this case, it is not necessary to have all IDs of
the graph that are different one from the other. In a local algorithm, the nodes
see only a small neighbourhood of the graph, and thus only such neighbourhoods
need to have distinct IDs. This is one of the ingredient of recent breakthroughs
in the field, such as the speed-up theorem from [6] (see Theorem 6 in the paper).

Let s be the maximum number of nodes that a node can see when it runs
the local algorithm at hand. Then the following holds:

Proposition 4. Taking uniformly at random numbers from
[
n2s2

]
is sufficient

to have locally distinct identifiers with high probability.

Proof. Consider a ball of size s. The probability that two nodes of this ball have
the same identifier is upper bounded by s2/(n2s2) = 1/n2. Then by union bound
on all the centres of balls, one gets a probability of collision of 1/n. ��

5.1 Node-Averaged Randomized Complexity

After considering an average on the nodes, and on the identifiers assignment sep-
arately, we consider both averages together. That is we consider the behaviour
of an ordinary node on an ordinary ID assignment. In the light of the previous
subsection, this is equivalent to consider node-averaged complexity of random-
ized algorithms. This new measure can be unexpectedly low, as we illustrate on
the example 3-colouring.

Theorem 2 implies that the node-averaged complexity of 3-colouring of a
cycle is Θ(log∗ n). It is also known that the randomized complexity is Θ(log∗ n),
if one considers Monte-Carlo algorithms with probability of success greater than
one half [20]. Then the expected running time is also in Θ(log∗ n). This contrasts
with the following result.

Proposition 5. For 3-colouring on a ring, the expected complexity of an ordi-
nary node is constant.

Proof. The algorithm we consider, consists in repeating a simple procedure. At
each round every node that has not yet an output, take a colour at random
among the colours that are still available. That is, it takes a colour that as not
yet been output by a neighbour. Note that this is always possible, as the nodes

280 L. Feuilloley

have degree two, and choose among three colours. After the sampling, if there
is no conflict, then the node outputs the colour. If there is a conflict, then the
colour is forgotten, and the node continue to the next round. If the node outputs
a colour, we say that it succeeds, otherwise it fails.

Given an arbitrary partial colouring obtained after some rounds, the proba-
bility that a fixed node succeeds is lower bounded by α = 5/12. This number is
obtained by case analysis. It corresponds to the case where, the current node has
both neighbours without outputs, but both nodes at distance two with outputs,
and these outputs are different. Let β = 1 − α. Also, let Vk be the number of
nodes that have not yet output after round k, with V0 = n. The following holds
by linearity of the expectation.

E(|Vk| | |Vk−1|) =
∑

v∈Vk−1

P(v does not stop at round k) ≤ β|Vk−1|

We can apply the previous inequality repeatedly, and get: E(Vk) ≤ βkn. The
number of nodes that stop at round k is precisely Vk − Vk−1, then the sum of
the running times is: ∑

k

k(Vk − Vk−1) ≤
∑

k

kVk.

The expected sum of the running time is then upper bounded by
∑

k kβkn. Then
the node-averaged expected sum is

∑
k kβk. As β < 1,

∑
k kβk is a constant,

thus the expected complexity of an ordinary node in a random ID assignment is
constant. ��

Note that having a constant complexity when looking at a more local mea-
sure, is not particular to this example. For example in [12], the author designs
an algorithm for maximal independent set that terminates after O(log deg(v) +
log(1/ε)) rounds, with probability at least 1 − ε, where deg(v) is the degree of
node v.

6 Conclusion and Open Questions

This paper introduces the notions of node-averaged and ID-averaged complexi-
ties. We think these measures are meaningful when analysing algorithm that do
not have the knowledge of the size of the network, or in contexts where partial
solutions are useful. Also, very local complexities, as the one of Subsect. 5.1 and
the one advocated in [12], are natural measures that one would like to understand
better. Our results illustrate that these complexities can have interesting behav-
iours. The natural next step is to generalize these results, to more problems, and
larger graph classes.

Acknowledgements. I would like to thank Juho Hirvonen, Tuomo Lempiäinen and
Jukka Suomela for fruitful discussions, and Pierre Fraigniaud for both discussions, and
help for the writing. I thank the reviewers for helpful comments, and Mohsen Ghaffari
for pointing out that randomized node-averaged complexity could be considered.

How Long It Takes for an Ordinary Node with an Ordinary ID to Output? 281

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

2. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. Wiley, Hoboken (2004)

3. Barenboim, L., Elkin, M.: Sublogarithmic distributed MIS algorithm for sparse
graphs using Nash-Williams decomposition. Distrib. Comput. 22(5–6), 363–379
(2010). https://doi.org/10.1007/s00446-009-0088-2

4. Brandt, S., Fischer, O., Hirvonen, J., Keller, B., Lempiäinen, T., Rybicki, J.,
Suomela, J., Uitto, J.: A lower bound for the distributed lovász local lemma. In:
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2016, Cambridge, MA, USA, June 18–21, 2016, pp. 479–488 (2016).
https://doi.org/10.1145/2897518.2897570

5. Brandt, S., Hirvonen, J., Korhonen, J.H., Lempiäinen, T., Österg̊ard, P.R.J., Pur-
cell, C., Rybicki, J., Suomela, J., Uznanski, P.: LCL problems on grids. CoRR,
abs/1702.05456 (2017). arXiv:1702.05456

6. Chang, Y.J., Kopelowitz, T., Pettie, S.: An exponential separation between ran-
domized and deterministic complexity in the local model. In: IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9–11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA, pp. 615–624 (2016). https://
doi.org/10.1109/FOCS.2016.72

7. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal
parallel list ranking. Inf. Control 70(1), 32–53 (1986). https://doi.org/10.1016/
S0019-9958(86)80023-7

8. Feuilloley, L.: Brief announcement: average complexity for the LOCAL model. In:
Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
PODC 2015, Donostia-San Sebastián, Spain, July 21–23, 2015, pp. 335–337 (2015).
https://doi.org/10.1145/2767386.2767446

9. Feuilloley, L., Fraigniaud, P.: Survey of distributed decision. Bull. EATCS 119
(2016). EATCS: The Distributed Computing Column by Stefan Schmid

10. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local dis-
tributed computing. J. ACM 60(5), 35 (2013). https://doi.org/10.1145/2499228

11. Gamarnik, D., Sudan, M.: Limits of local algorithms over sparse random graphs.
In: Proceedings of Innovations in Theoretical Computer Science, ITCS’14, Prince-
ton, NJ, USA, January 12–14, 2014, pp. 369–376 (2014). https://doi.org/10.1145/
2554797.2554831

12. Ghaffari, M.: An improved distributed algorithm for maximal independent set. In:
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10–12, 2016, pp. 270–277
(2016). https://doi.org/10.1137/1.9781611974331.ch20

13. Goldreich, O.: Introduction to testing graph properties. In: Goldreich, O. (ed.)
Property Testing - Current Research and Surveys. LNCS, vol. 6390, pp. 105–141.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16367-8 7

14. Harris, D.G., Schneider, J., Su, H.H.: Distributed (Δ+1)-coloring in sublogarithmic
rounds. In: Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, June 18–21, 2016, pp. 465–478
(2016). https://doi.org/10.1145/2897518.2897533

15. Korman, A., Sereni, J.-S., Viennot, L.: Toward more localized local algorithms:
removing assumptions concerning global knowledge. Distrib. Comput. 26(5–6),
289–308 (2013). https://doi.org/10.1007/s00446-012-0174-8

https://doi.org/10.1007/s00446-009-0088-2
https://doi.org/10.1145/2897518.2897570
http://arxiv.org/abs/1702.05456
https://doi.org/10.1109/FOCS.2016.72
https://doi.org/10.1109/FOCS.2016.72
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1145/2767386.2767446
http://bulletin.eatcs.org/index.php/beatcs/article/view/411
https://doi.org/10.1145/2499228
https://doi.org/10.1145/2554797.2554831
https://doi.org/10.1145/2554797.2554831
https://doi.org/10.1137/1.9781611974331.ch20
https://doi.org/10.1007/978-3-642-16367-8_7
https://doi.org/10.1145/2897518.2897533
https://doi.org/10.1007/s00446-012-0174-8

282 L. Feuilloley

16. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–
201 (1992)

17. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput. 15(4), 1036–1053 (1986). https://doi.org/10.1137/0215074

18. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)
19. Musto, T.: Knowledge of degree bounds in local algorithms. Master’s thesis, Uni-

versity of Helsinki (2011)
20. Naor, M.: A lower bound on probabilistic algorithms for distributive ring coloring.

SIAM J. Discrete Math. 4(3), 409–412 (1991). https://doi.org/10.1137/0404036
21. Naor, M., Stockmeyer, L.J.: What can be computed locally? SIAM J. Comput.

24(6), 1259–1277 (1995). https://doi.org/10.1137/S0097539793254571
22. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM,

Philadelphia (2000)
23. Pettie, S., Ramachandran, V.: Minimizing randomness in minimum spanning tree,

parallel connectivity, and set maxima algorithms. In: Proceedings of the Thirteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, January 6–8, 2002, San
Francisco, CA, USA., pp. 713–722 (2002). acm:545381.545477

24. Santoro, N.: Design and Analysis of Distributed Algorithms, vol. 56. Wiley, Hobo-
ken (2006)

25. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. A000788
26. Yao, A.C.C.: Probabilistic computations: toward a unified measure of complexity

(extended abstract). In: 18th Annual Symposium on Foundations of Computer
Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pp. 222–
227 (1977). https://doi.org/10.1109/SFCS.1977.24

https://doi.org/10.1137/0215074
https://doi.org/10.1137/0404036
https://doi.org/10.1137/S0097539793254571
http://dl.acm.org/citation.cfm?id=545381.545477
http://oeis.org/A000788
https://doi.org/10.1109/SFCS.1977.24

How to Choose Friends Strategically

Lata Narayanan(B) and Kangkang Wu

Department of Computer Science and Software Engineering,
Concordia University, Montreal, Canada

lata@encs.concordia.ca

Abstract. Alice wants to join a new social network, and influence its
members to adopt a new product or idea. Each person v in the network
has a certain threshold t(v) for activation, i.e. adoption of the prod-
uct or idea. If v has at least t(v) activated neighbors, then v will also
become activated. If Alice wants to make k new friends in the network,
and thereby activate the most number of people, how should she choose
these friends? We study the problem of choosing the k people in the
network to befriend, who will in turn activate the maximum number of
people. This Maximum Influence with Links Problem has applications
in viral marketing and the study of epidemics. We show that the solu-
tion can be quite different from the related and widely studied influence
maximization problem where the objective is to choose a seed or tar-
get set with maximum influence. We prove that the Maximum Influence
with Links problem is NP-complete even for bipartite graphs in which
all nodes have threshold 1 or 2. In contrast, we give polynomial time
algorithms that find optimal solutions for the problem for trees, paths,
cycles, and cliques.

1 Introduction

The strategy of viral marketing for promoting new products or ideas is based on
the observation that once a certain fraction of a social network adopts a product,
we can expect a cascade of further adoptions [3,16,27]. Domingos and Richardson
[12,33] were the first to raise the following important algorithmic problem in the
context of social network analysis: If a company can turn a subset of customers
in a given network into early adopters, and the goal is to trigger a large cascade
of further adoptions, which set of customers should they target?

The social network can be modelled by a node-weighted graph G = (V,E, t)
with V (G) representing individuals in the social network, E(G) denoting the
social connections, and t an integer-valued threshold function. Starting with an
initial seed set or target set, that is, a subset S ⊆ V of nodes in the graph, that
are activated by some external incentive, influence propagates deterministically
in discrete time steps, and is said to activate nodes. For any unactivated node
v, if the number of its activated neighbors at time step i − 1 is at least t(v),

Research supported by NSERC, Canada.

c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 283–302, 2017.
https://doi.org/10.1007/978-3-319-72050-0_17

284 L. Narayanan and K. Wu

then node v will be activated in step i. A node once activated stays activated.
Clearly the process terminates after at most |V | − 1 steps. We call the set of
nodes that are activated when the process terminates as the activated set. The
problem proposed by Domingo and Richardson [12,33] can now be formulated
as follows: Given a social network G = (V,E, t), and an integer k, find a subset
S ⊆ V of size k so that the resulting activated set is as large as possible. In
the context of viral marketing, the parameter k corresponds to the budget, and
S is a target set that maximizes the size of the activated set. This influence
maximization problem has been widely studied [2,5,14,17–19,22,28].

Recent work [10,20,25] points to some flaws in the above model for viral
marketing. The authors of [10,20] observe that a limitation of the model is that
there is no possibility of giving partial external incentives; indeed the initial seed
set is activated wholly by external incentives, and the remaining nodes only by
the internal network effect. The authors of [25] further critique the fact that
the nodes in the seed set are assumed to be activated immediately by external
incentives, regardless of their own thresholds of activation. They point out that
this is unrealistic assumption, and suggest that it is likely that highly influential
nodes have high thresholds, and cannot be activated by external incentives alone.

In this paper, we provide a new way to model a viral marketing strategy with
a fixed budget, that addresses the flaws mentioned above. In particular, we model
strategies in which each node in the target set is given some partial incentive, eg.
a $10 coupon; for some people this may be enough for them to buy the product,
for others, it reduces their resistance to buying it. We represent the initiator of
the viral marketing strategy by a node external to the social network. We can
now restate the influence maximization problem as follows: Suppose Alice, the
external initiator, wants to join a new social network, and can make k friends,
how should she choose these friends if her goal is to influence as many people as
possible? In other words, to which k people already in the social network should
Alice create links, so that she can activate the maximum number of people? If
Alice creates a link to a node v, the threshold of v is only effectively reduced by
one, and so v in turn is activated only if its threshold is one. We call our problem
the Maximum Influence with Links problem (Max-Inf-Links).

Notice that the links added from the external node Alice correspond to the
external incentive given to the endpoints of these links. The nodes that are
the endpoints of these new links may not be immediately completely activated,
but their thresholds are effectively reduced; this corresponds to their receiving
partial incentives. Individuals with high thresholds cannot be activated only by
external incentives, which better models reality. The Max-Inf-Links problem also
has applications in epidemiology or the spread of diseases: if an infected person
arrives from outside a community, the Max-Inf-Links problem corresponds to
identifying the set of k people such that if the infected external person has
contact with this set, the highest number of people in the community could
potentially be infected. The problem can obviously be generalized to a set of
external influencers wishing to infect or gain control of a network.

How to Choose Friends Strategically 285

Observe that the solution to the Max-Inf-Links problem can be quite different
from the solution to choosing an optimal seed set for a given network. For exam-
ple, consider a clique Kn in which node 1 has threshold n− 1 and the remaining
nodes have threshold 1. If the budget k is 1, the optimal target set is clearly the
node x, as choosing it activates the entire network. However, if we choose to link
to the node x, it does not get activated, since its threshold is n−1, and therefore
no node in the network gets activated. The optimal solution to the Max-Inf-Links
problem is in fact to choose any of the other nodes in Kn; this would activate
the entire network. This would however be a sub-optimal seed set.

1.1 Our Results

It was shown recently that it is NP-hard to find the minimum number of links
required for an external influencer to activate the entire network [25]. Since this
is a special case of our Max-Inf-Links problem, it follows that our problem is
NP-hard in general. We prove here that the Max-Inf-Links problem is NP-hard,
even if all nodes have threshold 1 or 2, even in bipartite graphs, which have
many applications in social networks. Note that the NP-hardness proof in [25]
does not apply to bipartite graphs. In light of the hardness result, we study the
complexity of the problem for social networks that can be represented as trees,
cycles, and cliques. We show that optimal solutions can be found for the Max-Inf-
Links problem with k links in time Θ(kn) for paths, Θ(kn2) for cycles, Θ(k2n2)
for trees, and Θ(n) for cliques. Note that k is always upper bounded by n. Our
algorithms for paths, trees, and cycles rely on non-trivial dynamic programming
formulations. Note that the algorithm for trees can be used for paths, but we
are able to get a much faster implementation for paths by making careful use of
the solution properties.

1.2 Related Work

The problem of identifying the most influential nodes in a social network has
received a tremendous amount of attention [2,5,14,17–19,22,28]. The algorith-
mic question of choosing a seed set of size k that activates the most number
of nodes in the context of viral marketing was first posed by Domingos and
Richardson [12]. Many natural heuristics were proposed for the problem, such
as choosing the nodes of highest degree, or those central in terms of distance
[23,24]. Kempe et al. [23] started the study of this problem as a discrete opti-
mization problem, and studied it in both the probabilistic independent cascade
model and the threshold model of the influence diffusion process. They showed
the NP-hardness of the problem in both models, and showed that a natural
greedy strategy has a (1 − 1/e − ε)-approximation guarantee in both models;
these results were generalized to a more general cascade model in [24]. Mossel
and Roch [30] further generalized the results of [23,24] by positively resolving
their conjecture that whenever the local threshold functions are local and sub-
modular, the resulting influence function is also a submodular function. Borgs
et al. [2] recently obtained a significant improvement by giving an algorithm

286 L. Narayanan and K. Wu

that obtains an approximation factor of 1 − 1/e − ε for any ε > 0, in time
O((m + n)k log(n)/ε2). A large body of work studies algorithms that have per-
formance guarantees and at the same time scale in practice to real-life and very
large-scale social networks [31,35,36]. Influence diffusion under time window or
deadline constraints has also been studied [11,15,26,29].

In the Target Set Selection problem [1,4,32], the size of the target set or
budget is not specified in advance, but the goal is to activate the entire network
or a fixed fraction of nodes. Partial incentives were studied in the context of the
target set selection problem in [8,10,20,21,25]. The closest formulation to our
paper is the Minimum Links problem introduced in [25], where it is required to
find the minimum number of links an external influencer needs to form to nodes
in the network so that the entire network is eventually activated. It was shown
in [25] that the Minimum Links problem is NP-hard, and in fact, it is even hard
to approximate with ratio ε for some constant ε. The authors gave linear time
greedy algorithms for trees, cycles, and cliques.

Demaine et al. [10] were the first to introduce the study of the maximization of
influence with partial incentives and a fixed budget [10]. However, they consider
thresholds chosen uniformly at random, while we study arbitrary thresholds.
Additionally, they allow arbitrary fractional influence to be applied externally
on any node, while in our model, every node that receives a link has its thresh-
old reduced by the same amount. Eftekhar et al. studied a model where nodes
become seed nodes with a fixed probability [13]. Recently, this idea was extended
by considering the idea of offering discounts to nodes, which would cause some
nodes to be activated with a probability proportional to the amount of the dis-
count [34,37].

2 Notation and Preliminaries

Given a social network represented by an undirected graph G = (V,E, t), we
introduce a set of external nodes U that are assumed to be already activated. We
assume that all edges have unit weight; this is generally called the uniform weight
assumption, and has previously been considered in many papers [4,6,7,15,25].
A link set for (G,U) is a set S of links between nodes in U and nodes in V ,
i.e. S ⊆ {(u, v) | u ∈ U ; v ∈ V }. For a link set S, we define E(S) = {v ∈ V |
∃(u, v) ∈ S}, that is, E(S) is the set of V -endpoints of links in S. For a node
v ∈ V (G), define r(v) to be the number of links in S for which v is an endpoint.
Since the set of external nodes U is already activated, observe that adding the
link set S to G is equivalent to reducing the threshold of the node v by r(v). In
the viral marketing scenario, the link set S represents giving v a partial incentive
of r(v).

Given a link set S for a graph G, we define I(G,S) to be the set of nodes
in G that are eventually activated as a result of adding the link set S, that is,
by reducing the threshold of each node v ∈ E(S) by min{r(v), t(v)}, and then
running the influence diffusion process. See Fig. 1 for an illustration. Observe
that this is the same as the set of nodes activated by using U as the target set

How to Choose Friends Strategically 287

1 1 1

1

12 2

2

3

a b c

d e f g

h i

µ

Fig. 1. Node µ is the external influencer and is assumed to be activated. Links in the
link set are shown with dashed edges. The given link set is an optimal link set of size
2 that activates 4 nodes: a, b, d, e.

in the graph G′, the graph obtained from G by adding the set U to the vertex
set and the set S to the set of edges.

Definition 1. Maximum Influence with Links problem
(Max-Inf-Links): Given a social network G = (V,E, t), and a set of external nodes
U , and an integer k, find a link set S of size k that maximizes I(G,S) among all
k-sized link sets. We denote by MI(G, k) the maximum number of people that
can be influenced in G by an optimal link set of size k, that is, if S is an optimal
solution to the Max-Inf-Links(G, k) problem, then MI(G, k) = |I(G,S)|.

In our algorithms, we consider the case of a single influencer, that is, U = {μ}.
In this case, a link given to a vertex v reduces its threshold by 1. Since μ must
be an endpoint of each edge in the link set S, each such edge can be uniquely
specified by a vertex in V . We therefore generally omit mention of μ in the rest
of the paper, and the link set S is referred to by its V -endpoints. For each such
node v ∈ E(S), we say we give v a link, or that v receives a link.

3 NP-Hardness of Max-Inf-Links

In this section, we will prove that the decision version of the Max-Inf-Links prob-
lem is NP-hard even for bipartite graphs in which thresholds of all nodes are
either one or two. It can be posed as follows: Given a social network G = (V,E, t),
a set of external influencers A, and integers k and p, is there a link set S of size
k such that |I(G,S)| = p? Note that in [25], the Min-Links problem (finding
the smallest set of links which can activate the entire network) was shown to
be NP-hard, even for graphs of degree 3 and threshold at most 2. This imme-
diately implies the NP-hardness of the Max-Inf-Links problem as well. However,
the reduction in [25] yielded a graph that was not bipartite. Here, we extend the
result for bipartite graphs.

288 L. Narayanan and K. Wu

Fig. 2. Reduction from G (top) to G′ (bottom); thresholds in G′ are indicated inside
the circles representing the nodes.

Theorem 1. The decision version of the Max-Inf-Links problem is NP-hard,
even for a single external influencer, and bipartite graphs with all nodes hav-
ing threshold 1 or 2.

Proof. We give a reduction from the Max-Clique problem: Given a graph G =
(V,E) and an integer k, does G contain a clique of size at least k?

Given an instance of the Max-Clique problem (G, k), we construct a bipartite
graph G′ = (V1 ∪ V2, E′, t) as follows. For every node v ∈ V , we create a
corresponding node v of threshold 1 in V1. For every edge {u, v} ∈ E, we create
a corresponding node (uv) of threshold 2 in V2. Next, for every edge {u, v} ∈ E,
we create the edges (u, (uv)) and (v, (uv)). Clearly, the transformation can be
done in O(V + E) time. We show that G has a clique of size k if and only if G′

has a link set of size k that can activate at least C2
k + k nodes.

We show that G has a clique of size k if and only if G′ has a link set of size
k that can activate at least C2

k + k nodes. Figure 2 illustrates the reduction.
To do this, we first show that it suffices to consider link sets that contain

only nodes in V1.

Claim. For any link set T ⊆ V1 ∪ V2, there exists a set S ⊆ V1 such that |S| ≤
|T | and |I(G′, S)| ≥ |I(G′, T)|.
Proof. Consider a node v ∈ V2 that receives a link in T , and is connected to v1
and v2 ∈ V1. We argue that we can either remove the link assigned to v, or assign
that link to some other node in V1 while not decreasing the size of the activated
set. The following four cases about the time of activation of v are exhaustive.

Case 1: v is not activated by T : We can simply remove the link assigned to v.
Case 2: v is activated before v1 and v2: Since v has threshold 2 while v1 and v2

are both of threshold 1, this is impossible with a single influencer, as
the link v receives can only reduce its threshold by 1.

How to Choose Friends Strategically 289

Case 3: v is activated after v1 (or v2) is activated and before v2 (rest. v1) is
activated: We can move the link assigned for v to v2 (resp. v1); the
same set of nodes will be activated eventually.

Case 4: v is activated after v1 and v2 are activated: The link given to v is
unnecessary and can be removed.

Claim. G′ has a link set S ⊆ V1 with |S| ≤ k and |I(G′, S)| ≥ C2
k + k if and

only if G has a clique of size k.

Proof. Suppose first that G has a clique V ′ of size k. We claim that V ′ ⊆ V1 is
a link set such that |I(G′, V ′)| = C2

k + k. Clearly, all nodes in V ′ are activated
at round 1. Then since V ′ is a clique in G, it is easy to see that all nodes in V2

corresponding to the C2
k edges between nodes in V ′ will be activated in round

2. This proves that |I(G′, V ′)| ≥ C2
k + k .

Suppose next that there is a link set S ⊆ V1 such that |I(G′, V ′)| = C2
k + k,

then we claim that the corresponding set for S in G forms a clique of size k.
We claim that given S ⊆ V1 as a link set, it is impossible to activate any new

node ∈ V1 except nodes in S and for any node (uv) ∈ V2 that gets activated, it
must be that u ∈ S and v ∈ S.

Suppose there exists a node d ∈ V1 − S such that d is eventually activated.
Since d has threshold 1 and d doesn’t receive a link, in order for d to be activated,
one of d′s neighbors must be activated first. Let us say d is connected to (dx)
and (dx) is activated before d. Node (dx) is of threshold 2, thus in order for (dx)
to be activated, both d and x must be activated before (dx), a contradiction.

For the second part, suppose there exists a node (uv) ∈ V2 such that u /∈ S
and (uv) gets activated eventually. But from the previous analysis, we know that
u can never be activated. Therefore (uv) cannot be activated either.

We have shown that with a set S ⊆ V1 of size k, only nodes in S can be
activated for the nodes in V1; only those nodes which are connected to two
nodes in S can be activated for nodes in V2. If |I(G′, S)| ≥ C2

k + k, then for
every pair of nodes in S, they must be connected in G, thus S must be a clique
of size k in G.

This completes the proof of the reduction. �

4 Optimal Algorithm for Trees

In contrast to the result of the previous section, in this section, we show that the
Max-Inf-Links problem can be solved in polynomial time in trees. Let T = (V,E, t)
be a tree with n nodes, V = {1, 2, ..., n} and t : t(v) → Z+. Fix an arbitrary root
of the tree and order the children of every node in an arbitrary fashion. We define
Tv and dv to be the sub-tree rooted at node v, and the number of children of node v
respectively. We define T−1

v to be the same sub-tree as Tv except that the threshold
of the root v is reduced by 1. Note that while in the input, all thresholds are ≥ 1,
in a tree T−1

v , the threshold of v may be reduced to 0. We also define vi to be ith

child of node v and Tvi
to be the sub-tree rooted at vi.

290 L. Narayanan and K. Wu

Fig. 3. For the tree on the left, A(T, 1) = 2, and B(T, 1) = 1 while for the tree on the
right, A(T, 1) = −∞, and B(T, 1) = 1

Given a tree Tv, the optimal solution to the Max-Inf-Links problem for Tv

may or may not activate the root. For example, in Fig. 3, for the tree on the left,
it can be verified that every optimal link set of size 1 activates the root (one such
link set gives a link to the root node a and activates a and d), but for the tree
on the right, there is no link set of size 1 that activates the node a (an optimal
solution gives a link to node b, and activates both b and c) . Let MIA(Tv, k)
be the problem of finding an link set of at most k links to nodes in the sub-tree
Tv that maximizes the number of influenced nodes while ensuring that root v is
activated. Similarly, let MIB(Tv, k) be the problem of finding an link set of at
most k links to nodes in the sub-tree Tv that maximizes the number of influenced
nodes while ensuring that root v is not activated. Let A(Tv, k) and B(Tv, k) be
the maximum number of nodes that can be influenced by an optimal solution
to MIA(Tv, k) and MIB(Tv, k) respectively. Clearly, given a tree T = (V,E, t)
rooted at node r, an optimal link set S for problem Max-Inf-Links(Tn, k) either
activates or does not activate the root r. Therefore:

MI(Tn, k) = max{A(Tr, k), B(Tr, k)}
We start with link sets that do activate the root. We first prove a critical

lemma that shows that any link set S that activates the root can be converted
to an equivalent link set that gives a link to the root.

Lemma 1. Suppose S is a link set of size k for a tree Tv in which v = root(T)
is activated, and (μ, v) /∈ S. Then there exists a link set S′ with (μ, v) ∈ S′ such
that I(T, S′) = I(T, S) and |S′| = k.

Proof. We prove the lemma by induction on the height of the tree T . Clearly,
the lemma is true for trees of height 0; the only way to activate the root in such
a tree is to give a link to the root v.

Now consider a tree T of height h and a link set S for T that activates v
without giving v a link. Clearly, there must exist a child c of v which is activated
before v, and contributes to the activation of v. By the inductive hypothesis, we
can assume that c is given a link in S. Consider S′ = S −{(μ, c)}∪{(μ, v)}. Any
node in Tv − Tc that was activated by S before v, is also activated in S′ before
v. Therefore v will be activated by S′, and will subsequently activate c, and any

How to Choose Friends Strategically 291

nodes in Tc that were activated by c. All other children of v that were activated
after v in S will also be activated after v by S′. Therefore, I(T, S) = I(T, S′). �

Lemma 1 tells us that an optimal link set S of size k that activates the root v
of a tree Tv can be assumed to give a link to the root v. Then the remaining k−1
links must be given to other nodes in Tv, but since v is activated by S, it must
be that at least t(v)−1 children of v are activated before v and contribute to the
activation of v. Observe that once v is activated, the thresholds of its remaining
children are effectively reduced by 1. This, together with the links given by the
link set S to nodes in the subtrees of the remaining children, may activate some
of these children and subsequently other nodes in their subtrees. Let Fv,d be the
forest of subtrees rooted at the first d children of v. We see that there exists
some partition (C,D) of the roots of trees in Fv,dv

such that |C| ≥ t(v) − 1 and
S activates the nodes in C before v, and subsequently v gets activated, which in
turn reduces the thresholds of the nodes in D by one, perhaps contributing to
their activation.

We formalize and generalize the above to find appropriate link sets for the
forest Fv,dv

. Let Fv,d be the forest consisting of the subtrees rooted at the first
d children of v and let (C,D) be a partition of the roots of the d trees. Let
F (C,D) be a forest derived from Fv,d by reducing the threshold of all nodes in
D. We call a link set for F (C,D) a C-activating link set if it activates all nodes
in C, and maximizes the total number of activated nodes in F (C,D). Given a
forest F , and an integer i, we call a link set for F an i-first link set if it is a
C-activating link set for some partition (C,D) of the roots of trees in F with
|C| ≥ i. We now define MIA(Fv,d, i, k) to be the problem of finding an i-first
link set of size k that maximizes the total number of activated nodes in F .

Next consider a link set that does not activate v. In this case, at most t(v)−1
of v’s children can be activated, as otherwise v would also be activated. To
find such a link set, we define MIB(Fv,d, i, k) to be the problem of finding a
link set of size at most k that activates the most nodes in Fv,d while activating
exactly i roots of trees in Fv,d. Let A(Fv,d, i, k) and B(Fv,d, i, k) be the number of
influenced nodes by an optimal solution to MIA(Fv,d, i, k). and MIB(Fv,d, i, k)
respectively.

We now give recursive formulations for A(Tv, k), B(Tv, k), A(Fv,d, i, k), and
B(Fv,d, i, k); as we have already observed, they are inter-dependent. We start
with a recursive formulation for A(v, k).

Lemma 2

A(Tv, k) =

⎧
⎨

⎩

1+A(Fv,dv
, 0, k) if t(v) = 0

1+A(Fv,dv
, t(v) − 1, k − 1) if 1 ≤ t(v) ≤ k

− ∞ if k < t(v)

Proof First suppose k ≥ t(v) = 0. In this case, there is no need to give v a link,
and none of v’s children need to be activated before it. Therefore, A(Tv, k) =
1 + A(Fv,dv

, 0, k) as claimed.

292 L. Narayanan and K. Wu

Next suppose k ≥ t(v) = 1. Then by Lemma 1, there exists an optimal link set
S in which root v receives a link, thereby activating v. It is then straightforward
to see that S − {v} is also an optimal solution to problem MIA(Fv,dv

, 0, k − 1).
It follows that A(Tv, k) = 1 + A(Fv,dv

, 0, k − 1) in this case.
Next, suppose 1 < t(v) ≤ k. Then giving root v a link does not suffice to

activate v; in fact t(v)−1 of v′s children have to be activated before v, otherwise
v cannot be activated. By Lemma 1, however, there exists an optimal link set S
which gives root v a link. We claim that S−{v} is an optimal solution to problem
MIA(Fv,dv

, t(v) − 1, k − 1). Suppose not, let |S| = k and let S′ be an optimal
solution to MIA(Fv,dv

, t(v) − 1, k − 1) which can activate more nodes than
S − {v}. With S′, t(v) − 1 children of v have been activated. These activations,
together with the link to v, are enough to activate node v, and would reduce the
threshold of the remaining children of v by 1. Therefore S′ ∪ {v} activates v as
well as all nodes activated by S′ in Fv,d(v). Then S′ ∪ {v} will be a link set of k
links which can activate more nodes in Tv than S, contradicting the optimality
of S. Therefore: A(Tv, k) = 1 + A(Fv,dv

, t(v) − 1, k − 1).
Finally suppose t(v) > k ≥ 0. Then we claim it is impossible to activate the

root. If it were possible to activate the root using k links, then by Lemma 1,
there is an optimal link set that activates the root and gives a link to v. Then
the remaining k−1 links must be given to nodes in Fv,dv

. However using k−1 <
t(v)− 1 links, we can activate at most k − 1 children of v, and together with the
link given to v, the reduction in threshold of v is < t(v), a contradiction. Thus
in this case A(Tv, i) = −∞ as claimed. This completes the proof of the lemma.

�

Lemma 3. A(Fv,d, i, k)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∞ if i > d
0 if i = d = 0
max
0≤p≤k

{A(Fv,d−1, i − 1, p) + A(Tvd
, k − p)} if i = d > 0

max

⎧
⎪⎪⎨

⎪⎪⎩

max
0≤p≤k

A(Fv,d−1, i, p) + max

{
A(T−1

vd
, k − p)

B(T−1
vd

, k − p)

max
0≤p≤k

{A(Fv,d−1, i − 1, p) + A(Tvd
, k − p)}

if 0 < i < d

max
0≤p≤k

A(Fv,d−1, i, p)+max

{
A(T−1

vd
, k − p)

B(T−1
vd

, k − p)
if 0 = i < d

Proof. If i > d, clearly it is impossible to activate at least i of the first d children
of v, therefore A(Fv,d, i, k) = −∞. If i = d = 0, the forest Fv,d is empty, and
therefore, no nodes can be influenced by any link set of any size.

If i = d, this means that all children vj with 1 ≤ j ≤ d have to be activated
before v. The optimal solution S will assign p links to Fv,d−1 and k−p links to Tvd

,
for some p. It follows that A(Fv,d, i, k) = max

0≤p≤k
{A(Fv,d−1, i−1, p)+A(Tvd

, k−p)}
If i < d, and vd is not activated before v by S, observe that vd may or may not

How to Choose Friends Strategically 293

be activated after v. Besides, due to the fact that its parent has already been
activated, the threshold of vd is effectively reduced by one. An optimal link set S
will assign p links to Fv,d−1 and k−p links to Tvd

, therefore we try all possibilities
of p to find the best distribution. Therefore:

A(Fv,d, i, k) = max
0≤p≤k

{A(Fv,d−1, i, p) + max

{
A(T−1

vd
, k − p)

B(T−1
vd

, k − p)
}

Finally, if i < d and vd is activated before v by S, at least i − 1 children
of v in Fv,d−1 are required to be activated before v. Since vd contributes to the
activation of v, the threshold of vd remains unchanged.

A(Fv,d, i, k) = max
0≤p≤k

{A(Fv,d−1, i − 1, p) + A(Tvd
, k − p)}

When i = 0, we only need to consider the first of the two situations above. �

Next we consider link sets that do not activate the vertex v (the proof of
Lemma 4 is omitted).

Lemma 4

B(Tv, k) =

{
max

0≤i<min(t(v),dv+1)
B(Fv,dv

, i, k) if t(v) > 0

− ∞ if t(v) = 0

Lemma 5. B(Fv,d, i, k)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max

⎧
⎨

⎩

max
0≤p≤k

{B(Fv,d−1, i, p) + B(Tvd
, k − p)}

max
0≤p≤k

{B(Fv,d−1, i − 1, p) + A(Tvd
, k − p)} if 0 < i, d

max
0≤p≤k

{B(Fv,d−1, i, p) + B(Tvd
, k − p)} if 0 = i < d

0 if d = 0

Proof. Suppose i, d > 0. Then in an optimal solution S to MIB(Fv,d, i, k),
either vd is activated or it is not. If vd is activated, then some p links are given
to nodes in Fv,d−1 and exactly i−1 nodes are activated by S in Fv,d−1, while the
remaining k − p links must constitute an optimal solution to MIA(Tvd

, k − p).
That is, B(Fv,d, i, k) = B(Fv,d−1, i−1, p)+A(Tvd

, k−p). Alternatively, if vd is not
activated by S, then some p links are given to nodes in Fv,d−1 and exactly i nodes
are activated by S in Fv,d−1, while the remaining k − p links must constitute an
optimal solution to MIB(Tvd

, k − p). That is, B(Fv,d, i, k) = B(Fv,d−1, i, p) +
B(Tvd

, k − p). If i = 0, this means no roots of trees in Fv,d are to be activated,
which means neither vd is activated, nor any roots in Fv,d−1 . Finally, if the
forest is empty (d = 0), then clearly the maximum number of nodes that can be
influenced is 0, regardless of i and k. �

294 L. Narayanan and K. Wu

Theorem 2. The Maximum Influence problem for a tree Tn = (V,E, t) using k
links, can be solved in time O(n2k2).

Proof. The recursive definitions given in Lemmas 2 to 5 can be computed using
dynamic programming to obtain an optimal solution to the Max-Inf-Links prob-
lem. In the worst case, for any node w with d children, we need to compute
A(Fv,p, i, j) and B(Fv,p, i, j) for 1 ≤ p ≤ d, 0 ≤ i ≤ d, and 0 ≤ j ≤ k. These are
d2k values, each of which can take Θ(k) time to compute. The values A(Tv, k)
and B(Tv, k) can be computed in constant time, and there are k such values.
Using the result of [9], the sum of squares of degrees of a node in a graph is
upper bounded by e(2e/(n − 1) + n − 2), which for a tree is Θ(n2). Summing up
the time over all vertices in the graph, we obtain a total time of O(n2k2). �

5 Faster Algorithm for Paths

The algorithm for trees in the previous section obviously also applies to paths.
In this section, we give a Θ(kn) algorithm for the Max-Inf-Links problem in a
path, by exploiting its simpler structure. Let Pn = (V,E, t) be a path with n
nodes, V = {1, 2, ..., n}, E = {(i, (i + 1)) | 1 ≤ i ≤ n − 1}, and t : t(v) → Z+

(the threshold function). For 1 ≤ i ≤ j ≤ n, we define Pi,j to be the sub-path of
Pn consisting of all nodes in {i, . . . , j}.

An optimal solution to Max-Inf-Links(Pi,j , k) may or may not activate the
node i. Accordingly, let MIA(Pi,j , k) be the problem of finding a link set of
size at most k for the sub-path Pi,j that maximizes the number of influenced
nodes while ensuring that node i is activated. Similarly, let MIB(Pi,j , k) be the
problem of finding a link set of size at most k for the sub-path Pi,j that maximizes
the number of influenced nodes while ensuring that node i is not activated. Let
A(i, j, k) and B(i, j, k) be the number of nodes that can be influenced by optimal
solutions to MIA(Pi,j , k) and MIB(Pi,j , k) respectively.

The key idea of our algorithm is to break the path into subpaths containing
only nodes of threshold 1 and 2, separated by nodes of threshold 3 or greater. We
give recursive definitions for A(i, j, k) and B(i, j, k) when Pi,j has only nodes of
threshold 1 or 2. As we will see, these definitions are inter-dependent. We need
the following definition.

Definition 2. Given a path Pn, fix i such that 1 ≤ i ≤ n. We define next(i) =
min{j | i < j ≤ n + 1 and either t(j) = 1 or j = n + 1}.

We see that next(i) is the first node after i to have threshold 1, unless i is
the rightmost node in the path with threshold 1, in which case next(i) = n + 1.
Clearly A(n + 1, n, k) = B(n + 1, n, k) = 0 for all k. We now consider the case
when 1 ≤ i ≤ j ≤ n. We start with the case when t(i) = 2.

How to Choose Friends Strategically 295

Lemma 6. Given a sub-path Pi,j in which all nodes have threshold 1 or 2, and
t(i) = 2:

A(i, j, k) =

⎧
⎨

⎩

0 if next(i) > j
0 if A(i + 1, j, k − 1) = 0
1 + A(i + 1, j, k − 1) if A(i + 1, j, k − 1) > 0

B(i, j, k) =

⎧
⎪⎨

⎪⎩

0 if next(i) > j

max

{
A(i + 1, j, k)
B(i + 1, j, k)

if next(i) ≤ j

Proof. If next(i) > j then there is no way to activate any node in Pi,j , therefore
A(i, j, k) = B(i, j, k) = 0 for every k. If instead next(i) ≤ j, then it is possible
to activate at least one node in Pi,j . Observe that in any feasible solution for
MIA(Pi,j , k), not only does node i need to receive a link, but its neighbor node
i+1 needs to be activated as well, therefore A(i, j, k) = 0 if A(i+1, j, k−1) = 0;
otherwise A(i, j, k) = 1+A(i+1, j, k−1). Finally, note that any feasible solution
for MIB(Pi,j , k) is a solution in which i does not receive a link, and the next node
may or may not be activated, or it does receive a link, and the next node is not
activated. That is B(i, j, k) = max{A(i+1, j, k), B(i+1, j, k), B(i+1, j, k−1)} =
max{A(i + 1, j, k), B(i + 1, j, k)}. �

Next we consider the case when node i has threshold 1. In this case, the
optimal substructure of the problem is not so straightforward to prove. The
difficulty arises because an optimal solution S to MIA(Pi,j , k) may or may
not activate node i + 1. In the case when it does not activate node i + 1, we
would like to claim that S consists of a link to i and and an optimal solution to
MIB(Pi+1,j , k−1). However, we do not know whether or not i+2 was activated
in a solution to MIB(Pi,j , k). So when we combine such a solution with a link
to node i, we may or may not activate node i+1.The following technical lemma
uncovers the structure of optimal solutions.

Lemma 7. Let Pi,j be a path with t(i) = 1 and next(i) ≤ j. If in every optimal
solution for MIA(Pi,j , k), node i receives a link, then there exists an optimal
solution S for MIA(Pi,j , k) in which neither i + 1 nor i + 2 receives a link.

Proof. Suppose in every optimal solution for MIA(Pi,j , k), node i receives a
link. Let S be an optimal solution for MIA(Pi,j , k) which uses the fewest links
possible.

First we show that next(i) > i + 2. By assumption, node i receives a link in
S. Observe that if next(i) = i+1, then i+1 cannot have a link since that would
contradict the minimality of S. So we can simply move the link from node i to i+1
and activate the same set of nodes, but this contradicts the assumption that in
every optimal solution, node i must receive a link. Next suppose next(i) = i+2.
Then it is not possible that both i + 1 and i + 2 receive links, as this would
contradict the minimality of S. If exactly one of i + 1 and i + 2 have a link, we

296 L. Narayanan and K. Wu

can move the link to i to the node among i + 1 and i + 2 that does not have a
link, thus creating a solution which activates exactly the same set of nodes, a
contradiction. If neither i + 1 nor i + 2 has a link, and neither is activated, then
the lemma is proved. Finally, if neither has a link, but one of them is activated,
it must be that i + 2 is activated by node i + 3. In this case, we can move the
link from node i to node i + 1, getting a solution that activates the same set of
nodes, a contradiction to the assumption that every optimal solution must give
i a link. We conclude that next(i) > i + 2, that is, there are at least two nodes
in between i and next(i).

Fig. 4. The case when next(i) is not activated. At least one node in {i+1, . . . , next(i)−
1} does not receive a link.

We now show that we can always change S to a solution S′ that does not
activate i + 1 or i + 2 but activates the same number of nodes as S overall. Let
S1 = S ∩ {i + 1, . . . , next(i) − 1} and S2 = S ∩ {next(i), . . . , j}. First suppose
next(i) is not activated by S. Then next(i) did not get a link, and there must be
at least one other node in {i+1, . . . , next(i)−1} that did not receive a link, as if
all such nodes received a link, next(i) would be activated (see Fig. 4). Therefore
|S1| ≤ next(i)− i−2. Consider now the link set S′ made by shifting all the links
in S1 from i+1 onwards to a consecutive sequence of nodes ending with next(i),
that is, S′ = {i} ∪ {next(i) − |S1| + 1, . . . next(i)} ∪ S2. Then S′ is the same size
as S, it activates exactly the same number of nodes as S, and is therefore also
optimal. Observe that next(i) − |S1| + 1 > i + 2, since |S1| ≤ next(i) − i − 2.
Thus S′ is an optimal solution to MIA(Pi,j that does not give links to i+1 and
i + 2 as needed.

Fig. 5. The case when next(i) is activated either by a link or by next(i) + 1. At least
two nodes in {i + 1, next(i) − 1} do not receive links.

Next suppose next(i) is activated by S. If next(i) was activated by next(i)−
1, then all nodes in {i + 1, . . . , next(i) − 1} must have received links, which

How to Choose Friends Strategically 297

contradicts either the minimality of S, or the assertion that i gets a link in
every optimal solution. So we conclude that either next(i) received a link in S
or was activated by next(i) + 1. Since S is minimal, there must exist at least
one node in {i+1, . . . , next(i)−1} that did not receive a link. If there is exactly
one such node p, then clearly every node in {i, . . . , next(i)} is activated by S,
but then solution S′ which moves the link given to i to node p also activates
the same nodes, and contradicts the assertion that every optimal solution must
give a link to i. Therefore, there must be two nodes in {i + 1, . . . , next(i) − 1}
that do not receive links (see Fig. 5). Therefore |S1| ≤ next(i) − i − 3. Consider
now the link set S′ made by shifting all the links in S1 from i + 1 onwards to
a consecutive sequence of nodes ending with next(i) − 1, that is, S′ = {i} ∪
{next(i) − |S1|, . . . next(i) − 1} ∪ S2. Then S′ is the same size as S, it activates
exactly the same number of nodes as S, and is therefore also optimal. Observe
that next(i) − |S1| > i + 2, since |S1| ≤ next(i) − i − 3. Thus S′ is an optimal
solution to MIA(Pi,j , k) that does not give links to i + 1 and i + 2 as needed. �

The following lemma summarizes the optimal substructure of the problem
when t(i) = 1.

Lemma 8. Given a sub-path Pi,j in which all nodes have threshold 1 or 2, and
t(i) = 1:

A(i, j, k) =

⎧
⎪⎨

⎪⎩

min{k, j − i + 1} if next(i) > j

max

{
1 + A(i + 1, j, k)
1 + B(i + 1, j, k − 1)

if next(i) ≤ j

B(i, j, k) =
{

0 if next(i) > j
B(i + 1, j, k) if next(i) ≤ j

Proof. First we prove the correctness of the recursive definitions for A(i, j, k). If
next(i) > j, then node i must receive a link, as it is not possible otherwise to
activate any node in Pi+1,j . Thus node i receives a link and is activated first.
Inductively, we can show that node i+1 is the second node which receives a link
and gets activated (see Fig. 6). Therefore, all nodes in {i, . . . , i + min{k, j − i +
1} − 1} must receive a link. Any node that does not receive a link cannot get
activated, the maximum number of activated nodes is min{k, n − i + 1}. This
shows that A(i, j, k) = min{k, n − i + 1} in this case.

Otherwise, next(i) ≤ j, that is, node i is not the rightmost node with thresh-
old 1. First observe that either there exists an optimal solution for MIA(Pi,j , k)
in which node i does not receive a link, or in every optimal solution for
MIA(Pi,j , k), node i receives a link. In the first case, let S be an optimal solu-
tion for MIA(Pi,j , k) in which node i does not receive a link. It follows that
its neighbor node i + 1 was also activated. Clearly S must be an optimal solu-
tion for MIA(Pi+1,j , k) (if not, and if S′ is a solution for MIA(Pi+1,j , k) that
activates more nodes than S, then S′ is also a better solution for MIA(Pi,j , k),
contradicting the optimality of S. Therefore, A(i, k) = 1 + A(i + 1, k).

298 L. Narayanan and K. Wu

Fig. 6. An optimal link set S for MIA(Pi,j , 4): the case when t(i) = 1 and next(i) > j

In the second case, by Lemma 7, we have an optimal solution S′ in which
nodes i + 1 and i + 2 do not receive links and are therefore not activated.
Furthermore, using a cut-and-paste argument, it is straightforward to see that
S′′ = S′ − {i} is an optimal solution for MIB(Pi+1,j , k − 1). It follows that
A(i, k) = 1 + B(i + 1, k − 1).

Finally, any solution in which node i is not activated, we can be sure that nei-
ther node i gets a link, nor does its neighbor, node i+1 get activated. Therefore
B(i, k) = B(i + 1, k). This completes the proof. �

We now use the definitions of A(i, j, k) and B(i, j, k) to prove the main result
of this section:

Theorem 3. Max-Inf-Links (Pn, k) can be solved in time Θ(kn).

Proof. If Pn has no nodes of threshold > 2, then clearly MI(Pn) =
max{A(1, n, k), B(1, n, k)}. If not, let q be the largest index of a node in Pn

such that t(q) ≥ 3. If t(q) > 3, then q cannot be activated, therefore, there is
no need to give a link to q. That is, the optimal solution to the Max-Inf-Links
problem with k links does not give node q a link, and instead uses � links to
solve the Max-Influence problem on the path P1,q−1 and k − � links to solve
the Max-Influence problem on the path Pq+1,n for some value of � such that
0 ≤ � ≤ k. Thus the optimal solution can be found by checking for all possible
values of � between 0 and k, yielding:

MI(Pn, k) = max0≤�≤k{MI(P1,q−1, �) + MI(Pq+1,n, k − �)}

Finally if t(q) = 3, then either there exists an optimal solution in which q is
not activated, in which case MI(Pn, k) is defined identically to the case when
t(q) > 3, or in every optimal solution q is activated. In this case, let S be an
optimal solution to MI(Pn, k). By assumption, q is activated. Since t(q) = 3,
it must be that q gets a link, and also that q − 1 and q + 1 are activated. Let
S = S1 ∪ {q} ∪ S2 where S1 = {1, . . . , q − 1} ∩ S and S2 = S ∩ {q + 1, n}, and
let |S1| = � and |S2| = k − 1 − � We now claim that S2 is an optimal solution to
MIA(Pq+1,n, k − 1− �). If there was a better solution to MIA(Pq+1,n, k − 1− �)
than S2, we can replace S2 by the claimed better solution in S to get a better
solution to Max-Inf-Links(Pn, k), a contradiction to the optimality of S.

Next we claim that S1 is an optimal solution to Max-Inf-Links(P1,q−1, �).
Suppose instead that S1 activates α nodes in P1,q−1 and there is another set of

How to Choose Friends Strategically 299

links S′ of size � that activates β > α nodes in P1,q−1. If S′ activates q − 1, then
clearly S′ ∪ {q} ∪ S2 activates more nodes than S in Pn, a contradiction to the
optimality of S. If S′ does not activate q, then S′ ∪ S2 does not activate node q
but activates at least the same number of nodes in Pn as S does, a contradiction
to the assertion that every optimal solution activates q. Therefore, we conclude
that

MI(Pn, k) = max0≤�≤k{1 + MI(P1,q−1, �) + A(Pq+1,n, k − 1 − �)}
Finally, we prove that the above formulation can be computed using dynamic

programming in time Θ(kn). For any sub-pathPi,j containing only nodes of
threshold 1 and 2, the values of A(i, j, r), B(i, j, r) and MI(i, j, r) can be found
using the definitions in Lemmas 8 and 6 for all 0 ≤ r ≤ k in time Θ(k(j − i+1).
Since the total lengths of all sub-paths is at most n, the total time spent is Θ(nk).
Since there are O(n) such sub-paths, the recursive formulation for MI(Pn, k)
above for a paths with no threshold limit takes another O(kn) time to compute.

�

5.1 Cycles

By taking out a single node from the cycle, and considering the resulting path,
we can obtain an algorithm for the Max-Inf-Linksproblem for cycles:

Theorem 4. The Max-Inf-Links problem for a cycle Cn using k links, can be
solved in time θ(kn2).

6 Θ(n) Algorithm for Cliques

The following greedy algorithm can be shown to produce an optimal solution
for cliques. We sort the nodes in order of threshold and examine nodes in order
while we still have links to assign. When we process node i, if t(i) > i, we stop
assigning links and break. If t(i) < i, we simply increment i and continue. Finally
if t(i) = i, we give a link to node i.

Theorem 5. Max-Inf-Links(Kn, k) can be solved in time Θ(n).

7 Discussion

In this paper, we introduced and studied the Max-Influence-with-Links problem:
given a social network G where every node v has a threshold t(v) to be activated,
and an integer k, which k nodes in G should an already activated external
influencer μ befriend, so as to influence the maximum possible number of nodes
in the network? We showed that the problem is NP-complete, even for a single
influencer, and bipartite graphs with maximum threshold 2. In contrast, for
the case of a single external influencer, we showed a linear time algorithm for
cliques, Θ(kn) algorithm for paths, Θ(kn2) algorithm for cycles, and a Θ(k2n2)

300 L. Narayanan and K. Wu

algorithm for trees. It seems straightforward to generalize our algorithms for any
number k of external influencers. It would be interesting to study the complexity
of the problem for graphs of bounded tree width, and the approximability of the
problem for constant k. We are also interested in studying the case with non-
uniform weights on the edges. Clearly, the problem remains NP-complete in
general, but the complexity for special classes of graphs remains open.

References

1. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the
complexity of target set selection. Discrete Optim. 8, 702–715 (2011)

2. Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Maximizing social influence in
nearly optimal time. In: Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, pp. 946–957 (2014)

3. Brown, J.J., Reingen, P.H.: Social ties and word-of-mouth referral behavior. J.
Consum. Res. 14, 350–362 (1987)

4. Chen, N.: On the approximability of influence in social networks. In: Proceedings
of the Symposium on Discrete Algorithms, SODA 2008, pp. 1029–1037 (2008)

5. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2009, pp. 199–208 (2009)

6. Cicalese, F., Cordasco, G., Gargano, L., Milanic, M., Peters, J.G., Vaccaro, U.: How
to go viral: cheaply and quickly. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) Fun
with Algorithms. LNCS, vol. 8496, pp. 100–112. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-07890-8 9

7. Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Vaccaro, U.: Latency-bounded
target set selection in social networks. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.)
CiE 2013. LNCS, vol. 7921, pp. 65–77. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39053-1 8

8. Cordasco, G., Gargano, L., Rescigno, A.A., Vaccaro, U.: Optimizing spread of
influence in social networks via partial incentives. In: Scheideler, C. (ed.) Struc-
tural Information and Communication Complexity. LNCS, vol. 9439, pp. 119–134.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25258-2 9

9. de Caen, D.: An upper bound on the sum of squares of degrees in a graph. Discrete
Math. 185, 245–248 (1998)

10. Demaine, E.D., Hajiaghayi, M.T., Mahini, H., Malec, D.L., Raghavan, S., Sawant,
A., Zadimoghadam, M.: How to influence people with partial incentives. In: Pro-
ceedings of the International Conference on World Wide Web, WWW 2014, pp.
937–948 (2014)

11. Dinh, T.N., Zhang, H., Nguyen, D.T., Thai, M.T.: Cost-effective viral marketing
for time-critical campaigns in large-scale social networks. IEEE/ACM Trans. Netw.
22, 2001–2011 (2014)

12. Domingos, P., Richardson, M.: Mining the network value of customers. In: Pro-
ceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 2001, pp. 57–66 (2001)

13. Eftekhar, M., Ganjali, Y., Koudas, N.: Information cascade at group scale. In: Pro-
ceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 2013, pp. 401–409 (2013)

https://doi.org/10.1007/978-3-319-07890-8_9
https://doi.org/10.1007/978-3-319-07890-8_9
https://doi.org/10.1007/978-3-642-39053-1_8
https://doi.org/10.1007/978-3-642-39053-1_8
https://doi.org/10.1007/978-3-319-25258-2_9

How to Choose Friends Strategically 301

14. Fazli, M.A., Ghodsi, M., Habibi, J., Jalaly Khalilabadi, P., Mirrokni, V.,
Sadeghabad, S.S.: On the non-progressive spread of influence through social net-
works. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 315–326.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29344-3 27

15. Gargano, L., Hell, P., Peters, J., Vaccaro, U.: Influence diffusion in social net-
works under time window constraints. In: Moscibroda, T., Rescigno, A.A. (eds.)
SIROCCO 2013. LNCS, vol. 8179, pp. 141–152. Springer, Cham (2013). https://
doi.org/10.1007/978-3-319-03578-9 12

16. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look
at the underlying process of word-of-mouth. Mark. Lett. 12, 211–223 (2001)

17. Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: A data-based approach to social influ-
ence maximization. Proc. VLDB Endow. 5, 73–84 (2011)

18. Goyal, A., Bonchi, F., Lakshmanan, L.V.S., Venkatasubramanian, S.: On mini-
mizing budget and time in influence propagation over social networks. Soc. Netw.
Anal. Min. 3, 179–192 (2013)

19. Goyal, A., Lu, W., Lakshmanan, L.V.S.: Celf++: optimizing the greedy algorithm
for influence maximization in social networks. In: Proceedings of the International
Conference Companion on World Wide Web, WWW 2011, pp. 47–48 (2011)

20. Gunnec, D., Raghavan, S.: Integrating social network effects in the share-of-choice
problem. Technical report, University of Maryland, College Park (2012)

21. Gunnec, D., Raghavan, S., Zhang, R.: The least cost influence problem. Technical
report, University of Maryland, College Park (2013)

22. He, J., Ji, S., Beyah, R., Cai, Z.: Minimum-sized influential node set selection for
social networks under the independent cascade model. In: Proceedings of the ACM
International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc
2014, pp. 93–102 (2014)

23. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 2003, pp. 137–146 (2003)

24. Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for
social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg
(2005). https://doi.org/10.1007/11523468 91

25. Lafond, M., Narayanan, L., Wu, K.: Whom to befriend to influence people. In:
Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 340–357. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48314-6 22

26. Lamba, H., Pfeffer, J.: Maximizing the spread of positive influence by deadline.
In: Proceedings of the International Conference Companion on World Wide Web,
WWW 2016, pp. 67–68 (2016)

27. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. In:
Proceedings of the ACM Conference on Electronic Commerce, pp. 228–237 (2006)

28. Lu, W., Bonchi, F., Goyal, A., Lakshmanan, L.V.S.: The bang for the buck: fair
competitive viral marketing from the host perspective. In: Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 2013, pp. 928–936 (2013)

29. Lv, S., Pan, L.: Influence maximization in independent cascade model with limited
propagation distance. In: Han, W., Huang, Z., Hu, C., Zhang, H., Guo, L. (eds.)
APWeb 2014. LNCS, vol. 8710, pp. 23–34. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11119-3 3

30. Mossel, E., Roch, S.: Submodularity of influence in social networks: from local to
global. SIAM J. Comput. 39, 2176–2188 (2010)

https://doi.org/10.1007/978-3-642-29344-3_27
https://doi.org/10.1007/978-3-319-03578-9_12
https://doi.org/10.1007/978-3-319-03578-9_12
https://doi.org/10.1007/11523468_91
https://doi.org/10.1007/978-3-319-48314-6_22
https://doi.org/10.1007/978-3-319-11119-3_3
https://doi.org/10.1007/978-3-319-11119-3_3

302 L. Narayanan and K. Wu

31. Nguyen, H.T., Thai, M.T., Dinh, T.N.: Stop-and-stare: optimal sampling algo-
rithms for viral marketing in billion-scale networks. In: Proceedings of the Inter-
national Conference on Management of Data, SIGMOD 2016, pp. 695–710 (2016)

32. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of
target set selection. Soc. Netw. Anal. Min. 3(2), 233–256 (2012)

33. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing.
In: Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2002, pp. 61–70 (2002)

34. Tang, S., Yuan, J.: Going viral: optimizing discount allocation in social networks
for influence maximization (2016). CoRR abs/1606.07916

35. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martin-
gale approach. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2015, pp. 1539–1554 (2015)

36. Tang, Y., Xiao, X., Shi, Y.: Influence maximization: near-optimal time complexity
meets practical efficiency. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2014, pp. 75–86 (2014)

37. Yang, Y., Mao, X., Pei, J., He, X.: Continuous influence maximization: what dis-
counts should we offer to social network users? In: Proceedings of the International
Conference on Management of Data, SIGMOD 2016, pp. 727–741 (2016)

Effective Edge-Fault-Tolerant Single-Source
Spanners via Best (or Good) Swap Edges

Davide Bilò1, Feliciano Colella2(B), Luciano Gualà3, Stefano Leucci4,
and Guido Proietti5,6

1 Dipartimento di Scienze Umanistiche e Sociali, University of Sassari, Sassari, Italy
davide.bilo@uniss.it

2 Gran Sasso Science Institute, L’Aquila, Italy
feliciano.colella@gssi.it

3 Dipartimento di Ingegneria dell’Impresa,
University of Rome “Tor Vergata”, Rome, Italy

guala@mat.uniroma2.it
4 Department of Computer Science, ETH Zürich, Zürich, Switzerland

stefano.leucci@inf.ethz.ch
5 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,

University of L’Aquila, L’Aquila, Italy
guido.proietti@univaq.it

6 Istituto di Analisi dei Sistemi ed Informatica, CNR, Rome, Italy

Abstract. Computing all best swap edges (ABSE) of a spanning tree T
of a given n-vertex and m-edge undirected and weighted graph G means
to select, for each edge e of T , a corresponding non-tree edge f , in such a
way that the tree obtained by replacing e with f enjoys some optimality
criterion (which is naturally defined according to some objective function
originally addressed by T). Solving efficiently an ABSE problem is by
now a classic algorithmic issue, since it conveys a very successful way
of coping with a (transient) edge failure in tree-based communication
networks: just replace the failing edge with its respective swap edge,
so as that the connectivity is promptly reestablished by minimizing the
rerouting and set-up costs. In this paper, we solve the ABSE problem
for the case in which T is a single-source shortest-path tree of G, and
our two selected swap criteria aim to minimize either the maximum or
the average stretch in the swap tree of all the paths emanating from
the source. Having these criteria in mind, the obtained structures can
then be reviewed as edge-fault-tolerant single-source spanners. For them,
we propose two efficient algorithms running in O(mn + n2 log n) and
O(mn log α(m, n)) time, respectively, and we show that the guaranteed
(either maximum or average, respectively) stretch factor is equal to 3,
and this is tight. Moreover, for the maximum stretch, we also propose an
almost linear O(m log α(m, n)) time algorithm computing a set of good
swap edges, each of which will guarantee a relative approximation factor
on the maximum stretch of 3/2 (tight) as opposed to that provided by
the corresponding BSE. Surprisingly, no previous results were known for
these two very natural swap problems.

c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 303–317, 2017.
https://doi.org/10.1007/978-3-319-72050-0_18

304 D. Bilò et al.

1 Introduction

Nowadays there is an increasing demand for an efficient and resilient informa-
tion exchange in communication networks. This means to design on one hand
a logical structure onto a given communication infrastructure, which optimizes
some sought routing protocol in the absence of failures, and on the other hand,
to make such a structure resistant against possible link/node malfunctioning, by
suitably adding to it a set of redundant links, which will enter into operation as
soon as a failure takes place.

More formally, the depicted situation can be modeled as follows: the under-
lying communication network is an n-vertex and m-edge undirected input graph
G = (V (G), E(G), w), with positive real edge weights defined by w, the logical
(or primary) structure is a (spanning) subgraph H of G, and finally the addi-
tional links is a set of edges A in E(G) \ E(H). Under normal circumstances,
communication takes place on H, by following a certain protocol, but as soon
as an edge in H fails, then one or more edges in A come into play, and the
communication protocol is suitably adjusted.

In particular, if the primary structure is a (spanning) tree of G, then a very
effective way of defining the set of additional edges is the following: with each tree
edge, say e, we associate a so-called best swap edge, namely a non-tree edge that
will replace e once it (transiently) fails, in such a way that the resulting swap tree
enjoys some nice property in terms of the currently implemented communication
protocol. By doing in this way, rerouting and set-up costs will be minimized, in
general, and the quality of the post-failure service remains guaranteed. Then,
an all best swap edges (ABSE) problem is that of finding efficiently (in term of
time complexity) a best swap edge for each tree edge.

Due to their fault-tolerance application counterpart, ABSE problems received
a large attention by the algorithmic community. In such a framework, a key
role has been played by the Shortest-Path Tree (SPT) structure, which is com-
monly used for implementing efficiently the broadcasting communication primi-
tive. Indeed, it is was shown already in [15] that an effective post-swap broadcast
protocol can be put in place just after the original SPT undergoes an edge failure.
Not surprisingly then, several ABSE problems w.r.t. an SPT have been studied
in the literature, for many different swap criteria.

Previous work on swapping in an SPT. Since an SPT enjoys several optimal-
ity criteria when looking at distances from the source, say s, several papers
have analyzed the problem in various respects. However, most of the efforts
focused on the minimization w.r.t. the following two swap criterion: the maxi-
mum/average distance from s to any node which remained disconnected from
s after a failure. The currently fastest solutions for these two ABSE problems
run in O(m log α(m,n)) time [5] and O(m α(n, n) log2 n) time [8], respectively.
Moreover, it has been shown that in the swap tree the maximum (resp., average)
distance of the disconnected nodes from s is at most twice (resp., triple) that of
the new optimum SPT [18], and these bounds are tight.

Edge-Fault-Tolerant Single-Source Spanners via Best (or Good) Swap Edges 305

Other interesting swap criteria which have been analyzed include the mini-
mization of the maximum increase (before and after the failure) of the distance
from s, and the minimization of the distance from s to the root of the subtree
that gets disconnected after the failure [17]. Besides the centralized setting, all
these swap problems have been studied also in a distributed framework (e.g., see
[7,10–12]).

On the other hand, no results are known for the case in which one is willing
to select a BSE with the goal of minimizing either the maximum or the average
stretch from the source s of the disconnected nodes, where the stretch of a node
is measured as the ratio between its distance from s in the swap tree and in a
new optimum SPT. This is very surprising, since they are (especially the former
one) the universally accepted criterion leading to the design of a spanner, i.e., a
sparse subgraph preserving shortest paths (between pairs of vertices of interest)
in a graph (also in the presence of failures).

In this paper, we aim to fill this gap, by providing efficient solutions exactly
for these two swap criteria.

Our results. Let us denote by ABSE-MS and ABSE-AS the ABSE problem w.r.t.
the maximum and the average stretch swap criterion, respectively. For such
problems, we devise two efficient algorithms running in O(mn + n2 log n) and
O(mn log α(m,n)) time, respectively. Notice that both solutions incorporate the
running time for computing all the replacement shortest paths from the source
after the failure of every edge of the SPT, as provided in [13], whose computa-
tion essentially dominates in an asymptotic sense the time complexity. Our two
solutions are based on independent ideas, as described in the following:

– for the ABSE-MS problem, we develop a centroid decomposition of the SPT,
and we exploit a distance property that has to be enjoyed by a BSE w.r.t.
a nested and log-depth hierarchy of centroids, which will be defined by the
subtree detached from the source after the currently analyzed edge failure.
A further simple filtering trick on the set of potential swap edges will allow
to reduce them from O(m) to O(n), thus returning the promised O(n2 log n)
time.

– for the ABSE-AS problem, we instead suitably combine a set of linearly-
computable (at every edge fault) information, that essentially will allow to
describe in O(1) time the quality of a swap edge. This procedure is in principle
not obvious, since to compute the average stretch we need to know, for each
swap edge, the O(n) distances to all the nodes in the detached subtree. Again,
by filtering on the set of potential swap edges, we will get an O(n2) running
time, which will be absorbed by the all-replacement paths time complexity.

Concerning the quality of the corresponding swap trees, we instead show that
the guaranteed (either maximum or average, respectively) stretch factor w.r.t.
the paths emanating from the source (in the surviving graph) is equal to 3,
and this is tight. By using a different terminology, our structures can then be
revised as edge-fault-tolerant single-source 3-spanners, and we qualified them

306 D. Bilò et al.

as effective since they can be computed quickly, are very sparse, provide a very
simple alternative post-failure routing, and finally have a small (either maximum
or average) stretch.

Although the proposed solutions are quite efficient, their running time can
become prohibitive for large and dense input graphs, since in this case they
would amount to a time cubic in the number of vertices. Unfortunately, it turns
out that their improvement is unlikely to be achieved, unless one could avoid
the explicit recomputation of all post-failure distances from the source. To cir-
cumvent this problem, we then adopt a different approach, which by the way
finds application for the (most relevant) max-stretch measure only: we renounce
to optimality in the detection of a BSE, in return of a substantial improvement
(in the order of a linear factor in n) in the runtime. More precisely, for such
a measure, we will compute in an almost linear O(m log α(m,n)) time a set of
good swap edges (GSE), each of which will guarantee a relative approximation
factor on the maximum stretch of 3/2 (tight) as opposed to that provided by
the corresponding BSE. Moreover, a GSE will still guarantee an absolute maxi-
mum stretch factor w.r.t. the paths emanating from the source (in the surviving
graph) equal to 3 (tight).

Besides that, we also point out another important feature concerned with
the computation in a distributed setting of all our good swap edges. Indeed, in
[7] it was shown that they can be computed in an asynchronous message passing
system in essentially optimal ideal time,1 space usage, and message complexity,
as opposed to the recomputation of all the corresponding BSE, for which no
efficient solution is currently available.

Other related results. Besides swap-based approaches, an SPT can be made
edge-fault-tolerant by further enriching the set of additional edges, so that the
obtained structure has almost-shortest paths emanating from the source, once an
edge fails. The currently best trade off between the size of the set of additional
edges and the quality of the resulting paths emanating from s is provided in
[3], where the authors showed that for any arbitrary constant ε > 0, one can
compute in polynomial time a slightly superlinear (in n, and depending on ε)
number of additional edges in such a way that the resulting structure retains
(1 + ε)-stretched post-failure paths from the source.

For the sake of completeness, we also quickly recall the main results concerned
with ABSE problems. For the minimum spanning tree (MST), a BSE is of course
one minimizing the cost of the swap tree, i.e., a swap edge of minimum cost. This
problem is also known as the MST sensitivity analysis problem, and can be solved
in O(m log α(m,n)) time [19]. Concerning the minimum diameter spanning tree,
a BSE is instead one minimizing the diameter of the swap tree [14,17], and
the best solution runs in O(m log α(m,n)) time [5]. Regarding the minimum
routing-cost spanning tree, a BSE is clearly one minimizing the all-to-all routing

1 This is the time obtained with the ideal assumption that the communication time
of each message to a neighboring process takes constant time, as in the synchronous
model.

Edge-Fault-Tolerant Single-Source Spanners via Best (or Good) Swap Edges 307

cost of the swap tree [21], and the fastest solutions for solving this problem has
a running time of O

(
m2O(α(n,n)) log2 n

)
[4]. Finally, for a tree spanner, a BSE

is one minimizing the maximum stretch w.r.t. the all pair distances, and the
fastest solution to date run in O(m2 log α(m,n)) time [1].

To conclude, we point out that the general problem of designing fault-tolerant
spanners for the all-to-all case has been extensively studied in the literature, and
we refer the interested reader to [2,6,9] and the references therein.

2 Problem Definition

Let G = (V (G), E(G), w) be a 2-edge-connected, edge-weighted, and undirected
graph with cost function w : E(G) → R

+. We denote by n and m the number
of vertices and edges of G, respectively. If X ⊆ V , let E(X) be the set of edges
incident to at least one vertex in X. Given an edge e ∈ E(G), we will denote by
G − e the graph obtained from G by removing edge e. Similarly, given a vertex
v ∈ V (G), we will denote by G − v the graph obtained from G by removing
vertex v and all its incident edges. Let T be an SPT of G rooted at s ∈ V (G).
Given an edge e ∈ E(T), we let C(e) be the set of all the swap edges for e, i.e., all
edges in E(G) \ {e} whose endpoints lie in two different connected components
of T −e, and let C(e,X) be the set of all the swap edge for e incident to a vertex
in X ⊆ V (G). For any e ∈ E(T) and f ∈ C(e), let Te/f denote the swap tree
obtained from T by replacing e with f . Let Tv = (V (Tv), E(Tv)) be the subtree
of T rooted at v ∈ V (G). Given a pair of vertices u, v ∈ V (G), we denote by
dG(u, v) the distance between u and v in G. Moreover, for a swap edge f = (x, y),
we assume that the first appearing endvertex is the one closest to the source,
and we may denote by w(x, y) its weight. We define the stretch factor of y w.r.t.
s, T,G as σG(T, y) = dT (s,y)

dG(s,y) .
Given an SPT T of G, the ABSE-MS problem is that of finding, for each edge

e = (a, b) ∈ E(T), a swap edge f∗ such that:

f∗ ∈ arg min
f∈C(e)

{
μ(f) := max

v∈V (Tb)
σG−e

(
Te/f , v

)}
.

Similarly, the ABSE-AS problem is that of finding, for each edge e = (a, b) ∈ E(T),
a swap edge f∗ such that:

f∗ ∈ arg min
f∈C(e)

{
λ(f) :=

1
|V (Tb)|

∑
v∈V (Tb)

σG−e

(
Te/f , v

)}
.

We will call μ(f) (resp., λ(f)) the max-(resp., avg-)stretch of f w.r.t. e.

3 An Algorithm for ABSE-MS

In this section we will show an efficient algorithm to solve the ABSE-MS problem
in O(mn + n2 log n) time. Notice that a brute-force approach would require

308 D. Bilò et al.

O(mn2) time, given by the O(n) time which is needed to evaluate the quality of
each of the O(m) swap edges, for each of the n − 1 edges of T . Our algorithm
will run through n − 1 phases, each returning in O(m + n log n) time a BSE for
a failing edge of T , as described in the following.

Let us fix e = (a, b) as the failing edge. First, we compute in O(m + n log n)
time all the distances in G − e from s. Then, we filter the O(m) potential swap
edges to O(n), i.e., at most one for each node v in Tb. Such a filtering is simply
obtained by selecting, out of all edges f = (x, v) ∈ C(e, {v}), the one minimizing
the measure dG(s, x) + w(f). Indeed, it is easy to see that the max-stretch of
such selected swap edge is never worse than that of every other swap edge in
C(e). This filtering phase will cost O(m) total time. As a consequence, we will
henceforth assume that |C(e)| = O(n).

Then, out of the obtained O(n) swap edges for e, we further restrict our
attention to a subset of O(log n) candidates as BSE, which are computed as
follows. Let Λ denote a generic subtree of Tb, and assume that initially Λ = Tb.
First of all, we compute in O(|V (Λ)|) time a centroid c of Λ, namely a node
whose removal from Λ splits Λ in a forest F of subtrees, each having at most
|V (Λ)|/2 nodes [16]; then, out of all the swap edges, we select a candidate edge
f minimizing the distance from s to c in Te/f , i.e.,

f ∈ arg min
(x′,v′)∈C(e)

{
dT (s, x′) + w(x′, v′) + dT (v′, c)

}
;

then, we compute a critical node z for the selected swap edge f , i.e.,

z ∈ arg max
z′∈V (Tb)

σG−e

(
Te/f , z′).

We now select a suitable subtree Λ′ of the forest F , and we pass to the selection
of the next candidate BSE by recursing on Λ′, until |V (Λ′)| = 1. More precisely,
Λ′ is the first tree of F containing the first vertex of V (Λ) that is encountered
by following the path in T from z towards c (see Fig. 1).

Due to the property of the centroid, the number of recursions will be
O

(
log |V (Tb)|

)
= O(log n), as promised, each costing O(n) time. Moreover,

at least one of the candidate edges will be a BSE for e, and hence it suffices
to choose the edge minimizing the maximum stretch among the corresponding
O(log n) candidate edges. This step is done within the recursive procedure by
comparing the current candidate edge f with the best candidate resulting from
the nested recursive calls.

A more formal description of each phase is shown in Algorithm 1. In the
following we prove the correctness of our algorithm.

Lemma 1. Let e = (a, b) be a failing edge, and let Λ be a subtree of Tb. Given a
vertex c ∈ V (Λ), let f ∈ arg min(x′,v′)∈C(e)

{
dT (s, v′)+w(x′, v′)+dT (v′, c)

}
and

let z be a critical node for f . Let F be the forest obtained by removing the edges
incident to c from Λ, and let Λ′ be the tree of F containing the first vertex of the
path from z to c in T that is also in V (Λ). For any swap edge f ′ ∈ C(e, V (Λ)),
if μ(f ′) < μ(f) then f ′ ∈ C(e, V (Λ′)).

Edge-Fault-Tolerant Single-Source Spanners via Best (or Good) Swap Edges 309

c

z

Λ′

v′ v

Λ

C(e)

a

s

bf ′ f

xx′

e

Fig. 1. The situation illustrated in Lemma 1. The subtree Λ is represented by the
three gray triangles along with the vertex c. f = (x, v) is the candidate swap edge for
e that minimizes dT (s, x) + w(f) + dT (v, c), and z is its corresponding critical node.
The algorithm will compute the next candidate swap edge by recursing on Λ′.

Proof. Let f = (x, v) and f ′ = (x′, v′). We show that if v′ ∈ V (Λ) \ V (Λ′) then
μ(f ′) ≥ μ(f) (see also Fig. 1). Indeed:

μ(f ′) ≥ σG−e

(
Te/f ′ , z

)
=

dTe/f′ (s, z)

dG−e(s, z)
=

dT (s, x′) + w(f ′) + dT (v′, c) + dT (c, z)
dG−e(s, z)

≥ dT (s, x) + w(f) + dT (v, c) + dT (c, z)
dG−e(s, z)

≥ dTe/f (s, z)
dG−e(s, z)

= σG−e

(
Te/f , z

)

= μ(f),

where we used the equality dT (v′, z) = dT (v′, c) + dT (c, z), which follows from
the fact that the path from v′ to z in T must traverse c as v′ and z are in two
different trees of F . ��

Lemma 2. If C
(
e, V (Λ)

)
contains a BSE for e then ABSE-MS(e, Λ) returns a

BSE for e.

Proof. First of all notice that Algorithm 1 only returns edges in C(e).
We prove the claim by induction on |V (Λ)|. If |V (Λ)| = 1 and C

(
e, V (Λ)

)
contains a BSE f∗ for e, then let f be the edge of C(e) returned by Algorithm 1
and let V (Λ) = {c}. By choice of f , for every v ∈ V (Tb),

dTe/f
(s, v) ≤ dTe/f

(s, c) + dT (c, v) = dTe/f∗ (s, c) + dT (c, v) = dTe/f∗ (s, v),

from which we derive that μ(f) = μ(f∗), and the claim follows.
If |V (Λ)| > 1 and C

(
e, V (Λ)

)
contains a BSE for e, we distinguish two cases

depending on whether the edge f computed by Algorithm 1 is a BSE for e

310 D. Bilò et al.

Algorithm 1. ABSE-MS(e, Λ)
Input : a failing edge e = (a, b) ∈ E(T), a subtree Λ of Tb.
Output: an edge f ∈ C(e). If C

(
e, V (Λ)

)
contains a BSE for e, f is a BSE for e.

1 c ← Centroid of Λ;
2 Let f ∈ arg min

(x′,v′)∈C(e)

{
dT (s, x′) + w(x′, v′) + dT (v′, c)

}
;

3 if |V (Λ)| = 1 then return f ;

4 Let z ∈ arg maxz′∈V (Tb) σG−e

(
Te/f , z′);

5 Let F be the forest obtained by removing the edges incident to c from Λ;
6 y ← first vertex along the path from z towards c in T that is also in V (Λ);
7 Λ′ ← tree of F containing y;
8 f ′ ← ABSE-MS(e, Λ′);

9 if μ(f ′) < μ(f) then return f ′ else return f ;

or not. If that is the case, then μ(f) ≤ μ(f ′′)∀f ′′ ∈ C(e) and the algorithm
correctly returns f . Otherwise, by Lemma 1, any edge f ′ ∈ C(e, V (Λ)) such
that μ(f ′) < μ(f) must belong to C

(
e, V (Λ′)

)
. It follows that Λ′ contains a BSE

for e and since 1 ≤ |V (Λ′)| < |V (Λ)| we have, by inductive hypothesis, that the
edge f ′ returned by ABSE-MS(G, e, Λ′) is a BSE for e. Clearly μ(f ′) < μ(f) and
hence Algorithm 1 correctly returns f ′. ��

Since each invocation of Algorithm 1 requires O(n) time, Lemma 2 together
with the previous discussions allows us to state the main theorem of this section:

Theorem 1. There exists an algorithm that solves the ABSE-MS problem in
O(mn + n2 log n) time.

4 An Algorithm for ABSE-AS

In this section we show how the ABSE-AS problem can be solved efficiently in
O(mn log α(m,n)) time. Our approach first of all, in a preprocessing phase,
computes in O(m n log α(m,n)) time all the replacement shortest paths from
the source after the failure of every edge of T [13]. Then, the algorithm will run
through n − 1 phases, each returning in O(m) time a BSE for a failing edge
of T , as described in the following. Thus, the overall time complexity will be
dominated by the preprocessing step.

Let us fix e = (a, b) ∈ E(T) as the failing edge of T . The idea is to show
that, after a O(n) preprocessing time, we can compute the avg-stretch λ(f) of
any f in constant time. This immediately implies that we can compute a BSE
for e by looking at all O(m) swap edges for e.

Let U = V (Tb) and let y be a node in U , we define:

M(y) =
∑
v∈U

dT (y, v)
dG−e(s, v)

Edge-Fault-Tolerant Single-Source Spanners via Best (or Good) Swap Edges 311

and
Q =

∑
v∈U

1
dG−e(s, v)

.

Let f = (x, y) be a candidate swap edge incident in y ∈ U . The avg-stretch of f
can be rewritten as:

λ(f) =
∑
v∈U

dT (s, x) + w(f) + dT (y, v)
dG−e(s, v)

=
(
dT (s, x) + w(f)

)
Q + M(y).

Hence, the avg-stretch of f can be computed in O(1) time, once Q and M(y)
are available in constant time. Observe that Q does not depend on y and can
be computed in O(n) time. The rest of this section is devoted to show how to
compute M(y) for every y ∈ U in O(n) overall time.

Computing M(y) for all y ∈ U . Let y e y′ be two nodes in U such that y
is a child of y′ in T . Moreover, let Uy = V (Ty), and let Qy =

∑
v∈Uy

1
dG−e(s,y) .

Hence, we can rewrite M(y) and M(y′) as follows:

M(y) =
∑

v∈Uy

dT (y, v)
dG−e(s, v)

+
∑

v∈U−Uy

w(y, y′) + dT (y′, v)
dG−e(s, v)

and

M(y′) =
∑

v∈Uy

w(y, y′) + dT (y, v)
dG−e(s, v)

+
∑

v∈U−Uy

dT (y′, v)
dG−e(s, v)

.

Therefore, we have:

M(y) = M(y′) + w(y, y′)
(− Qy + (Q − Qy)

)
= M(y′) + w(y, y′)

(
Q − 2Qy

)
. (1)

The above equation implies that M(y) can be computed in O(1) time, once
we have computed M(y′), Q and Qy. As a consequence, we can compute all
the M(y)’s as follows. First, we compute Qy for every y ∈ D in O(n) overall
time by means of a postorder visit of Tb. Notice also that Q = Qb. Then, we
compute M(b) explicitly in O(n) time. Finally, we compute all the other M(y)’s
by performing a preorder visit of Tb. When we visit a node y, we compute M(y)
in constant time using (1). Thus, the visit will take O(n) time. We have proved
the following:

Theorem 2. There exists an algorithm that solves the ABSE-AS problem in
O(mn log α(m,n)) time.

5 An Approximate Solution for ABSE-MS

In this section we show that for the max-stretch measure we can compute in
an almost linear O(m log α(m,n)) time, a set of good swap edges (GSE), each

312 D. Bilò et al.

e

A

B C

z

y

t′

t

g
D

y′

f

e

t

t′

y

B A

C
g

D

zy′

f

Fig. 2. The figure shows the two cases of the analysis, on the left t is an ancestor of
t′, while on the right the opposite holds. The splines denote a path, while the straight
lines represent a single edge.

of which guarantees a relative approximation factor on the maximum stretch of
3/2 (tight), as opposed to that provided by the corresponding BSE. Moreover,
as shown in the next section, each GSE still guarantees an absolute maximum
stretch factor w.r.t. the paths emanating from the source (in the surviving graph)
equal to 3 (tight).

Lemma 3. Let e be a failing edge in T , let

g = (x, y) ∈ arg min
(x′,v′)∈C(e)

{
dT (s, x′) + w(x′, v′)

}
,

and, finally, let f = (x′, y′) be a best swap edge for e w.r.t. ABSE-MS. Then,
μ(g)/μ(f) ≤ 3/2.

Proof. Let z be the critical node for the good swap edge g, and let t (resp., t′)
denote the least common ancestor in T between y′ and z (resp., y′ and y). Let
D = dT (s, x)+w(x, y) = dG−e(s, y). By choice of g, it holds that dG−e(s, z) ≥ D
and dG−e(s, y′) ≥ D. We divide the proof into the following two cases, as depicted
in Fig. 2: either (1) t is an ancestor of t′ in T , or (2) t′ is an ancestor of t in T . Let
A,B,C denote the distance in T between y and t′, t′ and t, t and z, respectively.

Case 1. Since t is an ancestor of t′ (left side of Fig. 2), we have that dTe/f
(s, y) ≥

D + A and we can write:

σG−e(Te/f , y) ≥ D + A

dG−e(s, y)
=

D + A

D
≥ D + A

dG−e(s, z)
,

and similarly σG−e(Te/f , z) ≥ D+B+C
dG−e(s,z) . Moreover, by the definition of μ(·) we

have that μ(f) ≥ max{σG−e(Te/f , y), σG−e(Te/f , z)}. The previous inequalities
together imply:

μ(g)
μ(f)

≤ σG−e(Te/g, z)
max{σG−e(Te/f , y), σG−e(Te/f , z)} ≤ A + B + C + D

D + max {A,B + C} .
(2)

Edge-Fault-Tolerant Single-Source Spanners via Best (or Good) Swap Edges 313

Now we divide the proof into two subcases, depending on whether B+C ≥ A
or B +C < A. Observe that D ≥ dG(s, y) ≥ A. If B +C ≥ A, then (2) becomes:

μ(g)
μ(f)

≤ A + B + C + D

B + C + D
= 1 +

A

B + C + D
≤ 1 +

A

2A
=

3
2
,

otherwise, if B + C < A, then (2) becomes:

μ(g)
μ(f)

≤ A + B + C + D

A + D
<

2A + D

A + D
= 1 +

A

A + D
≤ 1 +

A

2A
=

3
2
.

Case 2. Assume now that t′ is an ancestor of t (right side of Fig. 2). Since

μ(f) ≥ σG−e(Te/f , y) ≥ dG−e(s, y′) + A + B

dG−e(s, y)
=

dG−e(s, y′) + A + B

D
,

we have that:

μ(g)
μ(f)

≤ A + B + C + D

dG−e(s, z)
· D

dG−e(s, y′) + A + B

≤ A + B + C + D

dG−e(s, z)
· D

A + B + D

and since dG−e(s, z) ≥ dG(s, z) ≥ C, and recalling that dG−e(s, z) ≥ D, we have:

μ(g)
μ(f)

≤ A + B + C + D

A + B + D
· D

max {C,D} =
(

1 +
C

A + B + D

)
· D

max {C,D} . (3)

Moreover, notice that also the following holds:

μ(g)
μ(f)

≤ μ(g)
σG−e(Te/f , z)

≤ A + B + C + D

dG−e(s, z)
· dG−e(s, z)
dG−e(s, y′) + dT (y′, t) + C

≤ A + B + C + D

C + D
= 1 +

A + B

C + D
. (4)

We divide the proof into the following two subcases, depending on whether
D ≥ C or D < C. In the first subcase, i.e., D ≥ C, we have that (3) becomes
μ(g)
μ(f) ≤ 1+ C

A+B+D , and hence, by combining this inequality with (4), we obtain:

μ(g)
μ(f)

≤ 1 + min
{

C

A + B + D
,
A + B

C + D

}

≤ 1 + min
{

C

A + B + C
,
A + B

2C

}
≤ 1 +

1
2

=
3
2
.

In the second subcase, i.e., D < C, (3) becomes:

μ(g)
μ(f)

≤
(

1 +
C

A + B + D

)
· D

C
≤ D

C
+

D

A + B + D
< 1 +

D

A + B + D
, (5)

314 D. Bilò et al.

e
y′ = b

D D
D

z y

g′

f

g

D +

D +

ε

ε

Fig. 3. A tight example showing that the quality of the good swap edge g computed
by the algorithm is a factor of 3/2 away from the qualify of a best swap edge f . In
the picture, it is assumed that the distance from s to b is equal to 0, while the three
dashed edges are assumed to be incident to the source, and the labels correspond to
their weight. Then, μ(f) = σG−e(Te/f , y) = 2D+ε

D
� 2, while μ(g) = σG−e(Te/g, z) =

3D
D+ε

� 3, for small values of ε.

and hence, by combining (5) and (4), we have that:

μ(g)
μ(f)

≤ 1 + min
{

D

A + B + D
,
A + B

C + D

}

≤ 1 + min
{

D

A + B + D
,
A + B

2D

}
≤ 1 +

1
2

=
3
2
,

from which the claim follows. ��
Given the result of Lemma 3, we can derive an efficient algorithm to compute

all the GSE for ABSE-MS. More precisely, in [18] it was shown how to find them
in O(m α(m,n)) time. Essentially, the approach used in [18] was based on a
reduction to the SPT sensitivity analysis problem [20]. However, in [19] it was
proposed a faster solution to such a problem, running in O(m log α(m,n)) time.
Thus, we can provide the following

Theorem 3. There exists a 3/2-approximation algorithm that solves the
ABSE-MS problem in O(m log α(m,n)) time.

We conclude this section with a tight example which shows that the analysis
provided in Lemma 3 is tight (see Fig. 3).

6 Quality Analysis

As for previous studies on swap edges, it is interesting now to see how the tree
obtained from swapping a failing edge e = (a, b) with its BSE f compares with
a true SPT of G − e. According to our swap criteria, we will then analyze the
lower and upper bounds of the max- and avg-stretch of f , i.e., μ(f) and λ(f),
respectively.

As already observed in the introduction, it is well-known [18] that for the
swap edge, say g, which belongs to the shortest path in G− e between s and the

Edge-Fault-Tolerant Single-Source Spanners via Best (or Good) Swap Edges 315

DDDD

b

s = a

y x
ε︸ ︷︷ ︸

Many leaves at distance D

⎧⎨
⎩

Non-tree
edges of
weight
D + 2ε
to all the
leaves

f

e

Fig. 4. Tight ratios for μ(f) and λ(f). In the picture, the SPT T (solid edges) along
with the removed edge e = (a, b) of weight 0; non-tree edges are dashed and the
best swap edge (for both the maximum and the average stretch) is easily seen to be
f = (x, y), of weight ε > 0. Then, we have that μ(f) = 3D+ε

D+2ε
, which tends to 3 for

small values of ε, while λ(f) tends to 3 as well, as soon as the number of leaves grows.
Notice that f is also a good swap edge for e.

root of the detached subtree Tb, we have that for any v ∈ V (Tb), σG−e(Te/g, v) ≤
3. This immediately implies that μ(g), λ(g) ≤ 3, namely μ(f), λ(f) ≤ 3. These
bounds happen to be tight, as shown in Fig. 4.

Let us now analyze the lower and upper bounds of the max-stretch of a good
swap edge g, i.e., μ(g), as defined in the previous section. First of all, once again
it was proven in [17] that for any v ∈ V (Tb), σG−e(Te/g, v) ≤ 3, which implies
that μ(g) ≤ 3. Moreover, the example shown in Fig. 4 can be used to verify that
this bound is tight.

7 Conclusions

In this paper we have studied two natural SPT swap problems, aiming to min-
imize, after the failure of any edge of the given SPT, either the maximum or
the average stretch factor induced by a swap edge. We have first proposed two
efficient algorithms to solve both problems. Then, aiming to the design of faster
algorithms, we developed for the maximum-stretch measure an almost linear
algorithm guaranteeing a 3/2-approximation w.r.t. the optimum.

Concerning future research directions, the most important open problem
remains that of finding a linear-size edge-fault-tolerant SPT with a (maximum)
stretch factor w.r.t. the root better than 3, or to prove that this is unfeasible.
Another interesting open problem is that of improving the running time of our
exact solutions. Notice that both our exact algorithms pass through the compu-
tation of all the post-failure single-source distances, and if we could avoid that
we would get faster solutions. At a first glance, this sounds very hard, since

316 D. Bilò et al.

the stretches are heavily dependant on post-failure distances, but, at least in
principle, one could exploit some monotonicity property among swap edges that
could allow to skip such a bottleneck. Besides that, it would be nice to design
a fast approximation algorithm for the average-stretch measure. Apparently, in
this case it is not easy to adopt an approach based on good swap edges as for
the maximum-stretch case, since swap edges optimizing other reasonable swap
criteria (e.g., minimizing the distance towards the root of the detached subtree,
or minimizing the distance towards a detached node) are easily seen to produce
an approximation ratio of 3 as opposed to a BSE. A candidate solution may
be that of selecting a BSE w.r.t. the sum-of-distances criterium, which can be
solved in almost linear time [8], but for which we are currently unable to provide
a corresponding comparative analysis.

Finally, we mention that a concrete task which will be pursued is that of
conducting an extensive experimental analysis of the true performances of our
algorithms, to check whether for real-world instances the obtained stretches are
sensibly better or not w.r.t. the theoretical bounds.

References

1. Bilò, D., Colella, F., Gualà, L., Leucci, S., Proietti, G.: A faster computation of
all the best swap edges of a tree spanner. In: Scheideler, C. (ed.) Structural Infor-
mation and Communication Complexity. LNCS, vol. 9439, pp. 239–253. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25258-2 17

2. Bilò, D., Grandoni, F., Gualà, L., Leucci, S., Proietti, G.: Improved purely addi-
tive fault-tolerant spanners. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS,
vol. 9294, pp. 167–178. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48350-3 15

3. Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Fault-tolerant approximate shortest-
path trees. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 137–
148. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44777-2 12

4. Bilò, D., Gualà, L., Proietti, G.: Finding best swap edges minimizing the routing
cost of a spanning tree. Algorithmica 68(2), 337–357 (2014)

5. Bilò, D., Gualà, L., Proietti, G.: A faster computation of all the best swap edges
of a shortest paths tree. Algorithmica 73(3), 547–570 (2015)

6. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for gen-
eral graphs. In: Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, 31 May–2 June 2009, pp. 435–444
(2009)

7. Datta, A.K., Larmore, L.L., Pagli, L., Prencipe, G.: Linear time distributed
swap edge algorithms. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS,
vol. 7878, pp. 122–133. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38233-8 11

8. Di Salvo, A., Proietti, G.: Swapping a failing edge of a shortest paths tree by
minimizing the average stretch factor. Theor. Comput. Sci. 383(1), 23–33 (2007)

9. Dinitz, M., Krauthgamer, R.: Fault-tolerant spanners: better and simpler. In: Pro-
ceedings of the 30th Annual ACM Symposium on Principles of Distributed Com-
puting, PODC 2011, San Jose, CA, USA, 6–8 June 2011, pp. 169–178 (2011)

https://doi.org/10.1007/978-3-319-25258-2_17
https://doi.org/10.1007/978-3-662-48350-3_15
https://doi.org/10.1007/978-3-662-48350-3_15
https://doi.org/10.1007/978-3-662-44777-2_12
https://doi.org/10.1007/978-3-642-38233-8_11
https://doi.org/10.1007/978-3-642-38233-8_11

Edge-Fault-Tolerant Single-Source Spanners via Best (or Good) Swap Edges 317

10. Flocchini, P., Enriques, A.M., Pagli, L., Prencipe, G., Santoro, N.: Efficient proto-
cols for computing the optimal swap edges of a shortest path tree. In: Levy, J.-J.,
Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp. 153–166. Springer,
Boston, MA (2004). https://doi.org/10.1007/1-4020-8141-3 14

11. Flocchini, P., Enriques, A.M., Pagli, L., Prencipe, G., Santoro, N.: Point-of-failure
shortest-path rerouting: computing the optimal swap edges distributively. IEICE
Trans. 89–D(2), 700–708 (2006)

12. Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Widmayer, P.: Computing all
the best swap edges distributively. J. Parallel Distrib. Comput. 68(7), 976–983
(2008)

13. Gualà, L., Proietti, G.: Exact and approximate truthful mechanisms for the short-
est paths tree problem. Algorithmica 49(3), 171–191 (2007)

14. Italiano, G.F., Ramaswami, R.: Maintaining spanning trees of small diameter.
Algorithmica 22(3), 275–304 (1998)

15. Ito, H., Iwama, K., Okabe, Y., Yoshihiro, T.: Single backup table schemes for
shortest-path routing. Theor. Comput. Sci. 333(3), 347–353 (2005)

16. Jordan, C.: Sur les assemblages de lignes. J. Reine Angew. Math 70(185), 81 (1869)
17. Nardelli, E., Proietti, G., Widmayer, P.: A faster computation of the most vital

edge of a shortest path. Inf. Process. Lett. 79(2), 81–85 (2001)
18. Nardelli, E., Proietti, G., Widmayer, P.: Swapping a failing edge of a single source

shortest paths tree is good and fast. Algorithmica 35(1), 56–74 (2003)
19. Pettie, S.: Sensitivity analysis of minimum spanning trees in sub-inverse-ackermann

time. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 964–973.
Springer, Heidelberg (2005). https://doi.org/10.1007/11602613 96

20. Tarjan, R.E.: Sensitivity analysis of minimum spanning trees and shortest path
trees. Inf. Process. Lett. 14(1), 30–33 (1982)

21. Wu, B.Y., Hsiao, C.Y., Chao, K.M.: The swap edges of a multiple-sources routing
tree. Algorithmica 50(3), 299–311 (2008)

https://doi.org/10.1007/1-4020-8141-3_14
https://doi.org/10.1007/11602613_96

Dynamic Networks

A Generic Framework for Computing
Parameters of Sequence-Based Dynamic Graphs

Arnaud Casteigts1(B), Ralf Klasing1(B), Yessin M. Neggaz2(B),
and Joseph G. Peters3(B)

1 LaBRI, CNRS, University of Bordeaux, Talence, France
{arnaud.casteigts,ralf.klasing}@labri.fr

2 IRIT - SMAC Team, University of Toulouse, Toulouse, France
yessin.neggaz@gmail.com

3 School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
peters@cs.sfu.ca

Abstract. We presented in [12] an algorithm for computing a parame-
ter called T -interval connectivity of dynamic graphs which are given as a
sequence of static graphs. This algorithm operates at a high level, manip-
ulating the graphs in the sequence as atomic elements with two types of
operations: a composition operation and a test operation. The algorithm
is optimal in the sense that it uses only O(δ) composition and test oper-
ations, where δ is the length of the sequence. In this paper, we generalize
this framework to use various composition and test operations, which
allows us to compute other parameters using the same high-level strat-
egy that we used for T -interval connectivity. We illustrate the framework
through the study of three minimization problems which refer to various
properties of dynamic graphs, namely Bounded-Realization-of-the-
Footprint, Temporal-Connectivity, and Round-Trip-Temporal-
Diameter.

Keywords: Dynamic networks · Property testing · Generic algorithms
Temporal connectivity

1 Introduction

Dynamic networks consist of entities making contact over time with one another.
The types of dynamics resulting from these interactions are varied in scale and
nature. For instance, some of these networks remain connected at all times [21];
others are always disconnected [18] but still offer some kind of connectivity over

Part of this work was done while Joseph Peters was visiting the LaBRI as a guest
professor of the University of Bordeaux. This work was partially funded by the ANR
projects DISPLEXITY (ANR-11-BS02-014) and ESTATE (ANR-16-CE25-0009-03).
This study has been carried out in the frame of “The Investments for the Future”
Programme IdEx Bordeaux CPU (ANR-10-IDEX-03-02). The work of Joseph Peters
was partially supported by NSERC of Canada.

c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 321–338, 2017.
https://doi.org/10.1007/978-3-319-72050-0_19

322 A. Casteigts et al.

time and space (temporal connectivity); others are recurrently connected, peri-
odic, etc. All of these contexts can be represented as properties of dynamic
graphs (also called time-varying graphs, evolving graphs, or temporal graphs).
A number of such classes were identified in recent literature and organized into
a hierarchy in [11]. Each of these classes corresponds to specific properties which
play a role either in the complexity or in the feasibility of distributed prob-
lems. For example, it was shown in [10] that if the edges are recurrent (i.e. if an
edge appears once, then it will reappear infinitely often), denoted class R, then
such a property guarantees the feasibility of a certain type of optimal broad-
cast with termination detection (namely, foremost broadcast). However, it is
not sufficient to satisfy other measures of optimality, such as shortest or fastest
broadcast. Strengthening the assumption to having a bound on the reappear-
ance time (class B) makes it possible to achieve shortest broadcast, and the even
stronger assumption of having periodic edges (class P) enables fastest broad-
cast. These three classes have been shown to play a role in a variety of problems
(see e.g. [1,15,22]). Another important class, which is less constrained (and thus
more general) is the class of all graphs with recurrent temporal connectivity (i.e.
all nodes can recurrently reach each other through journeys), corresponding to
class C5 in the hierarchy of [11]. This property is very general, and it is used
(implicitly or explicitly) in a number of recent studies addressing distributed
problems in highly-dynamic environments [4–6,14]. Interestingly, this property
was considered more than three decades ago by Awerbuch and Even [2].

Given a dynamic graph, a natural question to ask is to which of the classes
this graph belongs, or what related property it satisfies. These questions are
interesting in several respects. Firstly, most of the known classes correspond to
necessary or sufficient conditions for given distributed problems or algorithms
(broadcast, election, spanning trees, token forwarding, etc.). Thus, being able
to classify a graph in the hierarchy is useful for determining which problems
can be solved on that graph. Furthermore, it is useful for choosing a good algo-
rithm in settings where some properties are guaranteed (as in the above example
with classes R,B, and P). Hence, when targeting a given scenario from the real
world, an algorithm designer may first record some topological traces from the
target environment and then test which useful properties are satisfied. A growing
amount of research is now focusing on testing properties (or computing struc-
tures) in dynamic graphs. A seminal example is the computation of foremost,
shortest, or fastest journeys [7], the algorithms of which can also be used to test
membership in a number of dynamic graph classes [8]. More recent examples
include computing reachability graphs [3,24], enumerating maximal cliques [23],
and establishing the hardness of computing metrics like temporal diameter (that
is, how long it takes in the worst case to communicate through journeys) when
the evolution is not known in advance [17].

In a previous paper [12], we focused on a property called T -interval connec-
tivity [20], which captures two aspects of a network, stability and connectivity,
and was shown to play a role in several distributed problems, such as determining
the size of a network or computing a function of the initial inputs of the nodes.

Computing Parameters of Sequence-Based Dynamic Graphs 323

T -interval connectivity (Class C10 in [11]) generalizes the class of dynamic graphs
that are connected at all time instants [21] (Class C9 in [11]). The definition of
T -interval connectivity is closely related to a representation of a network as a
sequence of graphs G = (G1, G2, ..., Gδ) which correspond to the state of the
topology at increasing time instants (also called untimed evolving graphs [7]).
Informally, T -interval connectivity requires that, for every T consecutive graphs
in G, there exists a common connected spanning subgraph. In [12], we proposed
a high-level algorithm for finding the largest T such that a given sequence G is
T -interval connected. We also addressed the related decision problem of testing if
G is T -interval connected for given T . The approach in [12] focuses on high-level
strategies in which the graphs in the sequence are considered to be atomic ele-
ments and the algorithm only uses two high-level operations on these elements:
the intersection of two graphs, and testing if a given graph is connected. We
showed that both the maximization and decision versions of the problem can
be solved using only a linear number (in the length δ of the sequence) of such
operations. The technique is based on a walk in a hierarchy, the elements of
which are graphs that represent the intersections of various subsequences of G.

1.1 Contributions

In this paper, we show that the high-level logic of the algorithm from [12] is
actually quite general and can be used to compute a number of parameters in
addition to T -interval connectivity by replacing the intersection and connectivity
test operations by other operations. We begin by abstracting the two operations
into a composition operation, which defines the hierarchy of elements in which
the walk is performed, and a test operation, which determines the choices made
by the walk. We investigate both the maximization and minimization of graph
parameters and illustrate our framework with four instantiations of the oper-
ations: one solves a maximization problem (T -interval connectivity) and three
instantiations solve the following minimization problems concerning temporal
properties of recognized importance.

First, we consider the class of dynamic graphs with time-bounded reappear-
ance of edges. A graph has time-bounded edge reappearance with bound b if the
time between two appearances of the same edge in the graph G is at most b. This
property, together with the knowledge of n (the number of nodes) and b, allows
the feasibility of shortest broadcast with termination detection [9]. We consider
the problem Bounded-Realization-of-the-Footprint of finding the small-
est bound b such that G has time-bounded edge reappearance, i.e. the smallest
b such that every edge that appears in the sequence G appears at least once in
every subsequence of length b of G.

Then, we look at the class of dynamic graphs with temporal connectivity
where a journey (temporal path) exists from any node to all other nodes. In this
class of graphs, any node can perform a broadcast to all other nodes and can col-
lect information from all the other nodes. The concept of temporal connectivity
is relatively old and dates back at least to the article [2]. We consider the mini-
mization problem Temporal-Diameter of finding the temporal diameter of a

324 A. Casteigts et al.

given dynamic graph G, i.e. the smallest duration in which there exist journeys
(temporal paths) from any node to all other nodes.

Finally, we are interested in the class of dynamic graphs with round-trip tem-
poral connectivity meaning that a back-and-forth journey exists from any node
to all other nodes. This class characterizes an important property of distributed
solutions for information collection problems that require termination detec-
tion [11]. We investigate the problem Round-Trip-Temporal-Diameter of
computing the round trip diameter of a given graph G, i.e. the smallest duration
in which there exist back-and-forth journeys from any node to all other nodes.

2 Definitions and Observations

Let G be a graph sequence {G1, G2, ..., Gδ} such that Gi = (V,Ei) represents the
network topology at time i. Note that V does not vary; only the edges change.
We assume that the changes between two consecutive graphs in the sequence are
arbitrary. Let P be a boolean predicate (hereafter called property) defined on a
consecutive subsequence {Gi, Gi+1, ..., Gj} ⊆ G.

Definition 1. The minimization problem on G with respect to P is the problem
of finding the smallest k such that ∀i ∈ [1, δ − k + 1], {Gi, Gi+1, ..., Gi+k−1} has
property P (in other words, any subsequence of G of length k satisfies P).

Definition 2. The maximization problem on G with respect to P is the problem
of finding the largest k such that ∀i ∈ [1, δ − k + 1], {Gi, Gi+1, ..., Gi+k−1} has
property P .

We present here a general strategy for minimization and maximization prob-
lems that relies on a composition hierarchy of elements which is computed on
demand using a composition operation.

Definition 3 (Composition hierarchy and test operation). An element
G(i,j) : i ≤ j of a composition hierarchy is a graph from which one can deter-
mine whether the sequence {Gi, Gi+1, ..., Gj} satisfies a predicate P using a test
operation which maps any element into {true, false}: test(G(i,j)) = true iff the
sequence {Gi, Gi+1, ..., Gj} satisfies P . The initial Gi’s are not elements of the
hierarchy themselves, but all G(i,i)’s are.

A hierarchy of elements consists of rows denoted G1,G2, . . . ,Gδ where Gk =
{G(1,k), G(2,k+1), . . . , G(δ−k+1,δ)}. We use Gk[i] to denote the i th element of row
Gk, that is the element G(i,i+k−1). The first row G1 of the hierarchy corresponds
to the graphs of the sequence G (or to simple transformations of these graphs);
that is, G(i,i) corresponds to Gi. An example of a hierarchy in which elements
are intersection graphs is shown in Fig. 1.

Definition 4 (Composition operation). A composition operation ◦ is a
binary operation that maps two elements of the hierarchy into another ele-
ment: G(i,j) ◦ G(i′,j′) = S where S is the element that relates to the sequence
{Gi, Gi+1, ..., Gj , Gi′ , Gi′+1, ..., Gj′}.

Computing Parameters of Sequence-Based Dynamic Graphs 325

G1

G2

G3

G4

G(1,1) G(2,2) G(3,3) G(4,4) G(5,5) G(6,6) G(7,7) G(8,8)

G(1,2) G(2,3) G(3,4) G(4,5) G(5,6) G(6,7) G(7,8)

G(1,3) G(2,4) G(3,5) G(4,6) G(5,7) G(6,8)

G(1,4) G(2,5) G(3,6) G(4,7) G(5,8)

Fig. 1. Example of partial hierarchy with intersection graphs as elements.

Observation 1. A minimization (resp. maximization) problem amounts to
finding the lowest (highest) row Gk in which all elements {G(1,k), G(2,k+1), . . . ,
G(δ−k+1,δ)} satisfy the test.

The general framework that we propose makes it possible to solve mini-
mization or maximization problems by focusing only on the composition and
test operations, while the high-level logic of the algorithm remains the same.
More precisely, there is one high-level algorithm for minimization problems, and
another for maximization problems.

Observation 2 (Requirements). For a minimization or a maximization
problem relative to some property P to be solvable within our framework, the
following conditions must hold on the composition operation ◦ and the test oper-
ation test:

(1) test(G(i,j)) = true ⇔ {Gi, Gi+1, . . . , Gj−1, Gj} satisfies P ;
(2) The composition operation ◦ is associative, that is

(G(i,j) ◦ G(i′,j′)) ◦ G(i′′,j′′) = G(i,j) ◦ (G(i′,j′) ◦ G(i′′,j′′)).

Only for maximization problems:

(3’) If test(G(i,j)) = true then test(G(i′,j′)) = true
for all i′ ≥ i and j′ ≤ j.

Only for minimization problems:

(3”) If test(G(i,j)) = true then test(G(i′,j′)) = true
for all i′ ≤ i and j′ ≥ j.

3 Generic Algorithm

We propose a strategy based on the generic composition and test operations
defined above. The algorithm is then instantiated in Sect. 4 to solve three spe-
cific minimization problems and one maximization problem by plugging in the
appropriate operations. The strategy relies on the concept of ladder. Informally,
a ladder is a sequence of elements that “climbs” the composition hierarchy
bottom-up.

326 A. Casteigts et al.

× ×× ××

(a)

G1

G2

..
.

××
× ×× ××

(b)

Fig. 2. Example of execution of the algorithm in (a) the maximization case (b) the
minimization case.

Definition 5. The right ladder of length l at index i, denoted by Rl[i], is the
sequence of elements {Gk[i], k = 1, 2, . . . , l}. The left ladder of length l at index
i, denoted by Ll[i], is the sequence {Gk[i − k + 1], k = 1, 2, . . . , l}.
Lemma 1 [12]. A ladder of length l can be computed using l − 1 binary com-
positions by computing each element as the composition of the preceding element
in the ladder and an element in G1.

Lemma 2 [12]. Given a left ladder of length l� at index i� and a right ladder
of length lr at index ir = i� +1. For any pair (i, k) such that ir − l� ≤ i < ir and
ir − i < k ≤ ir − i + lr, Gk[i] can be computed by a single composition operation,
namely Gk[i] = Gir−i[i] ◦ Gk−ir+i[ir].

(i,k)

(i,ir−i)

(ir,k−ir+i)

ir

Informally, the constraints ir −l� ≤ i < ir and ir −i <
k ≤ ir −i+ lr in Lemma 2 define a rectangle delimited
by two ladders and two lines that are parallel to the
two ladders as shown in the figure to the right. The
pairs (i, k) defined by the constraints, shown in light
grey in the figure, include all pairs that are strictly
inside the rectangle, and all pairs on the parallel lines,
but pairs on the two ladders are excluded.

3.1 Informal Description of the Algorithm

We describe the algorithm with reference to Fig. 2a and b that respectively show
examples of executions in the maximization case and the minimization case (see
Algorithm 1 for details).

The algorithm takes as input a boolean problem type problem ∈ {min,max},
a dynamic graph G, a composition operation ◦, and a test operation test. It
starts by computing the first element G1[1] and then traverses the hierarchy from
left to right by computing a new adjacent element at each step: the next element
in the same row, or the element with the same index in the row above, or the
next element in the row below, depending on problem and the result of the test
operation on the current element. We will call this traversal process a walk.

Computing Parameters of Sequence-Based Dynamic Graphs 327

In the maximization case, the walk starts at the element G1[1] and builds
a right ladder incrementally until the test is negative (first loop, lines 3 ff. of
Algorithm 1). If Gδ[1] is reached and test(Gδ[1]) = true, then the execution
terminates returning δ. Otherwise, suppose that test(Gk+1[1]) = false for some
k. Then k is an upper bound on the maximization parameter of G and the walk
drops down a level to Gk[2] which is the next element in row k that needs to
be tested. The walk proceeds rightward on row k by computing at each step a
new element in the row while the test is true. However, every time the test is
negative, the walk drops down by one row. If the walk eventually reaches the
rightmost element Gk[δ − k + 1] of some row k and test(Gk[δ − k + 1]) = true,
then the algorithm terminates returning k. Otherwise the walk will terminate
at an element G1[i] that does not satisfy the test. In this case, the algorithm
returns 0 indicating that the dynamic graph G does not have the property.

In the minimization case, the walk goes up in the composition hierarchy if
the test is negative, otherwise it moves forward in the same row. If the walk hits
the right side of the hierarchy and the last visited element Gk[δ−k+1] in the row
Gk satisfies the test operation, then it terminates and returns k. Otherwise, it
terminates returning k+1 (Observation 2, requirement (3”)). If the walk reaches
G1[δ] and the test is negative, then the algorithm outputs 0 indicating that the
dynamic graph G does not have the property.

Computing elements of the hierarchy (function compute()). The elements
resulting from the walk (red/dark elements) are computed based on ladders
(intermediate elements, in grey in Fig. 2a and b) as follows. When the walk moves
one step forward in the same row, the next element is computed from a right
ladder and a left ladder (e.g. G4[6] = G2[6] ◦ G2[8] in Fig. 2b) or from the ladder
to which it belongs and an adjacent bottom element (e.g. G5[9] = G1[9] ◦ G4[10]
in Fig. 2b). Intermediate elements i.e. ladders (in grey in Fig. 2a and b) are
computed, according to Lemma 1, by incrementally composing an element G(i,j)

with the adjacent bottom element G(i−1,i−1) (left ladder) or G(j+1,j+1) (right
ladder), providing useful shortcuts in the construction. Suppose that Gk[i] is
the first element to be computed where no element Gk′

[i] with k′ < k has been
computed. The first ladder built is Lk[k + i − 1] of length k ending at Gk[i]
(G7[2] in Fig. 2a, G4[4] in Fig. 2b). Differently from left ladders, right ladders are
constructed gradually as the walk proceeds. Each time that the walk moves right
to a new index, the current right ladder is incremented (a new element is added
to the ladder) and the new top element of this right ladder is used immediately
to compute the element at the current index in the walk (using Lemma 2). This
continues until the walk crosses the current right ladder, on an element Gk[i]
(G6[8] in Fig. 2b), at which time a left ladder Lk[k + i − 1] is built to compute
Gk[i] and to be used to compute the next elements on the walk.

This generic algorithm has the following property which is crucial for the
correctness of two of the problems described in Sect. 4.

328 A. Casteigts et al.

Input: problem ∈ {min, max}, G, composition operation ◦, test operation test

1 i ← 1 // current index in the row
2 k ← 1 // current row

3 if problem = max then

4 compute(Gk[i])

5 while test(Gk[i]) do
6 if k = δ then
7 return k
8 else

9 k + +; compute(Gk[i])

10 k − −; i + +

11 while 1 ≤ k ≤ δ do

12 compute(Gk[i])

13 if test(Gk[i]) then
14 if i = δ − k + 1 then
15 return k
16 else
17 i + +

18 else
19 switch problem do
20 case max do
21 k − −; i + +
22 case min do
23 if i = δ − k + 1 then
24 return k + 1
25 else
26 k + +

27 return 0

Algorithm 1. Generic algorithm for minimization and maximization prob-
lems

Lemma 3 (Disjoint sequences property). If the algorithm performs a
composition of two elements G(i,j) and G(i′,j′), then the corresponding sequences
{Gi, Gi+1, . . . , Gj} and {G′

i, Gi′+1, . . . , Gj′} are disjoint and consecutive. That
is, in any execution, G(i,j′) = G(i,j) ◦ G(i′,j′) ⇒ j = i′ − 1.

Proof. According to the algorithm, each element of the composition hierarchy
is computed from: (1) two elements of two different ladders, a left one and a
right one, or (2) an element of a ladder and an element in the first row. In both
cases the two sequences covered by the two elements used in the computation are
disjoint and consecutive, so in any execution, G(i,j′) = G(i,j)◦G(i′,j′) ⇒ j = i′−1.

�

Computing Parameters of Sequence-Based Dynamic Graphs 329

Gk

Fig. 3. Example of the execution of the algorithm for the decision variant.

Lemma 4. Let Gk[δ−k+1] be the last visited element at the termination of the
algorithm. If test(Gk[δ − k + 1]) = true , then ∀i ∈ [1, δ − k], test(Gk[i]) = true
(all elements in the row Gk).

Proof. According to the algorithm, for any element G(i,j) above (below) the
walk in the minimization (maximization) case, there exists a computed element
G(i′,j′) in the walk such that i′ ≤ i ∧ j′ ≥ j (i′ ≥ i ∧ j′ ≤ j) and test(G(i′,j′)) =
true. According to Observation 2 (requirements (3’) and (3”)), any element
above (below) the walk in the minimization (maximization) case satisfies the
test operation.
�

Decision variant. The algorithm for the decision variant of each problem (i.e.
for a given k, answer true if any sequence of length k in the dynamic graph G
has the property P , answer false otherwise) can be deduced readily from the
algorithm for the minimization/maximization variant. The algorithm gradually
computes elements of row k from left to right, starting at Gk[1], as shown in Fig. 3.
If an element that does not satisfy the test operation is found, the algorithm
returns false and terminates. If the algorithm reaches the last element in the
row, i.e. Gk[δ − k + 1], and it satisfies the test operation, then it returns true.
The elements Gk[1],Gk[2], . . . ,Gk[δ − k + 1] are computed based on ladders.

Theorem 1. The generic algorithm has a cost of O(δ) composition and test
operations.

Proof. The ranges of the indices covered by the left ladders that are constructed
by the process are disjoint, so their total length is O(δ). With the computation
of each new element in a right ladder, the walk moves closer to the right side of
the hierarchy, so the total length of the right ladders is also O(δ). According to
Lemma 2, any element can be computed using a single composition operation
based on ladders. According to the algorithm, the number of elements computed
by the walk is O(δ) and any computed element is tested at most once. This
establishes that this algorithm has a cost of O(δ) composition operations and
test operations.
�

Online version. The generic algorithm can be adapted to an online setting in
which the sequence of graphs G1, G2, G3, . . . of a dynamic graph G is processed in
the order that the graphs are received. For the decision problem, the algorithm

330 A. Casteigts et al.

cannot provide an answer until at least k graphs have been received. When
the kth graph is received, the algorithm builds the first left ladder using k − 1
compositions. It can then perform a test and answer whether or not the sequence
has the property so far. After this initial period, a test can be performed for
the k most recently received graphs (by performing a test on the corresponding
element in row T) after the receipt of each new graph. The same logic is followed
for minimization and maximization problems.

Theorem 2. The online generic algorithm has an amortized cost of O(1) com-
position and test operations per graph received.

Proof. At no time during the execution of the algorithm does the number of com-
positions performed to build left ladders exceed the number of graphs received
and the same is true for right ladders. The number of elements on the walk that
are not on ladders never exceeds the number of graphs received, and each can
be computed with one composition by Lemma 2. Only elements on the walk are
tested. In summary, the amortized cost is O(1) composition and test operations
for each graph received.
�

4 Illustration of the Framework

We illustrate the general framework by solving one maximization prob-
lem: Interval-Connectivity and three minimization problems: Bounded-
Realization-of-the-Footprint, Temporal-Diameter, and Round-Trip-
Temporal-Diameter. We define each problem within the framework and pro-
vide the corresponding operations for composition and test.

4.1 T -Interval Connectivity (Maximization)

A dynamic graph G is said to be T -interval connected if for any t ∈ [1, δ −
T + 1] all graphs in {Gt, Gt+1, ..., Gt+T−1} share a common connected spanning
subgraph. We consider the problem Interval-Connectivity of finding the
smallest duration T for which the dynamic graph G is T -interval connected.

Composition and test operations. By using the intersection of two elements
as the composition operation (starting with {G(i,i)} = {Gi}), a hierarchy of
intersection graphs (Fig. 1) as elements can be used to solve Interval-Con-
nectivity which is the problem of finding the highest row GT in which every
element GT [i], i ∈ [1, δ − T + 1], is connected. So, the composition operation is
intersection and the test operation is connectivity test.

Observation 3 (Cost of the operations). Using an adjacency list data
structure, the binary intersection of two elements G(i,j) and G(i′,j′) can be com-
puted in time O(min(|E(G(i,j))|, |E(G(i′,j′))|)). Testing connectivity of an undi-
rected graph can also be done in time O(|E(G(i,j))|) by building a depth-first
search tree from an arbitrary node to test whether all nodes are reachable.

Computing Parameters of Sequence-Based Dynamic Graphs 331

4.2 Bounded Realization of the Footprint (Minimization)

The footprint G of a dynamic graph G is the graph that contains all the edges
that appear at least once, that is ∪{G1, G2, ..., Gδ}. We consider the problem of
finding the smallest duration b such that in any window of length b, all edges
of G appear at least once (Bounded-Realization-of-the-Footprint). The
problem then amounts to finding the lowest row Gb in which every element Gb[i],
i ∈ [1, δ − b + 1], equals the footprint G.

Composition and test operations. Finding these operations is straightfor-
ward. By taking the union of two elements as the composition operation (starting
with G(i,i) = Gi), it follows that the lowest row Gb such that all elements equal
the footprint indicates, by definition, that the answer is b. So, the composition
operation is union and the test operation is equality to footprint.

Observation 4 (Cost of the operations). Using an adjacency matrix repre-
sentation, the union operation and the equality test can be performed in O(|V |2)
time.

4.3 Temporal Diameter (Minimization)

A dynamic graph might never be connected at one time, and yet offer a form of
connectivity over time based on journeys (temporal paths). Informally, a journey
is a path whose edges are crossed at non-decreasing (or increasing) times, with
possible pauses at intermediate nodes. The edges need not be all present simul-
taneously. If at most one edge can be crossed at a time (i.e. the crossing times
are strictly increasing), then we refer to the journey as being strict. Formally,
journeys can be defined in various ways, depending on the graph formalism used.
In sequence-based models like evolving graphs, it is defined as follows.

Definition 6 (Journey). A journey J from u to v in G is a sequence of edges
e1, e2, . . . , ep connecting u to v through intermediate vertices and a correspond-
ing sequence of non-decreasing indices t1, t2, . . . , tp such that ei ∈ E(Gti). In
a strict journey, the sequence t1, t2, . . . , tp is strictly increasing. The existence
of a journey from u to v is denoted u � v. We note departure(J) = t1 and
arrival(J) = tp.

The distinction between strict and non-strict journeys actually boils down to
deciding if the latency of communication is neglected or not. In either case, one
can define the concept of temporal diameter (at time t) as the smallest d such
that for all nodes u and v, there exists a journey from u to v in the sequence
{Gt, Gt+1, ..., Gt+d−1}. We consider here the problem Temporal-Diameter of
finding the smallest d such that the temporal diameter of G is less than or equal
to d at every time t ≤ δ − d + 1. In other words, any subsequence of G of length
d is temporally connected. Several solutions exist for this and similar problems
(see e.g. [24]), which operate at a lower level of abstraction. Here, we show how
the problem fits elegantly within our proposed framework. More specifically,
we consider the case of non-strict journeys, which is slightly more difficult and
contains as a subproblem the case of strict journeys.

332 A. Casteigts et al.

G1 = {G∗
i }

G

G2

G3

G4

G1 G2 G3 G4 G5 G6 G7 G8

G(1,1) G(2,2) G(3,3) G(4,4) G(5,5) G(6,6) G(7,7) G(8,8)

G(1,2) G(2,3) G(3,4) G(4,5) G(5,6) G(6,7) G(7,8)

G(1,3) G(2,4) G(3,5) G(4,6) G(5,7) G(6,8)

G(1,4) G(2,5) G(3,6) G(4,7) G(5,8)

Fig. 4. Example of a transitive closure hierarchy for a given dynamic graph G of length
δ = 8.

cat

G(i,j) G(i′,j′)

=

G(i,j) ∪ G(i′,j′)

∪
G(i,j)→(i′,j′)

=

Fig. 5. Example of concatenation of transitive closures. Edges in G(i, j) → (i′, j′) are
added after the union.

Definition 7 (Transitive closure). The transitive closure of the dynamic
graph G is the static directed graph G∗ = (V,E∗) such that (u, v) ∈ E∗ ⇔ u � v.

The composition hierarchy built here is one of transitive closures of journeys.
Figure 4 shows an example. For this problem, each bottom element G(i,i) is not
equal to Gi; instead, it corresponds to the “classical” transitive closure of Gi,
i.e. the graph G∗

i built on the same vertex set as Gi, such that an edge exists
between u and v in G∗

i if and only if a path exists between u and v in Gi (the
G(i,i)’s are computed gradually as the algorithm progresses). Then, the answer is
the smallest d such that every element in row Gd of the hierarchy is a complete
graph (i.e. every subsequence of G of length d is temporally connected).

Composition and test operations. The composition hierarchy is built using
concatenation of transitive closures, cat(G(i,j), G(i′,j′)), with the restriction that
i′ = j + 1 (Lemma 3), defined as follows. First compute the union of both
elements, then add an additional edge (u, v) if there exists a node w such that
(u,w) ∈ E(G(i,j)) and (w, v) ∈ E(G(i′,j′)). See Fig. 5 for an example. Then, the
test operation consists of determining if an element of the hierarchy (transitive
closure) is a complete graph.

Observation 5 (Cost of the operations). The union of two transitive clo-
sures G(i,j) and G(i′,j′) can be computed in time O(max(|E(G(i,j))|, |E(G(i′,j′))|))

Computing Parameters of Sequence-Based Dynamic Graphs 333

using an adjacency list data structure. The cost of the concatenation oper-
ation is dominated by the computation of the additional edges which costs
O(|E(G(i′,j′))| · |V |). The completeness test of a transitive closure G(i,j) can
be done in constant time by checking |E(G(i,j))| which is maintained during the
construction of the transitive closure graph.

4.4 Round-Trip Temporal Diameter (Minimization)

We address here the more complex property of round-trip temporal connectivity
defined by the existence of a back-and-forth journey from any node to all other
nodes. The round-trip temporal diameter of a graph G at time t is the smallest d
such that, in the sequence {Gt, Gt+1, ..., Gt+d−1}, there is a journey J (u, v) from
any node u in the graph to any other node v and a journey J ′(v, u) from v to
u which starts after the arrival of the journey J (u, v). This does not mean that
there is simply a succession of two temporally connected sequences. A back-and-
forth journey from a node u to a node v can finish before a back-and-forth journey
from a node u′ to a node v′ starts. Also, the time intervals of the two back-and-
forth journeys can overlap. We consider the problem Round-Trip-Temporal-
Diameter of finding the smallest d such that the round-trip temporal diameter
of G is less than or equal to d at any time t ≤ δ − d + 1. For this problem, we
consider the case of non-strict journeys.

Definition 8 (Round trip transitive closure). A round trip transitive clo-
sure G(i,j) is the directed graph where (u, v) ∈ G(i,j) iff at least one journey
u � v exists in the sequence {Gi, Gi+1, ..., Gj}. The edges {(u, v) ∈ E(G(i,j))}
are labelled with two times: arrival(u, v,G(i,j)) is the earliest arrival of any jour-
ney in the sequence and departure(u, v,G(i,j)) is the latest departure of any jour-
ney in the sequence. Labels on the same edge may or may not be the departure
and arrival times of the same journey. Note that departure(u, v,G(i,i)) = i and
arrival(u, v,G(i,i)) = i.

The composition hierarchy built for this problem is one of round trip tran-
sitive closures of journeys. Figure 6 shows an example of a round trip transitive
closure hierarchy of a dynamic graph G of length δ = 3. Labels arr and dep

on an edge u
arr,dep−−−−−−−−−−→ v (label on the destination/head end) represent

respectively arrival(u, v,G(i,j)) and departure(u, v,G(i,j)). As for Temporal-
Diameter, each bottom element G(i,i) corresponds to the “classical” transitive
closure of Gi, i.e. the graph G∗

i built on the same vertex set as Gi, such that an
edge exists between u and v in G∗

i if and only if a path exists between u and v in
Gi. The labels of the edges are initialized with “i, i”, which corresponds to the
arrival and departure times of the corresponding journey(s). Then, the answer is
the smallest d such that every element in row Gd is a complete graph (i.e. every
subsequence of G of length d is round-trip temporally connected).

Composition operation. The composition operation in this case is the concate-
nation of round trip transitive closures rtcat(G(i,j), G(i′,j′)) with the restriction

334 A. Casteigts et al.

G

G1

G2

G3

G1 G2 G3

G(1,1)

1, 1

1, 1

1
,
1

1,
1

1, 1

1
,
1

G(2,2)

2
,
2

2, 2
2
,
2

2,
2

2, 2

2, 2

2
,
2

2,
2

2, 2

G(3,3)
3
,
3

3,
3

3, 3

3
,
3

3, 3

3, 3

G(1,2)

2, 2
1, 2

1
,
2

2,
2

1,
2

2, 2
1
,
1

2
,
2

1, 1

1, 1

2
,
2 2, 2

G(2,3)

2, 2
2, 3

2
,
3

2,
2

2,
3

2, 2

2
,
3

3, 3

3, 3

2
,
2 2, 2

G(1,3)

2, 2
1, 3

1
,
3

2,
2

1,
3

2, 2

1
,
2

2
,
3

1, 3

1, 3

2
,
2 2, 2

Fig. 6. Example of a round trip transitive closure hierarchy of a dynamic graph G of
length δ = 3. (Arrival and departure times are on the head ends of the arrows.)

that i′ = j + 1 (Lemma 3). A composition is computed as follows. First, com-
pute the graph G∪� = G(i,j) ∪� G(i′,j′) which is the union graph G(i,j) ∪ G(i′,j′)
with arrival(u, v,G∪�) = min(arrival(u, v,G(i,j)), arrival(u, v,G(i′,j′))) and
departure(u, v,G∪�) = max(departure(u, v,G(i,j)), departure(u, v,G(i′,j′)) if
(u, v) ∈ G(i,j) ∩ G(i′,j′). Otherwise, the edge is added with the initial arrival
and departure times. A graph of extra edges G(i,j)→(i′,j′) is then computed
as follows: (u, v) ∈ G(i,j)→(i′,j′) iff there exists a non-empty set of nodes
extra = {w : (u,w) ∈ E(G(i,j)) and (w, v) ∈ E(G(i′,j′))}. The labels on an extra
edge are arrival(u, v,G(i,j)→(i′,j′)) = minw∈extra{arrival(w, v,G(i′,j′))} and
departure(u, v,G(i,j)→(i′,j′)) = maxw∈extra{departure(u,w,G(i,j))}. Finally,
the round trip transitive closure rtcat(G(i,j), G(i′,j′)) = G∪� ∪� G(i,j)→(i′,j′)
(see Fig. 7).

Computing Parameters of Sequence-Based Dynamic Graphs 335

rtcat

G(1,5)

3,
5

2
,
4

2, 4

G(6,7)

7, 6

7,
7 6,

7

6, 6

6
,
7

7
,
7

=

G(1,5) ∪� G(6,7)

7, 6
2, 4

7,
7 3,

7

6, 6

2
,
7

7
,
7

∪�

G(1,5)→(6,7)

6,
4

6, 5

6, 4

7
,
4

7
,
5

=

G(1,7)

7, 6
2, 4

6,
7

3,
7

2
,
7

7
,
7

6, 6
6, 5

6, 4
7
,
4

7
,
5

Fig. 7. Example of round trip transitive closures concatenation. (Arrival and departure
times are on the head ends of the arrows.)

Test operation. The test operation used for this problem is the round trip com-
pleteness test, that is, test if the graph is complete and if arrival(u, v,G(i,j)) ≤
departure(v, u,G(i,j)) for every edge (u, v) in the graph.

Observation 6 (Cost of the operations). As for the concatenation opera-
tion for Temporal-Diameter, the concatenation of two round trip transitive
closures G(i,j) and G(i′,j′) can be computed in time O(|E(G(i′,j′))| · |V |). The
completeness test can be done in time O(|E(G(i,j))|) by verifying the condition
on the times for each pair of edges (u, v), (v, u).

4.5 Parallel Version

We define a subset of particular minimization and maximization problems that
we call symmetric problems as follows.

Definition 9 (Symmetric problems). A minimization or maximization
problem is symmetric if it can be solved using a composition hierarchy of ele-
ments and a composition operation ◦ such that G(i,j) ◦ G(i′,j′) = G(i,j′) for all
1 ≤ i ≤ i′ ≤ j ≤ j′ ≤ δ.

Bounded-Realization-of-the-Footprint and T -Interval-Connecti-
vity are examples of symmetric problems. We now present a strategy for sym-
metric problems that can be parallelized on a PRAM. We first describe the
algorithms for a sequential machine (RAM). The general strategy is to compute
only some of the rows of the composition hierarchy based on the following lemma.
The proofs of Lemmas 5 and 6 are straightforward generaliztions of proofs in [12].

Lemma 5. If some row Gk is already computed, then any row G� for k + 1 ≤
� ≤ 2k can be computed with O(δ) composition and test operations.

Decision variant. Using Lemma 5, for a given k, we can incrementally compute
rows G2i (“power rows”) for all i from 1 to �log2 k� − 1 without computing the
intermediate rows. Then, we compute row Gk directly from row G2�log2 k�−1

(again
using Lemma 5). This way, we compute �log2 k� = O(log δ) rows using O(δ log δ)
composition operations, after which we perform O(δ) tests.

336 A. Casteigts et al.

×

×
k

×
×

×
× k

Fig. 8. Examples of the execution of the parallel version of the algorithm; maximization
case on the left and minimization case on the right.

Minimization and maximization variants. For the maximization case, we
incrementally compute rows G2i until we find a row that contains an element
that does not satisfy the test operation (thus, a test is performed after each
composition). By Lemma 5, each of these rows can be computed using O(δ)
compositions. Suppose that row G2j+1

is the first power row that contains an
element that does not satisfy the test, and that G2j is the row computed before
G2j+1

. Next, we do a binary search among the rows between G2j and G2j+1
to

find the highest row Gk such that all elements on this row satisfy the test. See
Fig. 8 (left) for an illustration of the algorithm. The computation of each of these
rows is based on row G2j and uses O(δ) compositions by Lemma 5. Overall, we
compute at most 2�log2 k� = O(log δ) rows using O(δ log δ) compositions and
the same number of tests.

For the minimization case, we follow the same principle. This time, we incre-
mentally compute rows G2i while each row contains an element that does not
satisfy the test. Suppose that row G2j+1

is the first power row such that all ele-
ments on this row satisfy the test. Then, we do a binary search among the rows
between G2j and G2j+1

to find the lowest row Gk such that all elements on this
row satisfy the test. See Fig. 8 (right) for an illustration of the algorithm.

Lemma 6. If some row Gk is already computed, then any row between Gk+1 and
G2k can be computed in O(1) time on an EREW PRAM with O(δ) fprocessors.

Parallel version for the decision problems on an EREW PRAM. The
sequential algorithm for this problem computes O(log δ) rows. By Lemma 6,
each of these rows can be computed in O(1) time on an EREW PRAM with
O(δ) processors. Therefore, all of the rows (and hence all necessary composi-
tions) can be computed in O(log δ) time with O(δ) processors. The O(δ) tests
for row Gk can be done in O(1) time with O(δ) processors. Then, the processors
can establish whether or not all elements in row Gk satisfy the test operation by
computing the logical AND of the results of the O(δ) tests in time O(log δ) on

Computing Parameters of Sequence-Based Dynamic Graphs 337

a EREW PRAM with O(δ) processors using standard techniques (see [16,19]).
The total time is O(log δ) on an EREW PRAM with O(δ) processors.

Parallel version for maximization and minimization problems on an
EREW PRAM. The sequential algorithm for this problem computes O(log δ)
rows. Differently from the decision version, a test is done for each of the computed
elements (rather than just those of the last row) and it has to be determined for
each computed row whether or not all of the elements satisfy the test. This takes
O(log δ) time for each of the O(log δ) computed rows using the same techniques
as for the decision version. The total time is O(log2 δ) on an EREW PRAM with
O(δ) processors.

5 Conclusions

In this paper, we generalized the framework and the algorithm for Interval-
Connectivity [12] to solve other problems on dynamic graphs. We studied the
minimization problems of finding the temporal diameter and the round trip tem-
poral diameter of a given dynamic graph G = {G1, G2, ..., Gδ}, and the problem
of finding a bound on the footprint realization of G. We proposed algorithms for
these problems within the same framework.

In our study, we focused on algorithms using only two elementary operations,
composition and test operations. This approach is suitable for a high-level study
of these problems when the details of changes between successive graphs in a
sequence are arbitrary. If the evolution of the dynamic graph is constrained in
some ways (e.g., bounded number of changes between graphs), then one could
benefit from the use of more sophisticated data structures to reduce the com-
plexity of the algorithms.

A natural extension of our investigation would be a similar study for other
classes and properties of dynamic networks, as identified in [11].

References

1. Aaron, E., Krizanc, D., Meyerson, E.: DMVP: foremost waypoint coverage of time-
varying graphs. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp.
29–41. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12340-0 3

2. Awerbuch, B., Even, S.: Efficient and reliable broadcast is achievable in an even-
tually connected network. In: Proceedings of the Third Annual ACM Symposium
on Principles of Distributed Computing (PODC), pp. 278–281. ACM (1984)

3. Barjon, M., Casteigts, A., Chaumette, S., Johnen, C., Neggaz, Y.M.: Testing tem-
poral connectivity in sparse dynamic graphs. CoRR abs/1404.7634 (2014). (A
French version appeared in Proceedings of ALGOTEL 2014)

4. Bournat, M., Datta, A.K., Dubois, S.: Self-stabilizing robots in highly dynamic
environments. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083,
pp. 54–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9 5

https://doi.org/10.1007/978-3-319-12340-0_3
https://doi.org/10.1007/978-3-319-49259-9_5

338 A. Casteigts et al.

5. Bramas, Q., Tixeuil, S.: The complexity of data aggregation in static and dynamic
wireless sensor networks. Inf. Comput. 255, 369–383 (2017)

6. Braud-Santoni, N., Dubois, S., Kaaouachi, M.H., Petit, F.: The next 700 impossi-
bility results in time-varying graphs. Int. J. Netw. Comput. 6(1), 27–41 (2016)

7. Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. of Found. Comput. Sci. 14(2), 267–285 (2003)

8. Casteigts, A., Chaumette, S., Ferreira, A.: Characterizing topological assump-
tions of distributed algorithms in dynamic networks. In: Kutten, S., Žerovnik,
J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 126–140. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-11476-2 11. Full version in CoRR,
abs/1102.5529

9. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Measuring temporal lags in
delay-tolerant networks. IEEE Trans. Comput. 63(2), 397–410 (2014)

10. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Shortest, fastest, and foremost
broadcast in dynamic networks. Int. J. Found. Comput. Sci. 26(4), 499–522 (2015)

11. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel, Emergent Distrib. Syst. 27(5), 387–408
(2012)

12. Casteigts, A., Klasing, R., Neggaz, Y.M., Peters, J.G.: Efficiently testing T -interval
connectivity in dynamic graphs. In: Paschos, V.T., Widmayer, P. (eds.) CIAC
2015. LNCS, vol. 9079, pp. 89–100. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-18173-8 6

13. Casteigts, A., Klasing, R., Neggaz, Y.M., Peters, J.G.: Calcul de Paramètres Min-
imaux dans les Graphes Dynamiques. In: 19èmes Rencontres Francophones sur les
Aspects Algorithmiques de Télécommunications (ALGOTEL) (2017)

14. Dubois, S., Kaaouachi, M.-H., Petit, F.: Enabling minimal dominating set in highly
dynamic distributed systems. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 51–66. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21741-3 4

15. Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks.
Theor. Comput. Sci. 469, 53–68 (2013)

16. Gibbons, A., Rytter, W.: Efficient Parallel Algorithms. Cambridge University
Press, Cambridge (1988)

17. Godard, E., Mazauric, D.: Computing the dynamic diameter of non-deterministic
dynamic networks is hard. In: Gao, J., Efrat, A., Fekete, S.P., Zhang, Y. (eds.)
ALGOSENSORS 2014. LNCS, vol. 8847, pp. 88–102. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46018-4 6

18. Jain, S., Fall, K., Patra, R.: Routing in a delay tolerant network. In: Proceedings
of SIGCOMM, pp. 145–158 (2004)

19. JáJá, J.: An Introduction to Parallel Algorithms. Addison-Wesley, Boston (1992)
20. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.

In: Proceedings of STOC, pp. 513–522. ACM (2010)
21. O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs.

In: Proceedings of DIALM-POMC, pp. 104–110. ACM (2005)
22. Raynal, M., Stainer, J., Cao, J., Wu, W.: A simple broadcast algorithm for recur-

rent dynamic systems. In: 2014 IEEE 28th International Conference on Advanced
Information Networking and Applications (AINA), pp. 933–939. IEEE (2014)

23. Viard, T., Latapy, M., Magnien, C.: Computing maximal cliques in link streams.
Theor. Comput. Sci. 609, 245–252 (2016)

24. Whitbeck, J., Dias de Amorim, M., Conan, V., Guillaume, J.L.: Temporal reach-
ability graphs. In: Proceedings of MOBICOM, pp. 377–388. ACM (2012)

https://doi.org/10.1007/978-3-642-11476-2_11
https://doi.org/10.1007/978-3-319-18173-8_6
https://doi.org/10.1007/978-3-319-18173-8_6
https://doi.org/10.1007/978-3-319-21741-3_4
https://doi.org/10.1007/978-3-319-21741-3_4
https://doi.org/10.1007/978-3-662-46018-4_6

Gathering in Dynamic Rings

Giuseppe Antonio Di Luna1(B), Paola Flocchini1, Linda Pagli2,
Giuseppe Prencipe2, Nicola Santoro3, and Giovanni Viglietta1

1 School of Electrical Engineering and Computer Science, University of Ottawa,
Ottawa, Canada

{gdiluna,flocchini,gvigliet}@uottawa.ca
2 Dipartimento di Informatica, University of Pisa, Pisa, Italy

{linda.pagli,giuseppe.prencipe}@unipi.it
3 School of Computer Science, Carleton University, Ottawa, Canada

santoro@scs.carleton.ca

Abstract. The gathering (or multi-agent rendezvous) problem requires a
set of mobile agents, arbitrarily positioned at different nodes of a network
to group within finite time at the same location, not fixed in advanced.

The extensive existing literature on this problem shares the same funda-
mental assumption: the topological structure does not change during the
rendezvous or the gathering; this is true also for those investigations that
consider faulty nodes. In other words, they only consider static graphs.

In this paper we start the investigation of gathering in dynamic graphs,
that is networks where the topology changes continuously and at unpre-
dictable locations.

We study the feasibility of gathering mobile agents, identical and with-
out explicit communication capabilities, in a dynamic ring of anony-
mous nodes; the class of dynamics we consider is the classic 1-interval-
connectivity. We focus on the impact that factors such as chirality (i.e., a
common sense of orientation) and cross detection (i.e., the ability to detect,
when traversing an edge, whether some agent is traversing it in the other
direction), have on the solvability of the problem; and we establish several
results.

We provide a complete characterization of the classes of initial config-
urations from which the gathering problem is solvable in presence and in
absence of cross detection and of chirality. The feasibility results of the
characterization are all constructive: we provide distributed algorithms
that allow the agents to gather within low polynomial time. In particular,
the protocols for gathering with cross detection are time optimal.

We also show that cross detection is a powerful computational element.
We prove that, without chirality, knowledge of the ring size is strictly more
powerful than knowledge of the number of agents; on the other hand, with
chirality, knowledge of n can be substituted by knowledge of k, yielding the
same classes of feasible initial configurations.

From our investigation it follows that, for the gathering problem, the
computational obstacles created by the dynamic nature of the ring can be
overcome by the presence of chirality or of cross-detection.

Keywords: Dynamic graphs · Agents · Gathering

c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 339–355, 2017.
https://doi.org/10.1007/978-3-319-72050-0_20

340 G. A. Di Luna et al.

1 Introduction

1.1 Background and Problem

The gathering problem requires a set of k mobile computational entities, dis-
persed at different locations in the spacial universe they inhabit, to group within
finite time at the same location, not fixed in advanced. This problem, known also
as multi-agent rendezvous, has been intesively and extensively studied in a vari-
ety of fields, including operations research (e.g., [1]) and control (e.g., [36]), the
original focus being on the rendezvous problem, i.e. the special case k = 2.

In distributed computing, this problem has been extensively studied both
in continuous and in discrete domains. In continuous domains, both gathering
and rendevous have been investigated in the context of swarms of autonomous
mobile robots operating in one- and two-dimensional spaces, requiring them to
meet at (or converge to) the same point (e.g., see [10,11,16,24,25,37]). In discrete
domains, the mobile entities, usually called agents, are dispersed in a network
modeled as a graph and are required to gather at the same node (or at the two
sides of the same edge) and terminate (e.g., see [2,17,18,21,22,29–32,40,41]).
The main obstacle for solving the problem is symmetry, which can occur at sev-
eral levels (topological structure, nodes, agents, communication), each playing
a key role in the difficulty of the problem and of its resolution. For example,
when the nodes are uniquely numbered, solving gathering is trivial. On the
other hand, when the nodes are anonymous, the network is highly symmetric,
the agents are identical, and there is no means of communication, the problem
is clearly impossible to solve by deterministic means. The quest has been for
minimal empowering assumptions which would make the problems determinis-
tically solvable. A very common assumption is for the agents to have distinct
identities; this enables different agents to execute different deterministic algo-
rithms (e.g., see [12,17,18,41]). An alternative type of assumption consists in
empowering the agents with some minimal form of explicit communication. In
one approach, this is achieved by having a whiteboard at each node giving the
agents the ability to leave notes in each node they travel (e.g., [2,9,21]). A less
explicit and more primitive form of communication is by endowing each agent
with a constant number of movable tokens, i.e. pebbles that can be placed on
nodes, picked up, and carried while moving (e.g., [13]). An assumption much
less demanding than agents having identities or explicit communication is that
of having the homebases (i.e., the nodes where the agents are initially located)
identifiable by an identical mark visible to any agent passing by it; originally
suggested in [3], it has been used and studied e.g., in [22,32,39]. Summarizing,
the existing literature on gathering and rendezvous is extensive and the variety
of assumptions and results is aboundant (for surveys see [31,38]). Regardless
of their differences, all these investigations, including those that consider faulty
nodes (e.g., see [6,9,21]), share the same fundamental assumption that the topo-
logical structure does not change during the rendezvous or the gathering. In other
words, they only consider static graphs.

Gathering in Dynamic Rings 341

Recently, within distributed computing, researchers started to investigate
dynamic graphs, that is graphs where the topological changes are not localized
and sporadic; rather, they occur continuously and at unpredictable locations,
and are integral part of the nature of the system [8,35]. The study of distributed
computations in dynamic graphs has concentrated on problems of information
diffusion, agreement, and exploration (e.g., [4,5,7,23,26–28,33,34]).

In this paper we start the investigation of gathering in dynamic graphs by
studying the feasibility of this problem in dynamic rings. Note that rendezvous
and gathering in a ring, the prototypical symmetric graph, have been intesively
studied in the static case (e.g., see the monograph on the subject [31]). The
presence, in the static case, of a mobile faulty agent that can block other agents,
considered in [14,15], could be seen as inducing a particular form of dynamics.
Other than that, nothing is known on gathering in dynamic rings.

1.2 Main Contributions

We study gathering of k agents, identical and without communication capabil-
ities, in a dynamic ring of n anonymous nodes with identically marked home-
bases. The class of dynamics we consider is the classic 1-interval-connectivity
(e.g., [19,26,28,33,34]); that is, the system is fully synchronous and under a
(possibly unfair) adversarial schedule that, at each round, chooses which edge
(if any) will be missing. In this setting, we investigate under what conditions the
gathering problem is solvable. In particular, we focus on the impact that factors
such as chirality (i.e., common sense of orientation) and cross detection (i.e., the
ability to detect, when traversing an edge, whether some agent is traversing it in
the other direction), have on the solvability of the problem. Since, as we prove,
gathering at a single node cannot be guaranteed in a dynamic ring, we allow
gathering to occur either at the same node, or at the two end nodes of the same
link.

A main result of our investigation is the complete characterization of
the classes F(X,Y) of initial configurations from which the gathering prob-
lem is solvable with respect to chirality (X ∈ {chirality,¬chirality})
and cross detection (Y ∈ {detection,¬detection}). In obtaining this char-
acterization, we establish several interesting results. For example, we show
that, without chirality, cross detection is a powerful computational ele-
ment; in fact, we prove (Theorems 1 and 5): F(¬chirality,¬detection) �

F(¬chirality, detection). Furthermore, in such systems knowledge of the
ring size n cannot be substituted by knowledge of the number of agents k (at
least one of n and k must be known for gathering to be possible); in fact, we
prove that, with cross detection but without chirality, knowledge of n is strictly
more powerful than knowledge of k. On the other hand, we show that, with
chirality, knowledge of n can be substituted by knowledge of k, yielding the
same classes of feasible initial configurations. Furthermore, with chirality, cross
detection is no longer a computational separator; in fact (Theorems 3 and 4)
F(chirality,¬detection) = F(chirality, detection). We also observe that
Fstatic = F(chirality, ∗) = F(¬chirality, detection) where Fstatic denotes

342 G. A. Di Luna et al.

the set of initial configurations from which gathering is possible in the static
case. In other words: with chirality or with cross detection, it is possible to over-
come the computational obstacles created by the highly dynamic nature of the
system. All the feasibility results of this characterization are constructive: for
each situation, we provide a distributed algorithm that allows the agents to
gather within low polynomial time. In particular, the protocols for gathering
with cross detection, terminating in O(n) time, are time optimal. Moreover, our
algorithms are effective; that is, starting from any arbitrary configuration C in a
ring with conditions X and Y , within finite time the agents determine whether
or not C ∈ F(X,Y) is feasible, and gather if it is.

Due to space limitations, the proofs are omitted; for the full text see [20].

2 Model and Basic Limitations

2.1 Model and Terminology

Let R = (v0, . . . vn−1) be a synchronous dynamic ring where, at any round t ∈ N ,
one of its edges might not be present; the choice of which edge is missing (if any)
is controlled by an adversarial scheduler, not restricted by fairness assumptions.
Such a dynamic network is known in the literature as a 1-interval connected
ring (e.g., [20,28]). Each node vi is connected to its two neighbours vi−1 and
vi+1 via distinctly labeled ports qi− and qi+, respectively (all operations on
the indices are modulo n); the labels of the ports are arbitrary elements of a
totally ordered set, and thus might not provide a globally consistent orientation.
Each port of vi has an incoming buffer and an outgoing buffer. Finally, the
nodes are anonymous (i.e., have no distinguished identifiers). Operating in R is
a set A = {a0, . . . , ak−1} of computational entities, called agents, each provided
with memory and computational capabilities. The agents are anonymous (i.e.,
without distinguishing identifiers) and all execute the same protocol. When in a
node v, an agent can be at v or in one of the port buffers. Any number of agents
can be in a node at the same time; an agent can determine how many other
agents are in its location and where (in incoming buffer, in outgoing buffer, at
the node). Initially the agents are located at distinct locations, called homebases;
homebases are marked so that an agent can determine whether or not the current
node is a homebase. Note that, as discussed later, this assumption is necessary
in our setting. Each agent has its own left/right orientation of the ring, but
the orientations of the agents might not be the same. If all agents agree on
the orientation, we say that there is chirality. The agents are silent: they not
have any explicit communication mechanism. They are mobile; that is, they can
move from node to neighboring node. More than one agent may move on the
same edge in the same direction in the same round. We say that the system has
cross detection if whenever two or more agents move in opposite directions on the
same edge in the same round, the involved agents detect this event; however they
do not necessarily know the number of the involved agents in either direction.
In each round, every agent is in one of a finite set of system states S which
includes two special states: the initial state Init and the terminal state Term. At

Gathering in Dynamic Rings 343

the beginning of a round r, an agent in v executes its protocol (the same for all
agents). Based on the number of agents at v and in its buffers, and on the content
of its local memory and its state, the agent determines whether or not to move
and, if so, in which direction (direction ∈ {left, right, nil}). If direction = nil,
the agent places itself at v (if currently on a port). If direction �= nil, the agent
moves in the outgoing buffer of the corresponding port (if not already there); if
the link is present, it arrives in the incoming buffer of the destination node in
round r + 1; otherwise it does not leave the outgoing buffer. As a consequence,
an agent can be in an outgoing buffer at the beginning of a round only when
the corresponding link was not present in the previous round. In the following,
when an agents is in an outgoing buffer that leads to the missing edge, we will
say that the agent is blocked. When multiple agents are at the same node, all
of them have the same direction of movement, and are in the same state, we
say that they form a group. Let (R,A) denote a system so defined. In (R,A),
gathering is achieved in round r if all agents in A are on the same node or on
two neighbouring nodes in r; in the first case, gathering is said to be strict.
An algorithm solves Gathering if, starting from any configuration from which
gathering is possible, within finite time all agents are in the terminal state, are
gathered, and are aware that gathering has been achieved. A solution algorithm
is effective if starting from any configuration from which gathering is not possible,
within finite time all agents detect such impossibility.

2.2 Configurations and Elections

The locations of the k home bases in the ring is called a configuration. Let C be
the set of all possible configurations with k agents. Let h0, . . . , hk−1 denote the
nodes corresponding to the marked homebases (in a clockwise order) in C ∈ C.
We shall indicate by di (0 ≤ i ≤ k − 1) the distance (i.e., number of edges)
between hi and hi+1 (all operations are modulo k). Let δ+j denote the inter-
distance sequence clockwise δ+j =< dj , dj+1 . . . dj+k−1 >, and let δ−j denote the
couter-clockwise sequence δ−j =< dj−1 . . . dj−(k−1) >. The unordered pair of
inter-distance sequences δ+j and δ−j describes the configuration from the point
of view of node hj . A configuration is periodic with period p (with p|k) if δi = δi+p

for all i = 0, . . . k − 1. Let P denote the set of periodic configurations. Let Δ+ =
{δ+j : 0 ≤ j < k − 1} and Δ− = {δ−j : 0 ≤ j < k − 1}. We will denote by δmin

the ascending lexicographically minimum sequence in Δ+∪Δ−. Among the non-
periodic configurations, particular ones are the double-palindrome configurations,
where δmin = δ+i = δ−j with i �= j, where it is easy to see that the two sequences
between the corresponding home bases hi and hj are both palindrome. A double-
palindrome configuration has thus a unique axis of symmetry, equidistant from
hi and hj . If such an axis passes through two edges (i.e., the distances between
hi and hj are both odd), we say that the configuration is edge-edge, and we
denote by E the set of edge-edge configurations.

A characterization of the configurations where a leader can be elected depend-
ing on chirality is well known in static rings.

344 G. A. Di Luna et al.

Property 1. In a static ring without chirality, a leader node can be elected from
configuration C if and only if C ∈ C \ (P ∪ E); a leader edge can be elected if
and only if C ∈ C \ P.

With chirality, a leader node can be elected if and only if C ∈ C \ P.

2.3 Basic Limitations and Properties

The simple properties below motivate the necessity of the following assumptions:
identical but distinguishable homebases, knowledge of either n or k, gathering
on a node or on an edge.

Property 2. If the homebases are not distinguishable, then Gathering is
unsolvable in (R,A); this holds regardless of chirality, cross detection, and knowl-
edge of k and n.

Property 3. In (R,A), if neither n nor k are known, then Gathering is unsolv-
able; this holds regardless of chirality and cross detection.

Property 4. In (R,A), strict Gathering is unsolvable; this holds regardless of
chirality, cross detection, and knowledge of k and n.

Finally, the following obvious but important limitation holds even in static
situations.

Property 5. Gathering is unsolvable if the initial configuration C ∈ P; this
holds regardless of chirality, cross detection, and knowledge of k and n.

3 General Solution Structure

Our algorithms have the same general structure, and use the same building block
and variables.

General Structure. All our algorithms are divided in two phases. The goal of
Phase 1 is for the agents to explore the ring. In doing so, they may happen to
solve Gathering as well. If they complete Phase 1 without gathering, the agents
are able to elect a node or an edge (depending on the specific situation) and the
algorithm proceeds to Phase 2. In Phase 2 the agents try to gather around the
elected node (or edge); however, gathering on that node (or edge) might not be
possible due to the fact that the ring is dynamic. Different strategies are devised,
depending on the setting, to guarantee that in finite time the problem is solved
in spite of the choice of schedule of missing links decided by the adversary. For
each setting, we will describe the two phases depending on the availability or
lack of cross detection, as well as on the presence or not of chirality. Intuitively,
cross detection is useful to simplify termination in Phase 2, chirality helps in
breaking symmetries.

Exploration Building Block. At each round, an agent evaluates a set of
predicates: depending on the result of this evaluation, it chooses a direction of

Gathering in Dynamic Rings 345

movement and possibly a new state. In its most general form, the evaluation
of the predicates occurs through the building block procedure Explore (dir |
p1 : s1; p2 : s2; . . . ; ph : sh), where dir is either left or right , pi is a predicate,
and si is a state. In Procedure Explore, the agent evaluates the predicates
p1, . . . , ph in order; as soon as a predicate is satisfied, say pi, the procedure exits
and the agent does a transition to the specified state, say si. If no predicate is
satisfied, the agent tries to move in the specified direction dir and the procedure

Table 1. List of variables used in our algorithms.

Variables Description

rms It stores the last round when the agent meets someone (at a node)
that is moving in the same direction (initially set to 0); this value is
updated each time a new agent is met, and it is reset at each change
of state or direction of movement

Btime The number of rounds the executing agent has been blocked trying
to traverse a missing edge since rms. This variable is reset to 0 each
time the agent either traverses an edge or changes direction to trav-
erse a new edge

Etime, Esteps The total number of rounds and edge traversals, respectively. These
values are reset at each new call of procedure Explore or when rms

is set

Agents The number of agents at the node of the executing agent. This
value is set at each round

Table 2. List of predicates used in our algorithms.

Predicate Description

meeting Satisfied when the agent (either in a port or at a node) detects
an increase in the numbers of agents it sees at each round

meetingSameDir Satisfied when the agent detects, in the current round, new
agents moving in its same direction. This is done by seeing
new agents in an incoming or outgoing buffer corresponding to
a direction that is equal to the current direction of the agent

meetingOppositeDir Satisfied when the agent detects, in the current round, new
agents moving in its opposite direction. This is done by seeing
new agents in an incoming or outgoing buffer corresponding
to a direction that is opposite to the current direction of the
agent

crossed Satisfied when the agent, while traversing a link, detects in
the current round other agent(s) moving on the same link in
the opposite direction

seeElected Let us assume there is either an elected node or an elected
edge. This predicate is satisfied when the agent has reached
the elected node or an endpoint of the elected edge

346 G. A. Di Luna et al.

is executed again in the next round. Predicates and variables used by procedure
Explore are indicated in Tables 1 and 2.

4 Gathering with Cross Detection

In this section, we study gathering in dynamic rings when there is cross detection;
that is, an agent crossing a link can detect whether other agents are crossing
it in the opposite direction. Recall that, by Property 3, at least one of n and
k must be known. We first examine the problem without chirality and show
that, with knowledge of n, it is sovable in all configurations that are feasible in
the static case; furthermore, this is done in optimal time Θ(n). On the other
hand, with knowledge of k alone, the problem is unsolvable. We then examine
the problem with chirality, and show that in this case the problem is sovable in
all configurations that are feasible in the static case even with knowledge of k
alone; furthermore, this is done in optimal time Θ(n).

4.1 With Cross Detection: Without Chirality

In this section, we present and analyze the algorithm, Gather(Cross, �Chir),
that solves Gathering in rings of known size with cross setection but without
chirality.

AlgorithmGather(Cross, �Chir): Phase 1. The overall idea of this phase,
shown in Fig. 1, is to let the agents move long enough along the ring to guaran-
tee that, if they do not gather, they all manage to fully traverse the ring in spite
of the link removals. More precisely, for the first 6n rounds each agent attempts
to move to the left (according to its orientation). At round 6n, the agent checks if
the predicate Pred ≡ (rms < 3n∧Esteps < n) is verified. If Pred is not verified,
then (as we show) the agent has explored the entire ring and thus knows the
total number k of agents (local variable TotalAgents); in this case, the agent
switches direction, and enters state SwitchDir. Otherwise, if after 6n rounds Pred
is satisfied, then k is not known yet: in this case, the agent keeps the same direc-
tion, and enters state KeepDir. In state SwitchDir, the agent attempts to move in
the chosen direction until round 12n. At round 12n, the agent terminates if the
predicate [rms < 9n∧Esteps < n] holds, predicate meetingOppositeDir does not
hold, and in its current node there are k agents; otherwise, it starts Phase 2. In
state KeepDir, if at any round predicate crossed or predicate meetingOppositeDir
hold, the agent terminates; otherwise, it attempts to move to its left until round
12n. At round 12n, if the predicate [rms < 9n ∧ Esteps < n] holds, the agent
terminates; otherwise, it switches to Phase 2.

We now prove some important properties of Phase 1.

Lemma 1. Let agent a∗ move less than n steps in the first 3n rounds. Then,
by round 3n, all agents moving in the same direction as a∗ belong to the same
group.

Gathering in Dynamic Rings 347

States: {Init, SwitchDir, KeepDir, Term}.
In state Init:

Explore (left | Ttime = 6n ∧ ¬Pred: SwitchDir; Ttime = 6n ∧ Pred: KeepDir)
In state SwitchDir:

Explore(right | Ttime = 12n ∧ rms < 9n ∧ Esteps < n ∧ Agents = TotalAgents ∧
¬meetingOppositeDir: Term; Ttime = 12n: Phase 2)
In state KeepDir:

Explore (left | crossed ∨ meetingOppositeDir: Term; Ttime = 12n ∧ rms < 9n ∧
Esteps < n: Term; Ttime = 12n: Phase 2)

Fig. 1. Phase 1 of Algorithm Gather(Cross, �Chir)

Because of absence of chirality, the set A of agents can be partitioned into
two sets where all the agents in the same set share the same orientation of the
ring; let Ar and Al be the two sets.

Lemma 2. Let A ∈ {Ar, Al}. If at round 6n Pred is verified for an agent a∗ ∈
A, then all agents in A are in the same group at round 6n. Moreover, Pred is
verified for all agents in A.

Lemma 3. Let A ∈ {Ar, Al}. If Pred is not verified at round 6n for agent
a∗ ∈ A, then at round 6n all agents in A have done a complete tour of the ring
(and hence know the number of total agents, k); moreover, Pred is not verified
for all agents in A.

Lemma 4. If one agent terminates in Phase 1, then all agents terminate and
gathering has been achieved. Otherwise, no agent terminates and all of them
have done a complete tour of the ring.

AlgorithmGather(Cross, �Chir): Phase 2. When the agents execute Phase
2, by Lemma 4, they know the initial configuration C. If C ∈ P, gathering is
impossible (Property 5) and they become aware of this fact. Otherwise, if C ∈ E
they can elect an edge eL, and if C ∈ C \ (P ∪ E) they can elect one leader
node vL (Property 1). For simplicity of exposition and w.l.g., in the following we
assume that Phase 2 of the algorithm starts at round 0. In Phase 2, an agent
first resets all its local variables, with the exception of TotalAgents, that stores
the number of agents k; between rounds 0 and 3n, each agent moves toward the
elected edge/node following the shortest path (shortestPathDirectionElected()). If
by round 3n an agent has reached the elected node or an endpoint of the elected
edge it stops, and enters the ReachedElected state. Otherwise (i.e., at round 3n,
the agent is not in state ReachedElected), it switches to the ReachingElected state.
If all agents are in the same state (either ReachedElected or ReachingElected),
then they are in the same group, and terminate (Agents = TotalAgents). If
they do not terminate, all agents start moving: each ReachingElected agent in
the same direction it chose at the beginning of Phase 2, while the ReachedElected
agents reverse direction. From this moment, each agent, regardless of its state,

348 G. A. Di Luna et al.

terminates as soon as it perceives k agents in the same node or if it is blocked
on a missing edge for 2n rounds. In other situations, the behaviour of agent a∗

depends on its state, as described below.

State ReachedElected. If a∗ crosses a group of agents, it enters the Joining state.
In this new state, say at node v, the agent switches direction in the attempt to
catch and join the agent(s) it just crossed. If a∗ leaves v without crossing any
agent (Esteps = 1), a∗ enters again the ReachedElected state, switching again
direction (i.e., it goes back to direction originally chosen when Phase 2 started).
If instead a∗ leaves v and it crosses some agents, it terminates: this can happen
because also the agents that a∗ crossed try to catch it (and all other agents in
the same group with a∗). As we will show, in this case all agents can correctly
terminate.

State ReachingElected. If a∗ is able to reach the elected node/edge (seeElected
is verified), it enters the ReachedElected state, and switches direction. If a∗ is
blocked on a missing edge and it is reached by other agents, then it switches state
to ReachedElected keeping its direction (meetingSameDir is verified). Finally, if
a∗ crosses someone, it enters the Waiting state, and it stops moving. If while
in the Waiting state a∗ meets someone new before 2n rounds, it enters the
ReachedElected state, and switches direction. Otherwise, at round 2n it termi-
nates (Fig. 2).

States: {Phase 2, ReachedElected, ReachingElected, Joining, Waiting, ReverseDir,Term}.
In state Phase 2:

if C ∈ P then
unsolvable()
Go to State Term

resetAllVariables except TotalAgents
dir =shortestPathDirectionElected()
Explore (dir | seeElected: ReachedElected; Ttime = 3n: ReachingElected)

In state ReachedElected:
dir =opposite(dir)
if Ttime ≥ 3n then

Explore (dir | Agents = TotalAgents ∨ Btime = 2n: Term; crossed: Joining)
In state Joining:

dir =opposite(dir)
Explore (dir | Agents = TotalAgents ∨ Btime = 2n ∨ crossed: Term; Esteps = 1:

ReverseDir)
In state ReachingElected:

Explore (dir | Agents = TotalAgents ∨ Btime = 2n: Term; meetingSameDir: Reached-
Elected; meetingOppositeDir ∨ seeElected: ReverseDir; crossed: Waiting)
In state Waiting:

Explore (nil | Etime > 2n: Term; meeting: ReverseDir)
In state ReverseDir:

dir =opposite(dir)
Go to State ReachedElected

Fig. 2. Phase 2 of Algorithm Gather(Cross, �Chir)

Gathering in Dynamic Rings 349

Lemma 5. At round 3n of Phase 2, there is at most one group of agents in state
ReachingElected, and at most two groups of agents in state ReachedElected.

Lemma 6. If an agent a∗ terminates executing Phase 2, then all other agents
will terminate, and gathering is correctly achieved.

Lemma 7. Phase 2 terminates in at most 10n rounds.

Theorem 1. Without chirality, Gathering is solvable in rings of known size
with cross detection, starting from any C ∈ C \ P. This can be done in O(n)
rounds by an effective algorithm.

4.2 Knowledge of n is More Powerful Than Knowledge of k

One may ask if it is possible to obtain the same result of Theorem 1 if knowledge
of k was available instead of n; recall that at least one of n and k must be
known (Property 3). Unfortunately, the following Theorem shows that, from a
computational point of view, knowledge of the ring size is strictly more powerful
than knowledge of the number of agents.

Theorem 2. In rings with no chirality, Gathering is impossible without
knowledge of n when starting from a configuration C ∈ E. This holds even if
there is cross detection and k is known.

4.3 With Cross Detection: With Chirality

Let us now consider the simplest setting, where the agents have cross detection
capability as well as a common chirality. If n is known, the problem is already
optimally solved by Algorithm Gather(Cross, �Chir). So, we need only to con-
sider the case when k is known but n is not.

Phase 1 of the solution, Algorithm Gather(Cross, Chir), consists of the
following modification of Phase 1 of Algorithm Gather(Cross, �Chir), to work
with knowledge of k. Each agent moves counterclockwise terminating if the k
agents are all at the same node. As soon as it passes by k + 1 homebases, it
discovers n. At this point, it continues to attempt to move in the same direction
switching to Phase 2 at round 3n + 1 (unless gathering occurs before). After
3n rounds, if the agents have not terminated, they have however certainly per-
formed a loop of the ring, know n (having seen k +1 home bases) and they start
Phase 2. Since n is known, the agents can use as Phase 2 the one of Algorithm
Gather(Cross, �Chir), which is time optimal. We then have:

Theorem 3. With chirality, cross detection and knowledge of either n or k,
Gathering is solvable in at most O(n) rounds from any configuration C ∈ C\P
with an effective algorithm..

350 G. A. Di Luna et al.

5 Without Cross Detection

In this section we study the gathering problem when there is no cross detection.
We focus first on the case when the absence of cross detection is mitigated by
the presence of chirality. We show that gathering is possible in the same class of
configurations as with cross detection, albeit with a O(n log n) time complexity.
We then examine the most difficult case of absence of both cross detection and
chirality. We prove that in this case the class of feasible configurations is smaller
(i.e., cross detection is a computational separator). We show that gathering can
be performed from all feasible configuration in O(n2) time.

5.1 Without Cross Detection: With Chirality

The structure of the algorithm, Gather(�Cross,Chir), still follows the two
Phases. Since Phase 1 of Algorithm Gather(Cross,Chir) does not use cross
detection, it can be used as Phase 1 of Gather(�Cross,Chir).

Let thus focus on Phase 2. Because of chirality, a leader node can be always
elected, even when the initial configuration is in E (Property 1). We will show
how to use this fact to modify Phase 2 of Algorithm Gather(Cross,Chir) to
work without assuming cross detection. We will do so by designing a mechanism
that will force the agents never to cross each other. The main consequence of
this fact is that, whenever two agents (or two groups of agents) would like to
traverse the same edge in opposite direction, only one of the two will be allowed
to move thus “merging” with the other. This mechanism is described below.

Basic no-crossing mechanism. To avoid crossings, each agent constructs an
edge labeled bidirectional directed ring with n nodes (called Logic Ring) and
it moves on the actual ring according to the algorithm, but also to specific
conditions dictated by the labels of the Logic Ring . In the Logic Ring , each
edge of the actual ring is replaced by two labeled oriented edges in the two
directions. The label of each oriented edge ei, 0 ≤ i ≤ n − 1, is either Xi

or Yi , where Xi and Yi are infinite sets of integers. Labels X0 . . . Xn−1 are
assigned to consecutive edges in counter-clockwise direction starting from the
leader node, while Y0 . . . Yn−1 are assigned in clockwise direction. Intuitively, we
want to construct these sets of labels in such a way that Xi and Yi have an
empty intersection, and allow an agent to traverse an edge at round r only if r
is contained in the set of labels associated to the corresponding oriented edge
of the Logic Ring . For this construction we define Xi = {s + m · (2p + 2) | (s ∈
Si∨s = 2p),∀m ∈ N}, where p = �log2 n�, and Si is a subset of {0, 1, . . . , 2p−1}
of size exactly p (note that there are

(
2p
p

) ≥ n possible choices for Si). Indeed,
there are 2p = 2�log2 n	 ≥ n ways to choose which elements of {0, 1, . . . , p − 1}
are in Si; each of these choices can be completed to a set of size p by choosing
the remaining elements from the set {p, p+1, . . . , 2p−1}. Therefore there are at
least n available labels, and we can define the Xi’s so that they are all distinct.
Then we define Yi to be the complement of Xi for every i. The following property
is immediate by construction:

Gathering in Dynamic Rings 351

States: {ReachedElected, ReachingElected, ChangeDir, ChangeState, DirCommR, DirCommS, Term}.
In state Phase 2:

if C ∈ P then
unsolvable()
Go to State Term

resetAllVariables except TotalAgents
dir = leaderMinimumPath()
Explore (dir | seeElected: ReachedElected; Ttime = 3n: ReachingElected)

In state ReachedElected:
if Ttime ≥ 3n then

dir = clockwiseDirection()
Explore (dir | (BPeriods ≥ 4n + 8 ∨ Agents = TotalAgents): Term;)

In state ReachingElected:
if Ttime = 3n then

dir = counterclockwiseDirection()
Explore (dir | (BPeriods ≥ 4n + 8 ∨ Agents = TotalAgents): Term;)

Fig. 3. Phase 2 of Algorithm Gather(�Cross,Chir)

Observation 1. Let m ∈ N and let I = {m,m + 1, . . . , m + 2p + 1}. Then, Xi

and Yj have a non-empty intersection in I if and only if i �= j, Xi and Xj have a
non-empty intersection in I, and Yi and Yj have a non-empty intersection in I.

From the previous observation, it follows that two agents moving following
the Logic Ring in opposite directions will never cross each other on an edge of the
actual ring. As a consequence of this fact, we can derive a bound on the number
of rounds that guarantee two groups of robots moving in opposite direction,
to “merge”. In the following lemma, we consider the execution of the algorithm
proceeding in periods, where each period is composed by 2p+2 rounds. We have:

Lemma 8. Let us consider two groups of agents, G and G′, moving in opposite
directions following the Logic Ring. After at most n periods, that is at most
O(n log n) rounds, the groups will be at a distance d ≤ 1 (in the direction of
their movements).

We are now ready to describe the actual Phase 2. In the following, when the
agents are moving following the meta-rule in the Logic Ring , we will use variable
BPeriods, instead of Btime, indicating the number of consecutive periods in
which the agent failed to traverse the current edge. As in the case of Btime, the
new variable BPeriods is reset each time the agent traverses the edge, changes
direction, or encounters new agents in its moving direction. In the first 3n rounds,
each agent moves towards the elected node using the minimum distance path.
After round 3n, on the logic ring, the group in state ReachedElected starts moving
in clockwise direction, the group in state ReachingElected in counterclockwise.
One of the two groups terminates if BPeriods ≥ n rounds or if Agents = k.
This replaces the terminating condition Btime = 2n that was used in case of
Cross detection. Phase 2 of the Algorithm is shown in Fig. 3.

Lemma 9. Phase 2 of Algorithm Gather(�Cross,Chir) terminates in at most
O(n log n) rounds, solving the Gathering problem.

352 G. A. Di Luna et al.

Theorem 4. With chirality and knowledge of n or k, Gathering is solvable
from any configuration C ∈ C \ P. This can be done in O(n log n) rounds with
an effective algorithm.

5.2 Without Cross Detection: Without Chirality

In this section, we consider the most difficult setting when neither cross detection
nor chirality are available. We show that in this case Gathering is impossible
if C ∈ E . On the other hand, we provide a solution for rings of known size from
any initial configuration C ∈ C \ (P ∪E), which works in O(n2) rounds. We start
this Section with the impossibility result.

Theorem 5. Without chirality and without cross detection, Gathering is
impossible when starting from a configuration C ∈ E. This holds even if the
agents know C (hence n and k).

AlgorithmGather(�Cross,�Chir): Phase 1. The lack of cross detection is not
a problem when there is a common chirality. However, the combination of lack
of both cross detection and chirality significantly complicates Phase 1, and new
mechanisms have to be devised to insure that all agents finish the ring exploration
and correctly switch to Phase 2. In the following we will denote by Btime′ the
value of Btime at the previous round, that is at round Ttime − 1.

Each agent attempts to move along the ring in its own left direction. An agent
terminates in the Init state if it has been blocked long enough (Btime ≥ 2n+2),
or if it was blocked for an appropriate amount of time and is now meeting
a new agent (Btime′ ≥ n + 1 ∧ meeting). If an agent does not terminate by
round (3n)(n + 3) it enters a sync sub-phase, whose purpose is to perform a
synchronization to ensure that, if a group of agents terminates in the Init state
by condition (Btime ≥ 2n+2), all the remaining active agents will also terminate
correctly (Fig. 4).

States: {Init, SyncR, SyncL, Term}.
In state Init:

Explore (left | Ttime ≥ (3n)(n+3): SyncL; Btime ≥ (2n+2)∨(Btime′ ≥ n+1∧meeting):
Term)
In state SyncL:

Explore (left | (Ttime ≥ (3n)(n + 3) + 2n + 1 ∧ Btime > n) ∨ Agents = TotalAgents:
Term; Ttime ≥ (3n)(n + 3) + 2n + 1: Phase 2; 0 < Btime ≤ n: SyncR)
In state SyncR:

Explore (right | Agents = TotalAgents: Term; Ttime ≥ (3n)(n + 3) + 2n + 1: Phase 2;
Btime = 1: SyncL)

Fig. 4. Phase 1 of Algorithm Gather(�Cross, � Chir)

Gathering in Dynamic Rings 353

Lemma 10. If an agent does not terminate at the end of Phase 1, then no agent
terminates and all of them have done at least one complete loop of the ring. If
an agent terminates during Phase 1, then all agents terminate and Gathering
is correctly solved.

AlgorithmGather(�Cross,�Chir): Phase 2. By Lemma 10, at the end of
Phase 1 each agent knows the current configuration. Since we know that the
problem is not solvable for initial configurations C ∈ E (Theorem 5), the initial
configuration must be non-symmetric (i.e., without any axis of symmetry) or
symmetric but with the unique axis of symmetry going through a node. In both
cases, the agents can agree on a common chirality. In fact, if C does not have
any symmetry axes, the agents can agree, for example, on the direction of the
lexicographically smallest sequence of homebases inter distances. If instead there
is an axis of symmetry going through a node vL, they can agree on the direction
of the port of vL with the smallest label. We can then use as Phase 2, the one
of Algorithm Gather(�Cross,Chir) presented in Sect. 5.1.

Theorem 6. Without chirality, Gathering is solvable in rings of known size
without cross detection from all C ∈ C \ (P ∪ E). This can be done in O(n2)
rounds by an effective algorithm.

References

1. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer, Boston
(2003). https://doi.org/10.1007/b100809

2. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of
mobile agents: impact of sense of direction. Theor. Comput. Syst. 40(2), 143–162
(2007)

3. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points.
Naval Res. Logist. 38, 469–494 (1991)

4. Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Gracefully degrad-
ing consensus and k -set agreement in directed dynamic networks. In: Bouajjani,
A., Fauconnier, H. (eds.) NETYS 2015. LNCS, vol. 9466, pp. 109–124. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26850-7 8

5. Bournat, M., Datta, A.K., Dubois, S.: Self-stabilizing robots in highly dynamic
environments. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083,
pp. 54–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9 5

6. Bouchard, S., Dieudonne, Y., Ducourthial, B.: Byzantine gathering in networks.
Distrib. Comput. 29(6), 435–457 (2016)

7. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Measuring temporal lags in
delay-tolerant networks. IEEE Trans. Comput. 63(2), 397–410 (2014)

8. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408
(2012)

9. Chalopin, J., Das, S., Santoro, N.: Rendezvous of mobile agents in unknown graphs
with faulty links. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 108–122.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75142-7 11

https://doi.org/10.1007/b100809
https://doi.org/10.1007/978-3-319-26850-7_8
https://doi.org/10.1007/978-3-319-49259-9_5
https://doi.org/10.1007/978-3-540-75142-7_11

354 G. A. Di Luna et al.

10. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

11. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in
asynchronous robot systems. SIAM J. Comput. 34, 1516–1528 (2005)

12. Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) every-
where. ACM Trans. Algorithms 8(4), 37:1–37:14 (2012)

13. Czyzowicz, J., Dobrev, S., Kranakis, E., Krizanc, D.: The power of tokens: ren-
dezvous and symmetry detection for two mobile agents in a ring. In: Geffert, V.,
Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM
2008. LNCS, vol. 4910, pp. 234–246. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-77566-9 20

14. Das, S., Luccio, F.L., Focardi, R., Markou, E., Moro, D., Squarcina, M.: Gathering
of robots in a ring with mobile faults. In: 17th Italian Conference on Theoretical
Computer Science (ICTCS), pp. 122–135 (2016)

15. Das, S., Luccio, F.L., Markou, E.: Mobile agents rendezvous in spite of a malicious
agent. In: Bose, P., G ↪asieniec, L.A., Römer, K., Wattenhofer, R. (eds.) ALGO-
SENSORS 2015. LNCS, vol. 9536, pp. 211–224. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-28472-9 16

16. Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P.,
Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous
robots with limited visibility. In: 23rd ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), pp. 139–148 (2011)

17. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asyn-
chronous deterministic rendezvous in graphs. Theoret. Comput. Sci. 355, 315–326
(2006)

18. Dessmark, A., Fraigniaud, P., Pelc, A.: Deterministic rendezvous in graphs. In: Di
Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 184–195. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39658-1 19

19. Di Luna, G.A., Dobrev, S., Flocchini, P., Santoro, N.: Live exploration of dynamic
rings. In: 36th IEEE International Conference on Distributed Computing Systems,
(ICDCS), pp. 570–579 (2016)

20. Di Luna, G.A., Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Viglietta, G.:
Gathering in dynamic rings. Arxiv, April 2017

21. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents RendezVous
in a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS
2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27860-3 6

22. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple
Mobile Agent Rendezvous in a Ring. In: Farach-Colton, M. (ed.) LATIN 2004.
LNCS, vol. 2976, pp. 599–608. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24698-5 62

23. Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks.
Theoret. Comput. Sci. 469, 53–68 (2013)

24. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theoret. Comput. Sci. 337(1–3), 147–168 (2005)

25. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous with constant
memory. Theoret. Comput. Sci. 621, 57–72 (2016)

26. Haeupler, B., Kuhn, F.: Lower bounds on information dissemination in dynamic
networks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 166–180.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33651-5 12

https://doi.org/10.1007/978-3-540-77566-9_20
https://doi.org/10.1007/978-3-540-77566-9_20
https://doi.org/10.1007/978-3-319-28472-9_16
https://doi.org/10.1007/978-3-319-28472-9_16
https://doi.org/10.1007/978-3-540-39658-1_19
https://doi.org/10.1007/978-3-540-27860-3_6
https://doi.org/10.1007/978-3-540-27860-3_6
https://doi.org/10.1007/978-3-540-24698-5_62
https://doi.org/10.1007/978-3-540-24698-5_62
https://doi.org/10.1007/978-3-642-33651-5_12

Gathering in Dynamic Rings 355

27. Ilcinkas, D., Klasing, R., Wade, A.M.: Exploration of constantly connected
dynamic graphs based on cactuses. In: Halldórsson, M.M. (ed.) SIROCCO 2014.
LNCS, vol. 8576, pp. 250–262. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-09620-9 20

28. Ilcinkas, D., Wade, A.M.: Exploration of the T -interval-connected dynamic graphs:
the case of the ring. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013.
LNCS, vol. 8179, pp. 13–23. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-03578-9 2

29. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theoret. Comput. Sci. 390(1), 27–39 (2008)

30. Kranakis, E., Krizanc, D., Markou, E.: Mobile agent rendezvous in a synchronous
torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 653–664. Springer, Heidelberg (2006). https://doi.org/10.1007/11682462 60

31. Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in
the Ring. Morgan & Claypool (2010)

32. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous
problem in the ring. In: 23rd International Conference on Distributed Computing
Systems (ICDCS), pp. 592–599 (2003)

33. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: 42th Symposium on Theory of Computing (STOC), pp. 513–522 (2010)

34. Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic networks.
In: 30th Symposium on Principles of Distributed Computing (PODC), pp. 1–10
(2011)

35. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT News
42(1), 82–96 (2011)

36. Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem. Parts
1 and 2. SIAM J. Control Optim. 46(6), 2096–2147 (2007)

37. Pagli, L., Prencipe, G., Viglietta, G.: Getting close without touching: near-
gathering for autonomous mobile robots. Distrib. Comput. 28(5), 333–349 (2015)

38. Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks
59(3), 331–347 (2012)

39. Sawchuk, C.: Mobile agent rendezvous in the ring. Ph.D Thesis, Carleton Univer-
sity, January 2004

40. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts, and strongly
universal exploration sequences. ACM Trans. Algorithms 10(3), 12 (2014)

41. Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In:
Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0 163

https://doi.org/10.1007/978-3-319-09620-9_20
https://doi.org/10.1007/978-3-319-09620-9_20
https://doi.org/10.1007/978-3-319-03578-9_2
https://doi.org/10.1007/978-3-319-03578-9_2
https://doi.org/10.1007/11682462_60
https://doi.org/10.1007/3-540-61440-0_163

On Liveness of Dynamic Storage

Alexander Spiegelman(B) and Idit Keidar

Viterbi EE Department, Technion, Haifa, Israel
{sashas,idish}@campus.technion.ac.il

Abstract. Dynamic distributed storage algorithms such as DynaStore,
Reconfigurable Paxos, RAMBO, and RDS, do not ensure liveness (wait-
freedom) in asynchronous runs with infinitely many reconfigurations. We
prove that this is inherent for asynchronous dynamic storage algorithms.
Our result holds even if only one process may fail, provided that machines
that were successfully removed from the system’s configuration can be
switched off by a system administrator. To circumvent this result, we
define a dynamic eventually perfect failure detector, and present an algo-
rithm that uses it to emulate wait-free dynamic atomic storage. Though
some of the previous algorithms have been designed for eventually syn-
chronous models, to the best of our knowledge, our algorithm is the first
to ensure liveness for all operations without restricting the reconfigura-
tion rate.

1 Introduction

Many works in the last decade have dealt with dynamic reliable distributed
storage emulation [2,5–9,13–15,17,18,21,25,27]. The motivation behind such
storage is to allow new processes (nodes) to be phased in and old or dysfunc-
tional ones to be taken offline. From a fault-tolerance point of view, once a faulty
process is removed, additional failures may be tolerated. For example, consider a
system that can tolerate one failure: once a process fails, no additional processes
are allowed to fail. However, once the faulty process is replaced by a correct one,
the system can again tolerate one failure. Thus, while static systems become per-
manently unavailable after some constant number of failures, dynamic systems
that allow infinitely many reconfigurations can survive forever.

Previous works can be categorized into two main types: Solutions of the first
type assume a churn-based model [19,24] in which processes are free to announce
when they join the storage emulation [4–7] via an auxiliary broadcast sub-system
that allows a process to send a message to all the processes in the system, (which
my be unknown to the sending processes). The second type solutions extend
the register’s API with a reconfiguration operation for changing the current
configuration of participating processes [2,9,13–15,18,25], which can be only
invoked by members of the current configuration. In this paper we consider

A. Spiegelman is grateful to the Azrieli Foundation or the award of an Azrieli
Fellowship.

c© Springer International Publishing AG 2017
S. Das and S. Tixeuil (Eds.): SIROCCO 2017, LNCS 10641, pp. 356–376, 2017.
https://doi.org/10.1007/978-3-319-72050-0_21

On Liveness of Dynamic Storage 357

the latter. Such an API allows administrators (running privileged processes),
to remove old or faulty processes and add new ones without shutting down
the service; once a process is removed from the current configuration, a system
administrator may shut it down. Note that in the churn-based model, in contrast,
if processes have to perform an explicit operation in order to leave the system (as
in [4,7]), a faulty process can never be removed. In addition, since in API-based
models only processes that are already within the system invoke operations,
it is possible to keep track of the processes in the system, and thus auxiliary
broadcast is not required.

Though the literature is abundant with dynamic storage algorithms in both
models, to the best of our knowledge, all previous solutions in asynchronous and
eventually synchronous models restrict reconfigurations in some way in order to
ensure completion of all operations. Churn-based solutions assume a bounded
churn rate [4,5,7], meaning that there is a finite number of joining and removing
processes in a given time interval. Some of the API-based solutions [2,13,18,25]
provide liveness only when the number of reconfigurations is finite, whereas
others discuss liveness only in synchronous runs [9,14,15]. Such restrictions may
be problematic in emerging highly-dynamic large-scale settings.

Baldoni et al. [5] showed that it is impossible to emulate a dynamic register
that ensures completion of all operations without restricting the churn rate in
asynchronous churn-based models in which processes can freely abandon the
computation without an explicit leave operation. Since a leave and a failure
are indistinguishable in such models, the impossibility can be proven using a
partition argument as in [3].

In this paper we revisit this question in the API-based model. First, we prove
a similar result for asynchronous API-based dynamic models, in which one unre-
moved process can fail and successfully removed ones can go offline. Specifically,
we show that even the weakest type of storage, namely a safe register [20], cannot
be implemented so as to guarantee liveness for all operations (i.e., wait-freedom)
in asynchronous runs with an unrestricted reconfiguration rate. Note that this
bound does not follow from the one in [5] since a process in our model can leave
the system only after an operation that removes it successfully completes.

Second, to circumvent our impossibility result, we define a dynamic failure
detector that can be easily implemented in eventually synchronous systems, and
use it to implement dynamic storage. We present an algorithm, based on state
machine replication, that emulates a strong shared object, namely a wait-free
atomic dynamic multi-writer, multi-reader (MWMR) register, and ensures live-
ness for all operations without restricting the reconfiguration rate. Though a
number of previous algorithms have been designed for eventually synchronous
models [5,7–9,14,15,21], to the best of our knowledge, our algorithm is the first
to ensure liveness of all operations without restricting the reconfigurations rate.

In particular, previous algorithms [8,9,14,15,21] that used failure detectors,
only did so for reaching consensus on the new configuration. For example, recon-
figurable Paxos variants [8,21], which implement atomic storage via dynamic
state machine replication, assume a failure detector that provides a leader in

358 A. Spiegelman and I. Keidar

every configuration. However, a configuration may be changed, allowing the
previous leader to be removed (and then fail) before another process p (with
a pending operation) is able to communicate with it in the old configuration.
Though a new leader is elected by the failure detector in the ensuing configura-
tion, this scenario may repeat itself indefinitely, so that p’s pending operation
never completes.

We, in contrast, use the failure detector also to implement a helping mech-
anism, which ensures that eventually some process will help a slow one before
completing its own reconfiguration operation even if the reconfiguration rate is
unbounded. Such mechanism is attainable in API-based models since only mem-
bers of the current configuration invoke operations, and thus helping process can
know which processes may need help. Note that in churn-based models in which
processes announce their own join, implementing such a helping mechanism is
impossible, since a helping process cannot possibly know which processes need
help joining.

The remainder of this paper is organized as follows: In Sect. 2 we present
the model and define the dynamic storage object we seek to implement. Our
impossibility proof appears in Sect. 3, and our algorithm in Sect. 4. Finally, we
conclude the paper in Sect. 5.

2 Model and Dynamic Storage Problem Definition

In Sect. 2.1, we present the preliminaries of our model, and in Sect. 2.2, we define
the dynamic storage service.

2.1 Preliminaries

We consider an asynchronous message passing system consisting of an infinite
set of processes Π. Processes may fail by crashing subject to restrictions given
below. Process failure is modeled via an explicit fail action. Each pair of processes
is connected by a communication link. A service exposes a set of operations. For
example, a dynamic storage service exposes read, write, and reconfig operations.
Operations are invoked and subsequently respond.

An algorithm A defines the behaviors of processes as deterministic
state machines, where state transitions are associated with actions, such as
send/receive messages, operation invoke/response, and process failures. A global
state is a mapping to states from system components, i.e., processes and links.
An initial global state is one where all processes are in initial states and all links
are empty. A send action is enabled in state s if A has a transition from s in
which the send occurs.

A run of algorithm A is a (finite or infinite) alternating sequence of global
states and actions, beginning with some initial global state, such that state
transitions occur according to A. We use the notion of time t during a run r to
refer to the tth action in r and the global state that ensues it. A run fragment
is a contiguous subsequence of a run. An operation invoked before time t in run

On Liveness of Dynamic Storage 359

r is complete at time t if its response event occurs before time t in r; otherwise
it is pending at time t. We assume that runs are well-formed [16], in that each
process’s first action is an invocation of some operation, and a process does not
invoke an operation before receiving a response to its last invoked one.

We say that operation opi precedes operation opj in a run r, if opi’s response
occurs before opj ’s invocation in r. Operations opi and opj are concurrent in run
r, if opi does not precede opj and opj does not precede opi in r. A sequential run
is one with no concurrent operations. Two runs are equivalent if every process
performs the same sequence of operations (with the same return values) in both,
where operations that are pending in one can either be included in or excluded
from the other.

2.2 Dynamic Storage

The distributed storage service we consider is a dynamic multi-writer, multi
reader (MWMR) register [2,13,15,18,23,26], which stores a value v from a
domain V, and offers an interface for invoking read, write, and reconfig oper-
ations. Initially, the register holds some initial value v0 ∈ V. A read oper-
ation takes no parameters and returns a value from V, and a write opera-
tion takes a value from V and returns “ok”. We define Changes to be the set
{remove, add} × Π, and call any subset of Changes a set of changes. For exam-
ple, {〈add, p3〉, 〈remove, p2〉} is a set of changes. A reconfig operation takes as a
parameter a set of changes and returns “ok”. For simplicity, we assume that a
process that has been removed is not added again.

Fig. 1. Notation illustration. add(p)
(remove(p)) represents reconfig(〈add, p〉)
(respectively, reconfig(〈remove, p〉)).

Notation. For every subset w of
Changes, the removal set of w,
denoted w.remove, is {pi|〈remove, pi〉
∈ w}; the join set of w, denoted
w.join, is {pi|〈add, pi〉 ∈ w}; and the
membership of w, denoted w.member
ship, is w.join \ w.remove. For exam-
ple, for a set w = {〈add, p1〉, 〈remove,
p1〉, 〈add, p2〉}, w.join = {p1, p2},
w.remove = {p1}, and w.membership
= {p2}. For a time t in a run r, we

denote by V (t) the union of all sets q s.t. reconfig(q) completes before time t in
r. A configuration is a finite set of processes, and the current configuration at
time t is V (t).membership. We assume that only processes in V (t).membership
invoke operations at time t. The initial set of processes Π0 ⊂ Π is known to all
and we say, by convention, that reconfig({〈add, p〉|p ∈ Π0}) completes at time
0, i.e., V (0).membership = Π0.

We define P (t) to be the set of pending changes at time t in run r, i.e., the
set of all changes included in pending reconfig operations. We denote by F (t)
the set of processes that have failed before time t in r; initially, F (0) = {}. For

360 A. Spiegelman and I. Keidar

a series of arbitrary sets S(t), t ∈ N, we define S(∗) �=
⋃

t∈N
S(t). The notation

is illustrated in Fig. 1.

Correct processes and fairness. A process p is correct if p ∈ V (∗).join \ F (∗). A
run r is fair if every send action by a correct process that is enabled infinitely
often eventually occurs, and every message sent by a correct process pi to a
correct process pj is eventually received at pj . Note that messages sent to a
faulty process from a correct one may or may not be received. A process p is
active if p is correct, and p �∈ P (∗).remove.

Service specification. A linearization of a run r is an equivalent sequential run
that preserves r’s operation precedence relation and the service’s sequential spec-
ification. The sequential specification for a register is as follows: A read returns
the latest written value, or v0 if none was written. An MWMR register is atomic,
also called linearizable [16], if every run has a linearization. Lamport [20] defines
a safe single-writer register. Here, we generalize the definition to multi-writer
registers in a weak way in order to strengthen the impossibility result. Intuitively,
if a read is not concurrent with any write we require it to return a value that
reflects some possible outcome of the writes that precede it; otherwise we allow
it to return an arbitrary value. Formally: An MWMR register is safe if for every
run r for every read operation rd that has no concurrent writes in r, there is a
linearization of the subsequence of r consisting of rd and the write operations
in r.

A wait-free service guarantees that every active process’s operation completes
regardless of the actions of other processes.

Failure model and reconfiguration. The reconfig operations determine which
processes are allowed to fail at any given time. Static storage algorithms [3] tol-
erate failures of a minority of their (static) universe. At a time t when no reconfig
operations are ongoing, the dynamic failure condition may be simply defined to
allow less than |V (t)membership|/2 failures of processes in V (t).membership.
When there are pending additions and removals, the rule must be generalized to
take them into account. For our algorithm in Sect. 4, we adopt a generalization
presented in previous works [1,2,18,26]:

Definition 1 (minority failures). A model allows minority failures if at all
times t in r, fewer than |V (t).membership \ P (t).remove|/2 processes out of
V (t).membership ∪ P (t).join are in F (t).

Note that this failure condition allows processes whose remove operations have
completed to be (immediately) safely switched off as it only restricts failures out
of the current membership and pending joins. We say that a service is reconfig-
urable if failures of processes in V (t).remove are unrestricted.

In order to strengthen our lower bound in Sect. 3 we weaken the failure model.
Like FLP [12], our lower bound applies as long as at least one process can fail.
Formally, a failure is allowed whenever all failed processes have been removed and

On Liveness of Dynamic Storage 361

the current membership consists of at least three processes1. We call such a state
“clean”, captured by the following predicate: clean(t) � (V (t).membership ∪
P (t).join) ∩ F (t) = {} ∧ |V (t).membership \ P (t).remove| ≥ 3. The minimal
failure condition is thus defined as follows:

Definition 2 (minimal failure). A model allows minimal failure if in every
run r ending at time t when clean(t), for every process p ∈ V (t).membership ∪
P (t), there is an extension of r where p fails at time t + 1.

Notice that the minority failure condition allows minimal failure, and so all
algorithms that assume minority failures [1,2,18,26] are a fortiori subject to our
lower bound, which is proven for minimal failures.

3 Impossibility of Wait-Free Dynamic Safe Storage

In this section we prove that there is no implementation of wait-free dynamic
safe storage in a model that allows minimal failures. We construct a fair run
with infinitely many reconfiguration operations in which a slow process p never
completes its write operation. We do so by delaying all of p’s messages. A message
from p to a process pi is delayed until pi is removed, and we make sure that all
processes except p are eventually removed and replaced.

Theorem 1. There is no algorithm that emulates wait-free dynamic safe storage
in an asynchronous system allowing minimal failures.

Proof (Proof (Theorem 1)). Assume by contradiction that such an algorithm A
exists. We prove two lemmas about A.

Lemma 1. Consider a run r of A ending at time t s.t. clean(t), and two
processes pi, pj ∈ V (t).membership. Extend r by having pj invoke operation
op at time t + 1. Then there exists an extension of r where (1) op completes at
some time t′ > t,(2) no process receives a message from pi between t and t′, and
(3) no process fails and no operations are invoked between t and t′.

Proof (Lemma 1). By the minimal failure condition, pi can fail at time t + 2.
Consider a fair extension σ1 of r, in which pi fails at time t + 2 and all of
its in-transit messages are lost, no other process fails, and no operations are
invoked. By wait-freedom, op eventually completes at some time t1 in σ1. Since
pi fails and all its outstanding messages are lost, then from time t to t1 in σ1

no process receives any messages from pi. Now let σ2 be identical to σ1 except
that pi does not fail, but all of its messages are delayed. Note that σ1 and σ2

are indistinguishable to all processes except pi. Thus, op returns at time t1 also
in σ2.

1 Note that with fewer than three processes, even static systems cannot tolerate fail-
ures [3].

362 A. Spiegelman and I. Keidar

Lemma 2. Consider a run r of A ending at time t s.t clean(t). Let v1 ∈ V\{v0}
be a value s.t. no process invokes write(v1) in r. If we extend r fairly so that pi
invokes w = write(v1) at time t+1 which completes at some time t1 > t+1 s.t.
clean(t′) for all t < t′ ≤ t1 then in the run fragment between t + 1 and t1, some
process pk �= pi receives a message sent by pi.

Proof (Lemma 2). Assume by way of contradiction that in the run fragment
between t + 1 and t1 no process pk �= pi receives a message sent by pi, and
consider a run r′ that is identical to r until time t1 except that pi does not
invoke w at time t. Now assume that some process pj �= pi invokes a read
operation rd at time t1 + 1 in r′. By the assumption, clean(t1) and therefore
clean(t1 + 1). Thus, by Lemma 1, there is a run fragment σ beginning at the
final state of r′ (time t1 + 1), where rd completes at some time t2, s.t. between
t1 + 1 and t2 no process receives a message from pi. Since no process invokes
write(v1) in r′, and no writes are concurrent with the read, by safety, rd returns
some v2 �= v1.

Now notice that all global states from time t to time t1 in r and r′ are
indistinguishable to all processes except pi. Thus, we can continue run r with an
invocation of read operation rd′ by pj at time t1, and append σ to it. Operation
rd′ hence completes and returns v2. A contradiction to safety.

To prove the theorem, we construct an infinite fair run r in which a write oper-
ation of an active process never completes, in contradiction to wait-freedom.

Consider some initial global state c0, s.t. P (0) = F (0) = {} and
V (0).membership = {p1 . . . pn}, where n ≥ 3. An illustration of the run for
n = 4 is presented in Fig. 2. Now, let process p1 invoke a write operation w at
time t1 = 0, and do the following:

Let process pn invoke reconfig(q) where q = {〈add, pj〉|n + 1 ≤ j ≤ 2n − 2}
at time t1. The state at the end of r is clean (i.e., clean(t1)). So by Lemma 1, we
can extend r with a run fragment σ1 ending at some time t2 when reconfig(q)
completes, where no process pj �= p1 receives a message from p1 in σ1, no other
operations are invoked, and no process fails.

Then, at time t2 + 1, pn invokes reconfig(q′), where q′ = {〈remove, pj〉|2 ≤
j ≤ n − 1}. Again, the state is clean and thus by Lemma1 again, we can extend
r with a run fragment σ2 ending at some time t3 when reconfig(q’) completes
s.t. no process pj �= p1 receives a message from p1 in σ2, no other operations are
invoked, and no process fails.

Recall that the minimal failures condition satisfies reconfigurability, i.e., all
the processes in V (t3).remove can be in F (t3) (fail). Let the processes in {pj |
2 ≤ j ≤ n − 1} fail at time t3, and notice that the fairness condition does not
mandate that they receive messages from p1. Next, allow p1 to perform all its
enabled actions till some time t4.

Now notice that at t4, |V (t4).membership| = n, P (t4) = {},
(V (t4).membership ∪ P (t4).join) ∩ F (t4) = {}, and |V (t4).membership \
P (t4).removal| ≥ 3. We can rename the processes in V (t4).membership (except
p1) so that the process that performed the remove and add operations becomes

On Liveness of Dynamic Storage 363

Fig. 2. Illustration of the infinite run for n = 4.

p2, and all others get names in the range p3 . . . pn. We can then repeat the con-
struction above. By doing so infinitely many times, we get an infinite run r in
which p1 is active and no process ever receives a message from p1. However, all
of p1’s enabled actions eventually occur. Since no process except p1 is correct in
r, the run is fair. In addition, since clean(t) for all t in r, by the contrapositive
of Lemma 2, w does not complete in r, and we get a violation of wait-freedom.

4 Oracle-Based Dynamic Atomic Storage

We present an algorithm that circumvents the impossibility result of Sect. 3 using
a failure detector. In this section we assume the minority failure condition. In
Sect. 4.1, we define a dynamic eventually perfect failure detector. In Sect. 4.2,
we describe an algorithm, based on dynamic state machine replication, that uses
the failure detector to implement a wait-free dynamic atomic MWMR register.
The algorithm’s correctness is proven in AppendixA.

4.1 Dynamic Failure Detector

Since the set of processes is potentially infinite, we cannot have the failure
detector report the status of all processes as static failure detectors typically
do. Dynamic failure detectors addressing this issue have been defined in previ-
ous works, either providing a set of processes that have been excluded from or
included into the group [22], or assuming that there is eventually a fixed set of
participating processes [10]. In our model, we do not assume that there is even-
tually a fixed set of participating processes, as the number of reconfig operations
can be infinite. And we do not want the failure detector to answer with a list of
processes, because in dynamic systems, this gives additional information about
participating processes that could have been unknown to the inquiring process,
and thus it is not clear how such a failure detector can be implemented.

Instead, our dynamic failure detector is queried separately about each
process. For each query, it answers either fail or ok. It can be wrong for an
unbounded period, but for each process, it eventually returns a correct answer.
Formally, a dynamic eventually perfect failure detector, ♦PD, satisfies two prop-
erties:

364 A. Spiegelman and I. Keidar

– Strong completeness: For each process pi that fails at time ti, there is a
time t > ti s.t. the failure detector answers fail to every query about pi after
time t.

– Eventual strong accuracy: There exists a time t, called the stabilization
time, s.t. the failure detector answers ok to every query at any time t′ > t
about a correct process in V (t′).join.

Note that ♦PD can be implemented in a standard way in the eventually (par-
tially) synchronous model by pinging the queried process and waiting for a
response until a timeout.

4.2 Dynamic Storage Algorithm

We first give the overview of our algorithm and and then present the full descrip-
tion.

Algorithm overview. The key to achieving liveness with unbounded reconfig
operations is a novel helping mechanism, which is based on our failure detec-
tor. Intuitively, the idea is that every process tries to help all other processes
it believes are correct, (according to its failure detector), to complete their con-
current operations together with its own. At the beginning of an operation, a
process p queries all other processes it knows about for the operations they cur-
rently perform. The failure detector is needed in order to make sure that (1)
p does not wait forever for a reply from a faulty process (achieved by strong
completeness), and (2) every slow correct process eventually gets help (achieved
by eventual strong accuracy).

State machine emulation of a register. We use a state machine sm to emulate
a wait-free atomic dynamic register, DynaReg. Every process has a local replica
of sm, and we use consensus to agree on sm’s state transitions. Notice that each
process is equipped with a failure detector FD of class ♦PD, so consensus is
solvable under the assumption of a correct majority in a given configuration [21].

Each instance of consensus runs in some static configuration c and is associ-
ated with a unique timestamp. A process participates in a consensus instance by
invoking a propose operation with the appropriate configuration and timestamp,
as well as its proposed decision value. Consensus then responds with a decide
event, so that the following properties are satisfied: Uniform Agreement – every
two decisions are the same. Validity – every decision was previously proposed
by one of the processes in c. Termination – if a majority of c is correct, then
eventually every correct process in c decides. We further assume that a consensus
instance does not decide until a majority of the members of the configuration
propose in it.

The sm (lines 2–5 in Algorithm 1) keeps track of dynaReg’s value in a variable
val, and the configuration in a variable cng, containing both a list of processes,
cng.mem, and a set of removed processes, cng.rem. Write operations change

On Liveness of Dynamic Storage 365

val, and reconfig operations change cng. A consensus decision may bundle a
number of operations to execute as a single state transition of sm. The number
of state transitions executed by sm is stored in the variable ts. Finally, the array
lastOps maps every process p in cng.mem to the sequence number (based on p’s
local count) of p’s last operation that was performed on the emulated DynaReg
together with its result.

Each process partakes in at most one consensus at a time; this consensus is
associated with timestamp sm.ts and runs in sm.cng.mem. In every consensus,
up to |sm.cng.mem| ordered operations on the emulated DynaReg are agreed
upon, and sm’s state changes according to the agreed operations. A process’s sm
may change either when consensus decides or when the process receives a newer
sm from another process, in which case it skips forward. So sm goes through
the same states in all the processes, except when skipping forward. Thus, for
every two processes pk, pl, if smk.ts = sml.ts, then smk = sml. (A subscript i
indicates the variable is of process pi.)

Helping. The problematic scenario in the impossibility proof of Sect. 3 occurs
because of endless reconfig operations, where a slow process is never able to
communicate with members of its configuration before they are removed. In order
to circumvent this problem, we use FD to implement a helping mechanism. When
proposing an operation, process pi tries to help other processes in two ways:
first, it helps them complete operations they may have successfully proposed in
previous rounds (consensuses) but have not learned about their outcomes; and
second, it proposes their new operations. To achieve the first, it sends a helping
request with its sm to all other processes in smi.cng.mem. For the second, it
waits for each process to reply with a help reply containing its latest invoked
operation, and then proposes all the operations together. Processes may fail or
be removed, so pi cannot wait for answers forever. To this end, we use FD. For
every process in smi.cng.mem that has not been removed, pi repeatedly inquires
FD and waits either for a reply from the process or for an answer from FD that
the process has failed. Notice that the strong completeness property guarantees
that pi will eventually continue, and strong accuracy guarantees that every slow
active process will eventually receive help in case of endless reconfig operations.

Nevertheless, if the number of reconfig operations is finite, it may be the
case that some slow process is not familiar with any of the correct members in
the current configuration, and no other process performs an operation (hence,
no process is helping). To ensure progress in such cases, every correct process
periodically sends its sm to all processes in its sm.cng.mem.

State survival. Before the reconfig operation can complete, the new sm needs to
propagate to a majority of the new configuration, in order to ensure its survival.
Therefore, after executing the state transition, pi sends smi to smi.cng members
and waits until it either receives acknowledgements from a majority or learns
of a newer sm. Notice that in the latter case, consensus in smi.cng.mem has
decided, meaning that at least a majority of smi.cng.mem has participated in
it, and so have learned of it.

366 A. Spiegelman and I. Keidar

p1 p2-slow

Suspected
FD stabiliza on

me

op21

op11=<REC,(add,p3)>
helpRequest(sm,…)...

helpReply(op21,…)
...

Gather:

Agree&perform: ...propose({op21,op11})

Decide({op21,op11})
p3......

rerurn op31

helpRequest(sm,…)

Update(sm)

rerurn

Wait
for p2

Wait for
majority

propose({op21,op11}) ...propose({op21,op11})

propose({op21,op11})

Fig. 3. Flow illustration: process p2 is slow. After stabilization time, process p1 helps
it by proposing its operation. Once p2’s operation is decided, it is reflected in every
up-to-date sm. Therefore, even if p1 fails before informing p2, p2 receives from the next
process that performs an operation, namely p3, an sm that reflects its operation, and
thus returns. Line arrows represent messages, and block arrows represent operation or
consensus invocations and responses.

Flow example. The algorithm flow is illustrated in Fig. 3. In this example, a slow
process p2 invokes operation op21 before FD’s stabilization time, ST . Process p1
invokes operation op11 = 〈add, p3〉 after ST. It first sends helpRequest to p2
and waits for it to reply with helpReply. Then it proposes op21 and op11 in a
consensus. When decide occurs, p1 updates its sm, sends it to all processes, and
waits for majority. Then op11 returns and p1 fails before p2 receives its update
message. Next, p3 invokes a reconfig operation, but this time when p2 receives
helpRequest with the up-to-date sm from p3, it notices that its operation has
been performed, and op21 returns.

Detailed description. The data structure of process pi is given in Algorithm 1.
The type Ops defines the representation of operations. The emulated state
machine, smi, is described above. Integer opNumi holds the sequence number
of pi’s current operation; opsi is a set that contains operations that need to be
completed for helping; the flag pendi is a boolean that indicates whether or not
pi is participating in an ongoing consensus; and myOpi is the latest operation
invoked at pi.

On Liveness of Dynamic Storage 367

Algorithm 1. Data structure of process pi

1: Ops � {〈RD, ⊥〉} ∪ {〈WR, v〉 | v ∈ V} ∪ {〈REC, c〉 | c ⊂ Changes}
2: smi.ts ∈ N, initially 0
3: smi.value ∈ V, initially v0
4: smi.cng = 〈mem, rem〉, where mem, rem ⊂ Π, initially 〈Π0, {}〉
5: smi.lastOps is a vector of size |smi.cng.mem|, where ∀pj ∈ smi.cng.mem,

smi.lastOps[j] = 〈num, res〉,
where num ∈ N, res ∈ V ∪ {“ok”}, initially 〈0, “ok” 〉

6: pendi ∈ {true,false}, initially false
7: opNumi ∈ N, initially 0
8: opsi ⊂ Π × Ops × N , initially {}
9: myOpi ∈ operation, initially ⊥

The algorithm of process pi is presented in Algorithms 2 and 3. We execute
every event handler, (operation invocation, message receiving, and consensus
decision), atomically excluding wait instructions; that is, other event handlers
may run after the handler completes or during a wait (lines 16,18,27 in Algo-
rithm2). The algorithm runs in two phases. The first, gather, is described in
Algorithm 2 lines 11–16 and in Algorithm 3 lines 52–58. Process pi first increases
its operation number opNumi, writes op together with opNumi to the set of
operations opsi, and sets myOpi to be op. Then it sends 〈“helpRequest”, . . .〉
to every member of A = smi.cng.mem (line 15), and waits for each process in
A that is not suspected by the FD or removed to reply with 〈“helpReply”, . . .〉.
Notice that smi may change during the wait because messages are handled, and
pi may learn of processes that have been removed.

When 〈“helpRequest”, num, sm〉 is received by process pj �= pi, if the received
sm is newer than smj , then process pj adopts sm and abandons any previous
consensus. Either way, pj sends 〈“helpReply”, . . .〉 with its current operation
myOpj in return.

Upon receiving 〈“helpReply”, opNumi, op, num〉 that corresponds to the cur-
rent operation number opNumi, process pi adds the received operation op, its
number num, and the identity of the sender to the set opsi.

At the end of this phase, process pi holds a set of operations, including its
own, that it tries to agree on in the second phase (the order among this set is
chosen deterministically, as explained below). Note that pi can participate in at
most one consensus per timestamp, and its propose might end up not being the
decided one, in which case it may need to propose the same operations again.
Process pi completes op when it discovers that op has been performed in smi,
whether by itself or by another process.

The second phase appears in Algorithm 2 lines 17–28, and in Algorithm 3 lines
31–51. In line 17, pi checks if its operation has not been completed yet. In line
18, it waits until it does not participate in any ongoing consensus (pendi = false)
or some other process helps it complete op. Recall that during a wait, other
events can be handled. So if a message with an up-to-date sm is received during
the wait, pi adopts the sm. In case op has been completed in sm, pi exits

368 A. Spiegelman and I. Keidar

Algorithm 2. Process pi’s algorithm: performing operations
10: upon invoke operation(op) do

� phase 1: gather

11: opNumi ← opNumi + 1

12: opsi ← {〈pi, op, opNumi〉}
13: myOpi ← op

14: A ← smi.cng.mem

15: for all p ∈ A send 〈“helpRequest”, opNumi, smi〉 to p

16: for all p ∈ A wait for 〈“helpReply”, opNumi, . . .〉 from p or p is suspected or p ∈ smi.cng.rem

� phase 2: agree&perform

17: while smi.lastOps[i].num �= opNumi

18: wait until ¬pendi or smi.lastOps[i].num = opNumi

19: if smi.lastOps[i].num = opNumi then break

20: pendi ← true

21: Req ← {〈pj , op, num〉 ∈ opsi | num > smi.lastOps[j].num}
22: propose(smi.cng, smi.ts, Req)

23: for all p ∈ smi.cng.mem send 〈“propose”, smi, Req〉 to p

24: if op.type = REC

25: ts ← smi.ts

26: for all p ∈ smi.cng.mem send 〈“update”, smi, opNumi〉 to p

27: wait for 〈“ACK”, opNumi〉 from majority of smi.cng.mem or smi.ts > ts

28: return smi.lastOps[i].res

29: periodically:

30: for all p ∈ smi.cng.mem send 〈“update”, smi, ⊥〉 to p

the main while (line 19). Otherwise, pi waits until it does not participate in
any ongoing consensus. This can be the case if (1) pi has not proposed yet,
(2) a message with a newer sm was received and a previous consensus was
subsequently abandoned, or (3) a decide event has been handled. In all cases, pi
marks that it now participates in consensus in line 20, prepares a new request Req
with the operations in opsi that have not been performed yet in smi in line 27,
proposes Req in the consensus associated with smi.ts, and sends 〈“propose”, . . .〉
to all the members of smi.cng.mem.

When 〈“propose”, sm,Req . . .〉 is received by process pj �= pi, if the received
sm is more updated than smj , then process pj adopts sm, abandons any previous
consensus, proposes Req in the consensus associated with sm.ts, and forwards
the message to all other members of smj .cng.mem. The same is done if sm is
identical to smj and pj has not proposed yet in the consensus associated with
smj .ts. Otherwise, pj ignores the message.

The event decidei(sm.cng, smi.ts, Req) indicates a decision in the consensus
associated with smi.ts. When this occurs, pi performs all the operations in Req
and changes smi’s state. It sets the value of the emulated DynaReg, smi.value,
to be the value of the write operation of the process with the lowest id, and
updates smi.cng according to the reconfig operations. In addition, for every
〈pj , op, num〉 ∈ Req, pi writes to smi.lastOps[j], num and op’s response, which
is “ok” in case of a write or a reconfig, and smi.value in case of a read. Next, pi
increases smi.ts and sets pendi to false, indicating that it no longer participates
in any ongoing consensus.

Finally, after op is performed, pi exits the main while. If op is not a recon-
fig operation, then pi returns the result, which is stored in smi.lastOps[i].res.
Otherwise, before returning, pi has to be sure that a majority of smi.cng.mem

On Liveness of Dynamic Storage 369

receives smi. It sends 〈“update”, sm, . . .〉 to all the processes in smi.cng.mem
and waits for 〈“ACK”, . . .〉 from a majority of them. Notice that it may be the
case that there is no such correct majority due to later reconfig operations and
failures, so, pi stops waiting when a more updated sm is received, which implies
that a majority of smi.cng.mem has already received smi (since a majority is
needed in order to solve consensus).

Upon receiving 〈“update”, sm, num〉 with a new sm from process pi, process
pj adopts sm and abandons any previous consensus. In addition, if num �=⊥, pj
sends 〈“ACK”, num〉 to pi (Algorithm 3 lines 59–63).

Beyond handling operations, in order to ensure progress in case no opera-
tions are invoked from some point on, every correct process periodically sends
〈“update”, sm,⊥〉 to all processes in its sm.cng.mem (Algorithm 2 line 30).

Algorithm 3. Process pi’s algorithm: event handlers
31: upon decidei(smi.cng, smi.ts, Req) do

32: W ← {〈p, value〉|〈p, 〈WR, value〉, num〉 ∈ Req}
33: if W �= {} � deterministically choose one of the writes to be the last

34: smi.value ← value with smallest p in W

35: for all 〈pj , op, num〉 ∈ Req � apply op to sm

36: if op.type = WR

37: smi.lastOps[j] ← 〈num,“ok”〉
38: else if op.type = RD

39: smi.lastOps[j] ← 〈num, smi.value〉
40: else

41: smi.cng.rem ← smi.cng.rem ∪ {p | 〈remove, p〉 ∈ op.changes}
42: smi.cng.mem ← smi.cng.mem ∪ {p | 〈add, p〉 ∈ op.changes} \ smi.cng.rem

43: smi.lastOps[j] ← 〈num,“ok”〉
44: smi.ts ← smi.ts + 1

45: pendi ← false

46: upon receiving 〈“propose”, sm, Req〉 from pj do

47: if (smi.ts > sm.ts) or (smi.ts = sm.ts ∧ pendi = true) then return

48: smi ← sm

49: pendi ← true

50: propose(smi.cng, smi.ts, Req)

51: for all p ∈ smi.cng.mem send 〈“propose”, smi, Req〉 to p

52: upon receiving 〈“helpRequest”, num, sm〉 from pj do

53: if smi.ts < sm.ts then � learn new sm

54: smi ← sm

55: pendi ← false

56: send 〈“helpReply”, num, myOpi, opNumi〉

57: upon receiving 〈“helpReply”, opNumi, op, num〉 from pj do

58: opsi ← opsi ∪ 〈pj , op, num〉

59: upon receiving 〈“update”, sm, num〉 from pj do

60: if smi.ts < sm.ts then � learn new sm

61: smi ← sm

62: pendi ← false

63: if num �=⊥ then send 〈“ACK”, num〉 to pj

370 A. Spiegelman and I. Keidar

5 Conclusion

We proved that in an asynchronous API-based reconfigurable model allowing
at least one failure, without restricting the number of reconfigurations, there is
no way to emulate dynamic safe wait-free storage. We further showed how to
circumvent this result using a dynamic eventually perfect failure detector: we
presented an algorithm that uses such a failure detector in order to emulate a
wait-free dynamic atomic MWMR register.

Our dynamic failure detector is (1) sufficient for this problem, and (2) can be
implemented in a dynamic eventually synchronous [11] setting with no restriction
on reconfiguration rate. An interesting question is whether a weaker such failure
detector exists. Note that when the reconfiguration rate is bounded, dynamic
storage is attainable without consensus, thus such a failure detector does not
necessarily have to be strong enough for consensus.

A Correctness Proof

In Sect. A.1 we prove that our algorithm satisfies atomicity, and in Sect.A.2
wait-freedom.

A.1 Atomicity

Every operation is uniquely defined by the process that invoked it and its local
number. During the proof we refer to operation op invoked by process pi with
local number opNumi = n as the tuple 〈pi, op, n〉. We begin the proof with three
lemmas that link completed operations to sm states.

Lemma 3. Consider operation op invoked by some process pi in r with local
number opNumi = n. If op returns in r at time t, then there is at least one
request Req that contains 〈pi, op, n〉 and has been chosen in a consensus in r
before time t.

Proof. When operation op return, smi.lastOps[i].num = n (line 17 or 18 in
Algorithm 2). Processes update sm during a decide handler, or when a newer
sm is received, and the first update occurs when some process pj writes n to
smj .lastOps[i].num during a decide handler. In the decide handler, n is written
to sm.lastOps[i].num when the chosen request in the corresponding consensus
contains 〈pi, op, n〉.
Lemma 4. For two processes pi, pj, let t be a time in a run r in which neither
pi or pj is executing a decide handler. Then at time t, if smi.ts = smj .ts, then
smi = smj.

Proof. We prove by induction on timestamps. Initially, all correct processes have
the same sm with timestamp 0. Now consider timestamp TS, and assume that
for every two processes pi, pj at any time not during the execution of decide

On Liveness of Dynamic Storage 371

handlers, if smi.ts = smj .ts = TS, then smi = smj . Processes increase their
sm.ts to TS+1 either at the end of a decide handler associated with TS or when
they receive a message with sm s.t. sm.ts = TS +1. By the agreement property
of consensus and by the determinism of the algorithm, all the processes that
perform the decide handler associated with TS perform the same operations,
and therefore move sm (at the end of the handler) to the same state. It is easy
to show by induction that all the processes that receive a message with sm s.t.
sm.ts = TS + 1 receive the same sm. The lemma follows.

Observation 1. For two process pi, pj, let sm1 and sm2 be the values of smj at
two different times in a run r. If sm1.ts ≥ sm2.ts, then sm1.lastOps[i].num ≥
sm2.lastOps[i].num.

Lemma 5. Consider operation 〈pi, op, opNumi〉 invoked in r with opNumi = n.
Then 〈pi, op, n〉 is part of at most one request that is chosen in a consensus in
r.

Proof. Assume by way of contradiction that 〈pi, op, n〉 is part of more than one
request that is chosen in a consensus in r. Now consider the earliest one, Req, and
assume that it is chosen in a consensus associated with timestamp TS. At the end
of the decide handler associated with timestamp TS, sm.lastOps[i].num = n and
the timestamp is increased to TS+1. Thus, by Lemma 4 sm.lastOps[i].num = n
holds for every sm s.t. sm.ts = TS + 1. Consider now the next request, Req1,
that contains 〈pi, op, n〉, and is chosen in a consensus. Assume that this consensus
associated with timestamp TS′, and notice that TS′ > TS. By the validity of
consensus, this request is proposed by some process pj , when smj .ts is equal to
TS′. By Observation 1, at this point smj .lastOps[i].num ≥ n, and therefore pj
does not include 〈pi, op, n〉 in Req1 (line 27 in Algorithm 2). A contradiction.

Based on the above lemmas, we can define, for each run r, a linearization σr,
where operations are ordered as they are chosen for execution on sm’s in r.

Definition 3. For a run r, we define the sequential run σr to be the sequence
of operations decided in consensus instances in r, ordered by the order of the
chosen requests they are part of in r. The order among operations that are part
of the same chosen request is the following: first all writes, then all reads, and
finally, all reconfig operations. Among each type, operations are ordered by the
process ids of the processes that invoked them, from the highest to the lowest.

Note that for every run r, the sequential run σr is well defined. Moreover,
σr contains every completed operation in r exactly once, and every invoked
operation at most once.

In order to prove atomicity we show that (1) σr preserves r’s real time order
(Lemma 6); and (2) every read operation rd in r returns the value that was
written by the last write operation that precedes rd in σr, or ⊥ if there is no
such operation (Lemma 7).

Lemma 6. If operation op1 returns before operation op2 is invoked in r, then
op1 appears before op2 in σr.

372 A. Spiegelman and I. Keidar

Proof. By Lemma 3, op1 is part of a request Req1 that is chosen in a consensus
before op2 is invoked, and thus op2 cannot be part of Req1 or any other request
that is chosen before Req1. Hence op1 appears before op2 in σr.

Lemma 7. Consider read operation rd = 〈pi, RD, n〉 in r, which returns a value
v. Then v is written by the last write operation that precedes rd in σr, or v =⊥
if there is no such operation.

Proof. By Lemmas 3 and 5, rd is part of exactly one request Req1 that is chosen
in a consensus, associated with some timestamp TS. Thus sm.lastOps[i] is set to
〈n, val〉 in the decide handler associated with TS. By Lemma 4, sm.lastOps[i] =
〈n, val〉 for all sm s.t. sm.ts = TS + 1. By Lemma 5 and since we consider only
well-formed runs, smi.lastOps[i] = 〈n, val〉 when rd returns, and therefore rd
returns val. Now consider three cases:

– There is no write operation in Req1 or in any request that was chosen before
Req1 in r. In this case, there is no write operation before rd in σr, and
no process writes to sm.value before sm.lastOps[i] is set to 〈n, val〉, and
therefore, rd returns ⊥ as expected.

– There is a write operation in Req1 in r. Consider the write operation w in Req1
that is invoked by the process with the lowest id, and assume its argument is
v′. Notice that w is the last write that precedes rd in σr. By the code of the
decide handler, sm.value equals v′ at the time when sm.lastOps[i] is set to
〈n, val〉. Therefore, val = v′, rd returns the value that is written by the last
write operation that precedes it in σr.

– There is no write operation in Req1, but there is a request that contains a write
operation and is chosen before Req1 in r. Consider the last such request Req2,
and consider the write operation w invoked by the process with the lowest id
in Req2. Assume that w’s argument is v′, and Req2 was chosen in a consensus
associated with timestamp TS′ (notice that TS′ < TS). By the code of
the decide handler and Lemma 4, in all the sm’s s.t. sm.ts = TS′ + 1, the
value of sm.value is v′. Now, since there is no write operation in any chosen
request between Req2 and Req1 in r, no process writes to sm.value when
TS′ < sm.ts < TS. Hence, when sm.lastOps[i] is set to 〈n, val〉, sm.value
equals v′, and thus val = v′. Therefore, rd returns the value that is written
by the last write operation that precedes rd in σr.

Corollary 1. Algorithms 1–3 implement an atomic storage service.

A.2 Liveness

Consider operation opi invoked at time t by a correct process pi in run r. Notice
that r is a run with either infinitely or finitely many invocations. We show that,
in both cases, if pi is active in r, then opi returns in r.

We associate the addition or removal of process pj by a process pi with
the timestamp that equals smi.ts at the time when the operation returns. The
addition of all processes in P0 is associated with timestamp 0.

On Liveness of Dynamic Storage 373

First, we consider runs with infinitely many invocations. In Lemma8, we
show that for every process p, every sm associated with a larger timestamp than
p’s addition contains p in sm.cng.mem. In Observation 2, we show that in a run
with infinitely many invocations, for every timestamp ts, there is a completed
operation that has a bigger timestamp than ts at the time of the invocation.
Moreover, after the stabilization time of the FD, operations must help all the
slow active processes in order to complete. In Lemma 9, we use the observation
to show that any operation invoked in a run with infinitely many invocations
returns.

Next, we consider runs with finitely many invocations. We show Lemma 10
that eventually all the active members of the last sm adopt it. Then, in
Lemma 11, we show that every operation invoked by an active process completes.
Finally, Theorem2, stipulates that the algorithm satisfies wait-freedom.

Lemma 8. Assume the addition of pi is associated with timestamp TS in run
r. If pi is active, then pi ∈ sm.cng.mem for every sm s.t. sm.ts ≥ TS.

Proof. The proof is by induction on sm.ts. Base: If pi ∈ P0, then pi ∈
sm.cng.mem for all sm s.t. sm.ts = 0. Otherwise, 〈add, pi〉 is part of a request
that is chosen in a consensus associated with timestamp TS′ = TS−1, and thus,
by Lemma 4, pi ∈ sm.cng.mem for all sm s.t. sm.ts = TS′ + 1 = TS. Induc-
tion: Process pi is active, so no process invokes 〈remove, pi〉, and therefore,
together with the validity of consensus, no chosen request contains 〈remove, pi〉.
Hence, if pi ∈ sm.cng.mem for sm with sm.ts = k, then pi ∈ sm.cng.mem for
every sm s.t. sm.ts = k + 1.

Claim. Consider a run r of the algorithm with infinitely many invocations. Then
for every time t and timestamp TS, there is a completed operation that is invoked
after time t by a process with sm.ts > TS at the time of the invocation.

Proof. Recall that r is well-formed and only processes in V (t).join can invoke
operations at time t. Therefore, there are infinitely many completed operations
in r. Since a finite number of operations are completed with each timestamp,
the claim follows.

Lemma 9. Consider an operation opi invoked at time t by an active process pi
in a run r with infinitely many invocations. Then opi completes in r.

Proof. Assume by way of contradiction that pi is active and opi does not com-
plete in r. Assume w.l.o.g. that pi’s addition is associated with timestamps TS
and opi is invoked with opNumi = n. Consider a time t′ > t after pi invokes
opi and the FD has stabilized. By Claim A.2, there is a completed operation opj
in r, invoked by some process pj at a time t′′ > t′ when smj .ts > TS, whose
completion is associated with timestamp TS′. By Lemma 8, pi ∈ smj .cng.mem,
at time t′′. Now by the algorithm and by the eventual strong accuracy prop-
erty of the FD, pj proposes opj and opi in the same request, and continues to
propose both of them until one is selected. Note that it is impossible for opj
to be selected without opi since any process that helps pj after stabilization

374 A. Spiegelman and I. Keidar

also helps pi. Hence, since opj completes, they are both performed in the same
decide handler. The run is well-formed, so pi does not invoke operations that are
associated with opNumi > n. Hence, following the time when opi is selected,
for all sm s.t. sm.ts > TS′, sm.lastOps[i].num = n. Now, again by ClaimA.2,
consider a completed operation opk in r, that is invoked by some process pk at
time t′′′ after the stabilization time of the FD s.t. smk.ts > TS′ at time t′′′.
Operation opk cannot complete until pi receives pk’s sm. Therefore, pi receives
sm s.t. sm.ts ≥ TS′, and thus sm.lastOps[i].num = n. Therefore, pi learns that
opi was performed, and opi completes. A contradiction.

We now proceed to prove liveness in runs with finitely many invocations.

Definition 4. For every run r of the algorithm, and for any point t in r, let
TSt be the timestamp associated with the last consensus that made a decision in
r before time t. Define smt, at any point t in r, to be the sm’s state after the
completion of the decide handler associated with timestamp TSt at any process.
By Lemma4, smt is unique. Recall that sm0 is the initial state.

Claim. For every run r of the algorithm, and for any point t in r, there is a
majority of smt.cng.mem M s.t. M ⊆ (V (t).membership ∪ P (t).join) \ F (t).

Proof. By the code of the algorithm, for every run r and for any point t in r,
V (t).membership ⊆ smt.cng.mem and smt.cng.mem ∩ V (t).remove = {}. The
claim follows from failure condition.

Observation 2. Consider a run r of the algorithm with finitely many invoca-
tions. Then there is a point t in r s.t. for every t′ > t, smt = smt′

. Denote this
sm to be ˆsm.

The following lemma follows from Lemma 4, Claim A.2, and the periodic
update messages; for space limitations, we omit its proof.

Lemma 10. Consider a run r of the algorithm with finitely many invocations.
Then eventually for every active process pi ∈ ˆsm.cng.mem, smi = ˆsm.

Lemma 11. Consider an operation opi invoked at time t by an active process
pi in a run r with finitely many invocations. Then opi completes in r.

Proof. By Lemma 8, pi ∈ ˆsm.cng.mem, and by Lemma 10, there is a point t′ in
r s.t. smi = ˆsm for all t ≥ t′. Assume by way of contradiction that opi does not
complete in r. Therefore, opi is either stuck in one of its waits or continuously
iterates in a while loop. In each case, we show a contradiction. Denote by con
the consensus associated with timestamp ˆsm.ts. By definition of ˆsm, no decision
is made in con in r.

– Operation opi waits in line 16 (Algorithm 2) forever. Notice that ˆsm.cng.rem
contains all the process that were removed in r, so, after time t′, pi does not
wait for a reply from a removed process. By the strong completeness property
of FD, pi does not wait for faulty processes forever. A contradiction.

On Liveness of Dynamic Storage 375

– Operation opi waits in line 18 (Algorithm 2) forever. Notice that from time t′

till pi proposes in con, pendi = false. Therefore, pi proposes in con in line 22
(Algorithm 2), and waits in line 18 after the propose. By Observation 2, there
is a majority M of ˆsm.cng.em s.t. M ⊆ V (t).membership ∪ P (t).join \ F (t).
Therefore, by the termination of consensus, eventually a decision is made in
con. A contradiction to the definition of ˆsm.

– Operation opi remains in the while loop in line 17 (Algorithm2) forever.
Since it does not waits in line 18 (Algorithm2) forever, opi proposes infinitely
many times, and since each propose is made in a different consensus and pi
can propose in a consensus beyond the first one only once a decision is made
in the previous one, infinitely many decisions are made in r. A contradiction
to the definition of ˆsm.

– Operation opi waits in line 27 (Algorithm 2) forever. Consider two cases. First,
smi �= ˆsm when pi performs line 26 (Algorithm 2). In this case, pi continues at
time t′, when it adopts ˆsm, because smi.ts > ts hold at time t′. In the second
case (smi = ˆsm when pi performs line 26), pi sends update message to all
processes in ˆsm.cng.mem, and waits for a majority to reply. By Observation 2,
there is a correct majority in ˆsm.cng.mem, and thus pi eventually receives
the replies and continues. In both cases we have contradiction.

Therefore, pi completes in r.

We conclude with the following theorem:

Theorem 2. Algorithms 1–3 implement wait-free atomic dynamic storage.

References

1. Aguilera, M.K., Keidar, I., Malkhi, D., Martin, J.P., Shraer, A., et al.:
Reconfiguring replicated atomic storage: a tutorial. Bull. EATCS 102, 84–108
(2010)

2. Aguilera, M.K., Keidar, I., Malkhi, D., Shraer, A.: Dynamic atomic storage without
consensus. J. ACM 58(2), 7 (2011)

3. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM (JACM) 42(1), 124–142 (1995)

4. Attiya, H., Chung, H.C., Ellen, F., Kumar, S., Welch, J.L.: Simulating a shared
register in an asynchronous system that never stops changing. In: Moses, Y. (ed.)
DISC 2015. LNCS, vol. 9363, pp. 75–91. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48653-5 6

5. Baldoni, R., Bonomi, S., Kermarrec, A.M., Raynal, M.: Implementing a register in
a dynamic distributed system. In: 29th IEEE International Conference on Distrib-
uted Computing Systems, ICDCS 2009, pp. 639–647. IEEE (2009)

6. Baldoni, R., Bonomi, S., Raynal, M.: Regular register: an implementation in a
churn prone environment. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009.
LNCS, vol. 5869, pp. 15–29. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-11476-2 3

7. Baldoni, R., Bonomi, S., Raynal, M.: Implementing a regular register in an even-
tually synchronous distributed system prone to continuous churn. IEEE Trans.
Parallel Distrib. Syst. 23(1), 102–109 (2012)

https://doi.org/10.1007/978-3-662-48653-5_6
https://doi.org/10.1007/978-3-662-48653-5_6
https://doi.org/10.1007/978-3-642-11476-2_3
https://doi.org/10.1007/978-3-642-11476-2_3

376 A. Spiegelman and I. Keidar

8. Birman, K., Malkhi, D., Van Renesse, R.: Virtually synchronous methodology for
dynamic service replication (2010)

9. Chockler, G., Gilbert, S., Gramoli, V., Musial, P.M., Shvartsman, A.A.: Recon-
figurable distributed storage for dynamic networks. J. Parallel Distrib. Comput.
69(1), 100–116 (2009)

10. Chockler, G.V., Keidar, I., Vitenberg, R.: Group communication specifications: a
comprehensive study. ACM Comput. Surv. (CSUR) 33(4), 427–469 (2001)

11. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

12. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

13. Gafni, E., Malkhi, D.: Elastic configuration maintenance via a parsimonious specu-
lating snapshot solution. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 140–
153. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48653-5 10

14. Gilbert, S., Lynch, N., Shvartsman, A.: RAMBO II: rapidly reconfigurable atomic
memory for dynamic networks. In: DSN. IEEE Computer Society (2003)

15. Gilbert, S., Lynch, N.A., Shvartsman, A.A.: RAMBO: a robust, reconfigurable
atomic memory service for dynamic networks. Distrib. Comput. 23(4), 225–272
(2010)

16. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

17. Jehl, L., Meling, H.: The case for reconfiguration without consensus. In: Proceed-
ings of the 2016 ACM Symposium on Principles of Distributed Computing. ACM
(2016)

18. Jehl, L., Vitenberg, R., Meling, H.: SmartMerge: a new approach to reconfiguration
for atomic storage. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 154–169.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48653-5 11

19. Ko, S.Y., Hoque, I., Gupta, I.: Using tractable and realistic churn models to analyze
quiescence behavior of distributed protocols. In: IEEE Symposium on Reliable
Distributed Systems, SRDS 2008, pp. 259–268. IEEE (2008)

20. Lamport, L.: On interprocess communication. Distrib. Comput. 1(2), 86–101
(1986)

21. Lamport, L., Malkhi, D., Zhou, L.: Reconfiguring a state machine. ACM SIGACT
News 41(1), 63–73 (2010)

22. Lin, K., Hadzilacos, V.: Asynchronous group membership with oracles. In: Jayanti,
P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 79–94. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48169-9 6

23. Lynch, N., Shvartsman, A.A.: RAMBO: a reconfigurable atomic memory service for
dynamic networks. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 173–190.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36108-1 12

24. Mostefaoui, A., Raynal, M., Travers, C., Patterson, S., Agrawal, D., Abbadi, A.E.:
From static distributed systems to dynamic systems. In: 24th IEEE Symposium
on Reliable Distributed Systems, SRDS 2005, pp. 109–118. IEEE (2005)

25. Shraer, A., Martin, J.P., Malkhi, D., Keidar, I.: Data-centric reconfiguration with
network-attached disks. In: LADIS 2010 (2010)

26. Spiegelman, A., Keidar, I., Malkhi, D.: Dynamic reconfiguration: a tutorial. In:
OPODIS (2015)

27. Spiegelman, A., Keidar, I., Malkhi, D.: Dynamic reconfiguration: abstraction and
optimal asynchronous solution. In: DISC (2017)

https://doi.org/10.1007/978-3-662-48653-5_10
https://doi.org/10.1007/978-3-662-48653-5_11
https://doi.org/10.1007/3-540-48169-9_6
https://doi.org/10.1007/3-540-36108-1_12

Author Index

Bemmann, Pascal 212
Biermeier, Felix 212
Bilò, Davide 303
Blanchard, Peva 106
Bonnet, François 227
Bramas, Quentin 227
Brandt, Sebastian 140
Bürmann, Jan 212

Casteigts, Arnaud 321
Censor-Hillel, Keren 71
Colella, Feliciano 303
Czyzowicz, Jurek 158

Défago, Xavier 227
Di Luna, Giuseppe Antonio 339
Disser, Yann 125

Feuilloley, Laurent 263
Flocchini, Paola 339
Foerster, Klaus-Tycho 140

Georgiou, Konstantinos 158
Godon, Maxime 158
Gorain, Barun 37
Gotfryd, Karol 174
Gualà, Luciano 303
Guerraoui, Rachid 106

Halldórsson, Magnús M. 3, 247
Holzer, Stephan 3

Jurdzinski, Tomasz 15

Keidar, Idit 356
Kemper, Arne 212
Klasing, Ralf 321
Klonowski, Marek 174
Knollmann, Till 212
Knorr, Steffen 212
Konrad, Christian 247
Korman, Amos 195
Kothe, Nils 212
Kranakis, Evangelos 158
Krizanc, Danny 158

Leucci, Stefano 303

Mäcker, Alexander 212
Malatyali, Manuel 212
Markatou, Evangelia Anna 3
Meyer auf der Heide, Friedhelm 212
Mousset, Frank 125

Narayanan, Lata 283
Neggaz, Yessin M. 321
Nguyen, Thanh Dang 227
Noever, Andreas 125

Ostrovsky, Rafail 53

Pagli, Linda 339
Pająk, Dominik 174
Paz, Ami 71
Pelc, Andrzej 37
Perry, Mor 53, 71
Peters, Joseph G. 321
Prencipe, Giuseppe 339
Proietti, Guido 303

Rabie, Mikaël 90
Richner, Benjamin 140
Riechers, Sören 212
Rodeh, Yoav 195
Rosenbaum, Will 53
Rozanski, Michal 15
Rytter, Wojciech 158

Santoro, Nicola 339
Schaefer, Johannes 212
Škorić, Nemanja 125
Spiegelman, Alexander 356
Stachowiak, Grzegorz 15
Steger, Angelika 125
Sundermeier, Jannik 212

Viglietta, Giovanni 339

Wattenhofer, Roger 140
Włodarczyk, Michał 158
Wu, Kangkang 283

	Preface
	Organization
	Laudatio
	Invited Presentations
	Online and Approximation Algorithms for Optical Networks and Scheduling
	Ignorance is Bliss (for Proving Impossibility)
	Amoebots and Beyond: Models and Approaches for Programmable Matter
	The Many Faces of Clock Synchronization
	Contents
	Wireless Networks
	Leader Election in SINR Model with Arbitrary Power Control
	1 Introduction
	1.1 Related Work

	2 Model and Problem Statement
	3 2-Round Leader Election Algorithm
	3.1 The Essence of Our Algorithm
	3.2 Leader Election Algorithm
	3.3 Analysis

	4 Range of Power Needed for a 2-Round Leader Election
	4.1 Upper Bound
	4.2 Lower Bound

	5 Trading Time for Power Range
	5.1 Multi-round Protocol
	5.2 Lower Bound for Multi-round Protocols

	6 Conclusions and Acknowledgments
	References

	Token Traversal in Ad Hoc Wireless Networks via Implicit Carrier Sensing
	1 Introduction
	2 The Network Model
	3 Preliminaries and Combinatorial Tools
	3.1 Combinatorial Tools
	3.2 SINR Related Properties

	4 High Level Idea of the Algorithm
	5 Implicit Carrier Sensing and Network Sparsification
	5.1 Implicit Carrier Sensing
	5.2 Network Sparsification

	6 Token Traversal Algorithm
	7 Lower Bound and Extensions
	8 Conclusions
	References

	Identifiers and Labelling
	Short Labeling Schemes for Topology Recognition in Wireless Tree Networks
	1 Introduction
	2 Preliminaries and Organization
	3 A Lower Bound on the Length of Labeling Schemes
	4 Time for Maximum Degree 3 and Diameter D 4
	4.1 The Main Algorithm
	4.2 The Lower Bound

	5 Time for Small Maximum Degree or Small Diameter D
	5.1 Diameter D=3
	5.2 Diameter D=2
	5.3 Maximum Degree =2

	6 Conclusion
	References

	Space-Time Tradeoffs for Distributed Verification
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Model and Definitions
	2.1 Computational Framework
	2.2 Proof-Labeling Schemes and t-PLS

	3 General Space-Time Tradeoff Results
	3.1 Universal t-PLS
	3.2 Lower Bound Tool

	4 Acyclicity
	4.1 Lower Bound for ACYCLIC
	4.2 Upper Bound for ACYLCLIC
	4.3 Recursive Acyclicity Checking

	References

	Approximate Proof-Labeling Schemes
	1 Introduction
	1.1 Context and Objective
	1.2 Our Contribution
	1.3 Related Work

	2 Model and Definitions
	2.1 Computational Framework
	2.2 Proof-Labeling Schemes
	2.3 The New Model: Approximate Proof-Labeling Schemes
	2.4 Problem Definitions
	2.5 Two-Party Communication Complexity

	3 PLS and APLS for Diameter
	4 Maximum Weight Matching
	5 Discussion
	References

	Global Versus Local Computations: Fast Computing with Identifiers
	1 Introduction
	2 Model
	3 Fast Computing Known Results
	3.1 Epidemics
	3.2 Presburger's Arithmetic

	4 Some Computable Protocols
	4.1 From Monte Carlo to Las Vegas Protocols
	4.2 The Size of the Population

	5 Impossibility Results
	6 Set Considerations
	References

	On the Smallest Grain of Salt to Get a Unique Identity
	1 Introduction
	2 Model and Definitions
	2.1 Algorithms
	2.2 Schedules

	3 Lower Bounds on the Running Time
	4 The TORCHE Algorithm
	4.1 Fold Operation
	4.2 Algorithm Details

	5 Encompassing Previous Approaches
	6 Related Work
	References

	Mobile Agents
	A General Lower Bound for Collaborative Tree Exploration
	1 Introduction
	2 Results
	3 Tree Exploration Games
	4 Lower Bound Construction
	5 Consequences for Competitiveness
	6 Conclusions
	References

	Wireless Evacuation on m Rays with k Searchers
	1 Introduction
	2 Preliminaries
	3 m Robots on m Rays
	3.1 The General Case of m Robots on m Rays
	3.2 The Case of 3 Robots on 3 Rays

	4 1< K<m Robots on m Rays
	4.1 An Upper Bound on the Competitive Ratio
	4.2 A Lower Bound on the Competitive Ratio

	5 Concluding Remarks
	References

	Evacuation from a Disc in the Presence of a Faulty Robot
	1 Introduction
	1.1 Preliminaries/The Model
	1.2 Related Work
	1.3 Outline and Results of the Paper

	2 Evacuation Protocols
	2.1 Evacuating with Crash-Faults
	2.2 Evacuating in the Presence of Byzantine Faults

	3 Lower Bounds for Evacuation Protocols
	4 Discussion and Open Problems
	References

	On Location Hiding in Distributed Systems
	1 Introduction
	2 Model
	3 Our Results
	4 Previous and Related Work
	5 Location Hiding for Known Topology
	5.1 Single Agent Scenario
	5.2 Location Hiding for k Agents and Known Network Topology

	6 Location Hiding for Unknown Topology
	6.1 No Memory
	6.2 Unlimited Memory

	7 Conclusions and Further Research
	References

	Probabilistic Algorithms
	Parallel Search with No Coordination
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Ordering of Boxes is Known
	3 Exact Distribution is Known
	3.1 Preliminaries
	3.2 Main Lemma
	3.3 Optimal Algorithm
	3.4 Uniform Distribution

	4 Pareto Distributions
	4.1 Lower Bound
	4.2 Upper Bound

	References

	Monitoring of Domain-Related Problems in Distributed Data Streams
	1 Introduction
	1.1 Model and Problems
	1.2 Our Contribution
	1.3 Related Work

	2 The Domain Monitoring Problem
	3 The Frequency Monitoring Problem
	4 The Count Distinct Monitoring Problem
	References

	Killing Nodes as a Countermeasure to Virus Expansion
	1 Introduction
	2 Related Work
	3 Model and Definitions
	4 Equivalence of Site Percolation and K0-Hop Strategy
	5 Virus Containment with Priority Killing Messages
	5.1 Definitions and Explanations
	5.2 Proof

	6 The Case of Non-Priority Killing Message
	7 Conclusion
	A Appendix
	A.1 K1-Hop Strategy Example
	A.2 Omitted Proof

	References

	Computational Complexity
	Improved Distributed Algorithms for Coloring Interval Graphs with Application to Multicoloring Trees
	1 Introduction
	2 Preliminaries
	3 Algorithms for Coloring Interval Graphs
	3.1 Algorithm in the LOCAL model
	3.2 Adapting the Algorithm to the CONGEST Model

	4 Lower Bound for Coloring Interval Graphs in the LOCAL Model
	5 Conclusion
	References

	How Long It Takes for an Ordinary Node with an Ordinary ID to Output?
	1 Introduction
	2 Model and Definitions
	3 Exponential Gap for a Global Language
	4 Local Average Lemma and Application
	4.1 Applications

	5 Random ID Assignments and Randomized Algorithms
	5.1 Node-Averaged Randomized Complexity

	6 Conclusion and Open Questions
	References

	How to Choose Friends Strategically
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Notation and Preliminaries
	3 NP-Hardness of Max-Inf-Links
	4 Optimal Algorithm for Trees
	5 Faster Algorithm for Paths
	5.1 Cycles

	6 (n) Algorithm for Cliques
	7 Discussion
	References

	Effective Edge-Fault-Tolerant Single-Source Spanners via Best (or Good) Swap Edges
	1 Introduction
	2 Problem Definition
	3 An Algorithm for ABSE-MS
	4 An Algorithm for ABSE-AS
	5 An Approximate Solution for ABSE-MS
	6 Quality Analysis
	7 Conclusions
	References

	Dynamic Networks
	A Generic Framework for Computing Parameters of Sequence-Based Dynamic Graphs
	1 Introduction
	1.1 Contributions

	2 Definitions and Observations
	3 Generic Algorithm
	3.1 Informal Description of the Algorithm

	4 Illustration of the Framework
	4.1 T-Interval Connectivity (Maximization)
	4.2 Bounded Realization of the Footprint (Minimization)
	4.3 Temporal Diameter (Minimization)
	4.4 Round-Trip Temporal Diameter (Minimization)
	4.5 Parallel Version

	5 Conclusions
	References

	Gathering in Dynamic Rings
	1 Introduction
	1.1 Background and Problem
	1.2 Main Contributions

	2 Model and Basic Limitations
	2.1 Model and Terminology
	2.2 Configurations and Elections
	2.3 Basic Limitations and Properties

	3 General Solution Structure
	4 Gathering with Cross Detection
	4.1 With Cross Detection: Without Chirality
	4.2 Knowledge of n is More Powerful Than Knowledge of k
	4.3 With Cross Detection: With Chirality

	5 Without Cross Detection
	5.1 Without Cross Detection: With Chirality
	5.2 Without Cross Detection: Without Chirality

	References

	On Liveness of Dynamic Storage
	1 Introduction
	2 Model and Dynamic Storage Problem Definition
	2.1 Preliminaries
	2.2 Dynamic Storage

	3 Impossibility of Wait-Free Dynamic Safe Storage
	4 Oracle-Based Dynamic Atomic Storage
	4.1 Dynamic Failure Detector
	4.2 Dynamic Storage Algorithm

	5 Conclusion
	A Correctness Proof
	A.1 Atomicity
	A.2 Liveness

	References

	Author Index

