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Preface

The 23rd International Workshop on Algebraic Development Techniques (WADT
2016) took place in Gregynog, Wales, UK, during September 21–24, 2016. The
workshop took place under the auspices of IFIP WG 1.3 and was organized by the
Department of Computer Science of Swansea University, UK. At the workshop, there
were three invited talks and 20 contributed presentations, covering specification lan-
guages such as Event-B, CASL, and Maude, foundations of system specification such
as institutions, monads, logics and their combinations, axiomatizations of data types,
graph models and graph transformations, and applications including algebraic data-
bases, service-oriented computing, ontologies, and the Internet of Things. Participants
of the workshop travelled from Argentina, Canada, France, Germany, Ireland, Italy,
The Netherlands, Norway, Poland, Portugal, Spain, Sweden, the USA, and the UK.
This volume contains selected, peer-reviewed papers that were invited for submission
after the workshop.

Fig. 1. Participants of WADT 2016 at Gregynog.



The algebraic approach to system specification encompasses many aspects of the
formal design of software systems. Originally born as formal method for reasoning
about abstract data types, it now covers new specification frameworks and program-
ming paradigms (such as object-oriented, aspect-oriented, agent-oriented, logic, and
higher-order functional programming) as well as a wide range of application areas
(including information systems, concurrent, distributed, and mobile systems). The
workshop provided an opportunity to present recent and ongoing work, to meet col-
leagues, and to discuss new ideas and future trends. Typical topics of interest are:

– Foundations of algebraic specification
– Other approaches to formal specification, including process calculi and models of

concurrent, distributed, and mobile computing
– Specification languages, methods, and environments
– Semantics of conceptual modelling methods and techniques
– Model-driven development
– Graph transformations, term rewriting, and proof systems
– Integration of formal specification techniques
– Formal testing, quality assurance, validation, and verification

The WADT can look back on a proud history of workshops. The first workshop
took place in 1982 in Sorpesee, followed by Passau (1983), Bremen (1984),
Braunschweig (1986), Gullane (1987), Berlin (1988), Wusterhausen (1990), Dourdan
(1991), Caldes de Malavella (1992), S. Margherita (1994), Oslo (1995), Tarquinia
(1997), Lisbon (1998), Chateau de Bonas (1999), Genoa (2001), Frauenchiemsee
(2002), Barcelona (2004), La Roche en Ardenne (2006), Pisa (2008), Etelsen (2010),
Salamanca (2012), and Sinaia (2014).

These proceedings collect selected contributions of varying nature:

– Kenneth Johnson, John Tucker, and Victoria Wang contribute a fully peer-reviewed
paper based on their invited talk: “Theorizing Monitoring: Algebraic Models of
Web Monitoring in Organisations.”

– Alessio Lomuscio and Till Mossakowski presented invited talks at the work-
shop. These proceedings include abstracts for these talks, “Advances in Verification
of Multi-Agent System” and “The Distributed Ontology, Model and Specification
Language – DOL”, respectively.

– Furthermore, this volume includes two fully peer-reviewed survey papers. Renato
Neves, Alexandre Madeira, Luis Barbosa, and Manuel A. Martins, “Asymmetric
Combination of Logics Is Functorial: A Survey”; and Ryan Wisnesky, David I.
Spivak, and Patrick Schultz, “Algebraic Model Management.”

– Finally, the main body of this volume comprises nine peer-reviewed papers that
present new results in the field of algebraic development techniques.

We hope that reading the contributions in this volume will bring as much joy as we
had at our workshop in September 2016 in Gregynog.

June 2017 Phillip James
Markus Roggenbach
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Advances in Verification of Multi-agent Systems

Alessio Lomuscio(B)

Department of Computing, Imperial College London, London, UK
a.lomuscio@imperial.ac.uk

Abstract. I was honoured by the opportunity to share with the WADT
2016 attendees some of the recent work in our lab on verifying multi-
agent systems (MAS) against agent-based specifications.

MAS are distributed autonomous systems in which the components,
or agents, act autonomously in order to reach private or common goals.
MAS have been used as a paradigm to realise a wide number of appli-
cations ranging from autonomous systems and robotics to services, elec-
tronic assistants, and beyond. Logic-based specifications for MAS typ-
ically do not refer only to the agents’ temporal evolution, but also to
their knowledge, strategic abilities, and other AI-inspired primitives.

I began by reporting algorithms for symbolic model checking against
epistemic and strategic specifications [1,2]. I highlighted potential
speedups of these techniques via a number of techniques including sym-
metry reduction [3], parallel approaches [4], and SAT-based methods [5].

I then demonstrated MCMAS [6,7], an open-source BDD-based
model checker supporting these specification languages. A case study
concerning the verification of diagnosability and fault-tolerance of an
autonomous underwater vehicle was discussed [8,9] as well applications
to the verification of artifact-based services [10,11].

I concluded by considering the case of MAS where the number of
agents is unbounded and cannot be determined at design time. This is a
typical assumption in robotic swarms and recent internet of things appli-
cations. In view of solving this, I reported our approach to the param-
eterised model checking problem. While this is generally undecidable,
I presented results that establish sufficient conditions for determining a
cut-off of a MAS [12–14], i.e., the number of agents that need to analysed
for verifying a MAS composed of any number of components. I concluded
by presenting applications to the verification of related notions, such as
emergence [15–17].

Acknowledgements. The work presented in this talk was partly funded by the
EPSRC Research Project “Trusted Autonomous Systems”.
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The Distributed Ontology, Model
and Specification Language – DOL

Till Mossakowski(B)

Institute of Intelligent Cooperating Systems,
Otto-von-Guericke-University Magdeburg, Magdeburg, Germany

till@iks.cs.uni-magdeburg.de

Over the last decades, the WADT community has studied the formal specifica-
tion of software (and hardware) in great detail [1,9,42]. One important aspect is
the structuring of specifications in a modular way [43], which has been covered
in specification languages like CLEAR [6], OBJ [18], ASL [46] and many others.
Here, a powerful abstraction is the notion of institution, introduced by Goguen
and Burstall [17]. It enables the study of concepts and languages for structured
specifications in a way that is completely independent of the underlying logical
system—the only condition being that the logical system is formalised as an
institution, which is a rather mild requirement. Such an institution independent
kernel language for structured specifications has been introduced in [41], and
based on this, later the Common algebraic specification language Casl [3,37]
has been standardised.

While all these developments, including Casl, focus on formal specifications,
the approach of providing an institution-independent language for the structur-
ing of logical theories (or more precisely, finite presentations of these) can be
applied to other areas as well.

In particular, in research on ontologies, the notion of conservative extension
has been cited from the algebraic specification literature (e.g. [25]) und used
for the notion of ontology module extraction in various description logics (see
e.g. [21], and [19] for an institution-independent generalisation). The existing
multitude of ontology languages like OWL and its sublogics, RDF, RDFS and
their relations have been captured using institutions [23,32].

Moreover, using the notion of heterogeneous multi-logic specification devel-
oped in [2,12,14,22,27,28,36,44], a program for the institution-based formali-
sation of UML multi-viewpoint models has been formulated [7,8,20]. Note that
model here is to be understood in the sense of model-driven engineering (MDE),
to be distinguished from models in the sense of logical model theory (and insti-
tutional specification theory). In order to avoid confusion, we henceforth call the
former MDE models.

Based on this observation of similarities between ontologies, MDE mod-
els and specifications, the Distributed Ontology, Model and Specification Lan-
guage (DOL) has been proposed and adopted as an OMG standard [31,33,38].
Ontologies, MDE models and specifications are commonly abbreviated by the
acronym OMS. Hence, DOL can be seen as a language for building OMS in
a structured way and expressing their relations. Casl already provides several
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
P. James and M. Roggenbach (Eds.): WADT 2016, LNCS 10644, pp. 5–10, 2017.
https://doi.org/10.1007/978-3-319-72044-9_2



6 T. Mossakowski

structuring constructs, e.g. (possibly conservative or definitional) extensions,
unions, translations and hidings. DOL extends these in several ways:

Theory-level semantics. Casl uses a model-theoretic semantics, that is, a
specification denotes a signature and a class of models over that signature.
DOL adopts this, but also features theory-level semantics [40,42] for certain
constructs like module extraction or filtering.

Reduction. Casl features hiding of a specification (aka OMS) along a signa-
ture morphism, corresponding to the restriction to an export interface. DOL
features three more similar operations:

Module extraction. Extraction of a sub-OMS such that the original OMS
is a conservative extension [21]. The extracted module may extend the
given restriction signature.

Approximation gives the theorems visible over the restriction signature and
corresponds to the theory-level semantics of hiding [40,42]. The problem
of capturing this theory by a finite presentation has been studied for
ontology languages under the terms forgetting and uniform interpolation
[24,45].

Filtering. Extraction of a sub-OMS consisting of all sentences that actually
are formed over the restricted signature [39].

Minimization. Whereas free specifications in Casl allow the selection of the
least intepretation of e.g. predicates, minimization allows the selection of all
minimal interpretations, following McCarthy’s circumscription [26]. Also, the
duals (cofree and maximal OMS) are included. Cofree OMS can be used for
coinductive specification of process types, like in CoCasl [34].

Refinement. Simple refinements are specification morphisms [42] (logically:
interpretations of theories [15], in terms of OBJ [18] and Casl [3,37]: views).
The refinement language of [30] is included into DOL, that is, certain oper-
ation on refinements are available, like composition and extension. However,
neither architectural specifications nor branching refinements are included,
because their semantics is still subject of ongoing research ([11] had not been
available when the DOL standard emerged).

Equivalence. OMS can be declared to equivalent, if they have a common def-
initional extension [22,35]

Alignment. This notion is a relational generalisation of signature morphisms
(which are typically functional in nature) [13,16,47]. Between a symbol from
the source OMS and one from the target OMS, different relations can be
specified.

Networks. Networks generalise distributed specifications [35], networks of
alignments [16] and distributed description logics [4]. They provide also a
formal notion of viewpoint specifications, e.g. collections of UML diagrams
providing different views on a system. A model of a network is a family of
models of the involved OMS that is compatible along the mappings of the
network. Networks can also be refined.
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Combination. When alignments are normalised to spans or Ws of signature
morphisms, networks correspond to diagrams (in the sense of category theory)
of OMS [10]. A network can be combined into a single OMS by taking its
colimit. Under suitable amalgamation conditions, the combination captures
the model class of the network and thus can be used for reasoning about
networks.

Entailments between OMS, or of an OMS by a network.
Heterogeneity support for multiple logics (institutions) as discussed above:

OMS can be translated along institution comorphisms, be projected along
institution morphisms. Also, approximations, refinements and alignments can
be heterogeneous.

Internet compatibility. All names are full URLs resp. IRIs, and prefix maps
allow the convenient abbreviation of these.

This completes the overview of DOL, which is currently being finalised. The
DOL standard document is available at omg.org/spec/DOL; further information
can be found at dol-omg.org. Tool support for (an increasing part of) DOL is
provided by the Heterogeneous Tool Set (hets.eu) and Ontohub (ontohub.org).
Sample DOL documents can be found at ontohub.org/dol-examples.

Future work will address the further extension of DOL, e.g. with queries and
architectural refinements. Also, the extension of proof support from standard
structured specifications [5,29] to the whole of DOL is an important task.

Acknowledgements. The author wishes to thank the community that has developed
DOL, in particular Mihai Codescu, Michael Gruninger, Maria Keet, Alexander Knapp,
Oliver Kutz, Christoph Lange and Fabian Neuhaus, as well as those OMG members
that have provided valuable feedback, in particular Conrad Bock, Elisa Kendall, Pete
Rivett and Ed Seidewitz.
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Abstract. Our lives are facilitated and mediated by software. Thanks
to software, data on nearly everything can be generated, accessed and
analysed for all sorts of reasons. Software technologies, combined with
political and commercial ideas and practices, have led to a wide range
of our activities being monitored, which is the source of concerns about
surveillance and privacy. We pose the questions: What is monitoring?
Do diverse and disparate monitoring systems have anything in common?
What role does monitoring play in contested issues of surveillance and
privacy? We are developing an abstract theory for studying monitoring
that begins by capturing structures common to many different moni-
toring practices. The theory formalises the idea that monitoring is a
process that observes the behaviour of people and objects in a context.
Such entities and their behaviours can be represented by abstract data
types and their observable attributes by logics. In this paper, we give a
formal model of monitoring based on the idea that behaviour is mod-
elled by streams of data, and apply the model to a social context: the
monitoring of web usage by staff and members of an organisation.

Keywords: Context · Monitoring · Records · Interventions
Surveillance · Organisation · Employee monitoring · Web monitoring
Abstract data types · Algebraic specification · Streams

1 Introduction

Our professional, economic, social and personal lives are facilitated and mediated
by software running on computers and networks. Software exists to input, process
and output data and, in particular, the software that drives computers and net-
works generate extensive data about their own operations. Given the diversity
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
P. James and M. Roggenbach (Eds.): WADT 2016, LNCS 10644, pp. 13–35, 2017.
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and ubiquity of software, computers and networks, data on nearly everything
is being created – intentionally and unintentionally. Contemporary technologies
allow a digital approximation of the lives of people and objects to be imagined, if
not created in practice. Clearly, data is stored, accessed, analysed, and classified
for all sorts of reasons, and is shared and used for all sorts of purposes. Combined
with a wide spectrum of political and commercial needs and practices, software
technologies have led to a wide range of our activities being monitored. An estab-
lished example is the monitoring data collected by companies to improve their
sales and customer service, through loyalty cards and recommender systems.
Commercial monitoring designed to understand customer journeys and service
personalisation is one among many sources of international concerns about sur-
veillance and privacy [6,7]. Such opportunities for monitoring have expanded
enormously with the growth of mobile devices and smart products.

Despite the fact that monitoring phenomena are ubiquitous, and monitoring
is arguably the principal source of data that drives the development of data
science, the nature of monitoring has been neglected theoretically. Earlier, in [4],
we posed the general questions:

What is the nature and purpose of monitoring?
Do the diverse and apparently disparate monitoring systems have anything in
common?
What role does monitoring play in understanding surveillance and privacy?

In [4], we began to answer the first two questions by proposing an abstract
approach to monitoring that can identify and explore structures common to dif-
ferent monitoring systems. By reflecting on some monitoring examples, we have
isolated some fundamental conceptual components of monitoring systems. How-
ever, monitoring abounds in many domains of science, engineering, manufactur-
ing, infrastructure, and environment on the one hand and commerce, healthcare,
management, security, and social and financial services on the other. Thus, we
are at the beginning of our programme of exploration and theory building. Our
immediate aims are to develop theoretical ideas about monitoring systems and
their applications, formulate precise general questions, and make comparisons
and useful classifications of monitoring systems. Hopefully, our theorising will
help the analysis of both technical and sociological issues to do with the third
question asked above about monitoring.

The theory introduced in [4] formalises the idea that monitoring is a process
that observes the behaviour of people and objects in a particular context. Mon-
itoring involves choosing data to represent entities and behaviour, properties to
observe by testing the data, and a form of storage to record the results. Monitor-
ing is all about data. Thus, entities and their behaviours are modelled naturally
by abstract data types and their observable attributes by logical languages. In
this paper we focus on a particular model of monitoring in which the behav-
iour of people and objects in a context are modelled by streams of data, i.e.,
sequences of data indexed by time. To illustrate and test the theory, we apply
the model to a new social context, namely: the monitoring of web usage by staff
and members of an organisation or company. This monitoring example is but
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one of hundreds to be found in the workplace, but it is easy to appreciate and
reveals features that seem to be widely applicable.

The structure of the paper is as follows. In Sect. 2 we explain the basic con-
cepts and principles of our general approach to monitoring: context, monitoring,
storage and interventions. This introduces a conceptual framework for thinking
about monitoring, one which can be formalised in a number of different ways.
In Sect. 3 we give one such formal way: a general model of monitoring that takes
behaviours to be modelled by streams of data.

Next, we turn to case studies. In Sect. 4 we discuss aspects of monitoring in
organisations and companies. In Sects. 5 and 6 we use the general stream model in
Sect. 3 to develop stream models of web monitoring in organisations. In Sect. 7
we consider storage as an abstract data type. In Sect. 8 we give examples of
interventions. Thus, we will present our ideas about monitoring in three forms: as
informal intuitions, formal definitions, and applications in a case study. Finally,
in Sect. 9, we look back on the monitoring and intervention stack and we make
some remarks on necessary further developments.

We assume that the reader is familiar with the basic algebraic concepts used
to model data types: signature, algebra, expansion, reduct, congruence, term,
homomorphism, equational theory, first order theory, etc. and, indeed, their rel-
evant abstractions such as institutions. Whilst all are relevant only a few will
appear in this short exposition of our theory, which we will develop using alge-
bras. We have chosen to keep our algebraic techniques very simple to focus atten-
tion on monitoring and to present it as a new topic for theoretical investigation.

2 Concepts and Principles of Monitoring
and Interventions

2.1 The Approach

Our conception of monitoring is based upon the following principle:

Principle. Monitoring is confined to the collection, evaluation and recording of
observational data about the behaviour of entities. The outputs of a monitoring
system are simply records of observations.

Thus, a key idea in our analysis is that it is only concerned with data. Thanks
to this principle, our theory of monitoring is a theory of data and we can use
the theory of abstract data types for its development.

The theory is based upon the idea that monitoring is a process that observes
entities – people and objects, real and virtual – confined to a narrowly defined
context wherein they and their behaviour can be represented by data that can
be captured, queried and evaluated. A context consists of (i) entities and certain
information about them called characteristics, and (ii) behaviours. Monitoring a
context begins by choosing specific attributes of the data to be observed and a
means of making judgements about the attributes.

To capture commonalities of diverse domains, and increase the generality of
the analysis, we separate the acquisition of the monitoring data from its use.
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However, monitoring usually has a specific purpose. The records are inspected
and certain properties trigger actions that may change the behaviour of the
entities. We call these checks and changes interventions.

The components are illustrated in Fig. 1. The monitoring system and the
interventions are composed exclusively of data. We can design and combine
abstract data types into what we call the monitoring and intervention stack.

Outside the monitoring and intervention stack we allow monitoring and inter-
vention to employ any kind of technology and practice. To complete the descrip-
tion of monitoring, we introduce an informal notion of a

(i) monitoring infrastructure, for the technological and human systems that
obtain and send the data representing the behaviour of entities to a moni-
toring system; and

(ii) an intervention infrastructure for the systems that receive the information
from a monitoring system with interventions and initiate various responses
and actions on the entities.

The details of these infrastructures are not part of the theory. Let us expand on
the ideas introduced above.

Fig. 1. The monitoring and intervention stack architecture

2.2 Conceptual Framework for Monitoring

The components that constitute the framework are these:

Context: Entities, Characteristics and Behaviour. Monitoring takes place
in a context. A context is composed of entities. The entities have characteristics
that define information that are relevant to the entities in the context. Entities
have behaviours that can be observed. The behaviour of an entity depends upon
the characteristics of the entity: characteristics are a parameter of entity behav-
iour.
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Observation: Attributes and Judgements. Behaviours have attributes that
can be observed. Observation involves making a query about, or testing, the
behaviour of an entity for the presence of an attribute and making an evaluation.
The evaluation produces a judgement.

In most cases the attribute will be a property that is assessed using a range
of values on a scale; the evaluation will be a labelling, grading, measure, or prob-
ability. For example, physical measurements with error margins can give judge-
ments that are bands of numerical values. Or a judgement may be a qualitative
assessment based upon bands labelled metaphorically, such as the commonly
used three-valued traffic light signifiers

{green, amber, red}.

In questionnaires and social surveys, five-valued assessments are used, such as:

{strongly disagree, disagree, neutral, agree, strongly agree}.

Monitoring and Records. The purpose of monitoring is to make an obser-
vation and a record of the observation. A record should contain the entity, its
characteristics, the attributes observed and the judgements.

Interventions. To use the monitoring data, specific properties must be recog-
nised in the records, noted and communicated to infrastructures outside the
monitoring system, namely the intervention infrastructures. These communi-
cations with the outside we call notifications. The notification may initiate a
series of physical or virtual actions that change an entity’s characteristics and
its behaviour.

Interventions are based on judgements. The judgements in a monitoring
record are inspected: observations requiring actions are detected by trigger con-
ditions. A trigger takes as input a judgement and returns a Boolean value that
may lead to a notification for action. An intervention is a rule of the form

if trigger then action else do nothing.

Triggers decide what should happen. Actions change the information in the
entity’s characteristics.

These ideas together form a general conceptual framework for monitoring
that can be developed in a number of ways. Clearly, there are different semantic
models of behaviour, different logics to formalise attributes and judgements, and
different models of computation to analyse monitoring and interventions – see
Sect. 9.

3 Monitoring Behaviour Modelled by Streams

We suppose the behaviour of entities takes place in time. We model the behaviour
of an entity over time by a stream of data from A,

. . . , a(t), . . . ∈ A for t ∈ T,
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where T is a set of data that mark points in time. There are a number of forms
of stream behaviour, as time and data can be discrete or continuous, and be
structured by orderings and topologies. Here is the formal model, component by
component.

3.1 Monitoring Streams

Time. The choice of T is influential and will be called the monitoring clock. We
choose time to be discrete and take T = {0, 1, 2, . . .}.

Behaviour. Behaviour is characterised by some data from a set A – typi-
cally quantitative measurements, text, images, audio or video. The streams are
sequences in discrete time that are infinite and always well-defined:

a(0), a(1), a(2), . . . , a(t), . . . ∈ A for t ∈ T.

Thus, we define a stream of data to be a total function a : T → A mapping time
points in T to data in A. The space of all behaviours is the set [T → A] of all
streams.

Contexts: Entities, Characteristics and Behaviour. Let E be the set of
entities and let C be the set of characteristics. We define the behaviour of an
entity as a stream of data generated by the behaviour map

[[−,−]] : E × C → [T → A] (1)

such that for entity e ∈ E, with characteristics χ ∈ C, at time t ∈ T ,

[[e, χ]](t) = data characterising behaviour of entity e with characteristics χ at
time t.

Observation: Attributes and Judgements. Behaviours have attributes that
can be observed over time. Let Attr be a set of attributes of behaviours. Let J
be a set of judgements; often, J is a finite set.

Whilst observation may take many forms, the act of observing the behaviour
of an entity, and making an evaluation, starts with a map

Obs0 : Attr × [T → A] → J. (2)

We will need some variations:

Individual Observation. Suppose an attribute may vary according to the entity
and its characteristics, and is specified by

P : E × C → Attr. (3)

In this case, on substituting into mapping (2), the observation map becomes

Obs : E × C × [T → A] → J, (4)
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which, given an entity e with characteristics χ, computes the extent or degree
that P (e, χ) is a property of a ∈ [T → A]:

Obs(e, χ, a) = Obs0(P (e, χ), a). (5)

Observation over intervals and at instants. Since behaviour is time dependent,
attributes are likely to involve time. First, it is common to look at behaviour
over, say, an interval [t1, t2] ⊂ T . This suggests further adaptations of mapping
(2) of the form

Obs0 : Attr × [T → A] × T × T → J. (6)

To observe the complete history of the entity up to time t we take the interval
[0, t]. To observe behaviour at a particular time t we take the interval [t, t]. In
both of these cases we adapt map (6) to one of this form

Obs0 : Attr × [T → A] × T → J. (7)

Secondly, in time dependent cases, the attribute to be checked may depend upon
the entity and its characteristics (as above), and upon the time of inspection.

Monitoring. Now, we implement monitoring as follows. First, let

R = E × C × Attr × J (8)

be the set of records.

Individual Monitoring. If the attribute P to be observed depends upon entity e
and characteristic χ then P (e, χ) is the attribute to be checked. Using mappings
(1) and (5), the monitor function becomes

Monitor : E × C → R (9)

defined by

Monitor(e, χ) = (e, χ, P (e, χ), Obs(e, χ, [[e, χ]])).

Monitoring over intervals and at instants. If the attribute P to be observed
depends upon entity e and characteristic χ then using mappings (1), (5) and
(6), the monitor function becomes

Monitor : E × C × T × T → R (10)

defined by

Monitor(e, χ, t1, t2) = (e, χ, P (e, χ), Obs(e, χ, [[e, χ]], t1, t2)).

Monitoring Stream. Setting t1 = t2 = t, produces the mapping (7), which gives
rise to a stream of records

monitor : E × C → [T → R] (11)

defined by

monitor(e, χ)(t) = (e, χ, P (e, χ), Obs0(P (e, χ), [[e, χ]], t)).
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3.2 Storage

The storage component is designed to collect and retain all, or some, of the
records generated by monitoring. Thus, we assume that at any time the storage
contains a finite list of records:

r0, r1, . . . , rn.

The index n is a function of time measured by the monitoring clock. For sim-
plicity and brevity, we will assume that all records generated by monitoring are
stored. The output of the monitoring component and the input of the storage
component is a stream defined by map (11). It is easy to imagine cases where
some filtering predicate chooses to store or not to store a record.

Clearly, there are many ways of designing a storage component, not least those
of the theory of databases [5]. For our needs we may suppose there is an abstract
data type for storage that comprises operations that input, organise, and output
the records, and can support programs that can analyse the data in the store.

3.3 Interventions for Streams

Following the conceptual framework, interventions are based upon judgements,
they do not involve behaviours directly, and so they are independent of the
streams.

Triggers. Trigger conditions accept as input a judgement value j ∈ J , obtained
as a result of the observations made by the function Obs, and outputs a truth
value:

tc : J → B.

We denote the set of all trigger functions by Trig = [J → B].

Actions. An action function

act : C → C

performs an update act(χ) to the information χ ∈ C. We denote the set of all
action functions by Act.

Interventions. We use triggers and action functions to specify the intervention
that results from the observation of an entity’s behaviour. With both of these
functions, we define an intervention of the form

tc → act

where (tc, act) ∈ Trig × Act. Mathematically, for Intv = Trig × Act, we define
the function

Int : R × Intv → E × C (12)

defined by

Int((e, χ, P (e, χ), j), tc → act) =

{
(e, act(χ)) if tc(j)
(e, χ) if ¬tc(j).
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4 Monitoring in Organisations

We now turn to organisational monitoring to illustrate the concepts of the theory.

4.1 Why Employee Monitoring?

Many people while at work are tempted to use the web for non-work purposes.
Whilst most such activities are innocent and beneficial, some could be undesir-
able and even harmful to employees and to their organisations. For example, the
use of pornographic and gambling sites would cause damage to the reputations
of employees and organisations. Whether innocent or otherwise, employers are
not pleased with the cultural effects of poor work ethics, or with financial losses
associated with wasted time. Thus, employers have adopted surveillance tech-
nologies to monitor their employees’ internet usage at work. The main aims for
monitoring employee internet use during working hours are:

1. to deter unnecessary waste of contracted working hours on personal internet
use;

2. to perform duty of care and protect employees from harmful exposure to the
internet; and

3. to prevent any potential security breaches due to employee use of the internet.

(Compare [10].) Indeed, the use of monitoring across an increasingly wide range
of behaviours is firmly established in organisational security management prac-
tices, and is commonly referred to as employee monitoring [18]. Of course, there
are many issues associated with employee monitoring, especially legal and ethi-
cal. In the UK, as laid down by data protection laws, employers have the right to
monitor employees’ activities via different kinds of monitoring measures. These
include opening mails and e-mails; using automated software to check e-mails;
and checking logs of websites visited [2]. At the same time, the UK’s data pro-
tection laws also set forth various rules that employers need to observe while
monitoring, and the most important one is that – except in certain extreme
cases – employers need to inform employees that they are monitored, what is
being monitored, and why monitoring is undertaken (ibid.).

Of course, checking up on employees is nothing new [8]. Nevertheless, modern
surveillance technologies present significant challenges because employee mon-
itoring is now far more widespread, continuous, intense and secretive [3]. As
a result, on the one hand, opponents of employee monitoring, such as labour
unions, civil liberty groups, privacy advocates, and many employees themselves,
have complained vehemently about employee monitoring [18]. The main charges
include: increased levels of stress, decreased job satisfaction, decreased work life
quality, lowered levels of customer service, creation of a hostile workplace, inva-
sion of employee’s privacy, lower morale, and unfair treatment of some employees
(ibid.).

On the other hand, supporters of employee monitoring emphasise that
employee monitoring not only increases productivity but also protects organ-
isations from legal liability, data leakage and industrial espionage [12]. However,
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research on monitoring at the workplace also indicates that although a higher
level of surveillance leads to more productivity on a task, it also leads to a lower
level of quality of work on the task, and to a reduction of shared identity in the
organisation’s culture [9].

4.2 What Might Be Monitored and How?

Although the degree of employee monitoring is up to each employer, with
advanced surveillance technologies, employee monitoring can be carried out very
comprehensively. An employer can thoroughly monitor computer related activi-
ties of all of his/her employees down to the keystroke. Generally, the main aspects
that are monitored include:

– applications;
– system settings;
– online surfing;
– connections to diverse devices and their locations;
– emails; and
– cloud activities.

The monitoring of these six aspects have objectives that are both facilitating
and constraining. For applications, monitoring might be carried out to ensure
appropriate versions of tools are in use, or to prevent the use of inappropriate
tools, such as the Tor browser.1 For system settings, monitoring might enhance
access to peripherals (e.g., adding printers) or correct security vulnerabilities.
For online surfing, monitoring might concern website visits, specific page views,
downloads, and audio and video streaming. For connections to devices, monitor-
ing might extend standards and good practices of the office to a diverse range of
mobile laptops, tablets and phones. For emails, monitoring is concerned with the
identity of correspondents and the content of their messages. For cloud activities,
monitoring is concerned with the services used.

All these six aspects can be investigated by analysing a wide range of log files
that record the activities of the system, the network and the user. These aspects
can also be investigated by desktop monitoring tools [13]. Desktop monitoring
is a form of monitoring that targets a specific computer and every single action
taken by its user. Surveillance software can be installed, directly into the targeted
computer, or remotely, to intercept signals emitted by this target computer. It
allows the monitoring of a target computer’s usage, both online and offline. In
general, the system administrator of an organisation is responsible for observing
the data obtained via desktop surveillance, who might be asked to look for
particular inappropriate actions.

4.3 Organisational Web Monitoring

How does a simple case of web monitoring in an organisation fit the conceptual
framework outlined in Sect. 2. Although employee monitoring is the monitoring
1 https://www.torproject.org.

https://www.torproject.org
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of people, it is actually the monitoring of data about people. To monitor their
internet activity, the context is the behaviour of their computer accounts, and
the devices they use to access them. Consider web monitoring as the real-time
monitoring of an employee’s online activity. A web monitoring system may have
the following form:

– Context: Organisation/company;
– Entities: Employees via employee IT accounts;
– Characteristics: Account access permissions and status; monitoring status;
– Behaviour: Web activity;
– Attributes: Observation of sites visited classified as: Unrestricted; Adult and
Sexually Explicit; Gaming and Gambling; Personals and Dating; Proxies and
Translators; and Intolerance and Hate;

– Record: Staff account; data on websites visited, classified according to
attribute categories;

– Intervention: In real time react to URL requests as follows: allow; allow
and notify employer; deny; deny and notify employer.

Other categories that could be of interest to track are sites for Personal Email,
Advertisements and Popups, Travel, P2P Downloads, or Social Networks. The
categories need not have the same degree of interest for the organisation, e.g.,
shopping for a partner may be tolerated more than extremist politics.

5 Stream Model of Organisation Monitoring: Context

Using the general method given in Sect. 3, we construct algebraic models for
monitoring web usage and data downloads.

5.1 Organisation: Entities, Identity and Characteristics

Entities. The entities we are monitoring are the computer accounts of people
working at an organisation who require access to the internet.

Let Empl denote the set of employees. In many scenarios, each employee is
assigned a personal account that uniquely identifies the employee and all the
IT resources they access, many of which are communal. The employee’s account
stores or has links to a great deal of information about the employee, not all of
which is available to the employee: for example, name and address; pay, insurance
and tax details for employment; staff status and access permissions; professional
development file; personnel file; and historical logs of recent activity.

Let Acc be the set of computing accounts. Define the injective function h :
Empl → Acc that assigns a unique account h(e) ∈ Acc to an employee e ∈
Empl which allows access to the IT infrastructure. The gap between employee
and account is important conceptually: in many case studies, the objective is to
monitor people but what is monitored is the behaviour of objects, namely devices
and their use.
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Characteristics. In our case studies, we take the characteristics of an entity
to be information about the employee’s compliance with regulations. The first
characteristic is access status, which refers to computing regulations that include
or imply a classification of the content accessible via the internet in an acceptable
use policy for their IT infrastructure. The second characteristic is the monitor-
ing status specifying information about the current compliance of the employee’s
account.

Let τ denote the access status characteristic and μ the monitoring status.
The characteristics of a monitored employee account is a pair

χ = (τ, μ)

that will depend upon the account and what is monitored. Let C denote the set
of all characteristics.

5.2 Web Examples

We will apply our monitoring stack to these monitoring scenarios.

Example 1: Monitoring Web Content. In this scenario, monitoring is used
to determine employee compliance to the terms and conditions of their account.
The access status is based on a specification that categorises web content, e.g.,
sites may be classified as in Sect. 4.3:

1. unrestricted,
2. adult/sexually explicit,
3. gaming and gambling,
4. personals and dating,
5. proxies and translators, and
6. intolerance and hate.

The access status defines numerical limits to the amount of web requests for
content in each category. The employee’s monitoring status records the number
of times websites have been requested for each category. Over time, the status
profiles the employee’s (undesired) browsing habits.

Example 2: Monitoring Data Usage. The access status τ contains rules
specifying data transfer limits applicable to downloadable content. The mon-
itoring status μ is green, amber and red, respectively, corresponding to the
situation where the employee has stayed within, or is close to, or has exceeded
the data limit allowable for their account.

5.3 Modelling Web Behaviour

We will work through the components of the general stream model. The two
monitoring contexts are completed by adding behaviour maps of the form

[[−,−]] : Acc × C → [T → A] (13)
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that deliver data from the monitoring infrastructure. The behaviour in time of
account k with characteristics χ is a stream [[k, χ]] = b; what exactly is b? To
model behaviour as a total function b : T → A we need to define the monitoring
clock T and the data in the set A for the two examples.

Over time, the employee accesses the web, creating a stream of access
requests. In both examples, time T = {0, 1, 2, . . . , t, . . .} counts requests made
by the account.

Web Content. To model web content as described in Example 1 in Sect. 5.2,
we choose a finite alphabet W of symbols such that the set W ∗ of all finite words
over W allows the formation of all possible uniform resource locators (URLs).
We set A = W ∗ and model account behaviour as a total function b : T → W ∗

such that b(t) = w is the tth webpage requested.2

Data Usage. Similarly, to model data usage in Example 2 in Sect. 5.2, we set
A = W ∗ × N and model behaviour as a total function b : T → W ∗ × N such
that b(t) = (w, n), where w is the web address requested and n represents the
amount of data transferred as a result of the request (measured, say, in bytes).

Now, data is never without operations and our choice of data for A requires
us to define a range of operations. Here is an operation to compute data usage
over a specific time interval [t1, t2], where t1, t2 ∈ T and t1 < t2. Let π : [T →
W ∗ × N] → [T → N] be such that

π(b)(t) = the data usage for behaviour b at time t.

Then, the aggregation operation agg : [T → W ∗ × N] × T 2 → N is defined for
t1 ≤ t2 by

agg(b, t1, t2) =
t2∑

t=t1

π(b)(t). (14)

6 Stream Model of Organisation Monitoring:
Observation, Judgement, Monitoring

The next step is to specify the observation functions from which we derive the
monitoring functions. Observation is based on a map of the form (2),

Obs0 : Attr × [T → A] → J,

and, since we have specified T and A already, to take this next step we must
specify attributes Att and judgements J . We treat the two examples separately.

2 URLs are definable by a context free grammar.
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6.1 Web Content Observation

Attributes. Recalling Sects. 5.2 and 5.3, here we are to observe, classify and
record web pages. Classification is the key concept: let

W1, . . . ,Wn where Wi ⊆ W ∗

be a collection of sets that classify URLs along the lines of Sect. 5.2. Let W0 =
W − ⋃n

i=1 Wi be the unrestricted websites.
Let l1, . . . , ln in N specify the maximum number of web requests for content

allowed for each category, respectively; we write w = (W1, . . . ,Wn) and l =
(l1, . . . , ln) in N

n.
These features make up the access status characteristic τ = (w, l). The out-

come of tests make up the monitoring status μ.
The attribute used determines compliance with the limits l in τ and is defined

by the test

Pcomply(x1, . . . , xn) ≡ (x1 < l1) ∧ · · · ∧ (xn < ln).

For this scenario, we choose the set

J = {comply,non-comply}
of judgements and interpret them as

– comply, if the employee account has conformed to its limits,
– non-comply, if the employee account has overstepped its account limits.

The monitoring status μ is a value from J .
To test behaviour b for the attribute, we need some operations: define the

characteristic function χi : W ∗ → {0, 1} ⊂ N by

χi(w) =

{
1 if w ∈ Wi,

0 if w /∈ Wi.

Next, define the map f : W ∗ → N
n for w ∈ W ∗ by

f(w) = (χ1(w), . . . , χn(w)).

The function logs the number of times a website appears in each category; note
that a website may fall into none, one or many categories. For an unrestricted
website w ∈ W0, f(w) = (0, . . . , 0).

The pointwise lifting of f leads to the stream operation F : [T → W ∗] →
[T → N

n] defined by the equation

F (b)(t) = f(b(t)). (15)

Observation and Judgement. We determine if the observed behaviour on
b satisfies the attribute Pcomply between t1 and t2 using the function profile :
[T → W ∗] × T × T → N

n defined using vector addition on N
n by
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profile(b, t1, t2) =
t2∑

t=t1

F (b)(t), (16)

which applies the classification and counts web requests over the interval [t1, t2].
Computing profile(b, t1, t2), we can define the observation function:

Obs(Pcomply, b, t1, t2) =

{
comply if Pcomply(profile(b, t1, t2)) = t,
non-comply if Pcomply(profile(b, t1, t2)) = f.

As remarked earlier, if the categories are viewed with different degrees of concern
then more complicated attributes can be defined that weight the categories Wi

and apply different thresholds; recall Sect. 4.3.

6.2 Data Usage Observation

Attributes. Again, recalling Sects. 5.2 and 5.3, here we are to observe, measure
and record data downloads. In this scenario, both the employee’s web requests
and the amount of data are observed.

The access status characteristic contains a number τ ∈ N representing the
maximum amount of data that is allowed to be transferred over a period. The
attributes are expressed by three tests on downloads:

Punder(x) ≡ x < τ − ε

Pnear(x) ≡ τ − ε ≤ x < τ

Pover(x) ≡ x ≥ τ

where the constant ε ∈ N defines an error margin around the account limit τ .
Let

Pusage = (Punder, Pnear, Pover).

We define the set of judgements J = {green, amber, red} to specify com-
pliance to the data limit usage as follows:

– green under the limit,
– amber near to exceeding the limit, or
– red over the limit.

The monitoring status μ is a value from J .

Observation and Judgement. Next, we define the Obs operation to observe
and judge the amount of data transferred via the account over time. Using the
summation operation agg defined by equation (14), the data usage of the account
over the period [t1, t2] is computed by agg(b, t1, t2). Thus, we define

Obs(Pusage, b, t1, t2) =

⎧⎪⎨
⎪⎩
green if Punder(agg(b, t1, t2)),
amber if Pnear(agg(b, t1, t2)),
red if Pover(agg(b, t1, t2)).
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6.3 Records

The output of the monitoring component is a record of evaluating attributes
over observed data. Mathematically, a record is an element

r = (k, χ, P, j) ∈ R = Acc × C × Attr × J

such that

– k is an employee account,
– χ is a characteristic of the employee account,
– P is a family of attributes,
– j is a judgement.

In our examples, records are created each time a web request is made, and a
stream ρ : T → R of records may be obtained using map (11) in Sect. ??.

6.4 Monitoring

Applying a general construction of the monitoring operation (9) from Sect. 3.1,
we have the monitoring map

Monitor : Acc × C × T × T → R

that is defined for entity k, characteristics χ and a family P (e, χ) of attributes
over [t1, t2] by

Monitor(k, χ, t1, t2) = (k, χ, P (k, χ), Obs(k, χ, [[e, χ]], t1, t2)).

From these we can derive streams of records.

Web Content. For employee account k, characteristics (w, l, μ) and the family
Pcomply = Pcomply(k,w, l, μ) of attributes:

Monitor(k, (w, l, μ), t1, t2) =
(k, (w, l, μ),Pcomply, Obs(k, (w, l, μ), [[k, (w, l, μ)]], t1, t2)).

Data Usage. For employee account k, characteristics (τ, μ) and the family
Pusage = Pusage(k, τ, μ) of attributes.

Monitor(k, (τ, μ), t1, t2) = (k, (τ, μ), Pusage, Obs(k, (τ, μ), [[k, (τ, μ)]], t1, t2)).

7 Stream Model of Organisation Monitoring: Storage

7.1 Histories, Thresholds and Queries

The records generated by monitoring all the accounts are collected and organ-
ised for retrieval by the storage component. Given the purpose of monitoring
individuals, the organisation of the storage is based on accounts.

The storage is designed to preserve finite sequences

h = r0, r1, . . . , rs, . . . , rt
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of records of the activity of an account k ∈ Acc, where rs is the record received
from the monitoring component at s within the monitoring period [0, t]. Each
record in the list has k as its first component and such a sequence is called a
monitoring history of the account k. The duration or length of the history h is
|h| = t+1. The set Historyk of all possible histories of the account k is the basis
of the abstract data type for storage.

Also associated with an employee account k are finite sequences
rt1 , . . . , rs, . . . , rt2

of records over an arbitrary monitoring interval [t1, t2] called monitoring tran-
scripts for the account k, where rs is the record received at time s from the
monitoring component, for s ∈ [t1, t2]. Let Transcriptk be the set of all tran-
scripts of the account k. Note Historyk ⊂ Transcriptk.

In monitoring all the accounts in the organisation, we can define

History =
⋃

k∈Acc
Historyk and Transcript =

⋃
k∈Acc

Transcriptk.

The storage component specification needs to support high-level queries
about the records it stores, and such queries can be considered part of the
monitoring process. Thinking about programs that compute queries gives us
a way of testing what data and operations may be needed when specifying an
abstract data type for storage. The abstract data types can be analysed formally
by applying models of computation designed for abstract data types [11,14,17].

For example, consider the simple queries that return

Q1 A transcript of the employee’s account in the last two hours;
Q2 A list of employee accounts exceeding the web content category threshold at

least once; and
Q3 The percentage of employee accounts who have exceeded their download limit.

We sketch the types of data and operations required to program answers to the
queries above.

7.2 Data and Operations for Storage

Database Types. At the heart of storage is some form of database DB con-
taining histories of all the accounts. A state of the database during monitoring
can be modelled in different ways, such as by a map

σ : Acc → History such that σ(k) ∈ Historyk, for k ∈ Acc.

In turn History, and Transcript, can be modelled as follows.
Let Rε be the set R of records augmented by ε, a datum that denotes a

null record. Let R∗
ε be the subset of the set [T → Rε] of all total maps, such

that h ∈ R∗
ε has value ε almost always, i.e., h : T → Rε and h(t) 
= ε for only

finitely many t ∈ T . Thus, formulating trivial conditions on the indexing, we
have inclusions and embeddings:

History ⊂ Transcript ⊂ R∗
ε ⊂ [T → Rε].

At any moment, the number of accounts in the database σ is simply |Acc|.
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Turning to the queries, Query Q1 involves three sorts: employee accounts,
transcripts, and real-world time. Query Q2 uses judgements stored within records
obtained by testing compliance with web content classifications. This query can
return more than one matching employee account and so we make use of sets
or lists Acc∗ of accounts. The last query Q3 needs the rational numbers Q for
quantitative operations; in this case, percentage.

In essence, we are sketching an abstract data type for the storage component
based upon sets of data DB, Acc∗, History, Transcript, and Q. Remember
that R is comprised of four sets of data, Acc, C, Attr and J , denoting employee
accounts, characteristics, attributes and judgements, respectively. Other queries
will create the need for other data types.

Database Operations. The basic operations on DB are about input and
output. When a new record r is received from monitoring the account k, it is
added to the database and the current history of account k is extended. We
define input : DB × Acc × R → DB so that input(σ, k, r)(k) ∈ Historyk is
updated with input(σ, k, r)(k)(|σ(k)|+1) = r where |σ(k)| is the duration of the
current history. The output operation retrieve : DB×Acc → History is defined
such that retrieve(σ, k) = σ(k), the history associated with account k stored in
database σ.

Transcripts are important in monitoring and can be extracted from his-
tories by an operation trans : DB × Acc × T × T → Transcript so that
trans(σ, k, t1, t2) is the sequence of records of account k stored for the period
[t1, t2].

Iteration on the Database. Many programs will involve searching the data-
base for employee accounts matching a given property (e.g., to answer Query
Q2). This requires a means of enumerating the accounts.

Operations on Clocks. Querying the database for observations occurring
within a time frame is common; e.g., query Q1. Thus, it is necessary to have oper-
ations to support queries involving various measurements of real-world time. In
our algebraic framework, we model clocks abstractly using the natural numbers
N to count or mark events of interest. Specifically, the monitoring clock counts
observations and indexes the histories and transcripts. To connect to real-world
time requires operations that map between clocks. One method is to use a fast
system clock to include a real-world time stamp in each record.

8 Interventions

In our framework, interventions formalise rules defined on records. They deter-
mine actions performed on characteristics, which may in turn impact on future
observed behaviour. Here we give simple examples of interventions that can be
applied to the models we developed in Sects. 5, 6 and 7. In practical scenar-
ios, the intervention infrastructure involves social-technical mechanisms, such
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as complex hierarchical human structures within organisations (managers, com-
mittees and tribunals) that determine appropriate actions according to rules,
practices and expediencies.

Web Categorisation Intervention. Consider an intervention to restrict an
account’s access to a category Wi of web pages when its most recent record is
judged to have exceed the specified account limit li. Suppose this reduces the
account limit so that future non-compliant behaviours are detected earlier or
blocked altogether.

For the following, suppose that the database in the storage component has
been queried to obtain the most recent record r = (k, χ, P, j) of a particular
employee account k. The characteristic is of the form χ = (τ, μ) where τ =
(w, l) is the pair of web categories and their browsing limits, respectively. An
intervention tc → a is applied to record r, using the function defined by (12),
such that

– trigger tc : J → B on judgements is defined by tc(non-comply) = t and
tc(comply) = f ,

– action act : C → C on characteristics is defined by act(w, l, μ) = (w, l−b, μ′),
where b ∈ N

n depends upon μ, and the status is reset to μ′.

Subtraction of b from l reduces the limits of web categories accessible by the
account; if li = bi then the new limit is 0 and the category Wi is banned. The
μ′ leads to a notification to the intervention infrastucture.

Data Usage Intervention. Consider an intervention that updates a download
limit. The characteristic χ contains the access status τ ∈ N, a number specifying
the maximum amount of data to be transferred.

To illustrate our conceptual framework’s flexibility, we extend the mathe-
matical description of interventions to perform actions based on a collection of
judgements. To this end, let J∗ denote the set of all finite sequences of judge-
ments from the set J = {green, amber, red} and call a subset of J∗ a judgement
pattern. In the data usage scenario, consistent long term over-usage of data by an
account can be expressed as a judgement pattern with many instances of amber
and red; for example, the pattern could be expressed by a regular expression,

over = (amber|red)n,

for a fixed number n ∈ N.
The intervention Int : DB × Intv → E × C, mapping (12), can be extended

to operate over transcripts, such as a record sequence r∗ of daily observations
of account k. An intervention tc → a is applied to r∗ using the definition

– trigger condition tc : J∗ → B is defined by setting tc(over) = t and tc(J∗ \
{over) = f ,

– action act : C → C is defined for b ∈ N by act(τ, μ) = (τ + b, μ′).
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This simply increases the limit set by τ by b and resets the status to μ′. There
are many scenarios for which this form of intervention is relevant. For example, a
customer of an internet service provider, such as a phone company, will analyse
their data usage noting frequent limit breaches. These breaches can result in
costly penalties or data transfer at premium rates. The customer needs to change
their subscription to a tariff with improved terms and conditions for data usage,
thus increasing their limit.

9 Concluding Remarks

Using a general conceptual framework for analysing monitoring, we have given
a general mathematical model of monitoring based on modelling behaviour as
streams of data, and applied it to monitoring web activities of members of an
organisation. This is the second of our papers that aims to develop a general
theory of monitoring; the first [4] introduced the conceptual framework and a
simpler stream model, and applied the stream model to monitoring offenders
for criminal justice jurisdictions. We know of no other attempts to establish a
general theory of monitoring.

To end, we return to the general approach sketched in Sect. 2 and consider
next steps in developing a theory of monitoring.

9.1 The Monitoring Stack

The monitoring and intervention stack consists of context, monitoring, storage
and intervention. The core concepts of our approach informally described in
Sect. 2.1 can be summarised by four signatures:

signature Context

sorts entity, characteristic, behaviour

operations [[−,−]] : entity × characteristic → behaviour

signature Monitoring

imports Context

sorts attribute, judgement, record

operations obs : attributes × behaviour → judgement
monitor : entity × characteristics × attribute → record
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signature Storage

imports Monitoring

sorts database, history

operations input : database × entity × record → database
retrieve : database × entity → history

signature Intervention

imports Monitoring

sorts Intervention

operations int : record × intervention → entity × characteristic

Each component can be specified as an abstract data type using signatures,
equations and algebraic semantics. However, as the different organisational mon-
itoring scenarios illustrate (not least the discussion of storage), there is a great
deal more to these data types. To build the abstract data types of the monitoring
stack, we need lots of operations and tests customised to applications, together
with auxiliary types, operations and tests that act as a foundation for the con-
struction; these latter can be grouped together into what we call the platform
algebra for the stack. Some of these building blocks are generic such as algebras
of infinite streams; others are made as the models develop.

9.2 Next Steps

Unsurprisingly at this early stage, the ideas in this paper require further analysis
and application. Theoretically, there is much to be done on

(i) algebraic specifications of the monitoring stack to better understand the
conceptual framework and stream models;

(ii) semantic models of behaviour, including formal models of time and space;
(iii) languages and logics for attribute specification and judgements;
(iv) storage models and their analytics;
(v) computability and complexity of monitoring.

In connection with (i), we have purposely simplified our presentation of
the models, even avoiding signatures and equations, not to distract from the
intuitions and ideas upon which the theory is based. In the matter of (ii), the
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notion of context seems to us simple and versatile, and capable of several formal
approaches in which behaviour is analysed differently, e.g., by process algebras
highlighting non-determinism and concurrency. Indeed, streams can be modelled
in different ways. Time is an important component and leads to multiple clocks
and streams. For (iii), the specification and evaluation of attributes in one form
or another is core business for most formal design methods and will strengthen
the theory and its relevance for thinking about tools for monitoring. In case (iv),
the records managed by the storage component commonly meet the standard
V 3 criteria for big data: volume, velocity and variety. There are many old and
new technologies for effectively processing large quantities of data, including new
technologies for graph databases [1]. In case (v), the computability and complex-
ity of monitoring are important a priori, and will need to be developed when
deploying the theory. The computational theory of data streams is rich [15,16].

There is also much more to be done on case studies. Our explorations of
monitoring in criminal justice and organisations have been rewarding, helping
to shape, test and refine the theory. However, each case study has many more
details and variations to model, and there are huge new areas to enter, such as
monitoring in manufacturing, retail, healthcare, and computer system adminis-
tration, including cloud computing. As the case studies grow, the potential of
these ideas to influence practice, through methods and tools, can be judged.

Our interest in monitoring was sparked by investigations into some social
problems of surveillance and privacy. Our theory of monitoring needs to be
expanded to analyse and classify degrees of surveillance and privacy. This would
involve integrating a theory of identity for the entities.

The digital world we have created means that recording lives – professional
and private; intentionally or accidentally – has become a widespread technical
and social phenomena. The technologies have turned monitoring from a tool
for understanding a complex problem rationally with the help of data, into an
administrative and commercial addiction and an end in itself. It is the world’s
appetite for monitoring that drives its desire for data, the bigger the better. We
believe monitoring systems to be a topic with considerable potential for general
theories, diverse applications, and socio-technical insights. At this stage we are
content to develop the theory for the pleasure of thinking.
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Abstract. Asymmetric combination of logics is a formal process that
develops the characteristic features of a specific logic on top of another
one. Typical examples include the development of temporal, hybrid, and
probabilistic dimensions over a given base logic. These examples are sur-
veyed in the paper under a particular perspective—that this sort of com-
bination of logics possesses a functorial nature. Such a view gives rise to
several interesting questions. They range from the problem of combining
translations (between logics), to that of ensuring property preservation
along the process, and the way different asymmetric combinations can
be related through appropriate natural transformations.

Keywords: Institution · Hybridisation · Probabilisation
Temporalisation · Asymmetric combination

1 Introduction

1.1 Motivation and Context

It is well known that software’s inherent high complexity renders formal design
and analysis a difficult challenge, still largely unmet by the current engineering
practices. Often, in fact, the formal specification of a non trivial software sys-
tem calls for multiple logics so that specific types of requirements and design
issues can be captured: if properties of data structures are typically encoded
in an equational framework, behavioural issues will call for some sort of modal
or temporal logic, whereas probabilistic reasoning will be required in order to
predict or analyse faulty behaviour in distributed systems.

This fact explains the growing interest in the systematic combination of log-
ics, an area whose overall aim can be summed up in a simple methodological
principle: identify the different natures of the requirements to be formalised, and
combine whatever logics are suitable to handle them into a single logic for the
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
P. James and M. Roggenbach (Eds.): WADT 2016, LNCS 10644, pp. 39–55, 2017.
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whole system. Its potential was already stressed in the eighties by Goguen and
Meseguer, and the whole programme started to gain prominence in the following
decade (cf. [3,18]).

The current paper surveys a specific type of combination of logics, called
asymmetric, in which the characteristic features of a logic are developed on top of
another one. Probably the most famous example is the process of temporalisation
[12], in which the features of a temporal logic are added to another logic; the
latter is often referred to as the base logic in order to distinguish the original
machinery from the one added along the process. In brief, temporalisation adds
a temporal dimension to the models of a given logic and syntactical machinery to
suitably handle this added dimension. The hybridisation [20] and probabilisation
[2] processes are more recent examples. The former develops a hybrid logic [1] on
top of the base one whereas the latter adds probabilistic features. Other examples
include quantisation [4] and modalisation [11], bringing into the picture features
of quantum and modal logic, respectively.

Is there a common characterisation of these different combinations, able to
provide a suitable setting to discuss their properties at a generic level? Such is
the question addressed in this paper through the identification of their common
functorial nature. This perspective structures the whole survey presented here.

Our approach is based on the theory of institutions [17], an abstract charac-
terisation of logical systems that encompasses syntax, semantics, and satisfac-
tion. Put forward by Goguen and Burstall in the late seventies, its original aim
was to develop as much Computing Science as possible in a general, uniform way,
independently of any particular logical system, in response to the “population
explosion among the logical systems used in Computing Science” [17]. Since then
this goal has been achieved to an extent even greater than originally thought.
Indeed, institutions underlie the foundations of algebraic specification methods,
and are most useful in handling and combining different sorts of logical systems.
The universal character and resilience of institutions is witnessed by the wide
set of logics formalised and subsequently explored within the framework. Exam-
ples go from standard classical logics, to more unconventional ones, typically
capturing modern specification and programming paradigms—examples include
process algebras [23], temporal logics [8], the Alloy language [25], coalgebraic
logics [9], functional and imperative languages [30], among many others.

1.2 Contributions and Roadmap

Institutions are objects of a well known category I whose arrows are the so-
called institution comorphisms (cf. [21,30]). In this setting we argue that an
asymmetric combination of logics can, very often, be seen as an endofunctor
over I. Three examples (temporalisation, hybridisation, and probabilisation) are
discussed in detail, with their definitions (slightly) reworked to fit in the general
picture. Such a functorial perspective has several advantages: an interesting one
is the possibility to lift the combination process from logics to their translations,
which allows for the characterisation of natural transformations between asym-
metric combinations. Another interesting possibility is the study of adjoints, and
preservation of properties such as conservativity, equivalence, and (co)limits.
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We initiate this survey with a brief overview of common approaches to com-
bination of logics, in Sect. 2. From there on, the focus is placed on asymmetric
combinations and the characterisation of their functorial nature.

Thus, in Sect. 3 we recall the category of institutions I and revisit the three
combinations of logics discussed in the paper. Then, in Sect. 4, these examples
are made functorial. For the sake of simplicity and conciseness, we define an
institutional notion of asymmetric combination and make, to a large extent,
the necessary proofs at this level of abstraction. We stress, however, that the
paper’s main objective is not to introduce such a notion, but rather to survey
the functorial nature of a number of asymmetric combinations and to show that
the functorial perspective paves the way to several interesting mechanisms and
research lines.

In the same section we study property preservation by these three (new)
functors in what concerns conservativity (an important property in the valida-
tion of specifications) and the equivalence of institutions. We also discuss natural
transformations between asymmetric combinations. Finally, in Sect. 5, we con-
clude and suggest future lines of research.

This paper assumes a basic knowledge of Category Theory. Whenever found
suitable, we will omit subscripts in natural transformations and denote the
underlying class of objects of a category C by |C| or just C. All proofs of the
paper’s results are detailed in [24].

2 Combination of Logics: A Brief Overview

The entry on Combining Logics in the Stanford Encyclopedia of Philosophy [7]
stresses the role of Computing Science applications as a main driving force for
research in obtaining new logical systems from old, integrating features and
preserving properties to a reasonable extent: “One of the main areas interested in
the methods for combining logics is software specification. Certain techniques for
combining logics were developed almost exclusively with the aim of applying them
to this area.” The aforementioned hybridisation and temporalisation methods,
for example, were originally developed with concrete applications to Computing
Science in mind, but interestingly they can be more broadly understood as a
specific way of combining logics at a model theoretical level.

As already mentioned, an asymmetric combination of logics develops specific
features of a logic ‘on top’ of another one. This sort of combination was gener-
alised by Caleiro et al. in [6], in a method called parameterisation. In brief, a logic
is parametrised by another one if the atomic part of the former is replaced by
the latter: thus, the method distinguishes a parameter to fill (the atomic part),
a parametrised logic (the ‘top’ logic) and a parameter logic (the logic inserted
within). More recently, Rasga et al. [29] proposed a method for importing logics
by exploiting a graph-theoretic approach.

From a wider perspective, combination of logics is increasingly recognised
as a relevant research domain, driven not only by philosophical enquiry on the
nature of logics or strict mathematical questions, but also from applications in
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Computing Science and Artificial Intelligence. The first methods appeared in the
context of modal logics. This includes fusion of the underlying languages [33],
pioneered by Fitting in a 1969 paper combining alethic and deontic modalities
[13], and product of logics [31]. Both approaches can be characterised as sym-
metric. Product of logics, for example, amounts to pairing the Kripke semantics,
i.e. the accessibility relations, of both logics. With a wider scope of application,
i.e. beyond modal logics, fibring [14] was originally proposed by Gabbay, and
contains fusion as a particular case. From a syntactic point of view the language
of the resulting logic is freely generated from the signatures of the combined
logics, symbols from both of them appearing intertwined in an arbitrary way.

Reference [5] offers an excellent roadmap for the several variants of fibring
in the literature. A particularly relevant evolution was the work of A. Sernadas
and his collaborators resorting to universal constructions from category theory
to characterise different patterns of connective sharing, as documented in [32]. In
the simplest case, where no constraint is imposed by sharing, fibring is the least
extension of both logics over the coproduct of their signatures, which basically
amounts to a coproduct of logics. This approach, usually referred to as algebraic
fibring, makes heavy use of categorial constructions as a source of genericity to
provide more general and wide applicable methods.

3 Asymmetric Combination of Logics (Institutionally)

3.1 Institutions

Let us recall the core notions of the theory of institutions and revisit the three
working examples of combinations.

Definition 1. An institution I is a tuple (SignI, SenI, ModI, (|=I
Σ)Σ∈|SignI|)

where
– SignI is a category whose objects are signatures and arrows signature mor-

phisms.
– SenI : SignI → Set, is a functor that for each signature Σ ∈ |SignI| returns

a set of Σ-sentences,
– ModI : (SignI)op → Cat, is a functor that for each signature Σ ∈ |SignI|

returns a category whose objects are Σ-models and the arrows are Σ-model
homomorphisms.

– |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ), is a satisfaction relation such that for each

signature morphism ϕ : Σ → Σ′ the following property holds

ModI(ϕ)(M) |=I
Σ ρ iff M |=I

Σ′ SenI(ϕ)(ρ)

for any M ∈ |ModI(Σ′)|, ρ ∈ SenI(Σ). Diagrammatically,

Σ

ϕ

��

ModI(Σ)
|=I

Σ
SenI(Σ)

SenI(ϕ)

��
Σ′ ModI(Σ′)

ModI(ϕ)

��

|=I
Σ′

SenI(Σ′)
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If the tuple does not necessarily respects the satisfaction condition above then
we call it a pre-institution.

Notation 1. In the sequel we will refer to ModI(ϕ)(M) as the ϕ-reduct of M
and denote it by M �ϕ. When clear from the context, both the subscript and
superscript in the satisfaction relation will be dropped.

Definition 2. Consider two institutions I, I′. A comorphism (Φ,α, β) : I → I′

is a triple such that

– Φ: SignI → SignI′
is a functor,

– α: SenI → SenI′ · Φ is a natural transformation,
– β: ModI

′ · Φop → ModI is a natural transformation1,
– and for any Σ ∈ |SignI|, M ∈ |ModI

′ · Φop (Σ)| and ρ ∈ SenI(Σ)

βΣ(M) |=I
Σ ρ iff M |=I′

Φ(Σ) αΣ(ρ)

Diagrammatically, for each Σ ∈ |SignI|

ModI(Σ)
|=I

Σ
SenI(Σ)

αΣ

��
ModI

′ · Φop(Σ)

βΣ

��

|=I′
Φ(Σ)

SenI′ · Φ(Σ)

Definition 3. Let us consider two comorphisms (Φ1, α1, β1) : I → I′, and
(Φ2, α2, β2) : I′ → I′′. Their composition (Φ2, α2, β2) ; (Φ1, α1, β1) : I → I′′

is defined as (Φ2, α2, β2) ; (Φ1, α1, β1) � (Φ2 ·Φ1, (α2 ◦ 1Φ1) ·α1, β1 · (β2 ◦ 1Φop
1

))
where the white circle denotes the Godement (horizontal) composition of natural
transformations. Thus,

Φ2 · Φ1 : SignI → SignI′′
,

(α2 ◦ 1Φ1) · α1 : SenI → SenI′′ · Φ2 · Φ1,

β1 · (β2 ◦ 1Φop
1

) : ModI
′′ · Φop

2 · Φop
1 → ModI.

Each institution I has as the identity comorphism the triple (1SignI , 1SenI ,
1ModI).

As mentioned in the Introduction, institutions and respective comorphisms
form a category I.

1 ( )op applied to a functor F : C → D induces a functor F op : Cop → Dop such that
for any object or arrow a in C, F op(a) = F (a).



44 R. Neves et al.

3.2 An Institutional Rendering of Asymmetric Combinations
of Logics

Consider the following abstract characterisation of what is an asymmetric com-
bination of logics. Start with arbitrary categories Sign1, Sign2, and two functors

MC : (Sign1)op → Cat, MI : (Sign2)op → Cat.

Assume that, for each Δ ∈ |Sign1|, there is a functor U(MC,Δ) : MC(Δ) → Set.
Whenever no ambiguities arise, we will drop the subscript of U(MC,Δ). Let us
further assume that given a morphism ϕ : Δ → Δ′ of Sign1, the induced functor
MC(ϕ) makes the following diagram commute.

MC(Δ′)
MC(ϕ) ��

U �����������
MC(Δ)

U�����
��

��
��

Set

This leads to a functor MC(MI) : (Sign1 × Sign2)op → Cat such that given a
pair (Δ,Σ) ∈ Sign1 × Sign2, MC(MI)(Δ,Σ) forms a discrete category whose
objects are triples (S,R,m) where R ∈ MC(Δ), U(R) = S, and m : S → MI(Σ).
Moreover, given a signature morphism ϕ1 × ϕ2 : (Σ,Δ) → (Σ′,Δ′) we have
MC(MI)(ϕ1 × ϕ2) (S,R,m) � (S, MC(ϕ1)(R), MI(ϕ2) · m).

Definition 4. An asymmetric combination C is a tuple (SignC, SenC,MC, |=C)
such that

– SignC is a category of signatures.
– SenC is a family of functions

SenC
Sign : (Sign → Set) → (SignC × Sign → Set)

indexed by the categories Sign in Cat.
– MC is a functor MC : (SignC)op → Cat as assumed above.
– Given functors MI : Signop → Cat, SenI : Sign → Set, |=C is a family of

relation liftings (|=C
(Δ,Σ))(Δ,Σ) ∈ SignC×Sign

|=C
(Δ,Σ): |MI(Σ)| × SenI(Σ) → |MC(MI) (Δ,Σ)| × SenC(SenI)(Δ,Σ)

Given an institution I, a pre-institution CI, corresponding to a specific combi-
nation, is obtained as follows.

– SignCI � SignC × SignI.
– SenCI � SenC(SenI). We will assume that the sentences given by SenCI are

inductively defined ( i.e. are generated by a grammar) so that we can define
recursive maps on them. Intuitively, their atoms include the sentences of the
base logic.

– ModCI � MC(MI).
– Given a signature (Δ,Σ) ∈ |SignCI|, |=CI

(Δ,Σ)� |=C
(Δ,Σ) (|=I

Σ).
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Temporalisation. We are now ready to recast the three aforementioned combi-
nations of logics in the institutional setting. We start with temporalisation since
it is the simplest of the three.

Definition 5. Given an institution I the temporalisation process returns a pre-
institution LI = (SignLI, SenLI,ModLI, |=LI) defined as

– Signatures. SignLI � SignL × SignI, where SignL is the one object cat-
egory 1. Since SignLI ∼= SignI, no distinction will be made, unless stated
otherwise, between the two signature categories.

– Sentences. Given a signature Σ ∈ |SignLI|, SenLI(Σ) is the smallest set
generated by grammar

ρ � ψ | ¬ρ | ρ ∧ ρ | Xρ | ρ Uρ

where ψ ∈ SenI(Σ). For a signature morphism ϕ : Σ → Σ′, SenLI(ϕ) is
a function that, provided a sentence ρ ∈ SenLI(Σ), replaces the base sen-
tences ψ (i.e. elements of SenI(Σ)) occurring in ρ by SenI(ϕ)(ψ); in sym-
bols SenLI(ϕ)(ρ) = ρ[ψ ∈ SenI(Σ) / SenI(ϕ)(ψ) ] (recall that sentences are
assumed to be inductively defined).

– Models. Given the object 
 ∈ |1|, ML(
) is the category whose (unique)
element is the pair (N, suc : N → N) (N denotes the set of natural numbers)
and U (N, suc : N → N) is N. Hence, the elements of category ModLI(Σ)
are triples (N, suc : N → N,m) (often denoted by letter M) where m : N →
|ModI(Σ)|. We will often denote m (n) by Mn.

– Satisfaction. Given a signature Σ ∈|SignLI|, M ∈|ModLI(Σ)|, ρ∈SenLI

(Σ), M |= ρ iff M |=0 ρ where
M |=j ψ iff Mj |= ψ for ψ ∈ SenI(Σ)
M |=j ρ ∧ ρ′ iff M |=j ρ and M |=j ρ′

M |=j ¬ρ iff M 	|=j ρ
M |=j Xρ iff M |=j+1 ρ
M |=j ρ U ρ′ iff for some k ≥ j, M |=k ρ′ and for all j ≤ i < k, M |=i ρ

Note that temporalised propositional logic coincides with the classic linear tem-
poral logic (cf. [12]).

Theorem 1. Temporalised I ( i.e. LI) is an institution.

In the sequel we show that the other two asymmetric combinations enjoy the
same property, which is essential for their characterisation as endofunctors. Of
course, this also entails the possibility of combining a logic an arbitrary number
of times, using any of these three processes.

Probabilisation. In order to handle probabilistic systems (e.g. Markov chains)
probabilisation [2] adds a probabilistic dimension to logics. In institutional terms,

Definition 6. Consider an arbitrary institution I. Its probabilised version PI =
(SignPI, SenPI,ModPI, |=PI) is defined as follows
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– Signatures. SignPI � SignP × SignI, where SignP is the one object cat-
egory 1. Since SignPI ∼= SignI, no distinction will be made, unless stated
otherwise, between the two signature categories.

– Sentences. For a signature Σ ∈ |SignPI|, SenPI(Σ) is the smallest set
generated by grammar

ρ � t < t | ¬ρ | ρ ∧ ρ

for t ∈ T(Σ) (T : SignPI → Set). T(Σ) is generated by grammar

t � r |
∫

ψ | t + t | t . t

where r ∈ R is a real number, and ψ ∈ SenI(Σ). Also, we have

SenPI(ϕ)(ρ) � ρ[t ∈ T(Σ) / T(ϕ)(t) ], where

T(ϕ)(t) � t[ ψ ∈ SenI(Σ) / SenI(ϕ)(ψ) ]

– Models. ModP(
) is the discrete category whose elements are probability
spaces (S, p : 2S → [0, 1]). Functor U returns the carrier set. Hence, models in
ModPI(Σ) are triples (S, p,m) where m : S → ModI(Σ). For each sentence
ψ ∈ SenI(Σ) we set m−1[ψ] � {s ∈ S : m(s) |= ψ}.

– Satisfaction. Finally, given a signature Σ ∈ |SignPI|, a model M ∈
|ModPI(Σ)|, and ρ ∈ SenPI(Σ), define

Mr = r
M(
∫

ψ) = p(m−1[ψ])
M(t+t′) = Mt + Mt′

M(t.t′) = Mt . Mt′

M |= t < t′ iff Mt < Mt′

M |= ¬ρ iff M 	|= ρ
M |= ρ ∧ ρ′ iff M |= ρ and M |= ρ′

Theorem 2. Probabilised I (i.e. PI) is an institution.

Example 1. Probabilised propositional logic (PPL). The probabilisa-
tion of propositional logic is the following logic:

– Signatures. Signatures are sets of propositional symbols P .
– Sentences. Sentences are generated by grammar ρ � t < t | ¬ρ | ρ ∧ ρ where

t is a term generated by grammar t � r | ∫
ψ | t + t | t . t for r ∈ R and ψ a

propositional sentence.
– Models. Models are probability spaces equipped with a function whose domain

is the set of outcomes and the codomain the universe of propositional models.

Intuitively, PPL offers a probabilistic ‘flavour’ to propositions. For instance, one
may say that the probability of p holding is less than probability of q holding,∫

p <
∫

q. Other examples of probabilised logics are discussed in [2].
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Hybridisation. Hybridisation [20] (and its variations e.g. [15]) provides the
foundations for handling different kinds of reconfigurable systems (i.e. computa-
tional systems that change their execution modes throughout their lifetime) in
a systematic manner: in brief, the hybrid machinery relates and pinpoints the
different execution modes while the base logic specifies the properties that are
supposed to hold in each particular mode.

Since hybridisation was originally defined in institutional terms we will just
recall here its definition but without nominal quantification, which yields an
asymmetric fragment of the process. Such a fragment is adopted in [20] to define
parametrised translations from hybridised institutions into first-order logic—
the authors of [10] extended this work to accommodate nominal quantification
as well. The same fragment is the one adopted in [19] to provide a general
characterisation of equivalence and refinement for hybridised logics.

Definition 7. Given an institution I, HI = (SignHI, SenHI,ModHI, |=HI) is
defined as

– Signatures. SignHI � SignH × SignI, where SignH is the category Set×
Set whose objects are pairs of sets (Nom,Λ). Nom denotes a set of nominal
symbols, and Λ a set of modality symbols.

– Sentences. For a signature (Δ,Σ) ∈ |SignHI| (with Δ = (Nom,Λ)),
SenHI(Δ,Σ) is the smallest set generated by grammar

ρ � i | ψ | ¬ρ | ρ ∧ ρ | @iρ | 〈λ〉ρ
where i ∈ Nom, ψ ∈ SenI(Σ), λ ∈ Λ. For a signature morphism ϕ1 ×
ϕ2 : (Δ,Σ) → (Δ′, Σ′), nominals, modalities, and base sentences of ρ ∈
SenHI(Δ,Σ) are replaced according to ϕ1 × ϕ2 by SenHI(ϕ1 × ϕ2).

– Models. Given a signature Δ ∈ |SignH|, MH(Δ) is the discrete category
whose elements are triples (S, (Ri)i∈Nom, (Rλ)λ∈Λ) such that Ri ∈ S, and
Rλ ⊆ S ×S. Functor U forgets the last two elements, keeping just the carrier
set. For any signature morphism (ϕ1, ϕ2) : (Nom,Λ) → (Nom′, Λ′), we have
MH(ϕ1, ϕ2)(S, (R′

i)i∈Nom′ , (R′
λ)λ∈Λ′) � (S, (Ri)i∈Nom, (Rλ)λ∈Λ), where

Ri = R′
ϕ1(i)

and Rλ = R′
ϕ2(λ)

– Satisfaction. Given (Δ,Σ) ∈ |SignHI|, a model M ∈ |ModHI(Δ,Σ)| and
a sentence ρ ∈ SenHI(Σ), the satisfaction relation is defined as

M |= ρ iff M |=w ρ forall w ∈ S

where
M |=w i iff Ri = w for i ∈ Nom
M |=w ψ iff m(w) |= ψ for ψ ∈ SenI(Σ)
M |=w ¬ρ iff M 	|=w ρ
M |=w ρ ∧ ρ′ iff M |=w ρ and M |=w ρ′

M |=w @iρ iff M |=Ri ρ

M |=w 〈λ〉ρ iff there is some w′ ∈ W such that (w,w′) ∈ Rλ and M |=w′
ρ
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The proof that, for any institution I, hybridisation yields another institution is
given in reference [20].

Example 2. Hybridised propositional logic (HPL). Hybridisation of
propositional logic returns the following logic.

– Signatures. Signatures are triples (Nom,Λ, P ) where Nom is a set of nomi-
nal symbols, Λ a set of modality symbols, and P a set of propositional symbols.

– Sentences. Sentences are generated by grammar

ρ � i | ψ | ¬ρ | ρ ∧ ρ | @iρ | 〈λ〉ρ

where i is a nominal, λ is a modality, and ψ a propositional sentence. Note
that we have two levels of Boolean connectives: the ones from propositional
logic, and the ones introduced by hybridisation. One can, however, ‘collapse’
them since they semantically coincide.

– Models. Models are triples (W,R,m) such that W defines the set of worlds,
R describes the transitions between worlds and names states. Moreover each
world w ∈ W points to a propositional model m(w).

4 Asymmetric Combinations of Logics as Functors

4.1 Lifting Comorphisms

In the previous section three combinations of logics were revisited under the
light of the theory of institutions. We intend now to discuss them as translations
between logics. We will do this at the level of the abstract definition of a com-
bination of logics given above, leading thus to more powerful results, applicable
not only to the three combinations discussed, but also to any other fitting the
characterisation.

Formally, given a comorphism (Φ,α, β) : I → I′ a combination process maps
(Φ,α, β) into C(Φ,α, β) : CI → CI′. The strategy for such a lifting is simple: when
transforming signatures, sentences or models, we keep the top level structure and
change the bottom level according to the base comorphism. Thus,

Definition 8. A comorphism (Φ,α, β) : I → I′ is lifted to a mapping (CΦ,Cα,
Cβ) :CI → CI′ as follows:

– Signatures. CΦ : SignCI → SignCI′
,

CΦ � 1SignC × Φ.

– Sentences. Cα : SenCI → SenCI′ · CΦ,

(Cα)(Δ,Σ)(ρ) � ρ [ ψ ∈ SenI(Σ) / αΣ(ψ) ],

for any (Δ,Σ) ∈ |SignCI|.
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– Models. Cβ : ModCI
′ · CΦop → ModCI,

(Cβ)(Δ,Σ) � id × id × (βΣ·),
for any (Δ,Σ) ∈ |SignCI|.

Clearly, CΦ is a functor and both Cα, and Cβ are natural transformations.

Lemma 1. The lifting process, as defined above, preserves identities and dis-
tributes over composition.

To conclude that the three combinations are endofunctors one step still remains:
to show that the lifted arrows are comorphisms. This, however, entails the need
to inspect each specific combination on its own, as they all lift the satisfaction
relation in different ways. Certainly a fully generic definition would be an inter-
esting result. However, this turned out to be a surprisingly complex issue, which
furthermore is not essential for the message that we want this paper to convey.

Theorem 3. If (Φ,α, β) is a comorphism then, for any of the three combinations
C discussed above, C(Φ,α, β) is a comorphism as well.

4.2 Property Preservation (Conservativity and Equivalence)

The characterisation of asymmetric combinations as endofunctors over the cat-
egory of institutions I provides a sound basis for the study of property preser-
vation by them. Such a study is illustrated in this section in which it is shown
that temporalisation, probabilisation, and hybridisation preserve conservativity
and equivalence. We start with the former case.

In Computing Science a main reason to study under what conditions a logic
may be translated into another is to seek for the existence of (better) com-
putational proof support. In the institutional setting, suitable translations are
often defined by comorphisms, which in many cases should obey the following
condition: whenever completeness is required, i.e. whenever one demands the
validation of the specification against all possible scenarios (models), then the
comorphisms involved must be conservative. Formally,

Definition 9. A comorphism (Φ,α, β) is conservative whenever, for each sig-
nature Σ ∈ |SignI|, βΣ is surjective on objects.

Let us describe in more detail the relevance of conservativity for validation.
Recall the satisfaction condition placed upon comorphisms. For a signature Σ ∈
|SignI|, M ∈ |ModI

′ · Φop(Σ)|, and ρ ∈ SenI(Σ) we have βΣ(M) |=I
Σ ρ iff

M |=I′
Φ(Σ) αΣ(ρ). Graphically, for each Σ ∈ |SignI|

ModI(Σ)
|=I

Σ
SenI(Σ)

αΣ

��
ModI

′ · Φop(Σ)

βΣ

��

|=I′
Φ(Σ)

SenI′ · Φ(Σ)
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Suppose we want to verify that a sentence ρ ∈ SenI(Σ) is satisfied by all models
M ∈ |ModI(Σ)|. For this we resort to the comorphism by translating the sen-
tence (through α) into the target logic. The satisfaction condition, once verified,
ensures that if the sentence is satisfied by all models there, then all models in
the image of βΣ will satisfy the original sentence. Of course, if βΣ is surjective
on objects its image will coincide with |ModI(Σ)|, thus proving that the original
sentence is satisfied by all models in |ModI(Σ)|.
Theorem 4. A lifted conservative comorphism is still conservative.

Next we show that the application of temporalisation, probabilisation, and
hybridisation to two equivalent logics yields again two equivalent logics. First,
recall the definition of equivalence of categories.

Definition 10. Two categories C,D are equivalent if there are two functors F :
C → D, G : D → C and two natural isomorphisms ε : FG → 1D, η : 1C → GF .
In these circumstances, an equivalence of categories, G (resp. F ) is the inverse
up to isomorphism of F (resp. G)

Definition 11. A comorphism (Φ,α, β) is an equivalence of institutions if the
following conditions hold.

– Signatures. Φ forms an equivalence of categories.
– Sentences. α has an inverse up to semantical equivalence, i.e.a natural

transformation α−1 : SenI′ · Φ → SenI such that for any sentence ρ ∈
SenI(Σ),

(α−1 · α)(ρ) |= ρ, ρ |= (α−1 · α)(ρ)

or more concisely, (α−1 · α)(ρ) |=| ρ.
Moreover, for any sentence ρ ∈ SenI′ · Φ(Σ), (α · α−1)(ρ) |=| ρ.

– Models. β has an inverse up to isomorphism, i.e., a natural transforma-
tion β−1 such that for any Σ ∈ |SignI|, functor β−1

Σ is the inverse up to
isomorphism of βΣ.

More about equivalence of institutions can be found in e.g. document [21].

Theorem 5. A lifted equivalence of institutions is still an equivalence of
institutions.

4.3 Natural Transformations

We consider now natural transformations between asymmetric combinations of
logics, which seem to fit nicely into the picture: while lifted comorphisms map the
bottom level and keep the top one, such natural transformations map the top and
keep the bottom. For example, take a natural transformation τ : L → H. It is
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clear that each institution I, induces a comorphism τI : LI → HI. Furthermore,
naturality expresses the commutativity of the diagram below

LI

τI

��

L(Φ,α,β) �� LI′

τI′

��
HI

H(Φ,α,β)
�� HI′

for each comorphism (Φ,α, β). This means that when translating a logic whose
levels are both mapped by a composition of natural transformations and lifted
comorphisms, it does not matter which one of the top or bottom levels is taken
first.

Let us illustrate this construction through the natural transformation
τ : L → H, which relates temporalisation to hybridisation. We will, for
now, disregard the until (U) constructor associated with L, in order to
keep the construction simple. First consider a signature N ∈ |SignH| such
that N � ({Init}, {After,After�, Next}). Then for any signature (N,Σ) ∈
|SignHI | define the full subcategory of ModHI(N,Σ) (denoted in the sequel by
MNI(N,Σ)) whose objects are triples (S,R,m) subjected to the following rules:

S = N

RInit = 0 (a, b) ∈ RAfteriff a < b

(a, b) ∈ RNext iff b = suc(a) (a, b) ∈ RAfter� iff a ≤ b.

Definition 12. Given an institution I, define an arrow τI = (τIΦ, τIα, τIβ)
where

– Signatures. τΦ : SignLI → SignHI is a functor such that τΦ (Σ) � (N,Σ)
and, for any signature morphism ϕ : Σ → Σ′

τΦ (ϕ) : (N, Σ) → (N, Σ′), τΦ (ϕ) � id × ϕ

– Sentences. Given a signature Σ ∈ |SignLI|, τα : SenLI(Σ) → SenHI ·
τΦ(Σ) is a function such that τα(ρ) � @Initσ(ρ) where

σ(ψ) = ψ, for ψ ∈ SenI(Σ) σ(ρ ∧ ρ′) = σ(ρ) ∧ σ(ρ′)
σ(¬ρ) = ¬σ(ρ) σ(Xρ) = [Next] σ(ρ)

The proof that τα is a natural transformation follows through routine
calculation.

– Finally, given a signature Σ ∈ |SignLI|, arrow τβ : ModHI·(τΦ)op → ModLI

is a functor such that

τβ (S,R,m) � (N, suc : N → N,m)

Clearly, τβ is a natural transformation.



52 R. Neves et al.

Theorem 6. τ : L → H forms a natural transformation whenever ModHI (for
any institution I) is equal to ModNI.

In order to include the until constructor we need to add nominal quantification
to hybridisation, which would yield the translation

σ(ρUρ′) = ∃x . 〈After�〉( x ∧ σ(ρ′)) ∧ [After�](〈After〉x ⇒ σ(ρ))

Actually, the proof that hybridisation with nominal quantification is also an
endofunctor (and the satisfaction condition for until associated with τ holds)
boils down to a routine calculation. This means that the theorem above can be
replicated, taking care of the until operator, in a straightforward manner.

5 Conclusions and Future Work

Asymmetric combination of logics is a promising tool for the (formal) develop-
ment of complex, heterogeneous software systems. This justifies their study at
an abstract level, paving the way to general results on, for example, property
preservation along the combination process. Often such a study has been made
on a case-by-case basis e.g. [11,27,28]. This paper, on the other hand, surveys
a more general, functorial perspective using three different asymmetric combi-
nations of logics as case-studies. In particular, it provided their characterisation
as endofunctors over the category of institutions by showing how to lift comor-
phisms and proving that the lifted arrows obey the functorial laws. This made
clear that not only logics, but also their translations can be combined.

The development of an institutional, abstract notion of asymmetric combina-
tion of logics proposed in the paper, hints at a set of directions for future research.
For example, we saw at the abstract level that conservativity (an important prop-
erty for safely ‘borrowing’ a theorem prover) and equivalence are preserved by
combination. However, a full study is still to be done in what regards preserva-
tion of (co)limits, e.g. to discuss whether the combination of the product of two
logics is equivalent to the product of their respective combinations.

Another research direction was set by J. Goguen in his Categorial Mani-
fest [16]: “if you have found an interesting functor, you might be well advised
to investigate its adjoints”. We studied natural transformations between such
functors and showed that they nicely complement the lifting of comorphisms:
while the latter maps the bottom level and keeps the top one, the former maps
the top and keeps the bottom. We gave an example of a natural transformation
between temporalisation and hybridisation, but others deserve to be studied as
well. For example, in document [20] it is shown how, given a comorphism from
an institution I to FOL, a comorphism from HI to FOL can be obtained. More
generally, the current paper shows that comorphisms can be built by lifting the
original comorphism and then composing it with the ‘flat’ natural transformation
E : C → 1I (whenever it exists). Diagrammatically,
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I

C

��
��
��
��

(Φ,α,β) �� I′

C

��
��
��
��

CI
C(Φ,α,β)

�� CI′

E

��

On a more speculative note, the perspective taken in this paper also suggests
to look at ‘trivial’ asymmetric combinations. For example, it is straightforward
to define identisation, in which the added layer has a trivial structure, but also
trivialisation (T), which turns a logic into the trivial one (technically, the initial
object in the category I of institutions). The latter case implies that there is a
(unique) natural transformation T → C to any combination C.

From a pragmatic point of view, the incorporation of these ideas into the
Hets platform [22] paves the way for its effective use in Software Engineering.
Hets is often described as a “motherboard” of logics where different “expansion
cards” can be plugged in. These refer to individual logics (with their particular
analysers and proof tools) as well as to logic translations. To make them com-
patible, logics are formalised as institutions and translations as comorphisms.
Therefore Hets provides an interesting setting for the implementation of the
theory developed in this paper. Again, a specific case—that of hybridisation—
was already implemented in the Hets platform [26].
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1 Introduction

In this paper we survey the field of model management and describe a new
model management approach based on techniques from the field of algebraic
specification, with the hope of establishing an interlingua between the two fields.
By “model management” we mean “meta-data intensive” database management
in the sense of Bernstein & Melnik [4], which we define in Sect. 2. By “a new
algebraic model management approach” we mean our particular way [19,20] of
specifying database schemas and instances using algebraic (equational) theories.

We first noticed a connection between model management and algebraic
specification while investigating applications of category theory [3] to data inte-
gration [5]. These investigations are described in [19,20], and we present no
substantial new results in this paper. We assume readers have basic proficiency
with category theory [3], algebraic specification [17], and SQL.

Outline. In Sect. 2 we describe the traditional approach to model management
and in Sect. 3 we describe our algebraic approach. Also in Sect. 3 we describe the
open-source AQL (Algebraic Query Language) tool, available for download at
http://categoricaldata.net/aql.html, which implements our approach in software.
We conclude in Sect. 4 by comparing our approach with the traditional approach.

2 Model Management

To quote from Melnik [16]:

Many challenging problems facing information systems engineering involve
the manipulation of complex metadata artifacts, or models, such as

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
P. James and M. Roggenbach (Eds.): WADT 2016, LNCS 10644, pp. 56–69, 2017.
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database schemas, interface specifications, or object diagrams, and map-
pings between models. The applications that solve metadata manipulation
problems are complex and hard to build. The goal of generic model man-
agement is to reduce the amount of programming needed to develop such
applications by providing a database infrastructure in which a set of high-
level algebraic operators, such as Match, Merge, and Compose, are applied
to models and mappings as a whole rather than to their individual building
blocks.

In the paragraph above the word “model” is defined to mean a metadata arti-
fact such as a schema, which conflicts with the definition of the word “model”
as a structure satisfying a theory. In this paper, we use the phrase “model man-
agement” to mean the field identified above, and use the word “model” to mean
a structure satisfying a theory.

Today model management is a large sub-field of information management
with a research literature containing hundreds of published articles [4]. There is
a consensus in that literature [4] that model management is concerned with at
least the problems described in the next sections.

2.1 Schema Mapping

Given two database schemas S and T , the schema mapping problem [7] is to
construct a “mapping” F : S → T that captures some user-specified relationship
between S and T . Different model management systems use different notions
of schema, including SQL, XML, and RDF [4]. The most common mapping
formalism studied in the literature is that of “embedded dependencies” (EDs) [5]:
formulae in a fragment of first-order logic with useful computational properties.

We will use SQL schemas and EDs in our examples in this section. Consider
the following SQL schema S, consisting of two tables connected by a foreign key:

CREATE TABLE N2(ID INT PRIMARY KEY, age INT)

CREATE TABLE N1(ID INT PRIMARY KEY, name STRING, salary INT,
f INT FOREIGN KEY REFERENCES N2(ID))

and the following SQL schema T , consisting of one table:

CREATE TABLE N(ID INT PRIMARY KEY, age INT,
name STRING, salary INT).

These two SQL schemas are displayed graphically in Fig. 1.
An example schema mapping F : S → T expressing that the target table N

is the join of source tables N1 and N2 along the column f is:

∀id1, id2, a, n, s. N1(id1, n, s, id2) ∧ N2(id2, a) → N(id1, a, n, s).

Two instances satisfying the above ED are shown in Fig. 1. In general, many
EDs can map between two SQL schemas.
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Fig. 1. Example data migrations, with foreign keys (see Sects. 2.1 and 3.2)

2.2 Query Generation

Given a schema mapping F : S → T , the query generation problem [4] is to
construct a query which converts databases on S to databases on T in a way
that satisfies F . The query languages typically studied include SQL, XQuery,
and various comprehension- and λ-calculi [4].

A SQL query to implement the example mapping from Sect. 2.1 is:

INSERT INTO N
SELECT N1.ID, N1.age, N2.name, N1.sal
FROM N1, N2
WHERE N1.f = N2.ID

Technically, the INSERT portion of the above SQL code is not a “query”, but
rather an “update”, and in practice the code generated from a query generation
task will often store the results of the query. An example of running the above
SQL is shown as the left-to-right direction of Fig. 1. In general, many or no SQL
queries may implement a set of EDs [5]. EDs can also be directly executed by
an algorithm called “the chase” [5].

2.3 Mapping Inversion

Given a schema mapping F : S → T , the mapping inversion problem [10] is to
construct a schema mapping F−1 : T → S that undoes F with respect to query
generation (i.e. the queries generated from F and F−1 should be inverses).

The natural candidate ED to invert the schema mapping of Sect. 2.1 expresses
that N projects onto N1 and N2:

∀id1, a, n, s. N(id1, a, n, s) → ∃id2. N1(id, n, s, id2) ∧ N2(id2, a)
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and a possible SQL implementation of this ED is:

INSERT INTO N1
SELECT ID, name, sal, ID
FROM N

INSERT INTO N2
SELECT ID, age
FROM N

However, the above ED is not an inverse to the ED of Sect. 2.1, as is seen by
taking ∅ = N1 �= N2. Indeed, it is rare for an ED, or set of EDs, to be invertible,
and weaker notions of inverse, such as “quasi-inverse” [10], are common in the
literature [10]. An example of running the above SQL is shown as the right-to-left
direction of Fig. 1.

2.4 Mapping Composition

Given schema mappings F : S → T and G : T → U , the mapping composition
problem [8] is to construct a schema mapping G ◦ F : S → U that is equivalent
with respect to the query generation problem (i.e. running the query generated
from G ◦ F should have the same effect as running the query generated from G
on the results of the query generated from F ).

The composition of the ED from Sect. 2.1 with the ED from Sect. 2.3 is

∀id1, id2, n, s, a. N1(id1, n, s, id2) ∧ N2(id2, a) → ∃x. N1′(id, n, s, x) ∧ N2′(x, a)

where N1’, N2’ are target “copies” of source tables N1, N2. This composed ED
is not the identity, thereby showing that the ED from Sect. 2.3 does not invert
the ED from Sect. 2.1. In the case of EDs, composed mappings may not exist [8],
but some restrictions and extensions of EDs are closed under composition [8].

2.5 Schema Matching

Given two database schemas S and T , the schema matching problem [5] is to
automatically find “correspondences” between S and T and to automatically
infer schema mappings S → T from these correspondences. In general, inference
of entire mappings cannot be fully automated and the focus of the matching
problem is to reduce the human effort required to construct a schema mapping
by e.g., suggesting partial mappings that can be completed by users. There are
many techniques for schema matching ranging from comparison of column names
by string similarity to machine learning algorithms; for an overview, see [5].
In the example from Sect. 2.1, two correspondences that are easy to automatically
find are (N1,N) and (N2,N) and tools such as Clio [14] can create the ED from
Sect. 2.1 from these two correspondences.

2.6 Further References

In this paper we will focus on the problems described in the previous sec-
tions, but many other problems are studied in the model management litera-
ture [4], and many of these problems are related to algebraic specification. For



60 P. Schultz et al.

example, schema/instance merge problems [4], which arise often in data inte-
gration scenarios [2], can be formalized as pushouts in suitable categories of
schemas/instances [20], and such pushouts are related to model-theoretic con-
cepts such as model amalgamation [15].

Many software products solve model management problems [4], including
ETL (Extract, Transform, Load) tools [5], which extract data from separate
databases, apply user-specified transformations, and then load the result into
a target system such as a data warehouse; query mediators [5], which answer
queries about a “virtual” integrated database by combining queries about sep-
arate source databases; and visual schema mapping tools [14] which allow users
to create schema mappings by visually connecting related schema elements with
lines, as shown in Fig. 2.

There have been at least two attempts to provide a “meta semantics” for
model management operations. In [16] Melnik gives a “state based” meta seman-
tics to some of the above operations by defining a schema mapping S → T to
be an arbitrary binary relation between instances on S and instances on T ; the
ED-based semantics described above is an instantiation of this meta semantics.
In [2,13] the authors give an “institution theoretic” meta semantics to some of
the above operations by defining a schema mapping S → T to be a morphism in
a suitable category of schemas; AQL’s semantics is an instantiation of this meta
semantics.

Fig. 2. A schema mapping in Clio [14]
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3 Algebraic Model Management

Our approach to model management is based on the algebraic approach to data-
bases, data migration, and data integration we describe in [19,20]. Those works,
and hence this work, extend a particular category-theoretic data model that orig-
inated in the late 1990s [11] and was later extended in [21,23] and implemented
in AQL (http://categoricaldata.net/aql.html).

In the next section we describe our formalism for database schemas and
instances and introduce AQL. The subsequent sections implement the model
management operations from Sect. 2 using our formalism. In this section we
abbreviate “algebraic theory” as “theory”.

3.1 Algebraic Databases

In our formalism [20], database schemas and instances are defined as theories of
a certain kind, which we describe in the next sections. For ease of exposition, we
will sometimes conflate schemas and instances as defined in our formalism with
their AQL equivalents.

Type Sides. We first fix a theory, Ty , called the type side of our formalism.
The sorts of Ty are called types and the functions of Ty are the functions that
can appear in schemas and instances.

AQL allows arbitrary theories to be used as type sides. But we have found
that in practice, AQL users almost always want to use the theory of an existing
programming language, say java, for their type side. The ability to “bind” AQL
to an existing language is particularly important in model management because
input data may only be accessible through, e.g., a java API. For this reason,
AQL allows a type side to be defined by specifying, for each sort s, a java class
Cs and a java function String → Cs that tells AQL how to interpret the strings
it encounters in AQL programs as objects of Cs.

An example AQL type side about integers and strings is shown in Fig. 3.
This type side defines a theory with two sorts and infinitely many constants –
all the java strings and integers – and no equations. The java code for Int says
that whenever a string x is encountered in an AQL program and a term of sort
Int is required, that java’s parseInt function should be applied to x to yield
the desired Int. The keyword literal, used in many places in AQL, indicates
a literal (user-defined constant) definition.

Schemas. A schema on type side Ty is a theory extending Ty with new sorts
(called entities), new unary functions from entities to types (called attributes),
new unary functions from entities to entities (called foreign keys), and new equa-
tions (called data integrity constraints) of the form ∀v : s. t = t′, where s is an
entity and t, t′ are terms of the same type, each containing a single free variable v.
The restrictions in the preceding sentence (e.g., no functions from types to enti-
ties) are necessary to use our formalism for model management purposes [19,20].

Figure 4 shows the AQL schemas corresponding to Fig. 1. These schemas
contain no equations and are both on the type side Ty defined in Fig. 3.

http://categoricaldata.net/aql.html
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typeside Ty = literal {

java_types

String = "java.lang.String"

Int = "java.lang.Integer"

java_constants

String = "return input[0]"

Int = "return java.lang.Integer.parseInt(input[0])"

}

Fig. 3. AQL type side Ty

schema S = literal : Ty {

entities

N1

N2

foreign_keys

f : N1 -> N2

attributes

name : N1 -> String

salary : N1 -> Int

age : N2 -> Int

}

schema T = literal : Ty {

entities

N

attributes

name : N -> String

salary : N -> Int

age : N -> Int

}

Fig. 4. AQL schemas S and T on type side Ty

instance I = literal : S {

generators

1 2 3 : N1

equations

name(1) = Alice salary(1) = 100 age(f(1)) = 20

name(2) = Bob salary(2) = 250 age(f(2)) = 20

name(3) = Sue salary(3) = 300 age(f(3)) = 30

}

Fig. 5. AQL instance I on schema S

Instances. An instance I on schema S is a theory extending S with new 0-ary
function (constant) symbols called generators and non-quantified equations. An
example AQL instance on schema S (Fig. 4) is shown in Fig. 5.
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Fig. 6. Initial algebra for AQL instance I

The intended meaning of an instance I, written �I�, is the term model (i.e.,
initial algebra) for I which contains, for each sort s, a carrier set consisting of the
closed terms of sort s modulo provability in I. A morphism of instances I → J
is a homomorphism (natural transformation) of algebras �I� → �J�.

Figure 6 shows the meaning of the instance I from Fig. 5 in the AQL tool.
The AQL tool visually displays term models as sets of tables, one per entity e,
each with an ID column corresponding to the carrier set for e. The tables in
Fig. 6 are isomorphic to the left tables in Fig. 1.

In the following sections we implement the model management operations
from Sect. 2 using the preceding definitions of schema and instance.

3.2 Schema Mapping

Given schemas S, T , the schema mapping problem (Sect. 2.1) is to construct a
“mapping” F : S → T that captures some relationship between S and T .

Let S and T be AQL schemas on the same type side Ty . An AQL schema
mapping F : S → T is defined as a “derived signature morphism” [18] from S to
T that is the identity on Ty . That is, F : S → T assigns to each entity e ∈ S an
entity F (e) ∈ T , and to each attribute/foreign key f : s → s′ a term F (f), of type
F (s′) and with one free variable of type F (s), in a way that respects equality: if
S 
 t = t′, then T 
 F (t) = F (t′). We have found that many mappings arising
in practice cannot be expressed using plain signature morphisms and require the
more general notion of “derived” signature morphism.

Whereas a schema mapping in Sect. 2.1 was an ED (formula in a fragment
of first-order logic), which induces a single binary satisfaction relation between
instances, AQL schema mappings are derived signature morphisms and induce
three relations between instances, which we will describe in the next section.

An example AQL schema mapping F : S → T is shown in Fig. 7, where AQL
schemas S and T are defined in Fig. 4. This mapping is also shown graphically
in Fig. 1.
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mapping F = literal : S -> T {

entities

N1 -> N

N2 -> N

foreign_keys

f -> lambda x:N. x

attributes

name -> lambda x:N. name(x)

salary -> lambda x:N. salary(x)

age -> lambda x:N. age(x)

}

Fig. 7. AQL schema mapping F : S → T

3.3 Query Generation

Given a mapping F : S → T , the query generation problem (Sect. 2.2) is to use
F to construct a query which converts databases on S to databases on T .

In our formalism, the database instances and morphisms on a schema S
constitute a category, denoted S–Inst, and a schema mapping F : S → T induces
a functor ΣF : S–Inst → T–Inst defined by substitution. The functor ΣF has a
right adjoint, ΔF : T–Inst → S–Inst, which corresponds to the “model reduct
functor” when our formalism is described in institution-theoretic terms [2]. The
functor ΔF has a right adjoint, ΠF : S–Inst → T–Inst. See [19] for proof
that ΔF always has left and right adjoints. As adjoints, ΔF ,ΠF preserve limits
and ΔF , ΣF preserve colimits, implying many useful properties; for example,
ΣF (I + J) ∼= ΣF (I) + ΣF (J) and ΠF (I × J) ∼= ΠF (I) × ΠF (J).

Note that unlike Sect. 2.1, where there was a single query associated with a
schema mapping (ED), in our algebraic approach there are three queries, one for
each of ΔF , ΣF , ΠF . The conditions under which ΔF ,ΣF , ΠF can be expressed
in SQL and vice-versa are characterized in [23].

Although it is possible to give explicit formulae to define ΔF , ΣF ,ΠF [19]
we instead give examples in Figs. 1 and 8. Note that in these examples we are
not showing instances (theories) as defined in Sect. 3.1; we are showing term
models. For this reason, we surround ΔF , ΣF ,ΠF with denotation brackets ��
in these examples. In addition, as adjoints Δ,Σ,Π are only defined up to unique
isomorphism, so we arbitrarily make up names for IDs and in these examples.
Figures 1 and 8 show an AQL schema mapping F which takes two distinct source
entities, N1 and N2, to the target entity N. The �ΔF � functor projects in the
opposite direction of F : it projects columns from the single table for N to two
separate tables for N1 and N2, similar to FROM N AS N1 and FROM N AS N2 in
SQL. When there is a foreign key from N1 to N2, the �ΔF � functor populates it
so that N can be recovered by joining N1 and N2. The �ΠF � functor takes the
cartesian product of N1 and N2 when there is no foreign key between N1 and
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Fig. 8. Example data migrations (see Sect. 3.2)

N2, and joins N1 and N2 along the foreign key when there is. The �ΣF � functor
disjointly unions N1 and N2; because N1 and N2 are not union compatible (have
different columns), �ΣF � creates null values. When there is a foreign key between
N1 and N2, �ΣF � merges the tuples that are related by the foreign key, resulting
in a join. As these examples illustrate, ΔF can be thought of as projection,
ΠF can be thought of as a product followed by a filter (which can result in a
join), and ΣF can be thought of as a disjoint union (which does not require
union-compatibility) followed by a merge (which can also result in a join).
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3.4 Mapping Composition

Given schema mappings F : S → T and G : T → U , the mapping composition
problem (Sect. 2.4) is to construct a schema mapping G ◦ F : S → U that is
equivalent with respect to query generation.

In one sense, the mapping composition problem is trivial [19] for our for-
malism: ΔF◦G ∼= ΔG ◦ ΔF , ΠF◦G ∼= ΠF ◦ ΠG, and ΣF◦G ∼= ΣF ◦ ΣG. But
this solution is not wholly satisfactory because in practice a mixture of Δ,Σ,Π
functors may be needed to accomplish any particular task (similarly, in SQL a
mixture of joins and unions may be needed to accomplish any particular task).
The following results are proved in [19,23]:

– Every composition ΣF ◦ΔG is isomorphic to ΔF ′ ◦ΣG′ for some F ′, G′. This
statement is also true if ΣF is replaced with ΠF .

– Pairs of the form (F,G), denoting ΣF ◦ ΔG, are closed under composition.
This statement is also true if ΣF is replaced with ΠF . Such pairs can be
specified in an intuitive “select-from-where” syntax, described in [19,20].

– Triples of the form (F,G,H), denoting ΣF ◦ ΠG ◦ ΔH , are closed under
composition, provided that F is a discrete op-fibration [3], which is exactly
the “union compatibility” condition [5] that ΣF performs unions over tables
whose columns match; Fig. 1 is not a discrete op-fibration.

3.5 Mapping Inversion

Given a schema mapping F : S → T , the mapping inversion problem (Sect. 2.3)
is to construct a mapping F−1 : T → S that somehow “undoes” F .

Our formalism has strong inversion properties but does not have inverses per
se. When there exists F−1 : T → S such that F ◦ F−1 = id and F−1 ◦ F = id,
then ΔF ◦ ΔF−1 ∼= id, ΣF ◦ ΣF−1 ∼= id, and ΠF ◦ ΠF−1 ∼= id. In general F need
not have an inverse, but when S and T have finite initial algebras/term models
(which is a priori undecidable, and implies decidability of S and T ) it is possible
to construct F−1 whenever it exists by considering all possible functors T → S.
When F has a right adjoint G : T → S, a weaker condition than having an
inverse, there are canonical morphisms ΣF → ΔG and ΔF → ΠG.

In practice “round-tripping” [5] of data is desirable even when inverses do not
exist. For example, projection, because it forgets information, typically cannot
be inverted, but we may want to remember where the projected data originated.
In our formalism the adjunctions between Σ,Δ,Π provide round-tripping. For
example, for every F : S → T and S-instance I there is a canonical mor-
phism I → ΔF (ΣF (I)), the unit of the ΣF � ΔF adjunction, which describes
where each ID in I is sent to by ΣF (and similarly for ΠF ). Dually, for every
T -instance J there is a canonical morphism ΣF (ΔF (J)) → J , the co-unit of
the ΣF � ΔF adjunction, which describes where the IDs in ΔF (J) originate
(and similarly for ΠF ). The unit and co-unit can be used to obtain, for every
morphism h : ΣF (I) → J , a mate h′ : I → ΔF (J) and vice-versa (and simi-
larly for ΠF ). Relating adjointness to existing relaxed notions of inverse such as
quasi-inverse [9] is an important area for future work.
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3.6 Schema Matching

Given database schemas S and T , the schema matching problem (Sect. 2.5) is to
automatically suggest schema mappings S → T to the user.

In this section, we define two schema matching techniques used by AQL.
Our techniques compare entities, and foreign keys and attributes (“symbols”)
by name, as strings, and so our techniques depend on having (probably user-
provided) names whose similarity as strings reflects their semantic similarity. Let
σ : String,String → [0, 1] be any string similarity function [5] where a value of 1
indicates a “good” match and a value of 0 indicates a “bad” match.

– The first technique attempts to infer a schema mapping F : S → T . For each
entity s ∈ S, we define F (s) := t where t ∈ T is an entity that maximizes
σ(s, t). For each symbol f : s → s′ ∈ S, we then consider the set X of symbols
F (s) → F (s′). If X is non-empty, we choose a symbol g ∈ X that maximizes
σ(f, g) and set F (f) := g. If X is empty but there is a shortest path p from
F (s) to F (s′), we set F (f) := p. If no shortest path exists, the match fails.
The F so constructed is only a candidate schema mapping: AQL must verify
that F preserves provable equality in S.

– The second technique attempts to infer a schema A and schema mappings
F : A → S and G : A → T . Such a span of mappings can be interpreted as a
query of the form ΣF ◦ ΔG or ΠF ◦ ΔG. Let c be some user-provided string
similarity cutoff. The entities of A are those pairs of S-entities and T -entities
(s, t) such that σ(s, t) > c. The symbols (s, t) → (s′, t′) of A are those pairs
of S-symbols and T -symbols (f : s → s′, g : t → t′) such that σ(f, g) > c.
The mappings F and G are projections.

4 Conclusion

When comparing our algebraic approach to model management with other
approaches originating in relational database theory [1] it is important to note
that our databases are “deductive databases” [1]. That is, we define databases
“intensionally”, as sets of equations, rather than as sets of tables. As such, care
must be taken when mediating between our definitions and relational definitions.
For example, our instances can be “inconsistent” in the sense that an instance
can prove 1 = 2 for two distinct constant symbols 1 and 2. Such situations
are often, but not always [12], errors, and the AQL tool checks for such situa-
tions using standard techniques based on “conservative theory extensions” [12].
In addition, our schemas do not define a set of constants (a “domain”) that
all the instances on that schema share, as is customary in relational database
theory [7]. Hence our approach is closer in spirit to traditional logic [6] than
database theory [1].

There are many connections between our algebraic approach to model man-
agement and the ED-based approach described in Sect. 2. EDs are more expres-
sive than our purely equational data integrity constraints and can be added to
our formalism in a simple way, described in [22] (although in [22], EDs are called



68 P. Schultz et al.

“lifting problems”). In ED-based approaches the “chase” [5] operation has a sim-
ilar semantics to our Σ operation, and a formal comparison between the chase
and Σ is forthcoming.
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Abstract. The Kolmogorov axioms for probability functions are placed
in the context of signed meadows. A completeness theorem is stated and
proven for the resulting equational theory of probability calculus. Ele-
mentary definitions of probability theory are restated in this framework.
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1 Introduction

The Kolmogorov axioms for probability functions may be considered a module
that can be included in a variety of more or less formalized contexts. We will
propose and investigate some consequences of these axioms when placed in the
context of involutive meadows, that is meadows where inverse is an involution
following the terminology of [7].

In particular we will discuss an axiomatization of a probability function (PF)
on a Boolean algebra. The Boolean algebra serves as an event space, the PF
defined on it produces elements of (values in) a signed meadow that serve as
probabilities. Special focus is on the case where values are chosen in the signed
meadow of real numbers. The following objectives motivate the line of develop-
ment in this paper.

1. To develop an approach towards strictly equational reasoning about
probability.

2. To provide a finite loose equational specification of probability functions.
3. To provide a useful completeness result for equational axioms of probability

functions.
4. To investigate some total versions of the conditional probability operator.
5. To initiate the development of an application for the theory of signed meadows

as outlined in [4,5].

This paper is a shortened version of http://arxiv.org/abs/1307.5173v4.
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We will produce an axiom system consisting of twenty-six equational axioms
covering Boolean algebra, meadows, the sign function, and the PF. Then we will
introduce several derived operators and prove a number of simple facts, including
Bayes’ theorem.

These axioms constitute a finite equational basis for the class of Boolean
algebra based, real-valued PFs. In other words, the completeness results of [4,5]
extend to the case with Boolean algebra based PFs. We understand this result
to convey that the set of twenty-six axioms is complete in a reasonable sense.

The paper is structured as follows: in the remainder of this section we dis-
cuss the concept of a meadow in more detail and provide a survey of relevant
design options. In Sect. 2 we introduce some preliminaries. In Sect. 3 we provide
equational axioms for a PF, and in Sect. 4 we discuss completeness. In Sect. 5
we consider multi-dimensional probability functions, and Sect. 6 contains some
concluding remarks.

1.1 A Survey of Design Options for the Inverse of 0

A meadow is a ring-like structure equipped with an inverse function. A ring based
meadow expands a ring with a one place inverse function (inversive notation), or
a two place division function (divisive notation). The terms ‘inversive notation’
and ‘divisive notation’ were coined in [6].

The key design choice that needs to be made when contemplating a meadow
concerns the way it handles the inverse of 0. In a rather scattered literature
on the subject a plurality of different options has been developed and studied,
though in varying levels of detail. A brief survey of these endeavours sets the
stage for the plan of this paper. The listing below is incomplete, but it contains
all proposals for which we have been able to find an unambiguous description.
As a criterion regarding this judgement we have required that (i) it must be
possible to find out when a closed expressions written using 0, 1,+,−, ·, (−)−1

is considered to have a value in the mathematical structure at hand, (ii) for two
closed expressions both having a value it must be possible to determine equality
in the same structure, and (iii) the relation between inverse and division must
be transparent. We will distinguish three design options for ring based meadows
and three design options for non-ring based meadows. We will first survey design
options for non-ring based meadows.

Non-ring Based Meadows
Three options for setting the inverse of zero in a non-ring based meadow stand
out, each involving an error value which fails to meet the requirements of a
ring. Distinguishing these options is facilitated by making use of a uniform
terminology.

Natural inverse. If 0−1 is equated with an unsigned infinite value, often
denoted by ∞, then 0 is said to have a natural inverse. The use of natu-
ral inverse in mathematics dates back to Riemann at least. Wheels are the
prominent instance of meadows with natural inverse, see [9].
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Signed natural inverse. If the inverse of zero is equated with a signed infinite
value (written say as +∞ = ∞, which differs from −∞) we propose to speak
of a signed natural inverse. This design choice underlies the transreals and
transrationals, see [16].

Common inverse. If the inverse of zero is equated with an error value a then,
following [8], zero is said to have a common inverse. Common meadows are
meadows based on common inverse. The error value a satisfies x+a = x ·a =
−a = a and for that reason fails to comply with the requirements for a ring
(0 · x = 0). Moreover, the error value is unique.

Also in the case of natural inverse and signed natural inverse, the error value(s)
fail to comply with the requirements for a ring (0 · x = 0).

Ring Based Meadows
For ring based meadows three options may be distinguished.

Partial inverse. The most prominent ring based meadow leaves the inverse of
0 undefined and considers inverse to be a partial function.
Working with partial inverse deviates from mathematical practice to the
extent that questions like whether or not 1/0 = 2/0 must be taken seriously.
When dealing with partial inverse there are no semantic questions about it,
but the choice of a logic of partial functions leaves substantial room for design
variation, beginning with a choice between three ways of looking at the truth
value of say 1/0 = 1/0: is it considered as being true, or as being false in
an overarching two-valued logic, or as not being true in an overarching logic
which is not two-valued.

Symmetric inverse. If the meadow is based on a regular ring and the value
of 0−1 is taken to be 0, 0 is said to have a symmetric inverse. The meadows
of [4,5] and several preceding papers are ring based meadows with symmetric
inverse. Alternatively this case is referred to as featuring an involutive inverse,
and such meadows are referred to as involutive meadows.

Non-involutive inverse. If the inverse of 0−1 is taken to be different from 0,
(x−1)−1 = x cannot hold, that is inverse is not an involution, and inverse is
said to be non-involutive. The non-involutive meadows discussed in [7] that
satisfy 0−1 = 1 are ring based meadows with an asymmetric inverse. If the
inverse of 0−1 is taken to be say 17 or any (rational or real) number different
from 0 and 1, 0 is said to have an ad hoc non-involutive inverse. Ad hoc
non-involutive inverses come into play when formalizing the theory of fields
in first order logic in the presence of a function symbol for either inverse or
division (or both).

1.2 Working with Involutive Ring Based Meadows

In this paper we will work exclusively with ring based involutive meadows, which
will be referred to simply as meadows. The motivation for this choice is that it
appears to be a most straightforward way to pursue the objectives that were
listed above. However, we do not claim that for the purpose of developing an
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equational approach to probability working with ring based meadows is the best
option, neither do we claim that among the three options for ring based meadows
working with a symmetric inverse is best suited to this objective.

2 Boolean Algebras and Meadows

In this section we specify the mathematical context on which our axiomatization
is based. In particular, we provide specifications for Boolean algebras (Sect. 2.2),
and for events and (signed) meadows (Sect. 2.3).

2.1 Boolean Algebras

A Boolean algebra (B,+, ·,′ , 1, 0) may be defined as a system with at least two
elements such that ∀x, y, z ∈ B the well-know postulates of Boolean algebra are
valid. Because we want to avoid overlap with the operations of a meadow, we will
consider Boolean algebras with notation from propositional logic, thus consider
(B,∨,∧,¬,�,⊥) and adopt the axioms in Table 1. In [14] it was shown that the
axioms in Table 1 constitute an equational basis.

Table 1. BA, a self-dual equational basis for Boolean algebras

(x ∨ y) ∧ y = y (1) x ∨ (y ∧ z) = (y ∨ x) ∧ (z ∨ x) (4)

(x ∧ y) ∨ y = y (2) x ∧ ¬x = ⊥ (5)

x ∧ (y ∨ z) = (y ∧ x) ∨ (z ∧ x) (3) x ∨ ¬x = � (6)

2.2 Valuated Boolean Algebras and Some Naming Conventions

A Boolean algebra can be equipped with a valuation v that assigns to its elements
values in a signed meadow.

In this paper we will investigate the special case where the valuation function
of a valuated Boolean algebra is a probability function by requiring that the
valuation satisfies the Kolmogorov axioms for probability functions cast to the
setting of signed meadows.

By way of notational convention we will from now on assume that E (for
events) is the name of the carrier of a Boolean algebra, and that V (for values)
names the carrier of the meadow in a valuated Boolean algebra.

2.3 Events and Signed Meadows

The set of axioms in Table 2 specifies the class of meadows. In the setting of prob-
ability functions the elements of the underlying Boolean algebra are referred to
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as events.1 We will use “value” to refer to an element of a meadow,2 and a prob-
ability function is a valuation (from events to the values in a signed meadow).3

Table 2. Md, a set of axioms for meadows

(x + y) + z = x + (y + z) (7) x · y = y · x (12)

x + y = y + x (8) 1 · x = x (13)

x + 0 = x (9) x · (y + z) = x · y + x · z (14)

x + (−x) = 0 (10) (x−1)−1 = x (15)

(x · y) · z = x · (y · z) (11) x · (x · x−1) = x (16)

An expression of type E is an event expression or an event term, an expression
of type V is a value expression or equivalently a value term. In the signature of
a valuated Boolean algebra there is just one notation for a probability function,
the function symbol P .4

In a meadow equipped with an ordering <, the sign function s( ) is defined by

s(x) =

⎧
⎪⎨

⎪⎩

−1 if x < 0,

0 if x = 0,

1 if 0 < x.

The axioms in Table 3 specify the sign function in an equational manner. Before
commenting on these axioms, we define the conditional p � q � r expressing
a form of “if-then-else”, notations for a division operator, absolute value, and
orderings. Furthermore, we adopt the convention to write x−y for x+(−y). Let

Table 3. Sign, a set of axioms for the sign operator

s(1x) = 1x (17) s(x−1) = s(x) (20)

s(0x) = 0x (18) s(x · y) = s(x) · s(y) (21)

s(−1) = −1 (19) 0s(x)−s(y) · (s(x + y) − s(x)) = 0 (22)

1 Events are closed under − ∨ −, which represents alternative occurrence and − ∧ −,
which represents simultaneous occurrence, and under negation.

2 Rational numbers and real numbers are instances of values.
3 We will exclude probability functions with negative values, a phenomenon known in

non-commutative probability theory, leaving the exploration of that kind of gener-
alization to future work.

4 In some cases the restriction to a single probability function P is impractical and
providing a dedicated sort for such functions brings more flexibility and expressive
power. This expansion may be achieved in different ways.
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p, q and r range over V , the carrier of the signed meadow in a valuated Boolean
algebra, then

1p =def p · p−1,
0p =def 1 − 1p,
p � q � r =def 1q · p + 0q · r,
p

q
=def p · q−1,

p/q =def

p

q
,

|p| =def s(p) · p,
p < q =def s(q − p) = 1,
p ≤ q =def s(s(q − p) + 1) = 1.

In Table 3, axiom (22) is an equational representation of the conditional equa-
tion s(x) = s(y) → s(x + y) = s(x). Finally, the equivalences

p ≥ 0 ⇐⇒ s(s(p) + 1) = 1 ⇐⇒ p = s(p) · p = |p|
are provable from Md + Sign (this follows from Theorem 4.1.1 below).

We will also consider the subclass of signed cancellation meadows. A cancel-
lation meadow satisfies the Inverse Law (IL) of Table 4.

Table 4. Inverse law (IL)

x �= 0 → x · x−1 = 1

3 Signed Meadow Based Probability Calculus

In Sect. 3.1 we formulate axioms for a probability function. Following the meth-
ods of abstract data type specification we will focus on axioms in equational form.
Then, we discuss a plurality of versions of the conditional probability operator
(Sect. 3.2) and some properties thereof, in particular versions of Bayes’ theorem.
Finally, we consider independent events (Sect. 3.3).

3.1 Equational Axioms for a Probability Function

In Table 5 we define the set PFP of axioms for a probability function. These
axioms represent Kolmogorov’s axioms in the context of a Boolean algebra
(rather than a universe of sets) and a signed meadow (instead of a field).
Axiom (25) expresses that the sign of P (x) is nonnegative. Axiom (26) distributes
P over finite unions. In the absence of an infinitary version of axiom (26) we
consider these axioms to constitute an axiomatization for the restricted concept
of probability functions only, rather than for probability measures in general.

In combination with the axioms BA + Md, the two axioms (24) and (26) in
Table 5 can be replaced by the single axiom

P (x) = P (x ∧ y) + P (x ∧ ¬y) (†)
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Table 5. PFP , a set of axioms for a probability function with name P

P (�) = 1 (23) P (x) = |P (x)| (25)

P (⊥) = 0 (24) P (x ∨ y) = P (x) + P (y) − P (x ∧ y) (26)

where the expressions x ∧ y and x ∧ ¬y characterize two disjoint (mutually
exclusive) events: axiom (24) follows from P (x) = P (x ∧ x) + P (x ∧ ¬x), thus
P (x ∧ ¬x) = P (⊥) = 0, and axiom (26) follows from

P (x ∨ y) †= P ((x ∨ y) ∧ x) + P ((x ∨ y) ∧ ¬x) = P (x) + P (y ∧ ¬x)

and P (y)
†
= P (y ∧x)+P (y ∧¬x), thus P (y ∧¬x) = P (y)−P (x∧y). Conversely,

axiom (†) follows from (24) and (26):

P (x) = P ((x ∧ y) ∨ (x ∧ ¬y)) = P (x ∧ y) + P (x ∧ ¬y) − P (⊥). (‡)

Theorem 3.1.1 (Disjoint event factorization). BA+Md+PFP � P (x) =
P (x ∧ y) + P (x ∧ ¬y).

Proof. This is (‡), which is shown above. ��
Theorem 3.1.2 (Probability upper bound). BA + Md + Sign + PFP �
P (x) ≤ 1.

Proof. First notice 1 = P (�) = P (x ∨ ¬x) = (P (x) + P (¬x)) − P (⊥) = P (x) +
P (¬x), so P (x) = 1 − P (¬x). Because P (¬x) ≥ 0 we conclude P (x) ≤ 1. ��

The following theorem asserts in equational form the conditional equation
P (y) = 0 → P (x ∧ y) = 0, using inversive notation.

Theorem 3.1.3 BA+Md+ Sign+PFP � P (x ∧ y) · P (y) · P (y)−1 = P (x ∧ y).

Proof. With help of Theorem 4.1.1, see there. ��

3.2 Conditional Probability as a Total Operator: Four Options

Conditional probability P (x | y) of event x relative to event y is conventionally
understood as a partial function of x and y, defined only if P (y) is nonzero. The
objective of developing an equational logic for probability theory suggests that
total versions of the conditional probability operator ought to be contemplated.

Conditional probability defined according to Kolmogorov is written below as
P �(x | y), where variables x and y range over E, and is defined by

P �(x | y) =def

P (x ∧ y)
P (y)

� P (y)� ↑.
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Here ↑ denotes that the result is undefined.5 The key advantage of partial condi-
tional probability is that one does not introduce a value for, say P (x | ⊥) which
might be subsequently disputed. Four ways of making conditional probability
defined on all inputs will now be distinguished.

Definition 3.2.1 (Zero-totalized conditional probability).

P 0(x | y) =def

P (x ∧ y)
P (y)

.

We notice that P 0(� | ⊥) = 0, a choice for which no convincing philosophical
motivation can be put forward. Two advantages can be put forward in favour
of P 0(−|−): the logical simplicity that comes with it being total and the cal-
culational simplicity that comes with choosing 0 as a value for P 0(x | y) when
P (y) = 0. The following properties are immediate:

P 0(x | x) =
P (x)
P (x)

and P (x) = P (x) · P 0(x | x).

Moreover we have ‘joint probability factorization’:

P (x ∧ y) = P (x ∧ y) · P (y) · P (y)−1 = (P (x ∧ y)/P (y)) · P (y)=P 0(x | y) · P (y),

and ‘total probability’:

P (x) = P (x ∧ y) + P (x ∧ ¬y)

= P (x ∧ y) · P (y) · P (y)−1 + P (x ∧ ¬y) · P (¬y) · P (¬y)−1

= P 0(x | y) · P (y) + P 0(x | ¬y) · P (¬y).

Another illustration of the latter advantage is the derivability of Bayes’ theorem
in its simplest form (see Theorem 3.2.5.1).

Definition 3.2.2 (One-totalized conditional probability).

P 1(x | y) =def

P (x ∧ y)
P (y)

� P (y) � 1.

5 We assume that in a context of partial functions an identity t = r is valid if either
both sides are undefined or both sides are defined and equal. This convention, how-
ever, leaves room for alternative readings of the expressions at hand. In particular
the definition given for x� y � z implies that whenever t is undefined, so is t� r � s.
That is not a very plausible feature of the conditional and in the presence of partial
operations the conditional operator requires a different definition. These complica-
tions are to some extent avoided, or rather made entirely explicit, when working with
total functions. The use of the notation P �(−|−) instead of the common notation
P (−|−) is justified by the fact that unavoidably P �(−|−) inherits properties from
the equational specification of the functions from which it has been made up. Such
properties need not not coincide with what is expected from P (−|−).
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We will write x → y for ¬x ∨ y. The principal advantage of one-totalized con-
ditional probability over zero-totalized conditional probability is the validity of
the following rule, which provides some intrinsic motivation for this design of
conditional probability:

(x → y) = � ⇒ P 1(x | y) = 1.

If α ∈ {�, 0, 1} then the function P ◦αy =def λx ∈ E.Pα(x|y) is not a probability
function for each y. In particular, if P (y) = 0, P ◦α y will fail to comply with
either P ◦α y(�) = 1 or with P ◦α y(⊥) = 0. Now λP ∈ PF .P ◦α y being the
well-known update operator that goes with some applications of Bayes’ theorem,
it is a reasonable requirement that this very operator becomes total as well. We
will introduce two options for conditionalization which achieve this requirement.

Definition 3.2.3 (Safe conditional probability).

P s(x | y) =def

P (x ∧ y)
P (y)

� P (y) � P (x).

We find that P ◦s y = P if P (y) = 0, which allows the view that λP.P ◦s y is
an operator mapping probability functions to probability functions for all events
y, or stated differently that λy.(λP.P ◦s y) is a total mapping from events to
probability function transformations. P◦s is safe because it enforces no update
when an inconsistency is observed.

Yet another way to achieve this property of a conditional update is to return
an exceptional value, in this case the canonical probability function for an atomic
event. An atom in E is an event a ∈ E which satisfies atom(a) =def ∀x ∈
E.(x ∧ a = a OR x ∧ a = ⊥). For an atom a ∈ E the probability function pfa is
defined by:

pfa(x) =def

{
1 ifx ∧ a = a,

0 ifx ∧ a = ⊥.

Definition 3.2.4 (Exception raising conditional probability for atom
a ∈ E).

P e/a(x | y) =def

P (x ∧ y)
P (y)

� P (y) � pfa(x).

For P 0(−|−), P s(−|−), and P e/a(−|−) we are not aware of earlier definitions,
whereas P 1(−|−) has been considered by Adams in [1], and in subsequent lit-
erature. For a survey of conditional logic and conditional probabilities we refer
to [12].

Of particular importance given its ubiquitous use is Bayes’ theorem. Bayes’
theorem takes different forms for different versions of conditional probability, and
in each of these cases it appears as a consequence of BA+Md+Sign+PFP .
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Theorem 3.2.5 (Versions of Bayes’ theorem). In BA+Md+ Sign+PFP

the following equations are derivable:

1. P 0(x | y) =
P 0(y | x) · P (x)

P (y)
(Bayes′ theoremforP 0(−|−)),

2. P 1(x | y) =
P 1(y | x) · P (x)

P (y)
� P (y) � 1 (Bayes′ theoremforP 1(−|−)),

3. P s(x | y) =
P s(y | x) · P (x)

P (y)
� P (y) � P (x) (Bayes′ theoremforP s(−|−)),

4. P e/a(x | y) =
P e/a(y | x) · P (x)

P (y)
� P (y) � pfa(x) (Bayes′ theoremfor

P e/a(−|−)).

Proof. Version 1: derive P 0(x | y) = P (x ∧ y)/P (y) 3.1.3= (P (y ∧ x)/P (y)) ·
(P (x)/P (x)) = (P (y ∧ x)/P (x)) · (P (x)/P (y)) = (P 0(y | x) · P (x))/P (y).

Version 2-4: see http://arxiv.org/abs/1307.5173v4. ��

3.3 Independence of Events

A valuated Boolean algebra equipped with a valuation P in some signed meadow
IM that satisfies all axioms of BA+Md+ Sign+PFP will be called a K(IM, P )-
structure. Given a K(IM, P )-structure, two events x and y are said to be inde-
pendent relative to that structure if P (x ∧ y) = P (x) · P (y) is valid.

Theorem 3.3.1. Events x and y are independent if and only if P 0(x | y) =
P (x) · P 0(y | y) and equivalently if and only if P 0(y | x) = P (y) · P 0(x | x).

Proof. If x and y are independent, then P 0(x | y) = P (x ∧ y)/P (y) = (P (x) ·
P (y))/P (y) = P (x) ·P 0(y |y), and similarly one finds P 0(y |x) = P (y) ·P 0(x |x).

Conversely, from P 0(x |y) = P (x) ·P 0(y |y) one finds P (x∧y)/P (y) = P (x) ·
(P (y)/P (y)), so multiplying both sides by P (y) yields P (x ∧ y) · (P (y)/P (y)) =
P (x)·(P (y)/P (y))·P (y), which implies P (x∧y) = P (x)·P (y) by Theorem 3.1.3.

��

4 Logical Aspects of Equations for Probability Functions

In this section we provide a completeness result for BA + Md + Sign + PFP

(Sect. 4.1) and discuss the use of a free Boolean algebra as an event space
(Sect. 4.2).

4.1 Completeness of BA + Md + Sign + PFP

In [4] it is shown that Md+Sign constitutes a finite basis for the equational theory
of signed cancellation meadows. Stated differently: for each equation t = r, if
Md + Sign + PFP + IL |= t = r then also Md + Sign + PFP � t = r, where IL
is the inverse law defined in Table 4. This fact is understood as a completeness

http://arxiv.org/abs/1307.5173v4
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result because a stronger set of axioms would necessarily exclude some meadows
that are expansions of ordered fields. In a preceding version of this paper6 it was
shown that the basis theorem extends to the setting with probability functions:
if BA+Md+Sign+PFP + IL |= t = r then also BA+Md+Sign+PFP � t = r.

For the purposes of this paper we prefer to make use of a different complete-
ness result for the same equational theory that allows us to obtain a more intu-
itively appealing completeness result for the axiom system BA+Md+Sign+PFP .
This second completeness result is given in terms of validity of equations relative
to a single signed meadow rather than in an elementary class of structures.

We recall the following result [5, Theorem 3.14], where we write IR0 for the
meadow that is the expansion of the field of real numbers IR with total inverse
operator and 0−1 = 0, and (IR0, s) for IR0 expanded with the sign function s( ).

Theorem 4.1.1. For an equation t = r in the signature of signed meadows:
(IR0, s) |= t = r if and only if Md + Sign � t = r.

One can apply this theorem to obtain a simple proof of Theorem 3.1.3: let
φ(u, v) = 0|u|+|v| · u. Then (IR0, s) |= φ(u, v) = 0, so by Theorem 4.1.1 one
obtains Md + Sign � φ(u, v) = 0. Substituting P (y ∧ x) for u and P (y ∧ ¬x) for
v and applying Theorem 3.1.1, one derives

BA + Md + Sign + PFP � 0 =
(
1 − |P (y ∧ x)| + |P (y ∧ ¬x)|

|P (y ∧ x)| + |P (y ∧ ¬x)|
)
·P (y ∧ x)

=
(
1 − P (y)

P (y)

)
·P (y ∧ x),

from which the required result follows immediately.
The same completeness result as Theorem 4.1.1 works for conditional equa-

tions (for a proof see http://arxiv.org/abs/1307.5173v4).

Theorem 4.1.2. For a conditional equation t1 = r1 ∧ . . . ∧ tn = rn → t = r in
the signature of signed meadows: (IR0, s) |= t1 = r1 ∧ . . . ∧ tn = rn → t = r if
and only if Md + Sign � t1 = r1 ∧ . . . ∧ tn = rn → t = r.

A K(IR0, P )-structure is a model of BA + Md + Sign + PFP that contains
the meadow of signed reals, (IR0, s), as the domain of its values. We will write
K(IR0, P ) for the class of K(IR0, P )-structures.

Theorem 4.1.1 can be extended to the setting of K(IR0, P )-structures, thus
obtaining a satisfactory completeness result for BA + Md + Sign + PFP (see
http://arxiv.org/abs/1307.5173v4 for a proof that depends on Theorem 4.1.2).

Theorem 4.1.3. The axiom system BA+Md+ Sign+PFP is sound and com-
plete for the equational theory of K(IR0, P ).7

6 http://arxiv.org/abs/1307.5173v1.
7 More generally, BA+Md+Sign+PFP is sound for the class of K(IM, P )-structures

with IM a signed cancellation meadow.

http://arxiv.org/abs/1307.5173v4
http://arxiv.org/abs/1307.5173v4
http://arxiv.org/abs/1307.5173v1
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4.2 Using Free Boolean Algebras as Event Spaces

For the purpose of reformulating some elementary aspects of probability the-
ory and statistics the generality of working with arbitrary Boolean algebras is
inessential, at least at this initial stage in the development of an equational cal-
lus of probabilities. For that reason we will now introduce several simplifying
assumptions:

– A finite set C of constants for events is provided. Elements of C are called
primitive events. We will only consider free Boolean algebras generated by
the primitive events.

– With BAC we will denote the equations for Boolean algebra in a signature
which is expanded with the constants in C.

– The class of models of BAC +Md+ Sign+ PFP with a free event space over
C, (IR0, s) as its meadow of values, and a probability function P is denoted
KC(IR0, P ). Different structures in KC(IR0, P ) only differ in the choice (inter-
pretation) of the probability function P .

These assumptions correspond to what is needed for the specification of examples
of probabilistic reasoning.

Theorem 4.2.1. Md+ Sign+BAC +PFP is sound and complete for the equa-
tions of type V that are true in all structures in KC(IR0, P ). In other words, for t
and r terms of sort V : Md+Sign+BAC+PFP � t = r ⇐⇒ KC(IR0, P ) |= t = r.

Proof. The proof is merely a reformulation of the proof of Theorem 4.1.3. ��

5 Multi-dimensional Probability Functions

In this section we provide axioms for multi-dimensional PFs (Sect. 5.1), and
discuss a condition for the existence of a particular universal PF (Sect. 5.2).

5.1 Equational Axioms for a Probability Function Family

Let D = {a1, . . . , ad} be a finite, non-empty set. The elements of D are referred
to as dimensions. With Af

D we denote the set of finite non-empty sequences of
elements of D in which each dimension occurs at most once, and with �(w) we
denote the length of w ∈ Af

D. Note that Af
D is finite. Elements of Af

D serve
as arities of probability functions on a multi-dimensional event space of dimen-
sion �(w). If �(w) > 1, then w is written as a comma-separated sequence, e.g.
�(a1, a3) = 2 and we write (a1, a3) ∈ Af

D.
Given an event space E and a name P for a probability function, an arity

family for D is a subset W of Af
D that is closed under permutation and under

taking non-empty subsequences. Given an arity family W for D, a function
family for W consists of a function Pw : E�(w) → V for each arity w ∈ W . A
function family for dimension set D, arity family W and function name P is a
probability function family (PFF) if it satisfies the axioms of Table 6. Because in
an arity repetition of dimensions is disallowed, these axioms reduce to what we
had already in the case of a single dimension.
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Table 6. PFFW,P , axioms for a PFF with arity family W and name P , where a ∈ D,
k ∈ IN, x = x1, . . . , xk and P (y,x) = P (y) if k = 0, and w = (a, u) ∈ W with
�(w) = k + 1

Pa,v,b,v′
(y1, x1, . . . , xm, y2, z1, . . . , zn) = P b,v,a,v′

(y2, x1, . . . , xm, y1, z1, . . . , zn)
for all a, b ∈ D and (a, v, b, v′) ∈ W , where v, v′ can be empty (thus m = 0, n = 0)

(27)

Pa(�) = 1 (28)

Pa,v(�, x1, . . . , xk+1) = P v(x1, . . . , xk+1) (29)

Pw(⊥,x) = 0 (30)

Pw(y,x) = |Pw(y,x)| (31)

Pw(y ∨ z,x) = Pw(y,x) + Pw(z,x) − Pw(y ∧ z,x) (32)

5.2 Existence of a Universal Probability Function

A subset W of Af
D may or may not have a maximal element under inclusion.

If W has a maximal element w and if we have a probability function family
(Pw)w∈W for W , then Pw serves as a universal element for the family of prob-
ability functions because all other members of it can be found via successive
application of the axioms (27)–(30).

As it turns out some PFFs cannot be extended with a universal PF. In the
notation of our specification of probability families we will state a specific result
that may serve as a necessary condition for the possibility to extend a PFF with
a universal element.

Theorem 5.2.1. Given a set of dimensions D = {a, b, c, d}, an arity family W
for D that satisfies W ⊃ {(b, c), (b, d), (a, d), (a, c)}, and a PFF (Pw)w∈W , let
t be the following term:

t = P b,c(y, z) + P b,d(y, u) + P a,d(x, u) − P a,c(x, z) − P b(y) − P d(u).

Then, if W has a maximal element, then −1 ≤ t ≤ 0, that is, the following two
inequalities must hold for GW,P = BA + Md + Sign + PFFW,P :

GW,P � t + 1 = s(t + 1) · (t + 1) and GW,P � −t = s(−t) · −t.

Clearly if a PFF for D contains all of P b,c, P b,d, P a,d, P a,c and fails to meet
either one of the mentioned inequalities on t, then a universal PF cannot be
found for it.

These facts are known as the BCHS (Bell, Clauser, Horne, Shimony) inequali-
ties. Both were formulated and shown in a set theoretic framework for probability
theory in [15] and [10,11], and a straightforward proof is given in [13, Sect. 9.2],8

which we repeat here.

8 From this pair of inequalities one can derive the original Bell inequalities from [3].
The key observation of Bell was that quantum mechanics gives rise to the hypothesis
that a 4-dimensional event space exists in which a family of joint probabilities for at
most two dimensions can be found that violates the inequalities from the theorem.
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Proof (of Theorem 5.2.1, taken from [13]).

P b,c,d(y, z, u) = P a,b,c,d(x, y, z, u) + P a,b,c,d(¬x, y, z, u)

≤ P a,c(x, z) + P a,d(¬x, u)

= P a,c(x, z) + P d(u) − P a,d(x, u), (33)

P b,c,d(¬y, z, u) = P a,b,c,d(x,¬y, z, u) + P a,b,c,d(¬x,¬y, z, u)

≤ P a,d(x, u) + P a,c(¬x, z)

= P a,d(x, u) + P c(z) − P a,c(x, z), (34)

0 ≤ P b,c,d(y,¬z,¬u) = P b,c(y,¬z) − P b,c,d(y,¬z, u)

= P b(y) − P b,c(y, z) − P b,d(y, u) + P b,c,d(y, z, u). (35)

Combining (33) and (35) yields

0 ≤ P b(y) − P b,c(y, z) − P b,d(y, u) + P a,c(x, z) + P d(u) − P a,d(x, u). (36)

By (35) and the equality −P c,d(z, u) + P c,d(¬z,¬u) = 1 − P c(z) − P d(u),

0 ≤ P b,c,d(¬y,¬z,¬u) = P c,d(¬z,¬u) − P b,c,d(y,¬z,¬u)

= 1 − P b(y) − P c(z) − P d(u) + P b,c(y, z) + P b,d(y, u) + P b,c,d(¬y, z, u). (37)

Then from (34) and (37) we get

0 ≤ 1 − P b(y) − P d(u) + P b,c(y, z) + P b,d(y, u) + P a,d(x, u) − P a,c(x, z). (38)

Inequalities (36) and (38) prove the theorem. ��

6 Concluding Remarks

The incentive for this work came from a talk given by professor Ian Evett on
the occasion of the retirement of dr. Huub Hardy as a driving force behind the
MSc Forensic Science at the University of Amsterdam.9 That talk illustrated the
headway that the Bayesian approach to reasoning in forensic matters has made
in recent years. However, Evett also highlighted the conceptual and political
problems that may still lie ahead of its universal adoption in the legal process.

In order to improve the understanding of these issues an elementary log-
ical formalization of reasoning with probabilities might be useful. With that
perspective in mind we came to the conclusion that in spite of the abundance
of introductory texts to probability theory, the development of an axiomatic
approach from first principles may yet cover new ground. The formalization of
probabilities in terms of equational logic outlined above is intended to serve as a
point of departure from which to develop presentations of probability theory that

9 This meeting took place at Science Park Amsterdam, Friday June 7, 2013 under the
heading “Frontiers of Forensic Science”, and was organized by Andrea Haker.
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may be be helpful when a formal and logically precise perspective on reasoning
with probabilities is aimed at.

We acknowledge many discussions with Andrea Haker (University of Am-
sterdam) regarding the relevance of logically grounded reasoning methodologies
in forensic science. We thank both reviewers for their constructive comments.
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Abstract. A virtual machine, which is a software layer representing an
execution environment, can be placed inside another virtual machine.
As virtual machines at every level in a location hierarchy compete with
other processes for processing time, the computing power of a virtual
machine depends on its position in this hierarchy and may change if the
virtual machine moves. These effects of nested virtualization motivate
the calculus of virtually timed ambients, a formal model of hierarchical
locations for execution with explicit resource provisioning, introduced
in this paper. Resource provisioning in this model is based on virtual
time slices as a local resource. To reason about timed behavior in this
setting, weak timed bisimulation for virtually timed ambients is defined
as an extension of bisimulation for mobile ambients. We show that the
equivalence of contextual bisimulation and reduction barbed congruence
is preserved by weak timed bisimulation. The calculus of virtually timed
ambients is illustrated by examples.

1 Introduction

Virtualization technology enables the resources of an execution environment to
be represented as a software layer, a so-called virtual machine. Application-level
processes are agnostic to whether they run on such a virtual machine or directly
on physical hardware. Since a virtual machine is a process, it can be executed on
another virtual machine. Technologies such as VirtualBox, VMWare ESXi, Rav-
ello HVX, Microsoft Hyper-V, and the open-source Xen hypervisor increasingly
support running virtual machines inside each other in this way. This nested vir-
tualization, originally introduced by Goldberg [12], is necessary to host virtual
machines with operating systems which themselves support virtualization [5],
such as Microsoft Windows 7 and Linux KVM. Nested virtualization has many
uses, for example for end-user virtualization for guests, for development, and for
deployment testing. Nested virtualization is also a crucial technology to support
the hybrid cloud, as it enables virtual machines to migrate between different
cloud providers [26].

To study the logical behavior of virtual machines in the context of nested
virtualization, this paper develops a calculus of virtually timed ambients with
explicit resource provisioning. Whereas previous work on process algebra with
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
P. James and M. Roggenbach (Eds.): WADT 2016, LNCS 10644, pp. 88–103, 2017.
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resources typically focusses on binary resources such as locks (e.g., [16,20]) and
previous work on process algebra with time typically focusses on time-outs (e.g.,
[4,6,13,19,22]), time and resources in virtually timed ambients are quantitative
notions: a process which gets more resources typically executes faster. Inter-
preting virtually timed ambients as locations for the deployment of processes,
the resource requirements of processes executing at a location are matched
by resources made available by the virtually timed ambient. The number of
resources made available by the virtually timed ambient constitutes its com-
puting power. This number is determined by the time slices it receives from
its parent ambient. A virtually timed ambient that shares the time slices of its
parent ambient with another process has less available time slices to execute its
own processes. The model of resource provisioning in virtually timed ambients is
inspired by Real-Time ABS [15], but extended to address nested virtualization
in our calculus.

We call the corresponding time model for virtually timed ambients virtual
time. Virtual time is provided to a virtually timed ambient by its parent ambient,
similar to the time slices that an operating system provisions to its processes.
When we consider many levels of nested virtualization, virtual time becomes a
local notion of time which depends on a virtually timed ambient’s position in the
location hierarchy. Virtually timed ambients are mobile, reflecting that virtual
machines may migrate between host virtual machines.

To formalize nested virtualization, notions of mobility and nesting are essen-
tial. The calculus of mobile ambients, originally developed by Cardelli and Gor-
don [8], captures processes executing at distributed locations in networks such as
the Internet. Mobile ambients model both location mobility and nested locations,
which makes this calculus well-suited as a starting point for our work. Combin-
ing these notions from the ambient calculus with the concepts of virtual time
and resource provisioning, the calculus of virtually timed ambients can be seen
as a model of nested virtualization, where different locations, barriers between
locations, barrier crossing, and their relation to virtual time and resource pro-
visioning are important, and where the number and position of virtually timed
ambients available for processing tasks influences the overall processing time
of a program. This allows the effects of, e.g., load balancing and scaling to be
observed using weak timed bisimulation.

Contributions. To study the effects of nested virtualization, the main contribu-
tions of this paper can be summarized as follows:

– we define a calculus of virtually timed ambients, to the best of our know-
ledge the first process algebra capturing notions of virtual time and resource
provisioning for nested virtualization;

– we define weak timed bisimulation for the calculus, and show that weak timed
bisimulation is equivalent to reduction barbed congruence with time.
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2 Virtually Timed Ambients

Mobile ambients [8] are located processes, arranged in a hierarchy which may
change dynamically. Interpreting the location as a place of deployment, virtu-
ally timed ambients extend mobile ambients with notions of virtual time and
resource consumption. The timed behavior depends on the one hand on the local
timed behavior, but on the other hand on the placement or deployment of the
component in the hierarchical ambient structure. Virtually timed ambients use
a notion of time which is local to each ambient, but at the same time relative to
the computing power of the surrounding ambients.

Before considering the details of virtually timed ambients, we briefly recall
the syntax and basic ideas of mobile ambients [8]. This syntax, and the semantics
we consider, is based on [18] and largely unchanged compared to [8]. The main
difference to [8] lies in a separation of processes into two levels: processes and
systems. Systems characterize the outermost layer of an ambient structure. This
distinction is used to simplify proofs of bisimulation in Sect. 3.

Table 1. Syntax of the virtually timed ambient calculus.

n name
tick virtual time slice

Global systems:
G ::= 0 inactive system

G | G parallel composition
n[Source | M ] virtually timed root ambient with a source clock

Timed systems:
M, N ::= 0 inactive system

M | N parallel composition
(νn)M restriction
n[Clock | P ] virtually timed ambient with a local clock

Timed processes:
P, Q ::= 0 inactive process

P | Q parallel composition
(νn)P restriction
!C.P replication
C.P prefixing
n[Clock | P ] virtually timed ambient with a local clock

Timed capabilities:
C ::= in n can enter n and adjust the local clock there

out n can exit n and adjust the local clock on the outside
open n can open n and adjust own local clock
consume consumes one resource
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Mobile Ambients. Mobile ambients [8], originally introduced to represent
“administrative domains” for processes, are defined as follows. The inactive pro-
cess 0 does nothing. The parallel composition P | Q allows both processes P
and Q to proceed concurrently, where the binary operator | is commutative and
associative. The restriction operator (νm)P creates a new and unique name
with process P as its scope. In the calculus, the administrative domains for pro-
cesses, called ambients, are represented by names. A process P located in an
ambient named m is written m[P ]. Ambients can be nested, and the nesting
structure can change dynamically. A change of the nesting structure is speci-
fied by prefixing a process with a capability. There are three basic capabilities.
The input capability ∈ n indicates the willingness of a process (respectively
its containing ambient) to enter an ambient named n, running in parallel with
its own ambient; e.g., k[in n.P ] | n[Q] � n[k[P ] | Q]. The output capabil-
ity out n enables an ambient to leave its surrounding (or parental) ambient
n; e.g., n[k[out n.P ] | Q] � k[P ] | n[Q]. The open capability open n allows
an ambient named n at the same level as the capability to be opened; e.g.,
k[open n.P | n[Q]] � k[P | Q]. The semantics is given as a reduction semantics
which combines structural congruence with reduction rules.

Virtual Time and Local Clocks. Virtually timed ambients combine timed pro-
cesses and timed capabilities with the features of the calculus for mobile ambients
summarized above. In Table 1 we can see that in the calculus of virtually timed
ambients every closed system of ambients must be contained in a root ambient
with a source clock triggering the clocks of the local subambients recursively.
Timed systems and processes are defined analogously to systems and processes
in mobile ambients, with the difference that each virtually timed ambient con-
tains a local clock and other virtually timed ambients or processes. The timed
capabilities of virtually timed ambients extend the capabilities of mobile ambi-
ents with additional time management, explained below. In order to define com-
puting power, a capacity consume for resource consumption, of processes is
added.

Definition 1 (Virtually timed ambients). Virtually timed ambients are
defined by the syntax in Table 1.

The semantics is given as a reduction semantics which combines structural
congruence with reduction rules and can be found in Tables 2 and 3. In Table 3
we make use of the notion of observables.

Definition 2 (Observables). An observable, also known as a barb, is the
presence of a top-level ambient whose name is not restricted. The observation
predicate P ↓ n captures this observable. Thus, P ↓ n if P ≡ (νm̄)(n[P1] | P2),
where n /∈ {m̄}. We write P ⇓ n if there exists P ′ such that P ⇒ P ′ and P ′ ↓ n.

To represent the outlined time model the local clock contained in each virtu-
ally timed ambient is responsible for triggering timed behavior and local resource
consumption. Each time slice emitted by a local clock triggers the clock of one of



92 E. B. Johnsen et al.

Table 2. Reduction rules.

its subambients in a round-robin way or is consumed by a process as a resource.
This corresponds to a simple form of fair, preemptive scheduling, which makes
the system’s behavior sensitive to the number of co-located virtually timed ambi-
ents and resource consuming processes. Clocks have a speed, interpreted relative
to the speed of the surrounding virtually timed ambient. The speed of a clock
is given by the pair (p, q), where p is the number of local time slices emitted
for a number q of time slices received from the surrounding ambient, p, q ∈ N

0.
Thus, time in a nested ambient is relative to the global time, and depends on the
speed of the clocks of the ambients in which it is contained and on its number
of siblings. The speed of the source clocks is defined as (n, 0), n ∈ N

0, as the
sources do not need any input, while for the speed of a local clock it holds that
an input of q = 0 is only valid if p = 0, too. As those ambients with speed (0, 0)
do not require any times slices from their parental ambient and do not show any
timed behavior, they are not considered time consuming. However, processes
which are prefixed with the resource consumption capability consume.P are
considered time consuming. Note, that mobile ambients can be represented as
virtually timed ambients with a clock with speed (0, 0).

Definition 3 (Local clocks). A local clock contains a counter to record the
number of received time slices, its own speed, and two sets:

Clock{counter, (p, q), {a1, a2, . . . , ak}, {ak+1, . . . an}}.
The first set contains the names of time consuming processes running in the
ambient as well as time consuming virtually timed subambients in the surround-
ing ambient which have not yet received a time slice in the current cycle and the
second set those which have.

When a clock receives a time slice, denoted tick, from its surrounding
ambient, one of the following actions occurs: If counter + 1 < q, then the
clock records this time slice and continues waiting (i.e., Clock{counter :=
counter + 1, (p, q), {a1, a2, . . . , ak}, {ak+1, . . . an}}); if counter + 1 = q, then
the input number is reached, the counter is set to 0 and the clock emits time
slices to p subambients of the first set and puts them in the second set (i.e.,
:= Clock{counter := 0, (p, q), {ap+1 . . . , ak}, {ak+1, . . . an, a1, a2, . . . , ap}}). As
soon as the first of the two sets is empty, the first and second set are switched.
Thus, no ambient receives a second time slice before every other subambient has
received the first one. In the sequel, we omit the representation of the counter
and the sets of subambients. For a better overview in the examples we denote
the speed of the clocks as superscript Clockp,q. If an ambient is not time con-
suming, i.e., it has a clock with speed (0, 0), we do not mention the clock. For
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Table 3. Timed reduction rules for timed capabilities, where ak and bi are time con-
suming virtually timed ambients and processes in R and Q, respectively.
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RR: Round-based distribution function
input: Clock{counter, (p, q), {a1, a2, . . . , ak}, {ak+1, . . . , an}} | R
S := {a1, a2, . . . , ak}
T := {ak+1, . . . , an}
if S = ∅ then
return Clock{0, (p, q), ∅, ∅}
else

while p ≥ |S| do
for all ai ∈ S do

if ai = consume.P then S := S \ ai; R := R | P
Let P ≡ (νñ)P ′, P ′ is ν-binder free, o = {o | P ′ ↓ o}:
S := S ∪ o

else R := a1 | · · · | ai[tick | · · · ] | · · · | an

end if
end for
p := p − |S|; S := S ∪ T ; T := ∅

end while
Choose a subset S′ ⊂ S such that |S′| = p.
for all ai ∈ S′ do

if ai = consume.P then S′ := S \ ai, R := R | P
Let P ≡ (νñ)P ′, P ′ is ν-binder free, o = {o | P ′ ↓ o}:
S := S ∪ o

else R := a1 | · · · | ai[tick | · · · ] | · · · | an

end if
end for
S := S \ S′; T := T ∪ S′

end if
return Clock{0, (p, q), S, T} | R

actions which do not require time we assume maximal progress, meaning that
actions which can be executed immediately will not be delayed.

Timed Capabilities. The timed capabilities in n,out n, and open n enable vir-
tually timed ambients to move in a timed system. When moving virtually timed
ambients, we must consider that the clocks need to know about their current
subambients, therefore their list of subambients need to be adjusted.

We now explain the reduction rules for virtually timed ambients, which are
given in Tables 2 and 3. Observe that if we would not adjust the clocks then a
moving subambient would not receive time slices from its new parental clock.
In (TR-In) and (TR-Out), the clocks of the old and new parental ambient of
the moving ambient have to be updated. Here we let P ≡ (νñ)P ′, where P ′

is ν-binder free, such that o = {o | P ′ ↓ o}. In (TR-Open) the clock of the
opening ambient itself is updated. Note also that here the clock of the opened
ambient is deleted. For virtually timed ambients with a clock with speed (0, 0),
the timed capabilities are equivalent to the capabilities for mobile ambients,
as ambients, which are not time consuming, are not considered in the time
management of the clocks. In (TR-Res) the time consuming process is moved
into the clock, where it awaits the distribution of a time slice as resource before
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it can continue. This reduction can only happen in virtually timed ambients
with p > 0, meaning ambients which actually emit resources. In (TR-Tick1)
the required number qm of input time slices to trigger the local clock is not
reached, thus the incoming time slice, denoted as tick, is only registered in the
counter. In (TR-Tick2) the local clock releases p time slices to its subambients
and potentially to time consuming process. This is denoted with the function
RR for round based distribution of time slices. The function takes as input the
distributing Clock and distributes time slices tick to the subambients and
processes in the given sets, thereby adjusting the sets of remaining and of served
ambients. The source clocks Source can reduce without parental time slices as
given in (TR-Source). The following example shows the encoding of a system
with a load balancer in virtually timed ambients.

Example 1. A system with a load balancer can be defined as follows:

load balancer system: (ν lb, a, b) lbs[Clock2,1 | lb | a | b]
incoming request: request [P.done signal | in lbs.enter signal .open move]
load balancer: lb[!open start.wait for enter .open locka.

wait for enter .open lockb.start[] |!locka[x[]] |
!lockb[y[]] |!(open x.move[out lb.in request .in a] |

open y.move[out lb.in request .in b])]

ambient a: a[Clock1,1 |!open request .wait for done.done[out a.out lbs]]

ambient b: b[Clock1,1 |!open request .wait for done.done[out b.out lbs]].

Here, the untimed load balancer creates a move ambient which moves incom-
ing requests alternately into the virtually timed ambients a and b. For each time
slice it receives from the source clock of the surrounding root ambient, the local
clock of lbs distributes two time slices. Therefore, both subambients a and b
receive one time slice. When a request has been executed, it releases an ambient
done which emerges to the outside of the system and becomes observable.

Resource Consumption. Processes expend the processing power of the ambient
they are contained in by consuming the local time slices as resources. Thus, time
consuming processes and time consuming subambients in a virtually timed ambi-
ent compete for the same resource. The consumption of a computing resource is
defined as the capability consume. An ambient with a higher local clock speed
produces more time slices and therefore also more resources for each parental
time slice, which in turn allows more work to be done for each parental time slice.
We consider resource consumption by a request which was sent to the system of
Example 1.

Example 2. Consider the virtually timed system with a load balancer from
Example 1, with an incoming request.

lbs[· · · ] |
request[consume.consume.done signal | in lbs.enter signal .open move]
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The request enters the system and is transferred by the load balancer into a,
where it is opened during the reduction and awaits resource consumption. After
one time signal of the source clock, the virtually timed ambient a emits one
resource, which is consumed by the request:

a[Clock1,1 |!open request .wait for done.done[out a.out lbs]
| wait for done.done[out a.out lbs] | consume.done signal ].

After another time signal from the source clock the ambient done can emerge:

a[Clock1,1 |!open request .wait for done.done[out a.out lbs]] | done[out lbs].

Table 4. Rules for timed labeled transition systems, where in (Co-Enter) given
Clock = Clock{ck, (pk, qk), {a1, . . . , ak}, {ak+1, . . . an}} the updated clock is denoted
by Clock∗ = Clock{ck, (pk, qk), {a1, . . . , ak, n}, {ak+1, . . . an}} as seen in Table 3.

(νm̃)(m[Clock | in n.P | Q] | M), m ∈ m̃
∗.enter n−−−−−−→ (νm̃)(n[m[(Clock | P ) | Q] | ◦ ] | M) (Enter Shh)

(νm̃)(k[Clock | in n.P | Q] | M), k /∈ m̃
k.enter n−−−−−−→ (νm̃)(n[k[(Clock | P ) | Q] | ◦ ] | M) (Enter)

(νm̃)(m[Clock | out n.P | Q] | M), m ∈ m̃
∗.exit n−−−−−→ (νm̃)(m[(Clock | P ) | Q] | n[M | ◦ ]) (Exit Shh)

(νm̃)(k[Clock | out n.P | Q] | M), k /∈ m̃
k.exit n−−−−−→ (νm̃)(k[(Clock | P ) | Q] | n[M | ◦ ]) (Exit)

(νm̃)(k[(Clock | P )] | M), k /∈ m̃
k.enter n−−−−−−→ (νm̃)(k[Clock∗ | n[◦] | P ] | M) (Co-Enter)

(νm̃)(k[(Clock | P )] | M)
n.open k−−−−−→ n[ ◦ | (νm̃)(P | M)] (Open)

(νm̃)(k[Clock | Q] | M), k /∈ m̃
k.tick−−−−→ (νm̃)(k[Clock | tick | Q] | M) (Tick)

3 Comparing Virtually Timed Ambients

When comparing virtually timed ambients, e.g., in terms of bisimulation, we
need to consider time as a factor. For this purpose, we define a labeled transition
system which contains an observable action capturing global time steps.
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Weak Bisimulation for Virtually Timed Ambients. The reduction semantics from
Sect. 2 captures the behavior of closed or global systems. To define bisimulation,
we first formalize an open version of the operational semantics, using a labelled
transition relation. To express interaction with a surrounding context in the open
setting, transitions will have labels which capture interaction with an environ-
ment.

Definition 4 (Labels). Let the set of labels Lab, with typical element α,
be given as follows: α ∈ Lab ::= τ | k.enter n | k.exit n | k.enter n |n.open k
| ∗.exit n | ∗.enter n | k.tick, where k and n represent names of ambients. The
internal label is τ , the rest are called observable labels. We refer to labels
of the forms ∗.exit n and ∗.enter n as anonymous and other labels as non-
anonymous, and let the untimed labels exclude the tick labels.

The definition of the labels is based on the formalization for mobile ambients
in [18]. The corresponding timed labelled transition system is given in Table 4.
In the rules (Enter) and (Exit), an ambient k enters, respectively exits, from
an ambient n provided by the environment. The rules (Enter Shh) and (Exit
Shh) model the same behavior for ambients with private names. In the rule (Co-
Enter), an ambient n provided by the environment enters an ambient k of the
process. In the rule (Open), the environment provides an ambient n in which the
ambient k of the process is opened. In the rule (Tick), M

k.tick−−−−→ M ′ expresses
that the top-level ambient k of the system M receives one time slice tick from
the source clock. Note that the transition semantics contains the symbol ◦ as a
placeholder variable for the body of the context ambient, containing an arbitrary
process and an arbitrary local clock. The process P := ◦ must be instantiated
in the bisimulation. The replacement of the placeholder by a process and local
clock is written as P • (Clock | Q) and defined as expected. The reduction
semantics of a process can be encoded in the labelled transition system, because
a reduction step can be seen as an interaction with an empty context. We are
interested in bisimulations that abstract from τ -actions and use the notion of
weak actions; let =⇒ denote the reflexive and transitive closure of τ−→, let α=⇒
denote =⇒ α−→=⇒, and let α̂=⇒ denote =⇒ if α = τ and α=⇒ otherwise. An example of a
system consuming one parental tick and performing the subsequent τ -actions
is given below:

Example 3. We reconsider Example 2. After one time signal of the source clock,
the subambient a emits one resource, which is consumed by the request:

a[P ′] := a[Clock1,1 |!open request .wait for done.done[out a.out lbs]
| wait for done.done[out a.out lbs] | consume.done signal ].

After another time signal from the source clock and some internal τ steps the
ambient done can emerge, thus here it holds that:

lbs[Clock2,1 | lb | a[P ′] | b] lbs.tick−−−−−→ lbs[Clock2,1 | tick | lb | a[P ′] | b]

=⇒ lbs[Clock2,1 | lb | a | b] | done[].
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Considering timed systems as defined in Table 1, we can now define weak
timed bisimulation as follows:

Definition 5 (Weak timed bisimulation). A symmetric relation R over
timed systems is a weak timed bisimulation if M RN implies:

– if M
α−→ M ′, α ∈ {τ, k.enter n, k.exit n, k.enter n, n.open k, k.tick}, then

there is a system N ′ such that N
α̂=⇒ N ′ and for all clocks Clock and processes

P it holds that M ′•(Clock | P ) R N ′•(Clock | P );
– if M

∗.enter n−−−−−−→ M ′ then there is a system N ′ such that N | n[◦] =⇒ N ′

and for all clocks Clock and processes P it holds that M ′•(Clock | P )
R N ′•(Clock | P );

– if M
∗.exit n−−−−−→ M ′ then there is a system N ′ such that n[◦ | N ] =⇒ N ′

and for all clocks Clock and processes P it holds that M ′•(Clock | P )
R N ′•(Clock | P ).

Systems M and N are weakly timed bisimilar, written M ≈t N , if MRN for
some weak timed bisimulation R. If two systems are weakly timed bisimilar in
a timed setting where we observe the ticking of the source clock, then it follows
from the definition of weak timed bisimulation that they are weakly bisimilar in
a setting where we do not observe the ticking of the clocks and instead interpret
all tick-actions as τ -actions.

Lemma 1 (Consistency). M ≈t N implies that M and N are weakly bisimi-
lar, M ≈ N .

Note that for virtually timed ambients which are not time consuming, i.e.
with a speed of (0, 0), weak timed bisimulation and weak bisimulation coincide.

Example 4. We compare the behavior of the system lbs from Example 1 with a
second system called lbs2, which is defined as follows:

load balancer system: (ν lb, a) lbs2[Clock1,1 | lb | a]
incoming request: request[P.done signal | in lbs2.enter signal.open move]
load balancer: lb[ !wait for enter.move[out lb.in request.in a]]

ambient a: a[Clock2,1 |!open request.wait for done.done[out a.out lbs2]]

In contrast to lbs, system lbs2 only contains one virtually timed ambient, which
receives all requests. If we do not observe time, the systems behave the same,
lbs ≈ lbs2, as they both answer requests by emitting an observable done-signal.
However, the systems are not weakly timed bisimilar, lbs �≈t lbs2.

Reduction Barbed Congruence. Honda and Yoshida’s method [14] can be used to
define weak reduction barbed congruence for mobile ambients [18]. This approach
can be extended to virtually timed ambients.
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Definition 6 (Reduction barbed congruence over timed systems).
Reduction barbed congruence over timed systems �s is the largest symmetrical
relation over timed systems which is preserved by all system contexts, reduction
closed and barb preserving.

Theorem 1. Weak timed bisimilarity and reduction barbed congruence coincide
over timed systems.

We first introduce some concepts related to reduction barbed congruence
over timed systems before approaching the proof.

Definition 7. A context is a process with a hole. A system context is a con-
text that transforms systems into systems. System contexts are generated by the
following grammar: C[−] := − | (C[−] | M) | (M | C[−]) | (νn)C[−] | n[C[−] | P ] |
n[P | C[−]], where M is an arbitrary system and P is an arbitrary process.

Definition 8. A relation R is preserved by system contexts if MRN implies
C[M ]RC[N ] for all system contexts C[−].

Theorem 2. Weak timed bisimilarity is preserved by system contexts.

Proof. We extend the proof of Merro and Zappa Nardelli [18] for the k.tick
action. As the k.tick action can be seen as a special case of the k.enter n
action, the same proof method can be used here.

Definition 9. A relation R over processes is barb preserving if P R Q and
P ↓ n implies Q ⇓ n.

Weak timed bisimilarity carries over the properties of being reduction closed
and barb-preserving from weak bismilarity for mobile ambients [18]. Thus, weak
timed bisimilarity is contained in reduction barbed congruence, ≈t ⊆ �s. To
show that the other direction holds as well, we need to define a system con-
text that observes the action k.tick. Contexts to observe the other actions of
the labeled transition system are defined in [18]. Again we can consider k.tick
as a special case of the k.enter n action and can therefore define the context
equivalently:

Ctick[−] =(νa, b)a[in n.tick[out a.b[out tick.out n.done[out b]]]] | −.

Note that that all top level ambients of the system which is entered in the context
will receive the time via τ -actions. With this context, we can adjust Lemma 3.8
of Merro and Zappa Nardelli [18] to virtually timed ambients.

Lemma 2. Let α ∈ {k.enter n, k.exit n.k.enter n, n.open k, n.tick} and let
M be a system. For all clocks Clock and processes P , if M

α−→ M ′ then Cα[M ]•
(Clock | P ) ⇒�s (M ′ • (Clock | P )) | done[].
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Proof. We will only consider α = n.tick. All other cases are detailed in [18].
Let P be a process. We know that M

n.tick−−−−→ M ′. Then M ′ ≡ n[tick | Q] | M ′′.

Ctick[M ] • (Clock | P )
≡((νa, b)a[in n.tick[out a.b[out tick.out n.done[out b]])]] | M)

• (Clock | P )
� ((νa, b)n[a[tick[out a.b[out tick.out n.done[out b]]]] | Q] | M ′′)

• (Clock | P )
� ((νa, b)n[a[] | tick[b[out tick.out n.done[out b]]] | Q] | M ′′) • (Clock | P )
� ((νa, b)n[a[] | tick | Q] | b[done[out b]] | M ′′) • (Clock | P )
� ((νa, b)n[a[] | tick | Q] | b[] | done[] | M ′′) • (Clock | P )
≡(M ′ • (Clock | P )) | done[].

To prove the correspondence between actions α and their contexts Cα[−], we
have to prove the converse of the lemma above as well. The proof of this result
uses particular contexts spyα〈i, j,−〉 as a technical tool to guarantee that the
process P provided by the environment does not perform any action. We define
the context spytick〈i, j,−〉 := (i[] | −) ⊕ (j[] | −), where i, j are fresh ambient
names and ⊕ is an encoding of internal choice in the ambient calculus. We can
now adjust the proof of Lemma 3.12 in [18], making use of Lemmas 3.9, 3.10
and 3.11 in [18].

Lemma 3. Let α ∈ {k.enter n, k.exit n.k.enter n, n.open k, n.tick} and let
M be a system. Let i, j be fresh names for M . For all processes P with {i, j} ∩
fn(P ) = ∅, if Cα[M ] • (Clock | spyα〈i, j, P 〉) ⇒≡ N | done[] and N ⇓i,j there
exists a system M ′ such that M

α=⇒ M ′ and M ′ • (Clock | spyα〈i, j, P 〉) �s N .

Proof. We consider the case of α = n.tick, all other cases are detailed in [18].

Cα[M ] • (Clock | spyα〈i, j, P 〉)
≡ (νa, b)a[in n.tick[out a.b[out tick.out n.done[out b]]]] | M

• (Clock | spyα〈i, j, P 〉)
� (νa, b)n[a[] | tick | Q] | b[] | M ′′

• (Clock | spyα〈i, j, P 〉) | done[] • (Clock | spyα〈i, j, P 〉)
≡ M ′ • (Clock | spyα〈i, j, P 〉) | done[] • (Clock | spyα〈i, j, P 〉)
≡ N | done[] .

We conclude that M
n.tick====⇒ M ′. It holds that M ′•(Clock | spyα〈i, j, P 〉) �s N .

It now follows using Theorem 3.14 in [18] that reduction barbed congruence
is contained in weak timed bisimilarity, i.e. M ≈t N iff M �s N .
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4 Related Work

As our work is building on the ambient calculus, we focus on timed process
algebras based on the closely related π-calculus [23], which originated from CCS.
Related work building on ACP and CSP can be found in, e.g., [3,4,22].

A special action for time was introduced in an early timed extension [19] of
CCS, without committing to a discrete or continuous time domain. A related
idling action that needs exactly one time unit to be processed is proposed in [13],
where time is discrete and processes synchronized via a global clock. The notion
of local time proposed for CCS in [24] is closer to our local clocks, but uses a
time-out oriented model. Timers, which are introduced to express the possibility
of a time-out and are controlled by a global clock, have been studied for mobile
ambients [1,2,10]. Modeling time-out is a straightforward extension of our work.
However, the high-level idea of these works is very different from ours: they all
focus on speed as the duration of processes, while in our approach with local
clocks speed describes the processing power of a virtually timed ambient.

Cardelli and Gordon defined a labeled transition system for mobile ambi-
ents [9], but no bisimulation. A bisimulation relation for a restricted version of
mobile ambients, called mobile safe ambients, is defined in [17] and provides
the basis for later work. Barbed congruence for the same fragment of mobile
ambients is defined in [25]. It is shown in [11] that name matching reduction
barbed congruence and bisimulation coincide in the π-calculus. A bisimulation
relation with contextual labels for the ambient calculus is defined in [21], but
this approach is not suitable for providing a simple proof method. A labelled
bisimulation for mobile ambients is defined by Merro and Zappa Nardelli [18],
who prove that this bisimulation is equivalent to reduction barbed congruence
and develop up-to-proof techniques. The weak timed bisimulation defined in this
paper is a conservative extension of this approach.

A process algebra with resources as primitives is studied in [16], in which
priorities are used to make processes sensitive to scheduling. A similar approach
with explicit scheduling is studied in [20]. In contrast to these works, scheduling
in our approach is determined by the implementation of the resource distribu-
tion. A core language for defining cloud services and their deployment on cloud
platforms is introduced in [7] to enable statically safe service composition and
custom implementations of cloud services. However, in contrast to our approach,
time and performance are not taken into consideration.

5 Concluding Remarks

We believe that virtualization opens for new and interesting foundational models
of computation by explicitly emphasizing deployment and resource allocation.
This paper introduces virtually timed ambients, a formal model of hierarchical
locations of execution with explicit resource provisioning. In the proposed model
resource provisioning is based on virtual time, a local notion of time reminiscent
of time slices for virtual machines in the context of nested virtualization. This
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way, the computing power of an ambient depends on its location in the deploy-
ment hierarchy. To reason about timed behavior in this setting, we define weak
timed bisimulation for virtually timed ambients as a conservative extension of
bisimulation for mobile ambients, and show that the equivalence of bisimulation
to reduction barbed congruence is preserved by this extension.

The calculus of virtually timed ambients opens up opportunities for further
interesting research questions. One line of research is in statically controlling
resource management, for example by means of behavioral types. Another line of
research is in dynamically controlling resource management by means of resource
awareness. This line of work is suggested by examples in this paper such as load
balancers but could be enhanced by reflective resource capabilities allowing a
process to influence its own deployment similar to virtualization APIs found in
the context of cloud computing.

References

1. Aman, B., Ciobanu, G.: Mobile ambients with timers and types. In: Jones, C.B.,
Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 50–63. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75292-9 4

2. Aman, B., Ciobanu, G.: Timers and proximities for mobile ambients. In: Diekert,
V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 33–43.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74510-5 7

3. Baeten, J.C.M., Bergstra, J.A.: Real time process algebra. Technical report CS-R
9053, Centrum voor Wiskunde en Informatica (CWI) (1990)

4. Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. Monographs in
Computer Science. An EATSC series. Springer, Heidelberg (2002). https://doi.
org/10.1007/978-3-662-04995-2

5. Ben-Yehuda, M., Day, M.D., Dubitzky, Z., Factor, M., Har’El, N., Gordon, A.,
Liguori, A., Wasserman, O., Yassour, B.: The turtles project: design and implemen-
tation of nested virtualization. In: Proceedings of the 9th Symposium on Operating
Systems Design and Implementation (OSDI 2010), pp. 423–436. USENIX (2010)

6. Berger, M.: Towards abstractions for distributed systems. Ph.D. thesis, University
of London, Imperial College, November 2004
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Abstract. This paper presents a formalisation of the Event-B for-
mal specification language in terms of the theory of institutions. The
main objective of this paper is to provide: (1) a mathematically sound
semantics and (2) modularisation constructs for Event-B using the
specification-building operations of the theory of institutions. Many for-
malisms have been improved in this way and our aim is thus to define
an appropriate institution for Event-B, which we call EVT . We provide
a definition of EVT and the proof of its satisfaction condition. A moti-
vating example of a traffic-light simulation is presented to illustrate our
approach.

Keywords: Event-B · Institutions · Refinement · Formal methods
Modular specification · Formal specification

1 Introduction and Motivation

Event-B is an industrial-strength, state-based formalism for system-level mod-
elling and verification, combining set theoretic notation with event-driven mod-
elling. However, Event-B lacks well-developed modularisation constructs and it
is not easy to combine specifications in Event-B with those written in other for-
malisms [6]. Our thesis, presented in this paper, is that the theory of institutions
can provide a framework for defining a rich set of modularisation operations and
promoting interoperability and heterogeneity for Event-B.

This paper is centered around an illustrative example of a specification writ-
ten in Event-B, inspired by one in the Rodin Handbook [7], which we present
in the remainder of Sect. 1. We define our institution for Event-B, called EVT ,
in Sect. 2, prove that it is a valid institution, and define a comorphism between
the institution for first-order predicate logic with equality and EVT in Sect. 3.
In Section 4 we use this institution to recast our Event-B example in modular
form using specification-building operators and address refinement, since this is
of central importance in Event-B. We summarise our contributions and outline
future directions in Sect. 5.
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1.1 Formal Specification of a Traffic-Lights System in Event-B

Figure 1 presents an Event-B machine for a traffic-lights system with one light
signalling cars and one signalling pedestrians [2]. The goal of the specification is
to ensure that it is never the case that both cars and pedestrians receive the “go”
signal at the same time (represented by boolean flags on line 2). Machine specifi-
cations typically contain variable declarations (line 2), a variant expression (none
in this example), invariants (lines 3–6) and event specifications (lines 7–21).
Contexts in Event-B can be used to model the static properties of a system
(constants, axioms and carrier sets). Figure 2 provides a context giving a spec-
ification for the data-type COLOURS . The axiom on line 5 explicitly restricts
the set to only contain the constants red, green and orange.

Figure 1 specifies five different events (including a starting event called Init-
ialisation defined on lines 8–10). Each event has a guard, specifying when it
can be activated, and an action, specifying what happens when the event is
activated. For example, the set peds go event as specified on lines 11–13, has
one guard expressed as a boolean expression (line 12), and one action, expressed
as an assignment statement (line 13). Moreover, each event has a status, which
can be either ordinary, convergent, or anticipated. If the status is different
from ordinary, then the event is concerned with the variant expression, i.e.
with a natural-number expression used in proving termination properties. Our
example has no variant so all events have the status ordinary.

Figure 3 shows an Event-B machine specification for mac2 that refines the
machine mac1 (Fig. 1). The machine mac1 is refined by first introducing the new
context on line 1 and then by replacing the truth values used in the abstract
machine with new values from the carrier set COLOURS . This new data type
is included into mac2 using the SEES construct on line 1 of Fig. 3. During refine-
ment, the user typically supplies a gluing invariant relating properties of the
abstract machine to their counterparts in the concrete machine [2]. The gluing
invariants in Fig. 3 (lines 6 and 8) define a one-to-one mapping between the
concrete variables introduced in mac2 and the abstract variables of mac1. The
concrete variables (peds colour and cars colour) can be assigned either red or
green, thus the gluing invariants map true to green and false to red.

Event-B permits the addition of new variables and events: button pushed
(line 2) and press button (lines 30–31). The existing events from mac1 are
renamed to reflect refinement; for example, the event set peds green is declared
to refine set peds go (lines 14–15). This event has also been altered via the addi-
tion of a guard (line 16) and an action (line 18) that incorporate the function-
ality of a button-controlled pedestrian light. This example highlights features of
the Event-B language, but notice how the same specification has to be provided
twice in Fig. 1. The events set peds go and set peds stop are equivalent, mod-
ulo renaming of variables, to set cars go and set cars stop. Ideally, writing
and proving the specification for these events should only be required once. Our
approach addresses these issues as will be seen in Sect. 4.
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Fig. 1. Event-B machine specification
for a traffic system.

Fig. 2. Event-B context specification
for the colours of a set of traffic–lights.

Fig. 3. A refined Event-B machine spec-
ification for a traffic system.

1.2 Related Work: Institutions and Modularisation

Originally, Event-B was not equipped with any modularisation constructs.
Because of this, several approaches have been suggested for modularising
Event-B specifications. Abrial first proposed two styles of decomposition
based on identifying shared variables and shared events [3]. Elaborating these
approaches, approximately 8 modularisation plugins have been developed for
various versions of Rodin, each offering a different perspective on implement-
ing modularisation. By defining an institution for the Event-B formalism, we
can modularise Event-B specifications using specification-building operators [11],
and thus provide an approach to developing modular specifications that is con-
sistent with the state of the art in formal specification.

An attempt was previously made to provide an institution and correspond-
ing morphisms for Event-B and UML [4]. However, the definitions of Event-B
sentences and models were vague, making it difficult to evaluate their semantics
in a meaningful way. Also, the models described resemble the set-theoretic foun-
dations of B specifications, whereas here we concentrate on event-based models.
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Our presentation of an illustrative example in both Event-B and its modular
institutional version is an important element of developing this work.

Our approach provides scope for the interoperability of Event-B and other
formalisms via institution (co)morphisms. Those familiar with the institution
for UML state machines, UML, may notice that we have based the construction
of our institution for Event-B, EVT , on UML [8]. Both institutions describe
state-based formalisms so, by keeping UML in mind during the development of
EVT , it will be possible to design meaningful translations between them in the
future.

2 An Institution for Event-B

The theory of institutions, originally developed by Goguen and Burstall in a
series of papers originating from their work on algebraic specification, provides
a general framework for defining a logical system [5].

Definition 1 (Institution). An institution INS for some given formalism
will consist of definitions for:

Vocabulary: a category Sign whose objects are called signatures and whose
arrows are called signature morphisms.

Syntax: a functor Sen : Sign → Set giving a set Sen(Σ) of Σ-sentences
for each signature Σ and a function Sen(σ) : Sen(Σ) → Sen(Σ′) for each
signature morphism σ : Σ → Σ′.

Semantics: a functor Mod : Signop → Cat giving a category Mod(Σ) of Σ-
models for each signature Σ and a functor Mod(σ) : Mod(Σ′) → Mod(Σ)
for each signature morphism σ : Σ → Σ′.

Satisfaction: for every signature Σ, a satisfaction relation |=INS,Σ between
Σ-models and Σ-sentences.

An institution must uphold the satisfaction condition: for any signature
morphism σ : Σ → Σ′ and translations Mod(σ) of models and Sen(σ) of
sentences we have for any φ ∈ Sen(Σ) and M ′ ∈ |Mod(Σ′)|.

M ′ |=INS,Σ′ Sen(σ)(φ) ⇐⇒ Mod(σ)(M ′) |=INS,Σ φ

There are two basic languages within the Event-B language. The first one
is the Event-B mathematical language (propositional/predicate logic, set-theory
and arithmetic) and the second is the Event-B modelling language [1]. To rep-
resent the latter, we propose a new custom solution; for the former, however,
we can use FOPEQ, the institution of first-order logic with equality. Thus, our
institution for Event-B is built on FOPEQ.

Definition 2 (FOPEQ-Signature). A signature in FOPEQ, ΣFOPEQ =
〈S,Ω,Π〉, is a tuple where S is a set of sort names, Ω is a set of operation names
indexed by arity and sort, and Π is a set of predicate names indexed by arity.
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Definition 3 (ΣFOPEQ-Sentence). For any ΣFOPEQ = 〈S,Ω,Π〉, ΣFOPEQ-
sentences are closed first-order formulae built out of atomic formulae using
∧,∨,¬,⇒, ⇐⇒ ,∃,∀. Atomic formulae are equalities between 〈S,Ω〉-terms,
predicate formulae of the form p(t1, . . . , tn) where p ∈ Π and t1, . . . , tn are
terms (with variables), and the logical constants true and false.

Definition 4 (ΣFOPEQ-Model). Given a signature ΣFOPEQ = 〈S,Ω,Π〉, a
model over FOPEQ consists of a carrier set |A|s for each sort name s ∈ S, a
function fA : |A|s1 × · · · × |A|sn

→ |A|s for each operation name f ∈ Ωs1...sn,s

and a relation pA ⊆ |A|s1 × · · · × |A|sn
for each predicate name p ∈ Πs1···sn

,
where s1, . . . , sn, and s are sort names.

The satisfaction relation in FOPEQ is the usual satisfaction of first-order
sentences by first-order structures.

2.1 Defining EVT
Definition 5 (EVT -Signature). A signature in EVT is a five-tuple ΣEVT =
〈S,Ω,Π,E, V 〉 where 〈S,Ω,Π〉 is a standard FOPEQ-signature as described
above, E is a set of events, i.e. of pairs 〈event name, status〉 where status belongs
to the poset {ordinary < anticipated < convergent}, and V is a set of sorted
variables. We assume that every signature has an initial event, called Init, whose
status is always ordinary.

Notation: We write Σ in place of ΣEVT when describing a signature over our
institution for Event-B. For signatures over other institutions than EVT we
will use the subscript notation; e.g. a signature over FOPEQ is denoted by
ΣFOPEQ. For a given signature Σ, we access its individual components using a
dot-notation, e.g. Σ.V for the set V in the tuple Σ.

Definition 6 (EVT -Signature Morphism). A signature morphism σ :
Σ → Σ′ is a five-tuple containing σS , σΩ , σΠ , σE and σV . Here σS , σΩ, σΠ are
the mappings taken from the corresponding signature morphism in FOPEQ.

– σE : Σ.E → Σ′.E is a function such that for any mapping σE〈e, st〉 = 〈e′, st′〉
we have st ≤ st′; in addition, σE preserves the initial event: in symbols, we
have that σE〈Init, ordinary〉 = 〈Init, ordinary〉.

– σV : Σ.V → Σ′.V is a sort-preserving function on sets of variable names,
working similarly to the sort-preserving mapping for constant symbols, σΩ.

Definition 7 (ΣEVT -Sentence). A sentence over EVT is a pair 〈e, φ(x, x′)〉
where e is an event name in the domain of Σ.E and φ(x, x′) is an open FOPEQ-
formula over the variables x from Σ.V and their primed versions x′.

In the Rodin Platform, Event-B machines are presented (syntactically sug-
ared) as can be seen below, where I(x) represents the invariant over x.
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MACHINE m SEES ctx refines a
VARIABLES x
INVARIANTS I(x)
VARIANT n(x)
EVENTS
Initialisation ordinary

then act-name: BA(x, x′)
Event e =̂ status

any p
when guard-name: G(x, p)
with witness-name: W (x, p)
then act-name: BA(x, p, x′)

.

.

.
END

The variant expression, denoted by n(x), is
used for proving termination properties. Events
that have a status of anticipated or convergent
must not increase and strictly decrease the variant
expression respectively. Events can have param-
eter(s) as given by p. G(x, p) and W (x, p) repre-
sent the guard(s) and witness(es) respectively over
the variables and parameter(s). Actions are inter-
preted as before-after predicates i.e. x := x + 1 is
interpreted as x′ = x + 1. Thus, BA(x, p, x′) rep-
resents the action(s) over the parameter(s) p and
the sets of variables x and x′.

Sentences written in the mathematical language (such as axioms) are inter-
preted as sentences over FOPEQ. We can include these in specifications over
EVT using the comorphism which will be defined in Sect. 3. We represent the
Event-B event, variant and invariant sentences as sentences over EVT .

For each Event-B invariant sentence I(x) we form the open FOPEQ-sentence
I(x)∧I(x′). Since invariants must hold for all events in a machine, each invariant
sentence is paired with each event name e for all 〈e, s〉 ∈ Σ.E, where s is an event
status. Thus, we form the EVT sentence 〈e, I(x) ∧ I(x′)〉.

The variant expression applies to specific events, so we pair it with an event
name in order to meaningfully evaluate it. This expression can be translated into
an open FOPEQ-term, which we denote by n(x), and we use this to construct
a formula based on the status of the event(s) in the signature Σ.

– For each 〈e, anticipated〉 ∈ Σ.E we form the sentence 〈e, n(x′) ≤ n(x)〉.
– For each 〈e, convergent〉 ∈ Σ.E we form the sentence 〈e, n(x′) < n(x)〉.

Note that we are assuming the existence of a suitable type for variant expressions
and the usual arithmetic interpretation of the predicates < and ≤.

Event guard(s) and witnesses are also labelled predicates that can be trans-
lated into open FOPEQ-formulae over the variables x in V and parameters p.
These are denoted by G(x, p) and W (x, p) respectively. In Event-B, actions are
interpreted as before-after predicates, and so they can be translated into open
FOPEQ-formulae denoted by BA(x, p, x′). Thus for each event we form the
formula φ(x, x′) = ∃p · G(x, p) ∧ W (x, p) ∧ BA(x, p, x′) where p are the event
parameters. This generates an EVT -sentence of the form 〈e, φ(x, x′)〉. The Init
event, which is an Event-B sentence over only the after variables denoted by x′,
is a special case. In this case, we form the EVT -sentence 〈Init, φ(x′)〉.

There is no formal semantics for Event-B defined in the literature as such.
Therefore, we have based our construction of EVT -models on the notion of a
mathematical model as described by Abrial [1, Ch. 14]. In these models the
state is represented as a sequence of variable-values and models are defined over
before and after states. We interpret these states as sets of variable-to-value
mappings in our definition of EVT -models.
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Definition 8 (Σ-StateA). For any given EVT -signature Σ we define a Σ-state
of an algebra A as a set of (sort appropriate) variable-to-value mappings whose
domain is the set of sort-indexed variable names Σ.V . We define the set StateA

as the set of all such Σ-states. By “sort appropriate” we mean that for any
variable x of sort s in V , the corresponding value for x should be drawn from
|A|s, the carrier set of s given by the FOPEQ-model A.

Definition 9 (ΣEVT -Model). Given Σ = 〈S,Ω,Π,E, V 〉, Mod(Σ) provides a
category of models, where a model over Σ is a tuple 〈A,L,R〉. A is a ΣFOPEQ-
model, and the non-empty initialising set L ⊆ StateA provides the states after
the Init event. Then for every event name e ∈ dom(E), other than Init, we
define R.e ⊆ StateA × StateA where for each pair of states 〈s, s′〉 in R.e, s
provides values for the variables x in V , and s′ provides values for their primed
versions x′. Then R = {R.e | e ∈ dom(E) and e �= Init}.

Intuitively, a model over Σ maps every event name e ∈ dom(Σ.E) to a set of
variable-to-value mappings over the carriers corresponding to the sorts of each
of the variables x ∈ Σ.V and their primed versions x′. In cases where there are
no variables in Σ.V , L is the singleton {{}}.

Event e =̂
when grd1: x<2
then act1: x := x + 1

act2: y := false

For example, given the event e on the right, with
natural number variable x and boolean variable y we
construct the variable to value mappings:

Re =

{
{x �→ 0, y �→ false, x′ �→ 1, y′ �→ false}, {x �→ 0, y �→ true, x′ �→ 1, y′ �→ false},
{x �→ 1, y �→ false, x′ �→ 2, y′ �→ false}, {x �→ 1, y �→ true, x′ �→ 2, y′ �→ false}

}

The notation used above is interpreted as variable name �→ value where the
value is drawn from the carrier set corresponding to the sort of the variable name
given in Σ.V . We note that trivial models be excluded as the initialising set L
is never empty. In cases where there are no variables in Σ.V , L is the singleton
L = {{}}.

The reduct of an EVT -model M = 〈A,L,R〉 along an EVT -signature mor-
phism σ : Σ → Σ′ is given by M |σ = 〈A|σ, L|σ, R|σ〉. Here A|σ is the reduct of
the FOPEQ-component of the EVT -model along the FOPEQ-components of
σ. L|σ and R|σ are based on the reduction of the states of A along σ, i.e. for
every Σ′-state s of A, that is for every sorted map s : Σ′.V → |A|, s|σ is the map
Σ′.V → |A| given by the composition σV ; s. This extends in the usual manner
from states to sets of states and to relations on states.

Satisfaction: In order to define the satisfaction relation for EVT , we describe an
embedding from EVT -signatures and models to FOPEQ-signatures and models.

Given an EVT -signature Σ = 〈S,Ω,Π,E, V 〉 we form the following two
FOPEQ-signatures:

– Σ
(V,V ′)
FOPEQ = 〈S,Ω ∪ V ∪ V ′,Π〉 where V and V ′ are the variables and their

primed versions, respectively, that are drawn from the EVT -signature, and
represented as 0-ary operators with unchanged sort. The intuition here is
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that the set of variable-to-value mappings for the free variables in an EVT -
signature Σ are represented by adding a distinguished 0-ary operation symbol
to the corresponding FOPEQ-signature for each of the variables x ∈ V and
their primed versions.

– Similarly, for the initial state and its variables, we construct the signature
Σ

(V ′)
FOPEQ = 〈S,Ω ∪ V ′,Π〉.

Given the EVT Σ-model 〈A,L,R〉, we construct the FOPEQ-models:

– For every pair of states 〈s, s′〉, we form the Σ
(V,V ′)
FOPEQ-model expansion A(s,s′),

which is the FOPEQ-component A of the EVT -model, with s and s′ added
as interpretations for the new operators that correspond to the variables from
V and V ′ respectively.

– For each initial state s′ ∈ L we construct the Σ
(V ′)
FOPEQ-model expansion A(s′)

analogously.

For any EVT -sentence over Σ of the form 〈e, φ(x, x′)〉 we create a correspond-
ing FOPEQ-formula by replacing the free variables with their corresponding
operator symbols. We write this (closed) formula as φ(x, x′).

Definition 10 (Satisfaction Relation). For any EVT -model 〈A,L,R〉 and
EVT -sentence 〈e, φ(x, x′)〉, where e is an event name other than Init, we define:

〈A,L,R〉 |=Σ 〈e, φ(x, x′)〉 ⇐⇒ ∀〈s, s′〉 ∈ R.e · A(s,s′) |=
Σ

(V,V ′)
FOPEQ

φ(x, x′)

Similarly, we evaluate the satisfaction condition of EVT -sentences of the form
〈Init, φ(x′)〉 as follows:

〈A,L,R〉 |=Σ 〈Init, φ(x′)〉 ⇐⇒ ∀s′ ∈ L · A(s′) |=
Σ

(V ′)
FOPEQ

φ(x′)

Theorem 1 (Satisfaction Condition). Given EVT signatures Σ1 and Σ2, a
signature morphism σ : Σ1 → Σ2, a Σ2-model M2 and a Σ1-sentence ψ1, the
following satisfaction condition holds:

Mod(σ)(M2) |=EVT Σ1
ψ1 ⇐⇒ M2 |=EVT Σ2

Sen(σ)(ψ1)

Proof. Let M2 be the model 〈A2, L2, R2〉, and ψ1 the sentence 〈e, φ(x, x′)〉. Then
the satisfaction condition is equivalent to

∀〈s, s′〉 ∈ R2|σ.e · (A2|σ)(s,s′)|σ |=FOPEQ
Σ

(V1,V ′
1)

FOPEQ
φ(x, x′)

⇐⇒ ∀〈s, s′〉 ∈ R2.σE(e) · A
(s,s′)
2 |=FOPEQ

Σ
(V2,V ′

2)
FOPEQ

Sen(σ)(φ(x, x′))

Here, validity follows from the validity of satisfaction in FOPEQ. We prove a
similar result for initial events in the same way. ��
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Pragmatics of Specification Building in EVT : We represent an Event-B
specification, such as that for mac1 in Fig. 1, as a presentation over EVT . For
any signature Σ, a Σ-presentation is a set of Σ-sentences. A model of a Σ-
presentation is a Σ-model that satisfies all of the sentences in the presentation
[5]. Thus, for a presentation in EVT , model components corresponding to an
event must satisfy all of the sentences specifying that event. This incorporates
the standard semantics of the extends operator for events in Event-B where
the extending event implicitly has all the parameters, guards and actions of the
extended event but can have additional parameters, guards and actions [3].

An interesting aspect is that if a variable is not assigned to within an action,
then a model for the event may associate a new value with this variable. Some
languages deal with this using a frame condition, asserting implicitly that values
for unmodified variables do not change. In Event-B such a condition would cause
complications when combining presentations, since variables unreferenced in one
event will be constrained not to change, and this may contradict an action for
them in the other event. As far as we can tell, the informal semantics for the
Event-B language do not require a frame condition, and we have not included
one in our definition.

3 Relating FOPEQ and EVT
Initially, we defined the relationship between FOPEQ and EVT to be a duplex
institution formed from a restricted version of EVT (EVT res) and FOPEQ
where EVT res is the institution EVT but does not contain any FOPEQ compo-
nents. Duplex institutions are constructed by enriching one institution, in this
case EVT res, by the sentences of another, in this case FOPEQ, using an insti-
tution semi-morphism [5,11]. This approach would allow us to constrain EVT res

by FOPEQ and thus facilitate the use of FOPEQ-sentences in an elegant way.
However, duplex institutions are not supported in Hets [9], and therefore we
opt for a comorphism which embeds the simpler institution FOPEQ into the
more complex institution EVT [11].

Definition 11. (The institution comorphism ρ). We define ρ : FOPEQ →
EVT to be an institution comorphism composed of:

– The functor ρSign : SignFOPEQ → SignEVT which takes as input a FOPEQ-
signature of the form 〈S,Ω,Π〉 and extends it with the set E = {〈Init
ordinary〉} and an empty set of variable names V . ρSign(σ) works as σ on
S, Ω and Π, it is the identity on the Init event and the empty function on
the empty set of variable names.

– The natural transformation ρSen : SenFOPEQ → ρSign;SenEVT which pairs
any closed FOPEQ-sentence (given by φ) with the Init event name to form
the EVT -sentence 〈Init, φ〉. As there are no variables in the signature, we do
not require φ to be over the variables x and x′.

– The natural transformation ρMod : (ρSign)op;ModEVT → ModFOPEQ is
such that for any FOPEQ-signature Σ,

ρMod
Σ (Mod(ρSign(Σ))) = ρMod

Σ (〈A,L, ∅〉) = A
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Theorem 2. The institution comorphism ρ is defined such that for any Σ ∈
|SignFOPEQ|, the translations ρSen

Σ : SenFOPEQ(Σ) → SenEVT (ρSign(Σ)) and
ρMod

Σ : ModEVT (ρSign(Σ)) → ModFOPEQ(Σ) preserve the satisfaction rela-
tion. That is, for any ψ ∈ SenFOPEQ(Σ) and M ′ ∈ |ModEVT (ρSign(Σ))|

ρMod
Σ (M ′) |=FOPEQΣ

ψ ⇐⇒ M ′ |=EVT
ρSign(Σ)

ρSen
Σ (ψ) (∗)

Proof. By Definition 11, M ′ = 〈A,L, ∅〉, ρMod
Σ (M ′)=A and ρSen

Σ (ψ)= 〈Init, ψ〉.
Therefore, we transform (*) into

A |=FOPEQΣ
ψ ⇐⇒ M ′ |=EVT

ρSign(Σ)
〈Init, ψ〉

Then, by the definition of satisfaction in EVT (Definition 10)

A |=FOPEQΣ
ψ ⇐⇒ A(s′) |=FOPEQ

(ρSign(Σ))(V ′)
FOPEQ

ψ

We deduce that Σ = (ρSign(Σ))V ′
FOPEQ, since there are no variable names in

V ′ and thus no new operator symbols are added to the signature. As there are
no variable names in V ′, L = {{}}, so we can conclude that A(s′) = A. Thus the
satisfaction condition holds. ��

For a Σ-specification written over FOPEQ we can use the specification build-
ing operator − with ρ : SpecFOPEQ(Σ) → SpecEVT (ρSign(Σ)) to interpret this
as a specification over EVT [11]. This results in a specification with just the
Init event and no variables, containing FOPEQ-sentences that hold in the ini-
tial state. This process is used to represent contexts, specifically their axioms,
which are written over FOPEQ as sentences over EVT .

In cases where a specification is enriched with new events, then the axioms
and invariants should also apply to these new events. One approach to this
would require a new kind of EVT -sentence for invariants, which we denote by
〈inv, φ(x, x′)〉, these are applied to all events in the specification when evaluat-
ing the satisfaction condition. We do not present these details fully here due to
space concerns.

3.1 Pushouts and Amalgamation

We ensure that the institution EVT has good modularity properties by proving
that EVT admits the amalgamation property: all pushouts in SignEVT exist and
every pushout diagram in SignEVT admits weak model amalgamation [11].

Proposition 1. Pushouts exist in SignEVT .

Proof. Given two signature morphisms σ1 : Σ → Σ1 and σ2 : Σ → Σ2 a
pushout is a triple (Σ′, σ′

1, σ
′
2) that satisfies the universal property: for all triples

(Σ′′, σ′′
1 , σ′′

2 ) there exists a unique morphism u : Σ′ → Σ′′ such that the diagram
on the left below commutes. Our pushout construction follows FOPEQ for the
elements that FOPEQ has in common with EVT . In SignEVT the additional
elements are E and V .
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Σ

Σ1

Σ′

Σ2

Σ′′

σ1

σ′
1 σ′

2

σ2

σ′′
1 σ′′

2
u

– Set of 〈event name, status〉 pairs E: The set of all
event names in the pushout is the pushout in Set
on event names only. Then, the status of an event
in the pushout is the supremum of all statuses of all
events that are mapped to it. Since signature mor-
phisms map 〈Init,ordinary〉 to 〈Init, ordinary〉
the pushout does likewise. The universality property
for E follows from that of Set.

– Set of sort-indexed variable names V : The set of sort-indexed variable names
in the pushout is the pushout in FOPEQ for the sort components and the
pushout in Set for the variable names. This is a similar construction to the
pushout for operation names in FOPEQ as these also have to follow the sort
pushout. Thus, the universality property for V follows from that of Set and
the FOPEQ pushout for sorts. ��

Proposition 2. Every pushout diagram in SignEVT admits weak model
amalgamation.

We decompose this proposition into two further subpropositions:

Proposition 2(a). For M1 ∈ |Mod(Σ1)| and M2 ∈ |Mod(Σ2)| such that
M1|σ1 = M2|σ2 , there exists a model (the amalgamation of M1 and M2)
M ′ ∈ |Mod(Σ′)| such that M ′|σ′

1
= M1 and M ′|σ′

2
= M2.

Proof. Consider the commutative diagram with signature morphisms σ1, σ2, σ
′
1

and σ′
2 below:

M ′ = 〈A′, L′, R′〉

M1 = 〈A1, L1, R1〉

M = 〈A, L,R〉

M2 = 〈A2, L2, R2〉

Mod(σ′
1)

Mod(σ1) Mod(σ2)

Mod(σ′
2)

We construct M ′ = 〈A′, L′, R′〉 as follows. A′ is the FOPEQ-model (amalga-
mation of A1 and A2) over FOPEQ. We construct the initialising set L′ by
amalgamating L1 and L2 to get the set of all possible combinations of variable
mappings, while respecting the amalgamations induced on variable names via
the pushout V ′. We construct the relation R′, which is the amalgamation of R1

and R2, in a similar manner. ��

Proposition 2(b). For any two model morphisms f1 : M11 → M12 in
Mod(Σ1) and f2 : M21 → M22 in Mod(Σ2) such that f1|σ1 = f2|σ2 , there
exists a model morphism (the amalgamation of f1 and f2) called f ′ : M ′

1 → M ′
2

in Mod(Σ′), such that f ′|σ′
1

= f1 and f ′|σ′
2

= f2.

We have omitted this proof but it can be found on our webpage1.
1 http://www.cs.nuim.ie/∼mfarrell/extended.pdf.

http://www.cs.nuim.ie/~mfarrell/extended.pdf
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4 Modularising Event-B Specifications

Our definition of EVT allows the restructuring of Event-B specifications using
the standard specification-building operators for institutions [11]. Thus EVT
provides a means for writing down and splitting up the components of an
Event-B system, facilitating increased modularity for Event-B specifications.
Figure 4 contains heterogeneous structured specifications corresponding to the
Event-B machine mac1 defined in Fig. 1. Since Hets is our target platform,
where each institution is represented as a “logic”, we use its notation and imple-
mentation of the logic for CASL to represent the FOPEQ components of our
specifications.

Lines 1–6: TwoBools can be presented as a pure CASL specification, declaring
two boolean variables constrained to have different values.

Lines 7–17: LightAbstract is a specification in the EVT logic for a single traf-
fic light that extends (using keyword then) TwoBools which is first translated
via the comorphism ρ into a specification over EVT . It contains the events
set go and set stop, with the constraint that a light can only be set to
“go” if its opposite light is not set to “go”. We use “thenAct” in place of the
“then” Event-B keyword to distinguish from the “then” specification-building
operator.

Lines 18–32: The specification mac1 combines (using keyword and) two ver-
sions of LightAbstract, each with a different signature morphism (σ1 and σ2)
mapping the specification variables and event names to those in the Event-B
machine. The where notation used on lines 22–32 is just a convenient pre-
sentation of the signature morphisms, it is not part of the syntax of the
specification language that we use in Hets.

We get a presentation over the institution EVT for mac1 by flattening out
the structuring. Notice that the specification for each individual light had to be
explicitly written down twice in the Event-B machine in Fig. 1 (lines 11–15 and
lines 16–20). In our modular institution-based presentation we only need one
light specification and simply supply the required variable and event mappings.
In this way, EVT provides a more flexible degree of modularity than is currently
present in Event-B.

4.1 Refinement in the EVT Institution

Event-B supports three forms of machine refinement: the refinement of event
internals (guards and actions) and invariants; the addition of new events; and
the decomposition of an event into several events [2]. It is therefore essential for
any formalisation of Event-B to be capable of capturing refinement.

In general for institutions, a refinement from an abstract specification A
to some concrete specification C is defined using model-class inclusion as
|Mod(C)| ⊆ |Mod(A)| when Sig[A] = Sig[C]. In Event-B, new variable or
event names cannot be added if the signatures stay the same. This provides only
one option: strengthen the formulae in event definitions, which will result in at
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most the same number of models. This accounts for the first form of refinement
in Event-B. Both of the other forms of refinement in Event-B cause the signa-
tures to change i.e. the set of events will get larger when adding or decomposing
events. In the case when the signatures are different, we can define a signature
morphism σ : Sig[A] → Sig[C] from which we can construct the model reduct
Mod(σ) : Mod(C) → Mod(A). We can thus restrict the concrete model to only
contain elements of the abstract signatures by applying the model reduct before
evaluating the subset relation defined above.

4.2 A Modular, Refined Specification

Figure 5 contains a presentation over EVT corresponding to the main elements
of the Event-B specification mac2 presented in Figs. 2 and 3. Here, we present
three CASL specifications and three EVT specifications.

Lines 1–10: We specify the Colours data type with a standard CASL spec-
ification, as can be seen in Fig. 2. The specification TwoColours describes
two variables of type Colours constrained to be not both green at the same
time. This corresponds to the gluing invariants on lines 5 and 7 of Fig. 3. The
specification modularisation constructs used in Fig. 5, allow these properties
to be handled distinctly and in a manner that facilitates comparison with the
TwoBools specification on lines 1–6 of Fig. 4.

Lines 15–25: A specification for a single light is provided in LightRefined

which uses TwoColours to describe the colour of the lights. As was the case
with LightAbstract in Fig. 4, the specification makes clear how a single light
operates. An added benefit here is that a direct comparison with the abstract
specification can be done on a per-light basis.

Lines 11–14, 26–34: The specifications BoolButton and ButtonSpec

account for the part of the mac2 specification that requires a button. These
details were woven through the code in Fig. 3 (lines 2, 8, 16, 18, 29, 30) but the
specification-building operators allow us to modularise the specification and
group these related definitions together, clarifying how the button actually
operates.

Lines 35–51: Finally, to bring this all together we combine a copy of LightRe-

fined with a specification corresponding to the sum (and) of LightRefined

and ButtonSpec with appropriate signature morphisms. This second specifi-
cation combines the event gobutton in ButtonSpec with the event set green
in LightRefined thus accounting for set peds green in Fig. 3. One small
issue involves making sure that the name replacements are done correctly,
and in the correct order, hence the bracketing on lines 37–38 is important.

The combination of these specifications involves merging two events with
different names: gobutton from ButtonSpec with the event set green from
LightRefined. To ensure that these differently-named events are combined into
an event of the same name we use the signature morphism σ5 to give gobutton
the same name as set green before combining them. Ensuring that the events
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Fig. 4. A modular institution-based presentation corresponding to the abstract
machine mac1 in Fig. 1.

Fig. 5. A modular institution-based presentation corresponding to the refined machine
mac2 specified in Fig. 3.

have the same name allows the and operator to combine both events’ guards
and actions and the morphism σ4 to name the resulting event set peds green.
The resulting specification also contains the event pushbutton. The labels given
to guards/actions are syntactic sugar to make the specification aesthetically
resemble the usual Event-B notation for guards/actions.

Figure 6 uses the refinement syntax available in Hets to specify each of the
refinements in the specification of the concrete machine mac2:
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Fig. 6. Defining the refinement relationships between the concrete and abstract pre-
sentations.

Lines 2–4: define the data refinement of Bool into Colours, with an appropriate
mapping for the values.

Lines 5–6: define the refinement of the two boolean variables into their corre-
sponding variables of type Colour . In combination with lines 2–4, this corre-
sponds to the gluing invariants on lines 5 and 7 of Fig. 3.

Lines 7–14: define the refinement relation between the four events: this corre-
sponds to the refines statements on lines 14, 20, 23 and 27 of Fig. 3.

5 Conclusion and Future Work

Currently, the core benefit of EVT , our institution for Event-B, is the increased
modularity of Event-B specifications via the use of specification-building opera-
tors. The concept of refinement, central to Event-B, is also well-developed in the
theory of institutions, and we have shown how this can be applied here. Devising
meaningful institutions and corresponding morphisms to/from Event-B provides
a mechanism not only for ensuring the safety of a particular specification but
also, via morphisms, a potential for integration with other formalisms. Interoper-
ability and heterogeneity are significant goals in the field of software engineering,
and we believe that the work presented in this paper provides a basis for the
integration of Event-B with other formalisms defined in this way.

The Heterogeneous Tool-Set Hets provides a framework for heterogeneous
specifications where each formalism is represented as a logic and understood in
the theory of institutions [9]. Our logic for EVT utilises the already existing
institution CASL [10] to account for the FOPEQ parts of the EVT institution
thus taking advantage of the interoperability/heterogeneity supplied by Hets.
CASL provides sorts and predicates like those written in lines 4–6 from Fig. 4.

At present we can parse, statically analyse and combine specifications written
over EVT . Future work includes developing comorphisms to translate between
EVT and other logics in Hets as well as integrating with the provers currently
available in Hets (e.g. Isabelle). Comorphisms between these theorem provers
and EVT will allow us to prove our specifications correct in Hets. We envisage
that development should take place here to fully take advantage of the prospects
for interoperability. A translation from Event-B to EVT in the future will not
only enable us to fully utilise both the Rodin Platform and Hets, but will also
provide a translational semantics for Event-B using the theory of institutions.
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Abstract. The standard mathematical definition of signed integers,
based on set theory, is not well-adapted to the needs of computer sci-
ence. For this reason, many formal specification languages and theorem
provers have designed alternative definitions of signed integers based on
term algebras, by extending the Peano-style construction of unsigned
naturals using “zero” and “succ” to the case of signed integers. We com-
pare the various approaches used in CADP, CASL, Coq, Isabelle/HOL,
KIV, Maude, mCRL2, PSF, SMT-LIB, TLA+, etc. according to objec-
tive criteria and suggest an “optimal” definition of signed integers.

1 Introduction

It took a few millennia to properly formalize number theory but, at present,
mathematics has sound and well-established concepts for numbers.

In computer science, the situation is different. Following a tradition initiated
by Fortran and Algol 60, most programming languages rely on a set of prede-
fined data types, among which numerical types (integers, reals, etc.) have finite
domains and usually map to the machine words provided by the underlying
hardware. In many cases, the semantics of these types is not defined formally, as
it depends on the implementation. Even languages with strong semantic foun-
dations may be incompletely defined if they import predefined types; this is the
case, for instance, with the synchronous languages Lustre [31, Sects. 3.1 and 3.2],
Esterel [5, Sect. 4.3.1], and Signal [13, Sect. 2.3], which assume the existence of
predefined signed integers and floating-point reals, presumably imported from
the C language.

Some specification languages use a similar approach, by assuming the exis-
tence of numerical types rather than defining them formally. Because specifica-
tion languages are expected to be more abstract and higher-level than program-
ming languages, such predefined numerical types are usually infinite and the

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
P. James and M. Roggenbach (Eds.): WADT 2016, LNCS 10644, pp. 120–134, 2017.
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mapping to hardware implementation is often left aside. These are four exam-
ples of specification languages in which numbers are taken for granted1:

– The VDM language [15] [19, Sect. 3.1.2] has five predefined numerical types,
real numbers being the most general one (nat1 ⊂ nat ⊂ int ⊂ rat ⊂ real).

– The predefined library of PVS [25, Chap. 7] assumes the existence of a
universal number type, of which the usual numerical types are subsets
(naturalnumber ⊂ integer ⊂ rational ⊂ real ⊂ number). Actually, PVS
defines many more types (e.g., posnat, nonneg int, nzrat, etc.) that form a
lattice, the elements of which are related by PVS judgments and properties.

– The Z notation [16, Sects. 11.2 and B.7] assumes the existence of an unspec-
ified number type A (“arithmos”) that contains naturals and integers (N1 ⊂
N ⊂ Z ⊂ A). These sets and their operations are defined using high-level
statements such as: “multiplication on integers is characterised by the unique
operation under which the integers become a commutative ring with identity
element 1” [16, Sect. B.7.11].

– The B language [20, Sects. 3.4, 5.3, 5.6, and 7.25.2] assumes the existence
of the set Z, of which N1 and N are subsets (N1 ⊂ N ⊂ Z). The language
also defines a set INT of “concrete integers” that belong to a finite range
MININT. . . MAXINT, the bounds of which are implementation-dependent, e.g.,
(−231) . . . (231 − 1), as well as two subsets NAT1 and NAT of INT without neg-
ative values (NAT1 ⊂ NAT ⊂ INT ⊂ Z ∧ NAT1 ⊂ N1 ∧ NAT ⊂ N).

Relying on undefined or externally-defined numerical types makes these lan-
guages closer to programming languages than formal methods. Their semantics
is not entirely defined and properties involving numbers cannot be proven within
these languages, unless some specific theories are imported. We believe that a
unified semantic definition that encompasses numbers is highly preferable.

The present article addresses the following problem: what is the best way to
define the set Z of integers formally? An ideal definition should be mathemati-
cally elegant and compatible with the needs of computer-aided verification.

Our motivation for this question arose in 1996 when applying the LOTOS
language [14] to an industrial case study that required signed integers: the pre-
defined library of LOTOS, based on ACT-ONE [9] abstract data types, provided
only natural numbers, but no signed integers. At that time, no obvious solution
could be found in the literature. During the past decades, various approaches
have been devised for this problem and implemented in mainstream specification
languages and theorem provers. The present article reviews and compares these
approaches. We restrict our study to arbitrary large naturals and integers (i.e.,
the mathematical sets N and Z), thus excluding finite subranges of N and Z,
especially machine numbers (e.g., 32-bit integers) and modular arithmetic.

1 In the present article, we distinguish between naturals (also: natural numbers), which
are the elements of N (i.e., unsigned), and integers, which are the elements of Z (i.e.,
signed). We assume that 0 ∈ N and we write N1 =def N \ {0}.



122 H. Garavel

2 Definitions of N

In mathematics, natural numbers can be constructed in two main ways:

– Construction based on set theory: assuming that the concept of set preexists,
we know from the works of Zermelo, Fraenkel, and Von Neumann that natural
numbers can be defined as the following sequence of sets:

0 =def ∅

1 =def 0 ∪ {0} = {0} = {∅}
2 =def 1 ∪ {1} = {0, 1} = {∅, {∅}}
3 =def 2 ∪ {2} = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}

and so on, where number n+1 is defined as the set n∪{n}, i.e., {0, 1, . . . , n}.
We are not aware of any computer language that uses this approach to define
natural numbers. Even formal methods based on set theory, such as VDM,
Z, B, or TLA+ [18] do not define their naturals this way.

– Construction based on algebraic terms: we know from Peano axioms that
natural numbers can be represented as algebraic terms built with two con-
structors [zero : → N] and [succ : N → N]. Because this approach lends itself
well to machine execution and automated reasoning, it has been adopted by
most computer languages that formally define their numbers.

The simplicity of this approach fits theoretical needs well but faces practical
limitations: Peano-style naturals are encoded in base one (unary representa-
tion), which is cumbersome when writing large numbers, and inefficient when
directly executing algebraic specifications by giving them as input to some
rewrite engine or encoding them into some language (e.g., a functional pro-
gramming language) that supports inductive types and pattern matching; in
practice, unary representation often causes stack overflow for naturals larger
than 106.

For this reason, refined approaches have been proposed to represent natu-
rals more compactly and reduce the amount of rewrite steps; this is usually
done by encoding numbers in a base different from one, e.g., two [2,4], three
[8], four [7], ten [2,4,17,29,33], sixteen [2], or in some arbitrary base [32, Sys-
tems DA and JP]. In this article, we stick to the unary representation, since
it is used by a majority of specification languages and software tools.

The choice between set theory and algebraic terms for defining unsigned naturals
can also be found in the construction of signed integers. In the sequel, we examine
each approach in turn.

3 Approach 1: Definition of Z Using Set Theory

In mathematical textbooks, the set of integers is defined as Z = (N × N)/∼,
where × is the cartesian product and ∼ the equivalence relation such that
(x, y) ∼ (x′, y′) ⇐⇒ x + y′ = x′ + y.
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This approach has been retained for defining integers in CASL [23, Sect. V:2,
p. 381] and Isabelle/HOL [28, Sect. 52 p. 586]. It has the merit of exhibiting
a nice analogy with rational numbers, whose set can be similarly defined as
Q = (Z×(Z\{0}))/∼, where ∼ is another equivalence relation such that (x, y) ∼
(x′, y′) ⇐⇒ x · y′ = x′ · y — but the analogy does not hold beyond this point, as
the set R of real numbers cannot be defined as a quotient set of Q × Q.

Such a set-theoretic definition of integers has various drawbacks: (i) it relies
on cartesian product and quotient set, which are involved notions, compared
to the simplicity of Peano axioms; (ii) it makes the definition of integers very
different from that of naturals; (iii) it goes against the intuition as it builds a
two-dimensional surface where a half line towards negative integers would be
sufficient; (iv) it does not support reasoning by induction on integers, as pointed
out, e.g., in [24, Sect. 8.4 p. 165]; (v) it is not optimal computationally, neither
in memory (the cartesian product suggests that it takes two naturals to build
one integer) nor in time (the quotient operation requires two additions and an
equality test to compare two integers).

Having mentioned this approach, we now consider, in the remainder of this
article, alternative definitions based upon algebraic terms rather than set theory.

4 Formal Definitions

4.1 Syntactic Notations

Following the established terminology of algebraic specification, we define a sort2

to be a collection of algebraic terms. These terms should be well-typed, meaning
all the usual constraints arising from the arity of operations, the sorts of opera-
tion arguments, and the sorts of operation results must be taken into account.

If t is a term of sort S, if f is a unary operation [f : S → S], and if n is
a natural number, let fn(t) be the term defined inductively by f0(t) =def t and
fn+1(t) =def f(fn(t)). For instance, succ3(zero) = succ(succ(succ(zero))).

As often as possible, we try to split the set of operations into constructors,
which determine the set of possible values of a sort, and non-constructors, which
are defined functions specified using algebraic equations or term rewrite rules.
We define the constructors of a sort S to be all constructors that return a result
of sort S. For instance, the constructors of natural numbers defined in the Peano
style are zero and succ; all other operations also returning a natural number
(e.g., addition, subtraction, multiplication, etc.) are seen as non-constructors.

We define a ground normal form to be any well-typed term built using con-
structors only; consequently, a ground normal form cannot contain free vari-
ables or non-constructors. We define the domain of a sort S to be the set,
noted dom(S), of all ground normal forms of sort S. We define the image
of a constructor f to be the set, noted img(f), of all ground normal forms
whose top-level constructor is f . For instance, if nat is the sort defined by
the two constructors [zero : → nat] and [succ : nat → nat], its domain

2 We prefer using sort rather than type, which is often given a different meaning.
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is dom(S) = {succn(zero) | n ∈ N} and the images of its constructors are
img(zero) = {zero} and img(succ) = {succn(zero) | n ∈ N \ {0}}.

4.2 Semantic Denotations

Our goal is to study how mathematical integers can be conveniently repre-
sented by sorts, constructors, and algebraic terms. We thus carefully distinguish
between notations (i.e., terms) and denotations (i.e., numbers from Z).

If f is a constructor, we write [[f ]] its intended denotation, which we conve-
niently formulate as a λ-expression, in which all the trivial conversions between
sorts or types (i.e., from Peano-like terms to N, or from N to Z) are implicitly
performed. For instance, [[zero]] = 0 and [[succ]] = λn.(n + 1).

Having defined the denotation [[f ]] of a constructor f , we extend this notion to
define the denotation [[t]] of a ground normal form t by induction on the syntax
of terms: [[f(t1, . . . , tn)]] =def [[f ]]([[t1]], . . . , [[tn]]). For instance, [[succ(zero)]] =
[[succ]]([[zero]]) = (λn.(n + 1))(0) = 1.

A necessary condition for a sort S to represent Z is that [[.]] is a surjection
from dom(S) to Z, i.e., (∀n ∈ Z) (∃ t ∈ dom(S) | [[t]] = n), meaning that each
integer can be denoted by at least one ground normal form of sort S.

Additionally, we say that the constructors of sort S are free if [[.]] is an injec-
tion3 from dom(S) to Z, i.e., (∀t1, t2 ∈ dom(S)) ([[t1]] = [[t2]] ⇒ t1 = t2), where
t1 = t2 means the syntactic identity of terms t1 and t2. Thus, if the construc-
tors are free, each integer is denoted by exactly one ground normal form of S.
This definition remains compatible with the usual, more general definition stat-
ing that constructors are free if any two syntactically different ground normal
forms cannot be proven equal (or be rewritten one into the other, or both into
a common third term).

Let S be a sort intended to represent Z, and f1, . . . , fn its constructors (with
n ≥ 1). It follows from the above definitions that these constructors are free iff
all functions [[fi]] are injective and the sets of denotations of the images img(f1),
. . . , img(fn) form a partition4 of Z, i.e., Z = {[[t]] | t ∈ img(f1)}  . . .  {[[t]] | t ∈
img(fn)}, where  denotes the disjoint union. Notice that if a sort has a single
constructor, this constructor is not necessarily free, as it may be non-injective;
various examples will be seen below.

To compare the various definitions of Z based on algebraic terms, we quantify
the complexity of each approach using two natural numbers (m,n) defined as fol-
lows: given a sort S that represents Z, n is the number of constructors (noted f1,
. . . , fn) of S, and m is the number of different sorts that occur in the arguments
of f1, . . . , fn; in particular, m is equal to one if sort S is defined directly, without
referencing another sort. The number n of constructors adversely impacts the
conciseness of non-constructor operations having arguments of sort S: a unary
function is likely to require n equations or rewrite rules; a binary function is
likely to require n2 equations or rewrite rules, etc. We write NFm

n (resp. Fm
n )

an approach based on m sorts and n non-free (resp. free) constructors.
3 And, hence, a bijection.
4 In particular, are pairwise disjoint.
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5 Definitions of Z Using Non-free Constructors

In this section, we review four approaches that quickly come to mind when trying
to define integers using algebraic terms. However, these approaches lead to non-
free constructors which, we believe, are not optimal. The merit of an approach
is inversely proportional to its number of collisions, i.e., the maximal number of
distinct ground normal forms that can denote the same integer value.

5.1 Approach 2: NF2
1 – Two Sorts and One Non-free Constructor

Interestingly, the set-theoretic approach of Sect. 3 can be reformulated in
algebraic style by defining a sort Int built upon the preexisting sort Nat
using a single constructor [pair : Nat, Nat → Int] such that [[pair]] =
λm.λn.(m − n). Clearly, this unique constructor is not free: for instance,
[[pair(succ(zero), zero)]] = [[pair(succ(succ(zero)), succ(zero)]] = 1. More
generally, each integer n ≥ 0 can be represented by an infinite number of terms
{pair(succk+n(zero), succk(zero)) | k ∈ N} and each integer n ≤ 0 can be rep-
resented by an infinite number of terms {pair(succk(zero), succk−n(zero)) |
k ∈ N}; the number of collisions is thus ℵ0, which is a most undesirable property.

5.2 Approach 3: NF1
3 – One Sort and Three Non-free Constructors

To define a sort Int representing Z, an intuitive idea, used in the library5 of the
KIV tool [10, p. 8 and Sect. 5.1 p. 42], is to take the Peano system [zero :→ Int]
and [succ : Int → Int] and extend it with a third constructor [pred : Int →
Int] such that [[pred]] = λn.(n − 1), while zero and succ keep their usual
denotations: [[zero]] = 0 and [[succ]] = λn.(n+1). Definitions of integers involving
such a predecessor operation have been studied in [32, System SP] [29], and also
in [3,4], where the predecessor operation is a non-constructor. The fact that
[[pred]] = [[succ]]−1 gives an appealing symmetry, as pred and succ progress in
opposite directions.

Unfortunately, these constructors are not free, the simplest counterexample
being [[pred(succ(zero))]] = [[succ(pred(zero))]] = 0. Each integer n ≥ 0 can
be represented by an infinite number of terms, e.g., {predk(succn+k(zero)) |
k ∈ N} or, more generally, any combination (in any order) of k applications of
pred mixed with (k + n) applications of succ — a dual remark holds if n ≤ 0.
The number of collisions is thus ℵ0.

5.3 Approach 4: NF3
1 – Three Sorts and One Non-free Constructor

Another approach, used in the type library of PSF [30, Sect. 8] [21, Sect. 2.5], is
based on the idea that an integer is a natural with a sign. Assuming the existence
of a sort Sign with two free constructors [plus :→ Sign] and [minus :→ Sign],

5 https://swt.informatik.uni-augsburg.de/swt/projects/lib/basic/specs/int-basic1/ex
port/unit.xml.

https://swt.informatik.uni-augsburg.de/swt/projects/lib/basic/specs/int-basic1/export/unit.xml
https://swt.informatik.uni-augsburg.de/swt/projects/lib/basic/specs/int-basic1/export/unit.xml
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the sort Int can be defined using a constructor [pair : Sign, Nat → Int] such
that [[pair]] = λs.λn.(if s = plus then n else − n).

This unique constructor is not free, because of the collision
[[pair(plus, zero)]] = [[pair(minus, zero)]] = 0, a situation that we will refer
to as the double-zero issue6. This is the only collision in this approach.

5.4 Approach 5: NF2
2 – Two Sorts and Two Non-free Constructors

A variant of the previous approach NF3
1 of Sect. 5.3 does not rely on the sort

Sign but uses instead two constructors [pos : Nat → Int] and [neg : Nat → Int]
such that [[pos]] = λn.n and [[neg]] = λn.(−n). This approach is used in TLA+
[18, Sect. 18.4 p. 347], where Int is defined as Nat ∪ {Zero − n | n ∈ Nat}. Other
variants in which neg is the unary-minus operator [neg : Int → Int] have been
studied in, e.g., [3,4,7,17,33,34].

Again, these constructors are not free, since [[pos(zero)]] = [[neg(zero)]] = 0.
Some tool designers are aware of this double-zero issue and propose to address
it in various ways:

– Dependent types: One may wish to rule out undesirable terms such as
pair(minus, zero) or neg(zero). This is the approach followed in the SMT-
LIB standard [1, Fig. 3.3 p. 34 and 35], which states: “The set of values for
the Int sort consists of all numerals and all terms of the form (−n) where
n is a numeral other than 0”. Prohibiting the algebraically-closed term (−0)
can be done trivially, at the level of syntax, but things are far less easy with
general terms of the form (−e), where e is an expression containing free vari-
ables and/or arbitrary user-defined functions. Deciding whether such terms
belong to Int is equivalent to answer the question e = 0, which is undecid-
able in the general case and would anyway require involved proofs in each
particular case. Alternative approaches with efficient decision procedures are
thus preferable.

– Equations relating constructors: Other approaches use equations or rewrite
rules in order to formalize the relations that may exist between constructors.
For instance, [3,4] handle the double-zero issue by adding two equations −0 =
0 and − − n = n, which eliminate unwanted terms by bringing them under a
suitable normal form. However, this approach weakens the difference between
constructors and non-constructors and often raises termination issues. There
exists a classical technique (see [27, Sect. 3], [11, Sect. 3.3], etc.) to eliminate
non-free constructors by replacing each of them with two distinct operations:
a free constructor and a non-constructor. Unfortunately, such a dissociation
of roles does not give exploitable results when applied to the construction
of Z.

6 Notice that the IEEE 754 standard for floating-point numbers also defines two
zeros, −0.0 and +0.0, which are equivalent in most cases but can still be distin-
guished, e.g., using the signbit primitive.
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– Subtypes: Another approach relies on subtyping and operator overloading to
avoid the double-zero issue. For instance, the predefined type library of Maude
[6, pp. 45–46, 116, and 248–251] makes plain use of order-sorted specifications
to define integers as follows: (i) it first defines the sort Nat of naturals, together
with the subsort NzNat of Nat, which contains all naturals different from zero;
(ii) it then defines the sort Int of integers, together with the subsort NzInt
of Int, which contains all integers different from zero and is also a supersort
of NzNat; (iii) a “unary-minus” constructor [− : NzNat → NzInt] is defined,
such that [[−]] = λn.(−n); (iv) this constructor is extended to integer sorts
by introducing two subsort-overloaded non-constructors [− : NzInt → NzInt]
and [− : Int → Int]; (v) these non-constructors are defined by adding two
equations −0 = 0 and −−n = n. This approach is the only one in which values
of sort Nat are also values of sort Int; such implicit type conversion closely
reflects the mathematical fact that N ⊂ Z, but might become a nuisance
when turning an algebraic specification with arbitrary large numbers into a
concrete implementation written in a programming language with bounded
numbers (e.g., the C language with its int and unsigned int types): to avoid
silent, yet unsafe numeric overflows, the programmer will have to detect all
implicit type conversions in the formal specification and make them explicit
in the program.

These various approaches, even if correct, are heavy. Lighter approaches using
only the same basic concepts as for the Peano-style definition of naturals are
desirable. All in one, we believe that definitions based on non-free constructors
are sub-optimal. Therefore, in the next section, we investigate simpler approaches
genuinely based on free constructors.

6 Definitions of Z Using Free Constructors

Free constructors obviously lead to simpler mathematics. On the practical side
too, free constructors are desirable, for at least three reasons: (i) terms defined
using free constructors have a unique representation, so that, in principle, no
memory bit is wasted due to the existence of multiple representations of the same
value; (ii) because each term has a unique representation, comparison of values
relies upon syntactic identity, which can be efficiently implemented using bit-
string comparison and/or hashing; no extra computation is required to compare
multiple representations of the same value or to bring terms under a canonical
form first; (iii) increasingly many computer languages (e.g., functional, object-
oriented, etc.) are supporting pattern matching with free constructors, whereas
the number of tools (e.g., term rewrite engines, tools for algebraic specifications,
etc.) that can handle non-free constructors is shrinking, as many tools are no
longer maintained7.

7 See http://rewriting.loria.fr/systems.html to learn about such halted tools.

http://rewriting.loria.fr/systems.html
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6.1 Approach 6: F3
2 – Three Sorts and Two Free Constructors

The approaches NF3
1 of Sect. 5.3 and NF2

2 of Sect. 5.4 (i.e., defining an integer
as the combination of a sign and a natural) can be reused and adapted to a
free-constructor setting. This requires to introduce a new sort and to break the
symmetry between the negative and positive cases, so as to forbid, by means of
statically-decidable type checking, one of the two zero values.

For instance, mCRL2 [12, Appendices B.2, B.3, B.4, and D.5] has three prede-
fined sorts: Pos, which denotes N\{0} and is encoded in binary form, Nat, which
denotes N and is defined in Peano style using two free constructors [@c0 :→ Nat]
and [@cNat : Pos → Nat], and Int, which denotes Z and is also defined using
two free constructors [@cInt : Nat → Int] and [@cNeg : Pos → Int] such that
[[@cInt]] = λn.n and [[@cNeg]] = λn.(−n). The elements of Z are thus encoded
as follows: n ≥ 0 �→ @cInt(n) and n < 0 �→ @cNeg(−n).

As with Maude, the double-zero issue is avoided by a deliberate dissymmetry
between both constructors @cInt and @cNeg, whose arguments have sorts Nat
and Pos, respectively. But, contrary to Maude, Nat and Pos are distinct sorts,
not subtypes; this requires explicit type conversions and may create confusion
for users, who must carefully distinguish between natural and positive values.

6.2 Approach 7: F2
3 – Two Sorts and Three Free Constructors

A different approach can be found in the standard library of the Coq theorem
prover8 (see [26] for confirmation). To construct natural numbers, this library
defines a sort9 nat built in Peano style using two constructors [0 :→ nat] and
[S : nat → nat]. In an alternative approach, the Coq library also contains
a sort positive that represents N \ {0}, i.e., all natural numbers greater or
equal to one — such numbers are encoded in binary form, as unbounded strings
of bits inductively defined by three free constructors [xH :→ positive], [xO :
positive → positive], and [xI : positive → positive]. Finally, Coq defines
a sort N (also intended to represent N) as the union of all positive values and of
a constant N0 denoting 0; this is done using two constructors [Npos : positive →
N] and [N0 :→ N].

To construct integer numbers, the Coq library defines a sort Z that only uses
the sort positive, but neither nat nor N. The sort Z is built using three free
constructors [Z0 :→ Z], [ZPos : positive → Z], and [ZNeg : positive → Z] such
that [[Z0]] = 0, [[ZPos]] = λn.n, and [[ZNeg]] = λn.(−n). The elements of Z are
thus encoded as follows: 0 �→ Z0, n > 0 �→ ZPos(n), and n < 0 �→ ZNeg(−n).

Notice that this approach could be slightly adapted to define Z using sort
N (or nat) rather than positive. In such case, the three constructors would
become [Z0 :→ Z], [ZPos : N → Z], and [ZNeg : N → Z] such that [[Z0]] = 0,
[[ZPos]] = λn.(n+1), and [[ZNeg]] = λn.(−n−1). The elements of Z would be thus
encoded as follows: 0 �→ Z0, n > 0 �→ ZPos(n − 1), and n < 0 �→ ZNeg(−n − 1).

8 http://coq.inria.fr/library.
9 I.e., a datatype in the terminology of Coq.

http://coq.inria.fr/library
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Contrary to some aforementioned approaches, the Coq library handles neg-
ative and positive numbers symmetrically. Even if this approach is modified (as
explained in the previous paragraph) to use only two sorts, it still relies upon
three constructors, which increases the length of definitions and proofs for most
operations on integers; in particular, the usual binary operators are likely to
require nine equations (rather than four when only two constructors are used).

6.3 Approach 8: F2
2 – Two Sorts and Two Free Constructors

We have seen so far two definitions of Z based on free constructors: one with
three sorts and two constructors (i.e., F3

2 of Sect. 6.1), another one with two sorts
and three constructors (i.e., F2

3 of Sect. 6.2). At this point, a natural question is:
is there a simpler definition with two sorts and two constructors only?

The answer is: yes. Such a solution was found in 1996 when trying to extend
the standard library of LOTOS with signed integers, and it has been distributed
as part of the CADP toolbox since February 1997.

This approach uses two sorts Nat, which denotes N, and Int, which denotes
Z. The sort Int is built from Nat, without the need for a third sort, using
two free constructors [pos : Nat → Int] and [neg : Nat → Int] such that
[[pos]] = λn.n and [[neg]] = λn.(−n − 1). The elements of Z are thus encoded as
follows: n ≥ 0 �→ pos(n) and n < 0 �→ neg(−n − 1).

Although this approach does not handle negative and positive numbers sym-
metrically, it enjoys a nice symmetry property, as the denotations of constructors
are both involutive functions, i.e., [[pos]] = [[pos]]−1 and [[neg]] = [[neg]]−1, or also
[[pos]]([[pos]](n)) = n and [[neg]]([[neg]](n)) = n, which seems a counterpart of the
algebraical identities +(+n) = n and −(−n) = n.

The constructor pair (pos, neg) is unique in this respect, and there is
no simpler solution: consider the set Φ of involutive functions ϕ over Z, i.e.,
(∀n) (ϕ(ϕ(n)) = n); consider the “simple” elements of Φ, namely affine functions
such that (∀n) (ϕ(n) =def an+b), where a and b are constants; the “simple” invo-
lutive solutions are either λn.n or all functions of the form λn.(−n + b); among
the restrictions to N of these solutions, the only pair of free constructors is pos
(which corresponds to a = 1 and b = 0) and neg (which corresponds to a = −1
and b = −1), thus ensuring that Z = {[[pos]](n) | n ∈ N}  {[[neg]](n) | n ∈ N}.

It is worth noting that this approach supports straightforward induction on
integers, which is lacking in some other approaches — see, e.g., [24, Sects. 8.4
and 8.4.3] for a discussion concerning Isabelle/HOL. Using the pos and neg con-
structors, induction on integers can be achieved by two inductions on naturals:
firstly, one proves that the property P hold for pos(0) and that, if P holds for
pos(n), it also holds for pos(n+1); secondly, one proves that P holds for neg(0)
and that, if P holds for neg(n), it also holds for neg(n + 1).

6.4 Approach 9: F2
1 – Two Sorts and One Constructor

Given that Z can be defined as Z =def (N × N)/∼ and that there exist bijections
from N

2 to N (e.g., diagonal enumeration), it is possible to define the sort int
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using a single constructor [map : nat → int] that is a bijection from N to Z. There
are various choices for map; the simplest definition is likely to be the following one:
[[map]] =def λn.(if even(n) then n/2 else − (n+1)/2), where [even : nat → bool]
is the predicate characterizing even natural numbers. This definition gives, as
n increases, the following sequence of values for map(n): 0, −1, 1, −2, 2, −3, 3,
−4, 4, etc. The elements of Z are thus encoded as follows: n ≥ 0 �→ map(2n) and
n < 0 �→ map(−2n − 1).

This approach F2
1 is related to the approach F2

2 of Sect. 6.3 by two identi-
ties: pos(n) = map(2n) and neg(n) = map(2n + 1). But, even if having a single
constructor map is a form of minimality, it does not make the definitions of the
usual non-constructors (+, <, etc.) more concise than using the two construc-
tors of approach F2

2. Indeed, most definitions still need to distinguish two cases,
depending whether some argument is odd or even; approach F2

1 checks this using
conditional equations, whereas approach F2

2 uses pattern matching. For instance,
the incrementation function [incr : int → int] requires two conditional
equations:

incr (map (x)) = map (x + 2) if even (x) = true

incr (map (x)) = map (x - 2) if even (x) = false

Such a systematic reliance on conditional equations, parity tests, and divi-
sions by two has, at least, three drawbacks: (i) the definitions are neither elegant
nor intuitive; (ii) reasoning by induction is not easy; (iii) direct implementation
in algebraic or functional languages is not efficient, since parity tests cost O(n)
in time (before deciding if a number is odd or even, one needs to visit all its
cons subterms).

6.5 Approach 10: F1
3 – One Sort and Three Free Constructors

After the WADT’2016 presentation in Gregynog, Lutz Schröder suggested to the
author yet another approach, in which the sort int is defined using three free
constructors: [zero :→ int], [nego :→ int]10, and [succ : int → int] such that
[[zero]] = 0, [[nego]] = −1, and [[succ]] = λn.(if n ≥ 0 then n + 1 else n − 1). The
elements of Z are thus encoded as follows: 0 �→ zero, n > 0 �→ succn(zero), −1
�→ nego, and n < −1 �→ succ−n−1(nego).

At first sight, this approach looks truly beautiful, as it is the simplest possible
extension of the Peano system, to which only one constructor nego of null arity
is added. Moreover, the definition of sort int is self-contained and does not rely
on the existence of a sort nat. A similar approach appears in [8, Sect. 4], where
integers are written in base 2 starting from two constants 0 and −1.

However, the definitions of non-constructors can be algorithmically involved
with this approach, due to the dual nature of succ (which means either incremen-
tation on positive numbers or decrementation on negative numbers, and might
thus complicate induction proofs) and because the sign of a number cannot be

10 We name so this constructor, as a shorthand for NEGative One.
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immediately determined without traversing all succ constructors until a termi-
nal constant (zero or nego) is reached. Some operations are nevertheless easy to
express; this is the case, for instance, of the two predicates [isneg : int → bool]
and [ispos : int → bool] that check whether an integer is strictly negative or
positive-or-null:

isneg (zero) = false ispos (zero) = true

isneg (nego) = true ispos (nego) = false

isneg (succ (x)) = isneg (x) ispos (succ (x)) = ispos (x)

But other operations, even the simplest ones, are much less intuitive. For
instance, incrementation [incr : int → int] is tricky because it requires either to
insert one succ if the argument is positive or to delete one succ if the argument is
negative. We believe that this cannot be done without introducing an auxiliary
operation [buff : int → int] that keeps one succ in a virtual buffer until
the terminal constant gets known, an information that is required to take an
insertion-or-deletion decision:

incr (zero) = succ (zero) buff (zero) = succ (succ (zero))

incr (nego) = zero buff (nego) = nego

incr (succ (x)) = buff (x) buff (succ (x)) = succ (buff (x))

To avoid, such intricacies, one can resort to conditional equations, the
premises of which use the aforementioned isneg and ispos predicates. This
way, incrementation could be defined more concisely:

incr (x) = succ (x) if ispos (x)

incr (nego) = zero

incr (succ (x)) = x if isneg (x)

Such equations would be very similar to those of approach F2
2 of Sect. 6.3.

Actually, both approaches are related by the two identities pos(succn(zero)) =
succn(zero) = n and neg(succn(zero)) = succn(nego) = −n−1. The approach
F2

2 is yet simpler: it uses normal equations rather than conditional ones, and
determines the sign of a number in time O(1) by pattern matching on the top-
level constructor of the term, rather than in time O(n) by invoking the predicates
isneg and ispos that visit all subterms to reach an innermost terminal constant.

As a final remark, any sort S defined by (k + 1) constructors consisting of k
constants [fi :→ S]i∈{0,...,k−1} and one successor function [succ : S → S]11 also
represents N, which can be seen by taking (∀i ∈ {0, . . . , k − 1}) ([[fi]] =def i) and
[[succ]] =def λn.(n + k); under these definitions, the constructors of S are free.

7 Conclusion

We have shown that the standard definition of signed integers found in mathe-
matical textbooks (namely, Z =def (N × N)/∼) is not well-adapted to the needs
11 This definition generalizes the Peano system (for k = 1) and the approach presented

in this section (for k = 2).
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of computer science. It has been argued, e.g. in [22, p. 86], that this standard
definition, although less straightforward and natural than a term-algebra app-
roach12, should nevertheless be preferred because it leads to shorter definitions
and proofs by avoiding subdivision into a large number of cases. This argument
predates the computer era: it might have been valid when all proofs had to be
done manually, but is less relevant today, as interactive or automated theorem
provers play an ever-increasing role and handle case disjunctions much better
than humans. Moreover, it is unsure that the definitions of arithmetic and rela-
tional operators are significantly longer when integers are defined in Peano style
with only a few constructors.

In computer science, there is consensus to specify naturals using the Peano
constructors zero and succ, but no consensus at all on how integers should
be specified. Leaving aside languages that assume the existence of predefined
integers, we reviewed ten different ways of defining integers formally: the set-
theoretical approach, four approaches based on non-free constructors (NF2

1,
NF1

3, NF3
1, and NF2

2), and five approaches based on free constructors (F3
2, F

2
3,

F2
2, F

2
1, and F1

3).
Such a diversity is enjoyable, but too many diverging approaches can be a

nuisance. Given the practical usefulness of integers, a common approach would
be desirable, so as to ease tool interoperability and enable formal specifications
and proofs to be reused. In this respect, the approach F2

2 of Sect. 6.3 would be
the best candidate: it is simple, enjoys elegant mathematical properties, allows
induction over integers, leads to concise definitions for the usual operations on
integers, and has been implemented in the CADP toolbox since 1997.

Finally, considering the alternative approaches that propose more efficient
representations for unsigned naturals than the Peano-style unary representation,
F2

2 is orthogonal to some of these approaches, e.g., [2], and could be combined
with them to provide efficient representations for signed integers as well.
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Abstract. The dynamic logic with binders D↓ was recently introduced
as a suitable formalism to support a rigorous stepwise development
method for reactive software. The commitment of this logic concerning
bisimulation equivalence is, however, not satisfactory: the model class
semantics of specifications in D↓ is not closed under bisimulation equiv-
alence; there are D↓-sentences that distinguish bisimulation equivalent
models, i.e., D↓ does not enjoy the modal invariance property. This paper
improves on these limitations by providing an observational semantics for
dynamic logic with binders. This involves the definition of a new model
category and of a more relaxed satisfaction relation. We show that the
new logic D↓

∼ enjoys modal invariance and even the Hennessy-Milner
property. Moreover, the new model category provides a categorical char-
acterisation of bisimulation equivalence by observational isomorphism.
Finally, we consider abstractor semantics obtained by closing the model
class of a specification SP in D↓ under bisimulation equivalence. We
show that, under mild conditions, abstractor semantics of SP in D↓ is
the same as observational semantics of SP in D↓

∼.

1 Introduction

The study of logics and formal methods for rigorous development of reactive sys-
tems, i.e. systems which interact with their environment during the computation
[1], is an active topic of research. Dynamic logic with binders, called D↓-logic,
has been introduced in [7] as a logical framework which allows to express prop-
erties of reactive systems, from abstract safety and liveness requirements down
to concrete specifications of the (recursive) structure of executable processes.
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D↓-logic combines in the same formalism modalities indexed by regular expres-
sions of actions, as in Dynamic Logic [6], with binders of Hybrid Logic [4], which
bind state variables to particular states and thus allow us to specify concrete
processes. We have shown in [7] how the whole development process of reac-
tive systems can be supported by stepwise refinement of D↓-specifications whose
models are labelled transition systems with initial state.

However, the satisfaction relation used in D↓ and its notion of isomorphism,
the categorical formalisation of identity among objects, are too strict to allow
proper behavioural abstraction. As it is well known, bisimulation equivalence
is usually adopted to identify behaviourally equivalent systems. However, this
is not reflected in the model category of D↓ where model classes are closed
under isomorphism but, in general, not under bisimulation equivalence. Thus D↓-
logic does not enjoy the modal invariance property which requires that bisimilar
models satisfy exactly the same logical sentences.

To find a solution, we draw an analogy to algebraic specifications of data
types: Equational and first-order logic specifications do generally not support
abstraction w.r.t. behaviourally equivalent data structures. This fact led to a
significant number of studies proposing different solutions; see Chap. 8 in [10]
for a summary. One idea, originally proposed by Reichel [9], was to relax the
satisfaction relation of first-order logic such that equations are not necessarily
interpreted by the set-theoretic equality but by observational equality of ele-
ments; see, e.g., [2,5]. We take up this idea and propose, in Sect. 3, a new logic,
called D↓

∼, which has the same sentences and models as D↓ but more relaxed
notions of satisfaction and model morphism. The idea of satisfaction in D↓

∼,
called observational satisfaction, is that state variables x occurring in a formula
can be interpreted by arbitrary states as long as they are bisimilar to the state
to which x was bound before. This leads to observational semantics of a speci-
fication SP consisting of all models which observationally satisfy the axioms of
SP . Model morphisms in D↓

∼, called observational morphisms, capture the idea
of simulation. We show that observational satisfaction of positive sentences is
preserved by observational morphisms. Moreover, we show that models which
are observationally isomorphic satisfy observationally the same sentences, i.e. we
get modal invariance of sentences w.r.t. satisfaction and isomorphism in D↓

∼.
In Sect. 4, we study relationships between isomorphism in D↓

∼ and bisimu-
lation equivalence and prove that both concepts are indeed equivalent. Thus,
we get (i) a categorical characterisation of bisimulation equivalence and (ii)
the modal invariance property w.r.t. observational satisfaction and bisimula-
tion equivalence, which solves our problem discussed above. But the new logic
D↓

∼ allows us to go even a step further: We prove a Hennessy-Milner Theorem
which shows that two image finite models satisfy in D↓

∼ the same sentences if
and only if they are bisimilar - which in turn is equivalent to being isomorphic
in D↓

∼.
In Sect. 5, we compare observational semantics of specifications in D↓

∼ with
another possibility for behavioural abstraction called abstractor semantics. The
idea of abstractor semantics goes again back to algebraic specifications where
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Sannella and Tarlecki have proposed to abstract from the “standard” model
class of a specification by taking its closure under an appropriate equivalence
relation; see [10]. For reactive system specifications this means that we consider
our original D↓-logic, specifications over D↓ and their model classes (in terms of
satisfaction in D↓) but then abstract from a specification’s model class by closing
it under bisimulation equivalence. We investigate that observational semantics
and abstractor semantics of reactive system specifications can be related com-
pletely analogously as it has been done for algebraic specifications of data types
in [3]. We show that both semantics coincide if and only if any model of a spec-
ification SP interpreted in D↓ is also a model when SP is interpreted in D↓

∼.

2 D↓-Logic: Background and Motivations

2.1 Overview on D↓

This section reviews D↓-logic introduced in [7] and proves additionally that sat-
isfaction in D↓ is preserved by isomorphism. D↓-logic is designed to express
properties of reactive systems, from abstract safety and liveness properties down
to concrete ones specifying the (recursive) structure of processes. It thus com-
bines modalities indexed by regular expressions of actions, as in Dynamic Logic
[6], and state variables with binders, as in Hybrid Logic [4]. These motivations
are reflected in its semantics. Differently from what is usual in modal logics,
whose semantics is given by Kripke structures and satisfaction of formulas is
evaluated globally, D↓ models are reachable, labelled transition systems with
initial states where satisfaction is evaluated. This reflects our focus on computa-
tions, i.e. on effective processes. In modal logic this corresponds to submodels of
Kripke structures generated by a given point, which represents the initial state
of computations.

Definition 1 (Models and model morphisms). Let A be a set of atomic
actions. An A-model is triple (W,w0, R) where W is a set of states, w0 ∈ W
is the initial state and R = (Ra ⊆ W × W )a∈A is a family of transition
relations such that, for each w ∈ W , there is a finite sequence of transitions
Rak(wk−1, wk), 1 ≤ k ≤ n, with wk ∈ W,ak ∈ A, such that w0 = w0 and
wn = w.

Given two A-models M = (W,w0, R) and M′ = (W ′, w′
0, R

′), a model mor-
phism h : M → M′ is a function h : W → W ′ such that h(w0) = w′

0 and, for
each a ∈ A, if (w1, w2) ∈ Ra then (h(w1), h(w2)) ∈ R′

a.

Lemma 1. The class of A-models and A-model morphisms define a category
denoted by ModD↓

(A). The identity morphisms idM are the identity functions.

As usual, we say that two models M,M′ ∈ ModD↓
(A) are isomorphic, in sym-

bols M iso M′, if there is a pair of morphisms h : M → M′ and h−1 : M′ → M
such that h · h−1 = idM and h−1 · h = idM′ .
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The set of (composed) actions, Act(A), induced by a set of atomic actions A
is given by

α ::= a | α;α | α + α | α∗

where a ∈ A. In the context of a finite set of atomic actions A = {a1, . . . , an}, we
may briefly write A for the complex action a1 + . . .+an. For a set X of variables
and an A-model M = (W,w0, R), a valuation is a function g : X → W . Given
such a valuation g, a variable x ∈ X and a state w ∈ W, g[x �→ w] denotes the
valuation with g[x �→ w](x) = w and g[x �→ w](y) = g(y) for any y ∈ X, y �= x.

Definition 2 (Formulas and sentences). The set of A-formulas is given by

ϕ ::= tt | ff | x | ↓ x. ϕ | @xϕ | 〈α〉ϕ | [α]ϕ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

where x ∈ X and α ∈ Act(A). An A-formula ϕ is called A-sentence if ϕ contains
no free variables. Free variables are defined as usual with ↓, the only operator
binding variables.

The binder operator ↓ x.ϕ assigns to variable x the current state of evaluation
and evaluates ϕ. The operator @xϕ evaluates ϕ in the state assigned to x.
To define the satisfaction relation formally we need to clarify how composed
actions are interpreted in models. Let α ∈ Act(A) and M ∈ ModD↓

(A). The
interpretation of α in M extends the interpretation of atomic actions by Rα;α′ =
Rα · Rα′ , Rα+α′ = Rα ∪ Rα′ and Rα∗ = (Rα)�, with the operations ·,∪ and �
standing for relational composition, union and reflexive-transitive closure. Given
an A-model M = (W,w0, R), w ∈ W and g : X → W ,

– M, g, w |= tt is true; M, s |= ff is false;
– M, g, w |= x iff g(x) = w;
– M, g, w |=↓ x. ϕ iff M, g[x �→ w], w |= ϕ;
– M, g, w |= @xϕ iff M, g, g(x) |= ϕ;
– M, g, w |= 〈α〉ϕ iff there is a v ∈ W with (w, v) ∈ Rα and M, g, v |= ϕ;
– M, g, w |= [α]ϕ iff for any v ∈ W with (w, v) ∈ Rα it holds M, g, v |= ϕ;
– M, g, w |= ¬ϕ iff it is false that M, g, w |= ϕ;
– M, g, w |= ϕ ∧ ϕ′ iff M, g, w |= ϕ and M, g, w |= ϕ′;
– M, g, w |= ϕ ∨ ϕ′ iff M, g, w |= ϕ or M, g, w |= ϕ′.

We write M, w |= ϕ if, for any valuation g : X → W , we have M, g, w |= ϕ. If ϕ
is an A-sentence, then the valuation is irrelevant, i.e., M, g, w |= ϕ iff M, w |= ϕ.
M satisfies an A-sentence ϕ, written M |= ϕ, if M, w0 |= ϕ.

Hence, D↓-logic expresses properties of states reachable from the initial one.
For instance, if A is finite, D↓ is able to express liveness requirements such as
“after the occurrence of an action a, an action b can be eventually realised” with
[A∗; a]〈A∗; b〉tt, safety properties by sentences of the form [A∗]ϕ, in particular,
deadlock freeness by [A∗]〈A〉tt. D↓-logic is also suited to express process struc-
tures and, thus, the implementation of abstract requirements. The binder oper-
ator is crucial for this. The ability to give names to visited states together with
the modal features allows to express recursive process patterns. For instance,
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the following sentence captures processes with two states and alternating a and
b transitions.

↓ x0.
(〈a〉 ↓ x1.(〈b〉x0)

)

Definition 3 (Specification). A specification SP is a pair SP = (A,Φ) where
A is a set of atomic actions and Φ is a set of A-sentences.

Definition 4 (Semantics). The semantics of a specification SP = (A,Φ) in
D↓ is given by the class of models

Mod(SP) = {M ∈ ModD↓
(A) |M |= ϕ for all ϕ ∈ Φ}.

Lemma 2. Let M = (W,w0, R) and M′ = (W ′, w′
0, R

′) be two A-models and
h : M → M′ an isomorphism. Then for any w ∈ W , valuation g : X → W and
A-formula ϕ, we have

M, g, w |= ϕ iff M′, g ◦ h, h(w) |= ϕ.

Proof. The proof is performed by induction on the structure of A-formulas. The
base cases ϕ = tt and ϕ = ff are trivial.
Case ϕ = x:

M, g, w |= x

⇔ { |= defn}
g(x) = w

⇔ { h injective}

h(g(x)) = h(w)
⇔ { ◦ composition}

(g · h)(x) = h(w)
⇔ { |= defn}

M′, g ◦ h, h(w) |= x

Case ϕ = ↓ x. φ:

M, g, w |= ↓ x.φ

⇔ { |= defn}
M, g[x �→ w], w |= φ

⇔ { I.H. }

M′, g[x �→ w] ◦ h, h(w) |= φ

⇔ { since g[x �→ w] ◦ h = (g ◦ h)[x �→ h(w)]}
M′, (g ◦ h)[x �→ h(w)], h(w) |= φ

⇔ { |= defn}
M′, g ◦ h, h(w) |= ↓ x.φ

Case ϕ = 〈α〉φ:

M, g, w |= 〈α〉φ
⇔ { |= defn}

M, g, v |= φ for some v ∈ W, (w, v) ∈ Rα

⇔ { I.H. + h iso + �}

M′, g ◦ h, h(v) |= φ
for some v ∈ W, (h(w), h(v)) ∈ R′

α

⇔ { |= defn + h surjective}
M′, g ◦ h, h(w) |= 〈α〉φ

�: We use the fact, that morphisms also satisfy (w1, w2) ∈ Rα then (h(w1),
h(w2)) ∈ R′

α for composed actions α ∈ Act(A).
The proof for the remaining cases is straightforward. ��
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Theorem 1. Let M and M′ be A-models such that M iso M′. Then, for any
A-sentence ϕ, we have

M |= ϕ iff M′ |= ϕ.

Proof. Since ϕ has no free variables, it follows from Lemma 2, that for any w ∈
W , we have M, w |= ϕ iff M′, h(w) |= ϕ where h is an isomorphism between M
and M′. In particular, since h(w0) = w′

0, we have M, w0 |= ϕ iff M′, w′
0 |= ϕ,

i.e., M |= ϕ iff M′ |= ϕ. ��
Corollary 1. For any specification SP ,Mod(SP) is closed under iso .

2.2 Motivations

Let us recall the well-known notion of bisimulation between transition systems:

Definition 5 (Bisimulation). Let M = (W,w0, R) and M′ = (W ′, w′
0, R

′) be
two A-models. A bisimulation between M and M′ is a relation S ⊆ W × W ′

that contains (w0, w
′
0) and satisfies

(zig) for any a ∈ A,w, v ∈ W,w′ ∈ W ′ such that (w,w′) ∈ S:
if (w, v) ∈ Ra, then there is a v′ ∈ W ′ such that (w′, v′) ∈ R′

a and (v, v′) ∈ S;
(zag) for any a ∈ A,w ∈ W,w′, v′ ∈ W ′ such that (w,w′) ∈ S:

if (w′, v′) ∈ R′
a, then there is a v ∈ W such that (w, v) ∈ Ra and (v, v′) ∈ S.

Two A-models M and M′ are called bisimulation equivalent, denoted by
M ≡ M′, if there exists a bisimulation between M and M′. It is well known
that bisimulation equivalence is indeed an equivalence relation on the class of
A-models. Moreover, if M ≡ M′, then there exists a greatest bisimulation
between M and M′, which we denote by ∼M

M′ .
Bisimulation equivalence plays a central role in the analysis and develop-

ment of reactive systems. It can be taken as the standard behavioural equiv-
alence between processes in the sense that, given two bisimulation equivalent
processes, it should be irrelevant for the correctness of an implementation which
one is chosen to realise a given system specification. The notion of bisimulation
equivalence plays also an important role in the theory of modal logics: the sat-
isfaction in most of modal logics is invariant w.r.t. bisimulation equivalence, i.e.
bisimulation equivalent models satisfy the same sentences. However, this is not
the case for the logic D↓. In order to see that, let us consider the two {a}-models
M and M′ presented in Fig. 1 and the specification SP = ({a}, {↓ x.〈a〉x}).
It is easy to see that M ∈ Mod(SP) and M′ �∈ Mod(SP). However, M ≡ M′

Fig. 1. Bisimilar models



Observational Semantics for Dynamic Logic with Binders 141

which shows that D↓ does not obey the implementation principle from above.
From the logic, point of view it illustrates that D↓ does not enjoy of the modal
invariance property.

3 D↓
∼-Logic

In this section we introduce a new logic, called D↓
∼, which generalises D↓-logic

by supporting abstraction w.r.t. observationally indistinguishable states. The
formulas and sentences of D↓

∼ are the same as in D↓. The essential difference
lies in the definition of model morphisms and in a relaxation of the satisfaction
relation which is adjusted to the observational paradigm. As a central result
we will show that in the new category D↓

∼ observationally isomorphic models
satisfy observationally the same sentences; i.e. we get modal invariance w.r.t.
observational isomorphism and the relaxed (observational) satisfaction relation.

3.1 Observational Models Category

We introduce a new category of models for a set A of atomic actions. The objects
of this category are, as in D↓, reachable (labelled) transition systems with initial
states. However, we introduce a new kind of model morphism, called observa-
tional morphism. Such morphisms are not functions but relations which abstract
away the difference between states with an observationally equal behaviour. For
this purpose, we consider for any A-model M = (W,w0, R) the observational
equality relation ∼M⊆ W × W , which is defined as the greatest bisimulation
∼M

M between M and M1. Then an observational morphism h : M → M′ is a
relation between the state spaces of two A-models M and M′ containing their
initial states which has the following properties: (1) h is a simulation relation
such that any transition in M is simulated by a transition in M′ with the same
label (i.e. observational morphisms satisfy the “zig” condition of a bisimula-
tion), (2) h preserves observational equality of states from M to M′ and (3) h
is closed under the observational equalities ∼M and ∼′

M of M and M′ resp.
These properties are expressed by the three conditions in the subsequent defi-
nition. We note that observational morphisms could be equivalently defined by
morphisms between the quotient structures of M and M′ considered later on in
Definition 10. We prefer, however, to give a direct definition on the state spaces
of M and M′ since those models are actually the representations of concrete
implementations and not their quotient structures.

Definition 6 (Observational morphisms). Let M = (W,w0, R) and M′ =
(W ′, w′

0, R
′) be two A-models. An observational morphism h : M → M′ is a

relation h ⊆ W × W ′ containing (w0, w
′
0) such that the following conditions are

satisfied:

1 It exists since bisimulation equivalence is reflexive and it is an equivalence relation
on the states of M.
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1. For any a ∈ A,w, v ∈ W,w′ ∈ W ′ such that (w,w′) ∈ h:
if (w, v) ∈ Ra, then there is a v′ ∈ W ′ such that (w′, v′) ∈ R′

a and (v, v′) ∈ h.

w
Ra

h
��

v

w′

⇒ ∃v′ ∈ W :

w
Ra

h
��

v

h
��

w′
R′

a

v′

2. For any w, v ∈ W,w′, v′ ∈ W ′ such that (w,w′) ∈ h and (v, v′) ∈ h:
if w ∼M v, then w′ ∼M′ v′.

w
∼M

h
��

v

h
��

w′ v′

⇒
w

∼M

h
��

v

h
��

w′
∼M′ v′

3. For any w, v ∈ W,w′, v′ ∈ W ′ such that (w,w′) ∈ h:
if w ∼M v and w′ ∼M v′, then (v, v′) ∈ h.

w
∼M

h
��

v

w′
∼M′ v′

⇒
w

∼M

h
��

v

h
��

w′
∼M′ v′

By the definition of composed actions and their interpretation as relations
the simulation condition 1 of Definition 6 can be lifted to composed actions:

Remark 1. Condition 1 of Definition 6 implies that for any α ∈ Act(A) and any
w, v ∈ W,w′ ∈ W ′ such that (w,w′) ∈ h:
if (w, v) ∈ Rα, then there is a v′ ∈ W ′ such that (w′, v′) ∈ R′

α and (v, v′) ∈ h.

Lemma 3. Observational morphisms are total relations.

Proof. This is a direct consequence of the reachability of states. On the one
hand, we have (w0, w

′
0) ∈ h. The induction step corresponds to 1 of Definition 6.

��
Theorem 2. The class of A-models together with observational morphisms form
a category, denoted by ModD↓

∼(A). For each M ∈ ModD↓
∼(A), the identity mor-

phism 1M is the observational equality ∼M.

Proof. Observational morphisms are closed under composition of relations:
Given two observational morphisms h : M → M′ and h′ : M′ → M′′, their com-
position h · h′ : M → M′′ is the relation {(w,w′′)| there exists w′ s.t. (w,w′) ∈
h and (w′, w′′) ∈ h′}. It is straightforward to show, by standard set-theoretic
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reasoning, that h · h′ satisfies the conditions 1–3 of Definition 6 since h and h′

do so. Also it is clear that relational composition is associative.
For each A-model M, 1M =∼M is an observational morphism M → M:

Since ∼M is a bisimulation it satisfies 1 of Definition 6. Since ∼M is the greatest
bisimulation on M it is closed under composition and therefore, taking into
account that ∼M is an equivalence relation, it satisfies 2 and 3. Finally, because
of the closure property 3 of Definition 6, it is obvious that, for any observational

morphism M h �� M′ , we have 1M · h = h and h · 1M′ = h. ��
For A-models M and M′ we write M iso∼ M′ whenever M and M′ are

observationally isomorphic in the category ModD↓
∼(A). The next lemma states

a useful property which shows that the inverse of an observational isomorphism
h : M → M′ in the category ModD↓

∼(A) is just the inverse relation of h.

Lemma 4. Let M = (W,w0, R) and M′ = (W ′, w′
0, R

′) be two A-models and
h : M → M′ an observational isomorphism with inverse h−1 : M′ → M. Then
for all w ∈ W and w′ ∈ W ′ the following holds: (w,w′) ∈ h if and only if
(w′, w) ∈ h−1.

Proof. For the proof we use Lemma 3 and condition 3 of Definition 6. Assume
(w,w′) ∈ h. Since h−1 : M′ → M is an observational morphism it is total, by
Lemma 3. Hence, there exists v ∈ W such that (w′, v) ∈ h−1. By the isomorphism
property we have h · h−1 = 1M. Since (w, v) ∈ h · h−1, we get (w, v) ∈ 1M, i.e.
w ∼M v. Since h−1 : M′ → M satisfies 3 of Definition 6, (w′, v) ∈ h−1 and
v ∼M w implies (w′, w) ∈ h−1. The converse direction is proved analogously by
using again condition 3 of Definition 6. ��

As a consequence of Lemma 4, we can show that observational isomorphisms
satisfy the “zag” condition of a bisimulation.

Lemma 5. Let M = (W,w0, R) and M′ = (W ′, w′
0, R

′) be two A-models and
h : M → M′ an observational isomorphism. Then the following holds:
For any a ∈ A,w ∈ W,w′, v′ ∈ W ′ such that (w,w′) ∈ h:
if (w′, v′) ∈ R′

a, then there is a v ∈ W such that (w, v) ∈ Ra and (v, v′) ∈ h.

Proof. Assume (w,w′) ∈ h and (w′, v′) ∈ R′
a. Let h−1 be the inverse of h. Then,

by Lemma 4, (w′, w) ∈ h−1. Since h−1 satisfies condition 1 of Definition 6, there
is a v ∈ W such that (w, v) ∈ Ra and (v′, v) ∈ h−1. By Lemma 4, (v, v′) ∈ h and
we are done. ��

As an example, consider the two {a}-models M and M′ in Fig. 1. The relation
h = {(w0, w

′
0), (w0, w

′
1)} is an observational isomorphism between M and M′.

We have also seen in Sect. 2.2 that M and M′ are bisimilar. In fact, we will
show later, in Sect. 4, that observational isomorphism coincides with bisimulation
equivalence.
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3.2 Observational Satisfaction

We are now ready to generalise the satisfaction relation of D↓-logic to take into
account observational abstraction. We use the same formulas as in D↓, which
were called A-formulas for a given set A of atomic actions. But now, in the logic
D↓

∼, the observational satisfaction of an A-formula allows to interpret variables
x by states which are not identical but only observationally equal to the current
valuation of x.

Definition 7 (Observational satisfaction). Let M = (W,w0, R) be an
A-model, w ∈ W and g : X → W a valuation. The observational satisfaction of
an A-formula ϕ in state w of M w.r.t. valuation g, denoted by M, g, w |=∼ ϕ, is
defined analogously to the satisfaction as shown in Sect. 2.1, with the exception of

M, g, w |=∼ x iff g(x) ∼M w.

For each A-sentence ϕ, the valuation is irrelevant and M satisfies observa-
tionally ϕ, denoted by M |=∼ ϕ, if M, w0 |=∼ ϕ.

As an example, we consider the {a}-model M′ in Fig. 1 for which we have:
M′ |=∼ ↓ x.〈a〉x. This is true since the a-transition reaches state w′

1 which is
observationally equal to state w′

0.
Using the observational satisfaction relation we can equip specifications, as

defined in Definition 3, with an observational semantics.

Definition 8 (Observational semantics). The observational semantics of a
specification SP = (A,Φ) is given by the class of models

Mod∼(SP) = {M ∈ ModD↓
∼(A) | M |=∼ ϕ for all ϕ ∈ Φ}.

In the following we want to analyse relationships between observational satis-
faction and observational morphisms. First, we show that observational satisfac-
tion of positive A-sentences is preserved by observational morphisms; see Theo-
rem 3. Then we show that observational satisfaction of arbitrary A-sentences is
preserved and reflected in the case of observational isomorphisms; see Theorem4.

Definition 9 (Positive formulas and sentences). An A-formula (A-
sentence) ϕ is a positive A-formula (A-sentence), if it does not contain negation
¬ and the box operator [.].

Lemma 6. Let M = (W,w0, R) and M′ = (W ′, w′
0, R

′) be two A-models and
h : M → M′ an observational morphism. Then for any w ∈ W,w′ ∈ W ′ with
(w,w′) ∈ h, for any valuations g : X → W, g′ : X → W ′ with (g(x), g′(x)) ∈ h
for all x ∈ X, and for any positive A-formula ϕ, we have

M, g, w |=∼ ϕ implies M′, g′, w′ |=∼ ϕ.
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Proof. The proof is performed by induction on the structure of positive A-
formulas.

The base cases ϕ = tt and ϕ = ff are trivial.

Case ϕ = x:

M, g, w |=∼ x

⇔ { |=∼ defn}
g(x) ∼M w

⇒ { step � }

g′(x) ∼M′ w′

⇔ { |=∼ defn}
M′, g′, w′ |=∼ x

Step � follows from condition 2 of Definition 6 and the assumptions (g(x),
g′(x)) ∈ h and (w,w′) ∈ h.

Case ϕ = ↓ x. φ:

M, g, w |=∼ ↓ x. φ

⇔ { |=∼ defn}
M, g[x �→ w], w |=∼ φ

⇒ { step �� }

M′, g′[x �→ w′], w′ |=∼ φ

⇔ { |=∼ defn}
M′, g′, w′ |=∼ ↓ x. φ

Step �� follows from the Induction Hypothesis, since (g(y), g′(y)) ∈ h for all
y ∈ X and (w,w′) ∈ h implies (g[x �→ w](y), g′[x �→ w′](y)) ∈ h for all y ∈ X.

Case ϕ = @xφ:

M, g, w |=∼ @xφ

⇔ { |=∼ defn}
M, g, g(x) |=∼ φ

⇒ { by I.H. since (g(x), g′(x)) ∈ h }

M′, g′, g′(x) |=∼ φ

⇔ { |=∼ defn}
M′, g′, w′ |=∼ @xφ

Case ϕ = 〈α〉φ:

M, g, w |=∼ 〈α〉φ
⇔ { |=∼ defn}

M, g, v |=∼ φ for some v ∈ W with (w, v) ∈ Rα

⇒ { Remark 1 + I.H. }
M′, g′, v′ |=∼ φ for some v′ ∈ W ′ with (w′, v′) ∈ R′

α

⇔ { |=∼ defn}
M′, g′, w′ |=∼ 〈α〉φ

The cases ϕ = φ ∧ φ′ and ϕ = φ ∨ φ′ are straightforward by Induction
Hypothesis. ��
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Theorem 3. Let M and M′ be two A-models and h : M → M′ an observa-
tional morphism. Then, for any positive A-sentence ϕ, we have

M |=∼ ϕ implies M′ |=∼ ϕ.

Proof. Since ϕ is a sentence, it follows from Lemma 6, that for any w ∈
W,w′ ∈ W ′ with (w,w′) ∈ h, we have: M, w |=∼ ϕ implies M′, w′ |=∼ ϕ.
In particular, since (w0, w

′
0) ∈ h, M, w0 |=∼ ϕ implies M′, w′

0 |=∼ ϕ, i.e.,
M |=∼ ϕ implies M′ |=∼ ϕ. ��

Let us now consider the case in which h is an observational isomorphism.

Lemma 7. Let M = (W,w0, R) and M′ = (W ′, w′
0, R

′) be two A-models and
h : M → M′ an observational isomorphism. Then for any w ∈ W,w′ ∈ W ′ with
(w,w′) ∈ h, for any valuations g : X → W, g′ : X → W ′ with (g(x), g′(x)) ∈ h
for all x ∈ X, and for any A-formula ϕ, we have

M, g, w |=∼ ϕ iff M′, g′, w′ |=∼ ϕ.

Proof. The proof is performed by induction on the structure of the formulas. The
base case ϕ = tt is trivial and for ϕ = ff we note that neither M, g, w |=∼ ff
nor M, g, w |=∼ ff holds.

Case ϕ = x: The proof is performed as for Lemma 6 with the addition that the
“⇒” step (step �) holds also in the opposite direction for the following reason:
Let h−1 be the inverse of h. Since (g(x), g′(x)) ∈ h and (w,w′) ∈ h we obtain,
by Lemma 4, that (g′(x), g(x)) ∈ h−1 and (w′, w) ∈ h−1. Now we can apply
condition 2 of Definition 6 for h−1 such that g′(x) ∼M′ w′ implies g(x) ∼M w.

Cases ϕ = ↓ x. φ and ϕ = @xφ: The proof is performed as for Lemma 6 with
the addition that the “⇒” steps hold also in the opposite direction since now
the Induction Hypothesis holds also in the other direction.

Case ϕ = 〈α〉φ: The proof is performed as for Lemma 6 with the addition that
the “⇒” step holds also in the opposite direction. To see this, we know by
Lemma 5 that the “zag” condition of a bisimulation holds for h and for atomic
actions a ∈ A. It is straightforward to prove that then the “zag” condition holds
also for structured actions α ∈ Act(A). Taking into account the I.H. we are done.

The cases ϕ = ¬φ, ϕ = φ∧φ′ and ϕ = φ∨φ′ are straightforward by Induction
Hypothesis. The case ϕ = [α]φ can be shown either by using the I.H. or by
taking into account that the box operator can be expressed by negation and
diamond. ��
Theorem 4. Let M,M′ be two A-models such that M iso∼ M′. Then, for any
A-sentence ϕ, we have

M |=∼ ϕ iff M′ |=∼ ϕ.

Proof. The proof is completely analogous to the proof of Theorem3, using
Lemma 7 instead of Lemma 6. ��
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Corollary 2. For any specification SP , its observational semantics Mod∼(SP )
is closed under iso∼ .

The next theorem establishes a connection between the observational sat-
isfaction in D↓

∼ and the satisfaction in D↓. It relies on the construction of the
quotient M/∼ of an A-model M that identifies observationally equal (i.e. bisim-
ilar) states.

Definition 10. Let M = (W,w0, R) be an A-model. The quotient of M w.r.t.
∼M is the A-model M/∼= (W/∼, [w0], R/∼), where

– W/∼= {[w] |w ∈ W} with [w] = {w′ |w ∼M w′}, and for all a ∈ A,
– (R/∼)a = {([w], [v])| there exist w′ ∈ [w] and v′ ∈ [v] s.t. (w, v) ∈ Ra}.
Remark 2. For any a ∈ A and w, v ∈ W , if ([w], [v]) ∈ (R/∼)a then there exists
v̂ ∈ [v] such that (w, v̂) ∈ Ra. This follows from the (zig) property of ∼M. This
fact can be generalised to composed actions α ∈ Act(A).

Sentences are observationally satisfied by an A-model M, if and only if they
are satisfied by its quotient M/∼:

Theorem 5. For any A-model M and for any A-sentence ϕ,

M |=∼ ϕ iff M/∼ |= ϕ.

Proof. For the proof we show, more generally, that for any w ∈ W , valuation
g : X → W and A-formula ϕ,

M, g, w |=∼ ϕ iff M/∼, g/∼, [w] |= ϕ

where g/∼: X → W is defined by (g/∼)(x) = [g(x)]. The proof can be performed
by induction over the structure of A-formulas. For the base formulas ϕ = x, we
have:

M, g, w |=∼ x

⇔ { |=∼ defn}
g(x) ∼M w

⇔ { equivalence classes defn}

[g(x)] = [w]
⇔ { [g(x)] = (g/∼)(x) + |= defn}

M/∼, g/∼, [w] |= x

For the case ϕ = 〈α〉φ, we have:

M, g, w |=∼ 〈α〉φ
⇔ { |=∼ defn}

there exists v ∈ W with (w, v) ∈ Rα and M, g, v |=∼ φ

⇔ { step � }
there exists [v′] ∈ W/∼ with ([w], [v′]) ∈ (R/∼)α and M/∼, g/∼, [v′] |=∼ φ

⇔ { |=∼ defn}
M/∼, g/∼, [w] |=∼ 〈α〉φ
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Step �: The direction “⇒” is trivial using v′ = v and the Induction Hypothesis.
For the direction “⇐” assume ([w], [v′]) ∈ (R/∼)α for some v′. By Remark 2 we
know that there exists v̂ ∈ [v′] such that (w, v̂) ∈ Rα. From M/∼, g/∼, [v′] |=∼ φ
it follows that M/ ∼, g/ ∼, [v̂] |=∼ φ (since [v̂] = [v′]). By Ind. Hyp. we get
M, g, v̂ |=∼ φ. Since (w, v̂) ∈ Rα, we have M, g, w |=∼ 〈α〉φ.

The remaining cases are straightforward. ��

4 Recovering Modal Invariance for Bisimulation

Theorem 4 of the last section shows modal invariance of sentences in the D↓
∼-

logic. In this section we will transfer this result to the case in which bisimulation
equivalence is used instead of an observational isomorphism. In fact, this is
a consequence of our general result (Theorem 6) that bisimulation equivalence
can be characterised as an isomorphism in the category ModD↓

∼(A). Finally, we
can even prove a Hennessy-Milner-Theorem for observational satisfaction; see
Theorem 7.

Lemma 8. Let M = (W,w0, R) and M′ = (W ′, w′
0, R

′) be two A-models.
If M ≡ M′, then M iso∼ M′.

Proof. Since M ≡ M′ we can consider the greatest bisimulation relation
∼M

M′ ⊆ W × W ′ between M and M′. We show that ∼M
M′ is an isomorphism

in the category ModD↓
∼(A). First, we note that ∼M

M′ contains (w0, w
′
0). Then

we show that ∼M
M′ is an observational morphism. This is proved by using two

simple properties of greatest bisimulations: The inverse of ∼M
M′ is ∼M′

M and the
composition of ∼M

M′ and ∼M′
M′′ is ∼M

M′′ .

– Condition 1 of Definition 6 holds, since ∼M
M′ is a bisimulation.

– For 2 of Definition 6, let us suppose (w,w′) ∈∼M
M′ and (v, v′) ∈∼M

M′ and
(w, v) ∈∼M

M. Hence, we have (w′, w) ∈∼M′
M and by composition of bisim-

ulation relations and the fact that ∼M′
M′ is the greatest bisimulation we get

(w′, v′) ∈∼M′
M′ .

– For 3 of Definition 6, let us suppose (w,w′) ∈∼M
M′ , (w, v) ∈∼M

M and (w′, v′) ∈
∼M′

M′ Hence, (v, w) ∈∼M
M and by composition of bisimulation relations and

the fact that ∼M
M′ is the greatest bisimulation we get (v, v′) ∈∼M

M′ .

Finally, ∼M
M′ is an isomorphism, since (∼M

M′ · ∼M′
M ) =∼M

M = 1M and, conversely,
(∼M′

M · ∼M
M′) =∼M′

M′ = 1M′ . ��
Theorem 6. For any two A-models M and M′, we have:

M iso∼ M′ iff M ≡ M′.

Proof. The direction “⇒” follows from condition 1 in Definition 6 and from
Lemma 5. The direction “⇐” follows from Lemma 8. ��
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As a consequence of Theorem 6 and the modal invariance for D↓
∼-logic (The-

orem 4), we get modal invariance for bisimulation equivalence.

Corollary 3. Let M,M′ be two A-models such that M ≡ M′. Then for any
A-sentence ϕ, we have

M |=∼ ϕ iff M′ |=∼ ϕ.

As an example, we consider the two bisimilar {a}-models M and M′ in Fig. 1
for which we have: M |=∼ ↓ x.〈a〉x and M′ |=∼ ↓ x.〈a〉x.

Corollary 4. For any specification SP, its observational semantics Mod∼(SP)
is closed under ≡.

Proof. Direct consequence of Corollary 3. ��
The next lemma provides the basis for proving the converse of Corollary 3

which will lead to a Hennessy-Milner Theorem w.r.t. D↓
∼-logic (if models are

image finite).

Lemma 9. Let M,M′ be two image finite2 A-models and w ∈ W,w′ ∈ W ′ two
states such that, for any A-sentence ϕ,

M, w |=∼ ϕ iff M′, w′ |=∼ ϕ.

Then, there is a relation h ⊆ W × W ′ such that (w,w′) ∈ h and h satisfies the
conditions “zig” and “zag” of a bisimulation; cf. Definition 5.

Proof. Let us consider the relation

h := {(u, u′) | M, u |=∼ ϕ iff M′, u′ |=∼ ϕ, ϕ is an A-sentence}.

Obviously, (w,w′) ∈ h. In order to prove “zig” we follow the strategy adopted
in [8] for the proof of the so-called Hennessy-Milner Theorem. Planning to derive
a contradiction, let us suppose there exists (u, u′) ∈ h, a ∈ A and v ∈ W with
(u, v) ∈ Ra, for which

there is not a v′ ∈ W ′ such that (u′, v′) ∈ R′
a and (v, v′) ∈ h. (1)

By assumption, M′ is image finite and hence the set R′
a[u′] := {v′

1, . . . , v
′
k} of

a-successors of u′ in M′ is finite. It is also not empty since (u, u′) ∈ h. By (1),
for each i ∈ {1, . . . , k} there is a formula ϕi such that

M, v |=∼ ϕi and M′, v′
i �|=∼ ϕi. (2)

Hence, we have M, u |=∼ 〈a〉(ϕ1 ∧ · · · ∧ ϕk) and M′, u′ �|=∼ 〈a〉(ϕ1 ∧ · · · ∧ ϕk),
contradicting the assumption M, u |=∼ ϕ iff M′, u′ |=∼ ϕ for all A-sentences ϕ.
Therefore h satisfies “zig”. One can show analogously that h satisfies “zag”. ��
2 i.e. in any state there are at most finitely many outgoing transitions labelled with
the same atomic action.
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Theorem 7. Let M,M′ be two image finite A-models. Then the following prop-
erties are equivalent:

1. M iso∼ M′,
2. M ≡ M′,
3. for any A-sentence ϕ,M |=∼ ϕ iff M′ |=∼ ϕ.

Proof. 1. ⇔ 2.: Theorem 6.
2. ⇒ 3.: Corollary 3.
2. ⇐ 3.: Follows from Lemma 9 by taking for w and w′ the initial states w0

and w′
0 of M and M′ resp. ��

5 Relating Abstractor and Observational Semantics

Another possibility to provide an abstract semantics for a specification SP is
to consider all models that are bisimulation equivalent to a “standard” model
of SP , i.e. to a model of SP in the logic D↓. This semantics is called abstrac-
tor semantics. In this section we investigate relationships between abstractor
semantics and observational semantics. It turns out that results obtained in the
framework of algebraic specifications, see [3], can be transferred to our logics D↓

and D↓
∼ for reactive systems’ specifications as well.

Definition 11 (Abstractor semantics). The abstractor semantics of a spec-
ification SP = (A,Φ) is given by the class of models

Abs≡(SP) = {M ∈ ModD↓
(A) |M ≡ N for some N ∈ Mod(SP)}.

Part 1 of the next theorem shows that observational semantics is a subclass of
abstractor semantics. The converse does, in general, not hold. It may even be the
case that standard models of a specification, which always belong to the abstrac-
tor semantics, do not belong to the observational semantics. This happens, if
axioms of a specification contradict the observational equality between states. In
order to illustrate this, let us consider the specification SP = 〈{a}, {↓ x.〈a〉¬x}〉.
If we consider the model M′ with two states depicted in Fig. 1, we have that
M′ |= ↓ x.〈a〉¬x but M′ �|=∼ ↓ x.〈a〉¬x since the state w′

1 reached by the a-
transition from w′

0 is observationally equal to w′
0 but the negation ¬x would for-

bid this. Hence, M′ ∈ Mod(SP) but M′ �∈ Mod∼(SP). If, however, the axioms
of a specification SP have the form that all models of SP in D↓ belong to the
observational semantics of SP in D↓

∼, then Part 2 of the next theorem shows
that abstractor and observational semantics coincide.

Theorem 8. Let SP = (A,Φ) be a specification.

1. Mod∼(SP) ⊆ Abs≡(SP).
2. Mod(SP) ⊆ Mod∼(SP) if and only if Mod∼(SP) = Abs≡(SP).
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Proof. Part 1: Let M ∈ Mod∼(SP ) and M/∼ its quotient according to Defini-
tion 10. By Theorem 5, we have that M |=∼ ϕ iff M/∼ |= ϕ for all A-sentences
ϕ and hence for all ϕ ∈ Φ. Since M ∈ Mod∼(SP), we get M/∼∈ Mod(SP).
Moreover, it is straightforward to show that M ≡ M/∼, since the definition of
R/∼ entails that the relation B ⊆ W × W/∼ with B = {(w, [w]) |w ∈ W} is a
bisimulation. The (zig) condition of a bisimulation is obvious. For the (zag) con-
dition assume that ([w], [v]) ∈ (R/∼)a. By Remark 2 we know that there exists
v̂ ∈ [v] such that (w, v̂) ∈ Ra. Since [v̂] = [v] and (v̂, [v̂]) ∈ B we have (v̂, [v]) ∈ B.
Finally, from M ≡ M/∼ and M/∼∈ Mod(SP) we get M ∈ Abs≡(SP).
Part 2: “⇒:” Assume Mod(SP) ⊆ Mod∼(SP). By 1. we have Mod∼(SP) ⊆
Abs≡(SP). Let M ∈ Abs≡(SP), i.e. there is a model N ∈ Mod(SP) such that
M ≡ N . By assumption N ∈Mod∼(SP), i.e., N |=∼ Φ. By Corollary 3, M |=∼ Φ,
and hence M ∈ Mod∼(SP).

“⇐:” For this direction, assume M ∈ Mod(SP). Hence, M ∈ Abs≡(SP). By
assumption Mod∼(SP) = Abs≡(SP) and hence M ∈ Mod∼(SP). ��

Finally we want to discuss the relationship of observational semantics with
abstractor semantics in the context of fully abstract models. An A-model M is
fully abstract if the observational equality ∼M coincides with the set-theoretic
equality of states. The fully abstract semantics of a specification SP = (A,Φ) in
D↓ is given by the class of its fully abstract models

Mod fa(SP) = {M ∈ Mod(SP) |M is fully abstract}.

If we consider all A-models which are bisimulation equivalent to some fully
abstract model of a specification we get the class

Abs fa≡ (SP) = {M ∈ ModD↓
(A) |M ≡ N for some N ∈ Mod fa(SP)}.

Our final result shows that this class coincides with the observational seman-
tics of a specification. A similar result has been obtained for algebraic specifica-
tions in [3].

Theorem 9. For any specification SP = (A,Φ), Mod∼(SP) = Abs fa≡ (SP).

Proof. The proof of the inclusion “⊆” is the same as for part 1 in Theorem 8
taking into account that M/∼ is fully abstract. It remains to show Abs fa≡ (SP) ⊆
Mod∼(SP). Let M ∈ Abs fa≡ (SP). Then M ≡ N for some N ∈ Mod fa(SP). Since
N |= Φ and N is fully abstract, we have N |=∼ Φ. Since M ≡ N we get, by
Corollary 3, that M |=∼ Φ. Hence M ∈ Mod∼(SP). ��

6 Conclusion

This paper follows the motivations of [7] on the definition of a logic to develop
reactive systems in a stepwise manner from abstract requirements specifications
to concrete specifications of processes. In this context, the quest for a more liberal
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semantics appeared that is closed under behavioural equivalence. Following ideas
from algebraic specifications of data structures, we have proposed a new logic
for specifications of reactive systems, called D↓

∼, which satisfies both the modal
invariance property and a Hennessy-Milner Theorem. The key to achieve this
was a new, relaxed satisfaction relation, which allows interpreting state variables
up to bisimilarity.

There are several interesting research questions to be pursued on the basis of
D↓

∼. For instance, we want to investigate how D↓
∼ can be extended to an institu-

tion. A preliminary study shows that a straightforward extension using functions
σ : A → A′ between action sets as signature morphisms would not work. The
reason is that A′ may introduce new actions that distinguish, in some A′-models,
states which are observationally equal when using only actions in A. Then the
satisfaction condition of an institution would not be valid. Therefore we must
investigate adjustments on signatures, signature morphisms and models to estab-
lish the satisfaction condition. Another interesting extension to follow concerns
the incorporation of weak bisimulations which would allow further behavioural
abstraction w.r.t. silent transitions.

Acknowledgement. We would like to thank the anonymous reviewers of this paper
for their careful reviews with many useful comments and suggestions.
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Abstract. We present the foundations of critical pair analysis for the
graph programming language GP 2. Our goal is to develop a static
checker that can prove or refute confluence (functional behaviour) for
a large class of graph programs. In this paper, we introduce symbolic
critical pairs of GP 2 rule schemata, which are labelled with expressions,
and establish the completeness and finiteness of the set of symbolic crit-
ical pairs over a finite set of rule schemata. We give a procedure for their
construction.

1 Introduction

A common programming pattern in the graph programming language GP 2 [16]
is to apply a set of attributed graph transformation rules as long as possible. To
execute a set of rules {r1, . . . , rn} for as long as possible on a host graph, in each
iteration an applicable rule is selected and applied. As rule selection and rule
matching are non-deterministic, different graphs may result from such an itera-
tion. Thus, if the programmer wants the loop to implement a function, a static
analysis that establishes or refutes functional behaviour would be desirable.

GP 2 is based on the double-pushout approach to graph transformation with
relabelling [8]. Programs can perform computations on labels by using rules
labelled with expressions (also known as attributed rules). GP 2’s label algebra
consists of integers, character strings, and heterogeneous lists of integers and
strings. Rule application can be seen as a two-stage process where rules are
first instantiated, by replacing variables with values and evaluating the resulting
expressions, and then applied as usual. Hence rules are actually rule schemata.

Conventional confluence analysis in the double-pushout approach to graph
transformation is based on critical pairs, which represent conflicts in minimal
context [5,15]. A conflict between two rule applications arises when one of the
steps deletes or relabels an item matched by the other. In the presence of termi-
nation, one can check if all critical pairs are strongly joinable, and thus establish
that the set of transformation rules is confluent.
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However, the conventional notion of critical pairs is not directly applicable
to GP 2 rule schemata. To construct such pairs, one needs to instantiate rule
schemata to an (usually) infinite set of conventional graph transformation rules
[12], and thus the analysis cannot be automated as part of a confluence checker.
Furthermore, when constructing the labels of critical pairs, it has been observed
[4, p. 198] that syntactic unification of the labels of overlapping graphs is not
sufficient (as proposed by [10]). This is because the constructed set of critical
pairs need not represent all conflicts. Instead, one has to take into account all
equations valid in the attribute algebra. This problem is circumvented in [6,7]
by imposing a severe restriction that avoids the need for unification altogether,
namely to only allow rules labelled with variables or variable-free expressions.

In this paper, we do not use such restrictions. We rather define symbolic
critical pairs which are labelled with expressions, and give an algorithm for their
construction based on our unification algorithm for GP 2 expressions [11]. As
a by-product of this construction, it is easy to show that a finite set of rule
schemata gives rise to a finite set of symbolic critical pairs. We then prove that
the generated critical pairs are complete in that they represent all conflicts of
the given set of rule schemata. This proof is based on the completeness of the
GP 2 unification algorithm.

We assume the reader to be familiar with basic notions of the double-pushout
approach to graph transformation (see [4]).

Related Work. The approach of [14] also defines symbolic critical pairs in the
context of symbolic graph transformation where symbolic graphs are transformed
via symbolic rules (rules equipped with first-order logical formulas). Symbolic
critical pairs represent all possible conflicts between such symbolic rules. How-
ever, it is important to stress the differences with our approach. No construction
algorithm is given for these critical pairs whereas we give a construction for the
GP 2 setting. In fact, that approach treats attribute algebras as a parameter,
and thus a general construction algorithm cannot be given. Even so, a topic of
future work is the relaxed notion of conflict where a minimal pair of derivations
is critical if the pair does not commute when attribute semantics are taken into
account.

The differences with critical pairs in the attributed setting of [4] are similar
to the above. In this setting, graph attributes are represented via special data
nodes and linked to ordinary graph nodes/edges via attribution edges, giving
rise to infinite graphs. Attributed rules contain a data node for each term in the
term algebra T (X). The critical pair construction however is restricted to rules
whose attributes are variables or variable-free, e.g. see [6]. An earlier version
of the construction was based on computing a most general unifier [10], which
renders the critical pairs incomplete. As above, attribute algebras are treated as
parameters.
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2 Graphs and Graph Programs

In this section, we present the approach of GP 2 [2,16], a domain-specific lan-
guage for rule-based graph manipulation. The principal programming units of
GP 2 are rule schemata 〈L ← K → R〉 labelled with expressions that operate
on host graphs labelled with concrete values. The language allows to combine
schemata into programs. The definition of GP 2’s latest version, together with
a formal operational semantics, can be found in [2].

2.1 Background

Labelled graphs. We start by recalling the basic notions of partially labelled
graphs and their morphisms.

A (partially) labelled graph G consists of finite sets VG and EG of nodes and
edges, source and target functions for edges sG, tG : EG → VG, and a partial
node/edge labelling function lG : VG + EG → L over a (possibly infinite) label
set L. Given a node or edge x, lG(x) = ⊥ expresses that lG(x) is undefined1.
The graph G is totally labelled if lG is a total function. The classes of partially
and totally labelled graphs over a label set L are denoted by G⊥(L) and G(L).

A premorphism g : G → H consists of two functions gV : VG → VH and
gE : EG → EH that preserve sources and targets. A graph morphism g is a
premorphism that preserves labels of nodes and edges, that is lH

(
g(x)

)
= lG(x)

for all x ∈ Dom(lG). A morphism g preserves undefinedness if it maps unlabelled
items of G to unlabelled items in H. Morphism g is an inclusion if g(x) =
x for all items x in G. Note that inclusions need not preserve undefinedness.
Morphism g is injective (surjective) if gV and gE are injective (surjective), and
is an isomoprhism (denoted by ∼=) if it is injective, surjective and preserves
undefinedness. The class of injective label preserving morphisms is denoted as M
for short, and the class of injective label and undefinedness preserving morphisms
is denoted as N .

Partially labelled graphs and label-preserving morphisms constitute a cate-
gory [8,9]. Composition of morphisms is defined componentwise. What is special
about this category is that pushouts need not always exist, and not all pushouts
along M-morphisms are natural2.

GP 2 labels. The types int and string represent integers and character strings.
The type atom is the union of int and string, and list represents lists of atoms.
Given lists l1 and l2, we write l1 : l2 for the concatenation of l1 and l2 (not to be
confused with the list-cons operator in Haskell). Atoms are lists of length one.
The empty list is denoted by empty. Variables may appear in labels in rules and
are typed over the above categories. Labels in rule schemata are built up from
constant values, variables, and operators - the standard arithmetic operators

1 We do not distinguish between nodes and edges in statements that hold analogously
for both sets.

2 A pushout is natural if it is also a pullback.
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for integer expressions (including the unary minus), string concatenation for
string expressions, length operator for list and string expressions, indegree
and outdegree operators for nodes. In pictures of graphs, nodes or edges that
are shown without a label are implicitly labelled with the empty list, while
unlabelled items in interfaces are labelled with ⊥ to avoid confusion.

Additionally, a label may contain an optional mark which is one of red,
green, blue, grey and dashed (where grey and dashed are reserved for nodes
and edges, respectively). The mark component of labels is represented graphi-
cally rather than textually. For example, all edges of the rule schema series in
Fig. 2 have the label (empty, dashed).

Rule schemata and direct derivations. In order to compute with labels, it is
crucial that nodes and edges can be relabelled. The double-pushout approach
with partially labelled interface graphs is used as a formal basis [8].

To apply a rule schema to a graph, the schema is first instantiated by eval-
uating its labels according to some assignment α. An assignment α maps each
variable occurring in a given schema to a value in GP 2’s label algebra. Its unique
extension α∗ evaluates the schema’s label expressions according to α. For short,
we denote GP 2’s label algebra as A. Its corresponding term algebra over the
same signature is denoted as T (X), and its terms are used as graph labels in
rule schemata. Here X is the set of variables occurring in schemata. To avoid
an inflation of symbols, we sometimes equate A or T (X) with the union of its
carrier sets.

A GP 2 rule schema r = 〈L ← K → R〉 consists of two inclusions K → L
and K → R such that L and R are graphs in G(T (X)) and K is a graph in
G⊥(T (X)). Consider a graph G in G⊥(T (X)) and an assignment α : X → A.
The instance Gα is the graph in G⊥(A) obtained from G by replacing each label
l with α∗(l). The instance of a rule schema r = 〈L ← K → R〉 is the rule
rα = 〈Lα ← Kα → Rα〉.

A direct derivation via rule schema r and assignment α between host graphs
G,H ∈ G(A) consists of two natural pushouts as in Fig. 1. We denote such a
derivation by G

r,g,α
=⇒ H. Rules may also be applied to graphs in G(T (X)). In this

case assignments become substitutions σ : X → T (X). This will be useful later
for critical pairs which are labelled over T (X).

Lα Kα Rα

L K R

G D H

g NPO NPO

Fig. 1. A direct derivation
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In [8] it is shown that in case the interface graph K has unlabelled items, their
images in the intermediate graph D are also unlabelled by the condition that the
pushouts are natural. Given a rule r and a graph G together with an injective
match g : L → G satisfying the dangling condition (no node in g(L) − g(K) is
incident to an edge in G − g(L)), there exists a unique double natural pushout
[8, Theorem 1].

When a rule schema is graphically declared as done in Fig. 2, the interface is
represented by the node numbers in L and R. Nodes without numbers in L are
to be deleted and nodes without numbers in R are to be created. All variables
in R have to occur in L so that for a given match of L in a host graph, applying
the rule schema produces a graph that is unique up to isomorphism.

Program constructs. A GP 2 program consists of declarations of rule schemata
and macros, and a main command sequence which controls their application
order. The language offers several operators for combining subprograms - the
postfix operator ‘!’ iterates a program as long as possible; sequential composi-
tion ‘P; Q’; a rule set {r1, . . . , rn} tries to non-deterministically apply any of
the schemata (failing if none are applicable); if C then P else Q allows for
conditional branching (C, P, Q are arbitrary command sequences) meaning that
if the program C succeeds on a copy of the host graph then P is executed on
the original, if C fails then Q is executed on the original host graph.

Simple lists. The values of rule schema variables at execution time are deter-
mined by graph matching. To ensure that matches induce unique “actual param-
eters”, expressions on the left-hand side of a rule schema must have a simple
shape. A simple list expression [2] contains no arithmetic, length or degree oper-
ators, at most one occurrence of a list variable, at most one occurrence of a
string variable per string expression. For example, a:x and y:n:n are simple
expressions (a, n are atom variables; x, y are list variables) whereas n ∗ 2 or
x:y are not simple.

Assumptions. In this paper, we make several assumptions. First, we further
restrict simple lists to not contain string concatenation (.) and unary minus
(-) operators. These operators inflate the unification algorithm of [11] which we
use for the construction of critical pairs, without posing a substantial challenge.
Second, a proper treatment of GP 2 conditional rule schemata requires extra
technicalities, and hence we consider unconditional schemata only. Third, we
assume rule schemata to be left-linear (see Sect. 3).

2.2 Example: Recognition of Series-Parallel Graphs

As a motivating example, consider a GP program that recognizes series-parallel
graphs. These graphs have been introduced as models of electrical networks [3],
and are interesting from a complexity point of view since many graph problems,
some of which NP-complete, are solvable in linear time for these graphs e.g.
maximum matching, maximum independent set, Hamiltonian completion.
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Main = unlabel!; Reduce!; delete; if nonempty then fail

Reduce = {series, parallel}

1 2

⇒x

1

y

2

a

unlabel(a,x,y:list) delete

⇒ ∅

1 2
⇒

1 2

series

1 2

parallel

⇒
1 2

⇒x

1

x

1

nonempty(x:list)

Fig. 2. GP 2 program recognizing series-parallel graphs.

These graphs are recognized by means of graph reduction: for a host graph
G, apply a set of size-reducing rules Reduce = {series, parallel} as long as
possible, obtaining a result graph H, then check whether H is isomorphic to

(ignoring labels) to decide whether the original graph G is series-parallel.
A GP 2 program implementing the above algorithm is presented in Fig. 2.

Given a host graph G, the program works as follows. First, it removes all labels
by applying the unlabel rule as long as possible (labels do not play a role in
whether a graph is series-parallel or not). Applying unlabel amounts to non-
deterministically selecting a subgraph of the host graph that matches unlabel’s
left graph, relabelling the matched nodes with the empty list and recreating the
connecting edge as dashed to avoid non-termination.

Afterwards, the Reduce rules are applied as long as possible. To determine
whether the resulting graph has the correct shape, the program first attempts
to delete the correct result graph (see above) then checks whether this yields
the empty graph. If either the deletion or the non-empty check fails, then the
program fails. In this context, termination of the program with a proper graph
means the host graph G is series-parallel, and failure means G is not series-
parallel.

However, if the non-deterministic reduction results in a graph other than
, we need to be sure that no other reduction sequence ends in that

graph. Therefore, the correctness of the above recognition algorithm depends on
the confluence of the loops unlabel! and Reduce!.

Confluence [15] is a property of a rewrite system that ensures that any pair
of derivations on the same host graph can be joined again thus leading to the
same result, and is an important property for many kinds of graph transforma-
tion systems. A confluent computation is globally deterministic despite possible
local non-determinism. The main technique for confluence analysis is based on
the study of critical pairs which are conflicts in minimal context. However, the
previous results in critical pair analysis do not cover rule schemata and GP. This
raises the question of how to check whether loops such as unlabel! and Reduce!
are confluent or not.
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Infinity of conventional critical pairs. To construct critical pairs for the above
case, we can consider the infinite set of all rules obtained by arbitrary instanti-
ations of the schemata and compute conventional critical pairs over those (see,
for example, [4]). Since there would be an infinite number of rule instances to
consider, the set of conventional critical pairs would also be infinite.

1 2

3

3

5
1

1

2

2

3

3

4 5
1

1 2 3

4
⇐ ⇒

Fig. 3. A conventional critical pair of unlabel with itself.

For example, consider the conflicting pair of derivations in Fig. 3. The middle
graph is obtained by overlapping the left-hand graph of unlabel with itself, and
the graphs on either side are the results of applying the schema in conflicting
ways. The pair is in conflict because both derivations relabel a common node
(2) to the empty list. The instantiating assignment of unlabel and its copy is
α = {x1 → 1, y1 → 2, x2 → 2, y2 → 3, a1 → 4, a2 → 5} where the variables are
indexed to signify from which unlabel instance they originate.

3 Unification of GP 2 List Expressions

Below we review the problem of unifying GP 2 list expressions. The problem
arises when having to overlap graphs labelled with expressions to compute criti-
cal pairs. Unification has a long history in the automated deduction community,
see for instance [1] for an introduction. We use our AU-unification algorithm
[11] as a solution, and its properties - namely completeness and termination.
As mentioned in the Introduction, the use of our algorithm is motivated by the
need to respect the axioms valid in the label algebra. (See Sect. 6 for more on
the relation between critical pairs and unification.)

A substitution maps GP variables to expressions σ : X → T (X). For exam-
ple, we write σ = {x �→ x + 1} for the substitution that maps x (an integer vari-
able) to x + 1 and every other variable to itself. Applying a substitution σ to an
expression t, denoted by tσ, means to replace every variable x in t by σ(x) simul-
taneously. In the above example, (x : −x)σ = (x + 1) : −(x + 1). Composition of
substitutions λ and σ is written as λ◦σ (λ after σ). Given substitutions σ1, . . . , σn

with pairwise disjoint domains, their composition σ1 ◦ . . . ◦ σn is commutative.
A substitution σ is more general on a set of variables X than a substitution θ if
there exists a substitution λ such that xθ =AU (xσ)λ for all x ∈ X. In this case
we write σ �X θ and say that θ is an instance of σ on X. Here =AU is the equiva-
lence relation on expressions generated by the axioms of associativity and unity of
list concatenation AU = {x : (y : z) = (x : y) : z, empty : x = x, x : empty = x},
where x, y, z are list variables. If one considers ordinary equality =, then the
unification is called syntactic.
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A unification problem is an equation P of the form s =? t where s and
t are simple list expressions without common variables. A unifier of P is a
substitution σ over the set of variables occurring in P (denoted as Var(P )) such
that sσ =AU tσ.

A set C of unifiers is a complete set of unifiers of a unification problem P
if for each unifier θ there exists σ ∈ C such that σ �Var(P ) θ. This essentially
means that any substitution that is a unifier is an instance of some unifier in C.
The set C is also minimal if each pair of distinct unifiers in C are incomparable
w.r.t. �Var(P ). If a unification problem is not unifiable, then by convention ∅ is
its minimal complete set of unifiers.

The paper [11] gives an algorithm for solving unification problems between
GP 2 list expressions. The algorithm produces a finite complete set of unifiers for
a given problem. The assumptions of the algorithm are: (1) simple expressions,
as presented in Sect. 2; (2) left-linearity (see below); (3) infinite pool of fresh
variables. We can summarize the results of [11] as the following theorem.

Theorem 1 (Unification algorithm). There exists an algorithm solving the
following problem:

Input: A unification problem s =? t between simple list expressions s
and t without common variables

Output: A finite complete set of unifiers UNIF(s =? t)

We write UNIF(P ) for the set of unifiers returned by the unification algo-
rithm. For a finite system of independent unification problems (P1, . . . , Pn)3, the
extension of UNIF is defined to be the set of unifiers obtained by combining the
unifiers of each individual unification problem:

UNIF(P1, . . . , Pn) =
{
σ1 ◦ . . . ◦ σn | σi ∈ UNIF(Pi), 1 ≤ i ≤ n

}

For example, if UNIF(P1) = {α, β} and UNIF(P2) = {λ}, then UNIF(P1, P2) =
{α ◦ λ, β ◦ λ}. By the above result, this set is finite. It is also complete since it
contains all combinations of unifiers.

Left-linearity. The left-linearity assumption states that no list variables are
shared between items in a left-hand graph of a rule schema. This is sufficient
to ensure that we can apply our generalized algorithm in the construction of
critical pairs (Theorem 2) as the system of equations resulting from overlap-
ping left-hand graphs will have a finite set of solutions. Without this assumption
it is easy to construct two rule schemata that induce the system of equations
{x : 1 =? y, 1 : x =? y}. The system is not independent as the list variables x
and y are shared between the two equations. We can solve each equation sepa-
rately, but the composition of their unifiers does not produce a unifier for the
system. In fact, this system has an infinite minimal complete set of solutions
{x �→ empty, y �→ 1}, {x �→ 1, y �→ 1 : 1}, {x �→ 1 : 1, y �→ 1 : 1 : 1}, . . ..

3 Two unification problems are independent if they do not share list variables.
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Unification example. The minimal complete set of unifiers of the problem
〈a : x =? y : 2〉 (where a is an atom variable and x, y are list variables) is {σ1, σ2}
with σ1 = {a �→ 2, x �→ empty, y �→ empty} and σ2 = {x �→ z : 2, y �→ a : z}.
We have (a : x)σ1 = 2 : empty =AU 2 =AU empty : 2 = (y : 2)σ1 and (a : x)σ2 =
a : (z : 2) =AU (a : z) : 2 = (y : 2)σ2. Other unifiers such as σ3 = {x �→ 2, y �→ a}
are instances of σ2, hence set of unifiers {σ1, σ2, σ3} is complete but not minimal.

4 Symbolic Critical Pairs

In this section, we define the notions of independence and conflicts for rule
schema rewriting as done in [12]. Then we develop the notion of symbolic critical
pairs describing conflicts in minimal context. Symbolic critical pairs allow for the
realization of a static confluence checker.

Independence of schema derivations. Two schema derivations are independent
if neither derivation deletes or relabels any common item. This can be expressed
as an ‘existence-of-morphisms’ condition. Independent derivations can be inter-
changed, leading to the same result. This property is known as the Local Church-
Rosser Theorem, shown in [12] for the case of rule schemata.

In the rest of the paper we assume that the variables occurring in different
rule schemata are distinct, which can always be achieved by variable renaming.

Definition 1 (Independence of derivations). Two rule schema direct
derivations G

r1,m1,α
=⇒ H1 and G

r2,m2,α
=⇒ H2 are independent if the plain deriva-

tions with relabelling G
rα
1 ,m1=⇒ H1 and G

rα
2 ,m2=⇒ H2 are independent, meaning that

there exist morphisms i : Lα
1 → D2 and j : Lα

2 → D1 such that f2 ◦ i = m1 and
f1 ◦ j = m2.

G

Lα
1Kα

1Rα
1

L1K1R1

Lα
2 Kα

2 Rα
2

L2 K2 R2

D1 D2H1 H2

m1 im2j
f1 f2

Two direct derivations are in conflict if they are not independent. There are
different types of conflict that can arise between two direct derivations. One
option is to have that either derivation deletes graph elements which are used by
the other (delete-use conflict). The other option is that one derivation relabels
graph elements used by the other (relabelling conflict).

Example of conflict. Fig. 4 shows two direct derivations H1 ⇐ G ⇒ H2 that use
instances of the rule schema unlabel. The derivations are in conflict - there are
no morphisms L1 → D2 and L2 → D1 with the desired properties. The problem
is that node 2 gets relabelled. Note that the edge from node 1 to 3 is never
matched and is therefore preserved during both derivations.
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Fig. 4. Conflict due to relabelling.

Symbolic critical pairs

Critical pairs allow for the static confluence analysis of rule schema rewriting.
Each conflict that may occur during the graph transformation is represented
by a critical pair. Hence, it is possible to foresee each conflict by computing all
critical pairs statically. Each pair of rule schemata induces a set of critical pairs.

We define critical pairs that are labelled with expressions rather than from a
concrete data domain. Each symbolic critical pair represents a possibly infinite
set of conflicting host graph derivations. What is special about our critical pairs
is that they show the conflict in the most abstract way.

A pair of derivations T1
r1,m1,σ⇐= S

r2,m2,σ
=⇒ T2 between graphs labelled with

expressions is a critical pair if it is in conflict and minimal. Minimality means the
pair of matches (m1,m2) is jointly surjective – the graph S can be considered as
a suitable overlap of Lσ

1 and Lσ
2 . Two items x ∈ L1 and y ∈ L2 are overlapped if

m1(x) = m2(y), which induces a unification problem l(x) =? l(y) between their
labels. Formally, overlapping graphs Lσ

1 and Lσ
2 induces a system of unification

problems:

EQ(Lσ
1

m1−−→ S
m2←−− Lσ

2 ) = {lLσ
1
(a)

?
= lLσ

2
(b) | (a, b) ∈ Lσ

1 × Lσ
2 with m1(a) = m2(b)}

The substitution σ is taken from a complete set of unifiers of the above system of
problems and is used to instantiate the schemata. To avoid a circular definition,
the system can instead be constructed over the induced premorphisms Li → S
rather than over Lσ

i → S, i = 1, 2.
To disambiguate between the critical pairs of our approach and conventional

critical pairs found in literature (e.g. [15]), we introduce them as symbolic4.

Definition 2 (Symbolic Critical Pair). A symbolic critical pair is a pair of
direct derivations T1

r1,m1,σ⇐= S
r2,m2,σ
=⇒ T2 on graphs labelled with expressions such

that:

(1) σ is a substitution in UNIF(EQ(L1
m1−−→ S

m2←−− L2)) where L1 and L2 are
the left-hand graphs of r1 and r2, m1 and m2 are premorphisms, and

4 The paper [14] introduces symbolic critical pairs in the setting of symbolic graph
transformation where graphs are combined with first-order logic formulas.
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(2) the pair of derivations is in conflict, and
(3) S = m1(Lσ

1 ) ∪ m2(Lσ
2 ), meaning S is minimal, and

(4) rσ
1 = rσ

2 implies m1 �= m2. ��
We assume the derivations are via left-linear rule schemata for UNIF to return a
finite set of unifiers. Terms appearing in left-hand graphs are restricted to simple
lists with an optional mark component as presented in Sect. 2.

Critical pairs of the Series-Parallel Program. An example symbolic critical pair
of the rules in Fig. 2 is shown in Fig. 5 where the middle graph is obtained
by overlapping the left-hand graph of the unlabel schema with itself, and the
graphs on either side are the results of applying the schema in conflicting ways.

The pair is in conflict because both derivations relabel a common node (2) to
the empty list. Note that this symbolic critical pair looks very similar to the pair
of conflicting derivations in Fig. 3. In fact, they are related by the instantiation
λ = {x1 → 1, y1 → 2, y2 → 3, a1 → 4, a2 → 5} where the variables are indexed
(as usual) to signify from which unlabel instance they originate.

1 2

y2

3

a2
x1

1

y1

2

y2

3

a1 a2
x1

1 2 3

a1
⇐ ⇒

Fig. 5. A symbolic critical pair of unlabel with itself.

There are 4 more symbolic critical pairs obtained by self-overlapping
unlabel. In addition, the set Reduce gives rise to 3 symbolic critical pairs. Both
loops unlabel! and Reduce! can be shown to be locally confluent by analysing
these critical pairs under a suitable notion of critical pair joinability (to be pub-
lished elsewhere). It follows that the program in Fig. 2 is correct.

5 Construction and Finiteness of Symbolic Critical Pairs

We give an algorithm for the construction of symbolic critical pairs that respects
the equations of GP’s label algebra, namely the associativity and unit laws of
list concatenation. The construction is given as the following theorem.

Theorem 2 (Construction of Symbolic Critical Pairs). Given left-linear
rule schemata r1 = 〈L1 ← K1 → R1〉 and r2 = 〈L2 ← K2 → R2〉, the following
construction computes all symbolic critical pairs of r1 and r2:

1. Compute all overlaps of L1 and L2, giving rise to pairs of jointly surjective
premorphsisms (m1,m2) into an unlabelled graph S.

2. For each overlap check that m1 and m2 satisfy the dangling condition w.r.t.
r1 and r2.

3. For each overlap compute the set of unifiers UNIF(EQ(L1
m1→ S

m2← L2).
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4. For each unifier σ from the above set and its overlap do the following:
(a) Instantiate r1 and r2 via σ to obtain the rules rσ

1 and rσ
2 , and if rσ

1 = rσ
2

check that m1 �= m2.
(b) Define the labelling function of S as

lS(x) =

{
lLσ

1
(x′) if ∃x′ ∈ Lσ

1 such that m1(x′) = x

lLσ
2
(x′) if ∃x′ ∈ Lσ

2 such that m2(x′) = x

(c) Construct the derivations T1
r1,m1,σ⇐= S

r2,m2,σ
=⇒ T2.

(d) If the pair of derivations is in conflict, then it is a symbolic critical pair.

Proof. We show that the above construction produces exactly all symbolic crit-
ical pairs according to Definition 2. The construction computes only symbolic
critical pairs - when Step 4.d is reached, the pair of derivations exists, is minimal
and in conflict, and is labelled using one of the substitutions returned by UNIF.
The construction computes all critical pairs since all overlaps and all unifiers per
overlap are considered. ��

The construction of symbolic critical pairs is similar to that of conventional
critical pairs. The most important difference occurs when overlapping graph
nodes or edges since unification needs to be considered. This process terminates
in finite time - overlapping finite graphs produces a finite number of overlaps
(Step 1), left-linearity allows for UNIF to produce a finite set of substitutions
(Step 3), all other components are either finite checks or constructing a pair
of direct derivations. Recall that the number of conventional critical pairs is
infinite in general due to the infinite number of rules that a schema represents.
Consequently, the computation of symbolic critical pairs is much more suitable
for automation as part of a confluence checker.

Corollary 1 (Finiteness of Symbolic Critical Pairs). For each pair of left-
linear rule schemata r1 and r2, the set of symbolic critical pairs induced by r1
and r2 is finite.

Proof sketch. Since the above construction computes all critical pairs and ter-
minates, then the set of symbolic critical pairs must be finite. ��

6 Completeness of Symbolic Critical Pairs

Completeness of critical pairs means that each pair of conflicting direct deriva-
tions is an instance of a symbolic critical pair. Formally, we state the result as a
theorem. We start by discussing the link between unification of expressions and
completeness of critical pairs.
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Critical Pairs and Unification. As shown in Sect. 2.2, one needs to consider crit-
ical pairs labelled with expressions rather than concrete values. This means one
needs an algorithm to compute their labels which are expressions resulting from
overlapping left-hand graphs of rules. If one does not severely restrict the shape
of labels, this computation involves unification. However, the type of unifica-
tion becomes crucial when considering whether the constructed critical pairs are
complete, as we show below.

Consider two rule schemata with left-hand sides 1:x and y:1 where x and
y are list variables. Overlapping these graphs induces the unification problem
P = 〈1 : x =? y : 1〉. This problem can be syntactically unified via its most
general unifier σ = {x, y → 1}. However, the problem has an infinite number of
AU-unifiers: {x, y → empty}, {x, y → 1}, {x, y → 1 : 1}, . . . , none of which are
instances of σ except one. As a consequence, critical pairs labelled using most
general unifiers are incomplete. To our knowledge this problem has been first
observed in [4, p. 198] in the context of attributed graph transformation. Their
solution is to restrict the shape of labels/attributes to variable-free or variable-
only terms which avoids the need for unification.

Our solution to this problem involves using our complete AU-unification
algorithm - solving P produces the AU-unifiers {x, y → empty} and
{x → x′ : 1, y → 1 : x′} where x′ is a fresh list variable. (Our algorithm also pro-
duces σ making the result set non-minimal.) Consider any assignment α such
that (1 : x)α =AU (y : 1)α. By Theorem 1, there exists a unifier σ ∈ UNIF(P )
and instantiating substitution λ such that α = λ ◦ σ. Thus, a symbolic critical
pair labelled using σ can be instantiated via λ to a critical pair of host graph
derivations. Consequently, completeness of our AU-unification algorithm allows
for greater representational power when it comes to critical pairs.

Restriction Lemma. In the following, we present a restriction construction, for-
mulated only for direct derivations, which is in some sense the inverse of extend-
ing a derivation to a larger context. This construction is necessary for the proof
of Theorem 3.

Lemma 1 (Restriction). Given a direct derivation G
r,m,α
=⇒ H, a morphism

e : P → G ∈ N , and a match m′ : Lα → P ∈ N such that m = e ◦ m′, then

there is a direct derivation P
r,m′,α
=⇒ Q leading to the (extension) diagram below.
Lα Kα Rα

P N Q

G D H

m′

m

e

(2) (3)

(1) (4)

Proof. See the long version of this paper [13].
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Completeness of symbolic critical pairs. Next we state our Completeness Theo-
rem. The technical aspects of its proof (see [13]) are concerned with the properties
of partially labelled graphs G⊥ and the classes of horizontal and vertical mor-
phisms in direct derivations (M and N ). These basic properties have already
been studied in [8,9]. Below we give a proof sketch, including only of the impor-
tant steps.

Theorem 3. (Completeness of Symbolic Critical Pairs). For each pair of
conflicting rule schema applications H1

r1,m1,α⇐= G
r2,m2,α
=⇒ H2 between left-linear

schemata r1 and r2 there exists a symbolic critical pair T1
r1⇐= S

r2=⇒ T2 with
(extension) diagrams between H1 ⇐ G ⇒ H2 and an instance of T1 ⇐ S ⇒ T2.

PQ1 Q2⇐= =⇒

GH1 H2⇐= =⇒

ST1 T2⇐= =⇒

Proof sketch. We start by decomposing the pair of matches (m1 : Lα
1 → G,m2 :

Lα
2 → G) (Fig. 6) to obtain a graph P = m1(Lα

1 ) ∪ m2(Lα
2 ) = m′

1(L
α
1 ) ∪ m′

2(L
α
2 )

together with jointly surjective matches (m′
1 : Lα

1 → P,m′
2 : Lα

2 → P ) and
morphism e : P → G ∈ N .

G

P

Lα
1Kα

1Rα
1 Lα

2 Kα
2 Rα

2

N1Q1

D1H1

N2 Q2

D2 H2

m1 m2

m′
1 m′

2

e(1) (5)

(2) (6)(3) (7)

(4) (8)

Fig. 6. Decomposed pushouts

Next we apply Lemma 1 twice to obtain the restricted derivations P ⇒
Q1 and P ⇒ Q2. It is not difficult to show that Q1 ⇐ P ⇒ Q2 is minimal
and in conflict using the commutativity of (1), the properties of (m′

1,m
′
2), and

Definition 1 (e.g. see the proof of Lemma 6.22 in [4]). This concludes the first
part of the proof.

For the second part we will show that Q1 ⇐ P ⇒ Q2 is an instance of a
symbolic critical pair T1 ⇐ S ⇒ T2. We use the fact that the assignment α
is an AU-unifier for the system of equations EQ(L1, L2,m1,m2) and therefore,
by Theorem 1 (r1 and r2 are left-linear), α is an instance of a unifier σ ∈
UNIF(EQ(L1, L2,m

′
1,m

′
2)) such that α = λ ◦ σ where λ is some assignment.
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Next we construct the symbolic critical pair T1 ⇐ S ⇒ T2. The graphs have
the same node/edge sets as Q1 ⇐ P ⇒ Q2 but different labels. First, instantiate
L1 and L2 via σ to obtain graphs Lσ

1 and Lσ
2 . Then define S = m′

1(L
σ
1 )∪m′

2(L
σ
2 ).

This definition is sound because σ is a unifier. It is easy to show that P ∼= Sλ

using α = λ ◦ σ.

Sλ ∼= P

S

Lσ
1Kσ

1Rσ
1

L1K1R1

Lα
1σσ σ

α

λ

O1T1

N1Q1

λ

m′
1

λ

(9)

λ

(10)

Fig. 7. Construction of S ⇒ T1.

We proceed by constructing the derivation S
r1,m′

1,σ
=⇒ T1 - the double-pushout

is (9 + 10) of Fig. 7 together with the instantiation squares right above it. The
same construction is applied to obtain S ⇒ T2. By Definition 2, it follows that

T1
r1,m′

1,σ⇐= S
r2,m′

2,σ
=⇒ T2 is a symbolic critical pair – (m′

1,m
′
2) are jointly surjective,

σ is a unifier, and it can be shown the derivations are in conflict since Q1 ⇐
P ⇒ Q2 is in conflict. ��

Example of completeness. Consider the pairs of derivations in Figs. 3, 4 and 5.
They form the layers of the diagram in Theorem 3. The morphism e : P → G is
an inclusion where G contains the extra edge from node 1 to 3. The assignment
λ linking the symbolic critical pair to its instance is λ = {x1 → 1, y1 → 2, y2 →
3, a1 → 4, a2 → 5}.

7 Conclusion and Future Work

We have presented the foundations of critical pair analysis for the graph pro-
gramming language GP 2. Our goal is to develop a static checker that can verify
or refute confluence (functional behaviour) for a large class of graph programs.
We have introduced symbolic critical pairs of GP 2 rule schemata, which are
labelled with expressions, and established the completeness and finiteness of the
set of symbolic critical pairs over a finite set of rule schemata. We have given a
procedure for constructing that set.

We are currently working on proving the Local Confluence Theorem for GP 2,
which establishes local confluence of sets of rule schemata for the case that all
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symbolic critical pairs are strongly joinable. The precise definition of joinabil-
ity is an interesting problem from an algorithmic point of view, and so is the
development of a procedure that determines program confluence by analysing
critical pairs. Another interesting topic is the role of SMT solvers for deciding
label equivalences and implications in the context of isomorphism checking and
joinability analysis.
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detection for graph transformation with attributes. In: Proceedings of Graphs as
Models, GaM 2015, EPTCS, vol. 181, pp. 97–112 (2015). https://doi.org/10.4204/
EPTCS.181.7

15. Plump, D.: Confluence of graph transformation revisited. In: Middeldorp, A., van
Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles:
Steps on the Road to Infinity. LNCS, vol. 3838, pp. 280–308. Springer, Heidelberg
(2005). https://doi.org/10.1007/11601548 16

16. Plump, D.: The design of GP 2. In: Proceedings of International Workshop on
Reduction Strategies in Rewriting and Programming, WRS 2011, EPTCS, vol. 82,
pp. 1–16 (2012). https://doi.org/10.4204/EPTCS.82.1

https://www.cs.york.ac.uk/plasma/publications/pdf/HristakievPlump.WADT16.Long.pdf
https://www.cs.york.ac.uk/plasma/publications/pdf/HristakievPlump.WADT16.Long.pdf
https://doi.org/10.4204/EPTCS.181.7
https://doi.org/10.4204/EPTCS.181.7
https://doi.org/10.1007/11601548_16
https://doi.org/10.4204/EPTCS.82.1


Canonical Selection of Colimits

Till Mossakowski1(B), Florian Rabe2(B), and Mihai Codescu3(B)

1 Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
till@iws.cs.uni-magdeburg.de

2 Jacobs University Bremen, Bremen, Germany
f.rabe@jacobs-university.de

3 Free University of Bozen-Bolzano, Bolzano, Italy
Mihai.Codescu@unibz.it

Abstract. Colimits are a powerful tool for the combination of objects
in a category. In the context of modeling and specification, they are used
in the institution-independent semantics (1) of instantiations of parame-
terised specifications (e.g. in the specification language CASL), and (2)
of combinations of networks of specifications (in the OMG standardised
language DOL).

The problem of using colimits as the semantics of certain language
constructs is that they are defined only up to isomorphism. However, the
semantics of a complex specification in these languages is given by a sig-
nature and a class of models over that signature – not by an isomorphism
class of signatures. This is particularly relevant when a specification with
colimit semantics is further translated or refined. The user needs to know
the symbols of a signature for writing a correct refinement.

Therefore, we study how to usefully choose one representative of the
isomorphism class of all colimits of a given diagram. We develop crite-
ria that colimit selections should meet. We work over arbitrary inclusive
categories, but start the study how the criteria can be met with Set-like
categories, which are often used as signature categories for institutions.

1 Introduction

“Given a species of structure, say widgets, then the result of interconnect-
ing a system of widgets to form a super-widget corresponds to taking the
colimit of the diagram of widgets in which the morphisms show how they
are interconnected.” [7]

Motivation. The notion of colimit provides a natural way to abstract the idea
that some objects of interest, which can be e.g. logical theories, software spec-
ifications or semiotic systems, are combined while taking into account the way
they are related. Specification languages whose semantics involves colimits are
CASL [16] (for instantiations of parameterised specifications) and its extension
DOL (see [14,17] and http://dol-omg.org) (for combination of networks of spec-
ifications). Specware [24] provides a tool computing colimits of specifications

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
P. James and M. Roggenbach (Eds.): WADT 2016, LNCS 10644, pp. 170–188, 2017.
https://doi.org/10.1007/978-3-319-72044-9_12
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that has been successfully used in industrial applications; [22] makes a strong
case for the use of colimits in formal software development. The Heterogeneous
Tool Set (HETS, [13]) also supports the computation of colimits, covering even
the heterogeneous case [4]. Colimits have been used for ontology alignment [25]
and database integration [21]. Recently, colimits have provided the base mecha-
nism for concept creation by blending existing concepts [10]. Moreover, colimits
provide the basis for a good behaviour of parameterisation in a specification
language [6].1

The problem that arises naturally when using colimits is that they are not
unique, but only unique up to isomorphism. By contrast, the semantics of a
specification involves a specific signature, which must be selected from this iso-
morphism class. Also, any implementation of colimit computation in a tool must
make an according choice of how the colimiting object actually looks, in particu-
lar when it comes to the names of its symbols. Otherwise, users have no control
over the well-formedness of further specifications built from the colimit: Refer-
ring to symbols of the colimit is only possible with knowledge about the actual
symbol names appearing in the colimit. To be useful in practice, it is desirable
that such a choice appears natural to the user. For example, the names of original
symbols should be preserved whenever possible.

Contribution. Our contribution is two-fold. Firstly, we develop a suite of prop-
erties that can be used to evaluate and classify different colimit selections. All of
these are motivated by the desire that parameterisation and combination of net-
works enjoy good properties. We show that these properties, although all desir-
able, cannot be realised at once. Secondly, we give solutions for systematically
selecting colimits in various signature categories that provide good trade-offs
between these conflicting properties.

Related work. The semantics of CASL [1,12] provides some method for the
computation of specific pushouts. However, the chosen institutional framework
(institutions with a lot of extra infrastructure) is rather complicated, while we
use the much more natural framework of inclusive categories. Moreover, desir-
able properties of pushouts are only discussed casually. Rabe [18] discusses three
desirable properties of selected pushouts and conjectures that they are not recon-
cilable. We shed light on this conjecture and provide a total selection of pushouts,
while [18] only provides a partial selection. In the context of Specware, colimits
are computed as equivalence classes [22]. The systematic investigation of selected
colimits (i.e. beyond pushouts) is new to our knowledge.

Overview. In Sect. 2, we recall some preliminaries as well as language constructs
from CASL and DOL that involve colimits in their semantics. Then we develop
criteria for elegant colimit selection in Sect. 3. In Sect. 4, we give colimit selections
for various categories. We will also see that not every category admits a selection

1 When we use the term specification, our theory applies equally to ontologies and
models, provided these have a formal semantics as theories of some institution.



172 T. Mossakowski et al.

that satisfies all desirable properties. Therefore, we pursue a second goal in
Sect. 5, namely to find useful categories for which we can give particularly elegant
selections.

Some proofs have been omitted here. They were available during review. The
full version of the paper can be found under https://arxiv.org/abs/1705.09363.

2 Preliminaries

2.1 Categories with Symbols

The large variety of logical languages in use can be captured at an abstract level
using the concept of signature categories. The objects of such a category are
signatures which introduce syntax for the domain of interest, and the signature
morphisms capture relations between signatures such as changes of notation,
extensions, or translations. For example, signature categories feature heavily in
the framework of institutions [8], where they are the starting point for abstractly
capturing the semantics of logical systems and developing results independently
of the specific features of a logical system.

In institutions and similar frameworks, the signature category is abstract, i.e.,
it is an arbitrary category. In practice, some properties of signature categories
have emerged that are satisfied by the over-whelming majority of logical systems,
and that are very helpful for establishing generic results.

For colimits, two properties are particularly important:

Definition 1 [3]. An inclusive category consists of a category C with a broad
subcategory2 that is a partially ordered class.

The morphisms of the broad subcategory are called inclusions, and we write
A ↪→ B if there is an inclusion from A to B. We denote the (quasi-)category of
inclusive categories and inclusion preserving functors by ICat.

In particular, Set is an inclusive category via the standard inclusions A ↪→ B iff
A ⊆ B. Arbitrary categories can be recovered by using the identity relation as
the partial order.

Definition 2. An (inclusive) category with symbols consists of an (inclusive)
category C and an (inclusion-preserving) functor | | : C → Set We call |A| the
set of symbols of A.

In particular, Set is an inclusive category with symbols via |A| = A.
The intuition behind these definitions is that very often signatures can be

seen as sets of named declarations. Then the subset relation defines the inclusion
relation, and the names of the declarations define the set of symbols.

Signature categories are usually such that signatures that differ only in the
choice of names are isomorphic. Then a key difficulty about colimits lies in
selecting the set of names to be used in the colimit.3

2 That is, with the same objects as C.
3 For inclusive categories for which the symbol functor uniquely lifts colimits, solving

colimit selection for Set already suffices. However, the inclusive categories studied in
Sect. 4.3 typically do not enjoy this property.

https://arxiv.org/abs/1705.09363
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2.2 Specification Operators with Colimit Semantics

The power of the abstraction provided by institutions and related systems is best
illustrated by the fact that languages like CASL and DOL provide syntax and
semantics of specifications in an arbitrary institution. This is done by defining
operators on specifications and morphisms.

A basic specification consists of a signature and a set of sentences4—called the
axioms—over it. A kernel language of specification operators has been introduced
in [19]. It includes union, renaming and hiding. CASL and DOL provide many
further constructs.

The semantics of many of these operators can be defined as the colimit of a
certain diagram. Therefore, such operators are often defined only up to isomor-
phism. In the sequel we recall important examples from CASL (parameterisa-
tion) and DOL (combination of networks).

Parametrisation. Many specification languages, including CASL, allow specifi-
cations to be generic. A generic specification consists of a (formal) parameter
specification P and a body specification B extending the formal parameter, i.e.
P ↪→ B. We make P explicit by writing B[P ].

A typical example is the specification List [Elem] for lists parametrised by
the specification Elem which declares a sort elem.

Given an actual parameter specification A and a specification morphism σ :
P → A, we write the instantiation of B[P ] with A via σ as B[Afitσ]. Its semantics
is given by the pushout on the left below:

P
� � ��

σ

��

B

��
A

� � �� B[A fit σ]

e.g.
Elem � � ��

σ

��

List [Elem]

��
Nat � � �� List [Nat fit elem �→ nat]

The right hand side above gives a typical example where the specification
Nat declares a sort nat that is used to instantiate the sort elem. Note that the
above is also an example of how a pushout of an inclusion can often be selected
as an inclusion again. We will get back to that in Definition 12.

A natural requirement is that the instantiated body B[A fit σ] extends the
actual parameter A in much the same way as the body B extends the formal
parameter P . For example, a sort list introduced in the specification List should
be kept (and not renamed) within the instantiation List [Nat fit elem �→ nat].
Technically, this means that the semantics should not be an arbitrary colimit.
Similarly, the user would expect that any symbols declared in the body should
appear verbatim in the instantiated body, unless they have been renamed by σ.

4 It is straightforward but not essential here to make the notion of sentence precise.
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Networks of Specifications. In DOL, a network of specifications (called distrib-
uted specification in [15]) is a graph. Its nodes are labelled with pairs (O,SP )
where SP is a specification and O its name. The edges are theory morphisms
(O1, SP1)

σ→ (O2, SP2), either induced by the import structure of the specifica-
tions, or by refinements.

network N =

N1, . . . , Nm,
O1, . . . , On,
M1, . . . , Mp

A network is specified by giving a list of specifications Oi,
morphisms Mi between them and sub-networks Ni, with the
intuition that the graph of the network is the union of the
graphs of all its elements.

Now the operator combine takes a network and produces the specification
given by the colimit of the graph.

Example 1. In the example below, the network N3 consists of the nodes S, T2,
and U2 and two automatically added edges, which are the inclusions from S to
T2 and U2. Thus, N3 is a span, and combine N3 yields its pushout. Indeed,
both occurrences of sort s from S are identified in the pushout.

In the network N4, we exclude one of the automatically added inclusions.
Thus, N4 is a graph with one isolated node for T2 and one inclusion edge from
S to U2. combine N4 yields the disjoint union of T2 and U2. That means that
the two occurrences of sort s from S are kept seperate.

spec S = sort s end

spec T2 = S then sort t end

spec U2 = S then sort u end

network N3 = S, T2, U2 end

network N4 = N3 excluding S -> T2 end

3 Desirable Properties of Colimit Selections

The central definition regarding colimit selection is the following:

Definition 3. Given a category C, a selection of colimits is a partial function
sel from C-diagrams D to cocones on D such that sel(D), if defined, is a colimit
for D. If sel is only defined for pushouts, we speak of a selection of pushouts,
and so on.

While it is trivial to give some selection of colimits (e.g., by using the axiom
of choice or by randomly generating names), it turns out that selecting colim-
its elegantly is a non-trivial task. For example, selecting a colimit may require
inventing new names, or there can be multiple conflicting strategies for selecting
names. [18] conjectures that it is not possible to select pushouts in a way that
the selected pushouts are total, coherent, and enjoy natural names.

In this section, we introduce a suite of criteria for colimit selection. We work
with an arbitrary inclusive category C with symbols.
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3.1 Symbols of a Diagram

We are interested in selecting a colimit (C, μi) for a diagram D : I → C. In
most practically relevant signature categories, the construction of a colimit can
be reduced to the construction of the colimit in Set of the corresponding sets of
symbols. Because the colimit in Set amounts to taking a quotient of a disjoint
union, we introduce the following auxiliary concept:

Definition 4 (Symbols of a Diagram). Given a diagram D : I → C, we
define the set Sym(D) by

Sym(D) :=
⊎

i∈|I|
|D(i)| := {(i, x) | i ∈ I, x ∈ |D(i)|}.

Moreover, we define the preorder ≤D on Sym(D) by

(i, x) ≤D (j, |D(m)|(x)) for any m : i → j ∈ I.

and we define ∼D to be the least equivalence relation containing ≤D.
Given any colimit (C, μi) of D, we embed Sym(D) into |C| by defining

μD(i, x) := |μi|(x)

Intuitively, Sym(D) contains the symbols of all nodes of D. ∼D defines which
symbols must definitely be identified in the colimit:

Proposition 1. ∼D is a subset of the kernel of μD.

Proof. This follows from μ being a cocone. �	
In some categories such as Set, we even have ∼D= ker(μD).

In principle, a natural property to desire of the selected colimit is that
|sel(D)| is a quotient of Sym(D), in particular |sel(D)| = Sym(D)/ ∼D if
∼D= ker(μD). However, that is often impractical, e.g., in the typical case where
|Σ| is intended to be a set of strings that serve as user-friendly names. In par-
ticular, we do not want to see the indices i ∈ I creep into the symbol names in
|sel(D)|. Therefore, we define:

Definition 5 (Names and Name-Clashes). For every equivalence class X ∈
Sym(D)/ ∼D, let Nam(X) = {x|(i, x) ∈ X}.

We say that D is name-clash-free if the sets Nam(X) are pairwise disjoint
for all X. We say that D is fully-sharing if additionally all sets Nam(X) have
size 1.

Intuitively, name-clash-freeness means that whenever two nodes use the same
symbol x, the diagram requires these two symbols to be shared in the colimit.
An example will be given in Example 2 below. A particularly common special
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case arises when both nodes import x from the same node. The following makes
that precise:

Proposition 2. Consider a diagram D : I → C. Assume that for all (i, x), (j, x)
∈ Sym(D) there are (k, y) ∈ Sym(D) and m : k → i and n : k → j in I such
that |m|(y) = |n|(y) = x.

Then D is name-clash-free. If additionally all edges in D are inclusions, D
is fully-sharing.

The value of name-clash-freeness is the following: for the colimit, we can
pick symbols that were already present in D. This allows selecting a colimit
whose symbol names are inherited from the diagram (and thus already known
to the user who requested the colimit). Moreover, if D is fully-sharing, these
representatives are uniquely determined.5

3.2 Properties of Colimit Selections

Being thus prepared, we can now define a number of desirable properties that
make a particular selection sel of colimits elegant.

The most obviously desirable property is that we select a colimit whenever
we can:

Definition 6 (Completeness). sel is complete if it is defined for every dia-
gram that has a colimit.

Choosing Symbols. Typically, we cannot simply choose |sel(D)| =
Sym(D)/ ∼D because the choice of symbols is restricted:

Definition 7 (Name-Compliance). Let Symbols be some subcategory of Set.
We call an object Σ Symbols-compliant if |Σ| ∈ Symbols. A diagram is
Symbols-compliant if all involved objects are.

sel preserves Symbols-compliance if sel(D) is Symbols-compliant when-
ever D is.

In practical systems, symbols must be chosen from a fixed set S, e.g., the
set of alphanumeric strings. In that case, Symbols contains all sets that are
subsets of S. If we want a compliance-preserving colimit selection, we have to
pick names from S—that can be much more difficult to do canonically than to
pick arbitrary symbols.

It is easy to select colimits by picking arbitrary symbols, e.g., by generating
a fresh string as the name of any new declaration. But that is undesirable—it
is preferable that the symbols of sel(D) are inherited from D in the following
sense:

5 CASL has a mechanism of “compound identifiers” that ensures name-clash-freeness
in multiple instantiations of parametrised specifications, such as List[List[Elem]],
see [16], p.47f. and p.224f.
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Definition 8 (Natural Names). sel has natural names if for every name-
clash-free diagram D, the selected colimit sel(D) = (C, μi) is such that

– |C| contains exactly one representative r ∈Nam(X) for every equivalence
class X,

– |μi| maps every x to the respective representative r.

Note that if D is fully-sharing, natural names fully determine |C|. For the
general case, we have to choose some r for each equivalence class. There are
multiple options for making that choice canonical. For example:

Definition 9 (Origin-Based Names). Let sel have natural names.
sel has origin-based symbol names if for every class X the chosen represen-

tative r is such that there is some i such that (i, r) is minimal in X with respect
to ≤D.

Definition 10 (Majority-Based Names). Let sel have natural names.
sel has majority-based symbol names if for every class X the chosen repre-

sentative x maximizes the cardinality of {i ∈ I|(i, x) ∈ X}.
Accordingly, sel has majority-origin-based symbol names if the above cardi-

nality function is used to choose among multiple minimal elements.

Example 2. Consider a span D consisting of A
α← P

β→ B. We consider multiple
situations given by the rows of the following table:

|P | |A| |B| |α| |β|
1 {} {x} {x}
2 {p} {a, a′} {b, b′} p �→ a p �→ b

3 {p, p′} {a} {p, p′} p �→ a, p′ �→ a p �→ p, p′ �→ p′

4 {elem} {nat, +} {elem, list} elem �→ nat elem �→ elem

Depending on the situation, different colimit selections are possible:

1. The diagram is not name-clash-free, and we cannot inherit names.
2. The diagram is name-clash-free but not fully sharing. The sets Nam( ) are

{p, a, b}, {a′}, and {b′}. Thus, there are three possible colimits that have
natural names. All three satisfy the majority condition. The origin condition
allows uniquely selecting |sel(D)| = {p, a′, b′}.

3. The only set Nam( ) is {p, p′, a, p, p′} (where we repeat elements to indicate
how often they occur in the corresponding equivalence class). We can have
natural names, but neither majority nor origin yield a unique choice.

4. This is a typical case of instantiating a parametric specification (here: lists
with a parameter for the type of elements) with an actual parameter (here: the
set of natural numbers). The sets Nam(−) are {elem, elem, nat}, {list}, and
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{+}. We can have natural names, and both origin and majority uniquely yield
|sel(D)| = {elem,+, list}. However, neither is elegant: The desired choice
would be {nat,+, list}.

P
� � ��

σ

��

B

A

Pushouts Along Inclusions. Pushouts along inclusions are of
particular importance because they provide the semantics of para-
metrization. As in Sect. 2.2, D is a diagram as given on the right.

The following property is motivated by the desire that instan-
tiating parameterised specifications should always be defined:

Definition 11 (Total pushouts). sel has total pushouts if it is defined for
all spans where one arrow is an inclusion.

Moreover, it is desirable that the instantiation extends A in the same way in
which P extends B. The following definitions make this precise:

Definition 12 (Pushout-Stable Inclusions). Let sel have total pushouts.
sel has pushout-stable inclusions if the pushout selection preserves the inclu-

sion, i.e., sel(D) is of the form

P
� � ��

σ

��

B

σB

��
A

� � �� σ(B)

Definition 13 (Pushout-Stable Names). Let sel have pushout-stable inclu-
sions.

sel has pushout-stable names if for every selected pushout

P
� � ��

σ

��

B

σB

��
A

� � �� σ(B)

|P | � � ��

|σ|
��

|B|
|σB |

��
|A| � � �� |σ(B)|

we have |σ(B)|\|A| = |B|\|P | and |σB | is the identity on that set.

The aim of pushout-stable inclusions is that we can have

– (vertically) B as a functor (P ↓ C) → (B ↓ C),
– (horizontally) σ( ) as functor (P ↓ C) → (A ↓ C) mapping extensions of P

to extensions of A.

However, in general, the functoriality laws only hold up to isomorphism. There-
fore, we want to impose an additional condition, which is adapted from [18]:
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Definition 14 (Coherent Pushouts). Let sel have pushout-stable inclusions.
Then sel has coherent pushouts if the following coherence conditions hold:

1. idP (B) = B and idB
P = idB,

2. σ(P ) = A and σP = σ,
3. (σ1;σ2)(B) = σ2(σ1(B)) and (σ1;σ2)B = σB

1 ;σσ1(B)
2 and finally

4. for P ↪−→ B1 ↪−→ B2, σ(B2) = σB1(B2) and σB2 = (σB1)B2

where two conditions refer to the following diagrams

P
� � ��

σ1

��

B

σB
1

��
(σ1;σ2)

B

���
��

��
��

��
��

��
��

��
�

A
� � ��

σ2

��

σ1(B)

σ
σ1(B)
2

��
A′ � � �� σ2(σ1(B)) (σ1;σ2)(B)

P
� � ��

σ

��

B1
� � ��

σB1

��

B2

σB2

��

(σB1 )B2

������������

A
� � �� σ(B1)

� � �� σ(B2) σB1(B2)

and ensure that pushouts compose vertically and horizontally.

Coherence. The coherence conditions for pushouts can be generalized to arbi-
trary diagrams. The general idea is that if there are multiple ways to construct
a colimit step-by-step, then it should not matter in which order the construc-
tion proceeds. Here step-by-step means that we first construct a colimit of a
subdiagram of D and then add that colimit to D and construct a colimit of the
resulting bigger diagram, and so on.

A formal definition for the general case is rather difficult. The following
special case is adapted from [2]:

Definition 15 (Interchange). sel has interchange if given a name-clash-free
diagram D : I × J → C (seen as a bifunctor) involving inclusions only

seli∈I(selj∈JD(i, j)) = selj∈J(seli∈ID(i, j))

With an isomorphism instead of equality, this condition always holds.
To state the coherence condition in full generality, we need a few auxiliary

definitions:

Definition 16. Consider a category I with an object i such that every I-object
has at most one arrow into i.

We write I\i for the subcategory of I formed by removing i. We write I→i

for the subcategory of I formed by removing i and all nodes that have no arrow
into i. For a diagram D : I → C, we write D\i and D→i for the corresponding
restrictions of D.

We say that i is a colimit node of D if D(i) and the set of all morphisms
D(m) for I-arrows m into i are a colimit of D→i. If additionally that colimit is
equal to sel(D→i), we call i a sel-colimit node.
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The intuition behind colimit nodes is that they arise by taking a colimit of a
subdiagram and can be ignored when forming a colimit of the entire diagram. For
example, in the two commuting diagrams of Definition 14, the nodes σ1(B) and
σ(B1) are colimit nodes. They arise as the intermediate results of constructing
the pushout in two steps. In general, they arise when constructing a colimit
step-by-step:

Proposition 3. Consider a diagram D : I → C with a colimit node i. Then D
and D\i have the same colimits.

Proof. For every D-colimit we obtain a D\i-cone by removing the injection from
i. Vice versa, every D\i-colimit (C, μ) can be uniquely extended to a D-cone with
the unique factorization μi : D(i) → C for the colimit D(i).

In both cases, the colimit properties are shown by diagram chase. �	
Now we can define that coherence means that we can indeed ignore colimit

nodes when selecting a colimit:

Definition 17. sel is coherent for the diagram D if for every sel-colimit node i
we have that sel(D) and sel(D\i) are equal (apart from the former additionally
containing the uniquely determined injection μi).

By iterating the coherence property, we can remove or add sel-colimit nodes
from/to a diagram without affecting the selected colimit.

4 Colimit Selections for Typical Signature Categories

4.1 Sets

As the simplest possible signature category, we consider the category Set (with
standard inclusions and the identity symbol functor).

We first provide a positive result that gives a large sets of desirable properties
that can be realised at once:

Theorem 1. Set has a selection of colimits that has completeness, pushout-
stable inclusions, total pushouts, interchange, and majority-origin-based names.

Moreover, for name-clash-free diagrams, this selection has natural names,
pushout-stable names, coherent pushouts.

Proof. (Sketch) If name-clash-freeness is satisfied and the diagram consists of
inclusions only, just take the union as colimit, which ensures that interchange
holds.

Given a span B
ι←−↩ P

σ→ A with σ not an inclusion, let σ(B) := A ∪ (B\A) ∪
B′, where κ : B′ ∼= (B ∩ A)\P such that B′ ∩ (A ∪ (B\A)) = ∅. Define

P
� � ι ��

σ

��

B = P ∪ (B\P )

σB=σ∪θ

��
A

� � �� σ(B) = A ∪ ((B\(P ∪ A)) ∪ B′)
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where θ : B\P → (B \ (P ∪ A)) ∪ B′ is given by

θ(x) =
{

κ−1(x), if x ∈ (B ∩ A)\P
x, if x ∈ B\(P ∪ A) .

If D is a name-clash-free diagram not of the above forms, define its colimit
(C, (μi)i∈|I|) as follows. C is defined by selecting from each equivalence class
X ∈ Sym(D)/ ∼D a representative r(X) ∈ Nam(X) and for each index i, and
each (i, x) ∈ X, we define μi(x) = r(X). Use the majority-origin principle. If
that does not determine a representative, select one of the candidates randomly.

Finally, for an arbitrary non name-clash-free diagram, select an arbitrary
colimit, ensuring completeness. �	

Second, we provide a negative result that gives a small set of desirable prop-
erties that cannot be realised at once:

Theorem 2. Set does not have a selection that has total pushouts, pushout-
stable inclusions and names, and coherent pushouts.

Theorem 1 shows that in Set, we can realise several criteria for colimit selec-
tion we have defined so far.

Regarding the choice of names in Theorem 1, we cannot expect to achieve
origin-based and majority-based names. In fact, one can show that pushout-
stable inclusions and names contradict the origin and majority properties. More-
over, it is evident that origin and majority can contradict each other. Con-
sider e.g.

{a} ��

��

{b}

��
{b} �� {x}

Origin would lead to x = a, while majority would lead to x = b.
Nevertheless, the property of origin-majority-based names is useful to guide

the pushout selection in cases where the other properties do not determine names
uniquely.

4.2 Product Categories

Signatures of many logical systems of practical interest are often tuples of sets
of symbols of different kind. For example, OWL signatures consist of sets of
atomic classes, individuals, object and data properties. To be able to transfer
the selection of colimits and its properties defined for Set to categories of tuples
of sets, we make use of a more general result that ensures that the selection of
colimits and its properties are stable under products.
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Theorem 3. Let (Cj)j∈J be a family of inclusive categories with symbols and
assume selections of colimits selj that have the properties in Theorem1 or
Theorem1. Then the product Πj∈JCj can be canonically turned into an inclu-
sive category with symbols that also has a selection of colimits sel with the same
properties.

Example 3. In the case of multi-sorted logics with function or predicate symbols,
we can define a selection function for colimits in a step-wise manner. Let us
consider the case of multi-sorted equational logic, that we denote EQL. If we fix
a set of sorts S, let SignEQL

S be the category of multi-sorted algebraic signatures
with sort set S. We can express it as

SignEQL
S = Πw∈S∗,s∈S Set.

Objects of this category provide a set of operation symbols Fw,s for each string
of argument sorts w and result sort s. With the canonical lifting of the sym-
bol functors of the factors (all of which are the identity on Set) to this prod-
uct, we obtain the symbol functor on SignEQL

S given by | | =
⊎

i∈J |πj( )|,
which decorates each operation symbol with argument and result sorts. We write
f : w → s ∈ |F | instead of ((w, s), f) ∈ |F |.

4.3 Split Fibrations

Theorem 3 gives us a selection of colimits for SignEQL
S . However, our overall goal

is to provide such a selection for SignEQL. Now SignEQL is a split fibration
SignEQL → Set, with fibres SignEQL

S . It is well-known that a split fibration can
be obtained as Grothendieck construction (flattening) of an indexed category
indexing the fibres. Hence, we will construct such an indexed category for EQL.
This is achieved by observing that each function u : S → S′ leads to a functor
Bu : SignEQL

S′ → SignEQL
S defined as Bu(F ′) = F , where Fw,s = F ′

u(w),u(s).

This functor has a left adjoint denoted Lu : SignEQL
S → SignEQL

S′ defined as
Lu(F ) = F ′, where F ′

w′,s′ = �w∈S∗,s∈S,u(w)=w′,u(s)=s′Fw,s.
We thus obtain an indexed inclusive category B : Setop → ICat, and it

suffices to show that the selection of colimits and its properties are stable under
the Grothendieck construction (flattening, see [23]).

Theorem 4. Let B : Indop → ICat be an indexed inclusive category (where
Ind is inclusive itself) such that

– B is locally reversible, i.e. for each u : i → j in Ind, Bu : Bj → Bi has a
selected left adjoint Fu : Bi → Bj (note that we do not require coherence of
the Fu),

– Ind has a selection of colimits selInd,
– each category Bi has a selection of colimits seli, for i ∈ |Ind|.

Then the Grothendieck category B# is itself an inclusive category.6

6 Note that this construction extends to institutions, yielding Grothendieck institu-
tions, see [5].
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Theorem 5. Under the assumptions of Theorem4, let (| |θ) : B → IndSet be
a (faithful inclusive) oplax indexed functor (where IndSet : Indop → ICat is the
constant functor delivering Set).

This amounts to, for each Bi, a (faithful inclusive) symbol functor | |i : Bi →
Set, and for each u : i → j, θu : Bu; | |i → | |j a natural transformation, such
that the θu are coherent.

Then B# can be equipped with a symbol functor as well.

Proof. Define |(i, Ai)| = |i| � |Ai|i, and |(u : i → j, σ)| = |u| � (|σ|i; (θu)Aj
). �	

Theorem 6. Under the assumptions of Theorems 4 and 5, extended by:

– Fu preserves inclusions, and moreover,
– the unit and counit of the adjunction are inclusions.

If Ind and each Bi have colimit selections enjoying the properties of Theorem1,
then so does B#.

We can apply Theorem 6 to B : Setop → ICat as defined above to obtain a
selection of colimits selEQL for EQL signatures. By the theorem, selEQL has
the properties in Theorem 1.

Example 4. We apply these result to EQL, where BS = SignEQL
S , using the

symbol functors | |S : SignEQL
S → Set (S ∈ |Set|) defined above. Given u :

S → S′, θu : Bu; | |S → | |S′ is defined as (θu)F ′ : |Bu(F ′)| → |F ′|, acting as
(θu)F ′(f : u(w) → u(s)) = f : w → s. Using Theorem 5, we obtain the usual
symbol functor for many-sorted signatures, which for any signature delivers the
set of sorts plus the set of typed function symbols of form f : w → s.

Again, the symbol selection principles of Theorem 1 carry over.

5 Categories for Improved Colimit Selection

5.1 Named Specifications

An important technique for avoiding name clashes is to use bipartite IRIs as
symbols. IRIs are Internationalized Resource Identifiers for identification per
IETF/RFC 3987:2005. Symbols using bipartite IRIs consist of

– namespace: an IRI that identifies the containing specification, usually ending
with /7

– local name: a name (not containing /) that identifies a non-logical symbol
within a specification.

Let IRI be the subcategory of Set containing only the sets of bipartite IRIs.

7 In some languages, # is used instead of/. But this has the disadvantage that, when
used as an IRL, the fragment following the # is not transmitted to servers.
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For most practical purposes, it is acceptable to restrict attention to IRI-
compliant signatures. For example, DOL (in accordance with many other lan-
guages) strongly recommends using bipartite IRIs.

Note that in an IRI-compliant signature Σ, the symbols in |Σ| may have
different namespaces. For example, in DOL, namespaces M serve as the identi-
fiers of basic specifications Σ, and then symbols in |Σ| are of the form M/sym.
But when a specification N imports M , (see Sect. 2.2), the namespace M of
the imported symbols is retained and only new symbols declared in N use the
namespace N .

The main advantage of using IRIs is that specifications (and thus the symbols
in them) have globally unique names [9]. That makes name clashes much less
common:

Proposition 4. Consider a set of basic signatures with pairwise different
namespaces. Then diagrams generated by networks consisting only of IRI-
compliant basic specifications and imports are fully-sharing.

Proof. Because basic specifications have unique identifiers, the result follows
immediately from Proposition 2. �	
In practice, the assumptions of Proposition 4 quite often hold, because networks
to be combined often consist of import links only.

Proposition 5. Consider Set with standard inclusions and the identity symbol
functor. The selection constructed in Theorem1 can be modified to a selection
that additionally preserves IRI-compliance.

Proof. We just need to ensure that new symbols in the colimit are of the form
N/sym for some fresh namespace N . �	

However, generating fresh namespaces interacts poorly with coherence.

5.2 Structured Symbol Names

There are essentially two problems when trying to select colimits canonically:
name clashes and ambiguous names. Intuitively, name clashes arise if we have
one name for multiple symbols. And ambiguity arises if we have multiple names
for one symbol. If neither is the case, named specifications are usually sufficient
to obtain canonical colimits.

Our goal now is to handle name clashes and ambiguity. We introduce a
subcategory Vocab of Set and focus on Vocab-compliance-preserving colimits.
We want to pick Vocab in such a way that we can select canonical colimits
elegantly.

To motivate the following definition of Vocab, let us look again at the causes
behind name clashes and ambiguity. Name clashes arise if the same node name
occurs multiple times in a diagram. For example, consider two nodes i and j
(without any arrows) and |D(i)| = {a} and |D(j)| = {a}. (This occurs, for
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example, when taking the disjoint union of the set {a} with itself.) Because this
diagram is not name-clash-free, we cannot have natural names in the colimit.
Our solution below introduces qualifiers that create two copies p/a and q/a of
the clashing name a.

Ambiguity arises if a diagram contains a non-inclusion arrow. For example,
consider m : i → j, and |D(i)| = {a} and |D(j)| = {b} and |D(m)|(a) = b. ∼D

has one equivalence class, which contains (i, a) and (j, b). In Sect. 3.2, we focused
on choosing either a or b as a natural name in the colimit. Our solution here
retains both names and chooses the set {a, b} as a symbol in the colimit.

Because colimits can be iterated, Vocab must allow for any combination of
those two constructions. That yields the following definition:

Definition 18 (Structured Symbols). We assume a fixed set Name of
strings (which we call names).

We write QualName for the set of lists of names (which we call qualified
names). We assume Name ⊂ QualName, and we write nil for the empty list
and p/q for the concatenation of lists.

A structured symbol is a set of qualified names.
A vocabulary V is a set of pairwise disjoint structured symbols. We write

V for
⋃

S∈V S, and for every s ∈ V we write [s] for the unique S ∈ V such that
s ∈ S.

We write Vocab for the full subcategory of Set containing only the vocabu-
laries.

The operation [s] is crucial: It allows us to use any s ∈ S ∈ V as a represen-
tative for S. Thus, in order to use structured symbols, we do not have to change
our external (human-facing) syntax: Users can still write and read s. We only
have to change our internal (machine-facing) syntax by maintaining the set S.

Vocab is an inclusive category with symbols (using the same symbol functor
as for Set). As we see below, it allows for good colimit selections. But the symbols
used in the symbol functor cannot be strings anymore: they are sets of lists of
strings.

Above we left open the question where the qualifiers come from that we use
to disambiguate name clashes. It would not be acceptable to use the indices from
I as qualifiers because they are arbitrary and not visible to the user. Instead, we
assume that the user has provided qualifiers by assigning labels to some nodes
in the diagram:

Definition 19 (Labeled Diagram). A labeled C-diagram (D,L) consists of a
diagram D : I → C and a function L from I-objects to Name ∪ {nil}.

L can be a partial function because we only need to label those nodes that
are involved in name clashes. However, it is more convenient to make L a total
function by assuming that all unlabeled nodes are labeled with the empty list
nil.

Similar to Definition 4, we define the symbols of a labeled diagram:
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Definition 20 (Symbols of a Labeled Diagram). Let (D : I → Vocab, L)
be a labeled diagram over Vocab. We define:

Sym(D,L) = {(i, L(i)/x) | i ∈ I, x ∈ D(i)}

(i, L(i)/x) ≤DL (j, L(j)/y) if for some m : i → j ∈I,D(m)(S) = T, x∈S, y∈T

∼DL is the equivalence relation on Sym(D,L) generated by ≤DL.
For every X ∈ Sym(D,L)/ ∼DL, let Nam(X) = {q | (i, q) ∈ X}. We say

that (D,L) is name-clash-free if the sets Nam(X) are pairwise disjoint.

Every plain diagram can be seen as a labeled diagram by using L(i) = nil
for all i. In that case, the definition of name-clash-free of Definition 20 coincides
with the one from Definition 5.

We can now see the power of structured symbols by giving a selection of
colimits in Vocab:

Theorem 7 (Colimits of Vocabularies). Let (D,L) be a name-clash-free
labeled diagram. Then

– the set sel(D,L) defined by {Nam(X) | X ∈ Sym(D,L)/ ∼DL} is a vocab-
ulary,

– the maps μi : D(i) → sel(D,L) defined by μi([x]) = [L(i)/x] are well-defined.

Then sel(D,L) and the μi form a colimit of D.

sel does not exactly have the desirable properties described in Sect. 3.2. But
it has variants of them, which is why we recommend sel as a good trade-off:

– sel is complete in the sense that labels can be added to any diagram to obtain
name-clash-freeness.

– sel reduces to union for name-clash-free unlabeled diagrams of inclusions (and
therefore satisfies interchange).

– sel has pushout-stable inclusions for name-clash-free unlabeled diagrams A
α←

P ↪→ B in the sense that all qualified names of A are mapped to themselves
in the selected pushout.

– sel has natural names in the sense that L(i)/x can be used to identify the
corresponding symbol in the colimit, and every symbol in the colimit is of
that form.

– sel is coherent for all labeled diagrams in which all sel-colimit nodes are
unlabeled.

6 Conclusion

We have provided some useful principles for colimit selection, and studied how
far these principles can be actually realised. Some principles contradict each
other, so they need to be prioritised. The overall goal is to give the user as much
control and predictability over names as possible. This is particularly important
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for languages such as CASL and DOL, providing powerful constructs for both
parameterisation and combination of networks, realised through colimits. We
have shown that our results are stable under products and Grothendieck con-
structions; hence they carry over to more complex signature categories like those
of many-sorted logics, HasCASL [20] (without subsorts) or even categories of
heterogeneous specification (which usually are also obtained via a Grothendieck
construction).

While we have worked with Set and Set-like categories, future work should
extend the results to more complex categories. E.g. the signature category of the
subsorted CASL logic cannot be obtained from Set by products and indexing;
instead some quotient construction is needed [11]. Another open question is
whether coherence for pushouts can usefully be generalised to other types of
colimit. Moreover, it also will be useful to investigate further the pros anc cons
of the different selection techniques (exploitation of name-clash-freeness versus
labeled diagrams and structured symbols) that we have discussed.

One important motivation for this work has been the need to obtain a better
theory for the implementation of colimits in Hets. Currently, the implementa-
tion follows the majority principle only, which led to complaints from the user
community, especially from the Coinvent project using colimits for conceptual
blending. In the future, this will be revised according to the results of this paper.
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Abstract. P-Store is a well-known partially replicated transactional
data store that combines wide-area replication, data partition, some fault
tolerance, serializability, and limited use of atomic multicast. In addi-
tion, a number of recent data store designs can be seen as extensions of
P-Store. This paper describes the formalization and formal analysis of
P-Store using the rewriting logic framework Maude. As part of this work,
this paper specifies group communication commitment and defines an
abstract Maude model of atomic multicast, both of which are key build-
ing blocks in many data store designs. Maude model checking analysis
uncovered a non-trivial error in P-Store; this paper also formalizes a
correction of P-Store whose analysis did not uncover any flaw.

1 Introduction

Large cloud applications—such as Google search, Gmail, Facebook, Dropbox,
eBay, online banking, and card payment processing—are expected to be available
continuously, even under peak load, congestion in parts of the network, server
failures, and during scheduled hardware or software upgrades. Such applications
also typically manage huge amounts of (potentially important user) data. To
achieve the desired availability, the data must be replicated across geographically
distributed sites, and to achieve the desired scalability and elasticity, the data
store may have to be partitioned across multiple partitions.

Designing and validating cloud storage systems are hard, as the design must
take into account wide-area asynchronous communication, concurrency, and fault
tolerance. The use of formal methods during the design and validation of cloud
storage systems has therefore been advocated recently [9,11]. In [9], engineers at
the world’s largest cloud computing provider, Amazon Web Services, describe the
use of TLA+ during the development of key parts of Amazon’s cloud infrastruc-
ture, and conclude that the use of formal methods at Amazon has been a success.
They report, for example, that: (i) “formal methods find bugs in system designs
that cannot be found though any other technique we know of”; (ii) “formal
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methods [...] give good return on investment”; (iii) “formal methods are rou-
tinely applied to the design of complex real-world software, including public
cloud services”; (iv) formal methods can analyze “extremely rare” combinations
of events, which the engineer cannot do, as “there are too many scenarios to
imagine”; and (v) formal methods allowed Amazon to “devise aggressive opti-
mizations to complex algorithms without sacrificing quality.”

This paper describes the application of the rewriting-logic-based Maude lan-
guage and tool [3] to formally specify and analyze the P-Store data store [14].
P-Store is a well-known partially replicated transactional data store that pro-
vides both serializability and some fault tolerance (e.g., transactions can be
validated even when some nodes participating in the validation are down).

Members of the University of Illinois Center for Assured Cloud Comput-
ing have used Maude to formally specify and analyze complex industrial cloud
storage systems such as Google’s Megastore and Apache Cassandra [4,8]. Why
is formalizing and analyzing P-Store interesting? First, P-Store is a well-known
data store design in its own right with many good properties that combines wide-
area replication, data partition, some fault tolerance, serializability, and limited
use of atomic multicast. Second, a number of recent data store designs can be
seen as extensions and variations of P-Store [1,2,15]. Third, it uses atomic mul-
ticast to order concurrent transactions. Fourth, it uses “group communication”
for atomic commit. The point is that both atomic multicast and group commu-
nication commit are key building blocks in cloud storage systems (see, e.g., [2])
that have not been formalized in previous work. Indeed, one of the main contri-
butions of this paper is an abstract Maude model of atomic multicast that allows
any possible ordering of message reception consistent with atomic multicast.

I have modeled (both versions of) P-Store, and performed model checking
analysis on small system configurations. Maude analysis uncovered some signifi-
cant errors in the supposedly-verified P-Store algorithm, like read-only transac-
tions never getting validated in certain cases. An author of the original P-Store
paper [14] confirmed that I had indeed found a nontrivial mistake in their algo-
rithm and suggested a way of correcting the mistake. Maude analysis of the
corrected algorithm did not find any error. I also found that a key assumption
was missing from the paper, and that an important definition was very easy to
misunderstand because of how it was phrased in English. All this emphasizes the
need for a formal specification and formal analysis in addition to the standard
prose-and-pseudo-code descriptions and informal correctness proofs.

The rest of the paper is organized as follows. Section 2 gives a background
on Maude. Section 3 defines an abstract Maude model of the atomic multi-
cast “communication primitive.” Section 4 gives an overview of P-Store. Sec-
tions 5 and 6 present the Maude model and the Maude analysis, respectively, of
P-Store, and Section 7 describes a corrected version of P-Store. Section 8 dis-
cusses some related work, and Section 9 gives some concluding remarks.

Due to space limitations, only parts of the specifications and analyses are
given. I refer to the longer report [10] for more details. Furthermore, the
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executable Maude specifications of P-Store, together with analysis commands,
are available at http://folk.uio.no/peterol/WADT16.

2 Preliminaries: Maude

Maude [3] is a rewriting-logic-based formal language and simulation and model
checking tool. A Maude module specifies a rewrite theory (Σ,E ∪ A,R), where:

– Σ is an algebraic signature; that is, a set of declarations of sorts, subsorts,
and function symbols.

– (Σ,E ∪ A) is a membership equational logic theory, with E a set of possibly
conditional equations and membership axioms, and A a set of equational
axioms such as associativity, commutativity, and identity. The theory (Σ,E∪
A) specifies the system’s state space as an algebraic data type.

– R is a set of labeled conditional rewrite rules1 l : t −→ t′ if
∧m

j=1 uj = vj
specifying the system’s local transitions. The rules are universally quantified
by the variables in the terms, and are applied modulo the equations E ∪ A.2

I briefly summarize the syntax of Maude and refer to [3] for more details. Oper-
ators are introduced with the op keyword: op f : s1 . . . sn -> s. They can have
user-definable syntax, with underbars ‘ ’ marking the argument positions, and
equational attributes, such as assoc, comm, and id, stating, for example, that
the operator is associative and commutative and has a certain identity element.
Equations and rewrite rules are introduced with, respectively, keywords eq, or
ceq for conditional equations, and rl and crl. The mathematical variables in
such statements are declared with the keywords var and vars, or can be intro-
duced on the fly having the form var : sort. An equation f(t1, . . . , tn) = t with
the owise (“otherwise”) attribute can be applied to a term f(. . .) only if no other
equation with left-hand side f(u1, . . . , un) can be applied. A class declaration

class C | att1 : s1, ... , attn : sn .

declares a class C with attributes att1 to attn of sorts s1 to sn. An object of class
C is represented as a term < O : C | att1 : val1, ..., attn : valn > of sort Object,
where O, of sort Oid, is the object’s identifier, and where val1 to valn are the
current values of the attributes att1 to attn. A message is a term of sort Msg.

The state is a term of the sort Configuration, and is a multiset made up of
objects and messages. Multiset union for configurations is denoted by a juxta-
position operator (empty syntax) that is declared associative and commutative,
so that rewriting is multiset rewriting supported directly in Maude.

The dynamic behavior of concurrent object systems is axiomatized by spec-
ifying each of its transition patterns by a rewrite rule. For example, the rule
1 An equational condition ui = wi can also be a matching equation, written ui :=wi,

which instantiates the variables in ui to the values that make ui = wi hold, if any.
2 Operationally, a term is reduced to its E-normal form modulo A before a rewrite

rule is applied.

http://folk.uio.no/peterol/WADT16
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rl [l] : m(O,w)

< O : C | a1 : x, a2 : O’, a3 : z >

=>

< O : C | a1 : x + w, a2 : O’, a3 : z >

m’(O’,x) .

defines a family of transitions in which a message m, with parameters O and w,
is read and consumed by an object O of class C, the attribute a1 of the object
O is changed to x + w, and a new message m’(O’,x) is generated. Attributes
whose values do not change and do not affect the next state of other attributes
or messages, such as a3, need not be mentioned in a rule. Likewise, attributes
that are unchanged, such as a2, can be omitted from right-hand sides of rules.

A subclass inherits all the attributes and rules of its superclasses.

Formal Analysis in Maude. A Maude module is executable under some condi-
tions, such as the equations being confluent and terminating, modulo the struc-
tural axioms, and the theory being coherent [3]. Maude provides a range of
analysis methods, including simulation for prototyping, search for reachability
analysis, and LTL model checking. This paper uses Maude’s search command

(search [[n]] t0 =>* pattern [such that cond ] .)

which uses a breadth-first strategy to search for at most n states that are reach-
able from the initial state t0, match the pattern pattern (a term with vari-
ables), and satisfy the (optional) condition cond. If ‘[n]’ is omitted, then Maude
searches for all solutions. If the arrow ‘=>!’ is used instead of ‘=>*’, then Maude
searches for final states; i.e., states that cannot be further rewritten.

3 Atomic Multicast in Maude

Messages that are atomically multicast from (possibly) different nodes in a dis-
tributed system must be read in (pairwise) the same order: if nodes n3 and n4

both receive the atomically multicast messages m1 and m2, they must receive
(more precisely: “be served”) m1 and m2 in the same order. Note that m2 may
be read before m1 even if m2 is atomically multicast after m1.

Atomic multicast is typically used to order events in a distributed system. In
distributed data stores like P-Store, atomic multicast is used to order (possibly
conflicting) concurrent transactions: When a node has finished its local execution
of a transaction, it atomically multicasts a validation request to other nodes (to
check whether the transaction can commit). The validation requests therefore
impose an order on concurrent transactions.

Atomic multicast does not necessarily provide a global order of all events.
If each of the messages m1, m2, and m3 is atomically multicast to two of the
receivers A, B, and C, then A can read m1 before m2, B can read m2 before
m3, and C can read m3 before m1. These reads satisfy the pairwise total order
requirement of atomic multicast, since there is no conflict between any pair of
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receivers. Nevertheless, atomic multicast has failed to globally order the messages
m1, m2, and m3. If atomic multicast is used to impose something resembling a
global order (e.g., on transactions), it should also satisfy the following uniform
acyclic order property: the relation < on (atomic-multicast) messages is acyclic,
where m < m′ holds if there exists a node that reads m before m′.

Atomic multicast is an important concept in distributed systems, and there
are a number of well-known algorithms for achieving atomic multicast [5]. To
model P-Store, which uses atomic multicast, I could of course formalize a specific
algorithm for atomic multicast and include it in a model of P-Store. Such a
solution would, however, have a number of disadvantages, including:

1. Messy non-modular specifications. Atomic multicast algorithms involve some
complexity, including maintaining Lamport clocks during system execution,
keeping buffers of received messages that cannot be served, and so on. This
solution could also easily yield a messy non-modular specification that fails
to separate the specification of P-Store from that of atomic multicast.

2. Increased state space. Running a distributed algorithm concurrently with P-
Store would also lead to much larger state spaces during model checking
analyses, since also the states generated by the rewrites involving the atomic
multicast algorithm would contribute to new states.

3. Lack of generality. Implementing a particular atomic multicast algorithm
might exclude behaviors possible with other algorithms. That would mean
that model checking analysis might not cover all possible behaviors of
P-Store, but only those possible with the selected atomic multicast algorithm.

I therefore instead define, for each of the two “versions” of atomic multicast,
a general atomic multicast primitive, which allows all possible ways of reading
messages that are consistent with the selected version of atomic multicast. In
particular, such a solution will not add states during model checking analysis.

3.1 Atomic Multicast in Maude: “User Interface”

To define an atomic multicast primitive, the system maintains a “table” of read
and sent-but-unread atomic-multicast messages for each node. This table must
be consulted before reading an atomic-multicast message, to check whether it
can be read/served already, and must be updated when the message is read.

The “user interface” of my atomic multicast “primitive” is as follows:

– Atomically multicasting a message. A node n that wants to atomically mul-
ticast a message m to a set of nodes {n1, . . . , nk} just “sends” the “message”

atomic-multicast m from n to n1 ... nk

where the message m should be a term of sort MsgContent.
– Reading an atomically multicast message. A node must check the multicast

table whether a given atomic-multicast message can be read. If so, this table
must be updated to reflect that the message has been read. A rewrite rule
where an object o1 reads an atomically multicast message m should therefore
have the following form, where AM-TABLE is a variable of sort AM-Table:
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crl [read-atomically-multicast-m] :

(msg m from o1 to o2)
< o2 : ... | ... > AM-TABLE

=>

< o2 : ... | ... >

updateAM(m, o2, AM-TABLE) if okToRead(m, o2, AM-TABLE) .

– The user must add the term [emptyAME] (denoting the “empty” atomic mul-
ticast table) to the initial state.

3.2 Maude Specification of Atomic Multicast

To keep track of atomic-multicast messages sent and received, the table

[am-entry(o1, read1, unread1) ... am-entry(on, readn, unreadn)]

is added to the state. This table contains a record am-entry(ok, readk, unreadk)
for each object ok that has been sent an atomically multicast message. readk is a
list of atomic-multicast messages read by ok, in the order in which the messages
were read, and unreadk is a set of atomic-multicast messages not yet read by ok.

The “wrapper” used for atomic multicast takes as arguments the message
(content), the sender’s identifier, and the (identifiers of the) set of receivers:

op atomic-multicast from to : MsgCont Oid OidSet -> Configuration .

The equation

eq (atomic-multicast MC from O to OS) [AM-ENTRIES]

= (distribute MC from O to OS) [insert(MC, OS, AM-ENTRIES)] .

“distributes” such an atomic-multicast msg from o to o1... on message
by: (1) “dissolving” the above multicast message into a set of messages

(msg msg from o to o1) ... (msg msg from o to on),

one for each receiver ok in the set {o1, . . . , on}; and (2) by adding, for each
receiver ok, the message (content) msg to the set unreadk of unread atomic-
multicast messages in the atomic-multicast table.

The update function, which updates the atomic-multicast table when O reads
a message MC, just moves MC from the set of unread messages to the end of the
list of read messages in O’s record in the table.

The expression okToRead(mc, o, amTable) is used to check whether the
object o can read the atomic-multicast message mc with the given global atomic-
multicast table amTable. The function okToRead is defined differently depending
on whether atomic multicast must satisfy the uniform acyclic order requirement.

okToRead for Pairwise Total Order Atomic Multicast. The following equations
define okToRead by first characterizing the cases when the message cannot be
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read; the last equation uses Maude’s owise construct to specify that the message
can be read in all other cases:

vars MC MC2 : MsgContent . vars MCS MCS2 : MsgContSet .

vars MCL MCL2 MCL3 MCL4 : MsgContList .

eq okToRead(MC, O, [am-entry(O, MCL, MCS MC MC2)

am-entry(O2, MCL2 :: MC2 :: MCL3 :: MC :: MCL4, MCS2)

AM-ENTRIES]) = false .

eq okToRead(MC, O, [am-entry(O, MCL, MCS MC MC2)

am-entry(O2, MCL2 :: MC2 :: MCL4, MCS2 MC)

AM-ENTRIES]) = false .

eq okToRead(MC, O, [AM-ENTRIES]) = true [owise] .

In the first equation, O wants to read MC, and its AM-entry shows that O has
not read message MC2. However, another object O2 has already read MC2 before
MC, which implies that O cannot read MC. In the second equation some object O2
has read MC2 and has MC in its sets of unread atomic-multicast messages, which
implies that O cannot read MC yet (it must read MC2 first).

okToRead for Uniform Acyclic Order Atomic Multicast. To define atomic multi-
cast which satisfies the uniform acyclic order requirement, the above definition
must be generalized to consider the induced relation < instead of pairwise reads.

The above definition checks whether a node o can read a message m1 by
checking whether it has some other unread message m2 pending such reading
m1 before m2 would conflict with the m1/m2-reading order of another node. This
happens if another node has read m2 before reading m1, or if it has read m2 and
has m1 pending (which implies that eventually, that object would read m2 before
m1). In the more complex uniform acyclic order setting, that solution must be
generalized to check whether reading m1 before any other pending message m2

would violate the current or the (necessary) future “global order.” That is, is
there some m1 elsewhere that has been read or must eventually be read after
m2 somewhere? If so, node o obviously cannot read m1 at the moment.

The function receivedAfter takes a set of messages and the global AM-
table as arguments, and computes the <∗-closure of the original set of messages;
i.e., the messages that cannot be read before the original set of messages:

op receivedAfter : MsgContSet AM-Table -> MsgContSet .

ceq receivedAfter(MC MCS, [am-entry(O2, MCL :: MC :: MC2 :: MCL2, MCS2)

AM-ENTRIES])

= receivedAfter(MC MCS MC2, [am-entry(O2, MCL :: MC :: MC2 :: MCL2, MCS2)

AM-ENTRIES])

if not (MC2 in MCS) .

In the above equation, there is a message MC in the current set of messages in the
closure. Furthermore, the global atomic-multicast table shows that some node O2
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has read MC2 right after reading MC, and MC2 is not yet in the closure. Therefore,
MC2 is added to the closure.

In the following equation, there is a message MC in the closure; furthermore,
some object O2 has already read MC. This implies that all unread messages MCS2
of O2 must eventually be read after MC, and hence they are added to the closure:

ceq receivedAfter(MC MCS, [am-entry(O2, MCL2 :: MC :: MCL4, MCS2)

AM-ENTRIES])

= receivedAfter(MC MCS MCS2,

[am-entry(O2, MCL2 :: MC :: MCL4, emptyMsgContSet)

AM-ENTRIES]) if MCS2 =/= emptyMsgContSet .

Finally, the current set is returned when it cannot be extended:

eq receivedAfter(MCS, AM-TABLE) = MCS [owise] .

The function okToRead can then be defined as expected: O can read the
pending message MC if MC is not (forced to be) read after any other pending
message (in the set MCS):

eq okToRead(MC, O, [am-entry(O, MCL, MCS MC) AM-ENTRIES])

= not (MC in receivedAfter(MCS, [am-entry(O, MCL, MCS) AM-ENTRIES])) .

I have model-checked both specifications of atomic multicast on a number of
scenarios and found no deadlocks or inconsistent multicast read orders.

4 P-Store

P-Store [14] is a partially replicated data store for wide-area networks developed
by Schiper, Sutra, and Pedone that provides transactions with serializability.
P-Store executes transactions optimistically : the execution of a transaction T at
site s (which may involve remote reads of data items not replicated at s) proceeds
without worrying about conflicting concurrent transactions at other sites. After
the transaction T has finished executing, a certification process is executed to
check whether or not the transaction T was in conflict with a concurrent trans-
action elsewhere, in which case T might have to be aborted. More precisely, in
the certification phase the site s atomically multicasts a request to certify T to
all sites storing data accessed by T . These sites then perform a voting procedure
to decide whether T can commit or has to be aborted.

P-Store has a number of attractive features: (i) it is a genuine protocol: only
the sites replicating data items accessed by a transaction T are involved in the
certification of T ; and (ii) P-Store uses atomic multicast at most once per trans-
action. Another issue in the certification phase: in principle, the sites certify the
transactions in the order in which the certification requests are read. However,
if for some reason the certification of the first transaction in a site’s certification
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queue takes a long time (maybe because other sites involved in the voting are
still certifying other transactions), then the certification of the next transaction
in line will be delayed accordingly, leading to the dreaded convoy effect. P-Store
has an “advanced” version that tries to mitigate this problem by allowing a site
to start the certification also of other transactions in its certification queue, as
long as they are not in a possible conflict with “older” transactions in that queue.

The authors of [14] claim that they have proved the P-Store algorithm correct.

4.1 P-Store in Detail

This section summarizes the description of P-Store in [14].

System Model and Assumptions. A database is a set of triples (k, v, ts), where k
is a key, v its value, and ts its time stamp. Each site holds a partial copy of the
database, with Items(s) denoting the keys replicated at site s. I do not consider
failures in this paper (as failure treatment is not described in the algorithms
in [14]). A transaction T is a sequence of read and write operations, and is
executed locally at site proxy(T ). Items(T ) is the set of keys read or written by
T ; WReplicas(T ) and Replicas(T ) denote the sites replicating a key written,
respectively read or written, by T . A transaction T “is local iff for any site s in
Replicas(T ), Items(T ) ⊆ Items(s); otherwise, T is global.”

Each site ensures order-preserving serializability of its local executions of
transactions. As already mentioned, P-Store assumes access to an atomic mul-
ticast service that guarantees uniform acyclic order.

Executing a Transaction. While a transaction T is executing (at site proxy(T )),
a read on key k is executed at some site that stores k; k and the item time stamp
ts read are stored as a pair (k, ts) in T ’s read set T.rs. Every write of value v to
key k is stored as a pair (k, v) in T ’s set of updates T.up. If T reads a key that
was previously updated by T , the corresponding value in T.up is returned.

When T has finished executing, it can be committed immediately if T is
read-only and local. Otherwise, we need to run the certification protocol, which
also propagates T ’s updates to the other (write-) replicating sites.

If the certification process, described next, decides that T can commit, all
sites in WReplicas(T ) apply T ’s updates. In any case, proxy(T ) is notified about
the outcome (commit or abort) of the certification.

Certification Phase. When T is submitted for certification, T is atomically mul-
ticast to all sites storing keys read (to check for stale reads) or written (to prop-
agate the updates) by T . When a site s reads such a request, it checks whether
the values read by T are up-to-date by comparing their versions against those
currently stored in the database. If they are the same, T passes the certification
test; otherwise T fails at s.
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Fig. 1. The P-Store certification algorithm in [14].

The site s may not
replicate all keys read by
T and therefore may not
be able to certify T . In
this case there is a vot-
ing phase where each site
s replicating keys read by
T sends the result of its
local certification test to
all sites sw replicating a
key written by T . A site
sw can decide on T ’s out-
come when it has received
(positive) votes from a vot-
ing quorum for T , i.e., a
set of sites that together
replicate all keys read by
T . If some site votes “no,”
the transaction must be
aborted. The pseudo-code
description of this certifi-
cation algorithm in [14] is
shown in Fig. 1.

As already mentioned,
a site does not start
the certification of another
transaction until it is done
certifying the first trans-
action in its certification

queue. To avoid the convoy effect that this can lead to, the paper [14] also
describes a version of P-Store where different transactions in a site’s certification
queue can be certified concurrently as long as they do not read-write conflict.

5 Formalizing P-Store in Maude

I have formalized both versions of P-Store (i.e., with and without sites initiating
multiple concurrent certifications) in Maude, and present parts of the formaliza-
tion of the simpler version. The executable specifications of both versions, with
analysis commands, are available at http://folk.uio.no/peterol/WADT16, and
the longer report [10] provides more detail.

5.1 Class Declarations

Transactions. Although the actual values of keys in the databases are some-
times ignored during analysis of distributed data stores, I choose for purposes of

http://folk.uio.no/peterol/WADT16
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illustration to represent the concrete values of keys (or data items). This should
not add new states that would slow down the model checking analysis.

A transaction (sometimes also called a transaction request) is modeled as an
object of the following class Transaction:

class Transaction | operations : OperationList, destination : Oid,

readSet : ReadSet, writeSet : WriteSet,

status : TransStatus, localVars : LocalVars .

The operations attribute denotes the list of read and write operations that
remain to be executed. Such an operation is either a read operation x := read k,
where x is a “local variable” that stores the value of the (data item with) key k
read by the operation, or a write operation write(k, expr), where expr in our
case is a simple arithmetic expression involving the transaction’s local variables.
waitRemote(k, x) is an “internal operation” denoting that the transaction exe-
cution is awaiting the value of a key k (to be assigned to the local variable x)
which is not replicated by the transaction’s proxy. An operation list is a list of
such operations, with list concatenation denoted by juxtaposition. destination
denotes the (identity of the) proxy of the transaction; that is, the site that should
execute the transaction. The readSet attribute denotes the ‘,’-separated set of
pairs versionRead(k, version), each such pair denoting that the transaction has
read version version of the key k. The writeSet attribute denotes the write set
of the transaction as a map (k1 |-> val1), ..., (kn |-> valn). The status
attribute denotes the commit state of the transaction, which is either commit,
abort, or undecided. Finally, localVars is a map from the transaction’s local
variables to their current values.

Replicas. A replicating site (or site or replica) stores parts of the database,
executes the transactions for which it is the proxy, and takes part in the certifi-
cation of other transactions. A replica is formalized as an object instance of the
following subclass Replica:

class Replica | datastore : DataStore, executing : Configuration,

submitted : Configuration, committed : Configuration,

aborted : Configuration, queue : ObjectList .

transToCertify : CertificationData,

decidedTranses : TransStatusSet .

The datastore attribute represents the replica’s local database as a set
< key1, val1, ver1 > , . . . , < key l, val l, ver l > of triples < key i, val i, ver i >
denoting a version of the data item with key key i, value val i, and version number
ver i.3 The attributes executing, submitted, committed, and aborted denote
the transactions executed by the replica and which are/have been, respectively,
currently executing, submitted for certification, committed, and aborted. The
queue holds the certification queue of transactions to be certified by the replica
(in collaboration with other replicas). transToCertify contains data used for
3 The paper [14] does not specify whether a replica stores multiple versions of a key.
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the certification of the first element in the certification queue (in the simpler
algorithm), and decidedTranses show the status (aborted/committed) of the
transactions that have previously been (partly) certified by the replica.

Clients. Finally, I add an “interface/application layer” to the P-Store specifica-
tion in the form of clients that send transactions to be executed by P-Store:

class Client | txns : ObjectList, pendingTrans : TransIdSet .

txns denotes the list of transaction (objects) that the client wants P-Store to
execute, and pendingTrans is either the empty set or (the identity of) the trans-
action the client has submitted to P-Store but whose execution is not yet finished.

Initial State. The following shows an initial state init4 (with some parts
replaced by ‘...’) used in the analysis of P-Store. This system has: two clients,
c1 and c2, that want P-Store to execute the two transactions t1 and t2; three
replicating sites, r1, r2, and r3; and three data items/keys x, y, and z. Trans-
action t1 wants to execute the operations (xl := read x) (yl := read y) at
replica r1, while transaction t2 wants to execute write(y, 5) write(x, 8) at
replica r2. The initial state also contains the empty atomic multicast table and
the table which assigns to each key the sites replicating this key. Initially, the
value of each key is [2] and its version is 1. Site r2 replicates both x and y.

eq init4

= [emptyAME]

[replicatingSites(x, r2) ;; replicatingSites(y, (r2 , r3))

;; replicatingSites(z, r1)]

< c1 : Client |

txns : < t1 : Transaction | operations : ((xl :=read x) (yl :=read y)),

destination : r1, readSet : emptyReadSet,

status : undecided, writeSet : emptyWriteSet,

localVars : (xl |-> [0] , yl |-> [0]) >,

pendingTrans : empty >

< c2 : Client |

txns : < t2 : Transaction | operations : (write(y, 5) write(x, 8)),

destination : r2, ... >

pendingTrans : empty >

< r1 : Replica | datastore : (< z, [2], 1 >),

committed : none, aborted : none, executing : none,

submitted : none, queue : emptyTransList,

transToCertify : noTrans, decidedTranses : noTS >

< r2 : Replica | datastore : ((< x, [2], 1 >) , (< y, [2], 1 >)), ... >

< r3 : Replica | datastore : (< y, [2], 1 >), ... > .

5.2 Local Execution of a Transaction

The execution of a transaction has two phases. In the first phase, the transaction
is executed locally by its proxy: the transaction performs its reads and writes, but
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the database is not updated; instead, the reads are recorded in the transaction’s
read set, and its updates are stored in the writeSet attribute.

The second phase is the certification (or validation) phase, when all appro-
priate nodes together decide whether or not the transaction can be committed
or must be aborted. If it can be committed, the replicas update their databases.

This section specifies the first phase, which starts when a client without pend-
ing transactions sends its next transaction to its proxy. I do not show the variable
declarations (see [10]), but follow the convention that variables are written with
(all) capital letters.

rl [sendTxn] :

< C : Client | pendingTrans : empty,

txns : < TID : Transaction | destination : RID > ; TXNS >

=>

< C : Client | pendingTrans : TID, txns : TXNS >

(msg executeTrans(< TID : Transaction | >) from C to RID) .

P-Store assumes that the local executions of multiple transactions on a site
are equivalent to some serialized executions. I model this assumption by execut-
ing the transactions one-by-one. Therefore, a replica can only receive a transac-
tion request if its set of currently executing transactions is empty (none):

rl [receiveTxn] :

(msg executeTrans(< TID : Transaction | >) from C to RID)

< RID : Replica | executing : none >

=>

< RID : Replica | executing : < TID : Transaction | > > .

There are three cases to consider when executing a read operation X := read K:
(i) the transaction has already written to key K; (ii) the transaction has not
written K and the proxy replicates K; or (iii) the key K has not been read and
the proxy does not replicate K. I only show the specification for case (i). I do
not know what version number should be associated to the read, and I choose
not to add the item to the read set. (The paper [14] does not describe what
to do in this case; the problem disappears if we make the common assumption
that a transaction always reads a key before updating it.) As an effect, the local
variable X gets the value V:

rl [executeRead1] :

< RID : Replica | executing :

< TID : Transaction | operations : (X :=read K) OPLIST,

writeSet : (K |-> V), WS, localVars : VARS > >

=>

< RID : Replica | executing :

< TID : Transaction | operations : OPLIST,

localVars : insert(X, V, VARS) > > .

Write operations are easy: evaluate the expression EXPR to write and add the
update to the transaction’s writeSet:
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rl [executeWrite] :

< RID : Replica | executing :

< TID : Transaction | operations : write(K, EXPR) OPLIST,

localVars : VARS, writeSet : WS > >

=>

< RID : Replica | executing :

< TID : Transaction | operations : OPLIST,

writeSet : insert(K, eval(EXPR, VARS), WS) > > .

5.3 Certification Phase

When all the transaction’s operations have been executed by the proxy, the
proxy’s next step is to try to commit the transaction. If the transaction is read-
only and local, it can be committed directly; otherwise, it must be submitted to
the certification protocol.

Some colleagues and I all found the definition of local in [14] (and quoted in
Section 4) to be quite ambiguous. We thought that “for any site s in Replicas(T ),
Items(T ) ⊆ Items(s)” means either “for each site s . . . ” or that proxy(T ) repli-
cates all items in T . The first author of [14], Nicolas Schiper, told me that it
actually means “for some s . . . .” In hindsight, we see that this is also a valid
interpretation of the definition of local . To avoid misunderstanding, it is probably
good to avoid the phrase “for any” and use either “for each” or “for some.”

If the transaction T cannot be committed immediately, it is submitted for
certification by atomically multicasting a certification request—with the trans-
action’s identity TID, read set RS, and write set WS—to all replicas storing keys
read or updated by T (lines 9–10 in Fig. 1):

crl [commit/submit2] :

< RID : Replica | executing :

< TID : Transaction | operations : nil, readSet : RS, writeSet : WS >,

submitted : TRANSES >

REPLICA-TABLE

=>

< RID : Replica | executing : none, submitted : TRANSES < TID : Transaction | > >

REPLICA-TABLE

(atomic-multicast certify(TID, RS, WS) from RID

to replicas((keys(RS) , keys(WS)), REPLICA-TABLE))

if WS =/= emptyWriteSet or not localTrans(keys(RS), REPLICA-TABLE) .

According to lines 7–8 in Fig. 1, a replica’s local certification succeeds if, for
each key in the transaction’s read set that is replicated by the replica in question,
the transaction read the same version stored by the replica:

op certificationOk : ReadSet DataStore -> Bool .

eq certificationOk((versionRead(K, VERSION) , READSET), (< K, V, VERSION2 > , DS))

= (VERSION == VERSION2) and certificationOk(READSET, (< K, V, VERSION2 > , DS)) .

eq certificationOk(RS, DS) = true [owise] .

If the transaction to certify is not local, the certifying sites must together
decide whether or not the transaction can be committed. Each certifying site
therefore checks whether the transaction passes the local certification test, and
sends the outcome of this test to the other certifying sites (lines 13 and 19–22):
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crl [certify-nonLocal] :

(msg certify(TID, RS, WS) from RID2 to RID)

< RID : Replica | datastore : DS, transToCertify : noTrans, decidedTranses : TSS >

AM-TABLE REPLICA-TABLE

=>

< RID : Replica | transToCertify : (if LOCAL-CERTIFICATION-OK

then certify(TID, RID2, RS, WS, RID)

else noTrans fi),

decidedTranses : (if LOCAL-CERTIFICATION-OK then TSS

else (transStatus(TID, abort) ; TSS) fi) >

(if intersection(keys(DS), keys(RS)) =/= noKey

then (distribute

vote(RID, TID, if LOCAL-CERTIFICATION-OK then commit else abort fi)

from RID to (replicas(keys(WS), REPLICA-TABLE) RID))

else none fi)

(if (not LOCAL-CERTIFICATION-OK) and --- if certification fails ...

intersection(keys(DS), keys(WS)) =/= noKey --- write replica ...

then (msg abort(TID) from RID to RID2) else none fi) --- notifies proxy

REPLICA-TABLE

updateAM(certify(TID, RS, WS), RID, AM-TABLE)

if okToRead(certify(TID, RS, WS), RID, AM-TABLE)

/\ not localTrans((keys(RS) , keys(WS)), REPLICA-TABLE)

/\ LOCAL-CERTIFICATION-OK := certificationOk(RS, DS) .

If the local certification fails, the site sends an abort vote to the other write
replicas and also notifies the proxy of the outcome. Otherwise, the site sends a
commit vote to all other site replicating an item written by the transaction.

The voting phase ends when there is a voting quorum; that is, when the
voting sites together replicate all keys read by the transaction. This means that
a certifying site must keep track of the votes received during the certification of
a transaction. The set of sites from which the site has received a (positive) vote
is the fourth parameter of the certify record it maintains for each transaction.
If a site receives a positive vote, it stores the sender of the vote (lines 11–12). If
a site receives a negative vote, it decides the fate of the transaction and notifies
the proxy if it replicates an item written by the transaction (lines 28–29).

If a write replica has received positive votes from a voting quorum (lines
23–27 and 29), the transaction can be committed, and the write replica applies
the updates and notifies the proxy. The following rule models the behavior when
a site has received votes from a voting quorum RIDS for transaction TID:

crl [quorum] :

< RID : Replica | transToCertify : certify(TID, RID3, RS, WS, RIDS ),

decidedTranses : TSS, datastore : DS >

REPLICA-TABLE

=>

< RID : Replica | transToCertify : noTrans, datastore : applyUpdates(DS, WS),

decidedTranses : TSS ; transStatus(TID, commit) >

REPLICA-TABLE

(if intersection(keys(DS), keys(WS)) =/= noKey --- if write replica ...

then (msg commit(TID) from RID to RID3) else none fi) --- notify proxy

if (keys(RS) subset replicatedKeys(RIDS , REPLICA-TABLE)) . --- voting quorum!
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Finally, the proxy of transaction TID receives the outcome from one or more
sites in TID’s certification set (the abort case is similar):

rl [readCommit] :

(msg commit(TID) from RID2 to RID)

< RID : Replica | submitted : < TID : Transaction | >, committed : TRANSES >

=>

< RID : Replica | submitted : none,

committed : (TRANSES < TID : Transaction | >) >

done(TID) . --- notify client

6 Formal Analysis of P-Store

In the absence of failures, P-Store is supposed to guarantee serializability of
the committed transactions, and that a decision (commit/abort) is made on
all transactions.

To analyze P-Store, I search for all final states—i.e., states that cannot be
further rewritten—reachable from a given initial state, and inspect the result.
This analysis therefore also discovers undesired deadlocks. In the future, I should
instead automatically check serializability, possibly using the techniques in [4],
which adds to the state a “serialization graph” that is updated whenever a
transaction commits, and then checks whether the graph has cycles.

The search for final states reachable from state init4 in Section 5.1 yields a
state which shows that t1’s proxy is not notified about the outcome of the cer-
tification (see [10] for details). The problem seems to be line 29 in the algorithm
in Fig. 1: only sites replicating items written by transaction T (WReplicas(T ))
send the outcome of the certification to T ’s proxy. It is therefore not surprising
that the outcome of the read-only transaction t1 does not reach t1’s proxy.

The transactions in init4 are local. What about non-local transactions? The
initial state init5 is the same as init4 in Section 5.1, except that item y is only
replicated at site r3, which means that t1 and t2 become non-local transactions.

Searching for final states reachable from init5 shows a result where the
certification process cannot reach a decision on the outcome of transaction t1:

Maude> (search init5 =>! C:Configuration .)

...

Solution 4

...

< r1 : Replica | submitted :

< t1 : Transaction | localVars :(xl |->[8], yl |->[5]), operations : nil,

readSet : versionRead(x,2), versionRead(y,2), ... > ,

transToCertify : noTrans >

< r2 : Replica | committed : < t2 : Transaction | writeSet : (x |-> [8], y |-> [5]), ... >,

datastore : < x,[8],2 >, decidedTranses : transStatus(t2,commit),

transToCertify : certify(t1,r1,(versionRead(x,2),versionRead(y,2)),

emptyWriteSet,r2) , ... >

< r3 : Replica | aborted : none, committed : none, datastore : < y,[5],2 >,

decidedTranses : transStatus(t2,commit),

transToCertify : certify(t1, r1, ..., emptyWriteSet, r3) , ... >
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The fate of t1 is not decided: both r2 and r3 are stuck in their certification
process. The problem seems to be lines 22 and 23 in the P-Store certification
algorithm: why are only write replicas involved in sending and receiving votes
during the certification? Shouldn’t both read and write replicas vote? Otherwise,
it is impossible to certify non-local read-only transactions, such as t1 in init5.

7 Fixing P-Store

Nicolas Schiper confirmed that the errors pointed out in Section 6 are indeed
errors in P-Store. He also suggested the fix alluded to in Section 6: replace
WReplicas(T ) with Replicas(T ) in lines 22, 23, and 29. The Maude specification
of the proposed correction is given in http://folk.uio.no/peterol/WADT16/.

Missing Assumptions. One issue seems to remain: why can read-only local trans-
actions be committed without certification? Couldn’t such transactions have read
stale values? Nicolas Schiper kindly explained that local read-only transactions
are handled in a special way (all values are read from the same site and some
additional concurrency control is used to ensure serializability), but admitted
that this is indeed not mentioned anywhere in their paper. My specifications
consider the algorithm as given in [14], without taking the unstated assumptions
into account, and also subjects the local read-only transactions to certification.

Analysis of the Updated Specification. I have analyzed the corrected specifica-
tion on five small initial configurations (3 sites, 3 data items, 2 transactions, 4
operations). All the final states were correct: the committed transactions were
indeed serializable.

The Advanced Algorithm. I have also specified and successfully analyzed the
(corrected) version of P-Store where multiple transactions can be certified con-
currently. It is beyond the scope of this paper to describe that specification.

8 Related Work

Different communication forms/primitives have been defined in Maude, including
wireless broadcast that takes into account the geographic location of nodes and
the transmission strength/radius [12], as well as wireless broadcast in mobile
systems [6]. However, I am not aware of any model of atomic multicast in Maude.

Maude has been applied to a number of industrial and academic cloud stor-
age systems, including Google’s Megastore [4], Apache Cassandra [8], and UC
Berkeley’s RAMP [7]. However, that work did not address issues like atomic
multicast and group communication commit.

Lamport’s TLA+ has also been used to specify and model check large indus-
trial cloud storage systems like S3 at Amazon [9] and the academic TAPIR
transaction protocol targeting large-scale distributed storage systems.

http://folk.uio.no/peterol/WADT16/
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On the validation of P-Store and similar designs, P-Store itself has been proved
to be correct using informal “hand proofs” [13]. However, such hand proofs do
not generate precise specifications of the systems and tend to be error-prone and
rely on missing assumptions, as I show in this paper. I have not found any model
checking validation of related designs, such as Jessy [1] and Walter [15].

9 Concluding Remarks

Cloud computing relies on partially replicated wide-area data stores to provide
the availability and elasticity required by cloud systems. P-Store is a well-known
such data store that uses atomic multicast, group communication commitment,
concurrent certification of independent transactions, etc. Furthermore, many
other partially replicated data stores are extensions and variations of P-Store.

I have formally specified and analyzed P-Store in Maude. Maude reachability
analysis uncovered a numbers of errors in P-Store that were confirmed by one of
the P-Store developers: both read and write replicas need to participate in the
certification of transactions; write replicas are not enough. I have specified the
proposed fix of P-Store, whose Maude analysis did not uncover any error.

Another main contribution of this paper is a general and abstract Maude
“primitive” for both variations of atomic multicast.

One important advantage claimed by proponents of formal methods is that
even precise-looking informal descriptions tend to be ambiguous and contain
missing assumptions. In this paper I have pointed at a concrete case of ambiguity
in a precise-looking definition, and at a crucial missing assumption in P-Store.

This work took place in the context of the University of Illinois Center for
Assured Cloud Computing, within which we want to identify key building blocks
of cloud storage systems, so that they can be built and verified in a modular
way by combining such building blocks in different ways. Some of those building
blocks are group communication commitment certification and atomic multicast.
In more near term, this work should simplify the analysis of other state-of-the-art
data stores, such as Walter and Jessy, that can be seen as extensions of P-Store.

The analysis performed was performed using reachability analysis; in the fut-
ure one should also be able to specify the desired consistency property “directly.”

Acknowledgments. I would like to thank Nicolas Schiper for quick and friendly
replies to my questions about P-Store, the anonymous reviewers for helpful com-
ments, and Si Liu and José Meseguer for valuable discussions about P-Store and
atomic multicast.
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Abstract. In programming semantics, monads are used to provide a
generic encapsulation of side-effects. We introduce a monad-based meta-
language that extends Moggi’s computational metalanguage with native
exceptions and iteration, interpreted over monads supporting a dcpo
structure. We present a Hoare calculus with abnormal postconditions for
this metalanguage and prove relative completeness using weakest liberal
preconditions, extending earlier work on the exception-free case.

1 Introduction

The use of monads as a means of modelling side-effecting computations [10] is
well-established in the design and semantics of programming languages. A broad
range of computational effects is subsumed under this paradigm, e.g. store, non-
determinism, exceptions, probabilities, and alternation.

In addition to just modelling side-effects, a matter of interest is how to rea-
son generically about properties of side-effecting programs, one of the most
important properties being functional correctness. Goncharov and Schröder [7]
have developed a monad-based generic Hoare calculus, and proved relative com-
pleteness using weakest liberal preconditions. More precisely the calculus is
parametrized by the choice of a predicated monad, i.e. a monad that supports
iteration via a suitable dcpo enrichment of its Kleisli category (the associated
category of side-effecting functions), and is moreover equipped with a suitable
submonad of innocent computations for use in assertions. In fact, the object of
truth values is generated from a predicated monad as the type of innocent compu-
tations of unit type (pre- and postconditions thus become affirmative assertions
in the sense of Vickers [20], e.g. semi-decidable).

Exception monads TEX = T (X + E) (with E an object of exceptions and
T a predicated base monad) are, in fact, predicated but include an operation
that does not fit into the required scheme for basic operations, namely exception
catching catch : TA → T (A+E). The framework covers only operations that are
algebraic [15], which catch is not. We therefore extend the generic Hoare calculus
with explicit support for exception handling via abnormal postconditions [9],
which govern the behaviour of a computation for the case where it terminates
with an exception. The calculus thus allows, e.g., for a meaningful specification
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of exception raising, for which the normal postcondition is just ⊥. Our main
result is that the calculus is, again, relatively complete; we prove this by means
of a weakest liberal precondition calculus featuring abnormal postconditions.

Related Work. Schröder and Mossakowski [18] present a monad-based Hoare
calculus with abnormal postconditions, interpreted over a program semantics
where the base category of the monad, rather than only the Kleisli category, is
enriched over a suitable category of domains; our setting thus allows for more
instances, e.g. involving monads on the category of sets. Moreover the semantics
of the Hoare logic of [18] differs from ours in that the object of truth values is
assumed in the base category rather than extracted from the monad as in our
setting. The calculus of [18] is proved sound but a relative completeness proof
is currently missing. Relative completeness proofs in most general formula style
have been given for specific effect combinations found in concrete programming
languages with exceptions, namely fragments of Java [13,16] and Eiffel [12]. Our
approach to generic weakest preconditions essentially follows our previous work
on the exception-free case [7]. In work subsequent to [7], Hasuo [8] conducts an
alternative categorical analysis of monad-based weakest preconditions, notably
relying on similar assumptions to ensure well-behavedness of weakest precondi-
tions (see Remark 11 for a detailed comparison). In his setup, no syntactic Hoare
calculus, and a fortiori no relative completeness result, is currently provided.

2 Preliminaries: Monads and Exceptions

A monad T over a category C with class |C| of objects can be described as a
Kleisli triple (T, η, --∗) in which T is an endomap over |C| (we adopt the gen-
eral convention to use blackboard characters for monads and the corresponding
Roman letters for their functorial parts), η – the unit of the monad – is a family
of morphisms (ηX : X → TX)X∈|C| and --∗ – the Kleisli lifting – is a map sending
each f : X → TY to f∗ : TX → TY so that the monad laws are satisfied:

η∗ = id, f∗ ◦ η = f, (f∗ ◦ g)∗ = f∗ ◦ g∗ (1)

This is equivalent to the standard definition of a monad in terms of a functor T
with unit and multiplication; in particular, Tf = (ηf)∗ for morphisms f . One
may think of TX as being a type of side-effecting computations delivering results
in X; examples include non-termination (TX = X+1), non-determinism (TX =
PX), statefulness (e.g. the partial state monad is given by TX = S ⇀ (S × X)
for an object S of states, where ⇀ takes partial function spaces), and exceptions
(TX = X + E for an object E of exceptions).

Furthermore, a strong monad is a monad T together with a family of mor-
phisms τ : X × TY → T (X × Y ) natural in both X and Y satisfying a set of
coherence axioms (cf. e.g. [11]). As originally noted by Moggi, strong monads
support a computational metalanguage [11], incorporated into Haskell as the do-
notation [21]: it features an operator ret, denoting the unit η, and the do-binder,
which from f : X → TY and g : X × Y → TZ builds do y ← f(x); g(x, y), in
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which y is syntactically bound and whose meaning is g� ◦ τ ◦ 〈 〉id, f : X → TZ.
For a term p in the computational metalanguage, FV (p) denotes the set of free
variables of p. The monad laws (1) can be rewritten in this style, and then form
part of a complete axiomatization:

do x ← (do y ← p; q); r = do y ← p;x ← q; r y /∈ FV (r)
do x ← reta; p = p[a/x]
do x ← p; retx = p.

A monad T defines the Kleisli category CT of T, whose objects are those of C
and HomCT

(A,B) = HomC(A, TB) with composition defined using the Kleisli
lifting of T; that is, morphisms X → Y in CT may be thought of side-effecting
functions X → Y , with side-effects specified by T .

We fix from now on an object E of exceptions and a base monad T on a
category C which is distributive, i.e. the canonical distributivity morphism X ×
Y +X ×Z → X × (Y +Z) is an isomorphism, with inverse called dist, and which
has Kleisli exponentials [15,19], i.e. exponentials [2] of the form TZY . The latter
condition means that there is a natural isomorphism λ : HomC(X × Y, TZ) ∼=
HomC(X,TZY ). We furthermore denote pairing and copairing morphisms by
angle and square brackets, respectively.

The well-known exception monad transformer [4] adds exceptions as an effect
to a given monad: the functor

TE = T (-- +E)

is turned into a strong monad TE , called an exception monad, by putting

– ηTE = ηT ◦ inl;
– f∗ = [f, ηT ◦ inr]∗ for f : A → T (B + E);
– τTE

A,B = T ((id + π2) ◦ dist) ◦ τA,B+E .

That is, a computation in TE performs a side effect specified by T and then
either terminates normally or with an exception. The definition of binding in
TE means that in the latter case, subsequent statements have no further effects
(e.g. in case T features statefulness, the state is frozen) other than propagating
the exception. On TE , we have operations for raising and catching exceptions
(i.e. exposing exceptions raised by a program in the output type),

raiseX = η inr : E → T (X + E) = TEX

catchX = T inl : TEX = T (X + E) → T ((X + E) + E) = TE(X + E).

3 Order-Enrichment and Innocence

As indicated in the introduction, we require a certain amount of infrastructure
in the base monad T to support, on the one hand, loops, and on the other hand,
an internalized assertion language. To this end, we require a complete partial
order on programs, i.e. Kleisli morphisms, of a given type A → TB. We will
then use certain well-behaved programs as logical assertions. Formal definitions
are as follows [7].
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Definition 1 (Order-enriched monad). The monad T is order-enriched if

– every hom-set HomC(A, TB) carries a bounded-complete and directed-
complete partial ordering 
 (i.e. joins exist for finite bounded subsets and
for directed subsets, and consequently for all bounded subsets),

– for any h ∈ HomC(A′, A) and any u ∈ HomC(B, TB′), the maps

f �→ f ◦ h, f �→ u∗ ◦ f, f �→ τ ◦ 〈id, f〉

preserve all existing joins (including the empty join ⊥),
– Kleisli star is Scott-continuous.

The ordering 
 is to be thought of as the usual information ordering; in particu-
lar, non-termination is below termination. Note that we do not include continuity
of copairing in the above definition; in fact this follows from preservation of joins
(Lemma 6).

We identify a class of innocent computations suitable for use within asser-
tions of the Hoare logic. Intuitively, such a computation may read but should not
modify the state, as required already in earlier work on monad-based program
logics [17]. Instead of assuming a type of truth values in the base category, we
will identify truth with termination, so that truth values are just innocent com-
putations of unit type. Formally, the conditions for innocence are as follows [7].

Definition 2 (Innocence). A monad is commutative if it satisfies

do x ← p; y ← q; ret 〈x, y〉 = do y ← p;x ← q; ret 〈x, y〉

for all p, q, and fresh x, y, in the computational metalanguage (Sect. 2). An order-
enriched monad is innocent if it is commutative and satisfies copyability

do x ← p; y ← p; ret 〈x, y〉 = do x ← p; ret 〈x, x〉

(for all p and fresh x, y) and weak discardability

do x ← p; ret� 
 ret � . (2)

Notice that the notion of weak discardability uses the ordering of the monad. It
allows for non-termination; e.g. if p = ⊥ is the everywhere diverging program,
then the left hand side of (2) is also ⊥ so that the inequality is satisfied. (Con-
trastingly, previous approaches [17] used discardability do x ← p; ret � = ret �,
which implies termination.) On the other hand, weakly discardable computa-
tions cannot raise exceptions, as these fail to be below ret �. Intuitively, the only
side-effects an innocent computation may exhibit are possible non-termination
and read operations on implicit states encapsulated in the base monad.

A key property of innocent monads P is that they support a logic on the
base category, which we will later use as the underlying logic of the assertions
of our Hoare calculus. Specifically, P1 is a distributive lattice object in C, i.e.
Hom(--, P1) factors through distributive lattices, in fact even through frames [7],
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which are complete lattices in which finite meets distribute over all joins (with
morphisms preserving finite meets and all joins). Consequently, P1 supports a
form of geometric logic [20]. Notably, finite meets in P1 are given by sequential
composition. In case C = Set, P1 is in fact a Heyting algebra, and thus supports
full intuitionistic logic.

Computationally relevant monads, e.g. stateful ones, often fail to be innocent
but will typically contain a useful innocent submonad. Formally:

Definition 3 (Predicated monad). A predicated monad (T,P) consists of an
order-enriched monad T and an innocent order-enriched submonad P of T whose
inclusion into T is Scott-continuous.

Example 4. In the nondeterministic state monad TX = S → P(S × X), a
program is weakly discardable iff it (possibly reads but) does not change the
state. Such a program is copyable iff it is deterministic; all copyable and weakly
discardable programs in T commute. We thus obtain an innocent submonad P

of T given by PX = S ⇀ X, the partial reader monad. Taking T to be either
the partial state monad (Sect. 2) or the nondeterministic state monad and P the
partial reader monad, we thus obtain a predicated monad (T,P).

Lemma 5. Let (T,P) be a predicated monad. Then the exception monad TE is
also order-enriched, and (TE ,P) is a predicated monad.

From now on, we fix a predicated monad (T,P).

4 A Computational Metalanguage

We proceed to define the syntax of a monad-based metalanguage that extends
Moggi’s computational metalanguage (Sect. 2) with native support for iteration
and innocence. We introduce a system of value types A and computation types
C by the grammar

A ::= W | 1 | A × A | A + A C ::= A | Ω | TEA | PA | A → Ω

with W ranging over a set W of basic types (denoting objects of C). While
the type constructor TE represents side-effecting computations possibly raising
exceptions in E, the type constructor P represents innocent computations. The
type Ω of truth values is just a synonym for P1. Additionally, we fix a signature
Σ of typed function symbols f : A → C.

The term language is defined by means of the set of typing rules for terms
in context shown in Fig. 1; contexts Γ consist of assignments x : A of value
types A to variables x. We have the usual term formation rules for products,
coproducts, sequential composition of computations, application of functions
from the signature Σ, and most notably for exception raising and handling.
Additionally, we incorporate rules for innocent computations saying essentially
that P is a submonad of TE , i.e. closed under unit and binding, and each PA
has a least element ⊥ (⊥ could of course be defined as a nonterminating loop
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but for our purposes it is technically more convenient to make it a first-class
citizen). Our loop construct is tuned to sum types:

initx ← p itercase c of inl y �→ q; inr z �→ r

initializes the loop variable x with the result of p and then proceeds to execute q
repeatedly, binding the result to x, as long as c : B + C remains in the left hand
summand. Once c ends up in the right hand summand, the loop terminates and
r is executed once, with the result bound to x. Note that the construct at hand
allows passing values through the loop; boolean loop conditions as in standard
while loops arise as special cases of our sum-type-based loop conditions, as the
type 2 of Booleans is the sum type 1 + 1.

x : A in Γ

Γ � x : A

f : A → C ∈ Σ Γ � t : A

Γ � f(t) : C Γ � � : 1 Γ � ⊥ : PA

Γ � t : A × B

Γ � π1t : A

Γ � t : A × B

Γ � π2t : B

Γ � t : A

Γ � inl t : A + B

Γ � t : B

Γ � inr t : A + B

Γ � t : A Γ � u : B

Γ � 〈t, u〉 : A × B

Γ � c : A + B Γ, a : A � t : C Γ, b : B � u : C

Γ � case c of inl a �→ t; inr b �→ u : C

Γ � p : MA Γ, x : A � q : MB

Γ � do x ← p; q : MB
M ∈ {TE , P} Γ � p : A

Γ � ret p : PA
(A value type)

Γ, x : A � c : B + C Γ � p : TEA Γ, y : B � q : TEA Γ, z : C � r : TEA

Γ � initx ← p itercase c of inl y �→ q; inr z �→ r : TEA

Γ � p : PA

Γ � p : TEA

Γ � e : E

Γ � raise e : TEA

Γ � p : TEA

Γ � catch p : TE(A + E)

Fig. 1. Term formation rules for the simple imperative metalanguage with exceptions.

In addition to the metalanguage of programs, we can now use the fact that
P1 = Ω serves as an object of truth values in geometric logic to develop rules for
an assertion language. These rules, given in Fig. 2 and understood as extending
those of Fig. 1, are identical to those for the exception-free case [7], essentially
because innocent computations do not raise exceptions. The logic combines a
very restricted set of propositional connectives with least and greatest fixpoint
constructors over dedicated predicate variables. It is designed to accommodate
weakest preconditions, i.e. is strong enough to guarantee relative completeness
of the Hoare calculus.
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Γ � 
 : Ω Γ � ⊥ : Ω

Γ � φ : Ω Γ � ψ : Ω

Γ � φ ∧ ψ : Ω

Γ � φ : Ω Γ � ψ : Ω

Γ � φ ∨ ψ : Ω

Γ � p : PA Γ, x : A � q : Ω

Γ � do x ← p; q : Ω

Γ, X : A → Ω � φ : A → Ω

Γ � ηX. φ : A → Ω
(η ∈ {μ, ν})

X : A → Ω in Γ

Γ � X : A → Ω

Γ, x : A � t : Ω

Γ � λx. t : A → Ω

Γ � t : A Γ � s : A → Ω

Γ � s(t) : Ω

Fig. 2. Assertion language.

5 Semantics

The types C of our metalanguage are interpreted over the predicated (exception)
monad (TE ,P) as C-objects �C� in the expected way, given an assignment of C-
objects �W � to basic types W , with + and × interpreted as categorical sum
and product, P and TE as the corresponding object maps of TE and P, 1 as the
terminal object, and A → Ω as the Kleisli exponential (�P1�)�A�.

As usual, contexts are then interpreted as the product of the interpretations
of the types of their variables, and a term in context Γ � p : C as a morphism
�Γ � → �C�. The term constructors for product and sum types are interpreted
using the structure of C as a distributive category in the usual way, and the
interpretation of the term constructors for the monadic structure (ret and do)
is as in the computational metalanguage [11], instantiated for the exception
monad TE , respectively its submonad P for innocent computations; Γ � ⊥ : PA
is interpreted as the bottom element of Hom(�Γ �,

�
PA

�
). The operations catch

and raise are interpreted as the corresponding morphisms for TE (Sect. 2); e.g.
�Γ � catch p : TE(A + E)� = catch ◦ �p�.

The interpretation of our coproduct-based loop construct itcase follows the
treatment of a previous Boolean loop construct [7]. Let ? : A + B → PA be the
operator defined by

c? = case c of inl y �→ ret y; inr z �→ ⊥,

and let c �→ c̄ denote the symmetry isomorphism A + B → B + A, i.e.
c = case c of inl y �→ inr y; inr z �→ inl z for c : A + B. We adopt the convention
to write c? instead of (do c?; ret �) whenever the return type P1 is expected.

Lemma 6. Assume terms Γ, y : A � p : TEC; Γ, z : B � q : TEC; and Γ �
c : A + B. Then the join (do y ← c?; p)  (do z ← c?; q) exists and equals
case c of inl y �→ p;inr z �→ q.

Consequently, case is Scott-continuous in both program arguments. By Kleene’s
fixpoint theorem, we can thus define an interpretation for the special case
initx ← retx itercase c of inl y �→ q; inr z �→ r as the least fixed point of the map

f �→ (
case c of inl y �→ (do x ← q; f); inr z �→ r

)
.
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The full itcase construct is then interpreted as

[[Γ � initx ← p itercase c of inl y �→ q; inr z �→ r : TEA]] =
[[Γ � dox ← p; (initx ← retx itercase c of inl y �→ q; inr z �→ r) : TEA]]. (3)

Semantics of assertions. Contexts Γ for assertions may contain propositional
variables X : A → Ω, giving rise to factors (�P1�)�A� in the interpretation
of Γ . Assertions Γ � φ : Ω are then interpreted as morphisms �Γ � → �P1�.
Logical conjunction and disjunction are interpreted as meets and joins in Ω = P1,
respectively (which exist because P1 is a distributive lattice object). For lambda
abstraction and evaluation of predicates, we inductively define

�Γ, x : A � t : Ω� = f

�Γ � λx. t : A → Ω� = λf

�Γ � t : A� = f �Γ � s : A → Ω� = g

�Γ � s(t) : Ω� = ε ◦ 〈g, f〉,
where ε is the usual evaluation morphism. Fixpoints Γ � ηX. φ with η ∈ {μ, ν}
are interpreted using the fact that the hom-sets Hom(�Γ � × �A�, �Ω�) are com-
plete lattices. In detail, the interpretation of Γ,X : A → Ω � φ : Ω is a mor-
phism g : �Γ � × (�P1�)�A� → (�P1�)�A�. We thus define an endomorphism F on
Hom(�Γ � × �A�, �Ω�) by taking F (h) to be

�Γ � × �A�
〈id,λh◦π1〉−−−−−−→ �Γ � × �A� × (P1)�A� 〈g◦〈π1,π3〉,π2〉−−−−−−−−−→ (P1)�A� × �A�

ε−→ �Ω�.

We then take �Γ � ηX. φ� to be ληF ; the required fixpoints exist by the Knaster-
Tarski theorem as all assertions are monotone in their variables.

Definition 7. A judgment Γ � φ 
 ψ is valid over P if �φ� 
 �ψ�.

6 Hoare Calculus

In the exception-free case, a semantics of Hoare triples over order-enriched mon-
ads [7] is defined by taking {φ}x ← p {ψ} (with p : TEA and assertions φ, ψ,
where ψ may depend on x : A) to abbreviate the equation

do φ; x ← p;ψ; retx = do φ; p.

As indicated previously, this setup is insufficient for the verification of
exception-raising programs; e.g. nothing useful can be said about raise beyond
{�} raise e {⊥}. We thus need an additional postcondition for abnormal termi-
nation [9,18]: Intuitively, a Hoare quadruple

{φ} x ← p {ψ | ε}

with abnormal postcondition ε : E → Ω says that if p is executed in a prestate
satisfying φ and terminates normally with result x, then the poststate and x
satisfy the normal postcondition ψ, and if p terminates with an exception e then
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the poststate satisfies ε(e). Using the previous definition of Hoare triple, we
formally interpret {φ} x ← p {ψ | ε} by letting it abbreviate

{φ} y ← catch p {case y of inlx �→ ψ; inr e �→ ε(e)}.

We write T,P � {φ} x ← p {ψ | ε} if the above equality holds in (T,P) (under
the given interpretation of the basic programs, elided in the notation).

The inference rules for our calculus are shown in Fig. 3. The inequalities in
(wk) refer to the notion of validity introduced above (Definition 7); inequality
ε 
 ε′ of abnormal postconditions is understood pointwise. We assume a set Δ
of valid axioms for basic programs, and then write Δ �P {φ} x ← p {ψ | ε}
if a Hoare quadruple {φ} x ← p {ψ | ε} is derivable from axioms in Δ and
inequalities of assertions valid over P.

The rules (basic), (ret), (do) and (wk) are derived straightforwardly from
the rules for the exception-free case [7]; rule (⊥) is clear. We spend some time
on discussing the remaining new rules:

Rules for exceptions are taken from [18]. The (raise) rule is self-explanatory.
The (catch) rule is based on the fact that catch p : TE(A + E) renormalizes the
computation p and returns an exception possibly raised by p in the right-hand
summand of the normal result.

Case rule. The precondition of a case statement is a disjunction of the precondi-
tions for the two alternatives, with access to the value of the branching condition
c within the two summands provided by the c? construct introduced in Sect. 5.
Soundness of the rule is proved by Lemma 6.

Iterated case rule. The full itcase construction, as defined in (3), is actually a
sequential composition of two programs. For simplicity, we treat only the special
case p = retx in the Hoare calculus, which we abbreviate as

itercase c of inl a �→ q; inr b �→ r := initx ← retx itercase c of inl a �→ q; inr b �→ r.

In contrast to the case of while loops [7], we cannot expect that after the loop,
the value of the test term c contains a right injection, as c could be affected by
the program r, which is executed after the loop terminates. The intuition behind
the formulation of the (itcase) rule is the following: The assertion ψ plays the
role of the loop invariant. In every iteration, the loop body q, which depends on
a, is executed with the value of a extracted from c, and possibly changes the
value of c. As a postcondition of q, we thus require that either the loop continues
and the invariant ψ still holds for the next iteration, i.e. do a ← c?;ψ holds, or
the loop terminates and the precondition of r holds, with b replaced by the value
contained in c. As the loop terminates with an execution of r, the postcondition
of the loop obtained in the conclusion of the rule is then just that of r.

Theorem 8 (Soundness). The Hoare calculus for order-enriched effects with
exceptions is sound, i.e.

Δ �P {φ} x ← p {ψ} implies TE ,P � {φ} x ← p {ψ}.
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(basic)
{φ} x ← f(z) {ψ | ε}

{φ[t/z]} x ← f(t) {ψ | ε} (⊥) {
} ⊥ {⊥ | λe. ⊥}

(ret) {φ[t/x]} x ← ret(t) {φ | λe. ⊥} (do)
{φ} x ← p {ψ | ε} {ψ} y ← q {χ | ε}

{φ} y ← do x ← p; q {χ | ε}

(case)
{φ} x ← q {ψ | ε} {ξ} x ← r {ψ | ε}

{(do a ← c?;φ) ∨ (do b ← c̄?; ξ)} x ← case c of inl a �→ q; inr b �→ r {ψ | ε}

(wk)
φ′  φ {φ} x ← p {ψ | ε} ψ  ψ′ ε  ε′

{φ′} x ← p {ψ′ | ε′} (raise) {ε(e)} x ← raise e {⊥ | ε}

(catch)
{φ} x ← p {ψ | ε}

{φ} y ← (catch p) {case y of inlx �→ ψ; inr e �→ ε(e) | λe. ⊥}

(itcase)
{ψ} x ← q {do a ← c?;ψ ∨ do b ← c̄?; ξ | ε} {ξ} x ← r {χ | ε}

{do a ← c?;ψ ∨ do b ← c̄?; ξ} x ← (itercase c of inl a �→ q; inr b �→ r) {χ | ε}

Fig. 3. Hoare calculus for order-enriched effects with exceptions.

The main idea in Cook’s original proof of relative completeness of ordinary Hoare
logic is a calculus of weakest liberal preconditions or shorter weakest preconditions
[5], that is (adapted to our setting), for every program p, postcondition ψ and
abnormal postcondition ε, a precondition wp(x ← p, ψ | ε) such that

{wp(x ← p, ψ | ε)} x ← p {ψ | ε} (4)

is a valid Hoare quadruple and φ 
 wp(x ← p, ψ | ε) whenever {φ} x ← p {ψ | ε}.
If we can prove that all quadruples (4) are derivable in the calculus then relative
completeness follows by soundness and (wk).

Semantically, we construct weakest preconditions in the obvious way by

wp(x ← p, ψ | ε) =
⊔

{φ | {φ} x ← p {ψ | ε}}

The join exists because every Hom(X,Ω) is a complete lattice. The definition of
a weakest precondition wp(x ← p, ψ) for T is recovered by taking E = 0. By the
continuity requirements for order-enriched monads, we have

Lemma 9. For all programs p and postconditions ψ | ε,wp(x ← p, ψ | ε) is a
weakest precondition.

It remains to show that weakest preconditions are definable in our assertion
language under the assumption that the weakest preconditions of all signature
symbols exist. To this end we give an inductive definition of syntactic weakest
preconditions wps(x ← p, ψ | ε), extending the corresponding calculus for the
exception-free case [7], and prove that the definition of wps is sound w.r.t. wp.
This requires a suitable restriction imposed on the underlying predicated monad,
which we first recall for the exception-free case:
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Definition 10 (Sequential Compatibility [7]). We call a predicated monad
(T,P) sequentially compatible if for all programs p, q and assertions ψ, we have

wp(x ← (do y ← p; q), ψ) 
 wp(y ← p,wp(x ← q, ψ)). (5)

Remark 11. The inequality converse to (5) holds automatically, and therefore
for sequentially compatible predicated monads

wp(x ← (do y ← p; q), ψ) = wp(y ← p,wp(x ← q, ψ)).

An equivalent formulation, called the interpolation property, is used by Bloom
and Ésik [3]; it can be reformulated in our terms as follows: for every valid Hoare
triple {φ} x ← (do y ← p; q) {ψ} there exists ξ such that {φ} y ← p {ξ} and
{ξ} x ← q {ψ} (w.l.o.g. we can take ξ to be wp(x ← q, ψ)).

Given φ : X → Ω, we can form φ◦(p) = wp(x ← p, φ(x)), which yields
an operator (--)◦ : Hom(X,Ω) → Hom(TX,Ω). A predicated monad (T,P) is
sequentially compatible iff the right of the following two conditions is satisfied
(the left one is satisfied automatically) for all φ : Y → Ω, f : X → TY :

φ◦◦ η = φ, φ◦ ◦ f� = (φ◦◦ f)◦. (6)

It follows that (--)◦ is natural in the domain of its argument, for φ◦◦(Tf) =
φ◦◦(η◦f)� = (φ◦◦η◦f)◦ = (φ◦f)◦, and therefore, by the Yoneda lemma, (--)◦ is
uniquely induced by a map � : TΩ → Ω. The axioms (6) then amount to saying
that (�, Ω) is a T-algebra. This relates sequential compatibility, introduced in
[7], to later work by Hasuo [8] who called such an algebra a modality, under the
running assumption that T = P, which we do not assume in general.

The inductive definition of syntactic weakest preconditions is given in Fig. 4.
Sequential compatibility of (T,P) generalizes to (TE ,P):

wps(x ← f(t), ψ | ε) = wp(x ← f(z), ψ | ε)[t/z )7(]

wps(x ← ret t, ψ | ε) = ψ[t/x] (8)

wps(x ← ⊥, ψ | ε) = 
 (9)

wps(y ← (do x ← p; q), ψ | ε) = wps(x ← p,wps(y ← q, ψ | ε) | ε) (10)

wps(x ← (case c of inl a �→ q; inr b �→ r), ψ | ε) =

do a ← c?;wps(x ← q, ψ | ε) ∨ do a ← c̄?;wps(x ← r, ψ | ε) (11)

wps(x ← (initx ← retx itercase c of inl a �→ q; inr b �→ r), ψ | ε) =

νX. λx. do a ← c?;wps(x ← q, X(x) | ε)∨
do b ← c̄?;wps(x ← r, ψ | ε)

)
(x)

(12)

wps(x ← raise e, ψ | ε) = ε(e) (13)

wps(y ← catch p, ψ | ε) = wps(x ← p, ψ[inlx/y] | λe.ψ[inr e/y]) (14)

Fig. 4. Syntactic definition of weakest preconditions.
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Lemma 12. Given a sequentially compatible monad (T,P), we have

wp(x ← (do y ← p; q), ψ | ε) 
 wp(y ← p,wp(x ← q, ψ | ε) | ε).

To understand the definition of wps for catch, first note that catch itself never
terminates abnormally; by unfolding the definitions of Hoare quadruples and
catch, we thus have that {φ} y ← catch p {ψ | ε} is equivalent to the Hoare
triple {φ} y ← catch p {ψ}. We can now eliminate catch by decomposing ψ into
a case construction and applying the definition of Hoare quadruple:

{φ} y ← catch p {ψ}
⇔ {φ} y ← catch p {case y of inlx �→ ψ[inlx/y]; inr e �→ψ[inr e/y]} (15)
⇔ {φ} x ← p {ψ[inlx/y] | λe. ψ[inr e/y]}, (16)

immediately leading to the definition of wps(y ← catch p, ψ | ε) shown in Fig. 4.
For basic programs f ∈ Σ, we need to assume that weakest preconditions

wp(x ← f(z), ψ) for every ψ are expressible in the assertion language, and then
include {wp(x ← f(z), ψ)} x ← f(z) {ψ | ε} as an axiom in Δ.

Lemma 13. Given a sequentially compatible predicated monad, we have for all
programs p and postconditions ψ

Δ �P {wp(x ← p, ψ | ε)} x ← p {ψ | ε}.

Proof (Sketch). The proof is via induction over p. We carry out the interesting
cases of the inductive step in detail:

Case p = catch q. Just note that the rule (catch) essentially connects (15) and
(16) in the above chain of equivalences explaining wps for catch, decorated with
an (irrelevant) abnormal postcondition.

Case p = itercase c of inl a �→ q; inr b �→ r. Let ξ denote the right-hand side of (12).
By the induction hypothesis, {wps(x ← q, ξ | ε)} x ← q {ξ | ε} is derivable. This
quadruple is equivalent to

{wps(x ← q, ξ | ε)} x ← q {do a ← c?;wps(x ← q, ξ | ε) ∨
do b ← c̄?;wps(x ← r, ψ | ε)}.

We also have {wps(x ← r, ψ | ε)} x ← r {ψ | ε} by induction. The
required quadruple is obtained directly by applying (itcase) to the previous two
quadruples. �
By Lemma 13 and soundness, wps(x ← p, ψ | ε) 
 wp(x ← p, ψ | ε) for all p, ψ, ε.
Conversely, we have

Lemma 14. For all p, ψ, ε, wp(x ← p, ψ | ε) 
 wps(x ← p, ψ | ε).
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Proof (Sketch). Induction over p. Again, we only detail the interesting cases:

Case p = itercase c of inl a �→ q; inr b �→ r. Let ξ denote the right-hand side of (12).
Following [7], we need to prove that φ0 := wp(x ← p, ψ | ε) is a postfixed point
of the functional defining ξ.

By the definition of weakest preconditions, this amounts to showing that
every φ satisfying {φ} x ← p {ψ | ε} is smaller than the functional evaluated at
φ0, i.e.

φ0 
 do a ← c?;wps(x ← q, φ0 | ε) ∨ do a ← c̄?;wps(x ← r, ψ | ε).

Therefore, by case distinction, we need to show that

c? ∧ φ0 
 do a ← c?;wps(x ← q, φ0 | ε)
c̄? ∧ φ0 
 do b ← c̄?;wps(x ← r, ψ | ε).

– Continuation branch. Unrolling the first iteration of the loop, we see that
{c? ∧ φ} x ← (do a ← c?;x ← q; p) {ψ | ε} holds and thus

c? ∧ φ 
wp(x ← (do a ← c?;x ← q; p), ψ | ε)

 do a ← c?;wp(do x ← q; p, ψ | ε).

By sequential compatibility, wp(x ← (do x ← q; p), ψ | ε) 
 wp(x ←
q,wp(x ← p, ψ | ε)) and by induction c? ∧ φ 
 do a ← c?;wps(x ← q, ψ0 | ε).

– Termination branch. By definition of (itcase), {φ} x ← p {ψ | ε} decomposes
sequentially into

{φ} x ← p[retx/r] {c̄? ∧ φ} and {c̄? ∧ φ} x ← (do b ← c̄?; r) {ψ | ε}.

From the latter quadruple, we have c̄? ∧ φ 
 wp(x ← (do b ← c̄?; r), ψ | ε).
Again, c̄? ∧ φ 
 do b ← c̄?;wps(x ← r, ψ | ε) by sequential compatibility and
by induction.

Case p = catch q. As seen in the derivation of the syntactic weakest precondition
for catch, the Hoare quadruple in question is equivalent to

{φ} x ← q {ψ[inlx/y] | λe. ψ[inr e/y]}

Thus, φ 
 wp(x ← q, ψ[inlx/y] | λe. ψ[inr e/y]) which is smaller than wps(x ←
p, ψ | ε) by induction.

Case p = raise e. Since catch (raise e) = retinr e,

doφ; y ← catch(raise e); (case y of inlx �→ ψ; inr e �→ ε(e)); ret y = doφ; ret inr e
⇔ doφ; ε(e); ret inr e = doφ; ret inr e.

So, φ � ε(e) = φ, and therefore φ 
 ε(e) = wps(x ← raise e, ψ | ε). �
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We are now ready to prove our main result:

Theorem 15 (Relative completeness). Let (TE ,P) be a sequentially com-
patible predicated monad and let the weakest preconditions for basic programs be
expressible in the assertion language. Then

TE ,P � {φ} x ← p {ψ | ε} implies ΔΣ �P {φ} x ← p {ψ | ε},

where ΔΣ are axioms for the basic programs in the signature Σ.

Proof. By Lemmas 13 and 14, we can express the weakest precondition wp(x ←
p, ψ | ε) in the assertion language, and

ΔΣ �P {wp(x ← p, ψ | ε)} x ← p {ψ | ε}.

By the definition of wp(x ← p, ψ | ε), we thus have φ 
 wp(x ← p, ψ | ε), so we
can use (wk) to derive the required quadruple. �

7 Conclusion and Further Work

We have extended a previous monad-based generic Hoare calculus [7] to cover
computations raising exceptions, modelled in terms of the exception monad trans-
former [4]. To this end, we have added abnormal postconditions [9] to the system,
which govern poststates reached by the program in case it terminates with an
exception. Our framework is based on order-enriched monads, which provide the
requisite semantic infrastructure to support loops while avoiding the assump-
tion that the underlying category of data types is enriched over complete partial
orders; consequently, our generic logic applies also to monads that live on cate-
gories with less structure, in particular the category of sets. Moreover, we equip
the underlying monad with the choice of a submonad of innocent computations
causing only restricted side-effects; this choice induces an object of truth values,
in the shape of the type of innocent computations of unit type, that supports a
form of geometric logic in which we phrase our assertion language.

We have proved soundness and relative completeness, the latter by giving a
calculus of weakest (liberal) preconditions, which turn out to be expressible in
spite of the fact that the assertion language is quite weak. Here, a key role is
played by fixpoint constructs in the assertion language.

Exceptions can be regarded as a very simple case of uninterpreted operations;
in future research, we will explore the possibility of extending the framework to
cover more general uninterpreted operations, such as process-algebraic action
prefixing. Moreover, we will investigate a more general setup where loops are
interpreted by axiomatic iteration in the spirit of complete Elgot monads [1,6],
thus in particular covering also coinductive resumption monads [14].
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