
Chapter 15
Accelerating Unsteady CFD Simulations
Using a Minimum Residual Based Nonlinear
Reduced Order Modeling Approach

Matteo Ripepi and Stefan Görtz

Abstract Reduced-order modeling is evaluated as a means to speed up unsteady
computational fluid dynamics (CFD) simulations while maintaining the desired level
of accuracy. In the reduced order modeling approach, proper orthogonal decomposi-
tion (POD) is applied to some computed response time history from a compressible,
unsteady CFD solver to compute a set of orthogonal basis vectors. An approximate
flow solution for the next time step is predicted by minimizing the unsteady flow
solver residual in the space spanned by the POD basis. This is done by solving a
non-linear least-squares problem. This approximate flow solution is then used to ini-
tialize the flow solver at this time step, aiming to reduce the number of inner iterations
of the dual time stepping loop to convergence compared to the conventional choice
of initializing with the previous time step solution or an extrapolation in time. This
procedure is repeated for all following time steps. Results for the pitching LANN
wing at transonic flow conditions show a more than twofold reduction in the number
of inner iterations of the flow solver to convergence. Despite the overhead caused by
evaluating the reduced-order model (ROM) at every time step, themethod results in a
38% savings in computational time without compromising accuracy, thus improving
the overall efficiency for unsteady aerodynamics applications. Finally, several means
to further improve the performance are also discussed, including updating the POD
basis after every new time step.

15.1 Introduction

Reduced-order models (ROMs) are being used to replace computationally expen-
sive full-order models in different fields of application, including computational
fluid dynamics (CFD). Typically, ROMs are of interest in situations where the same
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full-order model is to be evaluated many times for different parameter settings, such
as different flow conditions. The goal is to make many predictions at lower compu-
tation cost, hence efficient but nonetheless sufficiently accurate ROMs are typically
sought after.

A powerful tool currently considered state of the art in reduced-order modeling
of linear and nonlinear systems is proper orthogonal decomposition (POD), a tech-
nique which has been demonstrated in many fields of application. When applied
in the context of CFD, the basic idea of POD is to replace solving the full-order
governing equations of fluid dynamics by determining a suitable linear combination
of POD basis vectors, which are computed based on flow solution snapshots from
selected full-order CFD simulations. There exist various methods for computing the
coefficients of such a linear combination, including interpolation [1] and solving a
low-order partial-differential equation (PDE) system. Following the approach in [2],
effective POD-basedROMs for steady aerodynamic problems can also be obtained by
minimizing the POD approximation’s defect with respect to the governing equations
of fluid dynamics. This minimum residual based nonlinear reduced order model-
ing approach has been further refined and demonstrated for subsonic and transonic
steady aerodynamic applications in [3, 4].

Here, our idea is to extend this approach to unsteady aerodynamic applications
by minimizing the unsteady residual. Although derived from high-fidelity unsteady
CFD data, the resulting ROM approximation may lead to a substantial error in time
in the predicted response and time accuracy is lost. Hence, our second idea is to
use the ROM prediction for a given time step to initialize the full-order model at
this time step, assuming this is a good initial guess, and then iterating the inner
loop of dual time stepping of the flow solver until convergence is achieved for this
time step. Ideally, the number of inner iterations to convergence is reduced in this
fashion compared to how the inner loop is otherwise initialized. This procedure is
conducted repetitively for a series of times steps, whereby for each and every new
ROM prediction, the snapshot set and thus the POD basis may be augmented with
the latest fully converged time step solution.

This idea of speeding up the computation of a series of computations using a
residual-based reduced-order model has already been demonstrated for steady aero-
dynamic problems [5]. Here, the corresponding strategy is demonstrated for unsteady
aerodynamic applications by using the extended ROM formulation.

15.2 Theoretical Background

The developed model order reduction approach for unsteady aerodynamic applica-
tions is based on a least-squares minimization of the unsteady residual, which is
obtained by approximating the flow solution through modes arising from a Proper
Orthogonal Decomposition (POD) of samples data. Given a set of flow solutions to
the full order CFD model w(t) = [ρ, ρv, ρEt ] ∈ R

N , N being the total number of
flow states (number of conservative variables per grid point times number of grid
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points n), ρ the density, v the velocity vector, E the total energy, at different time
steps tk , with k = 1, . . . ,m, the PODyields an optimal basis for representing reduced
order solutions of the governing equations. The idea of the reduced order modeling
approach is to formulate the discretized unsteady equations as a steady-state prob-
lem for every time step in a similar fashion as dual-time stepping is used in solving
unsteady CFD problems. This yields the so-called unsteady residual:

̂R
de f= R(w(t)) + �

∂w(t)

∂t
= 0 � : cell volumes (15.1)

By discretizing the time derivative (assuming equidistant time stepsΔt and an invari-
ant computational grid) with a second-order accurate backward difference formula
(BDF-2), it is:

̂R
de f= R(w(tk+1)) + �

3w(tk+1) − 4w(tk) + w(tk−1)

2Δt
= 0 (15.2)

15.2.1 Unsteady Residual-Based Reduced-Order Modeling

The idea is to minimize the unsteady residual in the space spanned by the POD
basis vectors Ur , which is obtained by applying a singular value decomposition
(SVD) to the snapshot matrix Y = USVT, and by truncating the matrix U retaining
only the most relevant r eigenvectors (i.e., those associated to the largest singular
values). The snapshot matrix is obtained by collecting the flow solutions at differ-
ent time steps and subtracting the average of the snapshots w = 1

m

∑m
k=1 wk , i.e.,

Y = [w(t1), . . . ,w(tm)] − w. As an alternative to the SVD, an Eigenvalue decom-
position (EVD) of the correlation matrix R = YYT = US2UT can be applied to
obtain the POD modes. As this space is of reduced size compared to the original
problem, the minimization problem is as well.

The problem is formulated by searching for an approximate flow solution w̃(tk) in
the subspace Ur ∈ R

Nxr , r � N , where only the r most relevant basis vectors have
been retained:

w̃ =
r∑

i=1

aiUi + w = Ura + w (15.3)

with a being the vector of POD coefficients, minimizing the unsteady residual in the
L2 norm:

min
a

‖̂R(Ura + w)‖2L2
= min

a

N∑

j=1

Ω j R̂
2
j (Ura + w) (15.4)

The arising nonlinear least-squares problem for the POD coefficients a is solved by
using a Levenberg algorithm [7]. So, an iterative procedure is performed where the
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increment to coefficients Δa is obtained by solving the linear system:

(JT J + λI)Δa = −JT ̂R (15.5)

with Ji j = ∂ R̂i
∂a j

∈ R
N×r the Jacobianmatrix of̂Rwith respect to the POD coefficients

a, and the non-negative damping factor λ, which is automatically adjusted at each
iteration depending on the convergence rate of the algorithm. Each component of the
gradient vector g ≡ −2JT ̂R can be scaled according to the curvature, here approx-
imated by the pseudo-Hessian matrix B ≡ JT J, in order to avoid slow convergence
in the direction of small gradients. Therefore, replacing the identity matrix Iwith the
diagonal matrix consisting of the diagonal elements of the pseudo-Hessian matrix,
leads to the well-known Levenberg–Marquardt algorithm, which solves iteratively
the linear problem:

(JT J + λdiag(JT J))Δa = −JT ̂R (15.6)

The rank-one Broyden’s method is used to approximate the Jacobian of the reduced-
order system of equations, from the knowledge of the Jacobian matrix (exact or
approximated) built at the previous iteration step:

Jk+1 = Jk + Δ̂R − JkΔa
‖Δa‖2 ΔaT (15.7)

so avoiding the time consuming computation of the J by finite differences at each
iteration of the minimization procedure. Moreover, thanks to Broyden’s update pro-
cedure, the expensive matrix-matrix computation B ≡ JT J can be avoided. Indeed,
by directly substituting Broyden’s formula in the matrix product, one can obtain a
way to computing also the pseudo-Hessian matrix from the knowledge of its values
during the previous iteration step:

Bk+1 ≡ J T
k+1Jk+1 (15.8)

= Bk + JTk Δ̂R − BkΔa
‖Δa‖2 ΔaT + Δa

Δ̂R T Jk − ΔaTBk

‖Δa‖2 (15.9)

+ Δa
Δ̂R TΔ̂R − Δ̂R T JkΔa − ΔaT JTk Δ̂R + ΔaTBkΔa

‖Δa‖4 ΔaT (15.10)

which can be rewritten in the compact form:

Bk+1 = Bk + ωkΔaT + ΔaωT
k

‖Δa‖2 + (φT
k Δ̂R − ωT

k Δa)
ΔaΔaT

‖Δa‖4 (15.11)

with ωk ≡ JTk Δ̂R − BkΔa, and φk ≡ Δ̂R − JTk Δa.
Using this formula, the computation of B (done at each iteration of the minimiza-

tion process, for every physical time step) has complexity O(Nr + 16r2 + N ) ∼=
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O(Nr), instead ofO(Nr2), where N is the order of the high-dimensional model (the
number of conservative variables times the number of grid points) and r the order of
the reduced order model (i.e. the number of POD modes used). It must be pointed
out that this formula for updating the pseudo-Hessian it is not resulting from a direct
approximation of B, but relies on the approximation of J through Broyden’s update
of the Jacobian matrix.

15.2.2 Initializing the Flow Solver with ROM Predictions

The predicted ROM solution is successively used as a restarting solution, initializing
the DLR’s CFD code TAU [6] at the time step under consideration. The aim is to
reduce the number of inner iterations to converge the residual with respect to the
conventional choice of restarting the unsteady computation using the previous time
step solution. The ROM is used therefore as a predictor providing an improved initial
guess for the iterative process.

TheROM-based initial guess is based on the information of the solutions collected
for a certain number of previous time steps, thus realizing a moving window strategy.
In other words, the predicted ROM solution is a linear combination of the most
energetic POD modes of the snapshots collected progressively during the running
simulation. Local ROMs are thus computed by applying the POD on the snapshots
taken at the various time intervals, and updated after a certain number of time steps
have been computed. Such approach leads to predictions based on the most recent
snapshots, and therefore is more adequate for analysis where certain events exist
over a relatively short time intervals, so to better capturing transient phenomena. The
advantage of such an approach is that the POD is cheap and leads to low-dimensional
ROMs, since only few snapshots are considered. However the POD must be applied
many times during the simulation, therefore increasing the total online computational
cost of the ROM prediction. Moreover, a poor ROM prediction may happen when
the POD is computed over a set of TAU snapshots, collected during a certain time
interval, which do not contain information about a phenomena or behavior that will
be present in the following time steps to be simulated (e.g. the appearance of a shock
wave due to a change in the angle of attack). Restarting theCFD solver TAUwith such
a poor ROM prediction may lead to an increased number of iterations to converge,
compared to restarting the flow solver using the TAU flow solution at the previous
time step.

Alternatively, a previously computed POD basis (e.g., generated based on data
from a training maneuver exciting a broad band of frequencies and amplitudes) may
be employed. This approach aims to collect snapshots coming from a time simulation
covering a large domain of the solution spacewhere the flow solutions to be predicted
are assumed to lie. The drawback is that the POD is applied to a greater number of
snapshots compared to the moving-window approach, and the resulting POD basis is
larger in size and thus the ROMmore expensive to evaluate. However, only one POD
has been computed offline and updating during the online prediction is not required.
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Fig. 15.1 Procedure to initialize DLR’S CFD code TAU with ROM predicted solutions in an
unsteady simulation (schematic). In this sketch the ROM is built by applying POD to the TAU
snapshots collected during a previous time interval

In the present work, such strategy has been used; indeed, knowing the type of
unsteady simulations to be performed (i.e. periodic pitching oscillations at different
frequencies), it can be easier to devise a singlemaneuver covering a broad range of the
parameter space of interest (e.g. with a pitching oscillations sweeping in frequency)
instead of apply to each single unsteady simulation a moving-windows strategy.

In any case, also for the moving window strategy it is generally recommended
to employ an initial POD basis obtained from a generic training maneuver exciting
different frequencies and amplitudes, and to then update the basis whenever a new
high-fidelity CFD snapshot coming from the time-marching method is available.

Figure15.1 sketches a restarting process where a ROM is built using snapshots
of the flow field collected progressively during a time-marching simulation. In the
standard TAU unsteady time marching procedure the solution at the (i + 1)th time
step is initialized with the solution at the i th time step. Conversely, the ROM-based
restarting procedure makes use of the ROM prediction at the (i + 1)th time step to
initialize TAU at the same time step. Such an approximate ROM solution may be
“closer” (depending on the level of unsteadiness of the simulation and on the size of
the time steps used) to the final converged TAU solution at the (i + 1)th time step than
that provided by the solution at the previous time step. Note that a ROM prediction
is nothing else that a linear combination of POD modes derived from snapshots.
Therefore, it is is only as good as the snapshots used to generate the ROM. It is
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not possible to correctly represent flow dynamics or physics not already contained
in the snapshots dataset to which the POD is applied. Since the ROM predictions
will depend on the training data used to generate the subspace spanned by the POD
modes, the building of the ROM must be application driven, i.e., attention must be
paid to the training maneuver, which must cover the desired parameter space (e.g.
angle of attack range, amplitudes and frequencies) that the simulation will span. It is
remarked here, however, that in this context the ROM is used as a pre-processing step
in solving the full-order model, and it not intended as a substitute to the CFD solver
TAU. Therefore, it must only provide for an approximate solution close enough to
the solution to which the iterative procedure will converge, thus reducing the number
of inner iterations and the computational cost.

15.2.3 Numerical Test Cases

The ROM-based restarting procedure is applied to the LANN wing, for which the
geometrical data are shown in Table15.1. The LANN wing is defined by two super-
critical cross sections at the root and tip chord. Sections between root and tip are
derived by linear interpolation. The model has a span of 1 meter and a root chord of
0.3608m. The quarter-chord sweep angle is 25◦. The taper ratio (ctip/croot ) is 0.4,
the aspect ratio is 7.92 and the airfoil thickness is about 12%. The twist between root
and tip is 4.6◦.

Table 15.1 Geometrical data of the LANN (Lockheed-Air Force-NASA-NLR) wing model [8]
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Fig. 15.2 Mesh of the LANN wing

A transonic viscous flight condition at a freestream airspeed of 271.66m/s, a
Mach number of 0.82, a Reynolds number based on croot of 7.31 · 106 and 0.6◦
angle of attack is considered. At this condition, a periodic pithing oscillation about
the unswept reference axis (located at 0.2240m from the leading edge of the root
airfoil) with 0.25◦ of amplitude and a reduced frequency based on croot of 0.204 has
been performed. It must be noted that the ROM-based restarting procedure does not
require a periodic state. The procedure is valid for any kind of unsteady maneuver,
periodic or not. The ROM can indeed also predict transitory responses.

The RANS equations with the Spalart–Allmaras (negative version) turbulence
model have been used to model the flow with the TAU code. A structured mesh
having 469, 213 grid points and 450, 560 elements is used for the computation, as
showed in Fig. 15.2.

Since a periodic state can be achieved already at the second period, the simulation
has been performed for 100 time steps,with 50 time steps per period (which have been
shown to be sufficient for a good resolution with respect to time) using a dual time
step method with a 2nd order backward difference discretization (BDF2). A study
has been performed, where the convergence criterion has been set up to a minimum
density residual of 1 · 10−4, 1 · 10−5 and 1 · 10−6, with a maximum number of 100,
200 and 500 inner iterations to converge.
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Fig. 15.3 Linear chirp signal used for the time-simulated pitching oscillation manoeuvre

A linear chirp maneuver defined as:

α(t) = α0 + αmsin(ω(t)t) (15.12)

= α0 + αmsin
(ωmax

T
t2

)
(15.13)

= α0 + αmsin

(
2π fmax

T
t2

)

(15.14)

with αm = 0.25◦ pitch amplitude and a maximum reduced frequency of kmax =
ωmaxcroot/V∞ = 0.22 ( fmax = 26.95Hz), reached at time t = T = 1s, has been
used as a training signal (see Fig. 15.3). The simulation has been performed using
about 20 time steps per pseudo-period, linearly distributed with time over the total
length of the simulation, for a total of 500 time steps. From this maneuver flow field
snapshots have been collected and POD has been applied to them in order to get
the POD modes. The modes have been used to build the ROM, which in turn has
been used to predict, at each physical time step, an approximate flow solution for the
periodic pitch oscillation. The approximate ROM prediction has successively been
used to initialize the inner iterations of the CFD solver TAU.

15.2.4 Numerical Results

The time histories of the lift and moment coefficients of the LANN wing due to
the periodic pitch oscillation are shown in Figs. 15.4 and 15.5, respectively. The
results shown hereafter refer to the case study with convergence to a minimum
density residual of 1 · 10−4 and a maximum number 200 inner iterations. Both the
approximate solution predicted by theROM,which is used in the inner-loop restarting
procedure as an initial guess, as well as the converged TAU solution are shown. The
approximate ROM prediction is seen to be quite accurate (see e.g. the lift coefficient
at time step 52 in the detailed view in Fig. 15.4), thus providing a better initial guess
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Fig. 15.4 Lift coefficient time history of the full-order model (TAU) and the ROM predictions used
in the restarting procedure
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Fig. 15.5 Pitching moment coefficient (about the reference axis) time history of the full-order
model (TAU) and the ROM predictions used in the restarting procedure

for TAU than by initializing the time step using the converged solution at the previous
time step (see time step 51 in the detailed view in Fig. 15.4).

This is usually more emphasized when the solution presents large temporal gra-
dients, as shown by the comparison of the nondimensional pressure between the
approximate ROM solution and the CFD solution for time steps 51 and 52 (corre-
sponding to the maximum time derivative of the solution). The pressure distribution
of thewing’s upper surface computedwith TAU for time step 52 is shown in Fig. 15.6,
the ROM prediction is shown in Fig. 15.7, while the TAU solution at the previous
time step (51) is shown in Fig. 15.8. Figures15.9 and 15.10 show the corresponding
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Fig. 15.9 Relative error
between the
nondimensionalized pressure
of the CFD solution at time
step 52 and the ROM
prediction at time step 52
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Fig. 15.10 Relative error
between the
nondimensionalized pressure
of the CFD solution at time
step 52 and the CFD solution
at time step 51
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signed relative difference ((p52T AU − prestart )/p52T AU between the TAU solution at
time step 52 and the solution used for initializing TAU with prestart = p52ROM in
Fig. 15.9 and prestart = p51T AU in Fig. 15.10. As expected, the difference between the
TAU solutions at two consecutive time steps (51 and 52) is much larger than of the
difference between the TAU solution and the ROM prediction at the same time step.
Such differences are more relevant in the vicinity of the shockwave, which is moving
back and forth in the chord-wise direction over the wing during the simulation.

A better initial guess provided by the approximate ROM solution is reflected in
the computational cost of the simulation. In particular, using the ROM solution to
restart the TAU computation at each time step decreases the number of residual calls
(Fig. 15.11), the wall-clock time (Fig. 15.12) and the CPU time (Fig. 15.13) with
respect to the standard unsteady restarting procedure.

It must be pointed out that number of residual calls for the TAU+ROM restarting
procedure includes: the residual calls needed to build the ROM Jacobian by finite
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Fig. 15.11 Comparison of
the number of residual calls
needed to converge the
solution at each physical
time step by the standard
TAU (black line) unsteady
restarting procedure and
when TAU is initialized with
the ROM inner restart (blue
line). The number of residual
call needed to solve the
nonlinear least squares
problem for a ROM
prediction are also shown
(red line)
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differences (which is equal to the number of PODmodes), the residual calls during the
nonlinear least squares iterations to minimize the unsteady residual and the residual
calls needed for the CFD solver (TAU) to converge to the solution. This is why the
total number of residual calls for the TAU+ROM restarting procedure may exceed
the maximum number of inner iterations, which has been fixed to 200 in the results
shown here, see Fig. 15.11.

When comparing the number of residual calls (Fig. 15.11) and the computa-
tional time (Figs. 15.12 and 15.13) it must be noted that the nonlinear least-squares
procedure used to compute the ROMpredictions makes use of the so-called residual-
only solver of TAU, whereas TAU makes use of the flow solver, which employs a
multigrid procedure to converge the flow solution.
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Fig. 15.13 Comparison of
the CPU time needed at each
physical time step by the
standard TAU unsteady
restarting procedure and by
TAU with the ROM inner
restart
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Figure15.14 compares a typical convergence history of the inner-loop residual (for
a given physical time steps of the unsteady response) when the CFD solver (TAU)
is initialized with the solution at the previous time step (the standard approach)
and when it is initialized with the ROM predicted solution. In the latter case, the
convergence history of the residual starts at the number of nonlinear least-squares
iterations (in general about 10–15 iterations) needed to obtain the ROM solution.
After every iteration of the TAU solver the norm of the residual is computed in order
to monitor the convergence of the solution process. For each control volume a local
residual vector is computed, composed of the residuals of the density, momentum
and energy, and one or more components associated to the turbulence equations.
The global density residual for the monitoring output, normalized with respect to the
global residual of the steady state, is computed as the root mean square value:
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‖resρ‖ =
√

∑N
j=1

res2ρ, j

N

‖resρ‖steady (15.15)

with N being the number of grid points. Here, it is converged to a minimum value
of 1 · 10−4, with a maximum number of inner iterations of 200 per time step. The
convergence history of the ROM is not shown because the Levenberg–Marquardt
method employed to solve the nonlinear least-squares problem makes use of a dif-
ferent objective function and different stopping criteria to determine the convergence
of the ROM solution than the TAU solver. From Fig. 15.14 it can be seen how the
first TAU residual computed using the ROM predicted solution as an initial guess is
lower than the first residual computed using the TAU solution at the previous time
step.

TheTAU solver shows some difficulty to converge for time stepswith high angular
velocity, i.e., themaximum temporal change of angle of attack and thus themaximum
change in time of the flow field, as can be seen in Fig. 15.15 where the number of
residual calls increases up to the point where the imposed maximum number of inner
iterations (i.e. 200) is reached. In these cases, the global density residual shows an
oscillating behaviour (Figs. 15.16 and 15.17) and starting with the better initial guess
provided by the ROM may (Fig. 15.16) or may not (Fig. 15.17) have a beneficial
effect, leading to a faster and oscillation-free convergence.

The convergence behaviour may be improved by choosing a different set-up of
the TAU solver, e.g., reducing the CFL number or reducing the time-step size. The
current setup has been chosen as a compromise between obtaining accurate results
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inner iterations) necessary to converge the global density residual to a value of 1e−4 for the standard
unsteady restarting procedure of the TAU solver
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Fig. 15.16 Global density
residual at a selected time
step showing an oscillatory
behavior for the standard
TAU restarting procedure
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Fig. 15.17 Global density
residual at a selected time
step showing an oscillatory
behavior for both the
standard TAU and the
ROM-based restarting
procedure
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in terms of aerodynamic loads (pressure distribution, lift and moment coefficient)
and a reasonable computational time.

Table15.2 summarizes the performance in terms of computational cost of the
unsteady pitching oscillating simulations for different convergence criteria (i.e., min-
imum residual and maximum number of inner iterations). The Performance column
shows the speed-up factor and the reduction in the number of TAU iterations (TAU
calls).Total calls refers to howmany residual calls were due to theROMoptimization
process plus the following TAU iterations to convergence of the solution. TAU calls
refers to the reduction in the number of TAU iterations to convergence (initialized
with the standard approach or with a ROM predicted solution). The simulations have
been performed in parallel using 10 processors.
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It must be noted that these results do not include information of the offline cost
in building the ROM, which must be also considered in the overall evaluation of the
efficiency of the ROM-based restarting process. For the case analyzed here the offline
cost is the combination of running a TAU simulation, collecting the snapshots and
applying a proper orthogonal decomposition. The chirp maneuver used as training
simulation was computed using 500 physical time steps, with a maximum of 100
inner iterations and a minimum residual of 1 · 10−4. The wall-clock time of the
simulation was 50h16min. The proper orthogonal decomposition used to obtain the
POD modes lasted for 7min. The ROM was build using 17 POD modes.

As can be seen from Table15.2, the number of residual calls of the ROM does not
show significant variations with respect to changes in the converge criteria parame-
ters (minimum residual tolerance and maximum inner iterations). Indeed, the ROM
predicted solution (wrom) at a generic time step tn+1 depends on the TAU solutions
(wT AU ) at the actual and old time steps, tn and tn−1, respectively, only through the
definition of the unsteady residual vector to minimize, as shown in the equation
below:

̂R
de f= Res(wrom(tn+1)) + �

3wrom(tn+1) − 4wT AU (tn) + wT AU (tn−1)

2Δt
(15.16)

If the TAU solutions are properly converged for every minimum global density resid-
ual tolerance considered (i.e., 1 · 10−4, 1 · 10−5, and1 · 10−6) then theROMpredicted
solution at the generic time step tn+1, which is used to initialize TAU at that time step,
is the same for all the convergence criteria considered. Only the number of inner iter-
ations of the TAU solver to convergence changes for the selected tolerance. Themore
the tolerance is decreased the more iterations and computational time are required.
Therefore the performance and effectiveness of the overall ROM-based restarting
process are given mainly by two points: first by how accurate the ROM prediction
is and second by how much the global density residual of the CFD solver is to be
reduced, influencing thus the number of iterations. Requiring a high maximum resid-
ual (e.g. 1 · 10−4) would give an advantage to the ROM-based restarting procedure
over the standard one (assuming that the ROM prediction is quite accurate). This is
because fewer iterations of the TAU solver will be necessary to converge. Decreasing
the desired maximum residual will reduce the speed-up improvement because more
TAU iterations (involving multigrid operations) will be required, thus nullifying the
effect of the ROM in providing a good initial guess.

15.3 Conclusions and Remarks

An unsteady simulation of a LANN wing in transonic viscous flow has been per-
formed. Themotion analyzed is a periodic pitching oscillationwhich, for the selected
amplitude and frequency parameters, does not show a nonlinear behavior in the lift
and moment quantities, but it has an important nonlinear behavior of the flow field,
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characterized by amoving lambda-shaped shockwave, typical for swept wings under
transonic on-flow conditions.

The CFD TAU unsteady simulation where the restarting process make use of the
ROM predicted solution as initial guess for computing the flow field at a certain
physical time step showed a speed-up, compared to running the CFD TAU solver
directly and using the previous time step solution as restarting point.

Such speed-up may vary depending on the convergence criteria set-up for the
minimum residual, but it is however not yet fully satisfactory.

It is nevertheless evident that improving the capability of the ROM prediction
(e.g. using nonlinear manifold learning techniques, like Isomap) would accelerate
the TAU inner-loop convergence in case of unsteady simulations, in particular when
the required minimum global density residual is not very demanding.

Further speed-up of the ROM prediction step may be achieved by using hyper
reduction techniques (e.g. gappy POD, missing point estimation, empirical interpo-
lation), which make use of a subset of the computational mesh over which evaluate
the data, or through sparsity-promoting techniques, which make use of a subset of
the POD modes/snapshots having the greatest contribution on the quality of approx-
imation.

An analysis of the ROM-based restarting approach focusing on the convergence of
an output of interest (e.g. lift and moment) through the Cauchy convergence criteria
would be helpful in understanding the real soundness of the method in an industrial
context, where the main purpose of unsteady simulations is to get accurate aircraft
loads.
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