
Chapter 14
Structural Optimization of 3D Wings Under
Aerodynamic Loads: Topology and Shell

Volker Schulz, Roland Stoffel and Heinz Zorn

Abstract New methods in manufacturing and novel challenges and usages require
the exploration of the potential of new wing designs. This is the goal of this paper.
We propose novel computational methods for the robust optimization of wings under
aerodynamic loads.We restrict the discussion to the optimization of the linear-elastic
properties ofwings concerning several load cases andwith treatment on deformations
and regularization. The degrees of freedom for the design itself are the interior
structure of the wing leading to topology optimization aspects and the structure of
the wing hull in terms of composite material. Thus, this paper aims at mathematical
methods for topology optimization of the wing interior made of isotropic material,
the optimization of orthotropic composite material in the wing hull and the proper
treatment of practical deformation aspects and multiple loads in this context.

14.1 Introduction

We develop mathematical methods for wings with the abstract coarse structure in
Fig. 14.1. The 3D wing consist of two major parts, the interior (light grey), which we
denote as Ω0 and the wing hull (dark grey), which we denote as Ω1.

We aim at the minimization of the elastic compliance, i.e., the computational
treatment of the following optimization problem with constraints in the form of the
elasticity equation:

minWΩ := ∫

Ω

σ(u) : ε(u)dx

subject to −div(σ (u)) = 0 in Ω := Ω0 ∪ Ω1
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Fig. 14.1 Exemplaric
NACA wing illustrating the
coarse structures treated in
this paper

σ(u) = Cε(u) in Ω

u = 0 on Γfix
σ(u)n = g on Γforce

where Γfix ∪ Γforce = ∂Ω

Here, u : Ω → R3 denotes the deformation vector field and ε, σ the strain and
stress tensors, furthermoreC : Ω → R3×3×3×3 the spatially varying stiffnessmatrix.
The boundary Γfix is the part of the wing boundary, where the wing is attached to
the body of the aircraft, and the boundary Γforce is the part, which the aerodynamic
loads g : Γforce → R3 are acting on. The degree of freedom for optimization is the
stiffness matrix, where we—in contrast to free material optimization [1]—do not
admit an arbitrary structure. In the interior Ω0, we rather assume that the stiffness
matrix is a scalar multiple of an isotropic tensor, i.e., C0 = ρE0, where ρ : Ω0 → R
and E0 is constant. Furthermore, we assume that the stiffness matrix in the hull, Ω1,
depends locally and orthotropically on the local fiber orientation, i.e., C1 = C1(α),
where α : Ω → R. The subsequent sections focus on Ω0, Ω1 and practical aspects.

14.2 Topology Optimization of the Wing Interior

Topology optimization aims at optimal structures or–more precisely–optimal mate-
rial distributions in the subdomain Ω0 ⊂ Ω ⊂ R3 with respect to minimization of
elastic energy (compliance). The amount of material is not allowed to surpass a cer-
tain maximal volume, i.e.,

∫
Ω0

dx ≤ V . A decisive aspect is the representation of the
boundary Γ = ∂Ω0, for which the level set method of Osher/Fedkiew [2] or Sethian
[3] is a powerful tool. Several approaches exist to topology optimization:

• SIMP method
• shape optimization based on the shape calculus
• topology optimization based on the topological calculus

The SIMP (solid isentropic material with penalization) method of Bendsøe and
Sigmund [4] uses a homogenization approach to structural optimization. They intro-
duce a pseudo density function ρ ∈ {0, 1}. If the density at a point (or in an ele-
ment of the discretization mesh) is 0, there does not exist any material. If it is 1,
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then there exists material there. Based on this interpretation of material structure,
gradient based algorithms are used in order to compute a locally optimal density
distribution ρ. Additional difficulties resulting from relaxation (ρ(x) ∈ (0, 1]) and
potential checkerboarding have to be treated, e.g., by filtering techniques (cf., [4, 5]).
However, those techniques are hardy computationally viable on unstructured grids.

Shape optimization based on the shape calculus is used in several industrial appli-
cations. The theoretical foundations can be found in [6, 7]. Optimal shapes for fluid
flow is considered, e.g., in [8] and also [9–11]. If shape optimization is used for
the purpose of topology optimization as in [12], it is assumed that there are already
holes (regions without material) in the domain. The aim is to compute the optimal
shapes of the boundaries of those holes. The shape calculus is used to compute shape
sensitivities on the boundaries. The resulting shape gradient guides the computa-
tion towards a (local) optimum. The method uses an explicit representation of the
boundaries. A severe drawback is that the number of holes cannot be changed by this
approach. This problem can be circumvented by a combination of shape optimiza-
tion with a level set method. The level set method describes the boundaries of the
holes as contour surface (usually the zero contour surface) of a higher dimensional
level set function Φ. The evolution of the boundaries is described by the so called
level set equation, which is a time dependent convection equation. In this way, holes
are enabled to merge. However, this method does not possess a mechanism to create
new holes. Good computational performance is achieved for level set functions in
the form of signed distance functions, which require frequent re-initialization during
the optimization process. Furthermore, the shape gradient, which exists only on the
contour surface, has to be somehow propagated on the whole computational domain.

The creation of new holes is enabled by the usage of the so-called topological
derivative, which has been introduced by Sokolowski and Zochowski [13] in 1999.
The concept of topological derivative is frequently used in image processing and
inverse modeling.

The topological derivative compares function evaluations on shapes without a
hole and with a small hole in the form of a difference quotient. Thus, it is the limit
of the difference quotient and can be related to shape gradients. In this particular
case, the topological derivative of the compliance in 3D at the position x ∈ Ω0 can
be expressed as (cf. [14, 15])

DTWΩ(x) = 3

4

1 − ν

7 − 5ν

[

10σ(u) : ε(u) − 1 − 5ν

1 − 2ν
trσ(u)trε(u)

]

(x).

where ν is the Poisson ratio of the material. A rather elegant method for structural
optimization is the combination of the topological derivativewith the level setmethod
as described in [16]. In this approach, the domain Ω0 is divided in one region with
material {x | Φ(x) ≤ 0} and another region without material {x | Φ(x) > 0}. The
topological derivative is used as an indicator, where material should be added or
reduced. A local optimum is reached at a fixed point of this strategy, as soon as the
sign of the topological derivative coincides with the sign of the level set function
everywhere.
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The publication [17] discusses a topological sensitivity analysis for linear elastic-
ity in 2Dwithout level set function approach. The sensitivity analysis in 3D is carried
out in [14], again without a level set framework. The level set method of Amstutz
with inclusions is described in [16], referencing [18] for the sensitivity analysis. [19]
introduces the level set framework togetherwith a penalization of constraints. In [20],
augmented Lagrangian approaches for the proper treatment of constraints within a
topology optimization context are investigated but in the context of linear elasticity.

The topology optimization approach proposed in this paper consists of the fol-
lowing components:

• discretization and solution of the elasticity equations by usage of the open source
software toolbox FEniCS [21].

• 3D implementation of the topological gradient described in [14] for the linear
elasticity solver FEniCS in combination with the

• level set approach in [16, 19].
• Furthermore, it is necessary to limit the volume of the optimal structures. For the
treatment of additional constraints of this type, we use an augmented Lagrangian
technique as described in [16, 19].

In the sequel, we describe numerical results of this strategy for the following
testcase: we use a wing in the shape of a NACA prism as in Fig. 14.1. This wing
is exposed to a usual pressure profile, which is constant in longitudinal direction.
The elasticity equation is discretized in the wing interior on 8 million tetraedral ele-
ments with 1.5 million nodes and with linear finite elements. From that result 4.6
million unknowns, for which the discretized elasticity equations are solved on a par-
allel computing architecture in each optimization iteration. The optimization needs
180 iterations according the optimization approach discussed above. For the interior
wing structures, we allow only 10% of the maximum possible material volume, i.e.,
V0 = 0.1 · |Ω0|. Figures14.2 and 14.3 show the achieved solution from different pre-
spectives. We note that the results of this test case can be geometrically interpreted
as longitudinally curved truss-like structures, which challenge the usually used rib
structures.

Similar investigations can be performed with wings with a priori rib structures in
the interior as in Fig. 14.4.

Fig. 14.2 View into the optimized wing tip (left) and in detail (right)
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Fig. 14.3 Transparent rendering of the optimal wing from different angles. The thin net-like struc-
tures show the domain decomposition for parallel computing

Fig. 14.4 Topological optimization with an interior rib structure. Initial iteration (top) and two
different cuts through the optimal solution (middle and bottom)

14.3 Optimization of the Distribution of Orthotropic
Composite Material in the Wing Shell

Wemodel thematerial in thewing shell as an orthotropicmaterial, where onematerial
direction coincides with the normal vector in each point in the shell. The other two
material direction are described by a rotational angle around the normal vector. Thus,
we optimize the distribution of this orientation angle as a function α : Ω1 → R. This
function enters the material properties in the form C(α) = T (α)C1T (α)�, where
T (α) denotes the transformation of the reference coordinates, which depends on the
angle α, and C1 denotes a fixed orthotropic reference material.
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The methods are implemented within the software toolbox FEniCS already men-
tioned in Sect. 14.2. In a first approach, we applied gradient based methods to the
problem of determining the orientation angle distribution α, where the derivative
information is produced via an adjoint solution and the optimization itself is per-
formedby a limitedmemory quasi-Newtonmethod. This approach is viable, although
additional regularization techniques have to be applied, but in total is takes up very
much computational time. However, in [9] P. Pederson has proposed an analytic
approach in a rectangular 2D setting and derived necessary optimality conditions for
this specific case. There, for certain materials, the stronger material direction coin-
cides with the direction of maximal stress and strain. We use this characterization in
the 3D case in the wing shell and implement it in the form of a fixed point iteration,
where each iteration step consists of the following algorithm:

1. Solve the linear elasticity equation
2. Determine in each the eigenvector of the largest stress in each point and project

it to the shell manifold
3. Set the orientation angle to the direction from step 2.

For the start, it has shown advantageous, to intialize the iterations at the orientation
according the maximal strain. The resulting overall method gives the same solution,
however, in a much more efficient way. Investigations into the convergence proper-
ties are performed in [22]. In an additional step, we combine this algorithm with the
topology optimization approach from Sect. 14.2. This combination is implemented
in a simultaneous fashion, where after each topology optimization step a fast approx-
imative solution of the orthotropic material optimization in the wing shell is carried
out. The resulting method converges to a joint optimum (for the wing interior as
well as for the wing shell). Figure14.5 shows exemplaric results for the optimal fiber
orientation in the wing shell for a wing with two interior ribs.

A detailed analysis of the spatial distribution of the optimal solution shows that
it can be separated in two intertwined and smoothly varying scalar fields which lead
to two perpendicular orientation angles in each point. Figure14.6 shows an example
of a solution of the coupled problem of topology orientation in the wing interior
together with the fiber optimization of the wing shell.

Fig. 14.5 Optimized fiber orientations of a wing with two interior ribs (upper shell left, lower shell
right)
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Fig. 14.6 Coupled optimal solution

14.4 Deformation Aspects, Multiple Load Case
and Regularization

Wings with interior rib structures show characteristic bulges, when aerodynamic
forces bend the whole wing. Those bulges are to be reduced by an appropriate orien-
tation distribution of the orthotropic composite material. Thus, a multicriteria opti-
mization problem arises with the two goals global compliance reduction and local
reduction of the bulges. Here, we use again the wing shown in Fig. 14.5 with rib
structures as illustrated in Fig. 14.7.

On this wing, the following boundary value problem is solved:

−div(σ (u)) = 0 in Ω

σ(u) = C(α)ε(u) in Ω

u = 0 on ΓD

σ(u)n = 0 on Γtip
σ(u)n = pn on ΓN

where p denotes the aerodynamic pressure. The resulting bended wing is shown in
Fig. 14.8, where the bulges are scaled in order to illustrate the investigated effects.

Fig. 14.7 Wing with rib structure as used in the numerical computations
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Fig. 14.8 Wing bending
with scaled bulges

Fig. 14.9 Pure bulge
deformation of the wing (b,
scaled)

The deformation u : Ω → R3 is compared with a resulting deformation v : Ω →
R3 which bends the wing in the same way (prescribed by Dirichlet condition on the
interior plane) but without the action of aerodynamic forces, i.e., as the solution of
the boundary value problem

−div(σ (v)) = 0 in Ω

σ(v) = C(α)ε(v) in Ω

v = u on Γtip ∪ Γmid
v = 0 on ΓD

σ(u)n = 0 on ΓN

From this result,we compute the pure bulge deformation asb := u − v : Ω → R3

without a global deformation of the wing, as shown in Fig. 14.9.
The vector field w := v + λb (λ ∈ R) corresponds to a deformation of the wing

with scaled bulges (scaling factor λ = 50 in Fig. 14.8). The optimal fiber orientation
according to the algorithm sketched above und with usage of w instead of u leads to
the effect that the bulges are reduced, if the scaling factor λ is increased—sacrificing
compliance to some extent. It should be noted that the overall algorithmic effort
is only increased by a factor of 2: two elasticity problem are to be solved in each
iteration (u and v), but the optimization algorithm yields the same performance. The
resulting Pareto diagramm is shown in Fig. 14.10.

Figure14.11 shows two optimized fiber orientation distributions, where the color
code matches the one in Fig. 14.5.

In order to achieve results which are robust under uncertainties with respect to
the specific aerodynamic forces, we consider furthermore the multiple load case. It
is obvious that the algorithmic approach discussed above of guiding the fiber orien-
tation with the direction of maximal stress cannot be carried over to this problem
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Fig. 14.10 Pareto front of compliance reduction versus bulge reduction (0 ≤ λ ≤ 60), shown are
percentage values of the difference in comparison to the reference solution with overall constant
fiber orientation

Fig. 14.11 Two optimal fiber orientation distributions: left λ = 1, right λ = 40

formulation. Here, we develop the following different approach which is computa-
tionally more expensive but can be generalized to the multiple load case. It is related
to the methods discussed in [23] for the 2D case only. We represent the compliance
as a trigonometric polynomial in the form

WΩ =
∫

Ω

W (α)dx =
∫

Ω

a0 + a1 sin(2α) + b1 cos(2α) + a2 sin(4α) + b2 cos(4α)dx

(14.1)

where the coefficients a0, a1, b1, a2, b2 are scalar functions depending on the location
x ∈ Ω which are composed of the (constant) material tensor and the strains σ : Ω →
R3. In the multiple load case (with index k), we obtain with weights γk ≥ 0 the
weighted sum of the load cases in complete analogy as
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∑

k

γkW
k
Ω =

∫

Ω

ā0 + ā1 sin(2α) + b̄1 cos(2α) + ā2 sin(4α) + b̄2 cos(4α)dx

(14.2)

where, e.g., ā1 := ∑
k γkak1 , a

k
1 being the coefficient of the load case k, and the other

coefficients ā0, b̄1, ā2, b̄2 are defined analogously. Thus, formally, there is almost no
difference between the single load case and the multiple load case. As the necessary
condition for optimality, the derivative of the integrand above has to vanish in each
x ∈ Ω . Thus, at most four roots of the (differentiated) trigonometric polynomial have
to be computed efficiently by reformulation as a polynomial in the complex plane.
The rootwith the smallest contribution in the objective gives the newfiber orientation.
A detailed derivation can be found in [22]. In total, we obtain the following algorithm
in each optimization iteration:

1. (parallel) computation of the linear elasticity equation for all load cases
2. (parallel) computation of the distributed coefficients ā0, ā1, b̄1, ā2, b̄2
3. solution of the local scalar optimization problems for the trigonometric polyno-

mials in the FE grid
4. setting the fiber orientation to the direction from step 3.

In the single load case setting, the overall computational effort for this approach
is between the effort for the method discussed in Sect. 14.2 and the approach via an
adjoint solver discussed above. It increases linearly with the number of load cases.
Furthermore, this approach gives good grid convergence as shown in Fig. 14.12, in
all cases.

In Fig. 14.13, we show results for a multiple load scenario.
Figure14.14 presents the convergence history for the multiload case. For each

case (two single loads and one multiload case), we evaluate all three objectives.
It can be observed in particular that the multiple load optimization yields a good
compromise between the two separate objectives.

In the sameway, as Eq. (14.1) is generalized to themultiple load case in Eq. (14.2),
it can also be generalized to the incorporation of a regularization. We denote by
ᾱ : Ω1 → R an orientation distribution of which we plan stay in a vicinity. Since
the effect of the orientation is periodic in π , this periodicity has to be reflected also

Fig. 14.12 Grid convergence in single load case: left coarse grid, right fine grid
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Fig. 14.13 Multiple load results: top row shows optimal solutions in two load cases, bottom shows
the optimal solution in the equally weighted load case (γ1 = 1

2 = γ2)

Fig. 14.14 Convergence histories in the multiple load case study

in the regularization term. In a regularized optimization, we use the objective

W pen
Ω := WΩ + μR(α, ᾱ), μ > 0

where R(α, ᾱ) is defined by

R(α, ᾱ) =
∫

Ω

cos

(

− π

2
− 2ᾱ

)

sin(2α) + sin

(

− π

2
− 2ᾱ

)

cos(2α) + 1dx
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Fig. 14.15 Regularized
result

Thus, R(α, ᾱ) periodically penalizes deviations of α from ᾱ, where deviations by
π/2 are penalized most. As a result, the coefficients of the trigonometric polynomial
in Eq. (14.1) have to increased as

a pen0 := a0 + μ , a pen1 := a1 + μ cos

(

− π

2
− 2ᾱ

)

, bpen1 := a1 + μ sin

(

− π

2
− 2ᾱ

)

and analogously in the multiple load case. Figure14.15 shows a regularized single
load case solution on a fine grid, where the regularizing angle distribution ᾱ has
been generated by smoothing an unregularized result with the usage of the Laplace-
Beltrami operator. Much clearer separations between the regions of different orien-
tation angles are visible. In the smoothed result, the compliance is deteriorated by
roughly 3% only.

14.5 Conclusions

We have developed methods for the topology optimization of aircraft wings, as
well as methods for the optimal orientation of orthotropic composite material in the
wing shell. Furthermore, practical aspects as reduction of buckling, the multiple load
case and regularization have been considered. The numerical results are based on a
linear elasticity model for the mechanical behavior of the wing. All implementations
have been performed on the basis of FEniCS [21]. The results show a significant
performance potential of alternative wing shapes and configurations.
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