
Chapter 11
Neural Engine Hypothesis

Hideaki Shimazaki

11.1 Introduction

Humans and animals change sensitivity to sensory stimulus either adaptively to the
stimulus conditions or following a behavioral context even if the stimulus does
not change. A potential neurophysiological basis underlying these observations is
gain modulation that changes responsiveness of neurons to stimulus; an example is
contrast gain-control found in retina (Sakmann and Creutzfeldt 1969) and primary
visual cortex under anesthesia (Ohzawa et al. 1985; Laughlin 1989), or in higher
visual area caused by attention (Reynolds et al. 2000; Martínez-Trujillo and Treue
2002). Theoretical considerations suggested the gain modulation as a nonlinear
operation that integrates information from different origins, offering ubiquitous
computation performed in neural systems (see Salinas and Sejnowski (2001),
Carandini and Heeger (2012) for reviews). Regulation of the level of background
synaptic inputs (Chance et al. 2002; Burkitt et al. 2003), shunting inhibition (Doiron
et al. 2001; Prescott and De Koninck 2003; Mitchell and Silver 2003), and synaptic
depression (Abbott et al. 1997; Rothman et al. 2009) among others have been
suggested as potential biophysical mechanisms of the gain modulation (see Silver
(2010) for a review). While such modulation of the informative neural activity is a
hallmark of computation performed internally in an organism, a principled view to
quantify the internal computation has not been proposed yet.

Neurons convey information about the stimulus in their activity patterns. To
describe probabilities of a combinatorially large number of activity patterns of the
neurons with a smaller number of activity features, the maximum entropy principle
has been successfully used (Schneidman et al. 2006; Shlens et al. 2006). This
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principle constructs the least structured probability distribution given the small set
of specified constraints on the distribution, known as a maximum entropy model.
It explains probabilities of activity patterns as a result of nonlinear operation on
the specified features using a softmax function. Moreover, the model belongs to an
exponential family distribution, or a Gibbs distribution. Equivalence of inference
under the maximum entropy principle with aspects of the statistical mechanics
and thermodynamics was explicated through the work by Jaynes (1957). Recently
thermodynamic quantities were used to assess criticality of neural activity (Tkac̆ik
et al. 2014, 2015). However, analysis of neural populations under this framework
only recently started to include “dynamics” of a neural population (Shimazaki et al.
2009, 2012; Shimazaki 2013; Kass et al. 2011; Kelly and Kass 2012; Granot-Atedgi
et al. 2013; Nasser et al. 2013; Donner et al. 2017), and has not yet reached maturity
to include computation performed internally in an organism.

Based on a neural population model obtained under the maximum entropy
principle, this study investigates neural dynamics during which gain of neural
response to a stimulus is modulated with a delay by an internal mechanism to
enhance the stimulus information. The delayed gain modulation is observed at
different stages of visual pathways (McAdams and Maunsell 1999; Reynolds et al.
2000; Lee et al. 2003). For example, effect of contrast gain-control by attention
on response of V4 neurons to high contrast stimulus appears 200–300 ms after the
stimulus presentation, but is absent during 100–200 ms time period during which
the neural response is returning to a spontaneous rate (Reynolds et al. 2000). This
process is expected for dynamics of neurons subject to a feedback gain-modulation
mechanism, e.g., via recurrent networks (Salinas and Abbott 1996; Spratling and
Johnson 2004; Sutherland et al. 2009). Similar modulation of the late activity
component of neurons is discussed as underpinnings of working memory (Supèr
et al. 2001), sensory perception (Cauller and Kulics 1991; Sachidhanandam et al.
2013; Manita et al. 2015), and reward value (Schultz 2016). We demonstrate that our
hypothetical neural dynamics with delayed gain-modulation forms an information-
theoretic cycle that generates entropy ascribed to the stimulus-related activity using
entropy supplied by the internal gain-modulation mechanism. The process works
analogously to a heat engine that produces work from heat supplied by reservoirs.
We hypothesize that neurons in the brain act in this manner when it actively
modulates the incoming sensory information to enhance perceptual capacity.

This chapter is organized as follows. In Sect. 11.2, we construct a maximum
entropy model of a neural population by constraining two types of activities, one
that is directly regulated by stimulus and the other that represents background
activity of neurons, termed “internal activity.” We point out that modulation of the
internal activity realizes gain-modulation of stimulus response. In Sect. 11.3, we
explain the conservation of entropy, equation of state for the neural population, and
information on stimulus. In Sect. 11.4, we construct cycles of neural dynamics that
model stimulus-evoked activity during which the stimulus information is enhanced
by the internal gain-modulation mechanism. We define entropic efficiency of gain-
modulation performed to retain the stimulus information. An ideal cycle introduced
in this section achieves the highest efficiency. The chapter ends with discussion
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in which the state-space model of the neural population is argued as a potential
approach to test the hypothesis. Thermodynamic formulation and derivations of free
energies for a neural population are summarized in Appendix.

11.2 A Simple Model of Gain Modulation by a Maximum
Entropy Model

11.2.1 Maximum Entropy Model of Spontaneous Neural
Activity

We start by modeling spontaneous activity of N spiking neurons. We represent
a state of the i-th neuron by a binary variable xi D .0; 1/ (i D 1 � � � N). Here
silence of the neuron is represented by “0” whereas activity, or a spike, of the
neuron is denoted by “1.” The simultaneous activity of the N neurons is represented
by a vector of the binary variables, x D .x1; : : : ; xN/. The joint probability mass
function, p.x/, describes the probability of generating the pattern x. There are 2N

different patterns. We characterize the combinatorial neural activity with a smaller
number of characteristic features Fi.x/ (i D 1; : : : ; d, where d < 2N), based on the
maximum entropy principle. Here Fi.x/ is the i-th feature that combines the activity
of individual neurons. For example, these features can be the first and second order
interactions, Fi.x/ D xi for i D 1; : : : ;N, and FNC.N�i=2/.i�1/Cj�i.x/ D xixj for
i < j. The maximum entropy principle constructs the least structured probability
distribution while expected values of these features are specified (Jaynes 1957). By
representing expectation by p.x/ using a bracket h�i, these constraints are written as
hFi.x/i D ci (i D 1; : : : ; d), where ci is the specified constant.

Maximization of a function subject to the equality constraints is formulated
by the method of Lagrange multipliers that alternatively maximizes the following
Lagrange function

L Œp� D �
X

x

p.x/ log p.x/ � a
X

x

p.x/ �
X

i

bi

(
X

x

p.x/Fi.x/ � ci

)
;

(11.1)

where a and bi (i D 1; : : : ; d) are the Lagrange multipliers. The Lagrange function
is a functional of the probability mass function. By finding a zero point of its
variational derivative, we obtain

p.x/ � exp

 
�
X

i

biFi.x/

!
: (11.2)
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The Lagrange parameters bi are obtained by simultaneously solving @L
@bi

D
hFi.x/i � ci D 0 for i D 1; : : : ; d. Many gradient algorithms and approximation
methods have been developed to search the parameters. Activities of retinal ganglion
cells (Schneidman et al. 2006; Shlens et al. 2006; Tkac̆ik et al. 2014, 2015),
hippocampal (Shimazaki et al. 2015), and cortical neurons (Tang et al. 2008; Yu
et al. 2008; Shimazaki et al. 2012) were successfully characterized using Eq. (11.2).
In the following, we use a vector notation b0 D .b1; : : : ; bd/

> and F.x/ D
.F1.x/; : : : ;Fd.x//>. Here H0 � b>

0 F.x/ is a Hamiltonian of the spontaneously
active neurons. In statistical mechanics, Eq. (11.2) is identified as the Boltzmann
distribution with a unit thermodynamic beta. If the features contain only up to the
second order interactions, the model is equivalent to the Ising or spin-glass model
for ferromagnetism.

11.2.2 Maximum Entropy Model of Evoked Neural Activity

In this subsection, we model evoked activity of neurons caused by changes in
extrinsic stimulus conditions. We define a feature of stimulus-related activity as
X.x/ D b>

1 F.x/, where elements of b1 dictate response properties of each feature
in F.x/ to a stimulus. For simplicity, we represent the stimulus-related activity by
this single feature, and consider that the evoked activity is characterized by the two
summarized features, H0.x/ and X.x/. To model it, we constrain expectation of the
internal and stimulus features using U and X, respectively. Here we assume that
F.x/, b0, and b1 are known and fixed. For example, this would model responses of
visual neurons when we change contrast of a stimulus while fixing the rest of the
stimulus properties. The maximum entropy distribution subject to these constraints
is again given by the method of Lagrange multipliers. The Lagrange function is
given as

L Œp� D �
X

x

p.x/ log p.x/

� a
X

x

p.x/ � ˇ
(
X

x

p.x/H0.x/ � U

)
C ˛

(
X

x

p.x/X.x/ � X

)
:

(11.3)

Here a, ˇ, and ˛ are the Lagrange parameters. By maximizing the functional L
with respect to p, we obtain the following maximum entropy model,

p.x/ D expŒ�ˇH0.x/C ˛X.x/ �  .ˇ; ˛/�; (11.4)

where  .ˇ; ˛/.D 1C a/ is a logarithm of a normalization term. It is computed as

 .ˇ; ˛/ D log
X

x

e�ˇH0.x/C˛X.x/: (11.5)
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We call  .ˇ; ˛/ a log-partition function. The Lagrange multipliers, ˇ and ˛, are
adjusted such that hH0.x/i D U and hX.x/i D X. Equation (11.4) is a softmax
function (generalization of a logistic function to multinomial outputs) that returns
the population output from a linear sum of the features weighted by �ˇ and ˛. With
this view, we may alternatively regard ˇ or ˛ as an input parameter that controls
U and X. Hereafter we simply call U internal activity, and X stimulus-related
activity. Similarly, we call ˇ an internal component, and ˛ a stimulus component.
We consider that the stimulus component ˛ can be controlled by changing extrinsic
stimulus conditions that an experimenter can manipulate. The stimulus component
is written as ˛.s/ if it is a function of a scalar stimulus condition s, such as stimulus
contrast for visual neurons. In contrast, the internal component ˇ is not directly
controllable by the stimulus conditions. The spontaneous activity is modeled at
ˇ D 1 and ˛ D 0.

11.2.3 Gain Modulation by Internal Activity

We give a simple example of the maximum entropy model to show how the
internal activity modulates the stimulus-related activity. Figure 11.1a illustrates an
exemplary model composed of 5 neurons. With these particular model parameters
(see figure caption), the stimulus component ˛ controls activity rates of the first
three neurons and their correlations. The internal component ˇ controls background
activity rates of all neurons. In our settings, decreasing ˇ increases the baseline
activity level of all neurons. Figure 11.1b displays activity rates of the individual
neurons (hxii for i D 1; : : : ; 5) as a function of the stimulus component ˛ with a
fixed internal component ˇ. Increasing ˛ under these conditions activates the first
three neurons without changing the activity rates of Neuron 4 and 5.1 Furthermore,
the response functions of the three neurons shift toward left when the background
activity rates of all neurons is increased by decreasing the internal component
ˇ (Fig. 11.1b dashed lines). Thus Neuron 1–3 increase sensitivity to stimulus
component ˛. This type of modulation is called input-gain control. For example,
if ˛ is a logarithmic function of contrast s of visual stimulation presented to an
animal while recording visual neurons (˛.s/ D log s), increasing the modulation
(decreasing ˇ) makes neurons respond to multiplicatively smaller stimulus contrast.
This models the contrast gain-control observed in visual pathways (Sakmann and
Creutzfeldt 1969; Ohzawa et al. 1985; Reynolds et al. 2000; Martínez-Trujillo
and Treue 2002). Other types of nonlinearity in the input-output relation can be
constructed, depending on the nonlinearity in ˛.s/.

1The activity rates of Neuron 4, 5 do not depend on ˛ because b0 does not contain interactions
that relate Neuron 1–3 with Neuron 4, 5. If there are non-zero interactions between any pair from
Neuron 1–3 and Neuron 4, 5 in b0, the activity rates of Neuron 4, 5 increase with the increased
rates of Neuron 1–3.
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Fig. 11.1 A simple model of gain modulation by a maximum entropy model of 5 neurons. (a) An
illustration of neurons that are activated by a stimulus (neurons in a pink area) and controlled by
an internal mechanism (neurons in a yellow area). The model is constrained by features containing
up to the second order statistics: F.x/ D .x1; : : : ; x5; x1x2; x1x3; x2x3; : : : ; x4x5/>, where the first
5 elements are parameters for the individual activities xi (i D 1; : : : ; 5) and the rest of the elements
is the joint activities of two neurons xixj (i < j). We assume that the stimulus-related activity is
characterized by b1 D .1; 1; 1; 0; 0; 0:3; 0:3; 0:3; 0; : : : ; 0/. The first 3 elements are parameters
for individual activity of the first three neurons xi (i D 1; 2; 3). The value 0:3 is assigned to the
joint activities of the first three neurons, namely the features specified by x1x2; x1x3, and x2x3. The
internal activity is characterized by b0 D .2; 2; 2; 2; 2; 0; : : : ; 0/, which regulates activity rates
of individual neurons but does not change their interactions. (b) The activity rates of neurons as
a function of the stimulus component ˛ at fixed internal components, ˇ D 1:0 (solid line) and
ˇ D 0:8 (dashed line). (c) The stimulus component X as a function of ˛ at different internal
components. (d) The relation between the stimulus-related activity X and internal activity U. (e)
The Fisher information about the stimulus component ˛

Figure 11.1c displays a relation of the stimulus component ˛ with the stimulus-
related activity X at different internal component ˇ. Similarly to the activity rates
(Fig. 11.1b), the stimulus-related activity X is augmented if the internal component
ˇ is decreased. This nonlinear interaction between ˛ and ˇ is caused by the neurons
that belong to both stimulus-related and internal activities. In this example, the
stimulus component ˛ also increases the internal activity U (Fig. 11.1d) because
of increased activity rates of the shared neurons 1, 2, 3. Finally, Fig. 11.1e displays
the variance of stimulus feature X.x/ as a function of ˛. It quantifies the information
about the stimulus component ˛, which we will discuss in the next section.
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11.3 The Conservation of Entropy, Equation of State, and
Stimulus Information for a Neural Population

11.3.1 Conservation of Entropy for Neural Dynamics

The probability mass function, Eq. (11.4), belongs to the exponential family distri-
bution. The Lagrange parameters are called natural or canonical parameters. The
activity patterns of neurons are modeled as a linear combination of the two features
H0.x/ and X.x/ using the canonical parameters .�ˇ; ˛/ in the exponent. Expecta-
tion of the features are called the expectation parameters U and X. Either natural
or expectation parameters are sufficient to specify the probability distribution. We
review dual structure of the two representations (Amari and Nagaoka 2000), and
show that the relation provides the conservation law of entropy.

Negative entropy of the neural population is computed as

�S D hlog p.x/i
D �ˇhH0.x/i C ˛hX.x/i �  .ˇ; ˛/
D �Uˇ C X˛ �  .ˇ; ˛/: (11.6)

Since the log-partition function of Eq. (11.4) is a cumulant generating function, U
and X are related to the derivatives of  .ˇ; ˛/ as

@ .ˇ; ˛/

@ˇ
D �hH0.x/i D �U; (11.7)

@ .ˇ; ˛/

@˛
D hX.x/i D X: (11.8)

Equations (11.6)–(11.8) form a Legendre transformation from .ˇ; ˛/ to �S.U;X/.
The inverse Legendre transformation is constructed using Eq. (11.6) as well:
 .ˇ; ˛/ D �ˇU C ˛X � .�S.U;X//. Thus dually to Eqs. (11.7) and (11.8), the
natural parameters are obtained as derivatives of the entropy with respect to the
expectation parameters,

�
@S

@U

�

X

D ˇ; (11.9)

�
@S

@X

�

U

D �˛: (11.10)

The natural parameters represent sensitivities of the entropy to the independent
variables U and X. From these results, the total derivative of S.U;X/ is written as

dS D
�
@S

@U

�

X

dU C
�
@S

@X

�

U

dX

D ˇdU � ˛dX: (11.11)
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This explains a change of neurons’ entropy by changes in the internal and stimulus-
related activities. We denote an entropy change caused by the internal activity as
dSint � ˇdU, and an entropy change caused by the extrinsic stimulus as dSext �
˛dX, respectively. Then Eq. (11.11) is written as

dS D dSint � dSext: (11.12)

We remark that dS is an infinitesimal difference of entropies at two close states,
and its integral does not depend on a specific transition between the two states. In
contrast, dSint and dSext represent production of entropy separately by the internal
and stimulus-related activities, and their integrals depend on the specific paths.
Equation (11.12) constitutes the conservation of entropy for neural dynamics. We
stress that although it is the first law of thermodynamics, the neurons considered
here interact with an environment differently from conventional thermodynamic
systems.2 While internal energy of the conventional systems is indirectly controlled
via work and heat, we consider that the internal activity of neurons is controlled
directly by the organism’s internal mechanism. Thus we use dSint and dSext, rather
than the work and heat, as quantities that neurons exchange with an environment.

11.3.2 Equation of State for a Neural Population

Equation (11.8) is an equation of the state for a neural population, which we rewrite
here as

X.ˇ; ˛/ D @ .ˇ; ˛/

@˛
: (11.13)

Through the log-partition function  , this equation relates state variables, ˇ, ˛, and
X, similarly to, e.g., the classical ideal gas law that relates temperature, pressure, and
volume. Figure 11.1c displayed the equation of state. We note that is related to the
Gibbs free energy (see Appendix). Furthermore, without loss of generality, we can
assume that the hamiltonian of the silent state is zero: H0.0/ D X.0/ D 0, where
x D 0 denotes the simultaneous silence of all neurons. We then obtain p.0/ D e� ,
namely

� .ˇ; ˛/ D log p.0/: (11.14)

2We obtain dU D TdS � fdX, using ˇ � 1=T and ˛ � ˇf in Eq. (11.11). In this form, the
expectation parameter U is a function of .S;X/. According to the conventions of thermodynamics,
we may call U internal energy, T temperature of the system, and f force applied to neurons by a
stimulus. It is possible to describe the evoked activity of a neural population using these standard
terms of thermodynamics. However, this introduces the concepts of work and heat, which may not
be relevant quantities for neurons to exchange with environment.
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Thus � .ˇ; ˛/ is a logarithm of the simultaneous silence probability.3 Since
d.log p.0// D dp.0/=p.0/, �d gives a fractional increase of the simultaneous
silence probability of the neurons. Accordingly, Eq. (11.13) states that the stimulus-
related activity X equals to the fractional decrease of the simultaneous silence
probability by a small change of ˛, given ˇ.

The opposite representation of the equation of state, ˛ as a function of X given ˇ,
is obtained as follows. From Eq. (11.13), we have d D Xd˛ given that ˇ is fixed.
Let  0 and X0 be  and X at ˛ D 0. Then, if the internal component ˇ is fixed, the
stimulus component ˛ at X is given by

˛.ˇ;X/ D
Z  

 0

�
1

X

�

ˇ

d 0 D
Z X

X0

�
1

X0
@ 

@X0

�

ˇ

dX0: (11.15)

Here
�
@ 

@X

�

ˇ
is a fractional decrease of the simultaneous silence probability when X

shifts to X C dX while ˇ is fixed.

11.3.3 Information About Stimulus

The Fisher information J.˛/ provides the accuracy of estimating a small change in
the stimulus component ˛ by an optimal decoder. More specifically, the inverse of
the Fisher information provides a lower bound of variance of an unbiased estimator
for ˛ from a sample. For the exponential family distribution, it is given as the second
order derivative of the log-partition function with respect to ˛, which is also the
variance of stimulus feature X.x/:

J.˛/ �
*�
@ log p.x/
@˛

�2+
D @2 .ˇ; ˛/

@˛2

D @X

@˛
D hX.x/2i � hX.x/i2: (11.16)

The first equality in the second line of Eq. (11.16) is obtained using the first order
derivative of  , namely the equation of state (Eq. (11.13)). The second equality in
Eq. (11.16) represents the fluctuation-dissipation relation of the stimulus feature.
The equalities show that the Fisher information can be computed in three different
manners given that the internal component ˇ is fixed: (1) the second derivative of

3Importantly, � is a logarithm of the simultaneous silence probability predicted by the model,
Eq. (11.4). The observed probability of the simultaneous silence could be different from the
prediction if the model is inaccurate. For example, an Ising model may be inaccurate, and it was
shown that neural higher-order interactions may significantly contribute to increasing the silence
probability (Ohiorhenuan et al. 2010; Shimazaki et al. 2015).



276 H. Shimazaki

 with respect to ˛ using the simultaneous silence probability, (2) the derivative of
X with respect to ˛ using the equation of state, or (3) the variance of the stimulus
feature.

The Fisher information computed at two fixed internal components was shown
in Fig. 11.1e. The stimulus component ˛ becomes relatively dominant in charac-
terizing the neural activity if the internal component ˇ decreases. This results in
the larger Fisher information J.˛/ for the smaller internal component ˇ at given ˛.
If the stimulus condition s controls the stimulus component as ˛.s/, and it is not
related to ˇ, the information about s is given as @˛.s/

@s J.˛/ @˛.s/
@s .

11.4 Information-Theoretic Cycles by a Neural Population

We now introduce neural dynamics that models dynamical gain-modulation per-
formed by an internal mechanism while neurons are processing stimulus. Since there
are neurons that belong to both stimulus-related and internal activities, the internal
mechanism changes not only the internal activity but also the stimulus-related
activity, which realizes the modulation. From an information-theoretic point of
view, this process converts entropy generated by the internal mechanism to entropy
associated with stimulus-related activity after one cycle of the neural response is
completed. To explain this in detail, we first provide an intuitive example of delayed
gain-modulation using a dynamical model, and then provide an ideal cycle that
efficiently enhances stimulus information. Using the latter model, we explain why
the process works similarly to a heat engine, and show how to quantify efficiency of
the gain-modulation performed by the internal mechanism.

11.4.1 An Example of Delayed Gain-Modulation

We first consider a simple dynamical model of delayed gain-modulation. We use the
feature vector, b0 and b1 based on those used in Fig. 11.1. In this model, neurons
are activated by a stimulus input, which subsequently increases modulation by an
internal mechanism (Fig. 11.2a). Such a process can be modeled through dynamics
of the controlling parameters given by

�˛ P̨ .t/ D �˛.t/C s e�t=�˛ (11.17)

�ˇ P̌.t/ D �ˇ.t/C ˇ0 � �˛.t/ (11.18)

for t � 0. Here s is intensity of an input stimulus. Neurons are initially at a
spontaneous state: ˛.0/ D 0 and ˇ.0/ D ˇ0 D 1. The top panel of Fig. 11.2b
displays the dynamics of ˛.t/ and ˇ.t/. The population activity is sampled from
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Fig. 11.2 The delayed gain-modulation by internal activity. The parameters of the maximum
entropy model (N D 5) follow those in Fig. 11.1. (a) An illustration of delayed gain-modulation
described in Eqs. (11.17) and (11.18). The stimulus increases the stimulus component ˛ that
activates Neuron 1, 2, and 3. Subsequently, the internal component ˇ is increased, which increases
the background activity of all 5 neurons. We assume a slower time constant for the gain-modulation
than the stimulus activation (�ˇ D 0:1 and �˛ D 0:05). (b) Top: Dynamics of the stimulus and
internal components (solid lines, � D 0:5). The internal component ˇ without the delayed gain-
modulation (� D 0) is shown by a dashed black line. Middle: Activity rates [a.u.] of Neuron
1–3 with (solid red) and without (dashed black) the delayed gain-modulation. Bottom: The Fisher
information about stimulus component ˛ (Eq. (11.16)). (c) The X-˛ (left) and U-ˇ (right) phase
diagrams. A red solid cycle represents dynamics when the delayed gain-modulation is applied
(� D 0:5). The dashed line is a trajectory when the delayed gain-modulation is not applied to
the population (� D 0). (d) Left: The U-ˇ phase diagrams of neural dynamics with different
combinations of �ˇ and � that achieve the same level of the maximum modulation (the minimum
value of ˇ D 0:9). Right: The Fisher information about the stimulus component ˛ for different
cycles. The color code is the same as in the left panel. The inset shows the Fisher information about
the stimulus intensity s (Eq. (11.19))

the maximum entropy model with these dynamical parameters. Here we consider a
continuous-time representation of the maximum entropy model4 (Kass et al. 2011;

4Under the assumption that rates of synchronous spike events scale with O.�k/, where � is a
bin size of discretization and k is the number of synchronous neurons. It was proved (Kass et al.
2011) that it is possible to construct a continuous-time limit (� ! 0) of the maximum entropy
model that takes the synchronous events into account. Here we follow their result to consider the
continuous-time representation.
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Kelly and Kass 2012). The activity rates of neurons are increased by the delayed
gain-modulation (solid lines in Fig. 11.2b, middle panel) from those obtained
without the modulation (� D 0; dashed lines). Accordingly, the information about
the stimulus component ˛ contained in the population activity as quantified by the
Fisher information (Eq. (11.16)) increases and lasts longer by the delayed gain-
modulation (Fig. 11.2b, bottom panel). Note that in this example, the information
about the stimulus strength s is carried in both ˇ.t/ and ˛.t/ as time passes. The
result obtained from the Fisher information about s using both ˇ.t/ and ˛.t/ is
qualitatively the same as the result of the Fisher information about ˛ (not shown).5

The U-ˇ phase diagram (Fig. 11.2c, left panel) shows that dynamics without
the gain-modulation is represented as a line because ˇ is constant. In contrast,
dynamics with the gain-modulation forms a cycle because weaker and then stronger
modulation (larger and then smaller ˇ) is applied to neurons when the internal
activity U increases and then decreases, respectively. Similarly, the dynamics forms
a cycle in the X-˛ plane (Fig. 11.2c, right panel) if the stimulus activity X is
augmented by the delayed gain-modulation. By applying the conservation law for
entropy (Eq. (11.12)) to the cycle, we obtain

0 D
I
ˇdU �

I
˛dX: (11.20)

Here
H
ˇdU � �Sint is entropy produced by the internal activity during the cycle

due to the delayed gain-modulation, and
H
˛dX � �Sext is entropy produced by

the activity related to extrinsic stimulus conditions. These are the areas within the
circles in the phase diagrams. Equation (11.20) states that the two cycles have the
same area (�Sint D �Sext).

The left panel in Fig. 11.2d displays the U-ˇ phase diagram for dynamics with
given maximum strength of modulation (the minimum value of ˇ). Among these
cycles, larger cycles retain the information about the stimulus component ˛ for a
longer time period (Fig. 11.2d, right panel). The same conclusion is made from the
Fisher information about s (Fig. 11.2d, an inset in right panel). The larger cycles
were made because the modulation was only weakly applied to neurons when
the internal activity U increased, then the strong modulation was applied when U
decreased. Such modulation is considered to be efficient because it allows neurons to
retain the stimulus information for a longer time period by using the slow time-scale
of ˇ without excessively increasing activity rates of neurons at its initial rise. In the

5When ˛ and ˇ are both dependent on the stimulus, the Fisher information about s is given as

J.s/ D @�.s/>

@s
J
@�.s/

@s
; (11.19)

where �.s/ � Œ�ˇ; ˛�> and J is a Fisher information matrix given by Eq. (11.24), which will be
discussed in the later section. We computed Eq. (11.19) using analytical solutions of the dynamical

equations given as ˛.t/ D st
�˛

e�t=�˛ and ˇ.t/ D 1� s�
�ˇ��˛

n
�˛�ˇ

�ˇ��˛
.e�t=�ˇ � e�t=�˛ /� te�t=�˛

o
.
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next section, we introduce the largest cycle that maximizes the entropy produced by
the gain-modulation when the maximum strength of the modulation is given. Using
this cycle, we explain how the cycle works analogously to a heat engine, and define
efficiency of the cycle to retain the stimulus information.

11.4.2 The Efficient Cycle by a Neural Population

The largest cycle is made if the modulation is not applied when the internal
activity U increases, then applied when U decreases. Figure 11.3 displays a cycle
of hypothetical neural dynamics that maximizes the entropy production when the
ranges of the internal component and activity are given. The model parameters
follow those in Fig. 11.1. This cycle is composed of four steps. The process starts at
the state A at which neurons exhibit spontaneous activity (ˇ D ˇH D 1, ˛ D 0).
Figure 11.3a displays a sample response of the neural population to a stimulus
change. Figure 11.3b and c display the X-˛ and U-ˇ phase diagrams of the cycle.
Heat capacity of the neural population and the Fisher information about ˛ are shown
in Fig. 11.3d. Details of the cycle steps are now described as follows.

A!B Increased stimulus response The stimulus-related activity X is increased by
increasing the stimulus component ˛ while the internal component is fixed
at ˇ D ˇH . In this process the internal activity U also increases.

B!C Internal computation An internal mechanism decreases the internal com-
ponent ˇ while keeping the internal activity (dU D 0). In this process the
stimulus-related activity X decreases. The process ends at ˇ D ˇL.

C!D Decreased stimulus response The stimulus-related activity X is decreased
by decreasing the stimulus component ˛ while the internal component is
fixed at ˇ D ˇL. In this process the internal activity U also decreases.

D!A Internal computation An internal mechanism increases the internal com-
ponent ˇ while keeping the internal activity (dU D 0). In this process the
stimulus-related activity X increases. The process ends at ˇ � ˇH .

The processes B!C and D!A represent additional computation performed by
an internal neural mechanism on the neurons’ stimulus information processing. It is
applied after the initial increase of stimulus-related activity during A!B, therefore
manifests delayed modulation. Without these processes, the neural dynamics is
represented as a line in the phase diagrams. The Fisher information about ˛ also
increases during the process between C and D (Fig. 11.3d, right panel). We reiterate
that the Fisher information quantifies the accuracy of estimating a small change in
˛ by an optimal decoder. Thus operating along the path between C and D is more
advantageous than the path between A and B for downstream neurons if their goal
is to detect a change in the stimulus-related activity of the upstream neurons that is
not explained by the internal activity.
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Fig. 11.3 The efficient circle by a neural population (N D 5). The parameters of the maximum
entropy model follow those in Fig. 11.1. The cycle starts from the state A at which ˇ D ˇH D 1

and ˛ D 0. See the main text for details of the steps. The efficiency of this cycle is 0:14. (a) Top:
Spike raster plots during the cycle. Middle: Activity rates of neurons. Bottom: The cycle steps.
(b) The X-˛ phase diagram. (c) The U-ˇ phase diagram. (d) Left: X v.s. heat capacity. The heat
capacity is defined as C D hh2i�hhi2, where h D � log p.x/ is information content. Right: Fisher
information about the stimulus component ˛

11.4.3 Interpretation as an Information-Theoretic Cycle

We start our analysis on the cycle by examining how much entropy is generated by
the internal and stimulus-related activities at each step. First, we denote by �Sint

AB
and �Sint

CD the entropy changes caused by the internal activity during the process
A!B and C!D, respectively. Since the internal component ˇ is fixed at ˇH during
the process A!B, we obtain�Sint

AB D ˇH�U, where�U is a change of the internal
activity (see Fig. 11.3c). This change in the internal activity is positive (�U > 0).
Since the internal activity does not change during B!C and D!A, a change of
the internal activity during C!D is given by ��U (Note that the internal activity
is a state variable). We obtain �Sint

CD D �ˇL�U for the process during C!D. The
total entropy change caused by the internal activity during the cycle is given as
�Sint

AB C�Sint
CD D .ˇH � ˇL/�U, which is positive because ˇH > ˇL and �U > 0.

Thus the internal activity contributes to increasing the entropy of neurons during the
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Fig. 11.4 An
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by a neural population
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cycle. Second, we denote by �Sext the total entropy change caused by the stimulus-
related activity during the cycle. According to the conservation law (Eq. (11.12))
applied to this cycle, we obtain

0 D �Sint
AB C�Sint

CD ��Sext: (11.21)

Note that the sign of �Sext D �Sint
AB C�Sint

CD is positive. Hence the stimulus-related
activity contributes to decreasing the entropy of neurons during the cycle.

This cycle belongs to the following cycle that is analogous to a heat engine
(Fig. 11.4). In this paragraph, we temporarily use receive entropy and emit entropy
to express the positive and negative path-dependent entropy changes caused by
the internal or stimulus-related activity in order to facilitate comparison with a
heat engine.6 In this cycle, neurons receive entropy as internal activity from an
environment (�Sint

in > 0) and emit entropy to the environment (�Sint
out < 0).

The received entropy as the internal activity is larger than the emitted entropy
(�Sint

in C �Sint
out > 0). The surplus entropy is emitted to the environment in the

form of the stimulus-related activity (��Sext < 0). Thus we may regard the cycle
as the process that produces stimulus-related entropy using entropy supplied by
the internal mechanism. We hereafter denote this cycle as an information-theoretic
cycle, or engine. The cycle in Fig. 11.2 is also regarded as an information-theoretic
cycle by separating the process at which the internal activity is maximized.
The conservation law prohibits a perpetual information-theoretic cycle that can
indefinitely produce the stimulus-related entropy without entropy production by the
internal mechanism.7

6Here we use entropy synonymously with heat in thermodynamics to facilitate the comparison with
a heat engine. However this is not an accurate description because the entropy is a state variable.
7This is synonymous with the statement that the first law prohibits a perpetual motion machine of
the first kind, a machine that can work indefinitely without receiving heat.
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11.4.4 Efficiency of a Cycle

As we discussed for the example dynamics in Fig. 11.2, we may consider that
the modulation is efficient if it helps neurons to retain stimulus information
without excessively increasing the internal and stimulus-related activities during
the initial response. Such a process was achieved when gain-modulation was only
weakly applied to neurons when the internal activity U increased, then strong gain
modulation was applied when U decreased. We can formally assess this type of
efficiency by defining entropic efficiency, similarly to thermal efficiency of a heat
engine. It is given by a ratio of the entropy change caused by the stimulus-related
activity as opposed to the entropy change gained by the internal activity as:

� � �Sext

�Sint
in

D 1 � j�Sint
outj

�Sint
in

: (11.22)

For the proposed information-theoretic cycle in Fig. 11.3, it is computed as

�e D 1 � j�Sint
CDj

�Sint
AB

D 1 � ˇL

ˇH
; (11.23)

which is a function of the internal components, ˇH and ˇL. This cycle is the most
efficient in terms of the entropic efficiency defined by Eq. (11.22) when the highest
and lowest internal components and activities are given. The square cycle in the
U-ˇ phase diagram (Fig. 11.3c) already suggests this claim, and we can formally
prove this by comparing the information-theoretic cycle with an arbitrary cycle
C whose internal component ˇ satisfies ˇL � ˇ � ˇH .8 Thus the proposed
cycle bounds efficiency of the additional computation made by the delayed gain-
modulation mechanism. Here we now call the proposed cycle in Fig. 11.3, the ideal
information-theoretic cycle. Note that this cycle is similar to, but different from the
Carnot cycle (Carnot 1824) that can be realized by replacing the processes B!C
and D!A with adiabatic processes. The Carnot cycle achieves the highest thermal
efficiency.

8Let us consider the efficiency � achieved by an arbitrary cycle C during which the internal
component ˇ satisfies ˇL � ˇ � ˇH . Let the minimum and maximum internal activity in the
cycle be Umin and Umax. We decompose C into the path C1 from Umin to Umax and the path C2
from Umax to Umin during which the internal component is given as ˇ1.U/ and ˇ2.U/, respectively.
Because the cycle acts as an engine, we expect ˇ1.U/ > ˇ2.U/. The entropy changes produced by
the internal activity during the path Ci (i D 1; 2) is computed as �Sint

C1
D R Umax

Umin
ˇ1.U/ dU �

ˇH

R Umax
Umin

dU D ˇH.Umax � Umin/ and j�Sint
C2

j D j R Umin
Umax

ˇ2.U/ dUj � jˇL

R Umin
Umax

dUj D
ˇL.Umax � Umin/. Hence we obtain j�Sint

C2
j=�Sint

C1
� ˇL=ˇH , or � � �e.
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11.4.5 Geometric Interpretation

Finally, we introduce geometric interpretation of the cycle, and consider conditions
that realize the information-theoretic cycle. Let us denote the internal and stimulus
components as � D Œ�ˇ; ˛�>. In addition, we represent the expected internal and
stimulus features by � D ŒU;X�>. The parameters � and � form dually flat affine
coordinates, and are called � and �-coordinates in information geometry (Amari and
Nagaoka 2000).

A small change in � is related to a change in � as d� D Jd� . Here J is the Fisher
information matrix with respect to � . It is given as

J D
� hb0;b0i hb0;b1i

hb1;b0i hb1;b1i
�
; (11.24)

where hbi;bji � b>
i Gbj .i; j D 0; 1/ is an inner product of the vectors bi and

bj with a metric given by G D hF.x/F.x/>i � hF.x/ihF.x/i>. Note that hb0;b0i
is equivalent to Eq. (11.16). In general, in order to make a change of the internal
component ˇ influence the stimulus-related activity X, therefore controls stimulus
information, one requires hb0;b1i ¤ 0 because dX D �hb1;b0idˇ C hb1;b1id˛
from d� D Jd� . This condition indicates that the modulation by an internal
mechanism is achieved through the activity features shared by the two components.
Accordingly, this condition is violated if neurons participate in the stimulus-related
activity and neurons subject to the internal modulation do not overlap (namely if
neurons that appear in the features corresponding to non-zero elements of b0 are
separable from those of b1).

For the ideal information-theoretic cycle, we indicate the parameters at A, B, C,
and D using a subscript of � or �. For example, the parameters at A are �A and
�A. The first process A!B of the ideal information-theoretic cycle is a straight
line (geodesic) between �A and �B in the curved space of � -coordinates. It is
called e-geodesic. In addition, the internal component ˇ is fixed while the stimulus
component decreases, therefore the e-geodesic is a vertical line in the � -coordinates.
The second process B!C is the shortest line between �B and �C in the curved space
of �-coordinates. The path is called an m-geodesic. In addition, the internal activity
U is fixed while the stimulus-related activity decreases, therefore the m-geodesic is
a vertical line in the �-coordinates. Similarly, the process C!D is an e-geodesic,
and the process D!A is an m-geodesic.

The change in the internal component ˇ during the processes along m-geodesic
manifested the internal computation in the ideal information-theoretic cycle. The
small change in � is related to the change in � by d� D J�1d�. Since the m-
geodesic processes B!C and D!A are characterized by d� D Œ0; dX�>, the small
change in � -coordinates is given as

d� D
��hb0;b1i

hb0;b0i
�

jJj�1dX; (11.25)
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Conversely, the internal mechanism needs to change the internal and stimulus
component according to the above gradient in order to accomplish the most efficient
cycle. Thus the internal mechanism need to access the stimulus component ˛ in
order to realize the ideal information-theoretic cycle. Again, if hb0;b1i D 0, the
internal component ˇ is not allowed to change, which however means that the entire
process does not form a cycle. Therefore we impose hb0;b1i ¤ 0.

11.5 Discussion

In this study, we provided hypothetical neural dynamics that efficiently encodes
stimulus information with the aid of delayed gain-modulation by an internal
mechanism, and demonstrated that the dynamics forms an information-theoretic
cycle that acts similarly to a heat engine. This view provided us to quantify the
efficiency of the gain-modulation in retaining the stimulus information. The ideal
information-theoretic cycle introduced here bounded the entropic efficiency.

As an extension of a logistic activation function of a single neuron to multinomial
outputs, the maximum entropy model explains probabilities of activity patterns by
a softmax function of the features, therefore allows nonlinear interaction of the
inputs (here ˇ and ˛) in producing the stimulus-related activity X (Fig. 11.1). This
interaction was caused by shared activity features in b1 and b0. The gain modulation
more effectively changes the stimulus-related activity if the features of the stimulus-
related and internal activities resemble (i.e., hb1;b0i is close to 1), which may have
implications in similarity between evoked and spontaneous activities (Kenet et al.
2003) that can be acquired during development (Berkes et al. 2011).

The model’s statistical structure common to thermodynamics (the Legendre
transformation; see Appendix) allowed us to construct the first law for neural
dynamics (Eq. (11.12)), the equation of state (Eq. (11.13)), fluctuation-dissipation
relation (Eq. (11.16)), and neural dynamics similar to a thermodynamic cycle
(Figs. 11.2 and 11.3) although we emphasized the differences from conventional
thermodynamics in terms of the controllable quantities. The dynamics forms a cycle
if the gain modulation is applied after the initial increase of the stimulus-related
activity. This scenario is expected when the stimulus response is modulated by a
feedback mechanism of recurrent networks (Salinas and Abbott 1996; Spratling and
Johnson 2004; Sutherland et al. 2009), and is associated with short-term memory of
the stimulus (Salinas and Abbott 1996; Salinas and Sejnowski 2001; Supèr et al.
2001). Consistently with the idea of efficient stimulus-encoding by a cycle, effect
of attentional modulation on neural response typically appears several hundred
milliseconds after stimulus onset (later than the onset of the stimulus response)
(Motter 1993; Luck et al. 1997; McAdams and Maunsell 1999; Seidemann and
Newsome 1999; Reynolds et al. 2000; Ghose and Maunsell 2002) although the
temporal profile can be altered by task design (Luck et al. 1997; Ghose and
Maunsell 2002). Further, the modulation of late activity components is ubiquitously
observed in different neural systems (Cauller and Kulics 1991; Supèr et al. 2001;
Sachidhanandam et al. 2013; Manita et al. 2015; Schultz 2016).
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cba

Fig. 11.5 The state-space method for estimating time-varying Ising model for monkey V4 data.
(a) Top: Simultaneously recorded spiking data from 45 neurons while grating stimulus is presented
to a monkey. Bottom: spiking probability (black, data; green, model fit). Gray area indicates
the period of stimulus presentation. (b) Top: Time-varying parameters of an Ising model (i.e.,
individual and pairwise interaction parameters) are estimated by fitting the state-space model using
an expectation-maximization (EM) algorithm. Bottom: the means and standard deviations of the
Ising parameters. (c) Estimated dynamics of thermodynamic quantities (from top to bottom: silence
probability, entropy, fractional entropy for correlations, heat capacity). The figure is modified from
(Donner et al. 2017)

To test the hypothesis that neurons act as an information-theoretic engine using
empirical data, the internal and stimulus feature need to be specified. Since even
spontaneous neural activity is known to exhibit ongoing dynamics (Kenet et al.
2003), estimation of these features is nontrivial. The optimal sequential Bayesian
algorithms have been proposed to smoothly estimate the parameters of the neural
population model when they vary in time (Shimazaki et al. 2009, 2012; Shimazaki
2013; Donner et al. 2017), based on the paradigm developed by Brown and
colleagues (Brown et al. 1998; Smith and Brown 2003) for joint estimation of
the state-space and parameter estimation for point process observations. With the
recent advances in applying various approximation methods to this model, it was
demonstrated that the method is applicable to simultaneously analyzing a large
number of neurons, and trace dynamics of thermodynamic quantities of the network
such as the free energy, entropy, and heat capacity (Donner et al. 2017) (see
Fig. 11.5). Hence this and similar approaches can be used to select dominant features
of spontaneous and evoked activities, and then to estimate the time-varying internal
and stimulus-related components. Efficiency of the cycles computed from the data
can be used to test the hypothesis that the neurons are working as an information-
theoretic engine. Further, by including multiple stimulus features in the model, the
theory is expected to make quantitative predictions on competitive mechanisms of
selective attention (Moran and Desimone 1985; Motter 1993; Luck et al. 1997;
Reynolds et al. 1999). The conservation law of entropy imposes competition among
the stimuli given a limited entropic resource generated by the internal mechanism.
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The current theory assumes a quasi-static process for a neural response as we
use an equilibrium model of the neural population at each point of time. For
this to be a good approximation of neural dynamics, network activity caused by
stimulus presentation may need to change more slowly than the time-scale of
individual neurons under the examination, which may be expected as several tens of
milliseconds for cortical neurons based on synaptic and membrane time constants
and axonal delays. Otherwise, the theory needs to be extended to account for non-
equilibrium processes by considering causal relations of past population activity on
a current state of the population. It is possible to include the history effect on the
population activity in the model (Shimazaki et al. 2012) or by using non-equilibrium
models such as a kinetic Ising model. It will be an important challenge to consider
a thermodynamic paradigm for a neural population including the second law for
such non-equilibrium processes based on the recent advances in the field, where the
second law of thermodynamics was generalized for a causal system with feedback
(Sagawa and Ueda 2010, 2012; Ito and Sagawa 2013, 2015).

In summary, a neural population that works as an information-theoretic engine
produces entropy ascribed to stimulus-related activity out of entropy supplied by an
internal mechanism. This process is expected to appear during stimulus response
of neurons subject to feedback gain-modulation. It is thus hoped that quantitative
assessment of the neural dynamics as an information-theoretic engine contributes to
understanding neural computation performed internally in an organism.
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Appendix: Free Energies of Neurons

In this appendix, we introduce thermodynamic formulation and free energies of a
neural population. Let us first discuss the relation of state variables and free energies
that appear in our analysis of the neural population with those found in conventional
thermodynamics. Assume that the small change in internal activity of neurons has
the following linear relations to entropy S, expected feature X, and the number of
neurons N:

dU D TdS C fdX C �dN: (11.26)

Equation (11.26) is the first law of thermodynamics, and the parameters are
temperature T , force f , and chemical potential �. The first law describes the internal
activity as a function of .S;X;N/. In thermodynamics, the Helmholtz free energy
F D U�TS, Gibbs free energy G D F�fX, or enthalpy H D U�fX is introduced to
change the independent variables to .T;X;N/, .T; f ;N/, and .S; f ;N/, respectively.
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These free energies are useful to analyze isothermal or other processes in which
only one of the independent variables is changed. For example, the Helmholtz free
energy can be used to compute the work done by force f under the isothermal
condition. However, the concepts of the force and work may not be directly relevant
to information-theoretic analysis of a neural population. Here we introduce the free
energies that are more consistent with the framework based on entropy changes.

The first law is alternatively written as

dS D ˇdU � ˛dX � �dN; (11.27)

Here we used ˇ D 1=T , ˛ D f=T , and � D �=T . This first law describes a small
entropy change as a function of .U;X;N/. The parameters are defined as

ˇ.U;X;N/ D
�
@S

@U

�

X;N

; (11.28)

˛.U;X;N/ D �
�
@S

@X

�

N;U

; (11.29)

�.U;X;N/ D �
�
@S

@N

�

U;X

: (11.30)

We change the independent variable U to ˇ. For this goal, here we define the scaled
Helmholtz free energy F as

F D S � ˇU: (11.31)

Note that F D �ˇF. It is a function that changes the independent variables from
.S;X;N/ to .ˇ;X;N/. This can be confirmed from the total derivative of F : dF D
dS � d.ˇU/ D �Udˇ � ˛dX � �dN. From this equation, we have

U.ˇ;X;N/ D �
�
@F

@ˇ

�

X;N

; (11.32)

˛.ˇ;X;N/ D �
�
@F

@X

�

N;ˇ

; (11.33)

�.ˇ;X;N/ D �
�
@F

@N

�

ˇ;X

: (11.34)

The entropy change caused by the stimulus-related activity when X changes from X1
to X2 is given by the area under the curve of ˛.ˇ;X;N/ in the X-˛ phase plane. From
Eq. (11.33), if the process satisfies dˇ D dN D 0, the entropy change is computed
as reduction of the scaled Helmholtz free energy as

�Sext D
Z X2

X1

˛.ˇ;X;N/ dX D F .ˇ;X2;N/ � F .ˇ;X1;N/: (11.35)
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Further change of the independent variables from .ˇ;X;N/ to .ˇ; ˛;N/ is done
by introducing the scaled Gibbs free energy:

G D F C ˛X D S � ˇU C ˛X: (11.36)

Note that G D �ˇG. The independent variables of the Gibbs free energy are
.ˇ; ˛;N/ since dG D dF C .d˛X C Xd˛/ D �Udˇ C Xd˛ � �dN. From this
equation, we find

�
@G

@ˇ

�

˛;N

D �U.ˇ; ˛;N/; (11.37)

�
@G

@˛

�

ˇ;N

D X.ˇ; ˛;N/: (11.38)

Note that the definition of the Gibbs free energy by Eq. (11.36) is obtained from
Eq. (11.6) if we identify G D  . Accordingly, Eqs. (11.37) and (11.38) coincide
with Eqs. (11.7) and (11.8).

The Legendre transformation that changes the state variable N to � is given by

G C �N D S � ˇU C ˛X C �N: (11.39)

Since d.G C �N/ D dG C .d�N C �dN/ D �Udˇ C Xd˛ C Nd� , the natural
independent variables is now .ˇ; ˛; �/. From the extensive property of S, X, and N,
we have the Gibbs-Duhem relation,

� Udˇ C Xd˛ C Nd� D 0: (11.40)

Thus this free energy is identical to zero, and we obtain G D ��N.
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