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Abstract. Spectral graph wavelets introduce a notion of scale in net-
works, and are thus used to obtain a local view of the network from
each node. By carefully constructing a wavelet filter function for these
wavelets, a multi-scale community detection method for monoplex net-
works has already been developed. This construction takes advantage of
the partitioning properties of the network Laplacian. In this paper we
elaborate on a novel method which uses spectral graph wavelets to detect
multi-scale communities in temporal networks. To do this we extend the
definition of spectral graph wavelets to temporal networks by adopting
a multilayer framework. We use arguments from Perturbation Theory
to investigate the spectral properties of the supra-Laplacian matrix for
clustering purposes in temporal networks. Using these properties, we
construct a new wavelet filter function, which attenuates the influence
of uninformative eigenvalues and centres the filter around eigenvalues
which contain information on the coarsest description of prevalent com-
munity structures over time. We use the spectral graph wavelets as fea-
ture vectors in a connectivity-constrained clustering procedure to detect
multi-scale communities at different scales, and refer to this method as
Temporal Multi-Scale Community Detection (TMSCD). We validate the
performance of TMSCD and a competing methodology on various bench-
marks. The advantage of TMSCD is the automated selection of relevant
scales at which communities should be sought.
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1 Introduction

Networks are used to model complex relationships in a wide range of real-life
applications throughout the social, biological, physical, information technology
and engineering sciences. Due to limitations in data collection and storage,
mainly static (monoplex) networks have been studied. However, many real-world
c© Springer International Publishing AG 2017
R. Guidotti et al. (Eds.): PAP 2017, LNCS 10708, pp. 139–154, 2017.
https://doi.org/10.1007/978-3-319-71970-2_12



140 Z. Kuncheva and G. Montana

systems have relationships between entities that evolve over time [15]. Techno-
logical advances have increased the amount of recorded temporal information.
As a result, the sequence of networks describing changes occurring over time
have been formalized as temporal networks (also known as time-varying or time-
stamped) [15]. Examples of temporal networks include the functional brain net-
works [2,5], social media interactions [36], financial markets [1] or politics [22].

One aspect of temporal network analysis is the discovery of community struc-
tures, which are groups of nodes that are more densely connected to each other
than they are to the rest of the network [26]. Changes in the configuration of
communities over time signals important turns in the evolution of the system.
Real data networks are often observed to have communities with a hierarchical
structure referred to as multi-scale communities [29]. Changes in the community
structure over time might take place either at one scale or across all scales of
the community structure. For this reason, there is interest in methods that are
able to investigate communities at different “scales” over time [25,26,35].

Some recent approaches to community detection in temporal networks rely
on a simple network aggregation procedure whereby all time networks are first
collapsed into a single network. Afterward traditional algorithms for community
detection can be used [34]. These methods, however, ignore valuable information
about the evolution of the community structures over time. Other methods inves-
tigate each time network individually [1,11,17,22], thus ignoring the dependence
of community structures between neighbouring time points.

There exist methods that extend algorithms from one to multiple networks
by using the multilayer formulation of a temporal network [18]. This spe-
cial data structure allows inter-layer couplings between neighbouring time net-
works [18,25]. One method, which is extended in this way, is the modularity
maximization [26]. The modularity of a network is defined as the number of
connections within a community compared to the expected number of such con-
nections in an equivalent random network. The generalisation of the modularity
maximization introduced in [25] overcomes the obstacles mentioned earlier by
using the multilayer formulation. In this way it introduces a dependence between
communities identified in one layer and connectivity patterns in other layers.

Modularity maximization is controlled by a resolution parameter γ, deter-
mining the size of the detected communities and supporting the detection of
multi-scale communities. However, the range of parameter values must be man-
ually selected. The importance of relevant scales is assessed using stability proce-
dures, which compare the detected communities to those obtained from random
networks [28,30]. When dealing with real life data, communities at one or more
scales can go undetected if appropriate parameter values are not selected. The
modularity maximization has also been used to investigate the effect of con-
stant inter-layer weights between consecutive time layers [3] on the behavior of
community detection.

Other approaches to multi-scale community mining in monoplex networks
have been proposed to address some of the issues experienced by the modularity
maximization. The method in [35] relies on spectral graph wavelets [14] and
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introduces a notion of scale in the network. These wavelets are thus used to
obtain a local view of the network from each node. The clustering properties
of the spectrum of the Laplacian in clustering [4,12,21] are used to construct
a wavelet filter function which enables the spectral graph wavelets [14] to be
sensitive to multi-scale communities. Contrary to the modularity maximization,
this method is able to automatically select the range of scales to be investigated
for existing communities. For a better understanding of the current paper we
suggest the reader gets acquainted with articles [14,35].

In this paper we extend spectral graph wavelets to temporal networks. For
this extension we use the supra-Laplacian of the temporal network, which is
defined as the Laplacian of the matrix representation of its multilayer formu-
lation. A challenge we face here is the need to take into account the fun-
damental difference between within-layer and inter-layer edges when studying
the spectral properties of the supra-Laplacian [9,18,33]. Although some stud-
ies explain the effect of different inter-layer weights over the eigenvalues of the
supra-Laplacian [24,31], there is no work related to the interpretation of the
eigenvectors of the supra-Laplacian for clustering purposes.

Using Perturbation theory [6,32], we argue that the eigenvectors correspond-
ing to the smallest eigenvalues of the supra-Laplacian are a linear combination
of the eigenvectors – corresponding to all zero eigenvalues – of the Laplacian
matrices of the separate time layers. From spectral graph theory [7], it is known
that an eigenvector corresponding to the zero eigenvalue of the Laplacian matrix
is not informative of the community structure. For this reason, the eigenvec-
tors of the supra-Laplacian matrix, which can be obtained as approximations
to these eigenvectors, cannot be used to identify communities within the time
layers, and larger eigenvalues should be sought. Using the above arguments as
a stepping stone, we propose a novel Temporal Multi-Scale Community Detec-
tion (TMSCD) method, which extends the notion of spectral graph wavelets
to temporal networks and automatically selects relevant scales at which multi-
scale community partitions are obtained. The method uses the relevance of a
newly identified eigenvalue of the supra-Laplacian, which captures the coarse
description of communities prevalent over time.

In what follows, we first define the notation used throughout this paper in
Sect. 2. Section 3 describes the method for multi-scale community detection in
temporal networks which uses the spectral properties of the supra-Laplacian to
identify relevant scale. In Sect. 4 we compare the performance of TMSCD to the
modularity maximization [25]. Section 5 concludes this paper.

2 Notation

Let G = (V,A) be an N -node network where V is the set of nodes and
A ∈ R

N×N is the adjacency matrix with edge weights between pairs of
nodes {Aij |i, j ∈ {1, 2, ..., N}}. We only consider undirected, adjacency matri-
ces (Aij = Aji for all i and j). The degree of a node i is di =

∑N
j=1Aij , and the
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degree matrix D has d1, d2, ..., dN on its main diagonal. Network G is associated
with the normalized Laplacian matrix L = D− 1

2 (D − A) D− 1
2 .

The networks representing different time points in the temporal network are
known as layers. We use the notation Gt = (V,At) for layer t in the temporal
network T =

{
G1, G2, ..., GT

}
, which is the ordered sequence of networks for

t ∈ {1, 2, ..., T} time points, and we denote node i in layer t by it. We work with
temporal network in which each node is present in all layers. The multilayer
framework of a temporal network considers a diagonal ordinal coupling of layers
[2,18,25]. In essence, inter-layer weights exist only between corresponding nodes
in neighboring time layers. We denote the inter-layer edge weight for node i
between consecutive layers t and t + 1 by ωt,t+1

i ∈ R. Else ωt,p
i = 0 for p �=

t − 1, t + 1.
This temporal network T has an associated adjacency matrix A of size NT ×

NT – the supra-Adjacency matrix. The time-dependent diagonal blocks of A,
At,t, are the adjacency matrices At, and the off-diagonal blocks, At,t+1, are the
inter-layer weight matrices W t,t+1 = diag(ωt,t+1

1 , ωt,t+1
2 , ..., ωt,t+1

N ). Else At,p is
a N × N zero matrix for p �= t − 1, t + 1.

The within-layer degree of node i in layer Gt is dt
i :=

∑N
j=1A

t
ij while

the multilayer node degree of node i in layer Gt is dt
i := dt

i + ωt,t−1
i +

ωt,t+1
i . These define the degree matrix D with diagonal entries D :=

diag
(
d11, d

1
2, ..., d

1
N , d21, ..., d

2
N , ..., dT

N

)
. The normalized supra-Laplacian L is com-

puted as L= D− 1
2 (D − A) D− 1

2 .

3 Temporal Multi-scale Community Detection (TMSCD)

The proposed TMSCD method is a multilayer extension of the multi-scale com-
munity detection procedure via spectral graph wavelets developed in [35]. The
advantage of this method is the automated selection of relevant scales at which
community partitions are obtained. In Sect. 3.1 we define new inter-layer weights
at each node adapted for community detection in temporal networks. In Sect. 3.2
we extend the definition of a wavelet at a node (in a monoplex network) to that
for a wavelet at a node at a particular time layer. By construction, a wavelet
associated to a node at a time layer is local in the whole temporal network. The
wavelet is centred around this node and spreads on its neighbourhood, which
consists of its neighbours in the current layer and the corresponding nodes in
the neighbouring time layers. The larger the scale is, the larger the spanned
neighbourhood is – more nodes in current layer and more nodes in neighbouring
layers.

The most central part of our method is the construction of the wavelet filter
function g. In Sect. 3.3 we use arguments from Perturbation theory to investigate
the spectral properties of the supra-Laplacian matrix for community detection
purposes, and propose a procedure for the selection of appropriate eigenvalues
around which to center the wavelet filter function. In Sect. 3.4, we introduce the
wavelet filter function based on a B-spline, we choose the parameters of this
function, and define relevant scales for community investigation.
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Finally, in Sect. 3.5 for any given scale, we use the wavelet of a node at a
given time layer to cluster together nodes whose associated wavelets are cor-
related using an agglomerative connectivity-constrained clustering procedure
which respects the time sequence of the temporal network.

3.1 Inter-layer Couplings ωt,t+1
i for Community Detection

The choice of inter-layer weights ωt,t+1
i is important - they control the ordinal

coupling between time layers t and t+1 via the node i. We believe that inter-layer
couplings should be strong enough to indicate similarity of a node’s neighbour-
hood in two consecutive networks and indicate shared community structures
over time. The main principle is, inter-layer weights should be strong enough to
reflect on local topological similarity of nodes across layers, but they should not
interfere with the within-layer structure.

Let the set of neighbours of node i in layer Gt be denoted by N t
i := {jt :

At
ij = 1}.

We introduce the inter-layer weight ωt,t+1
i as follows:

ωt,t+1
i :=

∣
∣N t

i ∩ N t+1
i

∣
∣

2
. (1)

We refer to these inter-layer weights as LART-type since they were the basic
ingredients of the LART algorithm [19]. The LART algorithm is a method for
the detection of communities that are shared by either some or all the layers
in a multilayer network. The algorithm is based on a random walk and the
transition probabilities defining the random walk are allowed to depend on the
local topological similarity between layers at any given node.

It can be derived that ωt,t+1
i ≤ min(dt

i,d
t+1
i )

2 . From this follows that the multi-
layer node degree of it is dt

i ≤ 2dt
i. Thus at least half of the influence, which node

it has over the properties of A and therefore L, comes from the connections of
node i within layer t, rather than from the inter-layer weights ωt,t−1

i and ωt,t+1
i .

3.2 Construction of Spectral Graph Wavelets for Temporal
Networks

Upon obtaining matrices A and L, we construct the spectral graph wavelet
transform and the corresponding wavelet basis using the spectral decomposition
of L as in [14,35]. Let Λ = {λj}NT

j=1 be the vector of eigenvalues of the supra-
Laplacian L satisfying λ1 ≤ λ2 ≤ · · · ≤ λNT . Let χ = [χ1|χ2|...|χNT ] be the
NT ×NT matrix of column eigenvectors which correspond to those eigenvalues.

Denote by ψt
s,i the wavelet at scale s ∈ R

+ centred around node i ∈ V at
time layer t. The wavelets are generated by stretching a unique wavelet filter
function g (·) by a scale parameters s > 0 in the network Fourier domain. The
matrix representation of the stretched filter is

Gs = diag (g (sλ1) , g (sλ2) , ..., g (sλNT ))
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that is diagonal on the Fourier modes (the NT eigenvectors of L). Hence the
wavelet basis at scale s reads as

Ψs =
(
ψ1

s,1|ψ1
s,2|...|ψ1

s,N |ψ2
s,1|...|ψT

s,N

)
= χGsχ

�, (2)

where ψt
s,i is the wavelet at scale s centred around node i at the time point t.

For a wavelet at scale s centered around node i at time point t, we have the
relation ψt

s,i = χGsχ
�δi,t, which is a column vector of size NT . Its value at each

node j at time point p is given by ψt
s,i(j, p).

3.3 Spectral Properties of the Supra-Laplacian Matrix for
Community Detection Purposes

In our context, we interpret each Gt as disconnected components and the inter-
layer weights as small perturbations. The resulting diagonal blocks of the supra-
Laplacian, Lt,t, are then perturbed versions of the corresponding Laplacian Lt.
We use Davis-Kahan theorem from matrix Perturbation theory (p. 246 in [32]
and p. 212 in [6]) discussed in [21] to justify the choice of an eigenvalue around
which to center the wavelet filter function. According to the Davis-Kahan theo-
rem, some of the first T perturbed eigenvectors of L are very close to the linear
space generated by the vectors vt

01Gt . Here vt
0 is the eigenvector corresponding

to eigenvalue 0 of matrix Lt, while 1Gt is the NT zero-padded indicator vector,
which has entries 1 at the node positions of layer Gt.

From spectral graph theory [7] it follows that the eigenvector vt
0 correspond-

ing to the 0 eigenvalue of the normalized Laplacian matrix Lt (of the undirected
connected network Gt) is not informative of the community structure, since it

is equal to the squared node degrees, D
1
2
t . It follows that in the spectrum of the

supra-Laplacian there exists a set of small eigenvalues λ, whose corresponding
eigenvectors are uninformative for the community structure within the layers.

These eigenvalues and their corresponding eigenvectors can only be used to
identify each time layer Gt as a separate layer. In fact, the smallest non-zero
eigenvalue λ, whose eigenvector is not spanned by the set of eigenvectors vt

0, is
sensitive to within-layer connectivity patterns since it may appear as perturba-
tion of the separate layers’ Fiedler vectors used for clustering [7]. We center our
wavelet filter function around this eigenvalue, denoted by λ∗, since λ∗ is carrier
of the coarse description of communities within time layers. We also use λ∗ to
automatically determine the range of scales s, for which relevant communities
can be discovered.

Denote by Λ the set of smallest eigenvalues whose eigenvectors are well-
approximated by the subspace of eigenvectors vt

0. According to the Davis-Kahan
theorem, the eigenvectors v corresponding to λ ∈ Λ satisfy

min
{αt}

∥
∥
∥
∥
∥
v −

T∑

t=1

αtv
t
0

∥
∥
∥
∥
∥

≤ ε (3)

for a small ε > 0. For the rest of the eigenvalues, the left hand side of this
inequality is much larger than ε. Then eigenvalue λ∗ is the first eigenvalue which
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is a perturbation of the Fiedler vectors of the separate time layers, i.e. we have
the equality

λ∗ := min
{
λ : λ ∈ Λ \ Λ

}
. (4)

In practice, we discover the position of the eigenvalue λ∗ by solving a series of
regression problems: for each of the ordered eigenvectors of the supra-Laplacian
vτ = χτ (τ = 1, 2, ..., NT ), we fit the multivariate regression vτ =

∑T
t=1 βtαtv

t
0+

ετ . We select λ∗ at the τ position for which ‖ετ‖ > 0.8, where this bound was
empirically selected. Since λ∗ ≤ λT+1, we have to solve at most T +1 regression
problems in order to find the position of λ∗.

3.4 Graph Wavelet Filter g via B-Splines and Parameter Selection

We propose a new wavelet filter function g modeled as a cubic B−spline [8]
with appropriately chosen knots. This function is not only smooth but also has
a compact support. Namely, we put

g (y) := B3 (0, y1, y2, y3, y4; y) (5)

where for the knots of the cubic B−spline B3 we have

0 < y1 < y2 = y3 < y4 (6)

and the function g is zero out of the interval [0, y4]. By the properties of
B−splines, B3 > 0 for y ∈ (0, y4). As indicated, this spline function has a
double knot at y2 = y3. Function g inherits the basic properties of B-splines
[8], including good properties of the Fourier coefficients of g since g(y) may be
extended for y < 0 and y > y4 periodically to belong to C1, which is impor-
tant for the invertibility of the Fourier wavelet transforms. Other functions can
further be pursued depending on the application at hand, and possible options
have been reviewed in [20].

In the following we describe how to choose parameters y1, y2 = y3, and y4
of the wavelet filter function g, and the range of scales s relevant for multi-
scale communities within and across layers of the temporal network. Some of
the arguments we make are the same as in [14,35]. However, we adapt these to
the nature of g and the aim of centering it around an appropriate eigenvalue.

First, the maximum scale smax is set so that the filter function g (smaxy) starts
decaying as a power law only after y = λ∗, hence λ∗smax = y2 = y3. Second, we
need to keep a part of the corresponding eigenvector χλ∗ in the wavelets of every
scale, so that all wavelets are sensitive to the large scale community structure
within each time point. We propose as minimum scale smin the one for which
g (sminλ

∗) becomes smaller than 1. Therefore, sminλ
∗ = y1. We also impose that

g (smin·) spans at least the whole range of eigenvalues between 0 and 1 which
implies smin × 1 = y2.

We require that the filter at the maximum scale be highly selective around
λ∗. For this purpose all other eigenvalues and especially λq+1, where we have
put λ∗ = λq, have to be attenuated. Choosing an attenuation by a factor 10,
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leads to g (smaxλ
q) = 10

(
smaxλ

q+1
)
. We thereby ensure that the filter at the

maximum scale essentially keeps the information from χλ∗ .
This argumentation gives us spectrum adapted equations for smin, smax:

smin =
y1
λ∗ , y2 = y3 =

y1
λ∗ , smax =

y1

(λ∗)2
, (7)

where we see that y1 has the unique effect of translating the scale bound-
aries smin and smax on the R

+ axis. Therefore, y1 can be safely fixed to 1,
i.e. y1 = 1. Finally, similar to the approach in [14,35] we choose a logarithmi-
cally spaced sampling of M scales between the scale boundaries smin and smax:
S = {s1 = smin,s2, ..., sM = smax}.

Fig. 1. B-spline based filter function g for four different scales s. The actual eigenvalues
λ are obtained from a temporal multi-scale benchmark whose communities at large
scales change over time (discussed in Sect. 4). The temporal network has N = 640
nodes for each of the T = 33 time layers with Sales-Pardo parameters ρ = 1 and
k̄ = 16. In (a) filter g is centred around λ2 as originally proposed in [35] for monoplex
networks. In (b) the filter g is centred around λ∗, which is λ10 obtained as proposed in
Sect. 3.3. In total 50 scales were obtained and the four visualized scales correspond to
the 7th, 13th, 25th and 47th scale.

Rather than fixing the first parameter y2 of filter g around the second eigen-
value λ2 of the supra-Laplacian, we fix y2 centred around λ∗. Thus we attenuate
the role of the eigenvalues λj ∈ Λ with λj < λ∗, since as we explained above the
eigenvectors of these eigenvalues λj are not relevant for discovering community
structures prevalent at each time point.

In Fig. 1 we visualize function g for a temporal network and compare the
shape of g when it is centred around λ2 and around λ∗ – obtained as proposed.
The eigenvalues were obtained from a multi-scale benchmark temporal network
whose communities at large scales change over time.
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3.5 Agglomerative Connectivity-Constrained Clustering and
Detection of Stable Partitions

For small scales s, ψt
s,i is localized around the direct neighbours of i in layer

t and to few nodes in neighbouring time layers. With an increasing scale s,
ψt

s,i spreads to a larger neighbourhood which eventually becomes the whole
multilayer network. Hence, we use ψt

s,i as a feature vector for it at scale s.
Similar to [35], we determine the distance Ds(it, jp) between nodes it and jp

(i, j = 1, 2, 3, ..., N ; t, p = 1, 2, 3, ..., T ) at scale s using the correlation distance
between wavelets ψt

s,i and ψp
s,j . We speed up computations of the full spectrum

of L and all Ds(it, jp) using approximations proposed in [14,35].
We cluster nodes into communities using distances Ds(it, jp) and an agglom-

erative connectivity-constrained clustering procedure [19,27] with “average”
linkage. In this way we respect the time-ordered structure of the temporal net-
work since nodes in the same time layer or nodes across neighbouring time layers
are considered first for merging. We obtain the partition at scale s, Ps, by cut-
ting the resulting dendrogram at a height equal to the average of the maximal
gaps of all the root-leaf paths of the dendrogram [35]. Repeating the above for
all s ∈ S, we obtain the multi-scale set of partitions P = {Ps}s∈S . We calculate
the stability γa(s) of the partition at a given scale s using the approach outlined
in [35].

4 Experimental Results

In this section we provide simulation experiments to measure the performance
of the TMSCD method on two types of benchmarks for temporal networks in
comparison to the performance of the modularity maximization (MM) method
[25], for different resolution parameter values γ on the same set of benchmarks.

The first type of benchmark networks we use is a further contribution of the
present work, since we identify three classes of temporal networks which may
serve as benchmarks for multi-scale community detection on temporal networks.
We construct these benchmarks as time-varying Sales-Pardo (SP) networks [29].
An SP has three scales of communities based on which the network is constructed
using parameters ρ (quantifies how separated the three scales are) and k (the
average node degree that controls how dense the network is). For a given length of
the temporal network T , we generate SP multi-scale community structures that
merge and split over time. Based on these community structures, we simulate a
time-ordered sequence of Sales-Pardo networks. The three classes are determined
by the scale at which the change occurs: small scale (SSC), medium scale (MSC)
or large scale (LSC) change over time. The second type of benchmarks, proposed
in [13], have one “true” partition at each time point.

The performance of a given algorithm at a given scale (resolution) is measured
as the maximum value of the adjusted rand index (ARI) [16] between the “true”
partition of the benchmark and the partition P at this scale (resolution). Since
the SP benchmarks have three true partitions corresponding to three different
scales, we refer to the large (resp. medium, small) scale as LS (resp. MS, SS). We
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also investigate the performance of TMSCD and MM on benchmarks produced
using different values of ρ and k.

For the TMSCD method, the instability 1 − γa at scale s is obtained as
outlined in [35]. The smaller 1 − γa, the more stable is the community partition
for scale s. For the MM method, the instability for a resolution parameter γ
is obtained as described in [10] and is measured by the normalized variation of
information (VI) metric [23]. The smaller VI, the more stable is the community
partition at resolution parameter γ.

4.1 Comparative Results on Temporal Benchmark Networks with
Multi-scale Community Structure

Discussion on Effect of Inter-layer Weights on the Performance of
TMSCD and MM. First, we illustrate the performance of the TMSCD and
MM method on an SSC network with T = 21 time layers, where ρ = 1, k̄ = 16,
and N = 640 at each time point. For both methods, we use different fixed inter-
layer weights ω = 0.5, 1, 2, 5, 10 and the LART-type inter-layer weight ωt,t+1

i

proposed in Sect. 3.1, which we refer to as ω = LART . For TMSCD, we set
M = 50 scales s ∈ S, and for MM we manually set 60 values of resolution
parameters γ in the interval [0.05, 40] such that there are more values in the
interval [0.05, 1]. For both methods we use 20 repetitions to obtain instability
γa (s) at scale s and V I(γ) at each resolution γ.

The results of TMSCD and MM on a realization of the SSC and the insta-
bilities 1 − γa versus scale s (VI versus parameter γ) for different weights ω are
presented in Fig. 2. Results for realization of the MSC and LSC are omitted in
this paper but the plots are similar and conclusions are identical.

Overall, the TMSCD recovers perfectly communities at all three scales and
inter-layer weights ω have almost no effect over the results. For small ω (ω =
0.5, 1, 2) instability is high, but for ω = LART and ω = 5, 10 the associated
partitions of scales with low instability correspond to the true partitions. For
large ω (ω = 5, 10 and ω = LART ) a fourth stable scale appears at the smallest
s. This is stable for ω = 5, 10 but unstable for ω = LART , which signifies the
importance of carefully selected weights. MM recovers perfectly communities at
LS and MS, but there is increased variability at recovering communities at SS
for an increasing inter-layer weight ω. The instability of MM is not as sensitive
as the one that is used for TMSCD.

To conclude, using ω = LART inter-layer weights appears to provide us with
low instability only at the true partitions. This includes a higher instability at
the fourth scale which appears for larger ω (ω = 10) - the partition at this scale
is formed for N communities, and each community is formed by the set of nodes
{it : t = 1, 2, ..., T}. As discussed in Sect. 3.1, this phenomenon is a results of
larger inter-layer weights, which affect more the properties of a node i at layer t
than its within-layer connections which have an average node degree k̄ = 16. In
contrast, the LART weights, in the range [0, 8], follow a bell-shaped distribution
centred around 4. Thus they do not interfere with the within-layer connections
and support the community detection process over time.
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On the other hand, the instability procedure for MM is not as sensitive. In
the case of real data it would be challenging to select parameters γ for which to
investigate community partitions.

Discussion on Overall Performance of TMSCD and MM. We com-
pare TMSCD and MM for different sets of parameters ρ = 1, 2 and k̄ =
11, 13, 15, 17, 19, 21, where we set LART-type inter-layer weights. We compare
the obtained communities to the ground truth for 50 realizations of the SSC
(Fig. 3(a)), MSC (Fig. 3(b)) and LSC (Fig. 3(c)). For each combination (ρ, k̄),
the large scale rate (LSR) (resp. medium (MSR) and small (SSR) scale rates)
indicates the success rate of the communities found by TMSCD and MM being
compared to the large (resp. medium, small) scale ground truth community
structure. The success rate is the average over the top five adjusted rand index
(ARI) values over all scales s or parameter values γ.

For ρ = 1, both methods perform equally well in all three cases with almost
full recovery of communities at all scales. In some cases, TMSCD has slight
advantage of recovering MS and LS communities. For ρ = 2, the performance
of both methods decreases for small k̄. Both methods perform equally well at
recovering MS communities, but we can note that TMSCD performs better at
recovering LS communities for larger k̄.

Overall TMSCD performs slightly better than MM and has much smaller
deviation in the final results. In general, uncovering communities when ρ =
2 is harder since ρ controls how separated are the communities at the three
scales. When ρ is larger, the separation of the communities is not as clear, so SS
communities cannot be distinguished easily. Furthermore, we note that when k̄
is small nodes have fewer edges and it is difficult for both methods to uncover
SS communities since they fade in the MS communities.

4.2 Comparative Results on Benchmarks with One True Partition

We compare the performance of TMSCD and MM on the Grow, Merge and Mixed
benchmark networks proposed in [13], with default model parameters, and we
set T = 100 and N = 128. We produce 100 realizations of each benchmark.
Parameters of TMSCD and MM are set as in Sect. 4.1, where we use LART-type
inter-layer weights. The success rate of each realization of a benchmark is the
average over the top five adjusted rand index (ARI) values over all scales s or
parameter values γ. The results are summarized in Table 1.

Both methods perform equally well for the Grow model. In the Mixed model
case, TMSCD has better performance with lower variability. In the Merge model
case, TMSCD performs much better than MM but with larger variability in the
results. The Merge model is challenging for both MM and TMSCD. This is
caused by the nature of the communities: when two communities are separate
they exist at a smaller scale, but when they merge they exist at a larger scale.
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Fig. 2. TMSCD (top) and MM (bottom) results for SSC multi-scale benchmark net-
work. Each pair of plots corresponds to different inter-layer weights ω. First, we plot
the results of TMSCD and MM on a realization of SSC. Each scale outputs a partition
for all nodes across all time points. For each scale s, we plot the similarity with the
small (SS) (medium (MS), large (LS)) theoretical scale, computed as the average over
all time points including std.dev. error bars. We observe scales where the exact small
(resp. medium, large) scale theoretical partition is uncovered. Second, for TMSCD we
plot instability 1−γa versus scale s; for MM we plot variation of information (VI) ver-
sus parameter γ. The associated partitions of scales with low instability corresponding
to the theoretical partitions.
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Fig. 3. Comparison between the LSR, MSR and SSR values obtained for the TMSCD
and MM multi-scale community mining methods on (a) SSC, (b) MSC and (c) LSC
temporal benchmark network for different parameters: left (resp. right) column for
ρ = 1 (resp. ρ = 2) and different values of k̄. We plot the average and the ± one
standard deviation over the five best results for each of the 50 realizations of each type
of network for each set of parameters.
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Table 1. TMSCD and MM results for 50 realizations of the Grow, Merge and Mixed
model. Each entry is the mean over all realizations ± one standard deviation.

Grow Merge Mixed

TMSCD 1.0000 ± 0.0000 0.8700 ± 0.1981 0.9467 ± 0.1038

MM 0.9975 ± 0.0088 0.6887 ± 0.1302 0.8443 ± 0.1412

5 Discussion and Conclusion

The work in this paper is motivated by the need to develop new methods for
multi-scale community detection in temporal networks with automatic selection
of relevant scales. The modularity maximization [25] achieves excellent results at
detecting such communities but it lacks the flexibility of automatically selecting
resolution parameter ranges relevant to the prevalent community structures over
time. We have used results from Perturbation theory to interpret inter-layer
weights as perturbations between time layers, and thus we identify the set of
eigenvectors of the supra-Laplacian that are perturbations of the separate layers’
Fiedler vectors. These can be used for detecting communities prevalent over time.

This result gives a completely new point of view on temporal networks. To
design the TMSCD method, we reconsidered the role of the Fiedler vector in
community detection for temporal networks. Indeed, the eigenvectors of L (cor-
responding to the smallest eigenvalues) represent all time-layers as separate com-
munities. Hence, we cannot use them for the detection of communities prevalent
over time. We successfully attenuated the influence of these small eigenvalues in
the process of community detection, by properly constructing the wavelet filter
function g of the spectral graph wavelets. An important step in our algorithm
was the identification of the uninformative small eigenvalues.

Using simulated data, we have demonstrated that TMSCD method performs
equally well compared to the modularity maximization method [25]. There are
two main advantages to using TMSCD. First, of utmost importance is the auto-
matic selection of scales at which wavelets should be obtained and which encom-
pass all relevant within-layer and inter-layer communities. Second, the proposed
LART-type inter-layer weights ωt,t+1

i lead to the best results in terms of balance
between uncovering multi-scale communities and the stability of those commu-
nities at the relevant scales. The stability procedure used by TMSCD is more
sensitive than the modularity maximization one. This is an advantage when
handling real life data sets where the true scales are not known and a reliable
indicator for stable partitions is required. The supremacy of the LART-type
inter-layer weights [19] over using fixed ones indicates the advantage of using
adaptable inter-layer weights that reflect the similarity of nodes across layers.

Given the above results, TMSCD would be an ideal tool for applications to
neuroscience and social network analysis.
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