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Abstract. We investigate approaches to personal data analytics that
involves the participation of all actors in our shared digital culture. We
analyse their communities by identifying and clustering social relations
using mobile and social media data. The work is part of our effort to
develop tools to create a “social data commons”, an open research envi-
ronment that will share innovative tools and data sets to researchers
interested in accessing the data that surrounds the production and cir-
culation of digital culture and their actors. This experiment focuses on
the groups of clustered relations that are formed within a user’s social
data traces. Community extraction is a popular part of the analysis of
social data. We have applied the technique of Markov Clustering to the
Twitter networks of social actors. Qualitatively, we demonstrate that
it is more effective than the Louvain method for finding social groups
known to the subjects, while still being very simple to implement. We
also demonstrate that traces of cell towers captured using our “MobileM-
iner” mobile application are sufficient to capture significant details about
their social relations by the simple application of k-means.

1 Introduction

Applications, especially social media applications, on mobile devices are fre-
quently given access to information about their users’ location, through infor-
mation about cellular network towers, wireless networks and full GPS access.
When this is combined with the media or messages the users choose to send
or receive, an application can learn a great deal about them. This data is often
used to target advertising or recommend other content or connections with other
users. Some studies are able to negotiate with mobile service operators for the
use of customers cell tower data, under certain conditions. Others have made
use of mobile application data through agreement with social media companies
or use of their APIs within terms-of-service. Levandoski et al. [1] collected data
from the Foursquare service using its public API, but a page on the University
of Minnesota website [2] states that this is no longer available at Foursquare’s
request. Since this data is anonymised, it is not possible to use it in discussions
with mobile device users about their attitudes to data and privacy.
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One way to secure such data for long-term use without conditions is to collect
it from end-users with their full informed consent and participation. To this end,
we have collaborated with 20 young programmers recruited via Young Rewired
State [3] (YRS). An Android application provisionally called MobileMiner [4]
was developed that logs data commonly gathered by other mobile applications,
as well as their network activity. The application was developed in public, with
the source-code made available under version 2 of the Apache license so the YRS
members could be aware of its activities and participate in its development. They
were issued with smartphones with the application installed, and used it to log
data over 5 months. During this time, we held two hackday events attended by
the YRS members. The first had a theme of application development, the other
geared towards returning the data to the participants so they could analyse if for
themselves [5]. We have already reported on MobileMiner’s collection of network
socket data [4]. Here, we investigate the insights that can be gained by its capture
of the mobile cell towers user’s devices connect to. In order to reason about what
insights third-party app developers could gain from this data, given they also
have the users’ generated content, we also analysed the Twitter networks of the
YRS volunteers.

The exponential growth of both transactional data and metadata that is gen-
erated within social media platforms raises questions in relation to how data is
archived and assigned value [6,7]. Commercial services such as Conversocial [8]
and SproutSocial [9] provide the means for businesses to analyse the perception
of their brands in social media, in order to manage customer complaints and
capitalize on positive reviews. Others, like Twitonomy [10] and Simply Mea-
sured [11] track the effectiveness of social media campaigns (how far a Tweet
is retweeted, for instance) and identifying key influencers. The TrendMiner [12]
project also enables the mining of social media data, with the stated goals of
enabling political analysis and economic decision-making.

The focus of these tools is seldom directed towards users and how they use
social media in their everyday lives. We believe that there is a need for tools
that allow social media users to gain awareness of how the data they generate
are being used. In light of analysis of this data, users may assess how they might
want to change their use of such platforms. To this end, we provide a “Social
Data Commons” in the “Our Data Ourselves” project [13]. This kind of work
is often dominated by commercial interests who treat the content produced by
users as the central point of value in exchange for “free” online services.

Twitter has demonstrated to be a rich source for network analysis and com-
munication patterns. It allows us to investigate, for instance, the degree to which
users are consumers of content from a few accounts with many followers or
whether they use the platform conversationally between other users with recip-
rocated follower relationships. The fraction of these relationships which have
involved sustained conversations and the frequency distributions of their lengths
has also been studied [14]. Lastly, the degree to which a user’s friends and fol-
lowers network can be segmented into communities or clusters is of key interest.
Members of such clusters will have more friend/follower relationships between
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them than with those in other groups. Himelboim et al. [15] used NodeXL spread-
sheet tool [16] to retrieve tweets containing certain keywords, then cluster the
accounts that tweeted them into communities. It was observed that there were
far more interactions within communities than between them.

Our experiment uses the Markov Clustering (MCL) graph-clustering algo-
rithm, [17] which is very simple to implement. We apply this algorithm to
analyse how sociality develops within the networked relationships around a Twit-
ter account.

2 The MobileMiner App

The Android operating system was pragmatically chosen as the mobile platform
for the project; it has the largest share of the smartphone market and requires
less investment to release code and apps. Following our co-development approach
with YRS, it was essential that the YRS members would be able to contribute to
app development. The Apple IOS, for instance, limits these options significantly.
The tool-chain for development on Apple’s IOS is only available for its MacOS
operating system. MacOS can be run on virtual machines without access to
Apple hardware, but not without breaching its end-user license agreement. In
order for the YRS members to send and receive updates to MobileMiner and
install it on their devices, all would require access to Apple hardware. The only
other way to distribute the app would be via Apple’s I-tunes store, which would
have been subject to its approval. In contrast, the Android operating system
gives the user the option of installing software from sources other than Google’s
Play store. The Android development tool-chain or software development kit
(SDK) is cross-platform, and released under the Apache open-source license,
albeit with restrictions on the distribution of the supplied binary executable
files.

The MobileMiner Android app gives users the option to start and stop record-
ing data whenever they choose. It displays the active mobile or wireless network,
the id of the current cell tower, and recent app activity in terms of network socket
usage (Fig. 1). Newly gathered data is written to a SQLite database on the device
at 5 min intervals. Storing each item as it arrived would cause very frequent writ-
ing to the device’s flash storage, and have a very severe effect on battery life.
To avoid accruing mobile data costs to the user, new data is uploaded by an
http request to a server every 10 min only if the device has a connection to a
wireless network. There are some basic features to examine the collected data
on the device. A list of apps ordered by the number of network socket events
is provided, and the users may also request a heat-map showing how frequently
they visit the cell towers known to the OpenCellID [18] database. The maps
are drawn using OpenStreetMaps [19] via the OpenLayers JavaScript library.
Users have the option to copy the app’s SQLite database to an accessible part
of their device’s flash storage. Users do not have access to the databases of the
apps on their devices by default; root access and the SDK are required. The
YRS members were encouraged to access their data using the SQLite module
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in the Python standard library during the first hack-day, although SQLite apps
are available for examining the data on the device.

Android apps may request GPS location data from two sources, either from
the device’s sensor or via Google’s Play Services API. The latter is combined
with location data from cell towers and wireless networks, but requires agreeing
with Google’s terms and conditions, as does the display of Google’s Maps within
an app. The precision afforded by such data could allow individuals to identi-
fied by their home address. Frequent and repeated use of the GPS sensor would
also significantly reduce the device’s battery life. It is therefore more attractive
to use the locations of cell towers as a proxy for approximate location. Apps
using Android’s ‘coarse location’ permission are fed location information based
on cell towers and wireless networks, but short of disabling wireless connections
on the device, there is no way to limit this to cell towers only. The extra preci-
sion of location afforded to the coarse location API by adding wireless network
information is too high for it to be captured by the app. MobileMiner uses the
Android API to collect the IDs of cell towers as the device connects to them,
then finds their locations using data from the OpenCellID database. This con-
tains crowd-sourced measurements of the locations of cell towers, combined with
known locations from some mobile network operators that freely publish this
information. Unlike collecting cell IDs only during call or SMS events from the
logs of mobile operators, [20] these trails of locations are continuous as long as
the app is in use, subject to the sparseness of the OpenCellID database.

Fig. 1. Screenshots of the MobileMiner app, showing network sockets, apps ordered by
total activity, and a heat-map of cell towers.

3 MCL

MCL community detection works by reasoning about random walks on a net-
work, for which an adjacency matrix is created. The columns are normalized,
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such that entries for each column node represent the chance of visiting a con-
nected node chosen at random. Squaring the matrix produces columns of proba-
bilities of node occupancy after two such random steps, starting from the column
node; this stage is called expansion. The elements of the matrix are then raised
to a power called the inflation parameter (2 in this case) and the columns are
renormalized. This has the effect of raising higher probabilities and reducing
lower ones. The two steps are repeated until the matrix converges, when most
of the entries will be close to 0 or 1. The non-zero entries in a row will represent
probable starting nodes for a random walk, given that it ended in the row node.
Assuming that a random walk starting in a densely connected community of
nodes is more likely to remain within it than to leave it, the sets of nodes with
non-zero entries for each row represent clusters.

3.1 Acquiring Twitter Data

Before applying MCL to the Twitter accounts of the YRS volunteers, we tested
it using that of a digital culture researcher, also an author of this paper. User
profiles were extracted with the Twitter API and stored in the Neo4J graph data-
base. The properties returned by the API call were used to form the attributes of
each node representing a user. The users’ friends and followers were retrieved by
repeated API calls; these relationships were modeled by creating directed edges
between the nodes in the database. Having seeded the users in the Neo4J graph,
the friends and followers were expanded in the following way, using Neo4J’s
graph query language Cypher:

1. Find set of user nodes who have a friendship relationship with the seed user
in any direction.

2. Find the set of user nodes who have a relationship with any users in the
previous set.

3. Find the count of outgoing (friends) or incoming (follower) relationships
already within the database for each node in this set.

4. Compare the count to the expected number of relationships as described by
the “friends count” or “followers count” attributes returned by the Twitter
API calls.

5. Return the users for which the count is lower, in ascending order of when
they were retrieved.

6. Expand these users friend-follower relationships and repeat.

3.2 Applying and Evaluating MCL

A set of Twitter users with bi-directional follower relationships was constructed
with another query in order to be analysed with MCL, implemented using
NumPy [21]. All such relationships were returned for users within two rela-
tionships of the target user. An adjacency matrix was constructed to represent
this network, with the diagonal filled with 1s to add a self-loop to each node.
Having normalized the columns, the matrix was squared, raised to the power of



Research on Online Digital Cultures - Community Extraction and Analysis 115

an inflation parameter of 2.0 element-wise, and renormalized. The process was
repeated until the standard deviation of the absolute differences between suc-
cessive matrices was less than 10−3. Clusters were extracted by considering rows
with more than three non-zero elements. For the first Twitter account exam-
ined, the graph matrices was around 7000× 7000 in size, with the algorithm
converging in around 25 iterations.

We chose to evaluate our implementation of MCL by comparing it with an
out-of-the-box approach and then let the researcher evaluate the results and
label them. To this end, we used the popular graph analysis tool Gephi [22],
which implements the Louvain clustering algorithm [23]. This algorithm involves
successively joining clusters together such that modularity, which measures the
density to intra-cluster links to inter-cluster ones, is maximized. The researcher
then rated each of their clusters returned on a scale of 1–3, where 1 indicated that
the individuals within the cluster were connected by a clearly identifiable com-
mon denominator and research goal, 2 that the individuals seemed connected,
but the context was not clear, and 3 that the individuals seemed to have no
connection. The researcher was not involved with the collection of data or the
implementation of MCL, and was unaware of which methods were used to gen-
erate the clusters. This semi-automated approach has proven effective for the
analysis of clusters [24].

The Twitter account had 7144 others within two reciprocal friend/follower
relationships. The MCL algorithm placed 55% of these in clusters with more than
three members, the remainder were considered unclustered. Just over 8% of the
accounts were in the largest cluster, the next largest had 5%, 5% and 4% of users
respectively. This tendency towards large numbers of small clusters suggests that
MCL may be over-fitting by partitioning larger clusters into smaller ones. The
clusterings are summarized in Table 1.

At the time of capturing the data, the account had 319 friends and 346 fol-
lowers, with 100 users in both groups. The qualitative cluster labeling exercise
resulted in 20% of clusters being given the highest grade of relevancy, these
contained 195 Twitter accounts. 37% of clusters received the second highest
grade. Given that the vast majority of the Twitter accounts in the network were
unknown to the target user, the fraction of clusters with no apparent relevance
does not seem unduly high. MCL has clearly been able to extract some mean-
ing from the account’s connections, with many clusters clearly recognizable as
belonging to specific institutions or conferences. All of the clusters obtained by
the Louvain method received the lowest grade of relevance. Qualitatively, MCL
clearly extracts meaningful communities as observed by the owner of the Twit-
ter account surveyed, and has the advantage of clarity of application. There
is no definitive quantitative definition for graph clusters [25], nor a definitive
quantitative method for evaluating them [26].

3.3 Results

The same Twitter-crawling algorithm was applied to the 9 YRS volunteers
with Twitter accounts, and MCL and the Louvain method were applied to
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Table 1. Fractions of clusters achieving each relevancy score, for MCL and the Louvain
method.

MCL Louvain

1. Cluster is identifiable and relevant 20% 0%

2. Cluster is not identifiable, but possibly relevant 37% 0%

3. Cluster is neither identifiable nor relevant 43% 100%

all the accounts collected. MCL returned 13 clusters, with all but one of the
YRS accounts placed in the largest, with 319 accounts as shown in Table 2.
The remaining YRS member was placed in the second largest cluster, with 45
accounts. The Louvain method failed to identify the YRS members as a coherent
group, and distributed them across four clusters with 1–3 members in each. If
the Twitter communities detected by MCL are to have true social context, it
is reasonable to expect them to Tweet about well-defined topics. This is clearly
the case, as shown by the hashtags used in the MCL clusters containing the
accounts of YRS members in Table 3. Both clusters are dominated by the 2015
UK general election, but the cluster with more YRS members predominately
uses tags about the YRS organization and technology. The smaller cluster is
mostly concerned with UK politics.

Table 2. Distribution of YRS member Twitter accounts in clusterings by MCL and
the Louvain method.

MCL cluster size 20 26 6 6 5 45 5 319 6 5 14 14 5
YRS accounts 0 0 0 0 0 1 0 8 0 0 0 0 0

Louvain cluster size 15 78 7 43 168 67 55 230 24
YRS accounts 0 1 0 0 0 3 2 3 0

4 Mobile Cell Tower Data

When MobileMiner is in use, it creates a time-series of cell tower IDs, which using
the standard Android Java API. Many of the captured cell towers were known to
the OpenCellID database. We explore how much information these trails reveal
about the users. One of the most prolific YRS users of the app visited and logged
930 unique cell towers in 148 days. The latitudes and longitudes of 253 (27%) of
these were known to OpenCellID.

A simple approach to analysing user behaviour is to cluster the cell towers
spatially, [20] and then examine the times of occupancy of the clusters. k-Means
clustering is best suited to convex clusters in a low-dimensional Euclidean space,
these conditions are met by the cell-tower data reasonably well. The k-means
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Table 3. Hashtag usage for MCL clusters containing YRS members.

8 YRS accounts 1 YRS account

Hashtag Tweets Hashtag Tweets

GE2015 275 GE2015 78

tech 214 Eurovision 58

jobs 207 leadersdebate 33

YRS2014 185 bdw2015 24

Haunted 183 BattleForNumber10 21

ghosts 183 BBCQT 18

YRSFoc 181 GBR 15

hackmcr 167 bbcqt 14

yrs2014 156 eurovision 14

Arduino 149 NHTG15 13

FoC2015 141 FoC2015 12

Norwich 133 YRSAmbassadors 11

gamedev 132 depop 11

TG 130 BBCFreeSpeech 10

BigData 112 VoteConverative 9

linux 111 YRS2014 9

YRSHyperlocal 105 DimblebyLecture 9

design 99 endpointcon 9

routine from the SciKitLearn Python package [27] was applied to the normalized
location data for increasing values of k clusters, until the mean distances of the
points to their assigned cluster centres stopped decreasing appreciably. In this
case iteration stopped when the mean distance was greater than an arbitrary
fraction of 90% of the previous lowest value.

Figure 2 shows the clustering using simple feature vectors consisting only of
latitude and longitude. It is attractive to capture journeys, as well as places.
Extended groups of points near the centre of the distribution are split into three
clusters. It is likely that these are part of a single journey, with the breaks
between the clusters being accounted for by poor reception of the mobile network.
To mitigate this, the changes in latitude and longitude between successive points
were divided by the time intervals between them to estimate the velocity at
each point. The clustering was repeated using feature vectors consisting of both
position and velocity, as shown in Fig. 3. Points that are part of the same car
or train journey will have similar velocities, and can therefore be assigned to
the same cluster. A mobile device might connect to a new cell tower because
of network traffic or temporary loss of reception, rather than any change in
proximity, so this measure of velocity cannot be expected to be realistic. Such
random fluctuations should tend to cancel for clusters consisting of groups of cell
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towers that corresponded to places rather than journeys. These remained stable
for both clusterings.

Fig. 2. Cell tower locations with normalized latitude and longitude for a single user,
clustered by K-means using positions as feature vectors.

Fig. 3. Cell tower locations with normalized lattitude and longitude for a single user,
clustered by K-means using positions and velocities as feature vectors.

4.1 Temporal Analysis

The sequences of known cell tower locations for each user were clustered by
k-means using positions and estimated velocities as feature vectors and each
cell tower in a sequence was labeled with its assigned cluster. For each cluster,
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the number of days between its first and last visit and the number of days
with at least one cell tower connection were determined. The total number of
measurements in the cluster on weekdays and weekends were multiplied by 7

5
and 7

2 respectively. If the weekday product was greater than 5 times the weekend
product, the cluster was deemed to have been mostly visited during weekdays, if
the weekend product was greater than 5 times the weekday product, the cluster
was considered to have been mostly visited during weekends. The histograms of
the hour of each cell tower connection in each cluster were found. The earliest
and latest hours where the number of measurements was at least one fifth of
the maximum values were used to estimate the range of time when each cluster
tended to be occupied. The name of each cluster’s location was found by querying
OpenStreetMaps [19] API with the latitude and longitude of its centre.

For the user whose data was plotted in the previous figures, this approach
yielded a cluster active during all hours of the day for all days of the week,
that correctly corresponded to the district where they lived. Another, active
during weekdays from 09:00 to 19:00, plausibly connected to a daily commute,
was centred close to the school they attended. During some runs of the k-means
algorithm, the OpenStreetMaps API correctly identified the school by name. It
is likely that this would been achieved this more reliably if MobileMiner recorded
full GPS locations, as many commercial apps do. There were three other clusters
of note, each in a UK city, with visits on two days each. Given that the user
was attending a school, over 16 years of age, and the three cities hosted major
universities, a reasonable assumption would be that they were attending open
days, then interviews at the universities. This was further reinforced by the
appearance of these universities in the logs of wireless networks, and confirmed
when the user was interviewed at the second hack-day [5].

4.2 Predicting User Behaviour

The basic approach of examining the distribution of times of measurements
within the spatial clusters yielded detailed and accurate information about users’
behaviour. However, it would be attractive to predict behaviour as well as sum-
marize it. The cluster identified as a school was occupied as late as 19:00, rather
late for the UK school system. This may have been caused by an after-school
activity regularly held on certain days of the week. Cluster occupancy was mod-
eled using SciKitLearn’s [27] implementation of Random Forests. A sequence of
over 15400 cell tower IDs and their hour and day of occupancy for a single user
were split into training and test data-sets in the ratio 4 to 1. Using the hour
and day of the week as features allowed the cell tower ID to be predicted on
only 20% accuracy. This made no attempt to use the physical locations of cell
towers or deal with fluctuations in connections. The cell IDs were then replaced
with their cluster-labels from the position and velocity based k-means clustering.
Since only cells known to the OpenCellID database could be used, the data-set
was reduced to a size of 5670 cell connections over 100 distinct days.

94% of cluster visits were to two clusters, with 62% and 32% of visits each.
This time the same split between training and test data produced a Random
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Forest classifier able to predict cluster occupancy for a given time and day with
over 99.9% accuracy. Obviously, the data in this study is very heavily skewed,
but the classifier could not achieve this by only correctly identifying the two
most popular clusters. A dummy classifier that merely reproduced the class
distribution of the training data could only achieve around 50% accuracy, naive
Bayes scored 75% using the same features. Gatmir-Motahari et al. [28] conducted
a study using a large amount of network operator data, achieving over 90%
accuracy in place prediction having carefully considered factors including time of
day, day of the week and conventional working hours. They concluded that their
subjects may have led particularly regular lifestyles, others from more rural and
less affluent areas may have been harder to predict. Song et al. [29] quote 93% as
a more reasonable limit to predictability for cell tower traces. The random forest
classifier may have over-fit significantly, and might not cope well with changes in
routine. However, it does serve to demonstrate to subjects that their behaviour
can be modeled with quite sparse and coarse data.

5 Conclusions

While small datasets from crowd-sourced collections of location and social media
data cannot produce the insights of those from datasets where access is granted
by service providers, they can give a good indication to participants of what
insights are possible. MCL has shown how social media can identify groups with
which users associate, and their social context. The knowledge gained about
users by social media platforms is enhanced by their use on mobile devices when
access to location data is granted. A simple two-step process of clustering cell
tower trails followed by supervised learning of cluster occupancy over time is
sufficient to demonstrate this; actively engaging participants in their attitudes
to their data and privacy.
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