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Chapter 1
Signaling Between Embryo and Endometrium: 
Normal Implantation

Chelsea Fox and Bruce A. Lessey

Pregnancy has been one of life’s great mysteries and captivated both the scientific 
and artistic realms (Fig. 1.1). The endometrium is where life begins, and a receptive 
endometrium lies at the crossroads of menstruation and pregnancy. In a perfect 
world, the peak of receptivity of the endometrial lining is achieved synchronously 
with the arrival into the uterine cavity of a healthy blastocyst that can then adhere, 
attach and invade, and grow protected until parturition. However, for human repro-
duction in particular, it is not always a perfect world; for every successful preg-
nancy, there are many fertilized eggs that either implant and fail as clinical or 
subclinical pregnancies or never are able to interact with the endometrium, resulting 
in infertility. Issues involving embryo quality and chromosome number and dis-
eases that can impair normal endometrial receptivity have the potential to alter the 
outcome of pregnancy in devastating ways. The endometrium is a specialized, 
almost immortal, tissue that regenerates again and again with the sole purpose of 
continuing the survival of our species. In this chapter, we will review a global over-
view of normal implantation and what is known about the signaling components of 
embryo and endometrial interactions. Our current understanding of implantation 
also provides a better appreciation for why pregnancies fail.

�Timing of Implantation

Normal implantation occurs in the mid-secretory phase of the menstrual cycle and 
requires synchronous development of the endometrium, oocyte, and subsequent 
embryo. Events leading to a successful pregnancy begin several months ahead of 
time with recruitment of the cohort of oocytes that will mature and ovulate some 
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months hence. In the month of implantation, at the time of menstruation, progester-
one levels fall with the demise of the corpus luteum. It has been suggested that 
menstruation is more than simply a decline in ovarian steroids [1]; there is evidence 
that menstruation is an active and complex process with purposeful blockade of 
progesterone action through induction of inflammatory mediators leading to pro-
gesterone resistance [2]. With an abrupt and active loss of progesterone support 
coupled with the concomitant rise in ovarian estrogen, the upper layers of the endo-
metrial (the functionalis layer) are sloughed but rapidly repaired and reconstituted 
without scarring, from underlying stroma and epithelial fragments [3]. This remark-
able process of renewal can occur up to 400 times in a woman’s lifetime.

The cessation of bleeding and repair of the endometrial lining is an estrogen-
dependent process and occurs as the negative hypothalamic and pituitary feedback 
is released after the fall in progesterone. In response to rising follicle-stimulating 
hormone (FSH), a cohort of ovarian follicles begins to develop, releasing increasing 
amounts of estradiol into the circulation. In response to rising estrogen concentra-
tions, the endometrium produces more estrogen receptors (ER), allowing prolifera-
tion and thickening, ultimately achieving a trilaminar appearing layer by ultrasound 
by the time ovulation occurs. In natural cycles, the dominant follicle is selected as 
that follicle has adequate FSH receptors to grow despite falling gonadotropin levels 
in the mid-proliferative phase of the menstrual cycle.

Fig. 1.1  Anatomical depiction of a human pregnancy by Leonardo da Vinci, circa 1510
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In response to positive feedback to rising estrogen, an ovulatory LH peak from 
the pituitary triggers release of the mature oocyte(s). As shown in Fig.  1.2, the 
release of the egg results in collapse and consolidation of the vacated follicular cyst, 
with subsequent development of the corpus luteum and a rise in serum progester-
one. Progesterone is essential for the success of a pregnancy. Unlike estrogen that 
stimulates endometrial cell proliferation, progesterone transforms the thickened 
endometrium into a secretory structure and induces a host of factors essential for 
embryonic survival, attachment, and invasion. Meanwhile, the released oocyte is 
picked up by the fimbria and transported along the fallopian tube where it is fertil-
ized by waiting sperm. The newly formed embryo undergoes progressive develop-
ment from zygote to 8-cell embryo to blastocyst during its transit down the fallopian 
tube culminating in its discharge into the uterine cavity. By the time it arrives, under 
optimal conditions, the endometrium has developed into a receptive surface with the 
appropriate glandular secretions, adhesion moieties, and vascular changes required 
to support a pregnancy.

Implantation is a complex network of events happening synchronously in the 
embryo and endometrium that culminates with the envelopment of the blastocyst 
within a decidualized endometrial stroma. The stages of early implantation have 
been divided into three phases: apposition, attachment, and invasion. When implan-
tation occurs, this process is rapid, with apposition, attachment, and invasion 
happening within hours rather than days.

In one of the early morphologic studies on the timing of implantation, hysterec-
tomy specimens were obtained from volunteers who agreed to try and become preg-
nant prior to surgery to remove the uterus. In this remarkable and usual study, 34 
embryos were found within luteal phase hysterectomy specimens. Based on the time 
of hysterectomy relative to the last menstrual period, 8 embryos were found free-
floating within the uterine cavity, while the remaining 26 embryos were in various 
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Fig. 1.2  Stages of implantation correspond to and are largely driven by ovarian steroids from the 
developing follicle and subsequent corpus luteum that forms. Development and progression of the 
embryo is synchronously timed to endometrial development, such that both embryo and endome-
trium become receptive toward each other at the proper time
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stages of implantation and had begun to complete the invasion process [4, 5]. Based 
on these findings, the timing of implantation appeared to occur around cycle day 19 
to 20 of an idealized menstrual cycle. The timing of implantation based on assisted 
reproductive technology cycles has tended to agree with these results [6–8]. In vitro 
studies have tried to record these events as well, with mixed success [9, 10].

Implantation begins with the hatching of the embryos out of its zona pellucida 
about 1–3 days after the morula enters the uterine cavity (Fig. 1.2). Apposition of the 
hatched blastocyst to the uterine epithelium usually occurs 2–4 days after the morula 
has entered the cavity. By this point, the blastocyst, as it is now called, has differenti-
ated into an inner cell mass (ICM) that subsequently forms the embryo and the 
trophectoderm which will give rise to the placenta. Importantly, hatching from its 
protective shell exposes a variety of adhesive molecules expressed on the outer sur-
face of the embryo, complementing those on the endometrial epithelium and later 
the decidualized stroma. Penetration of the embryo through the uterine epithelium 
and basal lamina occurs quickly, allowing in the invasion of cytotrophoblast inside 
the uterine vasculature [11]. This clogging of the arterioles of the maternal endome-
trium reduces hemostatic pressure on the implanting blastocyst but also means that 
blood supply to the embryo is limited until the end of the first trimester [12].

�The Endometrium

The endometrium is composed of a mucosal layer within the myometrial layers of 
the uterus. The female reproductive tract is derived from the urogenital ridge, which 
arises from paired mesodermal (paramesonephric) tubes that form from the longitu-
dinal invaginations of the coelomic epithelium [13]. The early uterus is lined by a 
simple cuboidal epithelium that subsequently becomes columnar and pseudostrati-
fied. Beneath this epithelial layer is a dense mesenchymal layer that becomes the 
endometrial stroma as well as the surrounding myometrium. What later will become 
the glandular epithelium invaginates from buds arising in the luminal epithelium, 
growing into the underlying stroma.

By mid-gestation, the uterus has the appearance of the adult organ. After deliv-
ery, with the fall in maternal steroids, the endometrium may have an initial men-
struation event, but then regresses to an inactive state, where it will remain until 
puberty and the rise in ovarian steroid secretions. With the initiation of cyclic men-
strual cycles, the endometrium will undergo repetitive stages of development in 
response to follicular estrogen followed by ovulatory progesterone. These changes 
are predicated on the timely induction of cognate steroid receptors for both estrogen 
and progesterone, which orchestrate the genomic activation of thousands of endo-
metrial genes. In the event that pregnancy does not occur, the endometrium breaks 
down and then is rapidly rebuilt until pregnancy is established. This process of 
menstruation, proliferation, and regeneration occurs without scarring and speaks to 
the seeming immortality of the endometrium, a structure that continues to prolifer-
ate throughout the woman’s life without deterioration.
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�Endometrial Receptivity

Anyone who studies the endometrial cycles and implantation, in particular, recog-
nizes that the endometrium is non-receptive through much most of its cyclic 
changes. Our understanding of endometrial function comes largely from early ani-
mal studies on implantation [14–17]. Over 65  years ago, Noyes and colleagues 
described the histological changes that the endometrium undergoes during its cyclic 
development from menses to menses [18]. Within this 28-day menstrual cycle, 
receptivity toward the embryo only occurs for 3–5 days. The endometrium is unique 
as one of the few tissues into which an embryo will not attach and grow, except for 
a narrow period of uterine receptivity [19, 20]. This putative “window” of implanta-
tion, as first suggested by Finn [16], has been demonstrated in both animal models 
[17, 21] and in humans [6, 7].

As interest in the role of the endometrium in blastocyst attachment and invasion 
has increased, a great deal of research has been done to identify biomarkers of a 
receptive endometrium. Significant progress has been made in this field although 
the majority of potential biomarkers require further randomized studies in order to 
test their validity and clinical usefulness. The ideal biomarker is accurate, reproduc-
ible, and sensitive but should be able to be obtained by noninvasive means [22]. 
Potential sources of noninvasive biomarkers may include urine, saliva, vaginal fluid, 
cervical mucus, vaginal epithelial smears, blood, ultrasound, and basal body tem-
perature measurement [23, 24].

�Histologic Dating

The traditional “gold standard” for comparison of methods assessing the quality of 
luteal function remains histologic dating described by Noyes et al. in 1950 [18]. Use 
of this method leads to the description of the luteal phase defect (LPD) in which 
infertility and early pregnancy loss were thought to occur as a consequence of 
delayed endometrial maturation secondary to inadequate corpus luteum progester-
one (P) production [25]. Since the 1950s, the clinical usefulness of histologic dating 
has been challenged off and on, due to methodological flaws noted in the original 
study as well as high inter-and intra-observer variation of histologic interpretation 
[26, 27]. The major flaw identified in the Noyes study is all of the endometrial 
samples were obtained from women with infertility, not from normally cycling par-
ous controls. A subsequent prospective, randomized observational study reexam-
ined histologic dating criteria in 130 regularly cycling, fertile women [26]. This 
landmark study concluded that endometrial dating does not have the accuracy or 
precision necessary to diagnose a luteal phase defect or guide clinical management 
of infertility. Furthermore, a prospective study of 847 subjects compared the endo-
metrial biopsies of fertile and infertile patients. The pathologists, blinded to fertility 
status and menstrual day of biopsy, were not able to reliably discriminate between 
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the two patient populations, and the authors recommended against the use of histo-
logic dating in the routine evaluation of infertility [28].

�Adhesion Molecules

At implantation, the trophectoderm of the embryo and the endometrial luminal epi-
thelium acquire mutual adhesiveness [29]. Changes in cellular motility occur in 
response to adhesion and intracellular signaling. Embryos begin to exhibit a high rate 
of protrusion formation [30]. Sutherland captured the intrusive behavior of mouse 
embryos, with trophoblast cells probing out until finding a cleavage plane to intrude 
into the uterine wall [31]. The basis for this adhesion and signaling is complex and 
has been reviewed elsewhere [32–34] but represents an unsettled area of research as 
to the primary or most important adhesion molecule for embryo implantation.

Structural changes have also been found to occur on the luminal epithelium 
throughout implantation and thought to play a pivotal role in attachment. Pinopodes 
are cell membrane prominences on the apical cell membrane of the endometrial 
luminal epithelium. First identified in 1958 [35], they have since been investigated 
as potential biomarkers for endometrial receptivity. While their timing of expression 
appears to coincide with the window of implantation (WOI) [36, 37], not all studies 
agree. Pinopodes have been studied extensively by electron microscopy [37–39], 
and their appearance appears to be cycle dependent and under the control of proges-
terone [40]. They are visible by light microscopy as well [41] and are decorated 
with both endometrial integrins as well as osteopontin (OPN), two candidate 
biomarkers of embryo/endometrial attachment (Fig. 1.3a) [42]. Bentin-Ley has cap-
tured human embryos attaching to cultured endometrium, in vitro, seeming to show 
a preference for areas containing pinopode structures (Fig. 1.3b; [43]). Aplin has 

a b

Fig. 1.3  Pinopodes or endometrial uterodomes are present at the time of implantation and sites of 
integrin and OPN expression (a). Human embryos can be seen attaching to these structures using 
in vitro culture and electron microscopy (b) (used with permission by Human Reproduction)
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used similar techniques with mouse and human embryos and demonstrated the 
increased expression of OPN and integrin ανβ3 at the site of attachment [44]. They 
also showed that decreased attachment occurred if either OPN or the integrin was 
artificially downregulated. Despite the association between pinopode expression 
and the WOI, the clinical usefulness of their expression has been criticized. 
Arguments against the use of pinopodes as a biomarker of endometrial receptivity 
include their brief time of expression, the subjective nature of scoring them, and 
subsequent studies which have failed to show their temporal expression within the 
WOI [45–47].

Integrins are transmembrane glycoproteins which function as cell adhesion 
molecules (CAMs). They are formed from alpha and beta subunits which function 
as cell surface ligands between the embryo and the endometrium. Several integ-
rins have been found to be only expressed during the WOI suggesting a role a 
possible biomarker for endometrial receptivity [48–50]. In humans, low expres-
sion of certain integrins has been linked to infertility [51, 52]. Furthermore, mul-
tiple studies have described abnormally low or absent levels of integrins, 
particularly the ανβ3 integrin, in inflammatory disease states associated with 
implantation failure such as endometriosis, polycystic ovarian syndrome, and 
hydrosalpinges [52–55].

Extracellular matrix proteins such as fibronectin and laminin are secreted by the 
endometrium under progesterone control [56]. These proteins have been found to 
interact with integrins and likely play a role in limiting trophoblastic invasiveness 
[57–59]. Damsky et  al. [58, 60] have shown cells at the maternal-fetal interface 
switch their integrin phenotype expression at least twice during trophoblastic inva-
sion. Fisher went on to show the importance of the ανβ3 integrin, a fibronectin 
receptor, as part of the mimicry cytotrophoblast uses to masquerade as endothelial 
cells and invade maternal vascular during early implantation [61]. High maternal 
levels of fibronectin have been associated with fetal growth restriction, hypertensive 
disorders, and abnormal umbilical artery Doppler in the third trimester of pregnancy 
[59]. These findings not only shed light on the well-orchestrated events that must 
occur in normal implantation, but they also provide a foundation to study disease 
processes where trophoblastic invasion is either insufficient or excessive (i.e., pla-
centa accreta, preeclampsia, choriocarcinoma).

Selectins are carbohydrate-binding proteins known to mediate interactions 
between leukocytes and endothelium in the vasculature [62]. These proteins help 
facilitate leukocyte capture by L-selectin expression on the endothelial surface 
allowing “rolling adhesion” to slow the leukocyte to an eventual stop at the appro-
priate location. Genbacev et al. found selectin expression was also present at the 
maternal-fetal interface increases during the window of receptivity where it may 
play a similar role [63]. Studies suggest that L-selectin expression was increased in 
both the uterine epithelial cells and on the trophoblast cells suggesting these adhe-
sion interactions may help slow the embryo down as it approaches the site of 
implantation [64]. The loss of L-selectin has been shown to occur in women with 
infertility [65, 66] suggesting that this class of molecules remains a promising area 
of interest.
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Mucin 1 (MUC-1), a glycoprotein, is found at many secretory epithelial sites 
throughout the body where it forms a mucin coating. In the endometrium, its expres-
sion is increased during the luteal phase and WOI where it is produced and secreted 
by the luminal epithelium [67]. MUC-1 has displayed both adhesive and anti-
adhesive properties in various studies [32, 68, 69] suggesting a complex balance in 
its role in implantation. In humans, MUC-1 was found at the implantation site, but 
not at the surface of pinopodes possibly to allow the blastocyst to preferentially bind 
to these specialized structures [70].

�Growth Factors and Cytokines

Several growth factors including insulin-like growth factor (IGF), heparin-binding 
epidermal growth factor (HB-EGF), and vascular endothelial growth factor (VEGF) 
have been identified whose expression in the endometrium coincides with the win-
dow of implantation [51, 72–75].

The two subtypes of insulin-like growth factors, IGF-I and IGF-II, appear to both 
play a role in implantation and placentation. IGF expression appears to correlate 
with estrogen concentration with IGF-I expressed primarily during the proliferative 
phase and IGF-II expression seen in the secretory endometrium [51]. IGF-I has 
been implicated in a variety of functions including endometrial proliferation [51, 
71], placental function [72], and enhancement of embryo development and quality 
[73, 74]. IGF-II expression is seen at both the maternal-fetal interface in early 
human pregnancy and by the trophoblastic cells in early intrauterine pregnancies. 
The spatial expression of IGF at the decidual-trophoblastic interface suggests these 
peptides may function as mediators of trophoblastic invasion; however, the mecha-
nism of this action remains unknown [75].

Heparin-binding epidermal growth factor (HB-EGF) expression within the 
uterus has been shown in both human and mouse models to occur in a cycle-
dependent manner with its maximal expression occurring at the window of implan-
tation [76]. Furthermore, immunohistochemistry staining for HB-EGF on 
endometrial biopsies have shown the coexistence of pinopodes with HB-EGF 
expression [77, 78]. HB-EGF is also expressed in early pregnancy on both the vil-
lous and extravillous trophoblastic tissue suggesting a role implantation and tropho-
blastic invasion [79]. Studies have shown its expression is associated with increased 
rates of embryo hatching and development and can also promote trophoblastic 
growth in  vitro [80, 81]. Thus, HB-EGF appears to function in communication 
between the early embryo and endometrium although further studies are needed to 
clarify its exact role in implantation.

Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis 
throughout the body. VEGF is produced by both the embryo and endometrium dur-
ing implantation highlighting its potential role in angiogenesis and vasodilation at 
the implantation site [78]. Interestingly, VEGF expression is increased in pre-
eclampsia [82]. It is hypothesized that this increase occurs as a result of inadequate 
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angiogenesis at the placentation site wherein VEGF is upregulated in a compensa-
tory fashion. VEGF has also been studied in assisted reproduction. Elevated levels 
of VEGF appear to be markers of follicular hypoxia and suboptimal embryo devel-
opment [83]. Dorn et al. found that higher serum concentrations of VEGF on the 
day of oocyte retrieval were correlated with IVF outcome; however, the mechanism 
behind these findings has not yet been elucidated [84].

�Matrix Metalloproteinases

Matrix metalloproteinases (MMPs) comprise a family of zinc-dependent extracel-
lular matrix (ECM)-degrading endopeptidases. MMPs, secreted by the cytotropho-
blast, appear to play a key role in matrix degradation during trophoblastic invasion 
[85]. They can be classified into four subfamilies based on their substrate specific-
ity and structure: gelatinases, collagenases, stromelysins, and a subfamily contain-
ing MMP-14, MMP-15, MMP-16, and MMP-17 [85]. Animal models suggest 
MMP-2 and MMP-9 (members of the gelatinase subfamily) have the most impor-
tant role in ECM degradation and trophoblastic invasion [86–91]. Similar to MMPs, 
ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) are 
also proteolytic enzymes that likely contribute to the invasive properties of the 
blastocyst [92]. In particular, ADAM-TS5 is highly expressed by day 7 embryos 
with decreased expression thereafter suggesting this enzyme may play a role in 
proteolytic processing during the peri-implantation phase [85, 92]. MMP and 
ADAM are modulated locally by tissue inhibitors of metalloproteinases (TIMP). 
TIMP binds to and inhibits the active forms of MMP and ADAM within the extra-
cellular space [85]. It appears the co-localization of MMP, ADAM, and TIMP at the 
maternal-fetal interface promotes implantation while also regulating the limits of 
trophoblastic invasion.

�HOX Genes

The homeobox (Hox) genes encode transcription factors which guide embryologic 
development but have also been shown to regulate gene expression within the endo-
metrium during the menstrual cycle [93]. The DNA-binding domains of these tran-
scription factors are highly conserved across divergent organisms suggesting 
communal ancestry and genetic importance [94]. There are 39 HOX genes arranged 
in four parallel clusters (termed A, B, C, and D) [95]. HOXA10 and HOXA11 are 
expressed by endometrial glands and stroma at varying levels throughout menstrua-
tion [96]. Both genes are upregulated by 17β-estradiol and progesterone which are 
maximally expressed during the mid-secretory phase at the time of implantation. 
The spatial and temporal expression of HOXA10 and HOXA11 within the endome-
trium suggests a role in endometrial development, implantation, and maintenance of 
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pregnancy [97]. Hox genes are known to mediate the expression of endometrial 
receptivity markers such as LIF, pinopodes, and integrin ανβ3. Furthermore, dis-
eases associated with subfertility such as polycystic ovarian syndrome (PCOS), 
hydrosalpinges, and endometriosis have also been associated with defects of HOX 
gene expression [98–100]. Unfortunately, much of the available research regarding 
HOX genes and endometrial receptivity involves mouse models. The possible role 
of gene therapy involving manipulation of HOX expression to enhance implantation 
is promising although further research is necessary.

�Prostaglandins

An increase in endometrial vascular permeability has been proposed as an essen-
tial requirement for trophoblastic implantation and decidualization [15, 101]. 
Prostaglandins (PGs) have been identified as important mediators of this localized 
vascular response in addition to playing a critical role in the decidualization reac-
tion in animal models [102–108].

PGs are produced from arachidonic acid through the cyclooxygenase (COX) 
pathway. The rate-limiting step in this conversion pathway is the enzyme COX 
which exists in two isoforms, COX-1 and COX-2. PG-H2 is the common precursor 
for all prostaglandins produced from this pathway [PG-E2, PG-F2, PG-D2, throm-
boxane A2 (TX-A2), and prostacyclin (PG-I2)]. Uncertainty exists regarding the 
exact site of PG production although it appears both the blastocyst and the endome-
trium are able to produce PGs. Endometrial prostaglandin production changes 
throughout the menstrual cycle with increased PG-F2 and PG-E2 concentrations seen 
during the mid-luteal phase during the WOI [109–114]. This cyclical rise in PG 
production suggests a possible role in implantation. Furthermore, multiple studies 
using animal models have shown administration of nonsteroidal anti-inflammatory 
agents, such as indomethacin, inhibits prostaglandin synthesis which leads to inhibi-
tion or delay of decidualization and implantation [105, 115–118]. Additional studies 
have shown administration of exogenous PGs can overcome the effects of indo-
methacin on implantation [119, 120]. Despite substantial evidence to support the 
role of PGs in implantation and decidualization, significant knowledge gaps exist 
regarding the specific types of PGs involved as well as their specific mode of action.

�Cytokines

Cytokines are a group of proinflammatory signaling proteins that control the 
immune response. They have also been implicated in playing an important role in 
mammalian implantation [121–123] and have been characterized as biomarkers as 
a noninvasive test of endometrial receptivity [124]. Implantation is associated with 
elevated levels of proinflammatory markers including cytokines, prostaglandins, 
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and leukocytes [125]. Clinical findings have shown improved implantation rates 
when the endometrium is mechanically disrupted prior to embryo transfer in patients 
with recurrent pregnancy loss further supporting the importance of a proinflamma-
tory environment during embryo implantation [121]. Proinflammatory cytokines 
identified at the maternal-fetal interface in early pregnancy include interleukin-1 
(IL-1), interleukin-6 (IL-6), leukemia inhibitory factor (LIF), and numerous others 
[126, 127]. IL-1 exists as two subtypes, IL-1-α and IL-1-β. Both forms of IL-1 are 
under progesterone control although the receptor antagonist is not [128]. Animal 
experiments have shown IL-1 knockout mice are able to implant successfully, 
whereas implantation is impaired when their receptor is blocked with IL-1 receptor 
antagonist (IL-1ra) [125]. It is hypothesized that administration of IL-1ra causes 
downregulation of endometrial integrins leading to implantation failure [125].

LIF, an IL-6-like cytokine, is expressed by the human endometrium in a cycle-
dependent manner with highest expression seen during the window of implantation 
[129]. LIF was one of the first cytokines shown to be essential for implantation of 
embryos in mice [130, 131] and in humans [132]. LIF affects trophoblastic differen-
tiation, shifting the embryo toward a more adhesive phenotype [129, 133]. Studies of 
uterine flushings and endometrial biopsies of women with unexplained infertility 
and recurrent pregnancy loss have shown decreased expression of LIF when com-
pared to fertile controls suggesting its role in implantation and establishment of preg-
nancy [134, 135]. Unfortunately, a recent randomized controlled trial (n = 149) using 
recombinant human LIF in patients with recurrent implantation failure did not show 
an improvement in implantation or pregnancy rates when compared to the placebo 
group [136]. Thus, further research is needed to investigate the complex implantation 
process in order to develop possible treatments to improve reproductive outcomes.

�Theories of Endometrial Receptivity Defects

There remains much to understand about normal endometrial receptivity. The com-
plexity of the process of implantation makes it also prone to dysfunction. Indeed, for 
every successful pregnancy culminating in live birth, there are a vast number of 
miscarriages, subclinical losses, and failed implantation events that preclude estab-
lishment of pregnancy [137]. We recently published a paradigm of endometrial 
receptivity defects that is focused on inflammation as the central defect [138]. As 
shown in Fig. 1.4, the activation of STAT3 by inflammatory cytokines, as seen in 
endometriosis, has been reported to recruit and stabilize hypoxia-induced factor 
1-alpha (HIF1α) [139]. STAT3 also stabilizes a gene suppressor, BCL6 which is 
overexpressed in women with hydrosalpinges or endometriosis [140]. BCL6 appears 
to be a prime candidate as a cause of progesterone resistance along with SIRT1, 
which together have been shown to inhibit GLI1, which is involved in the 
progesterone-driven Indian Hedgehog pathway [141, 142]. Without progesterone 
working properly, progesterone-induced STAT5 [143] is not there to inhibit STAT3 
[144]. Further, protein inhibitor of STAT3 (PIAS3) is also downregulated in 

1  Signaling Between Embryo and Endometrium: Normal Implantation



12

inflammatory conditions such as endometriosis [145], which results in further 
chronic activation of STAT3. This favors estrogen action and proliferation and con-
tributes to cyclooxygenase 2 (COX2), prostaglandin production, aromatase expres-
sion, angiogenesis, and inflammation. We believe this model helps explain why 
pregnancy can be difficult in the setting of inflammation and conditions such as 
endometriosis. Finally, the oncogene KRAS is elevated in endometriosis and thought 
to drive this elevation in SIRT1, contributing to progesterone resistance [142].

�Summary and Conclusions

An understanding of embryo implantation requires an extensive emersion into 
endocrinology, physiology, and cell biology. The concept of a window of implanta-
tion is a valid construct to frame the mechanisms of implantation and appreciate the 
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temporal chain of events. Synchrony and cooperation between the embryo and 
endometrium appear critical to a successful pregnancy. Failure of implantation, 
while not covered by this introductory chapter, can be examined in the context of 
normal implantation and the molecular constraints required by synchrony and com-
plex sequential events. There are multiple steps required for normal pregnancy to 
occur and conclude successfully. In the context of this book, many of those aspects 
will be discovered.
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