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Abstract. Within rehabilitation robotics, machines are being designed
to help human in activities of everyday life. Mobility is an essential com-
ponent for independent living. Autonomous machines with their high
degree of mobility are becoming an integral part of assistive devices lead-
ing to a number of developments in mobility assistance. This is primarily
in terms of smart wheelchairs embodied with agents. Autonomous agents
keep an eye on irregularities during navigation and trigger corrections
whenever required. They behave as teammates for the human wheel-
chair user. Such agents will be more effective if it’s behavior is closer
to human or it is intelligent enough to understand the possible course
of action taken by the human user. Therefore recognizing intention of
the human driver and surrounding vehicles is an essential task. We have
formulated a fuzzy model for the prediction of intention. A qualitative
distance and orientation mechanism have been adopted, where few envi-
ronment features are taken to show how the prediction of intention can
improve the ability of decision making.
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1 Introduction

Autonomous decision systems in outdoor navigation represent a convergence of
diverse areas of research. The central objective is to effectively work in a real
world environment that has not been specifically engineered. The evolution of
such system is challenging. For a truly autonomous robot, systems designed with
a preformed sequence of operations within a highly constrained environment
are not acceptable. Such robotic systems usually fail to work in an unexplored
scenario. Many methods have been proposed for robot navigation. A very basic
inertial navigation method which provide dynamic information through direct
measurements was proposed in 1995 [3]. The system calculates distance at real
time and avoid collisions. A force based potential field navigation method was
proposed [1]. Here obstacles exert repulsive forces onto the robot, while the
target applies an attractive force. The resultant force determines the subsequent
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direction and speed of travel. Vector field histogram [4], Robust Monte Carlo
Navigation [19], occupancy grids [7], map matching, and many others techniques
have been used for navigation. Despite recent advances in autonomous robots,
a number of difficulties need to be sorted to achieve a true autonomous system.
The wide variety of uncertainty arising out of an unstructured environment is
a major barrier for such systems. We require a methodology which can provide
the probabilistic future events within its immediate environment and take a
deliberate decision.

We believe that adding cognitive reasoning into intelligent systems can lead
to more natural and human compatible behavior of the resulting system [9)].
Recognition of ‘intent’ of the teammates or other agents in the vicinity is one
such cognitive ability. Intent recognition involves prediction of intentions of an
agent, usually by observing an agent or a group of agents [12] in a dynamic
environment. It is a proactive approach for decision making [17] and have been
successfully used in service robots designed for assistance [2,10,16]. In this paper,
a fuzzy model for prediction of intention is presented. Under the assumption of
availability of few environmental features, we apply a fuzzy based prediction
of turning behavior of surrounding vehicles in order to find a safe and smooth
path for the subject vehicle. Combination of two qualitative spatial reasoning
methods [5] are incorporated to deal with the distance and orientation.

2 Model of Intention Prediction

Any approach used to control dynamic system needs to use some knowledge or
model of the system to be controlled. The kinematics and dynamics of a subject
vehicle may be complex and nonlinear [8]. Further, the interaction between the
surrounding vehicles is hard to model in general. This motivated several commu-
nities to use fuzzy control techniques [11,13,15]. We have designed an intention
based decision system to model the behavior of an autonomous mobile agent

(Fig. 1).
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Fig. 1. Model of intention based system

The Model Consists of few predetermined features which are available to
the system and a fuzzy module to predict intention of motion of surrounding
vehicles. The angular control module finds a safe direction and angle of the
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subject vehicle exploiting qualitative orientation OPRA,, [14] and an absolute
distance calculus [6].

2.1 Features

Three features related to surrounding vehicles are analyzed, which is available to
the system as input parameters. Two quantitative features distance and velocity
and a qualitative “Indicator” signal is considered to model the behaviour of
system. Though only these number of features are not sufficient to justify a
robust system however, taking few provide simplicity. And suffice for a first step
towards establishing a claim that intention based approaches have a significant
impact on cognitive decision making.

We consider the indicator signal of surrounding vehicle as one of the fea-
tures to understand the qualitative intention of surrounding vehicles. Usually
an indicator signal is mounted as a uni-colour light on both end of vehicles. We
assume F; which denote the indicator feature, which may have status ON or
OFF. Where status ON means light in “on” and OFF indicate the absence of
light signal. Quantitative values for each qualitative status can be defined as;

Fr =

1 Indicator is ON
0 Indicator is OFF

In addition to the Indicator, two quantitative features of surrounding vehicles
are considered - distance and orientation. Both the features are kept in an array,
Where a distance array Fp consists of the distance of surrounding vehicle from
the subject vehicle and another Fp holds orientation information.

Fp = [Fp1,Fpa, ..., Fpy]
Fo = [Fo1, Foa, ..., Fon]

2.2 Intention Recognition

Navigation intent can be determined by the function, structure and behavioural
aspect of the environment object [18]. The behaviour of taking a turning or
going straight could be one of the functional property of surrounding vehicles,
which is captured in a fuzzy set of having membership for each such surrounding
vehicle. A Fuzzy based Intention prediction is used to capture the intention
of all the neighbour vehicles via two membership functions 7, and &, where
the functions are related to each other. & determines the membership value
for moving straight and 7; represent membership value for taking turn. ‘a’ is
rate of change of membership functions with respect to Acceleration and ‘G’ is
rate of change of membership functions with respect to Indicator signal. ‘a’ is
acceleration of neighbour vehicle.

1 t=20
S=q1l-m Fr=0
B&—1 Fr#0
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Membership value of going straight is maximum and membership value of turn-
ing is minimum initially as there is no need to take turn without any obstacle in
the path. Membership value of going straight is changing with respect to turn
by subtracting the 74 from the maximum value. Here « is greater than § because
in this scenario impact of indicator is much more than the impact of variation
in speed.

0 t=0
_)1-& F1#0
TV B —0paa>0
«

Ty Fr=0ANa<0

If a surrounding vehicle intends to come into the path, i.e. indicator sig-
nal F7 is ON, indicating the possibility of crossing the way of automated vehicle
then membership function of going straight is decreased by the factor 5 and
membership value of turning is increased by subtracting the & from maximum
value.

Membership values also varies with acceleration of neighbour vehicle as if
neighbour vehicle is retarding down their is a possibility of taking turn and it
may come into the path of automated vehicle so membership value of turn for
automated vehicle should be increased by the factor inverse of a. If neighbour
vehicle is speeding up (i.e. accelerating) then membership value of taking turn
is decreased by the factor a.

(a) OPRA, (b) Absolute Distance Scale

Fig. 2. Representation of orentation and direction scheme. (a) A basic relation in
OPRA4. (b) A combined illustration of orientation and direction.



Navigation Assistance Based on Intent Recognition 85

2.3 Orientation and Distance

Apart from the prediction of intention of surrounding vehicle based on a qual-
itative feature, orientation and distance would also play a significant role. For
orientation information the Orientation Point Algebra (OPRA) [14] is used to
describe the relative direction information, where OPRA,, signifies the uses of m
number of lines going through the object point and can be visualised in Fig. 2(a),
in which orientation point = lies on the third part of the space divided by lines
going through oriented point y, whereas y lies on 13th part of space divided by
the lines going through x under the assumption of m =4.

Distance in spatial domain can represent by either absolute scale or some
relative measurement. We consider distance on an absolute scale where notions
such as wery close, close, commensurate, far, and very far could be used. In
general, the distance relation has meaning only when combined with direction
relation. Therefore distances are used together with OPRA.

3 Implementation and Results

The objective to design a fuzzy model was to analyze the effect of intention based
method in navigation. Where we are interested only on the path obtained by
the autonomous agent in the different scenario. Therefore, instead of exhaustive
implementation and considering many features and real scan data, a sample set
of data is used in Matlab to fulfill the objective. Demonstrative results of the path
taken by the integrated autonomous vehicle in different circumstances are shown.
A comparison of this integrated approach with potential field navigation method
is done for the analysis. Results represented here can broadly divide into two
categories Navigation Path in different surrounding scenarios and Comparison
and Analysis with other existing methods.

3.1 Navigation Path

A different surrounding environment scenario requires a different navigation path
strategy. Autonomous navigation vehicle should follow the navigation according
to the present surrounding scenario. It should avoid the collision and achieve
the goal by keeping the motion smooth. Few scenarios and respective navigation
paths are demonstrated in Fig. 3, which presents the navigation path in presence
of one vehicle in the surrounding and shows the path followed by the autonomous
vehicle with different values of the effective range. Where the effective range
is that distance from which vehicle starts observing the surrounding objects.
Figure 3(a) shows the path of the vehicle when the effective range is large where
Vehicle observed the presence of a surrounding vehicle and starts taking a curve
turning to avoid the sharp turn. This proactive observation gives machine more
time to take the turn and make the motion smoother. Similarly, in Fig.3(b),
effective range is medium and the vehicle starts taking turning after covering
some distance from the initial point. Figure 3(c) shows a small value of range
and observation of surrounding vehicle starts when they are very close. In this
scenario vehicle gets a very small time to take action and path becomes curved.
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Fig. 3. Navigation Path for different effective range of Autonomous Vehicle. (a) Large
effective range. (b) Medium effective range. (c) Small effective range.

3.2 Avoiding Obstacle

Figure 4(a) shows the navigation path followed by the subject vehicle when one
obstacle is present, where it observe the surrounding vehicle at initial point
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Fig.4. (a) shows the path followed by Autonomous Vehicle with one obstacle. (b)
shows the path followed by Autonomous Vehicle with three obstacles. (c) shows the
path followed by Autonomous Vehicle with five obstacle. (d) shows the Vehicle can
not move forward due to obstacles.
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and starts turning to avoid it but at the same time it observe the indication of
turning intention of an another vehicle, which command to calculate a new path.
Therefore it select the control from the decision making module to predict the
next optimal path and pass it to the action module. Multiple obstacles can also
be their as shown in Fig.4(b) and (c), where it every time when an obstacle is
found in the path it calculate the new optimal path with the help of decision
tree. Figure 4(d) represents a different situation where all possible directions are
obstructed by the obstacles and vehicle has no way but to stop. In this situation
decision maker will return all possible directions one by one and if it will not
find any clear path then it signals the stop command to the vehicle.

4 Analysis

Although exact comparison could be made only in the dynamic environment,
a comparison study is shown here to give an idea to differentiate between
the results of reactive and proactive approach. Here potential field navigation
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Fig. 5. Path obtained (a) when effective range is large (b) when effective range is
small (c) when effective range is medium (d) shows the Vehicle can not move forward
due to obstacles.
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method is compared with the presented method. Figure 5(a) represents the com-
parative path of both the methods. Line with crosses shows the path followed
by potential field navigation where the other line with circles shows the path
of new proactive approach. Effective distance taken here is large and it is clear
from the graph that new approach gives a much smooth path with less number
of curves. This approach becomes closer to the reactive approaches as the size
of effective distance is decreased as shown in Fig.5(b). As the size of effective
range is decreased the proactive power of vehicle also decreased. Small effective
range leads to the late prediction of intents of surrounding vehicles hence reduces
the pro-activeness. Vehicle follows the same path as followed by potential field
method because in this case intents of surrounding vehicle (SV) can be calcu-
lated at approximately same time when it comes into the path of vehicle. So both
the techniques take turn at same time. Apart from this Fig. 5(a) represents the
comparison with a medium value of effective range. In this case path produced
by novel approach has lesser number of curves and it avoids the obstacles more
smoothly as shown in graph.

5 Conclusion

In this paper integration of intent recognition with decision making for nav-
igation assistance of a mobile robot have been presented. Implementation of
the approach strengthens the claim to consider intention based decision making
for mobile robot navigation. Such a framework can predict the future course
of action much before the reactive systems. Conclusively, it can be observed
that the approach proposed in this paper has many advantages over the exist-
ing reactive techniques. Nevertheless, there are certain scenarios where reactive
methods may perform better. Implementation within a robotic platform like
ROS (Robotic Operating System) may provide a better way to evaluate the
claim. This is part of on-going research.
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