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Abstract. In this work, we discuss the sybil attack to a sharing eco-
nomic system where each participant contributes its own resource for all
to share. We are interested in the robustness of the market equilibrium
mechanism in withstanding such an attack, in terms of the incentive
ratio to measure how much one could gain by splitting its identity and
reconstructing its communication connections with others. On one hand,
weshow that no player can increase more than

√
2 times of their original

share from the market equilibrium solution, by characterizing the worst
case under which strategic agent can obtain the maximum utility gain
after manipulation. On the other hand, such a bound of

√
2 is proved

to be tight by constructing a proper instance, for which this bound is
reached.

1 Introduction

Resource sharing has now attracted much commercial efforts in many good and
service application, such as done in AirBnB, mobike, UBER, etc., to make partic-
ipants benefit from exchanging each own idle resource with others and to improve
the social benefit as well as revenue. A key question in sharing is whether one
would be motivated to make their best effort, or in the current setting to share
their resources to the maximum availability to the sharing community for others
to use. In addition, whether our protocol would prevent the abuse of the system
by some to deviate from the expected social behavior by participation agents.

In this paper, we focus on the resource sharing over networks with
autonomous participants (or agents), which goes beyond the peer-to-peer (P2P)
bandwidth sharing idea [27]. Peers in such networks act as both suppliers and
customers of resources and make their resources directly available to their net-
work peers. Their utilities are determined by the total of resources received from
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all others. Such a resource sharing system over P2P network can be modeled as
a pure exchange economy, a kind of Arrow-Debreu Market. Therefore, we are
interested in the market equilibrium as the allocation mechanism to distribute
those resources over P2P network.

As a distributed scheme, one of critical issues for the resource sharing prob-
lem is how to allocate resource in a fair fashion to maintain agents participation,
i.e., ensuring that agents will share their resources fairly, and hence will agree
to exchange resource with others. To motivate sharing, [16] pioneered the use
of incentive techniques to drive cooperation and to promote voluntary contri-
butions by participating agents. By taking such an approach, Cohen created
the BitTorrent protocol, which has been well recognized as an Internet success
to change “the entertainment industry and the interchange of information in
Web”[5]. From the view of fairness consideration, Wu and Zhang [27], motivated
by Bit-Torrent, have pioneered a model of proportional response for the band-
width sharing problem on peer-to-peer system. Under this model, the resource
allocation satisfies the condition that each peer provides each neighbor a portion
of its contribution proportional to the percentage it receives from this neighbor
among all its neighbors. They showed its economic efficiency by its convergence
to a market equilibrium of a pure exchange economy. To obtain the market equi-
librium, Wu and Zhang modeled the peer-to-peer system as an undirected graph
G = (V,E), where each vertex v represents an agent, with wv units of divisible
underused resources (or weight) to be distributed among its neighbors. And they
proposed an elegant network decomposition on such a graph, which is called the
bottleneck decomposition [27]. Based on this decomposition, they applied the idea
of maximum flow to derive a proportional response allocation protocol among
all agents whose output just is the allocation of the market equilibrium. This
protocol is named as Bottleneck Decomposition Mechanism, or BD Mechanism
for short [10,11].

However, agents are rational and strategic. The resource allocation from BD
Mechanism depends on agents’ reported information rather than their true infor-
mation. So we are interested in the incentives of agents against BD Mechanism:
when a system designer proposes BD Mechanism, is it possible for an agent to
deviate from it by strategic behavior and improve its utility? Further, if the
answer is “yes”, does we can characterize the extent to which an agent’s util-
ity can be increased by such a strategic play? In recent works, [10,11] proved
the incentive compatibility of this protocol against strategic behaviors of mis-
reporting connectivity and the amount of resources agent owns. In this paper,
we further explore its resistance to manipulative behavior by considering a kind
of strategy that an agent disguises itself by creating several copied false nodes
with its resources assigning among them. The motivation for us to discuss this
strategic behavior, since it just is the behavior which is called sybil attack. In
peer-to-peer system, sybil attack is a grave threat and subverts the security of
network “by creating a large number of pseudonymous identities, using them
to gain a disproportionately large influence” [24]. Compared with collusion,
sybil attack strategy is easier to execute on the Internet since getting another
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identification, such as duplicating IP addresses, is cheap. Further, such a strat-
egy is very difficult to detect since identifying each participant on Internet is
virtually impossible. As of 2012, evidence showed that large-scale Sybil attacks
could be carried out cheaply and efficiently in extant realistic systems such as
BitTorrent Mainline DHT [25,26].

Recently, Chen et al. [6,7] have done a series of work on the sybil attack strat-
egy against BD Mechanism in resource sharing. They first showed BD Mecha-
nism is not robust to such a strategy any more. To characterize how much one can
improve its utility at most and formalize such an improvement, they employed
the concept of incentive ratio. Incentive ratio, which is first introduced by
Chen et al. [9], is defined as the factor of the largest possible utility gain that
a participant can achieve by behaving strategically, given that all other partici-
pants have their strategies unchanged. In the distributed environment, all agents
only have limited knowledge due to the decentralization of the system. They need
an incredible effort to know the full information of the game and do complicated
computation as well. A small incentive ratio provides a safety margin where BD
Mechanism will not be breached if no agents will pursue a small improvement
in its utility in sacrificing some of its peers. Therefore a smaller incentive ratio
implies an agent has less incentive to influence the allocation result from BD
Mechanism through strategic considerations. In [6,7], Chen et al. discussed the
settings of tree networks and cycle networks and proved that the incentive ratio
of BD Mechanism for sybil attack strategy is exactly 2 on trees and is bounded
by 2 and 4 on cycles, respectively.

In this paper, we are more concerned about the resource sharing in the con-
text of sharing economy, in which the ideal state is that all of participants are
fully connected. Thus our study mainly focuses on the network structure of
complete graph and study the agents’ incentive against BD Mechanism by sybil
attack strategy.

Related Work
The classical economists and algorithmic game theorists have made an exten-

sive study of competitive equilibrium [2], in terms of computation for prices and
allocation [20], complexity and approximation [13–15,18,22,28]. Those works
have started to have an influence in resource allocation among multiple agents,
especially in the important implementations for the Internet enabled economic,
management and social activities. How to fairly redistribute and share those
resources have become an important issue with more and more online platforms
and APPs which facilitate the exchange of commodities and services, such as
Uber, Mobike, AirBnB, Opengarden, Swap. . .

The automated process through information and communication technology
for Internet applications has made their successes relied on the voluntary coop-
erations of participating agents. [16] pioneered the study of such incentive tech-
niques in mechanism design and in performance analysis for such peer-to-peer
resource sharing systems. Agent strategic behaviors against market equilibrium
mechanism has been analyzed in the Fisher market for linear markets [1] and for
constant elasticity of substitution markets [4]. As a special case of Arrow-Debreu



106 Z. Chen et al.

market, the proportional response protocol was shown to be equivalent to a mar-
ket equilibrium solution [27] in the resource sharing system under P2P setting.
[10,11] proved that the market equilibrium from the proportional response pro-
tocol is incentive compatible to two types of strategic behaviors for each agent:
cheating on its connectivity with the rest of network and misreporting its own
resource amount. But for the strategy of sybil attack, the proportional response
protocol is not truthful any more. In addition, Chen et al. computed the per-
centage of improvement by this strategy with the aid of incentive ratio. They
proved that incentive ratio is exactly 2 if the underlying network is a tree [6]
and is bounded by 2 and 4 on cycles [7], respectively. The concept of incentive
ratio is first introduced by Chen et al. [9], motivated by the concept of price
of anarchy [19,23]. Comparing such two kinds of ratios, the former measures
the most individual gains one may acquire in deviation from truthful behavior,
while the latter models the loss of social efficiency in selfish Nash equilibrium in
comparison to social optimality.

The strategy of sybil attack was first discussed by Douceur [12] for the con-
sideration of the security of P2P network. Meanwhile, similar strategic strategies
are also discussed in other situations, such as the false-name bidding in Internet
auctions. The false-name bidding [30] is a serious fraud, in which false-name bids
are submitted by a single agent under multiple fictitious identities. It has been
known that the famous VCG mechanism is not incentive compatible against
the false-name bidding, as a result of the study on the false-name-proof auc-
tion mechanisms design [17,29], and on the efficiency guarantee of the VCG
mechanism [3].

Technical Contributions and Main Results
We analyze incentive ratio to quantitatively measure the maximal magnitude

of utility gain by sybil attack followed a proportional response mechanism. Our
main result in this paper is that the incentive ratios are exactly

√
2 on complete

graphs. To obtain the ideal result, we propose a proper example for the lower
bound. On the other hand, we characterize all possible bottleneck decompositions
before and after manipulation with the help of the structure of complete graphs.
And for each different case, we compute the maximal ratio by considering the
maximum possible utility improvement, respectively, to reach the upper bound.

There has been several important research results for various utility functions
where the most relevant one is the incentive ratio of two matching bound for
linear utilities in the Fisher market [8,9], which is not directly applicable to our
resource exchange model here but a special case of Arrow-Debreu market. As
the incentive ratio for the Arrow-Debreu model is known to be unbounded [21]
even in linear exchange economy, it is interesting to show a non-trivial matching
bound under the setting discussed here. The practical network sharing economy
with a market equilibrium solution still remains to be interesting with a limited
rationality in terms of truthful behavior.
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2 Preliminary

Our resource sharing system is based on a connected and undirected network
G = (V,E). Each vertex v ∈ V represents an agent with an upload resource
amount (weight) wv > 0 for exchanging with its neighbors, where Γ(v) = {u :
(v, u) ∈ E} is the neighborhood of v. Let xvu be the amount of resource v
allocates to neighbor u (0 ≤ xvu ≤ wv) and X = {xuv} be an allocation. The
utility of agent v from allocation X is defined as Uv(X) =

∑
u∈Γ(v) xuv, i.e.

all received resource from its neighbors. In the resource sharing environment,
one of critical issues is how to design an allocation mechanism to maintain the
agents participation, i.e., ensuring that agents will share their resources in a fair
fashion. Wu and Zhang [27] pioneered the concept of “proportional response”
inspired by the idea of “tit-for-tat” for the consideration of fairness.

Proportional Response. A mechanism is called proportional response if an
allocation X from this mechanism satisfies xvu = xuv∑

k∈Γ(v) xkv
wv, that is the

allocation of each agent’s resource is proportional to what it receives from its
neighbors.

To achieve a proportional response mechanism, a combinatorial structure,
called bottleneck decomposition is derived in [27]. For set S ⊆ V , define w(S) =∑

v∈S wv and Γ(S) = ∪v∈SΓ(v). It is possible that S ∩Γ(S) �= ∅. Denote α(S) =
w(Γ(S))

w(S) to be the inclusive expansion ratio of S, or the α-ratio of S for short.
A set B ⊆ V is called a bottleneck of G if α(B) = minS⊆V α(S). A bottleneck
with the maximal size is called the maximal bottleneck.

Bottleneck Decomposition. Given G = (V,E;w). Start with V1 = V , G1 = G
and i = 1. Find the maximal bottleneck Bi of Gi and let Gi+1 be the induced
subgraph on the vertex set Vi+1 = Vi − (Bi ∪ Ci), where Ci = Γ(Bi) ∩ Vi, the
neighbor set of Bi in Gi. Repeat if Gi+1 �= ∅ and set k = i if Gi+1 = ∅. Then we
call B = {(B1, C1), · · · , (Bk, Ck)} the bottleneck decomposition of G, (Bi, Ci)
the i-th bottleneck pair and αi = w(Ci)/w(Bi) the α-ratio of (Bi, Ci).

B-class and C-class. Given B = {(B1, C1), · · · , (Bk, Ck)}. For pair (Bi, Ci)
with αi < 1, each vertex in Bi (or Ci) is called a B-class (or C-class) vertex. For
the special case Bk = Ck = Vk, i.e., αk = 1, all vertices in Bk are categorized as
both B-class and C-class.

Bottleneck decomposition has a lot of beautiful combinatorial properties
which are critical for us to obtain the tight incentive ratio of

√
2.

Proposition 2.1 [27]. Given a graph G, the bottleneck decomposition of G is
unique and

1. 0 < α1 < α2 < · · · < αk ≤ 1;
2. if αi = 1, then i = k and Bi = Ci; otherwise Bi is an independent set and

Bi ∩ Ci = ∅;
BD Mechanism. Given the bottleneck decomposition B, an allocation Wu and
Zhang [27] can be determined by distinguishing three cases. Cheng et al. [10,11]
named it as BD Mechanism for short.
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• For (Bi, Ci) with αi < 1, consider the bipartite graph Ĝ = (Bi, Ci;Ei) with
Ei = Bi ×Ci. Construct a network N = (VN , EN ) with VN = {s, t}∪Bi ∪Ci

and directed edges (s, u) with capacity wu for u ∈ Bi, (v, t) with capacity
wv/αi for v ∈ Ci and (u, v) with capacity +∞ for (u, v) ∈ Ei. The max-flow
min-cut theorem ensures a maximal flow {fuv}, u ∈ Bi and v ∈ Ci, such that∑

v∈Γ(u)∩Ci
fuv = wu and

∑
u∈Γ(v)∩Bi

fuv = wv/αi. Let the allocation be
xuv = fuv and xvu = αifuv implying

∑
u∈Γ(v)∩Bi

xvu =
∑

u∈Γ(v)∩Bi
αi ·fvu =

wv. Figure 1 illustrates it.
• For αk = 1 (i.e., Bk = Ck), construct a bipartite graph Ĝ = (Bk, B′

k;E′
k)

where B′
k is a copy of Bk, there is an edge (u, v′) ∈ E′

k if and only if (u, v) ∈
E[Bk]. Construct a network by the above method, for any edge (u, v′) ∈ E′

k,
there exists flow fuv′ such that

∑
v′∈Γ(u)∩B′

k
fuv′ = wu. Let the allocation be

xuv = fuv′ .
• For any other edge (u, v) �∈ Bi × Ci, i = 1, 2, · · · , k, define xuv = 0.

Fig. 1. The illustration of BD Mechanism.

Proposition 2.2 [27]. BD Mechanism is a proportional response mechanism.

On the other hand the resource sharing system can be modeled as a pure
exchange economy, for which an efficient allocation is the market equilibrium.

Market Equilibrium. In the exchange economy, price vector p = (pv)v∈V

together with an allocation X is called a market equilibrium if for any agent
v ∈ V the following holds, 1.

∑
u∈Γ(v) xvu = wv (market clearance); 2.

∑
u∈Γ(v) pu

xuv

wu
≤ pv (budget constraint); 3. X = (xvu) maximizes the utility

Uv =
∑

u∈Γ(v) xuv subject to the budget constraint (individual optimality).
BD Mechanism is not only fair as stated above but also efficient, since the

proportional response allocation from it also is a market equilibrium. Given a
bottleneck decomposition, if a price vector p is well defined as: pu = αiwu, if
u ∈ Bi; and pu = wu otherwise, then

Proposition 2.3 [27]. (p,X) is a market equilibrium. Furthermore, each agent
u’s utility is Uu = wu · αi if u ∈ Bi; Uu = wu

αi
if u ∈ Ci.
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Note that Uu ≥ wu if u is in C-class and Uu ≤ wu if u is in B-class, as
αi ≤ 1 by the first claim in Proposition 2.1. From a system design point of view,
although BD Mechanism shall allocate resource among interconnected partic-
ipants fairly and efficiently, a problem occurs that, an agent may or may not
follow BD Mechanism at the execution level. Can agents make strategic moves
for gains in their utilities? We call such a problem with incentive compatibility
consideration the resource exchange game.

In an instance of resource sharing game, the collection w = (w1, · · · , wn) ∈
Rn is referred as the weight profile. For agent v, let w−v be the weight profile
without v. Since the utility of agent v depends on the underlying network G and
w, it is written as Uv(G;w). Now we study a strategic move, called sybil attack
strategy, that is one agent may create more than one fake identity by splitting
itself into several copied nodes, and assign a weight to each node. Thus for a
strategic agent v, it shall make multiple decisions as follows:
• how many copied nodes does it split into?
• how to build the connections between the copied nodes and its neighbors?
• how to assign its own weight to each copied node?
In this paper, we model the sybil attack strategy as: the strategic agent v shall
split itself into m nodes v1, · · · , vm, 1 ≤ m ≤ dv (dv is the degree of v), assign an
amount wvi of resource to each node vi, satisfying 0 ≤ wvi ≤ wv and

∑m
i=1 wvi =

wv, and each neighbor of v in original G is connected to one of copied nodes,
not vice versa. Let G′ be the resulting network after agent v making above three
decisions and agent v’s new utility is denoted by U ′

v(G′;wv1 , · · · , wvm ,w−v).

Definition 2.1 (Incentive Ratio). In a resource exchange game, the incentive
ratio of agent v under BD Mechanism for the sybil attack strategy is

ζv = max
1≤m≤dv

max
wvi∈[0,wv ],

∑m
i=1 wvi=wv ;w−v;G′

U ′
v(G′;wv1 , · · · , wvm ,w−v)

Uv(G;wv)
.

The incentive ratio of BD mechanism in resource exchange game is defined to
be ζ = maxv∈V ζv.

There is a special case that a strategic agent v splits itself into dv nodes and
each node is connected to one of neighbors. Thus there is one to one correspon-
dence between copied nodes and neighbors. Chen et al. showed the equivalence
of the special strategy and the general sybil attack, which simplifies the decision
making for strategic agent.

Proposition 2.4 [6,7]. In a resource sharing game, the incentive ratio of BD
mechanism with respect to sybil attack strategy can be achieved by splitting into
dv nodes and making each node be connected to one neighbor, where dv is the
degree of strategic agent v.
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3 Incentive Ratio of BD Mechanism on Complete
Graph Kn

In this section, we focus on the resource sharing game in which the underlying
network is a complete graph Kn. Before proceeding the details of discussion, let
us introduce some necessary notations and propositions.

Lemma 3.1. For any complete graph Kn, the bottleneck decomposition B only
contains one bottleneck pair B = {(B1, C1)} and it shall be

1. α1 = 1 and B1 = C1 = V , or
2. α1 < 1, B1 only has one vertex and C1 has other n − 1 vertices.

Proof. Let us focus on the first pair (B1, C1) in B. Of course, there exist two
cases: α1 = 1 and α1 < 1. If α1 = 1, then B1 = C1 = V and the first claim holds.
If α1 < 1, then B1 must be independent by the first claim in Proposition 2.1.
So the structure of complete graph makes B1 only contain one vertex. Further
the neighborhood Γ(B1) = V − B1. Hence C1 contains other n − 1 vertices and
V2 = V − (B1 ∪ C1) = ∅ which means there is only one pair (B1, C1) in B. �

Since the complete graph Kn has n vertices, without loss of generality, let
the vertex who plays strategically be v, and the others be u1, · · · , un−1. In addi-
tion, such a strategic vertex v shall split itself into n − 1 duplicated nodes by
Proposition 2.4. For the sake of convenience, we denote the duplicated node set
by Λ(v) = {v1, · · · , vn−1} and the neighborhood of v by Γ(v) = {u1, · · · , un−1},
where each vj is adjacent to uj , j = 1, · · · , n−1, in G′. Because of the structure
of complete graphs, the induced graph G′[Γ(v)] also is a complete graph Kn−1

and the vertex set of new graph G′ after manipulation is V ′ = Γ(v) ∪ Λ(v).
Similar to the notations of bottleneck decomposition in original Kn, the

bottleneck decomposition of G′ is denoted by B′ = {(B′
1, C

′
1), · · · , (B′

k′ , C ′
k′)}

and let the α-ratio of each pair (B′
i, C

′
i) be α′

i, i = 1, · · · , k′. Likewise, V ′
1 = V ′,

V ′
i+1 = V ′

i − (B′
i ∪ C ′

i) for i = 1, 2, · · · , k′ − 1 and G′
i = G′[V ′

i ], i = 1, 2, · · · , k′.
The vertex in B′

i or C ′
i, i = 1, · · · , k′, is called the B′-class or C ′-class vertex

and Γ′(v) is the neighborhood of v in G′, Γ′(S) = ∪v∈SΓ′(v) for any vertex set
S ⊆ V ′. Based on the structure of Kn and G′, we characterize the bottleneck
decomposition B′ carefully in the following proposition.

Lemma 3.2. Let B′ be the bottleneck decomposition of G′, then it shall be

1. B′ = {(B′
1, C

′
1)}, where B′

1 = C ′
1 = V ′ with α′

1 = 1, or
2. B′ = {(B′

1, C
′
1)}, where B′

1 = {uj ,Λ(v) − vj}, C ′
1 = {vj ,Γ(v) − uj}, j ∈

{1, · · · , n − 1} (an example in Fig. 3), or
3. B′ = {(B′

1, C
′
1), · · · , (B′

k′ , C ′
k′)}, where for each i = 1, · · · , k′ − 1, B′

i =
{vh1 , · · · , vht}, C ′

i = {uh1 , · · · , uht}, h1, · · · , ht ∈ {1, · · · , n − 1}; and the
last pair (B′

k′ , C ′
k′) shall be

(a) B′
k′ = C ′

k′ = ∅ (B′ actually contains k′ − 1 pairs), or
(b) B′

k′ = C ′
k′ with α′

k′ = 1, or
(c) B′

k′ = {uj ,Λ(v) − ∪k′−1
i=1 B′

i − vj}, C ′
k′ = {vj ,Γ(v) − ∪k′−1

i=1 C ′
i − uj} with

α′
k′ < 1.
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Proof. To show the correctness of this proposition, we shall discuss two situations
depending on α′

1 = 1 or α′
1 < 1. Of course, if α′

1 = 1, then B′
1 = C ′

1 = V
which induces the first case. Otherwise if α′

1 < 1, then B′
1 must be independent

by the first claim of Proposition 2.1 and it may contain one vertex uj from
Γ(v) or not. For the former that one vertex uj ∈ B′

1, then vj ∈ C ′
1 and all

others in Γ(v) except for uj must belong to C ′
1, because the induced subgraph

of Γ(v) = {u1, · · · , un−1} still is a complete graph Kn−1 in G′ as mentioned
before. In addition, each vh ∈ Λ(v) − vj has a unique neighbor uh ∈ C ′

1, h �= j,
and is not adjacent to uj . So adding all vh, h �= j, into B′

1 not only keeps the
independence property of B′

1, but also makes its α-ratio decrease. Thus we get
the second case, that is B′

1 = {uj ,Λ(v) − vj} and C ′
1 = {vj ,Γ(v) − uj}.

If B′
1 dose not contain any vertex from Γ(v), it must have the form as B′

1 =
{vh1 , · · · , vht} and C ′

1 = {uh1 , · · · , uht} with the property of w
uh

w
vh

= w(C′
1)

w(B′
1)

= α′
1.

Recalling the process of bottleneck decomposition, V ′
2 = V ′ − (B′

1 ∪ C ′
1) =

(Λ(v) − B′
1) ∪ (Γ(v) − C ′

1) and the rest graph G′
2 has the same structure as

G′. Now we turn to discuss (B′
2, C

′
2) which is the maximal bottleneck in G′

2. If
V ′

2 = ∅, then B′
2 = C ′

2 = ∅. It implies case 3-(a). If V ′
2 �= ∅ and B′

2 = C ′
2 = V ′

2

with α′
2 = 1, then case 3-(b) holds. If B′

2 has one vertex uj ∈ Γ(v)−C ′
1, then B′

2

and C ′
2 has the same structure as case 2. So case 3-(c) is derived. If there is no

any uj in B′
2, then we continue the same analysis until one of above three cases

happens. �
Our main result on the incentive ratio of BD Mechanism for the sybil attack

strategy on complete graphs is the following.

Theorem 3.1. If the network of resource exchange system is a complete graph
Kn, then the incentive ratio of BD Mechanism for the sybil attack strategy is
exactly

√
2.

To obtain Theorem 3.1, we try our best to prove the lower bound and upper
bound of the incentive ratio on Kn are both equal to

√
2 in the subsequent two

subsections.

3.1 Lower Bound of Incentive Ratio on Kn

In this subsection, we will prove the lower bound of
√

2 by proposing an example.

Theorem 3.2. If the network of resource sharing system is a complete graph,
then the incentive ratio of BD Mechanism for the sybil attack strategy is at least√

2, i.e. ζ ≥ √
2.

Proof. Assume network G is a triangle K3, shown in Fig. 2(a). The weights of
all vertices are wv = 2

√
2 − 2, wu1 = 1 and wu2 = 3 − 2

√
2. The bottleneck

decomposition B is {(B1, C1)} with B1 = C1 = {v, u1, u2} and α1 = 1. And the
utility of v is wv · α1 = 2

√
2 − 2.

If vertex v strategically splits itself into v1 and v2 and assigns
√

2 − 1 units
resource to each node, respectively, as shown in Fig. 2-(b). Then the bottleneck
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Fig. 2. An example showing the lower bound of incentive ration on complete graphs.

decomposition of new graph shall change to be {(B′
1, C

′
1)}, where B′

1 = {u1, v2},
C ′

1 = {u2, v1} with α′
1 =

√
2 − 1. At this time it is easy to compute U ′

v1 =
(
√

2 − 1)/(
√

2 − 1) = 1 and U ′
v2 = (

√
2 − 1) · (

√
2 − 1) = 3 − 2

√
2 which imply

the total utility of v is U ′
v = 4 − 2

√
2 and the incentive ratio of v is at least

√
2.

Thus the incentive ratio of BD Mechanism on complete graphs is ζ ≥ √
2. �

It’s worth noting that the above example for lower bound can be generalized
to any complete graph Kn with vertex weights wv = 2

√
2 − 2, wu1 = 1 and

wu2 = · · · = wun−1 = 3−2
√

2
n−2 . The bottleneck decomposition of Kn is {(B1, C1)}

with B1 = C1 = {v, u1, · · · , un−1} and α1 = 1. So Uv = 2
√

2 − 2. Now v
plays the vertex splitting strategy to replace itself by n − 1 duplicated nodes
vj , j = 1, · · · , n − 1, such that each vj is adjacent to neighbor uj . Furthermore,
v assigns its weight to each node as wv1 =

√
2 − 1 and wv2 = · · · = wvn−1 =√

2−1
n−2 . Then the bottleneck decomposition changes to be {(B′

1, C
′
1)}, where B′

1 =
{u1, v2, · · · , vn−1}, C ′

1 = {v1, u2, · · · , un−1} and α′
1 =

√
2 − 1. So U ′

v1 = (
√

2 −
1)/(

√
2−1) = 1 and U ′

vj =
√

2−1
n−2 · (√2−1) = 3−2

√
2

n−2 , j = 2, · · · , n−1. The total
utility of v is U ′

v = U ′
v1 +

∑n−1
j=2 U ′

vj = 4 − 2
√

2 =
√

2Uv.

3.2 Upper Bound of Incentive Ratio on Kn

The main task of this subsection is to show the upper bound of
√

2. To compute
the upper bound of incentive ratio on complete graph Kn, it is necessary to
analyze the optimal strategy for the strategic vertex v, by which v can obtain
the maximal utility gain.

Theorem 3.3. If the network of resource sharing system is a complete graph,
then the incentive ratio of BD Mechanism for the sybil attack strategy is at most√

2, i.e. ζ ≤ √
2.

Proof. As we know, the strategic vertex v may be a B-class vertex or C-class
vertex in G. But if v ∈ B1 with α1 = 1, it can be viewed as a C-class vertex
since B1 = C1 = V . Thus there are two disjoint cases that v ∈ B1 with α1 < 1
and v ∈ C1. From the characterization of bottleneck decomposition B in Lemma
3.1, we note that if v ∈ B1 with α1 < 1, then other n − 1 vertices are all in
C1 and upload all of their resource to v. In other words, vertex v obtains all
possible resource in system, which achieves the maximum. Under this case, such
a vertex v has no any incentive to play strategically and its optimal strategy is to
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keep intact. Hence, the incentive ratio is 1. For the second case that v ∈ C1, it’s
obvious that Uv = wv/α1 ≥ wv. If B′ only contains one bottleneck pair (B′

1, C
′
1)

with α′
1 = 1, then U ′

v =
∑n−1

j=1 U ′
vj =

∑n−1
j=1 wvj = wv ≤ Uv, which implies v’s

incentive ratio is 1 too. Until now there is only one situation left that v ∈ C1 and
B′ contains at least one bottleneck pair whose α-ratio is less than 1, meaning
α′

1 < 1. Following lemma characterizes the structure of B′ when the strategic
agent v plays the optimal strategy.

Fig. 3. The bottleneck decomposition B′ when v adopts optimal strategy, where the
blue or white vertices represent B′-class or C′-class vertices respectively. (Color figure
online)

Lemma 3.3. Suppose that the network of resource sharing system is a complete
graph and the strategic vertex v is in C-class. When v gains the maximal utility
by adopting the optimal strategy, the bottleneck decomposition B′ in G′ must has
the form as B′ = {(B′

1, C
′
1)} with B′

1 = {uj ,Λ(v)−vj} and C ′
1 = {vj ,Γ(v)−uj},

∃j ∈ {1, 2, · · · , n − 1} as shown in Fig. 3.

Proof. Based on the previous analysis, it is enough to discuss the case that
v ∈ C1 and B′ contains at least one pair whose α-ratio is less than 1, which
implies α′

1 < 1. So the structure of B′ must be case 2 or 3 in Lemma 3.2. If B′

has the structure as case 2, then this lemma holds. Now we turn to discuss case
3 and try to show the impossibility of case 3 when v plays optimally.

If B′ has the structure as case 3-(a) and 3-(b), then each duplicated node vl,
l = 1, · · · , n − 1, is in B′-class (for case 3-(b) some vl may be in B′

k′ = C ′
k′ with

α′
k′ = 1) and U ′

vl ≤ wvl . Therefore,

U ′
v =

n−1∑

l=1

U ′
vl ≤

n−1∑

l=1

wvl = wv ≤ Uv.

The last inequality is from the condition that v ∈ C1. So v has no incentive to
manipulate BD mechanism and its incentive ratio is 1.

If B′ has the structure as case 3-(c), without loss of generality, we assume
there are two pairs in B′, which are B′

1 = {vh}, C ′
1 = {uh} and B′

2 = {uj ,Λ(v)−
{vj , vh}}, C ′

2 = {vj ,Γ(v)−{uj , uh}}. Thus, U ′
vh = wvh ·α′

1 = wuh , U ′
vj = wvj/α′

2

and U ′
vl = wvl · α′

2, for each l �= j, h. In addition the total utility of v in G′ is

U ′
v = wuh +

wvj

α′
2

+ (wv − wvh − wvj ) · α′
2.
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Let us consider a new weight assignment (ŵv1 , ŵv2 , · · · , ŵvn−1) of wv as

ŵvl =

⎧
⎪⎨

⎪⎩

wvl − δ, l = h;
wvl + α′

2
1+α′

2
δ, l = j;

wvl + 1
(1+α′

2)(n−3)δ, l �= h, j;
(1)

where δ is a arbitrarily small and positive number. Obviously,
∑n−1

l=1 ŵvl = wv.
Since α′

1 < α′
2, there must be a small and positive number δ such that the

bottleneck decomposition B′ keeps unchanged for the new weight assignment
(1). So the new utility of vh is still Û ′

vh = wuh = U ′
vh and the fact α′

2 =
wvj +

∑
l �=h,j w

uh

wuj+
∑

l �=h,j w
vh

makes

α̂′
2 =

wvj +
∑

l 	=h,j wuh + α′
2

1+α′
2
δ

wuj +
∑

l 	=h,j wvh + 1
1+α′

2
δ

= α′
2

Therefore,

Û ′
vj =

ŵvj

α′
2

=
wvj + α′

2
1+α′

2
δ

α′
2

= U ′
vj +

1
1 + α′

2

δ;

∑

l 	=j,h

Û ′
vl = (wv − wvh − wvj +

1
1 + α′

2

δ) · α′
2 =

∑

l 	=j,h

U ′
vl +

α′
2

1 + α′
2

δ,

which implies Û ′
v = U ′

v + δ > U ′
v. Vertex v continues to adjust its weight assign-

ment as (1) by increasing δ until α̂′
1 = α̂′

2 = α′
2. At this time, the two bottleneck

pairs should be combined together to keep the maximal size and have the form
as B′

1 = {uj ,Λ(v) − vj} and C ′
1 = {vj ,Γ(v) − uj}. Furthermore, by the proof

of Lemma 3.2, we know once one of uj ∈ Γ(v) is in B′
1 and α′

1 < 1, then the
bottleneck decomposition B′ must have the structure of case 2 in Lemma 3.2.
This completes the proof. �

Now we are ready to provide the proof of Theorem 3.3. Here we only dis-
cuss the case that v ∈ C1 in G and B′ contains at least one bottleneck pair
whose α-ratio is less than 1. Given any weight profile w = (wv, wu1 , · · · , wun−1).
From Lemma 3.3, if vertex v plays the optimal strategy, then the bottleneck
decomposition B′ = {(B′

1, C
′
1)} has the structure of B′

1 = {uj ,Λ(v) − vj} and
C ′

1 = {vj ,Γ(v) − uj}, j ∈ {1, 2, · · · , n − 1}. So

α′
1 =

wvj +
∑

l 	=j wul

wuj + (wv − wvj )
and U ′

v = (wv − wvj ) · α′
1 + wvj

1
α′

1

.

Since the weight profile w = (wv, wu1 , · · · , wun−1) is given in advance, U ′
v and

α′
1 can be viewed as the functions of wvj . To simplify the notations, we denote

wv = a, wuj = b,
∑

l 	=j wul = c and the decision variable wvj = x, as shown in
Fig. 3. Using these notations, the bottleneck decomposition B = {(B1, C1)} of
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Kn may be: (1) B1 = {uj} and C1 = V − {uj} with α1 = a+c
b when b > a + c;

or (2) B1 = C1 = V with α1 = 1 when b ≤ a + c. Thus

Uv =
{

a · 1
α1

= ab
a+c , if b > a + c;

a, if b ≤ a + c.
(2)

For the strategic vertex v, it tries to maximize the following maximization
problem,

max U ′
v(x)/Uv

s.t c
a−x ≥ c+x

b+a−x (�)
b + a − x > c + x (��)
0 ≤ x ≤ a (� � �)

(3)

Constraint (�) is from characterization that the bottleneck decomposition B′

shall be B′
1 = {uj ,Λ(v)−vj} and C ′

1 = {vj ,Γ(v)−uj} under the optimal strategy,
and constraint (��) is right since α′

1(x) = c+x
b+a−x < 1. Combining constraints (��)

and (� � �), the feasible solution x ≤ min{a, a+b−c
2 }. In addition,

U ′
v(x) = x · b + a − x

c + x
+ (a − x) · c + x

a + b − x
= (a + b + c)

[
x

c + x
+

a − x

a + b − x

]
− a,

and the derivation of U ′
v(x) is

dU ′
v(x)
dx

= (a + b + c)
[

c

(c + x)2
− b

(a + b − x)2

]

.

It is not hard to see function U ′
v(x) has a unique maximum point x∗ =√

c(a+b)−√
bc√

b+
√

c
and U ′

v(x) increases when x ≤ x∗ and decreases when x ≥ x∗.
Let us consider four intervals where the parameter b is in: [0, c], [c, a + c],

[a+ c, (a+c)2

c ] and [ (a+c)2

c ,+∞]. We can compute that a+b−c
2 ≤ x∗ < a when b ∈

[0, c]; x∗ ≤ a+b−c
2 ≤ a when b ∈ [c, a+c]; x∗ ≤ a ≤ a+b−c

2 when b ∈ [a+c, (a+c)2

c ]

and a ≤ x∗ < a+b−c
2 when b ∈ [ (a+c)2

c ,+∞]. In the following we shall prove that
the ratio U ′

v(x)/Uv is no more than
√

2 in each interval.
• b ∈ [0, c]. So Uv = a since b ≤ c ≤ a + c by (2). On the other hand, we get
x∗ ≥ a+b−c

2 and a ≥ a+b−c
2 . Such two inequalities means the feasible solution

x ≤ min{a, a+b−c
2 } = a+b−c

2 ≤ x∗. So the monotonically increasing property of
U ′

v(x) when x ≤ x∗ promises

U ′
v(x) ≤ U ′

v(
a + b − c

2
) = a = Uv.

• b ∈ [c, a + c]. On one hand, condition b ≤ a + c promises Uv = a by (2) and
a ≥ a+b−c

2 . On the other hand, x∗ ≤ a+b−c
2 = min{a, a+b−c

2 }. Therefore v can
get its maximal utility when x = x∗, and

U ′
v(x∗) = x∗ · b + a − x∗

c + x∗ + (a − x∗) · c + x∗

a + b − x∗ = a + (
√

b − √
c)2.
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Then the ratio

U ′
v(x

∗)
Uv

=
a+ (

√
b − √

c)2

a
≤ a+ (

√
a+ c − √

c)2

a
=

2
√
a+ c(

√
a+ c − √

c)

a
=

2√
1

1+ a
c
+ 1

,

(4)

where the inequality is from condition b ≤ a + c. Of course, if U ′
v(x) achieves

its maximum at x = x∗, then x∗ =
√

c(a+b)−c
√

b√
b+

√
c

must satisfy constraint (�)

additionally, i.e., c
a−x∗ ≥ c+x∗

b+a−x∗ . So

bc ≥ x∗(a − x∗) ⇒ bc ≥ [
√
b(c + a) − b

√
c][

√
c(b + a) − c

√
b]

(
√
b +

√
c)2

⇐⇒ bc(b + c) + 2bc
√
bc ≥ [2bc + a(a + b + c)]

√
bc − 2abc − bc(b + c)

⇐⇒ 2bc(a + b + c) ≥ a(a + b + c)
√
bc ⇐⇒ 2

√
bc ≥ a

Combining the condition b ≤ a + c, we have a ≤ 2
√

(a + c)c, which implies

a2 ≤ 4(a + c)c ⇒
(a

c

)2

− 4
(a

c

)
− 4 ≤ 0 ⇒ 0 <

a

c
≤ 2 + 2

√
2. (5)

Continue the computation of the upper bound in (4),

U ′
v(x∗)
Uv

≤ 2
√

1
1+ a

c
+ 1

≤ 2
√

1
1+(2+

√
2)

+ 1
=

√
2.

• b ∈ [a + c, (a+c)2

c ]. Under this case, we have Uv = ab
a+c by (2), inequalities

a ≤ a+b−c
2 and x∗ ≤ a = min{a, a+b−c

2 }. So the utility U ′
v(x) must reach the

maximum U ′
v(x∗) = a + (

√
b − √

c)2 at x = x∗ and the ratio

U ′
v(x∗)
Uv

=
a + (

√
b − √

c)2

ab/(a + c)
≤ a + (

√
a + c − √

c)2

a
=

2
√

1
1+ a

c
+ 1

.

Since the above ratio decreases with b, the inequality is from the condition that
b ≥ a + c. Applying the same analysis for case b ∈ [c, a + c], we also can get the
upper bound of

√
2.

• b ∈ [ (a+c)2

c ,+∞]. Clearly, Uv = ab
a+c and a ≤ a+b−c

2 , x∗ ≥ a. Hence all
feasible solutions x ≤ min{a, a+b−c

2 } = a ≤ x∗. By the monotonically increasing
property of U ′

v(x) when x ≤ x∗, we have

U ′
v(x) ≤ U ′

v(a) =
ab

a + c
= Uv,

which implies the incentive ratio of v is no more than 1.
This completes Theorem 3.3. �
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4 Observations and Conclusions

In this paper, we discuss the effect of sybil attack, a possible strategic manip-
ulation of agents, on the resource sharing game over P2P network. Resource
sharing can be viewed as a pure exchange economy model, for which pricing and
allocation are decided by market equilibrium. As a common strategic behavior
in peer-to-peer system, sybil attack is easier to execute and is difficult to detect.
This motivates us to study the incentives of agents by taking the sybil attack
strategy under the market equilibrium solution and quantitatively measuring the
maximal magnitude of agent advantage gained from sybil attack in terms of the
incentive ratio.

From the perspective of sharing economy, the ideal state of resource sharing
game to consider is where all participants are fully connected. Therefore, it
motivates us to focus on the complete graphs. We prove that the incentive ratio
of the market equilibrium solution under the sybil attack strategy is exactly

√
2

on complete graphs.

Fig. 4. The numerical experiment results on random graphs.

Through the study of incentive ratio on complete graphs, we may suspect
that the density of edges in a graph may decrease the incentive ratio of the
resource sharing problem from that of 2 for tree to

√
2 gradually. There then

opens up the issue whether the incentive ratio of market equilibrium for resource
sharing on random networks decreases as the probability an edge is selected into
the network. Therefore, we look into a series of random graphs, in each of which
any two vertices are connected by an edge with probability p independent from
every other edge. In our numerical experiments, we construct 100 graphs of 10
vertices for each probability p ∈ {0.1, 0.2, · · · , 0.9}, and the weight of each vertex
is no more than 100. Then we simulate the sybil attack strategy and compute the
maximal incentive ratio among all 100 graphs for each probability p, as shown in
Fig. 4. From the results in Fig. 4, we can see that the incentive ratio is no more
than 2. Furthermore we have the intuition that, with the increase of p, implying
that the underlying network contains more and more edges, the incentive ratio
decreases. From the current results that the incentive ratio is 2 on trees and is√

2 on complete graphs, such an intuition does make sense.
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Despite of the randomized results, we are still interested in the incentive
ratio in general settings. A key challenge is to find out a proper bound for the
incentive ratio of general graphs, which we conjecture to be two.
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