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Abstract. Routing games are amongst the most well studied domains
of game theory. How relevant are these theoretical models and results
to capturing the reality of everyday traffic? We focus on a semantically
rich dataset that captures detailed information about the daily behavior
of thousands of Singaporean commuters and examine the following basic
questions:

– Does the traffic equilibrate?
– Is the system behavior consistent with latency minimizing agents?
– Is the resulting system efficient?

The answers to all three questions are shown to be largely positive.
Finally, in order to capture the efficiency of the traffic network in a way
that agrees with our everyday intuition we introduce a new metric, the
stress of catastrophe, which reflects the combined inefficiencies of both
tragedy of the commons as well as price of anarchy effects.

1 Introduction

Congestion games are amongst the most historic, influential and well-studied
classes of games. Proposed in [27] and isomorphic to potential games [19] (in
which learning dynamics equilibrate), they have been successfully employed in a
myriad of modeling problems. Naturally, one application stands above the rest:
modeling traffic. Having strategy sets correspond to the possible paths between
source and sink nodes in a network is such a mild and intuitive restriction that
routing/congestion games are effectively synonymous to each other and jointly
mark a key contribution of the field of game theory.

Routing games have also played a seminal role in the emergence of algorith-
mic game theory. The central notion of Price of Anarchy (PoA), capturing the
inefficiency of worst case equilibria, was famously first introduced and analyzed
in routing games [15,30]. Routing games have set the stage for major devel-
opments in the area such as the introduction of regret-minimizing agents [5]
that eventually led to the consolidation of most known PoA results under the
umbrella of (λ, μ)-smoothness arguments [28]. Impressively, this work established
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that PoA guarantees are robust for a wide variety of solution concepts such as
regret-minimizing agents. Finally, congestion games still drive innovation in the
area with results that extend the strength and applicability of PoA bounds for
large routing games [9], as well as dynamic populations [17].

With every successive analytical achievement seemingly chipping slowly away
at the distance between theoretical models and everyday reality, the PoA con-
stants for routing games, e.g. the 4/3 for the nonatomic linear case [30] have
become something akin to the universal constants of the field. Small, concise,
dimensionless, they seem almost by their very nature to project purity and truth.
But do they? After all, there are many of them. In the case of quadratic cost
functions PoA ≈ 1.626, whereas for quartic functions, which have been pro-
posed as a reasonable model of road traffic, PoA ≈ 2.151 [29,32]. What do these
“small constants” mean in practice? Quite a lot. An increase of inefficiency from
4/3 to 2.151 in Singapore would translate to the loss of approximately 730,000
work hours every single day. Do any of these “back-of-the-envelope” theoretical
calculations have any predictive power in practice?

At the antipodes of the aforementioned theoretical work, other, similarly
recent theoretical approaches hint that PoA analysis might actually not be
reflective of the realized behavior in real networks. One type of work focuses
on the instability of worst case equilibria, e.g. [14,18]. Specifically, [25] show
that although bad equilibria may exist, an average case analysis which “weighs”
each equilibrium proportionally to its region of attraction typically reveals a pic-
ture that is much closer to optimal than PoA analysis. So, PoA analysis may be
over-pessimistic. Distressingly, [7,8] argue something orthogonal, which at first
glance appears rather counterintuitive. They argue that networks with low PoA,
e.g. PoA = 1, which are typically considered optimal, might actually reflect traf-
fic flows which are deadlocked in severe traffic jams.1 Finally, PoA calculations
can be invalidated if we move into theoretical models that allow for risk averse
agents [2,24,26]. At this point, as theory alone does not suffice to provide a
definitive answer, it makes sense to examine some real world networks at a fine
level of detail.

Our goal is to perform the first-to-our-knowledge game theoretic modeling
and investigation of a real world traffic network (specifically Singapore’s traffic
network) based on repeated large scale field experiments with thousands of par-
ticipants. Our dataset includes granular information that allows us to inspect
minute-by-minute the concurrent decision-making of thousands of commuters,
as they respond and adapt to traffic conditions. We focus on arguably the three
most basic questions: Is the system at equilibrium? Is this equilibrium consis-
tent with the hypothesis of latency-minimizing agents? Is the resulting system
efficient? Before we explore the answers to these questions as provided by the
data, let’s try to disambiguate the questions themselves.

1 Indeed, if we keep increasing the total flow in e.g. Pigou’s example, eventually both
in the optimal and equilibrium flows almost all flow will be routed through the slow
link.
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Is the system at “equilibrium”? Here, we should clearly point out that by
equilibrium we mean the formal mathematical notion of equilibrium, i.e. a sta-
tionary point. At the first level of inspection, we are not concerned with whether
the outcome that the system equilibrates upon is necessarily stable in a game-
theoretic sense. We are merely asking “are the agents continuously adapting
their behavior from day-to-day” (i.e. the paths they choose, the modes of trans-
portation, and so on)? If significant number of agents choose the same actions
from day-to-day this would indicate that the system has indeed reached a fixed
point (stasis) and furthermore that at this stable system state there is little
entropy/randomness. Such a result is consistent with best response and best
response dynamics, with the instability results of mixed Nash equilibria for mul-
tiplicative weight update algorithms [14,18,25] as well as with some other con-
current dynamics (e.g. imitation dynamics) [1,10]. On the other hand, it is not
a universal consequence of no-regret learning in congestion games [5,21].

Is the equilibrium “economically stable”? Naturally, from a game theoretic
perspective, we wish to understand whether the resulting equilibrium is a Nash
equilibrium (or at least if in the case of adapting agents most have low regret
when comparing their performance with the best path in hindsight). For a real
traffic network, however, it is not practically feasible to compute true “best
responses”, since there is an astronomically large number of paths to consider
and we do not have data on all paths. We instead estimate inefficiencies at the
individual level by quantifying the empirical “imitation” regret for each agent,
i.e. how much faster could each agent have reached their destination if they had
clairvoyant access to all the routing choices/information from our dataset and
chose the best such route with hindsight.

Is the system “efficient”? Traditionally, ever since its inception, the notion
of Price of Anarchy has been considered the gold standard for system efficiency
with a low PoA considered equivalent to system optimality. The results in [7,8]
in which hopelessly deadlocked traffic jams score perfect PoA scores point out
a clear dichotomy between what PoA analysis identifies as an efficient traffic
network and what we in our everyday experience identify as a well-functioning
network. The reason for this divide lies on the fact that PoA analysis completely
disregards any inefficiency that is connected to tragedy of the commons effects.

In order to shed some light on these effects, we define a new inefficiency
metric that is defined as the ratio of the social welfare at equilibrium divided
by the optimal social welfare when we discount for congestion effects. Namely,
although the numerator is as in the PoA, the denominator is computing the aver-
age social “blue-sky” optimal welfare as follows: Each agent imagines the sce-
nario where she alone was in the network and computes the best path (minimum
length/latency) for herself. This makes sense from an everyday experience per-
spective, as the typical commuter has an intuitive grasp of how long it would take
to cover this distance if the externality costs imposed by the other drivers where
removed. We call this ratio, the Stress of Catastrophe (SoC). As this ratio grows
the system’s long term persistence is jeopardized. Practically successful networks
should have small SoC, which implies small PoA but not the other way around.
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Result Snippets

– We show that most subjects use the same means of transportation across
trips and that a large number of them consistently selects the same route.
For example, when controlling for those who use consistently the same means
of transportation across different days, the percentage of subjects selecting
the same route is very high, in the order of 94%. (see Sect. 3.1).

– The empirical regret distribution has a median value of 4 min 40 s and mean
approaching 6 min for an average travel time of around 29 min (see Sect. 3.2).

– Finally, we define and estimate the Stress of Catastrophe at 1.34, with marked
contrast when discriminating by mode of transportation (see Sect. 3.3). These
findings are shown to be consistent across different days.

2 Description of the Data

We focus on a semantically rich dataset from Singapore’s National Sci-
ence Experiment (NSE), a nationwide ongoing educational initiative led by
researchers from the Singapore University of Technology and Design (SUTD).
This dataset includes precise information about the daily behavior of tens of
thousands of Singapore students that carry custom-made sensors for up to 4
consecutive days, resulting in millions of measurements. Indeed, every 13 s, the
sensor is able to accurately log its geographical location as well as other envi-
ronmental factors such as relative temperature and humidity or noise levels.

The students are dispersed throughout the city-state and their daily com-
mutes to school are reasonably long for them to meaningfully interact and expe-
rience the daily traffic. For this reason, we focus on the morning trip they under-
take to reach their school from their home. The morning trip is also characterized
by a lesser number of stops on the way to school or Pre-university, thus it lends
itself better to an analysis based solely on travel times. Other types of costs may
be included to complement travel time, such as price of the route (based on tolls
or public transport fees) or environmental factors. In this study however, our
scope is limited to the trip duration, to be extended in future work.

The mode of transportation chosen by the students can be identified using
accurate algorithms, e.g. car (driving or being driven to school) versus bus or
metro, estimate source and sink destinations (focusing on home-school pairs) as
well as their mode-dependent available routes. Some descriptive charts are given
in Fig. 1 relating the durations and distances traveled for private and public
transportation trips. To guide the reader unfamiliar with Singapore’s road and
public transport network, we give a brief optional introduction in our online full
version of the paper [20].

Representativeness of the Sample. Students are a restricted class of residents,
but we argue that they however provide a tangible idea of Singapore’s mobility.
First, as of 2015, the size of the student population up to Pre-University level
totals about 460,000 residents. In contrast, the active population’s size, as of
2015, is about 2.2 million.2 Our clean dataset includes 32,588 trips taken by
2 Statistics were compiled from data.gov.sg.

https://data.gov.sg/
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Fig. 1. Left: Density plots of trip durations per mode. We note that car trip durations
are typically short and more concentrated around a peak value of 15 to 20 min, while
public transportation trip durations are scattered between 20 to 50 min. Right: Density
plots of trip distances per mode. The two densities are close, indicating that distance
may not factor in the choice of transportation mode. Median is represented by a dashed
line, mean by a solid line.

15,875 unique students, distributed between the three main type of institutions
in Singapore (Primary, Secondary and Pre-University).

For the purpose of our study, most of the analysis does not require a complete
sample of the population. Students in private transportation experience the same
level of congestion as their peers and active individuals, hence estimates over
their population translate to estimates over the whole of Singapore’s mobility
users. It is even more true for students in public transportation: their trips are
possibly the same as those of the active population. Indeed, we find that the
ratio of public to private transportation users in our sample closely mirrors that
of the population as a whole3, as 57% of students in our dataset use public
transportation.

As shown in Fig. 2, the sample of home locations is geographically distrib-
uted, so is not focused on a particular area of the city. However, the distribution
of schools may not reflect endpoints of trips made by the active population. As
an example, it can be observed that few schools are located in the city center,
which houses a large number of office buildings. This constitutes one limitation
of our dataset, perhaps softened by the fact that active population and stu-
dents may still share a sizeable part of their route and thus experience the same
congestion.

3 Household Interview Travel Survey 2012: Public Transport Mode Share Rises To
63%, LTA News Release.
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Fig. 2. Right: Home locations (red dots), school locations (blue triangles) and spatial
clustering methods, discussed in Sect. 3.2 and the full version online [20]. Left: Density
map of Singapore. Blue areas are less populated while red areas are denser. (Color
figure online)

3 Findings

3.1 Equilibration and Empirical Consistency

If the traffic system is at equilibrium, then we should expect that the subjects’
route decisions do not vary substantially between successive days of study. We
investigate the issue from three different angles. First, we compare the modes of
transportation selected by each individual student over the days of the experi-
ment. Second, we improve the previous result by considering whether the selected
routes are identical (e.g. always use the same combination of bus and train, or
always use the same road on car). Third, building on our geographical cluster-
ing method described in the following Section, we investigate the question of
whether the fastest student in the cluster on one day remains the fastest over
all days of experiment.

The first analysis shows that more than 60% of subjects have used the same
principal mode of transportation in all morning trips available in our dataset. We
are here discriminating between trips where the principal mode of transportation
is either the train, the bus or the car. We define as principal the mode with which
the student has traveled the longest distance. The fraction increases to close to
two thirds (65%) of the samples if we simply discriminate between the subjects
using public transit from those who use private transportation.

For the second analysis, we have implemented a novel algorithm to determine
whether two route choices are identical. We find that for subjects using the same
mode of transportation across all days, the percentage of subjects selecting the
same route is very high, in the order of 94%. We detail the algorithm used to
obtain this result in our Methodology section of full paper available online [20].

Finally, we identify a restricted set of clusters that have the property of
being consistent throughout at least two days of experiment, i.e. the members of
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the cluster are the same in distinct days of the same week. Members may drop
out of their cluster if their starting time or starting point are different from one
morning to the next, or if they use another mode of transportation. We find that
for these consistent clusters, close to 50% of them have the property that the
fastest individual on one day remains the fastest for all days where this cluster
appears, showing again a certain degree of consistency in the population.

3.2 Individual Optimality and Empirical Imitation-Regret

To answer the question of individual optimality, we compare the durations of
the morning trip for the subjects. A fair comparison is only achieved when look-
ing at students leaving from the same neighborhood on the same day and at
roughly the same time, going to the same school and using the same mode of
transportation. The notion of neighborhood is expanded upon in our Method-
ology section, available in the full version of our paper [20], where we describe
how the clustering of the data was achieved.

In the cases where the class of comparable subjects has more than two indi-
viduals, we collect the empirical imitation-regret encountered by every stu-
dent in the class. To do so, we find the student in the class with minimal trip
duration and set her imitation-regret to zero. For other members of the class,
the empirical imitation-regret is equal to the (non-negative) difference between
their trip duration and the minimal trip duration.

Our notion of empirical imitation-regret shares its name with the traditional
regret measure, commonly found in the learning and multi-agent systems litera-
ture, for the following reason. The players here are faced with multiple strategies
that they can choose from: the routes that go from their neighborhood to the
destination. They may not know about current traffic conditions or which route
will take the least amount of time but nevertheless have to make a decision.
A posteriori, this decision can be measured against the best action implemented
by a comparable subject on that day, and the difference is the imitation-regret.
The introduction of the word “imitation” is due to the fact that we compare the
decision solely with other players’ choices of routes: a better route that is not
used by any of the subjects in the cluster will therefore not be considered here.
This drawback is shared with many natural learning dynamics and thus can be
interpreted as a reasonable assumption on subjects’ decisions.

The measure of empirical imitation-regret depends naturally on the geo-
graphical area covered by the neighborhood. As the area increases, so does the
accumulated imitation-regret, since the minimum is taken over a larger set of
subjects. However, neighborhoods that are too large lose in precision, as two
different subjects in the same cluster may have very different trip lengths. The
results in this section use a geographical cluster size of about 400 m, while sen-
sitivity analysis is performed in the Methodology section of our full paper [20]
to show the robustness of our findings.

Low empirical imitation-regret is a necessary condition for equilibrium.
Indeed, at equilibrium, all comparable subjects should perform their trip in
roughly the same amount of time. If one individual encounters a imitation-regret
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Fig. 3. Left: Complementary cumulative distribution function of the imitation-regret
(decreasing curve). We aggregate all days of the experiment in a single figure and
remove subjects with zero imitation-regret – i.e. the baseline subjects. The mean
imitation-regret signalled by the solid vertical line is equal to 6 min (around 27% of
the mean travel time), while the median imitation-regret – dashed line – is equal to
4 min and 40 s (around 21% of the median travel time). Sensitivity analysis results are
presented in the full paper online [20]. Right: Comparison of complementary CDF of
imitation-regret per mode of transportation. (Color figure online)

of say, 10 min, she may be better off by switching to a different route, e.g. the
one used by the fastest individual in the cluster.

On the other hand, a high empirical imitation-regret warns us that some users
are unable to find the fastest route to reach their destination. We see two possible
directions to explore after such a conclusion. If we assume that individuals are
solely interested in minimizing their trip duration—perhaps a fair assumption
for the morning trip, constrained by the hard deadline of the class start—, then
the network may benefit from the injection of information on how to traverse
it. Otherwise, a high empirical imitation-regret reveals that other factors enter
into consideration when the student is selecting the route, such as finding the
least expensive one, the more climatised one or one that is shared with other
students.

In Fig. 3, we plot the complementary cumulative distribution of the empriri-
cal imitation-regret. A point on the curve indicates which fraction of individuals
(read on the y-axis) have empirical imitation-regret greater or equal than x (read
on the x-axis). We also give the mean (solid red line) and median (dashed blue
line) experienced empirical imitation-regret. It should be noted that the empir-
ical imitation-regret distribution and its moments do not include the subjects
for which the imitation-regret is zero, i.e. the best in the cluster.

Larger geographical cluster sizes give rise to larger average empirical
imitation-regrets, but the results are relatively robust. The mean empirical
imitation-regret oscillates around 27% of the mean travel time in the dataset
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(around 6 min), while the median empirical imitation-regret is at 21% of the
median travel time (around 4 min and 40 s). This result motivates the introduc-
tion of a solution parametrised by two values, ε and δ. The reported measure-
ments constitute an (ε, δ)-equilibrium if we find that a fraction 1 − δ of users
experience at most a quantity ε of imitation-regret. The experiment yields values
ε = 22 min and δ = 0.05.

Finally, we study the imitation-regret between modes, i.e. taking the regret
with respect to the fastest individual in the cluster, irrelevant of transporta-
tion mode. We focus our analysis on mixed clusters, where at least one individ-
ual using public transportation and one individual using private transportation
appear. We have over 1,400 such clusters, and in close to 80% of them, the
fastest individual is a private transportation user. Over these 1,400 clusters,
the average imitation-regret incurred by public transport users compared with
the fastest private transportation user in their cluster is close to 8 min. For the
same population of bus and train users, the average duration of a trip is close
to 25 min, indicating that the fastest car user spends roughly two thirds of this
time to reach destination. Figure 3 plots the distributions of imitation-regret for
the two classes of users.

3.3 Societal Optimality and the Stress of Catastrophe

The Stress of Catastrophe is introduced to give a measure of the weight of exter-
nalities in the system. As more agents join the road network, congestion increases
on the links. Classically, the Price of Anarchy has been employed to quantify how
bad the selfish decision-making of these agents affects the efficiency of the sys-
tem, compared to the social optimum that a central planner implements.

But estimating the social optimum of a system from the data is a perilous
task. First, exact demands need to be known for every origin-destination pair
of the agents. Second, latency functions for every edge of the network need to
be estimated. Third, the global optimum flow maximizing the social optimum
function needs to be computed.

On the other hand, the PoA does not fully capture the effects of a tragedy of
the commons that congestion presents. In such a scenario, it is not costly for one
additional individual to enter the system, but since all agents enter, the global
welfare diminishes. Similarly, congestion can reach levels after which the action
of a central planner has little effect, yielding a low PoA that does not reflect just
how congested the system is.

The Stress of Catastrophe eschews these pitfalls by providing an optimistic
lower bound to the socially optimal trip durations. It stems from the simple fact
that a crude lower bound to the optimal trip duration is one in which no one else
is present on the road. Using Google Directions API, free-flow trip durations are
obtained and give us a “blue sky” – i.e. ideal scenario – lower bound. Comparing
the actual recorded trip duration length to this lower bound in turn yields a ratio
of how much faster the trip could have been in a no-externality scenario.
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Formally, we define the Stress of Catastrophe (SoC) from our data as such:

SoC =
Cost(Recorded trip duration)

Cost(Trip durations (free-flow / light traffic))

To give an idea of the measure in our dataset, we plot in Fig. 4 the histogram of
percentages of deviations from the free-flow optimal trip duration. We see that
most subjects are relatively close to this minimum bound while as the gap grows,
fewer subjects are found.

Fig. 4. Left: Histogram of deviations from the free-flow optimal trip durations. Right:
Stress of Catastrophe computed across the five days with the highest record of unique
subjects (sample size > 1,500). The values are between 1.23 and 1.37.

Since the denominator is a lower bound to the socially optimal cost, we also
have the following corollary:

PoA =
Cost(Recorded trip durations)

Cost(Optimal trip durations)
≤ SoC

The question is now how pessimistic is this upper bound? Our results show
that SoC = 1.34, when the SoC is computed with both car and transit users.
But discriminating between the two yields a much more contrasted picture: the
SoC for transit users is found to be 1.18, indicating that students using public
transportation have little room to improve their trip duration. Conversely, the
SoC varies significantly depending on the traffic conditions for subjects taking
private transportation to school. In free-flow conditions, we find the SoC to be
equal to 1.86. Details of the SoC for individual days of the experiment can be
found in Fig. 4.

It is remarkable that such an pessimistic upper bound is however so close to
1. How does the PoA overestimate the inefficiency of the network then? Consider
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PoA results found in the literature, such as the 2.151 ratio of derived in [31] in
the case of degree 4 polynomial cost functions. The latest class is often used by
network engineers to model the congestion on real roads, following the Bureau
of Public Roads standard.

But the average estimated free flow time travel of the sample is 21 min.
Assuming the SoC to be as large as the 2.151 bound, on average a commuter
would spend 2.151 − 1.34 = 0.811 times more in transit, i.e. 17 min more per
commuter. In other words, pessimistic predictions of the PoA would entail a loss
of over 730,000 h per day, if we assume all of the 2,200,000 active individuals
and 400,000 students were commuting on that day, a large mismatch with the
actual system performance.

4 Connections to Other Work

Algorithmic Game Theory and Econometrics. Recently there has been a surge
of interest in combining techniques from algorithmic game theory with the tradi-
tional goals of econometrics [3,33]. These works employ a data-driven approach
to analyzing the economic behavior of real world systems and agent interactions.
In [22] the authors developed theoretical tools for inferring agent valuations from
observed data in the generalized second price auction without relying on the
Nash equilibrium assumption, using behavioral models from online learning the-
ory such as regret-minimization. They apply their techniques on auction data to
test their effectiveness.

Following this work, [13] studies the behavior of real housing market agents
based on data from an online bidding platform. The results inform the design of
the auction platform and point towards data-driven policies helping the agents
make decisions. The latter idea is made more explicit in a recent article by some
of the authors [23]. In a sense, our present work also advocates using data to
gauge users interactions but our focus is on routing games, for which it is harder
to gather sanitized data. Furthermore, we develop new metrics that are more
informative about the state of the system than the price of anarchy.

In [12] the authors provided tools for estimating an empirical PoA of auctions.
The PoA is defined as the worst case efficiency loss of any auction that could
have produced the data, relative to the optimal. However, auctions and routing
games each pose a totally distinct set of challenges. In our setting, the problem
of translating data streams to game theoretic concepts adds a rather nontrivial
layer of complexity. For example, even identifying the action chosen by each
agent, i.e. their routes, is tricky as it requires to robustly map a noisy stream of
transportation data into a discrete object, a path in a graph. It should be noted
however that our notion of Stress of Catastrophe provides an upper bound on
the empirical PoA, as detailed in Sect. 3.3.

Another active strand of research is concerned with fair division of resources.
Here too, experimental studies are conducted to determine whether agents
exhibit a behaviour close to predictions from the theory and in fact, their behav-
iour and feedback from using fair division systems pose new theoretical questions
[11,16]. This fruitful cycle can hopefully be replicated in congestion games.
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Price of Anarchy for Real World Networks. One earlier paper tangentially con-
nected to estimating the PoA of congestion games is [6]. This is a theoretical
paper that provides PoA bounds for perturbed versions of congestion games.
As a test of their techniques, they heuristically approximate the PoA on a few
benchmark instances of traffic networks available for academic research from the
Transportation Network Test Problems [4] by running the Frank-Wolfe algorithm
on them. No experiments were performed and no measurements were made. Nat-
urally, this approach cannot be used to test PoA predictions, since it presumes
that PoA reflects the worst case possible performance and then merely tests
where do these constants lie for non-worst case routing networks.

In effectively parallel independent work [34] focused on quantifying the inef-
ficiencies incurred due to selfish behavior for a sub-transportation network in
Eastern Massachusetts, US. They use a dataset containing time average speed
on road segments and link capacity in their transportation sub-network. The
authors estimate daily user cost functions as well as origin-destination demand
by means of inverse optimization techniques using this dataset. From this formu-
lation they compute estimates of the PoA, whose average value is shown to be
around 1.5. In contrast to their approach our dataset contains detailed individual
user information, which allows for estimates not only of systemic performance
but also of individual optimality (e.g. imitative-regret) as well as test to what
extent is the system indeed near stasis (i.e. in equilibrium). Also, their app-
roach does not capture how bad the resulting traffic is, i.e. the tension between
Price of Anarchy and Tragedy of the Commons, whereas our approach addresses
both. Finally, our estimations are derived from explicit online measurements of
the system performance and are not reverse engineered by estimating user cost
functions which inevitably introduce new errors that cascade through all the
calculations.

5 Conclusion

This is hopefully not the end but the beginning of a thorough experimental
investigation into the rich game theoretic literature of routing games. Clearly,
there are many open questions and challenges to be addressed. Due to space
limitations we refer the reader to the online version of our paper for the full
discussion of these directions [20].
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