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Abstract. The problem of pricing the cloud has attracted much recent
attention due to the widespread use of cloud computing and cloud ser-
vices. From a theoretical perspective, several mechanisms that provide
strong efficiency or fairness guarantees and desirable incentive proper-
ties have been designed. However, these mechanisms often rely on a rigid
model, with several parameters needing to be precisely known in order
for the guarantees to hold. In this paper, we consider a stochastic model
and show that it is possible to obtain good welfare and revenue guaran-
tees with simple mechanisms that do not make use of the information
on some of these parameters. In particular, we prove that a mechanism
that sets the same price per time step for jobs of any length achieves
at least 50% of the welfare and revenue obtained by a mechanism that
can set different prices for jobs of different lengths, and the ratio can be
improved if we have more specific knowledge of some parameters. Sim-
ilarly, a mechanism that sets the same price for all servers even though
the servers may receive different kinds of jobs can provide a reasonable
welfare and revenue approximation compared to a mechanism that is
allowed to set different prices for different servers.

1 Introduction

With cloud computing generating billions of dollars per year and forming a
significant portion of the revenue of large software companies [10], the problem of
how to price cloud resources and services is of great importance. On the one hand,
for a pricing scheme to be used, it is necessary that the scheme provide strong
welfare and revenue guarantees. On the other hand, it is also often desirable
that the scheme be simple. We combine the two objectives in this paper and
show that simple pricing schemes perform almost as well as more complicated
ones with respect to welfare and revenue guarantees. In particular, consider the
pricing scheme for virtual machines on Microsoft Azure shown in Fig. 1. Once
the user chooses the basic parameters such as region, type, and instance size,
the price is calculated by simply multiplying an hourly base price by the number
of virtual machines and number of hours desired. The question that we study
can be phrased in this setting as follows: How much more welfare or revenue
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could be created if instead of this simple multiplication formula, a complex
table specifying the price for each number of hours were to be used? Our main
result is that the former offers at worst a two approximation to the latter, both
in terms of welfare and revenue. Similarly, we demonstrate that setting a single
price for a group of servers, even though the servers may receive different kinds
of jobs, can provide a reasonable welfare and revenue approximation compared
to setting different prices for different servers.

In much of the prior work in this space, which focuses more explicitly on
scheduling, prices depend in a complex way on a number of parameters (typically
including job length, arrival time, deadline, and value) as well as the current state
of the system [3,11,20,21,24]. A weakness of such schemes is that they require
these parameters to be known up front in order for the desirable properties of
the mechanisms, such as their approximation ratios, to hold. The availability of
such information is not always realistic in practice. Even when it is in principle
possible to provide this information, there is a cost to participants in both time
and resources to figure it out. In this work, we show that good results are possible
with no up front information.

Fig. 1. Pricing scheme for virtual machines on Microsoft Azure [4].

For our initial results we assume that there is a single server, which receives
jobs of various lengths whose value per time step is drawn from the same prob-
ability distribution regardless of length. We compare the welfare and revenue
that can be obtained by setting a price per time step that is independent of the
job length against the corresponding objective obtained by setting an individual
price for each job length. When we are allowed the freedom of setting different
prices for different job lengths, intuitively we want to set a higher price per time
step for longer jobs as a premium for reserving the server for a longer period of
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time.1 However, as we show, we do not lose more than 50% of the welfare or
revenue if we are only allowed to set one price. We would like to emphasize that
this is a worst-case bound over a wide range of parameters, including the number
of job lengths, the distribution over job lengths, and the distribution over job
values. Indeed, as we show, we can obtain improved bounds if we know the value
of some of these parameters. The price that we use in the single-price setting can
be chosen from one of the prices used in the multi-price setting, meaning that we
do not have to calculate a price from scratch. Moreover, all of our approximation
guarantees hold generally for arbitrary prices, meaning that for any prices that
we may set in a multi-price setting (i.e., not necessarily optimal ones), we can
obtain an approximation of the welfare or revenue by setting one of those prices
alone. Finally, we emphasize that these results put no restrictions on the form of
the distribution; it can be discrete, continuous, or mixed. The only substantive
constraint is that jobs of all lengths share the same distribution of value per time
step. However, in an extension we show that a version of our results continues
to hold even if this constraint is relaxed.

We then generalize our results to a setting where there are multiple servers,
each of which receives jobs of various lengths. The distribution over job lengths
can be different for different servers. This is conceivable, for instance, if the
servers are in various geographic locations or are utilized by various groups
of users. We compare the welfare and revenue obtained by a simple pricing
scheme that sets the same price for all servers against the corresponding objective
achieved by a scheme that can set a different (single) price for each server.
Roughly speaking, we show that as long as the parameters are not too extreme,
e.g., the number of servers or the job lengths are not too large, then we do not
lose too much of the welfare or revenue by setting a single price. Combining
this with our initial results, we obtain an approximation of a very restricted
pricing scheme where we must set the same price for all servers and all job
lengths against one where we can set an individual price for each job length of
each server. These results require an assumption that all servers have the same
probability of not receiving a job at a time step. Using similar techniques, we
also obtain approximation bounds when this assumption does not hold but there
is only one job length across all servers.

1.1 Related Work

Much recent work has focused on designing online scheduling mechanisms with
good welfare guarantees and incentive properties. Jain et al. [20] exhibited a
truthful mechanism for batch jobs on cloud systems where jobs are allocated
non-preemptively, and the same group of authors came up with mechanisms for
deadline-sensitive jobs in large computing clusters [21]. Lucier et al. [24] also
considered the problem of scheduling deadline-sensitive jobs; they circumvented

1 Amazon recently started offering a product called “defined duration spot instances”
where users can specify a duration in hourly increments up to six hours [2]. Indeed,
the price per hour of this product increases as the number of hours increases.
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known lower bounds by assuming that jobs could be delayed and still finish by
their deadline. Zhang et al. [26] developed a framework for truthful online cloud
auctions where users with heterogeneous demands can come and leave on the
fly. More recently, Azar et al. [3] constructed a truthful mechanism that achieves
a constant competitive ratio given that slackness is allowed, while Dehghani et
al. [11] assumed a stochastic model and developed a truthful mechanism that
approximates the expected maximum welfare up to a constant factor. Wang
et al. [25] designed mechanisms for selling reserved instances where users are
allowed to reserve resources of any length and from any time point in the future.
Other work in this space has dealt with comparing pricing mechanisms such as
the on-demand market and the spot market [1,12,19], achieving fairness in job
allocation [17], and studying models of real-time pricing with budget constraints
[18]. Kash and Key [22] gave a survey of the current state of research in economics
and computer science with respect to cloud pricing.

From a technical perspective, our work bears a resemblance to the work of
Dütting et al. on discriminatory and anonymous posted pricing and of Disser et
al. on hiring secretaries. In particular, Dütting et al. [14] considered the prob-
lem of selling a single item to buyers who arrive sequentially with values drawn
independently from identical distributions. They showed that by posting dis-
criminatory prices, one can obtain at most 2 − 1/n times as much revenue as
that obtained by posting the same anonymous price, where n is the number of
buyers. As is also the case in our work, their anonymous price can always be
chosen from one of the discriminatory prices, but their bound is obtained via a
relaxation of the discriminatory pricing problem, a different technique than what
we use. Disser et al. [13] provided a competitive online algorithm for a variant of
the stochastic secretary problem, where applicants need to be hired over time.
When each applicant arrives, the cost per time step of the applicant is revealed,
and we have to decide on the duration of the employment. Once an applicant is
accepted, we cannot terminate the contract until the duration of the job is over.

Our work falls into the broader area of the design and analysis of simple
mechanisms, particularly posted price mechanisms. One of the motivations for
studying simple mechanisms is that in practice, designers are often willing to
partially give up optimality in return for simplicity. Mechanisms that simply
post prices on goods have received significant attention since they reflect perhaps
the most common way of selling goods in the real world, and moreover they
leave no room for strategizing, making them easy for agents to participate in. A
long line of work has investigated how well such mechanisms can approximate
optimal mechanisms with respect to various objectives including welfare [9,15,
16], revenue [5–7], and social costs [8]. In Sect. 3.4 we show that techniques from
this literature can recover some of our results under relaxed assumptions.

2 Preliminaries

We consider a system with a number of servers and discrete time steps. Each
job takes an integer number of time steps to complete and yields a value upon
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completion. The value per time step of a job is drawn from a known distrib-
ution which is independent of the length of the job. Let F be the cumulative
distribution function of this distribution and f the probability density function
with respect to a base measure μ, and define �(x) = xf(x).2 We do not make
any assumption on our distribution; in particular, it need not be continuous or
discrete, which is why we allow flexibility in terms of the base measure.

When a job request is made for a job to be served by a server, there is a
price p per time step which may depend on the job length and/or the server. If
the value per time step of the job is at least p, the server accepts and executes
the job to completion. Otherwise, the server rejects the job. The objectives in
our model are the steady-state welfare and revenue for each pricing scheme. In
particular, we will be interested in the expected welfare and revenue per time
step, given that the job values are drawn from a probability distribution. This
can also be thought of as the average welfare and revenue per time step that
result from a pricing scheme over a long period of time.

In Sect. 3, we assume that there is a single server. Each time step, either zero
or one job appears. A job with length ai appears with probability 0 < ri ≤ 1,
where

∑n
i=1 ri ≤ 1 and n denotes the number of job lengths. We are allowed

to set a price pi for jobs of length ai. If a server accepts a job of length ai, it
is busy and cannot accept other jobs for ai time steps, including the current
one. We compare the setting where we are forced to set the same price p for all
job lengths against the setting where we can set a different price pi for each job
length ai. Note that if we could set different prices for different job lengths, then
to optimize welfare or revenue, intuitively we would set a higher price per time
step for longer jobs as a premium for reserving the server for a longer period. Put
differently, once we accept a longer job, we are stuck with it for a longer period,
during which we miss the opportunity to accept other jobs. Consequently, we
should set a higher standard for accepting longer jobs. (See also Footnote 1.)

In Sect. 4, we assume that there are multiple servers. Each time step, either
zero or one job appears for each server 1 ≤ j ≤ n. For server j, a job with length
aji appears with probability 0 < rji ≤ 1 for 1 ≤ i ≤ nj , where nj denotes the
number of job lengths for server j. We do not assume that the set of job lengths
or the number of job lengths are identical across servers. On the other hand, we
assume that the probability of no job appearing at a time step is the same for
all servers, i.e.,

∑nj

i=1 rji is constant for any j. In Subsect. 4.1, we assume that
we can set one price per server, and we compare the setting where we are forced
to set the same price p for all servers against that where we can set a different
price pj for each server j. In Subsect. 4.2, we assume that we can set a different
price pji for each server j and each of its job lengths aji, and we compare that

2 For technical reasons, we will deviate slightly from the usual notion of cumulative
distribution function. In particular, if y is a random variable drawn from a distrib-
ution, then we define its cumulative distribution function F (x) as Pr[y < x] instead
of the usual Pr[y ≤ x]. This will only be important when we deal with discrete
distributions.
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setting against that where we are forced to set the same price p for all servers
and all job lengths.

All proofs can be found in the full version of this paper [23].

3 One Server

In this section, we assume that there is a single server, which receives jobs of
various lengths. After presenting an introductory example in Subsect. 3.1, we
consider the general setting with an arbitrary number of job lengths in Sub-
sect. 3.2. In this setting, we show a 50% approximation for both welfare and
revenue of setting one price for all job lengths compared to setting an individual
price for each job length, for any realization of the parameters. Moreover, we
show in Subsect. 3.3 that our techniques provide a template for deriving tighter
bounds if we have more specific information on the parameters. In particular,
when there are two job lengths, we show for each setting of the parameters a
tight approximation bound for welfare and revenue. Our approximation results
hold for arbitrary (i.e., not necessarily optimal) pricing schemes, and the price
we use in the single-price setting can be drawn from one of the prices in the
multi-price setting. Finally, in Subsect. 3.4 we consider an extension that does
not assume independence between the job length and the value per time step.

3.1 Warm-Up: Uniform Distribution

As a warm-up example, assume that at any time step a job with length 1 or 2
appears with probability 50% each. The value per time step of a job is drawn
from the uniform distribution over [0, 1]. Suppose that we set a price per time
step p1 for jobs of length 1 and p2 for jobs of length 2.

Consider an arbitrary time step when the server is free. If the job drawn at
that time step has length 1, then with probability p1 it has value below p1 and is
rejected. In this case, the server passes one time step without a job. Otherwise,
the job has value at least p1 and is accepted. In this case, the expected welfare
from executing the job is 1+p1

2 . Similarly, if the job has length 2, then with
probability p2 it is rejected, and with probability 1−p2 it is accepted and yields
expected welfare 2 · 1+p2

2 = 1 + p2 over two time steps. Letting cw denote the
expected welfare per time step assuming that the server is free at the current
time step, we have

0 =
1

2

(
−p1cw + (1 − p1)

(
1 + p1

2
− cw

))
+

1

2
(−p2cw + (1 − p2) (1 + p2 − 2cw)) .

The two terms on the right hand side correspond to jobs of length 1 and 2,
which are drawn with probability 1

2 each. In the case that a job of length 2 is
drawn, with probability p2 it is rejected and the server is idle for one time step,
during which it would otherwise have produced expected welfare cw. With the
remaining probability 1−p2 the job is accepted, yielding expected welfare 1+p2
over two time steps, during which the server would otherwise have produced
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expected welfare 2cw. The derivation for the term corresponding to jobs of length
1 is similar. By equating the expected welfare with the variable denoting this
quantity, we arrive at the equation above.

Solving for cw, we get

cw(p1, p2) =
(1−p1)(1+p1)

2 + (1 − p2)(1 + p2)
3 − p2

.

To maximize cw(p1, p2) over all values of p1, p2, we should set p1 = 0. (Indeed,
to maximize welfare we should always accept jobs of length 1 since they do not
interfere with future jobs.) Then the value of p2 that maximizes cw(p1, p2) is

p2 = 3 −
√

15
2 ≈ 0.261, yielding cw(p1, p2) = 6 − √

30 ≈ 0.522.
On the other hand, if we set the same price p = p1 = p2 for jobs with different

lengths, our welfare per time step becomes

cw(p) =
(1−p)(1+p)

2 + (1 − p)(1 + p)
3 − p

=
3(1 − p)(1 + p)

2(3 − p)
.

This is maximized at p = 3 − 2
√

2 ≈ 0.172, yielding cw(p) = 9 − 6
√

2 ≈ 0.515.
Moreover, if we use either of the prices in the optimal price combination for the

two-price setting as the single price, we get cw(0) = 0.5 and cw

(
3 −

√
15
2

)
≈

0.510.
Next, we repeat the same exercise for revenue. We can derive the equations

in the same way, with the only difference being that the revenue from accepting
a job at price p is simply p. Letting cr denote the revenue per time step, we have

0 =
1
2

(−p1cr + (1 − p1) (p1 − cr)) +
1
2

(−p2cr + (1 − p2) (2p2 − 2cr)) .

Solving for cr, we get

cr(p1, p2) =
(1 − p1)p1 + 2(1 − p2)p2

3 − p2
.

To maximize cr over all values of p1, p2, we should set p1 = 0.5. (Indeed, to
maximize revenue we should always set the monopoly price for jobs of length 1
since they do not interfere with future jobs.) Then the value of p2 that maximizes

cr(p1, p2) is p2 = 3 −
√

47
8 ≈ 0.576, yielding cr(p1, p2) = 10 − √

94 ≈ 0.304.
On the other hand, if we set the same price p = p1 = p2 for jobs with different

lengths, our revenue per time step becomes

cr(p) =
(1 − p)p + 2(1 − p)p

3 − p
=

3(1 − p)p
3 − p

.

This is maximized at p = 3 − √
6 ≈ 0.551, yielding cr(p) = 15 − 6

√
6 ≈ 0.303.

Moreover, if we use either of the prices in the optimal price combination for the
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two-price setting as the single price, we get cr(0.5) = 0.3 and cr

(
3 −

√
47
8

)
≈

0.302.
Observe that for both welfare and revenue, the maximum in the one-price

setting is not far from that in the two-price setting. In addition, in both cases
at least one of the two prices in the optimal price combination for the two-
price setting, when used alone as a single price, performs almost as well as the
maximum in the two-price setting. In the remainder of this section, we will show
that this is not a coincidence, but rather a phenomenon that occurs for any set
of job lengths, any probability distribution over job lengths, and any probability
distribution over job values.

3.2 General 50% Approximation

In this subsection, we consider a general setting with an arbitrary number of
job lengths. We show that even at this level of generality, it is always possible
to obtain 50% of the welfare and revenue of setting an individual price for each
job length by setting just one price. Although the optimal price in the one-price
setting might be different from any of the prices in the multiple-price setting,
we show that at least one of the prices in the latter setting can be used alone to
achieve the 50% guarantee.

Assume that there are jobs of lengths a1 ≤ a2 ≤ · · · ≤ an which appear at
each time step with probability r1, r2, . . . , rn, respectively. Suppose that we set
a price per time step pi for jobs of length ai. Recall that the value per time step
of a job is drawn from a distribution with cumulative distribution function F
and probability density function f .

The following lemma gives the formulas for the expected welfare and revenue
per time step.

Lemma 3.1. Let S = a1r1 + · · · + anrn and R = r1 + · · · + rn, and let cw and
cr denote the expected welfare and revenue per time step, respectively. We have

cw(p1, . . . , pn) =
a1r1

∫
x≥p1

�dμ + · · · + anrn

∫
x≥pn

�dμ

S − ((a1 − 1)r1F (p1) + · · · + (an − 1)rnF (pn)) + (1 − R)
(1)

and

cr(p1, . . . , pn) =
a1r1(1 − F (p1))p1 + · · · + anrn(1 − F (pn))pn

S − ((a1 − 1)r1F (p1) + · · · + (an − 1)rnF (pn)) + (1 − R)
.

(2)

In particular, if p1 = · · · = pn = p, then cw(p) =
S
∫
x≥p

�dμ

S−(S−R)F (p)+(1−R) and

cr(p) = S(1−F (p))p
S−(S−R)F (p)+(1−R) .

With the formulas for welfare and revenue in hand, we are ready to show the
main result of this section, which exhibits that the worst-case approximation
ratio for welfare or revenue between the one-price setting and the multiple-price
setting is at least 50%. As we will see later in Subsect. 3.3, this bound is in fact
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tight, and it remains tight even when there are only two job lengths. Note that
the bound holds for any number of job lengths, any distribution over job lengths,
and any distribution over job values.

Theorem 3.1. For any prices p1, p2, . . . , pn that we set in the multiple-price
setting, we can achieve a welfare (resp. revenue, or any convex combination of
welfare and revenue) approximation of at least 50% in the one-price setting by
using one of the prices pi as the single price.

To prove Theorem 3.1, we work with the ratio max(cw(p1),...,cw(pn))
cw(p1,...,pn)

and show
that it is at least 1

2 for any p1, . . . , pn (and similarly for revenue or any con-
vex combination of welfare and revenue). Using the formula (1) for cw given in

Lemma 3.1, we can write the ratio in terms of the variables Ai =
∫
x≥pi

�dμ
∫
x≥p1

�dμ
and

Bi = F (pi) for 1 ≤ i ≤ n. For any fixed values of Bi, we then deduce the values
of Ai that minimize the ratio of interest. Finally, we show that the remaining
expression is always at least 1/2 no matter the values of Bi.

3.3 Tighter Bounds for Specific Parameters

Assume in this subsection that there are jobs of two lengths a < b which appear
at each time step with probability r1 and r2, respectively, where r1 + r2 ≤ 1.
Suppose that we set a price per time step p1 for jobs of length a and p2 for jobs of
length b. Recall that the value per time step of a job is drawn from a distribution
with cumulative distribution function F and probability density function f .

Our next result exhibits a tight approximation bound for any fixed setting
of the job lengths and their distribution.

Theorem 3.2. For any prices p1 and p2 that we set in the two-price setting, we
can achieve a welfare (resp. revenue, or any convex combination of welfare and
revenue) approximation of at least

ρ(a, b, r1, r2) :=
(ar1 + br2)(ar1 + 1 − r1)

a(a − 1)r21 + a(b − 1)r1r2 + ar1 + br2

in the one-price setting by setting either p1 or p2 alone. Moreover, this bound is
the best possible even if we are allowed to set a price different from p1 or p2 in
the one-price setting.

To prove this theorem, we work with the expression in terms of Bi = F (pi)
that we have from the proof of Theorem3.1. We then show that the expression
is minimized when we take B1 = 0 and B2 = 1, meaning that the distribution
on job values is bimodal. The proof method readily yields an example showing
that our bound is tight, where the bimodal distribution on job values puts a
large probability on a low value and a small probability on a high value.

If we fix the probabilities r1, r2, we can derive a tight worst-case bound over
all possible job lengths a, b.
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Theorem 3.3. For fixed r1, r2, we have ρ(a, b, r1, r2) ≥ 1
1+r1

for arbitrary a, b.
Moreover, this bound is the best possible.

Note that the fact that the bound is tight at a = 1 and b → ∞ is consistent
with the intuition that the further apart the job lengths are, the more welfare
and revenue there is to be gained by setting different prices for the job lengths,
and hence the worse the approximation ratio.

Finally, we show that we can obtain at least 50% of the welfare or revenue
from setting two prices by using one of those prices.

Theorem 3.4. For arbitrary a, b, r1, r2, we have ρ(a, b, r1, r2) ≥ 1
2 . Moreover,

this bound is the best possible.

While we do not have a general formula for the worst-case approximation
ratio for each choice of the parameters a1, . . . , an, r1, . . . , rn as we do for the
case of two job lengths, the function h in the proof of Theorem3.1 still allows us
to derive a tighter bound for each specific case. Note that to find the minimum
of h, it suffices to check Bi = 0 or 1 (see the full version of this paper [23] for
details), so we only have a finite number of cases to check.

3.4 Extension

In this subsection, we show that by using a single price, we can obtain 50% of
the welfare not only compared to using multiple prices, but also compared to
the offline optimal welfare.3 In fact, we will also not need the assumption that
the job length and the value per time step are independent. However, the result
only works for particular prices rather than arbitrary ones, and we cannot obtain
tighter results for specific parameters using this method.

Theorem 3.5. Assume that the job length and the value per time step are not
necessarily independent. There exists a price p such that we can achieve a 50%
approximation of the offline optimal welfare by using p as the single price.

4 Multiple Servers

In this section, we assume that there are multiple servers, each of which receives
jobs of various lengths. Under the assumption that the servers have the same
probability of receiving no job at a time step, we show in Subsect. 4.1 an approx-
imation bound of the welfare and revenue of setting one price for all servers com-
pared to setting an individual price for each server. This yields a strong bound
when at least one of the dimensions of the parameters is not too extreme, e.g.,
the number of servers or the job lengths are not too large. In Subsect. 4.2, we
combine the newly obtained results with those from Sect. 3. Using a composi-
tion technique, we derive a general result that compares the welfare and revenue
3 For the offline optimal welfare, we compute the limit of the expected average offline

optimal welfare per time step as the time horizon grows.
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obtained by a restricted mechanism that sets the same price for all servers and
all job lengths against those obtained by a mechanism that can set a different
price for each job length of each particular server. We show that even with the
heavy restrictions, the former mechanism still provides a reasonable approxima-
tion to the latter one in a wide range of situations. Using similar techniques,
we also obtain approximation bounds when this assumption does not hold but
there is only one job length across all servers. The analysis of the latter setting
can be found in the full version of this paper [23].

As in Sect. 3, our approximation results hold for arbitrary (i.e., not necessarily
optimal) pricing schemes, and the price we use in the single-price setting can be
drawn from one of the prices in the multi-price setting.

4.1 One Price per Server

Assume that at each time step, either zero or one job appears for each server
1 ≤ j ≤ n. Server j receives jobs of length aj1 ≤ aj2 ≤ · · · ≤ ajnj

with
probability rj1, rj2, . . . , rjnj

, respectively. Suppose that we set a price per time
step pj for all jobs on server j. Recall that the value per time step of a job is drawn
from a distribution with cumulative distribution function F and probability
density function f , and that we assume that

∑nj

i=1 rji is constant. Let Sj =
aj1rj1 + · · · + ajnj

rjnj
and R = rj1 + · · · + rjnj

.
Using the formula (1) for cw given in Lemma 3.1, we find that the welfare

per time step is

dw(p1, p2, . . . , pn) =
n∑

j=1

∫
x≥pj

�dμ

1 −
(
1 − R

Sj

)
F (pj) + 1−R

Sj

.

If we set the same price p = p1 = · · · = pn for different servers, our wel-

fare per time step becomes dw(p) =
∑n

j=1

∫
x≥p

�dμ

1−
(
1− R

Sj

)
F (p)+ 1−R

Sj

. The formulas

dr(p1, p2, . . . , pn) and dr(p) for revenue are similar but with the terms
∫

x≥pj
�dμ

replaced by (1 − F (pj))pj .
We show that if at least one dimension of the parameters is not too extreme,

e.g., the number of servers or the job lengths are bounded, then we can obtain a
reasonable approximation of the welfare and revenue in the multi-price setting
by setting just one price.

Theorem 4.1. For any prices p1, p2, . . . , pn that we set in the multiple-price
setting, we can achieve a welfare (resp. revenue, or any convex combination of
welfare and revenue) approximation of at least

max
(

1
Hn

,
M − 1
M ln M

)

in the one-price setting, where Hn = 1 + 1
2 + · · · + 1

n ≈ ln n is the nth Harmonic
number and M = maxi,j

Si

Sj
.
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In particular, if all job lengths are bounded above by c, then R ≤ Sj ≤ cR
for all 1 ≤ j ≤ n, and so maxi,j

Si

Sj
≤ c. The theorem then implies that the

approximation ratio is at least c−1
c ln c .

4.2 Multiple Prices per Server

Assume as in Subsect. 4.1 that at each time step, server j receives jobs of length
aj1 ≤ aj2 ≤ · · · ≤ ajnj

with probability rj1, rj2, . . . , rjnj
, respectively. In this

subsection, we consider setting an individual price not only for each server but
also for each job length of that server. In particular, suppose that we set a
price per time step pji for jobs of length aji on server j. Recall that the value
per time step of a job is drawn from a distribution with cumulative distribution
function F and probability density function f , and that we assume that

∑nj

i=1 rji

is constant. Let Sj = aj1rj1 + · · · + ajnj
rjnj

.
We will compare a setting where we have considerable freedom with our

pricing scheme and can set a different price pji for each job length aji on each
server j with a setting where we have limited freedom and must set the same
price p for all job lengths and all servers. We show that by “composing” our
results on the two dimensions, we can obtain an approximation of the welfare
and revenue of setting different prices by setting a single price.

Theorem 4.2. For any prices pji, where 1 ≤ j ≤ n and 1 ≤ i ≤ nj for each j,
that we set in the multiple-price setting, we can achieve a welfare (resp. revenue,
or any convex combination of welfare and revenue) approximation of at least

1
2

· max
(

1
Hn

,
M − 1
M ln M

)

in the one-price setting, where Hn = 1 + 1
2 + · · · + 1

n ≈ ln n is the nth Harmonic
number and M = maxi,j

Si

Sj
.

If we have tighter approximations for either the “different prices for different
job lengths” or the “different prices for different servers” dimension, for instance
by knowing the values of some of the parameters, then the same composition
argument yields a correspondingly tighter bound.

5 Conclusion

In this paper, we study how well simple pricing schemes that are oblivious to
certain parameters can approximate optimal schemes with respect to welfare
and revenue, and prove several results when the simple schemes are restricted
to setting the same price for all servers or all job lengths. Our results provide an
explanation of the efficacy of such schemes in practice, including the one shown
in Fig. 1 for virtual machines on Microsoft Azure. Since simple schemes do not
require agents to spend time and resources to determine their specific parameter
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values, our results also serve as an argument in favor of using these schemes
in a range of applications. It is worth noting that as all of our results are of
worst case nature, we can expect the guarantees on welfare and revenue to be
significantly better than these pessimistic bounds in practical instances where
the parameters are not adversarially tailored.

We believe that there is still much interesting work to be done in the study
of simple pricing schemes for the cloud. We conclude our paper by listing some
intriguing future directions.

– In many scheduling applications, a job can be scheduled online to any server
that is not occupied at the time. Does a good welfare or revenue approxima-
tion hold in such a model?

– Can our results be extended to models with more fluid job arrivals, for exam-
ple one where several jobs can arrive at each time step?

– Can we approximate welfare and revenue simultaneously? A trivial ran-
domized approach would be to choose with equal probability whether to
approximate welfare or revenue. According to Theorem3.1, this yields a 1/4-
approximation for both expected welfare and expected revenue of the single-
price setting in comparison to the multi-price setting for job lengths.
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