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Preface

This volume contains the papers and extended abstracts presented at WINE 2017, the
13th Conference on Web and Internet Economics, held during December 17–20 at the
Indian Institute of Science, in Bangalore. Over the past decade and a half, researchers
in theoretical computer science, artificial intelligence, and microeconomics have joined
forces to tackle problems at the intersection of computation, game theory, and eco-
nomics. These problems have gained significant importance in the age of ubiquitous
connectivity and computation and with the rise of platforms that involve large and
diverse populations. WINE is an annual interdisciplinary forum for the exchange of
ideas and results in this area of research, and has a special mission of popularizing it
internationally. WINE is held alternatively in North America, Europe, and Asia every
three years.

The Program Committee, consisting of 38 top researchers from the field, reviewed
88 submissions and decided to accept 34 papers. Each paper had three reviews, with
additional reviews solicited as needed. The review process was conducted entirely
electronically via EasyChair. We are grateful to EasyChair for allowing us to handle the
submissions and the review process, and to the Program Committee for their insightful
reviews and discussions, which made our job easier.

The program also included four invited talks, by Vijay Krishna (Pennsylvania State
University), Parag Pathak (MIT), Ariel Procaccia (CMU), and Tim Roughgarden
(Stanford), as well as four tutorials by Kira Goldner (University of Washington),
Vangelis Markakis (Athens University of Economics and Business), Balu Sivan
(Google), and Chaitanya Swamy (Waterloo).

We would like to thank our sponsors, Accenture, Facebook, Microsoft, Sonata,
Flipkart, Google, Koinearth and Springer for their financial support. A special thanks to
the Indian Institute of Science (IISc), for providing the venue for the conference free of
charge! Our gratitude also goes to the general chairs, Y. Narahari and Arunava Sen, and
the Organizing Committee chair, Ramasuri Narayanam, without whom it would have
been impossible to run the conference. Last but not the least, we thank Ruta Mehta and
Siddharth Barman for chairing the tutorial and the poster sessions, respectively.

October 2017 Nikhil R. Devanur
Pinyan Lu
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On Budget-Feasible Mechanism Design
for Symmetric Submodular Objectives

Georgios Amanatidis, Georgios Birmpas, and Evangelos Markakis(B)

Department of Informatics, Athens University of Economics and Business,
Athens, Greece

{gamana,gebirbas,markakis}@aueb.gr

Abstract. We study a class of procurement auctions with a budget
constraint, where an auctioneer is interested in buying resources from
a set of agents. The auctioneer would like to select a subset of the
resources so as to maximize his valuation function, without exceeding
his budget. As the resources are owned by strategic agents, our over-
all goal is to design mechanisms that are truthful, budget-feasible, and
obtain a good approximation to the optimal value. Previous results on
budget-feasible mechanisms have considered mostly monotone valuation
functions. In this work, we mainly focus on symmetric submodular val-
uations, a prominent class of non-monotone submodular functions that
includes cut functions. We begin with a purely algorithmic result, obtain-
ing a 2e

e−1
-approximation for maximizing symmetric submodular func-

tions under a budget constraint. We then proceed to propose truthful,
budget feasible mechanisms (both deterministic and randomized), pay-
ing particular attention on the Budgeted Max Cut problem. Our results
significantly improve the known approximation ratios for these objec-
tives, while establishing polynomial running time for cases where only
exponential mechanisms were known. At the heart of our approach lies
an appropriate combination of local search algorithms with results for
monotone submodular valuations, applied to the derived local optima.

1 Introduction

We study a class of procurement auctions—also referred to as reverse auctions—
with budget constraints. In a procurement auction, an auctioneer is interested
in buying goods or services from a set of agents. In this setting, selecting an
agent comes at a cost and there is a hard budget constraint that should not be
violated. The goal of the auctioneer then is to select a budget-feasible subset of
the agents so as to maximize his valuation function v(·), where v(S) denotes the
value derived when S is the selected subset of agents to get services from.

The purely algorithmic version of the problem results in natural “budgeted”
versions of known optimization problems. Since these problems are typically NP-
hard, our focus is on approximation algorithms. Most importantly, in the setting
considered here, the true cost of each agent is private information and we would
like to design mechanisms that elicit truthful reporting by all agents. Hence, our
c© Springer International Publishing AG 2017
N. R. Devanur and P. Lu (Eds.): WINE 2017, LNCS 10674, pp. 1–15, 2017.
https://doi.org/10.1007/978-3-319-71924-5_1



2 G. Amanatidis et al.

ideal goal is to have truthful mechanisms that achieve a good approximation
to the optimal value for the auctioneer, and are budget feasible, i.e., the sum
of the payments to the agents does not exceed the prespecified budget. This
framework of budget feasible mechanisms is motivated by recent application
scenarios including crowdsourcing platforms, where agents can be viewed as
workers providing tasks (e.g., [4,15]), and influence maximization in networks,
where agents correspond to influential users (see e.g., [2,30], where the chosen
objective is a coverage function).

Budget feasibility makes the problem more challenging, with respect to truth-
fulness, as it already rules out well known mechanisms such as VCG. We note
that the algorithmic versions of such problems often admit constant factor
approximation algorithms. However, it is not clear how to appropriately con-
vert them into truthful budget feasible mechanisms. The question is nontrivial
even if we allow exponential time algorithms, since computational power does
not necessarily make the problem easier (see the discussion in [11]).

The first positive results on this topic were obtained by Singer [29], for the
case where v(·) is an additive or a non-decreasing submodular function. Follow-up
works provided refinements and further results for richer classes of functions (see
the related work section). Most of these works, however, make the assumption
that the valuation function is non-decreasing, i.e., v(S) ≤ v(T ) for S ⊆ T ,
notable exceptions being the works of [5,11]. Although monotonicity makes sense
in several scenarios, one can think of examples where it is violated. E.g., [11]
studied the unweighted Budgeted Max Cut problem, as an eminent example
of a non-monotone submodular objective function. Moreover, when studying
models for influence maximization problems in social networks, adding more
users to the selected set may some times bring negative influence [6] (some
combinations of users may also not be compatible or well fitted together). To
further motivate the study of non-monotone submodular objectives, consider
the following well-studied sensor placement problem [7,10,21]: assume that we
want to monitor some spatial phenomenon (e.g., the temperature of a specific
environment), modeled as a Gaussian process. We may place sensing devices
on some of the prespecified locations, but each location has an associated cost.
A criterion for finding an optimal such placement, suggested by Caselton and
Zidek [7] for the unit cost case, is to maximize the mutual information between
chosen and non chosen locations, i.e., we search for the subset of locations that
minimizes the uncertainty about the estimates in the remaining space. Such
mutual information objectives are submodular but not monotone. In addition, it
is straightforward to modify this problem to model participatory crowdsensing
scenarios where users have incentives to lie about the true cost of installing a
sensor.

At the moment, the few results known for arbitrary non-monotone submod-
ular functions have very large approximation ratios and often superpolynomial
running time. Even worse, in most cases, we do not even know of determin-
istic mechanisms (see Table 1). In trying to impose more structure so as to
have better positive results, there is an interesting observation to make: the
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examples mentioned so far, i.e., cut functions and mutual information functions,
are symmetric submodular, a prominent subclass of non-monotone submodular
functions, where the value of a set S equals the value of its complement. This
subclass has received already considerable attention in operations research, see
e.g., [14,27], where more examples are also provided. We therefore find that
symmetric submodular functions form a suitable starting point for the study of
non-monotone functions.
Contribution: The main focus of this work is on symmetric1 submodular func-
tions. As suggested in [27], cut functions form a canonical example of this class.
Consequently, we use the budgeted Max Cut problem throughout the paper as
an illustrative example of how our more general approach could be refined for
concrete objectives that have a well-behaved LP formulation.

We begin in Sect. 3 with a purely algorithmic result, obtaining a 2e
e−1 -

approximation for symmetric submodular functions under a budget constraint.
We believe this result is of independent interest, as it is the best known fac-
tor achieved by a deterministic algorithm (there exists already a randomized
e-approximation). We then proceed to propose truthful, budget feasible mecha-
nisms in Sects. 4 and 5. Our results significantly improve the known approxima-
tion ratios for these problems, establishing at the same time polynomial running
time for many cases where only exponential mechanisms were known. As an
example, for the budgeted weighted cut problem we obtain the first determinis-
tic polynomial time mechanism with a 27.25-approximation, and for unweighted
cut functions we improve the approximation ratio for randomized mechanisms,
from 564 down to 10. Analogous improvements are obtained also for arbitrary
symmetric submodular functions. Finally, in Sect. 6 we briefly study the class of
XOS functions, where we improve the current upper bound by more than a factor
of 3. All our contributions in mechanism design are summarized in Table 1. We
also stress that our mechanisms for general symmetric submodular functions use
the value query model for oracle access to v, which is a much weaker requirement
than the demand query model assumed in previous works, e.g., in [11].

Regarding the technical contribution of our work, the core idea of our app-
roach is to exploit a combination of (approximate) local search with mechanisms
for non-decreasing submodular functions. The reason local search is convenient
for symmetric submodular functions is that it produces two local optima, and we
can then prove that the function v(·) is (almost) non-decreasing within each local
optimum. This allows us to appropriately adjust mechanisms for non-decreasing
submodular functions on the two subsets and then prove that one of the two
solutions will attain a good approximation. To the best of our knowledge, this is
the first time that this “robustness under small deviations from monotonicity’ ’
approach is used to exploit known results for monotone objectives.
Related Work: The study of budget feasible mechanisms, as considered here,
was initiated by Singer [29]. Later, Chen et al. [9] significantly improved Singer’s

1 In some works on mechanism design, symmetric submodular functions have a dif-
ferent meaning and refer to the case where v(S) depends only on |S|. Here we have
adopted the terminology of earlier literature on submodular optimization, e.g., [14].
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results. Several modifications of the deterministic mechanism of [9] have been
proposed that run in polynomial time for special cases [2,18,30]. For sub-
additive functions, Dobzinski et al. [11] suggested a randomized O(log2 n)-
approximation mechanism, and they gave the first constant factor mechanisms
for non-monotone submodular objectives, specifically for cut functions. The fac-
tor for subadditive functions was later improved by Bei et al. [5], who also gave a
randomized O(1)-approximation mechanism for XOS functions, albeit in expo-
nential time. An improved O(1)-approximation mechanism for XOS functions
is also suggested in [24]. Finally, there is a line of related work under the large
market assumption (where no participant can significantly affect the market out-
come), which allows for polynomial time mechanisms with improved performance
[4,15,19,31].

On maximization of submodular functions subject to knapsack or other type
of constraints, there is a vast literature, going back several decades, see, e.g., [26,
33]. More recently, Lee et al. [23] provided the first constant factor randomized
algorithm for matroid and knapsack constraints. For knapsack constraints the
approximation factor was improved by Gupta et al. [17] and Chekuri et al. [8],
followed up by Feldman et al. [13] and Kulik et al. [22] who proposed their own
randomized algorithms, achieving an e-approximation.2

Table 1. A summary of our results on mechanisms, where α = (1 + ρ)
(
2 + ρ +√

ρ2 + 4ρ + 1
)

and ρ is an upper bound on the ratio of the optimal fractional solution
to the integral one, assuming that we can find the former in polynomial time. The
asterisk (∗) indicates that the corresponding mechanism runs in superpolynomial time.

Symmetric submod. Unweighted cut Weighted cut XOS

Rand. Determ. Rand. Determ. Rand. Determ. Rand.

Known 768∗ [5] – 564 [11] 5158 [11] 768∗ [5] – 768∗ [5]

This paper 10∗ 10.90∗, α 10 27.25 27.25 244∗

2 Notation and Preliminaries

We use A = [n] = {1, 2, . . . , n} to denote a set of n agents. Each agent i is asso-
ciated with a private cost ci, denoting the cost for participating in the solution.
We consider a procurement auction setting, where the auctioneer is equipped
with a valuation function v : 2A → Q≥0 and a budget B > 0. For S ⊆ A, v(S)
is the value derived by the auctioneer if the set S is selected (for singletons,
we will often write v(i) instead of v({i})). Therefore, the algorithmic goal in all
the problems we study is to select a set S that maximizes v(S) subject to the
constraint

∑
i∈S ci ≤ B. We assume oracle access to v via value queries, i.e., we

2 The algorithm of [22] can be derandomized, but only assuming an oracle for the
extension by expectation, of the objective function v.
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assume the existence of a polynomial time value oracle that returns v(S) when
given as input a set S.

We mostly focus on a natural subclass of submodular valuation functions
that includes cut functions, namely non-negative symmetric submodular func-
tions. Note that a non-constant v cannot be both symmetric and non-decreasing.
Throughout this work we make the natural assumption that v(∅) = 0.

Definition 1. A function v, defined on 2A for some set A, is submodular if
v(S ∪ {i}) − v(S) ≥ v(T ∪ {i}) − v(T ) for any S ⊆ T ⊆ A, and i �∈ T . Moreover,
it is non-decreasing if v(S) ≤ v(T ) for any S ⊆ T ⊆ A, while it is symmetric if
v(S) = v(A S) for any S ⊆ A.

We often need to argue about optimal solutions of sub-instances, from an
instance we begin with. Given a cost vector c, and a subset X ⊆ A, we denote
by cX the projection of c on X, and by c−X the projection of c on A X. We
also let opt(X, v, cX , B) be the value of an optimal solution to the restriction of
this instance on X. Similarly, opt(X, v, cX ,∞) denotes the value of an optimal
solution to the unconstrained version of the problem restricted on X. For the
sake of readability, we usually drop the valuation function and the cost vector,
and write opt(X,B) or opt(X,∞).

Finally, in Sects. 3–5 we make one further assumption: we assume that there
is at most one item whose cost exceeds the budget. This is without loss of
generality, but the proof is deferred to the full version [3].

Local Optima and Local Search. Given v : 2A → Q, a set S ⊆ A is called a
(1+ε)-approximate local optimum of v, if (1+ε)v(S) ≥ v(S {i}) and (1+ε)v(S) ≥
v(S ∪ {i}) for every i ∈ A. When ε = 0, S is called an exact local optimum of v.
Note that if v is symmetric submodular, then S is a (1 + ε)-approximate local
optimum if and only if A S is a (1 + ε)-approximate local optimum.

Approximate local optima produce good approximations in unconstrained
maximization of general submodular functions [12]. However, here they are of
interest for a quite different reason that becomes apparent in Lemmata 2 and 3.
We can efficiently find approximate local optima using the local search algorithm
Approx-Local-Search of [12].

Lemma 1 (inferred from [12]). Given a submodular function v : 2[n] → Q≥0

and a value oracle for v, Approx-Local-Search(A, v, ε) outputs a
(
1 + ε

n2

)
-

approximate local optimum using O
(
1
ε n3 log n

)
calls to the oracle.

2.1 Mechanism Design

In the strategic version that we consider here, every agent i only has his true
cost ci as private information. A mechanism M = (f, p) in our context consists
of an outcome rule f and a payment rule p. Given a vector of cost declarations,
b = (bi)i∈A, where bi denotes the cost reported by agent i, the outcome rule of
the mechanism selects the set f(b). At the same time, it computes payments
p(b) = (pi(b))i∈A where pi(b) denotes the payment issued to agent i. Hence,
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the final utility of agent i is pi(b)− ci. The properties we want to enforce in our
mechanism design problem are the following.

Definition 2. A mechanism M = (f, p) is

1. truthful, if reporting ci is a dominant strategy for every agent i.
2. individually rational, if pi(b) ≥ 0 for every i ∈ A, and pi(b) ≥ ci, for
every i ∈ f(b).
3. budget feasible, if

∑
i∈A pi(b) ≤ B for every b.

For randomized mechanisms, we use the notion of universal truthfulness,
which means that the mechanism is a probability distribution over deterministic
truthful mechanisms.

To design truthful mechanisms, we use the characterization by Myerson [25].
In particular, we say that an outcome rule f is monotone, if for every agent i ∈ A,
and any vector of cost declarations b, if i ∈ f(b), then i ∈ f(b′

i,b−i) for b′
i ≤ bi.

Myerson’s lemma implies that monotone algorithms admit truthful payment
schemes (often referred to as threshold payments). For all of our mechanisms, we
assume that the underlying payment scheme is given by Myerson’s lemma.
Mechanisms for Non-decreasing Submodular Valuations. In the mech-
anisms we design for non-monotone submodular functions, we will repeatedly
make use of truthful budget feasible mechanisms for non-decreasing submodular
functions as subroutines. The best known such mechanisms are due to Chen et
al. [9]. Here, we follow the improved analysis of [19] for the approximation ratio
of the randomized mechanism Rand-Mech-SM of [9], stated below which makes
use of the greedy subroutine Greedy-SM.

Rand-Mech-SM(A, v, c, B) [9]
1 Set A′ = {i | ci ≤ B} and i∗ ∈ arg maxi∈A′ v(i)
2 with probability 2

5
return i∗

3 with probability 3
5
return Greedy-SM(A, v, c, B/2)

We also optimize the deterministic mechanism of [9] to obtain Mech-SM.

Mech-SM(A, v, c, B)
1 Set A′ = {i | ci ≤ B} and i∗ ∈ arg maxi∈A′ v(i)

2 if (2 +
√

6) · v(i∗) ≥ opt(A {i∗}, B) then

3 return i∗

4 else
5 return Greedy-SM(A, v, c, B/2)

The subroutine Greedy-SM used above, is a greedy algorithm that picks
agents according to their ratio of marginal value over cost, given that this cost
is not too large. For the sake of presentation, we assume the agents are sorted
in descending order with respect to this ratio.
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Greedy-SM(A, v, c, B/2) [9]
1 Let k = 1 and S = ∅
2 while k ≤ |A| and v(S ∪ {k}) > v(S) and ck ≤ B

2
· v(S∪{k})−v(S)

v(S∪{k}) do

3 S = S ∪ {k}
4 k = k + 1

5 return S

Theorem 1 (inferred from [9,19]). Rand-Mech-SM runs in polynomial
time, it is universally truthful, individually rational, budget-feasible, and has
approximation ratio 5. Mech-SM is deterministic, truthful, individually ratio-
nal, budget-feasible, and has approximation ratio 3 +

√
6.

A discussion on how different results combine into Theorem 1, is deferred to
the full version [3].

3 A Simple Algorithm for Symmetric Objectives

This section deals with the algorithmic version of the problem: given a sym-
metric submodular function v, the goal is to find S ⊆ A that maximizes v(S)
subject to the constraint

∑
i∈S ci ≤ B. The main result is a deterministic 2e

e−1 -
approximation algorithm for symmetric submodular functions. For this section
only, the costs and the budget are assumed to be integral.

Since our function is not monotone, we cannot directly apply the result of
[32], which gives an optimal simple greedy algorithm for non-decreasing sub-
modular maximization subject to a knapsack constraint. Instead, our main idea
is to combine appropriately the result of [32] with the local search used for
unconstrained symmetric submodular maximization [12]. At a high level, what
happens is that local search produces an approximate solution S for the uncon-
strained problem, and while this does not look related to our goal at first sight,
v is “close to being non-decreasing” on both S and A S. This becomes precise
in Lemma 2 below, but the point is that running a modification of the algorithm
of [32], on both S and A S will produce at least one good solution.

LS-Greedy(A, v, c, B, ε)
1 S = Approx-Local-Search(A, v, ε/4)
2 T1 = Greedy-Enum-SM(S, v, cS , B)
3 T2 = Greedy-Enum-SM(A S, v, cA S , B)
4 Let T be the best solution among T1 and T2

5 return T

The first component of our algorithm is the local search algorithm of [12].
By Lemma 1 and the fact that v is symmetric, both S and A S are

(
1 + ε

4n2

)
-

approximate local optima. We can now quantify the crucial observation that v
is close to being non-decreasing within S and A S. Actually, we only need this
property on the local optimum that contains the best feasible solution.



8 G. Amanatidis et al.

Lemma 2. Let S be a
(
1 + ε

4n2

)
-approximate local optimum and consider X ∈

arg maxZ∈{S,A S} opt(Z, v, cZ , B). Then, for every T � X and every i ∈ X T ,
we have v(T ∪ {i}) − v(T ) > − ε

nopt(X,B).

The second component of LS-Greedy is an appropriate modification of the
greedy algorithm of [32] for non-monotone submodular functions. It first enu-
merates all solutions of size at most 3. Then, starting from each 3-set, it builds a
greedy solution, and it outputs the best among these Θ(n3) solutions. Here this
idea is adjusted for non-monotone functions.

Greedy-Enum-SM(A, v, c, B)
1 Let S1 be the best feasible solution of cardinality at most 3 (by enumerating all

such solutions)
2 S2 = ∅
3 for every U ⊆ A with |U | = 3 do
4 T = U, t = 1, A0 = A U
5 while At−1 
= ∅ do

6 Find θt = max
i∈At−1

v(T ∪ {i}) − v(T )

ci
, and let it be an element of At−1

that attains θt
7 if θt ≥ 0 and

∑
i∈T∪{it} ci ≤ B then

8 T = T ∪ {it}
9 At = At−1 {it}

10 t = t + 1

11 if v(T ) > v(S2) then
12 S2 = T

13 Let S be the best solution among S1 and S2

14 return S

It can be easily seen that at least one of S and A S contains a feasible
solution of value at least 0.5 opt(A,B). Then, Lemma 2 guarantees that within
this set, v is very close to a non-decreasing submodular function. This is sufficient
for Greedy-Enum-SM to perform almost as well as if v was non-decreasing.

Theorem 2. For any ε > 0, algorithm LS-Greedy achieves a
(

2e
e−1 + ε

)
-

approximation.

Theorem 2 suggests that a straightforward composition of two well known
greedy algorithms achieves a good approximation for any symmetric submod-
ular objective. From a mechanism design perspective, however, algorithm LS-
Greedy fails to be monotone and thus it cannot be used directly in the subse-
quent sections. In the next two sections, we remedy this problem.

4 Mechanisms for Symmetric Objectives: A First Take

Utilizing the algorithmic approach of Sect. 3 to get truthful mechanisms is not
straightforward. One of the reasons is that LS-Greedy is not monotone. We
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note that the algorithm Greedy-Enum-SM without the enumeration part is
monotone even for general objectives, but, to further complicate things, it is not
guaranteed to be budget-feasible or have a good performance anymore. Instead
of computing approximate local optima like in Sect. 3, in this section we bypass
most issues by computing exact local optima. The highlights of this simplified
approach are polynomial mechanisms for unweighted cut functions with greatly
improved guarantees. The price we have to pay, however, is that in general,
finding exact local optima is not guaranteed to run in polynomial time [28]. We
are going to deal further with the issue of running time in Sect. 5.

Below we give a randomized mechanism that reduces the known factor of
768 down to 10, as well as the first deterministic O(1)-approximation mech-
anism for symmetric submodular objectives. In both mechanisms, local search
produces a local maximum S for the unbudgeted problem and then the budgeted
problem is solved optimally on both S and A S, where v is non-decreasing by
Lemma 3. Thus, running the mechanism Rand-Mech-SM or Mech-SM of [9],
on T ∈ arg maxX∈{S,A S} opt(X,B), directly implies a good solution. Since the
resulting mechanisms are very similar, we state them together for succinctness.

Rand-Mech-SymSM(A, v, c, B) (resp. Det-Mech-SymSM(A, v, c, B))
1 S = Approx-Local-Search(A, v, 0) //find an exact local optimum
2 if opt(S, B) ≥ opt(A S, B) then
3 return Rand-Mech-SM(S, v, cS , B) (resp. Mech-SM(S, v, cS , B))

4 else
5 return Rand-Mech-SM(A S, v, cA S , B)

(resp. Mech-SM(A S, v, cA S , B))

The next simple lemma is crucial for the performance of both mechanisms.

Lemma 3. Let A be a set and v be a submodular function on 2A. If S is a local
maximum of v, then v is submodular and non-decreasing when restricted on 2S.

Since v is symmetric, if S is a local optimum, so is A S. Lemma 3 suggests
that we can use Rand-Mech-SM (resp. Mech-SM) on S and A S.

Theorem 3. The mechanism Rand-Mech-SymSM is universally truthful,
individually rational, budget-feasible, and has approximation ratio 10. The
mechanism Det-Mech-SymSM is deterministic, truthful, individually rational,
budget-feasible, and has approximation ratio 6 + 2

√
6.

Clearly, both mechanisms require superpolynomial time in general, unless
P = NP . Instead of opt(·, B) we could use the optimal solution of a frac-
tional relaxation of the problem, at the expense of somewhat worse guarantees.
This does not completely resolve the problem, but makes local search the sole
bottleneck. For certain objectives, however, we can achieve similar guarantees
in polynomial time and unweighted cut functions are the most prominent such
example.
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4.1 Polynomial Time Mechanisms for Unweighted Cut Functions

We begin with the definition of the problem when v is a cut function:
Budgeted Max Weighted Cut. Given a complete graph G with vertex set V (G) =
[n], non-negative weights wij on the edges, non-negative costs ci on the nodes,
and a positive budget B, find X ⊆ [n] so that v(X) =

∑
i∈X

∑
j∈[n] X wij is

maximized subject to
∑

j∈X cj ≤ B.
For convenience, we assume the problem is defined on a complete graph as

we can use zero weights to model any graph. In this subsection, we focus on the
unweighted version (all weights are equal to either 0 or 1). We call this special
case Budgeted Max Cut. The weighted version is considered in Subsect. 5.1.

The fact that local search takes polynomial time to find an exact local
optimum for the unweighted version [20] does not suffice to make Rand-
Mech-SymSM a polynomial time mechanism, since one still needs to compute
opt(S,B) and opt(A S,B). However, a small modification so that Rand-
Mech-SM(S,B) and Rand-Mech-SM(A S,B) are returned with probability
1/2 each, yields a randomized 10-approximate polynomial time mechanism.

Theorem 4. There is a randomized, universally truthful, individually rational,
budget-feasible mechanism for Budgeted Max Cut that has approximation ratio
10 and runs in polynomial time.

In order to design deterministic mechanisms that run in polynomial time,
we first optimize a mechanism of [2] to obtain Mech-SM-frac below, which is
applicable for non-decreasing submodular functions. The difference with Mech-
SM (Sect. 2), is that now we assume that a fractional relaxation can be solved
optimally and that the fractional optimal solution is within a constant of the
integral solution. Let v(·) be a non-decreasing submodular function, A′ = {i ∈
A | ci ≤ B}, and consider a relaxation of our problem for which we have an exact
algorithm. Moreover, suppose that optf (A′, v, cA′ , B) ≤ ρ ·opt(A′, v, cA′ , B) =
ρ · opt(A, v, c, B) for any instance, where optf and opt denote the value of an
optimal solution to the relaxed and the original problem respectively.

Theorem 5. Mech-SM-frac is deterministic, truthful, individually rational,
budget-feasible, and has approximation ratio ρ+ 2 +

√
ρ2 + 4ρ + 1. Also, it runs

in polynomial time as long as the exact algorithm for the relaxed problem runs
in polynomial time.

Mech-SM-frac(A, v, c, B)
1 Set A′ = {i | ci ≤ B} and i∗ ∈ arg maxi∈A′ v(i)

2 if
(
ρ + 1 +

√
ρ2 + 4ρ + 1

)
· v(i∗) ≥ optf (A {i∗}, v, c−i∗ , B) then

3 return i∗

4 else
5 return Greedy-SM(A, v, c, B/2)
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Hence, to obtain a deterministic mechanism for Budgeted Max Cut, we can
use an LP-based approach, and run Mech-SM-frac on an appropriate local
maximum. For this, we first need to compare the value of an optimal solution
of a fractional relaxation to the value of an optimal solution of the original
problem. Ageev and Sviridenko [1] studied a different Max Cut variant, using
the technique of pipage rounding, and we follow a similar approach to obtain the
desired bound for our problem as well. We defer the details to the full version
of the paper [3], but we should mention here that our analysis is carried out for
the weighted version of the problem, as we are going to reuse some results in
Subsect. 5.1, which deals with weighted cut functions.

Theorem 6. There is a LP relaxation for Budgeted Max Weighted Cut, so that
optf (I) ≤ 4 · opt(I), for any instance I.

Now, we may modify Det-Mech-SymSM to use optf instead of opt, and
Mech-SM-frac instead of Mech-SM. This results in the following deterministic
mechanism that runs in polynomial time.

Det-Mech-UCut(A, v, c, B)
1 Set A′ = {i | ci ≤ B} and i∗ ∈ arg maxi∈A′ v(i)

2 if 26.25 · v(i∗) ≥ optf (A′ {i∗}, B) then

3 return i∗

4 else
5 S = Approx-Local-Search(A, v, 0)
6 if optf (S ∩ A′, B) ≥ optf (A′ S, B) then

7 return Mech-SM-frac(S, v, cS , B)

8 else
9 return Mech-SM-frac(A S, v, cA S , B)

Theorem 7. Det-Mech-UCut is a deterministic, truthful, individually ratio-
nal, budget-feasible mechanism for Budgeted Max Cut that has approximation
ratio 27.25 and runs in polynomial time.

5 Mechanisms for Symmetric Objectives Revisited

Can the approach taken for unweighted cut functions be fruitful for other sym-
metric submodular objectives? In the mechanisms of Subsect. 4.1 the complexity
of local search can be a bottleneck even for objectives where an optimal fractional
solution can be found fast and it is not far from the optimal integral solution.
So, we return to the idea of Sect. 3, where local search runs in polynomial time
and produces an approximate local maximum; unfortunately, monotonicity in
each side of the partition does not hold any longer.

This means that the approximation guarantees of such mechanisms do not
follow in any direct way from existing work. Moreover, budget-feasibility turns
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out to be an even more delicate issue since it crucially depends on the (approx-
imate) monotonicity of the valuation function. Specifically, when a set X only
contains a very poor solution to the original problem, every existing proof of
budget feasibility for the restriction of v on X completely breaks down. Since
we cannot expect that an approximate local maximum S and its complement
A S both contain a “good enough” solution to the original problem, we need
to make sure that Greedy-SM never runs on the wrong set.

The mechanism Det-Mech-UCut for the unweighted cut problem seems to
take care of this and we are going to build on it, in order to propose mechanisms
for arbitrary symmetric submodular functions. To do so we replace the constant
26.25 by α = (1 + ρ)

(
2 + ρ +

√
ρ2 + 4ρ + 1

)
− 1 and we find an approximate

local maximum instead of an exact local maximum. Most importantly, in order
to achieve budget-feasibility we use a modification of Mech-SM-frac (which we
call Mech-SM-frac-var, described in our full version [3]) that runs Greedy-
SM with a slightly reduced budget. The parameter ε′ that appears in the descrip-
tion of the mechanism below is determined by the analysis and depends only on
the constants ρ and ε.

Det-Mech-SymSM-frac(A, v, c, B, ε)
1 Set A′ = {i | ci ≤ B} and i∗ ∈ arg maxi∈A′ v(i)

2 if α · v(i∗) ≥ optf (A′ {i∗}, B) then

3 return i∗

4 else
5 S = Approx-Local-Search(A, v, ε′)
6 if optf (S ∩ A′, B) ≥ optf (A′ S, B) then

7 return Mech-SM-frac-var(S, v, cS , B, (1 − (α1 + 2)ε′))

8 else
9 return Mech-SM-frac-var(A S, v, cA S , B, (1 − (α1 + 2)ε′))

Theorem 8 below works for any objective for which we can establish a con-
stant upper bound ρ on the ratio of the fractional and the integral optimal
solutions. We view it as the most technically demanding result of this work.

Theorem 8. For any ε > 0, Det-Mech-SymSM-frac is a deterministic,
truthful, individually rational, budget-feasible mechanism for symmetric submod-
ular valuations, that has approximation ratio α + 1 + ε and runs in polynomial
time.

5.1 Weighted Cut Functions

Let us return now to the Max Cut problem, and consider the weighted ver-
sion. An immediate implication of Theorem 8 is that we get a deterministic
polynomial-time mechanism for Budgeted Max Weighted Cut with approxima-
tion ratio 58.72. This is just the result of substituting ρ = 4 in the formula
for α.
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However, by further exploiting the proof of Theorem6, we can prove
the following improved result that matches the approximation guarantee for
unweighted cut functions.

Theorem 9. There is a deterministic, truthful, individually rational, budget-
feasible mechanism for Budgeted Max Weighted Cut that has approximation ratio
27.25, and runs in polynomial time.

6 An Improved Upper Bound for XOS Objectives

In [5] a randomized, universally truthful and budget-feasible 768-approximation
mechanism was introduced for XOS functions. For several of our results the best
previously known upper bound follows from this work. In this section we show
that one can slightly modify their mechanism to improve its performance.

Definition 3. A valuation function, defined on 2A for some set A, is XOS
or fractionally subadditive, if there exist non-negative additive functions
α1, α2, . . . , αr, for some finite r, such that v(S) = max{α1(S), α2(S), . . . ,
αr(S)}.

Note that we define non-decreasing XOS functions. However, there is a rel-
atively straightforward way to extend any result to general XOS functions (as
defined in [16]). Like the mechanism of Bei et al., the mechanism of Theorem 10
below is randomized and has superpolynomial running time. In particular, it
requires a demand oracle.

Theorem 10. There is a universally truthful, individually rational, budget-
feasible mechanism for XOS objectives that has approximation ratio 244.
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Abstract. We consider the problem of maximizing the spread of influ-
ence in a social network by choosing a fixed number of initial seeds
— a central problem in the study of network cascades. The majority
of existing work on this problem, formally referred to as the influence
maximization problem, is designed for submodular cascades. Despite the
empirical evidence that many cascades are non-submodular, little work
has been done focusing on non-submodular influence maximization.

We propose a new heuristic for solving the influence maximization
problem and show via simulations on real-world and synthetic networks
that our algorithm outputs more influential seed sets than the state-of-
the-art greedy algorithm in many natural cases, with average improve-
ments of 7% for submodular cascades, and 55% for non-submodular
cascades. Our heuristic uses a dynamic programming approach on a
hierarchical decomposition of the social network to leverage the rela-
tion between the spread of cascades and the community structure of
social networks. We present “worst-case” theoretical results proving that
in certain settings our algorithm outputs seed sets that are a factor of
Θ(

√
n) more influential than those of the greedy algorithm, where n is

the number of nodes in the network.

1 Introduction

A cascade is a fundamental social network process in which a number of nodes,
or agents, start with some property that they then may spread to neighbors.
Network structure has been shown relevant for a wide array of real world cascade
processes including the adoption of products [6], farming technology [13], medical
practices [12], participation in microfinancing [4], and the spread of information
over social networks [26].
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How to place a limited number of initial seeds, in order to maximize the
spread of the resulting cascade, is a natural question known as Influence-
Maximization [16,22,23,32,35]. This problem requires as input a network, a
cascade process, and the number of initial seeds. For example, which students
can most effectively be enrolled in an intervention to decrease student conflict
at a school [34]?

To study InfluenceMaximization, we first need to understand how cas-
cades spread. While many cascade models have been proposed [2,31,42], they
can be roughly divided into two categories: submodular and non-submodular.

In submodular cascade models, such as the Independent Cascade model
defined in Sect. 2 [22,23,32], a node’s marginal probability of becoming infected
after a new neighbor is infected decreases when the number of previously infected
neighbors increases [22]. In non-submodular cascade models the marginal proba-
bility of being infected may increase as more neighbors are infected. For example,
in the Threshold model [20], each node has a threshold for the number of infected
neighbors after which it too will become infected. If a node has a threshold of
2, then the first infected neighbor has zero marginal impact, but the second
infected neighbor causes this node to become infected with probability 1. Unlike
submodular cascades, non-submodular cascades require well-connected regions
to spread [7].

For InfluenceMaximization in submodular cascades, a straightforward
greedy algorithm efficiently finds a seed set with influence at least a (1 − 1/e)
fraction of the optimal; but for general non-submodular cascades, it is NP-hard
even to approximate InfluenceMaximization to within a n1−ε factor of opti-
mal [22].

Unfortunately, empirical research shows that most cascades are non-
submodular [3,27,36], and in this case little is known about InfluenceMaxi-
mization other than worst-case hardness. InfluenceMaximization becomes
qualitatively different in the non-submodular setting. In the submodular case,
one should put as much distance between the k initial adopters as possible, lest
they erode each other’s effectiveness. However, in the non-submodular case, it
may be advantageous to place the initial adopters close together to create syn-
ergy and yield more adoptions. Thus, the intuition that it is better to saturate
one market first, and then expand implicitly assumes non-submodular influence.
However, this synergy renders the problem intractable. Schoenebeck and Tao [37]
show that even if the community structure is exactly hierarchical and is given to
the algorithm, InfluenceMaximization remains intractable to approximate
in non-submodular settings. This shows that we cannot expect our algorithm to
be provably optimal.

However, as we will illustrate, greedy approaches can perform poorly in these
settings. Yet, much of the work following Kempe et al. [22], which proposed
the greedy algorithm, has attempted to make greedy approaches efficient and
scalable [8,9,11,30,39,41]. New ideas seem necessary to design effective heuristics
for non-submodular InfluenceMaximization.
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We observe that structural problems for networks—such as community
detection—are also, in general NP-complete, but many efficient heuristics
already exist [10,21]. There are reasons to believe that such problems are not
intractable in cases likely to arise in practice [1]. This work asks whether we can
design heuristics for InfluenceMaximization that work well for both submod-
ular and non-submodular cascades, and what new algorithmic techniques might
efficiently find hidden synergies necessary to maximize influence.

1.1 Contributions

We provide a new heuristic for solving InfluenceMaximization designed to
work for both submodular and non-submodular cascades. Our algorithm takes
as input not only a network, but a hierarchical decomposition of the network.
It then uses a dynamic programming technique to search for an influential seed
set of nodes. We provide the following results concerning our algorithm1:

1. We show theoretically that in certain cases, our algorithm outputs seed sets
that are a factor of Θ(

√
n) more influential than those of the state-of-the-

art greedy algorithm, where n is the number of nodes in the network. This
stylized example illustrates the intuition behind our algorithm, as well as the
poor performance of greedy.

2. We empirically compare our algorithm to the greedy algorithm via simula-
tions on real-world and synthetic networks for a variety of cascade models.
Our algorithm appears to do at least as well as greedy and substantially better
for non-submodular cascades. Our algorithm achieves average improvements
of 7% for submodular cascades and 55% for non-submodular cascades, per-
forming 266% better in one exceptional case.

3. We verify the importance of network structure by showing that the quality of
the hierarchical decomposition impacts the quality of our algorithm’s output.

4. Finally, we define a generalization of our algorithm to a “message-passing”
algorithm. While it provably returns seed sets of at least the quality of our
dynamic programming algorithm, it typically only offers marginal improve-
ment in the seed set quality while incurring a greater running time. However,
we hope that the versatility the message-passing approach can help with
future work than focuses on making more scalable versions of our algorithm.
Due to space constraints, the message-passing algorithm can be found in the
appendix.

1.2 Related Work

Following the work of Kempe et al. [22], which proposed the greedy algorithm,
extensive work has constructed efficient and scalable algorithms and heuristics
InfluenceMaximization [8,9,11,30,33,39,41].

1 See the full version for all of these results at https://arxiv.org/abs/1609.06520.

https://arxiv.org/abs/1609.06520
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Wang et al. [41] partition the network into communities to inform a greedy-
based algorithm in order to increase scalability. The heuristic algorithms pre-
sented in [8,9] rely on input parameters from the user that sacrifice accuracy
for speed. The authors state that fine tuning the input parameters can make
solving InfluenceMaximization fast and accurate. Borgs et al. [5] provably
show fast running times when the influence function is the independent cascade
model. Tang et al. [39] extend this work to provide an algorithm that maintains
the same theoretical guarantees as the greedy algorithm presented in [22] and
is efficient in practice. Lucier et al. [30] show how to parallelize (in a model
based on Map Reduce) the subproblem of determining the influence of a par-
ticular seed. Additional work has been done to speed up algorithms for solving
InfluenceMaximization by providing techniques to efficiently compute the
total influence of a seed set [11,24].

Leskovec et al. [28] consider the analogous problem of effectively placing sen-
sors in a network in order to effectively detect an outbreak in the network. They
present the algorithm CELF that uses a greedy approach, but leverages the sub-
modularity of the cascade to reduce the amount of time it takes to evaluate the
spread of the cascade. Moreover, CELF is built upon by the work in [17,18],
which present modifications to CELF to make an even more cost effective solu-
tion to InfluenceMaximization. Nguyen and Zheng [33] present an algorithm
based on belief propagation for InfluenceMaximization. The algorithm works
by systematically removing edges until the resulting graph is a tree, and then
running a belief propagation algorithm on the scaled-down network. The article
shows that the performance of their algorithm is not substantially worse than
that of the greedy algorithm.

In contrast to the aforementioned work, our goal is not to deliver an algo-
rithm that is more efficient and scalable, but rather to present an algorithm that
finds higher quality seed sets. Cordasco et al. [14] recently published an algo-
rithm aimed at improving the quality of the seed set discovered, but is limited to
deterministic influence patterns where each nodes has a fixed integer threshold.
This algorithm greedily maximizes the total influence instead of the total num-
ber of infected nodes at the end of the cascade. They show empirically that their
algorithm finds higher quality seed sets than the traditional greedy algorithm.
On the other hand, our work is focused on the more general and traditional
stochastic variant of InfluenceMaximization. Additionally, with the excep-
tion of [33], the prior work is based on a greedy-like approach and suffers from
the short-comings of this approach. Our algorithm uses a dynamic programming
framework, and is fundamentally different.

Other variations of InfluenceMaximization have also been considered,
e.g. [19,38].

2 Preliminaries

A real function f on sets is submodular if the marginal gain of from adding
an element to a set A is at least as large as the marginal gain from adding the
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same element to a superset B of A. Formally, f is submodular if for all A, B, u
where A ⊆ B we have f(A ∪ {u}) − f(A) ≥ f(B ∪ {u}) − f(B).

Cascade Model. A cascade model is a triple (G,F ,S) where G = (V ,E) is an
unweighted graph; F = {fv : {0, 1}|Γ(v)| → [0, 1]}v∈V is a collection of local
influence functions, where Γ(v) is the set of v’s neighbors, fv takes in the set
of infected neighbors of a node v, and produces a real value which encodes the
“influence” of this set on v; and S is the subset of the vertices that are initially
infected. The cascade will proceed in rounds. In round 0, the set S is infected
and each of the remaining vertices is assigned a threshold value θv ∈ [0, 1] drawn
uniformly at random. At each subsequent round, a vertex v becomes infected
if and only if fv(T ) ≥ θv, where T is the set of v’s infected neighbors. We will
require fv to be monotone for each v.

We denote the global influence function as σ(S) which is the expected
total number of infected vertices due to the influence of the initial seed set S.

It can be shown that if fv is submodular for each v, then the global influence
function σ is submodular too [32]. Thus, we say that a model of cascade is
submodular if fv is submodular for each v, and is non-submodular otherwise.

The same research that shows the f usually fail to be submodular [3,27,36]
shows that this submodularity fails in one particular way: the second adopting
neighbor is, on average, more influential than the first; and that after this point,
each subsequent adopting neighbor’s marginal influence decreases. We call such
functions 2-quasi-submodular . Formally, f is 2-quasi-submodular if for all
A, B, A ⊆ B, |A|, |B| ≥ 1 and u �∈ A,B, we have f(A ∪ {u}) − f(A) ≥ f(B ∪
{u}) − f(B); and for v �= u, we have f({u}) − f(∅) ≤ f({u, v}) − f({v}).

Any nonzero submodular influence function fv can be turned into a 2-quasi-
submodular function by sufficiently decreasing the value of fv(·) on singleton
sets.

For any local influence function fv, we define the q-deflated version fq−defl
v

of fv as follows:

fq−defl
v (S) =

{
q · fv(S) |S| = 1
fv(S) o.w.

Specific Cascade Models. The two popular cascade models studied in the Influ-
enceMaximization literature are the Independent Cascade model (ICM) and
the Linear Threshold model (LTM). In the Independent Cascade model , each
newly infected node infects each currently uninfected neighbor in the subsequent
round with some fixed probability p. Thus, for all v,

f ICM
v (S) = 1 − (1 − p)|S|.

In the Linear Threshold model , each node has a threshold θv ∈ [0, 1],
each of v’s neighbors u has influence bu,v on v such that

∑
u∈Γ(v) bu,v ≤ 1, and v

becomes infected when the sum of the influences of the infected neighbors meets
or surpasses v’s threshold.
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We define the Deflated Independent Cascade model (DICM) which
takes two parameters: p, q ∈ [0, 1] to be the q-deflated version of the Independent
Cascade model.

In the S-Cascade model (SCM) we have that

fSCM
d (S) =

(
|S|
2d

)2

(
|S|
2d

)2

+
(
1 − |S|

d

)2 .

The fraction |S|/d is the fraction of infected neighbors of a given node. This
is a modified version of the Tullock Cost function [40] with power 2.

We note that the Independent Cascade model and the Linear Threshold
model are submodular, while the q-Deflated Independent Cascade model (for
q < 1 − p/2) and S -Cascade are not. Figure 1 illustrates the local influence
functions of the various cascade models.
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Fig. 1. The local influence functions where the parameters of the ICM and DICM and
the influence weights of LTM are all .1; and the vertex’s degree in LTM and SCM is 10.

Synthetic Network Model. Most existing synthetic models fail to have mean-
ingful asymmetry between nodes, or significant community structure, or both.
Therefore, we design our own synthetic network model. The directed (d, �, t)-
hierarchical network model creates a random network on 2d nodes as follows:
We create an edge-weighted complete binary tree of depth d, each leaf represent-
ing a vertex of the graph. The weights are drawn i.i.d from a Binomial(�, 1/2)
distribution. Each node v issues t random edges, each generated via a random
walk — illustrated in Fig. 2. Each random walk starts at v. At each step in the
walk, an outgoing edge is chosen proportional to its weight (we disallow exiting
the node along the same edge that the walk arrived at the node). The walk
terminates when it arrives at a leaf node. If a terminating node is duplicated,
we draw again, which keeps the graph simple.

As � grows larger, this approaches the hierarchical Kleinberg model [25]. But
for moderately sized �, there is a non-trivial amount of asymmetry introduced
into the graph — some subcommunities are more influential than others.
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Fig. 2. Illustrative example of a random walk to generate an edge in our synthetic
network model.

Hierarchical Decomposition. We define a hierarchical decomposition of a
graph G to be a rooted full binary tree T = (VT ,ET ) where the leaves of T
correspond to the vertices of G. For a tree node v ∈ VT , define T (v) to be the
subset of vertices in G corresponding to the leaves of the subtree rooted at v.
Let the height of v ∈ VT be defined as the length of the path to v’s deepest
descendent.

We use the recently proposed cost function of Dasgupta [15] to evaluate
the quality of a hierarchical decomposition. Let lcaT (u, v) be the least common
ancestor of u, v ∈ V in the tree T . Then we define

Cost(T ) =
∑

{u,v}∈E

|T (lca(u, v))|

which sums the number of leaves in the smallest subtree containing each edge.

Influence Maximization. An InfluenceMaximization Instance consists of a
graph G = (V ,E), an influence function σ, and an integer k. Given an Influence-
Maximization Instance, the goal is to find a set S of k nodes as to maximize σ(S).

The greedy algorithm [22] for an InfluenceMaximization Instance start
with a tentative seed set T = ∅ and for k rounds, simply adds arg maxv∈V σ(T ∪
{v}) to T .

3 DPIM: Dynamic Programming Influence Maximization
Algorithm

The Dynamic Programming Influence Maximization Algorithm (DPIM), for-
mally specified in Algorithm 1, takes as input a graph G, and corresponding
hierarchical decomposition T , an integer k, and a global influence function σ(·)
and outputs a subset of vertices S ⊆ V such that |S| = k and S is a highly influ-
ential set of seeds. DPIM seeks to maximize the total influence of a fixed-sized
seed set S by performing dynamic programming upon T .

For each node v ∈ T , and each i ∈ {0, 1, . . . ,min(|T (v)|, k)}, the algorithm
stores A[v, i], a choice of i seeds in T (v) which seeks to maximize the total influ-
ence in G. Starting at the leaves of the tree, and moving up level by level until
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reaching the root, DPIM processes each tree node. For each leaf node v ∈ T ,
we store A[v, 0] = ∅ and A[v, 1] = {v}. For each internal node v ∈ T , which has
children vL and vR, we set A[v, i] = A[vL, j]∪A[vR, i− j] where j ∈ {0, 1, . . . , i}
is selected as to maximize σ(A[vL, j] ∪ A[vR, i − j]). Thus the algorithm opti-
mally splits the seeds between a tree nodes two subtrees given how the algorithm
has already determined that each subtree should allocate any particular number
seeds.

Algorithm 1. DPIM: Dynamic Programming Influence Maximization
Algorithm
Input: G = (V , E), T = (VT , ET ), σ(·), k
Output: S ⊂ V such that |S| = k
Let A[·, ·] = VT × [k] → 2V , such that A[vT , j] stores a choice of j seeds in T (vT ).
Let r ∈ VT be the root of T and h be its height.
for each height i = 0, 1, . . . , h do

for each node v ∈ VT with height i do
if i = 0 then

A[v, 0] = ∅
A[v, 1] = {v}

else
Let vL, vR be the left and right children of v, respectively.
for each i = 0, 1, . . . , min{|T (v)|, k} do

j = arg max
j∈{0,1,...,i}

σ(A[vL, j] ∪ A[vR, i − j])

A[v, i] = A[vL, j] ∪ A[vR, i − j]
end

end

end

end
return A[r, k]

The analysis of the running time for DPIM is straightforward.

Theorem 1. Given a graph G = (V ,E) with |V | = n, |E| = m, fixed positive
integers k, r, and a hierarchical decomposition T , DPIM calls the σ(·) oracle
O(nk2) times.

Proof. Observe that, for each node in T , DPIM makes O(k2) queries to σ(·). The
number of nodes in T is exactly 2n − 1.

Hence, the number of oracle calls in DPIM is O(nk2).

Note that this is a factor of k more than the greedy algorithm, which requires
only O(nk) calls to the oracle. The execution of a single query to σ(·) can
be approximated by repeatedly, r times, simulating the cascade process and
returning the average number of infected vertices. This can be done in time
O(mr) because simulating the cascade requires at most simulating the cascade
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on each edge in G. However, there are often techniques to speed up the oracle
access beyond simply running the cascade [5], but they are beyond the scope of
this work.

4 Experimental Results About DPIM

In this section, we discuss empirical results of DPIM. See the full version for
theoretical results and further empirical analysis.

4.1 Experimental Setup

We execute DPIM and the greedy algorithm from [22] on a variety of networks
and cascades to test the relative quality of solutions.

Cascade Models. We adopt the two common submodular cascade models from
the literature: the linear threshold model and the independent cascade model,
defined in Sect. 2, and two non-submodular cascades:

(I) Independent Cascade(IC): We uniformly assign the probability p = 1%,
thus v with � infected neighbors is infected with probability 1 − (0.99)�.

(II) Linear Threshold (LT): For each node v, we assign each of u ∈ Γ(v) to
have 1/|Γ(v)| influence on v.

(III) Deflated Independent Cascade (DIC): We uniformly assign the probability
p = 1%, thus v with � = 1 infected neighbors is infected with probabilty
0.1% (q = 0.1) and with � ≥ 2 infected neighbors is infected with proba-
bility 1 − (0.99)�.

(IV) S-Cascade model (SCM): The influence on any given node v is

(x/2)2

(x/2)2 + (1 − x)2
,

where x is the fraction of v’s neighbors that are infected.

Both of these algorithms require access to an oracle for σ(·), which is also
required to evaluate the effectiveness of the algorithms. To implement this oracle,
we simulate the cascade 100 times, resampling the randomness for the cascade
each time (using pseudorandomness from the standard C++ library) and return
the average number of infections.

Networks. We use two real-world networks (from [29]) and two synthetic net-
works, summarized in Table 1. In the arXiv collaboration network (ca-GrQc), the
vertices are authors of e-print scientific articles and edges represent coauthorship
relations. The ego-Facebook network is largest such network provided by [29].
This network denotes the facebook friendship ties from a single person’s (ego’s)
set of friends. The ego vertex has been removed. Furthermore, we generate two
synthetic networks by first sampling from directed (d, �, t)-hierarchical network
model using parameters (10, 50, 50) and (11, 50, 50) (synthetic-1 & synthetic-2,
resp.), and then making the graph simple and undirected in the natural way.
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Table 1. Networks used to evaluate the effectiveness of our algorithm.

Name Nodes Edges

synthetic-1 1,024 51,200

synthetic-2 2,048 102,400

ca-GrQc 5,276 28,827

ego-Facebook 1,034 53,498

Algorithms for Hierarchical Decomposition. Lastly, in order to evaluate
our algorithm, we present 4 algorithms for generating a hierarchical decomposi-
tion of any network. The algorithms we used in our simulations are implemented
as follows:

(I) Random Pair: Each node starts in its own partition, and partitions are
joined randomly until all of the nodes are contained in one partition.

(II) Random Edge: Each node starts in its own partition, and partitions are
joined by contracting a random edge between partitions. If no edges remain
between the partitions, partitions are merged randomly until all of the
nodes are contained in one partition.

(III) Jaccard Similarity: Each node starts in its own partition, and pairs of par-
titions (A,B), for A,B ⊂ V are joined based on which pair maximizes

|Γ(A) ∩ Γ(B)|
|Γ(A) ∪ Γ(B)| ,

where Γ(X ⊂ V ) =
⋃

v∈X Γ(v).
(IV) METIS-based: The whole network starts as one partition; using

METIS [21], partitions are recursively divided into two partitions until
each partition contains only a single node.

4.2 Algorithm Evaluation

Performance of DPIM. The results of the simulations we ran are shown
in Fig. 3. For each execution of DPIM, we used the METIS-based hierarchical
decomposition algorithm to construct a hierarchical decomposition of the net-
work.

Considering cascades across all four networks with seed set size 20, DPIM
increases influence on average by 8% for ICM, 6% for LTM, 22% for DICM, and
88% for SCM. Surprisingly, DPIM performs marginally better than the greedy
algorithm even for submodular cascades. As predicted, when the cascade is
non-submodular, DPIM outperforms the greedy algorithm by a significant
amount. However, gains were more impressive for synthetic-2, ca-GrQc, and
ego-Facebook — including an 266% increase in influence for the SCM cascade
on the ego-Facebook network — than for synthetic-1, where we see only mar-
ginal improvement even when the cascade is non-submodular. Table 2 contains,
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Fig. 3. Comparison of performance: DPIM vs. Greedy. The rows from top to bottom
correspond to synthetic-1, synthetic-2, ca-GrQc,and ego-Facebook, respectively. For
each plot, the x-axis is k and the y-axis is the number of total infections at the end of
the cascade.
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for k = 20, the approximated expected total influence values for each simulation
rounded to the nearest integer. Figure 3 includes charts of the improvement for
all k.

In the full version of the paper, we present further empirical results and
generalize DPIM to a message passing algorithm.

Table 2. Expected total influence of the final seed sets of size 20 chosen by both
algorithms for each of the simulations (rounded to the nearest integer).

synthetic-1 synthetic-2 ca-GrQc ego-Facebook

Greedy DPIM Greedy DPIM Greedy DPIM Greedy DPIM

ICM 65 70 71 80 30 31 125 131

LTM 70 74 74 81 126 130 65 70

DICM 57 64 53 64 20 30 121 129

SCM 96 102 82 103 51 79 24 88

5 Future Work

DPIM is typically not as fast as naive greedy, and to be useful in practice, it
would greatly help if it were more scalable. We believe that this will prove to be
the case. For example, we could stop the recursion before exploring the entire
hierarchical decomposition. We might stop dividing if a subtree does not appear
to have any additional community structure, and then run a heuristic (such as
degree or greedy) to process the rest of the subtree. The intuition here is that
dynamic programming works best where the network has strong community
structure, so where no structure exists, it may not provide much added benefit.
Additionally, the same techniques that have made the greedy algorithm more
scalable might be adopted to our dynamic programming framework. Finally, we
think that the versatility of when to schedule updates in the “message-passing”
algorithm (which generalizes DPIM) may be useful in scaling our approach.

Another possible direction of future exploration is to try additional hierar-
chical decomposition techniques. Interestingly, DPIM can be seen as a way to
test hierarchical decomposition techniques. Decompositions that perform better
are intuitively finding a better decomposition.
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Abstract. A dynamics retains a specific information about the start-
ing state of a networked multi-player system if this information can be
computed from the state of the system also after several rounds of the
dynamics. Information retention has been studied for the function that
returns the majority of the states in systems in which players have states
in {0, 1} and the system evolves according to the majority dynamics: each
player repeatedly updates its state to match the local majority among
neighbors only. Positive and negative results have been given for prob-
abilistic settings in which the initial states of the players are chosen at
random and in worst-case settings in which the initial state is chosen
non-deterministically.

In this paper, we study the (lack of) retention of information on the
majority state (that is, which states appear in more players) for a gen-
eralization of the majority dynamics that we call heterogeneous majority
dynamics. Here, each player x changes its state from the initial state
b(x) ∈ {0, 1} to the opposite state 1 − b(x) only if there is a surplus
greater than ax of neighbors that express that opinion. The non-negative
player-dependent parameter ax is called the stubbornness of x. We call
stubborn the players which never change opinion when they are part of the
majority. We give a complete characterization of the graphs that do not
retain information about the starting majority; i.e., they admit a starting
state for which the heterogeneous majority dynamics takes the system
from a majority of 0’s to a majority of 1’s. We call this phenomenon
“minority becomes Majority” (or mbM) and our main result shows that
it occurs in all graphs provided that at least one player is non-stubborn.
In other words, either no player in the majority will ever change its state
(because they are all stubborn) or there is a starting configuration in
which information regarding the majority is not retained and minority
becomes Majority.

Our results are closely related to discrete preference games, a game-
theoretic model of opinion formation in social networks: an interplay
of internal belief (corresponding to the initial state of the player) and of
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social pressure (described by the heterogeneous majority dynamics). Our
results show that, because of local strategic decisions, the global majority
can be subverted.

1 Introduction

In this paper we study the information retention problem with respect to the
asynchronous heterogeneous majority dynamics. In the homogeneous majority
dynamics (or, simply, majority dynamics) players sit at the vertices of a social
graph, each player starts with an opinion in {0, 1} and repeatedly updates it
to match the opinion of the majority of its neighbors. After some number of
rounds, an election by majority takes place and we ask whether the information
regarding the starting majority is retained in the election outcome, hence the
name of information retention. To avoid ties it is assumed that the number
of players is odd. The retention of information in majority dynamics has been
studied in a probabilistic setting in which the initial opinions are independently
conditioned on the majority and biased towards it. Positive and negative results
have been given by [18] and, more recently, in [21] both for the synchronous
model, in which all opinions are updated simultaneously, and the asynchronous
model, in which at each round a single player updates her opinion. The retention
of information in the majority dynamics in a worst-case setting has been first
studied by Berger [9] that constructed a series of graphs in which the majority
dynamics always results in the adoption of the opinions of the players in a small
minority group. Actually, the phenomenon of a minority becoming Majority (or,
the mbM phenomenon) is not restricted to some families of graphs but instead
is a feature of the majority dynamics. Roughly speaking, every graph, except
essentially for the complete graph and for the empty graph, admits an initial
distribution of opinions which leads the minority opinion to become majority [3]
(see also [6] for experimental results about this phenomenon).

Our contribution. In this paper we study the retention of information of majority
in the worst-case (or the mbM phenomenon) for the asynchronous heterogeneous
majority dynamics played on a graph G with vertices {1, . . . , n}, each corre-
sponding to a player with a binary state. In the heterogeneous majority dynamics,
each player x is described by its stubbornness ax that measures the willingness
of the player to adopt (and keep) an opinion that differs from its initial opinion.
More precisely, we distinguish between the initial opinion of a player x, called
the belief b(x), and its current opinion s(x). The belief is internal to the player
and is never explicitly revealed whereas the opinion is publicly known. A player
x with belief b(x) can make a move from its current opinion s(x) = b(x) to its
revised opinion s(x) = 1 − b(x) only if d1−b(x)(x) − db(x)(x) > ax where, for
c = 0, 1, dc denotes the number of neighbors with opinion c. Similarly, x makes
a move from s(x) = 1 −b(x) to s(x) = b(x) if d1−b(x)(x) − db(x)(x) ≤ ax. A set
of opinions is in equilibrium if no player can make a move.

We say that a pair (G, (a1, . . . , an)) consisting of a graph G (we assume that
n is odd so that majority is well-defined) and stubbornness values for the players,
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is subvertable if there exist beliefs (b(1), . . . ,b(n)) with a majority of 0’s and a
sequence of moves that goes from the initial truthful state, in which s(x) = b(x)
for each vertex x, to an equilibrium state with a majority of 1’s. We call such a
belief assignment subvertable.

Our main contribution is a characterization of the subvertable pairs and
shows that a pair (G, (a1, . . . , an)) is subvertable unless all players are stubborn.
Roughly speaking, a stubborn player never changes its initial opinion if it hap-
pens to be in the starting majority. In order to formalize this definition, let us
consider vertex x with b(x) = 0 and d0(x) neighbors with opinion 0 and d1(x)
neighbors with opinion 1, and suppose that the majority (that is at least (n+1)/2
vertices) has belief 0 (and, thus, d1(x) ≤ (n − 1)/2). Clearly, if its degree d(x)
satisfies d(x) ≤ ax, then player x cannot make a move from s(x) = 0 to s(x) = 1.
If d(x) ≥ n − ax − 1 then d1(x) − d0(x) = 2d1(x) − d(x) ≤ n − 1 − d(x) ≤ ax

and thus vertex x cannot make a move from s(x) = 0 to s(x) = 1. Instead, it
is not hard to see that if d(x) ∈ [ax + 1, n − ax − 2], there are values of d0(x)
and d1(x) such that vertex x can move from s(x) = 0 to s(x) = 1 The same
reasoning applies for vertices x with b(x) = 1 in case majority is 1. We have
thus the following definition.

Definition 1 (Stubborn vertex). Vertex x with degree d(x) and stubbornness
ax is stubborn if ax ≥ min {d(x), n − d(x) − 1} .

Clearly, if all vertices are stubborn then majority cannot be subverted as no
vertex x in the majority will ever make a move from s(x) = b(x) to s(x) =
1 − b(x). The main result of this paper shows that:

if there is at least one non-stubborn vertex then there is a subvertable belief
assignment.

We find that this sharp phase transition is highly surprising, since it implies
that a minority could become majority (for some stubbornness levels) even in
very dense graphs (e.g., clique minus a single edge) and in very sparse graphs
(e.g., a graph consisting of a single edge plus isolated nodes). Hence, it highlights
an interesting lack of robustness of social networks with respect to information
retention. This weakness may be relevant to explain some phenomena arising on
social media, such as the wide diffusion of misinformation.

To prove this result we design a polynomial-time algorithm that takes as
input the social network G and players’ stubbornness a1, . . . , an, such that there
is at least one non-stubborn vertex, and returns a subvertable belief assignment
for this instance. Actually, the algorithm considers the simplest belief assignment
from which minority becomes Majority, namely one in which the minority con-
sists of n−1

2 vertices. However, we remark that our characterization does not rule
out that the subvertable belief assignment can have smaller minorities (even if
there are instances on which only very large minorities can become majority, e.g.
when there is a single non-stubborn vertex), and our algorithm can be adapted
and optimized in order to find these minorities (see, e.g., [6]).
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A possible interpretation of our result comes from a game theoretic model
of how opinions are formed in societies (see the discussion on discrete prefer-
ence games below). Within this context, the heterogeneous majority dynamics
describes the social pressure on opinions expressed by the players in a social net-
work. Our result shows that social networks are extremely vulnerable to social
pressure since there always exists a subvertable majority unless all vertices are
stubborn and never change their mind (in which case we do not have much of a
social network). This is particularly negative as an external adversary might be
able to orchestrate a sequence of steps of the underlying dynamics so as to reach
the state in which majority is subverted. In principle, though, this could be very
difficult since there could be different sequences of updates that lead to different
equilibria with different majorities and the adversary has to be very careful in
scheduling the best response moves.

Our characterization instead proves that, as long as we consider subvertable
belief assignments with a minority of n−1

2 players, a stronger result is possible:
there is always one single swing player whose best response in the initial state is
to change its opinion and this leads to a state in which any sequence of moves
leads to an equilibrium in which majority has been subverted. In other words,
the adversary that wants to subvert the majority only has to influence the swing
player and then the system will evolve without any further intervention towards
an equilibrium in which majority is subverted. More precisely:

Definition 2. A vertex u is said to be a swing vertex for subvertable belief
assignment b with n+1

2 vertices with belief 0 if

1. b(u) = 0;
2. d1(u) − d0(u) > au, that is, in the initial state, u can move from s(u) = 0 to

s(u) = 1;
3. For every x with b(x) = 1, it holds that d′

x(0) − d′
x(1) ≤ ax, where d′

x(c) is
the number of neighbors y of x with s(y) = c after u’s move from s(u) = 0
to s(u) = 1. That is, after u’s move no vertex with belief 1 can make a move
from 1 to 0.

Note that the definition above does not imply that the majority at equilibrium
consists of only n+1

2 vertices with belief 1 (the initial n−1
2 plus the swing vertex).

It may be indeed the case that other vertices with belief 0 will make moves from
0 to 1 after the move of the swing vertex u. Still, the third condition above
implies that, after u’s move, the number of vertices with opinion 1 is a majority
and the size of this majority does not decrease.

Our main result then can be improved as follows:

if there exists at least one non-stubborn vertex, then there exists a subvertable
belief assignment with a swing vertex.

It is natural to ask whether the characterization can be strengthened to
take into account strong initial majorities (i.e., initial majorities of size at least
(1+δ)n+1

2 for some 0 < δ < 1). That is, to characterize the pairs (consisting of a
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social network and stubbornness levels) that admit at least a subvertable strong
initial majority. We prove that no such characterization can be given by showing
that there exists δmax ≈ 0.85 such that for all 0 < δ < δmax it is NP-hard to
decide whether a given G and given stubbornness a1, . . . , an admit a subvertable
majority of size at least (1 + δ)n+1

2 . That is, unless P = NP,

no polynomial-time algorithm exists that characterizes subvertable belief
assignments for large initial majorities.

Related work. The majority dynamics and its generalizations are related to a
line of research in social sciences that tries to model how opinions are formed
and expressed in a social context. A simple classical model has been proposed by
Friedkin and Johnsen [16] (see also [14]). Its main assumption is that each indi-
vidual has a private initial belief and that the opinion she eventually expresses
is the result of a repeated averaging between her initial belief and the opinions
expressed by other individuals with whom she has social relations. The recent
work of Bindel et al. [12] assumes that initial beliefs and opinions belong to
[0, 1] and considers the dynamics that repeatedly averages the opinions of the
neighbors.

Ferraioli et al. [15] and Chirichetti et al. [13] considered a variant of this
model, named discrete preference games, in which beliefs and opinions are dis-
crete. These games are directly connected to the work in this paper. For this
reason, below we give a more formal description of the games, highlight the con-
ceptual link with the heterogeneous majority dynamics and briefly discuss the
significance of our results in this context.

Previous results about these games focused on the rate of convergence of
the game under different dynamics [15], and on the price of stability and price
of anarchy [13]. Moreover, extensions of the model have been proposed along
two main directions: some works assume that connections between nodes evolve
over time so that players with similar opinions are more likely to be connected
[10,11]; other works consider dynamics that try to capture more complex social
relations (e.g., to allies and competitors or among more than two players) [1,4].

The problem of majority retention has been recently investigated even with
respect to different dynamics: e.g., in [17], various negative results are proved
with respect to a 3-state population protocol introduced in [2]. Similar problems
have also been considered in the distributed computing literature, motivated by
the need to control and restrict the influence of failures in distributed systems;
e.g., see the survey by Peleg [19] and the references therein.

Discrete preference games. A discrete preference game consists of a n-vertex
undirected graph G (the social network), coefficients α1, . . . , αn ∈ (0, 1) and
beliefs b(1), . . . ,b(n) ∈ {0, 1}. Player i’s strategy set consists of two possible
opinions s(i) ∈ {0, 1} and the cost ci(s) of player i in state s = (s(1), . . . , s(n)) ∈
{0, 1}n is defined as ci(s) = αi·|s(i) − b(i)|+(1 − αi)·

∑
j∈N(i) |s(i) − s(j)|, where

N(i) is the set of neighbors of vertex i in G (i.e., friends in the social network).
Note that the cost is the convex combination through αi of two components that
depend on whether the opinion coincides with the belief and on the strategies
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of the neighbors, respectively, and this models players that try to balance social
acceptance (which would make the player pick the opinion that is the majority
among its neighbors) and faithfulness to her own principles (which would make
the player pick opinion equal to belief). Different values of αi correspond to the
different individual behaviors and reflect the heterogeneity of the society.

An equilibrium state is defined to be a state s = (s(1), . . . , s(n)) for which
there is no player i whose best response is to adopt strategy 1 − s(i). More
precisely, s is an equilibrium if for all i ci(s) ≤ ci(1 − s(i), s−i), where we have
used the standard game theoretic notation by which (t, s−i) denotes the vector
(s(1), . . . , s(i − 1), t, s(i + 1), . . . , s(n)).

It is not difficult to see that the best-response dynamics of a discrete
preference game with stubbornness coefficients α1, . . . , αn ∈ (0, 1) coincides
with the heterogeneous majority dynamics with stubbornness a1, . . . , an where
ax =

⌊
αx

1−αx

⌋
. The fact that the heterogeneous majority dynamics does not

retain information about the majority state in the belief of the players trans-
lates to the possibility that the social network will express through opinions a
majority that differs from the majority of the beliefs. It is thus possible that the
local behavior of the players affects the global behavior of the network and that
the social pressure felt by individual members of a social network has effects on
the entire network.

2 Definitions and Overview

In this section we introduce the concepts of a bisection and of a good bisection
and give an overview of the proof of our main result. Due to page limit most of
the proofs are omitted. We refer the reader to the full version [5].

Good bisections yield subvertable belief assignments. A bisection S = (S, S) of
a graph G with an odd number n of vertices is a partition of the vertices of G
into two sets S and S of cardinality n+1

2 and n−1
2 , respectively. We define the

advantage advS(x) of a vertex x with respect to bisection S = (S, S) as follows:

advS(x) =

{
W (x, S) − W (x, S), if x ∈ S;
W (x, S) − W (x, S), if x ∈ S,

where W (x,A) denotes the number of neighbors of x in the set A.
We say that a bisection S = (S, S) is good if

1. for every x ∈ S, advS(x) ≥ −ax;
2. there is u ∈ S with advS(u) ≥ au + 1.

Vertices u ∈ S with advS(u) ≥ au + 1 are called the good vertices of S and
vertices y ∈ S with advS(y) < −ay are called the obstructions of S. The next
lemma proves that if G has a good bisection then one can easily construct a
subvertable belief assignment for G.
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Lemma 1. Let S = (S, S) be a good bisection for graph G and let u be a good
vertex of S. Then G admits a subvertable belief assignment b such that u is a
swing vertex for b.

Minimal bisections. The technical core of our proof is the construction of a good
bisection starting from a bisection S of minimal potential Φ. We define the poten-
tial Φ of a bisection (S, S) as Φ(S, S) = W (S, S)+ 1

2

(∑
x∈S ax −

∑
y∈S ay

)
. We

say that a bisection S has k-minimal potential if S minimizes the potential
among all the bisections that can be obtained from S by swapping at most k
vertices between S and S. That is, S has k-minimal potential if, for all A ⊆ S and
for all B ⊆ S, with 1 ≤ |A| = |B| ≤ k, Φ(S, S) ≤ Φ(S\A ∪ B,S\B ∪ A). We will
simply write that S has minimal potential whenever S has 1-minimal potential.

The next lemma proves some useful properties of minimal bisections.

Lemma 2. Let S = (S, S) be a bisection of minimal potential. Then for all
x ∈ S and y ∈ S, advS(x) + advS(y) + 2W (x, y) ≥ ax − ay.

Swapping vertices. To turn a minimal bisection S into a good bisection T =
(T, T ), we need at least one vertex in T with high advantage. One way to increase
the advantage of a vertex u ∈ S is to move vertices that are not adjacent to
u away from S and to bring the same number of vertices that are adjacent
to u into S. We define the rank of a vertex u with respect to bisection S as
rankS(u) =

⌈
au+1−advS(u)

2

⌉
. It is not hard to see that the rank is exactly the

number of vertices that need to be moved. Note that a vertex u of rankS(u) has
advantage advS(u) such that au −2rankS(u)+1 ≤ advS(u) ≤ au −2rankS(u)+2.
We next formalize the notion of swapping of vertices and prove that it is always
possible to increase the advantage of a non-stubborn vertex x to ax + 1.

Given a bisection S = (S, S) and a vertex u, a u-pair for S is a pair of sets
(Au, Bu) such that:

– if u ∈ S, then Au ⊆ S ∩ N(u) and Bu ⊆ S ∩ N(u) with |Au| = |Bu| =
rankS(u);

– if u ∈ S, then Au ⊆ S ∩ N(u) and Bu ⊆ S ∩ N(u) with |Au| = rankS(u) and
|Bu| = rankS(u) − 1.

The bisection T associated with the u-pair (Au, Bu) for S is defined as

– if u ∈ S, T = (S\Au ∪ Bu, S\Bu ∪ Au);
– if u ∈ S, T = (S\Bu ∪ Au, S\Au ∪ Bu).

Note that our choice for the size of Au and Bu implies that in both cases |T | =
n+1
2 as desired. The next lemma shows that u is a good vertex in the bisection

associated with a u-pair.

Lemma 3. For each bisection S, let u be a vertex of the graph, (Au, Bu) be a u-
pair for S, and T be the bisection associated to (Au, Bu). Then advT (u) ≥ au+1.

The problem now is to understand which vertex we have to choose for making
it good. The next lemma says that stubborn vertices cannot be good vertices.
But they are sort of neutral: indeed, they cannot be obstructions either.
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Lemma 4. For every bisection S = (S, S) and every stubborn vertex x ∈ S it
holds that −ax ≤ advS(x) ≤ ax.

However, for every bisection S and every vertex u, a u-pair for S exists if
and only if vertex u is non-stubborn, as showed by the next lemma.

Lemma 5. For every bisection S = (S, S) and every vertex u, a u-pair for S
exists if and only if u is non-stubborn.

Hence, if there is a non-stubborn vertex u, there is a u-pair (Au, Bu) for S,
and u is certainly a good vertex for the bisection T associated to this u-pair.
Therefore, if T is not good then it must be that there is a vertex y that is an
obstruction for T . In the last case, we will say that the vertex u, the u-pair
(Au, Bu) and the bisection T are obstructed by y. Most of the proof will be
devoted to dealing with these obstructions.

3 Main Theorem

Our main result is the following.

Theorem 1. Every graph G with an odd number of vertices and at least one
non-stubborn vertex has a subvertable belief assignment b and a swing vertex u
for b. Moreover, b and u can be computed in polynomial time.

We prove the theorem by exhibiting a polynomial-time algorithm (see Algo-
rithm 1) that, given a graph G with an odd number of vertices, and at least one
of which that is non-stubborn, returns a good bisection S and a good vertex u
for S. The theorem then follows from Lemma 1.

Input: A graph G = (V,E) with |V | odd and at least one non-stubborn vertex
Output: A pair (S, u) where S is a good bisection and u is its good vertex

1 S = (S, S) is a bisection of G of 3-minimal potential
2 M= non-stubborn vertices of minimum rank in S
3 if there is u ∈ S with advS(u) ≤ −au − 1 then

4 Let T = (S ∪ {u}, S \ {u})
5 return (T , u)

6 if there is u ∈ S with advS(u) ≥ au + 1 then
7 return (S, u)

8 if there is u ∈ S with advS(u) ≥ au + 1 then

9 Pick w ∈ S and let T = (S ∪ {w}, S \ {w})
10 return (T , u)

11 if there is u ∈ S ∩ M with advS(u) < 0 then

12 Let S ′ = (S ∪ {u}, S \ {u})
13 Pick u-pair (Au, Bu) for S ′

14 Let T be the associated bisection
15 return (T , u)

16 if M ∩ S �= ∅ then return MinRankInNotS(S)
17 else return MinRankInS(S)

Algorithm 1. Returns a good bisection and a good vertex
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First, we note that the algorithm runs in time that is polynomial in the size of
the input. Indeed, a bisection of 3-minimal potential at Line 1 can be efficiently
computed through a local search algorithm [20], and all remaining steps only
involve computationally easy tasks.

Next we prove that the algorithm is correct; that is, it outputs (T , u) where
T is a good bisection and u is a good vertex for T . Recall that, by Lemma 4,
it is sufficient to check that advT (u) ≥ au + 1 and that non-stubborn vertices
x ∈ S have advT (x) ≥ −ax.

The analysis of the algorithm can be divided in three parts: the warm-up
cases, i.e., if Algorithm 1 stops before reaching Line 16; the case there is a non-
stubborn vertex u ∈ S of minimum rank; and the case that every non-stubborn
vertex u of minimum rank belongs to S. Due to the page limit, we only sketch
the proof for the last and most interesting case, i.e. when the algorithm invokes
procedure MinRankInS (described in the full version of the paper [5]).

Suppose then that the algorithm invokes procedure MinRankInS. In this case,
all non-stubborn vertices of minimum rank belong to S. Moreover, all such
vertices have non-negative advantage for otherwise the Algorithm would have
stopped at Line 15.

Clearly, if MinRankInS stops at Line 5, Line 18, Line 26, Line 32, Line 39 or
Line 49, then the bisection output is good and u is a good vertex for it.

Suppose now that MinRankInS stops at Line 9, Line 30, Line 36, Line 44,
Line 47 or at Line 52. Since in all cases the algorithm returns a pair (T , v) where
T is the bisection associated to a v-pair, then, by Lemma 3, advT (v) ≥ av + 1.
Thus, we only need to prove that advT (x) ≥ −ax for every non-stubborn x ∈ T .

3.1 Properties of the Obstructions

Most of the work will be devoted to dealing with obstructions. Therefore, before
proceeding, we give some useful properties of the obstructions, whose proof can
be found in the full version.

Lemma 6. Let u ∈ S be a vertex of minimum rank for the bisection S and let y
be an obstruction for u. Then y ∈ S. Similarly, let u ∈ S be a vertex of minimum
rank for the bisection S and assume there is no vertex of minimum rank in S.
If y is an obstruction for u, then y ∈ S.

Lemma 7. Let S be a bisection and let u be a vertex of minimum rank in S.
Let T be the bisection associated with a u-pair (Au, Bu) for S. If vertex y is
an obstruction for T , then advS(y) ≤ −ay + 2rankS(u) − 3. Moreover, for every
non-stubborn v ∈ S if advS(v)+advS(y)+2W (v, y) ≥ av −ay, then v is adjacent
to y, v has minimum rank and advS(y) ≥ −ay + 2rankS(u) − 4.

Lemma 8. Let S be a bisection and suppose that there is no vertex in S with
minimum rank. Let u be a vertex of minimum rank in S. Let T be the bisection
associated with a u-pair (Au, Bu) for S. Suppose there is an obstruction y for
T with advS(y) < 0 and rankS(y) > rankS(u). Let S ′ = (S ∪ {y}, S\{y}). Then
rankS′(y) ≤ rankS(u).
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Lemma 9. Let S be a bisection and let u be a vertex of minimum rank in S.
Let T be the bisection associated with a u-pair (Au, Bu) for S. Suppose there is
an obstruction y for T with advS(y) ≥ 0. Then y has minimum rank � =

⌈
ay+1

2

⌉

and advS(y) = 0.

3.2 MinRankInS stops at Line 9

In this case, we have that u is a vertex of S with minimum rank �. Vertex y is
an obstruction of bisection T associated with u-pair (Au, Bu), and advS(y) < 0.
By Lemma 6, y ∈ S. Observe that rankS(y) > �, for otherwise Algorithm 1
would have stopped at Line 15. From Lemma 8, we obtain that rankS0(y) ≤ �.
We remind the reader that S0 = (S ∪ {y}, S\{y}) and T0 = (S ∪ {y}\Ay ∪
By, S\{y} ∪ Ay\By).

For every non-stubborn x ∈ T0\{y}, advT (x) can be written as: W (x, S) −
W (x, S) + 2W (x, y) − 2W (x,Ay) + 2W (x,By).

If x ∈ S\Ay, then

advT (x) = advS(x) + 2W (x, y) − 2W (x,Ay) + 2W (x,By)
≥ advS(x) + 2W (x, y) − 2|Ay|
= advS(x) + 2W (x, y) − 2rankS′(y) ≥ advS(x) + 2W (x, y) − 2�.

Since rankS(y) > �, then advS(y) ≤ ay − 2�. By applying Lemma 2 to y ∈ S
and x ∈ S we obtain that advS(x)+2W (x, y) ≥ −advS(y)+ay −ax ≥ −ax +2�.
Hence advT (x) ≥ −ax.

Finally, if x ∈ By, then x ∈ S and, by definition of y-pair, W (x, y) = 1.
Therefore we have

advT (x) = −advS(x) + 2W (x, y) − 2W (x,Ay) + 2W (x,By)
≥ −advS(x) − 2W (x,Ay) + 2
≥ −advS(x) − 2rankS′(y) + 2 ≥ −advS(x) − 2� + 2

Since � is the minimum rank, it must be the case that rankS(x) ≥ � which implies
that advS(x) ≤ ax + 2 − 2�. Therefore, advT (x) ≥ −ax.

3.3 MinRankInS reaches Line 19

We remind the reader that in this case u ∈ S is a non-stubborn vertex of min-
imum rank � and y is an obstruction to bisection T associated with u-pair
(Au, Bu) for S. By Lemma 6, y ∈ S. Note also that advS(y) ≥ 0, for other-
wise MinRankInS would have stopped at Line 9. From Lemma 9, it then follows
that advS(y) = 0 and rankS(y) = � =

⌈
ay+1

2

⌉
. Moreover, given a y-pair (Ay, By)

of S1 = (S ∪ {y}, S\{y}), y1 is either a vertex of
(
S ∪ {y}\Ay

)
∩ N(y) with

advS(w) = ay − ay1 or it is an obstruction to bisection T1 associated with this
pair. Note that, by Lemma 6, even in this last case y1 ∈ S ∪ {y}\Ay.

Properties of y and y1. We need to state some properties of y and y1 before
proving that the bisections returned by MinRankInS after Line 19 are good.
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Lemma 10. W (y, y1) = 0.

Lemma 11. If advS(y1) 	= ay −ay1 , then ay is even and advS(y1) = ay −ay1 +1.

Lemma 12. If advS(y1) 	= ay − ay1 , then advS(w) ≥ ay − aw + 1 − W (w, y) for
every w ∈ S.

Lemma 13. rankS2(y) = rankS2(y1) = �.

Lemma 14. For every u ∈ S2 and every v ∈ S2\{y}, we have that if advS(y1) =
ay−ay1 or u = y1, then advS2(u)+advS2(v)+2W (u, v) ≥ au−av, else advS2(u)+
advS2(v)+2W (u, v) = au−av +c+2W (y, v)+2W (u, y1)−2W (u, y)−2W (v, y1),
for c ≥ max {0, 2W (u, v) − 2W (y1, u) − W (y, v)}.

Lemma 15. For every u ∈ S\{y1} and v ∈ S\{y}, if W (u, y) = 1 and
W (u, y1) = 0, then advS2(u) + advS2(v) + 2W (u, v) ≥ au − av − 1.

MinRankInS stops at Line 30. Therefore there is v ∈ S2, whose rank in S2 is less
than rankS2(y) = �. Note that, since advS2(v) = advS(v)+2W (v, y1)−2W (v, y),

rankS2(v) =
⌈

av + 1 − advS(v) − 2W (v, y1) + 2W (v, y)
2

⌉

=
⌈

av + 1 − advS(v)
2

⌉

− W (v, y1) + W (v, y)

= rankS(v) − W (v, y1) + W (v, y).

Hence, rankS2(v) < � if and only if rankS(v) = � (that is, v has minimum rank
in S), W (v, y1) = 1 and W (v, y) = 0. From this we obtain that for every vertex
v with rankS2(v) < �, it holds that advS(v) ≥ 0 (since v has minimum rank in S
and no vertex of minimum rank in S with negative advantage can exist, otherwise
a good bisection was returned at Line 15 of Algorithm 1), and, advS2(v) ≥ 2. We
also observe that every vertex x ∈ S2 = S∪{y}\{y1} has rankS2(x) ≥ �. If x = y,
then this follows from Lemma 13. If x 	= y, then it follows since rankS(x) ≥ �+1,
and the rank decreases of at most one when two vertices are swapped.

Moreover, if MinRankInS stops at Line 30, then the bisection T2 associated to
v-pair (Av, Bv) for S2 has an obstruction y2. By Lemma 6, y2 ∈ S2\Av. Suppose
that advS2(y2) ≥ 0, then, from Lemma 9, it follows that advS2(y2) = 0 and has
minimum rank, i.e., rankS2(y2) = � − 1. However, this is a contradiction, since
we showed that if rankS2(y2) = � − 1, then advS2(y2) ≥ 2.

It must be then the case that advS2(y2) < 0 and rankS2(y2) ≥ �. Then, by
Lemma 8, rankS3(y2) ≤ � − 1, where S3 = (S2 ∪ {y2}, S2 ∪ {y2}). It must be
also the case that either rankS(y2) ≥ � + 1 or rankS(y2) = �, W (y2, y) = 1
and W (y2, y1) = 0. Indeed, rankS(y2) ≥ �, since � is the minimum rank in S. If
rankS(y2) = �, then advS(y2) ≥ 0. Thus, if W (y2, y) = 0 and W (y2, y1) = 1, then
rankS2(y2) = � − 1, a contradiction. If W (y2, y) = W (y2, y1), then advS2(y2) =
advS(y2) ≥ 0, still a contradiction.
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We now can prove that the bisection T3 returned at Line 30 is good. Recall
that T3 is associated to y2-pair (Ay2 , By2) for S3, i.e., T3 = (S2 ∪ {y2}\Ay2 ∪
By2 , S2\{y2} ∪ Ay2\By2), where |Ay2 | = |By2 | = rankS3(y2) ≤ � − 1.

We first prove that for every x ∈ S2∪{y2}\Ay2 , we have that advT3(x) ≥ −ax.
If x 	= y, we distinguish two cases. If rankS(y2) ≥ �+1, then by applying Lemma 2
to y2 ∈ S and x ∈ S, we have that advS(x)+2W (x, y2) ≥ −advS(y2)+ay2 −ax ≥
−ax + 2�, where we used that rankS(y2) ≥ � + 1 and thus advS(y2) ≤ ay2 − 2�.
Then, advS2(x) = advS(x)+2W (x, y)−2W (x, y1) ≥ −ax +2�−2. If rankS(y2) <
�+1, then, as stated above, it must be the case that rankS(y) = �, W (y2, y) = 1
and W (y2, y1) = 0. Then, from Lemma 15, it holds that advS2(x)+2W (x, y2) ≥
−advS2(y2) + ay2 − ax − 1 ≥ −ax + 2� − 1, where we used that rankS2(y2) =
rankS(y2) + 1 = � + 1 and thus advS(y2) ≤ ay2 − 2�.

Hence, in both cases, we have advT3(x) ≥ advS3(x)−2W (x,Ay2) ≥ advS2(x)+
2W (x, y2)−2(�−1) ≥ −ax +2�−1−2(�−1) ≥ −ax +1. If x = y, then, by using
that advS2(y) = −advS(y) since W (y, y1) = 0, we have advT3(y) ≥ advS3(y) −
2(� − 1) = advS2(y) + 2W (y, y2) − 2(� − 1) = −advS(y) + 2W (y, y2) − 2(� − 1).
We showed above that advS(y) = 0 and � =

⌈
ay+1

2

⌉
≤ ay+2

2 . Hence, advT3(y) ≥
−ay + 2W (y, y2) ≥ −ay.

Finally, we prove that for all x ∈ By2 , advT3(x) ≥ −ax. Recall that By2 ⊆
S2\{y2} and W (x, y2) = 1 for all x ∈ By2 . We have two cases. If x 	= y1,
then advT3(x) ≥ −advS3(x) − 2(� − 1) = −advS2(x) + 2W (x, y2) − 2(� − 1) =
−advS(x) + 2W (x, y) − 2W (x, y1) − 2(� − 2) ≥ −ax + 2� − 2 + 2W (x, y) −
2W (x, y1) + 2 − 2(� − 1) ≥ −ax, where we used that rankS(x) ≥ � and thus
advS(x) ≤ ax − 2� + 2. If x = y1, then advT3(y1) ≥ −advS3(y1) − 2(� − 1) =
−advS2(y1)+2W (y1, y2)−2(�−1) = advS(y1)+2−2(�−1), where we used that
advS2(y1) = −advS(y1) since W (y, y1) = 0 and W (y1, y2) = 1 because y1 ∈ By2 .
Since advS(y1) ≥ ay − ay1 ≥ 2(� − 1) − ay1 , then advT3(y1) ≥ −ay1 + 2 ≥ −ay1 .

MinRankInS stops at Line 36. In this case y and y1 have minimum rank in
S2 and there is a vertex w ∈ S\{y} ∪ {y1} of minimum rank � and negative
advantage in S2. Note that if rankS2(w) ≤ rankS(w), then advS2(w) ≥ advS(w).
Thus, since in S all vertices of minimum rank have non-negative advantage, it
must be the case that rankS(w) = � + 1, and W (w, y) = 0 and W (w, y1) = 1.
Thus the w-pair defined at Line 35 can be constructed.

Consider now the bisection S4 defined at Line 34. Observe that advS4(w) =
−advS2(w) and therefore

rankS4(w) =
⌈

aw + 1 − advS4(w)
2

⌉

=
⌈

aw + 1 + advS4(w)
2

⌉

− advS4(w)

=
⌈

aw + 1 − advS2(w)
2

⌉

+ advS2(w) = rankS2(w) + advS2(w),

that is at most � − 1 since w has rank � and negative advantage in S2.
Now, for every x ∈ S2\Aw, we have advT5(x) ≥ advS2(x) + 2W (x,w) −

2rankS4(w) ≥ −advS2(w)+aw −ax −2(�−1), where we used that, by Lemma 14,
advS2(x)+2W (x,w) ≥ −advS2(w)+aw−ax+2W (y, x)+2W (w, y1)−2W (w, y)−
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2W (x, y1) ≥ −advS2(w) + aw − ax. Since rankS2(w) = �, then advS2(w) ≤ aw −
2� + 2, from which we achieve that advT5(x) ≥ −ax.

Finally, take x ∈ Bw ⊆ S2. We have advT5(x) ≥ −advS2(x) − 2rankS4(w) ≥
−advS2(x) − 2(� − 1). However, by hypothesis, w has minimum rank among the
non-stubborn vertices and thus it must be the case that rankS2(x) ≥ rankS2(w) =
� which implies that advS2(x) ≤ ax − 2� + 2. Therefore, advT (x) ≥ −ax.

There is still a missing case, for which we refer the reader to the full version.

4 Lower Bound

We next show that deciding if it is possible to subvert the majority when starting
from a weaker minority is a computationally hard problem, even if we start with
a minority of size very close to n−1

2 . The main result of this section is given by
the following theorem.

Theorem 2. For every constant 0 < ε < 133
155 , it is NP-hard to decide whether

in a graph G with n vertices there exists a subvertable belief assignment with at
most n−1

2 (1 − ε) vertices in the initial minority.

The proof of Theorem 2 uses essentially the same gadgets as a similar proof in
[3], but tuned for the current setting.

5 Open Problems

While this work proves information retention for the heterogeneous majority
dynamics in unweighted social network when only one player is allowed to update
her state at each time step, it would be interesting to understand what happens
if one considers weighted graphs or concurrent updates. Preliminary experimen-
tal results along this direction have been given in [6]. It would be also interesting
to investigate the extent at which the mbM phenomenon occurs if one considers
noisy variants of the heterogeneous majority dynamics, see, e.g., [7,8]. Finally,
one can be interested in understanding how probable the minority becomes
majority phenomenon is, and how is this frequency related to the topological
properties of the network.
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Abstract. We investigate the behavior of experts who seek to make
predictions with maximum impact on an audience. At a known future
time, a certain continuous random variable will be realized. A public
prediction gradually converges to the outcome, and an expert has access
to a more accurate prediction. We study when the expert should reveal
his information, when his reward is based on a proper scoring rule (e.g.,
is proportional to the change in log-likelihood of the outcome).

In Azar et al. (2016), we analyzed the case where the expert may make
a single prediction. In this paper, we analyze the case where the expert
is allowed to revise previous predictions. This leads to a rather different
set of dilemmas for the strategic expert. We find that it is optimal for the
expert to always tell the truth, and to make a new prediction whenever
he has a new signal. We characterize the expert’s expectation for his
total reward, and show asymptotic limits.

1 Introduction

Situations where a public is interested in the value of a future continuous vari-
able, and has a time-varying consensus estimate of it, are common. Examples
abound: Futures and options markets, the weather or climate, results of sport
competitions, election results, new book/movie/album sales (for example, the
Hollywood Stock Exchange), or economic indicators (for example, Moody’s).
We analyze the problem of an expert who makes multiple public predictions in
such situations, and in particular, the questions of when to make a first predic-
tion, when to revise a previous prediction, and whether to reveal true beliefs
when making a prediction.

Consider, for example, a futures market. A futures market is an exchange
where people make contracts to buy specific quantities of a commodity or finan-
cial instrument at a specified price with delivery set at a specified time in the
future. Traders make money by buying for less than the market’s spot price on
the delivery date, which we shall henceforth call the outcome, or by selling for
more. In effect, a futures market is a prediction market for the outcome.

The expert is not a trader himself, but someone who is reputed to have
access to a more accurate signal than possessed by regular traders. Often, his
reputation and living is based on this. Stock market analysts, investment gurus
and various types of journalists fit this description.
c© Springer International Publishing AG 2017
N. R. Devanur and P. Lu (Eds.): WINE 2017, LNCS 10674, pp. 44–57, 2017.
https://doi.org/10.1007/978-3-319-71924-5_4
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The expert contributes to the market by making a public prediction, and
is post factum rewarded for it. Such a prediction is a significant market event:
Clearly, a market should heed an expert whose prediction already encompasses
all current common knowledge and adds to it. We shall below argue that proper
scoring rules, and in particular the logarithmic scoring rule, are the right incen-
tive for the prediction scenario described. Whether the expert’s reward takes the
form of actual payment, or less tangibly in a boost to his reputation as an expert,
is immaterial to our discussion. We assume that the expert’s level of expertise,
which we measure by quality and describe below, is known to the market.

We investigate the expert’s strategy in such a prediction market. The strategy
consists of choosing the timing and truthfulness of his predictions. Our treatment
is Bayesian, assuming all agents draw all possible inferences from their informa-
tion. In Azar et al. (2016), we analyzed the case where the expert is allowed a
single prediction. In this paper, we study the case of multiple predictions, where
an expert is allowed to revise his previous prediction.

1.1 The Market as a Random Walk

The current price in a futures market represents a current consensus on the
outcome (assume that interest rates, or inflation rates, have been incorporated
into the price). According to the efficient-market hypothesis (EMH), the current
price represents all currently available information, and therefore it is impossible
to consistently outperform the market. Consistent with the EMH is the random-
walk hypothesis, according to which stock market prices (and their derivatives)
evolve according to a random walk and thus cannot be predicted. By the random-
walk hypothesis, the outcome is the result of a random walk from the current
market price. Equivalently, and the point of view we take in this paper, the
current price is the result of a random walk, reversed in time, from the outcome
(see Fig. 1).

Fig. 1. Time-dependent signals of a market, a typical expert (q = 0.6), a know-all
expert (q = 1), and a know-nothing expert (q = 0)
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A random walk adds periodical (say, daily) i.i.d. steps to the market price.
Assuming prices have been adjusted for known trends, the steps have zero mean.
By suitable scaling of the price, the step variance can be normalized to 1. Fol-
lowing a common assumption that the random walk is Gaussian, or lognormal1,
the steps have standard normal distribution (i.e., N(0, 1)).

1.2 Expert Quality

The expert’s expertise consists of having a more accurate signal of the outcome
price x0 than the market’s, and the expert’s quality measures by how much.
The quality q ∈ [0, 1] measures what part of the market’s uncertainty the expert
“knows”, so that it does not figure in the expert’s own uncertainty. Equivalently,
the expert’s uncertainty is 1 − q of the market’s uncertainty. This proportion is
statistical: It is the uncertainties’ variances, rather than their realizations, that
are related by proportion. If the market price is a Gaussian random walk from
the outcome with N(0, 1) steps, the expert’s prediction is a Gaussian random
walk from the outcome with N(0, 1 − q) steps.

The expert’s knowledge, i.e., the part of the market’s uncertainty that the
expert is not uncertain about, has steps of zero mean and q variance. On the
assumption that the expert’s knowledge steps and uncertainty steps are mutually
independent, their sum has the sum mean and sum variance of their parts, i.e.,
they sum back to the market’s uncertainty steps of zero mean and variance
q + (1 − q) = 1.

Figure 1 illustrates the evolution of a market’s signal in the last 20 periods
until the outcome (109) becomes known. Also shown are the private signals of 3
experts predicting the same event, with qualities of 0.6, 1 and 0.

An expert with q = 1 has no uncertainty at all, and his signal equals the
outcome x0 at all times t. At the other extreme, a (so-called) expert with q = 0
has no knowledge beyond common knowledge, and his signal equals the market
value xt at all t.

An expert’s quality is common knowledge, shared by all traders as well as
himself. Whether its value q represents objective reality, or is a belief, based,
e.g., on past performance, makes no difference to our discussion.

1.3 Scoring a Prediction

A scoring rule is a way to evaluate and reward a prediction of a stochastic event,
when that prediction is presented as a distribution over possible results. The
predictor declares at time t > 0 a probability distribution p ∈ Δ(R), and at
time 0 some r ∈ R is realized. A scoring rule S rewards the predictor S(p, r)
when his prediction was p and the realized value is r. In market settings, and
many other settings, there exists a current prediction p̄ and then the predictor
is evaluated on the scoring difference effected S(p, r) − S(p̄, r). Note that the
optimization problem of the predictor in a market situation is the same, since

1 Taking logs transforms a lognormal random walk into a Gaussian one.
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he has no influence over S(p̄, r), the only difference is that now the predictor
might be penalized for making the current prediction less accurate. A proper
scoring rule is a scoring rule for which reporting the true distribution is optimal
according to the predictor’s information.

The logarithmic scoring rule, with S(p, r) = log pr (where pr is the value of
p at r), scores a prediction by the log-likelihood of the outcome according to the
prediction. It is proper, and has strong roots in information theory: In reference
to a current prediction p̄, it scores log pr/p̄r, which, in information theory, is the
self-information, also called surprisal, contained in the outcome. Conditional
on p being the correct distribution, the expected score is the Kullback-Leibler
divergence between p and p̄: Er∼p[log pr/p̄r] = DKL(p||p̄).

In our model expert predictions are scored with the logarithmic scoring rule,
which the expert seeks to maximize. This is justified by the following

– The reward is incentive compatible, eliciting truth-telling by the expert. This
enables a Bayesian market to adopt predictions verbatim. A reward that is not
incentive compatible would greatly complicate the Bayesian interpretation of
predictions, possibly even making our problem indeterminate.

– In our model (the essential details of which were already sketched), the entire
prediction distribution follows from the prediction mean by common knowl-
edge. Since only proper scoring rules are incentive compatible with predictions
phrased as distributions over results, it follows that the reward must be by a
proper scoring rule.

– The logarithmic scoring rule is favored by its unique information-theory mean-
ing, and other unique attributes (e.g., its locality). It is commonly used in
real-world predictions markets, in a mechanism called LMSR (Logarithmic
Market Scoring Rule) introduced by Hanson (2003). Chen and Pennock (2010)
say “LMSR has become the de facto market maker mechanism for prediction
markets. It is used by many companies including Inkling Markets, Consensus
Point, Yahoo!, and Microsoft”.

Proper scoring rules are myopically incentive compatible for risk-neutral
agents, i.e. they are guaranteed to elicit the truth, but only when future actions
are not taken into account (or, when there are no future actions, i.e., at the
last prediction). As will be further discussed, when future actions are taken into
account, incentive compatibility is not guaranteed.

1.4 The Expert’s Dilemma

Assume that the expert has no obligation to speak at any particular time, or
at all. The reward for no prediction is zero, and for each prediction made, the
expert is rewarded by the logarithmic scoring rule. The expert may revise his
previous prediction by making a new one whenever this is advantageous. The
expert faces several dilemmas: When to make the first prediction? and when is
it appropriate to revise a previous prediction? Moreover, as proper scoring rules
are incentive compatible only with the last prediction, is there a strategy more
profitable than always telling the truth?
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In Azar et al. (2016), we analyzed the single-prediction case, and argued
that an expert may pass on making a prediction in the hope of getting a better
opportunity later. In the multiple predictions scenario, there is no need to pass,
since the opportunity to make a future prediction remains. Conceivably, the
expert will want to revise his prediction whenever he gets a fresh signal (we find
that this is so), or, he may want to do so only when the new signal significantly
changes his prediction (we find otherwise).

Should he always tell the truth? Whenever the expert makes two or more
predictions, he may conceivably distort his first prediction, hoping to misdirect
a gullibly-Bayesian market, and reaping a net profit by subsequently setting the
market right.

1.5 Summary of Results

Our results are satisfyingly tidy: Despite apparent temptation to mislead, it
is optimal for the expert to always tell the truth, and therefore it is rational
for the market to take his predictions at face value. The optimal prediction
schedule for the expert is to make a new one whenever he has a new signal and
is allowed to speak. We show that the expected total reward for all predictions
is, asymptotically for large t, 1

2q log t, proportional to quality (q) and to the log
of the number of periods left (t).

To some, these results, and especially the truthfulness result, would seem
straightforward. However, this intuition is false, and not supported by the liter-
ature (see below in Sect. 1.6, Chen et al. (2010) and Chen and Waggoner (2016)).
The following generic example illustrates why.

Example 1. There is a market, who gets public signals, and an expert, who gets
private signals. Suppose that at time t the market receives a signal x0 + ε, where
x0 is the outcome, and ε is a random variable. At t − 1, and (independently) at
t + 1, the expert receives a signal x0 + ε with probability 1/2, and x0 − ε with
probability 1/2.

The expert makes a prediction at both times. Should he reveal his true infor-
mation?

Whoever sees two different truthful signals is able to calculate the outcome
x0 = (x0 + ε)/2 + (x0 − ε)/2 exactly.

For any scoring rule, and any distribution of ε, the expert should not tell the
truth on his first prediction. This prevents the 50% probability that the market
will know x0 at t, preserving a 75% probability that the expert can announce x0

on his second prediction.

1.6 Related Literature

Learning from expert opinion and its aggregation has a long history, with
DeGroot (1974) and the Bayesian framework of Morris (1977) leading to much
subsequent work. While much of this work treats experts as oracles with no
motivation of their own, some of it took a look at an expert’s concern for his
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reputation, i.e., the wish to appear well-informed. In Bayarri and DeGroot (1989)
the setting was a weighted averaging of several expert opinions, with the weights
adjusted by observed accuracy when the outcome is known. Experts wish to max-
imize their posterior weight. The authors found that incentive compatibility is
attainable only by assigning a logarithmic utility to the weight. In Ottaviani and
Sørensen (2006) the authors cast the expert’s inferred type as the optimization
target. Their type, a real number, is a cognate of our quality. The authors argue
that truth-telling is generally not possible, as experts are motivated to simulate
better quality than they actually have. In our model, expert quality is common
knowledge, and so not open to manipulation.

Chen et al. (2010) as well as Chen and Waggoner (2016) studied situations
where several agents, each having private information, are given more than one
opportunity to make a public prediction. The canonical case is “Alice-Bob-Alice”
where Alice speaks before and after Bob’s single speaking opportunity, both are
awarded by a proper scoring rule for each prediction, and both maximize their
total score. The proper scoring rule assures that each will tell the truth on their
last prediction, and the open question is whether Alice, when going first, will tell
the truth, lie, or keep her silence. Chen et al. (2010) show cases where Alice is
motivated to mislead on her first prediction, and make the key observation that
truthfulness is optimal if, in a different setup, namely, a single-prediction Alice-
Bob game where Alice chooses whether to go first or second, she will always
prefer going first. Building on that insight, Chen and Waggoner (2016) show
that when the players’ information is what they define as “perfect informational
substitutes”, they will predict truthfully and as early as allowed, while when
they are “perfect informational complements”, they will predict truthfully and
as late as allowed, while when players are neither substitutes nor complements,
untruthfulness can and will occur.

These works differ from ours in that they model agents having a constant
piece of information, which they may choose when to reveal, while we model
agents (expert and market) as receiving a time series of signals with new informa-
tion every time period. In the Discussion we comment on how our results reflect
on a possible generalization of the mentioned works to dynamic-information
settings.

The Efficient Market Hypothesis was introduced by Fama et al. (1969). The
Random Walk Hypothesis is even older, originating in the 19th century, and
discussed by, e.g., Samuelson (1965). The Black-Scholes option pricing model
Black and Scholes (1973) is based on a Gaussian random walk assumption.

Scoring rules have a very long history, going back to De Finetti (1937),
Brier (1950) and Good (1952). Proper scoring rules are often used for incentive-
compatible belief elicitation of risk-neutral agents (e.g. Armantier and Treich
(2013)).

To keep this paper short, we omitted some proofs. The reader will find a
full version, including all proofs, in Ban et al. (2017). The rest of this paper is
organized as follows: In Sect. 2 we describe our model. After establishing some
preliminary results in Sect. 3, Sect. 4 is devoted to the multiple-prediction prob-
lem. In Sect. 5 we summarize and offer concluding remarks.
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2 Model

2.1 Market Prediction

A market predicts the outcome of a continuous random variable X0, whose
realized value x0 will be revealed at time 0. Time is discrete and flows backwards
from an initial period Tmax, i.e., Tmax, . . . , t, . . . , 1, 0. At any time t > 0 the
market observes X0 + Zt where Zt ∼ N(0, t). We model Zt as a random walk
with i.i.d. steps Zt, . . . , Z1, i.e., Zt =

∑t
τ=1 Zτ and Zτ ∼ N(0, 1). Let the market

prediction (when uninformed by experts) be Xt := X0 + Zt at time t, and let
xt be the realized value. With every passing period t, the value of Zt = zt

is revealed and becomes common knowledge, and the market’s new prediction
changes to xt−1 = xt − zt. Note that the variance of Zt decreases with time, and
at time 0 the market’s prediction coincides with the outcome x0. The random
variable X0 is normally distributed N(0, σ2

0) where we assume σ2
0 � Tmax. This

assumption means that the outcome is, practically, unconstrained by a prior,
and makes posterior computations dependent solely on observed signals, since2

we have E[X0|Xt = xt] = xt and V ar(X0|Xt = xt) = t.

2.2 Expert Information and Goal

There is an expert, with quality q ∈ [0, 1], whose quality is common knowledge.
The expert’s quality consists in “knowing” part of the random steps Zt of every
period, and therefore getting a more accurate signal of X0. Formally,

– For every t, Zt = At + Bt, where At ∼ N(0, q) and Bt ∼ N(0, 1 − q) are
mutually independent. (Note that Zt ∼ N(0, 1).)

– The expert’s private signal at time t is Yt = X0 + B1 + . . . + Bt and let yt

be its realized value. (Note that if q = 0 then Yt = Xt and if q = 1 then
Yt = x0.)

At every t > 0, the expert may choose to make a prediction of the outcome.
The market has a varying probability distribution on the outcome, which is
affected by its signals and by the expert’s predictions. (The market price is the
distribution mean). Each prediction is scored by the logarithmic scoring rule as
described below. The expert’s reward is the total score for all predictions made.

The expert’s outcome distribution at t is N(yt, (1 − q)t).3 In practice, it is
enough for the expert to announce yt as his entire distribution follows by the
model and common knowledge. A prediction’s reward is determined at time
0 based on the realized value (x0) by the logarithmic scoring rule. Namely, if
the market distribution prior to the expert prediction is Xt− with density f−,
2 When a normal variable with prior distribution N(0, σ2

0) is sampled with known vari-

ance t at value xt, its Bayesian posterior distribution is normal with mean xt/t

1/σ2
0+1/t

and variance 1
1/σ2

0+1/t
. Assuming σ2

0 � Tmax ≥ t, this simplifies to N(xt, t).
3 Since the expert is better informed than the market, his prediction depends on his

signal alone. This is formally proved in Proposition 1.
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and following the expert prediction the posterior market distribution is Xt+

with density f+, then the expert reward is log(f+(x0)/f−(x0)), where x0 is the
realized value.

An expert who refrains from making any prediction is awarded 0. The expert
optimization problem is to maximize his expected reward given his private infor-
mation. The question before the expert is if and when to make predictions, and
whether to make them truthfully.

3 Preliminaries

3.1 Time and Expectation Notation

Distributions and other variables often use a time subscript, e.g., Xt is market’s
distribution at t (t periods before delivery date). When a prediction takes place
at t, the notation Xt−,Xt+ is used to distinguish between the variable before,
and after, respectively, the prediction.

We use the notation E
t
[Z] to denote the expectation of a random variable

Z according to the distribution known at t. This is shorthand for E
Xt

[Z] when

referring to the market’s expectation, or for E
Yt

[Z] when referring to the expert’s

expectation. Which of the two is meant will either be clear from the context or
explicitly stated. If a prediction was made at t, we use the notation E

t−
[Z], E

t+
[Z] to

distinguish between the market’s expectation of Z before and after, respectively,
the prediction has been made.

3.2 A Criterion for Independence

Here we prove a result about random variables based on model signals that will
enable us to determine whether they are stochastically independent.

From the model definitions we have, for every i ≥ j

Cov(Xi,Xj) = j (1)
Cov(Yi,Xj) = Cov(Xi, Yj) = Cov(Yi, Yj) = (1 − q)j (2)

Lemma 1. Define U to be the random vector (X0,X1, Y1, . . . , Xt, Yt)T , and let
U1,U2 be two random vectors of linear combinations of the U . Then the joint
distributions of U1,U2 are mutually independent if and only if for every pair
u1 ∈ U1 and u2 ∈ U2 Cov(u1, u2) = 0.

Proof. Every linear combination of U is normal, as it is a linear combination
of the i.i.d. normal variables Ai, Bi, i = 1, . . . t, and of X0, which is normal
and independent of each of the others. Therefore U has a jointly multivariate
normal distribution. Therefore so has random vector

(
U1

U2

)
. The lemma states

a general property of jointly multivariate normal distributions, see Tong (2012)
Theorem 3.3.2. ��
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3.3 Market Effect of a Prediction

Before evaluating, and then optimizing, expert’s value for a prediction strategy,
we must resolve how a single prediction affects market price, at the time of
prediction. For the multiple-prediction problem, we also need to determine the
effect after the prediction was made. This will be resolved in Sect. 4.1.

Define Zt to be the set of all expert and market signals previous to t (Xτ , Yτ

for τ > t).
Assume the expert makes a prediction yt at time t, implying a distribution

of Yt ∼ N(yt, (1 − q)t). Then at time t the market’s posterior distribution will
be the expert’s announced distribution, regardless of the market’s signal at this
time xt and all previous signals Zt.

Proposition 1. If the expert makes a prediction yt at time t, the market’s pos-
terior distribution is the expert’s implied distribution Yt ∼ N(yt, (1 − q)t).

Proof. Let Z = Zt ∪{Xt}. Define Z ′ = Z −Yt to be the set of random variables
Z − Yt with Z ∈ Z.

By (1), (2) for each Z ∈ Z ′, Cov(Z, Yt) = 0 and Cov(Z,X0) = 0. So, as given
Yt there is a one-to-one correspondence between Z and Z ′, and by Lemma 1

Pr[x0|Yt,Z] = Pr[x0|Yt,Z ′] =
Pr[x0, Yt,Z ′]

Pr[Yt,Z ′]
=

Pr[x0, Yt] Pr[Z ′]
Pr[Yt] Pr[Z ′]

= Pr[x0|Yt]

as claimed. ��

3.4 Prediction Score Expectation

Assume the expert makes a prediction at time t. Let the market prediction
prior to the expert prediction be Xt− ∼ N(μ−, σ2

−) with density f− and let the
posterior market prediction be Xt+ ∼ N(μ+, σ2

+) with density f+. Let expert’s
reward be denoted by W , then

W = log
f+(x0)
f−(x0)

= log
1

σ+
√
2π

e
− (x0−μ+)2

2σ2
+

1
σ−

√
2π

e
− (x0−μ−)2

2σ2−

= log
σ−
σ+

+
(x0 − μ−)2

2σ2−
− (x0 − μ+)2

2σ2
+

(3)

As the reward depends on x0, its value is only known at time 0. The expert can
calculate his reward expectation when making it (at t), based on his belief about
the distribution of x0.

Consider the case that the expert prediction is truthful.

Proposition 2. If the market’s prediction before an expert prediction is Xt− ∼
N(μ−, σ2

−), and after an expert prediction is Xt+ ∼ N(μ+, σ2
+), then if the pre-

diction is truthful the expert’s expected reward is positive and equals the Kullback-
Leibler divergence DKL(Xt+||Xt−).

E
t
[W ] = DKL(Xt+||Xt−) =

(μ+ − μ−)2

2σ2−
+

1
2

(σ2
+

σ2−
− 1 − log

σ2
+

σ2−

)
(4)
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Proof. As the second moment of the normal distribution N(μ, σ2) is μ2 + σ2,
and since the expert’s distribution translates to

x0 − μ− ∼ N(μ+ − μ−, σ2
+)

x0 − μ+ ∼ N(0, σ2
+),

we get by taking expectations from (3)

E
t
[W ] = E

x0∼N(μ+,σ2
+)

[W ] = log
σ−
σ+

+
(μ+ − μ−)2 + σ2

+

2σ2−
− 0 + σ2

+

2σ2
+

=
(μ+ − μ−)2

2σ2−
+

1
2

(σ2
+

σ2−
− 1 − log

σ2
+

σ2−

)

This is positive, because for every x < 1, log(1 − x) ≤ −x ��
We use the above result to calculate the expected reward of a first prediction.

Proposition 3. For an expert’s first prediction at t, his reward expectation is

E
t
[W ] =

(xt − yt)2

2t
− 1

2

(
q + log(1 − q)

)
(5)

Proof. For an expert’s first prediction, we have μ− = xt, σ2
− = t. By Propo-

sition 1 μ+ = yt, and σ2
+ = (1 − q)t. Hence, X−

t ∼ N(xt, t) and X+
t ∼

N(yt, (1 − q)t). Substituting these in (4) we derive (5). ��

4 The Optimal Multiple-Prediction Strategy

4.1 Market Effect After a Prediction

When an expert has made a prediction at T , what is the market’s posterior
distribution at the next periods T − 1, T − 2, . . ., assuming the expert makes
no new predictions? This is more complex than at the time of prediction (see
Sect. 3.3), and the distribution depends on more than one signal, as stated in
the following proposition:

Proposition 4. At time t, Let T > t be the time of expert’s latest prediction
yT . Let Z := ZT ∪ {yT , xT , xT−1, . . . xt}. Then at t the market’s posterior
distribution is N(μ(x0|Z), V ar(x0|Z)) with

μ(x0|Z) =
xt

t + 1
1−q

yT

T − xT

T
1
t + q

1−q
1
T

V ar(x0|Z) =
1

1
t + q

1−q
1
T

Proof. The proof of this proposition is in the full version Ban et al. (2017).
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4.2 Truth is Best Policy

Does an expert gain or lose by deviating from the truth, reporting a prediction
that is different from his actual belief? When allowed a single prediction, the
fact that the logarithmic scoring rule is proper means that the expert’s optimal
policy is to predict truthfully. If allowed multiple predictions, this is not clear-cut:
A false prediction misdirects the market, so that a subsequent true prediction
reaps the added benefit of correcting the misdirection. Plausibly, the gain of the
latter outweighs the loss of the former.

We shall, however, show

Proposition 5. If allowed periods when to predict are fixed, it is an equilib-
rium for the expert to make truthful predictions and for the market to take his
predictions as truthful.

Proof. The proof of this proposition is in the full version Ban et al. (2017).

Therefore, truthfulness is best policy for the expert. Note that if the expert’s
allowed prediction schedule is not fixed, the result may no longer be true. E.g.,
if the expert is allowed further predictions only if the discrepancy between his
last prediction and the market’s prediction exceeded some threshold, the expert
may be motivated to distort his prediction so as to be given further prediction
opportunities.

4.3 Prediction Reward Expectation

Having seen that there is no profit in lying, we shall from now on assume truthful
predictions.

The following lemma will be useful in calculating the expected reward of a
future prediction, before some of the signals it is based on are known. It shows
that current and historic signals affect the reward expectation of the next pre-
diction, but have no effect on the reward expectation of later predictions.

Lemma 2. Assume that the expert is committed to making two consecutive pre-
dictions at T and t < T . Let Xt− ∼ N(μ−, σ2

−) and Xt+ ∼ N(μ+, σ2
+) be the

market’s distributions for x0 before and after, respectively, a prediction μ+ is
made at t.

Assume that σ2
+ and σ2

− do not depend on any signals, but only on T, t and q.
Then, at any time τ ≥ T , the expected t-prediction reward is

E
τ
[Wt] = log

σ−
σ+

Proof. The proof of this lemma is in the full version Ban et al. (2017).

We remark here that it is easy to verify in the proof above, that the lemma
also holds a priori, before the expert and market have received their first signal.
Consequently by Proposition 3 the a priori expected benefit of a first prediction
is 1

2 log 1
1−q .

Another consequence is the following proposition:
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Proposition 6. Assume that the expert is committed to making two consecutive
predictions at T and t < T . Then, at or before T , the reward expectation of the
latter prediction is

E[Wt] = −1
2

log
(
1 − q

T − t

T

)

Proof. By Proposition 4 σ2
− = 1

1
t +

q
1−q

1
T

, while by Proposition 1 σ2
+ = (1 − q)t.

These depend on t, T and q only, so by Lemma 2, the reward expectation at
every τ ≥ T is

E
τ
[Wt] = log

σ−
σ+

= −1
2

log
(
(1 − q)t

[1
t

+
q

1 − q

1
T

])
= −1

2
log

(
1 − q

T − t

T

)

��
We can now prove the main result: The best strategy is to make predictions

whenever allowed, (and truthfully, as already shown in Proposition 5).

Theorem 1. If allowed periods for prediction are fixed, an expert maximizes his
reward by making predictions at every allowed period, speaking the truth at all
predictions.

Proof. The proof of this theorem is in the full version Ban et al. (2017).

Consequently if the expert is allowed to speak every period, he will. The
following proposition gives his reward expectation and its asymptotic behavior
for large T .

Theorem 2. Assume the expert is allowed to make a prediction every period.
Mark by Ξ(T ) the average reward expectation at period T for an expert using
optimal prediction strategy.

Ξ(T ) =
1
2

T∑

t=1

log
t

t − q
(6)

=
1
2

log
Γ (1 − q)Γ (T + 1)

Γ (T + 1 − q)
(7)

For large T , Ξ(T ) = O(log T ). More specifically

lim
T→∞

Ξ(T )
q log T + log Γ (1 − q)

=
1
2

(8)

Proof. The optimal policy is to predict at every period starting at T . The
expected reward (averaged over all random walks) for a first prediction at T is,
by Lemma 2, 1

2 log 1
1−q , while for every t < T , it is, by Proposition 6, 1

2 log t+1
t+1−q .

(6) follows , and from it (7).
We use the following limit of the Gamma function: For α ∈ R

lim
n→∞

Γ (n + α)
Γ (n)nα

= 1

(8) follows from this and (7) by substituting α = −q, n = T + 1. ��
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5 Discussion

5.1 Conclusions

We analyzed the expert’s policy in the prediction scenario described, and found
that an expert should make a new, truthful prediction whenever he is allowed
to and has an updated signal. For large t, his total reward is on average roughly
1
2q log t. This compares to the asymptotic average reward of q log log t that Azar
et al. (2016) found is achievable by best policy of the expert when restricted to
a single prediction.

The ability to revise predictions therefore significantly increases the expert’s
reward, by a factor O( log t

log log t ).

5.2 Other Random Walks

In Sect. 1.5 we noted that our main results, and particularly the truthfulness
property, does not necessarily apply to any other model. It is an interesting
open problem to characterize which models do, in fact, lead to similar results.
It needs reminding that our derivations depend on two critical elements of our
model: (i) Gaussian random walk, and (ii) variances of all signals and, as a result,
of inferred distributions are common knowledge, and consequently independent
of signal values. No similar results may apply, for example, in binary prediction
markets (where there is a 0/1 outcome), because in the underlying Bernoulli
distribution, a prediction p, representing the distribution’s mean, also affects
the distribution variance p(1 − p).

5.3 Informational Substitutes

Chen and Waggoner (2016) formulate a criterion of “informational substitutes”
as leading to being truthful and revealing information at first opportunity, in a
world where agents’ private information is static. The definition used for “infor-
mational substitutes” is that information is more valuable (per the scoring rule
in force) earlier than later. While simply stated, working this out for any given
case may be involved.

We find the same, in our world where private information is dynamic. In that
context, the major part of the proof Theorem 1 was to show that expert and
market’s signals are informational substitutes.

Our result is therefore consistent with a generalization of Chen and Waggoner
(2016) (and Chen et al. (2010)) to dynamic-information contexts. We venture a
guess that such a generalization will prove to be valid. As our analysis shows,
such a generalization is not straight-forward, but depends, inter alia, on the
behavior of interdependent martingales.

5.4 Several Experts

This subject is discussed in the full version Ban et al. (2017).
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Abstract. Facility location games have been a topic of major interest in
economics, operations research and computer science, starting from the
seminal work by Hotelling. Spatial facility location models have success-
fully predicted the outcome of competition in a variety of scenarios. In a
typical facility location game, users/customers/voters are mapped to a
metric space representing their preferences, and each player picks a point
(facility) in that space. In most facility location games considered in the
literature, users are assumed to act deterministically: given the facilities
chosen by the players, users are attracted to their nearest facility. This
paper introduces facility location games with probabilistic attraction,
dubbed Shapley facility location games, due to a surprising connection
to the Shapley value. The specific attraction function we adopt in this
model is aligned with the recent findings of the behavioral economics
literature on choice prediction. Given this model, our first main result
is that Shapley facility location games are potential games; hence, they
possess pure Nash equilibrium. Moreover, the latter is true for any com-
pact user space, any user distribution over that space, and any number of
players. Note that this is in sharp contrast to Hotelling facility location
games. In our second main result we show that under the assumption
that players can compute an approximate best response, approximate
equilibrium profiles can be learned efficiently by the players via dynam-
ics. Our third main result is a bound on the Price of Anarchy of this
class of games, as well as showing the bound is tight. Ultimately, we
show that player payoffs coincide with their Shapley value in a coalition
game, where coalition gains are the social welfare of the users.

1 Introduction

In his seminal work [14], Hotelling considers a competition between two ice-cream
vendors, who sell ice-cream to sunbathers on the beach, and wish to maximize
their payoffs. The vendors sell the same type of product, and charge the same
price. Sunbathers are distributed uniformly along the beach and every sunbather
walks to his/her nearest ice-cream vendor to buy an ice-cream. As indicated by
Hotelling, the vendors will strategically locate their ice-cream carts in the middle
of the beach, back to back, as this is the only Nash equilibrium of this game.

Following that seminal work, facility location games have been a topic of
major interest in economics, operations research and computer science. Spatial
facility location models have successfully predicted the outcome of competition in
c© Springer International Publishing AG 2017
N. R. Devanur and P. Lu (Eds.): WINE 2017, LNCS 10674, pp. 58–73, 2017.
https://doi.org/10.1007/978-3-319-71924-5_5
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a variety of scenarios. In a typical facility location game, users/customers/voters
are mapped to a metric space representing their preferences, and each player
picks a point (facility) in that space. Thereupon, each player is awarded one
monetary unit for each user attracted to her facility. Even a toy example like
the one above supports powerful real-world phenomena.

In most facility location games considered in the literature, users are assumed
to act deterministically: given the facilities chosen by the players, users are
attracted to their nearest facility. Indeed, such rational behavior of users is justi-
fied in many situations. However, far too little attention has been paid to models
where users are not deterministic, and are not simply attracted to their near-
est facility. Irrational decision making is ubiquitous, as demonstrated by the
celebrated work of Kahneman and Tversky [16]. In this context, analyzing prob-
abilistic user attraction introduces new theoretical challenges to overcome, as
well as practical implications.

This paper focuses on facility location games with probabilistic attraction.
Our proposed attraction function is aligned with the “Satisficing” principle in
decision making [30], and the model of selection based on small samples [3,11].
The specific attraction function we adopt can be found in the recent experimental
economics benchmark presented in [10], and its usefulness in choice prediction
is discussed in [21].

We first formally present the above modeling process to determine the attrac-
tion probabilities. Using this attraction, we define the class of facility location
games considered in this paper, termed Shapley facility location games, due to
a surprising connection to the Shapley value [28]. The difference between our
model and Hotelling’s is analyzed using the toy example above; in particular, we
show that when both players choose the middle of the segment, this is no longer
an equilibrium profile; indeed, facilities will be selected and located in different
locations.

We then show that Shapley facility location games are potential games [19];
hence, they possess pure Nash equilibrium. Moreover, the latter is true for any
compact user space, any user distribution over that space, and any number of
players. Note that this is in sharp contrast to Hotelling facility location games,
where pure Nash equiibrium does not always exist (see, e.g., [9,26,27]).

An interesting question is whether strategic interaction among the players
will converge to an approximate Nash equilibrium (see, e.g., [2,7]). The dynamics
of Hotelling facility location games refer to intractable problems, and is rarely
analyzed. We show that under the assumption that players can compute an
approximate best response, approximate equilibrium profiles can be learned effi-
ciently by the players via dynamics in any Shapley facility location game. This
result holds for any user space (including an infinite one). We also bound the
Price of Anarchy [17,24] of this class of games, and show the bound is tight.

Ultimately, the connection to the Shapley value is provided, as we bind (non-
cooperative) facility location games with our selection of probabilistic attraction
to cooperative game theory. We show that player payoffs coincide with their
Shapley values in a coalition game, where coalition gains are the social welfare
of the users.
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1.1 Related Work

For a recent survey of Hotelling games the reader is referred to [5]. In the same
spirit, Voronoi games (see, e.g., [1,6,12]) look at the game theoretic aspects of
facility location with potentially multiple facilities for each player in general
(euclidean) spaces.

The above work does not refer to probabilistic selection among facilities, an
essential aspect needed in order to deal with realistic commerce and marketing
setups. An exception that does adopt some form of probabilistic selection is the
model of [13]. We will discuss how [13] can be seen as a special case of our model
in Sect. 6.

Probabilistic choice among products [18] is widely explored, and choice pre-
diction [3,11,30] is studied extensively. In this line of work, the authors wish to
predict how a subject will make his/her choice among products. In our paper
the way users react given a set of products is adopted from that literature, and
embedded in the context of facility location games.

A different line of research in the algorithmic game theory literature is the
study of facility location in the context of approximate mechanism design [20].
That literature deals with the case where only one entity dictates the place of a
facility (or several facilities), while user preferences are their private information
and are strategically reported, see e.g. [22,25]. In that context the players are
the users, while our work extends facility location games where the players are
the facilities’ owners.

2 Model

Before we present our model formally, we briefly describe a general facility loca-
tion game, and elaborate on the component we revisit.

Typically in a facility location game, users are distributed in a space U , where
every point u ∈ U models a user, be it by his1 physical location, his preferences
towards a product, or his political point of view. The space U plays one more role:
every point in U is also a potential location for a facility, which is a physical
location of a store, properties of a product, or political agenda. There are n
players, where each player is to locate her facility in U . Namely, a strategy of
player i is a location xi ∈ U . A strategy profile is a vector describing where each
player located her facility, x = (x1, . . . , xn) ∈ Un.

Each user u ∈ U has a similarity function σu : U :→ [0, 1], where σu(t)
quantifies the extent to which u ∈ U is satisfied with a facility located in
t ∈ U .2 Given a strategy profile x , users are attracted to the facilities of the

1 For ease of exposition, third-person singular pronouns are “she” for a player and
“he” for a user.

2 Commonly in facility location models, distances are used to determine the attraction.
However, for ease of presentation of the model and the analysis, we employ proximity;
clearly, both notions are equivalent.
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players according to some attraction function, which receives the similarity vec-
tor σu(x ) = (σu(x1), . . . , σu(xn)) as input.3 Players are strategic, namely they
locate their facilities with the aim of attracting as many users as possible.

The component we revisit in this paper is the attraction function. Following
the behavioral economics literature, users do not just select the facility they are
most satisfied with (e.g. are not simple expected utility maximizers [16]). In this
work we focus on the analysis of facility location games with a user attraction
function that is popular in behavioral science as described in the introduction,
thereby incorporating the human aspect in our model. Indeed, it has been shown
that this modelling is an extremely effective ingredient in the context of choice
prediction [10,21].

Given the locations selected by the players, the process of deciding which
facility to select, if any, is modeled as follows: every user samples a satisfaction
threshold from the uniform distribution4, and then chooses a facility with sat-
isfaction level above that threshold, if such a facility exists. If several facilities
meet his criterion, he flips an unbiased coin to remain with one facility.

Surprisingly, as we show in Sect. 5, the aforementioned simple and intuitive
selection process leads to a standard solution concept in cooperative game theory.
More precisely, the probability of u to select facility xi coincides with the Shapley
value of player i in a cooperative game where the value assigned to each coalition
is the maximal similarity level of u with the facilities of that coalition. For that
reason, we term it the Shapley attraction function. A formal definition of the
Shapley attraction function is as follows.

Definition 1. For a strategy profile x and a user u, let
(
σ1

u(x), σ2
u(x), . . . σn

u(x)
)

denote the result of ordering the similarity vector σu(x) in ascending order, and
let ρi = ρi(u,x) be an index such that σu(xi) = σρi

u (x). Under the Shapley
attraction function, u is attracted to each player i with probability

μi(u,x) � Pr (u is attracted to i under x) =
ρi∑

j=1

σj
u(x) − σj−1

u (x)
n − j + 1

, (1)

where σ0
i (x) = 0.

See Fig. 1 for illustration. We are now ready to formally present the model.
A Shapley facility location game is composed of the following:

1. A compact set of users U , and a density function f with mass 1 over U .
2. A similarity function σ : U × U :→ [0, 1], such that σu(t) � σ(u, t) for all

t ∈ U .
3. A set of players, [n] = {1, . . . , n}. The strategy set of each player i is a location

(facility) in U . The strategy of player i is denoted by xi ∈ U , and a strategy
profile by x = (x1, . . . , xn) ∈ Un.

3 In Hotelling games, for instance, each user u selects a player uniformly from {i :
σu(xi) ≥ maxj σu(xj)}.

4 Our results hold for any distribution, as well as in case the distribution is different
for each user.
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x3

x2

x1

x3

x2

x3 None

The satisfaction threshold of u

0.3 0.5 0.7 1.0

Fig. 1. Consider a user u and a strategy profile x = (x1, x2, x3) such that the simi-
larity vector σu(x ) = (σu(x1), σu(x2), σu(x3)) = (0.3, 0.5, 0.7). Hence,

(
σ1

u(x ), σ2
u(x ),

σ3
u(x )

)
= (0.3, 0.5, 0.7) as well. User u samples his satisfaction threshold Y (as men-

tioned, uniformly distributed random variable). If Y ≤ 0.3, then all the facilities satisfy
him, so he chooses one uniformly. If 0.3 < Y ≤ 0.5, only x2, x3 satisfy him, and so he
flips a coin to choose one of them. If 0.5 < Y ≤ 0.7, the only satisfying facility is
x3, and if Y > 0.7 he will not select any facility. It follows that u will select x1 with

probability μ1(u, x ) =
σ1
i
3

= 1
10

, x2 with probability μ2(u, x ) =
σ1
i
3

+
σ2
i −σ1

i
2

= 2
10

, and

x3 with probability μ3(u, x ) =
σ1
i
3

+
σ2
i −σ1

i
2

+
σ3
i −σ2

i
1

= 4
10

. With probability 0.3 he will
select none of the facilities.

4. Users are attracted to player facilities according to the Shapley attraction
function. That is, the probability that u will be attracted to facility xi of
player i under x is μi(u,x ) given in Eq. (1).

5. The payoff of player i under the strategy profile x is the proportion of users
attracted to her chosen location, i.e.

πi(x ) =
∫

U
f(u)μi(u,x )du. (2)

Throughout the paper, both σu(·) and σ(u, ·) are used interchangeably. We
restrict the scope of this work to similarity functions that are Riemann inte-
grable, for instance continuous functions or simple functions (a finite linear com-
bination of indicator functions). In euclidean spaces, natural similarity functions
are monotonically non-increasing in the distance. Note, however, that a similar-
ity function need not be monotone.

We say that a strategy profile x = (x1, . . . , xn) ∈ Un is a pure Nash
equilibrium if for any player i ∈ [n] and any strategy x′

i ∈ U it holds that
πi(xi,x−i) ≥ πi(x′

i,x−i), where x−i denotes the vector x of all strategies, but
with the i-th component deleted.

3 An Illustrative Example

In this section we illustrate Shapley facility location games by considering a game
instance, thereby demonstrating the elements of the model. We employ the very
restricted two-player, uniform distribution on a segment setting considered in
[14]. We stress that this section serves as a demonstration only, and our results
in the upcoming section apply to the model described above in its full generality.
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w x1 1x2
x1+x2

2

1−|w−x2|

u

Similarity σ(u, x1) = 1 − |x1 − u|
σ(u, x2) = 1 − |x2 − u|

Fig. 2. User similarity with respect to the strategy profile (x1, x2). The blue line is the
similarity function of x1 with every user, and the red line is that of x2. Every user w ≤
x1+x2

2
selects x1 with probability μ1(w, (x1, x2)) = 1−|x2−w|

2
+(|x2 − w| − |x1 − w|) and

x2 with probability μ2(w, (x1, x2)) = 1−|x2−w|
2

. Similarly, every user v ≥ x1+x2
2

selects

x1 with probability μ1(v, (x1, x2)) = 1−|x1−v|
2

and x2 with probability μ2(v, (x1, x2)) =
1−|x1−v|

2
+ (|x1 − v| − |x2 − v|). (Color figure online)

We focxus on a game G induced by the space of users U = [0, 1], uniform
probability distribution f(u) = 10≤u≤1, two players, and a symmetric similarity
function

∀u, t ∈ [0, 1] : σ(u, t) = 1 − |u − t|.

Note that σ(u, t) is merely one minus the absolute distance between u ∈ [0, 1]
and a potentially occupied location t ∈ [0, 1].

Let (x1, x2) be a strategy profile such that x1 ≤ x2. Observe that

μ1 (u, (x1, x2)) =

{
σ(u,x2)

2 + σ(u, x1) − σ(u, x2) u < x1+x2
2

σ(u,x1)
2 u ≥ x1+x2

2

.

See Fig. 2 for visualization of the above. The payoff of player 1 is given by

π1(x1, x2) =

∫ 1

0

μ1 (u, (x1, x2)) du =

x1+x2
2∫

0

(
σ(u, x1) − σ(u, x2)

2

)
du +

1∫

x1+x2
2

σ(u, x1)du.

The construction of player 2’s payoff is similar. Using elementary calculations,
one can find the pure Nash equilibria of G.
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Proposition 1. The strategy profile
(
3
8 , 5

8

)
is the unique pure Nash equilibrium

of G, up to renaming the players.

The proof of Proposition 1 is in the appendix. Indeed, in contrast to [14], under
equilibrium profile players choose different locations. We leave the complete
analysis of this setting (i.e. more players, higher dimensional space) for future
work.

4 Analysis

We now examine the properties of Shapley facility location games. We begin
with showing that every Shapley facility location game possesses a pure Nash
equilibrium. Afterwards, we show that if mild assumptions are satisfied, learning
dynamics will efficiently converge to an approximate equilibrium. This is despite
of the infinite strategy space of the players. Finally, the price of anarchy is
analyzed.

4.1 Pure Nash Equilibrium

In this subsection we show that Shapley facility location games possess pure Nash
equilibrium. A non-cooperative game is called a potential game [19] if there exists
a function Φ : Un → R such that for every strategy profile x = (x1, . . . , xn) ∈ Un

and every i ∈ [n], whenever player i switches from xi to a strategy x′
i ∈ U , the

change in her payoff function equals the change in the potential function, i.e.

Φ(x′
i,x−i) − Φ(xi,x−i) = πi(x′

i,x−i) − πi(xi,x−i).

Theorem 1. Shapley facility location games are potential games.

Proof. Fix a player i. Given a strategy profile x , define:

cu(y;x ) = |{i ∈ [n] : y ≤ σu(xi)}|.

The latter represents the number of players that attract the infinitesimal user u
under the locations of the players defined by the profile x , in case he sampled
the satisfaction level y. Consequently, the payoff of player i, formerly defined in
Eq. (2), can be reformulated as

πi(x ) =
∫

U
f(u)

∫ σu(xi)

0

1
cu(y;x )

dydu. (3)

Next, we show that

Φ(x ) =
∫

U
f(u)

∫ 1

y=0

cu(y;x)∑

i=1

1
i
dydu
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is a potential function of the game. We temporarily focus on a user u. For any
strategy profile x and user u, it holds that

cu(y;x ) =

{
cu(y;x−i) y > σu(xi)
cu(y;x−i) + 1 y ≤ σu(xi)

.

Therefore, we have

∫ σu(xi)

0

dy

cu(y;x )
+

∫ 1

0

cu(y;x−i)∑

j=1

1
j
dy

=
∫ σu(xi)

0

dy

cu(y;x−i) + 1
+

∫ σu(xi)

0

cu(y;x−i)∑

j=1

1
j
dy +

∫ 1

σu(xi)

cu(y;x−i)∑

j=1

1
j
dy

=
∫ σu(xi)

0

cu(y;x−i)+1∑

j=1

1
j
dy +

∫ 1

σu(xi)

cu(y;x−i)∑

j=1

1
j
dy

=
∫ 1

0

cu(y;x)∑

j=1

1
j
dy. (4)

We are now ready for the final argument. Fix two profiles, (xi,x−i), (x′
i,x−i).

It follows that

πi(xi,x−i) − πi(x′
i,x−i) =

∫

U
f(u)

σu(xi)∫

0

1
cu(y;xi,x−i)

dydu −
∫

U
f(u)

σu(x
′
i)∫

0

1
cu(y;x′

i,x−i)
dydu =

∫

U
f(u)

σu(xi)∫

0

1
cu(y;xi,x−i) + 1

dydu −
∫

U
f(u)

σu(x
′
i)∫

0

1
cu(y;x′

i,x−i) + 1
dydu.

(5)

By adding and removing
∫

U f(u)
∫ 1

0

∑cu(y;x−i)
j=1

1
j dydu to Eq. (5), similar to what

we showed in Eq. (4), we obtain

(5) =
∫

U
f(u)

∫ 1

0

cu(y;x)∑

j=1

1
j
dydu −

∫

U
f(u)

∫ 1

0

cu(y;x
′
i,x−i)∑

j=1

1
j
dydu

= Φ(x ) − Φ(x′
i,x−i).

��
Since U is a compact set and the payoff functions are continuous with respect

to the strategy space, a direct result from Theorem 1 and [19, Lemma 4.3] is the
following.

Corollary 1. Every Shapley facility location game possesses a pure Nash equi-
librium.
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4.2 Convergence to Approximate Equilibrium

In this subsection we examine learning dynamics of Shapley facility location
games. The solution concept we are after is (multiplicative) approximate pure
Nash equilibrium. In [7], the authors examined convergence of dynamics in sym-
metric (finite) congestion games. However, in Shapley facility location games the
user space may be infinite; hence modifications are needed.

We begin with a few definitions. We say that a strategy profile x is an ε-pure
Nash equilibrium (ε-PNE) for ε > 0 if

∀i ∈ [n],∀x′
i ∈ U : πi(x′

i,x−i) ≤ (1 + ε)πi(x ).

Notice that if x is an ε-PNE, then any player cannot improve her payoff by a
factor of more than (1 + ε) of what she gets under x by unilaterally deviating
to another location.

In the upcoming analysis, we assume players can efficiently compute ε-best
response, if such exists. Indeed, this assumption holds for several plausible sce-
narios, such as concave payoff functions or discretization of Lipschitz user dis-
tribution.

The dynamics we consider are the following:
Best-response dynamics:

– Until reaching ε-PNE:
• Pick an arbitrary player with a (1+ ε) profitable deviation, and move her

to her deviating strategy.

It turns out that any such strategic interaction among the players will con-
verge to an ε-PNE after efficient number of iterations.

Theorem 2. Let ε ∈ (0, 1). In a Shapley facility location game with n players
and an initial strategy x0, after O

(
n log n

ε log Φmax
Φ(x0)

)
any best-response dynamics

converges to ε-PNE.

Before we turn to prove Theorem2, we prove two supporting lemmas.

Lemma 1. For every profile x it holds that
n∑

i=1

πi(x) ≥ Φ(x)
ln(n) + 1

.

Proof. Fix a strategy profile x . Observe that
n∑

i=1

πi(x ) =
n∑

i=1

∫

U
f(u)

∫ σu(xi)

0

1
cu(y;x )

dydu

=
∫

U
f(u)

n∑

i=1

∫ σu(xi)

0

1
cu(y;x )

dydu

=
∫

U
f(u)

∫

cu(y;x) �=0

1dydu.
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Since Hn =
∑n

i=1
1
i < ln(n) + 1, we have:

∫

U
f(u)

∫

cu(y;x) �=0

1dydu ≥ 1
ln(n) + 1

∫

U
f(u)

∫

cu(y;x) �=0

n∑

i=1

1
i
dydu

≥ 1
ln(n) + 1

∫

U
f(u)

∫ 1

0

cu(y;x)∑

i=1

1
i
dydu

=
Φ(x )

ln(n) + 1
.

��
Lemma 2. Denote by i the index of the player chosen by the dynamics, and let
x′

i denote her deviation. It follows that:

∀j ∈ [n] : πi(x′
i,x−i) − πi(x) ≥ ε

4
πj(x).

Proof. In case πi(x ) ≥ πj(x)
4 , player i has an ε-profitable deviation; hence it

holds that

πi(x′
i,x−i) − πi(x ) ≥ επi(x ) ≥ ε

4
πj(x ).

Otherwise, πi(x ) <
πj(x)

4 . Next, for every u, y such that y ≤ σu(sj) it holds that

cu(y; sj ,x−i) = 2cu(y; sj) + cu(y;x−i,j) ≤ 2cu(y; sj) + cu(y;x−i,j) + cu(y;xi)
= cu(y;x ) + 1 ≤ 2cu(y;x ).

Thus,

πi(sj , x−i) =

∫

U
f(u)

∫ σu(sj)

0

1

cu(y; sj , x−i)
dydu ≥

∫

U
f(u)

∫ σu(sj)

0

1

2cu(y; x )
dydu

=
πj(x )

2
.

Hence,

πi(x′
i,x−i) − πi(x ) ≥ πi(sj ,x−i) − πi(x ) ≥ πj(x )

2
− πj(x )

4
≥ ε

4
πj(x ).

��
We are now ready to prove Theorem 2.

Proof (of Theorem 2). In one iteration of the dynamics it holds that

Φ(x′
i,x−i) − Φ(x ) = πi(x′

i,x−i) − πi(x )

≥ ε

4
max

j
πj(x )

≥ ε

4n

n∑

j=1

πj(x )

≥ ε

4n (ln(n) + 1)
Φ(x ).
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Let c = ε
4n(ln(n)+1) < 1. Denote by m the number of iterations until convergence.

Observe that

Φmax ≥ Φ(xm) ≥ (1 + c)mΦ(x 0). (6)

If m does not satisfy Eq. (6),

Φmax < (1 + c)mΦ(x 0) ≤ em·cΦ(x 0) ⇒ m ≥ 4n (ln(n) + 1)
ε

ln
(

Φmax

Φ(x 0)

)
.

Therefore, an ε-PNE is obtained after at most O
(

n log n
ε log Φmax

Φ(x0)

)
iterations of

any best response dynamics. ��

4.3 Price of Anarchy

In this subsection we analyze the Price of Anarchy [17,24] of the discussed games,
herein denoted PoA. The PoA measures the inefficiency of a game in terms of
social welfare, as a result of selfish behavior of the players. Specifically, it is the
ratio between an optimal dictatorial scenario and the social welfare of the worst
equilibrium. If S is the set of all feasible profiles, and E ⊆ S is the set of pure
equilibrium profiles, then:

PoA =
maxx∈S V (x )
minx∈E V (x )

.

The objective function of interest is the following:

V (x ) =
∫

U
f(u)max

i
σu(xi)du.

Note that V represents the sum of payoffs of the players, as well as the weighted
maximum similarity users attain from the facilities under x .

Theorem 3. The PoA of Shapley facility location games is at most 2n−1
n .

The proof is in the appendix. After bounding the PoA, our objective is to show
that this bound is tight, by presenting a game instance that achieves this bound.

Lemma 3. There exists a game instance with PoA = 2n−1
n .

Proof. Consider an n-player game over U = [0, 2]n. Let ei denote the i’th vector
of the canonical basis of Rn, 0 be the zero vector in R

n, and let Bi = {w ∈ U :
d(w, ei) < ε} where d(·) is the euclidean distance and ε > 0 is a small constant.
Denote by α the volume of each such Bi. Consider the following density function:

f(u) =

{
1

αn ∃i : u ∈ Bi

0 Otherwise
.



Shapley Facility Location Games 69

In addition, let the similarity function be

∀u,w ∈ U : σu(w) =

⎧
⎪⎨

⎪⎩

1 d(u,w) < ε and w �= 0
n

2n−1 w = 0
0 Otherwise

.

We now show that the strategy profile x = (0,0, . . . ,0) is in equilibrium. Con-
sider player i’s payoff under x , and a possible unilateral deviation of her to ei:

πi(x ) =
n

2n − 1

1

n
=

1

2n − 1
, πi(ei, x−i) =

1

n

(
n

2n − 1

1

n
+ 1 − n

2n − 1

)
=

1

2n − 1
.

Since strategies outside {0, e1, . . . , en} are strictly dominated, we obtain πi(x ) ≥
πi(w,x−i) for all w ∈ U . Observe that V (x ) = n

2n−1 . The optimal social welfare
is one, obtained when players select unique locations, e.g. player i selects ei.
Therefore, PoA = 2n−1

n . ��

5 Relation to Shapley Value

Imagine a user being puzzled by the offers of the players. A novel way to decide
which facility to select is to consider the players as being collaborative, and
divide its share among all players, where each player gets a “fair” part. In this
section, we show that the previously defined user reaction function coincides with
a core solution concept in cooperative game theory, and can be characterized by
a collection of desirable properties.

A cooperative game consists of two elements: a set of players and a char-
acteristic function, which assigns a value to every coalition, i.e. every subset of
players. The analysis of cooperative games focuses on predicting which coalitions
will be formed, and how the payoff of a coalition should be distributed among
its members. One core solution concept is the Shapley value [28].

Definition 2 (Shapley value). Given a cooperative game with a set of players
[n] and a characteristic function v : 2[n] → R such that v(φ) = 0, the Shapley
value is a way to distribute the total gain among the players. According to the
Shapley value, the amount that player i gets in a coalition game (v, [n]) is:

φi(v) � 1
n!

∑

R∈Π([n])

[
v(PR

i ∪ {i}) − v(PR
i )

]
(7)

where Π([n]) is the set of all permutations of [n] and PR
i is the set of players

which precede i in the permutation R.

The Shapley value is characterized by a collection of desirable properties:

– Efficiency:
∑n

i=1 φi(v) = v ([n]), i.e. the total gain is distributed.
– Null player: If ∀C ⊆ [n] it holds that v(C ∪ {i}) = v(C), then φi(v) = 0.
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– Symmetry: If i, j are equivalent, namely v(C ∪ {i}) = v(C ∪ {j}) for all
C ⊆ [n], then φi(v) = φj(v).

– Linearity: If v, w are two cooperative games and α is a real number, then
φi(αv + w) = αφi(v) + φi(w).

For our purposes, we temporarily focus on a specific user u. The characteristic
function vu(C;x ) is defined to be the maximum similarity of u to one of the
facilities chosen by the members of u under x . Formally:

vu(C;x ) = max
i∈C

σu(xi).

This modeling follows the logic of Hotelling games, where each user is attracted
to his nearest facility. Therefore, each user u initiates a cooperative game that
consists of the players [n], and vu(;x ) as a characteristic function.

Denote the cooperative game defined over all users by V ,

V (C;x ) =
∫

U
f(u)vu(C;x )du.

We now bind the payoff of a player in the facility location model presented above
and its Shapley value of the cooperative game V .

Theorem 4. The payoff of player i under any pure strategy profile x is her
Shapley value in the cooperative game ([n], V (;x)). Namely,

πi(x) = φi (V (;x)) .

Proof. Due to [8,28], the Shapley value is fully characterized by the properties
above. Therefore, if we show that the Shapley attraction function satisfies these
properties, the theorem will be proven. Fix a strategy profile x and a user u. We
show that μi(u,x ) is the Shapley value of the cooperative game vu(;x ):

– Efficiency: Observe that

n∑

i=1

μi(u,x ) =
n∑

i=1

ρi∑

j=1

σj
u(x ) − σj−1

u (x )
n − j + 1

= σn
u(x ) = max

i∈[n]
σu(xi) = v ([n];x ) .

– Null player: If i is a null player, it follows that vu(C;x ) = vu(C ∪ {i};x ) for
every coalition C, and in particular, for C = ∅. Therefore v({i};x ) = v(∅;x ) �
0, hence σu(xi) = 0. By definition of μ, it holds that μi(u,x ) = 0.

– Symmetry: v({i};x ) = v({j};x ) implies σu(xi) = σu(xj), thus μi(u,x ) =
μj(u,x ).

– Linearity: Note that μ is defined for a single user only. Therefore, we hereby
extend it: for a distribution f over {u1, u2}, define

μi (({u1, u2}, f),x ) = f(u1)μi(u1,x ) + f(u2)μi(u2,x ).

Hence, linearity holds as well.
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Since μ satisfies Shapley’s axioms, μi (u,x ) = φi (vu(;x )), and μi ((U , f),x ) is
the Shapley value of player i in the cooperative game V (;x ). Moreover,

μi ((U , f),x ) =
∫

U
f(u)μi(u,x )du = πi(x ).

Thus the theorem is proved. ��

6 Discussion

We introduced Shapley facility location games, a framework incorporating prob-
abilistic user behavior in facility location games. In this framework we considered
choice selection among facilities motivated by the behavioral economics litera-
ture. Our results show that such probabilistic choice is “fair”, and coincides with
the Shapley value of a corresponding cooperative game. We proved that Shapley
facility location games always possess pure Nash equilibria. We also crystallized
the convergence rate in these games, and bounded their price of anarchy.

The reader may wonder whether the model can accommodate an asymmetric
attraction function; that is, the case where the extent to which a user is attracted
to a player depends not only on her chosen location, but also on her identity.
Such asymmetry may result from power or influence a player possesses, which is
a very natural assumption. Moreover, asymmetry can take the form of different
sets of locations available to each player.

Consider a space U and a sequence of sets L1,L2, . . . ,Ln, such that each
player i is limited to select a location in Li. For each player i, we define Si :
U ×Li → [0, 1] to be the similarity function with respect to player i, where again
we require Si to be continuous or simple.

All the results obtained are carried on to the asymmetric extension with
minor modifications. This is apart from the rate of the convergence to approxi-
mate Nash equilibria via best response dynamics, as games are no longer sym-
metric. In particular, a pure Nash equilibrium is still guaranteed to exist, the
PoA bound is still valid, and player payoffs correspond to Shapley values in the
cooperative game.

An instance of such an asymmetric game, the limited attraction model, was
recently discussed in [13,29]. In that model, the attraction of each player i is lim-
ited to a ball of size ri, and users outside her chosen ball will not be attracted to
her. Thereupon, each user chooses, with equal probability, a player that attracts
him. It can be verified that if Li = U and if the similarity function of player i is

∀u ∈ U , l ∈ Li : Si(t, l) =

{
1 d(u, l) ≤ ri

0 Otherwise
,

the model obtained is exactly the model of [13]. In particular, it can be verified
that player payoffs in [13] correspond to their Shapley value in the cooperative
game introduced in the previous section.

Another interesting question is whether every Shapley facility location game
possesses a unique pure Nash equilibrium, as it was the case in our illustrative
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example. Clearly, this is not the case. Taken to the extreme, consider a similarity
function which is constant for every user and every location. It follows that every
strategy profile is in equilibrium.

It is worth noticing that our work is distinguished from most previous work in
facility location games, as our games are not zero-sum. Interestingly, we showed
they are potential games [19,23], which allows us to connect to a main branch
of research in the interplay between CS and game theory [20].

As for future work, we believe that putting data science tasks in the context
of competition may be of interest. Since our model is general, tractable and
efficient, it may serve as a benchmark for the study of strategic product selection
in data science settings. Such settings include several Internet applications, e.g.
where facilities and users are associated with document contents and queries,
respectively, and the aim of the players (content authors) is to be the closest in
their published content to as many queries as possible [4,15].

Omitted proofs can be found in the full version of this paper available publicly
on arXiv http://arxiv.org/abs/1709.10278.
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Abstract. We reveal a connection between coordination mechanisms
for unrelated machine scheduling and cost-sharing protocols. Using this
connection, we interpret three coordination mechanisms from the recent
literature as Shapley-value-based cost-sharing protocols, thus providing
a unifying justification regarding why these mechanisms induce potential
games. More importantly, this connection provides a template for design-
ing novel coordination mechanisms, as well as approximation algorithms
for the underlying optimization problem. The designer need only decide
the total cost to be suffered on each machine, and then the Shapley
value can be used to induce games guaranteed to possess a potential
function; these games can, in turn, be used to design algorithms. To ver-
ify the power of this approach, we design a combinatorial algorithm that
achieves an approximation guarantee of 1.81 for the problem of minimiz-
ing the total weighted completion time for unrelated machines. To the
best of our knowledge, this is the best approximation guarantee among
combinatorial polynomial-time algorithms for this problem.

1 Introduction

Since the 1950s, the study of scheduling has played a central role in both opera-
tions research and computer science. Machine scheduling models have provided
a very useful abstraction that has enabled researchers to devise solutions with a
wide range of applications. Depending on the context, the “machine” that the
schedule is applied to can range from an airport runway serving multiple air-
planes, and a classroom used for several courses, to a CPU that needs to process
a set of jobs. In all of these examples, the ultimate goal is the efficient utilization
of scarce resources. Most of the initial work on machine scheduling focused on
designing algorithms that yield efficient schedules, where efficiency is quantified
using a measure such as the makespan or the total weighted completion time
of the jobs (e.g., see [25]). In the last two decades, motivated by the preva-
lence of large decentralized environments where the scheduler may have limited
information or limited power in enforcing the schedule, many of these machine
scheduling problems have been revisited from a game-theoretic point of view.
c© Springer International Publishing AG 2017
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In a well-studied example of such a problem, each user controls a job that may
require different processing times on each machine. These users are self-interested
and they can decide which machine their job is assigned to, aiming to minimize
its completion time. Each machine, however, is equipped with a decentralized
scheduler, a coordination mechanism [12], that decides how the jobs assigned to
that machine will be scheduled. Given the strategic nature of the users (which
we henceforth call players since they are engaged in a game), these policies affect
(and, in a sense, coordinate) their behavior. Unlike scheduling algorithms, which
have full control over the outcome and can directly output efficient schedules,
coordination mechanisms need to provide the appropriate incentives such that
the game induced among the users leads to efficient schedules in equilibrium.
Therefore, a highly desired property for a coordination mechanism is to induce
potential games: these games guarantee the existence of pure Nash equilibria as
well as convergence to them after finite sequences of steps. The price of anarchy
measure can then be used in order to evaluate how inefficient the equilibria of
these games may be, compared to the most efficient schedule.

The design of coordination mechanisms has often borrowed results from the
literature on scheduling algorithms. For instance, when the efficiency is measured
using the total weighted completion time objective, it is known that the best
way to schedule the jobs assigned to each machine is based on the Smith’s rule
policy [33]. This scheduling policy is therefore a natural first candidate to use
when designing a coordination mechanism. But, it turns out that the resulting
coordination mechanism may induce games that have no pure Nash equilibria
[16]. Furthermore, the price of anarchy of this mechanism is 4 [15], which falls
short compared to other mechanisms in this setting. Specifically, Cole et al. [15]
propose two alternative coordination mechanisms, ProportionalSharing and Rand
(defined in detail later), and they show that their price of anarchy is 2.618
and at most 2.133, respectively. Furthermore, both of these mechanisms induce
potential games. As a result, the optimal coordination mechanisms need not be
similar to the best scheduling algorithms.

A much more surprising fact is that ideas from coordination mechanisms can
actually help in designing new scheduling algorithms! In particular, if one can
compute, or at least approximate, an equilibrium of a mechanism with good price
of anarchy, then this implies a good approximation algorithm. Using this app-
roach, Cole et al. [15] obtained a 2 + ε-approximation algorithm for minimizing
the total weighted completion time. They first defined a novel coordination mech-
anism, Approx, which induces potential games, and then designed a local-search
algorithm that computes an assignment of jobs to machines by mimicking the
best-response dynamics of the players in the game induced by Approx. Once the
desired assignment of jobs to machines was reached, the algorithm then used the
Smith’s rule policy to schedule the jobs within each machine. What is very inter-
esting about this result is that it uses the game-theoretic analysis to design an,
otherwise counter-intuitive, algorithm with appealing performance guarantees.
Can the ideas behind the design of Approx be generalized to a template that
yields even more efficient combinatorial approximation algorithms?



76 I. Caragiannis et al.

1.1 Related Work

Since the definition of coordination mechanisms [12], a long list of papers has
mostly focused on the design of policies in machine scheduling settings, aiming to
minimize the makespan (e.g., [2,5,7–9,22,23]) or the total (weighted) completion
time (e.g., [1,15,16,20]). Apart from machine scheduling settings, coordination
mechanisms have also been proposed for congestion games [14].

A literature that is very closely related to coordination mechanisms aims to
design cost-sharing protocols that yield efficient equilibria (e.g., [3,11,13,17–19,
24,27–29]). Two of the most well-known cost-sharing protocols are the marginal
contribution and the Shapley value [31].

The problem of scheduling jobs on unrelated machines aiming to minimize
the total weighted completion time has been studied extensively in the machine
scheduling literature (for a detailed list of some of the classic results see [25,
Chap. 11]). For instances in the specific machine model of unrelated machines
that we consider in this paper (formally defined in the following section), until
very recently, the best approximation guarantee was a factor or 1.5, obtained
using a convex quadratic relaxation of the problem [30,32]. This has now been
marginally improved by Bansal et al. [6] and Li [26] who showed that an approx-
imation factor better than 1.5 is possible: their algorithms achieve a (1.5 − c)–
approximation for an insignificantly small, yet positive constant c.

1.2 Our Results

In this paper, we study the interplay between coordination mechanisms and
scheduling algorithms in more depth, and we also uncover interesting connections
between coordination mechanisms and cost-sharing policies. As our first concep-
tual contribution, we observe (in Sect. 3) that the three coordination mechanisms
ProportionalSharing, Rand, and Approx all follow a common recipe: these mecha-
nisms can be defined as Shapley-value cost-sharing protocols. The Shapley-value
is known to induce potential games, hence, the existence of a potential function
follows immediately. This suggests a reverse engineering approach in the design
of coordination mechanisms: all the designer has to do is to define an appropri-
ate function that maps sets of jobs within each machine to a total cost. Then,
the Shapley-value cost-sharing method is used to divide the total cost within
each machine to the jobs; the cost charged to each job is then translated into a
(weighted) completion time of the particular job.

In the above recipe, there is a feasibility constraint that has to be satisfied
for the induced coordination mechanisms to be well-defined: there has to exist a
feasible schedule of the jobs such that their completion times yields the desired
costs. This is not necessary, however, when designing combinatorial approxima-
tion algorithms for the underlying optimization problem. It suffices to define
appropriate total cost function and, as in [15], mimic the strategic behavior of
(hypothetical) players that experience the Shapley-value share as cost. The last
step of using the Smith’s rule within each machine to compute the final schedule
fixes possible feasibility issues. This template is presented in detail in Sect. 4.
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Our main technical contribution is the analysis of a class of combinatorial
approximation algorithms that follow the template above. The best among them
achieves 1.81-approximate schedules with respect to the total weighted comple-
tion time objective. This improves the algorithmic result of Cole et al. [15] and,
to the best of our knowledge, is the best worst-case approximation guarantee by
a combinatorial polynomial-time algorithm for the problem. Better results are
possible for particular input instances. We complement these results by showing
(in Sect. 5) that none among the three coordination mechanisms Proportional-
Sharing, Rand, and Approx can be used to obtain approximation guarantees better
than 2 using this template. Furthermore, we use this last result to obtain a tight
lower bound of 4 on the price of anarchy of Approx.

Section 2 is devoted to preliminary definitions and notation. We conclude in
Sect. 6. Due to lack of space, all proofs have been omitted; they will appear in
the final version of the paper.

2 Preliminaries

We consider machine scheduling instances that consist of a set I of m machines
and a set J of n jobs. We denote by pij the processing time of job j on machine
i and by wj the weight of job j. The Smith ratio ρij is defined as the ratio
pij/wj . An assignment σ is a function that assigns each job j to a machine
σj that processes the job. The standard notation (σ−j , i) is used to denote the
assignment in which job j is assigned to machine i while the remaining jobs use
the same machine they use in σ. We denote by Ji(σ) := {j ∈ J : σj = i} the
set of jobs assigned by σ to machine i. In general, we focus on the unrelated
machines setting, where the processing times pij can be arbitrary. In the related
machines setting, each machine i has a speed si > 0, each job j has a processing
requirement pj , and the processing times are defined as pij = pj/si.

A coordination mechanism comprises a set of local scheduling policies, one
for each machine. A scheduling policy for a machine i determines the schedule
of the jobs assigned to machine i by σ. The scheduling policy for machine i
is local if it does not depend on the set of jobs assigned to other machines. A
coordination mechanism A simply defines the completion time cA

j (σ) of job j on
machine σj . As scheduling policies are local, cA

j can be equivalently defined as a
function of machine σj and the set of jobs Jσj

(σ) only. The quantity CA(σ) :=∑
j∈J wjc

A
j (σ) is the total weighted completion time (or total weighted cost) of

assignment σ. We use the notation CA
i (σ) :=

∑
j∈Ji(σ) wjc

A
j (σ) to refer to the

total weighted completion time of the jobs assigned to machine i, i.e., CA(σ) =∑
i∈I CA

i (σ).
For instance, the SmithRule scheduling policy schedules the jobs assigned to

machine i in a non-decreasing order of their Smith ratios ρij ; for resolving ties
between pairs of jobs j and k with the same Smith’s ratio, a common tie-breaking
rule is used in all machines. We use the notation ρij ≺ ρik to denote the fact
that either ρij < ρik, or ρij = ρik but j gets higher priority by the tie-breaking
rule. A coordination mechanism can be randomized; in this case, the scheduling
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policy within each machine is randomized, i.e., a probability distribution over
deterministic policies.

Assuming that each job is controlled by a self-interested player who decides
the machine on which her job will be assigned, a coordination mechanism natu-
rally defines a strategic game among the players. Each player has any machine as
possible strategy and her cost is simply the (expected) weighted completion time
of her job as defined by the coordination mechanism. Hence, in an assignment
σ, the cost of player j when the coordination mechanism A is used is simply
wjc

A
j (σ). Then, the assignment σ is a pure Nash equilibrium if no player has

any incentive to deviate from her strategy in σ.
A desirable property from a coordination mechanism is to define potential

games. This means that there exists a potential function ΦA(·) that is defined
over assignments with the property that for every pair of assignment σ and σ′

that differ only in the strategy of a single player j, it holds ΦA(σ) − ΦA(σ′) =
wjc

A
j (σ) − wjc

A
j (σ′). The existence of a potential function implies that a pure

Nash equilibrium not only exists but can also be found after a finite sequence of
improving deviations (e.g., best-response deviations) by the players.

The total weighted completion time is a natural social cost measure that can
be used to assess the quality of equilibria. The price of anarchy of a scheduling
instance is then defined as the worst-case ratio of CA(σ)/OPT, where σ is a pure
Nash equilibrium of the game induced by mechanism A on instance M and OPT
denotes the minimum value of total weighted completion time over all possible
assignments and schedules (i.e., including schedules that are not produced by
A) of jobs to machines.

Beyond machine scheduling settings, cost-sharing protocols define ways in
which a total cost is to be shared among a set N of agents who are competing
for a collection of resources. Each resource i is characterized by a cost function
Ci : 2N → R+, which quantifies the total cost that this resource would suffer,
depending on the subset of the agents that end up using it. For the system to
support itself, the agents using a resource need to contribute some amount such
that their total contributions cover the total cost that they cause. The decision
regarding how the cost fj that each agent j needs to contributed is defined by a
cost-sharing protocol. If the cost-shares that this protocol charges to the agents
S ⊆ N using a resource i always add up to exactly the total cost Ci(S), then
the cost-sharing protocol is called budget-balanced. Under some circumstances,
the cost-sharing protocol may also charge the agents more than the total cost
that they generated, which is often referred to as over-charging.

Two of the best-known cost-sharing protocols are the marginal contribution
and the Shapley value [31]. According to the marginal contribution, the cost-
share of each agent j ∈ S is equal to Ci(S) − Ci(S \ {j}), i.e., equal to the
increase in the total cost due to the presence of j. As long as the cost functions,
Ci(·) are supermodular, these cost-shares cover the total cost, but they may
be overcharging the agents. On the other hand, the Shapley value is budget-
balanced and the cost-share of each agent j is equal to the expected value of
the following process: order the agents of S uniformly at random, let S<j be the
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subset of these agents that lie before j in the ordering, and charge j a cost of
Ci(S<j ∪{j})−Ci(S<j). In other words, the agents arrive in that random order
and each one of them is charged for her marginal contribution with respect to
the agents that have arrived up to that point.

We remark that cost-sharing protocols can be naturally defined on machine
scheduling instances with each machine corresponding to a resource and with
each job corresponding to an agent. This is exactly the analogy we consider in
the next section.

3 Coordination Mechanisms as Cost-Sharing Protocols

In this section we revisit coordination mechanisms that led to surprisingly good
price of anarchy guarantees through the lens of cost-sharing protocols. In partic-
ular, we reveal that these mechanisms can be interpreted as Shapley value cost-
sharing protocols of appropriate total cost functions. This connection directly
explains why these mechanisms induce potential games, and it sets the stage
for a framework that enables the design of novel local-search approximation
algorithms, discussed in Sect. 4. In this section we first discuss the coordination
mechanisms analyzed in [15], and then we prove how all of these mechanisms
can be viewed as cost-sharing protocols.

3.1 Coordination Mechanisms

Arguably the most natural scheduling policy for the problem of minimizing the
total weighted completion time is the SmithRule (SR). This is a deterministic
policy which schedules the jobs assigned to each machine i without preemption,
in non-decreasing order with respect to their smith ratios ρij . When the weights
of all the jobs are equal, this reduces to the shortest–first policy and, for any
given assignment σ, the SmithRule policy is known to minimize the total weighted
completion time [33]. Formally, the weighted completion time of each job j under
the SmithRule policy is:

wjc
SR
j (σ) =

∑

k∈Ji(σ)
ρik≺ρij

wjpik + wjpij

Cole et al. [15] analyzed the game induced by the SmithRule coordination
mechanism and showed that its price of anarchy is exactly 4. They also showed
that, any mechanism that uses a deterministic policy that orders the jobs without
preemption has a price of anarchy of 4.

To achieve a price of anarchy better than 4, Cole et al. [15] analyzed a deter-
ministic but preemptive scheduling policy called ProportionalSharing (PS), and
they showed that its price of anarchy is 2.618. According to this policy, all jobs
are scheduled in parallel, with each job j receiving a fraction of machine j’s
processing time that is proportional to its weight, i.e., wj/

∑
k∈Ji

wk. The com-
pletion times of this scheduling policy are actually equivalent to scheduling the
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jobs in a nonpreemptive fashion, just as SmithRule would, but then delaying the
completion of each job by an appropriate amount. Although these delays increase
the social cost of any given assignment, Cole et al. [15] show that this changes the
equilibrium structure of the induced game, thus leading to significantly more effi-
cient equilibria. The delay that a job j suffers beyond its SmithRule completion
time is equal to the externality that it causes to jobs that SmithRule schedules
after them on the same machine, i.e.,

∑
k:ρik�ρij

wkpij . Formally, the weighted
completion time of job j under the ProportionalSharing policy is:

wjc
PS
j (σ) =

∑

k∈Ji(σ)
ρik≺ρij

wjpik +
∑

k∈Ji(σ)
ρik�ρij

wkpij + wjpij

Rand (R) is a randomized scheduling policy according to which, given two jobs
j and k assigned to the same machine i, the probability that job k is processed
before job j is equal to qkj := ρij

ρij+ρik
. Once the order of the jobs is randomly

generated, the jobs are scheduled one after the other, without preemption. Thus:

wjc
R
j (σ) =

∑

k∈Ji(σ)\{j}
qkjwjpik + wjpij =

∑

k∈Ji(σ)\{j}

ρij

ρij + ρik
wjpik + wjpij

Cole et al. [15] showed that this randomized mechanism has a price of anarchy
of 2.133.

Finally, Approx (A) is a deterministic scheduling policy that Cole et al. [15]
defined not aiming for an improved price of anarchy bound, but rather for the
design of an approximation algorithm for the underlying optimization problem.
In particular, the completion times defined by this policy are equal to those of
the ProportionalSharing policy, but with the addition of delays for each job j on
machine i by exactly pij .

wjc
A
j (σ) =

∑

k∈Ji(σ)
ρik≺ρij

wjpik +
∑

k∈Ji(σ)
ρik�ρij

wkpij + 2wjpij

The price of anarchy of this mechanism is at most 4, and it can be used to
define a polynomial time approximation algorithm for the underlying optimiza-
tion problem with an approximation factor of 2.

3.2 Cost-Sharing Protocols

In the cost-sharing literature, the group of agents using some resource generates
a cost on that resource. This cost depends on the nature of the resource at hand,
as well as the set of agents using it, and the goal of the cost-sharing protocol is
to share this cost among the users of the resource. At first glance, this is unlike
the coordination mechanisms defined above, whose scheduling policies define the
costs of the agents directly rather than sharing some well-defined cost. However,
there is a natural connection between cost-sharing protocols and coordination
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mechanisms. Given an assignment σ, one can assume that this assignment causes
a (social) cost of at least CSR

i (σ) on each machine i, since SmithRule is the policy
that minimizes that social cost. Hence, the SmithRule policy can be interpreted as
a cost-sharing protocol that decides how this social cost is to be shared among
the agents. In fact, this is a budget-balanced cost-sharing protocol since the
cost that SmithRule divides among the agents adds up to exactly CSR

i (σ). More
generally, using this approach, we can interpret any coordination mechanism A
that induces a social cost CA

i (σ) on machine i as a cost-sharing protocols that
decides how this social cost needs to be divided among the jobs using machine i.
The following lemmas reveal that, rather surprisingly, ProportionalSharing, Rand,
and Approx are all using the exact same cost-sharing protocol to divide their total
cost: the Shapley value!

fj(σ) =
∑

S⊆Ji(σ)\{j}
Pr[S, Ji(σ)](Ci(S ∪ {j}) − Ci(S)),

where Pr[S, Ji(σ)] is the probability that the set of jobs that lie before j in the
random ordering is exactly the set S.

Lemma 1. ProportionalSharing, Rand, and Approx are all equivalent to the Shap-
ley-value cost-sharing of cost functions CPS(σ), CR(σ), and 2CSR(σ) respec-
tively.

One important implication of this lemma is that the connection to the Shap-
ley value cost-sharing directly implies that the induced games are potential
games, and it also directly implies what the potential function is. Without this
observation, Cole et al. [15] had to provide three separate proofs to prove that
these games always possess pure Nash equilibria.

More importantly, another implication of this lemma is that it provides a gen-
eral way of designing coordination mechanisms that are guaranteed to induce
potential games: define a cost function Cα

i (σ) for each machine i, which can
depend arbitrarily on the set of jobs assigned to that machine, and then use
the Shapley value in order to define the cost-share that each job should suf-
fer. It is important to emphasize that a critical difference between cost-sharing
protocols and coordination mechanisms is that the latter are restricted by fea-
sibility constraints implied by the scheduling model. That is, there has to exist
some feasible schedule for processing the jobs such that each job’s cost is equal
to what is dictated by the cost-sharing protocol. For instance, in our model,
SmithRule is the only budget-balanced mechanism that is also feasible, since any
other feasible way of scheduling the jobs would necessarily lead to a higher social
cost. An interesting future research direction would be to understand what con-
straints on the cost function Cα

i can guarantee the feasibility of the Shapley
value cost-sharing schedule. However, the main result of this paper shows that,
even when the induced mechanisms do not yield feasible schedules, they can be
used to design novel approximation algorithms for the underlying optimization
problem.
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4 Approximation Algorithms via Cost-Sharing

Even if the mechanism designer could control which machine each job is assigned
to, the problem of computing a feasible schedule that minimizes the total
weighted completion time is known to be APX-hard [21]. The best approxima-
tion factor guarantee was only very recently improved beyond 1.5, using elab-
orate lift-and-round techniques on convex programming relaxations, to reach
an approximation factor no less than 1.4999 [6]. The machine scheduling liter-
ature has traditionally emphasized the importance of combinatorial algorithms
which, unlike convex program-based solutions, provide more intuition regarding
the structure of the problem at hand. To the best of our knowledge, the combina-
torial algorithm providing the best approximation guarantees for this problem,
prior to our work, yields a factor of 2 + ε for some arbitrarily small constant
ε > 0 [15].

In light of the connection between coordination mechanisms and cost-sharing
identified in the previous section, and using the fact that the Shapley value
cost-sharing protocol is guaranteed to induce potential games, we now propose
a general framework for designing combinatorial approximation algorithms for
this problem, using mechanisms based on the Shapley value. The following steps,
explained in more detail later on, provide a high-level description of our frame-
work for designing such algorithms:

1. For each machine i and each subset of jobs Ji define some cost Ci(Ji)
2. Using the Shapley value protocol, define the cost fj(Ji) for each j ∈ Ji

3. In a polynomial number of best-response deviations, reach an assignment σ
4. Assign the jobs according to σ and process them using the SmithRule order

The key ingredient in this framework is that, using the Shapley value to
divide the chosen costs, Ci(Ji), is guaranteed to induce a potential game. This
implies that any sequence of best response dynamics will eventually lead to
an assignment that is a pure Nash equilibrium of this game. This may require
an exponential number of such deviations but, as we show, we can guarantee
that a polynomial number of deviations suffices for this approach to reach an
assignment that is an approximate equilibrium. As a result, if our choice of Ci(Ji)
gives rise to high quality (approximate) equilibria, then this framework yields a
high quality polynomial time algorithm1.

The (2 + ε)-approximation algorithm proposed by Cole et al. [15] for this
problem can be directly presented as an instantiation of this framework. Their
algorithm uses Approx to define the costs Ci(Ji) := CA

i (Ji) in the first step
and, unbeknownst to them, this mechanism divides these costs among the jobs
according to the Shapley value protocol, as we showed in Lemma 1. Then, they
prove that the induced game is, in fact, a potential game, and they use this

1 Note that computing the Shapley value cost-shares can be non-trivial, or even
intractable, if the Ci(Ji) is arbitrarily general, but most of the natural choices for
this function provide sufficient structure for the shares to be readily computable, as
verified in the previous and the following section.
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to show that a polynomial number of deviations will lead to an assignment σ
whose social cost is essentially no worse than that of any equilibrium of the
game induced by Approx. Since the price of anarchy of Approx is at most 4, the
assignment σ that this algorithm computes satisfies CA(σ) ≤ (4 + ε)CSR(σ∗).
But, since CA(σ) = 2CSR(σ), this implies that CSR(σ) ≤ (2 + ε)CSR(σ∗), thus
verifying the approximation factor. A more natural presentation of the same
algorithm would instead use the optimal social cost, Ci(Ji) := CSR

i (σ), in the first
step; we refer to the mechanism that shares this optimal cost using the Shapley
value as ShapleyValue. Lemma 1 implies that the game induced by ShapleyValue is
essentially the same as the one induced by Approx: for every possible assignment
σ, the cost of every job j in Approx is exactly twice its cost in ShapleyValue,
i.e., fA

j (σ) = 2fSR
j (σ). As a result, the set of equilibrium assignments is exactly

the same, and the fact that the price of anarchy of Approx is at most 4 implies
that the price of anarchy of ShapleyValue is at most 2. Note that there may not
exist feasible schedules that yield completion times compatible with the costs of
ShapleyValue, but this is irrelevant since this mechanism is used only as a guide
for designing an approximation algorithm.

The obvious open question is whether we can leverage the systematic app-
roach suggested by this framework in order to design improved approximation
algorithms. In the following section we show that neither Approx, Rand, or Pro-
portionalSharing can be used to get a better approximation algorithm. However,
in the rest of this section, we analyze all the mechanisms that are convex com-
binations of ShapleyValue and ProportionalSharing and, using our framework,
we propose new approximation algorithms, one of which leads to an improved
approximation factor of 1.81.

4.1 Approximation Algorithms

Cost Functions. We embark on our search for improved approximation algo-
rithms by considering a class of cost functions that are combinations of the costs
implied by ShapleyValue and those implied by ProportionalSharing. We para-
meterize this class of mechanisms using a value β > 0, and let H(β) be the
mechanism whose social cost on each machine i is

CH(β)(σ) = 2βCSR(σ) − (2β − 1)η(σ),

where η(σ) =
∑

i∈I

∑
j∈Ji(σ) wjpij is an abbreviation that we use extensively

in the following. It is easy to verify that CH(β)(σ) can be expressed as the
combination κCSR(σ)+λCPS(σ) for appropriate constants κ and λ. In particular,
ProportionalSharing and ShapleyValue are the mechanisms H(1) and H(1/2) of the
above class. If we share this cost among the set of jobs Ji using machine i, the
cost-share of player j ∈ Ji is

f
H(β)
j (Ji) = β

∑

k∈Ji
ρik≺ρij

wjpik + β
∑

k∈Ji
ρik�ρij

wkpij + wjpij .
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Since we use the Shapley value for cost-sharing, the induced potential game
has the following potential function: ΦH(β)(σ) = 1

2CH(β)(σ) + 1
2η(σ).

ε-approximate ε-equilibrium. The algorithms that we propose compute an ε-
approximate ε-equilibrium of the game induced by H(β). For the definition of the
ε-approximate ε-equilibrium, we follow the notation of [4]. Given an assignment
σ and a player j, denote by σ′

j a best-response strategy of j. Hence, σ′
j minimizes

f
H(β)
j (σ−j , ·) over all strategies of player j. Let Δj(σ) = f

H(β)
j (σ)−f

H(β)
j (σ−j , ·)

denote the maximum decrease in her cost player j can gain when deviating from
her strategy in σ, and Δ(σ) =

∑
j∈J Δj(σ) denote the sum of these quantities

over all players. If Q denotes the set of players j who can improve their cost
by more than an ε fraction, i.e., Δj(σ) > εf

H(β)
j (σ), then we say that σ is an

ε-approximate ε-equilibrium if the total relative benefit that these players can
accrue via unilateral deviations is

∑
j∈Q Δj(σ) ≤ εCH(β)(σ).

Algorithm A(β, ε). Given parameter values for β and ε, the A(β, ε) algo-
rithm simulates a restricted sequence of best-response play in the game induced
by H(β) until an ε-approximate ε-equilibrium assignment σ is reached. The
restricted sequence begins with an arbitrary assignment and continues while
an ε-approximate ε-equilibrium has not been computed. In each step, among all
players who have a deviation that can improve their cost by at least a factor
of ε, the player who can improve her cost the most is picked to follow a best-
response strategy. Once the assignment σ is reached, the algorithm terminates
by scheduling the jobs within each machine in this final assignment according to
SmithRule.

Adapting the results of Awerbuch et al. [4] in our setting (the important con-
dition that allows this adaptation is that ΦH(β)(σ) ≤ CH(β)(σ)), we obtain that
the above algorithm is guaranteed to find an ε-approximate ε-equilibrium after

O

(
n
ε ln ΦH(β)(σ0)

Φ
H(β)
min

)

player moves. Here, n is the number of players, σ0 denotes

the initial state and Φ
H(β)
min is the globally minimum value of the potential func-

tion. Crucially, the above running time is polynomial in terms of the number of
bits in the representation of the scheduling instance and 1/ε.

Our main goal in this section is to show that ε-approximate ε-equilibria of the
games induced by H(β) (for appropriate values of β) are efficient in terms of their
CSR(·) cost. In turn, this will imply good approximation guarantees for algorithm
A(β, ε). As a result, we propose two algorithms that provide different approxi-
mation guarantees: the first one (for β ≈ 0.591) yields a 1.81-approximation for
any instance (Theorem 1), and the second (for β = 2/3) yields an approximation
that converges to 1 as η(σ∗)/CSR(σ∗) converges to zero (Theorem 2).

Theorem 1. Let ε ∈ (0, 1/12] and β = 9+
√
5

19 ≈ 0.591. Algorithm A(β, ε)
runs in polynomial time and computes an assignment σ such that CSR(σ) ≤(

5+
√
5

4 + 8ε
)

CSR(σ∗) ≈ (1.809 + 8ε)CSR(σ∗), where σ∗ is the assignment that
minimizes the total weighted completion time of the scheduling instance on input.

Finally, Theorem2 shows that the cost of the solution obtained by H(2/3)
approaches optimality as the ratio η(σ∗)/CSR(σ∗) tends to 0.
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Theorem 2. Let ε ∈ (0, 1/12] and β = 2/3. Algorithm A(β, ε) runs in
polynomial time and computes an assignment σ with CSR(σ) ≤ (1 + 6ε)(
CSR(σ∗) + η(σ∗)

)
, where σ∗ is the assignment that minimizes the total weighted

completion time of the scheduling instance on input.

5 Lower Bounds for Approx, Rand, and ProportionalSharing

In this section we show that, even for the special class of related machines,
neither one of the coordination mechanisms studied in [15] can be used in order
to design an algorithm with an approximation factor better than 2. In particular,
we show that each one of these mechanisms possesses an equilibrium assignment
σ whose optimal social cost is at least two times CSR(σ∗). For the SmithRule
policy this was already shown in [15], since its price of anarchy is exactly 4. For
the ProportionalSharing policy, [10, Theorem 15] provides an instance showing
that its price of anarchy is at least 2.618, i.e., there exists an equilibrium σ
such that CPS(σ) ≥ 2.618CSR(σ∗). Although this inequality is not the desired
lower bound, the equilibrium assignment σ in this instance happens to assign
a single job on each machine, and hence CSR(σ) = CPS(σ) ≥ 2.618CSR(σ∗),
so ProportionalSharing cannot yield an algorithm with an approximation factor
better than 2.618.

The main result of this section is a construction verifying that Approx and
Rand cannot lead to an improved approximation algorithm either. In particular,
we prove that the price of anarchy of ShapleyValue is at least 2, which implies the
existence of some assignment σ which is an equilibrium for ShapleyValue and sat-
isfies CSR(σ) ≥ 2CSR(σ∗). But, as we already observed in the previous sections,
any equilibrium of ShapleyValue is also an equilibrium of Approx. Furthermore,
our lower bound construction uses jobs with pij = wj/si on each machine i,
where si is the speed of machine i. Since ρij = ρik for every machine i and every
pair of jobs j and k, we have fSR

j (σ) = fR
j (σ), i.e., the game induced by the

protocol also coincides with the game induced by Rand on these instances. As
a result any equilibrium of ShapleyValue for these instances is also an equilib-
rium of Rand, and our lower bound construction kills two birds with one stone,
verifying the limitations of both Approx and Rand.

It is worth noting that, apart from the implications regarding our inability to
design improved approximation algorithms using these policies, this also yields
a lower bound of 2 on the price of anarchy of Rand, which improves upon the
best previously known lower bound of 5/3 [15].

Theorem 3. The price of anarchy of ShapleyValue is at least 2, even on related
machine instances.

6 Conclusion

The main contribution of this paper is a framework for the systematic design
of coordination mechanisms and approximation algorithms. Leveraging previ-
ous work on cost-sharing protocols, this framework produce mechanisms that
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always possess pure Nash equilibria, and approximation algorithms that termi-
nate in a polynomial number of steps. To verify that this framework can lead to
novel results, we provide a combinatorial approximation algorithm for machine
scheduling on unrelated machines. Although we focus on the unweighted Shapley
value, an even richer family of mechanisms and algorithms can be designed using
generalized weighted Shapley value variants [19]. Our results call for a better
understanding of the conditions under which the Shapley value cost-shares can
be implemented via a (randomized) feasible schedule; using this understanding
one could design coordination mechanisms whose price of anarchy bounds out-
perform the currently best known bound of 2.133 from Rand. Furthermore, our
framework could be applied more broady to design mechanisms and algorithms
for general resource selection games.
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Abstract. We study the following question facing businesses in the
world of online advertising: how should an advertising budget be spent
when there are competing products? Broadly, there are two primary
modes of advertising: (i) the equivalent of billboards in the real-world
and (search or display) ads online that convert a percentage of the pop-
ulation that sees them, and (ii) social campaigns where the goal is to
select a set of initial adopters who influence others to buy via their social
network. Prior work towards the above question has largely focused on
developing models to understand the effect of one mode or the other. We
present a stochastic dynamics to model advertising in social networks
that allows both and incorporates the three primary forces at work in
such advertising campaigns: (1) the type of campaign – which can com-
bine buying ads and seed selection, (2) the topology of the social network,
and (3) the relative quality of the competing products. This model allows
us to study the evolution of market share of multiple products with dif-
ferent qualities competing for the same set of users, and the effect that
different advertising campaigns can have on the market share. We present
theoretical results to understand the long-term behavior of the parame-
ters on the market share and complement them with empirical results
that give us insights about the, harder to mathematically understand,
short-term behavior of the model.

1 Introduction

Online advertising is now a $1.5 Trillion industry and, on social networks alone,
it accounts for over $23 Billion worldwide [22]. This is currently 13.9% of all
digital ad spending, and 70% of marketers will spend more on social media
advertisements in the coming year [30]. Comparatively, spending on television
advertisements is approximately $39 Billion [21]. In fact, the market is now
so large that outside companies have arisen as consultants in this space; IBM
alone spent over $100 million dollars just to develop their advertising consulting
business in 2014 [29].

It is believed that social influence has a powerful effect on customer deci-
sions [1,3,11], and leveraging its power has been an important aspect of many
advertising campaigns. In formal studies, this has primarily been addressed by
finding the optimal set of seeds, i.e., initial adopters who are given the product

c© Springer International Publishing AG 2017
N. R. Devanur and P. Lu (Eds.): WINE 2017, LNCS 10674, pp. 88–102, 2017.
https://doi.org/10.1007/978-3-319-71924-5_7
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for free, with the goal of maximizing the extent or speed at which the product
spreads throughout the social network [14,15]. The success of such campaigns
has been heralded; see [25]. More traditional forms of advertising focus on buying
ads, either online (keyword or banner ads) or offline (in billboards, magazines
or TV). The goal of these ads is to maximize the probability that a user who
sees the ad switches to that product. Studies have focused on targeting the right
group of people to view the ad, or improving the ad’s appeal [13,18].

These two advertising strategies are often related and the social influence can
magnify the effect of traditional advertising. Indeed, once a user has a product,
they influence their neighbors regardless of whether they converted by being
seeded, seeing an advertisement, or were themselves influence by another. In
order to study these effects quantitatively, one needs a dynamics that can capture
the spread and competition of products via social influence when both types of
advertisements are at play. Such a model, minimalistically, should capture:

(1) the kind of campaigns (a) via seed selection and (b) via traditional ads,
(2) the mechanism of social influence and competition amongst products, and
(3) the quality (which can take into account the price) of products.

While there is a rich body of prior works where mathematical models have
been developed and analyzed for subsets of parameters above, to the best of
our knowledge, there is no formal study that incorporates all of the parameters
(1)–(3) above; see Sect. 1.2 for a discussion.

1.1 Our Contributions

Our main contributions are a mathematical model to facilitate the study of the
effect of parameters (1)–(3) above on the market share, a set of technical results
that allow us to understand the long-term behavior of the model, and a set of
complementary empirical results that give us insights about the model in the
short-term (where it seems difficult to analyze the model rigorously). Our model
is inspired by viewing the competition among different products for the same
market base as an evolutionary dynamics on a network and realizing that the
various advertising parameters such as quality, traditional advertising and the
spread of influence can be captured as parameters such as fitness, mutation and
selection in this setting; see also [5,17,20,28].

Our Model. Consider the setting in which there are m products and each
person uses exactly one product i ∈ [m] at every time step; i.e., the products
compete for the user base.1 Each time step is a pre-determined time period
during which an individual has an opportunity to switch to a different product;
depending on the domain, the length of this time period could vary from minutes
(e.g., web browsers) to years (e.g., cars). The main quantity we are interested
in is the evolution of the market share, i.e., the fraction of people using each
product.
1 We can think of one products as the “null” choice – i.e., no product is selected.
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Quality of a product. We let ai be a positive number such that, given the option
of all products 1, . . . ,m and no outside influence, a user selects option i with
probability proportional to ai. Hence, the ais capture the relative quality (which
can take the price into account) of product i compared to other products; we
refer to this as the product’s fitness. The owner of product i can potentially
increase ai by improving their product’s quality.

Social network and competition. The influence network is captured by a
weighted, directed graph G = (V,E,w) where each user is a node u ∈ V , and a
directed edge uv ∈ E represents the fact that u has influence on v. Let n = |V |
denote the number of nodes or users. The weights w : E �→ IR≥0 quantify the
amount of influence u has on v. If we let Si(t) be the set of vertices who are using
product i at time t, then the probability that a node v decides to use product i
at time t + 1 due to social influence is proportional to

∑
uv∈E,u∈Si(t)

w(uv)ai.
In other words, node v will select a product based on which products her neigh-
bors use, the quality of those products, and the amount of influence the neighbors
have on her. We expect a node to be more easily influenced by a neighbor using a
good product than a bad one – folding the fitness into the influence step captures
the competition between products in this way.

Traditional advertising. We allow users to switch products independently of the
social influence as in the previous paragraph, e.g., after seeing a billboard ad. We
let Qv

ij be the probability that node v using product j spontaneously converts,
or mutates to product i. For mathematical convenience, we assume that each of
these m × m mutation matrices Qv > 0 and is the same (denoted Q) for each v.
Note that Q need not be a symmetric matrix. A company could increase its
spending on traditional advertising to increase Qij for j �= i.

Seed selection. Finally, the owner of a product can select a seed set S ⊆ V of
people to whom they give the product for free in the beginning of the process,
effectively forcing their conversion. The users are under no obligation to continue
with this product in future time steps.

The problem. When allocating a budget, a company with product i should
then evaluate the tradeoffs between increasing ai (i.e., improving the product),
increasing Qi· (i.e., increasing ads and hence mutations to itself), or increasing
|S| (i.e., getting more initial adopters).

As in prior work, we assume the influence network is fixed, and hence a com-
pany cannot modify it to its benefit. We also assume that network can be seeded
only at the first time step. These aspects combine to form a stochastic dynamical
system that can be viewed as a Markov chain over the state space {1, 2, . . . ,m}n.
Our Markov chain can be described in several ways without changing the limiting
distribution. For instance, one could consider a description where the traditional
advertising competes with the social influence; for example, at each time step,
with some probability a node spontaneously changes its state from i to j, and
with some probability it is influenced by a neighboring node. We discuss possible
shortcomings and extensions of our model in Sect. 4.
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Theoretical Results. One of the main difficulties that arises in analyzing our
model is the fact that the ais are not all the same. We start by noting that when
Qij ∈ (0, 1) for all i, j and the in-degree of each node in the influence network is at
least one, our process forms an ergodic Markov chain (even if the network is not
connected) and, thus, has a unique stationary distribution. As a consequence, it
is clear that the selection of the seed set S has no effect in the long-term since the
process converges to this stationary distribution regardless of the initial state.
However, the network structure may still play a role in determining the shape of
the steady state distribution. Allowing some Qijs to be zero might give rise to
absorbing states in our Markov chain; this would also allow for the possibility of
the starting state affecting the steady state. See Sect. 4 for a discussion.

Towards computing this unique steady state, it can be shown that closed form
solutions for the steady state do not exist except in the most trivial of cases.
Even for a very simple settings of our model (e.g., unweighted, undirected graphs
with Qij = 0 for i �= j, a result of [5] can be used to show that computing the
steady state exactly is #P hard. This leaves us with two alternatives: (1) derive
weaker, but asymptotically good, bounds on the steady state of the stochastic
process analytically. Or (2) deploy the Markov Chain Monte Carlo (MCMC)
framework to get samples from close to the steady state in order to compute the
required statistics – here, it becomes important to prove that the mixing time
of the underlying Markov chain is fast.

Deterministic approximation. Towards (1), we study a deterministic dynami-
cal system that can be viewed as a mean-field approximation to the stochastic
dynamics. Roughly, this process has the same set of parameters, but instead of
a single product, it maintains a probability distribution at each node that indi-
cates its preference among the products. The nodes update these probabilities
deterministically taking into account the influence of its neighbors and the fit-
nesses and the matrix Q; see Eq. (1) and Lemma 1. The advantage of working
with this deterministic process is that we can precisely characterize its steady
state (see Theorem 1). Further, computing this deterministic steady state turns
out to be an eigenvector problem for an m × m matrix. As a simple consequence,
for the two-product case, one can even obtain a formula for the steady state in
closed form for which it is clear that the steady state will primarily consist of
the product with the highest quality.

Concentration. Our theoretical results indicate that, despite the possibility of
correlations, the market shares in the steady state of our stochastic dynamics are
likely to be concentrated around those predicted by the deterministic dynamics
(see Theorem 2). The quality of the concentration depends on the number of
nodes in the network and the minimum in-degree of the network (the higher
these numbers are, the better the concentration). Thus, when the network’s size
and degree are large, the deterministic process could be taken as a first-order
approximation to the stochastic process.
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Mixing time. Towards (2), we show that for all graphs with large enough mini-
mum degree (roughly log n – see Theorem 3), the Markov chain underlying our
stochastic dynamics mixes fast. Key to the proof turns out to be the determin-
istic dynamics mentioned above. We show how the geometry of the unique fixed
point of this deterministic dynamics can also allow us to construct a contractive
coupling to prove rapid mixing.

To summarize, our model is amenable to a rigorous analysis and, importantly,
our theoretical results suggest algorithms with provable bounds to estimate the
statistics such as market share from the steady state. Further, the time to conver-
gence to steady state for a particular set of parameters for our model being fast
in many cases implies that the advertising strategies are efficient and can have
the desired outcome in a reasonable time – after all, a strategy that needs 100
years to attain 99% of the market share is not useful. Extending our results to
all networks (removing the minimum degree condition) seems quite challenging.

Empirical Results. While the theoretical results above give an indication of
the asymptotic market share, sometimes we may be interested in the short-
term value of an advertising campaign.2 We study this regime in Sect. 3, where
we conduct empirical studies in order to understand the effect of the model
parameters in the short-term. For each experiment, we isolate a single parameter,
either the network, the seed set, the mutation parameters, or the product quality,
and strive to evaluate its effect on the market share.

Networks. Despite differences in origin, size and properties of the three real-
world networks we consider, we observe that the market share of a product over
time converges relatively fast; see Fig. 1(a). While the networks we study have
relatively low degree (and hence our theoretical results do not apply), we believe
that this fast convergence is because the diameter of the networks, as in most
social networks, is small. Proving that small diameter suffices for fast conver-
gence would be an interesting direction for future work. Furthermore, we observe
that on all networks, for our simulation parameters, the population convergence
to having almost all of its mass on the best product. As we will see in later
experiments, the model is extremely sensitive to the gap in quality between the
best and second-best product. Perhaps when the qualities are (nearly) the same,
the effect of the network in the steady state would be more clear empirically.
Despite these similarities, it is clear that the model converges faster on some
networks than on others, and an exploration of the short-term market share
remains important.

Parameters S,a and Q. While the choice of which seeds are selected for S affect
the market share in the short-term, the improvement is roughly linear in the
size of the seed set (see Fig. 1(b)). In contrast, the improvement in market share

2 For example, for products such as cars, time steps may be on the order of years.
Hence, we may be interested in a constant number of time steps, which is less than
the fastest mixing time we could hope for.
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is a sigmoid in a1 and Q1· with the inflection point in the range of realistic
values (see Fig. 1). Hence, this suggests that there are thresholds for a1 and Q1·,
such that (if our budget allows) we should ensure to cross. The threshold for
a1 is simply the maximum quality of a competing product – intuitively, having
the best product ensures that the steady state is in our favor. As long as a1 is
larger than the other a·, we find that small increases in Q1· seem to have the
largest positive effect in the market share in the short-term. In essence, the Q1·
function as a way to continuously generate seeds (as opposed to selecting them
only once with S). This suggests that as long as we have the best product, in
the short-term, increasing Q1·, e.g., by improving or increasing the number of
ads, is more important both than selecting seeds and improving product quality.
Overall, our results lead to the following qualitative insights:

– the initial seed set has a minimal effect on the limiting market share,
– a new product must have the highest quality in order to gain significant

market share, and
– improving traditional advertisement can be more effective than improving

seed set selection.

1.2 Related Work

There is a large literature on optimal advertising strategies in order to maximize
the adoption of goods (see [26] for a survey). These works focus on optimizing
the ads and product quality; e.g., [13,18]. In parallel, another long line of work on
local interaction with regard to social influence and the adoption of products (see
[19] for a survey). Such a work often uses stochastic models (known varyingly as
diffusion or cascades) and dynamical systems exist (see [7] and [4] respectively).
Models for understanding social influence in networks often take the form of
some kind of a threshold rule, as first proposed by [10,24], and many variations
have been studied. Towards this, theoretical and empirical studies have focused
on the problems of finding either the optimal size of, or the optimal seeds in,
the set S (e.g., [12,14]). For instance, in an important piece of work, [15] proved
that the problem of which seeds to select, given a size constraint, is NP-hard
and also provide greedy approximation algorithms for this problem.

A key contribution of our work is a model which allows us to optimal advertis-
ing and in the presence of social influence, thus bridging these two literatures. To
the best of our knowledge, very few works have tackled this challenging problem.
In two notable exceptions study a monopolist firm (i.e., the a single product)
being sold to a network of individuals that can influence each other. Here, the
quality of the product can be captured by a level of effort [9] or price [9] set
by the firm, and the product spreads across a (random, infinite) network via a
dynamical system which depends on the degree distribution of the vertices. In
contrast, our formulation allows us to consider arbitrary and finite networks in
which multiple products compete for market share.

Our stochastic model draws from two different models that arose in the study
of asexual finite populations; specifically that of [6] and [17] (see also [20] for a
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general reference on evolutionary models). The first model underlies the study
of evolution of viruses and has been used [27] to inform drug design despite their
apparent simplicity. There is no explicit network in the first model, although
it is equivalent to our model in a complete unweighted graph with self-loops if
all Qij = q for i �= j and some fixed parameter q. The second model studies
network models of evolution and there is recent rigorous work [5], but without
mutations which are crucial to our setting. Prior to our work on network models
with mutations, the only rigorous studies we are aware of were for the complete
graph case; initiated by [6] and followed by [28]. The network structure makes
the analysis significantly harder and raise many interesting questions. Our termi-
nology (fitness, mutation, and selection) is emphasized to draw these parallels to
the informed reader. The use of deterministic dynamics or mean-field approxima-
tions to study stochastic processes has a rich history in the probability literature
[2,23,31], however, non-asymptotic results such as our concentration result are
rare. Also, the use of such a deterministic dynamics to bound the mixing time
of a stochastic process is quite new and, to the best of our knowledge in two
different lines of works; see [8,28] and the discussions therein.

2 Theoretical Results

In this section we formally state our theoretical results which concern the behav-
ior of the market share in the long-term. At the expense of slight repetition, we
begin by stating the stochastic dynamics formally and introducing the corre-
sponding random variables. Subsequently, we describe the deterministic dynam-
ics that will help us approximate the steady state behavior of our stochastic
dynamics for large enough networks. This is followed by a proof of the approxi-
mation result. Finally, we present our result on the mixing time of the stochastic
process. Due to space constraints, we simply sketch the main ideas; complete
proofs appear the full version of this paper.

2.1 Preliminaries and the Stochastic Process

For a vertex v, let Nin[v] denote the set of edges coming in to v. Let F be an
m × m diagonal matrix where Fii = ai and Fij = 0 for i �= j. Recall that Qij

denotes the probability of type j mutating to type i. Q is column-stochastic: if
1m denotes the all 1 vector of dimension m, 1�

mQ = 1m.
At each time t ≥ 0, each node in the graph has a type in {1, . . . , m}. We

denote the type of vertex v ∈ V at time t by the random variable X
(t)
v . In

this notation, given (X(t)
u )u∈V , our stochastic dynamics can be mathematically

thought of as the following three steps: (1) Each vertex u replaces the type X
(t)
u

by a
X

(t)
u

many copies of the same type. (2) Each vertex v looks at the set of
vertices which point to it, i.e., Nin[v] and selects who to copy in the following
way. For each u ∈ Nin[v], first it further multiplies each type currently residing
at u by a factor of w(uv). Subsequently, it samples a type from the multi-set
union of the populations residing at each u ∈ Nin[v] uniformly at random and
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independently for each v. For a vertex v, call this chosen type Z
(t+1)
v . (3) Z

(t+1)
v

independently mutates for each v according to the matrix Q. That is, a type
j mutates to a type i with probability Qij . The resulting type at vertex v is
denoted by X

(t+1)
v . As remarked earlier, there are other ways to describe the

model that does not change the stochastic properties; for instance, the order of
the second and the third steps are interchangeable or can be combined.

For convenience we work with integral weights and fitnesses, however, note
that the matrix F can be scaled by an arbitrary constant without changing either
process; similarly, the weights of incoming edges to any node can be scaled by
an arbitrary constant. As long as the scaling is by constants, the theorems and
their proofs continue to hold as such. For the analysis, by replacing a weighted
edge with multiple edges, we may assume without loss of generality that the
graph is unweighted. Hence, subsequently, we think of Nin[v] as a multi-set and
when we talk of its cardinality, it is the cardinality of the multi-set. We let
δ = minv |Nin[v]|.

We start by noting that when Q > 0 and δ ≥ 1, this stochastic process
has a unique stationary distribution which we denote by π. Note, that this π
will in general depend on the network structure. Thus, we can study the time
to stationarity or the mixing time of the Markov chain. Recall that the mixing
time tmix(ε) is defined as the smallest time such that for any starting state, the
distribution of the state X(t) at time t is within total variation distance ε of π. For
concreteness, we use tmix(1/4). It is well known that tmix(ε) ≤ tmix(1/4) log 1/ε.

2.2 The Deterministic Dynamical System

We now present the deterministic counterpart to our stochastic model and argue
how it functions as its first order approximation. Here, at each time t ≥ 0, each
node in the graph has a probability distribution over the set {1, . . . , m}. We
denote this distribution for a vertex v ∈ V at time t by the vector p

(t)
v ∈ Δm

where Δm = {x ∈ IRm, x ≥ 0,
∑m

i=1 xi = 1}. Given (p(t)
v )v∈V , we now describe

how to generate p
(t+1)
v . In the first step, each vertex v multiplies each coordinate

of p
(t)
v be the corresponding fitness to obtain Fp

(t)
v . Note that this is no longer

a probability vector. Then, each type present at each vertex, mutates according
to the matrix Q resulting in an intermediate population QFp

(t)
v . Finally, each

vertex v looks at the set of vertices which point to it, i.e., Nin[v] and updates
its distribution over the types to p

(t+1)
v by taking the weighted average of the

intermediate probability distributions from among u ∈ Nin[v] and subsequently
normalizing it to be a probability distribution. Formally,

p(t+1)
v =

∑
u∈Nin[v] QFp

(t)
u

∑m
j=1

∑
u∈Nin[v] QFp

(t)
u (j)

. (1)

Let P (t) denote the m×n matrix where the u-th column is the vector p
(t)
u . Thus,

we can think of the deterministic process as implicitly specifying a dynamical
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system f : Δn
m �→ Δn

m defined by the rule P (t+1) = f(P (t)). We show that
starting from any initial point, the dynamical system converges to a unique limit
P which has the property that each column is the same; thus, rather surprisingly,
the correlations induced by Eq. (1) disappear with time and the network has no
effect in the long-term behavior of this dynamics.

The understanding of this P reduces to understanding the long-term behavior
of the dynamics g : Δm �→ Δm which maps a point x to g(x) = QFx

‖QFx‖1
. Since

QF > 0, the Perron-Frobenius theorem implies that QF has a unique positive
eigenvector p ∈ Δm with a positive eigenvalue λ1. Therefore g(·) has a unique
fixed point p in the interior of the simplex Δm. The Perron-Frobenius theorem
also implies that for every x ∈ Δm, limt→∞(QF )tx/λt

1 → p. In fact, we show
that for all t >

4 log 1
cε

log
λ1
|λ2|

, we have ‖gt(x) − p‖∞ < ε for any x ∈ Δm, where c is a

constant independent of x and λ1 > |λ2| are the top two eigenvalues of QF with
largest magnitudes. Using this convergence result, we prove that P, the limit of
f , is the matrix p1�

n .

Theorem 1 (Limit of the deterministic process). Let f be the dynamical
system as defined above. Then, given an ε > 0, for all X ∈ Δn

m, ‖f t(X) −
p1�

n ‖∞ ≤ ε for t ≥ 4 log
M(m+1)

cδε

log
λ1
|λ2|

, for some constant c independent of X and the

graph. λ1, λ2 are as above, M =
∑m

i=1 ai and δ = minv |Nin[v]|.
The difficulty in the proof of this theorem arises from the fact that f is a non-
linear dynamical system acting on a matrix. The key observation is that when f
is applied on a rank-one matrix, the outcome is a rank-one matrix. Consequently,
we can prove the theorem above when the starting point is a rank one matrix.
To prove it when the starting point is general rank matrix

∑
i eiv

�
i , (here ei is

the standard basis vector) we can write it as a sum of rank-one matrices and
show that the application of f t (f t-times) results in, roughly, a matrix of the
form

∑
i(QF )teiviB

�
t , where A is a fixed positive matrix, while Bt is less nice.

However, we can use the fact that (QF )tei → p for all i, along with the fact that
f has a bounded Lipschitz constant to complete the proof of the theorem. The
proof of this theorem is deferred to the full version due to space constraints.

2.3 Relationship Between the Stochastic and Deterministic Models

We now present our results relating the deterministic and the stochastic process.
We let X(t) ∈ {0, 1}m×n be the matrix where X

(t)
iv = 1 if the state of vertex v

is i and 0 otherwise. Thus, with a slight overload of notation (which should be
clear from the context), X

(t)
v denotes the column vector of X(t) corresponding

to the vertex v.
Thus, (X(t)1n)ei is the number of vertices of type i. Let D(t) denote the

vector 1
n · X(t)1n. The starting point is the following easy to verify equality

which relates one step of the Markov chain to the deterministic process.
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Lemma 1. E[D(t+1) | X(t)] = 1
n · f(X(t))1n.

Moreover, using Chernoff bounds, we can show that D(t+1) is close to 1
n ·

f(X(t))1n with high probability. Ideally, we would like to show that if X ∈
{0, 1}m×n is sampled from the stationary distribution π of the stochastic process,
then the corresponding counting vector D = 1

nX1n is concentrated around the
vector p (as defined in Theorem 1). An obvious approach would be to argue that
we can iterate this argument over t steps and take a union bound to ensure that
D(t) remains close to the deterministic process with a high probability. How-
ever, this approach suffers from a couple of major problems: the first is that it
is not clear how to iterate. It would be possible to iterate if we could ensure
that 1

n · f(X(t))1n is very close to g
(

1
nX(t)1n

)
. This is for instance true when

the underlying graph is a complete graph but does not hold in general. Even
assuming that this is true for a moment, the second obstacle is that g is not
necessarily a global contraction and in fact might even expand discrepancies,
so that the discrepancy between the behavior of the random process and the
deterministic prediction can grow exponentially with time. Thus, we can use the
union bound only over at most O(log n) steps. To get around this problem, we
use the fact that p is an attracting fixed point of g. Thus, we know that within
O(log n) steps, g reaches a n−Θ(1)-neighborhood of its fixed point, and does not
subsequently leave this neighborhood. Using this fact, we can essentially boot-
strap the naive union bound argument described in the previous paragraph to
show that starting from any state, the random process also reaches in Θ(log n)
steps a distribution that is concentrated on a n−Θ(1) neighborhood of the fixed
point of the deterministic process. Thus, the behavior of the deterministic limit
close to its fixed point turns out to be the crucial ingredient in understanding
the convergence properties of the stochastic finite population process. The fol-
lowing theorem shows that most of the mass of the stationary distribution of
the stochastic process is concentrated around the fixed point of the deterministic
process when the underlying network has large minimum degree.

Theorem 2 (Concentration of the stationary distribution). There exist
constants γ, β > 0 depending only upon m, Q and F such that if σ ≥ (log n)−γ ,
and if D is the frequency vector obtained from the stationary distribution π of
the stochastic process, then Pr [‖D − p‖∞ ≤ 2σ] = 1 − 1/nβ for all graphs with
minimum degree δ ≥ Ω((log n)1+α) where α > 0 is an arbitrarily small constant.

Note that our empirical results (see Sect. 3) indicate that this should hold for all
networks with small diameter and we leave it as a challenging open problem to
prove this formally. We omit the proof of this theorem due to space constraints.

2.4 The Mixing Time of the Stochastic Process

We now present our main result on the mixing time of our stochastic dynamics.

Theorem 3 (Mixing time). Let m,Q,F be fixed and let G be a graph on n
vertices (for n large enough) such that δ = Ω

(
(log n)1+α

)
for any α > 0. Then,

tmix(1/4) = O(log n), where m,Q,F, α are constants.
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Note that the mixing time bound is quite surprising as the size of the state
space is 2n and the mixing time roughly a log of the size of the state space.
The proof relies on a multi-phase coupling argument. Establishing a coupling
between two identical (but correlated) copies of a Markov chain which reduces
the expected distance is a generic technique to establish mixing time bounds. At
a very high level, we can demonstrate a contractive coupling when the two chains
reach close enough to their steady state, which is related to the convergent point
of the deterministic dynamical system. To prove that they reach close to their
steady state we need to ensure that there is measure concentration in each step
of the Markov process, that the number of steps is small, and that is where the
minimum degree bound seems to help us. The proof is quite technical and builds
on an extends the framework of [28] who proved a similar result for the case of
the complete graph. We omit the proof here due to space constraints.

3 Empirical Results: Short-Term Market Share

We now consider an empirical evaluation of the effect of the model parameters
on the market share in the short-term. In lieu of a real influence network, we
consider three real-world social network datasets for our simulations. We run
the stochastic process by considering a network in which all users have the same
product, and introduce a single new product to the market (i.e., m = 2). We
call our new product A, and let it correspond to i = 1. We then measure the
new product’s market share as a function of the various parameters S, a and Q.
Unless specified otherwise, in the simulations we take a1 = 1.1, a2 = 1, and
Qij = 0.0025 for i �= j,3 the seed set S is a single randomly selected node in the
graph, and the process is run for T = 30 time steps on the Facebook network
described below. We average over k = 50 simulations; error bars depict the
standard error of the mean.

Networks. The networks we use for our simulations were collected by the
Stanford Network Analysis Project and are publicly available [16]. We take the
largest strongly connected component of each network for our simulations. We
use a subset of the Facebook network, an ASTRO-PH collaboration network
from the e-print arXiv website in which nodes are authors and there is an edge
between two nodes if they are co-authors on at least one paper, and the Enron
email network where nodes are email addresses internal to the Enron company
and an edge represents the fact that at least one email was exchanged. We
purposely select very different types of networks across which influence could
propagate, and further compare against the complete graph and the cycle where
the number of nodes is the same as for the Facebook graph.

Despite dramatic differences in the origin, size and connectivity of the net-
works, all networks appear to converge relatively fast to similar steady-states
(see Fig. 1(a)). There is no clear relationship between any of the graph properties

3 The choice of parameters is inspired by the parameters we get when a fitting our
model to real world datasets; see the full version of the paper.
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Fig. 1. The effect of the various model parameters on the market share. Unless varied
in the given simulation, we take a1 = 1.1, a2 = 1, Qij = 0.0025 for all i �= j, and we
use the Facebook network. (Color figure online)

and the observed mixing time, although we hypothesize that the small diameter
plays a key role. Indeed, the cycle reaches the steady state at a much slower
rate; exploring this further could be an interesting direction for future work.
Due to space constraints, in the remainder of this section we only present the
simulation results from the Facebook network dataset; the results on the other
network topologies are similar and lead to the same qualitative conclusions.

Seed Sets. As observed in Sect. 2, if Q > 0, the seed set does not have an
effect on the market share in the steady state as the chain is ergodic. However,
it could affect the process in the short-term. Hence, we study the effect of the
seed set by varying the number of nodes it contains, and which set of nodes are
selected. Several empirical studies have shown that a good heuristic for maxi-
mizing influence is to select the highest-degree nodes, while poorly performing
heuristics include selecting the lowest-degree nodes (see, e.g., [12]). Hence, for
a seed set of size k, we compare two possible sets: the set that contains the k
highest degree vertices, and the set that contains the k lowest degree vertices,
breaking ties arbitrarily.
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In Fig. 1(b) we observe that, roughly, increasing the number of seeds in the
set only improves the market share linearly; indeed, in order to capture 50% of
the market after T = 30 time steps, even using high-degree seeds, one would
have had to start by seeding 30% of the population. In contrast, as we will see
below, there are nonlinear gains observed by increasing either a1 or Q12. This
suggests that, even in the short-term, increasing the number of seeds may not
be the best approach. Furthermore, while optimizing the selection of seeds is
indeed beneficial, it does not appear to lead to significant gains, simply altering
the constant of the linear improvement rather than changing its nature.

Product Fitness and Mutation. We then vary both Q12 and a1 and measure
the market share both after T = 30 time steps and in the steady state (see Fig. 1).
Here, a2 = 1 and Q21 = 0.01; i.e., our competitors have an extremely aggressive
and successful advertising campaign that spontaneously converts nodes. We first
observe that Q12 has almost no effect on the steady state of the distribution.
However, in the short-term, the choice of Q12 can result in attaining anything
from 0 to the maximal market share within 30 time steps. We observe that
Q12 > .001 suffices to reach close to the steady state distribution, and below this
range the transition is a sharp sigmoid; e.g., increasing Q12 from 0.0025 to 0.005
when a1 = 1.1 increases the market share by over 30%. Furthermore, we observe
that even for very small differences in quality, e.g., a1 > 1.05 > 1 = a2, which
corresponds to users preferring product A approximately 51.2% of the time,
product A will capture almost 100% of the market in the limit. However, a1 needs
to be approximately 2.5, which corresponds to being preferred approximately
71.4% of the time, in order to achieve the same market share in the short-term
(T = 30) when Q12 = 0.001. Again, the improvement in market share as a
function of a1 is a sigmoid, making the improvement in marketshare superlinear
in a1 when it is less than 50%. These observations suggest that it is likely to be
more beneficial to improve the fitness or the advertising as opposed to the seed
set in order to improve market share.

4 Conclusion and Future Work

The main conceptual contribution of this paper is to introduce a new model to
study the role and interaction of the key forces of interest in online advertising.
Technically, we show that our model, not only goes beyond the state-of-the-art
in capturing the relevant parameters, but can also be analyzed rigorously for a
large class of graphs. Combined with our empirical and numerical results on the
short-term behavior of advertising campaigns on the market share, we are led to
interesting predictions and take-homes.

An obvious generalization of our model would allow for node-specific para-
meters av and Qv

ij . The different fitnesses/mutations can capture distinct user
preferences, or targeted advertising campaigns that only display online ads to
certain users. In particular, this may mean that some or all of the Qv

ijs are
0 or tend to 0; this would leads to additional mathematical challenges as the
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Markov chain may no longer be ergodic and hence multiple stationary distribu-
tions would arise. As with other models that do not incorporate mutations [5],
we expect that the initial seed set can have a larger effect in such settings as the
process may converge to different steady states.

We expect that the proof techniques that we developed in this paper – in
particular the interplay between stochastic and deterministic dynamical systems
– might be useful not only to analyze extensions and variations of our model
but also in other settings. From a technical standpoint, our theoretical results
strongly relied on the minimum degree assumption; an interesting open question
is whether we can prove them under the condition that the diameter of the graph
is small (as may be the case in many applications).
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Abstract. In this work, we discuss the sybil attack to a sharing eco-
nomic system where each participant contributes its own resource for all
to share. We are interested in the robustness of the market equilibrium
mechanism in withstanding such an attack, in terms of the incentive
ratio to measure how much one could gain by splitting its identity and
reconstructing its communication connections with others. On one hand,
weshow that no player can increase more than

√
2 times of their original

share from the market equilibrium solution, by characterizing the worst
case under which strategic agent can obtain the maximum utility gain
after manipulation. On the other hand, such a bound of

√
2 is proved

to be tight by constructing a proper instance, for which this bound is
reached.

1 Introduction

Resource sharing has now attracted much commercial efforts in many good and
service application, such as done in AirBnB, mobike, UBER, etc., to make partic-
ipants benefit from exchanging each own idle resource with others and to improve
the social benefit as well as revenue. A key question in sharing is whether one
would be motivated to make their best effort, or in the current setting to share
their resources to the maximum availability to the sharing community for others
to use. In addition, whether our protocol would prevent the abuse of the system
by some to deviate from the expected social behavior by participation agents.

In this paper, we focus on the resource sharing over networks with
autonomous participants (or agents), which goes beyond the peer-to-peer (P2P)
bandwidth sharing idea [27]. Peers in such networks act as both suppliers and
customers of resources and make their resources directly available to their net-
work peers. Their utilities are determined by the total of resources received from
c© Springer International Publishing AG 2017
N. R. Devanur and P. Lu (Eds.): WINE 2017, LNCS 10674, pp. 103–119, 2017.
https://doi.org/10.1007/978-3-319-71924-5_8
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all others. Such a resource sharing system over P2P network can be modeled as
a pure exchange economy, a kind of Arrow-Debreu Market. Therefore, we are
interested in the market equilibrium as the allocation mechanism to distribute
those resources over P2P network.

As a distributed scheme, one of critical issues for the resource sharing prob-
lem is how to allocate resource in a fair fashion to maintain agents participation,
i.e., ensuring that agents will share their resources fairly, and hence will agree
to exchange resource with others. To motivate sharing, [16] pioneered the use
of incentive techniques to drive cooperation and to promote voluntary contri-
butions by participating agents. By taking such an approach, Cohen created
the BitTorrent protocol, which has been well recognized as an Internet success
to change “the entertainment industry and the interchange of information in
Web”[5]. From the view of fairness consideration, Wu and Zhang [27], motivated
by Bit-Torrent, have pioneered a model of proportional response for the band-
width sharing problem on peer-to-peer system. Under this model, the resource
allocation satisfies the condition that each peer provides each neighbor a portion
of its contribution proportional to the percentage it receives from this neighbor
among all its neighbors. They showed its economic efficiency by its convergence
to a market equilibrium of a pure exchange economy. To obtain the market equi-
librium, Wu and Zhang modeled the peer-to-peer system as an undirected graph
G = (V,E), where each vertex v represents an agent, with wv units of divisible
underused resources (or weight) to be distributed among its neighbors. And they
proposed an elegant network decomposition on such a graph, which is called the
bottleneck decomposition [27]. Based on this decomposition, they applied the idea
of maximum flow to derive a proportional response allocation protocol among
all agents whose output just is the allocation of the market equilibrium. This
protocol is named as Bottleneck Decomposition Mechanism, or BD Mechanism
for short [10,11].

However, agents are rational and strategic. The resource allocation from BD
Mechanism depends on agents’ reported information rather than their true infor-
mation. So we are interested in the incentives of agents against BD Mechanism:
when a system designer proposes BD Mechanism, is it possible for an agent to
deviate from it by strategic behavior and improve its utility? Further, if the
answer is “yes”, does we can characterize the extent to which an agent’s util-
ity can be increased by such a strategic play? In recent works, [10,11] proved
the incentive compatibility of this protocol against strategic behaviors of mis-
reporting connectivity and the amount of resources agent owns. In this paper,
we further explore its resistance to manipulative behavior by considering a kind
of strategy that an agent disguises itself by creating several copied false nodes
with its resources assigning among them. The motivation for us to discuss this
strategic behavior, since it just is the behavior which is called sybil attack. In
peer-to-peer system, sybil attack is a grave threat and subverts the security of
network “by creating a large number of pseudonymous identities, using them
to gain a disproportionately large influence” [24]. Compared with collusion,
sybil attack strategy is easier to execute on the Internet since getting another
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identification, such as duplicating IP addresses, is cheap. Further, such a strat-
egy is very difficult to detect since identifying each participant on Internet is
virtually impossible. As of 2012, evidence showed that large-scale Sybil attacks
could be carried out cheaply and efficiently in extant realistic systems such as
BitTorrent Mainline DHT [25,26].

Recently, Chen et al. [6,7] have done a series of work on the sybil attack strat-
egy against BD Mechanism in resource sharing. They first showed BD Mecha-
nism is not robust to such a strategy any more. To characterize how much one can
improve its utility at most and formalize such an improvement, they employed
the concept of incentive ratio. Incentive ratio, which is first introduced by
Chen et al. [9], is defined as the factor of the largest possible utility gain that
a participant can achieve by behaving strategically, given that all other partici-
pants have their strategies unchanged. In the distributed environment, all agents
only have limited knowledge due to the decentralization of the system. They need
an incredible effort to know the full information of the game and do complicated
computation as well. A small incentive ratio provides a safety margin where BD
Mechanism will not be breached if no agents will pursue a small improvement
in its utility in sacrificing some of its peers. Therefore a smaller incentive ratio
implies an agent has less incentive to influence the allocation result from BD
Mechanism through strategic considerations. In [6,7], Chen et al. discussed the
settings of tree networks and cycle networks and proved that the incentive ratio
of BD Mechanism for sybil attack strategy is exactly 2 on trees and is bounded
by 2 and 4 on cycles, respectively.

In this paper, we are more concerned about the resource sharing in the con-
text of sharing economy, in which the ideal state is that all of participants are
fully connected. Thus our study mainly focuses on the network structure of
complete graph and study the agents’ incentive against BD Mechanism by sybil
attack strategy.

Related Work
The classical economists and algorithmic game theorists have made an exten-

sive study of competitive equilibrium [2], in terms of computation for prices and
allocation [20], complexity and approximation [13–15,18,22,28]. Those works
have started to have an influence in resource allocation among multiple agents,
especially in the important implementations for the Internet enabled economic,
management and social activities. How to fairly redistribute and share those
resources have become an important issue with more and more online platforms
and APPs which facilitate the exchange of commodities and services, such as
Uber, Mobike, AirBnB, Opengarden, Swap. . .

The automated process through information and communication technology
for Internet applications has made their successes relied on the voluntary coop-
erations of participating agents. [16] pioneered the study of such incentive tech-
niques in mechanism design and in performance analysis for such peer-to-peer
resource sharing systems. Agent strategic behaviors against market equilibrium
mechanism has been analyzed in the Fisher market for linear markets [1] and for
constant elasticity of substitution markets [4]. As a special case of Arrow-Debreu
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market, the proportional response protocol was shown to be equivalent to a mar-
ket equilibrium solution [27] in the resource sharing system under P2P setting.
[10,11] proved that the market equilibrium from the proportional response pro-
tocol is incentive compatible to two types of strategic behaviors for each agent:
cheating on its connectivity with the rest of network and misreporting its own
resource amount. But for the strategy of sybil attack, the proportional response
protocol is not truthful any more. In addition, Chen et al. computed the per-
centage of improvement by this strategy with the aid of incentive ratio. They
proved that incentive ratio is exactly 2 if the underlying network is a tree [6]
and is bounded by 2 and 4 on cycles [7], respectively. The concept of incentive
ratio is first introduced by Chen et al. [9], motivated by the concept of price
of anarchy [19,23]. Comparing such two kinds of ratios, the former measures
the most individual gains one may acquire in deviation from truthful behavior,
while the latter models the loss of social efficiency in selfish Nash equilibrium in
comparison to social optimality.

The strategy of sybil attack was first discussed by Douceur [12] for the con-
sideration of the security of P2P network. Meanwhile, similar strategic strategies
are also discussed in other situations, such as the false-name bidding in Internet
auctions. The false-name bidding [30] is a serious fraud, in which false-name bids
are submitted by a single agent under multiple fictitious identities. It has been
known that the famous VCG mechanism is not incentive compatible against
the false-name bidding, as a result of the study on the false-name-proof auc-
tion mechanisms design [17,29], and on the efficiency guarantee of the VCG
mechanism [3].

Technical Contributions and Main Results
We analyze incentive ratio to quantitatively measure the maximal magnitude

of utility gain by sybil attack followed a proportional response mechanism. Our
main result in this paper is that the incentive ratios are exactly

√
2 on complete

graphs. To obtain the ideal result, we propose a proper example for the lower
bound. On the other hand, we characterize all possible bottleneck decompositions
before and after manipulation with the help of the structure of complete graphs.
And for each different case, we compute the maximal ratio by considering the
maximum possible utility improvement, respectively, to reach the upper bound.

There has been several important research results for various utility functions
where the most relevant one is the incentive ratio of two matching bound for
linear utilities in the Fisher market [8,9], which is not directly applicable to our
resource exchange model here but a special case of Arrow-Debreu market. As
the incentive ratio for the Arrow-Debreu model is known to be unbounded [21]
even in linear exchange economy, it is interesting to show a non-trivial matching
bound under the setting discussed here. The practical network sharing economy
with a market equilibrium solution still remains to be interesting with a limited
rationality in terms of truthful behavior.



Limiting User’s Sybil Attack in Resource Sharing 107

2 Preliminary

Our resource sharing system is based on a connected and undirected network
G = (V,E). Each vertex v ∈ V represents an agent with an upload resource
amount (weight) wv > 0 for exchanging with its neighbors, where Γ(v) = {u :
(v, u) ∈ E} is the neighborhood of v. Let xvu be the amount of resource v
allocates to neighbor u (0 ≤ xvu ≤ wv) and X = {xuv} be an allocation. The
utility of agent v from allocation X is defined as Uv(X) =

∑
u∈Γ(v) xuv, i.e.

all received resource from its neighbors. In the resource sharing environment,
one of critical issues is how to design an allocation mechanism to maintain the
agents participation, i.e., ensuring that agents will share their resources in a fair
fashion. Wu and Zhang [27] pioneered the concept of “proportional response”
inspired by the idea of “tit-for-tat” for the consideration of fairness.

Proportional Response. A mechanism is called proportional response if an
allocation X from this mechanism satisfies xvu = xuv∑

k∈Γ(v) xkv
wv, that is the

allocation of each agent’s resource is proportional to what it receives from its
neighbors.

To achieve a proportional response mechanism, a combinatorial structure,
called bottleneck decomposition is derived in [27]. For set S ⊆ V , define w(S) =∑

v∈S wv and Γ(S) = ∪v∈SΓ(v). It is possible that S ∩Γ(S) �= ∅. Denote α(S) =
w(Γ(S))

w(S) to be the inclusive expansion ratio of S, or the α-ratio of S for short.
A set B ⊆ V is called a bottleneck of G if α(B) = minS⊆V α(S). A bottleneck
with the maximal size is called the maximal bottleneck.

Bottleneck Decomposition. Given G = (V,E;w). Start with V1 = V , G1 = G
and i = 1. Find the maximal bottleneck Bi of Gi and let Gi+1 be the induced
subgraph on the vertex set Vi+1 = Vi − (Bi ∪ Ci), where Ci = Γ(Bi) ∩ Vi, the
neighbor set of Bi in Gi. Repeat if Gi+1 �= ∅ and set k = i if Gi+1 = ∅. Then we
call B = {(B1, C1), · · · , (Bk, Ck)} the bottleneck decomposition of G, (Bi, Ci)
the i-th bottleneck pair and αi = w(Ci)/w(Bi) the α-ratio of (Bi, Ci).

B-class and C-class. Given B = {(B1, C1), · · · , (Bk, Ck)}. For pair (Bi, Ci)
with αi < 1, each vertex in Bi (or Ci) is called a B-class (or C-class) vertex. For
the special case Bk = Ck = Vk, i.e., αk = 1, all vertices in Bk are categorized as
both B-class and C-class.

Bottleneck decomposition has a lot of beautiful combinatorial properties
which are critical for us to obtain the tight incentive ratio of

√
2.

Proposition 2.1 [27]. Given a graph G, the bottleneck decomposition of G is
unique and

1. 0 < α1 < α2 < · · · < αk ≤ 1;
2. if αi = 1, then i = k and Bi = Ci; otherwise Bi is an independent set and

Bi ∩ Ci = ∅;
BD Mechanism. Given the bottleneck decomposition B, an allocation Wu and
Zhang [27] can be determined by distinguishing three cases. Cheng et al. [10,11]
named it as BD Mechanism for short.
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• For (Bi, Ci) with αi < 1, consider the bipartite graph Ĝ = (Bi, Ci;Ei) with
Ei = Bi ×Ci. Construct a network N = (VN , EN ) with VN = {s, t}∪Bi ∪Ci

and directed edges (s, u) with capacity wu for u ∈ Bi, (v, t) with capacity
wv/αi for v ∈ Ci and (u, v) with capacity +∞ for (u, v) ∈ Ei. The max-flow
min-cut theorem ensures a maximal flow {fuv}, u ∈ Bi and v ∈ Ci, such that∑

v∈Γ(u)∩Ci
fuv = wu and

∑
u∈Γ(v)∩Bi

fuv = wv/αi. Let the allocation be
xuv = fuv and xvu = αifuv implying

∑
u∈Γ(v)∩Bi

xvu =
∑

u∈Γ(v)∩Bi
αi ·fvu =

wv. Figure 1 illustrates it.
• For αk = 1 (i.e., Bk = Ck), construct a bipartite graph Ĝ = (Bk, B′

k;E′
k)

where B′
k is a copy of Bk, there is an edge (u, v′) ∈ E′

k if and only if (u, v) ∈
E[Bk]. Construct a network by the above method, for any edge (u, v′) ∈ E′

k,
there exists flow fuv′ such that

∑
v′∈Γ(u)∩B′

k
fuv′ = wu. Let the allocation be

xuv = fuv′ .
• For any other edge (u, v) �∈ Bi × Ci, i = 1, 2, · · · , k, define xuv = 0.

Fig. 1. The illustration of BD Mechanism.

Proposition 2.2 [27]. BD Mechanism is a proportional response mechanism.

On the other hand the resource sharing system can be modeled as a pure
exchange economy, for which an efficient allocation is the market equilibrium.

Market Equilibrium. In the exchange economy, price vector p = (pv)v∈V

together with an allocation X is called a market equilibrium if for any agent
v ∈ V the following holds, 1.

∑
u∈Γ(v) xvu = wv (market clearance); 2.

∑
u∈Γ(v) pu

xuv

wu
≤ pv (budget constraint); 3. X = (xvu) maximizes the utility

Uv =
∑

u∈Γ(v) xuv subject to the budget constraint (individual optimality).
BD Mechanism is not only fair as stated above but also efficient, since the

proportional response allocation from it also is a market equilibrium. Given a
bottleneck decomposition, if a price vector p is well defined as: pu = αiwu, if
u ∈ Bi; and pu = wu otherwise, then

Proposition 2.3 [27]. (p,X) is a market equilibrium. Furthermore, each agent
u’s utility is Uu = wu · αi if u ∈ Bi; Uu = wu

αi
if u ∈ Ci.
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Note that Uu ≥ wu if u is in C-class and Uu ≤ wu if u is in B-class, as
αi ≤ 1 by the first claim in Proposition 2.1. From a system design point of view,
although BD Mechanism shall allocate resource among interconnected partic-
ipants fairly and efficiently, a problem occurs that, an agent may or may not
follow BD Mechanism at the execution level. Can agents make strategic moves
for gains in their utilities? We call such a problem with incentive compatibility
consideration the resource exchange game.

In an instance of resource sharing game, the collection w = (w1, · · · , wn) ∈
Rn is referred as the weight profile. For agent v, let w−v be the weight profile
without v. Since the utility of agent v depends on the underlying network G and
w, it is written as Uv(G;w). Now we study a strategic move, called sybil attack
strategy, that is one agent may create more than one fake identity by splitting
itself into several copied nodes, and assign a weight to each node. Thus for a
strategic agent v, it shall make multiple decisions as follows:
• how many copied nodes does it split into?
• how to build the connections between the copied nodes and its neighbors?
• how to assign its own weight to each copied node?
In this paper, we model the sybil attack strategy as: the strategic agent v shall
split itself into m nodes v1, · · · , vm, 1 ≤ m ≤ dv (dv is the degree of v), assign an
amount wvi of resource to each node vi, satisfying 0 ≤ wvi ≤ wv and

∑m
i=1 wvi =

wv, and each neighbor of v in original G is connected to one of copied nodes,
not vice versa. Let G′ be the resulting network after agent v making above three
decisions and agent v’s new utility is denoted by U ′

v(G′;wv1 , · · · , wvm ,w−v).

Definition 2.1 (Incentive Ratio). In a resource exchange game, the incentive
ratio of agent v under BD Mechanism for the sybil attack strategy is

ζv = max
1≤m≤dv

max
wvi∈[0,wv ],

∑m
i=1 wvi=wv ;w−v;G′

U ′
v(G′;wv1 , · · · , wvm ,w−v)

Uv(G;wv)
.

The incentive ratio of BD mechanism in resource exchange game is defined to
be ζ = maxv∈V ζv.

There is a special case that a strategic agent v splits itself into dv nodes and
each node is connected to one of neighbors. Thus there is one to one correspon-
dence between copied nodes and neighbors. Chen et al. showed the equivalence
of the special strategy and the general sybil attack, which simplifies the decision
making for strategic agent.

Proposition 2.4 [6,7]. In a resource sharing game, the incentive ratio of BD
mechanism with respect to sybil attack strategy can be achieved by splitting into
dv nodes and making each node be connected to one neighbor, where dv is the
degree of strategic agent v.
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3 Incentive Ratio of BD Mechanism on Complete
Graph Kn

In this section, we focus on the resource sharing game in which the underlying
network is a complete graph Kn. Before proceeding the details of discussion, let
us introduce some necessary notations and propositions.

Lemma 3.1. For any complete graph Kn, the bottleneck decomposition B only
contains one bottleneck pair B = {(B1, C1)} and it shall be

1. α1 = 1 and B1 = C1 = V , or
2. α1 < 1, B1 only has one vertex and C1 has other n − 1 vertices.

Proof. Let us focus on the first pair (B1, C1) in B. Of course, there exist two
cases: α1 = 1 and α1 < 1. If α1 = 1, then B1 = C1 = V and the first claim holds.
If α1 < 1, then B1 must be independent by the first claim in Proposition 2.1.
So the structure of complete graph makes B1 only contain one vertex. Further
the neighborhood Γ(B1) = V − B1. Hence C1 contains other n − 1 vertices and
V2 = V − (B1 ∪ C1) = ∅ which means there is only one pair (B1, C1) in B. �

Since the complete graph Kn has n vertices, without loss of generality, let
the vertex who plays strategically be v, and the others be u1, · · · , un−1. In addi-
tion, such a strategic vertex v shall split itself into n − 1 duplicated nodes by
Proposition 2.4. For the sake of convenience, we denote the duplicated node set
by Λ(v) = {v1, · · · , vn−1} and the neighborhood of v by Γ(v) = {u1, · · · , un−1},
where each vj is adjacent to uj , j = 1, · · · , n−1, in G′. Because of the structure
of complete graphs, the induced graph G′[Γ(v)] also is a complete graph Kn−1

and the vertex set of new graph G′ after manipulation is V ′ = Γ(v) ∪ Λ(v).
Similar to the notations of bottleneck decomposition in original Kn, the

bottleneck decomposition of G′ is denoted by B′ = {(B′
1, C

′
1), · · · , (B′

k′ , C ′
k′)}

and let the α-ratio of each pair (B′
i, C

′
i) be α′

i, i = 1, · · · , k′. Likewise, V ′
1 = V ′,

V ′
i+1 = V ′

i − (B′
i ∪ C ′

i) for i = 1, 2, · · · , k′ − 1 and G′
i = G′[V ′

i ], i = 1, 2, · · · , k′.
The vertex in B′

i or C ′
i, i = 1, · · · , k′, is called the B′-class or C ′-class vertex

and Γ′(v) is the neighborhood of v in G′, Γ′(S) = ∪v∈SΓ′(v) for any vertex set
S ⊆ V ′. Based on the structure of Kn and G′, we characterize the bottleneck
decomposition B′ carefully in the following proposition.

Lemma 3.2. Let B′ be the bottleneck decomposition of G′, then it shall be

1. B′ = {(B′
1, C

′
1)}, where B′

1 = C ′
1 = V ′ with α′

1 = 1, or
2. B′ = {(B′

1, C
′
1)}, where B′

1 = {uj ,Λ(v) − vj}, C ′
1 = {vj ,Γ(v) − uj}, j ∈

{1, · · · , n − 1} (an example in Fig. 3), or
3. B′ = {(B′

1, C
′
1), · · · , (B′

k′ , C ′
k′)}, where for each i = 1, · · · , k′ − 1, B′

i =
{vh1 , · · · , vht}, C ′

i = {uh1 , · · · , uht}, h1, · · · , ht ∈ {1, · · · , n − 1}; and the
last pair (B′

k′ , C ′
k′) shall be

(a) B′
k′ = C ′

k′ = ∅ (B′ actually contains k′ − 1 pairs), or
(b) B′

k′ = C ′
k′ with α′

k′ = 1, or
(c) B′

k′ = {uj ,Λ(v) − ∪k′−1
i=1 B′

i − vj}, C ′
k′ = {vj ,Γ(v) − ∪k′−1

i=1 C ′
i − uj} with

α′
k′ < 1.
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Proof. To show the correctness of this proposition, we shall discuss two situations
depending on α′

1 = 1 or α′
1 < 1. Of course, if α′

1 = 1, then B′
1 = C ′

1 = V
which induces the first case. Otherwise if α′

1 < 1, then B′
1 must be independent

by the first claim of Proposition 2.1 and it may contain one vertex uj from
Γ(v) or not. For the former that one vertex uj ∈ B′

1, then vj ∈ C ′
1 and all

others in Γ(v) except for uj must belong to C ′
1, because the induced subgraph

of Γ(v) = {u1, · · · , un−1} still is a complete graph Kn−1 in G′ as mentioned
before. In addition, each vh ∈ Λ(v) − vj has a unique neighbor uh ∈ C ′

1, h �= j,
and is not adjacent to uj . So adding all vh, h �= j, into B′

1 not only keeps the
independence property of B′

1, but also makes its α-ratio decrease. Thus we get
the second case, that is B′

1 = {uj ,Λ(v) − vj} and C ′
1 = {vj ,Γ(v) − uj}.

If B′
1 dose not contain any vertex from Γ(v), it must have the form as B′

1 =
{vh1 , · · · , vht} and C ′

1 = {uh1 , · · · , uht} with the property of w
uh

w
vh

= w(C′
1)

w(B′
1)

= α′
1.

Recalling the process of bottleneck decomposition, V ′
2 = V ′ − (B′

1 ∪ C ′
1) =

(Λ(v) − B′
1) ∪ (Γ(v) − C ′

1) and the rest graph G′
2 has the same structure as

G′. Now we turn to discuss (B′
2, C

′
2) which is the maximal bottleneck in G′

2. If
V ′

2 = ∅, then B′
2 = C ′

2 = ∅. It implies case 3-(a). If V ′
2 �= ∅ and B′

2 = C ′
2 = V ′

2

with α′
2 = 1, then case 3-(b) holds. If B′

2 has one vertex uj ∈ Γ(v)−C ′
1, then B′

2

and C ′
2 has the same structure as case 2. So case 3-(c) is derived. If there is no

any uj in B′
2, then we continue the same analysis until one of above three cases

happens. �
Our main result on the incentive ratio of BD Mechanism for the sybil attack

strategy on complete graphs is the following.

Theorem 3.1. If the network of resource exchange system is a complete graph
Kn, then the incentive ratio of BD Mechanism for the sybil attack strategy is
exactly

√
2.

To obtain Theorem 3.1, we try our best to prove the lower bound and upper
bound of the incentive ratio on Kn are both equal to

√
2 in the subsequent two

subsections.

3.1 Lower Bound of Incentive Ratio on Kn

In this subsection, we will prove the lower bound of
√

2 by proposing an example.

Theorem 3.2. If the network of resource sharing system is a complete graph,
then the incentive ratio of BD Mechanism for the sybil attack strategy is at least√

2, i.e. ζ ≥ √
2.

Proof. Assume network G is a triangle K3, shown in Fig. 2(a). The weights of
all vertices are wv = 2

√
2 − 2, wu1 = 1 and wu2 = 3 − 2

√
2. The bottleneck

decomposition B is {(B1, C1)} with B1 = C1 = {v, u1, u2} and α1 = 1. And the
utility of v is wv · α1 = 2

√
2 − 2.

If vertex v strategically splits itself into v1 and v2 and assigns
√

2 − 1 units
resource to each node, respectively, as shown in Fig. 2-(b). Then the bottleneck
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Fig. 2. An example showing the lower bound of incentive ration on complete graphs.

decomposition of new graph shall change to be {(B′
1, C

′
1)}, where B′

1 = {u1, v2},
C ′

1 = {u2, v1} with α′
1 =

√
2 − 1. At this time it is easy to compute U ′

v1 =
(
√

2 − 1)/(
√

2 − 1) = 1 and U ′
v2 = (

√
2 − 1) · (

√
2 − 1) = 3 − 2

√
2 which imply

the total utility of v is U ′
v = 4 − 2

√
2 and the incentive ratio of v is at least

√
2.

Thus the incentive ratio of BD Mechanism on complete graphs is ζ ≥ √
2. �

It’s worth noting that the above example for lower bound can be generalized
to any complete graph Kn with vertex weights wv = 2

√
2 − 2, wu1 = 1 and

wu2 = · · · = wun−1 = 3−2
√

2
n−2 . The bottleneck decomposition of Kn is {(B1, C1)}

with B1 = C1 = {v, u1, · · · , un−1} and α1 = 1. So Uv = 2
√

2 − 2. Now v
plays the vertex splitting strategy to replace itself by n − 1 duplicated nodes
vj , j = 1, · · · , n − 1, such that each vj is adjacent to neighbor uj . Furthermore,
v assigns its weight to each node as wv1 =

√
2 − 1 and wv2 = · · · = wvn−1 =√

2−1
n−2 . Then the bottleneck decomposition changes to be {(B′

1, C
′
1)}, where B′

1 =
{u1, v2, · · · , vn−1}, C ′

1 = {v1, u2, · · · , un−1} and α′
1 =

√
2 − 1. So U ′

v1 = (
√

2 −
1)/(

√
2−1) = 1 and U ′

vj =
√

2−1
n−2 · (√2−1) = 3−2

√
2

n−2 , j = 2, · · · , n−1. The total
utility of v is U ′

v = U ′
v1 +

∑n−1
j=2 U ′

vj = 4 − 2
√

2 =
√

2Uv.

3.2 Upper Bound of Incentive Ratio on Kn

The main task of this subsection is to show the upper bound of
√

2. To compute
the upper bound of incentive ratio on complete graph Kn, it is necessary to
analyze the optimal strategy for the strategic vertex v, by which v can obtain
the maximal utility gain.

Theorem 3.3. If the network of resource sharing system is a complete graph,
then the incentive ratio of BD Mechanism for the sybil attack strategy is at most√

2, i.e. ζ ≤ √
2.

Proof. As we know, the strategic vertex v may be a B-class vertex or C-class
vertex in G. But if v ∈ B1 with α1 = 1, it can be viewed as a C-class vertex
since B1 = C1 = V . Thus there are two disjoint cases that v ∈ B1 with α1 < 1
and v ∈ C1. From the characterization of bottleneck decomposition B in Lemma
3.1, we note that if v ∈ B1 with α1 < 1, then other n − 1 vertices are all in
C1 and upload all of their resource to v. In other words, vertex v obtains all
possible resource in system, which achieves the maximum. Under this case, such
a vertex v has no any incentive to play strategically and its optimal strategy is to
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keep intact. Hence, the incentive ratio is 1. For the second case that v ∈ C1, it’s
obvious that Uv = wv/α1 ≥ wv. If B′ only contains one bottleneck pair (B′

1, C
′
1)

with α′
1 = 1, then U ′

v =
∑n−1

j=1 U ′
vj =

∑n−1
j=1 wvj = wv ≤ Uv, which implies v’s

incentive ratio is 1 too. Until now there is only one situation left that v ∈ C1 and
B′ contains at least one bottleneck pair whose α-ratio is less than 1, meaning
α′

1 < 1. Following lemma characterizes the structure of B′ when the strategic
agent v plays the optimal strategy.

Fig. 3. The bottleneck decomposition B′ when v adopts optimal strategy, where the
blue or white vertices represent B′-class or C′-class vertices respectively. (Color figure
online)

Lemma 3.3. Suppose that the network of resource sharing system is a complete
graph and the strategic vertex v is in C-class. When v gains the maximal utility
by adopting the optimal strategy, the bottleneck decomposition B′ in G′ must has
the form as B′ = {(B′

1, C
′
1)} with B′

1 = {uj ,Λ(v)−vj} and C ′
1 = {vj ,Γ(v)−uj},

∃j ∈ {1, 2, · · · , n − 1} as shown in Fig. 3.

Proof. Based on the previous analysis, it is enough to discuss the case that
v ∈ C1 and B′ contains at least one pair whose α-ratio is less than 1, which
implies α′

1 < 1. So the structure of B′ must be case 2 or 3 in Lemma 3.2. If B′

has the structure as case 2, then this lemma holds. Now we turn to discuss case
3 and try to show the impossibility of case 3 when v plays optimally.

If B′ has the structure as case 3-(a) and 3-(b), then each duplicated node vl,
l = 1, · · · , n − 1, is in B′-class (for case 3-(b) some vl may be in B′

k′ = C ′
k′ with

α′
k′ = 1) and U ′

vl ≤ wvl . Therefore,

U ′
v =

n−1∑

l=1

U ′
vl ≤

n−1∑

l=1

wvl = wv ≤ Uv.

The last inequality is from the condition that v ∈ C1. So v has no incentive to
manipulate BD mechanism and its incentive ratio is 1.

If B′ has the structure as case 3-(c), without loss of generality, we assume
there are two pairs in B′, which are B′

1 = {vh}, C ′
1 = {uh} and B′

2 = {uj ,Λ(v)−
{vj , vh}}, C ′

2 = {vj ,Γ(v)−{uj , uh}}. Thus, U ′
vh = wvh ·α′

1 = wuh , U ′
vj = wvj/α′

2

and U ′
vl = wvl · α′

2, for each l �= j, h. In addition the total utility of v in G′ is

U ′
v = wuh +

wvj

α′
2

+ (wv − wvh − wvj ) · α′
2.
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Let us consider a new weight assignment (ŵv1 , ŵv2 , · · · , ŵvn−1) of wv as

ŵvl =

⎧
⎪⎨

⎪⎩

wvl − δ, l = h;
wvl + α′

2
1+α′

2
δ, l = j;

wvl + 1
(1+α′

2)(n−3)δ, l �= h, j;
(1)

where δ is a arbitrarily small and positive number. Obviously,
∑n−1

l=1 ŵvl = wv.
Since α′

1 < α′
2, there must be a small and positive number δ such that the

bottleneck decomposition B′ keeps unchanged for the new weight assignment
(1). So the new utility of vh is still Û ′

vh = wuh = U ′
vh and the fact α′

2 =
wvj +

∑
l �=h,j w

uh

wuj+
∑

l �=h,j w
vh

makes

α̂′
2 =

wvj +
∑

l 	=h,j wuh + α′
2

1+α′
2
δ

wuj +
∑

l 	=h,j wvh + 1
1+α′

2
δ

= α′
2

Therefore,

Û ′
vj =

ŵvj

α′
2

=
wvj + α′

2
1+α′

2
δ

α′
2

= U ′
vj +

1
1 + α′

2

δ;

∑

l 	=j,h

Û ′
vl = (wv − wvh − wvj +

1
1 + α′

2

δ) · α′
2 =

∑

l 	=j,h

U ′
vl +

α′
2

1 + α′
2

δ,

which implies Û ′
v = U ′

v + δ > U ′
v. Vertex v continues to adjust its weight assign-

ment as (1) by increasing δ until α̂′
1 = α̂′

2 = α′
2. At this time, the two bottleneck

pairs should be combined together to keep the maximal size and have the form
as B′

1 = {uj ,Λ(v) − vj} and C ′
1 = {vj ,Γ(v) − uj}. Furthermore, by the proof

of Lemma 3.2, we know once one of uj ∈ Γ(v) is in B′
1 and α′

1 < 1, then the
bottleneck decomposition B′ must have the structure of case 2 in Lemma 3.2.
This completes the proof. �

Now we are ready to provide the proof of Theorem 3.3. Here we only dis-
cuss the case that v ∈ C1 in G and B′ contains at least one bottleneck pair
whose α-ratio is less than 1. Given any weight profile w = (wv, wu1 , · · · , wun−1).
From Lemma 3.3, if vertex v plays the optimal strategy, then the bottleneck
decomposition B′ = {(B′

1, C
′
1)} has the structure of B′

1 = {uj ,Λ(v) − vj} and
C ′

1 = {vj ,Γ(v) − uj}, j ∈ {1, 2, · · · , n − 1}. So

α′
1 =

wvj +
∑

l 	=j wul

wuj + (wv − wvj )
and U ′

v = (wv − wvj ) · α′
1 + wvj

1
α′

1

.

Since the weight profile w = (wv, wu1 , · · · , wun−1) is given in advance, U ′
v and

α′
1 can be viewed as the functions of wvj . To simplify the notations, we denote

wv = a, wuj = b,
∑

l 	=j wul = c and the decision variable wvj = x, as shown in
Fig. 3. Using these notations, the bottleneck decomposition B = {(B1, C1)} of
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Kn may be: (1) B1 = {uj} and C1 = V − {uj} with α1 = a+c
b when b > a + c;

or (2) B1 = C1 = V with α1 = 1 when b ≤ a + c. Thus

Uv =
{

a · 1
α1

= ab
a+c , if b > a + c;

a, if b ≤ a + c.
(2)

For the strategic vertex v, it tries to maximize the following maximization
problem,

max U ′
v(x)/Uv

s.t c
a−x ≥ c+x

b+a−x (�)
b + a − x > c + x (��)
0 ≤ x ≤ a (� � �)

(3)

Constraint (�) is from characterization that the bottleneck decomposition B′

shall be B′
1 = {uj ,Λ(v)−vj} and C ′

1 = {vj ,Γ(v)−uj} under the optimal strategy,
and constraint (��) is right since α′

1(x) = c+x
b+a−x < 1. Combining constraints (��)

and (� � �), the feasible solution x ≤ min{a, a+b−c
2 }. In addition,

U ′
v(x) = x · b + a − x

c + x
+ (a − x) · c + x

a + b − x
= (a + b + c)

[
x

c + x
+

a − x

a + b − x

]
− a,

and the derivation of U ′
v(x) is

dU ′
v(x)
dx

= (a + b + c)
[

c

(c + x)2
− b

(a + b − x)2

]

.

It is not hard to see function U ′
v(x) has a unique maximum point x∗ =√

c(a+b)−√
bc√

b+
√

c
and U ′

v(x) increases when x ≤ x∗ and decreases when x ≥ x∗.
Let us consider four intervals where the parameter b is in: [0, c], [c, a + c],

[a+ c, (a+c)2

c ] and [ (a+c)2

c ,+∞]. We can compute that a+b−c
2 ≤ x∗ < a when b ∈

[0, c]; x∗ ≤ a+b−c
2 ≤ a when b ∈ [c, a+c]; x∗ ≤ a ≤ a+b−c

2 when b ∈ [a+c, (a+c)2

c ]

and a ≤ x∗ < a+b−c
2 when b ∈ [ (a+c)2

c ,+∞]. In the following we shall prove that
the ratio U ′

v(x)/Uv is no more than
√

2 in each interval.
• b ∈ [0, c]. So Uv = a since b ≤ c ≤ a + c by (2). On the other hand, we get
x∗ ≥ a+b−c

2 and a ≥ a+b−c
2 . Such two inequalities means the feasible solution

x ≤ min{a, a+b−c
2 } = a+b−c

2 ≤ x∗. So the monotonically increasing property of
U ′

v(x) when x ≤ x∗ promises

U ′
v(x) ≤ U ′

v(
a + b − c

2
) = a = Uv.

• b ∈ [c, a + c]. On one hand, condition b ≤ a + c promises Uv = a by (2) and
a ≥ a+b−c

2 . On the other hand, x∗ ≤ a+b−c
2 = min{a, a+b−c

2 }. Therefore v can
get its maximal utility when x = x∗, and

U ′
v(x∗) = x∗ · b + a − x∗

c + x∗ + (a − x∗) · c + x∗

a + b − x∗ = a + (
√

b − √
c)2.
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Then the ratio

U ′
v(x∗)
Uv

=
a+ (

√
b − √

c)2

a
≤ a+ (

√
a+ c − √

c)2

a
=

2
√
a+ c(

√
a+ c − √

c)
a

=
2√
1

1+ a
c
+ 1

,

(4)

where the inequality is from condition b ≤ a + c. Of course, if U ′
v(x) achieves

its maximum at x = x∗, then x∗ =
√

c(a+b)−c
√

b√
b+

√
c

must satisfy constraint (�)

additionally, i.e., c
a−x∗ ≥ c+x∗

b+a−x∗ . So

bc ≥ x∗(a − x∗) ⇒ bc ≥ [
√
b(c + a) − b

√
c][

√
c(b + a) − c

√
b]

(
√
b +

√
c)2

⇐⇒ bc(b + c) + 2bc
√
bc ≥ [2bc + a(a + b + c)]

√
bc − 2abc − bc(b + c)

⇐⇒ 2bc(a + b + c) ≥ a(a + b + c)
√
bc ⇐⇒ 2

√
bc ≥ a

Combining the condition b ≤ a + c, we have a ≤ 2
√

(a + c)c, which implies

a2 ≤ 4(a + c)c ⇒
(a

c

)2

− 4
(a

c

)
− 4 ≤ 0 ⇒ 0 <

a

c
≤ 2 + 2

√
2. (5)

Continue the computation of the upper bound in (4),

U ′
v(x∗)
Uv

≤ 2
√

1
1+ a

c
+ 1

≤ 2
√

1
1+(2+

√
2)

+ 1
=

√
2.

• b ∈ [a + c, (a+c)2

c ]. Under this case, we have Uv = ab
a+c by (2), inequalities

a ≤ a+b−c
2 and x∗ ≤ a = min{a, a+b−c

2 }. So the utility U ′
v(x) must reach the

maximum U ′
v(x∗) = a + (

√
b − √

c)2 at x = x∗ and the ratio

U ′
v(x∗)
Uv

=
a + (

√
b − √

c)2

ab/(a + c)
≤ a + (

√
a + c − √

c)2

a
=

2
√

1
1+ a

c
+ 1

.

Since the above ratio decreases with b, the inequality is from the condition that
b ≥ a + c. Applying the same analysis for case b ∈ [c, a + c], we also can get the
upper bound of

√
2.

• b ∈ [ (a+c)2

c ,+∞]. Clearly, Uv = ab
a+c and a ≤ a+b−c

2 , x∗ ≥ a. Hence all
feasible solutions x ≤ min{a, a+b−c

2 } = a ≤ x∗. By the monotonically increasing
property of U ′

v(x) when x ≤ x∗, we have

U ′
v(x) ≤ U ′

v(a) =
ab

a + c
= Uv,

which implies the incentive ratio of v is no more than 1.
This completes Theorem 3.3. �



Limiting User’s Sybil Attack in Resource Sharing 117

4 Observations and Conclusions

In this paper, we discuss the effect of sybil attack, a possible strategic manip-
ulation of agents, on the resource sharing game over P2P network. Resource
sharing can be viewed as a pure exchange economy model, for which pricing and
allocation are decided by market equilibrium. As a common strategic behavior
in peer-to-peer system, sybil attack is easier to execute and is difficult to detect.
This motivates us to study the incentives of agents by taking the sybil attack
strategy under the market equilibrium solution and quantitatively measuring the
maximal magnitude of agent advantage gained from sybil attack in terms of the
incentive ratio.

From the perspective of sharing economy, the ideal state of resource sharing
game to consider is where all participants are fully connected. Therefore, it
motivates us to focus on the complete graphs. We prove that the incentive ratio
of the market equilibrium solution under the sybil attack strategy is exactly

√
2

on complete graphs.

Fig. 4. The numerical experiment results on random graphs.

Through the study of incentive ratio on complete graphs, we may suspect
that the density of edges in a graph may decrease the incentive ratio of the
resource sharing problem from that of 2 for tree to

√
2 gradually. There then

opens up the issue whether the incentive ratio of market equilibrium for resource
sharing on random networks decreases as the probability an edge is selected into
the network. Therefore, we look into a series of random graphs, in each of which
any two vertices are connected by an edge with probability p independent from
every other edge. In our numerical experiments, we construct 100 graphs of 10
vertices for each probability p ∈ {0.1, 0.2, · · · , 0.9}, and the weight of each vertex
is no more than 100. Then we simulate the sybil attack strategy and compute the
maximal incentive ratio among all 100 graphs for each probability p, as shown in
Fig. 4. From the results in Fig. 4, we can see that the incentive ratio is no more
than 2. Furthermore we have the intuition that, with the increase of p, implying
that the underlying network contains more and more edges, the incentive ratio
decreases. From the current results that the incentive ratio is 2 on trees and is√

2 on complete graphs, such an intuition does make sense.
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Despite of the randomized results, we are still interested in the incentive
ratio in general settings. A key challenge is to find out a proper bound for the
incentive ratio of general graphs, which we conjecture to be two.
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Abstract. In this work, we consider the problem of allocating a set of
homogenous resources (goods) among multiple strategic players to bal-
ance the efficiency and equality from a game-theoretic perspective. For
two very general classes of efficiency measures and equality measures, we
develop a general truthful mechanism framework which optimally max-
imizes the resource holder’s efficiency while guaranteeing certain equal-
ity levels. We fully characterize the optimal allocation rule. Based on
the characterizations, we show the optimal allocation and corresponding
truthful payments can be computed in polynomial time, which means
the truthful mechanism is computationally feasible.

1 Introduction

Efficiency and equality are two essential criteria in resource allocation problems.
The trade-off and balance between these two criteria are crucial to many prob-
lems and have been studied for a long time in traditional settings [4,16]. Those
studies mainly focus on the distribution of public service where a social planner
has access to all the relevant information. However, in many real applications, the
participants hold their private information, and may act strategically to benefit
themselves, which leads to undesirable allocation results. Therefore, mechanism
design is needed to prevent untruthfulness in the allocation problems that target
dual objectives of efficiency and equality.

In this paper, we study the problem of allocating a set of homogenous
resources among multiple strategic players and aim to design a truthful mecha-
nism which could achieve the optimal combination of efficiency and equality. We
consider efficiency and equality as two separate criteria and try to find optimal
combinations of them. It is a general framework that can fit various scenarios
where the social planner has different kinds of efficiency/equality measurements
and emphases towards these two objectives.

We define efficiency as the sum of the expected utility gain for the goods
holder. It’s highly dependent on the players’ private values and could cover
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many well known criteria, e.g. social welfare, expected revenue. On the other
hand, equality should be determined only by the allocation, not related to play-
ers’ values, since everyone should be treated equally in this criterion. The equality
measure we adopt is based on the so called Generalized Gini index. It was first
proposed by Weymark [25] and has been widely used in many areas [14,22]. Anal-
ogous to its original definition, our equality measure is defined as the weighted
sum of all players’ winning probabilities, and it could include many commonly
used equality measures, like Min-probability, Max-difference, Gini-coefficient as
special cases.

1.1 Main Results and Our Contributions

– Truthful Mechanism to Optimally Balance Efficiency and Equality.
For two general classes of efficiency and equality measures, we design a truthful
mechanism framework to optimally balance the efficiency and equality. Here
‘optimal balancing’ means finding Pareto optimal combinations of efficiency
and equality.

– Polynomial-time Feasibility of the Mechanism. Despite the existence
of optimal allocation and corresponding truthful payments for our problem,
the computation of them is not trivial.

• We show that the optimal allocations with respect to any particular bids
profile can be obtained through solving a corresponding linear program-
ming(LP), though the equality measure is nonlinear. Then we characterize
one of the optimal solutions of the LP: there exists an optimal allocation
where all the players can be divided into at most four groups, where the
players in the same group have the same allocated winning probability;
Of the (at most) four probability values, there are at most two fractional
probability values. This nice property is crucial for efficiently computing
the truthful payment.

• The truthful payment of any player in our mechanism is an integration
of his winning probability as his bid unilaterally increases from 0 to his
current bid. Based on the above mentioned characterization of optimal
allocation, we show that any player’s winning probability is a piece-wise
constant function of his own bid and there are at most O(N4) differ-
ent constant pieces, where N is the number of players. Then we propose
a polynomial-time algorithm to compute the O(N4) different winning
probability pieces and thus obtain the truthful payment. (Note: When
efficiency is the social welfare, the VCG payment can guarantee truth-
fulness. However, for some case of efficiency, VCG-like payment may be
untruthful.)

To the best of our knowledge, our work is the first study on mechanism design
with Pareto optimal combination of efficiency and equality, and can be executed
in polynomial time.
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1.2 Related Work

Our work mainly relates to two streams of research topics: (1) resource allocation
problems having concerns of both efficiency and fairness; (2) mechanism design
with strategic behaviors.

In the resource allocation literature, there are two approaches of researches
to balance efficiency and fairness. The first approach is to use a bicriteria model.
Mandell [16] presented a model represented by a bicriteria mathematical pro-
gramming with efficiency and equality as two separate objectives, then pro-
posed a methodology to obtain the Pareto frontier. Later Golany and Tamir [11]
developed a model to analyze tradeoffs among efficiency, effectiveness and equal-
ity based on the methodology of Data Envelopment Analysis (DEA). Plenty
of follow-up researches considered multiple objectives of efficiency and fairness
in various applications [19,20]. However, in their studies, the social planner
was assumed to have complete information about each agent’s private value
of the resource, thus only focused on solving an optimization problem, while we
emphase our work on the truthful mechanism design at the same time.

Another approach is to realize a utility-based fairness by designing a single
proper objective function such that an allocation maximizing this objective can
be considered as a kind of fair result. Atkinson [1] introduced a large family of
objectives concerning fairness. Bertsimas et al. [2] defined the price of fairness
as the percentage loss of the optimal efficiency under fairness allocation com-
pared to the optimal efficiency under utilitarian allocation, and provided a lower
bound on this measure. Bertsimas et al. [3] followed the definitions in [2] and
investigated a more general fairness concept (α-fair), and a general bound on
the price of fairness was proved. However, they also assumed complete public
information while our goal is to provide an incentive compatible mechanism to
achieve maximum efficiency with equality guarantee. Besides, their fairness is
defined based on utilities while our equality is an opportunity fairness, which is
anonymous and only depend on the distributional probabilities.

Another stream of researches that relate to our work is about mechanism
design. It is a large topic raised because the principal has no direct access to
the agents’ private information. In many cases, the principal aims to design
an incentive compatible mechanism to encourage agents to act truthfully. The
VCG mechanism [5,13,24] and Myerson’s optimal auction [18] are two classic
truthful mechanisms that maximize the social welfare and auctioneer’s revenue,
respectively. In recent years, the mechanism design problem with fairness con-
cern has been studied [7,12,17], especially in the area of spectrum allocation.
Zivan et al. [26] designed a mechanism for allocating multiple divisible goods
that could achieve envy-freeness and Pareto optimality, but failed to prevent
agents from strategically bidding untruthfully. Cole et al. [7] proposed a truthful
mechanism that yielded an approximation guarantee for proportional fairness,
but did not consider efficiency as an objective. In our work, we use a more general
concept of efficiency and equality, and take efficiency, equality and truthfulness
into consideration.
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The rest of this paper is organized as follows. In Sect. 2 we introduce the
model and the truthful mechanism framework. In Sect. 3 we characterize the
properties of optimal allocations and show how to compute the optimal alloca-
tions and truthful payments. Finally, we conclude our work in Sect. 4.

2 The Problem

The goods holder has K (≥ 1) identical indivisible goods that are desired by
N (� K) users. We use N = {1, 2, . . . , N} to denote the set of users. Each
user i ∈ N is unit-demand and has a private value vi ≥ 0 for the goods, i.e.,
player i derives value vi from receiving one of the goods. Meanwhile, the benefit
(efficiency increase) that the goods holder receives from i’s demand satisfaction
may be different from vi, and we denote it as fi(vi). In this work, we assume
fi(v) is a monotone increasing and continuously differentiable function of value v
for any player i ∈ N . This can be seen as high value of consumption for the users
would bring about high utility return for the goods holder. For example, users
with higher value can pay more. A feasible allocation is a vector q ∈ [0, 1]N that
indicates each player’s probability of obtaining one of the goods and

∑N
i=1 qi = K

(In this work, we only consider the case where all the goods must be allocated,
otherwise the results may not hold). The efficiency of an allocation q is defined
as the expected total utility gain for the goods holder, i.e.,

∑
i∈N fi(vi) · qi. We

use function E: [0, 1]N → [0, 1] to denote the equality measure of an allocation,
and a larger value of E(q) means a higher level of equality (or exogenous fairness)
of allocation q.

An abstract framework. The social planner prefers the allocation that gives as
high efficiency and equality as possible. However, efficiency and equality are
usually two conflict objectives, and there is no allocation that could achieve the
best efficiency and equality simultaneously. Adopting the constraint approach
in multiobjective programming [6,16], we formulate an abstract framework, in
which we put one of the criteria into the constraints (requiring it to be no more or
no less than some level) and maximize the other one. In our model, we maximize
the expected total efficiency, while guaranteeing that the equality measure E(q)
is at least a constant c ∈ [0, 1], see as the following (1):

max
N∑

i=1

fi(vi) · qi

s.t. E(q) ≥ c ,

N∑

i=1

qi = K ,

0 ≤ qi ≤ 1 , ∀i .

(1)
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max
N∑

i=1

fi(bi) · qi

s.t. E(q) ≥ c ,

N∑

i=1

qi = K ,

0 ≤ qi ≤ 1 , ∀i .

(2)

In this way, we could obtain the ‘Pareto frontier’ compromised of Pareto
optimal combinations of efficiency and equality.

Equality. In this work, the equality measure we use is based on the generalized
Gini inequality index, which was first presented by Weymark [25]. The general-
ized Gini inequality index of an allocation q is defined as

1 −
∑N

i=1 aiq̃i
q̄

(3)

where q̃ is a permutation of q such that q̃1 ≥ q̃2 ≥ ... ≥ q̃N , and q̄ is the
average value of q, i.e., q̄ :=

∑
i qi
N = K

N ; And {ai} is a sequence of nonnegative
ascending constants satisfying 0 ≤ a1 ≤ a2 ≤ ... ≤ aN and

∑N
i=1 ai = 1. As the

generalized Gini inequality index measures the inequality among an allocation,
we use

∑N
i=1 aiq̃i

q̄ as our equality measure, i.e.,

E(q) :=
∑N

i=1 aiq̃i
q̄

. (4)

The main idea behind this measure is to assign different weights to different
winning probabilities according to their orders in the allocation vector, and a
higher winning probability has a relatively lower weight. This is very intuitive
as the equality should give more concerns to the players with less opportuni-
ties. Furthermore, the increasing of ai ensures that the equality meets the weak
Pigou [21]-Dalton [9] transfer principle, which is equivalent to the principle that
the inequality index will decrease if some winning chance is transferred from a
higher one to a lower one without changing their orders. Obviously, in our set-
ting, the equality measure reaches its maximum when q1 = q2 = ... = qN = K

N .
Our equality measure is a large equality evaluation family. By setting different

parameters, it could turn into many commonly used and well acceptable equality
metrics:

– Min-probability. The min-probability is the least winning opportunity among
all the players. If we require that each player’s winning probability must not
be lower than some given constant, we can set a1 = · · · = aN−1 = 0 and
aN = 1 in the definition of E(q), i.e., E(q) := q̃N

q̄ . With the condition that
∑N

i=1 qi = K, the constraint E(q) ≥ c is equivalent to q̃N ≥ K
N c.
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– Max-difference. The max-difference measures the largest gap between any
two of the players. In many public goods allocation problems, the goods
holder has to consider the maximum difference between all the recipients [15].
If we require that the difference between the largest and smallest winning
probabilities, i.e., q̃1 − q̃N , is no more than some given constant, we can set
a1 = 0, a2 = · · · = aN−1 = 1

N and aN = 2
N , i.e., E(q) := 1

Nq̄ [
∑N−1

j=2 q̃j + 2q̃N ].

Since
∑N

i=1 qi = K, E(q) = 1
K [K + q̃N − q̃1], and the constraint E(q) ≥ c is

equivalent to q̃1 − q̃N ≤ K(1 − c).
– Gini-coefficient. In economic theory, Gini-coefficient is often used as a mea-

sure of inequality among values of income or wealth [8]. Many literatures
also adopt this equality measure in the public resource allocation or location
problems [10,11]. The Gini-coefficient among the set of winning probabilities
can be expressed as half of the relative mean absolute difference [23], which

is a mathematically equivalent definition: G(q) =
∑N

i=1
∑N

j=1 |qi−qj |
2
∑

i

∑
j qj

∈ [0, 1].

Because
∑N

i=1 qi = K and

N∑

j=1

N∑

l=1

|q̃j − q̃l| = 2

N∑

j=1

N∑

l=j

(q̃j − q̃l) = 2

(
NK −

∑

j

(2j − 1) · q̃j

)
,

G(q) = 1 − 1
NK

∑
j(2j − 1)q̃j . If we set aj = 2j−1

N2 , j = 1, . . . , N , then
the generalized Gini index is exactly the Gini-coefficient, and E(q) ≥ c is
equivalent to

∑
j jq̃j ≥ K(Nc+1)

2 .

Efficiency. The efficiency measure in our model captures many applications
in real life. It is consistent with the reality that fi(v) is a monotone increasing
function of value v and different players could have different efficiency realization
functions. Our efficiency concept could cover social welfare, revenue or any long-
term or short-term value based objectives as special cases by choosing proper
function fi(v). As illustration, in the following we show three scenarios that are
commonly studied in literature or considered in real applications.

– Social Welfare. If fi(v) = v for all i ∈ N , the sum
∑N

i=1 vi · qi is exactly the
expected social welfare of allocation q.

– Expected Revenue. Assume the users’ values v1, . . . , vN are drawn indepen-
dently (but not necessarily identically) from some distributions G1, . . . , GN ,
with the probability density functions g1, . . . , gN . φi(vi) = vi − 1−Gi(vi)

gi(vi)
is

the virtual value of player i with value vi. The expected revenue of the opti-
mal mechanism is equal to the expected total virtual value

∑
i φi(vi) ·qi if the

virtual values are monotone increasing, or the expected total ironed virtual
values otherwise [18].

– Long-Term Revenue. In some cases, the allocation of resource may have
long-term positive influence. For example, when a company sells one product
to a celebrity, the benefit that the company can derive may also includes
his/her influence to other customers. The monotonicity of the function fi(v) is
easy to understand since high consumption value often leads to more positive
influence.
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2.1 Truthful Mechanism Design

If the goods holder knows every user’s value for the goods, then he can solve the
programming problem (1) to get an optimal randomized allocation. But users
may strategically misreport their true values to be better off. Therefore, to truly
solve (1), the goods holder needs a truthful mechanism to drive the users to
truthfully report their private values. In the following, we will give a truthful
mechanism framework to meet the requirements.

Suppose b ∈ R
N
+ is the bid profile that users (or players) report as their

values. A mechanism (q(b),p(b)) maps a bid profile b to an allocation q(b)
and a payment rule p(b) for this allocation. Here we only consider such kind of
payment rules: A user will pay the price for the goods if and only if he finally gets
one after the realization of q(b). Let vector p : RN

+ → R
N
+ denote the payments

that each player needs to pay if she wins one goods. Under our mechanism, the
(expected) utility of a player i ∈ N is ui(b) = ui(bi,b−i) = (vi − pi(b))qi(b),
where bi is player i’s bid and b−i is the vector of other players’ bids. A mechanism(
q(b),p(b)

)
is said to be truthful if it satisfies the following condition:

Incentive Compatible: For any player, bidding his private true value is
a weakly dominant strategy, regardless of what other players’ bids are, i.e.,
ui(vi,b−i) ≥ ui(bi,b−i), ∀i, bi,b−i.

In the following, we will present the allocation and payment rules in our
mechanism and show that they compromise a truthful mechanism, and in the
meanwhile, have a nice property: ex-post IR.

Since the true values are private information, the actual problem faced by the
the goods holder is (2). As we will only concentrate on the optimal allocation,
in the following analysis, we use q(b) to denote one of the optimal solutions to
programming (2). Before we propose the general framework for this problem, we
first show a property about the optimal allocation q(b).

Lemma 1. For every i, b−i, player i’s allocated probability qi(x,b−i) is a
monotone non-decreasing function of his bid x.

Now we focus our attention on the payment rule p(b). It is natural and
meaningful to design a mechanism that every user will finally get a nonnegative
utility as long as he truthfully reports his private value. From our previous
definition of payments (paying nothing if not allocated the goods finally), that
is equivalent to say the mechanism should satisfy the following condition:

Ex-post Individual Rational: For any player, bidding truthfully will always
induce a non-negative ex-post utility, no matter what other players’ bids are,
i.e., ui(vi,b−i) ≥ 0, ∀i,b−i.

For any bid profile b, if we choose one of the optimal solutions q(b) (no
matter which one) and use it as the allocation permanently with respect to bids
b, we can prove the following payment rule is truthful, as long as every player i’s
allocation qi(x,b−i) is monotone non-decreasing in his bid x while fixing b−i:

pi(b) =
1

qi(b)

∫ bi

0

xd(qi(x,b−i)) = bi −
∫ bi
0

qi(x,b−i)dx

qi(b)
, ∀i ∈ N . (5)
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Theorem 1. The mechanism
(
q(b),p(b)

)
, where q(b) is the optimal solution

of programming (2) and p(b) is defined as (5), is incentive compatible and ex-
post individual rational.

3 Computational Feasibility

In the previous section, we have already proposed a general truthful mechanism
framework. To make the mechanism executable in real application, we need to
compute the optimal allocation q(b) and the truthful payments p(b) as defined
in (5) efficiently. This is not an easy task since there is no closed form of the
function qi(x,b−i) with with respect to x ∈ [0, bi]. As x changes, the allocation
may also change correspondingly.

Fortunately, we find that for any bids profile b, there always exists one opti-
mal allocation that has at most four different probability values and at most
two different fractional values. And we further show that there are only O(N4)
possible allocations with such structure can be potential optimal allocations.
For the optimal allocation, we can traverse all such possible allocations. For the
payment, we prove that qi(x,b−i) is a piecewise function of x and the value
can only change at most O(N4) times, thus the payment can be computed in
polynomial time.

In Sect. 3.1, we characterize the structure of one of the optimal solutions
q(b) to programming (2) with respect to any bid profile b. Then in Sect. 3.2,
we design a polynomial time algorithm to compute the corresponding truthful
payments p(b).

3.1 Computation of the Optimal Allocation

As we mentioned before, there is no closed form of the function q(b) about b.
Nonetheless, we could still find some nice properties about the q(b). Surprisingly,
if we say players with same winning probability are in the same group, then no
matter how large N or K is, there always exists an optimal allocation that
divides all the players into at most four groups. If there are exactly four groups,
then the players in group 1 can win with probability 1, players in group 2 and
3 could win with probability q′ and q′′ respectively where 0 < q′′ < q′ < 1, and
the players in group 4 have no chance to win.

To be convenient for the analysis, we first define some notations. Let (i)
denote the player whose efficiency increase to the goods holder, f(i)(b(i)), is the
i-th highest among the N numbers {fj(bj) : j ∈ N}. Then q(i)(b) represents the
winning probability of player (i) with respect bids to b. For ease of description,
when the bids b are fixed and there is no misunderstanding, we also simplify
f(i)(b(i)) as f(i). By the definition of equality measure E(q), the following claim
is natural.

Claim. There must exist an optimal solution q such that q(1) ≥ q(2) ≥ · · · ≥ q(N).
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According to the above claim, and q̄ =
∑

i qi
N = K

N , programming (2) is
equivalent to the following linear programming:

max
N∑

j=1

f(j)(b(j)) · q(j)

s.t.
N∑

j=1

ajq(j) ≥ K

N
c,

N∑

j=1

q(j) = K,

0 ≤ q(i) ≤ q(j) ≤ 1, ∀1 ≤ j < i ≤ N.

(6)

The following theorem shows the characterization of one of the optimal
solutions.

Theorem 2. For any bid profile b, there must exist an optimal solution q(b) to
the programming (6) such that excluding values 0 and 1, there are at most two
different values in {qi(b) : i ∈ N}.

Based on Theorem 2, we can compute such an optimal solution efficiently by
picking up an allocation that generates the maximum expected efficiency from
the set of feasible allocations that divides the players into 4 groups (the number
of players in a group can be zero or positive), where the winning probabilities of
the 4 groups are 1, q′, q′′, 0, respectively.

In the following, we give a way to compute the optimal allocations with the
above characteristics. Although this way may not be the most efficient one, it will
be very useful when we compute the truthful payments in the next subsection. In
fact, through this way, we can show that there are only at most O(N3) candidates
of all the optimal allocations for all bid profiles. Now we describe all the possible
optimal allocations, denoted as potential optimal allocations.

Let n1(≥ 0), n2(≥ 0) and n4(≥ 0) denote the number of players in
group 1, group 2 and group 4, respectively, where n1 + n2 + n4 ≤ N , and
u(n1, n2, n4,b) =

∑n1
j=1 f(j) +

∑n1+n2
j=n1+1 f(j)q

′ +
∑N−n4

j=n1+n2+1 f(j)q
′′ denote the

corresponding expected efficiency under bids profile b.

Lemma 2. Suppose
∑K

j=1 aj < K
N c. We define an allocation in which n1 play-

ers’ winning probability is 1, n2 players’ winning probability is q′ ∈ (0, 1),
N − n1 − n2 − n4 players’ winning probability is q′′ ∈ (0, q′) and n4 players’
winning probability is 0 as a potential optimal allocation, if q′, q′′ are the solu-
tion of the following equations:

{
n1 + n2q

′ + (N − n1 − n2 − n4)q′′ = K,
∑

j ajq(j) =
∑n1

j=1 aj +
∑n1+n2

j=n1
ajq

′ +
∑N−n4

j=n1+n2+1 ajq
′′ = K

N c.

Then in the set of potential optimal allocations, there must exist one of the
optimal solutions to the programming (6).
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By Lemma 2, for a potential optimal allocation, the values of the winning
probabilities for group 2 and group 3 players are totally dependent on the number
of players in each group, thus we can use the tuple n = (n1, n2, n4) to represent
a potential optimal allocation. Explicitly, if n1 + n2 + n4 < N ,

q′(n1, n2, n4) =
(K − n1)a′′ − K

N c + n1a

(a′′ − a′)n2
,

q′′(n1, n2, n4) =
K
N c − n1a − (K − n1)a′

(a′′ − a′)(N − n1 − n2 − n4)
,

a′ <
K
N c − n1a

K − n1
<

an1+1 + · · · + aN−n4

N − n1 − n4
,

(7)

where a = (a1 + · · ·+an1)/n1, a′ = (an1+1 + · · ·+an1+n2)/n2, a′′ = (an1+n2+1 +
· · · + aN−n4)/(N − n1 − n2 − n4) are the averages of the coefficients of the first
three groups. If n1 + n2 + n4 = N , we only care about q′:

q′(n1, n2, n4) =
K − n1

n2
, (8)

and in this case, it must hold that n1a + (K − n1)a′ = K
N c.

We use P to denote the set of potential optimal allocations. For each n ∈
P , we calculate the corresponding efficiency, and select the optimal one: n∗ =
(n∗

1, n
∗
2, n

∗
4) = arg maxn∈P u(n1, n2, n4,b) with respect to bids b. Since there are

O(N3) tuples of (n1, n2, n4), and for each tuple, it takes O(N) time to calculate
the efficiency, it requires O(N4) time to obtain an optimal allocation.

In the following, for any bid profile b, when we mention an optimal solution
q(b) of programming (6), we will always refer to an optimal allocation that is
obtained from the above method.

3.2 Computation of the Truthful Payments

In this subsection, we aim to find the truthful payments p(b) corresponding to
the optimal allocation q(b). To compute the truthful payment pk(b) for every
player k, as shown in formula (5), we are only left with the computation of
∫ bk
0

qk(x,b−k)dx. As there is no closed form of the function qk(x,b−k) about
variable x ∈ [0, bk], we can not compute

∫ bk
0

qk(x,b−k)dx directly. In the follow-
ing, we will show that for any player k, the function qk(x,b−k) with x ∈ [0, bk]
is a piecewise constant function with at most O(N4) pieces, and we can find the
constants and pieces in polynomial time.

Given other players’ bids b−k, suppose player k’s bid is x, then as x increases
from 0 to bk, the order of fk(x) among all the N utilities {fk(x), fj(bj) with j �=
k} can change at most O(N) times. Now we use [t(i+1), t(i)] to denote each such
section that when x ∈ [t(i+1), t(i)] then fk(x) is the i-th highest. We only need
to show that for any possible i, qk(x,b−k) is a piecewise constant function with
respect to x ∈ [t(i+1), t(i)] and there are at most O(N3) pieces. Similar to the
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previous section, we use n := (n1, n2, n4) to represent a potential optimal alloca-
tion in which n1 players are ensured to obtain an item, n2 players have winning
probability q′(n1, n2, n4), N − n1 − n2 − n4 players have winning probability
q′′(n1, n2, n4) and n4 players have zero winning probability and P to denote the
set of potential optimal allocations.

Lemma 3. As player k’s bid x increases from t(i+1) to t(i), her winning proba-
bility in the optimal allocation q(x,b−k) can change at most O(N3) times.

The idea behind Lemma 3 is that q(x,b−k) is a piecewise constant function
with respect to x and after a jump point, the previous optimal allocation will
never be optimal again, thus there are no two pieces that have the same optimal
allocation. Based on this, we present the Algorithm 1 to compute the truthful
payment for any player k, which can be implemented in polynomial time.

Algorithm 1. Computing the truthful payments
Find all the intervals [t(i+1), t(i)] such that as long as player k’s bid is on the interval,
the order of all bids is invariant;
for each i do

for each n = (n1, n2, n4) ∈ N
3 with n1 + n2 + n4 ≤ N do

Compute q′(n1, n2, n4) and q′′(n1, n2, n4) by (7),
end for
Select all the n that satisfiy 1 > q′(n1, n2, n4) > q′′(n1, n2, n4) > 0 as the potential
optimal allocation set P ;
Select the optimal allocation n∗ = arg maxn un(t(i+1)) =

∑n1
j=1 f(j) +

∑n1+n2
j=n1+1 f(j)q

′ +
∑N−n4

j=n1+n2+1 f(j)q
′′, where f(i+1) = fk(t(i+1));

Initialize z0 = t(i+1);
repeat

for each n ∈ P with qk(n) > qk(n
∗), where qk(n) denotes the winning proba-

bility of player k under allocation n do
Solve equation un(z) = un∗(z) with respect to z, denote the solution as zn;

end for
Find the nearest point z at which the efficiency generated by n∗ is surpassed
by another allocation n′: z = zn′ = arg minn zn;
n∗ is optimal on the interval [z0, min{z, t(i)}], set n∗ := n′, z0 := z;

until z > t(i)
end for
Let S denote the set of all the jump points z and Δqk(z) denote the difference of
player k’s winning probability at z. The truthful payment is

pk(b) =
1

qk(b)

∑

z∈S

zΔqk(z).

Theorem 3. For any bid profile b, Algorithm 1 can compute the optimal allo-
cation q(b) and the truthful payments p(b) as defined by formula (5) of Sect. 2.1
in polynomial time.
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4 Conclusion and Future Work

In this paper, we attempt to balance efficiency and equality in the allocation
problems in a way that maximizes the efficiency while ensuring the equality
level. We prove that there always exists an incentive compatible mechanism,
characterize the nice property of an optimal allocation and present an algorithm
to compute the optimal allocation and corresponding truthful payments in poly-
nomial time.

In fact, our approach can also be applied to the problem of allocating divisible
goods, e.g., emission rights. We consider all the goods as an integrity and define
K = 1. Let qi denote the proportion of the whole goods that be allocated to
player i, and pi denote the unit price for player i. When a player obtains qi of
the goods, her has to pay qipi and her utility from the auction is (vi − pi)qi.
Therefore, all the formulae are the same as those in Sect. 2, and the optimal
allocation catches the properties provided in Sect. 3 except for that the players
are divided into three groups since generally no single player could get the entire
goods.

So far we have a complete framework for the anonymous linear equality mea-
sures. One possible future research direction is to study on the nonlinear or more
general equality measures, or to adopt other proper fairness criteria, and try to
analyze the properties of optimal allocations or design implementable algorithms
to compute the optimal allocations and corresponding truthful payments.

References

1. Atkinson, A.B.: On the measurement of inequality. J. Econ. Theor. 2(3), 244–263
(1970)

2. Bertsimas, D., Farias, V.F., Trichakis, N.: The price of fairness. Oper. Res. 59(1),
17–31 (2011)

3. Bertsimas, D., Farias, V.F., Trichakis, N.: On the efficiency-fairness trade-off.
Manag. Sci. 58(12), 2234–2250 (2012)

4. Bodily, S.E.: Police sector design incorporating preferences of interest groups for
equality and efficiency. Manag. Sci. 24(12), 1301–1313 (1978)

5. Clarke, E.H.: Multipart pricing of public goods. Public choice 11(1), 17–33 (1971)
6. Cohon, J.L.: Multiobjective Programming and Planning. Academic Press, Cam-

bridge (1978)
7. Cole, R., Gkatzelis, V., Goel, G.: Mechanism design for fair division: allocating

divisible items without payments. In: Proceedings of the fourteenth ACM confer-
ence on Electronic commerce, pp. 251–268. ACM (2013)

8. Corrado, G.: On the measure of concentration with special reference to income and
wealth. In: Papers Presented at the Cowles Commission Research Conference on
Economics and Statistics (Colorado College Publication, 1936) (1936)

9. Dalton, H.: The measurement of the inequality of incomes. The Econ. J. 30(119),
348–361 (1920)

10. Drezner, T., Drezner, Z., Guyse, J.: Equitable service by a facility: minimizing the
gini coefficient. Comput. Oper. Res. 36(12), 3240–3246 (2009)

11. Golany, B., Tamir, E.: Evaluating efficiency-effectiveness-equality trade-offs: a data
envelopment analysis approach. Manag. Sci. 41(7), 1172–1184 (1995)



132 Z. Chen et al.

12. Gopinathan, A., Li, Z.: Strategyproof auctions for balancing social welfare and
fairness in secondary spectrum markets. In: INFOCOM, 2011 Proceedings IEEE,
pp. 3020–3028. IEEE (2011)

13. Groves, T.: Incentives in teams. Econom. J. Econom. Soc. 41, 617–631 (1973)
14. Kakwani, N.: On a class of poverty measures. Econom. J. Econom. Soc. 48, 437–446

(1980)
15. Kozanidis, G.: Solving the linear multiple choice knapsack problem with two objec-

tives: profit and equity. Comput. Optim. Appl. 43(2), 261–294 (2009)
16. Mandell, M.B.: Modelling effectiveness-equity trade-offs in public service delivery

systems. Manag. Sci. 37(4), 467–482 (1991)
17. Maya, A., Nisan, N.: Incentive compatible two player cake cutting. In: Goldberg,

P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 170–183. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35311-6 13

18. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)
19. Ogryczak, W.: Inequality measures and equitable approaches to location problems.

Eur. J. Oper. Res. 122(2), 374–391 (2000)
20. Perugia, A., Moccia, L., Cordeau, J.F., Laporte, G.: Designing a home-to-work bus

service in a metropolitan area. Transp. Res. Part B. Methodol. 45(10), 1710–1726
(2011)

21. Pigou, A.C.: Wealth and welfare. Macmillan and Company Ltd., London (1912)
22. Sauer, P., Zagler, M.: Economic growth and the quantity and distribution of edu-

cation: a survey. J. Econ. Surv. 26(5), 933–951 (2012)
23. Sen, A.: On Economic Inequality. Clarendon Paperbacks, Clarendon Press (1973).

https://books.google.com.hk/books?id=Kb03KNreUqcC
24. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J.

Finan. 16(1), 8–37 (1961)
25. Weymark, J.A.: Generalized gini inequality indices. Math. Soc. Sci. 1(4), 409–430

(1981)
26. Zivan, R., Dudik, M., Okamoto, S., Sycara, K.: Reducing untruthful manipula-

tion in envy-free pareto optimal resource allocation. In: 2010 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technology
(WI-IAT), vol. 2, pp. 391–398. IEEE (2010)

https://doi.org/10.1007/978-3-642-35311-6_13
https://books.google.com.hk/books?id=Kb03KNreUqcC


The Asymptotic Behavior of the Price
of Anarchy

Riccardo Colini-Baldeschi1, Roberto Cominetti2, Panayotis Mertikopoulos3(B),
and Marco Scarsini1

1 Dipartimento di Economia e Finanza, LUISS, Viale Romania 32, 00197 Roma, Italy
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Abstract. This paper examines the behavior of the price of anarchy
as a function of the traffic inflow in nonatomic congestion games with
multiple origin-destination (O/D) pairs. Empirical studies in real-world
networks show that the price of anarchy is close to 1 in both light and
heavy traffic, thus raising the question: can these observations be jus-
tified theoretically? We first show that this is not always the case: the
price of anarchy may remain bounded away from 1 for all values of the
traffic inflow, even in simple three-link networks with a single O/D pair
and smooth, convex costs. On the other hand, for a large class of cost
functions (including all polynomials), the price of anarchy does converge
to 1 in both heavy and light traffic conditions, and irrespective of the
network topology and the number of O/D pairs in the network.

1 Introduction

Almost every commuter in a major metropolitan area has experienced the frus-
tration of being stuck in traffic. At best, this might mean being late for dinner;
at worst, it means more accidents and altercations, not to mention the vastly
increased damage to the environment caused by huge numbers of idling engines.
To name but an infamous example, China’s G110 traffic jam in August 2010
brought to a standstill thousands of vehicles for 100 km between Hebei and Inner
Mongolia. Not caused by weather or a natural disaster, this massive 10-day tie-
up was instead laid at the feet of a bevy of trucks swarming on the shortest
route to Beijing, thus clogging the G110 highway to a halt (while ironically car-
rying supplies for construction work to ease congestion). This, therefore, raises
the question: how much better would things have been if all traffic had been
routed by a social planner who could calculate (and enforce) the optimum traffic
assignment?

In game-theoretic terms, this question boils down to the inefficiency of Nash
equilibria. The most widely used quantitative measure of this inefficiency is the
so-called price of anarchy (PoA): introduced by Koutsoupias and Papadimitriou
(1999) and so dubbed by Papadimitriou (2001), the PoA is the ratio between the

c© Springer International Publishing AG 2017
N. R. Devanur and P. Lu (Eds.): WINE 2017, LNCS 10674, pp. 133–145, 2017.
https://doi.org/10.1007/978-3-319-71924-5_10
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social cost of the least efficient Nash equilibria and the minimum achievable cost.
By virtue of this simple definition, deriving worst-case PoA bounds has given
rise to a vigorous literature at the interface of computer science, economics and
operations research, with many surprising results.

In the context of network congestion, Pigou (1920) was probably the first to
note the inefficiency of selfish routing, and his elementary two-road example with
a PoA of 4/3 is one of the two prototypical examples thereof. The other is due to
Braess (1968), and consists of a four-edge network where the addition of a zero-
cost segment makes things just as bad as in the Pigou case. These two examples
were the starting point for Roughgarden and Tardos (2002) who showed that
the price of anarchy in (nonatomic) routing games with affine costs may not
exceed 4/3. On the other hand, if the network’s cost functions are polynomials
of degree at most d, the price of anarchy may become as high as Θ(d/ log d),
implying that selfish routing can be arbitrarily bad in networks with polynomial
costs (Roughgarden 2003).

At the same time however, these worst-case instances are usually realized
in networks with delicately tuned traffic loads and costs; if a network operates
beyond this regime, it is not clear whether the price of anarchy is still high.
Indeed, using both analytical and numerical methods, a recent study by O’Hare
et al. (2016) suggests that the PoA is usually close to 1 for very high and very low
traffic, and it fluctuates in the intermediate regime. In a similar setting, Monnot
et al. (2017) recently used a huge dataset on commuting students in Singapore
to estimate the so-called “empirical” PoA (a majorant of the ordinary price of
anarchy); their observations yield a value between 1.11 and 1.22, suggesting that
the actual value of the price of anarchy is even lower.

All this leads to the following natural questions:

1. Under what conditions does the PoA converge to 1 in light or heavy traffic?
2. Do these conditions depend on the network topology, its costs, or both?
3. Can general results be obtained only for networks with a single origin-

destination pair or do they extend to networks with multiple such pairs?

1.1 Our Results

Our first result is a cautionary tale: we show that the price of anarchy may
oscillate between two bounds strictly greater than 1 for all values of the traf-
fic inflow, even in simple parallel-link networks with a single origin-destination
(O/D) pair (cf. Fig. 1). The cost functions in our example are convex and dif-
ferentiable, so neither convexity nor smoothness seems to play a major role in
the efficiency of selfish routing. Moreover, our construction only involves a three-
link network, so such phenomena may arise in any network containing such a
three-link component.

Heuristically, the reason for this behavior is that the network’s cost functions
exhibit higher-order oscillations which persist at any scale, for both high and low
traffic. Thus, to account for such pathologies, we take a two-pronged approach:



The Asymptotic Behavior of the Price of Anarchy 135

– In the low congestion limit, we focus on cost functions that are real analytic,
i.e., they are equal to their power series expansion near 0. Under this regularity
assumption, we show that the PoA converges to 1, no matter the network
topology or the number of O/D pairs in the network.

– At the other end of the spectrum, to tackle the high congestion limit, we
introduce the concept of a benchmark function. This is a regularly varying
function c(x) that classifies edges into fast, slow or tight, depending on the
growth rate of the cost along each edge;1 paths are then classified as fast,
slow or tight, based on their slowest edge.2 We then establish the following
general result: if the “most costly” O/D pair in the network admits a tight
path, the network’s PoA converges to 1 under heavy traffic.

Fig. 1. A network where selfish routing remains inefficient for both light and heavy
traffic.

Among other classes of functions, polynomials satisfy all of the above require-
ments, leading to the following general principle:

In networks with polynomial cost functions,
the price of anarchy becomes 1 under both light and heavy traffic.

In other words, a benevolent social planner with full control of traffic assign-
ment would not do any better than selfish agents in light or heavy traffic. Only if
the traffic falls in an intermediate regime can there be a substantial gap between
optimum and equilibrium states.

1.2 Related Work

Much of the literature on congestion games is devoted to the study of bounds
for the price of anarchy under different conditions. Roughgarden and Tardos
1 Regular variation means here that limt→∞ c(tx)/c(t) ∈ (0,∞) for all x > 0 (cf.

Sect. 4.2).
2 As an example, if all the network’s cost functions are polynomials of degree d,

all edges, paths and O/D pairs are tight with respect to the benchmark function
c(x) = xd.
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(2002) proved a bound of 4/3 in the case of affine costs, independently of the
network topology. This bound is sharp in that, for every M > 0, there exists
a network with traffic inflow M and affine costs such that the PoA equal to
4/3. Importantly, our analysis shows that the order of the quantifiers cannot be
exchanged: in any network as above, the PoA gets arbitrarily close to 1 if the
traffic inflow is sufficiently large.

Worst-case PoA bounds have been obtained for larger classes of cost func-
tions. For polynomial costs with degree at most d, Roughgarden (2003) showed
that the worst possible instance grows as Θ(d/ log d). Dumrauf and Gairing
(2006) provided sharper bounds for monomials of maximum degree d and mini-
mum degree q, while Roughgarden and Tardos (2004) provided a unifying result
for costs that are differentiable with xc(x) convex, while Correa et al. (2004;
2008) considered less regular classes of cost functions. For a survey, the reader
is referred to Roughgarden (2007).

The difference between the mean value of the price of anarchy and its worst
value has been studied in the context of cognitive radio networks by Law et al.
(2012). Youn et al. (2008) studied the difference between optimal and actual
system performance in real transportation networks, focusing in particular on
Boston’s road network. They observed that the price of anarchy depends crucially
on the total traffic inflow: it starts at 1, it then grows with some oscillations, and
ultimately returns to 1 as the flow increases. González Vayá et al. (2015) studied
optimal scheduling for the electricity demand of a fleet of plug-in electric vehicles:
without using the term, they showed that the PoA goes to 1 as the number of
vehicles grows. Cole and Tao (2016) showed that in large Walrasian auctions
and in large Fisher markets the price of anarchy goes to one as the market size
increases. Finally, Feldman et al. (2016) took a different asymptotic approach
and considered atomic games where the number of players grows to infinity.
Applying the notion of (λ, μ)-smoothness to the resulting sequence of atomic
games, they showed that the price of anarchy converges to the corresponding
nonatomic limit.

From an analytic standpoint, the closest antecedent to our paper is the recent
work of Colini-Baldeschi et al. (2016) who studied the heavy-traffic limit of the
price of anarchy in paralell-link networks with a single O/D pair. The analysis of
Colini-Baldeschi et al. (2016) identified that regular variation plays an important
part in heavy traffic; however, it offered no insights into the light traffic regime
or the heavy-traffic limit of the PoA in non-parallel networks with more than
one O/D pair. Our paper provides an in-depth answer to these questions: we
show that (a) the light-traffic analogue of regular variation is real analyticity;
(b) the topology of the network doesn’t matter; and (c) the advent of several
O/D pairs doesn’t matter as long as they admit a common benchmark (which
is always the case if the network’s costs are polynomial).

Finally, on the empirical side, our work should be compared to that of Monnot
et al. (2017) who performed an empirical study of the price of anarchy based
on data from thousands of commuting students in Singapore. Focusing on the
network’s empirical price of anarchy (a PoA majorant), they showed that routing
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choices are near-optimal and the price of anarchy is much lower than traditional
worst-case bounds would suggest. Interestingly, the study of Monnot et al. (2017)
also suggests that the Singapore road network is often lightly congested: as such,
their results can be seen as a practical validation of the light traffic results
presented here (and, conversely, our results provide a theoretical justification for
their empirical observations).

2 Model and Preliminaries

2.1 Network Model

Following Beckmann et al. (1956) and Roughgarden and Tardos (2002), the
basic component of our model is a finite directed multi-graph G ≡ G(V, E) with
vertex set V and edge set E . We further assume there is a finite set of origin-
destination(O/D) pairs i ∈ I, each with an individual traffic demand mi ≥ 0
which has to be routed from an origin oi ∈ V to a destination di ∈ V via G.

To route this traffic, the i-th O/D pair employs a set Pi of (simple) paths
joining oi to di, each path p ∈ Pi comprising a sequence of edges that meet head-
to-tail in the usual way.3 For bookkeeping reasons, we also make the standing
assumption that (a) M ≡ ∑

i mi > 0 (so there is a positive amount of traffic in
the network); and (b) the sets Pi are disjoint (which holds in particular when all
pairs (oi, di) are different). Then, writing P ≡ ⋃

i∈I Pi for the union of all such
paths, the set of feasible routing flows f = (fp)p∈P in the network is defined as

F =
{

f ∈ R
P
+:

∑
p∈Pi fp = mi for all i ∈ I

}
. (2.1)

In turn, a routing flow f ∈ F induces a load on each edge e ∈ E as xe =∑
p�e fp, and we write x = (xe)e∈E for the corresponding load profile on the

network.
Given all this, the delay (or latency) experienced by an infinitesimal traffic

element in order to traverse edge e is determined by a nondecreasing, nonzero
continuous cost function ce : [0,∞) → [0,∞). Specifically, if x = (xe)e∈E is the
load profile induced by a feasible routing flow f = (fp)p∈P , then the incurred
delay on edge e ∈ E is ce(xe). Hence, with a slight abuse of notation, the asso-
ciated cost of path p ∈ P is given by

cp(f) ≡
∑

e∈p

ce(xe). (2.2)

Putting together all of the above, the tuple Γ = (G, I, {mi}i∈I , {Pi}i∈I ,
{ce}e∈E) will be referred to as a (nonatomic) routing game.4

3 To be clear, we do not assume here that Pi is the set of all paths joining oi to di, but
only some subset thereof. This distinction is important for packet-switched networks
where only paths with a low hop count are used.

4 For simplicity, when there is a single O/D pair, we will drop I and the index i
altogether.
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2.2 Equilibrium, Optimality, and the Price of Anarchy

In this setting, the notion of Nash equilibrium is captured by Wardrop’s first
principle: at equilibrium, the delays along all utilized paths are equal and no
higher than those that would be experienced by an infinitesimal traffic element
going through an unused route (Wardrop 1952). Formally, a routing flow f∗ is
said to be a Wardrop equilibrium (WE) of Γ if, for all i ∈ I, we have

cp(f∗) ≤ cp′(f∗) for all p, p′ ∈ Pi such that f∗
p > 0. (2.3)

By the work of Beckmann et al. (1956), it is well-known that Wardrop equilib-
rium can be characterized equivalently as solutions of the (convex) minimization
problem:

minimize
∑

e∈E
Ce(xe),

subject to xe =
∑

p�e

fp, f ∈ F , (WE)

where Ce(xe) =
∫ xe

0
ce(w) dw denotes the primitive of ce. On the other hand, a

socially optimum (SO) flow is defined as a solution to the total cost minimization
problem:

minimize L(f) =
∑

p∈P
fpcp(f),

subject to f ∈ F . (SO)

To quantify the gap between solutions to (WE) and (SO), we write

Eq(Γ ) = L(f∗) and Opt(Γ ) = minf∈F L(f), (2.4)

where f∗ is a Wardrop equilibrium of Γ . As Beckmann et al. (1956) showed,
L(f∗) has the same value for all equilibria f∗. The game’s price of anarchy
(PoA) is then defined as

PoA(Γ ) =
Eq(Γ )
Opt(Γ )

. (2.5)

Obviously, PoA(Γ ) ≥ 1 with equality if and only if Wardrop equilibria are also
socially efficient. Our main objective in what follows will be to study the asymp-
totics of this ratio when M → 0 or M → ∞.

3 A Network Where Selfish Routing is Always Inefficient

We begin by constructing a three-link network where the price of anarchy oscil-
lates between two values strictly greater than 1, no matter the traffic inflow M .
To that end, let ΓM be a nonatomic routing game consisting of a single O/D
pair with traffic inflow M . This traffic is to be routed over the three-link parallel
graph of Fig. 1 with cost functions



The Asymptotic Behavior of the Price of Anarchy 139

c1(x1) = xd
1

[
1 + 1

2 sin(log x1)
]
, (3.1a)

c2(x2) = xd
2, (3.1b)

c3(x3) = xd
3

[
1 + 1

2 cos(log x3)
]
, (3.1c)

where d is an integer. It is easy to see that the cost functions (3.1) are convex
and differentiable on [0,∞) for all d ≥ 2. Furthermore, the functions xece(xe)
are strictly convex, so the problem (SO) admits a unique optimum traffic dis-
tribution. Hence, the only way for the game’s price of anarchy to be equal to 1
is if the game’s (also unique) Wardrop equilibrium coincides with the network’s
socially optimum flow.

For a given value of the total inflow M = x1 + x2 + x3, the load profile
x = (x1, x2, x3) is a Wardrop equilibrium if and only if c1(x1) = c2(x2) = c3(x3),5

i.e., if the normalized profile z = x/M satisfies

zd
1

[
1 + 1

2 sin(log Mz1)
]

= zd
2 = zd

3

[
1 + 1

2 cos(log Mz3)
]
. (3.2)

Likewise, after differentiating and rearranging, the corresponding conditions
for the network’s socially optimum flow are

zd
1

[
1 + 1

2 sin(log Mz1) + 1
2(d+1) cos(log Mz1)

]

= zd
2 = zd

3

[
1 + 1

2 cos(log Mz3) − 1
2(d+1) sin(log Mz3)

]
. (3.3)

A simple algebraic argument shows that Eqs. 3.2 and 3.3 never admit a com-
mon solution; since Eqs. 3.2 and 3.3 are periodic in log M , it also follows that
the game’s price of anarchy oscillates periodically at a logarithmic scale. Thus,
focusing on the period 1 ≤ M ≤ e2π, we conclude that

inf
M≥0

PoA(ΓM ) = min
1≤M≤e2π

PoA(ΓM ) > 1, (3.4)

i.e., Wardrop equilibrium in the network of Fig. 1 remain strictly inefficient no
matter the value of M .

4 Networks with a Single O/D Pair

The example of the previous section shows that the price of anarchy may be
bounded away from 1 for all values of the traffic inflow, even in a three-link
parallel network with a single O/D pair. That being said, the behavior of the
cost model (3.1) at both ends of the congestion spectrum is fairly irregular, so
the question remains: is selfish routing bad under light/heavy traffic for more
“reasonable” classes of cost functions?

5 Since an unused edge always has a cost of zero, all paths are used at equilibrium.
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4.1 The Light Traffic Limit

A key observation regarding the counterexample (3.1) is that the “topologist’s
trig” terms sin(log x) and cos(log x) are highly pathological: their oscillations
become dense near 0, so the corresponding cost functions do not admit deriv-
atives of all orders at 0. To exclude such singularities, we will instead focus on
functions that are smooth enough to admit a faithful Taylor expansion at 0:

Definition 1. A function g : R → R is called (real) analytic at x0 if there exists
an open neighborhood U of x0 and real numbers gk, k = 0, 1, . . . , such that

g(x) =
∞∑

k=0

gk (x − x0)k for all x ∈ U. (4.1)

All polynomials are analytic, as are exponential, trigonometric, and most
special functions (like the gamma function). Remarkably, under this mild reg-
ularity requirement, we have the following general result for lightly congested
networks with a single O/D pair:

Theorem 1. Let ΓM be a nonatomic routing game with a single O/D pair and
traffic inflow M . If the network’s cost functions are analytic, we have

lim
M→0+

PoA(ΓM ) = 1. (4.2)

Despite appearances, Theorem 1 is fairly surprising. Indeed, at first sight, one
would expect that when M → 0, traffic is so light that it doesn’t really matter
how it is routed. This is indeed the case if, for instance, all paths in the network
exhibit a positive cost for M = 0. However, if the cost of an empty path is
zero, this is no longer the case: the optimum and equilibrium assignments could
be fairly different (even for low traffic), so there is no a priori reason that the
price of anarchy should converge to 1 as M → 0 (the example of Sect. 3 clearly
illustrates this phenomenon). Theorem1 shows that all that is needed for this
to occur is for the network’s cost functions to be faithfully represented by their
Taylor series. When this regularity condition is met, optimum and equilibrium
costs no longer fluctuate but, instead, they converge to the same value.

4.2 The Heavy Traffic Limit

In the heavy traffic limit, Taylor expansions are no longer meaningful so we
require a different criterion to rule out pathological oscillations. We do so by
means of the notion of regular variation:

Definition 2. A function g : [0,∞) → (0,∞) is said to be regularly varying if

lim
t→∞

g(tx)
g(t)

is finite and nonzero for all x ≥ 0. (4.3)
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In words, regular variation means that g(x) grows at the same rate when
viewed at different scales. Standard examples of regularly varying functions
include all affine, polynomial and (poly) logarithmic functions. The concept
itself dates back to Karamata (1933) and has been used extensively in prob-
ability and large deviations theory (see e.g. de Haan and Ferreira, 2006; Jessen
and Mikosch, 2006; Resnick, 2007); for a comprehensive survey, the reader is
referred to Bingham et al. (1989).

With all this at hand, we will discard growth irregularities (such as those
observed in Sect. 3) by positing that each cost function ce(x) can be compared
asymptotically to some regularly varying function c(x). Specifically, given an
ensemble of cost functions C = {ce}e∈E , we say that a regularly varying function
c : [0,∞) → (0,∞) is a benchmark for C if the (possibly infinite) limit

αe = lim
x→∞

ce(x)
c(x)

(4.4)

exists for all e ∈ E .
When it exists, this limit will be called the index of edge e, and e will be

called fast, slow, or tight (relative to c) if αe is respectively 0, ∞, or in-between.
Since bottlenecks in a path are caused by the slowest edges, we also define the
index of a path p ∈ P as

αp = max
e∈p

αe, (4.5)

and we say that p is fast, slow, or tight based on whether αp is 0, ∞, or in-
between. Finally, we say that the network is tight if the index of the network

α = min
p∈P

αp (4.6)

is finite and positive (0 < α < ∞).
In words, a path is fast (resp. tight/slow) if its slowest edge is fast (resp.

tight/slow), and the network is tight if its fastest path is tight. In particular,
tightness guarantees that the network admits a path whose cost grows asymp-
totically as a multiple of some regularly varying benchmark function c(x). The
importance of this growth requirement is illustrated by the counterexample of
Sect. 3: if we slightly relax the tightness concept by asking that the network
admits a path whose cost grows as Θ(c(x)), the price of anarchy may be bounded
away from 1 for all values of M . Instead, under tightness, we have:

Theorem 2. Let ΓM be a nonatomic routing game with a single O/D pair and
traffic inflow M . If the network is tight, then

lim
M→∞

PoA(ΓM ) = 1. (4.7)

In other words, if the fastest path in the network is tight, selfish routing becomes
efficient in the high congestion limit.

As an immediate corollary, we then have:
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Corollary 1. In networks with polynomial costs and a single O/D pair, we have
PoA(ΓM ) → 1 as M → ∞.

Proof. Let de be the degree of ce, set dp = maxe∈p de, and let d = minp∈P dp.
The network is clearly tight with respect to c(x) = xd, so Theorem 2 applies. �

Combining Theorem 1 and Corollary 1, we conclude that selfish routing
becomes efficient under both light and heavy traffic in networks with polynomial
costs. Beyond the polynomial case, Theorems 1 and 2 show that analyticity and
regular variation can be seen as different sides of the same coin: they both ensure
asymptotic regularity and they both exclude pathological oscillations (at zero
and infinity respectively). As such, our results for light and heavy traffic are
chiefly set apart by the notion of tightness (which only applies for heavy traffic).
The reason for this qualitative difference is that costs might diverge to infinity
at very different rates when the traffic inflow grows large; by contrast, all costs
are finite when there is no traffic, so the notion of tightness is redundant then.

5 Networks with Multiple O/D Pairs

We now extend our analysis to networks with multiple O/D pairs. In this case,
the total traffic inflow in the network is given by M =

∑
i∈I mi and we write

λi =
mi

M
(5.1)

for the fraction of the traffic generated by the i-th O/D pair. In what follows,
we will be assuming that the relative traffic inflow λi of every O/D pair i ∈ I
is a fixed positive constant. At the cost of heavier notation, our analysis also
extends to variable λi ≡ λi(M) but, due to space constraints, we focus on this
setting for clarity and concision.

5.1 The Light Traffic Limit

As in the previous section, we begin with the low congestion regime. Here, our
main result is essentially the same as in networks with a single O/D pair:

Theorem 3. Let ΓM be a nonatomic routing game with total traffic inflow M .
If the network’s cost functions are analytic, we have

lim
M→0+

PoA(ΓM ) = 1. (5.2)

In words, the advent of several O/D pairs does not change the asymptotic
behavior of the price of anarchy at the light traffic limit: Theorem3 is a direct
extension of Theorem 1 (which it implies).
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5.2 The Heavy Traffic Limit

In the high congestion regime, tightness plays a crucial role, but its definition
must be re-examined in the presence of multiple O/D pairs. In particular, the
cost of routing for different O/D pairs might grow at completely different rates
as M → ∞, so the definition of the network’s index must take this into account.
To make this precise, we define the index of a pair i ∈ I as

αi = min
p∈Pi

αp, (5.3)

reflecting the fact that the traffic of a given O/D pair will tend to be routed
along the pair’s fastest available path. The network’s index is then defined as

α = max
i∈I

αi, (5.4)

and, as before, we say that the network is tight if 0 < α < ∞. With all this at
hand, our main result for highly congested networks is as follows:

Theorem 4. Let ΓM be a nonatomic routing game with total inflow M . If the
network is tight, then

lim
M→∞

PoA(ΓM ) = 1. (5.5)

In words, if the “most costly” O/D pair in the network admits a tight path, selfish
routing becomes efficient in the high congestion limit.

Note that Theorem 2 follows directly from Theorem 4 because the definitions
(4.6) and (5.4) coincide if I is a singleton. However, in contrast to the light
traffic regime (where the presence of multiple O/D pairs does not change the
result), there is more going on in the high congestion limit. Specifically, when
there are multiple O/D pairs in the network, Theorem4 posits that every O/D
pair must have a path which is not slow, and at least one of the O/D pairs must
be tight (i.e., its index must be finite and positive). This is a considerably lighter
requirement than asking that every O/D pair be tight, so the conditions under
which the price of anarchy converges to 1 are very lax in this regard.

We close this section with an immediate corollary of Theorem 4

Corollary 2. In networks with polynomial costs, limM→∞ PoA(ΓM ) = 1.

Proof. Let de be the degree of ce, set dp = maxe∈p de, di = minp∈Pi dp and
d = maxp∈P dp. Then, simply verify that the network is tight with respect to
the benchmark function c(x) = xd. �

Thus, by Theorem 3 and Corollary 2, we conclude that:

In networks with polynomial cost functions,
the price of anarchy becomes 1 under both light and heavy traffic.
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6 Discussion

Our goal in this paper was to assess when selfish routing becomes efficient by
examining the behavior of the price of anarchy at each end of the congestion
spectrum. Under fairly mild assumptions (that always include networks with
polynomial costs), we found that the price of anarchy goes to 1 in both cases,
independently of the network’s topology and the number of O/D pairs in the
network. What we find intriguing about this result is that it suggests that self-
ishness is not the real cause of increased delays under heavy traffic: from a social
planner’s point of view, sophisticated tolling/rerouting schemes that target the
optimum traffic assignment will not yield considerable gains over a “laissez-faire”
approach where each traffic element takes the fastest available path.
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Abstract. Bilateral trade is a fundamental economic scenario compris-
ing a strategically acting buyer and seller (holding an item), each hold-
ing valuations for the item, drawn from publicly known distributions. It
was recently shown that the only mechanisms that are simultaneously
dominant strategy incentive compatible, strongly budget balanced, and
ex-post individually rational, are fixed price mechanisms, i.e., mecha-
nisms that are parametrised by a price p, and trade occurs if and only
if the valuation of the buyer is at least p and the valuation of the seller
is at most p. The gain from trade (GFT) is the increase in welfare that
results from applying a mechanism. We study the GFT achievable by
fixed price mechanisms. We explore this question for both the bilateral
trade setting and a double auction setting where there are multiple i.i.d.
unit demand buyers and sellers. We first identify a fixed price mechanism
that achieves a GFT of at least 2/r times the optimum, where r is the
probability that the seller’s valuation does not exceed that of the buyer’s
valuation. This extends a previous result by McAfee. Subsequently, we
improve this approximation factor in an asymptotic sense, by showing
that a more sophisticated rule for setting the fixed price results in a GFT
within a factor O(log(1/r)) of the optimum. This is asymptotically the
best approximation factor possible. For the double auction setting, we
present a fixed price mechanism that achieves for all ε > 0 a gain from

trade of at least (1−ε) times the optimum with probability 1−2/e#Tε2/2,
where #T is the expected number of trades of the mechanism. This can
be interpreted as a “large market” result: Full efficiency is achieved in
the limit, as the market gets thicker.
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1 Introduction

Bilateral trade is a fundamental economic scenario comprising a buyer and a
seller. The seller holds one item, and can possibly trade this item with the buyer
for some price. The buyer and the seller each have a (non-negative real-valued)
valuation for the item that is up for trade. The buyer’s valuation is only known
by the buyer and the seller’s valuation is only known by the seller. The buyer and
seller both want to maximise their utility, which is assumed to be quasi-linear,
i.e., of the form x · v − p, where x is a 0/1-variable that is set to 1 if and only if
the agent holds the item, v is the agent’s value for the item, and p is the price
paid/received by the agent. In the buyer’s case p is non-negative and represents
how much the buyer has to pay. In the seller’s case, the price p is non-positive
because the seller receives money to transfer her item.

The main problem studied for this bilateral trade setting is one in mechanism
design: which mechanism maximises the social welfare (i.e., total utility of both
players)? A direct revelation mechanism for this setting solicits the valuations
of the buyer and the seller. Subsequently it determines whether the buyer and
the seller should trade and which prices they have to pay or receive. We would
like any mechanism to satisfy the following properties:

– Dominant strategy incentive compatibility (DSIC): It should be a dominant
strategy for the buyer and seller to submit their true valuations to the mech-
anism.

– Ex-post individual rationality (ex-post IR): Neither agent should end up with
a negative utility if the agent’s true valuation is submitted to the mechanism.

– Strong budget balance (SBB): The price paid by the buyer is equal to the
price received by the seller, i.e., the mechanism does not extract money from
the market, nor does it inject money into the market.

While the valuations of the buyer and seller are known by the buyer and seller
only, it is assumed that there is still distributional public knowledge about their
valuations. More precisely, it is assumed that there are two publicly known dis-
tributions from which the buyer and seller independently draw their valuations.
The mechanism may use this knowledge in order to determine the outcome.

Ideally, we would want the mechanism to have the seller trade with the buyer
whenever the buyer’s valuation exceeds the seller’s valuation. The expected total
utility that would result from trading as such is referred to as the optimal social
welfare. Unfortunately the optimal social welfare is not achievable, as shown by
Myerson and Satterthwaite [16]: No bilateral trade mechanism is simultaneously
DSIC, IR, weakly budged balanced, and social-welfare optimizing. Weak budget
balance (WBB) is less restrictive than strong budget balance, as WBB only
requires that no money be injected into the market, while the mechanism is
allowed to extract money from the market.

For the classic bilateral trade setting, it was recently shown [5] that the
only direct revelation mechanisms that are simultaneously incentive compatible,
strongly budget balanced, and ex-post individually rational, are fixed price mech-
anisms, i.e., mechanisms that are parametrised by a price p, and trade occurs if
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and only if the valuation of the buyer is at least p and the valuation of the seller
is at most p.

An alternative—and more challenging to approximate—objective to the
social welfare is the gain from trade, which measures the expected increase
in total utility that is achievable by applying the mechanism, with respect to the
initial allocation. For example, if a seller holds an item that she values $4 and
a buyer values the same item $10, whenever a fix price mechanism sets a price
4 ≤ p ≤ 10, the buyer and the seller trade producing a gain from trade of $6.
Whenever the price p is set lower than $4 or greater than $10 no trade occur,
and the gain from trade is 0.

McAfee [15] has shown that if the median of the distribution of the seller’s
valuation is less than the median of the distribution of the buyer’s valuation,
then there is a fixed price mechanism for which the expected gain from trade is
at least half of the optimal gain from trade. In fact, it was shown for this special
case that by setting the fixed price anywhere in between the two medians, half of
the optimal gain from trade is guaranteed. We extend this result by showing that
the optimal gain from trade is at least 2/r times the gain from trade achievable
by a fixed price mechanism, where r is the probability that the seller’s valuation
does not exceed the buyer’s valuation (which is the condition under which a gain
from trade is possible in the first place).

Subsequently, we improve this approximation factor in an asymptotic sense,
by showing that a more sophisticated rule for setting the fixed price results in an
expected gain from trade within a factor O(log(1/r)) of the optimal gain from
trade. This is asymptotically the best approximation factor possible, which is
shown by an appropriate example of a bilateral trade setting for which every fixed
price achieves an expected gain from trade of Ω(log(1/r)) times the optimum.

It follows from our results that our mechanisms cannot approximate the gain
from trade if r is small. Indeed, we prove a general negative result showing that
the ratio between the gain from trade of a DSIC mechanism and the optimal
gain from trade can be arbitrarily small as the support of the distribution grows.
A similar result was proved independently in [2].

We finally extend our study to the double auction setting, where there are
multiple buyers and sellers, each seller holding one item and each buyer having
a demand for obtaining at most one item. The valuations of the n buyers are
independently drawn from a common probability distribution, and the same
holds for the m sellers, although the probability distribution of the sellers may
be distinct from that of the buyers.

1.1 Our Results

The first results presented in this paper concern the bilateral trade problem. It
is known that if a mechanism has to satisfy IR, DSIC, and SBB, then it must
be a fixed price mechanism [5], i.e., the mechanism fixes a price p and posts it
to the buyer and the seller. We want to understand p has to be chosen.

McAfee’s result of [15] states that in case the seller’s median is less than the
buyer’s median, then setting the price in between the medians of the buyer and
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the seller results in a 2-approximation to the optimal gain from trade. Our first
result is a strict generalization of [15] where the approximation to the optimal
gain from trade is given as a function of the probability that a trade is effi-
cient, in other words: the probability that the valuation drawn from the buyer
is greater than the valuation drawn from the seller. This parameter is referred
to as r = Prv∼f,w∼g[v ≥ w], where f is the buyer’s distribution and g is the
seller’s distribution.

In particular, we show that setting the price p such that Prv∼f [v ≥ p] =
Prw∼g[w ≤ p] results in a r/2-approximation to the optimal gain from trade.

Then, we show how that it is possible to improve the approximation factor of
2/r considerably in an asymptotic sense: We prove that by using a more complex
rule for determining the fixed price p, the optimal gain from trade is at most a
factor of O(log(1/r)) times the gain from trade when trading at price p. When r
is small, this results in a big improvement when compared to the approximation
factor that we established in the previous section. Our mechanism works by
showing that we can decompose “roughly” the entire probability space into at
most log(1/r)+1 such events, so that choosing the best fixed price corresponding
to each of these events results in a gain from trade that is an O(log(1/r))-
approximation to the optimal gain from trade. Finally, we want to consider the
double auction setting. In this setting, we extend the definition of a fixed price
mechanism in a natural way: the mechanism computes a single price p, buyers
with a valuation greater than p and sellers with a valuation lower than p will be
allowed to trade. If the sets of allowed buyers and allowed sellers have different
cardinalities, agents will be removed from the biggest set uniformly at random so
that the cardinality of the two sets will be equal. The fixed price mechanism that
we propose for the double auction setting achieves a gain from trade that is a 1−ε
approximation to the optimal gain from trade with probability (1 − 1/eε2#T/2)
where #T is the expected number of trades of the mechanism. This implies that
if the double auction instance is such that a relatively small expected number
of trades can happen at this price, then a reasonably good approximation factor
is achieved by our mechanism (see Sect. 5 for a detailed discussion). One may
also interpret our result as a “large market” result: the approximation factor
approaches 1 as we let the number of buyers and sellers in the market grow
proportionally, since in that case the number of trades grows arbitrarily large.
This is, to the best of our knowledge, the first fixed price mechanism that is
DSIC, SBB, and ex-post IR, and achieves a near-optimal gain from trade under
mild conditions on the size of the market.

1.2 Related Literature

The impossibility result of [16] proved that no two-sided mechanism can be
simultaneously BIC, IR, WBB, and optimise the social welfare even in the simple
bilateral trade setting. Thus, many subsequent works studied how it is possible
to relax some of the constraints to achieve positive results in the context of
maximise the social welfare or the gain from trade.
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In [3], a BIC mechanism is devised that approximates the expected gain
from trade in bilateral trade up to a factor of 1/e when the buyer’s distribution
function satisfies a property known as the monotone hazard rate condition. The
mechanism of [3] is not DSIC since it achieves this approximation factor from a
Bayes-Nash equilibrium by using the valuation of the seller in the price offered to
the buyer. It is also shown in the same work that no BIC mechanism can achieve
an approximation bound better than 2/e. Mechanisms that are DSIC/BIC, IR,
and SBB have been given for bilateral trade in [1]. In addition to this, the
authors proposed a WBB mechanism for a general class of markets known as
combinatorial exchange markets.

Mechanisms for double auctions with near-optimal gain from trade have been
previously proposed for the prior-free setting. McAfee [14] has shown a WBB,
DSIC, IR mechanism which achieves a 1 − 1/k-approximation to the optimal
gain from trade if the number of trades under the optimum allocation is k. This
rate of convergence requires the prior distributions of traders to be bounded
above zero, over an interval [0, 1], but the mechanism is not a function of the
priors. More recently, Segal-Halevi et al. [20] devised a SBB mechanism with the
same performance guarantee. The mechanisms of [14,20] are direct revelation
mechanisms where the price depends crucially on the reported valuations. In
contrast, the goal in our present paper is to find out how much gain from trade
can be generated by means of setting a single fixed price, independent of the
valuations of the players, at which all agents trade. Such mechanisms have the
advantage that they are conceptually simpler and have a pricing scheme that
is extremely easy to understand. They also can be implemented as sequential
posted price mechanisms.

In [19], the authors present a mechanism that combines random sampling
and random serial dictatorship techniques which is IR, SBB and DSIC, and
asymptotically approaches the optimum gain from trade. Recently, [4] provides
an IR, SBB, and BIC mechanism that achieves a constant approximation to
the best gain from trade achievable among the IR, WBB, and BIC mechanisms,
which is an alternative (more permissive) benchmark. Two recent papers by
Feldman and Gonen [9,10] study a multi-unit variant of double auctions for
online advertising purposes. They design IR, WBB, and DSIC mechanisms that
well-approximate the gain from trade under certain technical conditions, as a
function of the number of trades under the optimum allocation.

Deng et al. [7] study revenue maximisation in a setting of multiple buyers
and sellers with uncorrelated priors and a single type of item being traded. The
same objective was studied by [8] yet in the prior-free model. Gerstgrasser et
al. [11] also study the objective of maximising expected revenue, in a setting
where there is a small number of buyers and seller, who have a prior distribution
whose support size represents the complexity of instances of the problem. In [11],
this distribution is otherwise unrestricted, and in particular may be correlated.
Giannakopoulos et al. [12] study a similar double auction setting to the one
studied here in Sect. 5: there are multiple buyers and sellers and one kind of item,
with unit supply and demand. Buyers have a common prior distribution on their
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valuations, as do sellers. [12] study market intermediation from the perspective of
welfare maximisation, and revenue maximisation. Colini-Baldeschi et al. [6] also
study market intermediation, in the context of buyers and seller of a collection
of heterogenous items, aiming to maximise welfare and achieve a strong notion
of budget balance.

In the context of social welfare in the economics literature, [13] showed that
duplicating the number of agents by τ results in a market where the optimal IR,
IC, WBB mechanism’s expected social welfare approximation factor approaches
1 at a rate of O(log τ/τ2). The papers [17,18] investigated a family of non-
IC double auctions, and study the inefficiency and the extent to which agents
misreport their valuations in these double auctions.

2 Preliminaries

As a general convention, we use [a] to denote the set {1, . . . , a}. We will use
1(X) to denote the indicator function that maps to 1 if and only if event/fact
X holds.

Double Auction Setting. In a double auction setting there are n buyers and m
sellers. Initially, each seller j ∈ [m] holds one item and has a valuation wj for it.
The sellers are not interested in possess more than one item. Each buyer i ∈ [n]
is interested in obtaining no more than one item and has a valuation vi for it.
Moreover, they are indifferent among the different items.

The valuations of the buyers and the sellers are private knowledge, but they
are independently drawn from publicly known distributions f and g, where f is
the probability distribution for the valuation of a buyer and g is the probability
distribution for the valuation of a seller. We treat f and g as probability density
functions. All the buyers share the same distribution f and all the sellers share
the same mass probability distribution g, but f and g may be distinct. Moreover,
let G be the corresponding cumulative distribution functions of g and let F̄ be
the corresponding complementary cumulative distribution function (or survival
function) of f .

Given a double auction setting (n,m, f, g), our goal is to redistribute the
items from the sellers to the buyers. An allocation for a double auction setting
(n,m, f, g) is a pair of vectors (X,Y ) = ((X1, . . . , Xn), (Y1, . . . , Ym)) such that
all the elements X1, . . . , Xn, Y1, . . . , Ym ∈ {0, 1}, and

∑
i∈[n] Xi+

∑
j∈[m] Yj = m.

The set A represents the set of all allocations for the double auction setting.
The redistribution of the items from sellers to buyers is done by running

a mechanism M. A mechanism receives input from the agents, and outputs an
allocation (X,Y ) and a price p. The allocation (X,Y ) and the price p represents
the outcome of the mechanism M. Thus, an outcome is a tuple (X,Y , p). The
price p represents how much a buyer has to pay to obtain an item and how much
a seller has to receive to sell her item.1
1 More generally, we may define the notion of a mechanism such that more complex

pricing schemes are possible, but our definition suffices for the mechanisms that we
will define later in this paper.
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Agents are assumed to be utility maximisers. The utility is defined as the
valuation for the items that they possess with respect to the allocation vector,
minus the payment charged by the mechanism. Specifically, the utility of a buyer
i will be uB

i (X,Y , p) = (vi − p) · Xi. Similarly, the utility of a seller j will be
uS

j (X,Y , p) = wjYj + p · (1 − Yj).
Furthermore, agents are assumed to be fully rational, so that they will strate-

gically interact with the mechanism to achieve their goal of maximising utility.
Our goal is to design a mechanism that is DSIC, IR, SBB (as defined in the intro-
duction) such that the the gain from trade is high. For an outcome (X,Y , p),
the gain from trade GFT(X,Y , p) is defined as the increase in total utility as a
result of running the mechanism. It can be expressed as follows.

GFT(X,Y , p) =
n∑

i=1

viXi +
m∑

j=1

wj(Yj − 1)

For a double auction setting (n,m, f, g), the expected optimal gain from trade
is defined as

OPTn,m,f,g = Ev∼fn,w∼gm

[

max

{
n∑

i=1

viXi +
m∑

i=1

wj(Yj − 1)

∣
∣
∣
∣
∣

(X,Y ) ∈ A
}]

.

We will sometimes omit the subscript, as in those cases the instance being dis-
cussed will be clear from context.

We say that a mechanism M α-approximates the optimal gain from trade for
some α > 1 if and only if OPT ≤ αE[GFT(X,Y , p)], where (X,Y , p) is the
random allocation that the mechanism generates, when valuations v and w are
drawn from fn and gm respectively. Our goal is to find a DSIC, ex-post IR, and
SBB mechanism that α-approximates the optimal gain from trade for a low α.

Bilateral Trade Setting. The bilateral trade setting is a special case of the double
auction setting where there is only one unit-demand buyer and one unit-supply
seller. Thus, we can represent a bilateral trade setting as a pair of valuation
distribution function, one for the buyer f and one for the seller g, i.e., (f, g). It
is known that if a mechanism has to satisfy IR, DSIC, and SBB, then it must be
a fixed price mechanism [5], i.e., the mechanism fixes a price p a priori, and trade
happens if and only if both the buyer’s valuation is at least p and the seller’s
valuation is at most p.

For a bilateral trade instance, the gain from trade of a fixed price mechanism
with fixed price p will be denoted by GFTf,g(p). That is,

GFTf,g(p) = Ev∼f,w∼g[max{0, v − w}1(w ≤ p ≤ v)].

Moreover, note that for the bilateral trade setting we can express OPTf,g as
Ev∼f,w∼g[max{0, v − w}].

For the bilateral trade setting, the goal of this paper is to study how to set
the price p such that the gain from trade achieved by the fixed price mechanism
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with price p is as close as possible to the optimal gain from trade. We will design
fixed price mechanisms where the ratio between OPTf,g and GFTf,g(p) is a
function of the probability that the buyer has a value greater than the seller,
i.e., the provability that a trade is efficient. This probability will be represented
by the parameter r. Thus, r = Prv∼f,w∼g[v ≥ w].

Due to space constraints, proofs of the theorems and lemmas have been
omitted, and will be provided in a full version of this paper.

3 An O(1/r)-Approximation Mechanism for Bilateral
Trade

In the bilateral trade setting there is only one unit-demand buyer and one unit-
supply seller. It can be proven that if a mechanism has to satisfy IR, DSIC, and
SBB, then it must be a fixed price mechanism [5], i.e., the mechanism fixes a
price p and posts it to the buyer and the seller. Trade happens if and only if
both the buyer’s valuation is at least p and the seller’s valuation is at most p.

We will show in this section that there exists a fixed price mechanism that
achieves an expected gain from trade that is at least r/2 times the expected
optimal gain from trade. In the fixed price mechanism that we propose for this,
the fixed price p is set such that Prv∼f [v ≤ p] = Prw∼g[w ≤ p]. The main
theorem that we prove is thus as follows.

Theorem 1. Let (f, g) be a bilateral trade instance, let p ∈ R≥0 be any fixed
price, and let q be the minimum of Prv∼f [v ≥ p] and Prw∼g[w ≤ p]. Then,

1
q
GFTf,g(p) ≥ OPTf,g. (1)

Moreover, if p is chosen such that q is maximised (i.e., p is such that Prw∼g[w ≤
p] = Prv∼f [v ≥ p]), it holds that

2
r
GFTf,g(p) ≥ OPTf,g. (2)

Note that this theorem strictly generalises McAfee’s result of [15], which states
that in case the seller’s median is less than the buyer’s median, then set-
ting the price in between the medians of the buyer and the seller results in a
2-approximation to the optimal gain from trade: If we take p to be any price in
between the median of the seller and the buyer, then q is at least 1/2, and (1)
then states that the gain from trade at fixed price p is at least half the optimal
gain from trade.

4 Improving the Asymptotic Dependence on r

In this section, we show how it is possible to improve the approximation factor
implementing a more involved rule to determine the fixed price p. When the trad-
ing price p will be set with the new rule the approximation factor will improve
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from 2/r to O(log(1/r)). Notice that when r is small, this is a big improvement
with respect to the approximation shown in the previous section. All logarithms
used in this section are to base 2.

Let us first give a high level description of how we determine the fixed price
of the mechanism. Let us consider any two points z and z′ such that Pr[v ≥
z] = 2Pr[v ≥ z′]. Let E be the event that the buyer’s valuation exceeds z, and
that the sellers valuation lies in between z and z′. Let FE be the complementary
cumulative distribution function of the buyer conditioned on E and let GE be
the cumulative distribution function of the seller conditioned on E. We now see
that on the interval [z, z′], the function FE decreases from 1 to 1/2 and the
function GE increases from 0 to 1. Thus, the functions cross each other in [z, z′]
at a value of at least 1/2, which means that the median of the buyer exceeds
the median of the seller when conditioning on E. Using Theorem 1, we thus
obtain that when conditioning on E there exists a fixed price that achieves a
2-approximation to the optimal gain from trade.

Our mechanism works by showing that we can decompose “roughly” the
entire probability space into at most log(1/r)+1 such events, so that choosing the
best fixed price corresponding to each of these events results into an O(log(1/r))
approximation to the optimal gain from trade. More precisely, we show that
there are two sets of roughly log(1/r)+1 such events, and we prove that in case
one of these sets does not cover a fraction of the probability space that accounts
for at least 1/2 of the optimal gain from trade, then the other set of events does.
To determine the desired fixed price, we can thus

1. first determine which of the two event sets “covers” a large part of the optimal
gain from trade,

2. and subsequently select the best fixed price among the log(1/r) + 1 prices
corresponding to the event set.

The two event sets have the following properties: one of them excludes the part
of the probability space where the buyer’s complementary CDF is below the
threshold r/2. The other one switches the roles of the seller and buyer, and
excludes the part of the probability space where the seller’s CDF is below a the
threshold r/2. From this property of the event sets (i.e., having these particular
thresholds on the tails of the two distributions), we are able to show that one
of the event sets covers a large part of the optimal gain from trade. We now
proceed by making these ideas precise.

We first describe how we determine the price, which we denote by p∗, for a
given instance (f, g). In contrast with the last section, we assume (for convenience
of exposition) without loss of generality that f and g are continuous distributions
without point masses, where we treat f and g as probability density functions,
and we let F and G be the corresponding cumulative distribution functions. We
write F to denote the buyer’s complementary cumulative distribution function
1 − F . Let r be the probability Prv∼f,w∼g[v ≥ w] of a trade being possible (as
before). Let x be the value such that F (x) = r/2 and let y be the value such
that G(y) = r/2. We distinguish between two cases.
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– If Ev∼f,w∼g[(v − w)1(w ≤ v ∧ w > y)] ≥ OPTf,g/2, then let p∗ be
the price that achieves the maximum gain from trade among the prices
p1, . . . , p�log(2/r)	, where for i ∈ [�log(2/r)�], price pi is such that

Prw∼g[w ≤ pi | F
−1

(1/2i−1) ≤ w ≤ F
−1

(1/2i)]

= Prv∼f [v > pi | F
−1

(1/2i−1) ≤ v].

– Otherwise, let p∗ be the price that achieves the maximum gain from trade
among the prices p′

1, . . . , p
′
�log(2/r)	, where for i ∈ [�log(2/r)�], price p′

i is such
that

Prv∼f [v > pi | G−1(1/2i) ≤ v ≤ G−1(1/2i−1)]

= Prw∼g[w ≤ pi | G−1(1/2i) ≤ w],

where we define G−1(1) = ∞ if there exists no point t ∈ R≥0 such that
G(t) = 1.

This completes the definition of the fixed price p∗.
First we can show that if the first of the two cases does not apply (i.e., if the

inequality Ev∼f,w∼g[(v −w)1(w ≤ v ∧w > y)] ≤ OPTf,g/2 does not hold), then
the symmetric inequality Ev∼f,w∼g[(v −w)1(w ≤ v ∧w < x)] ≤ OPTf,g/2 holds
for the second case.

Lemma 1. If Ev∼f,w∼g[(v − w)1(w ≤ v ∧ w > y)] > OPTf,g/2, then Ew∼f,v∼g

[(v − w)1(w ≤ v ∧ v < x)] ≤ OPTf,g/2.

Using the above lemma, it is possible to prove the intended approximation factor
for price p∗.

Theorem 2. Let (f, g) be any bilateral trade instance, and let p∗ be the price
for (f, g), as defined above. It holds that

OPTf,g ≤ 4 log
(⌈

2
r

⌉)

GFTf,g(p∗).

Note that the approximation bound of 2/r that we established in the first
section is better than the approximation bound of 4�log(2/r)� when r is roughly
greater than 0.05. At r = 0.05, the approximation factor 4�log(2/r)� already
takes a value around 20. Hence, the result of this section is intended to provide
theoretical insight into how the approximability of the gain from trade depends
on r asymptotically. An (asymptotically) matching lower bound is given in the
appendix of [2], which shows that Θ(log(1/r)) is asymptotically the best possible
factor by which the optimal gain from trade that can always be approximated.

5 A Fixed Price Double Auction

We now turn to the double auction setting. Recall that in this setting there are
n ≥ 1 buyers and m ≥ 1 sellers. The sellers each hold one item, and neither the
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buyers or the sellers are interested in holding more than one item. As before, we
refer to f for the probability distribution function from which the buyers’ valu-
ations are independently drawn, and to g for the probability distribution from
which the sellers’ valuations are independently drawn. We denote the (random)
valuation of buyer i ∈ [n] by vi and the (random) valuation of seller j ∈ [m] by
wj . See Sect. 2 for the definition.

In order to present the definition of a fixed price mechanism for the double
auction setting, let us first introduce the concept of feasible pair.

Definition 1. Let (n,m, f, g) be an instance of a double auction setting, let
(v, w) ∈ R

n × R
m be a valuation profile for the buyers and sellers, and let p ∈

R≥0. We call (i, j) ∈ [n] × [m] a feasible pair with respect to profile (v, w) and
fixed price p iff vi ≥ p ≥ wj.

Now, we can define a fixed price mechanism as follows.

Definition 2. We define a fixed price mechanism M for a double auction setting
(n,m, f, g) as a direct revelation mechanism for which there is a price p such
that the mechanism selects a uniform random maximal subset of feasible pairs
with respect to reported profile (v, w) and p, and makes these pairs trade with
each other. Moreover, for every selected trading pair (i, j), the mechanism makes
buyer i pay an amount of p to seller j. We refer to p as the price of M.

This is perhaps the most natural generalization of the notion of a fixed price
mechanism that one may think of. Please note that in a fixed price mechanism
with price p, given a reported valuation profile (v, w), the number of pairs that
trade is always the minimum of |{vi : vi ≥ p}| and |{wi : wi ≤ p}|.

It is easy to show that fixed price mechanisms clearly satisfy the three basic
properties that we want:

Theorem 3. For every double auction setting, every fixed price mechanism is
ex-post IR, SBB, and DSIC.

Fixed price mechanisms have some additional advantanges.

– First, a fixed price mechanism is entirely symmetric: Each seller has the same
expected utility, and each buyer has the same expected utility. The mechanism
treats buyers with the same valuation entirely symetrically and does not break
ties in favour of one over the other. This symmetricity is desirable from the
point of view of fairness.

– Secondly, the mechanism does not require the agents to fully reveal their
entire valuation, since it can be implemented as a two-sided sequential posted
price mechanism [5]. Under such an implementation, the mechanisms goes
over the buyers and sellers one by one. It proposes a take-it-or-leave-it price
(equal to p, in this case) to each buyer and seller, which the buyers and sellers
can choose to accept or reject. As soon as an accepting (buyer, seller)-pair
is found, the mechanism lets this pair trade at price p. Taking a uniform
random order of buyers and sellers will result in a random subset of feasible
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pairs who trade at price p, i.e., it will result in an implementation of the fixed
price mechanism with price p. Under such an implementation, each buyer and
seller has to reveal only one bit of information, which indicates whether her
valuation is above or below p.

We aim to design a simple fixed price mechanism for which the gain from
trade is a good approximation to the optimal gain from trade. The mechanism
we use is as follows.

Definition 3. Given an instance (n,m, f, g) of a double auction setting, let p
be the price such that nF (p) = mG(p). We refer to the fixed price mechanism
with price p as the balanced fixed price double auction. For ease of presentation,
we refer to F (p) as qB and we refer to G(p) as qS. We denote by GFT(p) the
expected gain from trade achieved by the balanced fixed price double auction, and
we denote by #T the expected number of trades that the balanced fixed price
double auction generates.

Observe that the balanced fixed price double auction is a generalization of the
mechanism of Theorem 1 that achieves for the bilateral trade setting a 2/r-
approximation of the optimal gain from trade. We note that the value #T is by
definition equal to nqB = mqS .

The main result we prove in this section is as follows.

Theorem 4. For all ε ∈ [0, 1], with probability at least 1 − 2/e#Tε2/2, the bal-
anced fixed price double auction achieves a gain from trade that is at least (1−ε)
times the expected optimal gain from trade.

Note that #T , the expected number of trades of the balanced fixed price double
auction, needs to exceed 2 ln(2)/ε2 by any constant for the above theorem to
yield a constant approximation guarantee. The value #T can be regarded as a
property of the instance (n,m, f, g) on which the mechanism is run, and is equal
to the value where the functions nF and mG cross each other. The requirement
on #T is reasonably mild: For example, the above theorem says that when #T
is at least 10, the balanced fixed price double auction yields an expected gain
from trade that is a (<4)-approximation to the optimal gain from trade, by
taking ε ≈ 0.61 (since (1 − 2/e0.612·5) · (1 − 0.61) > 0.25). The theorem provides
a constant approximation ratio for all instances where #T > 2 ln(2) ≈ 1.38, but
grows unbounded as #T approaches 2 ln 2 from above.

There is an interesting interpretation of this theorem in terms of large mar-
kets: Observe that increasing the number of buyers or sellers in the market also
increases #T . In particular, by increasing both the number of buyers and the
number of sellers simultaneously, #T grows unboundedly. From our theorem we
may therefore infer that the balanced fixed price double auction approximation
approximates the gain from trade by a factor that goes to 1 as the market grows.

To prove the desired approximation property of the balanced fixed price
double auction, we note that due to symmetry, we may assume that under the
optimum allocation every buyer has the same a priori probability of trading
with a seller, and every seller has the same a priori probability of trading with
a buyer. This motivates the following definition.
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Definition 4. For a double auction setting (n,m, f, g) we define the values qS as
the probability that any buyer receives an item under the optimum allocation, and
we define qS as the probability that any seller loses her item under the optimum
allocation. We define the prices pB and pS as the prices closest to p such that
F (pB) = qB and G(pS) = qS. That is: pB is such that a buyers’ probability of
her valuation exceeding pB is equal to the probability of obtaining an item under
the optimum allocation, and if there multiple such prices then pB is defined as
the unique one closest to p. Likewise, pS is such that a sellers’ probability of her
valuation being at most pS is equal to the probability of losing her item under
the optimum allocation. Lastly, we let OPT denote the expected gain from trade
achieved by the optimum allocation.

The values GFT(p), OPT, #T , p, qB , qS , p, qB, and qS all depend (like r) on
the instance (n,m, f, g). We will leave this dependence implicit.

Theorem 4 can be proved by means of the following sequence of lemmas.

Lemma 2. For every instance (n,m, f, g) of a double auction setting, the fol-
lowing property of the optimal allocation is satisfied.

nqB = mqS .

The following lemma states that our price p always lies in between pB and pS .

Lemma 3. For every instance (n,m, f, g) of a double auction setting, pB ≥ p ≥
pS or pS ≥ p ≥ pB.

The following lemma provides a useful bound on OPT.

Lemma 4. For every instance (n,m, f, g) of a double auction setting, it holds
that

OPT ≤ nqBE[v1 | v1 ≥ pB ] − mqSE[w1 | w1 ≤ pS ].

We then use the following technical lemma to bound OPT further.

Lemma 5. For every instance (n,m, f, g) of a double auction setting, it holds
that

nqBE[v1 | v1 ≥ pB ] − mqSE[w1 | w1 ≤ pS ]

≤ nqBE[v1 | v1 ≥ p] − mqSE[w1 | w1 ≤ p].

Using the above lemmas, Theorem 4 can be proved by showing an appropriate
bound on the gain from trade of the balanced fixed price double auction, along
with applying a Chernoff bound.
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Abstract. We study strong equilibria in network creation games. These
form a classical and well-studied class of games where a set of players
form a network by buying edges to their neighbors at a cost of a fixed
parameter α. The cost of a player is defined to be the cost of the bought
edges plus the sum of distances to all the players in the resulting graph.
We identify and characterize various structural properties of strong equi-
libria, which lead to a characterization of the set of strong equilibria for
all α in the range (0, 2). For α > 2, Andelman et al. [4] prove that
a star graph in which every leaf buys one edge to the center node is
a strong equilibrium, and conjecture that in fact any star is a strong
equilibrium. We resolve this conjecture in the affirmative. Additionally,
we show that when α is large enough (≥ 2n) there exist non-star trees
that are strong equilibria. For the strong price of anarchy, we provide
precise expressions when α is in the range (0, 2), and we prove a lower
bound of 3/2 when α ≥ 2. Lastly, we aim to characterize under which
conditions (coalitional) improvement dynamics may converge to a strong
equilibrium. To this end, we study the (coalitional) finite improvement
property and (coalitional) weak acyclicity property. We prove various
conditions under which these properties do and do not hold. Some of
these results also hold for the class of pure Nash equilibria.

1 Introduction

The Internet is a large-scale network that has emerged mostly from the spon-
taneous, distributed interaction of selfish agents. Understanding the process of
creating of such networks is an interesting scientific problem. Insights into this
process may help to understand and predict how networks emerge, change, and
evolve. This holds in particular for social networks.

The field of game theory has developed a large number of tools and models
to analyze the interaction of many independent agents. The Internet and many
other networks can be argued to have formed through interaction between many
strategic agents. It is therefore natural to use game theory to study the process of
c© Springer International Publishing AG 2017
N. R. Devanur and P. Lu (Eds.): WINE 2017, LNCS 10674, pp. 161–176, 2017.
https://doi.org/10.1007/978-3-319-71924-5_12



162 T. Janus and B. de Keijzer

network formation. Indeed, this has been the subject of study in many research
papers, e.g. [1,2,6,14–16,22], to mention only a few of them.

We focus here on the classical network creation model of [15], which is prob-
ably the class of network formation game that is most prominently studied by
algorithmic game theorists. This model stands out due to its simplicity and ele-
gance: It is simply defined as a game on n players, where each player may choose
an arbitrary set of edges that connects herself to a subset of other players, so
that a graph forms where the vertices are the players. Buying any edge costs
a fixed amount α ∈ R, which is the same for every player. Now, the cost of
a player is defined as the total cost of set of edges she bought, plus the sum
of distances to all the other players in the graph. A network creation game is
therefore determined by two parameters: α and n.

Another reason for why these network creation games are an ineresting topic
of study, are the surprisingly challenging questions that emerge from this simple
class of games. For example, it is (as of writing) unknown whether the price of
anarchy of these network creation games is bounded by a constant, where the
term price of anarchy is defined as the factor by which the total cost of a pure
Nash equilibrium is away from the minimum possible total cost [20,21].

In the present work, we study strong equilibria, which are a refinement of
the pure Nash equilibrium solution concept. Strong equilibria are defined as
pure Nash equilibria that are resilient against strategy changes that are made
collectively by arbitrary sets of players, in addition to strategy changes that are
made by individual players (see [5]). Generally, such an equilibrium may not
exist, since this is already the case for pure Nash equilibria. On the other hand,
in case they do exist, then strong equilibria are extremely robust, and they are
likely to describe the final outcome of a game in case they are, in a realistic
sense, “easy to attain” for the players. Fortunately, as [4] points out, in network
creation games, strong equilibria are guaranteed to exist except in a very limited
number of cases. The combination of the facts that strong equilibria are robust,
and are almost always guaranteed to exist, calls for a detailed study of these
equilibria in network creation games, which is what we do in the present work.

We provide in this paper a complete characterization of the set of all strong
equilibria for α ∈ (0, 2). Moreover, for α > 2 we prove in the affirmative the
conjecture of [4] that any strategy profile that forms a star graph (i.e., a tree of
depth 1) is a strong equilibrium. We also show that for large enough α (namely,
for α ≥ 2n), there exist strong equilibria that result in trees that are not stars.

The price of anarchy restricted to strong equilibria is called the strong price of
anarchy. This notion was introduced in [4], where also the strong price of anarchy
of network creation games was studied first. The authors prove there that the
strong price of anarchy is at most 2. We contribute to the understanding of the
strong price of anarchy by providing a sequence of examples of strong equilibria
where the strong price of anarchy converges to 3/2, thereby providing the first
non-trivial lower bound (to the best of our knowledge).

Regarding the reachability and the likelihood for the players to actually attain
a strong equilibrium, we study the question whether they can be reached by
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response dynamics, i.e., the process where we start from any strategy profile,
and we repeatedly let a player or a set of players make a change of strategies
that is beneficial for each player in the set, i.e., decreases their cost. In particular,
we are interested in whether network creation games posess the coalitional finite
improvement property (that is: whether such response dynamics are guaranteed
to result in a strong equilibrium), and the coalitional weak acyclicity property
(that is: whether there exists a sequence of coalitional strategy changes that
ends in a strong equilibrium when starting from any strategy profile). We prove
various conditions under which these properties are satisfied. Roughly, we show
that coalitional weak acyclicity holds when α ∈ (0, 1] or when starting from
a strategy profile that forms a tree (for α ∈ (0, n/2]), but that the coalitional
finite improvement property is unfortunately not satisfied for any α. Some of
these results hold for pure Nash equilibria as well.

1.1 Our Contributions

A key publication that is strongly related to our work is [4], where the authors
study the existence of strong equilibria in network creation games. The authors
prove that the strong price of anarchy of network creation games does not exceed
2 and provide insights into the structure and existence of strong equilibria. This is
to the best of our knowledge the only paper studying strong equilibria in network
creation games. Let us therefore summarize how the present paper complements
and contributes to the results in [4]: First, we provide additional results on
the strong equilibrium structure, such that together with the results from [4] we
obtain a characterization of strong equilibria for α ∈ (0, 2). Furthermore, in [4] it
was conjectured that all strategy profiles that form a star (and such that no edge
is bought by two players at the same time) are strong equilibria. We answer this
conjecture positively. Because [4] does not provide examples of strong equilibria
that are not stars (for α > 2), this may suggest the conjecture that all strong
equilibria form a star for α > 2. We show however that the latter is not true: We
provide a family of examples of strong equilibria which form trees of diameter
four (hence, not stars). More interestingly, the latter sequence of examples has a
price of anarchy that converges to 3/2, thereby providing (again, to the best of
our knowledge) the first non-trivial lower bound on the strong price of anarchy.
Related to this set of results, we want to mention the following interesting open
questions for future research: (i) What is the exact strong price of anarchy of the
class of network creation games? Our work shows that it must lie in the interval
[3/2, 2]. (ii) Does there exist a non-star strong equilibrium for α ∈ (2, 2n)? (iii)
Do there exist strong equilibria that form trees of arbitrarily high diameter, and
do there exist strong equilibria that are not trees?

A second theme of our paper is to investigate under which circumstances
the coalitional finite improvement and coalitional weak acyclicity properties are
satisfied, as satisfying those properties contribute to the credibility of strong
equilibria as a realistic solution concept. We show to this end that coalitional
weak acyclicity always holds for α ∈ (0, 1] and holds for α ∈ (1, n/2) in case the
starting strategy profile is a tree. We prove on the negative side that for all α
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there exists a number of players n such that the coalitional finite improvement
property does not hold. The only special case for which we manage to estab-
lish existence of the coalitional finite improvement property is for n = 3 and
α > 1. With regard to convergence of response dynamics to strong equilibria, an
interesting question that we leave open is whether the coalitional weak acyclicity
property holds for α > n/2, and for α ∈ (1, n/2) when starting at non-tree strat-
egy profiles. We will see throughout that some of our results on these properties
also hold for the set of pure Nash equilibria.

An overview of results is summarized in the tables below. Table 1 provides an
overview for our characterization and structure theorems for strong equilibria,
Table 2 shows our bounds on the strong price of anarchy, and Table 3 shows
our results on the finite improvement and weak acyclicity properties of network
creation games. Due to space constraints, the proofs of many of our results have
been omitted and will be published in a full version of the paper.

Table 1. Overview of strong equilibria characterization results and structural results.

α ∈ (0, 1) α = 1 α ∈ (1, 2) α ≥ 2

Strong
equilibria

Characterized
(in [4])

Characterized
(Theorem 1)

Characterized
(Proposition 1)

Every star is a strong
equilibrium
(Theorem 2),
existence of non-star
strong equilibria
(Theorem 3)

Table 2. Overview of bounds on the strong price of anarchy.

α ∈ (0, 1) α = 1 α ∈ (1, 2) α ≥ 2

Strong
price of
anarchy

1 (Trivial) 10/9 if n ≤ 4
and (3n+2)/3n
if n ≥ 5
(Theorem 4)

(2α+8)/(3α+6)
if n = 3, and
(4α+16)/(6α+
12) if n = 4
(Proposition 3)

At least 3/2
(Theorem 5) and at
most 2 [4]

Table 3. Summary of results on the c-FIP and c-weak acyclicity of network creation
games.

α ∈ (0, 1) α = 1 α ∈ (1, 2) α = 2 α > 2

c-FIP Negative
(Lemma 6)

Negative
(Lemma 6)

Negative
(Lemma 6)

Negative
(Lemma 6)

Negative (in
[9])

Positive for n = 3 (Lemma 4)

c-weak
acyclicity

Positive
(Corollary of
Lemma 8)

Positive
(Proposition 9)

Positive with respect to trees for α ∈ (1, n/2)
(Lemma 11)
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2 Related Literature

We discussed already extensively the works [4,15]. The latter is the article in
which network creation games were first defined. Moreover, [15] conjectured that
there exists an A ∈ R≥0 such that all non-transient equilibria (where transience
stands for a particular notion of instability) are trees for α ≥ A.

This conjecture was subsequently disproved by [1], where the authors con-
struct non-tree equilibria for abitrarily high α. These equilbiria are strict (i.e.,
for no player there is a deviation that keeps her cost unchanged) and therefore
non-transient, and their construction uses finite affine planes. In this paper, the
authors moreover show that the price of anarchy is constant for α ≤ √

n and
for α ≥ 12n log n, as for the second case they prove that any pure equilibrium
is a tree. In [27], the latter bound was improved, as it was shown there that for
α ≥ 273n all pure equilibria are trees. Later on, in [24], this was further improved
by showing that it even holds for α ≥ 65n. Very recently, in [3], further progress
has been made in this direction by showing that every pure Nash equilibrium
is a tree already when α > 17n, and that the price of anarchy is bounded by
a constant for α > 9n. In [12], some constant bounds on the price of anarchy
were improved, and it was shown that for α ≤ n1−ε the price of anarchy is con-
stant, for all ε ≥ 0. It remains an open question whether the price of anarchy is
constant for all α ∈ R≥0. In particular, the best known bound on the price of
anarchy for α ∈ [n1−ε, 9n] is 2O(

√
log n), shown in [12]. For all other choices of α

the price of anarchy is known to be constant. The master’s thesis [25] provides
some simplified proofs for some of the above facts, and proves that if an equi-
librium graph has bounded degree, then the price of anarchy is bounded by a
constant. It also studies some related computational questions.

Many other variants of network creation games have been considered as well.
A version where disconnected players incur a finite cost rather than an infinite
one was studied in [9]. In [1], a version is introduced where the distance cost of
a player i to another player j is weighted by some number wij . A special case of
this weighted model was proposed in [26]. The paper [12] introduces a version of
the game where the distance cost of a player is defined the maximum distance
from i to any other player (instead of the sum of distances), and studies the
price of anarchy for these games. Further results on those games can be found in
[27]. Another natural variant of a cost sharing game is one where both endpoints
of an edge can contribute to its creation, as proposed in [26], or must share its
creation cost equally as proposed in [11] and further investigated in [12]. In [6], a
version of the game is studied where the edges are directed, and the distance of
a player i to another player j is the minimum length of a directed path from i to
j. The literature on these games and generalizations thereof (see e.g., [8,13,14])
concerns existence of equilibria and the properties of response dynamics. See
[7,16–18] for another undirected network creation model and properties of pure
equilibria in those models. Further, in the very recent paper [10], a variant of
network creation games is studied where the cost of buying an edge to a player
is proportional to the number of neighbors of that player.
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In [2], the authors analyze the outcomes of the game under the assumption
that the players consider deviations by swapping adjacent edges. Better response
dynamics under this assumption have been studied in [22]. A modified version
of this model is introduced in [26], where players can only swap their own edges.
The authors prove some structural results on the pure equilibria that can then
arise. Furthermore, in [23] the deviation space is enriched by allowing the players
to add edges, and various price of anarchy type bounds are established under
this assumption. In [19], the dynamics of play in various versions of network
creation games are further investigated.

3 Preliminaries

A network creation game Γ is a game played by n ≥ 3 players where the strategy
set of Si of a player i ∈ [n] = {1, . . . , n} is given by Si = {s : s ⊆ [n] \ {i}}.
That is, each player chooses a subset of other players. Let S = ×i∈[n]Si be the
strategy profiles of Γ and for a subset K ⊆ [n] of players let SK = ×i∈KSi. Given
a strategy profile s ∈ S, we define G(s) as the undirected graph with vertex set
[n] and edge set {{i, j} : j ∈ si ∨ i ∈ sj}. For a graph G on vertex set [n], we
denote by dG(i, j) the length of the shortest path from i to j in G (and we define
the distance between two disconnected vertices as infinity).

The cost of player i under s is given by ci(s) = cb
i (si) + cd

i (s), where cb
i (si) =

α|si| is referred to as the building cost, α ∈ R≥0 is a player-independent constant,
and cd

i (s) =
∑n

j=1 dG(s)(i, j) is referred to as the distance cost. The interpretation
given to this game is that the players buy edges to other players and that creates
a network. Buying a single edge costs α. The shortest distance dG(s)(i, j) to each
other player j is furthermore added to the cost of a player i. We denote a network
creation game by the pair (n, α)

For a strategy profile s ∈ S let d(s) =
∑

i cd
i (s). The social cost of strategy

profile s, denoted C(s), is defined as the sum of all individual costs: C(s) =∑
i∈[n] ci(s) = α

∑
i |si| + d(s).

We study the strong equilibria of this game. A strong equilibrium of an n-
player cost minimization game Γ with strategy profile set S = ×n

i=1Si is an s ∈ S
such that for all K ⊆ [n] and for all s′

K ∈ SK there exists a player i ∈ K such
that, ci(s) ≤ ci(s′

K , s−K), where ci is the cost function of player i and (s′
K , s−K)

denotes the vector obtained from s by replacing the |K| elements at index set K
with the elements s′

K . (A pure Nash equilibrium is a strategy profile that satisfies
the latter condition only for singleton K.) Strong equilibria are guaranteed to
exist in almost all network creation games, as we will explain later.

We are interested in determining the strong price of anarchy [4]. The
strong price of anarchy of a network creation game Γ is the ratio PoA(Γ) =
max{C(s)/C(s∗) : s ∈ SE}, where s∗ is a social optimum, i.e., a strategy profile
that minimizes the social cost. Furthermore SE is the set of strong equilibria of
the game.

A strategy profile s is called rational if there is no player pair i, j ∈ [n] such
that j ∈ si and i ∈ sj . It is clear that all pure Nash equilibria (and thus all
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strong equilibria) of any network creation game are rational, as are all the social
optima. When s is a rational strategy profile, the social cost can be written as
C(s) = α|E(G(s))| + d(s), where E(G(s)) denotes the edge set of the graph
G(s).

We write degG(s)(i) to denote the degree of player i in graph G(s), and we
denote by diam(G(s))) the diameter of G(s). We define the free-riding function
f : S × [n] → N by the formula f(s, i) = degG(s)(i) − |si|. For any strategy
profile s ∈ S we have the following lower bound for the cost of player i,

ci(s) ≥ 2n − 2 − degG(s)(i) + |si|α = 2n − 2 − f(s, i) + |si|(α − 1). (1)

Moreover, we see that in case s is rational,
∑

i∈[n]

|si| = |E| =
∑

i∈[n]

f(s, i). (2)

Graph theory notions. We define an n-star to be a tree of n vertices with diam-
eter 2, i.e., it is a tree where one vertex is connected to all other vertices. It
is straightforward to verify that (1) is tight when G(s) is an n-star, and (more
generally) when G(s) has diameter at most 2. We denote by Kn the complete
undirected graph on vertex set [n]. We denote by Cn the undirected cycle on
vertex set [n]. We denote by Pn the undirected path on vertex set [n]. Lastly,
we define a centroid vertex of a tree T = (V,E) as a vertex v ∈ V that min-
imizes max{|Vi| : (Vi, Ei) ∈ CT−v}, where CT−v denotes the set of connected
components of the subgraph of T induced by V \ {v}.

Coalitional improvement dynamics. A sequence of strategy profiles (s1, s2, . . .)
is called a path if for every k > 1 there exists a player i ∈ [n] such that sk =
(s′

i, s
k−1
−i ). We call a path an improvement path if it is maximal and for all k > 1

holds ci(sk) < ci(sk−1) where i is the player who deviated from sk−1. We say
that it is an improvement cycle if additionally there exists a constant T such
that sk+T = sk for all k ≥ 1. A sequence of strategies (s1, s2, . . .) is called a best
response improvement path if for all k > 1 and all i such that sk

i 	= sk−1
i we have

ci(sk) < ci(sk−1) and there is no s′
i ∈ Si such that ci(s′

i, s
k
−i) < ci(sk) (that is:

sk
i is a best response to sk−1

−i ). A sequence of strategies (s1, s2, . . .) is called a
coalitional improvement path if for all k > 1 and all i such that sk

i 	= sk−1
i we

have ci(sk) < ci(sk−1).
A game has the (coalitional) finite improvement property ((c-)FIP) if every

(coalitional) improvement path is finite. A game has finite best response property
(FBRP) if every best response improvement path is finite. We call a game (c-)
weakly acyclic if for every s ∈ S there exists a finite (coalitional) improvement
path starting from s. Lastly, we call a network creation game (c-)weakly acyclic
with respect to a class of graphs G if for every s ∈ S such that G(s) ∈ G, there
exists a (coalitional) finite improvement path starting from s.
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4 Structural Properties of Strong Equilibria

We provide in this section various results that imply a full characterization of
strong equilibria for α ∈ (0, 2), and we resolve a conjecture of [4] by showing
that any rational strategy s ∈ S such that G(s) is a star is a strong equilibrium
for all α ≥ 2. Moreover, we give a family of examples of strategy profiles that
form trees of diameter 4 (hence do not form stars) and are strong equilibria
when α ≥ 2n. First, for α ∈ (0, 1) the strong equilibrium set is straighforward to
derive, as has been pointed out in [4]: in this case a strategy profile is a strong
equilibrium if and only if it is rational and forms the complete graph. It is easy
to see that this characterization also holds for the set of Nash equilibria.

For α = 1, the situation is more complex. First, we can show that the fol-
lowing lemma holds for all α < 2.

Lemma 1. Fix α < 2 and suppose that s ∈ S is a strong equilibrium. For each
sequence of players (i0, i1, . . . , ik = i0) such that k ≥ 3 in G(s) there exists an
t ∈ {0, . . . , k −1} such that (it, it+1) ∈ E(G(s)). In other words, the complement
of G(s) is a forest.

Therefore, if α < 2 and s ∈ S is a strong equilibrium, then there is no
independent set of size 3 in G(s). Also, if α < 2 and |V | ≥ 4, then a strategy
profile s ∈ S, such that G(s) is a star is not a strong equilibrium. Since when
α ∈ [1, 2), a rational strategy profile that forms a star is a Nash equilibrium, this
implies that the pure Nash equilibria and strong equilibria do not coincide.

In order to characterize the strong equilibria for α = 1, we first provide a
characterization of the pure Nash equilibria.

Lemma 2. For α = 1, a strategy profile s ∈ S is a Nash equilibrium if and only
if s is rational and G(s) has diameter at most 2.

The following theorem then characterizes the set of strong equilibria for α = 1.

Theorem 1. For α = 1, a strategy profile s ∈ S is a strong equilibrium if and
only if s is rational, G(s) has diameter at most 2, and the complement of G(s)
is a forest.

For α ∈ (1, 2), it was shown in [4] that strong equilibria do not exist for
n ≥ 5. It can be shown that for n = 3 the set of strong equilibria are the rational
strategy profiles that form the 3-star. (Hence, all pure Nash equilibria are strong
equilibria in this case). For n = 4 we observe that the only strong equilibria are
those that form the cycle on 4 vertices such that every player buys exactly one
edge. Thus, the following proposition completes our characterization of strong
equilibria for α ∈ (1, 2).

Proposition 1. Let α ∈ (1, 2) and let s ∈ S. Then: (i) If n = 3, strategy profile
s is a strong equilibrium if and only if s is rational and G(s) is a 3-star. (ii)
If n = 4, strategy profile s is a strong equilibrium if and only if s is rational,
|si| = 1 for all i, and G(s) is a cycle. (iii) If n ≥ 5, s is not a strong equilibrium.
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Next, we prove the following conjecture of [4].

Theorem 2. Let α ≥ 2 and s ∈ S. If s is rational and G(s) is a star, then s is
a strong equilibrium.

The proof of this theorem relies on two lemmas. The first lemma provide
bounds on the free-riding function of player sets who manage to deviate prof-
itably, while the second lemma bounds the change in the free-riding function for
players who do not deviate.

Lemma 3. Let α ≥ 2 let s ∈ S be a rational strategy profile such that G(s) is
a star. Let K ⊆ [n] be a set of players and let s′ = (s′

K , s−K) be a profitable
deviation for K, i.e., for all i ∈ K, it holds that ci(s′

K , s−K) < ci(s). Then
for every i ∈ K such that degG(s)(i) = 1 it holds that f(s′, i) > f(s, i) and
f(s′, i) − f(s, i) ≥ |s′

i| − |si| + 1.

Lemma 4. Let α ≥ 2 and let s ∈ S be a rational strategy profile such that
G(s) is a star. Let K ⊆ [n] be a player set and s′ = (s′

K , s−K) be a strategy
profile that decreases the costs of all members of K. Then

∑
j∈[n]\K f(s′, j) −

f(s, j) > −|K|. Moreover, if K contains a vertex i such that degG(s)(i) > 1 then∑
j∈[n]\K f(s′, j) − f(s, j) ≥ 0.

Proof of Theorem 2. Let s ∈ S be a strategy profile that is rational such that
G(s) is a star. It is easy to see that s is a Nash equilibrium (see also [15]). Suppose
that K ∈ [n] and s′ ∈ SK are such that strategy profile s′ = (s′

K , s−K) decreases
the costs of all players in K. Let k = |K|, we have two cases to consider.

If degG(s)(i) = 1 for all i ∈ K, then
∑

i∈K(f(s′, i) − f(s, i)) ≥ k +∑
i∈K(|s′

i|−|si|) = k+
∑

i∈[n](|s′
i|−|si|) = k+

∑
i∈[n](f(s′, i)−f(s, i)), where the

inequality follows from Lemma 3 and the last equality follows from (2). Hence∑
i∈[n]\K f(s′, i) − f(s, i) ≤ −k, which is the contradiction with Lemma 4.
If K contains the center vertex i (i.e., the vertex for which degG(s)(i) > 1),

then
∑

j∈K\{i}(f(s′, j) − f(s, j)) ≥ (k − 1) +
∑

j∈K\{i}(|s′
j | − |sj |) = (k − 1) +

∑
j∈[n](|s′

j |−|sj |)−(|s′
i|−|si|) = (k−1)+

∑
j∈[n] (f(s′, j) − f(s, j))−(|s′

i|−|si|),
where again the inequality follows from Lemma 3 and the last equality follows
from (2).

Since i is a central vertex, we have cd
i (s

′) ≥ cd
i (s). Moreover, i ∈ K, hence

ci(s′) < ci(s). This implies that cb
i (s

′) < cb
i (s) or equivalently |s′

i| < |si|. So∑
j∈K\{i}(f(s′, j)−f(s, j)) ≥ k+

∑
j∈[n](f(s′, j)−f(s, j)). Thus: −k ≥ ∑

j∈[n]\K

(f(s′, j)−f(s, j))+(f(s′, i)−f(s, i)) ≥ f(s′, i)−f(s, i), where the last inequality
follows from Lemma 4. On the other hand we have f(s′, i) − f(s, i) ≥ −(k − 1),
since the change from s to s′ could have removed at most k − 1 edges going to
player i, which is a contradiction.

Next, for α > 2, we present a family of strong equilibria none of which forms
a star. The graphs resulting from these strong equilibria are trees of diameter 4.
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Example 1. Our examples are paramatrized by two values A ∈ N, A ≥ 4 and
k ∈ N. Let α ≥ 2n, and let n = Ak + 2. In the following strategy profile s the
only players who buy edges are 1, . . . , A−1 and n, i.e., for all i ∈ [n], A ≤ i < n,
it holds that si = ∅. We denote player n by R. The total number of edges
bought by players {1, . . . , A − 1, R} is n − 1 = Ak + 1 such that G(s) is a tree.
L1 = {A,A + 1, . . . , (A − 1)k} and L2 = {(A − 1)k + 1, . . . , n − 1} denote the
remaining k + 1 players who do not buy edges. The strategy sets are defined as
follows: Player R buys edges to L2. Each player in [A − 1] buys an edge to k − 1
players of L1 in such a way that the degree in G(s) equals 1 for every player in
L1. Moreover, each player in [A − 1] buys an edge to R. Thus, each player in
{1, . . . , A − 1} buys k edges, R buys k + 1 edges, and all the remaining players
(i.e., in L1 and L2) buy no edges and are leaves in G(s). Figure 1 depicts this
strategy profile.

Fig. 1. Depiction of the graph G(s) formed by the strong equilibrium s. The graph
G(s) is a is a tree of diameter 4. Strategy profile s is a strong equilibrium for α ≥ 2n
and n = A·k+2 where A ∈ N, A ≥ 4 is the number of players that buy edges and k ∈ N.
One player (called R) buys k + 1 edges to leaves. The remaining A − 1 players (that
buy edges) each buy k − 1 edges to leaves and one edge to R. In the depicted instance
of the example we have: A = 5, k = 4, L1 = {5, 6, . . . , 16}, L2 = {17, 18, . . . , 21} and
the set of players buying edges is {1, . . . , 4} ∪ {R}.

Despite that s is relatively easy to define, establishing that s is a strong
equilibrium is challenging.

Theorem 3. If α ≥ 2n, strategy profile s forms a (non-star) tree and is a strong
equilibrium.

Proof. In s, there are four different types of node: The root R, the players
1 . . . , A − 1, the leaves L1, and the leaves L2. The distance costs for each of
these types are as follows.
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cd
i (s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2n − A − k − 2 if i = R (3a)
3n − A − 3k − 2 if i ∈ [A − 1] (3b)
3n − A − k − 4 if i ∈ L2 (3c)
4n − A − 3k − 4 if i ∈ L1 (3d)

Proposition 2. Let s ∈ S. For all i ∈ [n], cd
i (s) ≥= 2n − 2 − degG(s)(i).

To show that s is a strong equilibrium, suppose for contradiction that K ⊆ [n]
and s′

K ∈ SK are such that in s′ = (s′
K , s−K) it holds that ci(s′) < ci(s) for all

i ∈ K. Under this assumption, using (3a − 3d), we show that no player in K
buys more edges under s′ than it does under s.

Lemma 5. For all i ∈ K, it holds that |s′
i| ≤ |si|.

The proofs of this lemma and the following lemma are omitted. Since G(s)
is a tree, it has the minimum number of edges among all connected graphs.
Combining this with the lemma above yields that every player buys in s′ exactly
as many edges as in s.

Corollary 1. Graph G(s′) is a tree, and for all i ∈ [n], it holds that |s′
i| = |si|.

Lemma 6. Player R is not in K.

Denote by LK = {j ∈ L1 | ∃i ∈ K : j ∈ si} the leaves in L1 that are directly
connected to a player in K in G(s). Let CR be the players in the connected
component of G(∅, s−K) containing R. Let i ∈ argi′ max{dG(s′)(i′, CR) : i′ ∈ K}
be a player in K that has the highest distance to CR among all players in K.

Lemma 7. The distance dG(s′)(i, CR) of i to CR in G(s′) is as least 2.

In s, the distance from i to CR is 1. As CR contains at least k + 2 vertices,
by deviating from s to s′ the distance increase of player i to CR is at least k +1.
We complete the proof of Theorem 3 by showing that by deviating from s to s′,
the distance decrease of player i to the players of [n] \CR does not exceed k +1.
This is sufficient, as it implies that ci(s′) ≥ ci(s) which contradicts that i ∈ K.
To see this, observe that in G(s) player i has in his neighborhood at most one
player in K. If in G(s′) there are two or more players in K in i’s neighborhood,
then one of them is further away from CR than i (contradicting the definition
of i), or there is a cycle in G(s′) (contradicting Corollary 1). Let us separately
compute the distance improvement to nodes in LK and to nodes in K:

– In G(s), the distance from i to all |K| − 1 players in K is 2. In G(s′) the
distance from i to at most one player in K is 1, while at least K − 2 player
are at distance 2 from i. Therefore, the total decrease in distance from i to
players in K is at most 1.
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– In G(s), there are k−1 players of LK at distance 1 from i, and the remaining
|LK |−k+1 players of LK are at distance 3 from i. In G(s′) there are at most
k players at distance 1 from i, there are at most k − 1 players at distance 2
from i (since the unique player i′ of K that is directly connected to i (and
buys the edge (i′, i)) has at most k − 1 connections to LK). Hence at least
|LK | − 2k + 1 players of LK are at distance 3 from i. Therefore, the total
decrease in distance from i to players in LK is at most (k − 1) + (3|LK | −
3k + 3) − k − (2k − 2) − (3|LK | − 6k + 3) = k + 1.

It follows that by deviating from s to s′, the maximum possible distance improve-
ment for i to players in [n] \ CR is k + 2, while the distance to at least k + 2
vertices of CR increases by 1. As |s′

i| = |si| by Corollary 1, the building cost
of i is not affected by the deviation, so the deviation is not profitable for i; a
contradiction.

5 Bounds on the Strong Price of Anarchy

In this section we analyze the strong price of anarchy of network creation games.
First, for α < 2, we provide exact expressions on the strong price of anarchy using
the various insights of Sect. 4. Subsequently, for higher values of α, we provide
a sequence of examples that converges to a price of anarchy of 3/2. This shows
that the strong price of anarchy of the complete class of network creation games
must lie in the interval [3/2, 2], due to the upper bound of 2 established in [4]. It
is trivial that for α ∈ (0, 1), the strong price of anarchy is 1. This holds because
any rational strategy profile that forms the complete graph minimizes the social
cost. The picture turns out to be relatively complex for α = 1.

Theorem 4. For α = 1, the strong price of anarchy is 10/9 if n ∈ {3, 4}, and
the strong price of anarchy is (3n + 2)/3n if n ≥ 5.

Proof. By Theorem 1, for α = 1 a strategy profile s is a strong equilibrium
always if and only if it is rational and forms a graph of diameter at most 2 that
is the complement of a forest. This means that vertices connected by an edge
are distance 1 apart, and vertices not connected by an edge are distance 2 apart.
A forest F has at most n−1 edges, so we obtain the following bound on the social
cost of a strong equilibrium: α(n(n − 1)/2 − |F |) + 2(2|F | + n(n − 1)/2 − |F |) =
3n(n − 1)/2 + |F | ≤ 3n(n − 1)/2 + (n − 1). This bound is achieved for n ≥ 5
by taking for F any Hamiltonian path. Thus for α = 1 and n ≥ 5, given that
the social optimum forms a complete graph, we obtain that the strong price of
anarchy is (3n(n−1)/2+(n−1))/(3n(n−1)/2) = (3n(n−1)+2(n−1))(3n(n−
1)) = 3n+2/3n. For n = 4, the maximum size forest (such that the complement
of it has diameter 2) has only 2 edges, and for n = 3 it has only 1 edge. Therefore,
the strong price of anarchy for α = 1 and n ∈ {3, 4} equals 10/9.

For α ∈ (1, 2), there exists no strong equilibrium if n ≥ 5 (see [4]). Therefore,
it remains to derive the strong equilibria for α ∈ (1, 2) and n ∈ {3, 4}.
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Proposition 3. For α ∈ (1, 2) the strong price of anarchy is (2α + 8)/(3α + 6)
if n = 3, and the strong price of anarchy is (4α + 16)/(6α + 12) if n = 4.

For α > 2 it seems very challenging to prove precise bounds on the strong
price of anarchy. However, it is known that for α ≥ 2 the strong price of anarchy
is at most 2 [4]. We now complement this bound by showing that for Example 1
(given in Sect. 4), the strong price of anarchy is at least 3/2.

Theorem 5. The price of anarchy of network creation games is at least 3/2.

Proof. Let x ≥ 4 and consider the strong equilibrium s given in Example 1,
for α = 2n and k = A = x. The players in L1 each have a distance cost of
4n−4−A−3k = 4x2+4−x−3x. Since |L1| = (A−1)(k−1) = x2−2x+1 the total
distance cost of s is at least 4x4−12x3+16x2−12x+4. Moreover, G(s) is a tree,
so the total building cost of s equals (n−1)α = (Ak+1)2(Ak+2) = 2x4+6x2+4.
Therefore, the social cost of s satisfies C(s) ≥ 6x4 − 12x3 + 22x2 − 12x + 4.

For α ≥ 2, the social optimum forms an n-star. Thus, the optimal social cost
is (n − 1)α + 2(n − 1)2 = 2n(n − 1) + 2(n − 1)2 ≤ 4n(n − 1) = 4x4 + 12x2 + 8
Combining these two bounds and taking x to infinity, we obtain that the strong
price of anarchy is at least limx→∞(6x4−12x3+22x2−12x+4)/(4x4+12x2+8) =
3/2.

6 Convergence of Coalitional Improvement Dynamics

In this section we study the c-FIP and coalitional weak acyclicity of network
creation games. On the positive side, c-weak acyclicity holds for α ∈ (0, 2)1 and
for all α ≤ n/2 in case the starting strategy profile forms a tree. On the other
hand, our negative results encompass that the c-FIP is not satisfied for any α.2

First, running best response dynamics on a network creation game ends up in a
pure Nash equilibrium.

Lemma 8. For α < 1, every network creation game has the FBRP.

From Lemma 8 and the fact that Nash equilibria and strong equilibria coin-
cide for α < 1 (as we also pointed out in Sect. 4), we obtain as a corollary that
for α < 1, every network creation game is c-weakly acyclic. For α = 1 we can
also show weak acyclicity and c-weak acyclicity.

Lemma 9. For α = 1, every network creation game is weakly acyclic and c-
weakly acyclic.

We may also prove that for α ∈ (1, 2) and n ∈ {3, 4}, network creation games
are c-weakly acyclic. (Recall that for α ∈ (1, 2) and n ≥ 5, strong equilibria do
not exist.)
1 Except for α ∈ (1, 2) and n ≥ 5, in which case we know that strong equilibria do not

exist.
2 An exception to this is that we can prove that the coalitional finite improvement

property is satisfied for the very special case that α > 1 and n = 3.
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Proposition 4. For α > 1 and n = 3 network creation games have the c-FIP.
For α ∈ (1, 2) and n = 4, network creation games are c-weakly acyclic.

For α ≤ n/2 we can show that c-weak acyclicity is satisfied as long as our
starting strategy profile forms a tree. This result relies on the following lemma
about centroid vertices of trees.

Lemma 10. Let T = (V,E) be a tree, and let v ∈ V be a centroid vertex of T .
It holds that max{|Vi| : (Vi, Ei) ∈ CT−v} ≤ (1/2)|V |.
Lemma 11. For α ∈ (1, n/2), let s ∈ S be such that G(s) is a tree. Then
there exists an improvement path resulting in a strong equilibrium. Hence, every
network creation game is weakly acyclic and c-weakly acyclic with respect to
trees.

Proof. Let s ∈ S and suppose G(s) is a tree. Let v ∈ [n] be a centroid vertex of
G(s). Consider the following sequence of deviations. If there is a player i such
that dG(s)(i, v) ≥ 2, then s′

i = si ∪ {v} and s′ = (s′
i, s−i). Repeat this step

with s = s′ until dG(s)(i, v) = 1 for all i ∈ V \ {v}. Observe that since v is
a centroid vertex of G(s), by Lemma 10, player i decreases the distance to at
least n/2 players by at least 1 by buying an edge to v. This exceeds the cost
of α, hence this deviation is profitable. Otherwise, if there is no player i such
that dG(s)(i, v) ≥ 2, and G(s) is not a star, then there are players i, j ∈ [n] such
that i 	= v, j 	= v and j ∈ si, then let s′

i = si \ {j}. Repeat this step until G(s)
is a star. Observe that player i is better off by the strategy change. She saves
α > 1 in her building cost and her distance cost increases by only 1, since for
each player not in i’s neighborhood there is a shortest path through v. Hence
the only loss is the distance increase between i and j. If s is rational after this
sequence of deviations, then we have reached a strong equilibrium by Theorem 2.
Otherwise there are i, j such that i ∈ sj and j ∈ si. We set s′

i = si \ {j} and
repeat this step until we reach a rational s.

However, we may show that in general, network creation games do not have
the c-FIP, regardless of the choice of α.

Theorem 6. For every α there exists a number of players n such that network
creation game (n, α) does not have the c-FIP.

This above theorem is proved by providing examples for α < 1, α = 1, α ∈
(1, 2), and α = 2 separately. For α > 2, the example in Theorem 1 of [9] implies
that network creation games are not potential games. Hence they do not possess
the FIP and the c-FIP for this range of α.
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Abstract. Social choice is a normative study of designing protocols for
collective decision making. However, in instances where the underlying
decision space is too large or complex for ordinal voting, standard vot-
ing methods may be impractical. How then can we design a protocol
- preferably decentralized, simple, scalable, and not requiring any spe-
cial knowledge of the decision space - to reach consensus? We propose
sequential deliberation as a natural solution to this problem. In this iter-
ative method, successive pairs of agents bargain over the decision space
using the previous decision as a disagreement alternative. We show that
sequential deliberation finds a 1.208-approximation to the optimal social
cost when the space of preferences define a median graph, coming very
close to this value with only a small constant number of agents sampled
from the population. We also give lower bounds on simpler classes of
mechanisms to justify our design choices. We further show that sequen-
tial deliberation is ex-post Pareto efficient and has truthful reporting as
an equilibrium of the induced extensive form game. Finally, we prove
that for general metric spaces, the first and second moment of the distri-
bution of social cost of the outcomes produced by sequential deliberation
are also bounded by constants.

1 Introduction

Suppose a university administrator plans to spend millions of dollars to update
her campus, and she wants to elicit the input of students, staff, and faculty.
In a typical social choice setting, she could first elicit the bliss points of the
students, say “new gym,” “new library,” and “new student center.” However,
voting on these options need not find the social optimum, because it is not clear
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that the social optimum is even on the ballot. In such a setting, deliberation
between individuals would find entirely new alternatives, for example “replace
gym equipment plus remodeling campus dining plus money for scholarship.”
This leads to finding a social optimum over a wider space of semi-structured
outcomes that the system/mechanism designer was not originally aware of, and
the participants had not initially articulated.

We therefore start with the following premise: The mechanism designer may
not be able to enumerate the outcomes in the decision space or know their
structure, and this decision space may be too big for most ordinal voting schemes.
(For instance, ordinal voting is difficult to implement in complex combinatorial
spaces [25] or in continuous spaces [15].) However, we assume that agents can
still reason about their preferences and small groups of agents can negotiate
over this space and collaboratively propose outcomes that appeal to all of them.
Our goal is to design protocols based on such a primitive by which small group
negotiation can lead to an aggregation of societal preferences without a need to
formally articulate the entire decision space and without every agent having to
report ordinal rankings over this space.

The need for small groups is motivated by a practical consideration as well
as a theoretical one. On the practical side, there is no online platform, to the
best of our knowledge, that has a successful history of large scale deliberation
and decision making on complex issues; in fact, large online forums typically
degenerate into vitriol and name calling when there is substantive disagreement
among the participants. Thus, if we are to develop practical tools for decision
making at scale, a sequence of small group deliberations appears to be the most
plausible path. On the theoretical side, we understand the connections between
sequential protocols for deliberation and axiomatic theories of bargaining for
small groups, e.g. for pairs [8,34], but not for large groups, and we seek to
bridge this gap.

Summary of Contributions. Our main contributions are two-fold:

– A simple and practical sequential protocol that only requires agents to nego-
tiate in pairs and propose outcomes that appeal to both agents.

– A canonical analytic model in which we can precisely state properties of this
protocol in terms of approximation of the social optimum, Pareto-efficiency,
and incentive-compatibility, as well as compare it with simpler protocols.

1.1 Background: Bargaining Theory

Before proceeding further, we review bargaining, the classical framework for two-
player negotiation in Economics. Two-person bargaining, as framed in [29], is a
game wherein there is a disagreement outcome and two agents must cooperate to
reach a decision; failure to cooperate results in the adoption of the disagreement
outcome. Nash postulated four axioms that the bargaining solution ought to
satisfy assuming a convex space of alternatives: Pareto optimality (agents find an
outcome that cannot be simultaneously improved for both of them), symmetry
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between agents, invariance with respect to affine transformations of utility (scalar
multiplication or additive translation of any agent’s utility should not change
the outcome), and independence of irrelevant alternatives (informally that the
presence of a feasible outcome that agents do not select does not influence their
decision). Nash proved that the solution maximizing the Nash product (that we
describe later) is the unique solution satisfying these axioms. To provide some
explanation of how two agents might find such a solution, [34] shows that Nash’s
solution is the subgame perfect equilibrium of a simple repeated game on the
two agents, where the agents take turns making offers, and at each round, there
is an exogenous probability of the process terminating with no agreement.

The two-person bargaining model is therefore clean and easy to reason about.
As a consequence, it has been extensively studied. In fact, there are other models
and solutions to two-person bargaining, each with a slightly different axiomati-
zation [21,22,28], as well as several experimental studies [7,30,33]. In a social
choice setting, there are typically many more than two agents, each agent hav-
ing their own complex preferences. Though bargaining can be generalized to n
agents with similar axiomatization and solution structure, such a generalization
is considered impractical. This is because in reality it is difficult to get a large
number of individuals to negotiate coherently; complexities come with the for-
mation of coalitions and power structures [19,24]. Any model for simultaneous
bargaining, even with three players [6], needs to take these messy aspects into
account.

1.2 A Practical Compromise: Sequential Pairwise Deliberation

In this paper, we take a middle path, avoiding both the complexity of explic-
itly specifying preferences in a large decision space that any individual agent
may not even fully know (fully centralized voting), and that of simultaneous
n-person bargaining (a fully decentralized cooperative game). We term this app-
roach sequential deliberation. We use 2-person bargaining as a basic primitive,
and view deliberation as a sequence of pairwise interactions that refine good
alternatives into better ones as time goes by.

More formally, there is a decision space S of feasible alternatives (these may
be projects, sets of projects, or continuous allocations) and a set N of agents.
We assume each agent has a hidden cardinal utility for each alternative. We
encapsulate deliberation as a sequential process. The framework that we analyze
in the rest of the paper is captured in Fig. 1.

Our framework is simple with low cognitive overhead, and is easy to imple-
ment and reason about. Though we don’t analyze other variants in this paper,
we note that the framework is flexible. For instance, the bargaining step can be
replaced with any function B(u, v, a) that corresponds to an interaction between
u and v using a as the disagreement outcome; we assume that this function max-
imizes the Nash product, that is, it corresponds to the Nash bargaining solution.
Similarly, the last step of social choice could be implemented by a central planner
based on the distribution of outcomes produced.
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1. In each round t = 1, 2, . . . , T :
(a) A pair of agents ut and vt are chosen independently and uniformly at random

with replacement.
(b) These agents are presented with a disagreement alternative at, and perform

bargaining, which is encoded as a function B(u, v, a) as described below.
(c) Agents ut and vt are asked to output a consensus alternative; if they fail to

reach a consensus then the alternative at is output.
(d) Let ot denote the alternative that is output in round t. We set at+1 = ot,

where we assume a1 is the bliss point of an arbitrary agent.
2. The final social choice is aT . Note that this is equivalent to drawing an outcome at

random from the distribution generated by repeating this protocol several times.

Fig. 1. A framework for sequential pairwise deliberation.

1.3 Analytical Model: Median Graphs and Nash Bargaining

The framework in Fig. 1 is well-defined and practical irrespective of an analyt-
ical model. However, we provide a simple analytical model for specifying the
preferences of the agents in which we can precisely quantify the behavior of this
framework as justification.

Median Graphs. We assume that the set S of alternatives are vertices of a
median graph. A median graph has the property that for each triplet of vertices
u, v, w, there is a unique point that is common to the three sets of shortest
paths (since there may be multiple pairwise shortest paths), those between u, v,
between v, w, and between u,w. This point is the unique median of u, v, w. We
assume each agent u has a bliss point pu ∈ S, and his disutility for an alternative
a ∈ S is simply d(pu, a), where d(·) is the shortest path distance function on
the median graph. (Note that this disutility can have an agent-dependent scale
factor.) Several natural graphs are median graphs, including trees, points on the
line, hypercubes, and grid graphs in arbitrary dimensions [23]. As we discuss
in Sect. 1.5, because of their analytic tractability and special properties, median
graphs have been extensively studied as structured models for spatial preferences
in voting theory. Some of our results generalize to metric spaces beyond median
graphs; see Sect. 5.

Nash Bargaining. The model for two-person bargaining is simply the classical
Nash bargaining solution described before. Given a disagreement alternative a,
agents u and v choose that alternative o ∈ S that maximizes:

Nash product = (d(pu, a) − d(pu, o)) × (d(pv, a) − d(pv, o))

subject to individual rationality, that is, d(pv, o) ≤ d(pv, a) and d(pu, o) ≤
d(pu, a). The Nash product maximizer need not be unique; in the case of ties
we postulate that agents select the outcome that is closest to the disagreement
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outcome. As mentioned before, the Nash product is a widely studied axiomatic
notion of pairwise interactions, and is therefore a natural solution concept in our
framework.

Social Cost and Distortion. The social cost of an alternative a ∈ S is given
by SC(a) =

∑
u∈N d(pu, a). Let a∗ ∈ S be the minimizer of social cost, i.e., the

generalized median. We measure the Distortion of outcome a as

Distortion(a) =
SC(a)
SC(a∗)

(1)

where we use the expected social cost if a is the outcome of a randomized algo-
rithm. Note that our model is fairly general in that the bliss points of the agents
in N form an arbitrary subset of S. Assuming that disutility is some metric over
the space follows recent literature [2,3,9,10,17], and our tightest results are for
median graphs specifically.

1.4 Our Results

Before presenting our results, we re-emphasize that while we present analytical
results for sequential deliberation in specific decision spaces, the framework in
Fig. 1 is well defined regardless of the underlying decision space and the media-
tor’s understanding of the space. At a high level, this flexibility and generality
in practice are its key advantages.

Bounding Distortion. Our main result is in Sect. 3, and shows that for sequen-
tial Nash bargaining on a median graph, the expected Distortion of outcome aT

has an upper bound approaching 1.208 as T → ∞. Surprisingly, we show that
in T = log2

1
ε + 2.575 steps, the expected Distortion is at most 1.208 + ε, inde-

pendent of the number of agents, the size of the median space, and the initial
disagreement point a1. For instance, the Distortion falls below 1.22 in at most 9
steps of deliberation, which only requires a random sample of at most 20 agents
from the population to implement.

In Sect. 3.2, we ask: How good is our numerical bound? We present a sequence
of lower bounds for social choice mechanisms that are allowed to use increasingly
richer information about the space of alternatives on the median graph. This also
leads us to make qualitative statements about our deliberation scheme.

– We show that any social choice mechanism that is restricted to choosing the
bliss point of some agent cannot have Distortion better than 2. More generally,
it was recently shown [18] that even eliciting the top k alternatives for each
agent does not improve the bound of 2 for median graphs unless k = Ω(|S|).

– Next consider mechanisms that choose, for some triplet (u, v, w) of agents
with bliss points pu, pv, pw, the median outcome muvw = B(u, v, pw). We show
this has Distortion at least 1.316, which means that sequential deliberation is
superior to one-shot deliberation that outputs o1 where a1 is the bliss point
of some agent.
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– Finally, for every pair of agents (u, v), consider the set of alternatives on
a shortest path between pu and pv. This encodes all deliberation schemes
where B finds a Pareto-efficient alternative for some 2 agents at each step.
We show that any such mechanisms has Distortion ratio at least 9/8 = 1.125.
This space of mechanisms captures sequential deliberation, and shows that
sequential deliberation is close to best possible within this space.

Properties of Sequential Deliberation. We next show that sequential delib-
eration has several natural desiderata on median graphs in Sect. 4. In particular:

– Under mild assumptions, the limiting distribution over outcomes of sequential
deliberation is unique.

– For every T ≥ 1, the outcome oT of sequential deliberation is ex-post Pareto-
efficient, meaning that there is no other alternative that has at most that
social cost for all agents and strictly better cost for one agent. This is not a
priori obvious, since the outcome at any one round only uses inputs from two
agents.

– Interpreted as a mechanism, truthful play is a sub-game perfect Nash equilib-
rium of sequential deliberation. This interpretation is made precise in Sect. 4,
but at a high level, we seek to address the following concern: In a sequential
setting, would any agent have incentive to misrepresent their preferences so
that they gain an advantage?

Beyond Median Graphs. In Sect. 5, we consider general metric spaces. We
show that the Distortion of sequential deliberation is always at most a factor of 3.
More surprisingly, we show that sequential deliberation has constant distortion
even for the second moment of the distribution of social cost of the outcomes,
i.e., the latter is at most a constant factor worse than the optimum squared
social cost. The practical implication is that one can look at the distribution
of outcomes produced by deliberation and know that the standard deviation in
social cost is comparable to its expected value.1

1.5 Related Work

While the real world complexities of the model are beyond the analytic confines
of this work, deliberation as an important component of collective decision mak-
ing and democracy is studied in political science. For examples (by no means
exhaustive), see [14,37]. There is ongoing related work on Distortion of vot-
ing for simple analytical models like points in R [13], and in general metric
spaces [2,3,9,10,17]. This work focuses on optimally aggregating ordinal prefer-
ences, say the top k preferences of a voter [18]. In contrast, our scheme elicits
alternatives as the outcome of bargaining rounds that require agents to reason

1 See also recent work by [38] that considers minimizing the variance of randomized
truthful mechanisms.
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about cardinal preferences. We essentially show that for median graphs, unless
k is very large, such deliberation has provably lower distortion than social choice
schemes that elicit purely ordinal rankings.

Median graphs and their ordinal generalization, median spaces, have been
extensively studied in social choice. The special cases of trees and grids have
been studied as structured models for voter preferences [5,36]. For general
median spaces, the Condorcet winner (an alternative that pairwise beats any
other alternative in terms of voter preferences) is related to the generalized
median [4,35,39] – if the former exists, it coincides with the latter. Nehring and
Puppe [31] show that any single-peaked domain which admits a non-dictatorial
and neutral strategy-proof social choice function is a median space. Clearwater
et al. [11] also showed that any set of voters and alternatives on a median graph
will have a Condorcet winner. In a sense, these are the largest class of structured
preferences where ordinal voting over the entire space of alternatives leads to a
“clear winner” (importantly, we assume this is impractical).

Our paper is inspired by the triadic consensus results of Goel and Lee [16],
where the authors also focus on small group interactions to make a collective
decision. The authors show that the Distortion of their protocol approaches 1
on median graphs. However, the protocol crucially assumes individuals know the
positions of other individuals, and requires the space of alternatives to coincide
with the space of individuals. We make neither of these assumptions – in our
case, the space of alternatives can be much larger than the number of agents,
and individuals interact with others only via bargaining. This makes our protocol
more practical, but restricts our Distortion to be bounded away from 1.

The notion of democratic equilibrium [15,20] considers social choice mecha-
nisms in continuous spaces where individual agents with complex utility func-
tions perform update steps inspired by gradient descent. However, these schemes
do not involve deliberation between agents and have little formal analysis of
convergence. Several works have considered iterative voting where the current
alternative is put to vote against one proposed by different random agent cho-
sen each step [1,26,32], or other related schemes [27]. In contrast with our work,
these protocols are not deliberative and require voting among several agents each
step; furthermore, the analysis focuses on convergence to an equilibrium instead
of welfare or efficiency guarantees.

2 Median Graphs and Nash Bargaining

In this section we will use the notation N for a set of agents, S for the space of
feasible alternatives, and H for a distribution over S. Most of our results are for
the analytic model given earlier wherein the set S of alternatives are vertices of
a median graph. All proofs are given in the full version of the paper [12].

Definition 1. A median graph G(S, E) is an unweighted and undirected graph
with the following property: For each triplet of vertices u, v, w ∈ S ×S ×S, there
is a unique point that is common to the shortest paths (which need not be unique
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between a given pair) between u, v, between v, w, and between u,w. This point is
the unique median of u, v, w.

In the framework of Fig. 1, we assume that at every step, two agents perform
Nash bargaining with a disagreement alternative. The first results characterize
Nash bargaining on a median graph. In particular, we show that Nash bargaining
at each step will select the median of bliss points of the two agents and the
disagreement alternative. After that, we show that we can analyze the Distortion
of sequential deliberation on a median graph by looking at the embedding of that
graph onto the hypercube.

Lemma 1. For any median graph G = (S, E), any two agents u, v with bliss
points pu, pv ∈ S, and any disagreement outcome a ∈ S, let M be the median.
Then M maximizes the Nash product of u and v given a, and is the maximizer
closest to a.

Hypercube Embeddings. For any median graph G = (S, E), there is an
isometric embedding φ: G → Q of G into a hypercube Q [23]. This embedding
maps vertices S into a subset of vertices of Q so that all pairwise distances
between vertices in S are preserved by the embedding. A simple example of this
embedding for a tree is shown in Fig. 2. We use this embedding to show the
following result, in order to simplify subsequent analysis.

Fig. 2. The hypercube embedding of a 4-vertex star graph

Lemma 2. Let G(S, E) be a median graph, and let φ be its isometric embedding
into hypercube Q(V,E′). For any three points t, u, v ∈ S, let MG be the median
of vertices t, u, v and let MQ be the median of vertices φ(t), φ(u), φ(v) ∈ V . Then
φ(MG) = MQ.

3 The Efficiency of Sequential Deliberation

In this section, we show that the Distortion of sequential deliberation is at most
1.208. We then show that this bound is significant, meaning that mechanisms
from simpler classes are necessarily constrained to have higher Distortion values.
All proofs are given in the full version of the paper [12].
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3.1 Upper Bounding Distortion

Recall the framework for sequential deliberation in Fig. 1 and the definition of
Distortion in Eq. (1). We first map the problem into a problem on hypercubes
using Lemma 2.

Corollary 1. Let G = (S, E) be a median graph, let φ: G → Q be an isometric
embedding of G onto a hypercube Q(V,E′), and let N be a set of agents such
that each agent u has a bliss point pu ∈ S. Then the Distortion of sequential
deliberation on G is at most the Distortion of sequential deliberation on φ(G)
where each agent’s bliss point is φ(pu).

Our main result in this section shows that as t → ∞, the Distortion of sequen-
tial deliberation approaches 1.208, with the convergence rate being exponentially
fast in t and independent of the number of agents |N |, the size of the median
space |S|, and the initial disagreement point a1. In particular, the Distortion is
at most 1.22 in at most 9 steps of deliberation, which is indeed a very small
number of steps.

Theorem 1. Sequential deliberation among a set N of agents, where the deci-
sion space S is a median graph, yields E[Distortion(at)] ≤ 1.208 + 6

2t .

3.2 Lower Bounds on Distortion

We will now show that the Distortion bounds of sequential deliberation are
significant, meaning that mechanisms from simpler classes are constrained to
have higher Distortion values. We present a sequence of lower bounds for social
choice mechanisms that use increasingly rich information about the space of
alternatives on a median graph G = (S, E) with a set of agents N with bliss
points VN ⊆ S. We first consider mechanisms that are constrained to choose
outcomes in VN . For instance, this captures the Random Dictatorship algorithm
that chooses the bliss point of a random agent. It shows that the compromise
alternatives found by deliberation do play a role in reducing Distortion.

Lemma 3. Any mechanism constrained to choose outcomes in VN has Distor-
tion at least 2.

We next consider mechanisms that are restricted to choosing the median of
the bliss points of some three agents in N . This captures sequential deliberation
run for T = 1 steps, as well as mechanisms that generalize dictatorship to an
oligarchy composed of at most 3 agents. This shows that iteratively refining the
bargaining outcome has better Distortion than performing only one iteration.

Lemma 4. Any mechanism constrained to choose outcomes in VN or a median
of three points in VN must have Distortion at least 1.316.

We finally consider a class of mechanisms that includes sequential delibera-
tion as a special case. We show that any mechanism in this class cannot have
Distortion arbitrarily close to 1. This also shows that sequential deliberation is
close to best possible in this class.
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Lemma 5. Any mechanism constrained to choose outcomes on shortest paths
between pairs of outcomes in VN must have Distortion at least 9/8 = 1.125.

The significance of the lower bound in Lemma 5 should be emphasized:
though there is always a Condorcet winner in median graphs, it need not be
any agent’s bliss point, nor does it need to be Pareto optimal for any pair of
agents. The somewhat surprising implication is that any local mechanism (in the
sense that the mechanism chooses locally Pareto optimal points) is constrained
away from finding the Condorcet winner.

4 Properties of Sequential Deliberation

In this section, we study some natural desirable properties for our mechanism:
uniqueness of the stationary distribution of the Markov chain, ex-post Pareto-
efficiency of the final outcome, and subgame perfect Nash equilibrium. All proofs
are given in the full version of the paper [12].

Uniqueness of the Stationary Distribution. We first show that the Markov
chain corresponding to sequential deliberation converges to a unique stationary
distribution on the actual median graph, rather than just showing that the mar-
ginals and thus the expected distances converge.

Theorem 2. The Markov chain defined in Theorem 1 has a unique stationary
distribution.

Pareto-Efficiency. The outcome of sequential deliberation is ex-post Pareto-
efficient on a median graph. In other words, in any realization of the random
process, suppose the final outcome is o; then there is no other alternative a such
that d(a, v) ≤ d(o, v) for every v ∈ N , with at least one inequality being strict.
This is a weak notion of efficiency, but it is not trivial to show; while it is easy
to see that a one shot bargaining mechanism using only bliss points is Pareto
efficient by virtue of the Pareto efficiency of bargaining, sequential deliberation
defines a potentially complicated Markov chain for which many of the outcomes
need not be bliss points themselves.

Theorem 3. Sequential deliberation among a set N of agents, where the deci-
sion space S is a median graph and the initial disagreement point a1 is the bliss
point of some agent, yields an ex-post Pareto Efficient alternative.

Truthfulness of Extensive Forms. Finally, we show that sequential delib-
eration has truth-telling as a sub-game perfect Nash equilibrium in its induced
extensive form game. Towards this end, we formalize a given round of bargain-
ing as a 2-person non-cooperative game between two players who can choose
as a strategy to report any point v on a median graph; the resulting outcome
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is the median of the two strategy points chosen by the players and the dis-
agreement alternative presented. The payoffs to the players are just the utilities
already defined; i.e., the player wishes to minimize the distance from their true
bliss point to the outcome point. Call this game the non-cooperative bargaining
game (NCBG).

The extensive form game tree defined by non-cooperative bargaining consists
of 2T alternating levels: Nature draws two agents at random, then the two agents
play NCBG and the outcome becomes the disagreement alternative for the next
NCBG. The leaves of the tree are a set of points in the median graph; agents
want to minimize their expected distance to the final outcome.

Theorem 4. Sequential NCBG on a median graph has a sub-game perfect Nash
equilibrium where every agent truthfully reports their bliss point at all rounds of
bargaining.

5 General Metric Spaces

We now work in the very general setting that the set S of alternatives are points
in a finite metric space equipped with a distance function d(·) that is a metric.
As before, we assume each agent u ∈ N has a bliss point pu ∈ S. An agent’s
disutility for an alternative a ∈ S is simply d(pu, a). We first present results
for the Distortion, and subsequently define the second moment, or Squared-
Distortion. For both measures, we show that the upper bound for sequential
deliberation is at most a constant regardless of the metric space. All proofs are
given in the full version of the paper [12].

Theorem 5. The Distortion of sequential deliberation is at most 3 when the
space of alternatives and bliss points lies in some metric, and this bound is tight.

The bound of 3 above is quite pessimistic. The metric space employed in the
lower bound is contrived in the following sense: Every pair of agents has some
unique (to that pair) alternative they very slightly prefer to the social optimum.
For structured spaces, we expect the bound to be much better. We have already
shown this for median spaces. In the full version of this paper [12], we provide
more evidence in this direction by considering a structured space motivated by
budgeting applications that is not a median graph. For this space, we show that
sequential deliberation has Distortion at most 4/3.

5.1 Second Moment of Social Cost

We now show that for any metric space, sequential deliberation has a crucial
advantage in terms of the distribution of outcomes it produces. For this, we
consider the second moment, or the expected squared social cost. Recall that
the social cost of an alternative a ∈ S is given by SC(a) =

∑
u∈N d(pu, a). Let

a∗ ∈ S be the minimizer of social cost, i.e., the generalized median. Then define:

Squared-Distortion =
E[(SC(a))2]
(SC(a∗))2
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where the expectation is over the set of outcomes a produced by Sequential Delib-
eration.2 We show that sequential deliberation has Squared-Distortion upper
bounded by a constant. This means the standard deviation in social cost of the
distribution of outcomes is comparable to the optimal social cost. This has a
practical implication: A policy designer can run sequential deliberation for a few
steps, and be sure that the probability of observing an outcome that has γ times
the optimal social cost is at most O(1/γ2). In contrast, Random Dictatorship
(choosing an agent uniformly at random and using her bliss point as the solution)
has unbounded Squared-Distortion, which means its standard deviation in social
cost cannot be bounded. In other words, deliberation between agents eliminates
the outlier agent, and concentrates probability mass on central outcomes.

Theorem 6. The Squared-Distortion of sequential deliberation for T ≥ 1 is at
most 41 when the space of alternatives and bliss points lies in some metric.
Furthermore, the Squared-Distortion of random dictatorship is unbounded.

6 Open Questions

Our work is the first step to developing a theory around practical deliberation
schemes. We suggest several future directions. First, we do not have a general
characterization of the Distortion of sequential deliberation for metric spaces. We
have shown that for general metric spaces there is a small but pessimistic bound
on the Distortion of 3, but that for specific metric spaces the Distortion may be
much lower. We do not have a complete characterization of what separates these
good and bad regimes.

More broadly, an interesting question is extending our work to take opinion
dynamics into account, i.e., proving stronger guarantees if we assume that when
two agents deliberate, each agent’s opinion moves slightly towards the other
agent’s opinion and the outside alternative. Furthermore, though we have shown
that all agents deliberating at the same time does not improve on dictatorship,
it is not clear how to extend our results to more than two agents negotiating
at the same time. This runs into the challenges in understanding and modeling
multiplayer bargaining [6,19,24].

Finally, it would be interesting to conduct experiments to measure the effi-
cacy of our framework on complex, real world social choice scenarios. There are
several practical hurdles that need to be overcome before such a system can
be feasibly deployed. In a related sense, it would be interesting to develop an
axiomatic theory for deliberation, much like that for bargaining [29], and show
that sequential deliberation arises naturally from a set of axioms.

2 The motivation for considering Squared-Distortion instead of the standard deviation
is that the latter might prefer a more deterministic mechanism with a worse social
cost, a problem that the Squared-Distortion avoids.
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Abstract. We study the computation of approximate pure Nash equi-
libria in Shapley value (SV) weighted congestion games, introduced in
[19]. This class of games considers weighted congestion games in which
Shapley values are used as an alternative (to proportional shares) for dis-
tributing the total cost of each resource among its users. We focus on the
interesting subclass of such games with polynomial resource cost func-
tions and present an algorithm that computes approximate pure Nash
equilibria with a polynomial number of strategy updates. Since comput-
ing a single strategy update is hard, we apply sampling techniques which
allow us to achieve polynomial running time. The algorithm builds on
the algorithmic ideas of [7], however, to the best of our knowledge, this
is the first algorithmic result on computation of approximate equilibria
using other than proportional shares as player costs in this setting. We
present a novel relation that approximates the Shapley value of a player
by her proportional share and vice versa. As side results, we upper bound
the approximate price of anarchy of such games and significantly improve
the best known factor for computing approximate pure Nash equilibria
in weighted congestion games of [7].

Keywords: Approximate pure Nash equilibria · Computation
Shapley cost-sharing · Weighted congestion games
Approximate Price of Anarchy

1 Introduction

In many applications the state of a system depends on the behavior of individual
participants that act selfishly in order to minimize their own private cost. Non-
cooperative game theory uses the concept of Nash equilibria as a tool for the
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theoretical analysis of such systems. A Nash equilibrium is a state in which no
participant has an incentive to deviate to another strategy. While mixed Nash
equilibria, i.e., Nash equilibria in randomized strategies, are guaranteed to exist
under mild assumptions on the players’ strategy spaces and the private cost
functions they are often hard to interpret. As a consequence, attention is often
restricted to pure Nash equilibria, i.e., Nash equilibria in deterministic strategies.

Rosenthal [26] introduced a class of games, called congestion games that
models a variety of strategic interactions and is guaranteed to have pure Nash
equilibria. In a congestion game, we are given a finite set of players N and
a finite set of resources E. A strategy of each player i is to choose a subset
of the resources out of a set Pi of subsets of resources allowable to her. In
each strategy profile, each player pays for all used resources where the cost of
a resource e ∈ E is a function ce of the number of players using it. Rosenthal
used an elegant potential function argument to show that iterative improvement
steps by the players converge to a pure Nash equilibrium and hence its existence
is guaranteed.

Note that in congestion games each player using a resource has the same
influence on the cost of this resource. To alleviate this limitation, [10,24] studied
a natural generalization called weighted congestion games in which each player
i has a weight wi and the joint cost of the resource is fe · ce(fe), where fe is the
total weight of players using e. The joint cost of resource e has to be covered
by the set of players Se using it, i.e.,

∑
i∈Se

χie = fe · ce(fe), where χie is the
cost share of player i on resource e. The cost sharing method of the game defines
how exactly the joint cost of a resource is divided into individual cost shares χie.
For weighted congestion games, the most widely studied cost sharing method is
proportional sharing (PS), where the cost share of a player is proportional to
her weight, i.e., χie = wi ·ce(fe). Unfortunately, weighted congestion games with
proportional sharing in general do not admit a pure Nash equilibrium (see [16]
for a characterization).

Kollias and Roughgarden [19] proposed to use the Shapley value (SV) for
sharing the cost of a resource in weighted congestion games. In the Shapley
cost-sharing method, the cost share of a player on a resource is the average
marginal cost increase caused by her over all permutations of the players. Using
the Shapley value restores the existence of a potential function and therefore the
existence of pure Nash equilibria to such games [19].

Potential functions immediately give rise to a simple and natural search pro-
cedure to find an equilibrium by performing iterative improvement steps start-
ing from an arbitrary state. Unfortunately, this process may take exponentially
many steps, even in the simple case of unweighted congestion games1 and lin-
ear cost functions [1]. Moreover, computing a pure Nash equilibrium in these
games is intractable as the problem is PLS-complete [9], even for affine lin-
ear cost functions [1]. This result directly carries over to our game class with
Shapley cost-sharing. Given these intractability results, it is natural to ask for

1 Note that in the unweighted case, proportional sharing and Shapley cost sharing
coincide.
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approximation which is formally captured by the concept of an ρ-approximate
pure Nash equilibrium. This is a state from which no player can improve her cost
by a factor of ρ ≥ 1. Recently, Caragiannis et al. [6] provided an algorithm to
compute ρ-approximate Nash equilibria for unweighted congestion games under
proportional sharing. They also generalised their technique to weighted conges-
tion games [7].

1.1 Our Contributions

We present an algorithm to compute ρ-approximate Nash equilibria in weighted
congestion games under Shapley cost sharing. In games with polynomial cost
functions of degree at most d, our algorithm achieves an approximation factor
asymptotically close to

(
d

ln 2

)d · poly(d). Similar to [7] our algorithm computes a
sequence of improvement steps of polynomial length that yields a ρ-approximate
Nash equilibrium. Hence, our algorithm performs only a polynomial number of
strategy updates. We show that our algorithm can also be used to compute
ρ-approximate pure Nash equilibria for weighted congestion games with pro-
portional sharing which improves the approximation factor of d2·d+o(d) in [7] to
(

d
ln 2

)d · poly(d).
We note that our method does not immediately yield an algorithm with

polynomial running time since computing the Shapley cost share of a player
and hence an improvement step is computationally hard. However, we show
that there is a polynomial-time randomized approximation scheme that can be
used instead. This results in a randomized polynomial time algorithm that com-
putes a strategy profile that is an approximate pure Nash equilibrium with high
probability.

In the course of the analysis we exhibit an interesting relation between the
Shapley cost share of a player and her proportional share. In the case of polyno-
mial cost functions with constant degree, each of them can be approximated by
the other within a constant factor. This insight leads to an alternative proof to
[15] for the existence of approximate pure Nash equilibria in weighted congestion
games with proportional cost sharing.

Finally, we derive bounds on the approximate Price of Anarchy which may be
of independent interest as they allow to bound the inefficiency of approximately
stable states.

1.2 Further Related Work

Congestion games have been introduced by Rosenthal [26] who proved the exis-
tence of pure Nash equilibria by an exact potential function. Games admitting
a potential function are called potential games and each potential game is iso-
morphic to a congestion game [25]. Weighted congestion games were introduced
by Milchtaich [24] and studied by Fotakis et al. [10]. Based on the Shapley value
[17], the class of weighted congestion games using Shapley values (instead of
proportional shares) was introduced by [19] and it was shown that such games
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are potential games. [14] extends this result by proving that a weighted generali-
sation of Shapley values is the only method that guarantee pure Nash equilibria.
In contrast, proportional sharing does not guarantee existence of equilibria in
general [16]. Further research focuses on the quality of equilibria, measured by
the Price of Anarchy (PoA) [20]. For proportional sharing, Aland et al. [3] show
tight bounds on the PoA. Gkatzelis et al. [13] show that, among all cost-sharing
methods that guarantee existence of pure Nash equilibria, Shapley values min-
imise the worst PoA. Furthermore, tight bounds on PoA for general cost-sharing
methods were given [11]. For the extended model with non-anonymous costs
by using set functions it was also shown that Shapley cost-sharing is the best
method and tight results are given [18,27].

Computing a pure Nash equilibrium for congestion games was shown to be
PLS-complete [9] even for games with linear cost function [1] or games with only
three players [2]. Chien and Sinclair [8] study the convergence towards (1 + ε)-
approximate pure Nash equilibria in symmetric congestion games in polynomial
time under a mild assumption on the cost functions. In contrast, Skopalik and
Vöcking show that this result cannot be generalized to asymmetric games and
that computing a ρ-approximate pure Nash equilibrium is PLS-hard in gen-
eral [28]. Caragiannis et al. [6] give an algorithm which computes an (2 + ε)-
approximate equilibrium for linear cost functions and an dO(d)-approximate
equilibrium for polynomial cost functions with degree of d. Weighted conges-
tion games with proportional sharing do not posses pure Nash equilibria in
general [10]. However, the existence of d + 1-approximate equilibria for polyno-
mial cost functions and 3

2 -approximate equilibria for concave cost functions was
shown [15] and Caragiannis et al. [7] present an algorithm for weighted congestion
games and proportional sharing that computes 3+

√
5

2 + ε-approximate equilibria
for linear cost functions and d2d+o(d)-approximate equilibria for polynomial cost
functions.

The computation of approximate equilibria requires the computation of
Shapley values. In general, the exact computation is too complex. Mann and
Shapley [23] suggest a sampling algorithm which was later analyzed by Bachrach
et al. [5] for simple coalitional games and by Aziz and de Keijzer [4] for match-
ing games. Finally, Liben-Nowell et al. [21] and Maleki [22] consider cooperative
games with supermodular functions which correspond to our class.

2 Our Model

A weighted congestion game is defined as G = (N,E, (wi)i∈N , (Pi)i∈N , (ce)e∈E),
where N is the set of players, E the set of resources, wi is the positive weight
of player i,Pi ⊆ 2E the strategy set of player i and ce the cost function of
resource e (drawn from a set C of allowable cost functions). In this work, C
is the set of polynomial functions with maximum degree d and non-negative
coefficients. The set of outcomes of this game is given by P = P1 × · · · × Pn,
for an outcome, we write P = (P1, . . . , Pn) ∈ P, where Pi ∈ Pi. Let (P−i, P

′
i )

be the outcome that results when player i changes her strategy from Pi to P ′
i
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and let (PA, P ′
N\A) be the outcome that results when players i ∈ A play their

strategies in P and players i ∈ N \ A the strategies in P ′. The set of users
of resource e is defined by Se(P ) = {i : e ∈ Pi} and the total weight on e
by fe(P ) =

∑
i∈Se(P ) wi. Furthermore, let SA

e (P ) = {i ∈ A : e ∈ Pi} and
fA

e (P ) =
∑

i∈SA
e (P ) wi be variants of these definitions with a restricted player

set A ⊆ N . The Shapley cost of a player i on a resource e is given as a function of
the player’s identity, the resource’s cost function and her users A, i.e., χe(i, A).
For simplicity, let χie(P ) = χe(i, Se(P )) be an abbreviation if all players are
considered in a state P . Let Ce(x) = x · ce(x). Then, the joint cost on a resource
e is given by Ce(fe(P )) = fe(P ) ·ce(fe(P )) and the costs of players are such that
Ce(fe(P )) =

∑
i∈Se(P ) χie(P ). The total cost of a player i equals the sum of her

costs in the resources she uses, i.e. Xi(P ) =
∑

e∈Pi
χie(P ). The social cost of the

game is given by SC(P ) =
∑

e∈E fe(P ) · ce(fe(P )) =
∑

e∈E

∑
i∈Se(P ) χie(P ) =

∑
i∈N Xi(P ). Further define the social costs of a subset of players A ⊆ N with

SCA(P ) =
∑

i∈A Xi(P ).
The cost-sharing method is important for our analysis, as it defines how the

joint cost on a resource e is distributed among her users. In this paper, the
methods we focus on are the Shapley value and the proportional cost-sharing,
which we introduce in detail.

Shapley values. For a set of players A, let Π(A) be the set of permutations
π : A → A {1, . . . , |A|}. For a π ∈ Π(A), define as A<i,π = {j ∈ A : π(j) < π(i)}
the set of players preceding player i in π and as W<i,π

A =
∑

j∈A:π(j)<π(i) wj the
sum of their weights.

For the uniform distribution over Π(A), the Shapley value of a player i on
resource e is given by

χe(i, A) = Eπ∼Π(A)

[
Ce

(
W<i,π

A + wi

)
− Ce

(
W<i,π

A

)]
.

Proportional sharing. The cost of a player i on a resource under proportional
sharing is given by χProp

ie (P ) = wi · ce(fe(P )). For the rest of the paper, we write
XProp

i (P ) =
∑

e∈E χProp
ie (P ) to indicate when we switch to proportional sharing.

ρ-approximate pure Nash equilibrium. Given a parameter ρ ≥ 1 and an
outcome P , we call as ρ-move a deviation from Pi to P ′

i where the player improves
her cost by more than a factor ρ, formally Xi(P ) > ρ · Xi(P−i, P

′
i ). We call the

state P an ρ-approximate pure Nash equilibrium (ρ-PNE) if and only if no player
is able to perform a ρ-move, formally it holds for every player i and any other
strategy P ′

i ∈ Pi that Xi(P ) ≤ ρ · Xi(P−i, P
′
i ).

ρ-approximate Price of Anarchy. Given a parameter ρ ≥ 1, let ρ-PNE ⊆ P
be the set of ρ-approximate pure Nash equilibria and P ∗ the state of optimum,
i.e., P ∗ = minP ′∈P SC(P ′). Then the ρ-approximate price of anarchy (ρ-PoA)
is defined as ρ-PoA = maxP∈ρ-PNE

SC(P )
SC(P ∗) .

Kollias and Roughgarden [19] prove that weighted congestion games under
Shapley values are potential games using the following potential.
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Potential Function. Given an outcome P and an arbitrary ordering τ of the
players in N , the potential is given by

Φ(P ) =
∑

e∈E

Φe(P ) =
∑

e∈E

∑

i∈Se(P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )}). (1)

A-limited potential. We now restrict this potential function by allowing only
a subset of players A ⊆ N to participate and define the A-limited potential as

ΦA(P ) =
∑

e∈E

ΦA
e (P ) =

∑

e∈E

∑

i∈SA
e (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ SA
e (P )}). (2)

B-partial potential. Consider sets A and B such that B ⊆ A ⊆ N . Then the
B-partial potential of set A is defined by

ΦA
B(P ) = ΦA(P ) − ΦA\B(P ) =

∑

e∈E

ΦA
e,B(P ) =

∑

e∈E

ΦA
e (P ) − ΦA\B

e (P ). (3)

If the set B contains only one player, i.e., B = {{i}}, then we write ΦA
i (P ) =

ΦA
B(P ). In case of A = N,ΦN

B (P ) = ΦB(P ) =
∑

e∈E Φe,B(P ). Intuitively, ΦA
B(P )

is the value that the players in B ⊆ A contribute to the A-limited potential.

ρ-stretch. Similar to ρ-PoA, we define a ratio with respect to the poten-
tial function. Let P̂ be the outcome that minimises the potential, i.e., P̂ =
minP ′∈P Φ(P ′). Then the ρ-stretch is defined as

ρ-Ω = max
P∈ρ-PNE

Φ(P )
Φ(P̂ )

. (4)

A-limited ρ-stretch. Additionally, we define a ρ-stretch restricted to players
in a subset A ⊆ N . Let ρ-PNEA ⊆ P be the set of ρ-approximate pure Nash
equilibria where only players in A participate. The rest of the players have a
fixed strategy P̄N\A. Then we define the A-limited ρ-stretch as

ρ-ΩA = max
P∈ρ-PNEA

Φ(P )
Φ(P̂ )

= max
P∈ρ-PNEA

Φ(PA, P̄N\A)

Φ(P̂A, P̄N\A)
. (5)

3 Algorithmic Approach and Outline

Our algorithm is based on ideas by Caragiannis et al. [7]. Intuitively, we partition
the players’ costs into intervals [b1, b2], [b2, b3], . . . , [bm−1, bm] in decreasing order.
The cost values in one interval are within a polynomial factor. Note that this
ensures that every sequence of ρ-moves for ρ > 1 of players with costs in one or
two intervals converges in polynomial time.

After an initialization, the algorithm proceeds in phases r from 1 to m − 1.
In each phase r, players with costs in the interval [br,+∞] do α-approximate
moves where α is close to the desired approximation factor. Players with costs in
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the interval [br+1, br] make 1+γ-moves for some small γ > 0. After a polynomial
number of steps no such moves are possible and we freeze all players with costs
in [br,+∞]. These players will never be allowed to move again. We then proceed
with the next phase. Note that at the time players are frozen, they are in an
α-approximate equilibrium. The purpose of the 1 + γ-moves of players of the
neighboring interval is to ensure that the costs of frozen players do not change
significantly in later phases. To that end we utilize a potential function argument.
We argue about the potential of sub games among a subset of players. We can
bound the potential value of an arbitrary q-approximate equilibrium with the
minimal potential value (using the stretch). Compared to the approach in [7], we
directly work with the exact potential function of the game which significantly
improves the results, but also requires a more involved analysis. We show that the
potential of the sub game in one phase is significantly smaller than br. Therefore,
the costs experienced by players moving in phase r are considerably lower than
the costs of any player in the interval [b1, br−1]. The analysis heavily depends
on the stretch of the potential function which we analyze in Sect. 6. The proof
there is based on the technique of Sect. 5 in which we approximate the Shapley
with proportional cost sharing. For the technical details in both sections we need
some structural properties of costs-shares and the restricted potentials which we
show in the next section.

4 Shapley and Potential Properties

The following properties of the Shapley values are extensively used in our proofs.

Proposition 1. Fix a resource e. Then for any set of players S and i ∈ S, we
have for j, j1, j2, j

′, j′
1, j

′
2, i1, i2 �∈ S:

a. χe (i, S) ≤ χe (i, S ∪ {j}),
b. χe (i, S ∪ {j′}) ≥ χe (i, S ∪ {j1, j2}), with j′ �= i and wj′ = wj1 + wj2 ,
c. χe (i, S ∪ {j1, j2}) ≥ χe (i, S ∪ {j′

1, j
′
2}), with wj′

1
= wj′

2
= wj1+wj2

2 ,
d. χe (i, S) ≥ χe (i1, S\{i} ∪ {i1})+χe (i2, S\{i} ∪ {i1, i2}), with wi1 =wi2 = wi

2 .

We proceed to the properties of the restricted types of potential defined before.

Proposition 2. Let A and B be sets of players such that B ⊆ A ⊆ N,P and
P ′ outcomes of the game such that the players in A ⊆ N use the same strategies
in both P and P ′, and z ∈ N an arbitrary player. Then

a. ΦA
B(P ) ≤ ΦB(P ), b. ΦA

B(P ) = ΦA
B(P ′), c. Φz(P ) = Xz(P ).

Next, we show that the potential property also holds for the partial potential.

Proposition 3. Consider a subset B ⊆ N and a player i ∈ B. Given two states,
P and P ′, that differ only in the strategy of player i, then ΦB(P ) − ΦB(P ′) =
Xi(P ) − Xi(P ′).

The next lemma gives a relation between partial potential and Shapley values.
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Lemma 1. Given an outcome P of the game, a resource e and a subset B ⊆ N ,
it holds that Φe,B(P ) ≤ ∑

i∈B χie(P ) ≤ Φe,B(P ) · (d + 1).

Summing up over all resources e ∈ E yields the next corollary.

Corollary 1. Given an outcome P of the game and a subset B ⊆ N , it holds
that ΦB(P ) ≤ ∑

i∈B Xi(P ) ≤ ΦB(P ) · (d + 1).

5 Approximating Shapley with Proportional Cost-Shares

In this section we approximate the Shapley value of a player with her propor-
tional share. This approximation plays an important role in our proofs of the
stretch and for the computation.

Lemma 2. For a player i, a resource e and any state P , the following inequality
holds between her Shapley and proportional cost:

2
d + 1

· χie(P ) ≤ χProp
ie (P ) ≤ d + 3

4
· χie(P ).

Summing up over all e ∈ E implies the following corollary.

Corollary 2. For a player i and any state P , the following inequality holds
between her Shapley and proportional cost:

2
d + 1

· Xi(P ) ≤ XProp
i (P ) ≤ d + 3

4
· Xi(P ).

Lemma 3. Any ρ-approximate pure Nash equilibrium for a SV weighted con-
gestion game of degree d is a (d+3)·(d+1)

8 · ρ-approximate pure Nash equilibrium
for the weighted congestion game with proportional sharing.

6 The Approximate Price of Anarchy and Stretch

Firstly, we upper bound the approximate Price of Anarchy for our game class.

Lemma 4. Let ρ ≥ 1 and d the maximum degree of the polynomial cost func-
tions. Then

ρ-PoA ≤ ρ · (2
1

d+1 − 1)−d

2− d
d+1 · (1 + ρ) − ρ

.

Similar to the ρ-PoA, we also derive an upper bound on the ρ-stretch which
expresses the ratio between local and global optimum of the potential function.

Lemma 5. Let ρ ≥ 1 and d the maximum degree of the polynomial cost func-
tions. Then an upper bound for the ρ-stretch of polynomial SV weighted conges-
tion games is

ρ-Ω ≤ ρ · (2
1

d+1 − 1)−d · (d + 1)

2− d
d+1 · (1 + ρ) − ρ

.
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We now proceed to the upper bound of the D-limited ρ-stretch. To do this, we
use the ρ-PoA (Lemma 4) and Lemmas 6 and 7, which we prove next.

Lemma 6. Let ρ ≥ 1, d the maximum degree of the polynomial cost functions
and P̂ = minP ′∈P Φ(P ′). Then

SC(P )
SC(P̂ )

≤ ρ · (2
1

d+1 − 1)−d

2− d
d+1 · (1 + ρ) − ρ

.

Proof. Let P be an ρ-approximate equilibrium and P ∗ the optimal outcome. Let
P̂ = minP ′∈P Φ(P ′) be the minimizer of the potential and by definition also a
pure Nash equilibrium. Then we can lower bound the ρ-PoA as follows,

ρ-PoA = max
P∈ρ-PNE

SC(P )
SC(P ∗)

≥ max
P∈ρ-PNE

SC(P )
SC(P̂ )

. (6)

Lemma 4 and (6) give that max
P∈ρ-PNE

SC(P )

SC(P̂ )
≤ ρ-PoA ≤ ρ·(2

1
d+1 −1)−d

2
−d
d+1 ·(1+ρ)−ρ

. 
�

Lemma 7. Let ρ ≥ 1, d the maximum degree of the polynomial cost functions
and D ⊆ N an arbitrary subset of players. Then

ρ-ΩD ≤ (d + 1)2 · (d + 3)
8

· SC(P )
SC(P̂ )

.

By Lemmas 6 and 7, we get the following desirable corollary.

Corollary 3. For ρ ≥ 1, d the maximum degree of the polynomial cost functions
and D ⊆ N an arbitrary subset of players,

ρ-ΩD ≤ (d + 1)2 · (d + 3)
8

· ρ · (2
1

d+1 − 1)−d

2− d
d+1 · (1 + ρ) − ρ

.

7 Computation of Approximate Pure Nash Equilibria

To compute ρ-approximate pure Nash equilibria in SV congestion games, we
construct an algorithm based on the idea by Caragiannis et al. [7]. The main
idea is to separate the players in different blocks depending on their costs. The
players who are processed first are the ones with the largest costs followed by
the smaller ones. The size of the blocks and the distance between them is poly-
nomially bounded by the number of players n and the maximum degree d of the
polynomial cost functions ce. Formally, we define Xmax = maxi∈N Xi (P ) as the
maximum cost among all players before running the algorithm. Let BRi (0) be
a state of the game in which only player i participates and plays her best move.
Then, define as Xmin = mini∈N Xi (BRi (0)) the minimum possible cost in the
game. Let γ be an arbitrary constant such that γ > 0,m = log

(
Xmax
Xmin

)
is the
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number of different blocks and br = Xmax · g−r the block size for any r ∈ [0,m],
where g = 2 · n · (d + 1) · γ−3.

The algorithm is now executed in m−1 phases. Let P be the current state of
the game and, for each phase r ∈ [1,m−1], let P r be the state before phase r. All

players i with Xi (P ) ∈ [br,+∞] perform an s-move with s =
(

1
t-ΩD

− 2γ
)−1

(almost t-ΩD-approximate moves), while all players i with Xi (P ) ∈ [br+1, br]
perform a t-move with t = 1 + γ (almost pure moves). Let BRi (P ) be the best
response of player i in state P . The phase ends when the first and the second
group of players are in an s- and t-approximate equilibrium, respectively. At
the end of the phase, players with Xi (P ) > br have irrevocably decided their
strategy and have been added in the list of finished players. In addition, before
the described phases are executed, there is an initial phase in which all players
with Xi (P ) ≥ b1 can perform a t-move to prepare the first real phase.

Algorithm 1. Computation of approximate pure Nash equilibria

Xmax = maxi∈N Xi (P ), Xmin = mini∈N Xi (BRi (0)), m = log
(

Xmax
Xmin

)

γ > 0, g = 2 · n · (d + 1) · γ−3, br = Xmax · g−r∀ ∈ [0, m]

t = 1 + γ, s =
(

1
t-ΩD

− 2γ
)−1

while there is a player i ∈ N with Xi (P ) ≥ b1 and who can perform a t-move do
P ← (P−i, BRi (P ))

end while
for all phases r from 1 to m − 1 do

while there is a non-finished player i ∈ N either with Xi (P ) ∈ [br, +∞] and who
can perform a s-move or with Xi (P ) ∈ [br+1, br] and who can perform a t-move
do

P ← (P−i, BRi (P ))
end while
Add all players i ∈ N with Xi (P ) ≥ br to the set of finished players.

end for

For the analysis, let Dr be the set of deviating players in phase r and P r,i

denote the state after player i ∈ Dr has done her last move within phase r.

Theorem 1. An α-approximate pure Nash equilibrium with α ∈ (
d

ln 2

)d ·poly(d)
can be computed with a polynomial number of improvement steps.

Proof. The main argument follows from bounding the D-partial potential of the
moving players in each phase (see Lemma 9). To that end, we first prove that
the partial potential is bounded by the sum of the costs of players when they
did their last move (Lemma 8).

Lemma 8. For every phase r, it holds that ΦDr
(P r) ≤ ∑

i∈Dr
Xi

(
P r,i

)
.

We now use the Lemma 8 and the stretch of the previous section to bound the
potential of the moving players by the according block size.
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Lemma 9. For every phase r, it holds that ΦDr

(
P r−1

) ≤ n
γ · br.

It remains to show that the running time is bounded and that the approximation
factor holds. For the first, since the partial potential is bounded and each devi-
ation decreases the potential, we can limit the number of possible improvement
steps (see Lemma 10).

Lemma 10. The algorithm uses a polynomial number of improvement steps.

We show next that every player who has already finished his movements will not
get much worst costs at the end of the algorithm (see Lemma 11) and that there
is no alternative strategy which is more attractive at the end (see Lemma 12).

Lemma 11. Let i be a player who makes her last move in phase r of the algo-
rithm. Then, Xi

(
Pm−1

) ≤ (1 + γ2) · Xi (P r).

Lemma 12. Let i be a player who makes her last move in phase r and let P ′
i

be an arbitrary strategy of i. Then, Xi

(
Pm−1

−i , P ′
i

) ≥ (1 − γ) · Xi

(
P r

−i, P
′
i

)
.

Next, we bound the approximation factor of the whole algorithm (see Lemma13).

Lemma 13. After the last phase of the algorithm, every player i is in an α-
approximate pure Nash equilibrium with α = (1 + O(γ)) · t-ΩD.

The polynomial running time and the approximation factor of α = (1 + O(γ)) ·
t-ΩD follow directly from Lemmas 10 and 13. Last, using Corollary 3, we show
that α ∈ (

d
ln 2

)d · poly(d).

Lemma 14. The approximation factor α is in the order of
(

d
ln 2

)d · poly(d).

This completes the proof of Theorem 1. 
�
We note that a significant improvement below O

((
d

ln 2

)d
)

of the approxima-
tion factor would require new algorithmic ideas as the lower bound of the PoA
in [12] immediately yields a corresponding lower bound on the stretch.

This algorithm can be used to compute also approximate pure Nash equilibria
in weighted congestion games (with proportional sharing). Such a game can
now be approximated by a Shapley game losing only a factor of (d+3)(d+1)

8 (by
Lemma 3), which is included in poly(d).

Corollary 4. For any weighted congestion game with proportional sharing, an
α-approximate pure Nash equilibrium with α ∈ (

d
ln 2

)d · poly(d) can be computed
with a polynomial number of improvement steps.

7.1 Sampling Shapley Values

The previous section gives an algorithm with polynomial running time with
respect to the number of improvement steps. However, each improvement step
requires the multiple computations of Shapley values, which are hard to compute.
For this reason, one can instead compute an approximated Shapley value with
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sampling methods. Since we are only interested in approximate equilibria, an
execution of the algorithm with approximate steps has a negligible impact on
the final result. The technical properties of Shapley values stated in Sect. 4 also
hold for sampled instead of exact Shapley values with high probability.

Theorem 2. For any constant γ, an α-approximate pure Nash equilibrium with
α ∈ (

d
ln 2

)d · poly(d) can be computed in polynomial time with high probability.

Proof. We use sampling techniques that follow [21,23] and adjust them to our
setting.

Algorithm 2. Approximation of the Shapley value by sampling

for all r from 1 to log
(
2nc+3 · maxi∈N Pi · |E| ·

(
1 + log

(
Xmax
Xmin

))
· (d + 1) · γ−9

)

do
for all j from 1 to k = 4(|Se(P )|−1)

μ2 do

Pick uniformly at random permutation π of the players Se(P ) using resource e

Compute marginal contribution MCj
ie(P ) = Ce

(
W <i,π

Se(P ) + wi

)
− Ce

(
W <i,π

Se(P )

)

end for
Let MCie(P ) = 1

k

∑k
j=1 MCj

ie(P )
end for
Return the median of all MCie(P )

Lemma 15. Given an arbitrary state P and an arbitrary but fixed constant c,
Algorithm2 computes a μ-approximation of χie(P ) for any player i in polynomial
running time with probability at least

1 −
(

nc · n · max
i∈N

Pi · |E| ·
(

1 + log
(

Xmax

Xmin

))

· 2 · n2 · (d + 1) · γ−9

)−1

.

For using the sampling in the computation of an improvement step, a Shapley
value has to be approximated for each alternative strategy of a player and for
each resource in the strategy. In the worst case, each player has to be checked
for an available improvement step.

Lemma 16. Given an arbitrary state P and running the sampling algorithm at
most n · maxi∈N Pi · |E| times computes an improvement step for an arbitrary

player with probability at least 1−
(
nc ·

(
1 + log

(
Xmax

Xmin

))
· 2n2 · (d + 1) · γ−9

)−1

.

Lemma 10 gives a bound on the number of improvement steps. Using the sam-
pling algorithm for μ = 1 + γ, we can bound the total number of samplings:

Lemma 17. During the whole execution of Algorithm1 the sampling algorithm
for μ = 1+γ is applied at most n ·maxi∈N Pi · |E| ·

(
1 + log

(
Xmax

Xmin

))
·2 ·n2 · (d+

1) · γ−9 times and the computation of the approximate pure Nash equilibrium is
correct with probability at least 1 − n−c for an arbitrary constant c.
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Summing up, we show that a μ-approximation of one Shapley value can be
computed in polynomial running time with high probability (Lemma15) and
the sampling algorithm is running at most a polynomial number of times
(Lemma 17). Then Theorem 2 follows. 
�
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Abstract. Mining for Bitcoins is a high-risk high-reward activity. Min-
ers, seeking to reduce their variance and earn steadier rewards, collabo-
rate in so-called pooling strategies where they jointly mine for Bitcoins.
Whenever some pool participant is successful, the earned rewards are
appropriately split among all pool participants. Currently a dozen of dif-
ferent pooling strategies are in use for Bitcoin mining. We here propose
a formal model of utility and social optimality for Bitcoin mining (and
analogous mining systems) based on the theory of discounted expected
utility, and next study pooling strategies that maximize the utility of
participating miners in this model. We focus on pools that achieve a
steady-state utility, where the utility per unit of work of all participat-
ing miners converges to a common value. Our main result shows that
one of the pooling strategies actually employed in practice—the so-called
geometric pay pool—achieves the optimal steady-state utility for miners
when its parameters are set appropriately. Our results apply not only
to Bitcoin mining pools, but any other form of pooled mining or crowd-
sourcing computations where the participants engage in repeated ran-
dom trials towards a common goal, and where “partial” solutions can be
efficiently verified.

1 Introduction

In recent years, crowd-sourcing of computation—where anyone can contribute
to a computationally heavy task—has grown in popularity. For instance, in the
SETI@home project, users search for extraterrestrial life by analyzing radio tele-
scoping data; or in the Rosetta@home project, users process data to discover
new proteins. In both of these examples, however, the participating users freely
volunteer computing resources. With the advent of Bitcoin, a new type of com-
putational crowdsourcing emerged: in place of altruism, users are incentivized
to participate in the computation by receiving a reward (paid in Bitcoins) for
performing the work. Bitcoin [Nak08] is a digital currency system that enables
users to transact without a central authority. In absence of a trusted central
monitor, the system relies on external monitors called “miners” who perform
intensive computation—searching for a solution to a computation puzzle—to
c© Springer International Publishing AG 2017
N. R. Devanur and P. Lu (Eds.): WINE 2017, LNCS 10674, pp. 205–218, 2017.
https://doi.org/10.1007/978-3-319-71924-5_15
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operate the system. To incentivize participation, miners receive rewards for any
puzzle they solve. The reward incentive in Bitcoin has an exceedingly high vari-
ance (the puzzles are difficult to solve), and as shown in [PSS16], this is inherent
in the Bitcoin system. As a result, miners typically collaborate by forming min-
ing pools to reduce their variance. Currently, miners use many different types of
pooling strategies.

The focus of this work is to determine the optimal mining pooling strate-
gies. While our focus is on Bitcoin (and proof-of-work blockchains in general),
our results apply to any form of mining that involves random trials and where
demonstration of partial work is possible. One can even imagine applications to
non-computational forms of mining (e.g., gold mining, oil drilling).

We begin with an overview of Bitcoin system and then proceed to formalize
the pool-design problem. We refer the reader to [BMC+15] for a more detailed
description of the Bitcoin system.

1.1 Overview of Bitcoin

The Bitcoin reward system. Bitcoin uses a distributed consensus protocol
to maintain in a public ledger called the blockchain which stores the valid trans-
action history. Participants broadcast transactions over a peer-to-peer network,
while agents called miners collect blocks of transactions, verify their integrity,
and append them to the blockchain. The system incentivizes miners by reward-
ing them with newly minted coins for each block they add to the chain. In order
to append a block to the blockchain, miners must produce a computationally
intensive proof-of-work.

The proof-of-work consists of finding a partial pre-image for a cryptographic
hash function H. Roughly, given a block with contents b, a miner must find a
value r from a large domain X such that H(b||r) < d. Miners successively sample
random values in X until they find a solution to this cryptographic puzzle. The
value d determines the block difficulty, or the probability p that a random r ∈ X
will satisfy the puzzle. The current difficulty is set so that in expectation, the
entire group of miners succeed in mining a single block every 10 min (and as
shown by the analysis in [PSS16], the mining difficulty cannot be significantly
decreased without making the protocol vulnerable to attacks.)

As a consequence, the income of an individual miner has a very high variance.
An individual miner who purchases (for roughly 24,000 USD) ten AntMiner S9
machines, a state-of-the-art mining device, could mine at rate of 140 × 1012

hashes per second. Yet based on the current difficulty parameter1, such an indi-
vidual would in expectation mine a single block only once every 305 days. More-
over, the process of mining is memoryless. A miner who has not received any
reward after 305 days must still wait another 305 days on average to receive a
reward. Thus, the number of blocks produced by a miner working at a continuous
rate h (measured in hashes per second) for a time period t is well approximated

1 https://bitcoinwisdom.com/bitcoin/difficulty.

https://bitcoinwisdom.com/bitcoin/difficulty
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by a Poisson distribution with mean λ = pht. The miner receives expected
reward λB with variance λB2, where B is the reward per block.

Mining pools. Miners seeking to reduce their variance and earn steadier
incomes join mining pools. Participating in a pool is called pool mining and min-
ing alone is called solo mining. Whenever a pool miner wins a reward, the reward
is shared among all the pool’s participating miners. Pools require a trusted oper-
ator to monitor participation and manage the allocation of rewards. This pool
operator monitors how much work each individual participant contributes to the
pool, and then whenever some participant manages to mine a block, the opera-
tor receives the block reward in proxy and then allocates the reward among the
pool participants based on how much work they contributed.

Monitoring the effort of participating miners, however, is a nontrivial task.
Unless miners are assumed to be honest, simply asking miners to report their
effort leads to free riding : riders will claim to have done work even if they have
not. To overcome this problem, miners instead demonstrate their effort by sub-
mitting partial proofs-of-work called shares, which are simply block hashes that
satisfy a lower difficulty parameter, i.e. shares are a “near-solution” to the orig-
inal computational puzzle. We distinguish such shares from full solutions which
we refer to as blocks.

To prevent pool participants from stealing the block-mining reward whenever
they find a full solution, the block owner identity is incorporated into the proof-
of-work. Pools only accept proofs-of-work, partial or complete, that incorporate
the identity of the pool as the block owner. Otherwise, miners could submit only
partial proofs to the pool and send their complete proofs to the Bitcoin network
for a solo reward.

The principal question we consider now is:

How should block rewards be allocated to pool participants so as to maximize
their utility of participation?

If miners are risk neutral, then solo mining is optimal. But if miners are risk
averse (technically, have a concave utility function), then pooling strategies may
improve their utility by decreasing the variance of their rewards. From here
on, we refer to the pool’s strategy for allocating the reward as the allocation
rule. Indeed, several popular pooling strategies with different allocation rules
are currently in use:2

– In the proportional pay scheme, the reward of a block is split among all the
participants in the pool proportionally to the number of shares they submitted
to the pool—in other words, the rewards are split evenly among the shares
in the pool, and the pool is then “emptied” for the next round.

– The Pay-Per-Last-N-Shares (PPLNS) pool is similar, except that the block
reward is always distributed evenly among the last N shares submitted to
the pool (without ever “emptying” the pool).

2 https://en.bitcoin.it/wiki/Comparison of mining pools.

https://en.bitcoin.it/wiki/Comparison_of_mining_pools


208 B. Fisch et al.

– Score based pooling mechanisms generalize PPLNS pools, and distribute
block rewards over preceding shares contributed to the pool according to some
weighting function. PPLNS can be viewed as a score based pooling mecha-
nism that uses a step weighting function. Rewards in the Slush’s pool and the
geometric pool are concentrated at the winning block and decay exponentially
over the preceding shares.

Some pools do not allocate rewards immediately, and instead invest rewards
in a central pool fund. These funds may be used to incentivize future partici-
pation in the pool at a risk-free rate (Pay-Per-Share (PPS) pools). PPS pools
absorb all the variance of their participants, and in order to survive with high
probability they must heavily discount the risk-free rate. This is not a pure
pooling mechanism because it assumes a financier. In this paper, we restrict our
attention to pure pooling mechanisms.

Definition 1 (Informal Definition). A pure pooling mechanism is an alloca-
tion rule that assigns fractional rewards to all shares preceding a block, including
the block share itself. The allocation-rule may depend on the state of the pool.

Our Results. In its current state of affairs, the Bitcoin mining pool ecosystem is
a collection of seemingly ad-hoc mining pool strategies with ad-hoc parameters,
and there is no consensus as to which pool mechanism is “optimal”. As far as
we are aware, there are no published theories on optimal mining pool strategies
even among a restricted class of strategies. Towards this goal, we put forward
a formal model of utility of pooling strategies for computation/mining, taking
into account the fairness of strategies to all participants, and derive the pooling
strategy that maximizes miners’ utility in this model. Our analysis is restricted
to pools that monitor mining works by collecting partial shares and derives its
reward solely from blocks submitted by its participants. We also restrict our
attention to pools that immediately allocate all rewards to participants. We
demonstrate that for the most commonly used utility function, a power utility
function, the geometric pool is optimal if the parameters of the geometric pool
are appropriately set. As mentioned above, the geometric pool is one that is used
in practice (although not necessarily with the optimal parameters).

Mining pool utility. In order to analyze the question of what the optimal
pooling strategy is, we must first specify a model for measuring the utility of
a pool participant. We start by viewing Bitcoin mining pool shares as financial
investments that receive a cashflow from the pool. Different pools represent
different investment packages, each varying the risk, value, and timing of payoffs.
We use the standard discounted expected utility (DEU) [Sam37] model, which
exponentially discounts the utility of payoffs occurring t steps in the future by
δt for some constant discount parameter δ.

Pool fairness. A general pool may distribute rewards in an arbitrary way that
benefits some miners at the expense of others, and we will rank such pools below
those that have a more equitable distribution. We define a perfectly fair pooling
strategy as one in which all mining shares derive equal utility. Solo mining is
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perfectly fair. Many natural pool strategies do not quite achieve perfect fairness,
but do achieve steady-state fairness, where the expected utility of pool shares
converges to a steady-state utility in the lifetime of the pool. For example, in a
PPLNS pool the first N shares earn a higher expected reward than all shares,
but all subsequent shares have the same “steady-state” expected reward/utility.
Likewise, geometric pools are steady-state fair, although convergence does not
occur in finitely many steps as in PPLNS. The proportional pay pool has the
same property. In fact, all the naturally occuring pools we know of and discuss
in this paper are either perfectly fair or steady-state fair.

Optimality. In fair pools, the steady-state utility of the pool is a natural mea-
sure for the collective utility of the pool participants as a whole. A pool is
steady-state optimal if it achieves the optimal steady-state utility.

Main Theorems. In general, pools may have a complex reward allocation that
depends on the pool’s state including the history of prior reward allocations
in the pool. In practice, all the pooling strategies that are used in practice
except for proportional pay are significantly simpler: they use a fixed rule that
is independent of the history of the pool to allocate rewards to the miners who
contributed previous shares to the pool. We can represent such fixed-rule pools
by an infinite length vector X where Xi denotes the fractional reward allocated
to the miner who contributed the ith share preceding a reward-earning block.

Definition 2. A fixed-rule pool is a pool that has a fixed allocation rule such
that whenever a block reward is earned the pool distributes a fixed fraction Xi of
the reward to the ith pool share preceding the block share, where i ≥ 0.

Fixed-rule pools are indeed preferable. They have a simple allocation rule
and are perfectly fair. Since all shares in a fixed-rule pool have equal utility we
can simply refer to the utility of a share in the pool as the pool’s utility, and
an optimal fixed-rule pool achieves an optimal utility among fixed-rule pools.
Furthermore, as we show in our first theorem, we can limit our study to such
objects without any loss of generality. We show that for any concave utility
function, if there exists an optimal fixed-rule pool then this pool is also steady-
state optimal among all pools.

Theorem 1. For any concave real-valued utility function u, time-discounting
parameter δ < 1, if there exists an optimal fixed rule pool, then this pool is
steady-state optimal.

In our main theorem, we then characterize an optimal steady-state pool-
ing strategy for a common family of utility functions. In Fig. 1, we illustrate
Theorem 3 by graphing the results of simulating each type of pool for 1 billion
shares and then computing the discounted expected utility for each share as a
function of the miner’s utility function, i.e., the miner’s risk parameters α. Each
experiment was run 50 times, and the dots reflect the average of each experiment,
whereas the solid lines represent our analytical results.
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Fig. 1. Expected value of each share for various mining pool schemes as a function of
risk tolerance α for the power utility function u(x) = xα. The win rate is p = 10−5,
discount rate d = 0.99999, and reward B = 106. Dotted lines represent simulated data,
smooth lines represent analytically-derived results. The area in green represents the
range for PPLNS ranging from N = 1 (solo) to the optimal values for N for a given α.

Theorem 3. For the utility function u(x) = xα where 0 < α < 1, the geometric
pool with allocation rule Xi = B(1 − δ1/1−α)δi/1−α is steady-state optimal.

Incentive compatibility. The question of incentive compatibility in mining
pools has been addressed to some degree in several other works [Ros11,LBS+15,
SBBR16,LJG15,Eya15], but in general remains largely open. The well-known
counterexample to incentive compatibility is the proportional pay pool, which
is vulnerable to pool hopping. Block rewards in a proportional pay pool are
distributed evenly among all shares submitted per block period. Thus, as the
block period length (number of shares in a block period) increases, the utility
of contributing shares to the pool decreases. If a block period grows beyond
a certain point, participating miners achieve a better expected utility by solo
mining (or mining for a different pool). There are several other known attacks
in the context of competing pools. Some of these attacks enable miners to boost
their rewards at the expense of other more honest participants [Eya15,LJG15,
JLG+14].

While current research suggests that achieving incentive compatibility in
a system of competing pools is extremely difficult, considering the incentive
compatibility of a single pool, i.e., with respect to deviations to solo-mining, is
straightforward. It is easy to see that the optimal pool that we derive is incentive
compatible in this sense. The optimal pool we derived is a fixed-rule pool. Solo
mining is also a fixed-rule pool with allocation rule X0 = B and Xi = 0 for all
i > 0. In a fixed-rule pool the utility of every share is equal. Thus, it follows



Socially Optimal Mining Pools 211

trivially that in an optimal fixed-rule pool the utility of every share is greater
than or equal to the utility of solo mining.

Organization. In Sect. 2 we present our utility model for mining pool shares,
and define steady-state optimality. In Sect. 3 we present our main theorems and
outline the proofs. The full proof details are included in the full version of this
paper3 Sect. 4 poses an open problem to extend our analysis to pools with invest-
ment strategies, such as Pay-Per-Share.

2 The Utility Model

Mining Pools. A miner invests work in repeated attempts to solve a compu-
tationally difficult puzzle in order to win a prize. After every repeated attempt,
the miner learns whether or not the attempt was successful. Previous attempts
do not affect future attempts, and thus, at every renewed attempt the miner
has the same probability of receiving an award. This is similar to a player in
a scratchcard lottery who repeatedly purchases cards, scratching off each card
before purchasing the next. If every card purchase is a Bernoulli trial with success
parameter p, then the number of wins out of N trials has a Binomial distribution
with expectation pN and variance p(1 − p)N .

Monitoring mining work. In Bitcoin mining, the analog of a scratchcard
purchase is an investment of work. Just as a scratchcard lottery pool operator
would count purchased cards, Bitcoin mining pool operators monitor the work
of their participating miners. Currently, operators estimate participants’ work
rates by collecting partial proofs-of-work called shares. Producing a share is
significantly easier than producing a block, but sufficiently difficult so that miners
cannot feasibly produce shares without honestly attempting to produce a valid
block.

Rewarding shares. The pool operator collects shares in an inherently sequen-
tial manner, and we assume that the history of shares submitted to the pool
is common knowledge among all participants. Each share wins a reward with
independent probability p.

A pool mechanism is a rule for distributing block rewards over past and future
shares. The reward of an individual share is a sum over rewards it receives from
past or future shares, as well as any reward it generates and keeps for itself when
it is a valid block.

Formally, we define a reward allocation rule as a probabilistic function of the
pool’s state. The pool’s state includes the history of shares contributed to the
pool and their outcomes (i.e. partial or valid block). We can denote this state
σ = (t, ht), where t is the number of shares, and ht is a binary vector of length t
indicating if each previous share was a block. The output of the allocation rule
is a collection of random variables denoting reward payments to specific shares
(i.e. the miners who contributed those shares). We restrict our definition to pure
3 https://arxiv.org/abs/1703.03846.

https://arxiv.org/abs/1703.03846
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pooling strategies in which the reward is immediately allocated to miners who
previously contributed shares to the pool (i.e. no future payments).

Definition 3. An allocation rule is a function A(t, ht) = {X
(t,ht)
i }0≤i≤t

where X
(σ)
i is a random variable denoting the reward value allocated to the con-

tributor of the pool’s (t− i)th share when the pool wins a block reward B in state
σ = (t, ht).

2.1 Utility of a Pool Share

A pool share has an associated reward vector X = (X0,X1, . . .) where the
random variable Xi denotes the reward that the share accrues during the ith
period following the submission of the share. The variable X0 is the reward that
the share generates and keeps for itself. We use the discounted expected utility4

(DEU) model to measure the utility of submitting the share as follows.

Definition 4. Given discount parameter δ and utility function u, the discounted
expected utility (DEU) of a pool share with reward vector X is:

U =
∑

i≥0

E[u(Xi)]δi

Risk-aversity and time-discounting. The utility model given by Definition 4
above is able to capture the two key characteristics of miners participating in
pools:

– time-discounting : Miners value present cash flow more than future cash flow.
The degree to which they discount the value of future cash is determined
by δ.

– risk-aversity : Miners prefer investing work to receive an expected reward of
lower variance than one of higher variance. This means miners may prefer
a pool that offers lower expected rewards with lower variance over one that
offers higher expected rewards with higher variance for the same investment
of work. The degree to which a miner is willing to sacrifice reward for lower
variance is determined by the concavity of the utility function u. A risk-
neutral agent will have a linear utility function. If u is linear then E[u(X)] =
u(E[X]), whereas E[u(X)] < u(E[X]) when u is strictly concave.

4 There are many implicit axioms in the DEU model formula, see [FL02] for a com-
prehensive overview. In particular, since the DEU model treats utility as linearly
additive over time-separated consumptions, it implicitly assumes that the consumer
is risk-neutral to aggregated utilities over time, even if the consumer is risk-averse
in each time period. Intertemporal risk-aversion has also been considered in the
economics literature and there are modified DEU models where aggregation of dis-
counted utilities is nonlinear [FL02,EZ89,KP78].
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We illustrate what the model predicts in several special cases. Assume that
the total expected reward is bounded, i.e.

∑
i E[Xi] ≤ B. A risk-neutral miner

(for whom u is linear) clearly derives the highest utility from solo mining. In the
case where u is non-decreasing and linear, U =

∑
i≥0 u(E[Xi])δi, which for any

δ < 1 has the highest value subject to the constraint on total expected reward
when E[X0] = B and E[Xi] = 0. On the opposite end of the spectrum, a risk-
averse miner with negligible preference for present cashflow over future cashflow
(i.e. δ ≈ 1) would derive ever increasing utility the more the expected reward is
spread over many periods, e.g. E[Xi] = B/N for i ≤ N as N → ∞. This has the
effect of lowering the variance in the total expected reward by splitting it into
many small payments that each occur with equal probability, yet over a longer
period of time. This is essentially a PPLNS pool with a very large window. The
principle question we address in this paper is what this model predicts for a risk-
averse miner with non-negligible time-discounting, i.e. concave u and δ < 1. As
a special case in this analysis we consider the power utility function u(x) = xα,
where α > 0 determines the degree of concavity (and hence risk-aversity).

2.2 Pool Optimality

We say that a pool strategy achieves steady-state fairness if the utility of con-
tributing pool shares converges.

Definition 5. A pool strategy is steady-state fair if the sequence {Uk} con-
verges in R, where Uk denotes the expected utility of the kth pool share. The limit
point of limk→∞ Uk is the steady-state utility of the pool.

Steady-state optimality. In any class C of steady-state fair strategies, we can
define the steady-state optimal strategies of C as the set of strategies in C that
have the highest steady-state utility.

Definition 6. A pool strategy p is steady-state optimal for a class C of steady-
state fair pool strategies if and only if p ∈ arg maxx∈C limk→∞ E[U(x)k].

3 The Optimal Pool

In this section we show how to derive a steady-state optimal pool for honest risk-
averse players. The parameters of the optimal pool will depend on the choice of
utility function u, time-discounting factor δ, and fixed block reward B. The main
results of this section applies to any general utility function u that is concave and
real-valued. We first show a relationship between steady-state optimal pools and
fixed-rule pools–a pool that allocates block rewards according to a fixed rule,
independent of the pool’s state. Specifically, we prove that if there exists an
optimal fixed-rule pool then it is also steady-state optimal. The optimal fixed-
rule pool is a solution to a convex optimization problem that depends on u, δ, and
B. We solve this optimization problem explicitly for the power utility function
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u(x) = xα (0 < α < 1), which yields a geometric pool whose parameters depend
on α.

Our results are the following three theorems:

Theorem 1. For any concave real-valued utility function u, time-discounting
parameter δ < 1, if there exists an optimal fixed rule pool, then this pool is
steady-state optimal.

In Lemma 1 we show that if a pool has steady-state utility U then for every
ε there exists a fixed-rule pool that has utility at least U − ε. Therefore, U is
bounded by the supremum of fixed-rule pool utilities. If there exists an optimal
fixed-rule pool then by definition it achieves this supremum and hence its utility
is an upper bound on the steady-state utility of any steady-state fair pool.

Theorem 2. For any concave real-valued utility function u, time-discounting
parameter δ < 1, and block reward B, there exists an optimal fixed-rule pool if
and only if there is a solution to the following convex optimization problem:

arg max
x

∑

i≥0

u(xi)δi subject to
∑

i≥0

xi ≤ B,∀i xi ≥ 0

If a solution {xi}i≥0 exists then it defines the allocation rule of the optimal
fixed-rule pool.

Theorem 3. For the power utility functions there is a fixed-rule geometric pool
that is steady-state optimal. The parameters of this geometric pool are deter-
mined by the block reward B, the risk-aversity parameter 0 < α < 1 of the
utility function u(x) = xα, and the time-discounting factor δ. Specifically, this
geometric pool has the allocation rule Xi = B(1 − δ1/1−α)δi/1−α.

3.1 Fixed-Rule Pools

Fixed-rule pools have several nice properties: they are perfectly fair, and the
expected reward of any share in the pool is bounded.

Claim 1. For fixed allocation rules
∑

t≥k E[X(t)
k ] ≤ B for any k.

Proof. Suppose towards contradiction that
∑

i≥0 E[X(k+i)
k ] = B̂ > B for some k.

By definition of a limit, for any ε > 0 there exists Nε such that |∑Nε

i=0 E[X(k+i)
k ]−

B̂| < ε. Setting ε = (B̂ − B)/2 implies
∑Nε

i=0 E[X(k+i)
k ] > B. However, using the

property of fixed allocation rules,
∑Nε

i=0 E[X(k+i)
k ] =

∑Nε

i=0 E[XNε
i ] ≤ B. This is

a contradiction.

In a pool with a fixed allocation rule {Xi}, we can express the utility of any
share in terms of the allocation rule variables and the probability p that a share
is a valid block:

U =
∑

i≥0

pE[u(Xi)]δi (1)

Since every share has the same expected utility, by definition the pool is
perfectly fair.
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Claim 2. Every pool with a fixed allocation rule is perfectly fair.

Proof of Theorem 2. The utility of any share in a fixed-rule pool with alloca-
tion rule {Xi} is

∑
i≥0 pE[u(Xi)]δi for variables Xi ≥ 0 where

∑
i≥0 E[Xi] ≤ B

(Claim 1). Therefore, the optimal fixed-rule pool is the solution to:

arg max
X

∑

i≥0

E[u(Xi)]δi subject to
∑

i≥0

E[Xi] ≤ B,∀i E[Xi] ≥ 0

By Jensen’s inequality, for concave u we have E[u(Xi)] ≤ u(E[Xi]), and
equality holds when Xi are scalars or u is linear. Thus it suffices to solve the
optimization for scalars xi as follows:

arg max
y

∑

i≥0

u(yi)δi subject to
∑

i≥0

yi ≤ B,∀i yi ≥ 0

If a solution exists then it defines the allocation rule of an optimal fixed-rule
pool. Conversely, if some pool with allocation rule {X∗

i } is optimal, then the
pool with allocation rule {E[X∗

i ]} is necessarily optimal, hence it is a solution
to the above optimization problem.

Finally, to show that this is a convex optimization problem we will prove
that the objective function f(y) =

∑
i u(yi)δi is concave. Since u is concave, for

any y (1), y2
(2) and scalar t it holds that f(ty (1) + (1 − t)y (2)) =

∑
i u(ty(1)

i +
(1 − t)y(2)

i )δi ≤ ∑
i tu(y(1)

i )δi + (1 − t)u(y(2)
i )δi = tf(y (1)) + (1 − t)f(y (2)).

3.2 Steady-State Pools to Fixed-Rule Pools

Lemma 1. For any steady-state fair pool p that has steady-state share utility Up

and any ε > 0 there exists a fixed-rule pool p′ that has share utility Up′ ≥ Up − ε.

In fixed-rule pools the distribution of future rewards a miner receives for
submitting a share was independent of state. In more general pools, even steady-
state fair pools, this distribution of future rewards could fluctuate over the state
of the pool. The high level idea of this proof is to show that if the utility of
the pool converges then the distribution of future expected rewards converges in
some subsequence of states to a fixed distribution. We use this fixed distribution
of expected rewards to define a fixed-rule pool that allocates to each previous
share exactly its expected reward. The steady-state utility of this subsequence
of states will be bounded by the utility of this fixed-rule pool. Since infinite
subsequences of any convergent sequence also converge to the same limit, it
follows that the steady-state utility of the pool is also bounded by the utility of
this fixed-rule pool.

If the space containing the sequence of expected reward distributions were
sequentially compact, then existence of a subsequence of states for which reward
distributions converge would follow immediately. However, each expected reward
distribution is an infinite vector over R, and infinite dimensional subspaces of
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R
∞ are not necessarily sequentially compact. Instead, we examine finite-window

pools, which only allocate rewards over preceding shares within some finite
window. Due to time-discounting, every pool can be approximated by a finite-
window pool. More precisely, for any pool we can define the finite-window pool
that uses the same allocation rule restricted to the last N shares, and for any
ε > 0 we can choose N sufficiently large so that the utility of any share in the
finite-window pool is within ε of the same share in the original pool. In finite-
windows pools the expected reward distribution is a finite length vector in a
closed and bounded subset of R

N , which by the Bolzano-Weierstrass theorem
is sequentially compact. Thus, we can prove that the utility of all finite-window
pool approximations are bounded by the utility of a fixed-rule pool, and by
making ε arbitrarily small we extend this bound to the original pool.

The full proof of Lemma 1 is included in the full version of this paper.

3.3 Optimal Pool for Power Utility

The main challenge in proving Theorem 3 is that the optimization problem is
over R

∞
≥0 rather than R

n
≥0. The problem is that the objective function may not

achieve its maximum on the feasible set because the optimization is over an infi-
nite dimensional vector space, and so the feasible set is not compact. First let
us define the following notation:

Define f(y) =
∑

i≥0 u(yi)δi and g(y) =
∑

i≥0 yi for y ∈ R
∞
≥0 and n ∈ N,

where u is the concave utility function in question. For n ≥ 1 define the “trun-
cated” sums fn(y) =

∑n
i=1 u(yi)δi and gn(y) =

∑n
i=1 yi. The functions fn(y)

and gn(y) are well defined over both R
∞
≥0 and R

n
≥0.

Our approach is to solve for a maximizer x∗
n of each fn(y) subject to g(y) ≤ B

and ∀i yi ≥ 0 (Claim 3). To obtain some x∗
n, it suffices to solve for a maximizer

of fn(y) defined instead over y ∈ R
n
≥0 with the constraint gn(y), and then extend

this maximizer to a point in R
∞ that is identical to this maximizer in the first n

components and 0 in every other component. The solutions x∗
n are obtained via

the method of Lagrange multipliers. We then show that this sequence of maxi-
mizers converges in R

∞5, i.e. {x∗
n} → x∗, and the limit point x∗ is a maximizer

of f(y) subject to g(y) ≤ B over R
∞. The full proof is in the full version of this

work.

Claim 3. When u(x) = xα, the maximizer of fn(y) subject to gn(y) ≤ B over
R

n
≥0 is yi = B 1−δ1/1−α

1−δn/1−α δi/1−α.

5 Convergence in R
∞ can be defined with respect to the standard Euclidean norm

restricted to points in R
∞ that have finite norm. All the points in the sequence

of maximizers lie in this subspace because they have a finite number of nonzero
components. The limit point of this sequence satisfies the optimization constraint
(i.e. has a bounded L1 norm) and thus also lies in this subspace.
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Proof. fn(y) is increasing in yi for every i. Thus, if there exists a global maxi-
mum then it is achieved on gn(y) = B. The Lagrangian for this optimization is
L(y, λ) = fn(y) + λ(B − gn(y)). There exists a solution y∗ to the constrained
optimization problem if and only if there exists λ∗ such that L(y∗, λ∗) is a global
maximum of the Lagrangian. First, we prove that a solution exists by exam-
ining the principal minors of the Hessian of the Lagrangian. A solution exists
if for all k ≥ 2, the determinant of the kth principal minor of the Hessian of
L(y, λ) has sign (−1)k+1. Second, we derive a unique stationary point of
the Lagrangian. A global maximum (y∗, λ∗) must be a stationary point of the
Lagrangian, i.e. ∇yL(y∗, λ∗) = 0. Since the stationary point we derive is unique
it must be the global maximum of the Lagrangian, and hence a solution to the
constrained optimization.

Existence of a solution. Consider the Hessian of L(y, λ). This is a matrix
H with H0,0 = 0, Hi,0 = H0,i = ∂gn

∂xi
= 1 for i > 0, Hi,j = ∂L

∂yi∂yj
= 0 for

i 
= j 
= 0, and Hi,i = ∂2L
∂y2

i
= δi ∂2u(yi)

∂y2
i

< 0 by the strict concavity of u(yi)

for i > 0. Consider the kth principal minor M (k) of H. The Leibniz formula
for the determinant of M (k) is det(M (k)) =

∑
σ∈Sk

sgn(σ)
∏k

i=1 mi,σi
. Consider

any nonzero term of this sum. It cannot include in its product m1,1 and so must
contain m1,i = 1 and mj,1 = 1 for some i, j 
= 1. The k − 2 remaining elements
of the product must be from the nonzero (negative valued) diagonal entries.
However, it also cannot include the elements mj,j and mi,i because it includes
m1,i and mj,1. If i 
= j this leaves only k − 3 diagonal elements, hence necessar-
ily i = j and the product includes all the k − 2 diagonal elements except mi,i.
The term corresponds to an odd permutation σ that contains k − 2 fixed points
and a single inversion (1, i), so sgn(σ) = −1. All nonzero terms thus have sign
−(−1)k−2 = (−1)k−1 = (−1)k+1. Therefore det(M (k)) has sign (−1)k+1.

Unique stationary point. We proceed to show that the Lagrangian L(y, λ) =
fn(y)+λ(B−gn(y)) has a unique stationary point when u(x) = xα. We will first
do this for u(x) = xα. Setting ∇yL(y, λ) = 0, this yields the system of equations
αyα−1

i δi − λ = 0 for all i, and we solve for yi =
(

α
λ δi

)1/1−α.
Applying the constraint

∑
i=1n yi = B we get:

n∑

i=0

(
α

λ
δi)1/1−α =

(α

λ

)1/1−α n∑

i=0

δi/1−α =
(α

λ

)1/1−α 1 − δn/1−α

1 − δ1/1−α
= B

Solving for α/λ and plugging into yi:

α/λ =
(

B
1 − δ1/1−α

1 − δn/1−α

)1−α

yi = B
1 − δ1/1−α

1 − δn/1−α
δi/1−α
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Abstract. We optimize the design of a frequency reward program
against traditional pricing in a competitive duopoly, where customers
measure their utilities in rational economic terms. We assume two kinds
of customers: myopic and strategic [19]. Every customer has a prior loy-
alty bias [6] toward the reward program merchant, a parameter drawn
from a known distribution, indicating an additional probability of choos-
ing the reward program merchant over the traditional pricing merchant.
Under this model, we characterize the customer behavior: the loyalty bias
increases the switching costs [11] of strategic customers until a tipping
point, after which they strictly prefer and adopt the reward program mer-
chant. Subsequently, we optimize the reward parameters to maximize the
revenue objective of the reward program merchant. We show that under
mild assumptions, the optimal parameters for the reward program design
to maximize the revenue objective correspond exactly to minimizing the
tipping point of customers and are independent of the customer popula-
tion parameters. Moreover, we characterize the conditions for the reward
program to be better when the loyalty bias distribution is uniform - a
minimum fraction of population needs to be strategic, and the loyalty
bias needs to be in an optimal range. If the bias is high, the reward pro-
gram creates loss in revenues, as customers effectively gain rewards for
“free”, whereas a low value of bias leads to loss in market share to the
competing merchant. In short, if a merchant can estimate the customer
population parameters, our framework and results provide theoretical
guarantees on the pros and cons of running a reward program against
traditional pricing.

1 Introduction

Loyalty programs constitute a huge market in consumer retail and are a major
source of revenue for many low margin businesses. Over 48 billion dollars in per-
ceived value of rewards is issued in the United States alone every year, with every
household having over 19 loyalty memberships on average [2]. This market con-
stitutes credit cards, hotel and airline reward programs, and more recently even
c© Springer International Publishing AG 2017
N. R. Devanur and P. Lu (Eds.): WINE 2017, LNCS 10674, pp. 219–236, 2017.
https://doi.org/10.1007/978-3-319-71924-5_16
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restaurants, grocery and retail stores. In addition to possibly increasing their
market share, these reward programs provide many benefits to the merchants
– for instance, user identification for firms having multiple purchase channels;
increase in sales due to referrals; personalized price discrimination and prod-
uct recommendations, to name a few [15]. There are many examples of popular
reward programs – Starbucks allows members to earn “stars” on purchases which
can be redeemed for free coffee, Bloomingdale’s offers $25 reward for around
$1500 spent in their store, and Target offers a 5% cashback on all purchases [3].
Though forming a big component of the market, there is little scientific under-
standing about the design of loyalty reward programs. We aim to address this
gap with our research.

One popular form of loyalty reward programs is frequency reward programs,
where customers earn points as currency over spendings with merchants and
are able to redeem these points for dollar valued rewards after achieving certain
threshold point collections. There is extant literature on characterizing customer
behavior toward frequency reward programs. Most of the literature is empirical
in nature, and relies on psychological behavioral patterns among customers, as
opposed to rational economic decision making [5,7,10]. In this paper, we consider
a competitive duopoly of two merchants where one merchant offers a frequency
reward program and the other offers traditional pricing with discounts. Though
revenue management literature often deals with dynamic pricing of products,
many retail merchants offering rewards often pre-commit to their prices. We
assume that both merchants commit to their product pricing apriori and char-
acterize a novel model of customer choice where customers measure their utilities
in rational economic terms. In addition, we investigate the direct effects on the
revenue objective and characterize the optimal reward design choice for the mer-
chant offering the frequency reward program, based on different customer popu-
lations. Specifically, we answer the following question: how should the merchant
decide the optimal thresholds and dollar value of rewards to optimize for its
revenue share from the participating customer population. One important con-
straint we impose is that the merchant has to choose a one design fits all reward
program for the entire participating customer population and is not allowed to
personalize the program for different customer segments.

This is how the remaining paper is structured. First, we will describe some
related work. Then we will give an overview of our model and results. In Sect. 2,
we will describe our model in technical detail followed by the main results in
Sect. 3. We will conclude with a short discussion on future work in Sect. 4.

1.1 Related Work

Three popular psychological constructs have been used to explain customer
choice dynamics toward reward programs – Goal Gradient Hypothesis, Medium
Maximization, and Tipping Point Dynamics. [10] conducted an empirical study
observing an acceleration in the number of purchases by customers as they
approached the reward, i.e., as customers accumulated reward points to reach
closer to achieving the reward, their effort invested toward gaining more
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points increased. The authors attributed this behavior to Goal Gradient Hypoth-
esis [9]. This behavior is also very prevalent in online badge systems, such as those
on Stackoverflow; recently, mathematical models relying on rational user behav-
ior have been developed that explain this phenomenon [1]. [5,17] observed that
customers often stockpiled reward points even when there were economic incen-
tives against the collection of points. They attributed this behavior to Medium
Maximization – customers often treated collecting reward points as a goal itself
just like collecting stamps as opposed to connecting reward points with economic
incentives. Correspondingly, they introduced a new model where customers had
different “mental accounts” and utility functions for points and cash. [7] observed
via experimentation that customers often collect reward points for exogenous rea-
sons until they accumulate a threshold amount, after which they start investing
effort toward the collection process itself. That is, customers build up switching
costs [11] before fully adopting the reward program, and sometimes this switch-
ing cost is created due to reasons exogenous to rational economic incentives.
They referred to this behavior as the Tipping Point Effect.

A large body of literature investigates the switching costs customers face
within a competitive duopoly framework – see [18] for a short survey. Our model
is closest in spirit to that of [8] and [12]. Both papers are empirical in nature
and model a competitive duopoly where customers maximize their long term dis-
counted utility. [8] argue that less frequent buyers face higher switching costs as
they are more likely to be affected by reward redemption deadlines, whereas fre-
quent buyers redeem rewards easily and do not face substantial switching costs.
They do not model how customers build up switching costs, but only argue what
happens when customers are close to achieving a reward. [12] discuss dynamic
competition between two merchants deciding whether to offer a reward program
or traditional pricing and model this decision problem as a two stage game: first
merchants decide whether to offer a reward program or traditional pricing and
then they decide their prices. Using simulations, depending on customer para-
meters in the model, they characterize the conditions for when it is better to
offer a reward program versus traditional pricing. We on the other hand model
a multi-period problem where the customer behavior is characterized using a
complete dynamic program, and mathematically analyze our model. We make
two modeling assumptions: first is an exogenous visit probability bias toward the
reward program merchant which can be attributed to excess loyalty – customers
often build up higher brand preference toward the merchant offering a reward
program [6,16]; and second, a look-ahead factor for customers, which indicates
how far into the future customers can perceive the rewards [13,14]. Our results
on customer choice dynamics intuitively look similar to some of those obtained
in the above mentioned body of literature. But more importantly, we model
and optimize the revenue objective of the merchant, characterizing an optimal
reward program design for maximizing expected revenue.



222 A. Goel and N. Skochdopole

1.2 Our Contributions

Model Overview. We model a competitive duopoly of two merchants, one
of them offering a frequency reward program and the other offering traditional
pricing. Both merchants sell an identical good at fixed precommitted prices. The
reward program merchant sells the good at a higher price. With each purchase
from the reward program merchant, a customer gains some fixed number of
points, and on achieving the reward redemption threshold, (s)he immediately
gains the reward value as a dollar cashback.

Customers measure their utilities in rational economic terms, i.e., they make
their purchase decisions to maximize long term discounted rewards. The dis-
count factor is the time value of money, and we assume it to be constant for
all customers. We also assume that every customer makes a purchase everyday
from either of the two merchants. We relax these two assumptions by introduc-
ing a look-ahead factor that controls how far into the future a customer can
perceive the rewards. This affects the customer behavior dynamics as follows:
if the reward redemption threshold is farther than the customer’s look-ahead
parameter, (s)he is unable to perceive the future value of that reward and take
it into consideration while maximizing long term utility. This parameter, being
customer specific, adds heterogeneity to both the future discounting and pur-
chase frequency – customers having high purchase frequency might be able to
perceive rewards with higher redemption thresholds. We only model myopic and
strategic customers, i.e., the look-ahead parameter being 0 or a large value,
and leave further parametrization for future work. But importantly, the frame-
work we develop could be applied and modiefied to more complex look-ahead
distributions.

In addition, we assume each customer has a visit probability bias with which
(s)he purchases the good from the reward program merchant for reasons exoge-
nous to utility maximization. This behavior may be attributed to excess loyalty
[6,16] which has been argued as an important parameter for the success of any
reward program, or it may be attributed to price insensitivity of customers;
whenever a customer is price insensitive, (s)he strictly prefers to purchase from
the reward program merchant as (s)he gains points redeemable for rewards in the
future. There are many possible reasons for customers’ price insensitivity: the
reward program merchant could be offering some other monopoly products, or
the customer might be getting reimbursed for some purchases as part of corpo-
rate perks (e.g.: corporate travel). As an effect, this visit probability bias controls
how frequently the customer’s points increase even when (s)he does not actively
choose to make purchases from the reward program merchant. Both the look-
ahead and excess loyalty parameters can be attributed to bounded rationality of
customers and have been argued to be important factors toward customer choice
dynamics, as discussed above in the related work.

Results Overview. We formulate the customer choice dynamics as a dynamic
program with the state being the number of points collected from the reward
program merchant. When the customer does not make biased visits to the reward



Design of an Optimal Frequency Reward Program 223

program merchant, (s)he compares the immediate utility of purchasing the good
at a cheaper price with the long term utility of waiting and receiving the time
discounted reward to make a purchase decision. The solution to the customer’s
dynamic program gives conditions for the existence and achievability of a phase
transition: a points threshold before which the customer visits the merchant
offering rewards only due to the visit probability bias, and after which (s)he
adopts the program and always visits the merchant offering rewards till receiv-
ing the reward. We show that this phase transition occurs sooner for strategic
customers. Increasing the reward value also makes the phase transition occur
earlier. However, increasing the points threshold required to redeem the reward
or the price discount offered by the traditional pricing merchant delays this tip-
ping point. In short, these results verify that our model is in coherence with
the different psychological constructs as discussed in the related work section:
purchase acceleration closer to reward redemption and a tipping point before
which purchases are only due to the loyalty bias.

After characterizing the customer behavior dynamics in our model, we opti-
mize over the long run revenues that the reward program merchant achieves. We
model a specific case of proportional promotion budgeting: the reward offered
by the reward program merchant is proportional to the product of the distance
to the reward and the discount provided by the traditional pricing merchant,
with the proportionality constant being another parameter in the design of the
reward program. We show that under proportional promotion budgeting, the
optimal distance to reward and the proportionality budgeting constant follow
an intuitive product relationship which is independent of the customer popu-
lation parameters, and these values correspond closely to real world observed
cashback percentage values. In addition, optimizing the revenue objective gives
the same optimal distance to reward as minimizing the phase transition point as
defined above. Moreover, we characterize the conditions in terms of the customer
parameters for when the revenue objective of the reward program merchant is
better than the traditional pricing merchant and when it is better for the reward
program merchant to offer a reward versus not offering any reward, for a specific
choice of loyalty bias distribution. We show that for the reward program to be
effective under both the above conditions, a minimum fraction of customer pop-
ulation must be strategic. And there is a specific range of values of the loyalty
bias between 0 and 1 corresponding to the fraction of strategic customers for the
reward program to be strictly better for the merchant.

2 Model

We index the two competing merchants selling identical goods as A and B.
Without loss of generality we assume that A sells the good for a price of 1 dollar
while B sells it for 1 − v dollars, i.e., B offers a discount of v dollars1. Merchant
A additionally offers a reward of value R dollars to a customer after (s)he makes
1 This assumption is only for simplicity. Our results extend to arbitrary fixed pricing

by both merchants.
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k purchases at A. We only investigate the case that we refer to as “proportional
promotion budgeting”, wherein this reward R is proportional to the product of
the distance to the reward k and the discount v provided by B; that is, R = αkv.
The merchant optimizes over both k and α.

2.1 Customer Behavior Model

We assume customers purchase the item from either A or B everyday, i.e., we
ignore the heterogeneity in frequency of purchases among the customers in our
model and leave it for future work. We assume customers have a linear homoge-
nous utility in price: at price q the utility is ν(q) = 1 − q. This reduces to
customers getting an immediate utility of 0 from A and v from B. All customers
have the same time value of money as a discount factor of β lying between 0
and 1.

We denote a customer’s visit probability bias and the look-ahead parameter
with λ and t respectively. That is with probability λ, (s)he purchases from A
due to externalities and perceives a future reward only if it is within t purchases
away. This λ for a customer is drawn from a distribution f with support between
[0, 1]. In this paper, we focus on a simple threshold distribution for the look-
ahead parameter t:

t =

{
t1, wp p,

0, 1 − p.

The above distribution intuitively means that the customers are either
myopic and focus only on immediate rewards or are strategic and can perceive
long term utility (we assume t1 is large). We leave other parametrizations of this
look-ahead parameter for future work. We model the customer’s decision prob-
lem as a dynamic program. We index the number of purchases the customer
makes from A until the reward by i, for 0 ≤ i ≤ k − 1, and we refer a customer
to be in state i after having made i purchases from A. At state i, there are two
possibilities:

1. With probability λ, the customer must visit A, and (s)he is now in state i+1.
2. With probability 1 − λ, the customer has a choice between purchasing from

B for an immediate utility v and remaining in state i, or purchasing from A
for no immediate utility but moving to state i + 1.

Let V (i) denote the long term expected reward at state i. Then we model
the decision problem as the following dynamic program.

V (i) = λβV (i + 1) + (1 − λ)max{v + βV (i), βV (i + 1)} for 0 ≤ i ≤ k − 1 (1)
V (k) = R

We show that the decision process exhibits a phase transition; that is prior
to some state, the customer purchases from A only if (s)he must do so exoge-
nously but after that state, (s)he always decides to purchase from A. This phase
transition point is independent of λ, and depends only on t, among the variable
customer parameters. Hence we represent this phase transition point as i0(t).
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2.2 Merchant Objective

Given the above model of customer dynamics, we define the revenue objectives
of A and B, where A chooses its reward parameters and B is non-strategic.
We define the rate of revenue for a merchant from a customer as the expected
time averaged revenue that the merchant receives within the customer’s life-
time. For simplification, we assume merchants do not discount future revenues.
As described above, a customer’s dynamics are cyclic after each reward cycle.
Thus the lifetime dynamics of customer behavior is a regenerative process with
independent and identically distributed reward cycle lengths. Let RoRA(c) and
RoRB(c) denote the expected rates of revenue for A and B respectively from a
customer c’s lifetime. Let τ(t, λ) denote the total number of purchases the cus-
tomer makes before reaching the phase transition point i0(t). Then the length
of the reward cycle (or total number of purchases the customer makes before
receiving the reward) is τ(t, λ) + k − i0(t), because after the phase transition
(s)he makes all purchases from A until hitting the reward. In this cycle, the
number of visits that the customer makes to A is k, and to B is τ(t, λ) − i0(t).
The revenue that A earns in one such cycle is k − R and the revenue that B
earns is (1 − v)(τ(t, λ) − i0(t)). Thus the rates of revenue for A and B from the
customer c are as follows:

RoRA(c) = E
τ,t,λ

[
k − R

τ(t, λ) + k − i0(t)

]

RoRB(c) = E
τ,t,λ

[
(1 − v)(τ(t, λ) − i0(t))

τ(t, λ) + k − i0(t)

]

Since the process for a single customer is regenerative, using the reward
renewal theorem [4], we can take the expectation over the cycle length inside
the numerator and denominator respectively. Note that E

τ,t,λ
[τ(t, λ)] = E

t,λ

[
i0(t)

λ

]
as before reaching the phase transition point, with probability λ, the number of
purchases by the customer from A increases by 1 and with probability 1 − λ it
stays constant. Then taking the expectation over the customer population the
overall rates of revenue for both A and B are as follows:

RoRA = E
t,λ

[
k − R

i0(t)/λ + k − i0(t)

]
(2)

RoRB = E
t,λ

[
(i0(t)/λ − i0(t))(1 − v)

i0(t)/λ + k − i0(t)

]
(3)

3 Results

3.1 Customer Choice Dynamics

We first show that every customer exhibits the following behavior: until (s)he
reaches the phase transition point i0(t), (s)he purchases from A only due to
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the exogeneity parameter, and after that (s)he always purchases from A till
she receives the reward. This behavior is cyclic, and repeats after every reward
redemption.

Lemma 1. V (i) is an increasing function in i if the following condition holds:

R >
(1 − λ)v
1 − β

(4)

And further, V (i) can be evaluated as:

V (i) = max
{

λβV (i + 1) + (1 − λ)v
1 − (1 − λ)β

, βV (i + 1)
}

(5)

Proof. First we show that V (i) is an increasing function in i by induction. We
first show that if the condition above is satisfied, V (k−1) < V (k) = R. Suppose
not, so V (k − 1) ≥ R. Then from Eq. 1, we have:

V (k − 1) = λβV (k) + (1 − λ)(v + βV (k − 1))

=
λβR + (1 − λ)v

1 − (1 − λ)β

<
λβR + (1 − β)R

1 − (1 − λ)β
= R

But this is a contradiction, so V (k−1) < V (k). Now assume V (i+1) < V (i+2)
for some i < k − 2, we will show that this implies V (i) < V (i + 1). Suppose not,
so V (i) ≥ V (i + 1). As we did before we may upper bound V (i).

V (i) = λβV (i + 1) + (1 − λ)(v + βV (i))
≤ (1 − λ)v + βV (i)

⇐⇒ V (i) ≤ (1 − λ)v
1 − β

But because V (i + 1) < V (i + 2), we may lower bound V (i + 1).

V (i + 1) ≥ λβV (i + 2) + (1 − λ)(v + βV (i + 1))
= (1 − λ)v + (1 − λ)βV (i + 1) + λβV (i + 2)
> (1 − λ) + βV (i + 1)

⇐⇒ V (i + 1) >
(1 − λ)v
1 − β

Again, we have a contradiction, so V (i) < V (i + 1), and V (i) is an increasing
function in i. Now we prove the second claim. We have the following:

V (i) = λβV (i + 1) + (1 − λ)max{v + βV (i), βV (i + 1)}
= max{λβV (i + 1) + (1 − λ)(v + βV (i)), βV (i + 1)}
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Assuming V (i) is the left term in the above maximum, we may solve the
equation for that term.

V (i) = λβV (i + 1) + (1 − λ)(v + βV (i))
(1 − (1 − λ)β)V (i) = λβV (i + 1) + (1 − λ)v

V (i) =
λβV (i + 1) + (1 − λ)v

1 − (1 − λ)β

And we get our claim. ��
Now if the expected reward of the customer increases with the number of

purchases made from A, we expect that at some number of purchases it becomes
profitable for the customer to choose to purchase from A as opposed to B. We
characterize this phase transition point in the following theorem.

Theorem 1. Suppose V (i) is an increasing function in i and consider a cus-
tomer with look-ahead parameter t. A phase transition occurs after (s)he makes
i0(t) visits to firm A, where i0(t) is given by:

i0(t) =

{
k − Δ ≡ i0, if t ≥ Δ.

k − t, otherwise.
(6)

with

Δ =
⌊
logβ

(
v

R(1 − β)

)⌋
(7)

Proof. First we solve for the condition on V (i + 1) for us to choose firm A over
B willingly.

βV (i + 1) >
λβV (i + 1) + (1 − λ)v

1 − (1 − λ)β

⇐⇒ βV (i + 1)
(

1 − λ

1 − (1 − λ)β

)
>

(
1 − λ

1 − (1 − λ)β

)
v

⇐⇒ βV (i + 1)
(

1 − (1 − λ)β − λ

1 − (1 − λ)β

)
>

(
1 − λ

1 − (1 − λ)β

)
v

⇐⇒ βV (i + 1)
(

(1 − λ)(1 − β)
1 − (1 − λ)β

)
>

(
1 − λ

1 − (1 − λ)β

)
v

⇐⇒ V (i + 1) >
v

β(1 − β)

Let i0 be the minimum state i such that the above holds, so in particular V (i0) ≤
v

β(1−β) but V (i0 + 1) > v
β(1−β) . We know because V is increasing in i, this point

is indeed a phase transition: V (i) > v
β(1−β) for all i > i0, so after this point, the

customer always chooses firm A. We may compute V (i0) easily using this fact.

V (i0) = βV (i0 + 1) = · · · = βk−i0V (k) = βk−i0R
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Thus, we have the following:

βk−i0 ≤ v

Rβ(1 − β)
< βk−(i0+1)

⇐⇒ k − i0 ≥ logβ

(
v

Rβ(1 − β)

)
> k − (i0 + 1)

⇐⇒ i0 ≤ k − logβ

(
v

R(1 − β)

)
+ 1 < i0 + 1

⇐⇒ i0 = k −
⌊
logβ

(
v

R(1 − β)

)⌋
≡ k − Δ

If t ≥ Δ, the customer perceives the reward prior to this tipping point, so
i0(t) = i0 = k − Δ. If t < Δ, the customer does not perceive the reward at this
point, and immediately once (s)he perceives the reward, (s)he is beyond this
point and adopts the reward program, so i0(t) = k − t. The above dependence
reduces to the following after incorporating our specific look-ahead distribution:

i0(t) =

{
i0, wp p,

k, 1 − p.

��
Note that the phase transition point is independent of λ, the customer’s

visit probability bias toward the merchant. As we would expect, it increases
with the look-ahead parameter and with the price discount offered by merchant
B. Additionally, it decreases with an increase in the reward value (R) and a
decrease in the distance to reward (k). The variation with the discount factor
β is interesting: we can show that for any R

v ≥ 1 there exists a β ∈ [0, 1] that
minimizes the phase transition point i0 for strategic customers. We refer to the
ratio of number of visits required for a forward-looking customer to adopt a
reward program and the total distance to the reward as the “influence zone”.
Intuitively this is the fraction of visits that the merchant wants to influence the
customer by offering exogenous means of earning additional points like bonus
miles in airlines or accelerated earnings, as discussed in the introduction. Next
we find the optimal k for minimizing this influence zone if α is constant.

Remark 1. Influence zone is minimized at k = e
α(1−β) under proportional pro-

motion budgeting, as long as β is close to 1.

Proof. As defined the influence zone is i0
k = k−Δ

k = 1− Δ
k . Thus minimizing the

influence zone is equivalent to minimizing k
Δ .

k

Δ
=

k

logβ

(
1

αk(1−β)

) ∼ k(1 − β)
log(αk(1 − β))

The above approximation relies on β close to 1. Now this value is minimized at
k = e

α(1−β) . Therefore, for all distributions of excess loyalty, the optimal value
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for k is given by e
α(1−β) , the value for which k

Δ is minimized and takes the value
e
α . At this value the influence zone takes the value 1 − α

e . ��
Note that if α is 1, then the value of k corresponds to a cashback between

2% and 4% as β ranges between 0.95 and 0.9. This value is realistic to what is
observed in practice.

3.2 Merchant Objective Dynamics

Optimizing Reward Parameters. So far we have characterized the customer
behavior within the duopoly without concern about the particular reward design
parameters. In this section, we derive optimal parameters for the reward program
design with the objective of maximizing the revenue of the reward program mer-
chant. Interestingly, we see that maximizing revenue corresponds to minimizing
the influence zone, as illustrated above.

Theorem 2. Under proportional promotion budgeting, the optimal reward dis-
tance (k) and the optimal budget proportion (α) for merchant A follow the rela-
tion αk = e

(1−β) for all distributions of λ as long as β is close to 1.

Proof. Let θ = Δ
k . First, we evaluate RoRA. We substitute the value of the

phase transition point obtained above in the rate of revenue equation for A to
reevaluate it. And since we assume that λ and t are drawn independent of each
other, we can separate the expectation terms and evaluate them sequentially,
first over t, then over λ.

RoRA = E
λ,t

[
k − R

i0(t)/λ + k − i0(t)

]

= E
λ

[
p · k − R

i0/λ + k − i0
+ (1 − p)

λ(k − R)
k

]

= E
λ

[
p · λ(k − R)

kλ + i0(1 − λ)
+ (1 − p)

λ(k − R)
k

]

= E
λ

[
p · λ(1 − αv)

1 − θ(1 − λ)
+ (1 − p)λ(1 − αv)

]

Observe that the term inside the expectation is maximized when θ is max-
imized for all values of λ ∈ (0, 1). Using Leibniz’ Rule, we can conclude that
the integral itself is maximized when θ is maximized, which as shown above, is
equivalent to minimizing the influence zone. As shown in Remark 1, this happens
at αk = e

1−β . And at this point, θ = Δ
k = α

e . ��
An interesting point to observe above is that if α is constant, then maximizing

the revenue objective is equivalent to minimizing the influence zone. This result
matches the following intuition - the faster the merchant can get customers to
adopt the reward program, the more purchases they will make with the merchant
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in the long run - but is stronger as it actually maximizes the revenue objective as
well. Although, reward point accelerations are common and effective mechanisms
to get customers to adopt reward programs, we have shown that designing the
reward program so that a minimum number of such accelerations is required
leads to maximizing merchant’s revenue. The condition that β be close to 1
is not very restrictive, as the discount factor is expected to be high in most
cases. Note that because k ≥ Δ, the above also shows α ≤ e. Finally, observe
that we need R > (1−λ)v

1−β for V to be increasing. We meet this condition with

proportional budgeting when k = e
α(1−β) as R = αkv = ev

1−β ≥ v
1−β ≥ (1−λ)v

1−β .
The above framework can be used for optimizing for the reward parame-

ters to maximize A’s rate of revenue, for varying distributions of the customer
population. That is, if a merchant has a good estimate of its customer popula-
tion’s distribution, it can easily utilize the above theorem to optimize its reward
scheme. We leave the competitive study where merchant B could strategize on
its discount value v for future work. In the following subsection, we explore these
conditions in detail for the uniform distribution of loyalty bias for fixed α.

Revenue Comparisons. We characterize the conditions for when it is strictly
better for A to offer a reward program for a specific distribution of the loyalty bias
parameter - when λ for every customer is drawn uniformly at random between
(0, b] where b is less than 1. We will assume this distribution for the remainder of
the section. This condition boils down to two situations: first, the rate of revenue
for A should be higher than that of B and second, that the rate of revenue for A
should be higher than it could have achieved by not offering the reward program
at the same fixed price. First, we evaluate the expected rates of revenue for both
A and B under the optimality relation between k and α mentioned above with
λ being drawn from a uniform distribution.

RoRA = E
λ

[
p · λ(1 − αv)

1 − θ(1 − λ)
+ (1 − p)λ(1 − αv)

]

= pk · 1 − αv

Δ
·
(

1 − k − Δ

bΔ
log

(
1 +

bΔ

k − Δ

))
+ (1 − p)

bk(1 − αv)
2k

= (1 − αv)
(

p
e

α

(
1 − e − α

bα
log

(
1 +

bα

e − α

))
+ (1 − p)

b

2

)

RoRB = E
λ,t

[
(i0(t)λ − i0(t))(1 − v)

i0(t)/λ + k − i0(t)

]

= E
λ

[
p · (i0/λ − i0)(1 − v)

i0/λ + k − i0
+ (1 − p)

(k/λ − k)(1 − v)

k/λ

]

= E
λ

[
p · i0(1 − λ)(1 − v)

kλ + i0(1 − λ)
+ (1 − p)(1 − λ)(1 − v)

]

= p · i0(1 − v)

b(k − i0)2

(
k log

(
1 +

b(k − i0)

i0

)
− b(k − i0)

)
+ (1 − p)(1 − b

2
)(1 − v)
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= p · i0(1 − v)

k − i0

(
k

b(k − i0)
log

(
1 +

b(k − i0)

i0

)
− 1

)
+ (1 − p)(1 − b

2
)(1 − v)

= (1 − v)

(
p · e − α

α

(
e

bα
log

(
1 +

bα

e − α

)
− 1

)
+ (1 − p)(1 − b

2
)

)

= (1 − v)

(
p

e

α

(
e − α

bα
log

(
1 +

bα

e − α

)
− e − α

e

)
+ (1 − p)(1 − b

2
)

)

Observe that both the above equations have a left term and a right term.
The left term is the rate of revenue obtained from strategic customers whereas
the right term is that obtained from the myopic customers. As α ranges between
0 and e, the value on the left term increases from 0 for RoRA and decreases to
0 for RoRB. That is, by controlling the reward budget ratio, A is able to gain
the entire strategic customer base. But observe how RoRA varies with α: the
marginal revenue term (1 − αv) decreases with α as the merchant gives higher
rewards to customers, but the market share term increases as A gains more
strategic customer base. As α → 0, RoRA → b/2, i.e., the revenue earned is only
due to the loyalty bias, and is equivalent to the reveue earned by A when not
running any reward program.

Figure 1 illustrates the region in terms of the customer parameters (b, p)
where it is better for A to offer a reward program, i.e., RoRA > RoRB (indicated
in blue) and RoRA > b

2 (indicated in yellow) for different values of α, keeping
v = 0.05 and β = 0.95 fixed. The blue region shows that there is a clear threshold
of b and p values beyond which RoRA > RoRB. But more interestingly, the
threshold value of b and p decreases as α is increased toward e. Whereas the
yellow region shows that if the fraction of strategic customers is not too small,
the firm should choose to run a reward program most of the time except for when
b is large; larger b values mean that customers make more exogenous visits, so
a reward program is no longer needed to entice visits, but only decreases the
profits of the reward program merchant. The intersection of two regions, i.e.,
the region in green, indicates that the range of values of b for which the reward
program is strictly profitable increases as p increases. We formally show this
result next.

For any fixed α, the exact conditions on p, b and v for RoRA > RoRB and
RoRA > b

2 are rather complex. We will first focus on one particular simple case:
α → e. We will prove four lemmas for this case, and we leave the mainly algebraic
proofs to the extended writeup2.

Lemma 2. As α → e, RoRA > RoRB if and only if the following condition on
b holds:

b > 2 ·
(1 − v) − p

1−p · (1 − ev)

(1 − v) + (1 − ev)
(8)

The above lemma gives a lower bound on b for RoRA > RoRB in terms of p
and v. In order for the reward program to be strictly better than the traditional
pricing model, we also need RoRA > b

2 . The following lemma shows that this
condition gives a corresponding upper bound on b.
2 https://papers.ssrn.com/sol3/papers.cfm?abstract id=2920132.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2920132
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(a) α = 0.5 (b) α = 1

(c) α = 2 (d) α = 2.5

Fig. 1. Regions where RoRA > RoRB (blue), where RoRA > b
2

(yellow) and where
both are true (green) for different values of α. In all cases, β = 0.95, v = 0.05 and λ
drawn uniformly on (0, b]. (Color figure online)

Lemma 3. As α → e, RoRA > b
2 if and only if the following condition on b

holds:
b <

2p

p + ev
1−ev

(9)

The previous two lemmas provide lower and upper bounds on b for RoRA >
RoRB and RoRA > b

2 , respectively. For the reward program to be strictly better
than all alternatives, both of these conditions must be met. We combine them to
get an intuitive necessary and sufficient condition on p for the reward program
to be “strictly better”.

Lemma 4. As α → e, for the reward program to be strictly better on some
values of b, a necessary and sufficient condition on p is:

p > 1 − 1 − ev

1 − ev2
(10)

Thus, for any choice of v, and p obeying the above condition, the combination
of the above lemmas gives an interval of b values for which the reward program
is the most profitable choice for the merchant. Figure 2 shows the bounds on b
for varying values of p, keeping v = 0.05 fixed, and restricting the range of b
values in (0, 1). Notice that the upper bound on b increases as a function of p
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Fig. 2. The upper and lower bounds on b as a function of p. Here v = 0.05 and α → e.

while the lower bound decreases with p, so the interval of b values where the
reward program is strictly better increases with p. We formalize this observation
in the next lemma.

Lemma 5. As α → e and p obeying Eq. 10, as p increases, the range of values
of b for which the reward program is strictly better increases.

Figure 3 shows the upper and lower bounds on b for all valid pairs of p and
v with α → e. The top plot shows the lower bound on b and the bottom plot
depicts the upper bound. For a particular (p, v) pair, if the color on the top plot
is darker than the corresponding color on the bottom plot, then this pair has a
valid b interval in which the reward program is strictly better. This figure also
exhibits the increasing range of b values with increasing p; for large values of p
and moderate values of v, we observe no restrictions on b for the reward program
to be strictly better. We combine all the above observations into the following
theorem.

Theorem 3. Under proportional budgeting, as α → e, a necessary and suffi-
cient condition for the reward program to be strictly better is a lowerbound on p
which increases with v. And as p increases beyond the lowerbound, the region of
allowable b for which the reward program is strictly better becomes larger.

Now we generalize the above result for all values of α. The conditions are
more complex but the results and intuitions are similar. The proofs are technical,
and we leave them to the extended writeup3.

Lemma 6. Fix α ∈ (0, e). For any (p, v) pair, there exists some upper bound
b1 ∈ [0, 1] such that for all b ≤ b1, RoRA ≥ b

2 .

Lemma 7. Fix α ∈ (0, e). For any (p, v) pair, there exists some lower bound
b0 ∈ [0, 1] such that for all b ≥ b0, RoRA > RoRB.

We combine the above two lemmas as before to get the following theorem.
3 https://papers.ssrn.com/sol3/papers.cfm?abstract id=2920132.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2920132
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Fig. 3. Bounds on b for various values of p and v at α → e. Top shows lower bounds
on b for RoRA ≥ RoRB and bottom shows upper bounds of b for RoRA ≥ b

2
. (Color

figure online)

Theorem 4. Fix α ∈ (0, e). For any value of v, there exists a lowerbound p0
such that for any p greater than p0, there exists a range (b0, b1) between 0 and 1
such that for all b lying between b0 and b1, offering the reward program is strictly
better for A.

The above results can be extremely helpful in the following way: if a merchant
estimates that the loyalty bias parameter is drawn from a uniform distribution
and has good estimates of its target customer population, i.e., b and p values,
it can find the appropriate reward budget ratios α, which could make running
a reward program strictly better against a traditional pricing competitor. More
importantly, these results show that under mild assumptions on the customer
poplation parameters, reward programs can be beneficial in the competitive
duopoly model.

4 Conclusions

We investigated the optimal design of a frequency reward program against tradi-
tional pricing in a competitive duopoly. We modeled the behavior of customers
valuing their utilities in rational economic terms, and our theoretical results
agree with past empirical studies. Assuming general distributions of customer
population, we characterized optimal parameters for the design of reward pro-
gram, and under more specific parameter distrubution assumptions, we showed
the conditions on customer population parameters which make the reward pro-
gram strictly better. In short, if a merchant can make good estimates of the
customer population parameters, our model and results can help understand the
pros and cons of running a frequency reward program for that merchant against
traditional pricing.
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Though our research offers some interesting managerial insights, there are
some limitations to our study. Our results on revenue comparisons assumed
specific distributions for the customer population, though our framework can be
extended to other distributions as well. Moreover, estimating the customer popu-
lation distribution and parameters using real transactional data is an interesting
question in itself. That is, backing this research with empirical and experimen-
tal study, could provide strong quantifications to the intuitions we discuss. We
modeled customer behavior in rational economic terms, mainly to understand the
rational components that affect the decision making process. Tying in the effects
of our research with some past models on psychological behavior patterns of cus-
tomers toward reward programs would be another practically relevant problem
to address. Finally, we modeled a competitive duopoly, but left the traditional
pricing merchant as non-strategic. Understanding how competition affects the
equilibrium prices and reward program parameters could give intuitions about
a more practical scenario.
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Abstract. In a seminal paper, Chen et al. [7] studied cost sharing pro-
tocols for network design with the objective to implement a low-cost
Steiner forest as a Nash equilibrium of an induced cost-sharing game.
One of the most intriguing open problems to date is to understand the
power of budget-balanced and separable cost sharing protocols in order
to induce low-cost Steiner forests.

In this work, we focus on undirected networks and analyze topological
properties of the underlying graph so that an optimal Steiner forest can
be implemented as a Nash equilibrium (by some separable cost sharing
protocol) independent of the edge costs. We term a graph efficient if the
above stated property holds. As our main result, we give a complete char-
acterization of efficient undirected graphs for two-player network design
games: an undirected graph is efficient if and only if it does not con-
tain (at least) one out of few forbidden subgraphs. Our characterization
implies that several graph classes are efficient: generalized series-parallel
graphs, fan and wheel graphs and graphs with small cycles.

Keywords: Network cost sharing games · Forbidden subgraphs

1 Introduction

In the Steiner forest problem, there is a network (G, c) with an undirected graph
G = (V,E) and nonnegative edge costs c(e), e ∈ E. Furthermore, there are
n ≥ 1 pairs (s1, t1), . . . , (sn, tn) of vertices in G and each such pair (si, ti) needs
the vertices si and ti to be connected by (at least one) path. Thus, a feasible
solution for the Steiner forest problem is a subset F ⊆ E so that each pair (si, ti)
is connected in the subgraph induced by F . Since edge costs are nonnegative,
there are no cycles in any optimal solution, thus, one can restrict the search to
Steiner forests. An optimal Steiner forest F is a Steiner forest with minimum
cost, that is c(F ) :=

∑
e∈F c(e) is minimal under all possible Steiner forests F .
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c© Springer International Publishing AG 2017
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1.1 Network Cost Sharing Games

In this article, we consider a game-theoretic variant of the Steiner forest problem
(introduced in Chen et al. [7]) assuming that a system manager can design a
protocol that determines how the edge costs of the forest are shared among its
users. Formally, the n pairs (si, ti) correspond to players N := {1, . . . , n} that
each want to establish an (si, ti) connection with minimum cost. Thus, a strategy
profile is a tuple P = (P1, . . . , Pn), where every Pi is an si-ti path. Given P , the
cost of player i using edge e is ξi,e(P ) ≥ 0 and the ξi,e(P )-values are determined
by a cost-sharing protocol Ξ. The total cost that player i ∈ N needs to pay
under P is defined as

ξi(P ) :=
∑

e∈Pi

ξi,e(P ),

and a pure Nash equilibrium of the strategic game induced by Ξ is a strategy
profile P from which no player can unilaterally deviate, say to another path P ′

i ,
and strictly pay less. Chen et al. [7] axiomatized cost sharing protocols by the
following three fundamental properties (see also [11,14]):

1. Budget-balance: The cost c(e) ≥ 0 of each edge e is exactly covered by the
collected cost shares of the players using the edge, that is,

∑
i∈Se(P ) ξi,e(P ) =

c(e) for all e ∈ E, where Se(P ) := {i ∈ N : e ∈ Pi}.
2. Stability : There is at least one pure strategy Nash equilibrium in each game

induced by the cost sharing protocol.
3. Separability : The cost shares on an edge only depend on the set of players

using the edge, that is, Se(P ) = Se(P ′) ⇒ ξi,e(P ) = ξi,e(P ′) for all P, P ′ and
e ∈ E.

Budget-balance (Condition 1) is straightforward, Stability (Condition 2)
requires the existence of at least one Nash equilibrium in pure strategies (abbre-
viated PNE). This requirement is important for applications in which mixed
or correlated strategies have no meaningful physical interpretation (see also the
discussion in Osborne and Rubinstein [31, Sect. 3.2]). Separability (Condition 3)
allows for a distributed implementation of the cost sharing protocol as each edge
needs only to know its own player set. A cost sharing protocol is called separable,
if it satisfies 1–3.

One important example for a separable cost sharing protocol is the Shapley
cost sharing protocol (see [1,25]). For the case of two players, the corresponding
PoS is known to be 4/3, see Fig. 1a for an example. The solid lines build the
unique optimal Steiner forest OPT with cost 3 + 2ε, but OPT is no PNE since
Player 1 has to pay 2 + 2ε > 2 + ε. On the other hand, each player taking her
direct si − ti-edge is the unique PNE with cost 4 + ε.

Can we improve the PoS for this example by using a different separable cost
sharing protocol? Note that for the case of two players, a separable cost sharing
protocol is uniquely determined by one value per edge, namely the amount Player
1 has to pay if both players use this edge. In Fig. 1b we display a cost sharing
protocol Ξ for which OPT is a PNE. The edges are labelled by their costs
followed by the value described above which determines Ξ.
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s1 = s2 t2

t1

2

1 + 2ε

2 + ε

(a) OPT is no PNE for Shapley

s1 = s2 t2

t1

2|0
1 + 2ε|0

2 + ε|2 + ε

(b) OPT is a PNE for Ξ

Fig. 1. Examples for separable cost sharing protocols

1.2 Our Results

We study efficient graphs G = (V,E) having the property that there is an
optimal Steiner forest that can be implemented as a pure Nash equilibrium by
some separable cost sharing protocol (we speak of an enforceable Steiner forest).
The above definition does not specify a priori the cost structure of the graph
since any graph can be made efficient by assigning infinite or very high cost
on some edges, thus, deleting “problematic” edges and effectively making the
combinatorial structure of the graph irrelevant. An equivalent formulation of the
research question we study is the following: what is the largest class of undirected
graphs for which the worst-case ratio of the cost of the best Nash equilibrium
and that of an optimal Steiner forest (PoS) is 1? An even stronger condition is
the following: G is said to be strongly efficient, if every optimal Steiner forest
can be enforced as a pure Nash equilibrium.

Our main result gives a complete characterization of efficient and strongly
efficient graphs for two-player games:

Theorem (Main Result (Informal)).

G is efficient ⇔ G is strongly efficient ⇔ G does not contain certain subgraphs.

Some of the forbidden subgraphs (see Fig. 3) are reminiscent to an instance for
directed network design showing a lower bound of 5/4 for the PoS, see Chen et
al. [7]. Our characterization implies that several well-known graph classes are
efficient, while for others, we immediately get counterexamples, see Table 1 for
a (non-exhaustive) overview. The proofs for the listed graph classes and further
results can be found in [22, Sect. 5].

Table 1. Efficiency of graph classes

Efficient classes Classes containing non-efficient graphs

Generalized series-parallel graphs Bipartite graphs

Wheel and fan graphs Chordal graphs

Graphs with longest cycle ≤6 Planar graphs
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1.3 Used Proof Techniques and Significance

Showing that graphs which contain a forbidden subgraph are not efficient is
straightforward: It suffices to give costs for each forbidden subgraph so that the
PoS is greater than 1. Here, we can effectively delete edges which are not part of a
forbidden subgraph by assigning high costs to them. The property not efficient is
derived by proving that the optimal Steiner forest of the used instance is unique.

The proof that every graph which does not contain a forbidden subgraph
(called bad configuration) is strongly efficient, is much more involved. As a first
step we derive an LP-characterization of enforceable Steiner forests. An optimal
budget-balanced LP solution (for a given Steiner forest) corresponds to cost
shares that induce a separable cost sharing protocol so that the Steiner forest
becomes a pure Nash equilibrium. The proof proceeds now by contraposition:
assume we are given a graph without a forbidden subgraph and assume (by
contradiction) that there is an optimal Steiner forest that is not enforceable. We
solve the corresponding LP for the Steiner forest and since the Steiner forest is
not enforceable, there exists an inequality which is not tight and corresponds to
an edge that is not completely paid by the players. We use this unpaid edge to
derive the existence of an alternative strategy (path) for some player with costs
equal to a fraction of the currently paid cost shares (this alternative strategy
corresponds to a tight inequality of the LP). These alternative paths are now
iteratively generated until we can either argue that there exists a cheaper Steiner
forest compared to the initial optimal Steiner forest (contradiction), or, there is
a bad configuration (contradiction). Along this main approach, however, several
additional ideas are required: the location of the unpaid edge leads to different
subcases for which we need to use special optimal LP-solutions in order to derive
the proper alternative strategies.

We believe that our approach is a promising step towards better understand-
ing the power of separable cost sharing protocols in general. For the PoS-question
in directed or undirected graphs, there has been no progress since the initial con-
ference version of Chen et al. [7] roughly 10 years ago. Our characterization and
the proof exactly prescribes substructures of a worst-case instance (namely a
bad configuration must exist whose subpaths have costs corresponding to tight
inequalities of an LP solution). We are confident that our proof technique gives a
blue-print for both, characterizing efficient graphs for the general n-Player case,
and for resolving the PoS-question.

1.4 Related Work

For the PoA of uniform cost sharing protocols1, Chen et al. [7] proved (tight)
bounds of 2 for undirected single-sink networks and Θ(polylog(n)) for undi-
rected multi-commodity networks. For directed single-sink networks the achiev-
able PoA is n. For the PoS, they use enforceability constraints (that we also

1 Uniform protocols require that the cost shares on an edge only depend on the edge
cost and the set of players, but not on the network itself.
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use in the LP-characterization) to show that single-sink instances (directed or
undirected) admit an optimal Steiner forest as PNE (that is the PoS is 1). For
multi-commodity directed network, the achievable PoS lies in [3/2, log(n)] and
since the initial work of Chen et al. [7], no improvement has been made on this
question. For undirected networks, the only known upper bounds are derived
by analyzing the Shapley cost sharing protocol and they are of order O(log(n)),
see Anshelevich et al. [1]. Several works improved lower and upper bounds for
the PoS of Shapley cost sharing in undirected networks (cf. [2,3,10,12,15,29])
but up to day it is open whether the PoS is of order log(n) or even in O(1).
For several special cases, the price of stability is shown to be significantly lower
(cf. [15,27,28]). Recently Biló et al. [4] could show that the PoS for broadcast
games is O(1). For the design of separable cost sharing protocols in undirected
networks, we are not aware of any known lower bounds regarding the PoS.

Chen and Roughgarden [6] and Kollias and Roughgarden [25] focused on
network design with weighted players (where Kollias and Roughgarden analyzed
this variant as a special case of weighted congestion games) and derived tight
bounds on the PoA for the Shapley cost sharing protocol. Gkatzelis et al. [18]
further showed that the Shapley cost sharing protocol is optimal among all
uniform protocols for polynomial and convex cost functions.2 For further works
analyzing the Shapley protocol or arbitrary cost sharing, see [16,17,21,23,24,33].
Harks and von Falkenhausen [14,20] studied the design of separable cost sharing
protocols in a model, where players want to buy a basis of a matroid. They
derived tight bounds for the achievable PoS and PoA of order log(n) and n,
respectively. Christodoulou and Sgouritsa [11] considered multicast cost sharing
games under the assumption that input parameters (such as the set of terminals
and their location in the graph) are not known or only known probabilistically.
Among other results they show constant PoA bounds for outer planar graphs
even without knowing the parameters. On the other hand, they derive strong
lower bounds on the PoA of order log(n) even if the graph metric is known in
advance.

Cost sharing approaches for facility location problems and network design
problems were analyzed in [26,32]. In these works, however, the collected cost
shares need not be budget balanced per edge, thus, leading to a structurally
different setting.

There exist several characterizations of efficient graph topologies, albeit for
the simpler setting of average cost sharing (or Shapley cost sharing). Epstein
et al. [13] investigated efficient graph topologies for Shapley cost sharing and
showed that for symmetric s-t network congestion games, only extension parallel
graphs (a subclass of series-parallel graphs) are efficient. For asymmetric (multi-
commodity) games, only trees or nodes with parallel edges are efficient. These
works are closely related to Milchtaich’s [30] work on the Braess paradox (see
also [5,8,9]).

2 The certificate for optimality uses a characterization of uniform protocols by
Gopalakrishnan et al. [19].
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2 An LP-Characterization of Enforceability

Let Pi be the set of simple (si, ti)-paths of G. Furthermore, let F be a fixed
Steiner forest and P = (P1, . . . , Pn) with Pi ∈ Pi the uniquely defined (si, ti)-
paths in F . In addition, let Se(P ) be the set of players which use edge e in their
(si, ti)-path Pi, i.e. Se(P ) := {i ∈ N : e ∈ Pi}. An important technical tool
for obtaining characterizations of efficient graphs relies on a characterization of
Steiner forests F that can actually appear as a pure Nash equilibrium for a given
graph G = (V,E) and given costs c. We define this property formally.

Definition 1. Let (G, c) be an undirected network and N be a set of players with
given connectivity constraints. A Steiner forest F ⊆ E is called enforceable, if
there is a separable cost sharing protocol so that P = (P1, . . . , Pn) (where every
Pi is the unique path in F ) is a pure Nash equilibrium of the induced game.

We give a characterization of enforceability of F based on the following linear
program LP(F ):

max
∑

i∈N,e∈Pi

ξi,e

s.t.:
∑

i∈Se(P )

ξi,e ≤ c(e) ∀e ∈ F

∑

e∈Pi\P ′
i

ξi,e ≤
∑

e∈P ′
i\Pi

c(e) ∀P ′
i ∈ Pi ∀i ∈ N (NE)

ξi,e ≥ 0 ∀e ∈ Pi ∀i ∈ N

Theorem 2. The Steiner forest F with corresponding strategy profile P is
enforceable if and only if there is an optimal solution (ξi,e)i∈N,e∈Pi

for LP(F ) with
∑

i∈Se(P )

ξi,e = c(e) ∀e ∈ F. (BB)

The proof of the characterization can be found in [22, Sect. 2].

3 A Characterization of Efficient Graphs for Two
Player Games

We now consider the case of two players, N = {1, 2}, and first show that an
optimal Steiner forest is not necessarily enforceable. To see this, consider the
network displayed in Fig. 2. The solid lines build the unique optimal Steiner
forest OPT with cost 22 (which can be easily verified by considering all 19
possible Steiner forests). But the sum of cost shares that one can collect by
any separable cost sharing protocol is obviously bounded by 9 for Player 1 and
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6 + 6 = 12 for Player 2, thus the objective value for LP(OPT) is bounded by
21 < 22 and therefore OPT is not enforceable. By optimizing the costs for this
graph, we get a lower bound of 15

14 for the PoS, see [22, Sect. 6].
As we will show in the rest of the paper, the configuration displayed in Fig. 2

is one of few cases in which an optimal Steiner forest is not enforceable. Before
we can state this as a theorem, we need two definitions.

s1

s2

t1

t2

5| − |5
3|2|1 2|2|0 3|2|1

4|3|−

5| − |5

9

6 6

Fig. 2. OPT is not enforceable (edges of OPT with cost > 0 are labelled with their
cost, followed by an optimal solution ξ1,e|ξ2,e for LP(OPT))

Definition 3 ((Strongly) Efficient Graph).

1. We call (G, (s1, t1), (s2, t2)) efficient, if, for every cost function c, there is
an optimal Steiner forest of (G, (s1, t1), (s2, t2), c) which is enforceable (that
means the PoS is 1).

2. We call (G, (s1, t1), (s2, t2)) strongly efficient, if, for every cost function c,
every optimal Steiner forest of (G, (s1, t1), (s2, t2), c) is enforceable.

Definition 4. We call a subgraph H of (G, (s1, t1), (s2, t2)) a Bad Configuration
(BC), if H is one of the graphs in the set BC, where

BC = {BC1a, BC1b, BC2a, BC2b, BC2c, BC2d, BC3, BC4a, BC4b}.

The graphs of BC are displayed in Fig. 3 (see [22, Subsect. A.2.4] for the exact
definition), where one should note the following:

– u, v are the terminal nodes of one player; w, x the terminals of the other;
– lines represent simple paths and paths are node-disjoint (except for endnodes);
– solid paths have to consist of at least one edge, whereas dashed paths can

consist of only one node.

Theorem 5 (Main Theorem). The following three statements are equivalent:

(1) (G, (s1, t1), (s2, t2)) does not contain a subgraph which is a Bad Configura-
tion.

(2) (G, (s1, t1), (s2, t2)) is efficient.
(3) (G, (s1, t1), (s2, t2)) is strongly efficient.

It is clear that (3) implies (2); a sketch of the proof of (2) ⇒ (1) and (1) ⇒ (3)
can be found in the next section.
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BC2c (BC2d is the variant arising from
BC2c in the same way as BC2b from BC2a)
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u

w

v

x

BC2b

Fig. 3. Bad Configurations

4 Sketch of the Proof of Theorem5

4.1 (2) Implies (1)

We assume that (G, (s1, t1), (s2, t2)) contains a Bad Configuration. Then we
define a cost function c so that the optimal Steiner forest is unique and not
enforceable, showing the claim. To this end we choose a subgraph of G that is a
BC and set c(e) = ∞ if the edge e is not contained in this subgraph. We now have
to distinguish between the different types of BCs. For BC1a, the costs displayed
in Fig. 2 carry over (if a path consists of more than one edge, choose the costs of
the corresponding edges arbitrarily so that they sum up to the displayed cost on
the path; all paths with nonzero costs contain at least one edge because of the
definition of the corresponding type of BC). Costs for the other types of BCs
can be found in [22, Subsect. A.1].
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4.2 (1) Implies (3)

Consider an arbitrary optimal Steiner forest F (w.r.t. an arbitrary cost function
c) and an optimal solution (ξi,e)i∈N,e∈Pi

of the corresponding LP(F ). Assume
that condition (BB) is not satisfied, i.e. there is an edge that is not paid com-
pletely.

Note that P1 ∩ P2 has to contain at least one edge, since otherwise F is
enforceable. Furthermore, P1 ∩ P2 has to be a simple path, since F contains
no cycles. We refer to the edges of P1 ∩ P2 as the commonly used edges or the
middle part (cf. Fig. 4). Note that we can w.l.o.g. assume that s1 and s2 are
in the left part, otherwise we can just swap source and sink since the graph is
undirected. Figure 4 also illustrates the complete ordering on the edges of F that
we use throughout the proof (the numbers indicate in which order we consider
the subpaths; the arrows indicate increasing order within the subpaths).

s1

s2

t1

t2

left part middle part right part

(1)

(2)

(3) (4)

(5)

Fig. 4. Left, middle and right part of F ; complete ordering on edges of F

Definition 6. We call an optimal solution (ξi,e)i∈N,e∈Pi
for LP(F ) pushed to

the left (PL), if the following changes of the cost shares (which we denote a push
operation) do not yield a feasible solution for LP(F ) (for every choice of i, e, f
and ε > 0):

Increase the cost share ξi,e of Player i on edge e by ε and simultaneously
decrease ξi,f by ε, where f is an edge with higher order than e.

To obtain PL-cost shares (ξi,e)i∈N,e∈Pi
, we can use Algorithm PushLeft

(see [22, Subsect. A.2.5]). Let e be the first edge (with respect to the order)
which is not completely paid according to the computed PL-cost shares. We
distinguish between the cases that e is in the left part of F (Case L), the middle
part of F (Case M) or the right part of F (Case R). In each of these cases, we
get a contradiction (see [22, Subsect. A.2] for complete proofs).

We now describe some of the main ideas for the Cases L, M and R. If
e ∈ Pi, Player i needs to have a tight alternative q for e (corresponding to a
tight inequality in (NE)), i.e., q is a simple path which closes a unique cycle
C(q) with Pi containing e, and the cost of q equals the sum of cost shares Player
i pays on the edges of Pi ∩ C(q): If there is no such tight alternative, increasing
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the cost share ξi,e < c(e) without changing the other cost shares would yield a
feasible solution for LP(F ) with higher objective function value. We denote the
edges of Pi ∩ C(q) as the edges which are substituted by q.

Case L: Assume that e ∈ P1 holds (e ∈ P2 follows analogously). Under all
tight alternatives for Player 1 which substitute e, let q1 be smallest, that is, q1
minimizes the maximum occurring order of an edge in C(q1) ∩ P1. Let f be the
“last” edge which is substituted by q1, i.e., where the maximum is attained. The
situation for the case that f is in the middle part is illustrated in Fig. 5a; the
other cases (f is in the right or left part) can be treated very similarly.

We get that Player 1 pays the edges of C(q1)∩P1 before e (w.r.t. the ordering)
completely since those edges are not contained in P2 and e is the first edge that
is not paid completely. The same reasons yield ξ1,e < c(e). Furthermore, Player 1
pays nothing on the edges of C(q1)∩P1 after e (follows from PL-cost shares and
the choice of q1). Let F ∗ be the Steiner forest which arises from F by adding q1
and deleting the edges of C(q1)∩P1 which are in the left part (cf. Fig. 5b). Since
the cost of q1 equals the sum of cost shares of the deleted edges and this sum is
strictly smaller than the costs of these edges, c(F ∗) < c(F ); contradiction. The
full proof for Case L can be found in [22, Subsect. A.2.1].

s2

s1
t1

t2
f

e

q1

(a) f is in the middle part

s2

s1
t1

t2
f

q1

(b) F ∗

Fig. 5. Case L

Case M : Now both players need to have tight alternatives q1 and q2 for e. It
is clear that we can construct a cheaper Steiner forest if there are tight alterna-
tives q1 and q2 for e which substitute the same edges of the middle part, or a
tight alternative for e which substitutes only edges of the middle part. We then
distinguish between the two cases that all tight alternatives for e of one player
substitute edges of the right part, or both players have a tight alternative for
e which substitutes edges of the left part. Since the first case can be treated
similarly to Case L, we describe how to proceed in the second case. Let q1 (for
Player 1) and q2 (for Player 2) be smallest tight alternatives for e which sub-
stitute edges of the left part. Consider the case that q1 substitutes less edges
of the middle part than q2, and q2 does not substitute edges of the right part,
see Fig. 6a (the other cases follow similarly). Adding q1 and q2, and deleting the
dashed edges (cf. Fig. 6b) yields a Steiner forest F ∗ with smaller cost than F
(note that Player 2 pays nothing on the edges after e which are substituted by
q2), and thus we get a contradiction. The full proof for Case M can be found in
[22, Subsect. A.2.2].
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s1

s2

t1

t2

e

q1

q2

(a) Subcase of Case M

s1

s2

t1

t2

q1

q2

(b) F ∗

Fig. 6. Case M

Case R: Note that in the Cases L and M we did not need any arguments
according to BCs. This already indicates that Case R is more complicated. We
mention here only a few of the proof ideas (a full proof can be found in [22,
Subsects. A.2.3 and A.2.4]).

Again, we consider a smallest alternative q1 of Player 1 for e (assuming that
e ∈ P1). It is easy to see that q1 has to substitute some edges of the middle part,
since otherwise there is a cheaper Steiner forest. The same argument shows that
there has to be an edge f in the middle part (substituted by q1) which Player 2
does not pay completely. Now we want to argue that Player 2 needs to have a
tight alternative which substitutes f . Note that for an arbitrary PL-solution of
LP(F ) we cannot guarantee that whenever a player does not pay an edge in the
middle part completely, this player has a tight alternative for this edge. However,
we can achieve this property for one fixed Player i by maximizing the sum of
cost shares of Player i among all optimal solutions for LP(F ) for which e is the
first edge which is not completely paid. Let us assume that this property holds
for Player 2 and consider a tight alternative of Player 2 which substitutes f . If
this alternative substitutes only edges of the middle part, or the same edges of
the middle part as q1, one can construct a cheaper Steiner forest. The remaining
subcases can be organized as follows: If there is no tight alternative of Player 2
which substitutes f and edges of the right part, let q2 be any tight alternative
for f (which then substitutes edges of the left part; Subcase R.3). Otherwise,
let q2 be a tight alternative of Player 2 which substitutes f and edges of the
right part maximizing the minimum occuring order of an edge in C(q2) ∩ P2.
Then q2 can either substitute less (Subcase R.1) or more (Subcase R.2) edges of
the middle part than q1, see Fig. 7 for the subcases that q1 (or q2 in R.2) does
not substitute edges of the left part.

s1

s2

t1

t2

f

e

q1

q2

(a) Subcase R.1

s1

s2

t1

t2

f

e

q1

q2

(b) Subcase R.2

Fig. 7. Subcases R.1 and R.2
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We now describe how to proceed with the situation illustrated in Fig. 7a. One
can construct a cheaper Steiner forest if Player 2 completely pays the edges of
the commonly used part which are substituted by q1, but not by q2. Thus, there
has to be such an edge h which Player 2 does not pay completely, together with
a tight alternative q′

2 for h. Similarly as for q2, we have to distinguish between
several subcases depending on the properties of q′

2, see Fig. 8 for two possible
subcases. First consider the subcase illustrated in Fig. 8a. If Player 1 completely
pays the edges of the middle part which are not substituted by q1, using q1 and
q′
2 yields a cheaper Steiner forest, so we can assume that this does not hold.

Now we would like to argue that there has to be a tight alternative for Player 1
substituting such an edge; but as mentioned above, this is not immediately clear.
To ensure this, we introduced another additional property for the given cost
shares (for more details, see [22, Subsect. A.2.3]). We now consider the subcase
of Fig. 8b, which turned out to be the most challenging problem in the proof.

s1

s2

t1

t2

h f

e

q1

q2

q2

(a) Existence of tight alternatives for Player 1?

s1

s2

t1

t2

h f

e

q1

q2q2

(b) Bad Configuration?

Fig. 8. Different subcases of R.1

Note that the subgraph illustrated Fig. 8b is a BC1a only if the paths q1, q2 and q′
2

are pairwise node-disjoint and furthermore internal node-disjoint with P1 ∪ P2.
Depending on these properties, we grouped all possible different situations in
twelve “types” (Fig. 9 illustrates two of them). In total, 16 subgraphs similar to
the one illustrated in Fig. 8b occur, for which we have to investigate all twelve
types, leading to 16 · 12 = 192 subcases (see [22, Subsects. A.2.3 and A.2.4]).

s1

s2

t1

t2

h f

e

q1

q2q2

s1

s2

t1

t2

h f

e
q2

q1

q2

q2

Fig. 9. Two types of No Bad Configurations
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5 Summary and Open Problems

We derived a complete characterization of efficient graphs for two-player network
design games showing that a graph is efficient iff certain forbidden subgraphs
are not present. Our work leads to several interesting research questions:

– What is the computational complexity of recognizing a Bad Configuration?
– How does a characterization look like for three or more players?

Our characterization prescribes substructures of worst-case instances regarding
the long-standing PoS question for separable protocols. We conjecture:

Conjecture 1. The PoS for two-player undirected network design games is 15/14
(see [22, Sect. 6] for a lower bound).

Conjecture 2. The PoS for undirected network design games with n players is
< 2.

Conjecture 3. The PoS for directed network design games with n players is 2.
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2. Bilò, V., Bove, R.: Bounds on the price of stability of undirected network design
games with three players. J. Interconnect. Netw. 12(1–2), 1–17 (2011)
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zfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 541–552. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44465-8 46

30. Milchtaich, I.: Network topology and the efficiency of equilibrium. Games Econ.
Behav. 57(2), 321–346 (2006)

31. Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)
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Abstract. We propose a measure of approximate ex-ante Pareto effi-
ciency in matching markets. According to this measure, a lottery over
matchings is γ-approximately efficient if there is no alternate lottery in
which each agent’s ex-ante expected utility increases by an γ factor.
A mechanism is γ-approximately efficient if every lottery produced in
equilibrium is γ-approximately efficient. We argue this is the natural
extension of approximate efficiency in transferable-utility settings to our
nontransferable-utility setting. Using this notion, we are able to quantify
the intuited efficiency improvement of the so-called Boston mechanism
and the recently-proposed choice-augmented deferred acceptance mech-
anism over the random serial dictatorship mechanism. Furthermore, we
provide the first formal statement and analysis of the Raffle mechanism,
which is conceptually simpler than the Boston mechanism and has a
comparable efficiency guarantee.

1 Introduction

One of the most powerful paradigms in algorithmic mechanism design is that
of approximation. By quantifying the approximate optimality of mechanisms,
researchers are able to distinguish good mechanisms from bad ones, and easy
environments from hard ones. These efforts guide the choice of mechanisms
when the optimal mechanism is infeasible due to computational or cognitive
complexity, information or technology constraints, or other limitations.

Approximation has had considerable influence in the design of mechanisms
for allocating objects to agents in settings with transferable utility, where pay-
ments can be made in a common currency. In the context of welfare optimization,
for instance, recent results suggest that simultaneous item auctions are approxi-
mately efficient for a broad range of valuation classes [18,20,21,25,33], and app-
roach full efficiency in large markets [22]. A similarly-motivated line of inquiry
suggests that, for many settings, second-price auctions or item/bundle-pricing
guarantee nearly-optimal revenue [6,23,24].

However, many important economic problems, particularly the matching lit-
erature focused on the allocation of social goods, lie in the nontransferable utility
setting. School choice programs allocate school seats in public schools to children.
Public housing programs allocate apartments to tenants. Kidney transplant pro-
grams allocate deceased-donor kidneys to patients. Refugee settlement programs
c© Springer International Publishing AG 2017
N. R. Devanur and P. Lu (Eds.): WINE 2017, LNCS 10674, pp. 252–265, 2017.
https://doi.org/10.1007/978-3-319-71924-5_18
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match refugees to host cities. In these settings it is considered repugnant and,
often, simply infeasible to use money to allocate objects.

Without the common metric of money, it is impossible to directly compare the
utility of one agent with another, and so welfare objectives are necessarily multi-
pronged. We can still attempt to optimize welfare by choosing allocations on the
Pareto frontier. An allocation is welfare-optimal if it is not Pareto dominated,
i.e., there is no other allocation which each agent weakly prefers and some agent
strictly prefers. More generally, a randomized allocation, commonly called a
lottery, is welfare-optimal if it is not Pareto dominated ex-ante, i.e., there is no
other lottery which each agent weakly prefers in expectation and some agent
strictly prefers in expectation. Such lotteries are called Pareto efficient.

In a seminal paper, Hylland and Zeckhauser [27] (henceforth HZ) proposed
a pseudomarket in which individuals are allocated artificial currency and buy
probability shares of goods until the market clears. A centralized randomiza-
tion is then derived from the Birkhoff-von Neumann construction (see [12] for
details) to implement these promised probability shares. In the same types of
price-taking, large market settings where markets are known to be efficient in
classical economic analysis [31], this pseudomarket is cardinally efficient (i.e.,
maximizes total welfare). Furthermore, it is strategyproof in the large (i.e., in
the continuous-market limit). Azevedo and Budish [5] argue is the most one
can hope for among efficient mechanisms in this setting and, assuming truthful
reporting of preferences, it satisfies the first and second fundamental welfare the-
orems: any allocation by the pseudomarket is Pareto efficient and appropriate
allocation of currency can achieve any Pareto optimum.

However, as is often the case with optimal mechanisms, HZ has seen little
adoption in practice, perhaps due to the difficulty of describing it to participants.
Evidence for this view comes from Budish and Kessler’s [13] implementation of
a related mechanism among business students to allocate courses. While indi-
viduals did provide utility indices for various courses, there were wide-spread
complaints about the lack of transparency and it was very common for stu-
dents to supply implausibly large utility indices for some courses. Given that
the mechanism used these indices ultimately to form ordinal preferences, this
did not devastate the performance of their implementation, but it did raise sig-
nificant concerns about applying a similar approach in settings where cardinal
intensities are of greater moment. Accordingly, alternate suboptimal mechanisms
are the norm in matching markets, and as such, it is essential to be able to chose
among them appropriately.

The matching literature lacks a comparable guiding principle of
approximation—so useful in the transferable utility setting—for choosing among
suboptimal mechanisms. This is due in large part to the difficulty of selecting
an appropriate notion of approximation in nontransferable utility settings. We
propose an approximation notion that closely mimics Pareto efficiency. The idea
behind Pareto efficiency is that one cannot weakly improve the outcomes of
all consumers simultaneously in a non-trivial way. Our approximate notion of
Pareto efficiency relaxes this to the property that one cannot simultaneously
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improve the outcome of all consumers by some factor γ ≥ 1. That is, we define a
lottery to be γ-approximately Pareto efficient if there is no other lottery in which
each agent’s utility improves by at least a γ factor in expectation, with at least
one agent’s utility improving by strictly more than a γ factor. Similar notions
of approximately Pareto optimal solutions have appeared in the multi-objective
optimization literature (e.g., [28]), but to the best of our knowledge we are the
first to apply it in the context of market design.

As sanity checks, we note that 1-approximate Pareto efficiency coincides with
standard Pareto efficiency. Furthermore, this notion is the natural analog of
approximate efficiency in the cardinal setting with transferable utility. There,
an outcome is said to be γ-approximately efficient if the total social welfare is at
least a 1/γ factor of the total social welfare in a first-best solution. Equivalently,
and analogous to our definition, an outcome is γ-approximately efficient if the
total social welfare (profile of values in our setting) is at least the total social
welfare of a first-best solution where the values are scaled by γ.

These observations suggest we are on the right track with this definition.
However, a meaningful notion of approximation must be both logical (i.e., cap-
ture the philosophical notions of near-optimality for the objective at hand) and
discerning (i.e., yield quantitatively different results for good and bad mecha-
nisms). Given that most matching problems are motivated by social good appli-
cations like school choice programs and low-income housing allocation, we chose
to follow the logic of the notion of efficiency based on social decisions made
behind a veil of ignorance [30]. This implies that the benefits of social arrange-
ments should be judged based upon the value they yield to the agent who least
benefits from them, and so optimality is defined as a maximin objective.1 This
choice distinguishes our results from most existing work in the matching or social
choice literature which typically considers approximating the mean, median, or
geometric mean welfare [4,9,14], or focuses on ordinal objectives such as (roughly
speaking) maximizing the number of agents with their top choice [16] among
others [3].

In particular, these maximin notions do not reward mechanisms for dras-
tically improving the outcome of select agents while ignoring others. Thus, if
there are two unit-demand agents, Jieming and Jolene, and three goods, two
skateboards and a bicycle, with common values of 100, 100, and 200 to the
agents, respectively, then it is (1 + ε)-approximately efficient for any ε > 0,
according to our notion, to allocate the skateboards and discard the bicycle.2

An alternative notion would be to say that a lottery is γ-approximately efficient
if there exists no other lottery that each consumer weakly prefers and some con-
sumer prefers by a γ factor. According to this alternate notion, any allocation

1 See also the considerable research in the optimization literature on the so-called
“Santa Claus problem,” or maximin welfare optimization [7]. We are not aware of
work that studies the maximin welfare of existing matching mechanisms.

2 It is not hard to make this example more extreme in a market with n agents, pro-
ducing an approximately efficient lottery with ex ante value 1 for all agents whereas
the efficient lottery has value 1 for all but one agent and value n for a select agent.
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that discards the highly valuable good is a bad approximation. However, we feel
the maximin notion is more appropriate for social allocation problems where
fairness is a primary concern. Also, as mentioned earlier, our definition aligns
with standard cardinal notions of approximation commonly used in computer
science. For example, a mechanism that outputs a pareto-optimal lottery with
probability 1/2, and otherwise returns an empty (or arbitrary) allocation, is a
2-approximation under our notion, but might not be 2-approximate under this
stronger definition.3

The bulk of our paper is devoted to demonstrating the discerning power of
our notion. We focus attention on the random assignment problem in which a
limited supply of objects must be allocated to agents who want at most a sin-
gle good (i.e., are unit-demand). We study four mechanisms for this problem
(see Sect. 3 for formal definitions). The first three – random serial dictatorship
(RSD), Boston mechanism, and choice-augmented deferred acceptance (CADA)
– have been proposed and analyzed in the matching literature. While it was
long accepted that RSD has poor ex ante efficiency properties, Pycia [29] was
the first to develop an example showing RSD may have unbounded loss for total
welfare. Motivated by the inefficiency of RSD, Abdulkadiroğlu et al. [1] show that
when agents have the same ordinal preferences, RSD is Pareto-dominated by the
Boston mechanism. In an attempt to recover efficiency without sacrificing the
strategic simplicity of RSD, Abdulkadiroglu et al. [2] introduce CADA and argue
it performs better than RSD in ex ante efficiency in similarly restrictive settings.
Our first set of results complements this literature by quantifying the efficiency
comparisons of RSD, Boston, and CADA with respect to our notion of approxi-
mation. Using an example similar to [1], we show the approximation of RSD is at
least linear in the number of goods, whereas the Boston and CADA mechanisms
are 3-approximately Pareto efficient. For the Boston and CADA mechanisms, we
also improve the upper bound to 2 under a large-market assumption (i.e., when
the pool of agents is a continuum).

Next, we formally introduce and study the Raffle mechanism. In the Raffle
mechanism, each agent is allocated a perfectly divisible mass of “tickets” and
may divide them as she pleases among buckets corresponding to each potential
object (there may be multiple copies of each type of object). The mechanism
sequentially pulls tickets from buckets beginning with the most “congested”
bucket, that with the greatest ratio of tickets to copies available. Agents are
assigned to the object associated with the first bucket from which their name is
called and, upon being assigned, all of their tickets are removed from all buckets.
Similar raffles are common at fund-raising drives and other charity events.

Clearly, a ticket placed in a crowded bucket is less likely to be pulled. The
rationale behind the Raffle mechanism, similar to Boston and CADA as well
as the fully-efficient mechanism of HZ, is that a willingness to give up a high-

3 For example, the lottery that with probability 1/2 allocates the skateboard to
Jieming and the bicycle to Jolene, and otherwise allocates nothing to either, would
only be 4-approximate under this stricter definition, since an alternative would be
to always allocate the bicycle to Jolene and the skateboard to Jieming.
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probability claim on a socially valuable object for a small chance at one that an
individual greatly values is an efficient means to ensure objects are allocated to
those valuing them most. However, unlike HZ, the tradeoff in the Raffle mech-
anism is non-linear: as an agent’s tickets start to dominate the contents of a
particular bucket, the marginal probability share decreases. This causes an inef-
ficiency in the Raffle mechanism, as compared to HZ. Nonetheless, we are able to
bound this inefficiency, showing the Raffle mechanism is (1 − 1/e)-approximate
in continuum economies.

Recently, Brânzei et al. [10] showed that in a market setting where agent
values are additive across goods, the Trading Post mechanism of Shapley and
Shubik [32] obtains at least half of the optimal Nash social welfare (i.e., geometric
mean of agent values). This is closely related to our approximation bound for the
Raffle mechanism, as the Trading Post mechanism is conceptually similar to HZ.
However, these mechanisms apply to different settings (budgets versus matching
constraints). Moreover, the approximation results are incomparable since we
obtain an improved approximation factor for a different notion of approximation.

Remark 1. While it is not the focus of our paper, we further remark that the
Raffle mechanism, as opposed to HZ, Boston, or CADA, is particularly easy
to describe to participants. While optimal strategies in the Raffle mechanism
are potentially somewhat subtle, they are very familiar to agents unlike rank-
ing or rating problems that researchers have found agents find challenging to
use [19,26]. Additionally, they only require agents to form preferences over “rel-
evant” prizes rather than ranking everything they could possibly be awarded.
Moreover, since tickets are divisible, payoffs in the Raffle mechanism are con-
tinuous over possible ticket allocations, which permits local improvements and
generally simplifies the task of converging to approximate equilibria.

2 Model

We study a random assignment problem in which a limited supply of hetero-
geneous goods, such as seats at public schools, must be allocated among unit-
demand consumers, such as students. In our model there is a (finite or infinite) set
of consumers, denoted by S, and a finite set of goods, denoted by C = {1, . . . , m}.
For each j ∈ C, we let qj ∈ N be the capacity or quantity of good j available.

Each consumer i ∈ S has a type θ that specifies her value vi
j for a single

copy of each good j. Consumers are unit-demand, i.e., consumer i’s value for a
subset C ⊆ C of goods is maxj∈C vi

j . We will assume values are bounded and
normalized to lie in [0, 1]. We will write Θ = [0, 1]m for the space of types.

A randomized assignment, or lottery, is a randomized mapping σ : S → Δ(C)
from consumers to goods, where Δ(C) denotes probability distributions over
the elements of C. Given a lottery σ, we will write σi

j for the probability that
consumer i is matched to good j. A lottery σ is feasible if it respects capacities,
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i.e., for each good j,
∑

i∈S σi
j ≤ qj .4 The value enjoyed by consumer i in a

feasible lottery σ, written vi(σ), is her expected value from the assigned good:
vi(σ) =

∑
j∈C vi

jσ
i
j (noting that

∑
j∈C σi

j ≤ 1 from the definition of a lottery).
A lottery σ Pareto dominates lottery σ′ if vi(σ) ≥ vi(σ′) for all i ∈ S, and

vi(σ) > vi(σ′) for a positive measure of consumers. A lottery σ is Pareto efficient
if there is no other lottery that Pareto dominates it. Our notion of approximate
Pareto efficiency generalizes Pareto efficiency as follows.

Definition 1. For γ ≥ 1, a lottery σ is γ-approximately Pareto efficient if there
is no other lottery σ′ such that vi(σ′) ≥ γ · vi(σ) for all consumers i ∈ S, with
strict inequality for a positive measure of consumers.

It will sometimes be convenient to employ a continuum model of consumers.
This requires a few notational modifications to the definitions above. In the
continuum model, the capacity of good j, qj , can take on any non-negative real
value. The set of consumers S is described by a measure ρ over the set of types
Θ; we assume that ρ is atomless and Lebesgue integrable.

A lottery can now be described as a mapping from types to distributions over
goods, σ : Θ → Δ(C). We will write σθ

j for the probability that a consumer of
type θ is assigned to good j, and we will sometimes abuse notation and write σi

j

to mean σθ
j where θ is the type of consumer i. A lottery is feasible if it respects

capacities with respect to the measure ρ over types:
∫

θ∈Θ
σθ

j dρ ≤ qj .

3 Mechanisms

Random Serial Dictatorship Mechanism. In the Random Serial Dictatorship
mechanism (RSD), each consumer i submits a strict preference ordering ≺i. The
mechanism selects a random permutation of consumers and iteratively assigns
them their highest-ranked remaining good. In this mechanism, it is a dominant
strategy for a consumer to report ordinal preferences coinciding with their car-
dinal preferences. However, as we will see, RSD can be arbitrarily inefficient.5

Boston Mechanism. In the Boston mechanism, each consumer i submits a strict
ordering ≺i over the goods. A matching is then determined in rounds. In the
k’th round, each consumer is eligible to be matched only with their k’th highest-
ranked good. If fewer than qj consumers ranked j in the k’th position, they are
each matched to good j. Otherwise, qj of the consumers who ranked j in the k’th
position, chosen uniformly at random, are matched to j. All matched consumers,

4 By the Birkoff von Neumann theorem, a lottery is feasible if and only if it is a
distribution over deterministic assignments in which each consumer is assigned at
most one good and each good is not over-capacitated.

5 Another mechanism, the “Probabilistic Serial (PS)” mechanism, is fairly elaborate
to describe so we do not formally do so here [8]. In the continuum model on which
we focus most of our analysis, this mechanism is equivalent to RSD [17]. Thus our
negative results on RSD apply to the PS mechanism in this continuum model.
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and all matched copies of goods, are then removed from the market, and the
remaining capacity (the qj variables) are updated. This process continues until all
consumers have been matched, or until m rounds have completed (and hence the
mechanism has exhausted the preference list of each remaining consumer). This
mechanism is subject to complex strategic manipulation, but it has efficiency
gains over RSD [1]. We give a stronger guarantee here: the Boston mechanism
is in fact approximately efficient. We also consider the Boston mechanism in the
continuum model: in that setting, consumers’ choices of rankings are assumed
to be measureable with respect to ρ, and when consumers are matched to goods
in round k, a mass of up to qj are matched to good j, from among the set of
consumers that ranked j in the k’th position.

Choice Augmented Deferred Acceptance Mechanism. The Choice Augmented
Deferred Acceptance mechanism (CADA) [2] attempts to retain the incentive
properties of Random Serial Dictatorship6 and the intuitive efficiency gains of
the Boston Mechanism. In the CADA mechanism, each consumer submits a
preference ordering ≺i and also specifies a target good. Goods create priority
lists by first listing consumers that target them in a random order, and then
listing the remaining consumers in a random order. Matches are then formed
according to the procedure in c-DA. We will show that CADA, similarly to the
Boston mechanism, is approximately Pareto efficient. Also like the Boston mech-
anism, we will analyze the CADA mechanism in the continuum model. There,
strategies (preference orderings and targets) are assumed to be measurable with
respect to ρ, and matches are determined using the continuous analog of c-DA,
where in each round, each good makes the appropriate mass of proposals to
consumers according to a uniform measure from among those not yet proposed
to (corresponding to the random ordering of consumers in school preferences).

Raffle Mechanism. In the Raffle mechanism, each agent i is endowed with a mass
Zi of tickets, which can be divided arbitrarily among the goods. Write xi

j ≥ 0
for the quantity of tickets that agent i bids on good j.7 The bids x determine
an ordering π over the goods, described later. For each good j, sequentially in
order π, repeatedly select a consumer i with probability xi

j/
∑

i′∈S xi′
j , match i

to j, then remove all tickets of consumer i from all goods (i.e., set xi
j′ = 0 for

all j′ ∈ C). Continue selecting consumers until qj have been chosen or until all
tickets assigned to j have been removed, then continue with the next good in
order π, until all goods have been processed.

We now describe the order π. For each good j, write p1j (x) for the proba-
bility that a newly-entering consumer who assigns x tickets to good j (only)
6 As they focus on the school choice setting, they assume goods have priorities and

actually build off of c-DA, but as noted above, c-DA with single tie-breaking and
RSD are equivalent in our setting.

7 To handle discontinuities due to tie-breaking at 0 ticket allocation for under-
demanded goods, we impose a technical restriction that if xi

j > 0 then xi
j ≥ ε

for some arbitrarily small ε > 0. This restriction impacts all value calculations by a
quantity proportional to ε which tends to 0, so we will omit these terms for brevity.
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would be matched to good j, if j were to occur first in π. We will choose
π(1) ∈ arg minj limx→0(p1j (x)/x), the good with the smallest marginal gain in
allocation probability per mass of ticket assigned, at 0.8 We think of j as the most
congested of the goods. We then define p2j (x) similarly, but assuming that good
j occurs second in π (after π(1)), and choose π(2) ∈ arg minj limx→0(p2j (x)/x).
We continue in this way until all good have been ordered.9

Given this ordering π, we define the effective congestion of good j to be

Rj(x) = lim
x→0

x

p
π−1(j)
j (x)

.

We note that Rj(x) = 0 if and only if the good j is underdemanded.
The following example illustrates the execution of the Raffle mechanism.

Example 1. Suppose there are 3 goods, {A,B,C}, each with capacity 1. There
are 3 agents, denoted {1, 2, 3}. Each agent is endowed with a single unit of
ticket. The agents allocated their tickets as follows: (x1

A, x1
B , x1

C) = (3/4, 1/4, 0),
(x2

A, x2
B , x2

C) = (1/3, 1/3, 1/3), and (x3
A, x3

B , x3
C) = (1/10, 4/5, 1/10).

The good with the highest effective congestion is chosen first. For each good,
the marginal gain in allocation probability per mass of ticket assigned, at 0, is 1
over the total mass of tickets allocated to that good. Since B is the good with the
most tickets assigned to it, B has the lowest marginal gain (and hence the highest
effective congestion) and is resolved first. The total mass of tickets assigned to
good B is 1/4 + 1/3 + 4/5 = 83/60, and each agent is chosen with probability
proportional to the mass of ticket they allocated to good B. Suppose that agent
3 is chosen, which occurs with probability 4/5 × 60/83. The mechanism then
matches agent 3 to good B.

The good with the next-highest effective congestion is chosen next, given
the choice to resolve B first. Since good C is uncongested (since less than a
single unit of ticket was allocated to it), this next good is A. Since agent 3 has
already been matched, tickets from agent 3 are now ignored; the remaining mass
of tickets assigned to good A is 3/4 + 1/3 = 13/12. The mechanism randomly
selects either agent 1 or agent 2, each proportional to its share of ticket assigned
to good A. Say agent 1 is chosen, which occurs with probability 3/4 × 12/13.
Then agent 1 is matched to good A.

Finally, the remaining good C is matched with agent 2, the only unmatched
agent that has tickets assigned to good C.

We will also consider the Raffle mechanism in the continuum setting, where
we require that the bidding strategy x be measurable with respect to ρ. In
this formulation, rather than selecting customers sequentially for a given good,
we consider a measure λ over unmatched consumers, initially ρ. The measure of

8 This limit can be infinite if good j is underdemanded.
9 In the full version of the paper, we discuss how to approximate these marginal gains—

and hence the order π—in polynomial time, and argue that a small approximation
error leads only to a small loss in approximation factor.
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customers matched to good j increases from 0 at rate
∫

θ
xθ

j ·λ, while the measure
λ over unmatched customers reduces, at θ, at rate xθ

j · λ(θ), until a qj mass of
consumers are matched.

4 (In)-efficiency of RSD, Boston and CADA

We show that Boston and CADA have bounded efficiency guarantees whereas
RSD is not even approximately efficient: the potential Pareto losses from RSD
are proportional to the population size.

4.1 RSD

Pycia [29] first observed that RSD may have unbounded welfare loss for the util-
itarian additive sum of utilities, but his example actually is one of approximate
Pareto efficiency according to our more demanding notion of Pareto dominance
and thus more permissive notion of approximtion. We provide a new example
that shows a linear-in-population size lower bound on the approximation ratio
of RSD even for this concept.10

Example 2. There are n goods. Good j has 2j−1 copies. There are n types of
consumers with 2n consumers of each type. The i’th type of consumer has value
vi

j = 1 + (n − j + 1)ε for goods 1 ≤ j ≤ i, and vi
j = (n − j + 1)ε for goods

j > i, where ε is arbitrarily small. In this market, consumers’ preferences are
completely aligned, and so they always select goods in the same order in RSD.
Therefore, in the lottery σRSD induced by RSD, a consumer of type i receives
high value if and only if she is among the first

∑i
k=1 2k−1 consumers to select

a good, in which case she receives a value of approximately 1. Otherwise she
receives a low value of approximately zero. Thus the expected value of a type i
consumer from RSD is

vi(σRSD) =
1

n2n

i∑

k=1

2k−1 =
2i − 1
n2n

.

On the other hand, a lottery which randomly assigns the copies of good i to
consumers of type i gives each consumer of that type an expected value of 2i−1

2n ,
a factor n/2 improvement over RSD.

4.2 Boston and CADA Mechanisms

The Boston and CADA Mechanisms are credited with achieving more efficient
outcomes than other ordinal mechanisms such as RSD. We establish theoretical
justification for this insight by showing that these mechanisms are approximately
Pareto efficient. It will be helpful to first analyze a simplified Boston mechanism,
10 This also implies a linear lower bound for the consumer-proposing deferred accep-

tance mechanism (c-DA). See the full version of the paper for more details.
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that uses only a single round of matching, then matches any remaining goods
and consumers in an arbitrary fashion. We refer to this as the single-ticket mech-
anism. Proofs appear in the full version of the paper.

Theorem 1. Under a continuum market of consumers, the single-ticket mech-
anism is 2-approximately Pareto efficient. If the market of consumers can be
discrete, the single-ticket mechanism is 3-approximately Pareto efficient.

As a corollary, we note that the Boston mechanism and the CADA mechanism
are both 2-approximately Pareto efficient as well, as they can both be viewed
as applying a single round of the Boston mechanism and then allocating the
remaining goods in some fashion.

Corollary 1. Under a continuum model of consumers, the Boston mechanism
and the CADA mechanism are both 2-approximately Pareto efficient. Under a
discrete model of consumers, they are both 3-approximately Pareto efficient.

5 Analysis of the Raffle Mechanism

We now turn to an analysis of the Raffle mechanism at equilibrium. We will
show that the Raffle mechanism has an equilibrium for every economy, and we
provide a closed-form expression for any given consumer’s best response. We
provide an example demonstrating that equilibria of the Raffle mechanism are
not necessarily Pareto efficient. We then show our main result, which is that all
equilibria of the Raffle mechanism are (1 − 1/e)-approximately Pareto efficient.

5.1 Equilibria of the Raffle Mechanism

An equilibrium of the Raffle mechanism is a ticket allocation profile x that
simultaneously maximizes expected value for all consumer types. Since the type
and strategy spaces are compact, and since consumer utilities are continuous in
xθ (recalling that there is a minimal positive bid ε on each good, and that lottery
probabilities deform continuously in ticket assignments), a standard fixed-point
argument implies equilibrium existence.

Proposition 1. Every instance of the Raffle mechanism has an equilibrium.

To build some intuition for the structure of equilibria in the Raffle mechanism,
consider the probability that a certain consumer is matched with good j, as a
function of the quantity of ticket she bids on good j, conditional on not having
received any previous goods in the order they are processed by the mechanism.
Call this fj(x). The function fj(x) is increasing and concave, with the concavity
being due to collisions between different portions of her ticket. In the limit as the
good j becomes more and more congested, such collisions become increasingly
unlikely, and hence fj(x) tends toward a linear function.

If fj(x) were truly linear for all j, then the outcome of the Raffle mecha-
nism would be equivalent to an outcome of the HZ mechanism, as each agent is
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optimally allocating their budget of ticket given a fixed exchange rate for each
good. In particular, the outcome would be Pareto efficient. The inefficiency of the
Raffle mechanism, then, is driven by the non-linear distortion of these outcome
curves fj(x), which translate to decreasing marginal gains from tickets invested.
These non-linear distortions are most extreme when goods are close to being
under-demanded. In such cases, any consumer could obtain her favorite good
with near-certainty by investing all of her tickets. This would likewise lead to
Pareto efficiency. The most inefficient outcomes, then, occur at some moderate
level of price distortion. Our analysis characterizes the shape of these distortion
curves, quantifies this worst case, and thereby bounds the resulting inefficiency.

Motivated by a different context than ours, Chade and Smith [15] derive
a closed-form description of the best response of consumer θ to a given ticket
allocation profile x. We present their solution in the full version of the paper,
and make use of it when analyzing equilibria in Sects. 5.2 and 5.3.

5.2 Why Raffles Aren’t Fully Pareto Efficient

We begin by presenting a simple example demonstrating that the Raffle mech-
anism might not generate a Pareto efficient outcome at equilibrium.

Theorem 2. There exists an instance of the Raffle mechanism with two con-
sumer types and two goods that is not α-approximately Pareto efficient for any
α < 1.05.

5.3 Main Result

Our main result is that the Raffle mechanism is approximately Pareto efficient,
under a continuum economy of consumers.

Theorem 3. In the continuum market model, every equilibrium of the Raffle
mechanism is (1 − 1/e)-approximately Pareto efficient.

Our approximation result holds for any equilibrium of the Raffle mechanism.
In this sense it is a price of anarchy result, in which our approximation factor
holds in the worst case over market realizations and equilibria of play.

6 Conclusion

In this paper we propose a notion of approximation for ex ante Pareto effi-
ciency in unit-demand matching markets. We use this notion to compare and
contrast four mechanisms: RSD, Boston, CADA, and Raffle. We show RSD has
unbounded inefficency whereas Boston, CADA, and the Raffle mechanism are all
approximately efficient. Our main technical result is that the intuitively simple
Raffle mechanism is a (1 − 1/e)-approximation in large markets.

Our analysis suggests several directions for future research. First, while
Raffle-style mechanisms are frequently used, we are not aware of any system-
atic attempt to measure the quality of allocations they yield in practice or of
any studies measuring the extent to which the theoretical results hold up in
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laboratory experiments. Second, a fundamental limitation of the Raffle mech-
anism is that it only applies, in its present form, to the random assignment
problem and not to the combinatorial assignment problem [11] of allocating
a heterogeneous collection of many discrete goods among consumers who may
want more than a single good and potentially have rich preferences over bundles.
While Budish et al. [12] describe a mechanism that achieves (large population)
cardinal efficiency for some preference structures, no mechanism we are aware
of can achieve a wide range of cardinally efficient outcomes (such as ones that
are ex-ante envy free) for general preferences even in a large population. This
seems particularly relevant because our results on non-approximation of ordi-
nal mechanisms, such as Budish’s proposed solution, immediately extend to the
combinatorial assignment problem, suggesting all existing mechanisms may be
quite inefficienty.

Further afield, a critical aspect of the Raffle mechanism that we find attrac-
tive is the way they may be implemented through a dynamic process that exposes
the chances of allocation clearly to participants over time. In particular, we imag-
ine a process in which an online automated administrator would continually
calculate the effective congestions of different goods and report these to partici-
pants. Participants would have the right to move their tickets across the buckets
associated with prizes until they were happy with their allocation. The rates
at which they are allowed to move tickets and the rates at which the display of
congestion would update might be controlled to aid convergence. We believe this
dynamic implementation, similar to the process used in Singapore where appli-
cations for various types of housing are “open” for a period and their congestion
continuously updated online, allowing participants to change the housing they
are applying to, would greatly ease the process of finding equilibrium and ensure
a transparent and simple decision-making process for participants.11 Yet beyond
these psychological benefits, we also believe such an implementation could have
substantial implications for efficiency once factors beyond those we model in this
paper are accounted for. For example, such dynamics may help reduce informa-
tion acquisition costs by allowing participants to economize on investigating
prizes they are unlikely to be awarded, allowing groups of participants (such
as students) that wish to be consume the same prize (such as school to go to
together) to jointly coordinate their plans and allowing participants to learn from
the market demand patterns information about the value of different prizes, etc.
While it is beyond the scope of our current analysis to formalize these dynam-
ics or their benefits, we view a central value of the Raffle mechanism to be the
naturalness with which it invites dynamic implementations with rich feedback
to participants. Furthermore we suspect that such a dynamic implementation
would maintain desirable equilibrium properties, at least in large populations,
as there would be little capacity for participants to impact the trajectory of
congestion through their actions along the dynamic path, as is the case in the
dynamic convergence to Walrasian equilibrium in large economies [31].

11 See, for example, the displayed information for the last round of the Singa-
pore system at http://www.hdb.gov.sg/cs/infoweb/residential/buying-a-flat/new/
application-status.

http://www.hdb.gov.sg/cs/infoweb/residential/buying-a-flat/new/application-status
http://www.hdb.gov.sg/cs/infoweb/residential/buying-a-flat/new/application-status
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Abstract. We study atomic routing games where every agent travels
both along its decided edges and through time. The agents arriving on
an edge are first lined up in a first-in-first-out queue and may wait: an
edge is associated with a capacity, which defines how many agents-per-
time-step can pop from the queue’s head and enter the edge, to transit
for a fixed delay. We show that the best-response optimization problem is
not approximable, and that deciding the existence of a Nash equilibrium
is complete for the second level of the polynomial hierarchy. Then, we
drop the rationality assumption, introduce a behavioral concept based on
GPS navigation, and study its worst-case efficiency ratio to coordination.

Keywords: Routing games over time · Complexity · Price of Anarchy

1 Introduction

Numerous selfish agents use a routing network to take shortest paths that may
however congest the paths of others. Routing games model such conflictual sys-
tems by a graph of vertices and edges, and every agent decides a path from a
source to a sink, path whose cost is congestion-dependent. Routing games find
applications in road traffic [War52], as well as in routing packets of data via
Internet Protocol [KP99]. Founding results1 have been obtained on static rout-
ing games [RT02,Rou05,CK05,AAE05,NRTV07,Rou09], where each individual
path instantaneously occurs everywhere over its decided edges. Such instanta-
neousness does not reflect that an agent on one edge of its path is not elsewhere,
and cannot congest other edges. Routing games over time, where every agent
travels along its route as well as through time, were introduced more recently
[KS09,AU09]. Introducing time makes games more complicated: pure-strategy
Nash equilibria are often not guaranteed; problems such as computing a best-
response or an equilibrium are hard; the Price of Anarchy (PoA) can be large.

We study asymmetric atomic routing games over integer time-steps that
model congestion with a very natural first-in-first-out (FIFO) queuing policy
on the edges [WHK14]. Every edge e has an integer fixed delay de and an integer
capacity ce. On an edge, every arriving agent is lined up in the edge’s FIFO

1 Static routing games were a crucial testbed for the Price of Anarchy, a concept that
bounds a game’s loss of efficiency due to selfish behaviors.

c© Springer International Publishing AG 2017
N. R. Devanur and P. Lu (Eds.): WINE 2017, LNCS 10674, pp. 266–280, 2017.
https://doi.org/10.1007/978-3-319-71924-5_19



Routing Games over Time with FIFO Policy 267

queue (a discrete list); the capacity defines how many agents-per-time-step can
pop from the queue’s head and transit through the edge, while the others wait
the next time-step. Every agent aims at minimizing the time from source to sink.

Related Work. Only pure Nash equilibria (PNE) are considered here. It is the
same (resp. different) source/sink in the symmetric (resp. asymmetric) case.

[HHP06,HHP09] studies multicommodity routing problems, where asymmet-
ric commodities are routed sequentially and the cost of edges is load dependent.
With affine costs, while in the splittable case the PoA is almost 4, in the unsplit-
table case, computing a best-response is NP-hard, and the PoA is 3 + 2

√
2.

[FOV08] observes that “a car traversing a road can only cause congestion
delays to those cars that use the road at a later time” and proposes an asymmetric
model where every edge has a priority on agents, agents that are congested only
by those with a higher priority on the edge. While a global priority (same fixed
priority for every edge) guarantees the existence of a PNE, local priorities do
not. Several (matching) bounds are derived on the PoA.

[KS09,KS11] introduces competitive flows over time, by building a non-
atomic symmetric model upon the literature about deterministic queuing. Every
edge has a fixed transit delay, and a capacity that bounds above the edge’s out-
flow. It is shown that a sequence of ε-Nash flows converges (as ε → 0) to a Nash
flow; and an iterative algorithm is proposed. While the evacuation-PoA can be
arbitrarily large, the time-PoA is in O(1).

[AU09] proposes a dynamic selfish routing model with non-atomic asymmet-
ric agents. A very general delay function de(x,Ht

e) of the demand x and the
historic Ht

e is introduced, along with a generalized notion of FIFO, which just
states that there are no crossovers. Concurrently to [KS09], it is shown that
in the symmetric case, a PNE always exists and can be computed efficiently.
However, in the asymmetric case and under a specification of FIFO where an
entering agent waits the previous one’s end of transit, it is shown that an equi-
librium may not exist, and the PoA is bounded below by the number of vertices.
Flow independent delays can be reduced to static flows, providing a PoA bound.

[HMRT09,HMRT11] proposes temporal (asymmetric and atomic) network
congestion games. Every edge has a speed ae ∈ R>0 (latency equals speed times
weight of agents being processed), and different local policies are studied. Under
FIFO, an edge processes a unitary agent in time ae, while the other agents wait.
A guaranteed PNE can be computed efficiently for the unweighted symmetric
case, despite the NP-hardness of computing a best-response. In the weighted or
asymmetric cases, an equilibrium may not exist. One could reduce one of our
edges e to ce × de speedy-edges having ae = 1, but it is pseudo-polynomial.
Conversely, it is also unclear how we could reduce this model to the present one.

Our model is the same as in [WHK14], an atomic variation over integer
time-steps of [KS09], where every edge has a free-flow delay and a capacity that
bounds above the inflow-per-time-step. In [WHK14], the emphasis is rather on
bottleneck individual objectives, but also on the sum on the edges in the path.
A PNE may not exist; Computing a best-response is NP-complete; Verifying
a PNE is coNP-complete; Deciding PNE existence is at least NP-hard. Also,
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a bound is provided on the PoA. [WBK15] studies games where agents are
robust bottleneck optimizers that only know an interval about the cost of edges
and learn the actual cost later.

[HPSVK16] studies a model similar to [WHK14] and ours, but instead of
FIFO, studies local and overall priorities on the edges. (Crossovers may occur.)
Some bounds on the price of stability and PoA are derived. Computing opti-
mal priority lists is shown APX-hard. Under local priorities, computing best-
responses is NP-hard, as well as computing a PNE.

Furthermore, [MLS10,MLS13] generalizes Braess’s Paradox to the model in
[KS09], and Braess’s ratio can be much more severe. [BFA15] considers a model in
the fashion of [KS09] and shows that under a Stackelberg strategy, the time-PoA
is (1 − 1/e)−1, and the total-delay-PoA is 2(1 − 1/e)−1. [CCCW17a,CCCW17b]
propose an extensive form model where agents take new decisions on each vertex.

Results. In this paper’s model [WHK14, sum objective], the new results are
marked here with a star∗:

Theorem 1 A pure-strategy Nash equilibrium may not exist2.
Theorem 2 The payoffs are well defined and calculable in polynomial-time3.
Theorem 3 ∗ The best-response decision problem is NP-complete
Theorem 4 ∗ The best-response optimization problem is APX-hard,
Theorem 5 ∗ and it is NP-hard to approximate within |V | 1

6−ε, and within n
1
7−ε.

Theorem 6 Verification of equilibria is coNP-complete4.
Theorem 7 ∗ Existence of equilibria is ΣP

2 -complete.

That best-responses are not approximable, deeply questions the rationality
assumption of PNE. We then introduce a behavioral model for vehicles taking
decisions by GPS, inspired by how navigation assistants work: by retrieving
information on the current traffic and recomputing shortest paths in real-time.
On the worst-case efficiency ratio of GPS navigation, to coordination, we found:

Theorem 8 ∗ Allowing walks5 as strategies, GPS-agents may cycle infinitely.
Theorem 9 ∗ The Price of GPS Navigation is in Ω(|V | + n) as the number of

vertices |V | and the number of agents n grow.

Model Discussion. The positioning of waiting queues on the edges’ tails, and
of fixed-delays inside edges, is without much loss of generality. Indeed, this choice
reduces in polynomial time from/to models where the queue occurs after the fixed
delay, where queues are on the nodes and fixed delays on the edges, where edges
are unoriented, etc. The idea is to think of both edges and nodes as resources
having a waiting queue or a fixed delay; then a path is a sequence of resources.

2 [WHK14, Appendix B.1, Fig. B.11] contains a similar result.
3 A close Dijkstra-style algorithm for local priorities lies in [HPSVK16, Proposition

2.2].
4 [WHK14, Sect. 7] claims that one can derive NP-hardness for sum-objectives.
5 A walk is an alternating sequence of vertices and edges, consistent with the given

(di)graph, and that allows repetitions and infiniteness.
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Furthermore, one can model starting times by adding edges, and bottlenecks by
delay de = 0 edges. One can also note that on each edge e, delay �(|qe|−1)/ce�+de

is almost an affine function of congestion |qe| (the queue’s length). Since the
unweighted agents case that we consider is a particular case of the weighted case
(and Theorem 2 still holds), our complexity results and efficiency lower bounds
naturally extend to weighted agents.

2 Preliminaries

Definition 1. A First-in-first-out Routing Game (Frog) is a non-cooperative
finite game characterized by tuple Γ =(G = (V,E), (ce, de)e∈E , N, (si, s

∗
i )i∈N ,�).

– G = (V,E) is a finite digraph with vertices V and edges E ⊆ V × V .
– Given edge e ∈ E, positive number ce ∈ N≥1 is the capacity of edge e, and

non-negative number de ∈ N≥0 is the fixed delay on edge e.
– Finite set N = {1, . . . , n} is the set of agents.
– Given agent i ∈ N , vertices si, s

∗
i ∈ V are its source vertex and sink vertex.

– Strict order � on set N is a tie-breaking priority on agents.

For a given Frog, we introduce the following notations. For every agent
i, its strategy-set Pi consists of every simple path πi from source vertex si to
sink vertex s∗

i . A strategy-profile (π1, . . . , πn) ∈ P1 ×· · ·×Pn, which for short we
denote in bold by π ∈ P , defines a strategy for every agent. For a given strategy-
profile π ∈ P , strategy πi is the strategy of agent i therein (a simple path from
si to s∗

i ); adversary strategy-profile π−i ∈ ∏
j �=i Pj consists of all strategies in π

but agent i’s; and given strategy π′
i, strategy-profile (π′

i,π−i) ∈ P is obtained
from strategy-profile π by changing strategy πi into π′

i.
Agents travel both along edges and through time. For an agent i, total delay

Ci : P → N≥0 is a function of the strategy-profile, defined as follows. As depicted
in Fig. 1, when agent i arrives on edge e ∈ πi, it lines up in a first-in-first-
out (FIFO) queue specific to edge e. At each time-step, edge e lets the ce first
agents in the queue enter the edge to transit for de time steps. Let function
wi,e : P → N≥0 be the time spent waiting by agent i in the queue of edge e. It
follows that agent i’s total delay is defined by equality

Ci(π) =
∑

e∈πi

(wi,e(π) + de) .

If, on one edge, some agents arrive at the same exact time step, then these
synchronous agents are ordered in the edge’s queue by tie-breaking priority �.

A rational agent, given an adversary strategy-profile, individually optimizes
its total delay. This rationality assumption induces standard concepts:

Definition 2. Given agent i and adversary strategy-profile π−i, strategy πi is a
best-response if and only if: Ci(πi,π−i) = minπ′

i∈Pi
{Ci(π′

i,π−i)} .
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ce

dequeue

Fig. 1. On a given edge e, agents (gray rounds) are first lined up in a FIFO queue.
The edge lets the ce first agents enter at each time-step, to travel for de time steps.

Definition 3. A pure Nash equilibrium (PNE) is a strategy-profile π ∈ P where

∀i ∈ N, ∀π′
i ∈ Pi, Ci(π) ≤ Ci(π′

i,π−i).

In plain words, strategy-profile π ∈ P is a PNE if no agent has an individual
incentive to deviate from his current strategy, hence if every agent plays a best-
response. To illustrate the definitions above we recall (Fig. 2) a didactic variation
of a known counter-example [WHK14, Fig. B.11], which implies Theorem 1.
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Fig. 2. An example of a Frog where there is no PNE. Single edges have capacity one.
Double edges have capacity two. The fixed delays of edges are the numbers displayed
above. The sources (resp. sinks) of agents are indicated by squares (resp. diamonds).
Choose any tie breaking priority compatible with 2 � 3∼4 � 1 � 5∼6 � 7∼8.
Agent one Pursuer and two Evader have two strategies; the others have only one.

Theorem 1. In a Frog, there may not exist any PNE [WHK14].

Proof (Theorem 1). Recall that in a pursuer-evader game, the two agents have
two corresponding strategies; the pursuer prefers to decide the same; the evader
prefers to decide differently; and consequently there is no PNE. In Fig. 2, all
agents are degenerate6, but agent one Pursuer and agent two Evader, who can
decide between two paths: up or down. Agents three and four transmit from
6 A degenerate agent only has one strategy, but can still incur and cause externalities.
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Evader to Pursuer a positive externality for deciding the same, and agents five
to eight, from Pursuer to Evader, a negative externality.

If both agents decide the same, without loss of generality path up, then
Evader makes agent three wait one time-step, who in turn arrives one step after
Pursuer where they could have collided; hence the total delay of Pursuer is 12.
Also, Pursuer makes agent five arrive at time step 10 instead of 9 on the possible
collision point with Evader. Moreover, agent seven also arrives there at time 10.
Consequently, this queue is congested by five and seven and Evader waits one
time-step. So Evader’s total delay is 13. Similarly, one can show that when they
decide different strategies, Pursuer’s total delay is 13, and Evader’s is 12. To
conclude, Fig. 2 is a pursuer-evader game, and so has no PNE. ��
Definition 4. We study this sequence of computational problems.

Frog/Delays: Given a Frog Γ and a strategy-profile π, compute the total
delays (C1(π), . . . , Cn(π)) of every agent.

Frog/Br/Opt: Given a Frog Γ , an agent i, and an adversary strategy-
profile π−i, compute a best-response πi for agent i.

Frog/Br/Dec: Decision version of Frog/Br/Opt. Given a Frog Γ , an
agent i, an adversary strategy-profile π−i, and an integer
threshold κ ∈ N≥0, decide whether there exists a strategy πi

with cost Ci(πi,π−i) ≤ κ.
Frog/NE/Verif: Given a Frog Γ and a strategy-profile π, decide whether

strategy-profile π is a PNE.
Frog/NE/Exist: Given a Frog, decide whether it admits a PNE.

The representation size of Frogs is a polynomial of numbers |V | and n. We
assume that the following concepts are common knowledge: decision problem,
length function, complexity classes P, ZPP, NP, coNP, ΣP

2 , ΠP
2 , PH, NPO and

APX, polynomial-time reduction, L-reduction, hardness and completeness.

Theorem 2. The mapping from strategy-profiles to total-delays is well defined,
and there is (see footnote 3) a polynomial-time algorithm to compute it:
Frog/Delays ∈ P.

Proof (Sketch). An event is a time-type-agent-edge quadruplet, where the type
is either to enter the edge’s waiting queue or to pop from its head. The algorithm
consists in a Dijkstra-style iterative development of events, where the heap of
future events is ordered by lowest time first, then type (queuing before popping),
and then the agent-priority (breaking any non-determinism in the algorithm).

3 Inapproximability of Best-Responses

Theorem 2 implies that problem Frog/Br/Opt is somewhere inside class NPO,
and problem Frog/Br/Dec in class NP. In this section, we show that comput-
ing a best-response is hard, and provide two inapproximability results.
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Theorem 3. Decision problem Frog/Br/Dec is NP-complete.

So, a polynomial-time algorithm addressing Frog/Br/Dec is unlikely to exist.

Theorem 4. Optimization problem Frog/Br/Opt is APX-hard.

Hence, a PTAS for Frog/Br/Opt would imply a PTAS for every NPO problem
that admits a poly.-time constant factor approx. algorithm, which is unlikely.

Theorem 5. For any ε ∈ R>0, approximating problem Frog/Br/Opt within
factor |V | 1

6−ε, and within factor n
1
7−ε, are NP-hard.

In plain words, it would take an intractable amount of time for an agent to find
a path within factor |V | 1

7 or n
1
8 of the shortest delay. A more realistic model

may rather drop rationality, and be better based on agents using heuristics.
Before the proofs, a good rule of thumb to distinguish between easy and

hard path problems, is whether Bellman’s Principle of Optimality is satisfied, or
if preference inversions violate the principle. We introduce a gadget game.

Definition 5. An (M, t)-Backfire is a piece of Frog, defined as in Fig. 4.

Lemma 1. In an (M, t)-Backfire, if agent x arrives on the t-trigger at time t,
then on the bomb, M agents arrive at time t + 1, and massively delay agent x.
Otherwise, if x arrives at a different time, then this Backfire does not delay x.
Furthermore, the backfire contains Θ(M) vertices and Θ(M2) agents.

Proof (Lemma 1). If agent x does not trigger on time t, then agent r1 makes
every agent bi wait one step. Hence, every agent bi collides on ui at t + 2 with
M agents mi who have priority. Agents bi finally arrive on w3 at time t+1+M ,
way too late to delay anyone (assuming large M). If agent x triggers on time
t, then he gets queued after agent r0, and agent r1 has to wait one step. Then
agent r1 arrives too late on vertices ui to delay any agent bi. Consequently,
agents bi arrive on ui one step before mi, don’t get delayed, and arrive on w3

at t + 1. ��
Definition 6. An M -Backfire is a sequence of (M, t)-Backfires, for 0 ≤ t ≤ M ,
that share the same trigger-edge and bomb-edge. Agent r0 is removed everywhere
but for t = 0, because for t ≥ 1, its role in the (M, t)-Backfire is played by r1
from the (M, t − 1)-Backfire. (There is one r1 per-time-step in [0,M ].)

Lemma 2. With an M -Backfire, agent x is massively delayed on the bomb-edge
(assuming large M), if and only if he crosses the trigger-edge (anytime in [0,M ]).
Furthermore, the backfire contains Θ(M2) vertices and Θ(M3) agents.

Proof (Lemma 2). Assume that agent x triggers on time t; all subsequent agents
r1 get delayed by one: an (M, t′)-Backfire gets triggered for every t′ ≥ t. ��
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Fig. 3. Filter: Agent y is not delayed, but agent x is delayed by at least M ∈ N≥1 steps.
Circles, rectangles and diamonds are resp. vertices, sources and sinks. The idea is that
agent x waits one step on every edge (ui, ui+1), but y does not wait. After symbol @ is
the source’s starting time. An agent bi starts for every i ∈ [1, M ] and t ∈ [0, M [, hence
the number of agents is in Θ(M2). The edges have capacity one and fixed-delay zero.
Priority � satisfies y � bi � x, for any i (and time) defined in the Figure.

w1 w2 w3 w4
Any acyclic digraph, with from
w2 to w3 a delay at least one.

t-trigger bomb

u0 u1 u2 u3 uM−2 uM−1 uM

v1 v2 v3 vM−1 vM

A
g
e
n
t
r
1
c
ro

ss
e
s
w
it
h

d
e
la
y
0
,
b
u
t
a
g
e
n
t
x

is
d
e
la
y
e
d

b
y
M

.

fi
lt
er

x@?
r0@t
r1@t + 1

x
r0

b1@t + 1 b2@t + 1 b3@t + 1 bM−1@t + 1 bM@t + 1 r1

bM

. . .

b1

m1@t + 2M×

m1 ×M

m2@t + 2M×

m2 ×M

m3@t + 2M×

m3 ×M

mM−1@t + 2M×

mM−1 ×M

mM@t + 2×M

mM−1 ×M

Fig. 4. An (M, t)-Backfire, where M ∈ N≥1 is some large number and t ∈ N≥0 is a
time-step. Circles, rectangles and diamonds are resp. vertices, sources and sinks. After
symbol @ is the source’s starting time. The edges that are plainly depicted (or dashed)
have capacity one and fixed-delay zero. The filter is depicted in Fig. 3. Let priority �
satisfy ri � mj � bk � x, for any i, j, k defined in the figure. One can connect to any
digraph from the trigger to the bomb, if the minimum delay from w2 to w3 is one.
Agent x gets heavily delayed on the bomb if and only if he uses the trigger on time t.

Proof (Theorem 3). Membership in class NP follows from Theorem 2. We show
NP-hardness by starting the reduction from decision problem MinVertex-
Cover [Kar72,GJ79] that asks, given graph G = (V, E) and threshold κ ∈ N≥0,
whether there is a subset W ⊆ V such that ∀{ϕ1, ϕ2} ∈ E , ϕ1 ∈ W or ϕ2 ∈ W,
and |W| ≤ κ. Recall that problem MinVertexCover is NP-complete even for
degrees bounded above by three [GJS74], which we assume here. We build the
Frog depicted in Fig. 5. The reduction’s validity is by construction (see the
figure’s caption). Taking M = 6η is sufficient. Since there are Θ(η) edges in V,
the reduction makes Θ(η3) vertices and Θ(η4) agents, which is polynomial. ��
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“Edges {ϕ2, ϕ4} and {ϕ2, ϕ5} shall be covered, or a backfire will heavily delay agent x.”

Fig. 5. From MinVertexCover (degrees bounded above by 3) to Frog/Br/Dec.
Circles, squares and diamonds depict respectively vertices, sources and sinks for Frog.
Let η = |V| and observe that the starting size is in Θ(η). In the depiction, η = 5. The
idea is a correspondence between W ∈ 2V and path πx decided by agent x: taking edge
(vi, wi) in path πx amounts to take vertex ϕi in subset W. Every edge is associated
with (ce, de) = (1, 1), but edges (vi, wi) with (1, 2), and edges (vi, wi) when it’s a
trigger with (1, 0) (because agent r1 already makes x wait one step). Consequently
going up always takes two steps, and going down one step if it’s not a backfired edge.
Hence a vertex cover W of size k corresponds to a path πx with length 3η + k. So,
threshold κ in MinVertexCover is reduced to κ′ = 3η + k in Frog/Br/Dec. For
every edge {ϕi, ϕj} (i < j) in MinVertexCover, we introduce an M -Backfire with
trigger (vi, wi) and bomb (vj , wj), in order to heavily punish x for not taking ϕi and
ϕj . The backfire splits the provided punishement between up to three neighbors.

Proof (Theorem 4). Starting from the optimization version of problem MinVer-
texCover where one must find W∗ ∈ arg minW⊆V {|W| | ∀ε ∈ E , W ∩ ε �= ∅}
(forget about κ and κ′), the same reduction as for Theorem 3 is also an
L-reduction7 [PY91,Cre97], which we show by exhibiting functions f, g and
constants α, β.

Recall that optimization problem MinVertexCover is APX-complete even
for degrees bounded above by three [PY91,AK97], which we still assume. The
correspondences f and g are depicted in the caption of Fig. 5. Given a Min-
VertexCover instance I, one has OPTFrog(f(I)) ≤ αOPTVC(I) for α = 10
and |W| ≤ βCi(πx) where W = g(I, πx) for β = 1. Indeed, for the former,
observe that a vertex can cover at most three edges; hence η

3 ≤ OPTVC(I).
Correspondence 3η + OPTVC = OPTFrog then yields α = 10. The later comes
from k ≤ 3η + k. Consequently, this is an L-reduction and then, optimization
problem Frog/Br/Opt is APX-hard. ��

Proof (Sketch, Theorem 5). Problem MinColoring, given graph G = (V, E),
asks a coloring of G, i.e. a partition of V into disjoint sets V1, V2, . . . , Vk such that
each Vi is an independent set of G (no edges in G[Vi]), with minimum chromatic
number k = χ(G). Let η = |V|. It is known that whatever ε > 0, approximating
χ(G) within η1−ε is NP-hard [FK96,Zuc06]. The idea of the reduction is in Fig. 6,

7 An L-reduction is a poly.-time reduction in NPO, which conserves approximations.
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Fig. 6. Sketch of reduction from MinColoring to Frog/Br/Opt. Agent x’s paths
correspond to deciding a color γ for each vertex i. Depicted in the gray rectangle, the
first time x chooses color γ is on vertex i (first time on the line). Then (1) x waits one
step on edge (vi,γ , v′

i,γ) (because of an agent r1). Then on the same line, (2) neighbors
in G are Backfired (can’t put the same color on a neighbor) and non-neighbors are
discounted to delay zero (by heavily delaying agents r1 and disarming their eventual
backfires). Transit edges (dotted) have delay one to allow for backfires to work. Hence,
a valid coloring of size k would correspond to a path πx of length η + k which does not
enable to find β for an L-reduction. To solve this issue, we multiply all the costs by η
with η times more agents and vertices, but not on the dotted edges.

and (with M = 3η) involves Θ(η6) vertices and Θ(η7) agents. Consequently,
better approximation ratios than |V | 1

6−ε or n
1
7−ε contradict intractable ratio

η1−ε from [FK96]. ��

4 The Complexity of Pure Nash Equilibria

In this section, we first observe that the verification problem Frog/NE/Verif
is coNP-complete. Then, we completely characterize the complexity of the exis-
tence problem as complete for the second level of PH8.

Theorem 6. Problem Frog/NE/Verif is coNP-complete [WHK14, Almost]
(See footnote 4).

Proof (Theorem 6). A deviation is a no-certificate verifiable in polynomial-time
by Theorem 2, hence this problem is inside class coNP. A proof with bottleneck
objectives lies in [WHK14, Cor. 4], and the authors claim [WHK14, Sect. 7] that
one can obtain NP-hardness for sum-objectives in the same way. We confirm
that claim since the same reduction as for Theorem 3 holds here. ��
Theorem 7. Problem Frog/NE/Exist is ΣP

2 -complete.

Proof (Theorem 7). This problem is in class ΣP
2 . Indeed, yes-instances admit

a certificate verifiable by an NP-oracle: by guessing the right strategy-profile,
according to Theorem 6, one can use an NP-oracle to verify that it is a PNE. The
ΣP

2 -hardness proof below generalizes the reduction introduced for Theorem3.

8 Class ΣP
2 are the problems that nest a coNP problem inside an NP problem.

Only very small sizes (�10) of such problems can usually be practically addressed.
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V|I|,1

V|I|,0

θ θ

b b b b

b b b b
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b>1+n+κ

x

Fig. 7. Reduction from MaxMinVertexCover to the complement of
Frog/NE/Exist. Generalizes the reduction in Fig. 5. Each box Vi,j is made as
in Fig. 5. We create a universally indifferent agent θ who can early decide between two
paths for every i ∈ I: one backfires Vi,0’s entry and the other backfires Vi,1’s entry.
Agent θ models function θ by blocking early the entries to Vi,0 xor to Vi,1 with the
backfires b. Plain edges have capacity and cost (ce, de) = (1, 0). Dotted edges have
(ce, de) = (1, 1) but the two first ones (1, 2), to let θ run in front of x. Then agent x
decides a path through what corresponds to subgraph G(θ). Agent x sends backfires to
Fig. 2 if and only if he reaches his sink after time 1 + n + κ.

In Fig. 7, we reduce decision problem MaxMinVertexCover to the com-
plement of Frog/NE/Exist. Given set of indices I, the vertices of graph G =
(V, E) partition into V =

⋃
i∈I Vi,0 ∪ Vi,1. Given function θ : I → {0, 1} (i.e. 2|I|

possibilities), let G(θ) denote the graph restricted to vertices V(θ) =
⋃

i∈I Vi,t(i).
Problem MaxMinVertexCover, given threshold κ ∈ N≥0, asks whether:

∀θ : I → {0, 1}, ∃W ⊆ V(θ), W vertex-covers G(θ) and |W| ≤ κ, (1)

and is ΠP
2 -complete (i.e. co-ΣP

2 -complete); co-Frog/NE/Exist asks whether:

∀π ∈ P, There exists an individual deviation from π. (2)

[Eq. (1) ⇒ Eq. (2)] Whatever the choices of agent θ, if the strategy of agent
x costs more than Ci > 1 + n + κ, then he can deviate and improve, because
of Eq. (1); otherwise, now assuming that x’s strategy is a best-response, then he
reaches his sink before time 1+n+ k (because Eq. (1)) and does not disable the
example from Fig. 2, which remains unstable: there is a deviation.

[not Eq. (1) ⇒ not Eq. (2)] If there exists a function θ, then we position agent
θ as such. Then the best-response of agent x makes him reach his sink after time
1 + n + κ. Consequently, Fig. 2 is disabled: we have a PNE. ��

5 The Price of GPS

Previous sections show how strong an assumption rationality is. Instead, we
propose a model inspired by GPS personal navigation assistants: agents retrieve
instantaneous traffic data to recompute shortest paths at each crossroad.

We introduce a GPS-agent as an agent who at each vertex (between two
time steps) recalculates a shortest path according to the fixed delays de plus
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congestion � |qe|
ce

� of the past step. In place of PNE, let O ⊆ P be the set of
strategy-profiles that can be obtained by GPS-agents. We study the worst-case
ratio to coordination, defined for one Frog as the Price-of-GPS (navigation):

PoGPS =
maxπ′∈O { C(π′) }
minπ∈P { C(π) } ,

where C(π) =
∑

i∈N Ci(π). For a family of Frogs, PoGPS is the supremum of
every PoGPS therein. As shown in Fig. 8, a first negative result follows:

Theorem 8. Allowing non-simple paths, GPS-agents may cycle infinitely
(Fig. 8).

Proof. As depicted in Fig. 8, consider w.l.o.g. the end of a given time step, and
the current choice faced by agent i1. Straight outside shows congestion and is
not better than taking the later exit at the next node. Since every agent faces
the same choice and the game is symmetric, it is possible to loop endlessly. ��
Following Theorem 8, we now focus on simple-paths and study the order of
PoGPS.

u00

u01 v00

v01

u11

u10v11

v10

u20

u21v20

v21

u31

u30 v31

v30

i1

i2

o1

o2

Fig. 8. Double cycle of infinite procrastination. The idea is that there is an inner-cycle
and an equivalent outer-cycle. Agents from a cycle have to go through the other cycle
to reach their sink, but the information that they get from the other cycles does not
discourage procrastination. Circles are nodes. Every edge e has capacity ce = 1. The
four edges in every corner have fixed-delay de = 0, and the two from each corner to
the next one, fixed-delay de = 1. There are two inner-agents i1 and i2, with resp.
sources u11 and u31, and a sink reachable instantly by the dotted edges from the outer
cycle’s vertices v00, v10, v20, v30. However, they can decide to stay on the inner-cycle
u0−, u1−, u2−, u3−. There are two outer-agents o1 and o2, with resp. sources v21 and v01,
and sinks reachable by the dotted edges from inner vertices u00, u10, u20, u30. However,
they can decide to cycle on the outer-cycle v0−, v1−, v2−, v3−. On the figure, we show
w.l.o.g. current positions of the agents and the congestion from the last step in gray
rectangles. The current choice faced by agent i1 is depicted with thick edges.
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Fig. 9. Generalization of Fig. 8 to longer double cycles, at an arbitrary time-step. The
current choices faced by agents i1 and o3 are depicted with thick edges.

Theorem 9. The Price of GPS Navigation is in Ω(|V | + n) as the number of
vertices |V | and the number of agents n grow9.

Proof. To prove this lower bound, we generalize the double cycle of Fig. 8 to
a similar longer double cycle (Fig. 9). Then for every agent, while the shortest
path has total-delay in Θ(1), the decided path can be in Ω(|V |) and Ω(n). ��

6 Prospects

The symmetric case seems usually well behaved [HMRT09, Theorem 1] and
would be worth investigating. Time expanded graphs, where one does the cross
product of vertices and time or positions may yield an other beautiful approach.
A study on tie-breaking under FIFO is motivated by its importance in the proofs.
Studying less extreme, average, or sub-cases would be appealing. Extensive forms
with decisions on each node [CCCW17b] are a promising model.
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Abstract. With the rapid growth of the cloud computing marketplace,
the issue of pricing resources in the cloud has been the subject of much
study in recent years. In this paper, we identify and study a new issue:
how to price resources in the cloud so that the customer’s risk is min-
imized, while at the same time ensuring that the provider accrues his
fair share. We do this by correlating the revenue stream of the customer
to the prices charged by the provider. We show that our mechanism is
incentive compatible in that it is in the best interest of the customer to
provide his true revenue as a function of the resources rented. We next
add another restriction to the price function, i.e., that it be linear. This
removes the distortion that creeps in when the customer has to pay more
money for less resources. Our algorithms for both the schemes mentioned
above are efficient.

Keywords: Pricing scheme · Cloud computing · Incentive compatibility

1 Introduction

The cloud computing marketplace is the fastest growing market on the Internet
today [3,11]. Indeed, with most large companies rapidly moving their computa-
tion into the cloud and startups following suit, most projections predict that this
market will dwarf all other Internet markets, including the multi-billion dollar
Adwords market of search engine companies [11]. Markets on the Internet form
a sizable fraction of the economy. They are characterized not only by their huge
size and easy scalability, but also by their innovativeness, e.g., markets such as
the Adwords market and auction markets of eBay and Yahoo! are based on very
different economic principles than traditional markets. In keeping with these
trends and their massive success, it is quintessential to understand the idiosyn-
crasies of the cloud computing market and design mechanisms for its efficient
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operation. Indeed, in recent years many researchers have studied the issue of
pricing resources in the cloud (see Sect. 1.1).

In this paper, we propose a performance-based pricing scheme for resources
in the cloud. Assume that Amazon is providing resources in the cloud and a
small startup, say X, is one of its customers. The revenue stream of X is neither
steady nor predictable and hence its profits—and losses—fluctuate considerably
over time. In the face of these realities, an important consideration for it is to
ensure that its losses do not mount up to the extent that it goes bankrupt.
The question we address in this paper is whether Amazon can adopt a pricing
scheme that minimizes the risk of X going under. Our pricing scheme enables
Amazon to trade away company X’s risk while at the same time ensuring that
its expected revenue is not hurt. Indeed, if company X survives as a result
of lower risk, Amazon’s expected revenue will only increase in the long run.
The fluctuations in Amazon’s revenue may increase as a result of our pricing
mechanism; however, since it is a very large company and deals with numerous
customers at the same time, this will not be of much consequence to it. Our
mechanism involves correlating the prices that Amazon charges to the revenue
stream, i.e., performance, of company X. Although this idea and its details were
conceived in the context of cloud computing, it can be easily be seen to be
quite general and applicable to many other situations in which customers rent
resources whose amounts vary frequently.

The Elastic Cloud Computing (EC2) market of Amazon is the biggest
provider of cloud computing resources today, with other big players being
Microsoft and IBM. The EC2 market rents out a number of different types
of resources – virtual machines (VM) with different kinds of capabilities, e.g.,
compute optimized, storage optimized, memory optimized and general purpose.
We note that at present, Amazon and other providers use fairly straightforward
mechanisms for renting out these resources, e.g., EC2 rents out resources in one
of three ways [13]. The first is Pay-As-You-Go (PAYG) under which the user has
full flexibility to use any resources at the time they are needed. The second is a
Reserve market under which the user books resources in advance, and the third
is the spot market under which all resources not currently in use by customers of
the first two categories are allocated via an auction – Amazon announces rates
of renting, which change as demand and supply change, and customers who bid
more than the rate get the resource but are evicted as soon as the rate exceeds
their bid (giving them a couple of minutes to save their data). The rates charged
are decreasing across these three methods, with the ratio of the first and the
third being as high as a factor of five. Clearly, as this market grows in size and
complexity, better mechanisms that are steeped in sound economic theory and
the theory of algorithms will be called for.

Currently, the market of cloud computing is dominated by a few big players
and hence oligopolistic pricing applies, i.e., prices are higher than competitive
prices. However, as more companies rent resources in the cloud, this will become
a commodity market with very low profit margins. The way out of this for
companies is to offer value-added services, smart pricing being one of them.
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The power of pricing mechanisms is well explored in economics, and it is well
understood for the case of equilibrium pricing, which are prices under which there
is parity between demand and supply [16,17]. It is known that this method allo-
cates resources efficiently since prices send strong signals about what is wanted
and what is not, and it prevents artificial scarcity of goods while at the same
time ensuring that goods that are truly scarce are conserved. Hence it is ben-
eficial to both consumers and producers. An equilibrium-based mechanism for
replacing the spot market for cloud computing resources is proposed in [12].

1.1 Related Work

As mentioned above, many researchers have studied the issue of pricing resources
in the cloud, e.g., see [1–6,9,14,15,18,20]. We describe several of these issues
below. We note however that the issue identified and studied in this paper is
very different from these.

The three tiered market of EC2 described above is sometimes viewed as the
use of price discrimination, a well-studied mechanism in economics [16,17]. The
idea here is that by a small differentiation in the product sold, one can distinguish
between customers who can pay a lot from those who cannot. A very successful
use of this concept arises in airline ticket sales, where by imposing conditions like
Saturday overnight stay, the airlines can distinguish between business travelers
and casual travelers and hence charge them different fares. Of course, in the three
tiers described above for EC2, the nature of services offered is quite different and
one can argue that different rates should apply. However, a ratio of five-to-one
on the price charged smacks of the use of price discrimination.

Another issue explored in pricing is whether cloud resources should be rented
on a metered basis or on a flat fee basis. In the past, very prominent industries
went from one extreme to the other as the industry grew and the cost of basic
resources dropped, a case in point being telephone charges [19], which started in a
strict metered manner, with a small fee for connection, to the current flat charges.
In the case of cloud resources, metered charges make the most sense at present;
however, as computing, storage and bandwidth costs drop, it is conceivable that
pricing will take a hybrid form of some kind.

At present, three very distinct resources are rented in the cloud: computing
power, storage and bandwidth. An issue being studied is whether these three
resources should be rented separately or in suitable bundles.

1.2 Our Results and Techniques

As stated above, we provide a pricing scheme which enables Amazon to trade
away the risk experienced by company X without decreasing its own expected
revenue. We furthermore show that our scheme is incentive compatible.

The scheme is as follows. Company X declares to Amazon the number, m, of
types of resources it may rent and the set of possible resources which it may rent.
For each combination of resources it may rent on a day, it also provides Amazon
with the revenue it will accrue on that day (we show that it is in company
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X’s best interest to reveal this information correctly). Amazon and company
X jointly agree on the probability distribution from which its requests arrive,
by observing historical data. Hence, Amazon knows the expected daily cost X
should be charged for renting the resources. The question is what is the most
effective way for Amazon to retrieve this cost.

We give a scheme whereby Amazon is able to retrieve this cost in such a way
that the daily variance in the profit of X, i.e., the difference of revenue and price
paid, is minimized. Indeed, our scheme simultaneously minimizes not only the
second moment of deviation from mean profit but also the ρ-th moment, for any
ρ > 1. Moreover we show that such a function is unique, and it also maximizes
the minimum profit of X. We note that there are numerous definitions of risk,
without there being a single standard one. Our scheme minimizes risk for all
definitions of risk referred to in the previous claim. It also ensures that prices
and the profit are always non-negative. Our algorithm is linear time, modulo log
factors. We provide an intuitive description of our algorithm using the idea of
filling water in a trough with a warped bottom.

We next add another restriction to the price function, i.e., that it be linear.
This removes the distortion that creeps in when the customer has to pay more
money for less resources. Once again we ensure that prices are non-negative.
Our algorithm involves lifting the points (revenue as a function of resources
rented) into a higher dimensional space so that the function being handled is
homogeneous and hence each point can be given an appropriate weight. The
algorithm then makes just one call to a non-negative least squares solver, for
which highly optimized implementations are available, on the set of preprocessed
points.

2 An Insightful Example

In this section, we give a simple example that captures the essence of our idea.
Consider a business model involving two agents, in which agent A has a fair coin
and provides a “coin toss service” for agent B. Specifically, agent B pays $1 to
agent A for a coin toss and earns $3 from an outside source if it comes up head
and $0 if it comes up tails. Clearly, the business is profitable for agent B since
he makes 50 cents per toss in expectation. However, there is a risk that he might
lose a considerable amount of money if he gets a string of tails. Even worse, if
his budget is small, he might go bankrupt and cannot keep the business running.
Such an outcome is also undesirable for A since he loses a customer.

To deal with this issue, A comes up with an alternative pricing scheme that is
favorable for both agents. The proposed scheme is that instead of charging $1 for
each toss, he will charge $2 for a head and nothing for a tail. As a consequence,
B will gain $1 if a head shows up, and lose/gain nothing if a tail shows up.
Although he still makes a profit of 50 cents per toss in expectation, the business
is now risk-free for him in the sense that he never loses money. From agent A’s
point of view, the proposed scheme is also beneficial for him in the long run
despite the fact that there is no guarantee of making $1 per toss. The reason is
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that he will have B as his customer permanently and still make $1 per toss in
expectation.

This pricing scheme can be viewed as transfering the uncertainty in agent
B’s performance to agent A’s performance without affecting the expected per-
formances of both agents. Note that in the above example, we assume that A
can generate coin tosses at no cost. However, if there is a cost and the cost is
insignificant compared to A’s budget, the scheme is still favorable to A since he
can endure a string of bad luck caused by the transfered uncertainty.

If we insist that prices are non-negative and perserve the expected perfor-
mances; moreover, the variance on profit of B is minimized then the proposed
pricing scheme is unique. Later on, we will show that such prices can be com-
puted algorithmically and that they give an even stronger guarantee on the profit
of B.

3 Model and Definitions

We give a formal description of the model on which our results are based. The
model involves two agents: a provider (called Amazon above) who sells resources
and a customer (named X above) who uses resources to make profit from an out-
side source. The customer has a distribution on his demand which both agents
agree upon. For example, they can obverse the history of usage of the customer
over a period of time. Moreover, we assume that the customer has a revenue
function, which is a function of resources consumed and must report it (truth-
fully or not) to the provider. To analyze, we take on the role of the provider
and propose a pricing scheme for the customer based on his reported revenue
function. We will show that our pricing scheme minimizes the deviation without
changing the expected value of the customer’s profit. Therefore, the customer
who is assumed to be rational and wants to minimize his risk, will report his
revenue function truthfully.

Let m be the number of resources and let r = (r1, r2, . . . , rm) be a
demand vector of the customer on the resources. We assume that r follows
a discrete distribution with probability mass function f(r): S → R where
S = {r (1), . . . , r (N)} is a discrete domain of size N . Let q(r): S → R be our
original starting price function. In other words, q(r) denotes the price that we
are willing to charge for r . Finally, let v(r): S → R be the revenue function of
the customer on r .

We are interested in price functions where the expected price is exactly equal
to the expected starting price.

Definition 1. A fair price function is a price function p(r) such that
∑

r∈S

p(r)f(r) =
∑

r∈S

q(r)f(r).

Next, we are also interested in price functions that assume only non-negative
values.



286 K. Jain et al.

Definition 2. A non-negative price function is a price function p(r) such that
p(r) ≥ 0∀r ∈ S.

Moreover, the target price function must give a guarantee on the customer’s
profit that it should not deviate too much from the expected value. Since the
customer has revenue v(r) and cost p(r) on r , his net profit is v(r) − p(r). For
a fair price p(r), the expected profit μ is given by

∑

r∈S

(v(r) − p(r)) f(r) =
∑

r∈S

(v(r) − q(r)) f(r).

Definition 3. A steady-profit price function is a fair and non-negative price
function that minimizes

∑

r∈S

(v(r) − p(r) − μ)ρ
f(r)

over all such functions for all ρ > 1.

Note that it is not obvious that a steady-profit price function should exist.
However, in the next section we will show that such a function not only exists
but can also be computed efficiently.

4 A Water-Filling Algorithm

In this section, we present an algorithm for computing a price with the following
properties:

1. Fairness: The target price function is a fair price function, i.e., the customer
has to pay the same amount compared to the starting price in expectation.

2. Risk-freeness for customer: The customer’s profit is non-negative in the whole
domain, i.e., he never loses money.

3. Non-negativity: The price is non-negative on the whole domain, i.e., we never
pay the customer.

4. Stability: The price function is a steady-profit price function, i.e., the ρ-
moment of the profit deviation from the mean value is minimized for any
ρ > 1.

The main algorithm, which we call WaterlevelPricing, is given in Fig. 1.
At a high level, it can be viewed as raising prices such that the profit values are
as equal as possible until the price function becomes a fair function. An intuitive
illustration of the algorithm is flipping the revenue function up side down and
start raising prices as if they are water flowing in the function’s surface.

We give the following lemma, which is needed for the proof of the main
theorem.
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p(r) = WaterlevelPricing (f(r), q(r), v(r))
Input: Distribution function f(r), starting price function q(r), revenue function
v(r).
Output: Steady-profit price function p(r).

1. Define vL(r) : S → R as follows:

vL(r) =

{
v(r) − L if v(r) > L,

0 otherwise.

Use binary search to find L such that vL(r) is a fair price function. In other
words, we find L such that∑

r∈S

vL(r)f(r) =
∑
r∈S

q(r)f(r).

2. Return p(r) = vL(r).

Fig. 1. Algorithm for computing a steady-profit price function.

Lemma 1. Let a, b, ρ be positive real constants and ρ > 1. Let x1 and x2 be two
real variables such that x1 > x2. There exists Δ such that for all δ < Δ, if we
decrease x1 by δ and increase x2 by aδ

b , then the value of

Φ = axρ
1 + bxρ

2

will decrease.

Proof. Assume that ax1 + bx2 = c for some fixed value c. We can write x2 as
(c − ax1)/b. Substituting gives

Φ(x1) = axρ
1 +

(c − ax1)ρ

bρ−1
.

Taking derivative with respect to x1 gives

∂Φ(x1)
∂x1

= ρaxρ−1
1 − ρa

(c − ax1)ρ−1

bρ−1
= ρa(xρ−1

1 − xρ−1
2 ).

Since ρ > 1 and a > 0, ρa(xρ−1
1 −xρ−1

2 ) > 0 if and only if x1 > x2. It follows that
for all δ < Δ = (x1−x2)b

a+b we must have x1 − δ > x2 + aδ
b , and thus Φ(x1 − δ) >

Φ(x1). The lemma then follows.

Theorem 1. Given probability mass function f(r), starting price function q(r)
and revenue function v(r), WaterlevelPricing returns a steady-profit price
function in time O(N log V ), where V = maxr∈S v(r) is the maximum value of
the revenue function on the domain S. Moreover, such a function is unique and
with respect to it, customer’s profit is always non-negative and the minimum
profit is maximized.
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Proof. From the definition of vL(r), it is easy to see that
∑

r∈S vL(r)f(r)
increases when L decreases. Also, V = maxr∈S v(r) is an upper bound on L. It
follows that using binary search, we can find L such that

∑

r∈S

vL(r)f(r) =
∑

r∈S

q(r)f(r).

in O(log V ) steps, where each step involves computing a summation in O(N)
time.

It remains to show that the returned function is a steady-profit price function.
We will prove that a steady-profit price function p(r) is obtained only at a non-
negative fair price function where the profit values are as equal as possible. By
as equal as possible, we mean the profit is equal to a same value everywhere
except at points r such that p(r) = 0, where the profit is less than that value. It
will then follow that such a function is unique and vL(r) is the desired function
(with profit L at every r such that vL(r) > 0). It will also be clear that with
respect to the unique function, the customer’s profit is always non-negative and
the minimum profit is maximized.

Assume that p(r) is a non-negative fair price function such that with respect
to p(r), the profit is not as equal as possible. We show that p(r) can be modified
such that the ρ-moment

∑

r∈S

(v(r) − p(r) − μ)ρ
f(r).

decreases for all ρ > 1.
Let h(r) = v(r)−p(r)−μ be the deviation of the customer’s profit from the

mean value. Since p(r) does not make the profit as equal as possible, ∃r1, r2 such
that h(r1) �= h(r2) and p(r1), p(r2) are both positive. Without loss of generality,
we may assume that h(r1) > h(r2). By Lemma 1, there exists a Δ such that
for all δ < Δ, decreasing h(r1) by δ and increasing h(r2) by δf(r1)/f(r2) will
result in a decrease the quantity h(r1)ρf(r1) + h(r2)ρf(r2) for all ρ > 1.

Let δ = min(Δ, p(r2)f(r2)/f(r1)), and consider the following modification
on p(r):

1. p(r1) ← p(r1) + δ,
2. p(r2) ← p(r2) − δf(r1)/f(r2),
3. p(r) ← p(r) for all r �= r1, r2.

It is easy to see that with the modification, p(r) is still fair and non-negative.
Moreover, h(r1) decreases by δ and h(r2) increases by δf(r1)/f(r2). It follows
that for all ρ > 1, the ρ-moment

∑
r∈S h(r)ρf(r) decreases as desired.

Theorem 2. The pricing scheme WaterlevelPricing is incentive compati-
ble.

Proof. Since WaterlevelPricing computes a fair price function, the expected
total price charged to the customer is the same as the expected price of resources
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used by the customer, regardless of the revenue function revealed by the cus-
tomer. Hence, clearly it is in the best interest of the customer to reveal her true
revenue function, since only then will the provider be able to ensure that the
variance of the profit of the customer is minimized. The theorem follows.

5 A Least Squares Algorithm

In the previous section, we presented an alternative pricing scheme that is favor-
able for both agents in the model. We also showed that the scheme has some
desirable properties such as the customer’s profit is always non-negative and its
deviation from the mean value is minimized. Despite that fact, the pricing func-
tion can be quite unnatural. For instance, it can happen that the customer has
to pay more money for less resources as shown in Example 1.

Example 1. Consider a web service provider that charges based on bandwidth
usage. A customer uses the service for hosting a website. Hence, the demand of
that customer depends on viewers of the website. For simplicity, assume that
there are two type of viewers: the type who uses 1 unit of bandwidth and gen-
erates $2 (by clicking ads), and the type who uses 2 units of bandwidth and
generates $1. Furthermore, the website is equally likely to get a viewer of each
type (with probability 0.5). The provider is willing to sell one unit of band-
width for $0.5. At this price, both the provider and the customer gain $0.75 per
viewer in expectation. The algorithm in Fig. 1 will price 1 unit of viewer type
1’s demand at $1.25 and 2 units of viewer type 2’s demand at $0.25. Observe
that the provider still gains $0.75 in expectation (at higher deviation), and the
customer gains $0.75 per viewer surely (no deviation). Hence in this example, if
Amazon uses the water-filling algorithm, the customer pays more money for less
resources.

In this section, we prevent such unwanted outcomes from happening by
adding a reasonable assumption on the price function. To be precise, we insist
that the price function must be a linear function of the resources, that is, it must
be of the form p(r) =

∑m
i=1 airi + a0 for non-negative ais.

Remark 1. It is a common practice to write a linear function p(r) =
∑m

i=1 airi +
a0 as p(r) = aT r where r0 = 1 for all r . This trick allows us to ignore the
constant term in the linear function. Throughout this section, we will adopt this
representation and assume that r is an (m + 1)-dimensional vector with r0 = 1.

Not surprisingly, with the new restriction, the target function cannot satisfy
all properties of the function introduced in the previous section. Specifically,
we cannot have the property that the customer’s profit is always non-negative.
Instead, our goal is to find a linear price function with non-negative coefficients
such that the variance of the profit is minimized. To be precise, we are interested
in price function with the following properties:

1. Fairness: The target price function is a fair price function, i.e., the customer
has to pay the same amount compared to the starting price in expectation.
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2. Linearity: The target price function is linear.
3. Non-negativity: The target price function is non-negative on the whole

domain.
4. Stability: The target price function minimizes the profit variance subject to

the above 3 conditions.

We give an algorithm for computing a desired price function in Fig. 2. Our
algorithm uses an oracle that solves non-negative least squares, a constrained ver-
sion of the normal least squares problem where the coefficients of the linear func-
tion are not allowed to be negative. For the details of non-negative least squares
solvers, please see [7,8,10]. The definition of NonNegativeLeastSquares ora-
cle is given below.

Definition 4. NonNegativeLeastSquares (X ,y) is an oracle that, on
input X ∈ Rn×m and y ∈ Rn, returns a non-negative vector a ∈ Rm such
that

y = Xa + ε,

and ‖ε‖22 is minimize.

We give the main theorem of the section and its proof.

Theorem 3. Given probability mass function f(r), starting price function q(r)
and revenue function v(r), LinearPricing returns a fair price function p(r) =
aT r such that a is non-negative and

∑
r∈S(v(r) − p(r) − μ)2f(r) is minimized

among all such functions. Furthermore, LinearPricing is incentive compatible.

Proof. Recall that y = Xa + ε. Rearranging gives

‖ε‖22 =
N+1∑

k=1

(
y(k) − aTx (k)

)2

.

Let

y =
N∑

k=1

(
v
(
r (k)

) − μ
)

f
(
r (k)

)
,

x =
N∑

k=1

r (k)f
(
r (k)

)
.

We may assume M is sufficiently large to guarantee that for an optimal solution
a returned by NonNegativeLeastSquares (X ,y), y − aTx must go to 0.

This condition ensures that p(r) is a fair price function, that is, the expected
price is equal to the expected starting price. We have

y − aTx =
N∑

k=1

(
v
(
r (k)

) − μ
)

f
(
r (k)

) − aT
N∑

k=1

r (k)f
(
r (k)

)

=
N∑

k=1

(
v
(
r (k)

) − μ − aT r (k)
)

f
(
r (k)

)

= 0.
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p(r) = LinearPricing (f(r), q(r), v(r))
Input: Probability mass function f(r), starting price function q(r) and revenue
function v(r).
Output: Linear price function p(r) with non-negative coefficients that minimizes
the profit variance.

1. Compute µ =
∑N

k=1

(
v

(
r (k)

)
− q

(
r (k)

))
f

(
r (k)

)
.

2. For 1 ≤ k ≤ N , let

y(k) =
(
v r (k)) − µ

) √
f r (k)

)
,

x (k) = r (k)
√

f r (k)
)
.

3. Let M be a big number, and

y(N+1) = M

N∑
k=1

(
v r (k)) − µ

)
f r (k)),

x (N+1) = M

N∑
k=1

r (k)f r (k)).
4. Let a ← NonNegativeLeastSquares (X , y) where

X =

⎡
⎢⎢⎣

x (1)T

...

x (N+1)T

⎤
⎥⎥⎦ and y =

⎡
⎢⎣

y(1)

...

y(N+1)

⎤
⎥⎦ .

5. Return p(r) = aT r .

Fig. 2. Algorithm for computing a linear price function.

It follows that

μ = μ

N∑

k=1

f
(
r (k)

)
=

N∑

k=1

(
v
(
r (k)

) − p(r (k))
)

f
(
r (k)

)
.

By construction,

μ =
N∑

k=1

(
v
(
r (k)

) − q(r (k))
)

f
(
r (k)

)
.

Therefore,
N∑

k=1

p(r (k))f
(
r (k)

)
=

N∑

k=1

q(r (k))f
(
r (k)

)

as desired.
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Moreover, since M is sufficiently large, minimizing ‖ε‖22 is equivalent to min-
imizing

N∑

k=1

(
y(k) − aTx (k)

)2

subject to y −aTx = 0, i.e., subject to p(r) being a fair price function. We have

N∑

k=1

(
y(k) − aTx (k)

)2

=
N∑

k=1

((
v
(
r (k)

) − μ
) √

f
(
r (k)

) − aT r (k)
√

f
(
r (k)

))2

=
N∑

k=1

(
v
(
r (k)

) − μ − aT r (k)
)2

f
(
r (k)

)

=
N∑

k=1

(
v
(
r (k)

) − p
(
r (k)

) − μ
)2

f
(
r (k)

)
.

Therefore, the minimized quantity is precisely the variance of profit.
Since NonNegativeLeastSquares (X ,y) returns a non-negative vector

a , the linear function p(r) = aT r has non-negative coefficients as claimed.
Finally, the proof of incentive compatibility for LinearPricing is analogous

to that of Theorem 2.

6 Discussion

The reason to seek a pricing function that is linear in the resources rented is to
remove the distortion that a customer has to pay more money for less resources.
We note that linearity is not essential for ensuring this, in fact any monotone
function will also suffice. This motivates the following question: monotone in the
resources rented so that it is non-negative and minimizes the variance of the
profit among all such functions. We believe that a variant of our water-filling
algorithm should solve this problem.

One feature of the linear pricing function is that it is robust to mistakes in
the reported revenue function in the sense that price function will not change
much as a result of altering a few points. Furthermore, this method does not
need the revenue functions at all values of resources rented, it works even if
some of these points are missing.
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Abstract. It is a well-known statistical property that learning tends to
slow down with each additional data point. Thus even if scale effects are
important in web search, they could be important in a range that any
viable entrant could easily achieve. In this paper we address these ques-
tions using browsing logs that give click-through-rates by query on two
major search engines. An ideal experiment would be to fix the “query dif-
ficulty” and exogenously provide more or less historical data. We approx-
imate the ideal experiment by finding queries that were not previously
observed. Of these “new queries”, some grow to be moderately popular,
having 1000–2000 clicks in a calendar year. We examine ranking quality
during the lifespan of the query and find statistically significant improve-
ment on the order of 2–3% and learning faster at lower levels of data.
We are careful to rule out alternate explanations for this pattern. In par-
ticular, we show that the effect is not explained by new, more relevant
documents entering the landscape, rather it is mainly shifting the most
relevant documents to the top of the ranking. We thus conclude they
represent direct scale effects. Finally, we show that scale helps link new
queries to existing queries with ample historical data by forming edges in
the query document bipartite graph. This “indirect knowledge” is shown
to be important for “deflating uniqueness” and improving ranking.

Keywords: Scale effects · Direct effects · Indirect effects
Intent clustering · Unsupervised learning · Web search

1 Introduction

A key question in the analysis of web search markets is the degree increased
scale confers a direct performance imagine advantage. Consider two entirely
different worlds. In the first, ranking quality is driven overwhelmingly by algo-
rithmic innovation and fixed document features. In this world, a well-funded new
entrant could potentially produce results of quality superior to the entrenched
market leader. In the second, learning from historical queries is critical to rank-
ing quality. A superior, but data-starved algorithm could perform much worse
than the incumbent’s. Although these two worlds are dramatically different in
terms of the potential for innovation and competitive dynamics, little is known
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about which one we live in. Further, it is a well-known statistical property that
learning tends to slow down with each additional data point. Thus even if scale
effects are important, the steep part of the learning curve could be in a range
that any viable entrant could easily achieve.

In this paper we address these questions using browsing logs that give click-
through-rates (CTR), a natural measure of whether or not a set of results met
the user’s need, by query on two major search engines. We start by documenting
the fact that more common queries indeed have higher CTR. The relationship
is proportional to the square root of the log of historical clicks, indicating that
increases are higher at lower data levels. Both search engines show similar func-
tional forms.

These high-level correlations cannot be viewed as causal relationships because
more popular queries could be innately easier to satisfy user intent. An ideal
experiment would be to fix the “query difficulty” and exogenously provide more
or less historical data. This is, of course, not possible. We approximate the ideal
experiment by finding queries that were not previously observed. Of these “new
queries”, some grow to be moderately popular, having 1000–2000 clicks in a
calendar year. We examine ranking quality during query lifetime and find statis-
tically significant improvement on the order of 2–3%, with faster improvement
at lower levels of data. We are careful to rule out alternate explanations for this
pattern. In particular, we show that the effect is not explained by new, more
relevant documents entering the landscape, rather it is mainly shifting the most
relevant documents to the top of the ranking. We thus conclude they represent
direct scale effects.

The fact that learning is fastest at low levels of data is a double-edged sword
for a potential entrant. On the one hand, it seems to indicate that only a modest
scale is required to achieve viability. While this is good news for relatively popular
queries, which do account for a majority of searches, it is bad news for rarer
queries, which account for the majority of queries. For example, in 2007 Google
reported that 20–25% of the queries they see each day are unique when compared
to the most recent month. 1 Moreover, most users submit at least some “long
tail” queries [6].

The issue of long-tail queries adds a nuance to our analysis. If most queries
really only have no more than five historical examples, then perhaps scale does
not play much of a role after all. However it has been shown that historical
examples of related queries can be linked to seemingly rare queries by applying
clusters and graph cutting techniques to the query-document bipartite graph
[2,8,9]. This graph can be used to generate related queries and leverage historical
examples that differ in minor ways from the target query. To understand the role
of scale in this domain, we apply a clustering algorithm motivated by past work.
To do so, we take the query-document graph—the total nodes number nearly
10 billion—and cluster queries that share the same intent. Human evaluation is
used to validate the accuracy of the algorithm.

1 http://searchengineland.com/that-25-new-queries-figure-ballpark-estimate-says-go
ogle-11596.

http://searchengineland.com/that-25-new-queries-figure-ballpark-estimate-says-google-11596
http://searchengineland.com/that-25-new-queries-figure-ballpark-estimate-says-google-11596
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We use the graph to flexibly “deflate uniqueness” because it creates ties
between relatively rare queries to more common queries that capture similar
user intent. We show, for instance that for a set of 1.1 billion “long tail” queries,
there are 10-fold less unique instances of intent. The method naturally surfaces
synonyms and related queries. Experiments reveal that increasing overall scale
provides greater edge density, which in turn allows one to link more rare queries
to more common queries with many historical examples. In summary, this analy-
sis shows that there are additional returns to scale in the form of semantically
linking queries and that queries submitted by users are “not as unique as they
appear.”

Finally, we conclude with some thoughts on the larger picture. Our analysis
here is not capable of capturing all the returns to scale, rather we focus on
clean identification in relatively controlled environments. That being said, it
is important to note the CTR impact of scale we document appears modest
overall, order 2–3% of CTR. Interpreting magnitudes, however, is a bit tricky.
For example, both providers have CTRs on tail queries in the 70% range. Suppose
an entrant could achieve 60% “off the shelf.” Then 2–3% represents more like 20–
30% of the meaningful range in which we expect competitors to be differentiated
and thus appears quite large in this light. We stress that this is only an example
to highlight the nuances in interpreting the magnitudes reported in our study.

2 Data Description

Our data consists of search logs for a period of time greater than 6 months
from two large commercial search engines. The source are proprietary logs of a
web browser. In all instances, the same restrictions are applied to both search
providers. For example, the same user types, geographic locations, and so forth.
Table 1 shows that we observe hundreds of billions of searches. This richness will
allow us to conduct a detailed analysis of queries as data accumulates over time.

Table 1. Summary statistics

Provider 1 (# impressions) >200 billion

Provider 2 (# impressions) >300 billion

Provider 1 # clicks >100 billion

Provider 2 # clicks >150 billion

3 Direct Effects of Scale

In this section we study how the search engine performance is related to the
volume of historical data for a target query. We first investigate all the queries
in our dataset and then check those relatively new queries, which have only a
few historical clicks.
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3.1 Analysis of General Queries

To study the scale effect of a query, ideally, we need to collect its search log
from the first time it is observed, and see how its CTR changes as more people
issue it. However, this is infeasible because that a search engine can only legally
keep the data for a limited time2. Thus for popular queries, it is hard (if not
impossible) to know its first appearance. Here we use one year as the range of
time for analysis, and collect browsing logs of two commercial search engines,
i.e., Provider 1 and Provider 2. For the log in each provider, we use the first three
month’s data as the benchmark data source, which acts as the data observed in
history, and use the remaining nine months of data as our target data source in
analysis. For each query q and each day d in target data source, we get a pair
<H(q, d), CTR(q, d)> in which H(q, d) denotes the historical measure before
day d for query q, and CTR(q, d) denotes its CTR in day d. In the experiment,
we use click number as the historical measure, since clicks are the most effective
feedback from search users.

For each query, we generate 270 pairs and partition the pairs into buckets
according to H(q, d). The CTR averaged over the pairs in each bucket is shown
in Fig. 1. We can see from the figure, CTR shows a positive correlation with the
number of historical clicks for both the search providers, and the patterns of
CTR growth of the two providers are similar.

Fig. 1. In aggregate, CTR shows a positive correlation with the number of historical
occurrences. Both providers show a similar relationship.

To quantitatively characterize the scale relationship, we further conduct a
regression analysis on the correlation between the CTR and the number of
historical clicks. After trying several different function families, including lin-
ear functions and polynomial function, we find that the square root of the log

2 http://searchengineland.com/google-responds-to-eu-cutting-raw-log-retention-time
-reconsidering-cookie-expiration-11443.

http://searchengineland.com/google-responds-to-eu-cutting-raw-log-retention-time-reconsidering-cookie-expiration-11443
http://searchengineland.com/google-responds-to-eu-cutting-raw-log-retention-time-reconsidering-cookie-expiration-11443
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historical clicks well approximate the current CTR. Specifically, denote the his-
torical click number as x, we have that for provider 1.

CTR = −0.0530[−0.085,−0.021] + 0.3287[0.315, 0.343]
√

log(x), (1)

and for Provider 2,

CTR = −0.3871[−0.486,−0.288] + 0.4792[0.438, 0.520]
√

log(x). (2)

This shows that there is a strongly positive dependency between the number
of historical clicks and the current search performance. These results can be seen
graphically in Figs. 2 and 3.

Fig. 2. Provider 1, relationship between CTR and number of historical examples.

Fig. 3. Provider 2, relationship between CTR and number of historical examples.

3.2 Scale Effect Analysis on New Queries

One a major concern with the analysis in previous subsection is that the queries
falling into different buckets are not the same. For example, popular queries may
express intent that is innately easier to satisfy. Since these more popular queries
would fall into right-side buckets and rare queries into left-side buckets, the
correlation we observe could be due to this confound and not a direct impact of
scale. An ideal experiment would be to fix the “query difficulty” and exogenously
provide more or less historical data. Since this is not possible, we approximate
the ideal experiment as follows.

We select a set of queries according to two criteria: (1) a query has less than
200 clicks in the three-month benchmark data source; (2) the total number of
clicks of the query in the calendar year (including both the benchmark data
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source and the target data source) is between 1000 and 2000. The first criterion
ensures that such a query is relatively new to the search provider, and the second
criterion tries to make that the selected queries have the similar difficulty the
search provider. As a result, there are about 8000 queries selected for Provider 1
and 10000 for Provider 2. Because we see almost all the queries for one provider,
and a much smaller fraction for the other, the scales are not directly comparable.

For query q, we use CTR(q, c) to denote the CTR of q in period of receiving
c+1 to c+100 clicks. For each selected query q, we get 9 pairs <c,CTR(q, c) >,
where c ∈ {100, 200, . . . , 900}. Then we partition the pairs into buckets according
to c and calculate the average CTR over queries in each bucket. It is important
to note that the queries in each bucket are the same, meaning selection effects
cannot drive observed relationship.3

We present our aggregated results with error bar (confidence interval =
0.95%) in Figs. 4 and 5. From the curves, overall we observe that CTR grows
for new queries for both providers, and the growing trends are significant. This
shows that the scale effect does exist in both search providers on the order of
2% over the first 1,000 queries. A regression of the same yields for Provider 1
an intercept of 0.6726 [0.6653, 0.6787] and coefficient of 2.116 e−05 [1.03154
e−05, 3.2017 e−05] i.e. anywhere from 1–3% CTR gain per 1000. For Provider
2 an intercept of 0.7075833 [0.70145, 0.99465] and coefficient of 2.083 e−05
[9.94658 e−06, 3.172008 e−05] i.e. anywhere from 0.99-3% CTR gain per 1000.

Fig. 4. Provider 1, relationship between CTR and number of historical examples for
new queries only

Fig. 5. Provider 2, relationship between CTR and number of historical examples for
new queries only.

3 We do not include the pair <1000, CTR(q, 1000)> since not all the selected queries
have 1100 clicks in the target data. If we include this pair, the queries in the last
bucket will be less than the queries in the left 9 buckets.
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This is the same order difference observed at the left-hand side of Fig. 1, but it
cannot explain the order 20% increase documented in the overall relationship.
While we cannot rule out these are driven by scale effects, the evidence seems
indicate that the large Fig. 1 differences are more of a selection issue on query
difficulty, as learning appears to slow down after 1,000 historical instances.

3.3 Robustness Checks

It is important to consider alternative explanations to direct scale effects.
A natural alternative hypothesis is that improved performance is due to richer
or more relevant documents, not better ranking. To see if this is going on, we
revisit our new query analysis and tag URLs that were previously in crawled
as “old.” New URLs would be clicks on links that were not previously available
to the ranker. If the growth in CTR was due to new URLs, we should see the
fraction of old URL clicks decrease as we move to the right in Fig. 6. Instead we
observe that a constant and very high, about 98%, of clicks are on old URLs.
Since this fraction does not change, it is not able to explain the growth in CTR.
Further we can look at whether the ranker is doing a better job at putting the
best links at the top of the page. It is well-known in search that position causally
influences CTR in a multiplicative fashion—placing higher quality links at the
top of the page leads to a increase in user satisfaction [5]. We can only observe
click position for one of the two providers that we have considered, but docu-
ment a strong, statistically significant improvement with historical examples for
a new query analysis.

Fig. 6. Provider 1, the fraction of clicks that correspond to URLs previously observed.
Results indicate a stable and very high percentage of clicks comes from these
documents.

A final robustness check is to consider the underlying causal model for why
scale can directly improve results. First, papers have shown how features can
be improved, such as including past queries as anchor text for clicked links [10].
That is, position changes as a result of user behavior. These data can then
feed into the creation of “click graphs” [5,7,8] which is useful for building out
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semantic knowledge around a query and user level analysis to understand intent
satisfaction [3]. Thus far from being a black box, there are many previously
identified causal channels that use historical behavior to directly improve ranking
performance.

4 Indirect Effects of Scale

In this section, we explore the effects of data on related queries, which supplement
direct query data. To do so, we first identify related queries by constructing a
knowledge graph. We use the cosine measure of relatedness, and then classify as
related or not by the measure exceeds a threshold. To set the threshold, we use
human judgment on a subsample. We then explore how related query knowledge
affects the CTR using regression techniques.

Our data for this section consists of search logs for a period of time greater
than 6 months from a large commercial search engine. The data form a bipartite
graph of queries, denoted Q, and documents, denoted D. Edges are given by the
set E represent user clicks connecting queries to documents. Edge weights are
given by the click count Ci,j from query node i to document node j. We combine
queries that only have slight differences in lexical form. To do so we follow
standard best practices for normalizing queries: (1) Eliminate any punctuation
marks (2) Split queries into the words (which include numbers) (3) Porter stem
words (remove plurals and other standard stemming operations) to eliminate
differences in cases (4) Represent each query as a bag of the remaining words,
sorted alphabetically. This procedure reduces the number of query nodes by 7%.

Table 2 summarizes the graph and the underlying user activity. The graph
has over 7 billion nodes connected by over 11 billion edges. The total number of
clicks exceeds 100 billion. These statistics highlight the scale of modern search
engines and also point to the sparsity of the graph.

Table 2. Summary statistics for the query-document graph and underlying user
activity

Cardinality Q (# unique queries) 4.82 Billion

Cardinality D (# unique URLs) 3.26 Billion

Cardinality E (# edges) 11.6 Billion

Number of sessions >100 billion

Total clicks >100 billion

4.1 Core Algorithm

We start with the query-document bipartite graph. This can be represented by a
matrix with dimensions card(Q)× card(D). Each column gives a vector for each
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document where the jth entry gives the clicks from query j. In other words, it
gives the document’s representation in query space. For every pair of documents,
we compute the cosine distance to form an upper triangular document similarity
matrix. This requires order card(D)2

2 calculations. Next, we convert similarity
weights to 0 or 1 using a chosen threshold; this censoring removes weak ties and
allows us to form a document similarity graph (we implement multiple thresholds
and use human accuracy ratings and other metrics to find the preferred setting).
We find the connected components from this graph [1] and call them intent
clusters. Intent clusters capture groups of documents that have the same inferred
intent because users clicked from similar queries to get to these documents.

Finally, we take intent clusters and form the query-intent-cluster bipartite
graph. Edge weights are given by the fraction of clicks from query q that are
point to a document in cluster c. Edge weights have the natural interpretation
of the fraction of searches for a given query that had a given intent. If 10% of
clicks from query X map to g1 and 90% map to g2, then we say that query X
has intent g2 and g1, with weights 90% and 10% respectively. We will observe
that this is very common. It is natural to label each intent cluster as the query
with the highest weight, which we call the “intent query.”

Computing cosine distance is straightforward, but given the query-document
bipartite graph has dimensions card(Q) × card(D), doing so requires order
card(D)2

2 calculations. Since we implement our approach on a modest-sized com-
pute cluster, the parallelizable nature of this computation makes it feasible even
though we have billions of nodes.

Using these distance calculations, we form upper-triangular document sim-
ilarity matrix. The next issue we have to address concerns the fact that clicks
are a form of implicit feedback that contain noise—some clicks do not represent
user intent. This means entries in the similarity matrix are biased away from
zero as compared to ground truth. This points to the use of a threshold wherein
similarity scores below the threshold are given the value 0 and those above are
given the value 1. Once values are converted to a binary indicator, the matrix is
converted into document similarity graph for which we can conduct a connected
components analysis using a scalable algorithm.

Ex-ante it is not obvious what value of the threshold is optimal. Thresholds
that are too low induce noise and could lead to massive connected components
that do not represent one true intent. Thresholds that are too high could lead
to too sparse a graph, meaning many clusters actually have the same underly-
ing intent. Based on pre-testing, we choose 4 threshold values: 0.70, 0.80, 0.90
and 0.95. We will later show that human judgment can help select the optimal
threshold.

In order to compute connected components we follow a simple strategy of
iterative agglomeration. One can conceptualize this strategy as (a parallel) flood
fill algorithm on a Map-Reduce framework. For the first iteration we treat every
document pair (from the similarity matrix) as a separate cluster, identify link
nodes between pairs and merge them. Convergence of link node identification
and merging clusters for subsequent iterations is reached through repetition.
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Algorithm 1. Find connected components
SetOfURLWithCluster =
SELECT LeftUrlId AS UrlId,

RowLabel AS ClusterId
FROM SetOfURLPairs
UNION
SELECT RightUrlId AS UrlId,

RowLabel AS ClusterId
FROM SetOfURLPairs;

for 1 TO MaxIterationLimit do
SELECT UrlId AS LinkUrl,

MIN(ClusterId) AS MasterCluster
FROM SetOfURLWithCluster
FOR EVERY LinkUrl;

SlaveClusters =
SELECT ClusterId AS SlaveCluster,

MIN(UrlId) AS LinkUrl
FROM SetOfURLWithCluster
FOR EVERY SlaveCluster;

SetOfClusterRenames =
SELECT MasterCluster, SlaveCluster
FROM MasterClusters
INNER JOIN SlaveClusters
ON LinkUrl
WHERE MasterCluster <> SlaveCluster;

if SetOfClusterRenames.size = 0 then
end for

end if

SetOfURLWithCluster =
SELECT UrlId RenameIfExist(ClusterId, SetOfClusterRenames) AS ClusterId
FROM SetOfURLWithCluster;

end for

Referring to Algorithm 1. SetOfURLPairs contains a LeftURLId, a
RightURLId and RowLabel. LeftURLId and RightURLId are both ordinal num-
bers identifying an individual URL. Each one of these elements represents a
non-zero entry in the URL similarity matrix where LeftURLId < RightURLId.
RowLabel is an ordinal number corresponding to every entry in SetOfURL-
Pairs. RenameIfExist replaces the ClusterId with the SlaveCluster value if there
exists an entry in SetOfClusterRenames where MasterCluster = ClusterId else
it returns ClusterId. MaxIterationLimit is a computation limit that is set to
avoid infinite non-convergence. The query node identification and merging is the
process that is repeated till convergence. We found that the algorithm typically
converged in 5–6 iterations.
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Let’s call the set of connected components G with elements g, which itself
is a set containing the documents within each component. We now form the
query/intent-cluster graph. For each query q, the edge weight to intent cluster
gi is the fraction of clicks from that query that point to node gi. This weight has
a natural Markovian interpretation. For purposes of semantic interpret-ability,
we label each node with the query that has the highest edge weight pointing
to that node. We call this the intent query. Traversing the graph following the
Markov weights reveals related intent, an approach that has been shown to be
useful on the raw query-document graph to find related queries [4].

4.2 Evaluation of Clusters

Our goal in this section is to get a sense to what extent do the intent queries
reasonably capture the intent of the user. To do so, for each threshold setting
we form a 100-query test set by randomly selecting 10 from each decile of the
search frequency (the same queries are used for each setting). We then follow
all the edges in the knowledge graph to get all the intent queries (clusters) that
map to this query. Note that we follow all edges, even if the Markov weight is
very low.

An independent auditor, blinded to the parameter settings or aims of the
study, evaluated query/intent-query pairs. Pairs were scored a 1 if the intent
query would could reasonably match the underlying query. The auditor used the
appropriate references for queries she was not familiar with. For example, for the
query “Aretha Franklin” there is a link to “Luther Vandross” intent cluster. The
auditor scored this as a 0, concluding that while the two entities are certainly
related—they are both singers of a similar style from a similar era—that the
query “Aretha Franklin” does not reasonably have the intent to find material
on Luther Vandross. Clearly there is some genuine ambiguity at play in how to
make this judgment. On the one hand, some users may want to find material
on Luther Vandross but are unable to remember his name. They search a name
they can remember, namely Aretha Franklin, and then click on a document in
the Vandross cluster. In this case, one might conclude that the judgment should
be a 1. (In either case, these are clearly terms that are usefully “related to” the
underlying query.) To push back against this issue, we simply asked our auditor
to be conservative and consistent. Precision is defined as the fraction of pairs
that are judged to be relevant to each other by this standard. Weighted precision
applies a weight to each pair as given by the Markov weight connected the query
to the intent cluster. This means that connections that had low strength are
down-weighted in the calculation.

The parameter setting 0.7 produced the most edges in the knowledge graph,
which is natural since it required the lowest threshold to establish similarity and
thus the most non-singleton connected components. We define each query/intent-
query pair for the 0.70 that is scored as a true positive as the target set. The
fraction of pairs that each method recovers is defined as pseudo recall. By def-
inition it is equal to 1.0 for the 0.7 parameter setting. We also define weighted
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recall, which applies the Markov weight to each pair. Note that now the measure
is not constrained to [0, 1]. The reason is that the tighter thresholds tend to lead
to higher Markov weights, so if they can actually “recover more” (by getting
credit for the weight) pairs. We concede this metric is a bit unconventional, but
find it nonetheless informative.

Table 3. Precision and pseudo recall by threshold

Threshold Raw precision Weighted precision Pseudo recall W. Pseudo recall

0.7 0.69 0.79 1 1

0.8 0.70 0.84 0.76 1.054

0.9 0.68 0.83 0.45 1.04

0.95 0.66 0.83 0.26 1.03

Table 3 gives the results. Raw precision is highest for the 0.8 threshold, com-
ing in at 0.70, and actually lowest for 0.95 (but the overall distances are not
large). This indicates that the clusters in 0.95 can be too specific and thus often
don’t capture the broader intent of queries linked to them. Weighted precision
is again highest for the 0.8 setting, coming in at a healthy 0.84. As expected,
raw pseudo recall falls as the threshold tightens, but the weighted metric is far
more stable. Again, threshold 0.8 scores the best on this metric.

Overall the metrics indicate that our unsupervised algorithm achieves results
that are deemed quite sensible when exposed to direct human judgment. The
fact that raw accuracy was relatively stable, indicates that optimal choice of
parameter will probably depend on other features of the output, which we’ll
now investigate.

4.3 Linking Queries to Leverage Scale

In Fig. 7 we plot the cumulative distribution of the count of intent clusters per
query. For this figure and all the rest we plot all 4 threshold values. The first
feature that is immediately apparent is that most queries map to a single intent
cluster. This is especially true for the 0.95 setting, which has the sparsest knowl-
edge graph. For all parameter settings, 90% of queries map to 2 or less intent
clusters. That being said, the distribution exhibits heavy tails. We have censored
the x-axis at 10, but it extends well into the 100’s, which can be seen in Fig. 8.
The log-log density plot shows the familiar linear patterns of a heavy tailed
distribution.

The number of intent clusters that a query maps to captures the diversity
of intent for a given unit of expression. What the data reveal is that while
most queries seem to have a single intent (this also due to the sparseness of
the query-document graph, as previously mentioned), a non-negligible fraction
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Fig. 7. CDF of the number intent clusters with an edge to a submitted query.

Fig. 8. PDF of the number intent clusters with an edge to a submitted query, log-log
scale.

have quite diverse intent. Indeed, subsequent analysis reveals these more diverse
intent queries tend to have higher volume, in part because they are more generic
(“Aretha Franklin” vs. “Aretha Franklin’s second album”).

One might wonder if the fact that most queries map to one intent query is
a function of the fact that intent clusters tend to contain very few documents
and thus very few queries linking to them. In Fig. 9 captures how many in-links
intent clusters have. The CDF reveals that yes, there are many small clusters. As
expected, the 0.95 setting has the smallest clusters. However, for looser thresh-
olds, most clusters have more than 5 queries linking in, and approximately 20%
have more than 20 underlying queries. This shows that we have substantially
reduced the sparsity of the query-document graph shown in Table 1. By reducing
this sparsity, learning via historical examples becomes a much more promising
avenue to improve search engine performance.

We have seen so far that the tighter the threshold, the fewer queries per
cluster and fewer clusters per query. In Fig. 10 we show how the number of non-
singleton set clusters formed changes with each parameter setting. Examining
the 0.7 setting, we see that there are roughly 120 million clusters. To put this
number in perspective, we saw that roughly 75% of all intent clusters mapped to
a single query, meaning they were a singleton set and excluded. The remaining
set of queries, however, is quite large, 1.1 billion to be precise. Of these 1.1
billion “unique” queries, we identify that the underlying unique intent is 10-fold
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Fig. 9. CDF of the number of queries per queries per intent cluster.

Fig. 10. Number of intent clusters per method.

smaller. This is a substantial “reduction in uniqueness.” The other thresholds
deflate uniqueness more aggressively, but also leave more singleton sets, as shown
in Fig. 7. Given that human judged accuracy as similar across thresholds, these
results point to using 0.7 as the threshold.

To summarize the results, we see that the choice of threshold has a large
impact on the resulting knowledge graph. A smaller threshold allows more non-
singleton intent clusters (connected components) to form in the document simi-
larity graph. At first this might seem counter-intuitive. Since clusters are iden-
tified by connected components, adding more links could connect more existing
components and reduce the number of clusters. However, the countervailing force
is that in a graph this sparse and that displays so much isolation, adding links
tends to form more clusters than it ties together. This highlights the role of scale
in forming a richer graph.

The 0.70 threshold setting is shown to identify approximately 118 million
intent clusters from the nearly 1.1 billion “unique” queries that link to more
than one document. Indeed these are the queries that have the higher volume
in terms of searches (almost by construction), so the “reduction of uniqueness”
our method offers in terms of search volume is greater still. Figure 11 shows the
relationship between direct and indirect volume (in log-log scale). We note that
at low direct volume levels, indirect views are often two orders of magnitude
greater, highlighting the importance of these links. We conducted experiments
that artificially limited the scale of data we gave ourselves access to and saw the
expected dramatic reductions in links within the query-document graph.
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Fig. 11. Relationship between direct vs. indirect query counts

4.4 Impact on CTR

We now link the number of “indirect examples” to CTR performance by repeat-
ing the “new query analysis” using both direct historical examples and indirect
historical examples (the queries linked in the graph) as features. Our findings
are summarized as follows:

yctr – Success-CTR vid – Indirect View Count vd – Direct View Count
yctr = α + β1vid + β2vd
α = 0.742 [0.740, 0.745]

β1 = 2.251 10−05 [2.79 10−07, 4.48 10−05] i.e. 0.02% to 4.48 % per 1000
β2 = 1.109 10−05 [0.528 10−06, 1.69 10−05] i.e. 0.5% to 1.7% per 1000

We find both (direct and indirect views) are statistically significant predic-
tors of CTR and higher click positions on the page. For CTR, the coefficient
on indirect views, conditional on direct views, is 0.000022, indicating that 1,000
indirect views predicts a rise in CTR of 0.02, which is consistent with our previ-
ous findings. Our previous finding was 1 to 3% and about 2%. This indicates that
while direct examples are more important, leveraging related queries is an impor-
tant factor as well. Given that scale increases the density of the query-document
graph and thus the ability to find related queries, this points to another source
of advantage conferred to scale.

5 Discussion and Conclusion

It is well known that, like most statistical learning problems, efficiently designed
search engines have errors proportional to n−1/2, where n is the amount of data.
As data accumulates, search engines should improve, but how much does this
scale economy matter? One perspective on competition among search engines is
that even a 1% share represents billions of searches per year. But the scale of
the problem solved by modern search engines has grown along with the data.
Where AltaVista indexed millions of search pages, modern search engines index
billions of pages. So while modern search engines have more data than they did
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a decade ago, they solve a harder problem than they did, making it entirely
unclear whether the increase in scale makes the problem easier or harder.

The frequency of unique queries does not actually measure how hard the
problem is, unfortunately. Consider the problem of “Pasadena Ethiopian Restau-
rant.” The first time this query was entered (as far as we can tell), both search
engines provided excellent results. Why? Because there are nearby queries; essen-
tially all portions – Ethiopian, Pasadena and Restaurant – are understandable
based on past data, and search engines can identify the relevant documents even
though the query is rare. This spillover of knowledge from one query to another
means that the counts of queries is a flawed measure of the data advantage. We
apply an approach motived by past work that directly document these effects.

To address the complexity of the problem solved by search engines, we use two
strategies. First, we look at new queries. These are queries that have been rare
and then become much more common. This lets us see how the search engines
respond to new data. We find that both search engines improve significantly as
more data flows in. While we illustrate that process quantitatively, there are
two caveats. First, we see almost all the data for one of the search engines and
much less for the other. Thus, the scale of the measurement varies across the two
engines. Second, it could well be that there are other queries bringing relevant
data to the problem, because they help the search engine improve the matching
not just for one query but for a set of queries. Nevertheless, we do find substantial
improvement on rare queries as more data flows in, which demonstrates that both
search engines are data starved in the sense that they benefit significantly from
more data on a substantial portion of the queries, perhaps as many as half the
queries and 15% of the searches.

One potential objection to the approach we take is that perhaps the available
results get better as more people enter a specific query, because web pages specif-
ically constructed to be clickable are created. We show that this is unlikely—
around 98% of the pages already existed—but more work could be done on this
topic. Indeed, the ecosystem effects of consumer search and gaming of search
engines remain interesting topics beyond the scope of this paper.

To address knowledge spillovers, where data from “Pasadena restaurant”
helps a search engine with “Pasadena Ethiopian Restaurant,” we constructed
a knowledge graph. The knowledge graph identifies related queries and lets us
identify both direct (searches for that query) and indirect (searches for closely
related queries) data that can be brought to bear in finding the right answers to a
query. One finding that suggests that the knowledge graph was well-constructed
is that we can predict the click through rate as a function of both direct and
indirect data, and find both are relevant, with similar coefficients.

The knowledge graph model confirms that data—both direct and indirect—
matters at scale. Moreover, and more interestingly, it lets us quantify how many
queries have a modest amount of total data. We find approximately 10% of the
queries have less than 1000 relevant observations, and 18% have less than 10,000.
This addresses the question of how much data can actually be brought to bear
on answering rare queries.
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Search engines are arguably one of the most complicated engineering tasks
ever attempted, matching billions of queries to billions of web pages. While there
are probably increasing returns to scale for small amounts of data, there are even-
tually diminishing returns. Many markets are characterized by two major search
engines, with one larger than the other. What we observe in the North Amer-
ican market is that both search engines are well into the region of diminishing
returns, but there is still a significant return to data. The effects we estimate
are of modest size, 1–4% points, meaning that a major algorithmic improve-
ment could swamp the advantage of a larger incumbent. That being said, it is
well known that effects of this size are large in terms of differentiating perfor-
mance from a competitor and thus strongly suggest that major search engines
still operate in a region where more data matters.

References

1. Baeza-Yates, R., Tiberi, A.: Extracting semantic relations from query logs. In:
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 76–85. ACM (2007)

2. Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log.
In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 407–416. ACM (2000)

3. Bordino, I., Castillo, C., Donato, D., Gionis, A.: Query similarity by projecting the
query-flow graph. In: Proceedings of the 33rd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pp. 515–522. ACM
(2010)

4. Craswell, N., Szummer, M.: Random walks on the click graph. In: Proceedings of
the 30th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pp. 239–246. ACM (2007)

5. Craswell, N., Zoeter, O., Taylor, M., Ramsey, B.: An experimental comparison of
click position-bias models. In: Proceedings of the 2008 International Conference on
Web Search and Data Mining, pp. 87–94. ACM (2008)

6. Goel, S., Broder, A., Gabrilovich, E., Pang, B.: Anatomy of the long tail: ordinary
people with extraordinary tastes. In: Proceedings of the Third ACM International
Conference on Web Search and Data Mining, pp. 201–210. ACM (2010)

7. Li, X., Wang, Y.Y., Acero, A.: Learning query intent from regularized click graphs.
In: Proceedings of the 31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 339–346. ACM (2008)

8. Liu, X., Song, Y., Liu, S., Wang, H.: Automatic taxonomy construction from key-
words. In: Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1433–1441. ACM (2012)

9. Sadikov, E., Madhavan, J., Wang, L., Halevy, A.: Clustering query refinements by
user intent. In: Proceedings of the 19th International Conference on World Wide
Web, pp. 841–850. ACM (2010)

10. Wen, J.R., Nie, J.Y., Zhang, H.J.: Query clustering using user logs. ACM Trans.
Inf. Syst. 20(1), 59–81 (2002)



Simple Pricing Schemes for the Cloud

Ian A. Kash1, Peter Key1, and Warut Suksompong2(B)

1 Microsoft Research, Cambridge, UK
{iankash,Peter.Key}@microsoft.com

2 Department of Computer Science, Stanford University, Stanford, USA
warut@cs.stanford.edu

Abstract. The problem of pricing the cloud has attracted much recent
attention due to the widespread use of cloud computing and cloud ser-
vices. From a theoretical perspective, several mechanisms that provide
strong efficiency or fairness guarantees and desirable incentive proper-
ties have been designed. However, these mechanisms often rely on a rigid
model, with several parameters needing to be precisely known in order
for the guarantees to hold. In this paper, we consider a stochastic model
and show that it is possible to obtain good welfare and revenue guaran-
tees with simple mechanisms that do not make use of the information
on some of these parameters. In particular, we prove that a mechanism
that sets the same price per time step for jobs of any length achieves
at least 50% of the welfare and revenue obtained by a mechanism that
can set different prices for jobs of different lengths, and the ratio can be
improved if we have more specific knowledge of some parameters. Sim-
ilarly, a mechanism that sets the same price for all servers even though
the servers may receive different kinds of jobs can provide a reasonable
welfare and revenue approximation compared to a mechanism that is
allowed to set different prices for different servers.

1 Introduction

With cloud computing generating billions of dollars per year and forming a
significant portion of the revenue of large software companies [10], the problem of
how to price cloud resources and services is of great importance. On the one hand,
for a pricing scheme to be used, it is necessary that the scheme provide strong
welfare and revenue guarantees. On the other hand, it is also often desirable
that the scheme be simple. We combine the two objectives in this paper and
show that simple pricing schemes perform almost as well as more complicated
ones with respect to welfare and revenue guarantees. In particular, consider the
pricing scheme for virtual machines on Microsoft Azure shown in Fig. 1. Once
the user chooses the basic parameters such as region, type, and instance size,
the price is calculated by simply multiplying an hourly base price by the number
of virtual machines and number of hours desired. The question that we study
can be phrased in this setting as follows: How much more welfare or revenue

The full version of this paper is available at http://arxiv.org/abs/1705.08563.
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could be created if instead of this simple multiplication formula, a complex
table specifying the price for each number of hours were to be used? Our main
result is that the former offers at worst a two approximation to the latter, both
in terms of welfare and revenue. Similarly, we demonstrate that setting a single
price for a group of servers, even though the servers may receive different kinds
of jobs, can provide a reasonable welfare and revenue approximation compared
to setting different prices for different servers.

In much of the prior work in this space, which focuses more explicitly on
scheduling, prices depend in a complex way on a number of parameters (typically
including job length, arrival time, deadline, and value) as well as the current state
of the system [3,11,20,21,24]. A weakness of such schemes is that they require
these parameters to be known up front in order for the desirable properties of
the mechanisms, such as their approximation ratios, to hold. The availability of
such information is not always realistic in practice. Even when it is in principle
possible to provide this information, there is a cost to participants in both time
and resources to figure it out. In this work, we show that good results are possible
with no up front information.

Fig. 1. Pricing scheme for virtual machines on Microsoft Azure [4].

For our initial results we assume that there is a single server, which receives
jobs of various lengths whose value per time step is drawn from the same prob-
ability distribution regardless of length. We compare the welfare and revenue
that can be obtained by setting a price per time step that is independent of the
job length against the corresponding objective obtained by setting an individual
price for each job length. When we are allowed the freedom of setting different
prices for different job lengths, intuitively we want to set a higher price per time
step for longer jobs as a premium for reserving the server for a longer period of
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time.1 However, as we show, we do not lose more than 50% of the welfare or
revenue if we are only allowed to set one price. We would like to emphasize that
this is a worst-case bound over a wide range of parameters, including the number
of job lengths, the distribution over job lengths, and the distribution over job
values. Indeed, as we show, we can obtain improved bounds if we know the value
of some of these parameters. The price that we use in the single-price setting can
be chosen from one of the prices used in the multi-price setting, meaning that we
do not have to calculate a price from scratch. Moreover, all of our approximation
guarantees hold generally for arbitrary prices, meaning that for any prices that
we may set in a multi-price setting (i.e., not necessarily optimal ones), we can
obtain an approximation of the welfare or revenue by setting one of those prices
alone. Finally, we emphasize that these results put no restrictions on the form of
the distribution; it can be discrete, continuous, or mixed. The only substantive
constraint is that jobs of all lengths share the same distribution of value per time
step. However, in an extension we show that a version of our results continues
to hold even if this constraint is relaxed.

We then generalize our results to a setting where there are multiple servers,
each of which receives jobs of various lengths. The distribution over job lengths
can be different for different servers. This is conceivable, for instance, if the
servers are in various geographic locations or are utilized by various groups
of users. We compare the welfare and revenue obtained by a simple pricing
scheme that sets the same price for all servers against the corresponding objective
achieved by a scheme that can set a different (single) price for each server.
Roughly speaking, we show that as long as the parameters are not too extreme,
e.g., the number of servers or the job lengths are not too large, then we do not
lose too much of the welfare or revenue by setting a single price. Combining
this with our initial results, we obtain an approximation of a very restricted
pricing scheme where we must set the same price for all servers and all job
lengths against one where we can set an individual price for each job length of
each server. These results require an assumption that all servers have the same
probability of not receiving a job at a time step. Using similar techniques, we
also obtain approximation bounds when this assumption does not hold but there
is only one job length across all servers.

1.1 Related Work

Much recent work has focused on designing online scheduling mechanisms with
good welfare guarantees and incentive properties. Jain et al. [20] exhibited a
truthful mechanism for batch jobs on cloud systems where jobs are allocated
non-preemptively, and the same group of authors came up with mechanisms for
deadline-sensitive jobs in large computing clusters [21]. Lucier et al. [24] also
considered the problem of scheduling deadline-sensitive jobs; they circumvented

1 Amazon recently started offering a product called “defined duration spot instances”
where users can specify a duration in hourly increments up to six hours [2]. Indeed,
the price per hour of this product increases as the number of hours increases.
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known lower bounds by assuming that jobs could be delayed and still finish by
their deadline. Zhang et al. [26] developed a framework for truthful online cloud
auctions where users with heterogeneous demands can come and leave on the
fly. More recently, Azar et al. [3] constructed a truthful mechanism that achieves
a constant competitive ratio given that slackness is allowed, while Dehghani et
al. [11] assumed a stochastic model and developed a truthful mechanism that
approximates the expected maximum welfare up to a constant factor. Wang
et al. [25] designed mechanisms for selling reserved instances where users are
allowed to reserve resources of any length and from any time point in the future.
Other work in this space has dealt with comparing pricing mechanisms such as
the on-demand market and the spot market [1,12,19], achieving fairness in job
allocation [17], and studying models of real-time pricing with budget constraints
[18]. Kash and Key [22] gave a survey of the current state of research in economics
and computer science with respect to cloud pricing.

From a technical perspective, our work bears a resemblance to the work of
Dütting et al. on discriminatory and anonymous posted pricing and of Disser et
al. on hiring secretaries. In particular, Dütting et al. [14] considered the prob-
lem of selling a single item to buyers who arrive sequentially with values drawn
independently from identical distributions. They showed that by posting dis-
criminatory prices, one can obtain at most 2 − 1/n times as much revenue as
that obtained by posting the same anonymous price, where n is the number of
buyers. As is also the case in our work, their anonymous price can always be
chosen from one of the discriminatory prices, but their bound is obtained via a
relaxation of the discriminatory pricing problem, a different technique than what
we use. Disser et al. [13] provided a competitive online algorithm for a variant of
the stochastic secretary problem, where applicants need to be hired over time.
When each applicant arrives, the cost per time step of the applicant is revealed,
and we have to decide on the duration of the employment. Once an applicant is
accepted, we cannot terminate the contract until the duration of the job is over.

Our work falls into the broader area of the design and analysis of simple
mechanisms, particularly posted price mechanisms. One of the motivations for
studying simple mechanisms is that in practice, designers are often willing to
partially give up optimality in return for simplicity. Mechanisms that simply
post prices on goods have received significant attention since they reflect perhaps
the most common way of selling goods in the real world, and moreover they
leave no room for strategizing, making them easy for agents to participate in. A
long line of work has investigated how well such mechanisms can approximate
optimal mechanisms with respect to various objectives including welfare [9,15,
16], revenue [5–7], and social costs [8]. In Sect. 3.4 we show that techniques from
this literature can recover some of our results under relaxed assumptions.

2 Preliminaries

We consider a system with a number of servers and discrete time steps. Each
job takes an integer number of time steps to complete and yields a value upon
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completion. The value per time step of a job is drawn from a known distrib-
ution which is independent of the length of the job. Let F be the cumulative
distribution function of this distribution and f the probability density function
with respect to a base measure μ, and define �(x) = xf(x).2 We do not make
any assumption on our distribution; in particular, it need not be continuous or
discrete, which is why we allow flexibility in terms of the base measure.

When a job request is made for a job to be served by a server, there is a
price p per time step which may depend on the job length and/or the server. If
the value per time step of the job is at least p, the server accepts and executes
the job to completion. Otherwise, the server rejects the job. The objectives in
our model are the steady-state welfare and revenue for each pricing scheme. In
particular, we will be interested in the expected welfare and revenue per time
step, given that the job values are drawn from a probability distribution. This
can also be thought of as the average welfare and revenue per time step that
result from a pricing scheme over a long period of time.

In Sect. 3, we assume that there is a single server. Each time step, either zero
or one job appears. A job with length ai appears with probability 0 < ri ≤ 1,
where

∑n
i=1 ri ≤ 1 and n denotes the number of job lengths. We are allowed

to set a price pi for jobs of length ai. If a server accepts a job of length ai, it
is busy and cannot accept other jobs for ai time steps, including the current
one. We compare the setting where we are forced to set the same price p for all
job lengths against the setting where we can set a different price pi for each job
length ai. Note that if we could set different prices for different job lengths, then
to optimize welfare or revenue, intuitively we would set a higher price per time
step for longer jobs as a premium for reserving the server for a longer period. Put
differently, once we accept a longer job, we are stuck with it for a longer period,
during which we miss the opportunity to accept other jobs. Consequently, we
should set a higher standard for accepting longer jobs. (See also Footnote 1.)

In Sect. 4, we assume that there are multiple servers. Each time step, either
zero or one job appears for each server 1 ≤ j ≤ n. For server j, a job with length
aji appears with probability 0 < rji ≤ 1 for 1 ≤ i ≤ nj , where nj denotes the
number of job lengths for server j. We do not assume that the set of job lengths
or the number of job lengths are identical across servers. On the other hand, we
assume that the probability of no job appearing at a time step is the same for
all servers, i.e.,

∑nj

i=1 rji is constant for any j. In Subsect. 4.1, we assume that
we can set one price per server, and we compare the setting where we are forced
to set the same price p for all servers against that where we can set a different
price pj for each server j. In Subsect. 4.2, we assume that we can set a different
price pji for each server j and each of its job lengths aji, and we compare that

2 For technical reasons, we will deviate slightly from the usual notion of cumulative
distribution function. In particular, if y is a random variable drawn from a distrib-
ution, then we define its cumulative distribution function F (x) as Pr[y < x] instead
of the usual Pr[y ≤ x]. This will only be important when we deal with discrete
distributions.
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setting against that where we are forced to set the same price p for all servers
and all job lengths.

All proofs can be found in the full version of this paper [23].

3 One Server

In this section, we assume that there is a single server, which receives jobs of
various lengths. After presenting an introductory example in Subsect. 3.1, we
consider the general setting with an arbitrary number of job lengths in Sub-
sect. 3.2. In this setting, we show a 50% approximation for both welfare and
revenue of setting one price for all job lengths compared to setting an individual
price for each job length, for any realization of the parameters. Moreover, we
show in Subsect. 3.3 that our techniques provide a template for deriving tighter
bounds if we have more specific information on the parameters. In particular,
when there are two job lengths, we show for each setting of the parameters a
tight approximation bound for welfare and revenue. Our approximation results
hold for arbitrary (i.e., not necessarily optimal) pricing schemes, and the price
we use in the single-price setting can be drawn from one of the prices in the
multi-price setting. Finally, in Subsect. 3.4 we consider an extension that does
not assume independence between the job length and the value per time step.

3.1 Warm-Up: Uniform Distribution

As a warm-up example, assume that at any time step a job with length 1 or 2
appears with probability 50% each. The value per time step of a job is drawn
from the uniform distribution over [0, 1]. Suppose that we set a price per time
step p1 for jobs of length 1 and p2 for jobs of length 2.

Consider an arbitrary time step when the server is free. If the job drawn at
that time step has length 1, then with probability p1 it has value below p1 and is
rejected. In this case, the server passes one time step without a job. Otherwise,
the job has value at least p1 and is accepted. In this case, the expected welfare
from executing the job is 1+p1

2 . Similarly, if the job has length 2, then with
probability p2 it is rejected, and with probability 1−p2 it is accepted and yields
expected welfare 2 · 1+p2

2 = 1 + p2 over two time steps. Letting cw denote the
expected welfare per time step assuming that the server is free at the current
time step, we have

0 =
1

2

(
−p1cw + (1 − p1)

(
1 + p1

2
− cw

))
+

1

2
(−p2cw + (1 − p2) (1 + p2 − 2cw)) .

The two terms on the right hand side correspond to jobs of length 1 and 2,
which are drawn with probability 1

2 each. In the case that a job of length 2 is
drawn, with probability p2 it is rejected and the server is idle for one time step,
during which it would otherwise have produced expected welfare cw. With the
remaining probability 1−p2 the job is accepted, yielding expected welfare 1+p2
over two time steps, during which the server would otherwise have produced
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expected welfare 2cw. The derivation for the term corresponding to jobs of length
1 is similar. By equating the expected welfare with the variable denoting this
quantity, we arrive at the equation above.

Solving for cw, we get

cw(p1, p2) =
(1−p1)(1+p1)

2 + (1 − p2)(1 + p2)
3 − p2

.

To maximize cw(p1, p2) over all values of p1, p2, we should set p1 = 0. (Indeed,
to maximize welfare we should always accept jobs of length 1 since they do not
interfere with future jobs.) Then the value of p2 that maximizes cw(p1, p2) is

p2 = 3 −
√

15
2 ≈ 0.261, yielding cw(p1, p2) = 6 − √

30 ≈ 0.522.
On the other hand, if we set the same price p = p1 = p2 for jobs with different

lengths, our welfare per time step becomes

cw(p) =
(1−p)(1+p)

2 + (1 − p)(1 + p)
3 − p

=
3(1 − p)(1 + p)

2(3 − p)
.

This is maximized at p = 3 − 2
√

2 ≈ 0.172, yielding cw(p) = 9 − 6
√

2 ≈ 0.515.
Moreover, if we use either of the prices in the optimal price combination for the

two-price setting as the single price, we get cw(0) = 0.5 and cw

(
3 −

√
15
2

)
≈

0.510.
Next, we repeat the same exercise for revenue. We can derive the equations

in the same way, with the only difference being that the revenue from accepting
a job at price p is simply p. Letting cr denote the revenue per time step, we have

0 =
1
2

(−p1cr + (1 − p1) (p1 − cr)) +
1
2

(−p2cr + (1 − p2) (2p2 − 2cr)) .

Solving for cr, we get

cr(p1, p2) =
(1 − p1)p1 + 2(1 − p2)p2

3 − p2
.

To maximize cr over all values of p1, p2, we should set p1 = 0.5. (Indeed, to
maximize revenue we should always set the monopoly price for jobs of length 1
since they do not interfere with future jobs.) Then the value of p2 that maximizes

cr(p1, p2) is p2 = 3 −
√

47
8 ≈ 0.576, yielding cr(p1, p2) = 10 − √

94 ≈ 0.304.
On the other hand, if we set the same price p = p1 = p2 for jobs with different

lengths, our revenue per time step becomes

cr(p) =
(1 − p)p + 2(1 − p)p

3 − p
=

3(1 − p)p
3 − p

.

This is maximized at p = 3 − √
6 ≈ 0.551, yielding cr(p) = 15 − 6

√
6 ≈ 0.303.

Moreover, if we use either of the prices in the optimal price combination for the
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two-price setting as the single price, we get cr(0.5) = 0.3 and cr

(
3 −

√
47
8

)
≈

0.302.
Observe that for both welfare and revenue, the maximum in the one-price

setting is not far from that in the two-price setting. In addition, in both cases
at least one of the two prices in the optimal price combination for the two-
price setting, when used alone as a single price, performs almost as well as the
maximum in the two-price setting. In the remainder of this section, we will show
that this is not a coincidence, but rather a phenomenon that occurs for any set
of job lengths, any probability distribution over job lengths, and any probability
distribution over job values.

3.2 General 50% Approximation

In this subsection, we consider a general setting with an arbitrary number of
job lengths. We show that even at this level of generality, it is always possible
to obtain 50% of the welfare and revenue of setting an individual price for each
job length by setting just one price. Although the optimal price in the one-price
setting might be different from any of the prices in the multiple-price setting,
we show that at least one of the prices in the latter setting can be used alone to
achieve the 50% guarantee.

Assume that there are jobs of lengths a1 ≤ a2 ≤ · · · ≤ an which appear at
each time step with probability r1, r2, . . . , rn, respectively. Suppose that we set
a price per time step pi for jobs of length ai. Recall that the value per time step
of a job is drawn from a distribution with cumulative distribution function F
and probability density function f .

The following lemma gives the formulas for the expected welfare and revenue
per time step.

Lemma 3.1. Let S = a1r1 + · · · + anrn and R = r1 + · · · + rn, and let cw and
cr denote the expected welfare and revenue per time step, respectively. We have

cw(p1, . . . , pn) =
a1r1

∫
x≥p1

�dμ + · · · + anrn

∫
x≥pn

�dμ

S − ((a1 − 1)r1F (p1) + · · · + (an − 1)rnF (pn)) + (1 − R)
(1)

and

cr(p1, . . . , pn) =
a1r1(1 − F (p1))p1 + · · · + anrn(1 − F (pn))pn

S − ((a1 − 1)r1F (p1) + · · · + (an − 1)rnF (pn)) + (1 − R)
.

(2)

In particular, if p1 = · · · = pn = p, then cw(p) =
S
∫
x≥p

�dμ

S−(S−R)F (p)+(1−R) and

cr(p) = S(1−F (p))p
S−(S−R)F (p)+(1−R) .

With the formulas for welfare and revenue in hand, we are ready to show the
main result of this section, which exhibits that the worst-case approximation
ratio for welfare or revenue between the one-price setting and the multiple-price
setting is at least 50%. As we will see later in Subsect. 3.3, this bound is in fact
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tight, and it remains tight even when there are only two job lengths. Note that
the bound holds for any number of job lengths, any distribution over job lengths,
and any distribution over job values.

Theorem 3.1. For any prices p1, p2, . . . , pn that we set in the multiple-price
setting, we can achieve a welfare (resp. revenue, or any convex combination of
welfare and revenue) approximation of at least 50% in the one-price setting by
using one of the prices pi as the single price.

To prove Theorem 3.1, we work with the ratio max(cw(p1),...,cw(pn))
cw(p1,...,pn)

and show
that it is at least 1

2 for any p1, . . . , pn (and similarly for revenue or any con-
vex combination of welfare and revenue). Using the formula (1) for cw given in

Lemma 3.1, we can write the ratio in terms of the variables Ai =
∫
x≥pi

�dμ
∫
x≥p1

�dμ
and

Bi = F (pi) for 1 ≤ i ≤ n. For any fixed values of Bi, we then deduce the values
of Ai that minimize the ratio of interest. Finally, we show that the remaining
expression is always at least 1/2 no matter the values of Bi.

3.3 Tighter Bounds for Specific Parameters

Assume in this subsection that there are jobs of two lengths a < b which appear
at each time step with probability r1 and r2, respectively, where r1 + r2 ≤ 1.
Suppose that we set a price per time step p1 for jobs of length a and p2 for jobs of
length b. Recall that the value per time step of a job is drawn from a distribution
with cumulative distribution function F and probability density function f .

Our next result exhibits a tight approximation bound for any fixed setting
of the job lengths and their distribution.

Theorem 3.2. For any prices p1 and p2 that we set in the two-price setting, we
can achieve a welfare (resp. revenue, or any convex combination of welfare and
revenue) approximation of at least

ρ(a, b, r1, r2) :=
(ar1 + br2)(ar1 + 1 − r1)

a(a − 1)r21 + a(b − 1)r1r2 + ar1 + br2

in the one-price setting by setting either p1 or p2 alone. Moreover, this bound is
the best possible even if we are allowed to set a price different from p1 or p2 in
the one-price setting.

To prove this theorem, we work with the expression in terms of Bi = F (pi)
that we have from the proof of Theorem3.1. We then show that the expression
is minimized when we take B1 = 0 and B2 = 1, meaning that the distribution
on job values is bimodal. The proof method readily yields an example showing
that our bound is tight, where the bimodal distribution on job values puts a
large probability on a low value and a small probability on a high value.

If we fix the probabilities r1, r2, we can derive a tight worst-case bound over
all possible job lengths a, b.
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Theorem 3.3. For fixed r1, r2, we have ρ(a, b, r1, r2) ≥ 1
1+r1

for arbitrary a, b.
Moreover, this bound is the best possible.

Note that the fact that the bound is tight at a = 1 and b → ∞ is consistent
with the intuition that the further apart the job lengths are, the more welfare
and revenue there is to be gained by setting different prices for the job lengths,
and hence the worse the approximation ratio.

Finally, we show that we can obtain at least 50% of the welfare or revenue
from setting two prices by using one of those prices.

Theorem 3.4. For arbitrary a, b, r1, r2, we have ρ(a, b, r1, r2) ≥ 1
2 . Moreover,

this bound is the best possible.

While we do not have a general formula for the worst-case approximation
ratio for each choice of the parameters a1, . . . , an, r1, . . . , rn as we do for the
case of two job lengths, the function h in the proof of Theorem3.1 still allows us
to derive a tighter bound for each specific case. Note that to find the minimum
of h, it suffices to check Bi = 0 or 1 (see the full version of this paper [23] for
details), so we only have a finite number of cases to check.

3.4 Extension

In this subsection, we show that by using a single price, we can obtain 50% of
the welfare not only compared to using multiple prices, but also compared to
the offline optimal welfare.3 In fact, we will also not need the assumption that
the job length and the value per time step are independent. However, the result
only works for particular prices rather than arbitrary ones, and we cannot obtain
tighter results for specific parameters using this method.

Theorem 3.5. Assume that the job length and the value per time step are not
necessarily independent. There exists a price p such that we can achieve a 50%
approximation of the offline optimal welfare by using p as the single price.

4 Multiple Servers

In this section, we assume that there are multiple servers, each of which receives
jobs of various lengths. Under the assumption that the servers have the same
probability of receiving no job at a time step, we show in Subsect. 4.1 an approx-
imation bound of the welfare and revenue of setting one price for all servers com-
pared to setting an individual price for each server. This yields a strong bound
when at least one of the dimensions of the parameters is not too extreme, e.g.,
the number of servers or the job lengths are not too large. In Subsect. 4.2, we
combine the newly obtained results with those from Sect. 3. Using a composi-
tion technique, we derive a general result that compares the welfare and revenue
3 For the offline optimal welfare, we compute the limit of the expected average offline

optimal welfare per time step as the time horizon grows.
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obtained by a restricted mechanism that sets the same price for all servers and
all job lengths against those obtained by a mechanism that can set a different
price for each job length of each particular server. We show that even with the
heavy restrictions, the former mechanism still provides a reasonable approxima-
tion to the latter one in a wide range of situations. Using similar techniques,
we also obtain approximation bounds when this assumption does not hold but
there is only one job length across all servers. The analysis of the latter setting
can be found in the full version of this paper [23].

As in Sect. 3, our approximation results hold for arbitrary (i.e., not necessarily
optimal) pricing schemes, and the price we use in the single-price setting can be
drawn from one of the prices in the multi-price setting.

4.1 One Price per Server

Assume that at each time step, either zero or one job appears for each server
1 ≤ j ≤ n. Server j receives jobs of length aj1 ≤ aj2 ≤ · · · ≤ ajnj

with
probability rj1, rj2, . . . , rjnj

, respectively. Suppose that we set a price per time
step pj for all jobs on server j. Recall that the value per time step of a job is drawn
from a distribution with cumulative distribution function F and probability
density function f , and that we assume that

∑nj

i=1 rji is constant. Let Sj =
aj1rj1 + · · · + ajnj

rjnj
and R = rj1 + · · · + rjnj

.
Using the formula (1) for cw given in Lemma 3.1, we find that the welfare

per time step is

dw(p1, p2, . . . , pn) =
n∑

j=1

∫
x≥pj

�dμ

1 −
(
1 − R

Sj

)
F (pj) + 1−R

Sj

.

If we set the same price p = p1 = · · · = pn for different servers, our wel-

fare per time step becomes dw(p) =
∑n

j=1

∫
x≥p

�dμ

1−
(
1− R

Sj

)
F (p)+ 1−R

Sj

. The formulas

dr(p1, p2, . . . , pn) and dr(p) for revenue are similar but with the terms
∫

x≥pj
�dμ

replaced by (1 − F (pj))pj .
We show that if at least one dimension of the parameters is not too extreme,

e.g., the number of servers or the job lengths are bounded, then we can obtain a
reasonable approximation of the welfare and revenue in the multi-price setting
by setting just one price.

Theorem 4.1. For any prices p1, p2, . . . , pn that we set in the multiple-price
setting, we can achieve a welfare (resp. revenue, or any convex combination of
welfare and revenue) approximation of at least

max
(

1
Hn

,
M − 1
M ln M

)

in the one-price setting, where Hn = 1 + 1
2 + · · · + 1

n ≈ ln n is the nth Harmonic
number and M = maxi,j

Si

Sj
.
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In particular, if all job lengths are bounded above by c, then R ≤ Sj ≤ cR
for all 1 ≤ j ≤ n, and so maxi,j

Si

Sj
≤ c. The theorem then implies that the

approximation ratio is at least c−1
c ln c .

4.2 Multiple Prices per Server

Assume as in Subsect. 4.1 that at each time step, server j receives jobs of length
aj1 ≤ aj2 ≤ · · · ≤ ajnj

with probability rj1, rj2, . . . , rjnj
, respectively. In this

subsection, we consider setting an individual price not only for each server but
also for each job length of that server. In particular, suppose that we set a
price per time step pji for jobs of length aji on server j. Recall that the value
per time step of a job is drawn from a distribution with cumulative distribution
function F and probability density function f , and that we assume that

∑nj

i=1 rji

is constant. Let Sj = aj1rj1 + · · · + ajnj
rjnj

.
We will compare a setting where we have considerable freedom with our

pricing scheme and can set a different price pji for each job length aji on each
server j with a setting where we have limited freedom and must set the same
price p for all job lengths and all servers. We show that by “composing” our
results on the two dimensions, we can obtain an approximation of the welfare
and revenue of setting different prices by setting a single price.

Theorem 4.2. For any prices pji, where 1 ≤ j ≤ n and 1 ≤ i ≤ nj for each j,
that we set in the multiple-price setting, we can achieve a welfare (resp. revenue,
or any convex combination of welfare and revenue) approximation of at least

1
2

· max
(

1
Hn

,
M − 1
M ln M

)

in the one-price setting, where Hn = 1 + 1
2 + · · · + 1

n ≈ ln n is the nth Harmonic
number and M = maxi,j

Si

Sj
.

If we have tighter approximations for either the “different prices for different
job lengths” or the “different prices for different servers” dimension, for instance
by knowing the values of some of the parameters, then the same composition
argument yields a correspondingly tighter bound.

5 Conclusion

In this paper, we study how well simple pricing schemes that are oblivious to
certain parameters can approximate optimal schemes with respect to welfare
and revenue, and prove several results when the simple schemes are restricted
to setting the same price for all servers or all job lengths. Our results provide an
explanation of the efficacy of such schemes in practice, including the one shown
in Fig. 1 for virtual machines on Microsoft Azure. Since simple schemes do not
require agents to spend time and resources to determine their specific parameter
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values, our results also serve as an argument in favor of using these schemes
in a range of applications. It is worth noting that as all of our results are of
worst case nature, we can expect the guarantees on welfare and revenue to be
significantly better than these pessimistic bounds in practical instances where
the parameters are not adversarially tailored.

We believe that there is still much interesting work to be done in the study
of simple pricing schemes for the cloud. We conclude our paper by listing some
intriguing future directions.

– In many scheduling applications, a job can be scheduled online to any server
that is not occupied at the time. Does a good welfare or revenue approxima-
tion hold in such a model?

– Can our results be extended to models with more fluid job arrivals, for exam-
ple one where several jobs can arrive at each time step?

– Can we approximate welfare and revenue simultaneously? A trivial ran-
domized approach would be to choose with equal probability whether to
approximate welfare or revenue. According to Theorem3.1, this yields a 1/4-
approximation for both expected welfare and expected revenue of the single-
price setting in comparison to the multi-price setting for job lengths.
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Abstract. The tendency to overestimate immediate utility is a common
cognitive bias. As a result people behave inconsistently over time and fail
to reach long-term goals. Behavioral economics tries to help affected indi-
viduals by implementing external incentives. However, designing robust
incentives is often difficult due to imperfect knowledge of the parameter
β ∈ (0, 1] quantifying a person’s present bias. Using the graphical model
of Kleinberg and Oren [8], we approach this problem from an algorithmic
perspective. Based on the assumption that the only information about
β is its membership in some set B ⊂ (0, 1], we distinguish between two
models of uncertainty: one in which β is fixed and one in which it varies
over time. As our main result we show that the conceptual loss of effi-
ciency incurred by incentives in the form of penalty fees is at most 2
in the former and 1 + max B/ min B in the latter model. We also give
asymptotically matching lower bounds and approximation algorithms.

Keywords: Approximation algorithms · Behavioral economics
Heterogeneous agents · Incentive design · Penalty fees
Variable present bias

1 Introduction

Many goals in life such as losing weight, passing an exam or paying off a loan
require long-term planning. But while some people stick to their plans, others
lack self-control; they eat unhealthy food, delay their studies and take out new
loans. In behavioral economics the tendency to change a plan for no apparent
reason is known as time-inconsistent behavior. The questions are, what causes
these inconsistencies and why do they affect some more than others? A common
explanation is that people make present biased decisions, i.e., they assign dispro-
portionately greater value to the present than to the future. In this simplifying
model a person’s behavior is the mere result of her present bias and the setting in
which she is placed. However, the interplay between these two factors is intricate
and sometimes counter-intuitive as the following example demonstrates:

Consider two runners Alice and Bob who have two weeks to prepare for an
important race. Each week they must choose between two types of workout.
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Type A always incurs an effort of 1, whereas type B incurs an effort of 3 in the
first and 9 in the second week. Since A offers less preparation than B, Alice and
Bob’s effort in the final race is 13 if they consistently choose A and 1 if they
consistently choose B. Furthermore, A and B are incompatible in the sense that
switching between the two will result in an effort of 16 in the final race. Figure 1
models this setting as a directed acyclic graph G with terminal nodes s and t.
The intermediate nodes vX and vXY represent a person’s state after completing
the workouts X,Y ∈ {A,B}. To move forward with the training, Alice and Bob
must perform the tasks associated with the edges of G, i.e., complete workouts
and run the race. Looking at G it becomes clear that two consecutive workouts
of type B are the most efficient routine in the long run. However, this is not
necessarily the routine a present biased person will choose.

For instance, assume that Alice and Bob discount future costs by a factor of
a = 1/2−ε and b = 1/2+ε respectively. We call a and b their present bias. At the
beginning of the first week Alice and Bob compare different workout routines.
From Alice’s perspective two workouts of type A are strictly more preferable to
two workouts of type B as she anticipates an effort of 1 + a(1 + 13) = 8 − 14ε
for the former and 3 + a(9 + 1) = 8 − 10ε for the latter. A similar calculation
for Bob shows that he prefers two workouts of type B. Considering that neither
Alice nor Bob finds a mix of A and B particularly interesting at this point, we
conclude that Alice chooses A in the first week and Bob B. However, come next
week, Bob expects an effort of 1 + b16 = 8 + 16ε for A and 9 + b = 19/2 + ε
for B. Assuming ε is small enough, A suddenly becomes Bob’s preferred option
and he switches routines. Alice on the other hand has no reason to change her
mind and sticks to A. As a result she pays much less than Bob during practice
and in the final race. This is remarkable considering that her present bias is only
marginally different from Bob’s. Moreover, it seems surprising that only Bob
behaves inconsistently, although he is less biased than Alice.

1.1 Related Work

Traditional economics and game theory are based on the assumption that peo-
ple maximize their utility in a rational way. But despite their prevalence, these
assumptions disregard psychological aspects of human decision making observed
in empirical and experimental research [5]. For instance, time-inconsistent behav-
ior such as procrastination seems paradox in the light of traditional economics.
Nevertheless, it can be explained readily by a tendency to overestimate immedi-
ate utility in long-term planning, see e.g. [13]. By studying such cognitive biases,
behavioral economics tries to obtain more realistic economic models.

A significant amount of research in this field has been devoted to temporal
discounting in general and quasi-hyperbolic discounting in particular, see [6] for
a survey. The quasi-hyperbolic discounting model proposed by Laibson [11] is
characterized by two parameters: the present bias β ∈ (0, 1] and the exponential
discount rate δ ∈ (0, 1]. People who plan according to this model have an accurate
perception of the present, but scale down any costs and rewards realized t ≥ 1
time units in the future by a factor of βδt. To keep our work clearly delineated
in scope, we adopt Akerlof’s model of quasi-hyperbolic discounting [1] and make



The Price of Uncertainty in Present-Biased Planning 327

s

vA

vB

vAA

vAB

vBB

t

1

3

1

9

9
1

13

16

1

Fig. 1. Task graph of the running scenario

the following two assumptions: First, we focus on the present bias β and set the
exponential discount rate to δ = 1. Secondly, we assume people to be naive in
the sense that they are unaware of their present bias and only optimize their
current perceived utility when making a decision. Note that Alice and Bob from
the previous example behave like agents in Akerlof’s model for a present bias of
β = 1/2 − ε and β = 1/2 + ε respectively.

Until recently the economic literature lacked a unifying and expressive frame-
work for analyzing time-inconsistent behavior in complex social and economic
settings. Kleinberg and Oren closed this gap by modeling the behavior of naively
present biased individuals as a planning problem in task graphs like the one
depicted in Fig. 1 [8]. We introduce this framework formally in Sect. 2. As a
result of Kleinberg and Oren’s work, an active line of research at the intersec-
tion of computer science and behavioral economics has emerged. For instance,
the graphical model has been used to systematically analyze different types of
quasi-hyperbolic discounting agents such as sophisticated agents who are fully
or partially aware of their present bias [9] and agents whose present bias varies
randomly over time [7]. Furthermore, the graphical model was used to shed light
on the interplay between temporal biases and other types of cognitive biases [10].

The graphical model is of particular interest to us as it provides a natural
framework for a design problem frequently encountered in behavioral economics.
Given a certain social or economic setting, the problem is to improve a time-
inconsistent person’s performance via various sorts of incentives, such as mone-
tary rewards, deadlines or penalty fees, see e.g. [12]. Using the graphical model,
Kleinberg and Oren demonstrate how a strategic choice reduction can incen-
tivize people to reach predefined goals [8]. To implement their incentives, they
simply remove the corresponding edges from the task graph. However, there is a
computational drawback to this approach. As we have shown in previous work,
an optimal set of edges to remove from a task graph with n nodes is NP-hard to
approximate within a factor less than

√
n/3 [2]. A more general form of incen-

tives avoiding these harsh complexity theoretic limitations are penalty fees. In
the graphical model penalty fees are at least as powerful as choice reduction and
admit a polynomial time 2-approximation [3].

1.2 Incentive Design for an Uncertain Present Bias

Frederick, Loewenstein and O’Donoghue have surveyed several attempts to esti-
mate people’s temporal discount functions [6]. But as estimates differ widely
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across studies and individuals, the difficulty of predicting a person’s temporal
discount function becomes apparent. Clearly, this poses a serious challenge for
the design of reliable incentives. After all, Alice and Bob’s scenario demonstrates
how arbitrarily small changes in the present bias can cause significant changes in
a person’s behavior. In this work we address the effects of incomplete information
about a person’s present bias in two different notions of uncertainty.

In Sect. 3 we consider naive individuals whose exponential discount rate is
δ = 1, but whose present bias β is unknown. The only prior information we have
about β is its membership in some larger set B. Our goal is to construct incentives
that are robust with respect to the uncertainty induced by B. More precisely,
we are interested in incentives that work well for any present bias contained in
B. An alternative perspective is that we try to construct incentives which are
not limited to a single person, but serve an entire population of individuals with
different present bias values. A simple instance of this problem in which a single
task must be partitioned and stretched over a longer period of time has been
studied by Kleinberg and Oren [8]. But like most research on incentivizing het-
erogeneous populations, see e.g. [12], Kleinberg and Oren’s results are restricted
to a very specific setting. They themselves suggest the design of more general
incentives as a major research direction for the graphical framework [8].

Using penalty fees as our incentive of choice and a fixed reward to keep
people motivated, we present the first results in this area. Our contribution is
twofold. On the one hand, we try to quantify the conceptual loss of efficiency
caused by incomplete knowledge of β. For this purpose we introduce a novel
concept called price of uncertainty, which denotes the smallest ratio between
the reward required by an incentive that accommodates all β ∈ B and the
reward required by an incentive designed for a specific β ∈ B. We present an
elegant algorithmic argument to prove that the price of uncertainty is at most 2.
Remarkably, this bound holds true independent of the underlying graph G and
present bias set B. To complement our result, we construct a family of graphs
G and present bias sets B for which the price of uncertainty converges to a
value strictly greater than 1. On the other hand, we consider the computational
problem of constructing penalty fees that work for all β ∈ B, but require as little
reward as possible. Drawing on the same algorithmic ideas we used to bound the
price of uncertainty yields a polynomial time 2-approximation. Furthermore, we
present a non-trivial proof to show that the decision version of the problem is
contained in NP. Since all hardness results of [3] also apply under uncertainty,
we know that there is no 1.08192-approximation unless P = NP.

1.3 Incentive Design for a Variable Present Bias

In Sect. 4 we generalize our notion of uncertainty to individuals whose present
bias β may change arbitrarily over time within the set B. This model is inspired
by work of Gravin et al. [7], except that we do not rely on the assumption that
β is drawn independently from a fixed probability distribution. Instead, our goal
is to design penalty fees that work well for all possible sequences of β over time.
We believe this to be an interesting extension of the fixed parameter case as the
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variability of β may capture changes in a person’s temporal discount function
caused by unforeseen cognitive biases different from her present bias. As a result
we obtain more robust penalty fees.

Again, our contribution is twofold. On the one hand, we introduce the price
of variability to quantify the conceptual loss of efficiency caused by unpredictable
changes in β. Similar to the price of uncertainty, we define this quantity to be the
smallest ratio between the reward required by an incentive that accommodates
all possible changes of β ∈ B over time and the reward required by an incentive
designed for a specific and fixed β ∈ B. However, unlike the price of uncertainty,
the price of variability has no constant upper bound. Instead, the ratio seems
closely related to the range τ = max B/min B of the set B. By generalizing our
algorithm from Sect. 3 we obtain an upper bound of 1+τ for the price of variabil-
ity. To complement this result, we construct a family of graphs G for which the
price of variability converges to τ/2. On the other hand, we consider the com-
putational aspects of constructing penalty fees for a variable β. As a result of
the unbounded price of variability, we are not able to come up with a constant
polynomial time approximation. Instead, we obtain a (1 + τ)-approximation.
However, by using a sophisticated reduction from VECTOR SCHEDULING,
we prove that no efficient constant approximation is possible unless NP = ZPP.
We conclude our work by studying a curious special case of variability in which
individuals may temporarily lose their present bias. For this scenario, which is
characterized by the assumption that 1 ∈ B, optimal penalty fees can be com-
puted in polynomial time.

2 The Model

In the following we introduce Kleinberg and Oren’s graphical framework [8]. Let
G = (V,E) be a directed acyclic graph with n nodes that models some long-term
project. The start and end states are denoted by the terminal nodes s and t.
Furthermore, each edge e of G corresponds to a specific task whose inured effort
is captured by a non-negative cost c(e). To finish the project, a present biased
agent must sequentially complete all tasks along a path from s to t. However,
instead of following a fixed path, the agent constructs her path dynamically
according to the following simple procedure:

When located at any node v different from t, the agent tries to evaluate
the minimum cost she needs to pay in order to reach t. For this purpose she
considers all outgoing edges (v, w) of her current position v. Because the tasks
associated with these edges must be performed immediately, the agent assesses
their cost correctly. In contrast, all future tasks, i.e., tasks on a path from v to
t not incident to v, are discounted by her present bias of β ∈ (0, 1]. As a result,
we define her perceived cost for taking (v, w) to be dβ(v, w) = c(v, w) + βd(w),
where d(w) denotes the cost of a cheapest path from w to t. Furthermore, we
define dβ(v) = min{c(v, w) + βd(w) | (v, w) ∈ E} to be the agent’s minimum
perceived cost at v. Since the agent is oblivious to her own present bias, she only
traverses edges (v, w) for which dβ(v, w) = dβ(v). Ties are broken arbitrarily.
Once the agent reaches the next node, she reiterates this process.



330 S. Albers and D. Kraft

To motivate the agent, a non-negative reward r is placed at t. Because the
agent must reach t before she can collect r, her perceived reward for reaching t
is βr at each node different from t. When located at v �= t, the agent is only
motivated to proceed if dβ(v) ≤ βr. Otherwise, if dβ(v) > βr, she quits. We say
that G is motivating, if she does not quit while constructing her path from s
to t. Note that sometimes the agent can construct more than one path from s to
t due to ties in the perceived cost of incident edges. In this case, G is considered
motivating if she does not quit on any such path.

For the sake of a clear presentation, we will assume throughout this work
that each node of G is located on a path from s to t. This assumption is sensible
because the agent can only visit nodes reachable from s. Furthermore, she is not
willing to enter nodes that do not lead to the reward at t. Consequently, only
nodes that are on a path from s to t are relevant to her behavior. All nodes not
satisfying this property can be removed from G in a simple preprocessing step.

2.1 Alice and Bob’s Scenario

To illustrate the model, we revisit Alice and Bob’s scenario. The task graph G is
depicted in Fig. 1. Remember that a = 1/2− ε and b = 1/2+ ε denote Alice and
Bob’s respective present bias. For convenience let 0 < ε ≤ 1/54. Furthermore,
assume that a reward of r = 27 is awarded upon reaching t.

We proceed to analyze Alice and Bob’s walk through G. At their initial
position s they must decide whether they move to vA or vB. For this pur-
pose they try to find a path that minimizes the perceived cost. As the more
present biased person, Alice’s favorite path is s, vA, vAA, t with a perceived cost
of da(s) = da(s, vA) = 8−14ε. By choice of ε this cost is covered by her perceived
reward ar = 27/2 − 27ε. Consequently, she is motivated to traverse the first edge
and moves to vA. A similar argument shows that Bob moves to vB. Once they
reach their new nodes, Alice and Bob reevaluate plans. From Alice’s perspective
vA, vAA, t is still the cheapest path to t. Bob, however, suddenly prefers vB, vAB , t
to his original plan. Nevertheless, both of their perceived cost remains covered
by their perceived reward and they move to vAA and vAB respectively. At this
point the only option is to take the direct edge to t. For Alice the perceived cost
at vAA is sufficiently small to let her reach t. In contrast, Bob’s perceived cost of
db(vAB) = 16 exceeds his perceived reward of br = 27/2 + 27ε and he quits.

2.2 Cost Configurations

Bob’s behavior in the previous example demonstrates how present biased deci-
sions can deter people from reaching predefined goals. To ensure an agent’s suc-
cess it is therefore sometimes necessary to implement external incentives such as
penalty fees. In the graphical model, penalty fees allow us to arbitrarily raise the
cost of edges in G. More formally, let c̃ be a so called cost configuration, which
assigns a non-negative extra cost c̃(e) to all edges e of G. The result is a new
task graph Gc̃, whose edges e have a cost of c(e) + c̃(e). A present biased agent
navigates through Gc̃ according to the same rules applying in G. We say that c̃
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is motivating if and only if Gc̃ is. To avoid ambiguity we annotate our notation
whenever we consider a specific c̃, e.g., we write dc̃ and dβ,c̃ instead of d and dβ .

We conclude this section with a brief demonstration of the positive effects
penalty fees can have in Alice and Bob’s scenario. Let c̃ be a cost configuration
that assigns an extra cost of c̃(vB , vAB) = 1/2 to (vB , vAB) and c̃(e) = 0 to all
other edges e �= (vB , vAB). Note that G and Gc̃ are identical task graphs except
for the cost of (vB , vAB). Because Alice does not plan to take (vB , vAB) on her
way through G and has even less reason to do so in Gc̃, we know that c̃ does
not affect her behavior. For similar reasons, c̃ does not affect Bob’s choice to
move to vB . However, once Bob has reached vB his perceived cost of the path
vB, vAB , t is db,c̃(vB , vAB) = 19/2 + 16ε, whereas his perceived cost of vB, vBB ,
t is only db,c̃(vB , vBB) = 19/2 + ε. Since the latter option appears to be cheaper
and is covered by his perceived reward, Bob proceeds to vBB and then onward
to t. As a result c̃ yields a task graph that is motivating for Alice and Bob alike.
This is a considerable improvement to the original task graph.

3 Uncertain Present Bias

In this section we consider agents whose present bias β is uncertain in the sense
that our only information about β is its membership in some set B ⊂ (0, 1].
We call B the present bias set. For technical reasons we assume that B can be
expressed as the union of constantly many closed subintervals from the set (0, 1].
This way the intersection of B with a closed interval is either empty or contains
an efficiently computable minimal and maximal element. To measure the degree
of uncertainty induced by B, we define the range of B as τ = max B/min B.

3.1 A Decision Problem

Our goal is to construct a cost configuration c̃ that is motivating for all β ∈ B,
but requires as little reward as possible. To assess the complexity of this task,
let UNCERTAIN PRESENT BIAS (UPB) be the following decision problem:

Definition 1 (UPB). Given a task graph G, present bias set B and reward
r > 0, decide whether a cost configuration c̃ motivating for all β ∈ B exists.

If τ = 1, i.e., B only contains a single present bias parameter, UPB is identical to
the decision problem MOTIVATING COST CONFIGURATION (MCC) studied
in [3]. Since MCC is NP-complete, UPB must be NP-hard. But unlike MCC it
is not immediately clear if UPB is also contained in NP. The reason is that
proving MCC ∈ NP only requires to verify whether a given cost configuration is
motivating for a single value of β; a property that can be checked in polynomial
time [2]. However, proving UPB ∈ NP requires to verify whether a given cost
configuration is motivating for all β ∈ B. Taking into account that B may very
well be an infinite set, it becomes clear that we cannot check all values of β
individually. Interestingly, we do not have to; checking a finite subset B′ ⊆ B of
size O(n2) turns out to be sufficient.
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Proposition 1. For any task graph G, reward r and present bias set B a finite
subset B′ ⊆ B of size O(n2) exists such that G is motivating for all β ∈ B if it
is motivating for all β ∈ B′.

The above proposition is related to a theorem by Kleinberg and Oren, which
bounds the number of paths an agent takes as β varies over (0, 1] by O(n2) [8].
Kleinberg and Oren’s argument does not only establish existence of B′, but also
yields a polynomial time algorithm to construct B′, which in turn implies that
UPB ∈ NP. Due to space constraints, we refer to the full version of this paper
for a corresponding proof of Proposition 1 as well as all other omitted proofs.

Corollary 1. UPB is NP-complete.

3.2 The Price of Uncertainty

Since UPB is NP-complete, it makes sense to consider the corresponding opti-
mization problem UPB-OPT. For this purpose, let r(G,B) be the infimum over
all rewards admitting a cost configuration motivating for all β ∈ B and define:

Definition 2 (UPB-OPT). Given a task graph G and present bias set B,
determine r(G,B).

Clearly, UPB-OPT must be at least as hard as the optimization version of MCC.
Consequently, we know that UPB has no PTAS and is NP-hard to approximate
within a ratio less than 1.08192 [3]. But does the transition from a certain to an
uncertain β reduce approximability?

Setting complexity theoretic considerations aside for a moment, an even more
general question arises: How does the transition from a certain to an uncertain
β affect the efficiency of cost configurations assuming unlimited computational
resources? To quantify this conceptual difference in efficiency, we look at the
smallest ratio between optimal cost configurations motivating for all β ∈ B and
optimal cost configurations motivating for a specific β ∈ B. We call this ratio
the price of uncertainty.

Definition 3 (Price of Uncertainty). Given a task graph G and a present bias
set B, the price of uncertainty is defined as r(G,B)/ sup{r(G, {β}) | β ∈ B}.

Let us illustrate the price of uncertainty by going back to Alice and Bob’s
scenario and assume that B = {a, b} with a = 1/2−ε and 1/2+ε. In other words,
the agent either behaves like Alice or she behaves like Bob, but we do not know
which. It is easy to see that in either case the agent minimizes her maximum per-
ceived cost on the way from s to t by taking the path P = s, vB , vBB , t. This min-
max cost, which is either da(vB , vBB) = 19/2−ε or db(vB , vBB) = 19/2+ε, pro-
vides two lower bounds for the necessary reward when divided by the respective
present bias. More formally, it holds true that r(G, {a}) ≥ (19/2 − ε)/(1/2 − ε)
and r(G, {b}) ≥ (19/2 + ε)/(1/2 + ε). However, as we have seen in Sect. 2, nei-
ther Alice nor Bob are willing to follow P without external incentives. To dis-
courage the agent from leaving P , we assign an extra cost of c̃(s, vA) = 5ε to
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Algorithm 1. UncertainPresentBiasApprox

1 b ← min B; P ← minmax path from s to t w.r.t db(e); α ← max{db(e) | e ∈ P};
2 foreach v ∈ V \ {t} do ς(v) ← successor of v on a cheapest path from v to t;
3 T = {(v, ς(v)) | v ∈ V \ {t}};
4 foreach e ∈ E do c̃(e) ← 0;
5 foreach e ∈ E \ (P ∪ T ) do c̃(e) ← 2α/b + 1;
6 foreach (v, w) ∈ T such that v ∈ P and w /∈ P do
7 P ′ ← v, ς(v), ς(ς(v)), . . . , t;
8 u ← first node of P ′ different from v that is also a node of P ;
9 c̃(v, w) ← cost of most expensive edge of P ′ between v and u;

10 return c̃;

(s, vA), c̃(vB , vAB) = 1/2 + 16ε to (vB , vAB) and c̃(e) = 0 otherwise. This extra
cost does not affect the agent’s maximum perceived cost along P , which she still
experiences at (vB , vBB). As a result, our bounds for r(G, {a}) and r(G, {b})
are tight and we get sup{r(G, {β}) | β ∈ B} = r(G, {a}). Moreover, because we
have used the same cost configuration c̃ to derive r(G, {a}) and r(G, {b}), it
must hold true that r(G,B) = sup{r(G, {β}) | β ∈ B}, implying that the price
of uncertainty in Alice and Bob’s scenario is 1.

3.3 Bounding the Price of Uncertainty

As Alice and Bob’s scenario demonstrates, cost configurations designed for an
uncertain β are not necessarily less efficient than those designed for a specific β.
Therefore one might wonder whether scenarios exist in which a real loss of effi-
ciency is bound to occur, i.e., can the price of uncertainty be greater than 1?
The following proposition shows that such scenarios indeed exist.

Proposition 2. There exists a family of task graphs and present bias sets for
which the price of uncertainty converges to 1.1.

As the price of uncertainty can be strictly greater than 1, the question for
an upper bound arises. Ideally, we would like to design a cost configuration c̃
motivating for all β ∈ B assuming the reward is set to �r(G, {b}) for some
constant factor � > 1 and b = min B. Clearly, the existence of such a c̃ would
imply a constant bound of � for the price of uncertainty independent of G and B.
Using a generalized version of the approximation algorithm we proposed in [3],
it is indeed possible to construct a c̃ with the desired property for � = 2.

The main idea of UncertainPresentBiasApprox is simple: First, the algo-
rithm computes a value α such that α/b is a lower bound on the reward necessary
for agents with present bias b, i.e., r(G, {b}) ≥ α/b. In particular, this bound
implies sup{r(G, {β}) | β ∈ B} ≥ α/b. Next the algorithm constructs a c̃ such
that a reward of 2α/b is sufficiently motivating for all β ∈ B, i.e., r(G,B) ≤ 2α/b.
As a result the price of uncertainty can be at most 2. In the following we try to
convey the intuition behind the algorithm in more detail.



334 S. Albers and D. Kraft

We begin with the computation of α. For this purpose let P be a path
minimizing the maximum cost an agent with present bias b perceives on her
way from s to t. We call P a minmax path and define α = max{db(e) | e ∈ P}
to be the maximum perceived edge cost of P . Since cost configurations cannot
decrease edge cost, it should be clear that α is a valid lower bound on the reward
required for the present bias b, i.e., r(G, {b}) ≥ α/b.

We proceed with c̃. The goal is to assign extra cost in such a way that any
agent with a present bias β ∈ B traverses only two kinds of edges. The first kind
of edges are those on P . It is instructive to note that each such edge (v, w) ∈ P
is motivating for a reward of α/b if β ≥ b. The reason is that

dβ(v, w) = β
(c(v, w)

β
+ d(v, w)

)
≤ β

(c(v, w)
b

+ d(v, w)
)

= β
db(v, w)

b
= β

α

b
.

In particular, P is motivating for each present bias β ∈ B. The second kind
of edges are on cheapest paths to t. To identify these edges, the algorithm assigns
a distinct successor ς(v) to each node v ∈ V \{t} such that (v, ς(v)) is the initial
edge of a cheapest path from v to t. Since we assume t to be reachable from all
other nodes of G at least one suitable successor must exist. By definition of ς,
we know that P ′ = v, ς(v), ς(ς(v)), . . . , t is a cheapest path from v to t. We call
P ′ the ς-path of v and T = {(v, ς(v)) | v ∈ V \ {t}} a cheapest path tree.

Remember that we try to keep agents on the edges of P and T . For this
purpose, we assign an extra cost of c̃(e) = 2α/b + 1 to all other edges. This
raises their perceived cost to at least 2α/b + 1; a price no agent is willing to
pay for a perceived reward of β2α/b. However, since we have not assigned any
extra cost to T so far, the perceived cost of edges in P and T is unaffected by
the current c̃. In particular, all edges of P are still motivating for a reward of
α/b and any present bias β ∈ B. To keep agents from entering costly ς-paths
P ′ = v, ς(v), ς(ς(v)), . . . , t, we assign an extra cost to the out-edges (v, ς(v)) of P ,
i.e., v ∈ P but ς(v) /∈ P . The extra cost c̃(v, ς(v)) is chosen to match the cost of
a most expensive edge on P ′ between v and the next intersection of P ′ and P . It
is easy to see that the resulting c̃ can no more than double the perceived cost of
any edge in P , see the proof of Theorem 1 for a precise argument. Furthermore,
the perceived cost of any out-edge (v, ς(v)) of P is either high enough to keep
agents on P or they do not encounter edges exceeding the perceived cost of
(v, ς(v)) until they reenter P . We conclude that a reward of 2α/b is sufficiently
motivating, leading us to one of the central results of our work.

Theorem 1. The price of uncertainty is at most 2.

It is interesting to note that UncertainPresentBiasApprox can be exe-
cuted in polynomial time. Furthermore, in the proof of Theorem1 we argue that
α/b ≤ r(G,B) ≤ 2α/b. As a result we have also found an efficient constant factor
approximation of UPB-OPT.

Corollary 2. UPB-OPT admits a polynomial time 2-approximation.
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4 Variable Present Bias

So far we have considered agents with an unknown but fixed present bias. We
now generalize this model to agents whose β may vary arbitrarily within B
as they progress through G. It is convenient to think of β as a present bias
configuration, i.e., an assignment of present bias values β(v) ∈ B to the nodes
v of G. Whenever the agent reaches a node v, she acts according to the current
present bias value β(v). We say that G is motivating with respect to a present
bias configuration β if and only if the agent does not quit on a walk from s to t.

To illustrate the consequences of a variable present bias we revisit Alice and
Bob’s scenario once more. Recall that the agent in this scenario is either like Alice
with a present bias of a = 1/2− ε or like Bob with a present bias of b = 1/2+ ε,
i.e., B = {a, b}. But while she had to commit to one present bias before, she is
now free to change between a and b. For instance, her present bias could be b
at s and vB , but a otherwise, i.e., β(v) = b for v ∈ {s, vB} and β(v) = a for
v ∈ V \ {s, vB}. In this case she walks along the same path Bob would take, i.e.,
s, vB , vAB , t. However, there is a subtle difference. At vAB the agent behaves
like Alice and needs strictly more reward than Bob to remain motivated while
traversing (vAB , t). Under closer examination, which we will not go into detail
here, it is in fact easy to see that the variability of β makes our agent more
expensive to motivate than any agent with a fixed present bias from B.

4.1 Computational Consideration

Let G be an arbitrary task graph and B a suitable present bias set. We want to
construct a cost configuration c̃ that is motivating for all present bias configura-
tion β ∈ BV , but requires as little reward as possible. Using arguments similar to
those of Sect. 3, the computational challenges of this task are readily apparent.
In particular, the corresponding decision problem VARIABLE PRESENT BIAS
(VPB) is equivalent to MCC whenever B only contains a single element.

Definition 4 (VPB). Given a task graph G, present bias set B and reward
r > 0, decide whether a cost configuration c̃ motivating for all β ∈ BV exists.

Because MCC is NP-complete [3], it immediately follows that VPB is
NP-hard. A proof that VPB ∈ NP can be found in the full version of this
paper.

Corollary 3. VPB is NP-complete.

As it is NP-hard to find optimal cost configurations for general B, we turn
to the optimization version of the problem. For this purpose let r(G,BV ) be
the infimum over all rewards admitting a cost configuration c̃ motivating for all
β ∈ BV and define VPB-OPT as:

Definition 5 (VPB-OPT). Given a task graph G and present bias set B,
determine r(G,BV ).
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Interestingly, approximating VPB-OPT seems to be much harder than
UPB-OPT. The reason why the 2-approximation for UPB-OPT, i.e.,
UncertainPresentBiasApprox, does not work anymore is simple. Recall that
the cost configuration c̃ returned by the algorithm lets the agent take short-
cuts along cheapest paths to t. To ensure that these shortcuts do not become
too expensive, c̃ assigns extra cost to their initial edge. This way the per-
ceived cost within a shortcut should not be greater than that for entering.
As long as the present bias is fixed, this works fine. However, if the present
bias can change, the agent may become more biased within a shortcut and
require higher rewards to stay motivated. One way to fix this problem is to let
the assigned extra cost depend on τ , i.e., the range of B. More precisely, we
multiply the cost assigned in line 9 of Algorithm1 by τ and change line 5 to
assign a cost of c̃(e) = (1 + τ)α/b + 1. As a result we obtain a new algorithm
VariablePresentBiasApprox with an approximation ration of 1 + τ .

Theorem 2. VPB-OPT admits a polynomial time (1 + τ)-approximation.

Although VariablePresentBiasApprox yields a good approximation for
a moderately variable present bias, it does not provide constant approxima-
tion bounds like UncertainPresentBiasApprox. Surprisingly, a sophisticated
reduction from VECTOR SCHEDULING (VS) [4], shows that VPB-OPT can-
not have an efficient constant factor approximation unless ZPP = NP.

Theorem 3. No polynomial time algorithm can approximate VPB-OPT within
a constant factor � > 1, unless NP = ZPP.

4.2 Occasionally Unbiased Agents

Although VPB is hard to solve in general, a curious special case consisting of
all present bias sets B for which 1 ∈ B is not. Note that agents whose present
bias varies within such a B becomes temporarily unbiased whenever 1 is drawn.
For this reason we call these agents occasionally unbiased. A behavioral pattern
unique to occasionally unbiased agents is that they may start to walk along a
cheapest path at any point in time whenever their present bias becomes 1. As
a result we can reduce VPB to a decision problem we call CRITICAL NODE
SET (CNS) for occasionally unbiased agents.

Definition 6 (CNS). Given a task graph G, present bias set B and reward r,
decide the existence of a critical node set W .

We consider a node set W critical if the following properties hold: (a) s ∈ W .
(b) Each node v ∈ W has a path P to t that only uses nodes of W . (c) All edges
e of P satisfy db(e) ≤ br with b = min B. As it turns out, such a W contains
exactly those nodes an occasionally unbiased agent may visit with respect to a
motivating cost configuration. This allows us to reduce VPB to CNS.

Proposition 3. If 1 ∈ B, then VPB has a solution if and only if CNS has one.
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Algorithm 2. DecideCriticalNodeSet

1 δ(t) ← 0;
2 foreach v ∈ V \ {t} in reverse topological order do
3 U ← {w | (v, w) ∈ E and c(v, w) + βδ(w) ≤ b};
4 if U = ∅ then δ(v) ← ∞; else δ(v) ← min{c(v, w) + δ(w) | w ∈ U};

5 if δ(s) < ∞ then return “yes” else return “no”;

All that remains to show is that CNS is decidable in polynomial
time. A straight forward approach to this simple algorithmic problem is
DecideCriticalNodeSet. We therefore conclude that VPB is efficiently solv-
able for occasionally unbiased agents.

Corollary 4. If 1 ∈ B, then VPB can be solved in polynomial time.

4.3 The Price of Variability

To conclude our work, we take a step back from computational considerations
and look at the implications of variability from a more general perspective. Our
goal is to quantify the conceptual loss of efficiency incurred by going from a
fixed and known present bias to an unpredictable and variable one. Similar to
the price of uncertainty we define the price of variability as the following ratio.

Definition 7 (Price of Variability). Given a task graph G and a present bias
set B, the price of variability is defined as r(G,BV )/ sup{r(G, {β}) | β ∈ B}.

It seems obvious that the price of variability depends closely on the structure
of G and B. Nevertheless, we would like to find general bounds for the price of
variability much like we did in Sect. 3 for the price of uncertainty. As a first step,
it is instructive to note that the price of uncertainty is a natural lower bound for
the price of variability. The reason for this is that each cost configuration that
motivates an agent whose present bias varies arbitrarily in B must also motivate
an agent whose present bias is a fixed value from B. Therefore it holds true that
r(G,BV ) ≥ r(G,B), which immediately implies the stated bound. Sometimes
this bound is tight. Consider for instance Alice and Bob’s scenario. As we have
shown in Sect. 3, it is possible to construct a cost configuration c̃ verifying a price
of uncertainty of 1. Using similar arguments, it is easy to see that c̃ remains
motivating if we allow the present bias to vary, implying an identical price of
variability. However, for general instances of G and B this tight relation between
the price of uncertainty and the price of variability is lost. In fact, we can show
that unlike the price of uncertainty, which has a constant upper bound of 2, the
price of variability may become arbitrarily large as the range of B increases.

Proposition 4. There exists a family of task graphs and present bias sets for
which the price of variability converges to τ/2.
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Although Proposition 4 implies that the price of variability can become sub-
stantially larger than the price of uncertainty, it should be noted that the task
graph constructed in the proof of this proposition is close to a worst case sce-
nario. In particular, we can show that the price of variability cannot exceed τ +1,
which is roughly twice the value obtained by Proposition 4. To verify this upper
bound, it is helpful to recall the proof of Theorem2. In the process of establish-
ing the approximation ratio of VariablePresentBiasApprox we have argued
that the cost configuration c̃ returned by the algorithm motivates any agent with
a present bias configuration β ∈ BV for a reward of at most (τ+1)r(G, {min B}).
Consequently, it holds true that r(G,BV ) ≤ (τ +1)r(G, {min B}), implying that
the price of variability cannot exceed τ + 1.

Corollary 5. The price of variability is at most τ + 1.

References

1. Akerlof, G.A.: Procrastination and obedience. Am. Econ. Rev. 81, 1–19 (1991)
2. Albers, S., Kraft, D.: Motivating time-inconsistent agents: a computational app-

roach. In: Cai, Y., Vetta, A. (eds.) WINE 2016. LNCS, vol. 10123, pp. 309–323.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-54110-4 22

3. Albers, S., Kraft, D.: On the value of penalties in time-inconsistent planning. In:
44th International Colloquium on Automata, Languages, and Programming, pp.
10:1–10:12. Schloss Dagstuhl (2017)

4. Chekuri, C., Khanna, S.: On multidimensional packing problems. SIAM J. Comput.
33, 837–851 (2004)

5. DellaVigna, S.: Psychology and economics: evidence from the field. J. Econ. Lit.
47, 315–372 (2009)

6. Frederick, S., Loewenstein, G., O’Donoghue, T.: Time discounting and time pref-
erence: a critical review. J. Econ. Lit. 40, 351–401 (2002)

7. Gravin, N., Immorlica, N., Lucier, B., Pountourakis, E.: Procrastination with vari-
able present bias. In: 17th ACM Conference on Economics and Computation, pp.
361–361. ACM (2016)

8. Kleinberg, J., Oren, S.: Time-inconsistent planning: a computational problem in
behavioral economics. In: 15th ACM Conference on Economics and Computation,
pp. 547–564. ACM (2014)

9. Kleinberg, J., Sigal, O., Raghavan, M.: Planning problems for sophisticated agents
with present bias. In: 17th ACM Conference on Economics and Computation, pp.
343–360. ACM (2016)

10. Kleinberg, J., Sigal, O., Raghavan, M.: Planning with multiple biases. In: 18th
ACM Conference on Economics and Computation, pp. 567–584. ACM (2017)

11. Laibson, D.: Golden eggs and hyperbolic discounting. Q. J. Econ. 112, 443–477
(1997)

12. O’Donoghue, T., Rabin, M.: Incentives and self control. In: Advances in Economics
and Econometrics: Theory and Application 9th World Congress, vol. 2, pp. 215–
245. Cambridge University Press (2006)

13. O’Donoghue, T., Rabin, M.: Procrastination on long-term projects. J. Econ. Behav.
Organ. 66, 161–175 (2008)

https://doi.org/10.1007/978-3-662-54110-4_22


The Price of Uncertainty in Present-Biased Planning 339

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Routing Games in the Wild: Efficiency,
Equilibration and Regret

Large-Scale Field Experiments in Singapore
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Abstract. Routing games are amongst the most well studied domains
of game theory. How relevant are these theoretical models and results
to capturing the reality of everyday traffic? We focus on a semantically
rich dataset that captures detailed information about the daily behavior
of thousands of Singaporean commuters and examine the following basic
questions:

– Does the traffic equilibrate?
– Is the system behavior consistent with latency minimizing agents?
– Is the resulting system efficient?

The answers to all three questions are shown to be largely positive.
Finally, in order to capture the efficiency of the traffic network in a way
that agrees with our everyday intuition we introduce a new metric, the
stress of catastrophe, which reflects the combined inefficiencies of both
tragedy of the commons as well as price of anarchy effects.

1 Introduction

Congestion games are amongst the most historic, influential and well-studied
classes of games. Proposed in [27] and isomorphic to potential games [19] (in
which learning dynamics equilibrate), they have been successfully employed in a
myriad of modeling problems. Naturally, one application stands above the rest:
modeling traffic. Having strategy sets correspond to the possible paths between
source and sink nodes in a network is such a mild and intuitive restriction that
routing/congestion games are effectively synonymous to each other and jointly
mark a key contribution of the field of game theory.

Routing games have also played a seminal role in the emergence of algorith-
mic game theory. The central notion of Price of Anarchy (PoA), capturing the
inefficiency of worst case equilibria, was famously first introduced and analyzed
in routing games [15,30]. Routing games have set the stage for major devel-
opments in the area such as the introduction of regret-minimizing agents [5]
that eventually led to the consolidation of most known PoA results under the
umbrella of (λ, μ)-smoothness arguments [28]. Impressively, this work established
c© Springer International Publishing AG 2017
N. R. Devanur and P. Lu (Eds.): WINE 2017, LNCS 10674, pp. 340–353, 2017.
https://doi.org/10.1007/978-3-319-71924-5_24
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that PoA guarantees are robust for a wide variety of solution concepts such as
regret-minimizing agents. Finally, congestion games still drive innovation in the
area with results that extend the strength and applicability of PoA bounds for
large routing games [9], as well as dynamic populations [17].

With every successive analytical achievement seemingly chipping slowly away
at the distance between theoretical models and everyday reality, the PoA con-
stants for routing games, e.g. the 4/3 for the nonatomic linear case [30] have
become something akin to the universal constants of the field. Small, concise,
dimensionless, they seem almost by their very nature to project purity and truth.
But do they? After all, there are many of them. In the case of quadratic cost
functions PoA ≈ 1.626, whereas for quartic functions, which have been pro-
posed as a reasonable model of road traffic, PoA ≈ 2.151 [29,32]. What do these
“small constants” mean in practice? Quite a lot. An increase of inefficiency from
4/3 to 2.151 in Singapore would translate to the loss of approximately 730,000
work hours every single day. Do any of these “back-of-the-envelope” theoretical
calculations have any predictive power in practice?

At the antipodes of the aforementioned theoretical work, other, similarly
recent theoretical approaches hint that PoA analysis might actually not be
reflective of the realized behavior in real networks. One type of work focuses
on the instability of worst case equilibria, e.g. [14,18]. Specifically, [25] show
that although bad equilibria may exist, an average case analysis which “weighs”
each equilibrium proportionally to its region of attraction typically reveals a pic-
ture that is much closer to optimal than PoA analysis. So, PoA analysis may be
over-pessimistic. Distressingly, [7,8] argue something orthogonal, which at first
glance appears rather counterintuitive. They argue that networks with low PoA,
e.g. PoA = 1, which are typically considered optimal, might actually reflect traf-
fic flows which are deadlocked in severe traffic jams.1 Finally, PoA calculations
can be invalidated if we move into theoretical models that allow for risk averse
agents [2,24,26]. At this point, as theory alone does not suffice to provide a
definitive answer, it makes sense to examine some real world networks at a fine
level of detail.

Our goal is to perform the first-to-our-knowledge game theoretic modeling
and investigation of a real world traffic network (specifically Singapore’s traffic
network) based on repeated large scale field experiments with thousands of par-
ticipants. Our dataset includes granular information that allows us to inspect
minute-by-minute the concurrent decision-making of thousands of commuters,
as they respond and adapt to traffic conditions. We focus on arguably the three
most basic questions: Is the system at equilibrium? Is this equilibrium consis-
tent with the hypothesis of latency-minimizing agents? Is the resulting system
efficient? Before we explore the answers to these questions as provided by the
data, let’s try to disambiguate the questions themselves.

1 Indeed, if we keep increasing the total flow in e.g. Pigou’s example, eventually both
in the optimal and equilibrium flows almost all flow will be routed through the slow
link.
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Is the system at “equilibrium”? Here, we should clearly point out that by
equilibrium we mean the formal mathematical notion of equilibrium, i.e. a sta-
tionary point. At the first level of inspection, we are not concerned with whether
the outcome that the system equilibrates upon is necessarily stable in a game-
theoretic sense. We are merely asking “are the agents continuously adapting
their behavior from day-to-day” (i.e. the paths they choose, the modes of trans-
portation, and so on)? If significant number of agents choose the same actions
from day-to-day this would indicate that the system has indeed reached a fixed
point (stasis) and furthermore that at this stable system state there is little
entropy/randomness. Such a result is consistent with best response and best
response dynamics, with the instability results of mixed Nash equilibria for mul-
tiplicative weight update algorithms [14,18,25] as well as with some other con-
current dynamics (e.g. imitation dynamics) [1,10]. On the other hand, it is not
a universal consequence of no-regret learning in congestion games [5,21].

Is the equilibrium “economically stable”? Naturally, from a game theoretic
perspective, we wish to understand whether the resulting equilibrium is a Nash
equilibrium (or at least if in the case of adapting agents most have low regret
when comparing their performance with the best path in hindsight). For a real
traffic network, however, it is not practically feasible to compute true “best
responses”, since there is an astronomically large number of paths to consider
and we do not have data on all paths. We instead estimate inefficiencies at the
individual level by quantifying the empirical “imitation” regret for each agent,
i.e. how much faster could each agent have reached their destination if they had
clairvoyant access to all the routing choices/information from our dataset and
chose the best such route with hindsight.

Is the system “efficient”? Traditionally, ever since its inception, the notion
of Price of Anarchy has been considered the gold standard for system efficiency
with a low PoA considered equivalent to system optimality. The results in [7,8]
in which hopelessly deadlocked traffic jams score perfect PoA scores point out
a clear dichotomy between what PoA analysis identifies as an efficient traffic
network and what we in our everyday experience identify as a well-functioning
network. The reason for this divide lies on the fact that PoA analysis completely
disregards any inefficiency that is connected to tragedy of the commons effects.

In order to shed some light on these effects, we define a new inefficiency
metric that is defined as the ratio of the social welfare at equilibrium divided
by the optimal social welfare when we discount for congestion effects. Namely,
although the numerator is as in the PoA, the denominator is computing the aver-
age social “blue-sky” optimal welfare as follows: Each agent imagines the sce-
nario where she alone was in the network and computes the best path (minimum
length/latency) for herself. This makes sense from an everyday experience per-
spective, as the typical commuter has an intuitive grasp of how long it would take
to cover this distance if the externality costs imposed by the other drivers where
removed. We call this ratio, the Stress of Catastrophe (SoC). As this ratio grows
the system’s long term persistence is jeopardized. Practically successful networks
should have small SoC, which implies small PoA but not the other way around.
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Result Snippets

– We show that most subjects use the same means of transportation across
trips and that a large number of them consistently selects the same route.
For example, when controlling for those who use consistently the same means
of transportation across different days, the percentage of subjects selecting
the same route is very high, in the order of 94%. (see Sect. 3.1).

– The empirical regret distribution has a median value of 4 min 40 s and mean
approaching 6 min for an average travel time of around 29 min (see Sect. 3.2).

– Finally, we define and estimate the Stress of Catastrophe at 1.34, with marked
contrast when discriminating by mode of transportation (see Sect. 3.3). These
findings are shown to be consistent across different days.

2 Description of the Data

We focus on a semantically rich dataset from Singapore’s National Sci-
ence Experiment (NSE), a nationwide ongoing educational initiative led by
researchers from the Singapore University of Technology and Design (SUTD).
This dataset includes precise information about the daily behavior of tens of
thousands of Singapore students that carry custom-made sensors for up to 4
consecutive days, resulting in millions of measurements. Indeed, every 13 s, the
sensor is able to accurately log its geographical location as well as other envi-
ronmental factors such as relative temperature and humidity or noise levels.

The students are dispersed throughout the city-state and their daily com-
mutes to school are reasonably long for them to meaningfully interact and expe-
rience the daily traffic. For this reason, we focus on the morning trip they under-
take to reach their school from their home. The morning trip is also characterized
by a lesser number of stops on the way to school or Pre-university, thus it lends
itself better to an analysis based solely on travel times. Other types of costs may
be included to complement travel time, such as price of the route (based on tolls
or public transport fees) or environmental factors. In this study however, our
scope is limited to the trip duration, to be extended in future work.

The mode of transportation chosen by the students can be identified using
accurate algorithms, e.g. car (driving or being driven to school) versus bus or
metro, estimate source and sink destinations (focusing on home-school pairs) as
well as their mode-dependent available routes. Some descriptive charts are given
in Fig. 1 relating the durations and distances traveled for private and public
transportation trips. To guide the reader unfamiliar with Singapore’s road and
public transport network, we give a brief optional introduction in our online full
version of the paper [20].

Representativeness of the Sample. Students are a restricted class of residents,
but we argue that they however provide a tangible idea of Singapore’s mobility.
First, as of 2015, the size of the student population up to Pre-University level
totals about 460,000 residents. In contrast, the active population’s size, as of
2015, is about 2.2 million.2 Our clean dataset includes 32,588 trips taken by
2 Statistics were compiled from data.gov.sg.

https://data.gov.sg/
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Fig. 1. Left: Density plots of trip durations per mode. We note that car trip durations
are typically short and more concentrated around a peak value of 15 to 20min, while
public transportation trip durations are scattered between 20 to 50 min. Right: Density
plots of trip distances per mode. The two densities are close, indicating that distance
may not factor in the choice of transportation mode. Median is represented by a dashed
line, mean by a solid line.

15,875 unique students, distributed between the three main type of institutions
in Singapore (Primary, Secondary and Pre-University).

For the purpose of our study, most of the analysis does not require a complete
sample of the population. Students in private transportation experience the same
level of congestion as their peers and active individuals, hence estimates over
their population translate to estimates over the whole of Singapore’s mobility
users. It is even more true for students in public transportation: their trips are
possibly the same as those of the active population. Indeed, we find that the
ratio of public to private transportation users in our sample closely mirrors that
of the population as a whole3, as 57% of students in our dataset use public
transportation.

As shown in Fig. 2, the sample of home locations is geographically distrib-
uted, so is not focused on a particular area of the city. However, the distribution
of schools may not reflect endpoints of trips made by the active population. As
an example, it can be observed that few schools are located in the city center,
which houses a large number of office buildings. This constitutes one limitation
of our dataset, perhaps softened by the fact that active population and stu-
dents may still share a sizeable part of their route and thus experience the same
congestion.

3 Household Interview Travel Survey 2012: Public Transport Mode Share Rises To
63%, LTA News Release.
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Fig. 2. Right: Home locations (red dots), school locations (blue triangles) and spatial
clustering methods, discussed in Sect. 3.2 and the full version online [20]. Left: Density
map of Singapore. Blue areas are less populated while red areas are denser. (Color
figure online)

3 Findings

3.1 Equilibration and Empirical Consistency

If the traffic system is at equilibrium, then we should expect that the subjects’
route decisions do not vary substantially between successive days of study. We
investigate the issue from three different angles. First, we compare the modes of
transportation selected by each individual student over the days of the experi-
ment. Second, we improve the previous result by considering whether the selected
routes are identical (e.g. always use the same combination of bus and train, or
always use the same road on car). Third, building on our geographical cluster-
ing method described in the following Section, we investigate the question of
whether the fastest student in the cluster on one day remains the fastest over
all days of experiment.

The first analysis shows that more than 60% of subjects have used the same
principal mode of transportation in all morning trips available in our dataset. We
are here discriminating between trips where the principal mode of transportation
is either the train, the bus or the car. We define as principal the mode with which
the student has traveled the longest distance. The fraction increases to close to
two thirds (65%) of the samples if we simply discriminate between the subjects
using public transit from those who use private transportation.

For the second analysis, we have implemented a novel algorithm to determine
whether two route choices are identical. We find that for subjects using the same
mode of transportation across all days, the percentage of subjects selecting the
same route is very high, in the order of 94%. We detail the algorithm used to
obtain this result in our Methodology section of full paper available online [20].

Finally, we identify a restricted set of clusters that have the property of
being consistent throughout at least two days of experiment, i.e. the members of
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the cluster are the same in distinct days of the same week. Members may drop
out of their cluster if their starting time or starting point are different from one
morning to the next, or if they use another mode of transportation. We find that
for these consistent clusters, close to 50% of them have the property that the
fastest individual on one day remains the fastest for all days where this cluster
appears, showing again a certain degree of consistency in the population.

3.2 Individual Optimality and Empirical Imitation-Regret

To answer the question of individual optimality, we compare the durations of
the morning trip for the subjects. A fair comparison is only achieved when look-
ing at students leaving from the same neighborhood on the same day and at
roughly the same time, going to the same school and using the same mode of
transportation. The notion of neighborhood is expanded upon in our Method-
ology section, available in the full version of our paper [20], where we describe
how the clustering of the data was achieved.

In the cases where the class of comparable subjects has more than two indi-
viduals, we collect the empirical imitation-regret encountered by every stu-
dent in the class. To do so, we find the student in the class with minimal trip
duration and set her imitation-regret to zero. For other members of the class,
the empirical imitation-regret is equal to the (non-negative) difference between
their trip duration and the minimal trip duration.

Our notion of empirical imitation-regret shares its name with the traditional
regret measure, commonly found in the learning and multi-agent systems litera-
ture, for the following reason. The players here are faced with multiple strategies
that they can choose from: the routes that go from their neighborhood to the
destination. They may not know about current traffic conditions or which route
will take the least amount of time but nevertheless have to make a decision.
A posteriori, this decision can be measured against the best action implemented
by a comparable subject on that day, and the difference is the imitation-regret.
The introduction of the word “imitation” is due to the fact that we compare the
decision solely with other players’ choices of routes: a better route that is not
used by any of the subjects in the cluster will therefore not be considered here.
This drawback is shared with many natural learning dynamics and thus can be
interpreted as a reasonable assumption on subjects’ decisions.

The measure of empirical imitation-regret depends naturally on the geo-
graphical area covered by the neighborhood. As the area increases, so does the
accumulated imitation-regret, since the minimum is taken over a larger set of
subjects. However, neighborhoods that are too large lose in precision, as two
different subjects in the same cluster may have very different trip lengths. The
results in this section use a geographical cluster size of about 400 m, while sen-
sitivity analysis is performed in the Methodology section of our full paper [20]
to show the robustness of our findings.

Low empirical imitation-regret is a necessary condition for equilibrium.
Indeed, at equilibrium, all comparable subjects should perform their trip in
roughly the same amount of time. If one individual encounters a imitation-regret
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Fig. 3. Left: Complementary cumulative distribution function of the imitation-regret
(decreasing curve). We aggregate all days of the experiment in a single figure and
remove subjects with zero imitation-regret – i.e. the baseline subjects. The mean
imitation-regret signalled by the solid vertical line is equal to 6min (around 27% of
the mean travel time), while the median imitation-regret – dashed line – is equal to
4min and 40 s (around 21% of the median travel time). Sensitivity analysis results are
presented in the full paper online [20]. Right: Comparison of complementary CDF of
imitation-regret per mode of transportation. (Color figure online)

of say, 10 min, she may be better off by switching to a different route, e.g. the
one used by the fastest individual in the cluster.

On the other hand, a high empirical imitation-regret warns us that some users
are unable to find the fastest route to reach their destination. We see two possible
directions to explore after such a conclusion. If we assume that individuals are
solely interested in minimizing their trip duration—perhaps a fair assumption
for the morning trip, constrained by the hard deadline of the class start—, then
the network may benefit from the injection of information on how to traverse
it. Otherwise, a high empirical imitation-regret reveals that other factors enter
into consideration when the student is selecting the route, such as finding the
least expensive one, the more climatised one or one that is shared with other
students.

In Fig. 3, we plot the complementary cumulative distribution of the empriri-
cal imitation-regret. A point on the curve indicates which fraction of individuals
(read on the y-axis) have empirical imitation-regret greater or equal than x (read
on the x-axis). We also give the mean (solid red line) and median (dashed blue
line) experienced empirical imitation-regret. It should be noted that the empir-
ical imitation-regret distribution and its moments do not include the subjects
for which the imitation-regret is zero, i.e. the best in the cluster.

Larger geographical cluster sizes give rise to larger average empirical
imitation-regrets, but the results are relatively robust. The mean empirical
imitation-regret oscillates around 27% of the mean travel time in the dataset
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(around 6 min), while the median empirical imitation-regret is at 21% of the
median travel time (around 4 min and 40 s). This result motivates the introduc-
tion of a solution parametrised by two values, ε and δ. The reported measure-
ments constitute an (ε, δ)-equilibrium if we find that a fraction 1 − δ of users
experience at most a quantity ε of imitation-regret. The experiment yields values
ε = 22 min and δ = 0.05.

Finally, we study the imitation-regret between modes, i.e. taking the regret
with respect to the fastest individual in the cluster, irrelevant of transporta-
tion mode. We focus our analysis on mixed clusters, where at least one individ-
ual using public transportation and one individual using private transportation
appear. We have over 1,400 such clusters, and in close to 80% of them, the
fastest individual is a private transportation user. Over these 1,400 clusters,
the average imitation-regret incurred by public transport users compared with
the fastest private transportation user in their cluster is close to 8 min. For the
same population of bus and train users, the average duration of a trip is close
to 25 min, indicating that the fastest car user spends roughly two thirds of this
time to reach destination. Figure 3 plots the distributions of imitation-regret for
the two classes of users.

3.3 Societal Optimality and the Stress of Catastrophe

The Stress of Catastrophe is introduced to give a measure of the weight of exter-
nalities in the system. As more agents join the road network, congestion increases
on the links. Classically, the Price of Anarchy has been employed to quantify how
bad the selfish decision-making of these agents affects the efficiency of the sys-
tem, compared to the social optimum that a central planner implements.

But estimating the social optimum of a system from the data is a perilous
task. First, exact demands need to be known for every origin-destination pair
of the agents. Second, latency functions for every edge of the network need to
be estimated. Third, the global optimum flow maximizing the social optimum
function needs to be computed.

On the other hand, the PoA does not fully capture the effects of a tragedy of
the commons that congestion presents. In such a scenario, it is not costly for one
additional individual to enter the system, but since all agents enter, the global
welfare diminishes. Similarly, congestion can reach levels after which the action
of a central planner has little effect, yielding a low PoA that does not reflect just
how congested the system is.

The Stress of Catastrophe eschews these pitfalls by providing an optimistic
lower bound to the socially optimal trip durations. It stems from the simple fact
that a crude lower bound to the optimal trip duration is one in which no one else
is present on the road. Using Google Directions API, free-flow trip durations are
obtained and give us a “blue sky” – i.e. ideal scenario – lower bound. Comparing
the actual recorded trip duration length to this lower bound in turn yields a ratio
of how much faster the trip could have been in a no-externality scenario.
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Formally, we define the Stress of Catastrophe (SoC) from our data as such:

SoC =
Cost(Recorded trip duration)

Cost(Trip durations (free-flow / light traffic))

To give an idea of the measure in our dataset, we plot in Fig. 4 the histogram of
percentages of deviations from the free-flow optimal trip duration. We see that
most subjects are relatively close to this minimum bound while as the gap grows,
fewer subjects are found.

Fig. 4. Left: Histogram of deviations from the free-flow optimal trip durations. Right:
Stress of Catastrophe computed across the five days with the highest record of unique
subjects (sample size > 1,500). The values are between 1.23 and 1.37.

Since the denominator is a lower bound to the socially optimal cost, we also
have the following corollary:

PoA =
Cost(Recorded trip durations)

Cost(Optimal trip durations)
≤ SoC

The question is now how pessimistic is this upper bound? Our results show
that SoC = 1.34, when the SoC is computed with both car and transit users.
But discriminating between the two yields a much more contrasted picture: the
SoC for transit users is found to be 1.18, indicating that students using public
transportation have little room to improve their trip duration. Conversely, the
SoC varies significantly depending on the traffic conditions for subjects taking
private transportation to school. In free-flow conditions, we find the SoC to be
equal to 1.86. Details of the SoC for individual days of the experiment can be
found in Fig. 4.

It is remarkable that such an pessimistic upper bound is however so close to
1. How does the PoA overestimate the inefficiency of the network then? Consider
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PoA results found in the literature, such as the 2.151 ratio of derived in [31] in
the case of degree 4 polynomial cost functions. The latest class is often used by
network engineers to model the congestion on real roads, following the Bureau
of Public Roads standard.

But the average estimated free flow time travel of the sample is 21 min.
Assuming the SoC to be as large as the 2.151 bound, on average a commuter
would spend 2.151 − 1.34 = 0.811 times more in transit, i.e. 17 min more per
commuter. In other words, pessimistic predictions of the PoA would entail a loss
of over 730,000 h per day, if we assume all of the 2,200,000 active individuals
and 400,000 students were commuting on that day, a large mismatch with the
actual system performance.

4 Connections to Other Work

Algorithmic Game Theory and Econometrics. Recently there has been a surge
of interest in combining techniques from algorithmic game theory with the tradi-
tional goals of econometrics [3,33]. These works employ a data-driven approach
to analyzing the economic behavior of real world systems and agent interactions.
In [22] the authors developed theoretical tools for inferring agent valuations from
observed data in the generalized second price auction without relying on the
Nash equilibrium assumption, using behavioral models from online learning the-
ory such as regret-minimization. They apply their techniques on auction data to
test their effectiveness.

Following this work, [13] studies the behavior of real housing market agents
based on data from an online bidding platform. The results inform the design of
the auction platform and point towards data-driven policies helping the agents
make decisions. The latter idea is made more explicit in a recent article by some
of the authors [23]. In a sense, our present work also advocates using data to
gauge users interactions but our focus is on routing games, for which it is harder
to gather sanitized data. Furthermore, we develop new metrics that are more
informative about the state of the system than the price of anarchy.

In [12] the authors provided tools for estimating an empirical PoA of auctions.
The PoA is defined as the worst case efficiency loss of any auction that could
have produced the data, relative to the optimal. However, auctions and routing
games each pose a totally distinct set of challenges. In our setting, the problem
of translating data streams to game theoretic concepts adds a rather nontrivial
layer of complexity. For example, even identifying the action chosen by each
agent, i.e. their routes, is tricky as it requires to robustly map a noisy stream of
transportation data into a discrete object, a path in a graph. It should be noted
however that our notion of Stress of Catastrophe provides an upper bound on
the empirical PoA, as detailed in Sect. 3.3.

Another active strand of research is concerned with fair division of resources.
Here too, experimental studies are conducted to determine whether agents
exhibit a behaviour close to predictions from the theory and in fact, their behav-
iour and feedback from using fair division systems pose new theoretical questions
[11,16]. This fruitful cycle can hopefully be replicated in congestion games.
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Price of Anarchy for Real World Networks. One earlier paper tangentially con-
nected to estimating the PoA of congestion games is [6]. This is a theoretical
paper that provides PoA bounds for perturbed versions of congestion games.
As a test of their techniques, they heuristically approximate the PoA on a few
benchmark instances of traffic networks available for academic research from the
Transportation Network Test Problems [4] by running the Frank-Wolfe algorithm
on them. No experiments were performed and no measurements were made. Nat-
urally, this approach cannot be used to test PoA predictions, since it presumes
that PoA reflects the worst case possible performance and then merely tests
where do these constants lie for non-worst case routing networks.

In effectively parallel independent work [34] focused on quantifying the inef-
ficiencies incurred due to selfish behavior for a sub-transportation network in
Eastern Massachusetts, US. They use a dataset containing time average speed
on road segments and link capacity in their transportation sub-network. The
authors estimate daily user cost functions as well as origin-destination demand
by means of inverse optimization techniques using this dataset. From this formu-
lation they compute estimates of the PoA, whose average value is shown to be
around 1.5. In contrast to their approach our dataset contains detailed individual
user information, which allows for estimates not only of systemic performance
but also of individual optimality (e.g. imitative-regret) as well as test to what
extent is the system indeed near stasis (i.e. in equilibrium). Also, their app-
roach does not capture how bad the resulting traffic is, i.e. the tension between
Price of Anarchy and Tragedy of the Commons, whereas our approach addresses
both. Finally, our estimations are derived from explicit online measurements of
the system performance and are not reverse engineered by estimating user cost
functions which inevitably introduce new errors that cascade through all the
calculations.

5 Conclusion

This is hopefully not the end but the beginning of a thorough experimental
investigation into the rich game theoretic literature of routing games. Clearly,
there are many open questions and challenges to be addressed. Due to space
limitations we refer the reader to the online version of our paper for the full
discussion of these directions [20].
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Abstract. Dynamic pricing of goods in a competitive environment to
maximize revenue is a natural objective and has been a subject of
research over the years. In this paper, we focus on a class of mar-
kets exhibiting the substitutes property with sellers having divisible and
replenishable goods. Depending on the prices chosen, each seller observes
a certain demand which is satisfied subject to the supply constraint. The
goal of the seller is to price her good dynamically so as to maximize her
revenue. For the static market case, when the consumer utility satisfies
the gross substitutes CES property, we give a O(

√
T ) regret bound on

the maximum loss in revenue of a seller using a modified version of the
celebrated Online Gradient Descent algorithm by Zinkevich [17]. For a
more specialized set of consumer utilities satisfying the iso-elasticity con-
dition, we show that when each seller uses a regret-minimizing algorithm
satisfying a certain technical property, the regret with respect to (1 − α)
times optimal revenue is bounded as O(T 1/4/

√
α). We extend this result

to markets with dynamic supplies and prove a corresponding dynamic
regret bound, whose guarantee deteriorates smoothly with the inherent
instability of the market. As a side-result, we also extend the previously
known convergence results of these algorithms in a general game to the
dynamic setting.

Keywords: Dynamic pricing · Online convex optimization

1 Introduction

The Internet has revolutionized the way goods are bought and sold and has
in the process created a range of new possibilities to price the goods strategi-
cally and dynamically. This is especially true for online retail and apparel stores
where the cost and effort to update prices has become negligible. This flexibility
in pricing has propelled the research in dynamic pricing in the last decade or
so, informally defined as the study of determining optimal selling prices in an
unknown environment to optimize an objective, usually revenue. Coupled with
the presence of digitally available and frequently updated sales data one may
also view this as an (online) learning problem.

The inherent hurdles in dynamic pricing arise on account of lack of informa-
tion. In the context of a single good case, this could be the underlying demand
function that maps a given price to the observed demand. Indeed, this problem
c© Springer International Publishing AG 2017
N. R. Devanur and P. Lu (Eds.): WINE 2017, LNCS 10674, pp. 354–367, 2017.
https://doi.org/10.1007/978-3-319-71924-5_25
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has been studied in several models in literature and strong results are now known
for it. However, the problem becomes all the more challenging in a realistic set-
ting where multiple sellers independently choose prices for their goods and the
demand observed by any single seller is a function of all the prices. For example,
some fixed seller might observe completely different demands for the same price
she uses for her items depending on the prices chosen by other sellers. Such a
seller might falsely conclude of being in a dynamic environment even when the
underlying demand function is static.

Several existing approaches for dynamic pricing assume a parametric form
for the underlying demand function and choose a sequence of prices to learn
the individual parameters by statistical estimation. This approach is commonly
referred to as “learn-and-earn” in literature [10]. It would, however, be unreal-
istic in the presence of multiple sellers since that would imply learning highly
nonlinear and possibly unstructured functions in high dimensions. Instead, we
view the market as a set of strategic agents (the sellers) choosing successive
actions (prices) in order to maximize their utility (revenue) and focus on using
the existing rich tool-kit of agnostic learning in game-theoretic models to prove
fast convergence to optimal prices.

The advantages of an agnostic learning approach are multifold: Firstly, it
does not rely on the precise parametric form of the underlying demand function
and secondly can be easily extended to the case when the market parameters
may change across rounds. The downside, however, being that in the best case
of static markets with clean parametric representation, the algorithms might
converge to optimal prices only asymptotically [9,12]. Consequently, to measure
the performance of the actions (prices) chosen by such a learning algorithm we
typically compare it to a certain benchmark sequence of actions and the regret
bound represents the loss incurred by the algorithm for not having chosen the
benchmark sequence instead. In most such algorithms, this benchmark sequence
is usually a single action that maximizes the total reward over all rounds.

We base our dynamic pricing approach on the work by Syrgkanis et al. [16]
where the authors prove that in a game with multiple agents, if each agent uses a
regret-minimizing algorithm with a suitable step-size parameter and satisfying a
certain technical property, then the individual regret of each agent is bounded by
O(T 1/4) where T is the total number of rounds. In a nutshell, these algorithms
guess the utility vector for the forthcoming round and choose an action such
that the cumulative utility over all rounds is maximized. The regret bound thus
obtained holds with respect to the single best action in hindsight and is one of
the benchmarks we use to measure the performance of our approach.

Contribution: Our main contributions in this paper can be broadly divided
into the following 3 parts:

1. For the class of markets with gross substitutes CES utility functions, we show
that a simple modification to the Online Gradient Descent (OGD) algorithm
by Zinkevich [17] can be used to obtain a regret bound on the loss in revenue
with respect to the single best price in hindsight of order O(

√
T ).
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2. For the class of gross substitutes iso-elastic markets, building on the analy-
sis in [16] we obtain a stronger regret bound of order O

(
T 1/4√

α

)
against a

(1 − α) multiplicative approximation of the best price in hindsight by using
specialized learning algorithms.

3. For the same class of markets as above but with dynamic supplies we prove
a corresponding regret bound of order O

(
(1 + WT )

(
T 1/4√

α

))
. Importantly,

this regret bound is with respect to the sequence of equilibrium prices in
hindsight and captures the inherent instability of the market in the form of
the parameter WT .

In the process, we also extend the technical property, namely RVU , introduced
in [16] to the setting of dynamic regret by defining a corresponding DRVU prop-
erty. Any learning algorithm satisfying the RVU property was shown to achieve
a regret bound of O(T 1/4) in [16] for a general class of games. Analogously,
we prove that algorithms satisfying the DRVU property achieve a regret bound
of O

(
(1 + CT )T 1/4

)
where CT is a measure of the hardness of the benchmark

sequence.
A key observation in this work is that if the sellers in a market are ready to

forgo a small fraction of their revenue, then they can converge to their (approx-
imately) optimal prices (in static market setting) much faster (T−3/4 instead
of T−1/2). This faster convergence property is all the more desirable when the
markets drift and convergence to optimal strategy in a small number of rounds
is not possible. One would then like to achieve good performance with respect
to a dynamic benchmark.

Related Work

The problem of learning an optimal pricing policy for various demand models and
inventory constraints has been researched extensively in the last decade. How-
ever, many consider the problem of a single good with no competition effects. For
example, [1,3,4,6,9] study a parametric family of demand functions and design
an optimal pricing policy by estimating the unknown parameters by standard
techniques such as linear regression or maximum likelihood estimation. [2,11]
consider Bayesian and non-parametric approaches.

Closer to the theme of this paper, there has also been a considerable amount
of research about dynamic pricing in models incorporating competition, [7,8]
being some of them. However, most of these consider discrete choice models
of demand, where a single consumer approaches and buys a discrete bundle of
goods. Moreover, they assume that every seller has a fixed inventory level in
the beginning and is not replenished during the course of the algorithm. We, on
the other hand, consider demand originating from a general mass of consumers
where when the volumes are large, the items may be considered divisible. For a
more thorough survey of the existing literature, we refer the reader to [5].

In Sect. 3 we consider Online Gradient Descent (OGD), first introduced by
Zinkevich [17] as the learning algorithm used by a seller. At every time step,
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the learner takes a step in the direction of the gradient observed in that round.
Interestingly, this simple update rule is shown to achieve a regret bound of
O(

√
T ). While this approach is independent of any game-theoretic considerations

Syrgkanis et al. [16] showed that with certain modified versions of this algorithm
the individual regret of each player can be brought down to O(T 1/4). The analysis
is based on the learning algorithm proposed by Rakhlin and Sridharan [14] in
a different context. Informally, the algorithm is based on the idea that if the
gradient observed in the next round is predictable, then it rules out the worst-
case scenario and allows one to achieve a much better regret guarantee.

2 Static Market Model

We consider a market with n sellers, each selling a single good to a general
population of consumers. We assume that the market operates in a round-based
fashion. In each round t every seller i chooses a price pt

i for her good. The
supply, wi, of seller i, stays the same every round. No left-over supply from
previous rounds is carried over (which is the case for example for perishable
goods). Depending on the resulting price vector pt = (pt

i)i, each seller observes
a certain demand for her item given by xi(pt). These observed demands are
governed by an underlying utility function of the consumers. For the purposes of
this paper (except Sect. 3), we assume that these utilities are “IGS” as defined
below:

Definition 1 (Iso-elastic and Gross Substitutes (IGS) utility). We say a
utility function is IGS when it satisfies the following conditions:

(a) The utility function satisfies the gross substitutes property1 and the resulting
demand functions are continuous.

(b) Increasing the price of any good i decreases the total spending on the item
i.e. pixi(p).

(c) The price elasticity of demand of good j2 with respect to the price of any
other good i satisfies:

∣∣∣∣
∂ ln xj(p)

∂ ln pi

∣∣∣∣ = E ∀i, j ∈ [1, n]

where E > 1 is a constant.

Although more restrictive we view this model as an approximation to the
gross substitutes CES utility. This utility function satisfies parts (a) and (b) in
Definition 1 but instead of a fixed constant as price elasticity, this parameter
depends on the prices of all goods i.e.

∣∣∣∂ lnxj(p)
∂ ln pi

∣∣∣ = Ei(p). We use this more

1 Informally, this properties implies that increasing the price of a good i does not
decrease the demand of any other good j.

2 Price elasticity is a measure of the percentage change in the quantity of a good

demanded for a unit percentage change in the price i.e. Ei(p) =
∂xj

xj

/
∂pi
pi

.
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general class of utilities in Sect. 3. Since we do not need the exact parametric
form of this utility class, we do not define it here but forward the interested
reader to [15] for a more precise definition.

To ensure that the problem is well defined we assume that the optimal revenue
of any seller i for any profile p−i of prices chosen by others is bounded in [r,R].
Intuitively, this is equivalent to saying that the set of allowed prices and supplies
are such that revenue of any seller is not arbitrarily small or large.

We measure the performance of the pricing strategy used by the seller in
terms of regret. Formally, the regret of an algorithm after T rounds is defined
as the loss with respect to the single best action (here price) in hindsight. For
example, if {rt

i(pi)}t denotes the sequence of revenue functions faced by the
seller i then the regret with respect to the sequence of prices {pt

i}T
t=1 is defined

as: RT =
∑
t

rt
i(p

∗
i ) − rt

i(p
t
i) where p∗

i = argmax
p

∑
t

rt
i(p). Analogously, one can

also define dynamic regret as the regret incurred with respect to a dynamic
benchmark sequence. For example, if p∗

1, p
∗
2 · · · p∗

T is the sequence of prices against
which we measure the loss of our algorithm, then dynamic regret is defined as:

RT (p∗
1, p

∗
2 · · · p∗

T ) =
∑

t

rt
i(p

∗
t ) − rt

i(p
t
i)

Log-Revenue Objective: In this paper, we take an indirect approach to the
problem of revenue optimization by optimizing the log-revenue objective instead
of the actual revenue. The log-revenue objective is simply the plot of revenue
against the price in the log-scale defined as follows:

ln ri(p) = ln [pi min {xi(p), wi}] .

Using the definition of IGS utility functions we can derive the following straight-
forward fact used directly in the rest of the paper. The proposition follows from
the definition of log-revenue function and price elasticity of demand.

Proposition 1. The gradient of the log-revenue function r̃i(p̃i) satisfies:

∂r̃i

∂p̃i
=

{
1 − E for pi : xi(p) < wi

1 for pi : xi(p) ≥ wi

This proposition essentially determines the shape of the log-revenue function for
seller i, keeping prices of all other items fixed (Fig. 1). It is instructive to keep
this general shape in mind as we introduce learning algorithms to optimize it in
the following sections.

Notation: We denote vectors by bold-face letters and log of an entity by tilde,
for example, ln r = r̃. Often for ease of notation, we shall use xi to denote
demand of good i instead of xi(p) when it is clear from the context. p−i denotes
the vector of prices of all sellers excluding i. The ∇ notation denotes the gradient.
All the missing proofs can be found in the full version of the paper [13].
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3 Modified OGD

Fig. 1. Log-revenue for IGS utilities

In this section, we demonstrate the
kind of regret bounds that can be
achieved for gross substitute CES
utilities. Since CES utilities do not
satisfy the IGS utility model, the
gradient of the log-revenue curve,
1−Ei(p), in the case when xi(p) <
wi is unknown to the seller (see in
contrast Proposition 1). To ensure
that the problem is well-defined we
assume that the price elasticity of
demand for any item i and any

price vector p is bounded in [Emin, Emax]. We work around the problem of
unknown gradients by using a simple modification to the analysis by Zinkevich
(Theorem 1, [17]) and show that if sellers use online gradient descent (with mod-
ified gradient feedback) as their learning algorithm on the log-revenue objective,
then they can achieve a O(

√
T ) regret bound. We start with a claim for general

convex functions with modified feedback.

Claim 1. Consider a sequence of convex functions f1, f2 · · · fT satisfying the
following condition:

g ≤ |∇ft(x)| ≤ G ∀t ∈ [T ], x ∈ X
Suppose for the action xt chosen in round t and for γ = G

g , we receive as

feedback ∇gt(xt) ∈
[

∇ft(xt)
γ , γ∇ft(xt)

]
, then the regret bound of OGD for step-

size ηt = 1/
√

t is given by RT ≤
(
γ
√

T
)
.

This property allows us to use OGD even with imperfect gradient feedback,
upto a multiplicative constant, to obtain regret bounds that are also within this
same factor. Since the exact gradient in the case when xi(p) < wi is not available
to the algorithm we modify the feedback gradient based on the demand observed,

∂r̃i

∂p̃i
=

{
1 − Ei(p) ⇒ − 1, for pi : xi(p) < wi

1 ⇒ 1, for pi : xi(p) ≥ wi

(1)

i.e. we work around this problem by choosing as feedback the gradient −1 when-
ever xi(p) < wi and +1 otherwise.

Theorem 1. If any player i uses OGD on the log revenue curve with ηt =
t−1/2 with the adjusted gradient feedback as in Eq. 1, then the cumulative loss in
revenue of seller i is bounded as:

∑
t

rt
i(p

∗
i ) − rt

i(p
t
i) ≤ O

(
R · max

{
Emax − 1,

1
Emin − 1

}
T 1/2

)
,
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where p∗
i = argmax

pi

∑
t

r̃i(pi, p
t
−i).

This bound serves as a benchmark and improving upon this is the main
focus of our paper. In the next section, we focus on the smaller set of IGS utility
functions and show that with specialized learning algorithms the price dynamics
converge faster to an approximately optimal configuration.

4 Game Theoretic Interpretation

4.1 Preliminaries

We start with the observation that the revenue optimization problem in a market
is equivalent to agents in a game using learning algorithms to optimize their
utility, where this utility is a function of the strategies of all agents in the game.
Problems of this flavour although already studied in different game-theoretic
settings are not applicable in a black-box fashion to our problem on account of
the market specific constraints. Specifically, the log-revenue objective although
concave is not smooth, an assumption used in almost all gradient-based learning
algorithms. This calls for a different approach than the ones taken in the idealized
settings.

With this in mind, we start from the result of [16], where it is proved that
if all players in a game use learning algorithms satisfying a certain technical
property, called the RVU property (See Definition 2), then the regret incurred by
each individual agent is O(T 1/4). A natural question is then: Can we use the
same technique in our revenue optimization problem in markets?

Definition 2 (RVU property, [16]). We say that a vanishing regret algorithm
satisfies the Regret bounded by Variation in Utilities (RVU) property with para-
meters α > 0 and 0 < β ≤ γ and a pair of dual norms (‖·‖ , ‖·‖∗) if its regret on
any sequence of utilities u1,u2, . . .uT is bounded as:

T∑
t=1

〈
p∗ − pt

∣∣ut
〉 ≤ α + β

T∑
t=1

∥∥ut − ut−1
∥∥

∗ − γ
T∑

t=1

∥∥pt − pt−1
∥∥

Although this property is defined for linear utility functions, we can extend
this definition to concave utilities by using the gradient of the utility with respect
to pi as proxy for ut i.e. in the context of our problem

r̃t
i(p

∗
i ) − r̃t

i(p
t
i) ≤

〈
p∗ − pt

∣∣∣∣
∂r̃i

∂p̃i

〉
.

As noted in [16], the standard online learning algorithms such as Online Mir-
ror Descent (generalization of OGD) and Follow-the-Regularized-Leader (FTRL)
do not satisfy the RVU property. However, Rakhlin and Sridharan [14] and Syrgka-
nis et al. [16] have developed modified versions of these algorithms, namely Opti-
mistic Mirror Descent (OMD) and Optimistic FTRL (OFTRL) respectively, that
do satisfy this property,
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Proposition 2 (Informal, [16]). Let D denote a measure of the diameter of
the decision space. Then:

1. The OMD algorithm using step size η satisfies the RVU property with constants
α = D/η, β = η and γ = 1/(8η)

2. The OFTRL algorithm using step size η satisfies the RVU property with con-
stants α = D/η, β = η and γ = 1/(4η).

For the analysis based on the RVU property to be applicable, the utility func-
tion (alternatively, the objective) of each player should additionally satisfy some
regularity conditions. For ease of presentation, we shall refer to the player objec-
tives satisfying these conditions as regular objectives and are defined, in a general
sense, as follows:

Definition 3 (Regular Objective). Let the strategy space of each player i
be denoted by Si ∈ R

d and the combined strategy space by S = S1 × S2 × · · · Sn.
Let w = (wi)n

i=1 denote the combined strategy profile where the strategy of each
player wi ∈ Si. An objective function fi : S → R of a player i is said to be
regular if it satisfies the following conditions:

1. (Concave in player strategy) For each player i and for each profile of opponent
strategies w−i, the function fi(·,w−i) is concave in wi.

2. (Lipschitz Gradient) For each player i, the gradient of the objective with
respect to i, δi(w) = ∇ifi(w) is L-Lipschitz continuous with respect to the
L1-norm. i.e.

‖δi(w) − δi(y)‖∗ ≤ L · ‖w − y‖ .

4.2 Smoothed Log-Revenue Curve

By definition 3, to be able to apply the analysis based on the RVU property it
is necessary that the utility function be smooth, specifically, the gradient of the
objective should be L-Lipschitz continuous.3 Clearly, as seen in Fig. 1, this is not
the case with our log-revenue objective. We work around this problem by using
a smoothed gradient feedback.

Definition 4 (Smoothed Gradient Feedback). For a fixed seller i and price
vector p−i, we define the smoothed gradient for player i, δi,Xi

(·), as follows:

δi,Xi
(pi) =

⎧
⎪⎨
⎪⎩

1, for pi : xi(p) > wi

1 − E, for pi : xi(p) < Xi

1 + E(x̃i(p)−w̃i)

w̃i−X̃i
, otherwise

where Xi is a threshold parameter for seller i.

3 Informally, this is required to ensure that small changes in prices do not lead to large
changes in utility gradient.
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For ease of notation, we shall denote δi,Xi
(pi) by simply δi when clear from

context. For purposes of analysis, we parametrize the threshold parameter of
seller i as Xi = wi

exp(εr) where ε < 1/R is a small constant and r is a lower bound
on optimal revenue of seller i. Also, henceforth we shall refer to the actual revenue
curve by r̃(·) and the algorithm’s view of smoothed revenue curve by r̃sm(·) .

Lemma 1. The smoothed revenue objective, r̃sm
i (p), for any seller i is regular.

4.3 Cost of Smoothness

Fig. 2. Smoothed vs actual log-revenue curve

Since our learning algorithm only
uses the smoothed gradient feed-
back the resulting regret bound
also holds only for the smoothed
view of the log-revenue curve,
i.e. the optimal price in this
smoothed view would be the price
for which the smoothed gradient is
zero although this price is clearly
sub-optimal for the actual rev-
enue curve. (See Fig. 2). To prove
bounds with respect to the actual
revenue curve we need to draw

connections between the smoothed and actual revenue for any fixed price.

Lemma 2. For any seller i and fixed p−i and for any fixed price p chosen by
seller i:

0 ≤ r̃i(p,p−i) − r̃sm
i (p,p−i) ≤ εr

We are now ready to state and prove our first main result.

Theorem 2. Suppose that each seller i uses the OFTRL algorithm on the log-
revenue objective using the smoothed gradient feedback and threshold demand
Xi = wi

exp(εr) . Let p∗∗
i = argmaxp

∑
t r̃t

i(p) denote the optimal price in hind-
sight with respect to the log-revenue objective. Then the actual loss in revenue is
bounded as:

T∑
t=1

(1 − εR) rt
i(p

∗∗
i ) − rt

i(p
t
i) ≤ O

((
R2E2

εr

)1/2

T 1/4

)
− εRT.

Proof. Since r̃sm
i (pi,p−i) satisfies the regularity condition (Definition 3), if each

seller uses a learning algorithm satisfying the RVU property, then the individual
regret satisfies:

∑
t

r̃sm
i (p∗∗

i ,pt
−i) − r̃sm

i (pt
i,p

t
−i) ≤

∑
t

r̃sm
i (p̄∗

i ,p
t
−i) − r̃sm

i (pt
i,p

t
−i)

≤
∑

t

〈
δi,Xi

(pt)
∣∣ p̄∗

i − p̃t
i

〉
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where p̄∗
i = argmax

p

∑
t

r̃sm
i (p,pt

−i). For ease of notation, we denote δi,Xi
(pt) by

δt
i . Using Lemma 2 to lower bound the left-hand-side above:

∑
t

r̃sm
i (p∗∗,pt

−i) − r̃sm
i (pt

i,p
t
−i) ≥

∑
t

(
r̃t
i(p

∗∗
i ) − εr

) − r̃i(pt
i)

≥
∑

t

(1 − ε) r̃i(p∗∗
i ) − r̃i(pt

i)
(2)

The last inequality holds since r is the lower bound on revenue. We still have
to prove an upper bound on the expression:

∑
t

〈δt
i | p̄∗

i − p̃t
i〉. Since our learning

algorithm satisfies the RVU property, by Definition 2 it follows that:

RT ≤ α + β
T∑

t=1

∣∣δt
i − δt−1

i

∣∣2 .

Since the smoothed gradient δi(p) for any seller is L-Lipschitz continuous (proved
in full version), for L = E2

εr we can bound
∣∣δt

i − δt−1
i

∣∣2 as:

∣∣δt
i − δt−1

i

∣∣2 ≤ L2

⎛
⎝∑

j

∣∣pt
j − pt−1

j

∣∣
⎞
⎠

2

≤ L2n
∑

j

∣∣pt
j − pt−1

j

∣∣2 .

In addition to the fact that OFTRL satisfies the RVU property, it is also
known that the algorithm satisfies a stability property (Lemma 20, [16]) i.e.∣∣pt

j − pt−1
j

∣∣ ≤ 2η where η is the step-size parameter of the algorithm. Using this
we can bound the regret as: RT ≤ α + 4n2βL2η2T . Finally substituting the
RVU parameters of the algorithm (Proposition 2) α = D/η, β = η and γ = 1/4η
with η = (Ln)−1/2T−1/4 we get:

RT ≤ D/η + 4η3L2n2T = O(
√

Ln(D + 4)T 1/4).

Combining this with Eq. 2 and substituting the value of L we get:
T∑

t=1

(1 − ε) r̃t
i(p

∗∗
i ) − r̃t

i(p
t
i) ≤ O

((
E2

εr

)1/2

· T 1/4

)

Rearranging the inequality and using same steps as in the proof of Lemma 1:

∑
t

rt
i(p

∗∗
i ) − rt

i(p
t)

rt
i(p∗∗)

≤ O

((
E2

εr

)1/2

· T 1/4

)
+ ε

T∑
t=1

r̃t
i(p

∗∗
i )

∑
t

rt
i(p

∗∗
i ) − rt

i(p
t) ≤ O

((
E2R2

εr

)1/2

· T 1/4

)
+ εR

T∑
t=1

r̃t
i(p

∗∗
i )

≤ O

((
R2E2

εr

)1/2

T 1/4

)
+ Rε

T∑
t=1

(rt
i(p

∗∗
i ) − 1)

The bound follows from this inequality. �
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Similar bounds can be shown in the case when sellers use the Optimistic Mirror
Descent (OMD) algorithm.

Remark 1. Here we compare the revenue obtained with respect to the fixed price
p∗∗ = argmaxp

∑
t r̃t

i(p) i.e. the price that optimizes the cumulative log-revenue
objective and not necessarily the revenue objective itself. Since the revenue func-
tion need not be concave, it is not immediately clear how to characterize the
resulting cumulative revenue function and the price optimizing it. For this rea-
son, we are using the price that optimizes the cumulative log-revenue.

5 Learning with a Dynamic Benchmark

A bound on the loss of revenue of a seller with respect to the single price p∗∗
i

in hindsight is a comparatively weak benchmark. Ideally the sellers would like
to choose as benchmark the revenue-optimizing price in every round, i.e. the
sequence of prices {p∗,t

i }T
t=1. Such a benchmark is however too strict to obtain

meaningful regret bounds. We shall instead focus on a more constrained sequence
of benchmark prices. In what follows, we define a class of learning algorithms
whose guarantees apply to any game setting where strategic players use regret
minimization to maximize their own utility. For generality, we define this class
for any sequence of linear utilities {ut

i(·)}t. In the following section, we shall
specialize this guarantee to the context of revenue optimization in markets.

Definition 5 (DRVU property). We say that a vanishing regret algorithm
satisfies the Dynamic Regret bounded by Variation in Utilities (DRVU) property
with parameters α, ρ > 0 and 0 < β ≤ γ and a pair of dual norms (‖·‖ , ‖·‖∗), if
its regret on any sequence of utilities u1,u2, . . .uT with respect to the benchmark
sequence {p∗,t

i }t is bounded as:

T∑
t=1

〈
p∗,t − pt

∣∣ut
〉 ≤ α + β

T∑
t=1

∥∥ut − ut−1
∥∥2

∗

+ ρ

T∑
t=1

∥∥p∗,t − p∗,t−1
∥∥ − γ

T∑
t=1

∥∥pt − pt−1
∥∥ .

This definition is an extension of the RVU property. The difference is in the term
ρ

∑
t

∥∥p∗,t − p∗,t−1
∥∥ that quantifies the hardness of learning with respect to

a dynamic strategy.

Lemma 3 (Informal). The OMD algorithm, with step size η and suitably cho-
sen parameters, satisfies the DRVU property with constants α = D1/η, ρ = D2/η
β = η and γ = 1/(8η) for constants D1 and D2.

Using this definition we can now extend almost all of the results in [16] to
corresponding results for dynamic regret. We state the following for concreteness.
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Corollary 1. Let CT =
∑

t ‖ p∗,t
i − p∗,t−1

i ‖ denote the cumulative change in
benchmark strategies of player i. If all players use algorithms satisfying the
DRVU property, then the regret incurred by any player i satisfies:

∑
t

ut
i

(
pt

i, p
t
−i

) − ut
i

(
p∗,t

i , pt
−i

) ≤ O
(
(1 + CT )T 1/4

)

5.1 Revenue Optimization in Dynamic Markets

DynamicMarketModel: We define a dynamic market M = (M1,M2 · · · MT ),
as a sequence of markets with the same set of sellers and buyers with the same
IGS utility functions as in Definition 1 but with a dynamic supply vector i.e.
we characterize the instability of the market by the sequence of supply vectors
w1,w2 · · ·wT . In order to achieve a strong dynamic regret bound, we shall assume
that the income elasticity parameter of the market is equal to one. This is a stan-
dard assumption in many market models and is also satisfied by CES utilities.

In this section, we connect the dynamic regret of any seller i to the inherent
instability of the market by choosing the sequence of equilibrium prices4 for seller
i at each round as the benchmark sequence, i.e. {peq,t

i }T
t=1. Since the supply

vector may change every round, the equilibrium prices may also correspondingly
change. These changes in equilibrium prices completely capture the inherent
instability of the market. For example, if the supply stays the same every round,
then this benchmark is the same as choosing the equilibrium price in each round.
On the other hand, if the supply fluctuates wildly from one round to the next,
then so do the equilibrium prices and there is no hope of achieving a sub-linear
regret bound. That is, the resulting dynamic regret bound captures the inherent
market instability. In the following theorem, we use this connection to prove
a bound on the dynamic regret with respect to the cumulative change in the
supplies.

Theorem 3. Let WT =
∑

t

∥∥w̃t − w̃t−1
∥∥
1

denote the cumulative change in the
market in terms of changes in supplies. Suppose each seller i uses the OMD algo-
rithm on the log-revenue function with smoothed gradient feedback and threshold
demand Xt

i = wt
i

exp(εr) . Let {peq,t
i }t denote the sequence of equilibrium prices for

seller i. Then:
T∑

t=1

(1 − εR) rt
i(p

eq,t
i ) − rt

i(p
t) ≤ O

((
R2E2

εr

)1/2

· (1 + WT )T 1/4

)

6 Experimental Evaluation

We analyze the performance of our modified OGD and OMD algorithms when
the consumer utility functions satisfy the gross substitutes CES property.
4 Informally, a (Walrasian) equilibrium in this market corresponds to the vector of

prices and an allocation of items such that the aggregate demand for each item is
exactly equal to its supply.
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Although from a theoretical standpoint we assumed that the price elasticity
of the market is a constant, empirically we observed that CES functions approx-
imately satisfy this assumption. In our simulations, we show that the OMD
algorithm indeed performs as proved in our analysis, except for slightly worse
convergence time (Fig. 3).

Fig. 3. Modified OGD vs OMD

We consider the scenario with 2
items and the value of E = 2.5. We
assume that the market is static in
that each seller has a supply of one
unit every round and uses the thresh-
old parameter Xi = 0.9. We observe
that the modified OGD algorithm con-
verges quickly to the neighbourhood of
the optimal price but then keeps oscil-
lating around it. This is expected since
in this neighbourhood the observed
gradients might change abruptly. The
OMD algorithm on the other hand

takes a while before it comes close to the neighbourhood but once there con-
verges to optimum quickly. As described in the analysis, this is precisely the
reason for using the smoothed gradient feedback.

7 Conclusion

In this paper, we presented two dynamic pricing strategies based on regret-
minimizing algorithms for static markets. In contrast to a simple approach based
on the modified OGD algorithm we showed that by using specialized learning
algorithms the sellers can converge to (approximate) revenue maximizing prices.
We extended the analysis of these algorithms to dynamic markets and proved
corresponding dynamic regret bounds. In the process, we defined a property
analogous to the RVU property that is satisfied by these learning algorithms
and extended their results to the case of dynamic regret.

Our regret analysis with these specialized learning algorithms depends on the
assumption that the underlying market is iso-elastic. We believe that extending
the analysis to cases where the price elasticity may be dynamic is an important
open question. Also, to obtain a regret bound in dynamic markets we needed the
assumption of gross substitutes utility function. Obtaining revenue guarantees
for more general utility functions would be an interesting future direction.

Acknowledgements. I would like to thank Martin Hoefer and Yun Kuen Cheung
for the helpful discussions that helped shape this paper. I would also like to thank the
anonymous reviewers for their helpful comments.
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Abstract. We consider the problem of maximizing the spread of influ-
ence in a social network by choosing a fixed number of initial seeds,
formally referred to as the influence maximization problem. It admits a
(1−1/e)-factor approximation algorithm if the influence function is sub-
modular. Otherwise, in the worst case, the problem is NP-hard to approx-
imate to within a factor of N1−ε, where N is the number of vertices in
the graph. This paper studies whether this worst-case hardness result
can be circumvented by making assumptions about either the underly-
ing network topology or the cascade model. All of our assumptions are
motivated by many real life social network cascades.

First, we present strong inapproximability results for a very restricted
class of networks called the (stochastic) hierarchical blockmodel, a spe-
cial case of the well-studied (stochastic) blockmodel in which relation-
ships between blocks admit a tree structure. We also provide a dynamic-
program based polynomial time algorithm which optimally computes a
directed variant of the influence maximization problem on hierarchical
blockmodel networks. Our algorithm indicates that the inapproximabil-
ity result is due to the bidirectionality of influence between agent-blocks.

Second, we present strong inapproximability results for a class of influ-
ence functions that are “almost” submodular, called 2-quasi-submodular.
Our inapproximability results hold even for any 2-quasi-submodular f
fixed in advance. This result also indicates that the “threshold” between
submodularity and nonsubmodularity is sharp, regarding the approxima-
bility of influence maximization.

1 Introduction

A cascade is a fundamental social network process in which a number of nodes,
or agents, start with some property that they then may spread to neighbors. The
importance of network structure on cascades has been shown to be relevant in a
wide array of environments, including the adoption of products [5,8,18,30], farm-
ing technology [15], medical practices [14], participation in microfinancing [4],
and the spread of information over social networks [26].
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A natural question, known as the influence maximization problem (InfMax),
is how to place a limited number k of initial seeds, in order to maximize the
spread of the resulting cascade [17,24,25,32,33]. In order to study influence
maximization, we first need to understand how cascades spread. Many cascade
models have been proposed [2,31,37], and two simple examples are the Indepen-
dent Cascade model [24,25,32] and the Threshold model [20]. In the Indepen-
dent Cascade model, each newly infected node infects each currently uninfected
neighbor in the subsequent round with some fixed probability p. In the Threshold
model each node has a threshold (0, 1, 2, etc.) and becomes infected when the
number of infected neighbors meets or surpasses that threshold.

Cascade models can be roughly divided into two categories: submodular and
nonsubmodular. In submodular cascade models, such as the Independent Cascade
model, a node’s marginal probability of becoming infected after a new neighbor
is infected decreases with the number of previously infected neighbors [24]. Sub-
modular cascade models are fairly well understood theoretically, and properties
of these cascades are usually closely related to a network’s degree distribution
and conductance [23].

In nonsubmodular contagion models, like the Threshold model, the marginal
probability of being infected may increase as more neighbors are infected. For
example, if a node has a threshold of 2, then the first infected neighbor has zero
marginal impact, but the second infected neighbor causes this node to become
infected with probability 1. Unlike submodular contagions, nonsubmodular con-
tagions can require well-connected regions to spread [9].

Influence maximization becomes qualitatively different in nonsubmodular
settings. In the submodular case, one should put as much distance between the
k initial adopters as possible, lest they erode each other’s effectiveness. However,
in the nonsubmodular case, it may be advantageous to place the initial adopters
close together to create synergy and yield more adoptions. The intuition that
it is better to saturate one market first, and then expand implicitly assumes
nonsubmodular influence in the cascades.

In general, it is NP-hard even to approximate InfMax to within N1−ε of
the optimal expected number of infections [25]. However, assuming that we are
looking at a submodular contagion, a straightforward greedy algorithm can effi-
ciently find an answer that is at least a (1− 1/e) fraction of the optimal answer.
Unfortunately, empirical research shows that many cascades are not submodu-
lar [3,27,34].

Key Question: Can this worst-case hardness result for nonsubmodu-
lar influence maximization be circumvented by making assumptions
about either the underlying network topology or the cascade model?

We know a lot about what social networks look like, and previous hardness
reductions make no attempt to capture realistic features of networks. It is very
plausible that by restricting the space of networks we might regain tractability.

In this paper, we consider two natural network topologies: the hierarchical
block model and the stochastic hierarchical blockmodel. Each of both is a natural
restriction on the classic (stochastic) blockmodel [16,22,38] network structure.
In (stochastic) blockmodels, agents are partitioned into � blocks. The weight (or
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likelihood in the stochastic setting) of an edge between two vertices is based solely
on blocks to which the vertices belong. The weights (or probabilities) of edges
between two blocks can be represented by an � × � matrix. In the (stochastic)
hierarchical blockmodel, the structure of the � × � matrix is severely restricted
to be “tree-like”.1

Our (stochastic) hierarchical blockmodel describes the hierarchical structure
of the communities, in which a community is divided into many sub-communities,
and each sub-community is further divided, etc. Typical examples include the
structure of a country, which is divided into many provinces, and each province
can be divided into cities. Our model captures the natural observation that
people in the same sub-community in the lower hierarchy tend to have tighter
(or more numerous) bonds among each other [13].

We also consider restrictions on the cascade model. The same research show-
ing that cascades are often not submodular empirically also shows that the local
submodularity often fails in one particular way—the second infected neighbor
of an agent is, on average, more influential than the first. This has already
been observed in community formation [3], viral marketing [27] and Twitter
network [34]. This motivates our study of 2-quasi-submodular cascade model
where the marginal effect of the second infected neighbor is greater than the
first, but after that the marginal effect decreases.

1.1 Our Results

First, we present inapproximability results for InfMax in the hierarchical block-
model. We show that InfMax is NP-hard to approximate within a factor of N1−ε

for arbitrary ε > 0, even if we assume all agents have unit threshold θv = 1. We
also extend this hardness result to the stochastic hierarchical blockmodel in the
full version of our paper.

Moreover, for hierarchical blockmodel, we present a dynamic program based
polynomial time algorithm for the influence maximization problem when we
additionally assume the influence from one block to another is “one-way”. This
provides insights to the above intractability result: the difficulty comes from the
bidirectionality of influence between agent-blocks.

Secondly, we present a family of inapproximability results for the 2-quasi-
submodular cascade model. In particular, for any 2-quasi-submodular influence
function f , we show that it is NP-hard to approximate the influence maximiza-
tion problem within a factor of Nτ when each agent has f as its local influence
function, where τ > 0 is a constant depending on f . This can be seen as a
threshold result for inapproximability of influence maximization, because if f is
submodular, then the problem can be approximated to within a (1−1/e)-factor,
but if f is just barely nonsubmodular the problem can no longer be approximated
to within any constant factor.

1 Previous work on community detection in networks [29] defines a different, but
related stochastic hierarchical blockmodel, where the hierarchy is restricted to two
levels.
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Finally, we pose the open question of whether enforcing the aforementioned
restrictions simultaneously on the network and the cascade renders the problem
tractable.

1.2 Related Works

The influence maximization problem InfMax was first posed by Domingos and
Richardson [17,33]. Kempe, Kleinberg, and Tardos showed that a simple greedy
algorithm obtains a (1 − 1/e) factor approximation to the problem in the inde-
pendent cascade model and linear threshold model [24], and extended this result
to a family of submodular cascades which captures the prior results as a spe-
cial case [25]. Mossel and Roch [32] further extended this result to capture all
submodular cascades.

Perhaps most related to the present work, are several inapproximability
results for InfMax. If no assumption is made for the influence function, InfMax
is NP-hard to approximate to within a factor of N1−ε for any ε > 0 [25].

Chen [10] found inapproximability results on a similar optimization problem:
instead of maximizing the total number of infected vertices given k initial targets,
he considered the problem of finding a minimum-sized set of initial seeds such
that all vertices will eventually be infected. This work studied restrictions of this
problem to various fixed threshold models.

An important difference between our hardness result in Sect. 5 and all the
previous results is that our result holds for any 2-quasi-submodular functions. In
particular, in this work, f is fixed in advance before the NP-hardness reduction,
while in previous work, specific influence functions were constructed within the
reductions.

Several works looked at slightly different aspects of influence maximization.
Borgs et al. [7] provably showed fast running times when the influence function
is the independent cascade model. Lucier et al. [28] showed how to parallelize
(in a model based on Map Reduce) the subproblem of determining the influence
of a particular seed. Seeman and Singer [35] studied the special case where only
a subset of the nodes in the network are available to be infected. They showed
a constant factor approximation to the problem in their setting. He and Kempe
looked at a robust versions of the problem [21] where the exact parameters of
the cascade are unknown. Several works [6,19] studied the problem as a game
between two different infectors.

Following the work of Kempe et al. [24,25], there were extensive works to
solve InfMax based on the heuristic implementations of the greedy algorithm
designed to be efficient and scalable [11,12,28].

Notion of “near submodularity” was also proposed and studied in [36]. Our
definition differs from the one in [36] in that a 2-quasi-submodular function can
be, intuitively, very far from being submodular (for example, the 2-threshold cas-
cade model). However, our reduction in Sect. 5 works for all a 2-quasi-submodular
function, and 2-quasi-submodular functions can be arbitrarily close to a submod-
ular one.
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Our dynamic program for the hierarchical blockmodel with “one-way” influ-
ence (available in the full version) was further studied and generalized by Angell
and Schoenebeck in [1]. They showed that, empirically, this generalized algo-
rithm works very well even for arbitrary graphs. Specifically, they run dynamic
programming on a hierarchical decomposition of general graphs, and, empiri-
cally, the algorithm effectively leverages the resultant hierarchical structures to
return seed sets substantially superior to those of the greedy algorithm.

2 Preliminaries

In general a cascade on a graph is a stochastic mapping from a subset of
vertices—the seed vertices, to another set of vertices that always contain the seed
vertices—the infected vertices. The cascades we study in this paper all belong
to the general threshold model [32], which captures the local decision making of
vertices.

Definition 1. The general threshold model IG
F,D, is defined by a graph G =

(V,E) which may or may not be edge-weighted, and for each vertex v:

i. monotone local influence function fv : {0, 1}|Γ(v)| �→ R≥0 where Γ(v) denotes
the neighbor vertices of v and fv(∅) = 0, and

ii. a threshold distribution Dv whose support is R≥0. Let F and D denote the
collection of fv and Dv respectively.

On input S ⊆ V , IG
F,D(S) outputs a set of vertices as follows:

1. Initially only vertices in S are infected, and for each vertex v the threshold
θv ∼ Dv is sampled from Dv independently.2

2. In each subsequent round, a vertex v becomes infected if the influence of its
infected neighbors exceeds its threshold.

3. The set of infected vertices is the output (after a round where no additional
vertices are infected).

We use k to denote |S|—the number of seeds, and use N to denote |V |—the
total number of vertices in G. Let

σG
F,D(S) = E

[∣∣IG
F,D(S)

∣
∣]

be the expected total number of infected vertices due to the influence of S, where
the expectation is taken over the samplings of the thresholds of all vertices. We
refer to σG

F,D(·) as the global influence function. Sometimes we write σ(·) with
the parameters G,F,D omitted, when there is no confusion. Given that each fv

is monotone, it is straightforward to see that σ is monotone.

2 The rationale of sampling thresholds after the seeds selection is to capture the sce-
nario that the seed-picker does not have the full information on the agents in a social
network, and this setting has been used in many other works [24,32].



Beyond Worst-Case (In)approximability of Nonsubmodular InfMax 373

Definition 2. The InfMax problem is an optimization problem which takes as
inputs G = (V,E), F , D, and an integer k, and outputs maxS⊆V :|S|=k σG

F,D(S),
the maximum global influence of a set of size k.

In this paper, we consider several special cases of the general threshold model
IG
F,D by making assumptions on the network topology G, or the cascade model3

F,D.

2.1 Assumptions on Graph G

We consider the hierarchical blockmodel, which is the special case of the well
studied blockmodel [38].

Definition 3. A hierarchical blockmodel is an undirected edge-weighted
graph G = (V, T ), where V is the set of all vertices of the graph G, and
T = (VT , ET , wT ) is a node-weighted binary tree T called a hierarchy tree.
In addition, wT satisfies wT (t1) ≤ wT (t2) for any t1, t2 ∈ VT such that t1 is
an ancestor of t2.4 Each leaf node t ∈ VT corresponds to a subset of vertices
V (t) ⊆ V , and the V (t) sets partition the vertices of V . In general, if t is not a
leaf, we denote V (t) = ∪t′: a leaf, and an offspring of tV (t′).

For u, v ∈ V , the weight of the edge (u, v) in G is just the weight of the least
common ancestor of u and v in T . That is w(u, v) = maxt:u,v∈V (t) w(t). If this
weight is 0, then we say that the edge does not exist.

Figure 1 provides an example of how a hierarchy tree defines the weights of
edges in the corresponding graph.

Fig. 1. An example of a hierarchy tree with its corresponding graph. The number on
each node of the hierarchy tree on the left hand side indicates the weight of the node,
which reflects the weight of the corresponding edges on the hierarchical block graph
on the right hand side in the above-mentioned way.

3 The phrase “cascade model” here, as well as in the abstract and Sect. 1, refers to
the description how each vertex is influenced by its neighbors, which is completely
characterized by F and D in the general threshold model.

4 Since, as it will be seen later, each node in the hierarchy tree represents a community
and its children represent its sub-communities, naturally, the relation between two
persons is stronger if they are in a same sub-community in a lower level.
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In the full version, we will present an example for hierarchical blockmodel,
and we will generalize Definition 3 to a stochastic version, and define the sto-
chastic hierarchical model.

2.2 Assumptions on Cascade Model F,D
We consider several generalizations of a well-studied cascade model called linear
threshold model [24]. The linear threshold model is a special case of the general
threshold model IG

F,D, with each fv being linear (see Definition 4 later), and each
Dv being the uniform distribution on [0, 1].

The cascade model in Definition 4 generalizes the linear threshold model by
removing the assumption on Dv. The universal local influence model defined in
Definition 5, generalizes the linear threshold model by allowing non-linear fv,
while it restricts our attention to unweighted graphs. We also consider a special
case where fv is 2-quasi-submodular in the last subsection.

Linear Local Influence Functions. A natural selection of local influence function
fv is the linear function, by which the influences from v’s neighbors are additive.

Definition 4. Given a general threshold model IG
F,D, we say that F is linear if

for each v ∈ V we have

– fv(Sv) =
∑

u∈Sv
w(u, v) when G is edge-weighted;

– fv(Sv) = |Sv| when G is unweighted.

For a general threshold model IG
F,D with linear F , if we additionally assume

each Dv is the uniform distribution on [0, 1], then this becomes the linear thresh-
old model.

Universal Local Influence Functions. We say fv is symmetric if fv(Sv) only
depends on the number of v’s infected neighbors |Sv| so that each of v’s infected
neighbors is of equal importance. In this case, fv can be viewed as a function
fv : Z≥0 �→ R≥0 which takes an integer as input, rather than a set of vertices.
Thus fv can be encoded by an increasing sequence of positive real numbers
a0, a1, a2, . . . so that fv(i) = ai. Note that fv(0) = a0 = 0, as we have assumed
fv(∅) = 0.

For instance, consider the linear local influence function defined in
Definition 4. fv is symmetric if G is unweighted, in which case ai = i. fv may
not be symmetric if G is edge-weighted, as the neighbors connected by heavier
edges contribute more to fv(Sv).

Definition 5. Given an increasing function f : Z≥0 �→ [0, 1], the universal
local influence model IG

f is a special case of the general threshold model IG
F,D,

such that for each v ∈ V we have

– fv is symmetric, and fv = f (such that all fv’s are identical).
– Dv is the uniform distribution on [0, 1].
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Notice that we can assume without loss of generality that G is unweighted
in Definition 5, as each fv is fixed to be some increasing function f which does
not depend on the weights of edges.

After assuming G is unweighted, the universal local influence model is a gen-
eralization of linear threshold model: the linear threshold model can be viewed
as the universal local influence model by restricting ai = i.

As a final remark, for any general threshold model IG
F,D with each Dv being

the uniform distribution on [0, 1], we can intuitively view fv(Sv) as the probability
that v will be infected (where we take fv(Sv) > 1 as probability 1). In the
universal local influence model, ai can be viewed as the probability that a vertex
will be infected, given that it has i infected neighbors.

Submodular and 2-Quasi-Submodular Functions. Let g : 2S → R be a function
which takes as input a subset of a set S. Formally, g is submodular if g(A∪{u})−
g(A) ≥ g(B ∪ {u}) − g(B) for any u ∈ S and sets A ⊆ B ⊆ S. Intuitively, this
means that the marginal effect of each element decreases as the set increases.

Given G,F,D we say that IG
F,D(·) is submodular if σG

F,D(·) is. We can similarly
define submodularity for local influence functions fv. In [32], it has been shown
that the local submodularity of all fv’s implies the global submodularity of
IG
F,D(·) for all G when Dv is the uniform distribution on [0, 1].

We are particularly concerned with the universal local influence model in
Definition 5. Here f is submodular if the marginal gain of f by having one more
infected neighbor is non-increasing as the number of infected neighbors increases.
Formally, for i1 < i2, we have

f(i1 + 1) − f(i1) ≥ f(i2 + 1) − f(i2).

Intuitively, f is submodular if its domain can be smoothly extended to R≥0 to
make f concave.

We will consider the 2-quasi-submodular local influence function f , which
is “almost” submodular such that the submodularity is only violated for the
first two inputs of f . In particular, we fail to have the submodular constraint
f(1)− f(0) ≥ f(2)− f(1), and instead we have f(1)− f(0) < f(2)− f(1), which
is just f(2) > 2f(1) as f(0) = 0.

Definition 6. f : Z≥0 �→ [0, 1] is 2-quasi-submodular if f(2) > 2f(1) and
f(i) − f(i + 1) is non-increasing for i ≥ 2.

In general, for any non-zero submodular function f , if we sufficiently decrease
f(1), f becomes 2-quasi-submodular. Thus, from any non-zero submodular func-
tion, we can obtain a 2-quasi-submodular function.

We note that the 2-threshold cascade model, where each vertex will be
infected if it has at least 2 infected neighbors, can be viewed as the universal local
influence function cascade with a 2-quasi-submodular f (with f(0) = f(1) = 0
and f(i) = 1 for i ≥ 2, keeping the assumption θv is drawn uniformly at random
from [0, 1]).
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3 Hierarchical Blockmodel Influence Maximization

In this section, we provide a strong inapproximability result for InfMax problem
for hierarchical blockmodel cascade even when all vertices have a deterministic
threshold 1. Specifically, we will show that it is NP-hard to approximate optimal
σ(S) within a factor of N1−ε for any ε > 0 (recall that N = |V |). The same
inapproximability result holds for the most general case where D is given as
input to the InfMax problem.

Theorem 1. For any constant ε > 0, InfMax (G,F,D, k) is NP-hard to
approximate to a factor of N1−ε, even if G is a hierarchical blockmodel, F is
linear (see Definition 4), and Dv is the degenerate distribution with mass 1 on
θv = 1 for all v ∈ V .

We will prove Theorem 1 by a reduction from the VertexCover problem, a
well-known NP-complete problem.

Definition 7. Given an undirected graph G = (V,E) and a positive integer k,
the VertexCover problem asks if we can choose a subset of vertices S ⊆ V
such that |S| = k and such that each edge is incident to at least one vertex in S.

Proof (Proof of Theorem 1). Given a VertexCover instance with G and k, let
n = |V| and m = |E|. We use A1, . . . , An to denote the n vertices and e1, . . . , em

to denote the m edges.5 We assume n > k and m > n + k.6 Let W = nm,
M = (n(2W + m) − 1)

1
ε , and δ > 0 be a sufficiently small real number.

We will construct the graph G = (V,E,w) by constructing a hierarchy tree T
which uniquely determines G (see Definition 3). The construction of T is shown
in Fig. 2.

Each branch Ai corresponds to each vertex Ai in the VertexCover
instance. For each edge ej in VertexCover, we construct n vertices v1j , . . . , vnj

on the n branches respectively in the way shown. The numbers shown on the
tree nodes represent the weights, where

wij =

{
1−(n+k−1)Wδ−(n−1)(j−1)δ−δ

W−1+j if edge ej is incident to Ai
1−(n+k−1)Wδ−(n−1)(j−1)δ−2δ

W−1+j otherwise
.

5 We use the letter A to denote the vertices in a VertexCover instance instead of
commonly used v, while v is used for the vertices in an InfMax instance. Since
VertexCover can be viewed as a special case of SetCover with vertices corre-
sponding to subsets and edges corresponding to elements, the letter A, commonly
used for subsets, is used here.

6 For the assumption m > n+k, notice that allowing the graph G to be a multi-graph
does not change the nature of VertexCover, we can ensure m to be sufficiently
large by just duplicating edges.
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Fig. 2. The construction of the hierarchy tree T for the proof of Theorem 1

For VertexCover with k = |S|, consider InfMax with k = n + k seeds.
We aim to show that,

1. If the VertexCover instance is a YES instance, we can infect at least M
vertices;

2. If the VertexCover instance is a NO instance, we can infect at most Mε =
n(2W + m) − 1 vertices.

To show (1), suppose we have a YES VertexCover instance with a subset
of vertices S ⊆ V that covers all edges in E. In the InfMax instance, we aim to
show that at least M vertices will be infected if we choose

– an arbitrary seed in each of the cliques C1, . . . , Cn (n seeds in total), and
– an arbitrary seed in the clique Di for each Ai ∈ S (k seeds in total).

By such a choice of k = n + k seeds, in the first round of the cascade, all
the W vertices in each of C1, . . . , Cn and each of those k (Di)’s are infected. For
each edge ej ∈ E, denote ej = (Aij

, Ai′
j
) such that Aij

, Ai′
j

are the two vertices
cover the edge ej . By our choice of seeds, a seed is chosen in at least one of Dij

and Di′
j
, let Dij

be the one. By a careful calculation, we can see that the cascade
after the first round carries on in the following order:

vi11 → vi′
11

→ {vi1}i�=i1,i′
1

→ vi22 → vi′
22

→ {vi2}i�=i2,i′
2

→ · · ·
→ vimm → vi′

mm → {vim}i�=im,i′
m

→ B.

Therefore, we conclude (1) as we already have M infected vertices by just count-
ing those in the bundle B.

To show (2) by contradiction, we assume that we can choose a seed set S ⊆ V
such that |S| = k = n+k and σ(S) > Mε. By a careful analysis, we can conclude
that the only possible way to choose S is as follow.

– an arbitrary seed from each of C1, . . . , Cn (n seeds in total);
– an arbitrary seed from each of Dπ1 , . . . , Dπk

for certain {π1, . . . , πk} ⊆
{1, . . . , n} (k seeds in total).
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While we refer the readers to the full version of the paper for a detailed proof
of why this is true, here we provide an intuition for this. Firstly, choosing k seeds
among the 2n cliques C1, . . . , Cn,D1, . . . , Dn is considerably more beneficial, as
a seed would cause the infection of W vertices. Secondly, if we cannot choose
both Ci and Di, it is always better to choose Ci because the weights wi1, . . . , wim

are considerably larger than δ(1 + 1/W ), if δ is set sufficiently small.
Since the VertexCover instance is a NO instance, there exists an edge

ej = (Aij
, Ai′

j
) such that no vertex in Dij

and Di′
j

is chosen as seed. By a careful
calculation, we show that the cascade would stop at the level {vij}i=1,...,n, which
concludes (2).

By (1) and (2), the InfMax problem for G we have constructed is NP-hard
to approximate within a factor of at least

M

Mε
= M1−ε = Θ

(
N1−ε

)
,

as N = M + Mε = Θ(M). Since ε is arbitrary, the inapproximability factor can
be written as just N1−ε.

In the hard InfMax instances in Fig. 2, if the VertexCover instance is a
YES instance, the influence of the properly chosen seeds actually passes through
these n branches “back-and-forth” frequently. It is exactly this bi-directional
effect that makes InfMax hard. In the full version of this paper, we consider a
variant to the hierarchical blockmodel in which the influence between any two
vertex-blocks can only be “one-way”, and present a dynamic program to solve
InfMax for this variant optimally.

4 Stochastic Hierarchical Blockmodel Influence
Maximization

In the full version, we consider a stochastic variant of the hierarchical block-
model, called stochastic hierarchical blockmodel. The stochastic hierarchical
blockmodel is similar to the hierarchical blockmodel, in that the structure of
the graph is determined by a hierarchy tree. Instead of assigning weights to dif-
ferent edges measuring the strength of relationships, here we assign a probability
with which the edge between each pair of vertices appears.

We show in the full version that InfMax is NP-hard to approximate within
factor N1−ε. In particular, we consider two settings respecting if the seed-picker
picks the seed before or after seeing the sampling of the graph G, and show that
the same inapproximability holds for both settings.

5 2-Quasi-Submodular Influence Maximization

We present a sketch of the proof for the following Theorem in this section. The
complete proof is available in the full version of our paper.
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Theorem 2. For any fixed 2-quasi-submodular f , there exists a constant τ
depending on f such that InfMax with universal local influence model If

G is
NP-hard to approximate to within factor Nτ .

We consider two cases: f(1) �= 0 and f(1) = 0, and we only discuss the first
case here. The proof for the case f(1) = 0 is available in the full version. Denote
ai = f(i) and p∗ = limi→∞ ai.

We prove the theorem by a reduction from the SetCover problem.

Definition 8. Given a universe U of n elements, a set of κ subsets A = {Ai |
Ai ⊆ U}, and a positive integer k, the SetCover problem asks if we can choose
k subsets {Ai1 , . . . , Aik

} ⊆ A such that Ai1 ∪ · · · ∪ Aik
= U .

We construct a graph G which consists of two parts: the set cover part and
the verification part, where the set cover part simulates SetCover and the ver-
ification part verifies if all the elements in the SetCover instance are covered.
The construction is shown in Fig. 3. We first assume that the graph G is directed,
and then we show that this assumption is not essential by constructing a directed
edge gadget to simulate directed edges.

Fig. 3. The high-level structure of the reduction for the proof of Theorem 2

Given a SetCover instance, in the set cover part, we use a single vertex
to represent a subset Ai and a clique of size m to represent each element in
U . If an element is in a subset, we create m directed edges from the vertex
representing the subset to each the m vertices in the clique representing the
element. If a vertex representing a subset is picked, then all vertices in the
cliques corresponding to the elements contained in this subset will be infected
with probability close to p∗, by choosing m large enough. We call such cliques
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as being activated. In a YES instance of SetCover, we can choose k seeds such
that all cliques are activated.

In the verification part, we construct a AND gadget, simulating the logical
AND operation, to verify if all the cliques are activated. The AND gadget takes
n inputs, each of which is a set of vertices from each of the n cliques. The output
of the AND gadget is a vertex v, such that it will only be infected with a positive
constant probability if all the n cliques are activated.

We connect the output vertex v of this AND gadget to a huge bundle of M1

vertices, such that a constant fraction of those M1 vertices will be infected only
if all the cliques are activated (which corresponds to the case the SetCover
is a YES instance). By making M1 large enough, we can achieve a hardness of
approximation ratio Nτ . To avoid the seed-picker bypassing the set cover game
by directed seeding the output vertex v, we duplicate the verification part by
M2 times for some sufficiently large M2.

Finally, we replace all directed edges in Fig. 3 by directed edge gadgets,
including those connecting the vertices representing subsets and the cliques rep-
resenting elements, and those connecting the set cover part and the verification
part. To complete the proof of Theorem 2, we present the construction of the
AND gadget and the directed edge gadget in the full version of this paper. The
construction of both gadgets rely on that f is 2-quasi-submodular.
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Abstract. Kleinberg’s small world model [20] simulates social networks
with both strong and weak ties. In his original paper, Kleinberg showed
how the distribution of weak-ties, parameterized by γ, influences the effi-
cacy of myopic routing on the network. Recent work on social influence
by k-complex contagion models discovered that the distribution of weak-
ties also impacts the spreading rate in a crucial manner on Kleinberg’s
small world model [15]. In both cases the parameter of γ = 2 proves
special: when γ is anything but 2 the properties no longer hold.

In this work, we propose a natural generalization of Kleinberg’s small
world model to allow node heterogeneity: instead of a single global para-
meter γ, each node has a personalized parameter γ chosen independently
from a distribution D. In contrast to the original model, we show that
this model enables myopic routing and k-complex contagions on a large
range of the parameter space, improving the robustness of the model.
Moreover, we show that our generalization is supported by real-world
data. Analysis of four different social networks shows that the nodes do
not show homogeneity in terms of the variance of the lengths of edges
incident to the same node.

1 Introduction

In Milgram’s “Small World” experiments [23,26], he gave envelops to random
residents of Wichita, Kansas and Omaha, Nebraska, and asked them to forward
the envelopes to a personal contact so that they might eventually reach a specific
banker in Massachusetts. The success of this experiment (which has since been
observed in numerous other contexts – see related work) motivated Kleinberg’s
small work model which studies why such local decisions work [20]. This inge-
nious model shows not only that short paths between arbitrary nodes exist (this

J. Gao would like to acknowledge support through NSF DMS-1418255,
CCF-1535900, CNS-1618391, DMS-1737812 and AFOSR FA9550-14-1-0193. G.
Schoenebeck and F. Yu gratefully acknowledge the support of the National Science
Foundation under Career Award 1452915 and AitF Award 1535912.

c© Springer International Publishing AG 2017
N. R. Devanur and P. Lu (Eds.): WINE 2017, LNCS 10674, pp. 383–394, 2017.
https://doi.org/10.1007/978-3-319-71924-5_27



384 J. Gao et al.

so-called “small world” phenomena was already embedded into several funda-
mental models [6,24,27]), but also that these short paths can be easily discovered
by myopic routing (i.e., using purely local knowledge).

Kleinberg’s small world model considers an underlying metric space captur-
ing the diversity of the population in various social attributes. Social ties are
classified into two categories: strong ties that connect an individual to those
similar in the social attribute space, and weak ties that may connect individu-
als far away. Kleinberg’s model considers one parameter γ in determining how
the weak ties are placed. Each node p takes a weak tie edge to a node q with
probability proportional to 1/|pq|γ where |pq| denotes the distance between p
and q in the social space. Thus at γ = 0 the weak ties are uniformly randomly
distributed, and as γ increases shorter connections are increasingly favored.

However, in this model when the nodes are placed in a 2-dimensional grid
the navigability only holds for a particular parameter choice: γ = 2. At this
“sweetspot,” a message can be delivered to the destination in O(log2 n) hops,
by hopping to the neighbor closest to the destination in the Euclidean metric.
For any constant γ �= 2, myopic routing, or, in general, any deterministic rout-
ing algorithm using only local information, provably fails to quickly deliver the
message. Intuitively why γ = 2 is crucial, because at this sweetspot each weak
tie edge uniformly at random lands in one of the annuli around the destination
with inner radius 2i and outer radius 2i+1, for all i. Therefore, no matter where
the destination is, with probability roughly 1/ log n there is a neighbor such that
taking this neighbor reduces the Euclidean distance to the destination by half.
If γ < 2, it turns out that the weak tie edges are too random and myopic rout-
ing loses its sense of direction. If γ > 2, the weak ties are simply too short and
any path to the destination discoverable from local information necessarily takes
many hops.

Other good properties also hold at special ranges of the parameter γ. In recent
work on understanding complex social influence, it was shown how the distrib-
ution of weak-ties impacts the spreading behavior of k-complex contagions, in
which a node becomes infected if at least k neighbors are infected [13,15]. Again
it was shown that when γ = 2, for any constant k, the k-complex contagion
spreads in a polylogarithmic number of rounds to the entire network while when
γ �= 2 complex contagions necessarily require a polynomial number of rounds.
The analysis here connects to the intuition presented earlier for myopic routing.
The sweetspot γ = 2 substantially speeds up the spreading of the contagions.

While the existence of the sweetspot is both insightful and elegant, it has
raised new questions for modeling practical networks. The model feels fragile if
the good properties only hold at a single parameter value and stop holding even
with slight deviation. As put by Jackson [17]: “It is unlikely that societies just
happen to hit the right balance. More likely there is something missing from the
models, and it is clear the network-formation process underlying many social
networks is much more complex than in these models.” If Jackson is correct,
then a theoretical model that more robustly justifies the empirical observations
of Milgram and those who followed is needed.
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Our Results. In this work, we generalize Kleinberg’s small world model by
considering a personalized, possibly heterogeneous γu for each node u in the
network. In particular, each node u chooses its parameter γu ∈ [0,∞) i.i.d from
a distribution D. The weak tie edges issued by u will be placed on node v with
probability proportional to 1/|uv|γu , where |uv| denotes the distance between u
and v in some underlying metric.

This model is motivated by both intuition and observations in real world
data sets. It is natural to believe that some people have weak ties that are
more/less dispersed (geographically or otherwise) that others. We also provide
empirical evidence for node heterogeneity using real world social network data.
Given a network, we can embed it in Euclidean space using spectral methods and
examine the length of the edges attached to each node. We find that the empirical
variance of the lengths of edges incident on the same vertex is substantially less
than when the edge lengths are randomly permuted—suggesting that lengths of
edges incident on the same vertex are indeed more correlated.

In this paper the main technical results we report is that both myopic rout-
ing and k-complex contagions operate quickly in the new model as long as the
distribution D for the personalized γ has non-negligible mass around 2. Thus
our model provides a robust justification for the observed properties of both
myopic routing and k-complex contagions. Moreover it does this by only slightly
tweaking Kleinberg’s original model.

In particular, we can show that even if there is just Ω(εα) mass in the interval
[2 − ε, 2 + ε] of the distribution D, where α > 0 is any constant, then myopic
routing and k-complex contagions (for any k) still only take polylogarithmic
time! For example, it is enough that D be uniform on the interval [a, b] for any
0 ≤ a ≤ 2 ≤ b. Note that in such a case, no particular γu will be exactly 2 (with
probability 1). However, it turns out that enough of the γu are close enough to
2, which still enables these social processes.

We also show lower bounds. For myopic routing we show that if for some
ε, there is no mass in [2 − ε, 2 + ε], then the typical myopic routing time is
polynomial. This is not obvious, as there can be a distribution D that allows
weak ties that are short — connecting nodes nearby, and weak tie that are long –
connecting nodes far away. Recall that in the original Kleinberg proof it was
shown that short ties only, or long ties only, are not enough to enable myopic
routing but it did not exclude the possibility when both long and short ties exist
simultaneously. We show that in fact the combination of these weak tie edges
are still not enough for enabling efficient myopic routing. In particular, there is
a range of distances when none of the two types of ties are helpful, which forces
the greedy routing to take a long time.

For complex contagions, our first lower bound shows that if for some ε > 0,
there is no mass in [2 − ε, 2 + ε], then there is some k such that k-complex
contagions require a polynomial time to spread. Again we must show that the
synergy between short and long weak ties cannot enable complex contagions to
quickly spread.
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The above results for complex contagion apply for any k. We also study what
happens for a particular k. Here we show that for each k there is an interval
[2, βk) where βk = 2(k+1)

k such that when D has constant support on [2, βk),
k-complex contagions spread in polynomial time, but when, for any ε > 0, D
has no support on [2− ε, βk + ε], then k-complex contagions requires polynomial
time to spread with high probability.

2 Related Work

Small World Graphs. The small world property—that there exists short paths
between two random members of a network–appears in many real world complex
networks in vastly different contexts ranging from film collaboration networks
and neural networks [11] to email networks [10], food webs [28] and protein
interaction networks [19].

It has been discovered in a number of settings that random edges introduced
to a graph can dramatically reduce the network diameter, creating a small world
graph. This observation was made in the Watts-Strogatz model [27] (when edges
are rewired to a random destination) as well as for regular random graphs [6] (a
graph in which all nodes have the same constant degree and edges are uniformly
randomly placed). Kleinberg’s small world model can be considered as an exten-
sion to such models. In particular, the Newmann-Watts model [24] (a variant
of the Watts-Strogatz model in which random edges are added in addition to
existing edges) is a special case of Kleinberg’s model for choosing γ = 0 — i.e.,
the weak ties are uniformly randomly added.

Navigability. Milgram’s “Small World” experiments [23,26] illustrated not only
the small world property—that short paths exist—but, in fact, showed a stronger
property—that such paths can be efficiently found using only local information—
called navigability. A short path was discovered through a local algorithm with
the participants forwarding to a friend who they believed to be more likely to
know the target. Although forwarding decision-making was not systematically
recorded, geographical proximity was found to be an important forwarding cri-
terion in some cases. Other criteria such as profession and popularity may have
been used as well. A later study using email-chains [10] confirms this as well,
finding that at least half of the choices were due to either geographical proximity
of the acquaintance to the target or occupational similarity.

Besides the Kleinberg’s small world model, several other models also consid-
ered using metric distances in modeling social ties. For example, Kumar et al. [22]
extended the Kleinberg’s model to include the underlying metrics with low-
doubling dimension. This model also requires a specific distribution of the weak
ties.

Another line of work diverges from distance function defined over some low-
dimensional space, but instead defines a distance function based on some hierar-
chical structure. For example, Watts et al. considered a hierarchical professional
organization of individuals and a homophilous network with ties added between
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two nodes closer in the hierarchy with a higher probability. If each node has a
fixed probability of dropping the message, they show a greedy routing algorithm
sending packages to the neighbor most similar to the target (called homophily-
based routing) successfully delivers a fraction of the messages before they are
dropped. Kleinberg also confirmed similar results on a hierarchical network,
in which the nodes are represented as leaf nodes of a hierarchical organization
structure and random edges are added to the leaves with probability dependent
on their tree distance. When each node has polylogarithmic out-degree, greedy
routing based on the tree distance arrives at the destination in O(log n) hops.
While the aforementioned models also successfully create a more robust network
model for myopic routing, in doing so they abandoned the spatial structure of
Kleinberg’s small world model. While certain structures can be modeled well
as a hierarchy, others are much more natural as a continuum, as in Kleinberg’s
model—e.g. distances, wealth, political ideology, and education.

Boguñá et al. [5] proposed a model that assumes a social metric space and
the power law degree distribution. They considered nodes on a ring and assigned
target degrees from a power law distribution. An edge is then placed between two
nodes with a probability positively dependent on their distance on the ring and
negatively dependent on their degrees. They investigated greedy routing with
the distances on the ring as a means of navigating in the network. Krioukov
et al. [21] considered using a hyperbolic plane as the hidden social space. Nodes
are uniformly distributed in a radius R disk in a hyperbolic plane with edges
placed in pairs with distance smaller than r. They show that such a graph has
power law degree distribution and that greedy routing with hyperbolic distance
has a high success rate.

Complex Contagions. The model of k-complex contagions belongs to the gen-
eral family of threshold models, in which each node has a threshold on the number
of infected edges/neighbors needed to become infected [16]. The threshold model
is motivated by certain coordination games studied in the economics literature
in which a user maximizes its payoff when adopting the behavior as the majority
of its neighbors.

k-complex contagions have been previously studied in the Kleinberg small
world model [15] and their spreading behaviour was almost completely classi-
fied [13]. Ghasemiesfeh et al. [15] showed that for any k, if γ = 2 then com-
plex contagions spread quickly, in a polylogarithmic number of rounds. Further,
Ebrahimi et al. [13] showed that for each k ≥ 2, there exists an interval of values,
[2, αk], such that when γ ∈ (2, αk), a k-complex contagion spreads quickly on
the corresponding graph, in a polylogarithmic number of rounds. However, if γ
is outside this range, then a k-complex contagion requires a polynomial number
of rounds to spread to the entire network. They also showed similar results for
a variant of the Kleinberg model where edges are added without replacement
(thus multi-edges are allowed).

k-complex contagions have also been studied in other social network models,
for examples, networks that have a time-evolving nature (e.g. the Preferential
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Attachment model) [12,14], and configuration model networks with power-law
degree distribution [25].

k-complex contagions are referred to as bootstrap percolation [1,9] in the
literature, especially when initial seeds are chosen randomly at random. Here,
the focus is often to examine the threshold of the number of initial seeds with
which the infection eventually ‘percolates’, i.e. diffuses to the entire network.
Studies have been done on the random Erdős-Rényi graph [18], random regular
graphs [4], and the configuration model [2], etc [3]. All of these results show that
for a complex contagion to percolate, the number of initial seeds is a growing
function of the network size and in many cases a constant fraction of the entire
network. In contrast, we always start with a constant number of seeds and we
would like to examine whether a fast spreading is possible.

3 Preliminaries

Recall that in the Kleinberg’s small world model [20], nodes are defined on a
n×n grid1. Each node u connects to nodes within grid Manhattan distance �q�,
where q is a constant. These edges are referred to as strong ties. In addition,
each node generates p random outgoing edges (without replacement), termed
weak ties. The probability that node u connects to node v via a random edge
is 1/λγd(u, v)γ , in which d(u, v) is the Manhattan distance of u, v and λγ =∑

v d(u, v)−γ is a normalization factor. Further, we remark that the graph is
directed — the weak ties issued by a node u have u as the tail and the strong
ties are bidirectional.

For Heterogeneous Kleinberg’s small world HetKp,q,D(n), we define
p, q, n as in the original model, but, instead of one global γ, each node u indepen-
dently chooses its personalized parameter γu from the distribution D on [0,∞)
with probability density function2 fD and cumulative distribution function FD.
Let MD(ε) = FD(2 + ε) − FD(2 − ε) measure the “mass” of D around 2.

We study two dynamics on this heterogeneous Kleinberg’s small world model:
decentralized routing, and k-complex contagion.

In the decentralized routing algorithm , a message is passed to one of its
(local or long-range) contacts using only local information. Given the source s
and destination t in the graph, we denote the routing process/algorithm A: a
sequence of nodes on the graph (xi)i≥0 where x0 = s. The delivery time from s
to t of algorithm A is defined as min{i ≥ 0 : xi = t} which is a random variable
with σ-space generated by HetKp,q,D(n) and the myopic routing algorithm. The
expected delivery time of a decentralized algorithm A is the expected delivery
time for uniformly chosen sources s and destinations t. The myopic greedy algo-
rithm routes the message from the current location to be as close as possible to

1 In order to eliminate the boundary effect, we wrap up the grid into a torus – i.e.,
the top boundary is identified with the bottom boundary and the left boundary is
identified with the right boundary.

2 For discrete distribution, the probability density function exists if we allow using
Dirac delta function.
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the destination vertex (according to the grid distance) using only one hop from
the current node.

We define a k-complex contagion process in a directed graph following the
definition in Ghasemiesfeh et al. [15]. We assume k is a small constant. A k-
complex contagion CC(G, k, I) is a contagion that initially infects vertices of
I and spreads over graph G. The contagion proceeds in rounds. At each round,
each vertex with at least k infected neighbors becomes infected. The vertices
of I are called the initial seeds. We say that k nodes (u1, · · · , uk) are a k-seed
cluster if they form a connected subgraph via only the grid structure. A k-
complex contagion spreads in the inverse direction of an edge: a node becomes
infected if it follows at least k infected neighbors. In this work, we define the
speed of a k-complex contagion as the number of rounds it takes to infect
the whole graph which is always finite if we take q ≥ k and I is a k-seed cluster.

4 Myopic Routing Upper Bounds

In this section, we prove the following theorem:

Theorem 1 (Myopic Routing Upper Bounds). Given a HetKp,q,D(n) with
constant p, q ≥ 1 and distribution D. If there exists some constants ε0 > 0, α ≥ 1
and K > 0 such that ∀ε < ε0, MD(ε) ≥ Kεα, the expected delivery time of the
myopic greedy algorithm is at most O(log2+α n).

The above theorem proves fast myopic routing over a large class of Heteroge-
neous Kleinberg’s Small world models. The only distributions that this theorem
fails to apply to are distributions with negligible mass near 2. In particular,
if D is uniform over any finite interval containing 2, then myopic routing will
take time at most O(log3 n), and as long as the mass near 2 is non-trivial (i.e.,
lower bounded by the inverse of some fixed polynomial), then delivery only takes
poly-log time.

Remark 1. Note that if the random variable associated with D is a constant
random variable that takes a constant value 2, the HetKp,q,D(n) degenerates to
the original Kleinberg’s model with γ = 2, and the Theorem 1 is tight which
yields the same O(log2 n) upper bound on delivery time on myopic greedy routing
algorithm.

The proof of Theorem 1 follows the general outline of the proof in Kleinberg’s
original paper: measure the progress of process A = (xi)i≥0 in terms of phases
which will be defined later and show the following: (1) monotone property of
the process, (2) upper bound the total number of phase, (3) lower bound the
probability of finishing each phase. The formal proof will be in the full version.

5 Myopic Routing Lower Bounds

In this section we prove a lower bound for any decentralized algorithms on the
Heterogeneous Kleinberg Small World HetKp,q,D(n) in the following theorem:
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Theorem 2. Given a Heterogeneous Kleinberg’s Small World network
HetKp,q,D(n) with constant parameters p, q and probabilistic density function
fD for the distribution D on the personalized γu for each node u, if there exists
a constant ε0 > 0 such that F (2 + ε0) − F (2 − ε0) = 0, where F is the cumu-
lative density function of D, then the expected routing time for all decentralized
algorithms is Ω(nξ) where ξ = ε0

3(3+ε0)
.

In the original Kleinberg’s model [20], all nodes use the same γ parameter.
When γ is greater than 2 the weak ties are too short in expectation such that it
would need a polynomial number of hops to reach a far away destination. When
γ is smaller than 2 the edges are too random to be useful for nearby destinations.
But in a heterogeneous model, the nodes may have different γ values. The nodes
with γu > 2 have concentrated edges while those with γu < 2 have diffuse edges.
A network with only concentrated edges or only diffuse edges cannot support
polylogarithmic myopic routing. But it is unclear whether the combination of
them, as in the heterogeneous model, can lead to polylogarithmic delivery time.
Theorem 2 states that this is not true. We show this by considering a scope where
neither type of edges is helpful. The formal proof will be in the full version.

6 Complex Contagion Upper Bounds

The spreading of k-complex contagion on the original Kleinberg’s model has
been fully characterized in [13,15]. If a k-seed cluster is infected initially, the
contagion spreads to the entire network in O(polylog(n)) rounds if γ ∈ [2, βk),
where βk = 2(k+1)

k , and in Ω(poly(n)) rounds otherwise.

6.1 Non-negligible Mass Near 2

In the heterogeneous Kleinberg model, we first show a result that is analogous
to our results for myopic routing: as long as the distribution D for γu has a non-
negligible amount of mass near 2, then for any k, k-complex contagions spread
in polylog time—but the exponent of log n depends on k and D.

Theorem 3. Fix a distribution D, an integer k > 0 and η > 0. If there exist
constants ε0 > 0 and α ≥ 0 where MD(ε) ≥ Kεα for all ε ≤ ε0, and p, q ≥ k, there
exists κ = kα+ k(k+1)

2 , such that a k-complex contagion CC(HetKp,q,D(n), k, I)
starting from a k-seed cluster I takes at most O(log(3+κ)/2 n) rounds3 to spread
to the whole network with probability at least 1 − n−η over the randomness of
HetKp,q,D(n).

The theorem is based on the observation that the infected region doubles
its size in a polylogarithmic number of steps. In this way the general proof
framework is similar to that in [15], and the complete proof will be in the full
version.
3 The scalar depends on the constants k, η, α, K.
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6.2 Fixed k

For a specific k, we can show that as long as the distribution D has constant
mass in the interval [2, βk) (recall for the beginning of the section that βk =
2(k+1)

k ), then the k-complex contagion will spread to the entire network in a
polylogarithmic number of rounds. Recall that the results in Theorem 3 only
require non-negligible mass near 2. Here we require constant mass, but the mass
need not be asymptotically close to 2 as long as it is in the interval (2, βk).

Theorem 4. Fix a distribution D, an integer k > 0 and η > 0. If Prγ∼D[γ ∈
[2, βk)] > 0 where βk = 2(k+1)

k , and p, q ≥ k. There exists ξ > 0 depending on
D and k such that, the speed of a k-complex contagion CC(HetKp,q,D(n), k, I)

starting from a k-seed cluster I is at most O
(
logξ n

)
with probability at least

1 − n−η.

The proof of Theorem 4 uses the same divide and conquer strategy as in [13],
and the proof will be in the full version.

7 Complex Contagion Lower Bounds

In this section, we describe a polynomial time lower bound for the spread-
ing rate of k-complex contagion on the Heterogeneous Kleinberg Small World
HetKp,q,D(n), when the distribution D on the personal parameter γu has zero
weight around two. Here we first state the theorem for a fixed k, and the result
near two is a natural corollary.

Theorem 5 (Lower bound for fixed k). Given distribution D, constant inte-
gers k, p, q > 0, and ε0 > 0 such that FD(βk + ε0) − FD(2 − ε0) = 0, then there
exist constants ξ, η > 0 depending on D and k, such that the time it takes a k-
contagion starting at seed-cluster I, CC(HetKp,q,D(n), k, I), to infect all nodes
is at least Ω(nξ) with probability at least 1 − O(n−η) over the randomness of
HetKp,q,D(n).

If D satisfies the condition in Theorem 5, we can partition the support into
two disjoint sets Supp{D} = D1 ∪ D2 such that γ1 = 2 − ε1 = sup{γ ∈ D1} <
2 − ε0, and γ2 = 2 + ε2 = inf{γ ∈ D2} > 2(1 + 1/k) + ε0.

Ebrahimi et al. [13] proved for the original Kleinberg model if γ > 2(k+1)
k

the weak ties will be too short to create remote k-seeds; on the other hand, if
γ < 2 the weak ties will be too random to form k-seeds at all. Similar to proving
the lower bound for myopic routing, the challenge in proving this theorem is the
synergy between concentrated and diffuse edges which can possibly be exploited
by k-complex contagions in the heterogeneous Kleinberg model. We resolve this
by considering a scale where neither type of edges is helpful.

Before proving Theorem 5 we state a corollary concerning a lower bound
when there is no mass around 2.
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Corollary 1 (Lower bound for no mass around 2). Given distribution D,
constant integers p, q > 0, and ε0 > 0 such that FD(2 + ε0) − FD(2 − ε0) = 0,
there exist a constant integer k > 0 and ξ, η > 0 such that the time it takes
a k-contagion starting at seed-cluster I, CC(HetKp,q,D(n), k, I), to infect all
nodes is at least nξ with probability at least 1 − O(n−η) over the randomness of
HetKp,q,D(n).

The corollary follows directly from Theorem 5 by taking a sufficiently large k.

8 Empirical Results

See full version.

9 Conclusion

We introduced a generalization of the Kleinberg small world model where the
parameter which determines how concentrated or diffuse long ties are can be dif-
ferent for each node, and showed empirical results which support our new model.
We proved that this model overcomes a weakness of the original model, which
is that the parameters needed to be tuned just right to facilitate fast myopic
routing, which was the original motivation behind the model’s development. For
a wide array of parameters, our new model facilitates both fast myopic routing
and the fast spread of complex contagions.

One future direction would be try to learn the heterogeneous distribution
in real-world network data. Another future direction would be to connect this
model to the “structural holes” theory [7,8] which posits that agents gain power
by sitting along many shortest paths, by allowing agents to mediate the passing
of information. That is, in the hierarchical small world model, which types of
individuals are mostly likely to lie on shortest paths, or, in general, are more
useful in myopic routing and complex contagions. A final future direction would
be to study the Kleinberg small world model where nodes have a non-uniform
(e.g. powerlaw) degree distribution of weak ties. This may provide an alternative
way to generalize the Kleinberg small world model so that it supports myopic
routing and complex contagions over a larger parameter range.
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Network congestion games have provided a fertile ground for the algorithmic
game theory community. Indeed, many of the pioneering works on bounding the
efficiency of equilibria use this framework as their starting point. In recent years,
there has been an increased interest in studying randomness in this context
though the efforts have been mostly devoted to understanding what happens
when link latencies are subject to random shocks. In this paper we consider a
different source of randomness, namely on the demand side. We look at the basic
non-atomic network congestion game with the additional feature that demand is
random. Thereto, we introduce an extension of the classic Wardrop equilibrium
to fit with this random demand setting. The first obstacle we have to sort out is
the definition of equilibrium, as the classic concept of Wardrop equilibrium needs
to be extended to the random demand setting. Interestingly, Wang, Doan, and
Chen [3], by considering an equilibrium notion in which flow particles evaluate
their expected cost using the full knowledge of the demand distribution, conclude
that the price of anarchy of the game can be arbitrarily large. In contrast, our
main result is that under a very natural equilibrium notion, in which the basic
behavioral assumption is that users evaluate their expected cost according to
the demand they experience in the system, the price of anarchy of the game is
actually the same as that in the deterministic demand game [1, 2]. This is yet
another confirmation of the robustness of the price of anarchy to situations in
which even the number of players in the system may be random.

A full version of this paper with all the proofs and context can be found at
https://www.dii.uchile.cl/∼jcorrea/papers/Conferences/CHS2017.pdf.
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The evolution of the ‘sharing economy’ has made it possible for the general public
to invest in early-stage innovative and economically risky projects and products.
These funding schemes, dubbed ‘crowdfunding’, have been gaining popularity
among entrepreneurs and it is reported that crowdfunding for supporting new
and innovative products has been overwhelming with over 34 Billion Dollars
raised in 20151.

In addition to serving as an alternative to venture capital funds as a source
for fund raising for nascent stage products, the crowdfunding option also serves
as a means to gauge market traction for new products. It is implicitly assumed
that a successful crowdfunding campaign suggests a high market demand for the
new offering.

From the contributor’s perspective, the investment in a crowdfunding cam-
paign has two risky aspects. First, the risk of whether the firm will have enough
funds to produce and deliver the product; and second, the quality and value
of the product is unknown at the time of the campaign and could possibly be
disappointing even if eventually delivered.

In many on-line crowd-funding platforms such as “Kickstarter” and
“Indiegogo” a typical campaign format has two critical components. First, it
sets a price for the future product and second it sets a threshold. Contribu-
tions are collected only if in total they exceed this threshold. Both values are
determined by the fund raising firm. This format is designed to mitigate the
aforementioned risks. If the threshold is set high enough then contributions are
collected only when the company has enough funds on the one hand, and the
‘wisdom-of-the-crowd’ points to a high valued product.

A crowdfunding game, Γ(N,B, p), is a game of incomplete information played
among a population of N potential contributors (or players). An unknown state
of nature ω ∈ Ω = {H,L} is drawn with equal prior probabilities. In state H
the common value of the product is 1 and in state L it is −1. Conditional on
the realized state ω, a private signal si ∈ Si = {H,L} is drawn independently
for every player i. We assume p = Pr(si = ω|ω) > 0.5. Each player i has a

The full version can be found at https://arxiv.org/abs/1710.00319.
Rann Smorodinsky—Research supported by GIF research grant no. I-1419-
118.4/2017, ISF grant 2018889, Technion VPR grants, the joint Microsoft-Technion
e-Commerce Lab, the Bernard M. Gordon Center for Systems Engineering at the
Technion, and the TASP Center at the Technion.

1 Figures taken from http://crowdexpert.com/crowdfunding-industry-statistics.
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binary action set, Ai = {0, 1}, with ai = 1 representing a decision to contribute
and ai = 0 represents a decision to opt-out and not to contribute. The utility of
every player i ∈ N is defined as follows

ui(ai, a−i, ω) =

⎧
⎪⎨

⎪⎩

1 if ai = 1 and
∑

j∈N aj ≥ B and ω = H

−1 if ai = 1 and
∑

j∈N aj ≥ B and ω = L

0 otherwise
. (1)

In words, whenever player i chooses not to buy the product, she receives a utility
of 0. If she chooses to buy, then her utility is depends on the total number of
contributors. If less than B players contributed then the product is not supplied
and the utility is once again zero. If it exceeds B then her utility is determined
by the state of nature and equals 1 in state H and −1 in state L.

We propose two performance measures for a crowdfunding campaign:

– The correctness index of a game is defined as the probability that the game
ends up with a the correct decision. That is, the probability the product is
funded when its value is 1 or the probability that the product is rejected when
its value is −1. The correctness index measures how well the crowdfunding
aggregates the private information from the buyers in order to make sure the
firm pursues the product only when it is viable.

– The market penetration index is the expected proportion of contributors pro-
vided that the product is supplied, i.e., the threshold is surpassed. This num-
ber serves as a proxy for success of the campaign as a means to attract further
investments.

Our theoretical results provide limits on the success, in both aspects, of large
crowdfunding games. We state and prove three results:

– We provide a constructive proof for the existence of a symmetric, non-trivial
equilibrium and we show it is unique. In every such equilibrium players with
a high signal surely contribute while those with a low signal either decline
or take a mixed strategy whereby they contribute at a positive probability,
strictly less than one.

– In large games, we provide a tight bound on the correctness index which is
strictly less than one. Thus, no matter how the campaign goal is set, full
information aggregation cannot be guaranteed. We compare this with the
efficiency guarantees of majority voting implied by Condorcet Jury Theorem.

– I large games, we provide a bound on the penetration index and we show that
by setting the champaign goal optimally the resulting market penetration is
higher than the benchmark case where the campaign goal is set to a single
buyer (B = 1).

Calculations, provided in the paper, demonstrate that the asymptotic results
approximately hold for small populations of potential contributors.
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Abstract. We study the power of selling opaque products, i.e., products
where a feature (such as color, brand, or time) is hidden from the cus-
tomer until after purchase. Opaque products have emerged as a powerful
vehicle to increase revenue for many online retailers, service providers,
and travel agents that offer horizontally differentiated items. Customers
who are indifferent about the hidden feature typically opt for an opaque
product in exchange for a price discount, while customers with strong
preferences typically opt for a traditional item at full price. In the mod-
els we consider, all traditional items are sold at a single price alongside
opaque products corresponding to every possible subset of items. The
price of opaque products of the same size are constrained to be the same
for practicality. Alternatively, another common approach to increase rev-
enue is to explicitly charge different prices for the items, which we refer
to as discriminatory pricing, as opposed to charging one price for all the
items, which we refer to as single pricing. In this work, we benchmark
the revenue of opaque selling strategies against optimal discriminatory
pricing for lower bounds and optimal single pricing for upper bounds.
Conceptually, our opaque selling strategy balances the impartiality of
single pricing with the price discrimination capabilities of discriminatory
pricing.

We consider two types of customer behavior with respect to opaque
products, both of which may occur in various applications. Specifically,
a customer is called pessimistic if they believe the opaque product will
yield their least desired item, and is called risk-neutral if they believe
the opaque product will allocate the items with equal probability. In
general, we assume customers are unit-demand and utility-maximizing,
with i.i.d. item valuations. We show that when customers are pessimistic,
opaque selling always dominates discriminatory pricing under any item
valuation distribution. When customers are risk-neutral, opaque selling
dominates discriminatory pricing in the case where item valuations take
only two values (high or low). We also show that opaque selling with
just one opaque product can provide up to and at most twice the rev-
enue from single pricing. The revenue increase from having exponentially
many opaque products is also at most a constant factor of the revenue
from single pricing.

Keywords: Opaque products · Price discrimination · Item pricing
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Abstract. We create a model of information aggregation with over-
lapping generations, where agents arrive continuously, meet others over
time, share information about an underlying state, and depart at some
stochastic time. We examine under what conditions the society will pro-
duce individuals with precise knowledge about the state of the world. We
consider two information sharing technologies. Under the full informa-
tion sharing technology, individuals exchange the information about their
point estimates of an underlying state, as well as their sources (or the
precision of their signals) and update their beliefs by taking a weighted
average. Under the limited information sharing technology, agents only
observe the information about the point estimates of those they meet,
and update their beliefs by taking a weighted average, where weights
can depend on the sequence of meetings, as well as the labels and ‘ages’
of agents they meet. Our main result shows that, unlike static settings,
using linear learning rules without access to the precision information
will not guide the population (or even a fraction of its members) to con-
verge to a unique belief, and having access to, and exploiting knowledge
of the precision of a source signal are essential for having an informed
populace.

We would like to thank Michael Harrison, Matthew Jackson, Paul Milgrom, Jef-
fery Zwiebel, David Kreps, Darrell Duffie, Omer Tamuz, Ben Brooks, Michael
Ostrovsky, Alireza Tahbaz-Salehi, Ilan Lobel, Svetlana Bryzgalova, and several sem-
inar participants for valuable conversations.
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Abstract. Empirical studies of commercial relationships between firms
reveal that (i) suppliers encounter situations in which they can gain in
the short run by acting opportunistically—for example, delivering a lower
quality than promised after being paid; and (ii) good conduct is sustained
not exclusively by formal contracts but through informal relationships
and the expectation of future business. In such relationships, the need to
offer each supplier a large enough share of future business to deter cheat-
ing limits the number of supply relationships each buyer can sustain. The
market thus becomes networked, with trade restricted to durable rela-
tionships. We propose and analyze a simple dynamic model to examine
the structure of such overlapping relational contracts in equilibrium. Due
to exogenous stochastic shocks, suppliers are not always able to make
good on their promises even if they wish to, and so links are constantly
dissolving and new ones are forming to take their place. This induces a
Markov process on networks. We study how the stationary distribution
over networks depends on the parameters—most importantly, the value
of trade and the probability of shocks. When the rate at which shocks
hit increases, as might happen during an economic downturn, maintain-
ing incentive compatibility with suppliers requires promising each more
future business and this necessitates maintaining fewer relationships with
suppliers. This results in a destruction of social capital, and even if the
rate of shocks later returns to its former level, it can take considerable
time for social capital to be rebuilt because of search frictions. This
creates a novel way for shocks to be persistent. It also suggests new con-
nections between the theory of relational contracting, on the one hand,
and the macroeconomic analysis of recessions, on the other.

Paper available at http://ssrn.com/abstract=3049512.
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Abstract. In a stable network flow problem, we are given a directed
and capacitated network, where each vertex has strict preference over
their incident edges, and need to find a flow between a source and a
sink that is stable with respect to deviations along any path. A common
interpretation of this problem is that the vertices represent agents and
the edges represent potential contracts between the endpoint agents; a
directed edge from an agent A to an agent B represents the possibility
of agent B buying products via a contract from agent A. A stable flow
is an equilibrium trade pattern, where no group of agents can all benefit
from rerouting the flow along a path among themselves.

The stable flow problem is well studied and has several applications in
supply chain and trading networks. However, the Kirchhoffs law, which
requires the inflow is equal to the outflow for every vertex of the net-
work, limits the applicability of this problem. For example, in a supply
chain network, one vertex can represent a manufacturing firm that takes
raw materials as input and produces certain part-products while another
vertex might correspond to an assembly firm whose inputs are the
part-products and outputs are finished products. Clearly, the Kirchhoffs
law does not hold for both manufacturing and assembly nodes in this
example.

In this paper, we consider a generalization of the traditional stable
flow problem, in which the outflow is monotone piecewise linear to the
inflow for each vertex. We first show the existence of flow stability by
reducing this variant of stable flow problem to Scarf’s Lemma, then intro-
duce a path augmenting algorithm that runs in polynomial time.

We first define a monotone piecewise linear mapping network
(MPLM-network). A convex monotone piecewise linear mapping net-
work (CMPLM-network) is defined as a subcategory of MPLM-networks
where the slopes of the piecewise linear functions are in increasing order
for every agent. A linear mapping network (LM-network) is a subcat-
egory of CMPLM-networks where the amount of outgoing contracts of
every agent with incoming contracts is a linear function on the amount
of incoming contracts.

A flow assignment is stable if there does not exist a blocking path in a
network. A flow assignment has a blocking path P if the first agent in P
prefers to offer contracts to the second agent in P to some other agents
she had already offered, while intermediate agents still have space for
signing contracts, and the last agent in P prefers to accept the contracts
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offered by the penultimate agent in P to some other agents she had
already accepted. The existence of stable flow in CMPLM-networks can
be proved by a reduction to Scarf’s Lemma. LM-networks, as a subcate-
gory of CMPLM-networks, always have a stable flow assignment. Every
MPLM-network has a corresponding LM-network by transforming each
agent into a subnetwork. Therefore, stability always exists in MPLM-
networks.

A constructive way to find a stable flow in acyclic LM-networks is
similar to the path augmenting algorithm for the original stable flow
problem. The approach is a variant of deferred acceptance algorithm
among agents. The main difference is in LM-networks, flow conservation
no longer holds. As a result, in each path augmenting iteration, we aug-
ment along a path from the source agent to the sink agent, or along a
σ-cycle, a path from the source agent to a cycle. The running time for
LM-network is O(|V ||E|). For MPLM-networks, the running time of our
algorithm is O(|V |(|E| + K)) where K is the total number of piecewise
linear segments.

For each cyclic LM-network, there exists an equivalent acyclic LM-
network consists of the source vertex, the sink vertex, and three layers of
vertices between the source and the sink. Hence, we can constructively
find a stable flow in a cyclic LM-network by reducing this instance to its
equivalent acyclic LM-network. The numbers of vertices and edges in the
acyclic network are just a constant factor of that in the cyclic network.
The running time is O(|V ||E|) and similarly the running time for cyclic
MPLM-networks, the running time is O(|V |(|E| + K)).

Acknowledgement. This research is partly supported by National Science Founda-
tion Grants AST- 1443965, CMMI 1728165.
The full paper can be found at: https://arxiv.org/pdf/1710.03091.pdf.
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With the global increase of urbanization, the population of urban areas is grow-
ing rapidly. Concurrently, the number of private vehicles in these places is
increasing dramatically. Due to traffic and air quality concerns, many big cities
have begun to adopt the vehicle licenses quantitative control policies. In these
cities, a limited number of vehicle licenses are allocated among a very large
number of potential car buyers every one or two months. Then how to design an
effective mechanism to allocate the limited license quotas becomes a challeng-
ing problem. The current allocation mechanisms differ from city to city. Several
mechanisms have been developed and implemented in reality, such as auction,
lottery, lottery with reserved price, and the simultaneous auction and lottery.

In this work, we target to design the optimal mechanism to balance efficiency
and equality in practice. We first propose a unified two-group mechanism frame-
work that either includes or outperforms all the existing mechanisms. Besides,
the unified framework also leads to easy implementation in reality due to its
truthfulness and simple structure. Under this framework, assuming the players’
private values are drawn independently from a common distribution, we prove
the optimal mechanism is always sequential auction and lottery. Besides, the
optimal allocation rule depends only on the total number of players and the
total number of licenses for all commonly used distributions. We then extend
the two-group framework to a general multi-group framework. The experimental
results show us the optimal two-group mechanism is the best choice in practice.
Thus, our work provides an effective tool for social planner to design truthful
mechanisms to maximize the social efficiency under any equality level. We also
discuss possible applications of our result to resource allocation in other settings.

A full version of this paper is available at http://ssrn.com/abstract=3049504.
This work is partly supported by the Research Grant Council of Hong Kong (GRF
Project No. 16213115, 16243516 and 16215717), and by the National Natural Science
Foundation of China (NSFC-11601022).
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