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9.1 Introduction

Structural parameters for undirected graphs such as the path-width or tree-
width of graphs have played a crucial role in developing a structure theory
for graphs based on the minor relation and they have also found many algo-
rithmic applications. Starting in the late 1990s, several ideas for generalizing
this theory to digraphs have appeared. Broadly, for the purpose of this chap-
ter, we distinguish these approaches into three categories: tree-width inspired,
rank-width inspired and density based. The tree-width inspired approaches
are based on the idea of generalizing the concept of undirected tree-width
(or path-width) to digraphs. The various attempts, which we will discuss
below, all have the goal of generalizing some natural property or some nat-
ural characterization of tree-width of undirected graphs to digraphs. In the
same way as tree-width can be seen as a global connectivity measure for
undirected graphs, the various versions of a directed analogue of tree-width
measure global connectivity in digraphs. However, on digraphs, connectivity
can be measured in many different natural ways. It turns out that equivalent
characterizations of tree-width on undirected graphs yield different concepts
on digraphs, with different properties, advantages and disadvantages. We will
outline the most prominent of these concepts in Section 9.2 below.

The “tree-width inspired” approaches have in common that they define
new classes of digraphs using structural parameters for digraphs which can
not also be explained by structural parameters of the underlying undirected
graphs. In particular, classes C of digraphs of, e.g., bounded DAG-width, do
not automatically have bounded undirected tree-width (in the sense that the
class of undirected graphs obtained from C by ignoring the direction of arc
has bounded tree-width).

Another feature that almost all of these approaches have in common is
that the class of DAGs has low width in all these definitions. This is a con-
sequence of the fact that these approaches measure strong connectivity in
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various forms. Unfortunately, this does have problematic algorithmic conse-
quences, as many NP-hard computational problems remain hard on acyclic
digraphs, and hence remain hard on classes of bounded width in these mea-
sures. Therefore, research in algorithmic applications of digraph width mea-
sures has tried to develop width measures for separating the class of DAGs
into easy and hard instances. The next two types of digraph width measures
achieve this goal.

A different approach to digraph width measures is taken in the definition
of directed versions of rank-width [82] (a graph measure broadly equivalent
to clique-width [25]).

Clique-width can naturally be defined on digraphs and it was indeed de-
fined this way right from the beginning. However, algorithms for computing
clique-width are not based on clique-width but on rank-width of graphs. Rank
decompositions can be computed efficiently [82] and from a rank decomposi-
tion a clique-width decomposition can be computed.

In order to translate concepts from undirected rank-width, such as vertex-
minors, to the directed setting, Kanté developed concepts of rank width for
digraphs such as bi-rank-width and F4-rank-width [56]. This approach
has led to a theory of directed rank-width with connections to other types
of digraphs. A feature that distinguishes this approach from the tree-width
inspired approaches above is that if a class of digraphs has bounded directed
clique or rank-width then the class of underlying undirected graphs also has
bounded undirected clique width. As a consequence, any graph property de-
finable in monadic second order logic can be decided in linear time on
any class of digraphs of bounded bi-rank-width [26]. Another consequence of
this fact is that the class of DAGs no longer has bounded width. Those DAGs
have low width in the tree-width inspired approaches has led to problems for
algorithmic applications of tree width based directed width measures as sev-
eral interesting computational problems remain hard on DAGs. This problem
therefore does not appear in classes of bounded bi-rank-width etc.

Whereas on undirected graphs, classes of graphs of bounded tree-width
also have bounded clique-width, in the directed setting these concepts are
incomparable. We will present the concepts of directed rank-widths in Sec-
tion 9.9.

A third, and final, approach to digraph width measures covered in this
chapter are concepts based on density arguments. In their quest for a solid
mathematical definition of “sparse” classes of graphs, Nešetřil and Ossona de
Mendez defined classes of graphs of bounded expansion and classes which
are nowhere dense [74, 75]. These concepts can be generalized to digraphs
as well and lead to a surprisingly elegant theory. We will cover the resulting
theory in Section 9.6.

Overview. The remaining chapter is organized as follows. In Section 9.2 we
cover the tree-width inspired width measures. In particular, we will briefly
introduce graph searching games (Section 9.2.1), which provide an intuitive
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way of defining graph and digraph decompositions, introduce some of the
more prominent digraph decompositions (Section 9.2.4 and Theorem 9.2.13)
and compare them with respect to generality (Section 9.2.5).

In Section 9.3, we provide a brief overview of the existing structure the-
ory for digraphs based on directed tree-width. In particular we review known
obstructions to directed tree width. This also leads to a fixed-parameter algo-
rithm for computing directed tree-decompositions which, together with some
algorithmic applications, we present in Section 9.4 and 9.5.

In Sections 9.6 to 9.8 we cover the relatively recent theory of density based
width measures: classes of digraphs of bounded expansion (Section 9.7) and
nowhere dense classes of digraphs (Section 9.8).

Finally, in the last part of the chapter, Section 9.9, we present the concepts
of digraph width measures based on rank-width.

9.2 Tree-Width Inspired Width Measures

In this section we will present some of the best known tree-width inspired
width measures for digraphs. Many of them can be explained in terms of
graph searching games and these games provide an intuitive way to un-
derstand these measures. We will therefore first give a brief overview of graph
searching games, also known as Cops and Robber games.

9.2.1 Graph Searching Games

Graph searching games have been studied intensively in graph theory and
they have found a wide range of applications. See [2, 38, 68] for surveys
on the subject. Here we will only review the absolute basics needed for our
exposition of digraph width measures.

A graph searching game is played on a graph by two players, often called
the cops and the robber or the searchers and the fugitive. The general
goal for the cops is to catch the robber, whereas the robber tries to evade.
The cop player controls a number of cops each of which occupies a single
vertex of the graph. The robber also occupies a single vertex. In every round
of the game, the cop player can move some of the cops from their current
position to new positions on the graph or he can place new cops on the graph.
However, he first has to announce his move and lift up all cops he wants to
move, releasing their current position. Then the robber can react to this by
changing his own position. The rules for the robber movement differ between
the various types of graph searching games. Finally, the cops are placed on
their new positions. If any cop is placed on the vertex occupied by the robber,
then the cops win. Otherwise, if the robber can escape forever, he wins.

More formally, given a graph G = (V (G), E(G)), a current position in the
game can be described by a pair (X, v), where X ⊆ V (G) are the vertices
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occupied by the cops and v ∈ V (G) is the vertex occupied by the robber. A
single round of the play can therefore be described as a move from a position
(X, v) to a new position (X ′, v′). The game always starts at a position (∅, v),
for some vertex v ∈ V (G).

In most games of interest to us, the cops can move freely, i.e. from the
current position (X, v) they can move to any new position X ′. The robber is
more restricted and the various restrictions on the movement of the robber
define different variations of the game. To give an example, the game cor-
responding exactly to tree-width is played on an undirected graph. From a
current position (X, v), once the cops announce their move to X ′, the robber
can choose any vertex v′ reachable from v in the graph G− (X ∩X ′), i.e. any
position reachable from v by a path not occupied by a cop that remains on
the board.

Given a play (Xi, vi)0≤i<l, for some l ∈ N∪{ω}, we can define the width
of the play as max{|Xi| : 0 ≤ i < l}. In this way, any graph searching game
defines a graph parameter assigning to every graph or digraph G the minimal
number k such that the cops have a winning strategy against the robber on
G of width at most k. A trivial strategy for the cop player to win on any
given graph is to put a cop on every single vertex of the graph. Hence, the
width is always well defined and it is the minimal number of cops required
for a winning strategy that yields an interesting graph parameter.

Graph searching games can be classified in many different ways. An impor-
tant distinction is whether the cops can always see the robber, called visible
graph searching, or whether they need to search the graph without knowing
where the robber is. This is referred to as invisible graph searching. It is
known that in the game variant above where the robber can move along any
cop free path, the graph parameter defined by the visible variant is exactly
tree-width whereas the invisible variant defines path-width [15, 92].

An important concept in graph searching is monotonicity. Monotonicity
restricts the winning strategies for the cops. We distinguish two forms of
monotonicity: cop monotonicity and robber monotonicity. In a cop-
monotone strategy, the cop player is not allowed to place a cop on a vertex
that had already been occupied by a cop in the past. That is, once a cop
is lifted from a vertex v ∈ V (G), no cop can later on be placed on v. In
a robber-monotone strategy, the cops have to play in a way such that
once, at any particular point in the play, a vertex v is not reachable for the
robber, it has to remain unreachable for the rest of the play. More precisely,
let (Xi, vi)0≤i<n be a play, for some n ∈ N ∪ {ω}. For all i let Ri be the
set of vertices available to the robber starting from vi in G − Xi. The play
is robber-monotone, if Rj ⊆ Ri for all 0 ≤ i < j. It is known, that on
undirected graphs, in the visible and the invisible graph searching games, the
cops have a winning strategy of width k if, and only if, they have a cop- and
robber-monotone winning strategy of width k. For digraphs, this will often
not be the case and monotone and non-monotone versions will define different
parameters, see e.g. [1, 69].
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There is a natural correspondence between winning strategies of the cops
in a graph searching game and graph decompositions. For instance, in the
visible graph searching game on undirected graphs described above, a winning
strategy for the cop player can be seen as a tree with the initial position in
the game as the root and a child for every possible move of the robber and
the corresponding move of the cops. This monotone winning strategy tree
immediately defines a tree decomposition of the graph of width one less than
the width of the winning strategy. Conversely, a tree decomposition of width k
of a graph immediately defines a winning strategy for the cop player of width
k+1. It is this natural correspondence between winning strategies and graph
decompositions that makes graph searching games an elegant characterization
of width measures for graphs and digraphs.

9.2.2 Decompositions of Directed Graphs

In the following sections we will define several width measures of directed
graphs. All of them are defined in terms of a decomposition of digraphs.
The type of decompositions will vary but in general they will all have a
common structure. A decomposition of a digraph D consists of a digraph T ,
usually a tree or a DAG, and a labeling function β assigning to every vertex
of T a subset of vertices of D. Furthermore, there is a guarding function
γ that assigns to every arc or to every vertex (or both) a guard. Usually, a
guard is also a set of vertices. The role of the guard of an arc e ∈ A(T ) is
that if e = (u, v) ∈ A(T ) and X :=

⋃
{β(t) : t is reachable from v in T − e},

then γ(e) controls connectivity between X and the rest of D. Control can
mean that there is no path from X to any vertex outside of X in D−γ(e), or
that there is no strong component in D − γ(e) containing a vertex of X and
a vertex not in X. The various types of decompositions defined in the sequel
are obtained by varying the type of guards and the type of the decomposition
structure T .

Definition 9.2.1 (Strong and Weak Guarding) Let D be a digraph and
let X,Y ⊆ V (D) be sets.

1. We say that Y strongly guards X, or is a strong guard of X, if ev-
ery directed walk starting and ending in X which contains a vertex of
V (D) \ X also contains a vertex of Y . In other words, X \ Y is the union
of the vertex sets of some set of strong components of D − Y .

2. We say that Y weakly guards X, or is a weak guard of X, if every arc
e = (u, v) ∈ A(D) with u ∈ X \ Y has v ∈ X ∪ Y .

As an example for the two notions of guarding in the previous defini-
tion, consider the set X := {3, 4, 5} of vertices in the digraph shown in
Figure 9.1 a): The set {6, 9} is a weak guard for X. The set {6} containing
only the vertex 6 is already a strong guard, as every path from X to itself
that does contain any vertex not in X must go through 6. But {6} is not a
weak guard for X.
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The names strong and weak guards come from the intuition that strong
guards control strong components, i.e. strong connectivity, whereas weak
guards control directed paths and therefore weak reachability. Of course,
every weak guard is also strong and therefore weak guarding is the more
restrictive concept of guards.

Note that for every set X of vertices in a digraph G there is a uniquely
defined minimal weak guard, which consists of every vertex in G\X which is
an out-neighbour of a vertex in X. But there can be many distinct and even
disjoint minimal strong guards.

Definition 9.2.2 (Abstract Digraph Decomposition) Let D be a di-
graph. An abstract digraph decomposition of D is a triple (T, β, γ),
where T is a digraph, β : V (T ) → 2V (D) and γ : A(T ) → 2V (D) such that⋃

{β(t) : t ∈ V (T )} = V (D).
For every t ∈ V (T ) we define

Tt := T
[
{s ∈ V (T ) : s is reachable from t by a directed path in T}

]

as the subgraph of T induced by the vertices reachable from t. Furthermore,
if S ⊆ T then we define β(S) :=

⋃
{β(s) : s ∈ V (S)}.

With every decomposition we will define a width w(t) for every t ∈ V (T ).
The width w(T, β, γ) is then defined as max{w(t) : t ∈ V (T )}.

Finally, for every v ∈ V (D), we define β−1(v) := {t ∈ V (T ) : v ∈ β(t)}.
Sometimes, guards are more naturally associated with vertices of T instead

of its arcs and hence γ is a function from V (T ) into 2V (D). We call such
abstract decompositions node guarded.

Several decompositions below use rooted directed trees as underlying di-
graph.

Definition 9.2.3 A rooted directed tree1 is a digraph obtained from an
undirected tree by selecting a vertex r as a root and orienting every arc away
from the root vertex r.

9.2.3 Tree-Width Based Digraph Width Measures

In this section we describe some of the most prominent tree-width inspired
digraph decompositions proposed in the literature. Throughout the section we
will illustrate the different decompositions by the following example digraph
shown in Figure 9.1 a).

The first generalization of tree-width to digraphs proposed in the litera-
ture was directed tree-width [54, 84].

1 This is also called an out-tree.
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Figure 9.1 a) An example digraph D and b) a directed tree decomposition of D
of width 2.

Definition 9.2.4 (Directed Tree Decompositions) A directed tree de-
composition of a digraph D is an abstract digraph decomposition (T, β, γ)
such that T is a rooted directed tree, {β(t) : t ∈ V (T )} is a partition of V (D)
into non-empty sets and for every e = (s, t) ∈ A(T ), γ(e) is a strong guard
of β(Tt).

For every t ∈ V (T ) we define Γ (t) := β(t) ∪
⋃

e∼t γ(e) and we define the
width w(t) as w(t) :=

∣
∣Γ (t)

∣
∣−1, where e ∼ t means that the arc e is incident

to t.

See Figure 9.1 b) for an illustration of a directed tree decomposition of
the digraph in Figure 9.1. The figure also demonstrates some of the (algo-
rithmically) problematic aspects of directed tree decompositions: The guard
6 on the branch from the root to node labelled by 12 is actually a vertex
that is being decomposed in an entirely different subtree of the root. Hence,
directed tree decompositions can use vertices in a guard that are contained
in strong components which are part of different subtrees. This can cause
problems in algorithmic applications. Furthermore, arcs of the digraph D
can cross between subtrees in the directed tree decomposition, something
that cannot happen in the undirected case. This happens for instance with
the arc (8, 9) ∈ A(D). Finally, on a branch of a directed tree decomposition
from its root to a leaf it could happen that a vertex w is contained in a guard
of an arc e = (u, v), it then disappears from the next arc of the branch and
then reappears later on as a guard on the branch. This phenomenon does not
appear in the decomposition on Figure 9.1 but can happen in general.

The second problem, that arcs can cross subtrees – but only in one direc-
tion – is an intrinsic feature of directed decompositions. If this were disallowed
then we would essentially speak about undirected tree decompositions. The
first and the third problem, however, are unavoidable. We will see next the



412 S. Kreutzer and O.-j. Kwon

concept of D-decompositions, which are similar to directed tree decomposi-
tions but avoid these problems. However, it was shown in [3] that there are
classes of digraphs of bounded directed tree-width but unbounded D-width
(see Section 9.2.5). The examples separating the two concepts precisely use
these properties of guards containing vertices from different strong compo-
nents as well as guards reappearing along branches, showing that these prop-
erties of directed tree decompositions are unavoidable.

In [90], Safari suggests D-width as another structural complexity measure.
The definition of D-decompositions is perhaps the most natural translation
of undirected tree decompositions to the directed settings in terms of strong
connectivity. However, as we will see below, in terms of structural properties,
it is directed tree-width that shares most structural properties of undirected
tree-width. In the following definition we give a slightly different version of
D-decompositions. But the width defined by this concept differs from the
original definition at most by a factor of 2. See Figure 9.2 for an illustration.

Definition 9.2.5 (D-Decompositions) A D-decomposition of a digraph
D is an abstract digraph decomposition (T, β, γ) such that T is a rooted di-
rected tree, γ(e) := β(u) ∩ β(v) for every e = (u, v) ∈ A(T ) and γ(e) is a
strong guard of β(Tv) and β−1(v) induces a non-empty subtree of T for every
v ∈ V (D).

For every t ∈ V (T ) we define the width w(t) as w(t) :=
∣
∣β(t)

∣
∣.

6, 2, 74, 6

12, 9 6, 7, 8

12, 6

12, 11 12, 105, 4, 6

1, 2, 6

3, 4, 6

Figure 9.2 A D-decomposition of width 3 of the digraph in Figure 9.1.

Directed tree-width and D-width are related to each other because they
both correspond to the same graph searching game, the game where the rob-
ber can only stay within a strong component, but they are related to different
type of strategies for the cops. The next following three decompositions are
based on a different form of game, where the robber can follow any directed
path. DAG-width was defined in [11] and independently in [77], cf. [12]. See
Figure 9.3 a) for an illustration.
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Definition 9.2.6 (DAG Decompositions [12]) Let D be a digraph. A
DAG-decomposition of D is an abstract digraph decomposition (T, β, γ)
such that:

1. T is a DAG.
2. γ(e) = β(u) ∩ β(v), for every arc e = (u, v) ∈ A(T ), and γ(e) is a weak

guard of β(Tv).
3. β(a) ∩ β(c) ⊆ β(b) for every triple a, b, c ∈ V (T ) such that a, b, c appear

in this order on some directed path in T .
4. For every root t ∈ V (T ), β(Tt) = N+[β(Tt)].

For every t ∈ V (T ) we define the width w(t) := |β(t)|.
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a) b)

Figure 9.3 a) A DAG-decomposition and b) a Kelly-decomposition of the digraph
in Figure 9.1, both of width 3.

A related width measure is Kelly-width which is based on so-called Kelly-
decompositions. It was introduced in [51] to overcome some problems of DAG-
decompositions. See Figure 9.3 b) for an illustration.

Definition 9.2.7 (Kelly Decompositions [51]) A Kelly-decomposition
of a digraph D is a node-guarded abstract decomposition (T, β, γ) so that

1. T is a DAG.
2. {β(t) : t ∈ V (T )} is a partition of V (D) into non-empty subsets.
3. γ(t) is a weak guard of β(Tt) for every t ∈ V (T ).
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Figure 9.4 A directed path decomposition of the digraph in Figure 9.1 of width
3.

4. For all s ∈ V (T ) there is a linear order <s on its children t1, . . . , tp so
that for all 1 ≤ i ≤ p, γ(ti) ⊆ β(s) ∪ γ(s) ∪

⋃
j<si β(V (Ttj )).

5. Similarly, there is a linear order <r on the roots such that γ(ri) ⊆⋃
j<ri β(V (Trj

)).

The width w(t) of a vertex t ∈ V (T ) is defined as β(t) ∪ γ(t).

Note that the number of nodes in a Kelly-decomposition is at most the
number of vertices of the decomposed digraphs, as the bags form a partition.
This is not the case for DAG-decompositions and we will see below that DAG-
decompositions of optimal width k can become super-polynomially large,
i.e. have number of bags proportional to nk+1 (see [3]). See Section 9.4.1 for
details.

Finally, we introduce the concept of directed path decompositions, in-
troduced by Robin Thomas in the mid-90s but unpublished. See [8, 9] for
published references. See Figure 9.4 for an illustration.

Definition 9.2.8 (Directed Path Decompositions) A directed path
decomposition of a digraph D is a DAG-decomposition (T, β, γ) of D such
that T is a directed path.

Every type of decomposition introduced above naturally defines a digraph
width measure, summarized in the following definition.

Definition 9.2.9 (Directed Width Measures) Let D be a digraph. The
directed tree-width dtw(D) of D is defined as the minimum width of any
directed tree decomposition of D. Analogously, the D-width D-width(D),
DAG-width dag-width(D), Kelly-width Kelly-width(D) and the directed
path-width dpw(D) are defined as the minimum width of the corresponding
decomposition of D.

A class C of digraphs has bounded directed tree-width if there is a constant
c ≥ 0 such that dtw(D) ≤ c for every D ∈ C. Classes of bounded width for
other width measures are defined analogously.

Digraphs with no directed cycles longer than a fixed constant form an
example of a class of digraphs with bounded DAG-width, Kelly-width and
directed tree-width. This follows from the following results by Bang-Jensen
and Christiansen, respectively, Kintali.

Theorem 9.2.10 [7] For every natural number p, every D digraph having
no directed cycle of length more than p has DAG-width at most p and this is
best possible.
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Theorem 9.2.11 [63] For every natural number p, every D digraph having
no directed cycle of length more than p has directed tree-width and Kelly-width
at most p + 1.

We close this section by mentioning two other digraph width measures
which do not fall naturally within the framework of abstract decompositions.
The first is the DAG-depth, defined in [41]. To define it, we need the concept
of reachability component. Let D be a digraph. For v ∈ V (D) we define
ReachD(v) := {u ∈ V (D) : u is reachable from v by a directed path in D}.
A reachability component is a subgraph of D induced by an inclusion-
wise maximal non-empty set in {ReachD(v) : v ∈ V (D)}, i.e. an inclusion-
wise maximal induced subgraph with only one initial strong component (see
Section 1.5 for the definition of an initial component).

Definition 9.2.12 (DAG-depth) Let D be a digraph. The DAG-depth
dag-depth(D) of D is inductively defined as follows: if |V (D)| = 0, then
dag-depth(D) = 0. If D has a single reachability component, then we let
dag-depth(D) = 1 + min{dag-depth(D−v) : v ∈ V (D)}. Otherwise, if
D1, . . . , Dc are the reachability components of D for some C > 1, then
dag-depth(D) := max{dag-depth(Di) : 1 ≤ i ≤ c}.

There are various other width measures for digraphs that have been de-
fined in the literature, for instance oriented tree-width, Kenny-width,
entanglement, cycle rank and others, see e.g. [3, 13, 14, 41, 55].

9.2.4 Alternative Characterizations of Digraph Width Measures

In the previous section we have defined several width measures for directed
graphs based on variations of digraph decompositions. Many of these mea-
sures can also be defined equivalently and the equivalent definitions yield
additional insights and intuition about the corresponding width measures.

All width measures defined above can be characterized by graph searching
games. We have already covered the basics of graph searching games in Sec-
tion 9.2.1. For digraphs, two main variants of games have emerged, depending
on the ability of the robber to move. Let (X, v) be the current position in a
graph searching game on a digraph D. Suppose the cops announce to move
from X to X ′. In the strong reachability game, the robber can choose any
new position v′ within the strongly connected component of D − (X ∩ X ′)
that contains v. In the weak reachability game, the robber can choose any
position v′ that is reachable from v in D − (X ∩X ′). Combining this distinc-
tion with the distinction between a visible and an invisible robber yields a
range of graph searching games on directed graphs that can be used to give
game based characterizations of the width measures introduced above.

https://doi.org/10.1007/978-3-319-71840-8_1
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Theorem 9.2.13 Let D be a digraph and k ∈ N.

1. If dtw(D) ≤ k, then k cops have a robber monotone winning strategy
in the visible strong cops and robber game on D. Conversely, if k cops
have a winning strategy in this game on D, robber-monotone or not, then
dtw(D) ≤ 3k + 2. If k cops have a winning strategy in the visible strong
cops and robber game on D, then 3k + 2 cops have a robber-monotone
winning strategy on D [1, 54].

2. D has DAG-width ≤ k if, and only if, k cops have a cop-monotone winning
strategy on D if, and only if, k cops have a robber-monotone winning
strategy on D in the visible weak reachability game [12].

3. D has Kelly-width ≤ k if, and only if, k cops have robber-monotone win-
ning strategy on D in the invisible inert weak reachability game. Here,
in the inert game variant the robber can only move when the cop player
announces to place a cop on the current robber position [51].

4. D has directed path-width k if, and only if, k cops have a cop-monotone
winning strategy on D if, and only if, k cops have robber-monotone win-
ning strategy on D in the invisible weak reachability game [8].

5. D has DAG-depth ≤ k if, and only if, the cop player has a winning strategy
with at most k cops in the visible weak reachability game in which he never
moves any cop, i.e. in every round the cop player has to use new cops [41].

Part (1) of the previous theorem follows from the observation that any
directed tree decomposition of a digraph of width k yields a winning strategy
for k + 1 cops. Part (2) − (3), on the other hand, follow from Theorem 9.3.8
below, as a haven of order k yields a winning strategy for the robber against
fewer than k cops. See below for details.

We close this section by giving an alternative characterization of Kelly-
width in terms of elimination ordering and partial k-DAGs.

Definition 9.2.14 (Directed elimination ordering [51]) An elimina-
tion order � for a digraph D is a linear order on V (D). For a vertex v
define Vv� := {u ∈ V : v � u}. The support of a vertex v with respect to �
is

supp�(v) := {u ∈ Vv� : there is v′ ∈ ReachG−Vv�(v) with (v′, u) ∈ E} .

The width of an elimination order � is maxv∈V |supp�(v)|.

The name elimination ordering originates in the following equivalent way
of defining the width of an elimination ordering based on an explicit elimi-
nation process. Let D be a digraph and let � be a linear order on V (D). Let
(v0, v1, . . . , vn−1) be the enumeration of V (D) with respect to �. We define
G�

0 := G and G�
i+1 as the graph obtained from G�

i by deleting vi and adding
(if necessary) new arcs (u, v) if (u, vi), (vi, v) ∈ E(G�

i ) and u �= v. G�
i is the

directed elimination graph at step i with respect to �.
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Now it is readily verified that the width of the elimination order � is the
maximum over all i of the out-degree of vi in G�

i .

Definition 9.2.15 ((Partial) k-DAG [51]) The class of k-DAGs is defined
recursively as follows:

• A complete digraph with k vertices is a k-DAG.
• A k-DAG with n + 1 vertices can be constructed from a k-DAG H with n

vertices by adding a vertex v and arcs satisfying the following:
– there are at most k arcs from v to H and
– if X is the set of endpoints of the arcs added in the previous sub-

condition, then there is an arc from u ∈ V (H) to v if (u,w) ∈ E(H)
for all w ∈ X \ {u}. Note that if X = ∅, this condition is true for all
u ∈ V (H).

A partial k-DAG is a subgraph of a k-DAG.

Theorem 9.2.16 ([51]) Let G be a digraph. The following are equivalent:

1. G has Kelly-width at most k + 1.
2. G has a directed elimination ordering of width ≤ k.
3. k + 1 cops have a robber-monotone winning strategy to capture an inert

invisible robber.
4. G is a partial k-DAG.

Further characterizations of classes of digraphs of bounded width have
been given in terms of forbidden subgraphs and forbidden minors, e.g. in
[65], where Kintali and Zhang characterized partial 1-DAGs in terms of
forbidden directed minors. See also [33, 73].

9.2.5 Comparing Directed Width Measures

In this section we compare the width measures introduced in the previous
section with respect to generality. In particular, we are interested in the
question whether classes of digraphs of bounded width with respect to one
measure automatically have bounded width in another measure. As we will
see, the width measures introduced above form the partial order shown in
Figure 9.5.
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dtw

DAG-width Kelly-width

D-width

dpw DAG-depth
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<

Figure 9.5 The relation between different measures. An arrow labelled by “<”
means bounded only in one direction, an arrow labelled by “≤” means bounded at
least in one direction. A bidirected arrow labelled “ �∼” means not bounded in any
direction.

Lemma 9.2.17 ([12])

1. Every class of digraphs of bounded DAG-width has bounded directed tree-
width.

2. Conversely, there are classes of digraphs of bounded directed tree-width
and unbounded DAG-width.

Part 1 can easily be seen by considering the game characterization of DAG
width and directed tree-width (see Theorem 9.2.13): the set of positions the
robber can choose at any particular time in the directed tree-width game is
a subset (proper or not) of the set of positions he can choose in the DAG
width game. Hence, if k cops can catch the robber in the latter, they can also
do so in the former.

Towards Part 2, let Tt be a complete directed binary tree of height t, i.e. a
tree with all arcs oriented away from the root towards the leaves and every
vertex has two or zero successors. Furthermore, every path from the root to a
leaf has length t. Now add to Tt an arc from every vertex v ∈ V (Tt) to every
ancestor u ∈ V (Tt) of v, i.e. to every u �= v ∈ V (Tt) on the unique path from
the root r of Tt to v. We call this a tree with back arcs.

It is not hard to see that two cops can catch the robber on this tree for
any value of t in the directed tree-width game: they just start with one cop
at the root r. Then the robber has to decide into which of the two subtrees
he wants to move. The cops can then put the second cop on the root of this
subtree, i.e. on the successor v of r which is the root of the subtree containing
the robber. If the robber is on this vertex v, he can only move further down
into the subtree, i.e. into a subtree rooted at a successor v′ of v. Once the cop
on v is in place, the first cop on the root can be lifted and moved to v′. The
cops continue in this way chasing the robber down. This is possible because
once a cop is on v, every path that starts at the subtree of v containing the
robber and which ends in this subtree but has an inner vertex outside of this
tree has to go through v. Hence, even with only one cop on v the robber can
no longer leave the subtree rooted at v.

In the DAG-width game, however, the robber can simply follow a directed
path. In this game, to chase the robber down the tree the cops need to occupy
the entire path from the root of Tt to the root of the current subtree containing
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the robber. This results in a strategy using t cops. With a little extra work
one can show that there is no other, substantially better strategy. Hence, the
DAG width of Tt is proportional to t. See [12] for details.

The next result we state is that the DAG-width of a digraph is bounded
by a function of its Kelly-width. The question whether DAG-width and Kelly-
width of a class of digraphs are mutually bounded is equivalent to the question
whether the monotone cop numbers of the DAG-width and Kelly-width game
on digraphs are bounded by each other. This is a long open problem in
the theory of graph searching games. A partial answer was finally given by
Rabinovich [3, 83] who introduced the concept of weak monotonicity in the
DAG-width game and proved that every strategy for k cops in the Kelly-
width game can be translated into a weakly monotone strategy for k cops in
the DAG-width game. Furthermore, any winning strategy for k cops in the
weakly monotone game can be translated into a monotone strategy for k2

cops in the DAG width game. This implies the following lemma.

Lemma 9.2.18 Every class C of digraphs with bounded Kelly-width has
bounded DAG-width.

The converse of the lemma is still open and it is related to one of the
biggest open problems in graph searching, namely whether the monotonicity
costs for Kelly- and DAG-width games are bounded, i.e. if there is a function
f : N → N such that for every digraph D, if k cops have a winning strategy on
D in the Kelly-game then they also have a robber-monotone winning strategy
on D using at most f(k) cops (likewise for DAG-width games).

The next result we mention relates directed path-width to Kelly-width.
Again it follows immediately from the game characterizations of the width
measures that Kelly-width is more general than directed path width. Towards
the converse, it can again be shown through the game connection that if C
is a class of bidirected digraphs, i.e. digraphs where for every arc (u, v) also
the reverse arc (v, u) is present, the DAG-width, Kelly-width, directed tree-
width and D width all coincide with the undirected tree-width of the class C′

of graphs obtained from C by replacing every directed arc by an undirected arc
(removing duplicates). Furthermore, the directed path width of C equals the
path-width of C′ and the DAG-depth equals the tree-depth. As, for instance,
the class of trees has unbounded path width but bounded tree-width, the
next lemma follows.

Lemma 9.2.19 Every class of digraphs of bounded directed path-width has
bounded Kelly-width. Conversely, there are classes of digraphs of bounded
Kelly-width but unbounded directed path-width.

Finally, we compare D-width to the other classes. When D-width was in-
troduced, it was conjectured to be equivalent to directed tree-width in the
sense that classes of digraphs have bounded D-width if, and only if, they have
bounded directed tree-width [90, Page 756]. The observation that bounded
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D-width implies bounded directed tree-width is easily seen. One of the main
differences between directed tree decompositions and D-decompositions is the
concept of guarding. As the example in Figure 9.1 b) and the discussion in
the paragraphs following the example show, the guard of an arc e can con-
tain vertices which are contained in bags of an entirely different part of the
tree decompositions. Also, along a branch of the directed tree decomposi-
tion, vertices can appear in a guard, then disappear from the guards and
then reappear later. This leads to strategies for the cop-player which are not
cop-monotone. This “external” guarding as well as the non-monotonicity is
not possible in D-decompositions. Amiri et al. [3] manage to exploit these
differences to exhibit classes of digraphs of bounded directed tree-width but
where an unbounded number of cops is needed for the cop-monotone visible
strong cops and robber game. This already implies that the D-width is also
unbounded. They also exhibited classes of digraphs where a bounded number
of cops have cop-monotone winning strategies but where the D-width is still
unbounded.

Lemma 9.2.20 ([3][90])

1. Every class of digraphs of bounded D-width has bounded directed tree-
width.

2. Conversely, there are classes of digraphs of bounded directed tree-width
with unbounded D-width.

In [3], D-width is shown to be incomparable to Kelly and DAG-width.

Lemma 9.2.21

1. There are classes of digraphs of bounded D-width and unbounded Kelly-
and DAG-width.

2. There are classes of digraphs of bounded DAG-width unbounded D-width.
3. Every class of digraphs of bounded DAG-depth has bounded directed path-

width but the converse is false.

Finally, it can again be shown using the game characterization that classes
of digraphs of bounded directed path-width have bounded D-width and also
bounded Kelly-width. The converse fails in both cases as explained above:
the class of trees has bounded tree-width but unbounded path-width in the
undirected case and replacing in trees arcs by two directed arcs in opposite
directions separates directed path-width from D- and Kelly-width.

To separate directed path-width from DAG-depth note that the class of
directed paths has directed path-width 2 but unbounded DAG-depth. On the
other hand, one can show that if a digraph D has no path longer than t, then
this implies that t + 1 cops can win the invisible cops and robber game on
D and hence, by the game characterization of directed path-width in [8] and
[50], the directed path-width is also at most t + 1.
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9.3 Structure Theory for Directed Graphs Based on
Directed Minors

Originally, Robertson and Seymour introduced the tree-width of undirected
graphs as part of their monumental graph minor project culminating in the
proof of Wagner’s conjecture. At the heart of this project is a very powerful
structure theorem explaining what can be said about a graph G knowing
that it does not contain a fixed graph H as a minor. One simple reason
for this could be that the tree width of G is too small. But G may fail to
contain H as a minor even if the tree-width is very high. Therefore the major
part of the graph minors project deals with graphs of very high tree-width
that do not contain a fixed H as a minor. For this, one needs to understand
what information can be gained about a graph knowing that its tree width
is very high. The most fundamental result in this context is the excluded
grid theorem in [89] stating that any graph of sufficiently high tree-width
contains a large grid as a minor. Once this grid is found one can then analyze
how the rest of the graph attaches to this grid which eventually leads to
the local structure theorem and furthermore to the full structure theorem
mentioned before.

With the introduction of directed tree-width, Reed, Robertson, Seymour
and Thomas initiated the programme of generalizing this structure theory
from undirected graphs to digraphs. Again, a major challenge is to under-
stand what information can be obtained about a digraph knowing that its
directed tree-width is very high, i.e. what can we say about obstructions
to small directed tree-width. Consequently, the main open conjecture in the
initial papers is the directed analogue of the excluded grid theorem, which,
however, was only proved more than a decade after directed tree-width was
introduced. In this section we present several powerful duality results between
directed tree-width and various forms of obstructions. These results are not
only interesting from a structural perspective but have found important al-
gorithmic applications. We will comment on these applications in Section 9.4
below.

We begin by establishing a few fundamental properties of directed tree
decompositions. Let (T, β, γ) be a directed tree decomposition of a digraph
D.

The next lemma follows easily from the definition of directed tree decom-
positions and establishes a connection between decompositions and strong
separators, i.e. sets of vertices separating strongly connected components into
smaller components.

Lemma 9.3.1 Let T := (T, β, γ) be a directed tree decomposition of a di-
graph D.

1. For every e ∈ E(T ), γ(e) is a strong separator in D, i.e. if S1, S2 are
the two components of T − e, then every strong component of D − γ(e) is
either contained in β(S1) or β(S2).
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2. If t ∈ V (T ) and T1, . . . , Ts are the components of T − t, then every strong
component of D − Γ (t) is contained in exactly one β(Ti) for some i.

Definition 9.3.2 Let D be a digraph and W ⊆ V (D).

1. A balanced W -separator is a set S ⊆ V (D) such that every strong
component of D − S contains at most |W |

2 vertices of W . The order of
the separator is |S|.

2. The set W ⊆ V (D) is k-linked if D does not contain a balanced W -
separator of order k.

We show first that in a digraph of directed tree-width at most k −1 every
set has a balanced separator of order k, i.e. D does not contain a k-linked
set.

Lemma 9.3.3 Let D be a digraph of directed tree-width at most k − 1. Then
every set W ⊆ V (D) has a balanced W -separator of order at most k.

We sketch the proof of the lemma. See [70, 84] for details. Let (T, β, γ) be
a directed tree decomposition of D of order k. For every arc e = (u, v) ∈ A(T )
let C1, . . . , Cl be the strong components of D − γ(e) containing an element
of W . If none of the Ci contains more than 1

2 |W | elements of W , then γ(e)
is a balanced W -separator and we are done. Otherwise, by Lemma 9.3.1, one
of the two components Tu, Tv of T − e contains the (unique) component Ci

containing more than half of the elements of W . We orient e towards u if Ci

is contained in β(Tu) and towards v otherwise. This defines an orientation of
T and as T is a tree there must be a vertex t ∈ V (T ) such that all incident
arcs point towards t. It is easily seen that Γ (t) is a balanced W -separator.

The next theorem establishes an even more precise relation between k-
linked sets and the directed tree-width.

Theorem 9.3.4 ([54]) Every digraph D either has directed tree-width at most
3k + 2 or contains a set W which is k-linked and is a witness that D has
directed tree-width at least k.

We give the proof of this theorem as it will be the basis of an FPT algo-
rithm2 for computing, for a given digraph D a directed tree decomposition
whose width is an approximation of the directed tree-width of D. in Sec-
tion 9.4.

2 By an FPT algorithm we mean an algorithm with running time f(k) · nc, for
some function f and constant c, where n is the input size and k is a parameter
defined in the definition of the problem the algorithm solves. See Section 1.11
for details.

https://doi.org/10.1007/978-3-319-71840-8_1
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Proof. To prove the theorem we inductively construct a directed tree decom-
position (T, β, γ) of D. We maintain the property that for every inner vertex
t ∈ V (T ), |Γ (t)| ≤ 3k + 2 and for every arc e ∈ E(T ), |γ(e)| ≤ 2k + 1.

Either this process will succeed and therefore produce a directed tree
decomposition of the required width or it will fail at some point at which we
obtain a k-linked set.

We initialize the construction by the trivial directed tree decomposition
T :=

(
T, β, γ), where T is the tree with one node r and β(r) := V (D). Clearly

this satisfies the invariant above.
Now suppose T = (T, β, γ) has already been constructed. If T does not

contain a leaf t ∈ V (T ) with |Γ (t)| > 3k+2, then we are done. So let t ∈ V (T )
be such a leaf.

Let e be the arc incident with t. By construction, |γ(e)| ≤ 2k + 1. If γ(e)
is k-linked, we are done. Otherwise, let S be a balanced γ(e)-separator of
order at most k. Let v ∈ β(t) be an arbitrary vertex and let X := S ∪ {v}.
By construction, |X| ≤ k + 1, X ∩ β(t) �= ∅ and every strong component C
of D − X contains at most 1

2 |γ(e)| ≤ k elements of γ(e). Let C1, . . . , Cs be
the strong components of D − (X ∪γ(e)). By the definition of a directed tree
decomposition, either V (Ci) ⊆ β(t) or V (Ci) ∩ β(t) = ∅, for all 1 ≤ i ≤ s.
Let D1, . . . , Dl be the components among {C1, . . . , Cs} with V (Ci) ⊆ β(t).
For each Di, let D′

i be the component of D − X, such that V (Di) ⊆ V (D′
i)

and let Wi =
(
γ(e) ∩ V (D′

i)
)

∪ X. Then

|Wi| ≤ |γ(e) ∩ V (D′
i)| ∪ |X| ≤ k + k + 1 = 2k + 1

and Di is also a strong component of D − Wi.
We extend T as follows to obtain a new decomposition T ′ := (T ′, β′, γ′):

add new vertices t1, . . . , tl and arcs ei := (t, ti) to T , for all 1 ≤ i ≤ l, and
set β′(t) := X ∩ β(t), β′(ti) := V (Di) and γ′(ei) := Wi. For all other nodes
t and arcs e we set β′(t) := β(t) and γ′(e) := γ(e). It is easily seen that
T ′ is a directed tree-decomposition of D maintaining the invariant above. In
particular, |β′(t)| ≤ |X| ≤ k + 1 and |γ′(ei)| ≤ 2k + 1. Furthermore, γ′(ei) ⊆
X ∪ γ(e) and thus Γ ′(t) = β′(t) ∪ γ′(e) ∪

⋃
{γ′(ei) : 1 ≤ i ≤ s} ⊆ X ∪ γ(e).

It follows that |Γ ′(t)| ≤ k + 1+ 2k + 1 = 3k + 2. Furthermore, as D1, . . . , Dl

are strong components of D − (X ∪ γ(e)), the conditions of directed tree
decompositions are still satisfied. �

A consequence of the proof of the previous lemma is that if a digraph D
has directed tree-width at most k then it also has a directed tree decompo-
sition of width at most 3k + 2 which has a particularly nice form.

Definition 9.3.5 (Nice Directed Tree Decomposition) Let D be a di-
graph. A directed tree decomposition (T, β, γ) of D is nice if

a) for all e = (s, t) ∈ A(T ) the set β(Tt) is a strong component of G − γ(e)
and

b) if t ∈ V (T ) and s1, . . . , sl are the children of t in T , then
⋃

1≤i≤l β(si) ∩⋃
e∼t γ(e) = ∅.
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Nice decompositions are easier to work with in algorithmic applications
and we will use them in the applications in Section 9.4. One immediate con-
sequence of this definition is the following lemma which is algorithmically
useful.

Lemma 9.3.6 Let (T, β, γ) be a directed tree-decomposition of a digraph D.
For every t ∈ V (T ) there is an ordering <t on the successors s1, . . . , sk of t
in T so that if si <t sj, then D does not contain any arc e = (u, v) ∈ E(D)
with u ∈ β(Tsi

) and v ∈ β(Tsj
).

For now we go back to the study of obstructions for directed tree width.
We have already seen that a k-linked set is an obstruction to small directed
tree-width. The next obstruction we study are known as havens. In the
sequel, for any set X and k ≥ 0, we denote the set of all subsets of X of order
less than k by [X]<k.

Definition 9.3.7 Let D be a digraph. A haven of D of order k is a function
h : [V (D)]<k → 2V (G) assigning to every set X of fewer than k vertices a
strong component of G − X such that if Y ⊆ X ⊆ V (D) with |X| < k, then
h(X) ⊆ h(Y ).

It is easily seen that any k-linked set W in a digraph D defines a haven
of order k: for every set X ⊆ V (D) of order at most k define h(X) as the
(unique) strong component of D−X containing more than half of the elements
of W . It is straightforward to verify that this satisfies the haven axioms.
Hence, we obtain the following theorem.

Theorem 9.3.8 ([54])

1. If G is a digraph of tree-width at most k, then G does not contain a haven
of order k.

2. Conversely, if G does not contain a haven of order k, then G has tree-width
at most 3k + 2.

We now define a sequence of other obstructions for directed tree-width,
originally defined in [84].

Definition 9.3.9 A bramble in a digraph D is a set B of strongly connected
subgraphs of D such that for any pair B,B′ ∈ B, either V (B) ∩ V (B′) �= ∅
or there are arcs e, e′ linking B and B′ in both directions. A bramble B is
strong if V (B) ∩ V (B′) �= ∅ for all B,B′ ∈ B.

A cover, or hitting set, of B is a set X ⊆ V (D) such that X ∩V (B) �= ∅
for all B ∈ B. The order of B is the minimum size of a cover of B.

The last type of obstruction we consider are well-linked sets.



9. Digraphs of Bounded Width 425

Definition 9.3.10 Let D be a digraph. A set W ⊆ V (D) is well-linked if
for any X,Y ⊆ W with |X| = |Y | there are |X| = |Y | pairwise vertex disjoint
paths from X to Y in G − (W \ (X ∪ Y )).

The next lemma, proved in [84], connects the various forms of obstructions
we have seen so far. See [70] for details.

Lemma 9.3.11 Let D be a digraph and let k ≥ 0.

1. If D contains a k-linked set, then it contains a strong bramble of order
k + 1.

2. If D contains a bramble B of order k, then D contains a well-linked set of
order k.

3. If D contains a well-linked set of order 4k+1, then D contains a k-linked
set.

Proof. To show Part (1), it is not hard to see that a k-linked set W in a
digraph D defines a bramble of order k + 1: for every set X ⊆ V (D) of at
most k vertices add to the bramble to the unique strong component of D−X
containing more than half of the vertices of W . It is readily verified that this
indeed yields a strong bramble.

For (2) one can show that every minimum size cover of a bramble must
be well-linked.

Part (3) is slightly more technical and we refer, e.g. to [70] for details. �

As explained at the beginning of this section, one of the most fundamental
theorems in Robertson and Seymour’s graph minor project is the excluded
grid theorem. In the mid-90s, Reed [85] and Johnson et al. [54] conjectured
an analogous theorem for directed graphs, i.e. that any digraph of sufficiently
high directed tree-width should contain a large cylindrical grid as a butterfly
minor.

Definition 9.3.12 (Butterfly minor) Let D be a digraph and let e =
(u, v) ∈ A(D). The digraph D/e obtained from D by contracting e is defined
as the digraph with vertex set V (D) \ {u, v} ∪ {xu,v}, where xu,v is a fresh
vertex. The edges of D/e are the same as the edges of D except for the edges
with u or v as endpoint. Any such edge (w,w′) or (w′, w), where w ∈ {u, v}
and w′ �∈ {u, v} is replaced by an edge (xu,v, w′) and (w′, xu,v) resp.

A butterfly contraction is the operation of contracting an edge e =
(u, v) where u has out-degree 1 or v has in-degree 1. A digraph H is said to
be a butterfly minor of a digraph D, written H �b D, if it can be obtained
from a subgraph of D by a series of butterfly contractions.

Definition 9.3.13 (cylindrical grid) A cylindrical grid of order k, for
some k ≥ 1, is a digraph Gk consisting of k directed cycles C1, . . . , Ck, pair-
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Figure 9.6 Cylindrical grid G4.

wise vertex disjoint, together with a set of 2k pairwise vertex disjoint paths
P1, . . . , P2k such that

• each path Pi has exactly one vertex in common with each cycle Cj,
• the paths P1, . . . , P2k appear on each Ci in this order
• for odd i the cycles C1, . . . , Ck occur on all Pi in this order and for even i

they occur in reverse order Ck, . . . , C1.

See Figure 9.6 for an illustration of G4. The conjecture by Reed, John-
son, Robertson, Seymour and Thomas was confirmed by Kawarabayashi and
Kreutzer in [61].

Theorem 9.3.14 (The directed grid theorem [61]) There is a function
f : N → N such that every digraph of directed tree-width at least f(k) contains
a cylindrical grid of order k as a butterfly minor.

9.4 Complexity of Directed Width Measures and
Algorithmic Applications

In this section we describe some of the algorithmic applications of directed
width measures. In particular, we will see that some NP-complete graph
problems can be solved efficiently on classes of digraphs of bounded width.
As these applications usually require the computation of the associated de-
compositions, we first consider the complexity of computing digraph decom-
positions in the next section. The main algorithmic applications are presented
in Section 9.5 below.

9.4.1 Complexity of Directed Width Measures

We first show that for essentially all width measures defined above, the asso-
ciated decision problem is NP-hard. This follows from the following obser-
vation.
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Theorem 9.4.1 Let G be an undirected graph and let D be the digraph ob-
tained from G by replacing each arc {u, v} by two arcs (u, v) and (v, u)3. Then
tw(G) + 1 = dtw(D) + 1 = dag-width(D) = Kelly-width(D) = D-width(D),
where tw(G) denotes the tree-width of G.

Furthermore, the tree-depth of G equals the DAG-depth of D and the
path-width of G equals the directed path-width of D minus 1.

The case for directed tree-width was proved in [54, (2.1)]. The equalities
for DAG-width and Kelly-width follow immediately from the corresponding
game characterizations. For directed path-width and D-width there are di-
rect translations of the corresponding decompositions and for DAG-depth it
follows immediately from the definition of DAG depth and tree-depth.

Deciding the tree-width, the tree-depth and the path-width of a graph G
is NP-complete (see e.g. [5]) and hence the decision problems for the directed
width measures is NP-hard. For all width measures except DAG-width, the
decomposition defining the width are of polynomial size in the size of the
input graph and hence the problems are even NP-complete. For DAG-width
this is not the case, as we shall see below.

Corollary 9.4.2 Deciding the DAG-depth, the directed tree-width, the di-
rected path-width, the D-width and the Kelly-width of a digraph is NP-
complete. Deciding the DAG-width of a digraph is NP-hard.

Right from the definition, the number of bags in a DAG decomposition of
a digraph D is not restricted to be polynomial in the size of the decomposed
digraph. And in fact, it was shown in [3], that there are classes of digraphs
where DAG decompositions of optimal width require super-polynomially
many bags, i.e. there is no fixed degree polynomial bounding the number
of bags of a DAG-decomposition in the number of vertices of the digraph. In
particular, this rules out that optimal DAG-decompositions can be computed
by an FPT algorithm parameterized by the DAG-width. To make matters
worse, it was also shown in [3], that there is no polynomial size approxi-
mation of an optimal DAG decomposition with an additive constant error in
the width. Furthermore, the problem of deciding the DAG-width of a digraph
turned out to be much harder than deciding any of the other width measures.

Theorem 9.4.3 ([3]) The problem, given a digraph G and a number k ≥ 0,
whether the DAG-width of G is at most k, is Pspace-complete.

9.4.2 Computing Directed Graph Decompositions

We have seen that deciding directed width measures is computationally hard.
However, a range of algorithms have appeared for computing decompositions

3 Thus D is the complete biorientation of G.
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which approximate the optimal width. Here we present some of these approx-
imation algorithms.

Directed Tree-Width. The first algorithm we present below is an FPT
approximation algorithm4 for directed tree-width that follows from [54]. See
Section 1.11 for details on parameterized algorithms. The proof of Theo-
rem 9.3.4 showing the duality between havens and directed tree-width can
easily be made algorithmic using the notion of weakly balanced separations.
Recall the definition of a nice directed tree decomposition (Definition 9.3.5).

Theorem 9.4.4 There is an algorithm with running time O(32k+2 ·k ·|A(D)|·
|V (D)|) which, on input D and k ≥ 1, either computes a nice directed tree-
decomposition of D of width at most 5k + 10 or a weakly k-linked set W .

Sketch. Essentially, the proof of Theorem 9.3.4 already yields an algorithm for
computing directed tree decompositions. The only problem is that balanced
separators cannot be computed efficiently. However, in the proof balanced
W -separators can be replaced by weakly balanced W -separations. Here, a
weakly balanced W -separation is a triple (X,S, Y ) of pairwise disjoint
sets X,Y ⊆ W of order 0 < |X|, |Y | ≤ 3

4 |W | and S ⊆ V (D) such that
W = X ∪ (S ∩ W ) ∪ Y and there is no directed path from X to Y in D − S.
The order of the separation is |S|.

Adapting the algorithm in [34, Corollary 11.22] to the directed setting
one can show that there is an algorithm running in time O(32k+2k|A(D)|)
which, given as input a digraph D, a number k ≥ 1 and a set W ⊆ V (D) of
size 2k + 2, computes a weakly balanced W -separation of order at most k if
such a separation exists.

Using weakly balanced separations instead of balanced separators in the
proof of Theorem 9.3.4 yields an algorithm with the running time as stated
in the theorem, at the expense of increasing the width of the constructed
directed tree decomposition to (4k + 1) + (k + 1) = 5k + 2. �

The previous algorithm yields a fixed-parameter approximation algorithm
for directed tree-width. Kintali, Kothari and Kumar designed a polynomial
time approximation algorithm of directed tree-width up to log n-factors.

Theorem 9.4.5 ([64]) There exists a polynomial time approximation algo-
rithm that, given a digraph D, computes a directed tree decomposition of D,
whose width is at most O(log

3
2 |V (D)| · dtw(D)).

DAG-Width and Kelly-Width. To date, directed tree-width is the only
tree-width inspired width measure which can be computed (approximately)

4 By an FPT approximation algorithm we mean an algorithm running in time
f(k) · nc, for some function f and a constant c, which given a number k and
a digraph D computes a directed tree decomposition of D of width O(k) or
determines that the directed tree-width of D is > k.

https://doi.org/10.1007/978-3-319-71840-8_1
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by FPT algorithms on general digraphs. For DAG-width an XP-algorithm is
known for computing an optimal width decomposition.

Theorem 9.4.6 ([12]) Given a digraph D of DAG-width at most k, a DAG
decomposition of D of width at most k can be computed in time |D|O(k).

For Kelly-width it is still open whether optimal decompositions can be
computed by an XP-algorithm. The reason is that DAG-width is defined by
a cops and robber game with a visible robber, i.e. a game of perfect informa-
tion. Kelly-width, on the other hand, is defined by an invisible robber game
and hence by a game with imperfect information, which are computationally
harder. Hence, the game characterization does not immediately yield an XP-
algorithm. However, there are explicit algorithms known for computing Kelly
decompositions.

Theorem 9.4.7 ([51]) The Kelly-width of a digraph with n vertices can be
determined in time O∗(2n) and space O∗(2n), or in time O∗(4n) and poly-
nomial space, where O∗(f(n)) means that polynomial factors are suppressed.

Furthermore, the Kelly-width of a digraph can be approximated up to a
log n factor.

Theorem 9.4.8 ([64]) There exists a polynomial time approximation algo-
rithm that, given a digraph D, computes a Kelly decomposition of D, whose
width is O(log

3
2 n · Kelly-width(D)).

Finally, for small values of k, efficient and explicit algorithms for deciding
the Kelly-width and computing corresponding decompositions were given,
e.g. in [73].

Directed Path-Width. The situation for directed path-width is similar to
the case of Kelly width.

Theorem 9.4.9 ([66, 97])

1. There is an algorithm which, given a digraph D and k ∈ N as input,
computes a directed path decomposition of D of width k, if it exists, in
time O(|D|k+1 · |A(D)|).

2. There is an algorithm computing a directed path-decomposition of a di-
graph D of optimal width in time O∗(1.89n), where O∗ means that poly-
nomial factors are suppressed.

It is still open whether computing optimal directed path decompositions is
fixed-parameter tractable. However, Fomin and Pilipczuk [37] exhibited FPT
algorithms for computing optimal width path decompositions on tournaments
and semi-complete digraphs.
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9.5 Applications of Tree-Width Inspired Directed
Width Measures

On classes of undirected graphs of bounded tree width NP-hard problems
from a very broad spectrum of areas and types of problems have been shown
to become efficiently solvable, often even in linear time for any fixed upper
bound on the tree-width. In particular, Courcelle [23] proved that every prob-
lem definable in monadic second-order logic (MSO2) can be solved in
linear time on bounded tree-width classes (of undirected graphs). Monadic
second-order logic(MSO2) is a logic extending plain first-order logic by
quantification over sets of edges and sets of vertices of a graph. It is very pow-
erful logical language in which many graph problems such as 3-Colourability,
Hamiltonian paths and -cycles, k-disjoint paths, perfect matchings and many
more can be expressed very naturally. See [24] for details on monadic second-
order logic and its variants MSO2 and MSO1 used below.

For directed graphs, Ganian et al. [43] showed that no such broad MSO2

based algorithm theory is possible for tree width inspired width measures.
Essentially, under some technical conditions, they showed that if one wants
tractability of all MSO definable problems on classes of bounded width with
respect to some width measure that translates undirected tree-width to di-
graphs (defined as having a graph searching game characterization similar to
tree-width), then the only width achieving this undirected tree width. This
establishes a general limit of tractability for digraph width measures based on
tree-width but allows for algorithmic applications more specific to directed
graphs.

Directed width measures, especially directed tree-width, have found vari-
ous applications in the design of algorithms: in database theory, Bagan et al.
[6] proved that simple regular path queries can be evaluated in polyno-
mial time on graph databases of bounded directed tree-width (whereas the
problem is intractable in general). In the area of Boolean networks, Tamaki
[96] conducted experiments on computing attractors in Boolean networks.
It turned out that for networks of small directed path-width he was able to
handle networks which were significantly larger than what can be handled by
standard tools. Another example motivated by practical applications is given
in [94], where Sheppard investigates digraphs obtained from DNA sequenc-
ing by hybridization. In this method a digraph is constructed where vertices
correspond to so-called k-mers. An important algorithmic problem in this
context is finding Hamiltonian paths. It was shown in [94] that the digraphs
occurring in this context usually have very small DAG-width so that polyno-
mial time algorithms for computing Hamiltonian paths on digraphs of small
DAG-width (see below) become applicable. In general, the most intensively
studied applications of directed width measures are for routing problems in
directed graphs. We present some of these applications in the following sec-
tions.
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9.5.1 Disjoint Paths and Linkage Problems in Digraphs of
Bounded Width

One of the main applications of directed width measures is to routing prob-
lems in digraphs. We will see various examples where directed tree-width
is used in algorithms for solving various forms of directed disjoint paths
problems. In particular, we will show that problems such as the directed
Hamiltonian path problem or the k-disjoint paths problem can be solved in
polynomial time on classes of digraphs of bounded directed tree-width.

k-Disjoint paths
Input: A digraph G and terminals s1, t1, s2, t2, . . . , sk, tk
Question: Does D have k pairwise internally vertex disjoint paths
P1, . . . , Pk such that Pi is from si to ti for i = 1, . . . , k?

The k-disjoint paths problem on directed and undirected graphs is well-
known to be NP-complete. But whereas on undirected graphs, the problem
is fixed-parameter tractable, it is NP-complete on directed graphs even for
k = 2, as shown by Fortune, Hopcroft and Wyllie [39]. See Section 1.6.

Theorem 9.5.1 ([39]) The k-Disjoint paths problem is NP-complete for
all k ≥ 2.

Furthermore, as shown by Slivkins [95], the k-Disjoint paths problem is
already W [1]-hard on DAGs. But Johnson, Robertson, Seymour and Thomas
[54] proved that it can be solved in polynomial time for every fixed value of
k on any fixed class C of digraphs of bounded directed tree-width.

Definition 9.5.2 A linkage in a digraph D is a set L of pairwise internally
vertex disjoint directed paths. The order |L| is the number of paths in L and
its size is |V (L)|, where V (L) := |

⋃
P∈L V (P )|.

Let σ := {(s1, t1), . . . , (sk, tk)} be a set of k pairs of vertices in D. A
σ-linkage is a linkage L := {P1, . . . , Pk} of order k such that Pi links si to
ti.

The first algorithmic result we establish is the following theorem.

Theorem 9.5.3 ([54])Let D be a digraph and (T, β, γ) be a directed tree de-
composition of D of width w. Let k, l ≥ 1 and let σ be a set of k pairs of
vertices in D. It can be decided in time |V (D)|O(k+w) whether D contains a
σ-linkage of size l.

Problem 9.5.4 Can the previous theorem be improved to fixed-parameter
tractability in the directed tree-width, for any fixed number k? I.e. does there
exist for every fixed k an algorithm running in time f(dtw(G)) · |V (G)|c, for
some constant c and function f , both depending on k, that decides whether
G has a σ-linkage for any set σ of at most k source/terminal pairs?

https://doi.org/10.1007/978-3-319-71840-8_1
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The theorem can also be extended to weighted digraphs, see e.g. [70] for
details. Combined with the algorithm for computing directed tree decom-
positions in Theorem 9.4.4, the theorem immediately implies the following
corollary.

Corollary 9.5.5 The Hamiltonian cycle, the Hamiltonian path and, for all k,
the k-Disjoint paths problem can be solved in polynomial time on any
class C of digraphs of bounded directed tree-width.

We sketch the proof of Theorem 9.5.3. Recall that for any digraph D and
S ⊆ V (D), D[S] := (S,A(D) ∩ S × S) denotes the subdigraph of D induced
by S. Similarly, if L is a linkage in D and S′ ⊆ V (D), we write L[S′] for
the projection of L onto D[S′], i.e. the linkage {P ∩ D[S′] : P ∈ L}. The
algorithm is based on the following observation. Let D be a digraph and let
S ⊆ V (D) be a set of vertices. For k ≥ 0 we say that S is k-protected if there
is a strong guard Z ⊆ V (D) of S of order |Z| ≤ k. Note that if (T, β, γ) is a
directed tree decomposition of a digraph D of width k−1 and t ∈ V (D), then
β(Tt) =

⋃
{β(t′) :: t′ is reachable from t in T } is k-protected. In particular,

if e = (s, t) is an arc in E(T ) then we can take Z := γ(e) as a witness for
β(Tt) being k-protected. The main observation is now the following.

Lemma 9.5.6 Let D be a digraph and let S ⊆ V (D). Let k,w ≥ 0 and let L
be a linkage of order k in D[S].

If S′ ⊆ S is w-protected, then L[S′] has order at most k + w.

Proof. Let P1, · · · , Pk be the paths in L and let Z ⊆ V (D) be such that
|Z| ≤ w and every directed path in D starting and ending in S′ which is not
entirely contained in D[S′] contains a vertex of Z. It follows that if Pi[S′]
is the union of j directed paths, then |V (Pi) ∩ Z| ≥ j − 1. Hence, L[S′] has
order at most k + w. �

The previous lemma is the basis for a dynamic programming algorithm
for solving the linkage problem in Theorem 9.5.3. Given a digraph D and a di-
rected tree decomposition (T, β, γ) of D of width w−1, the algorithm proceeds
as follows. For every t ∈ V (T ) and every tuple σ :=

(
(u1, v1), . . . , (us, vs)

)

of pairs of vertices in β(Tt), for some s ≤ k + w, it computes the set of all
l ≤ |V (D)| such that G[β(Tt)] contains a σ-linkage of size l. As shown in [54],
this can be done by dynamic programming. Clearly, once this information is
computed for the root of T , the linkage problem for D can be answered for
every tuple σ =

(
(u1, v1), . . . , (uk, vk)

)
of order k. This completes the sketch

of the proof of Theorem 9.5.3.

In the terminology of parameterized complexity, see Section 1.11, the
previous result shows that the k-disjoint paths problem is in XP with param-
eter k + w, where w is the directed tree-width of the input digraph. Unless
FPT=W [1], this cannot be improved to fixed-parameter tractability (FPT)
in the parameter k for every fixed width w, as Slivkins [95] showed that the

https://doi.org/10.1007/978-3-319-71840-8_1
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disjoint paths problem is W [1]-hard already on DAGs, which have directed
tree-width 0.

We close this section by mentioning an algorithmic meta theorem by
Oliveira Oliveira generalizing the previous linkage algorithm.

Theorem 9.5.7 ([29]) Let Ω be a finite commutative semigroup. Let ϕ be
an MSO2 sentence and let k,w ∈ N. There is a computable function f :
N

3 → N such that, given a weighted digraph D = (V,E, ω : E(D) → Ω) of
directed tree-width w, a positive integer l < |V | and an element α ∈ Ω, one
can count in time f(ϕ,w, k) · |D|O(k·(w+1)) the number of subgraphs H of D
simultaneously satisfying the following four properties:

1. H |= ϕ.
2. H is the union of k directed paths.
3. H has l vertices.
4. H has weight ω(H) = α.

In fact, one can even choose a semigroup of size polynomial in D.

9.5.2 Linkages in General Digraphs

The results in the previous section exhibit algorithms for linkage type prob-
lems on digraphs of small directed tree-width. However, the machinery of
directed tree decompositions and obstructions to low directed tree-width can
also be used to obtain results for general digraphs.

Given the NP-hardness of the k-Disjoint paths problem already for
k = 2, it is natural to consider relaxations of the problem in order to obtain
polynomial time algorithms. One relaxation that has been studied in the
literature is to allow congestions. Let σ :=

(
(s1, t1), . . . , (sk, tk)

)
be a k-tuple

of pairs of vertices in a digraph D and let c ≥ 1. A set P1, . . . , Pk of directed
paths in D is a σ-linkage with congestion c if, for all 1 ≤ i ≤ k, the path
Pi links si to ti and furthermore, every vertex of D is contained in at most
c paths. For c = 2 we call the linkage half-integral and for c = 4 it is a
quarter-integral linkage.

Problem 9.5.8 Does there exist, for every fixed integer k ≥ 1, a polynomial
algorithm which, given a digraph D and a tuple σ :=

(
(s1, t1), . . . , (sk, tk)

)
as

input, decides correctly whether D contains a half-integral σ-linkage.

However, partial results are known. In [60], Kawarabayashi, Kobayashi and
Kreutzer show the following result for quarter-integral linkages.

Theorem 9.5.9 ([60]) For every fixed k ≥ 1 there is a polynomial time
algorithm for deciding the following problem.
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Quarter-integral disjoint paths
Input: A digraph D and terminals s1, t1, s2, t2, . . . , sk, tk ∈ V (D).
Find: a quarter-integral linkage of (s1, t1), . . . , (sk, tk) or conclude that
D does not contain disjoint paths P1, . . . , Pk such that Pi is from si to ti,
for i ∈ [k].

The proof of the previous theorem in [60] precedes the proof of the directed
excluded grid theorem (Theorem 9.3.14). Using Theorem 9.3.14, the result
can be improved to third-integral linkages. The main idea of the proof is to
use the duality between directed tree width and cylindrical grids. Roughly,
the algorithm works as follows. If the directed tree-width is small then it
uses a simple adaptation of the algorithm in Theorem 9.5.3 to solve the
problem optimally. Otherwise, Theorem 9.3.14 implies that D contains a
large cylindrical grid C. If there is a linkage L1 from s1, . . . , sk to C and a
linkage L2 from C to t1, . . . , tk then L1, C and L2 can be used to construct
a third-integral linkage linking si to ti, for all 1 ≤ i ≤ k. Otherwise, by
Menger’s theorem, there must be a low order separation from, say, s1, . . . , sk.
The separation does not rule out the existence of a quarter-integral solution
but it can sometimes be used to rule out a fully integral solution (which would
then be the second outcome of the theorem). If a fully integral solution is
not ruled out by this construction, then the problem can be reduced to a
smaller instance. In this way, one either gets a third-integral solution or the
algorithm certifies that there are no fully disjoint paths linking the sources
to the targets.

As mentioned above, it is still an open problem whether the result can
be improved to half-integral solutions and, more importantly, whether it can
further be improved so that the negative answer also rules out the existence
of a half-integral solution.

As a first significant step in this direction, Edwards, Muzi and Wollan
proved a polynomial time algorithm for the half-integral linkage problem for
highly connected digraphs.

Theorem 9.5.10 ([31]) For all integers k ≥ 1, there exists a value L(k)
such that every strongly L(k)-connected graph is half-integrally k-linked.
Moreover, there exists an absolute constant c such that given an instance
(D, (s1, t1), . . . , (sk, tk)) of the half-integral disjoint path problem, where D is
L(k)-connected, we can find a solution in time O(|V (D)|c).

We close the section by mentioning further applications of these tech-
niques beyond classes of digraphs of small directed tree-width. Fomin and
Pilipczuk [37] showed that for tournaments the k-arc disjoint paths problem
fixed-parameter tractable. Their algorithm uses directed path-width. They
first show that on tournaments directed path-width can be decided by an
FPT algorithm. They then use a duality of directed path-width and an ob-
struction called jungles which was proved in [20, 40].
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Finally, the concepts of directed tree-width, or more specifically, its
dual notion of well-linked sets, have played a decisive role in the study of
approximation algorithms for symmetric routing on planar digraphs. See
Section 5.2.

9.5.3 The Erdős-Pósa Property for Directed Graphs

A classical result by Erdős and Pósa states that there is a function f : N → N

such that for every k, every graph G contains k pairwise vertex disjoint cycles
or a set T of at most f(k) vertices such that G − T is acyclic.

There is a natural generalization of this result to arbitrary graphs: a graph
H has the Erdős-Pósa property if there is a function f : N → N such that
every graph G either has k disjoint copies of H as a minor or contains a
set T of at most f(k) vertices such that H is not a minor of G − T . As an
application of the undirected excluded grid theorem, Robertson and Seymour
[89] proved that a graph H has the Erdős-Pósa-property in this sense if, and
only if, H is planar.

The Erdős-Pósa property can also be defined for digraphs. Younger [101]
conjectured that there is a function f : N → N such that for every k every
digraph either has k disjoint directed cycles or a set of at most f(k) vertices
intersecting every directed cycle. The conjecture was proved by Reed, Robert-
son, Seymour and Thomas in [86]. In fact, the concept of directed tree-width
originated in the work on Younger’s conjecture.

Again this can be generalised to arbitrary digraphs, based on directed
minors (see Section 9.6.1 for the definition of butterfly and topological mi-
nors): a digraph H has the Erdős-Pósa property for topological (butterfly)
minors if there is a function f : N → N such that for all k ≥ 0, every digraph
D either contains k disjoint subgraphs each containing H as a topological
(butterfly) minor or there is a set S ⊆ V (D) of at most f(k) vertices such
that D − S does not contain H as a topological (butterfly) minor. In [4],
Amiri, Kawayabashi, Kreutzer and Wollan used the directed excluded grid
theorem (Theorem 9.3.14) to show the following characterization of strongly
connected digraphs with the Erdős-Pósa property.

Theorem 9.5.11 Let H be a strongly connected digraph.

1. H has the Erdős-Pósa property for butterfly minors if, and only if, there
is a cylindrical grid Gc, for some constant c = c(H), such that H �b Gc.

2. H has the Erdős-Pósa property for topological minors if, and only if, there
is a cylindrical wall Gc, for some constant c = c(H), such that H �t Gc.

Furthermore, for every fixed strongly connected digraph H satisfying these
conditions and every k there is a polynomial time algorithm which, given
a digraph G as input, either computes k disjoint (butterfly or topological)
models of H in G or a set S of ≤ h(k) vertices such that G − S does not
contain a model of H.

https://doi.org/10.1007/978-3-319-71840-8_5


436 S. Kreutzer and O.-j. Kwon

The previous theorem settles the case for strongly connected digraphs.
It would be interesting to get a similar characterization also for general di-
graphs. This may be much harder to get as in this case the techniques based
on directed tree-width will no longer be as useful as for strongly connected
digraphs. An intermediate case could be vertex cyclic digraphs which are
digraphs in which every strong component is non-trivial, i.e. contains more
than a single vertex. In [4], some special cases of vertex-cyclic digraphs are
solved, but the general problem remains open.

Problem 9.5.12

1. Characterize the class of vertex-cyclic digraphs which have the Erdős-Pósa
property.

2. Characterize in general the class of digraphs which have the Erdős-Pósa
property.

3. What is the complexity of deciding, given a digraph H, whether it has the
Erdős-Pósa property?

9.6 Density Based Width Measures

In this section we introduce the second type of directed width measures cov-
ered in this chapter: width measures based on directed minors and density
arguments. For this, we first need to define the notions of directed minors
used in this section.

9.6.1 Directed Minors

On undirected graphs, one usually distinguishes between two types of minors:
topological minors, obtained by subdividing edges and deleting edges or
vertices, and general minors, obtained by a sequence of edge and vertex
deletion and arc contraction.

Topological minors have a straight forward generalization to directed
graphs.

Definition 9.6.1 A subdivision of a digraph D is obtained by replacing
some arcs of D by pairwise internally vertex disjoint directed paths respecting
the directions of the replaced arcs. For r ≥ 0, H is an r-subdivision of D if
we can replace some arcs of H by paths of length at most r + 1 to obtain D.

For digraphs D,H, we say that H is a directed topological minor of D,
denoted by H �t D, if D contains a subdivision of H as a subgraph. We write
H �t

r D and call H an r-shallow topological minor of D if D contains a
2r-subdivision of H as a subgraph.
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The reason we define r-shallow topological minors as 2r-subdivisions is
that this corresponds more closely to r-shallow directed minors defined below.

For general directed minors, several alternative and not necessarily equiv-
alent definitions have been considered in the literature. The most popular
among these are butterfly minors, defined in Definition 9.3.12 above.

For undirected graphs, the notion of minors that are obtained by a series of
vertex and edge deletions and edge contractions can equivalently be defined in
terms of minor models. In the directed setting these two notions are different
(every butterfly minor is also a directed minor but not vice versa) [72].

Definition 9.6.2 A digraph H has a directed model in a digraph D if there
is a function δ mapping vertices v ∈ V (H) of H to sub-graphs δ(v) ⊆ D and
arcs e ∈ E(H) to arcs δ(e) ∈ E(D) such that if v �= u then δ(v) ∩ δ(u) = ∅
and if e = (u, v) and δ(e) = (u′, v′) then u′ ∈ δ(u) and v′ ∈ δ(v).

For v ∈ V (H) let in(δ(v)) := V (δ(v)) ∩
⋃

e=(u,v)∈E(H) V (δ(e)) and
out(δ(v)) := V (δ(v)) ∩

⋃
e=(v,w)∈E(H) V (δ(e)).

Furthermore, we require that for every v ∈ V (H)

1. there is a directed path in δ(v) from any u ∈ in(δ(v)) to every u′ ∈
out(δ(v));

2. there is at least one source vertex sv ∈ δ(v) that reaches every element of
out(δ(v));

3. there is at least one sink vertex tv ∈ δ(v) that can be reached from every
element of in(δ(v)).

We write H �d D if H has a directed model in D and call H a directed
minor of D. We call the sets δ(v) for v ∈ V (H) the branch-sets of the
model.

Note that the conditions (2) and (3) in the previous definition are implies
by Condition (1) for vertices of in- and out-degree > 0. They serve the purpose
to ensure that sinks and sources in H are represented by a single vertex in
D together with paths connecting this vertex to its (in- or out-) neighbours.

Definition 9.6.3 For r ≥ 0, a digraph H is a directed depth-r minor of a
digraph D, denoted as H �d

r D, if there exists a directed model of H in D in
which the length of all the paths in the branch-sets of the model are bounded
by r.

We close the section by relating the different concepts of minors to each
other. It is not hard to see that for all digraphs H,D,

H �t D ⇒ H �b D ⇒ H �d D.

The same relation extends to shallow minors:

Lemma 9.6.4 For all digraphs H,D and r ≥ 0: H �t
r D implies H �d

r D.
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Bipartite digraphs will play a special role on the rest of this section.

Definition 9.6.5 A bipartite digraph is a digraph D = (A∪̇B,E) whose
vertex set is partitioned into two sets A and B and E ⊆ A × B.

For bipartite digraphs, the concepts of butterfly minors and directed mod-
els coincide. In the following lemma, an in-branching is a digraph obtained
from an undirected tree by orienting all edges towards a root node r. Anal-
ogously, in an out-branching all arcs are oriented away from the root, i.e.
and out-branching is a rooted directed tree. See Section 1.8.

Lemma 9.6.6 (see [72]) If H is a bipartite digraph with H �d D, we can
choose the branch-sets of the model of H in D to be in- or out-branchings.
In this case H �d D ⇔ H �b D.

9.6.2 Width Measures Defined by Shallow Directed Minors and
Bounded Edge Densities

Following [71, 72] (see [74, 75] for the undirected case), we define classes of
digraphs of bounded expansion, nowhere crownful classes and classes which
are nowhere dense. We first need some additional notation.

Definition 9.6.7 Let G be a digraph and let r ≥ 0. The greatest reduced
average degree of rank r (short grad) of G, denoted ∇r(G) is

∇r(G) := max
{

|E(H)|
|V (H)| : H �d

r G

}

and its topological greatest average degree of rank r (short top-grad)
is

∇̃r(G) := max
{

|E(H)|
|V (H)| : H �t

r G

}

.

A crown of order q is a digraph Sq with vertex set {vi : 1 ≤ i ≤
q} ∪ {vi,j : 1 ≤ i < j ≤ q} and arcs {(vi,j , vi), (vi,j , vj) : 1 ≤ i < j ≤ q}.

Definition 9.6.8 Let C be a class of digraphs.

1. C has bounded expansion if there is a function f : N → N such that
∇r(D) ≤ f(r) for all r ≥ 0 and D ∈ C.

2. C is nowhere crownful if for every r, there exists a q = q(r) so that
Sq ��d

r D for all all D ∈ C.
3. C is directed nowhere dense if for every r, there exists an n and an

acyclic tournament Tn so that Tn ��d
r D for all D ∈ C.

4. C is directed somewhere dense if there is an r ≥ 0 so that the set of
depth r minors of C contains arbitrarily large tournaments.

https://doi.org/10.1007/978-3-319-71840-8_1


9. Digraphs of Bounded Width 439

It can be shown that a class C of digraphs is directed somewhere dense
if, and only if, it is not directed nowhere dense. Furthermore, the property of
being directed nowhere dense is more general than being nowhere crownful
and also more general than bounded expansion.

On the other hand, classes of digraphs of bounded expansion and nowhere
crownful classes are incomparable. In particular, as shown in [72], nowhere
crownful classes and even crown-minor free classes can be very dense.

Theorem 9.6.9 For every ε, there exists a q = q(ε), such that for every n,
there exists an Sq-minor-free digraph on 2n vertices that has arc density at
least Ω(n

1
2−ε).

It follows that there are classes of digraphs which are Sq-crown-minor
free but do not have bounded expansion. Conversely, the class of crowns Sq,
q ≥ 0, has bounded expansion.

On the other hand, for the definition of bounded expansion, the precise
notion of directed minor we use is not important, as shown by the following
theorem proved in [71].

Theorem 9.6.10 A class C of digraphs has bounded expansion if and only if
there is a function f : N → N such that for all r ∈ N it holds that ∇̃r(D) ≤
f(r) for all D ∈ C.

9.7 Classes of Directed Bounded Expansion

Classes of digraphs of bounded expansion can be characterized in many dif-
ferent ways. The various characterizations yield a varied set of algorithmic
techniques that can be used in the design of algorithms on bounded expan-
sion classes of digraphs. In the following we will present some of the more
promising structural properties of bounded expansion classes.

9.7.1 Generalised Colouring Numbers

The colouring number col(G) of an undirected graph G is the smallest
integer k such that there is a linear order � on the vertex set of D for which
each vertex v has back-degree at most k − 1, i.e. at most k − 1 neighbours
u with u � v. It is well-known that for any graph G, the chromatic number
χ(G) satisfies χ(G) ≤ col(G).

Three natural generalization of the colouring number are the series admr,
colr and wcolr of generalised colouring numbers defining the admissi-
bility, colouring number and weak colouring numbers introduced by
Kierstead and Yang [62] (see Dvořák [30] for the general definition of admr)
in the context of colouring games and marking games on graphs. Note that
the colouring number is equivalent to the degeneracy of a graph. As proved
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by Zhu [102], these invariants can be used to characterize bounded expansion
classes of undirected graphs.

The directed versions of the above invariants have been defined in [71]
where it was shown that classes of directed bounded expansion can be char-
acterized by bounds on the generalised colouring numbers.

Let D be a digraph. By Π(D) we denote the set of all strict linear orders
on V (D). For �∈ Π(G), we write u � v if u � v or u = v. Let u, v ∈ V (D),
let �∈ Π(D) and let r ≥ 0.

The vertex u is weakly r-reachable from v with respect to �, if there
is a directed path P of length �, 0 ≤ � ≤ r, connecting u and v (in either
direction) such that u is the smallest among the vertices of P (with respect
to �). By WReachr[D,�, v] we denote the set of vertices that are weakly
r-reachable from v w.r.t. �.

The vertex u is strongly r-reachable from v with respect to �, if there
is a directed path P of length �, 0 ≤ � ≤ r, connecting u and v (in either
direction) such that u � v and v � w for all internal vertices w of P . Let
SReachr[D,�, v] be the set of vertices that are strongly r-reachable from v
w.r.t. �. Note that we have v ∈ SReachr[D,�, v] ⊆ WReachr[D,�, v].

We also need a third type of colouring number, the admissibility. For a
non-negative integer r, the r-admissibility admr[D,�, v] of v w.r.t. a linear
order �∈ Π(D) is the maximum size k of a family {P1, . . . , Pk} of directed
paths of length at most r with one end v and the other end at a vertex w
with w � v, and which satisfies V (Pi) ∩ V (Pj) = {v} for all 1 ≤ i < j ≤ k.
As for r > 0 we can always let the paths end in the first vertex smaller than
v, we can assume that the internal vertices of the paths are larger than v.

Definition 9.7.1 ([71]) Let D be a digraph. For a non-negative integer r, we
define the weak r-colouring number wcolr(D), the r-colouring number
colr(D) and the r-admissibility of D as

wcolr(D) := min
�∈Π(D)

max
v∈V (D)

∣
∣WReachr[D,�, v]

∣
∣,

colr(D) := min
�∈Π(D)

max
v∈V (D)

∣
∣SReachr[D,�, v]

∣
∣.

admr(D) := min
�∈Π(D)

max
v∈V (D)

admr[D,�, v].

The following theorem relates these measures to each other.

Theorem 9.7.2 ([71]) Let D be a digraph and let r ≥ 1. Then admr(D) ≤
colr(D) ≤ wcolr(D). Furthermore,

colr(D) ≤ 2 · (admr(D) − 1)r + 1 and wcolr(D) ≤ 2 · admr(D)r.

The generalised colouring numbers can also be used to characterize
bounded expansion classes of digraphs.
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Theorem 9.7.3 ([71]) For every digraph D and every r ∈ N it holds that
admr(D) < 6r3∇r(D)4. Conversely, for every digraph D and every r ∈ N it
holds that ∇̃r(D) ≤ 16(adm2r(D) + 1).

Corollary 9.7.4 ([71]) A class C of digraphs has bounded expansion if, and
only if, there is a function f : N → N such that wcolr(D) ≤ f(r) for all
D ∈ C and all r ≥ 1.

A useful property of admissibility is that for every graph D from a
bounded expansion class C an order � on V (D) witnessing that the r-
admissibility is small can be computed efficiently.

Theorem 9.7.5 ([71]) Let C be a class of digraphs of bounded expansion.
There is a function g such that for all r ≥ 0 and all D ∈ C we can compute
an optimal order for admr(D) in time g(r) · nO(1), where n := |V (D)|.

9.7.2 Neighbourhood Complexity

We continue the study of structural properties of bounded expansion classes
by defining a directed version of neighbourhood complexity, a measure that
has very successfully been used in the connection to classes of undirected
bounded expansion [87].

Definition 9.7.6 Let D be a digraph, let X ⊆ V (D) and let r ≥ 1.
The distance-r out-neighbourhood complexity of X in D, denoted
ν+(D,X), is defined by

ν+(D,X) = max
H⊆D,X⊆V (H)

∣
∣{N+

r (v) ∩ X : v ∈ V (H)}
∣
∣ .

Analogously, one can define the distance-r in-neighbourhood com-
plexity when using N−

r (v) and the distance-r mixed neighbourhood
complexity when using (N+

r (v) ∪ N−
r (v)) in the above definition.

Closure under subgraphs in the above definition is required to characterize
sparse graph classes. Classically, this closure is not part of the definition, when
it is e.g. used to define classes of bounded VC-dimension [91, 93, 99].

Bounded neighbourhood complexity is not equivalent to directed bounded
expansion but at least classes of directed bounded expansion have bounded
neighbourhood complexity.

Theorem 9.7.7 ([71]) Let C be a class of digraphs of bounded expansion.
Then for all r ≥ 1 there exists k ≥ 1 such that for all D ∈ C and X ⊆ V (D)
we have ν+

r (D,X) ≤ |X|k. The same statement holds for in-neighbourhood
complexity and mixed neighbourhood complexity.
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9.7.3 A Splitter Game for Classes of Digraphs of Bounded
Expansion

In this section we establish a very useful property of bounded expansion
classes of digraphs based on a directed version of a game, known as the
splitter game, originally introduced as a characterization of nowhere dense
classes of undirected graphs in [46].

We first need the following definition. The r-strong-neighbourhood of
v, denoted by ÑG,r(v), or just Ñr(v) if G is understood, is defined as the set
of vertices u in G such that G contains a closed walk of length at most 2r
containing u and v.

Let G be a digraph and let �,m, r ≥ 0. The (�,m, r)-strong directed
splitter game on G is played by two players, Connector and Splitter,
as follows. Let G0 := G. In round i + 1 of the game, Connector picks
a vertex vi+1 ∈ V (Gi). Then Splitter chooses a subset Wi+1 ⊆ V (Gi)
with |Wi+1| ≤ m. Define Gi+1 as the induced subgraph of Gi with V (Gi+1) =
ÑGi,r(vi+1)\Wi+1. Splitter wins if V (Gi+1) = ∅. Otherwise the game contin-
ues to the next round. If Splitter has not won after � rounds, then Connector
wins.

A strategy for Splitter is a function f associating to every partial
play (v1,W1, . . . , vs,Ws) with associated sequence G0, . . . , Gs and every
move vs+1 ∈ V (Gs) by Connector a move Ws+1 ⊆ V (Gs) with |Ws+1| ≤ m
for Splitter. A strategy f is a winning strategy for Splitter if she wins every
play in which she follows the strategy f . If such a winning strategy exists, we
say that Splitter wins the (�,m, r)-directed splitter game on G.

The splitter game cannot be used as a characterization of bounded ex-
pansion as Splitter wins the (1, 1, 1)-strong splitter game on every acyclic
digraph, but the class of acyclic digraphs does not have bounded expansion.
But on every class of bounded expansion Splitter always has constant length
winning strategies. This, together with neighbourhood covers introduced in
the following section, can be used to define a bounded depth decomposition
of graph from bounded expansion classes.

Theorem 9.7.8 ([71]) Let D be a graph, let r ∈ N and let � = wcol4r(G).
Then splitter wins the (�, 1, r)-strong splitter game.

9.7.4 Neighbourhood Covers

Neighbourhood covers of small radius and small size play a key role in the
design of many data structures for distributed systems. There is also a deep
connection between sparse neighbourhood covers of small radius and sparse
graph spanners of low stretch. In this section we will see that classes of
digraphs of bounded expansion admit sparse strong neighbourhood covers
which can be computed by a fixed-parameter algorithm.
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Let r ∈ N. A strong r-neighbourhood cover X of a digraph D is a
mapping X : V (D) → 2V (D) such that D[X (v)] is strongly connected and
Ñr(v) ⊆ X (v). We call each D[X (v)] a cluster of X .

The radius of a cluster C := D[X (v)] is defined as the minimal r ∈ N

for which there is a vertex w ∈ V (C) and for every w ∈ V (C), the cluster
C contains a directed path of length at most r from w to v and a directed
path of length at most r from v to w. The radius rad(X ) of a cover X is the
maximum radius of any of its clusters.

The degree dX (v) of v in X is the number of clusters that contain v. The
maximum degree Δ(X ) of X is Δ(X ) = maxv∈V (G) dX (v).

Theorem 9.7.9 ([71]) Let C be a class of digraphs of bounded expansion.
There are functions f, h : N → N such that for all r ∈ N and all graphs D ∈ C,
there exists a strong r-neighbourhood cover of radius at most 4r and maximum
degree at most f(r) and this cover can be computed in time h(r) · nO(1).

9.7.5 Constant-Factor Approximation Algorithms for Strong
Dominating Sets

In this section we give an algorithmic application of the bounded expansion
classes in proving that strong dominating sets can be approximated up to a
constant factor on any class C of directed bounded expansion.

Definition 9.7.10 (Strong r-Dominating Sets)

1. Let r ≥ 1 and let D be a digraph. A vertex v ∈ V (D) strongly-r-
dominates a vertex u ∈ V (D) if there is a closed walk of length at most
2r in D containing u and v.

2. A strong-r-dominating set is a set X ⊆ V (D) such that every vertex
in D is strongly dominated by a vertex in X.

3. The strong r-domination number of D, denoted sdomr(D), is the min-
imum size of a strong r-dominating set of D.

Note that if D is a digraph obtained from an undirected graph G by
replacing every edge e in G by two arcs with the same endpoints but opposite
orientation, then any strong-r-dominating set in D is an r-dominating set in
G and vice versa. This explains the choice of the length 2r in Part (1) of the
previous definition. It follows that deciding the strong-r-domination number
of a digraph D is NP-complete.

Theorem 9.7.11 Let C be a class of digraphs of directed bounded expansion.
Let r ≥ 1. There is a polynomial time constant factor approximation algo-
rithm for strong r-dominating sets. More precisely, for every value of r, there
is an algorithm running in time g(r) · nO(1) for some function g which, on
input D ∈ C computes a strong-r-dominating set X ⊆ V (G) of order at most
wcol4r(D)2 · sdomr(D).
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The proof is based on computing a linear order witnessing that the 4r-
weak colouring number of the input digraph D is bounded. Following this or-
der, a suitable greedy strategy can be shown to produce a strong r-dominating
set of order wcol4r(D)2 · k and an obstruction witnessing that there is
no strong r-dominating set of order k. Hence, the approximation factor is
wcol4r(D)2, which is a constant on bounded expansion classes. Here, an r-
obstruction set is a set X ⊆ V (D) such that for any distinct x, y ∈ X,
there are no two closed directed walks W1,W2 ⊆ V (D), each of length at
most 2r, such that W1 ∩ W2 �= ∅ and x ∈ W1 and y ∈ W2.

As no two distinct vertices of an obstruction set lie on a closed walk of
length at most 2r, no two vertices from the set can be strongly r-dominated
by a single vertex. Hence, if D contains an obstruction set of order k then D
does not contain a strong r-dominating set of order < |X|.

A similar strategy was used by Dvořák in [30] to design a constant factor
approximation algorithm for dominating sets on classes of undirected graphs
of bounded expansion.

9.8 Nowhere Crownful Classes of Digraphs

We close our exposition of density and minor based width measures by giv-
ing another algorithmic application for dominating sets, this time on nowhere
crownful classes. Towards this aim, we introduce the notion of directed uni-
formly quasi-wide classes and show that this concept yields an equivalent
characterization of nowhere crownful classes of digraphs.

Definition 9.8.1 Let D be a digraph and d ∈ N ∪ {0}. A set U ⊆ V (D)
is d-scattered if there is no v ∈ V (D) and u1 �= u2 ∈ U such that v has
distance at most d to both u and u′.

Note that any subset of V (D) is 0-scattered since v is the only vertex of
distance zero from itself.

Definition 9.8.2 A class C of digraphs is uniformly quasi-wide if there
are functions s : N → N and N : N × N → N such that for every D ∈ C and
all d,m ∈ N and W ⊆ V (D) with |W | > N(d,m) there is a set S ⊆ V (D)
with |S| ≤ s(d) and U ⊆ W with |U | = m such that U is d-scattered in G−S.
s,N are called the margin of C.

If s and N are computable then we call C effectively uniformly quasi-
wide.

The next theorem was shown in [72].

Theorem 9.8.3 A class C of digraphs is nowhere crownful if, and only if, it
is directed uniformly quasi-wide.
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We demonstrate one algorithmic application of uniformly quasi-wideness
by sketching the following theorem. A directed dominating set in a di-
graph D is a set X ⊆ V (D) such that N+

D (X) ∪ X = V (D).

Theorem 9.8.4 ([72])Let C be a class of digraphs which is nowhere crownful.
Then the directed dominating set problem is fixed-parameter tractable on C.

Let C be nowhere crownful. Given a digraph D ∈ C and a number k, we
compute a directed dominating set X of order k, if it exists, as follows. We
let W = V (D) be the set of vertices still to be dominated. As C is uniformly
quasi-wide, if W is large enough, we can compute a constant-size set S of
vertices and a 1-scattered set A ⊆ W of order k + 1 in D − S. As no vertex
not in S can dominate two vertices in A, it follows that any set X of vertices
dominating every vertex in W needs to contain a vertex in S. As S has
constant size we can try each choice of a vertex v ∈ S for the set X. For any
such choice we recurse with the parameter k−1 and the set W ′ := W \N+(v)
of vertices we still need to dominate. This yields a natural recursion where
in each recursion step the parameter is decreased. If at some point the set W
is too small to contain a large 1-scattered set, then we can use brute force to
compute a set of order k dominating W .

Similarly, one can show that on nowhere crownful classes of digraphs, the
directed independent dominating set problem, the dominating out-branching
problem and the independent set problem as well as their distance-d-versions
are fixed-parameter tractable.

9.9 Rank-Width Inspired Width Measures

In this section, we introduce directed versions of clique-width and rank-width.
The motivation of clique-width comes from the observation that many al-
gorithmic problems are tractable on classes of graphs that can be recursively
decomposable along vertex partitions (A,B) where the number of neighbour-
hood types between A and B is small. Different from tree-width based width
measures, acyclic digraphs have arbitrary large directed clique-width, and
clique-width separates the class of acyclic digraphs into easy and hard in-
stances for some algorithmic problems.

When clique-width was first introduced, no FPT approximation algorithm
for generating a clique-width expression was known. Oum and Seymour [82]
first devised an FPT approximation algorithm for undirected clique-width,
using an equivalent width parameter called rank-width. While clique-width
expressions describe how to generate a graph using certain graph operations,
rank-width decompositions generalize decomposition scheme called branch-
decompositions [88]. Courcelle and Engelfriet [24] argued that directed clique-
width can be approximated using undirected rank-width.
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Bi-rank-width and F4-rank-width are two natural generalizations of
rank-width for directed graphs, introduced by Kanté [56] and Kanté and
Rao [59]. They can also be used to approximate directed clique-width. The
other motivation of these parameters is on related graph containment rela-
tions vertex-minor and pivot-minor. Because clique-width and rank-width
may increase by removing edges or contracting edges, these parameters are
not well fit to minor structure theory. Instead, vertex-minor and pivot-minor
relations have been studied together with rank-width [80, 81], and provide
some structural results, sometimes generalising results on tree-width. Kanté
and Rao [59] explained how to generalize these concepts to directed graphs,
and generalised known results to directed graphs.

We present FPT approximation algorithms in Subsection 9.9.3. In Sub-
section 9.9.4, we present algorithmic applications of directed clique-width
and bi-rank-width. We discuss structural results on these graph containment
relations in Subsection 9.9.5.

9.9.1 Directed Clique-Width

Courcelle, Engelfriet and Rozenberg [25] introduced clique-width for both
undirected graphs and directed graphs. For a digraph D = (V,A) and a
function lab : V → {1, 2, . . . , k}, the triple (V,A, lab) is called a k-labeled
digraph. The function lab is called a labeling of D, and for each v ∈ V ,
lab(v) is called its label.

Definition 9.9.1 (Directed clique-width) For a positive integer k, the
class dcwk of k-labeled digraphs is recursively defined as follows.

1. The digraph on a single vertex v with label i in {1, 2, . . . , k} is in dcwk.
We denote by •i,v the operation creating such a vertex.

2. Let D1 = (V1, A1, lab1) ∈ dcwk and D2 = (V2, A2, lab2) ∈ dcwk be two
k-labeled digraphs on disjoint vertex sets. Let D1⊕D2 := (V,A, lab) where
V := V1 ∪ V2, A := A1 ∪ A2 and

lab(v) :=
{

lab1(v) if v ∈ V1,
lab2(v) if v ∈ V2,

for every v ∈ V . We have D1 ⊕ D2 ∈ dcwk.
3. Let D = (V,A, lab) ∈ dcwk be a k-labeled digraph, and i, j ∈ {1, 2, . . . , k}

be two distinct integers. Let ρi→j(D) := (V,A, lab′) where

lab′(v) :=
{

lab(v) if lab(v) �= i,
j if lab(v) = i,

for every v ∈ V . We have ρi→j(D) ∈ dcwk.
4. Let D = (V,A, lab) ∈ dcwk be a k-labeled digraph, and i, j ∈ {1, 2, . . . , k}

be two distinct integers. Let αi,j(D) be the digraph obtained from D by
adding all arcs (a, b) where lab(a) = i and lab(b) = j. We have αi,j(D) ∈
dcwk.
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The directed clique-width of a digraph D = (V,A), denoted by dcw(D),
is the minimum integer k such that there is a k-labeling lab of D where
(V,A, lab) ∈ dcwk. Directed clique-width k-expressions are expressions
which recursively construct a graph with the four graph operations in 1-4.

The difference between directed clique-width and undirected clique-width
is on the function αi,j ; for undirected clique-width, this function adds undi-
rected edges between all pairs (v, w) where lab(v) = i and lab(w) = j. We can
naturally represent a directed clique-width k-expression as a tree-structure;
an example is depicted in Figure 9.7. We call this tree a directed clique-
width k-expression tree.

a

b c

d e

f

•1,b •2,c

⊕

α1,2

•1,d •2,e

⊕

α1,2

⊕ •3,a

⊕

α3,1

ρ3→1

⊕

•3,f

α2,3

Figure 9.7 An example of a directed clique-width 3-expression tree, which ex-
presses α2,3((ρ3→1(α3,1((α1,2(•1,b ⊕ •2,c) ⊕ α1,2(•1,d ⊕ •2,e)) ⊕ •3,a))) ⊕ •3,f ).

Wanke [100] introduced a similar width parameter NLC-width. In NLC-
width expressions, we add edges between two labeled graphs at once after
taking disjoint union, while we add edges one by one between two vertex
subsets with single labels in clique-width expressions. Gurski, Wanke and
Yilmaz [47] generalised this parameter to directed graphs.

Definition 9.9.2 (Directed NLC-width) For a positive integer k, the
class dNLCk of k-labeled digraphs is recursively defined as follows.

1. The digraph on a single vertex v with label i in {1, 2, . . . , k} is in dNLCk.
We denote by •i,v the operation creating such a vertex.

2. Let D1 = (V1, A1, lab1) ∈ dNLCk and D2 = (V2, A2, lab2) ∈ dNLCk be
two k-labeled digraphs on disjoint vertex sets, and

−→
S ,

←−
S ⊆ {1, 2, . . . , k} ×
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{1, 2, . . . , k} be two relations. Let D1 ×−→
S ,

←−
S

D2 := (V,A, lab) be the labeled

graph where V := V1 ∪ V2, A := A1 ∪ A2 ∪ −→
A ∪ ←−

A with
−→
A = {(v, w)|v ∈ V1, w ∈ V2, (lab1(v), lab2(w)) ∈ −→

S },
←−
A = {(w, v)|v ∈ V1, w ∈ V2, (lab1(v), lab2(w)) ∈ ←−

S },

and

lab(v) :=
{

lab1(v) if v ∈ V1,
lab2(v) if v ∈ V2,

for every v ∈ V . We have D1 ×−→
S ,

←−
S

D2 ∈ dNLCk.
3. Let D = (V,A, lab) ∈ dNLCk and R : {1, 2, . . . , k} → {1, 2, . . . , k} be a

function. Let ◦R(D) = (V,A, lab′) be the labeled graph where lab′(v) =
R(lab(v)) for every v ∈ V . We have ◦R(D) ∈ dNLCk.

The directed NLC-width of a digraph D = (V,A), denoted by dnlcw(D),
is the minimum integer k such that there is a k-labeling lab of D where
(V,A, lab) ∈ dNLCk. Directed NLC-width k-expressions are expressions
which recursively construct a graph with the three graph operations in 1-3.

Gurski, Wanke and Yilmaz [47] derived a relationship between directed
clique-width and directed NLC-width.

Theorem 9.9.3 ([47]) For every digraph D, the parameters dcw(D) and
dnlcw(D) are related as follows: dnlcw(D) ≤ dcw(D) ≤ 2dnlcw(D).

One example of digraph classes having bounded directed clique-width is
the class of directed cographs. This class is a directed variant of the class
of undirected cographs. The term cograph stands for complement reducible
graph [22], representing the property that the complement of a cograph is
again a cograph. Directed cographs are graphs that can be recursively defined
as follows:

1. Every single vertex is a directed cograph.
2. If D1, . . . , Dk are directed cographs, then the disjoint union of D1, . . . , Dk

is a directed cograph.
3. If D1 = (V1, A1), . . . , Dk = (Vk, Ak) are directed cographs, then the di-

graph obtained from the disjoint union of D1, . . . , Dk by adding all arcs
(v, w) where v ∈ Vi, w ∈ Vj , and 1 ≤ i < j ≤ k, is a directed cograph.

4. If D1, . . . , Dk are directed cographs, then the digraph obtained from the
disjoint union of D1, . . . , Dk by adding all arcs (v, w) where v ∈ Vi, w ∈ Vj ,
and i, j ∈ {1, . . . , k}, is a directed cograph.

We observe that the complement of a directed cograph is again a directed
cograph.

Theorem 9.9.4 ([47]) A digraph is a directed cograph if and only if it has
directed NLC-width at most 1.
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Theorem 9.9.4 implies that every directed cograph has directed clique-
width at most 2. However, as far as we know, no complete characteriza-
tion of digraphs of directed clique-width at most 2 is known. We refer to
Section 11.6 for more information about directed cographs.

Directed clique-width is incomparable with directed tree-width. In par-
ticular, acyclic digraphs have unbounded directed clique-width. A discussion
about it is presented in the next subsection. The complete biorientations
of undirected complete graphs are directed cographs, but have unbounded
directed tree-width.

Lemma 9.9.5

1. There are classes of digraphs of bounded directed tree-width and unbounded
directed clique-width.

2. There are classes of digraphs of bounded directed clique-width and un-
bounded directed tree-width.

For fixed k ≥ 2, it is open whether one can recognize graphs of directed
clique-width at most k in polynomial time. This is also an open problem
for undirected clique-width with k ≥ 4, and when k = 3, it was solved by
Corneil, Habib, Lanlignel, Reed and Rotics [21].

Problem 9.9.6 For an integer k ≥ 2, can we recognize digraphs of directed
clique-width at most k in polynomial time?

9.9.2 Bi-Rank-Width and F4-Rank-Width

Rank-width of undirected graphs is a parameter equivalent to clique-width,
in a sense that one is bounded if and only if the other is bounded. The rank
of a matrix has a role in counting the number of neighborhood types between
two vertex sets. To see this, we consider two disjoint vertex sets A and B in
an undirected graph G = (V,E), and an A × B-matrix M where for a ∈ A
and b ∈ B, M [a, b] = 1 if a is adjacent to b, and M [a, b] = 0 otherwise. If
the rank of M over the binary field is k, then there are at most 2k sets in
{NG(v) ∩ B|v ∈ A}. Rank-width measures the decomposability along vertex
partitions with small rank values of such matrices.

Kanté and Rao [59] introduced two directed versions of rank-width, called
bi-rank-width and F4-rank-width. Kanté and Rao further generalized
these notions to F-edge-colored graphs; that is, graphs whose edges are la-
beled by elements of a fixed finite field F. Since these generalizations are out
of scope of this book, we concentrate on specializations for digraphs. A differ-
ence of two notions is that when (A,B) is a vertex partition, bi-rank-width
is based on a function summing up ranks of two binary matrices, one for arcs
from A to B and the other for arcs from B to A, while F4-rank-width is based
on a function measuring all arcs together, using the field F4.

https://doi.org/10.1007/978-3-319-71840-8_11
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For a field F and a matrix M , F-rank(M) is the rank of the matrix M
over the field F. We denote by F4 the field on 4 elements {0, 1, a, a2} where
a3 = 1 and a2 + a + 1 = 0. We denote by F2 the binary field.

Let D = (V,A) be a digraph. The out-neighborhood matrix M+
D is the

V × V -matrix such that for v, w ∈ V , M+
D [v, w] = 1 if and only if (v, w) ∈ A.

The F4-adjacency matrix of D is the V ×V -matrix M4
D where for v, w ∈ V ,

M4
D[v, w] :=

⎧
⎪⎪⎨

⎪⎪⎩

a if (v, w) ∈ A and (w, v) /∈ A,
a2 if (v, w) /∈ A and (w, v) ∈ A,
1 if (v, w) ∈ A and (w, v) ∈ A,
0 otherwise.

We define functions bicutrkD, cutrk4
D : 2V → Z such that for every S ⊆ V ,

• bicutrkD(S) = F2-rank(M+
D [S, V \ S]) + F2-rank(M+

D [V \ S, S]),
• cutrk4

D(S) = F4-rank(M4
D[S, V \ S]).

We define branch-decomposition and f -width for symmetric submodular
functions f . A function f : X → Y is symmetric if for S ⊆ X, f(S) =
f(X \ S). A function f : X → Y is submodular if it satisfies that for
A,B ⊆ X, f(A ∩ B) + f(A ∪ B) ≤ f(A) + f(B). A tree is subcubic if it has
at least two vertices and every internal node has degree 3.

Definition 9.9.7 (Branch-decomposition) Let V be a finite set and let
f : 2V → Z be a symmetric submodular function. A branch-decomposition of
V is a pair (T,L), where T is a subcubic tree and L is a bijection from V to
the set of leaves of T . For an edge e in T , T −e induces a partition (Xe, Ye) of
the leaves of T . The f-width of e is defined as f(L−1(Xe)), and the f-width
of a branch-decomposition (T,L) is the maximum f-width over all edges of T .
The f-width of V is the minimum f-width over all branch-decompositions
of V . If |V | ≤ 1, then V admits no branch-decomposition and the f-width of
V is defined to be 0.

Definition 9.9.8 (Bi-rank-width and F4-rank-width) Let D = (V,A) be
a digraph. The bi-rank-width of D, denoted by birw(D), is the bicutrkD-
width of V , and the F4-rank-width of D, denoted by rw4(D), is the cutrk4

D-
width of V .

Note that the functions bicutrkD and cutrk4
D are submodular. This can be

shown using a property of the rank function of a matrix in Proposition 9.9.9.
There are several proofs of it; for instance see Truemper [98].

Proposition 9.9.9 Let M be an X × Y -matrix over a field F. Then for all
X1,X2 ⊆ X and Y1, Y2 ⊆ Y , we have

F-rank(M [X1 ∪ X2, Y1 ∩ Y2]) + F-rank(M [X1 ∩ X2, Y1 ∪ Y2])
≤ F-rank(M [X1, Y1]) + F-rank(M [X2, Y2]).
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Kanté [56] proved that bi-rank-width and F4-rank-width are equivalent
up to a constant factor.

Lemma 9.9.10 ([56]) For a digraph D = (V,A), rw4(D) ≤ birw(D) ≤
4rw4(D).

Digraphs of bi-rank-width at most 2 are digraphs that are completely
decomposable with respect to split decomposition introduced by Cunning-
ham [28]. As a similar concept, Kanté and Rao [58] introduced displit decom-
positions and showed that digraphs of F4-rank-width at most 1 are digraphs
that are completely decomposable with respect to displit decomposition. Both
results provide polynomial-time algorithms for recognizing digraphs of bi-
rank-width at most 2 or digraphs of F4-rank-width at most 1.

Acyclic digraphs and tournaments have unbounded bi-rank-width. The
grid-like example in Figure 9.8 is acyclic and its underlying undirected graph
has large rank-width; Jelínek [53] proved that the undirected n × n-grid has
rank-width exactly n − 1. A branch-decomposition of a directed graph with
small bicutrk-width is also a branch-decomposition of small undirected rank-
width and it means that acyclic digraphs have unbounded bi-rank-width.
To see that tournaments have unbounded bi-rank-width, we can modify the
example in Figure 9.8 into a tournament, such that

• for every two non-adjacent vertices in a column, we add an arc from the
higher one to the lower one,

• for every two non-adjacent vertices contained in distinct columns, we add
an arc from the right one to the left one.

One can verify that in every its branch-decomposition, there is a vertex par-
tition with high bicutrk value.

Lemma 9.9.11 The family of acyclic graphs and the family of tournaments
have unbounded bi-rank-width. Thus, these families have unbounded directed
clique-width and unbounded F4-rank-width.

Figure 9.8 Acyclic graphs that have large bi-rank-width.
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9.9.3 Computing Rank-Decompositions

We provide FPT approximation algorithms for bi-rank-width and F4-rank-
width. These can be used to obtain an approximated clique-width expres-
sion when a graph has small directed clique-width. Oum and Seymour [82]
provided a general FPT approximation algorithm on symmetric submodular
functions. By adapting the idea of the result of Oum and Seymour, we present
FPT approximation algorithms for bi-rank-width and F4-rank-width.

Let V be a finite set and let f : 2V → Z be a symmetric submodu-
lar function. A vertex subset W ⊆ V is called an f-well-linked set if for
every partition (X,Y ) of W and every Z with X ⊆ Z ⊆ V \ Y , we have
f(Z) ≥ min(|X|, |Y |). Oum and Seymour showed that f -well-linked sets are
obstructions for graphs of bounded f -width.

Proposition 9.9.12 1. There exists an algorithm that, given a digraph D =
(V,A) and an integer k, runs in time O(8k · poly(|V |)) either constructs
a branch-decomposition of cutrk4

D-width at most 3k+1, or concludes that
rw4(D) > k.

2. There exists an algorithm that, given a digraph D = (V,A) and an integer
k, runs in time O(8k ·poly(|V |)) either constructs a branch-decomposition
of bicutrkD-width at most 12k + 4, or concludes that birw(D) > k.

Proof. We claim that if there is a cutrk4
D-well-linked set of size 3k+1, then D

has F4-rank-width at least k+1. Suppose there is a cutrk4
D-well-linked set W

of size 3k + 1 with respect to cutrk4
D, and D admits a branch-decomposition

(T,L) of cutrk4
D-width at most k. We proceed to find a vertex partition

(A1, A2) induced by some edge in T where |W |
3 < |W ∩ A1| ≤ 2|W |

3 . We
subdivide an edge of T , and regard the new vertex as a root node. For each
node t ∈ V (T ), let μ(t) be the number of leaves of T that are descendants of t
and mapped to a vertex of W by L. We choose a node t that is farthest from
the root node such that μ(t) > |W |

3 . By the choice of t, for each child t′ of t,
μ(t′) ≤ |W |

3 . Therefore, |W |
3 < μ(t) ≤ 2|W |

3 . Let e be the edge connecting t and
its parent. Clearly, the vertex partition (A1, A2) of D induced by e satisfies
that for each i ∈ {1, 2}, |W |

3 < |Ai ∩ W | ≤ 2|W |
3 . Since W is a cutrk4

D-well-
linked set, we have cutrk4

D(A1) ≥ max(|W ∩ A1|, |W ∩ A2|) > |W |
3 > k. This

contradicts our assumption.
We describe an algorithm that either finds a cutrk4

D-well-linked set of size
3k+1 or constructs a branch-decomposition of cutrk4

D-width at most 3k+1.
In the first case, by the above claim, we conclude that D has F4-rank-width
at least k + 1.

When we have a mapping g from V (D) to a tree, we say that g−1(w) for
w ∈ V (D) is assigned to the node w. Choose a vertex v of D and start with a
tree with two nodes where one contains v and the other contains all vertices
of V \{v}. Recursively choose a node t containing more than one vertex, and
let A be the vertex set assigned to t. If cutrk4

D(A) < 3k + 1, then we choose
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any vertex a ∈ A, and construct a new tree obtained by adding two nodes t1
and t2 and edges t1t, t2t to T , and assigning a to t1 and all vertices in A\{a}
to t2. Clearly, we have cutrk4

D(A \ {a}) ≤ 3k + 1.
Now we assume cutrk4

D(A) = 3k + 1. In this case, we find a vertex set
B ⊆ V \ A such that |B| = 3k + 1 and F4-rank(M4

D[A,B]) = 3k + 1. We can
find such a set by enumerating a column basis of the matrix M4

D[A, V \ A].
We check whether B is a cutrk4

D-well-linked set or not. For this, we take
all vertex partitions (B1, B2) of B, and check for every Z with B1 ⊆ Z ⊆
V \B2, cutrk4

D(Z) ≥ min(|B1|, |B2|). We can check this using the submodular
function minimization algorithm [52]. If Z is a cutrk4

D-well-linked set of size
3k + 1, then we output that D has F4-rank-width at least k + 1. Otherwise,
the procedure outputs a vertex partition (B1, B2) of B and a vertex subset
Z with B1 ⊆ Z ⊆ V \ B2 where cutrk4

D(Z) < min(|B1|, |B2|).
We observe that A ∩ Z and A \ Z are non-empty. If A ∩ Z = ∅, then

cutrk4
D(Z) = cutrk4

D(Z \ A). On the other hand, we have

cutrk4
D(Z \ A) = F4-rank(M4

D[Z \ A,A ∪ (V \ Z)])
≥ F4-rank(M4

D[B1, A \ Z])
= |B1| > cutrk4

D(Z),

which is a contradiction. Therefore, A ∩ Z �= ∅ and for a similar reason,
A \ Z �= ∅. We construct a tree obtained by adding two nodes t1 and t2 and
adding edges t1t, t2t to T , and assigning A ∩ Z to t1 and A \ Z to t2. We
observe

cutrk4
D(A) + |B2| > cutrk4

D(A) + cutrk4
D(Z)

≥ cutrk4
D(A ∩ Z) + cutrk4

D(A ∪ Z)
= cutrk4

D(A ∩ Z) + cutrk4
D(V \ (A ∪ Z))

≥ cutrk4
D(A ∩ Z) + F4-rank(M4

D[B2, A])
= cutrk4

D(A ∩ Z) + |B2|.

This implies that cutrk4
D(A∩Z) ≤ cutrk4

D(A) ≤ 3k+1. For a similar reason,
we also have cutrk4

D(A \ Z) ≤ 3k + 1.
Doing this procedure recursively, we obtain either a branch-decomposition

of cutrk4
D-width at most 3k+1, or conclude that D has F4-rank-width at least

k+1. For bi-rank-width, we first run the above algorithm for F4-rank-width.
If it returns that D has F4-rank-width at least k + 1, then we can return
that it has bi-rank-width at least k + 1, by Lemma 9.9.10. If the algorithm
outputs a branch-decomposition of cutrk4

D-width at most 3k+1, then this is
also a branch-decomposition of bicutrkD-width at most 4(3k + 1) = 12k + 4,
by Lemma 9.9.10. �

Later, Oum [78] investigated an FPT approximation algorithm for undi-
rected rank-width that runs in time O(8k · n4), by replacing the submodular
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function minimization algorithm with an elementary algorithm that fits to
rank-width. Oum [79] raised an open problem whether it can be further
reduced to O(ck · n3) for some constant c. We ask the same questions for bi-
rank-width and F4-rank-width on digraphs. Note that when allowing ck2

in
the parameter part, one can obtain O(n3) running time due to Hliněný [48].

Problem 9.9.13 Is there a constant-factor FPT approximation algorithm
for bi-rank-width or F4-rank-width that runs in time O(ckn3) for some con-
stant c?

Kanté and Rao [59] observed that as an application of the result of Hliněný
and Oum [49], there are also exact FPT algorithms for both parameters.
Briefly, Hliněný and Oum developed an exact FPT algorithm for partitioned
matroids with respect to matroid branch-width, and then applied to rank-
width. This application is also possible for bi-rank-width or F4-rank-width.
Note that the function g(k) in Theorem 9.9.14 is triple exponential.

Theorem 9.9.14 ([59])

1. There exists an algorithm that, given a digraph D = (V,A) and an inte-
ger k, runs in time g(k)|V |3 for some function g and either constructs
a branch-decomposition of cutrk4

D-width at most k, or concludes that
rw4(D) > k.

2. There exists an algorithm that, given a digraph D = (V,A) and an in-
teger k, runs in time g(k)|V |3 for some function g and either constructs
a branch-decomposition of bicutrkD-width at most k, or concludes that
birw(D) > k.

We observe that a branch-decomposition of bounded bicutrkD-width can
be efficiently translated to directed clique-width expression. A similar ob-
servation for undirected rank-width and clique-width was discussed by Oum
and Seymour [82]. We remark that Courcelle and Engelfriet [24, Proposition
6.8] proved that one can approximate directed clique-width using undirected
rank-width.

Lemma 9.9.15 For a digraph D = (V,A), birw(D)
2 ≤ dcw(D) ≤ 2birw(D)+1−

1. Moreover, given a digraph D and its branch-decomposition of bicutrkD-
width k, one can construct a directed clique-width (2k+1 − 1)-expression in
time O(4k|V |3).

Proof. We prove that birw(D) ≤ 2dcw(D). If |V | = 1, then birw(D) = 0
and dcw(D) = 1, and the statement holds. We may assume |V | ≥ 2. Let
k = dcw(D) and let T be a directed clique-width k-expression tree of D.
Note that this tree is a tree with maximum degree 3, and each leaf node is a
node introducing a vertex of D. We choose an edge e = uv of T where u is
a child of v. The constructed graph Du at node u is a k-labeled graph, and
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each vertex set in Du having the same label has the same out-neighborhood
and in-neighborhood to V \V (Du). This means that bicutrkD(V (Du)) ≤ 2k,
and it shows that birw(D) ≤ 2k.

Now, we prove that given a branch-decomposition of D of bi-rank-width
k, one can construct a directed clique-width (2k+1 − 1)-expression in time
O(4k|V |3). This also proves the inequality dcw(D) ≤ 2birw(D)+1−1. Let (T,L)
be a given branch-decomposition of D of bicutrkD-width k. We choose an edge
of T and subdivide this edge with adding a new node r, and we consider T
as a tree with the root node r. For each node t of T , let Dt = (Vt, At) be the
digraph induced by the set of vertices of D that are mapped to a descendant
of t. Let ∼t be the equivalent class on Vt such that v ∼t w if and only if
N+

D (v)∩(V \Vt) = N+
D (w)∩(V \Vt) and N−

D (v)∩(V \Vt) = N−
D (w)∩(V \Vt).

We denote by Vt/ ∼t be the set of equivalent classes. We note that since D
has bicutrkD-width k, there are at most 2k equivalent classes in Vt/ ∼t for
each node t.

We prove by induction on the number of descendants of T that Dt =
(Vt, At) has a labeling labt satisfying that

1. (Vt, At, labt) can be constructed by a directed clique-width (2k+1 − 1)-
expression,

2. labt is a 2k-labeling of Dt,
3. for v, w ∈ Vt, if v and w are contained in distinct classes of Vt/ ∼t, then

labt(v) �= labt(w), and
4. {v ∈ Vt : labt(v) = 1} is exactly the set of vertices in Vt having no

in-neighborhood and no out-neighborhood in V \ Vt.

If t is a leaf node, then it is clear. Assume that t is not a leaf, and let t1 and
t2 be the two children of t. By induction hypothesis, for each i ∈ {1, 2}, Dti

has a labeling labi satisfying the conditions. For j > 1, we change each label j
of Vt1 to j+(2k−1), and then take the disjoint union of Dt1 and Dt2 . Then we
add arcs between Dt1 and Dt2 according to the adjacency relation between
Dt1 and Dt2 . Note that when we add an arc from v1 ∈ Vt1 to v2 ∈ Vt2 , we
add all arcs from the vertices in the class of Vt1/ ∼t1 containing v1 and to
the vertices in the class of Vt2/ ∼t2 containing v2.

For each i ∈ {1, 2}, we relabel Vti according to the class Vt/ ∼t. This
is possible as Vti/ ∼ti is a refinement of Vt/ ∼t on Vti . Then we relabel
Vt1 according to the labeling of Vt2 so that the resulting labeling labt on Vt

satisfies that

• for v, w ∈ Vt, if v and w are contained in distinct classes of Vt/ ∼t, then
labt(v) �= labt(w), and

• {v ∈ Vt : labt(v) = 1} is exactly the set of vertices in Vt having no in-
neighborhood and no out-neighborhood in V \ Vt.

This concludes the proof. �
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9.9.4 Algorithmic Applications

We present algorithms based on directed clique-width or bi-rank-width. Cour-
celle, Makowsky and Rotics [26] showed that every problem expressible in
MSO1 logic can be solved in polynomial time on graphs of bounded directed
clique-width.

Theorem 9.9.16 ([26]) Every problem expressible in MSO1 logic is fixed
parameter tractable with respect to the parameter directed clique-width.

For many problems, we can design a dynamic-programming algorithm
with running time much better than one guaranteed by Theorem 9.9.16. For
instance, the problem of finding a minimum dominating set can be solved in
time 2O(k)nO(1) when a directed clique-width k-expression is given.

Theorem 9.9.17 Given a digraph D = (V,A) and its directed clique-width
k-expression, one can compute a minimum directed dominating set of D in
time 2O(k)nO(1).

We briefly present how to formulate table indices. Let φ be the given k-
expression defining D, and let T be the labeled rooted tree induced by φ.
For every node t of T , let Dt be the subgraph of D defined at node t, and
for each i ∈ {1, . . . , k}, let Dt[i] be the subgraph of Dt induced on the set of
vertices with label i.

The property of the constructed graph Dt at some node t is that two
vertices in a same label class have same in-neighbors and out-neighbors in
V \ V (Dt). In the table of dynamic programming, we store the information
that label classes that are completely dominated by some vertices of Dt, and
label classes containing a vertex taken as a dominating set. We can recursively
check whether a proper dominating set exists with given these information
and a fixed size. This is similar to one developed for undirected case by Kobler
and Rotics [67].

For many problems whose solutions can be locally checked, we can sim-
ilarly design dynamic programming algorithms for problems on digraphs of
bounded clique-width, which runs in FPT time. However, it becomes dif-
ferent when a solution requires some global property such as connectivity.
For instance, Fomin, Golovach, Lokshtanov and Saurabh [36] proved that the
problem of testing whether there is a hamiltonian cycle is W [1]-hard parame-
terized by clique-width, and later the same authors proved that this problem
does not admit an algorithm with running time no(k) under the ETH assump-
tion [35]. On the other hand, it can be solved in time nO(k2), similar to the
undirected case [32].

Theorem 9.9.18 Given a digraph D = (V,A) and its directed clique-width
k-expression, one can test whether D contains a hamiltonian cycle in time
nO(k2).
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We briefly explain the idea of Theorem 9.9.18. If D contains a hamiltonian
cycle, then its restriction on Dt forms a partition of Dt into vertex-disjoint
paths unless Dt �= D. Thus, if we have all possible partitions of Dt into
vertex-disjoint paths for each node t, then at the last node, we can test
whether there is a hamiltonian cycle. One could observe that if there are two
partitions into paths where for every pair (i, j) of integers in {1, 2, . . . , k},
the number of paths from Dt[i] to Dt[j] is equal, then they have the same
role in generating a hamiltonian cycle. Thus, in the indices of tables, we are
given some integer for every pair of integers, and we check whether there is a
partition into paths meeting this condition. Using this table scheme, we can
solve it in time nO(k2). Bergounoux, Kanté and Kwon [10] announced that
the running time can be further improved to nO(k).

There are more interesting problems that can be solved in FPT or XP time
parameterized by clique-width. For instance, Parity Game can be solved in
polynomial time on digraphs of constant directed clique-width [76]. We refer
to [41] for more examples.

One issue of using directed clique-width is that if we approximate directed
clique-width using Lemma 9.9.15 from obtained rank-decomposition, it is
unavoidable single-exponential blow-up on the parameter. Thus, designing an
algorithm directly using branch-decompositions of small bi-rank-width is an
interesting problem. Ganian, Hliněný and Obdržálek [44] used parsing trees
for rank-width to design XP algorithms for several problems such as Graph
Coloring, Chromatic Polynomial, and Hamiltonian Path problems.
More examples can be found in [42, 45].

9.9.5 Vertex-Minors and Pivot-Minors

We introduce pivot-minor and vertex-minor relations in digraphs. These
containment relations are defined using graph operations pivoting and local
complementation, respectively. In undirected graphs, local complementa-
tion at a vertex v is an operation to replace the neighborhood of v with its
complement. Local complementation was introduced in the study of circle
graphs [19], 2-regular Eulerian digraphs and isotropic systems [17, 18] by
Bouchet. Pivoting also came up in the study of graphic representations of
isotropic systems [17], and it is represented as three successive local comple-
mentations at v, w, v on two adjacent vertices v and w. Bouchet [16] observed
that the cut-rank function does not change when applying local complemen-
tation [17], and based on this property, Oum [80, 81] investigated several
structural results related to rank-width. Later, Kanté and Rao [59] extended
the notion of local complementation and pivoting to digraphs.

We introduce here the pivoting operation in a digraph. Let M be a V ×V -
matrix on F4, and let x, y be distinct elements in V such that M [x, y] �= 0.
The matrix M ∗ (x, y) is a V × V -matrix such that (M ∗ (x, y))[z, z] := 0 for
all z ∈ V , and for all s, t ∈ V \ {x, y} with s �= t,
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• (M ∗ (x, y))[s, t] := M [s, t] − M [s,x]·M [y,t]
M [y,x] − M [s,y]·M [x,t]

M [x,y] ,

• (M ∗ (x, y))[x, t] := M [y,t]
M [y,x] , (M ∗ (x, y))[y, t] := − M [x,t]

M [x,y] ,

• (M ∗ (x, y))[s, x] := − M [s,y]
M [x,y] , (M ∗ (x, y))[s, y] := M [s,x]

M [y,x] ,

• (M ∗ (x, y))[x, y] := − 1
M [y,x] , (M ∗ (x, y))[y, x] := − 1

M [x,y] ,

where all equations are computed over F4. For an arc (v, w) of a digraph
D, a digraph obtained by pivoting vw is defined as the digraph whose F4-
adjacency matrix is M4

D ∗ (v, w), and it is denoted by D ∧ vw. A digraph H
is a pivot-minor of a digraph D if H can be obtained from D by a sequence
of pivotings and vertex deletions. We observe that pivot operations do not
change the function cutrk4

D.

Lemma 9.9.19 ([59]) Let D = (V,A) be a digraph. Every pivot operation
does not change the function cutrk4

D, and thus, if a digraph H is a pivot-
minor of D, then rw4(H) ≤ rw4(D).

Proof. Let (x, y) be an arc of D, and let X ⊆ V and Y = V \X. It is enough
to prove that cutrk4

D(X) = cutrk4
D∧xy(X). Without loss of generality, we

may assume x ∈ X. We divide cases depending on whether y ∈ X or not.
First assume that y ∈ X, and let X ′ := X \ {x, y}. In this case, we have

F4-rank(M4
D∧xy[X,Y ])

= F4-rank

⎛

⎜
⎝

1
M4

D[y,x]
· M4

D[y, Y ]
−1

M4
D[x,y]

· M4
D[x, Y ]

M4
D[X ′, Y ] − M4

D[X′,x]·M4
D[y,Y ]

M4
D[y,x]

− M4
D[X′,y]·M4

D[x,Y ]

M4
D[x,y]

⎞

⎟
⎠

= F4-rank

⎛

⎜
⎝

1
M4

D[y,x]
· M4

D[y, Y ]
−1

M4
D[x,y]

· M4
D[x, Y ]

M4
D[X ′, Y ]

⎞

⎟
⎠ = F4-rank(M4

D[X,Y ]).

Now, we assume that y /∈ X, and let X ′ := X \ {x} and Y ′ := Y \ {y}.
Then we have
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F4-rank(M4
D∧xy[X,Y ])

= F4-rank

(− 1
M4

D[y,x]
−1

M4
D[y,Y ′] · M4

D[y, x]
M4

D[X′,x]
M4

D[y,x]
M4

D[X ′, Y ′] − M4
D[X′,x]·M4

D[y,Y ′]
M4

D[y,x]
− M4

D[X′,y]·M4
D[x,Y ′]

M4
D[x,y]

)

= F4-rank

(− 1
M4

D[y,x]
−1

M4
D[y,Y ′] · M4

D[y, x]

0 M4
D[X ′, Y ′] − M4

D[X′,y]·M4
D[x,Y ′]

M4
D[x,y]

)

= F4-rank

(− 1
M4

D[y,x]
0

0 M4
D[X ′, Y ′] − M4

D[X′,y]·M4
D[x,Y ′]

M4
D[x,y]

)

= F4-rank

(
M4

D[x, y] 0
M4

D[X ′, y] M4
D[X ′, Y ′] − M4

D[X′,y]·M4
D[x,Y ′]

M4
D[x,y]

)

= F4-rank
(

M4
D[x, y] M4

D[x, Y ′]
M4

D[X ′, y] M4
D[X ′, Y ′]

)

= F4-rank(M4
D[X,Y ]).

�

Kanté [57] showed that digraphs of bounded F4-rank-width are well-quasi-
ordered under the pivot-minor operation. Note that the class of digraphs of
bounded F4-rank-width is not well-quasi-ordered under the induced subdi-
graph operation. The set of all directed cycles is such an example.

Theorem 9.9.20 ([57]) Every pivot-minor closed class of digraphs of F4-
rank-width at most k is well-quasi-ordered under the pivot-minor relation.

In undirected case, it is an open problem whether graphs are well-quasi-
ordered under the undirected version of pivot-minor relation. If this holds,
then it would imply the graph minor theorem which say that graphs are
well-quasi-ordered under the minor relation. We ask the same question for
directed graphs.

Problem 9.9.21 Is the set of digraphs well-quasi-ordered under the pivot-
minor relation?

It is open whether we can check whether a fixed graph H is a pivot-
minor of a graph G for undirected graphs. Courcelle and Oum [27] proved
that this problem is solvable in polynomial time when underlying graphs
have bounded rank-width. Results from [57] imply that the same question
for directed graphs is solvable in polynomial time when underlying digraphs
have bounded F4-rank-width. We ask a question for general digraphs, as for
undirected graphs.

Problem 9.9.22 For every fixed digraph H, is there a polynomial time algo-
rithm testing whether a digraph G contains H as a pivot-minor?
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For a vertex v in a digraph D = (V,A), the F4-local complementation
at v, denote by D ∗ v, is the operation to take the digraph with the F4-
adjacency matrix M ′ where

• for x, y ∈ V with x �= y, M ′[x, y] = M4
D[x, y] + M4

D[x, z]M4
D[z, y],

• for x ∈ V , M ′[x, x] = 0.

A digraph H is an F4-vertex-minor of D if H can be obtained from D by
a sequence of local complementations and vertex deletions. Note that as in
the undirected case, it is satisfied that D ∧ vw = D ∗ v ∗ w ∗ v [59].

Lemma 9.9.23 ([59]) Let D = (V,A) be a digraph. Every F4-local comple-
mentation does not change the function cutrk4

D, and thus if H is an F4-
vertex-minor of a digraph D, then rw4(H) ≤ rw4(D).

Proof. Let D = (V,A) be a digraph and x be a vertex of D. Let X ⊆ V . We
may assume that x ∈ X as cutrk4

D(X) = cutrk4
D(V \X). For each y ∈ X, the

F4-local complementation at x results in adding a multiple of the row indexed
by x to the row indexed by y. Therefore, we have cutrk4

D∗x(X) = cutrk4
D(X).

�

Kanté and Rao [59] proved that the size of a minimal vertex-minor or
pivot-minor obstruction for digraphs of F4-rank-width at most k is bounded
by a function of k.

Theorem 9.9.24 ([59])

1. For each positive integer k, there is a set Cv
k of directed graphs each having

at most (6k+1 − 1)/5 vertices, such that a digraph has F4-rank-width at
most k if and only if it has no F4-vertex-minor isomorphic to digraphs
in Cv

k .
2. For each positive integer k, there is a set Cp

k of directed graphs each having
at most (6k+1 − 1)/5 vertices, such that a digraph has F4-rank-width at
most k if and only if it has no pivot-minor isomorphic to digraphs in Cp

k .

A similar variant of local complementation can be defined in a way that
it preserves the bi-rank-width of a digraph. For a vertex v in a digraph
D = (V,A), the F2-local complementation at v, denote by D ∗2 v, is the
operation to take the digraph with the out-neighborhood matrix M ′ where

• for x, y ∈ V with x �= y, M ′[x, y] = M+
D [x, y] + M+

D [x, z]M+
D [z, y],

• for x ∈ V , M ′[x, x] = 0.

A digraph H is an F2-vertex-minor of D if H can be obtained from D by
a sequence of local complementations and vertex deletions.

Lemma 9.9.25 ([59]) Let D = (V,A) be a digraph. Every F2-local comple-
mentation does not change the function bicutrkD, and thus if H is an F2-
vertex-minor of a digraph D, then birw(H) ≤ birw(D).
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Proof. Let D = (V,A) be a digraph and x be a vertex of D. Let X ⊆ V . We
may assume that x ∈ X. In the matrix M+

D [X,V \ X], for each y ∈ X \ {x},
the F2-local complementation at x results in adding a multiple of the row
indexed by x to the row indexed by y. Therefore, we have bicutrkD∗x(X) =
bicutrkD(X). �

Kanté and Rao [59] discussed that their generalization of pivot operation
for edge-colored graphs does not fit to bi-rank-width. Also, they observed
that digraphs of bounded bi-rank-width are not well-quasi-ordered under the
F2-vertex-minor relation. The set of digraphs whose underlying graphs are
even cycles such that each vertex has either in-degree 2 or out-degree 2 has
bounded bi-rank-width and is not well-quasi-ordered by the F2-vertex-minor
relation. Any F2-local complementation at a vertex of such cycle does not cre-
ate any new arc, and thus, it is implied by the observation that such cycles
are not well-quasi-ordered under the induced subdigraph relation. Further-
more, we can observe that all of such cycles are F2-vertex-minor obstructions
for digraphs of bi-rank-width at most 1. Thus, we could not expect an upper
bound on the size of F2-vertex-minor obstructions for digraphs of bounded
bi-rank-width as in Theorem 9.9.24.
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