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8.1 Introduction

8.1.1 General Overview

Initially, quasi-transitive digraphs were studied by Ghouila-Houri in [39] be-
cause of their relation to comparability graphs.1 Nonetheless, in their seminal
paper [17] of 1995, Bang-Jensen and Huang began the study of this family
in its own right. Through the last 20 years, quasi-transitive digraphs have
gained a place among the most studied and better understood families of
digraphs. Probably the main reason is the characterization theorem found in
[17], which has led to solutions of many (usually difficult) problems.

Also, this is a family containing two very well known classes of digraphs:
tournaments (and semicomplete digraphs) and transitive digraphs. It is well
known that some interesting problems are very easy to solve for both families,
e.g., determining hamiltonicity. The appeal of quasi-transitive digraphs comes
from the fact that a lot of problems are hard enough to be interesting, but
it is still possible to find results similar to those of tournaments or transitive
digraphs, yet, it is by no means trivial to do it.

Since a fair number of the classical problems for digraphs have already
been studied for the family of quasi-transitive digraphs, it was a natural step
to introduce a new class of digraphs generalizing it. Bang-Jensen introduced
the family of 3-quasi-transitive digraphs in the context of strong arc-locally
semicomplete digraphs [6]. Afterwards, in the context of k-kernels of digraphs,
Galeana-Sánchez and Hernández-Cruz began in [48] the study of k-quasi-
transitive digraphs. It came as a surprise that many nice structural properties
of quasi-transitive digraphs have a natural generalization to k-quasi-transitive
digraphs. This made it possible to generalize some of the classical results of

1 He proved that a graph G admits a quasi-transitive orientation if and only if it
admits a transitive orientation if and only if it is a comparability graph.
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quasi-transitive digraphs to k-quasi-transitive digraphs, proving the latter to
be an interesting family of digraphs.

Despite this fact, k-quasi-transitive digraphs are harder to handle than
quasi-transitive digraphs. For larger values of k, their structure becomes in-
creasingly complicated; as a matter of fact, the structure of strong 4-quasi-
transitive digraphs is not completely understood. In view of this difficulty,
Hernández-Cruz studied the classes of 3- and 4-transitive digraphs, [46, 47]
obtaining a complete structural characterization of strong 3-transitive and
4-transitive digraphs. In [61], Wang and Wang proved that 3-quasi-transitive
digraphs and 3-transitive digraphs are related in the same way as quasi-
transitive and transitive digraphs: the underlying graphs of 3-quasi-transitive
digraphs can be oriented as 3-transitive digraphs. This motivated the study
of k-transitive digraphs on their own.

Finally, after reaching the most general case of the k-quasi-transitive di-
graphs and going back through the k-transitive digraphs, very recently the
class of transitive digraphs has been considered again in the context of digraph
homomorphisms. In [28], Feder, Hell and Hernández-Cruz showed that al-
though many classical problems for digraphs are trivially solved in the class of
transitive digraphs, there are many natural problems that are NP-complete
when restricted to this family. It is to be expected that both transitive and
quasi-transitive digraphs will receive renewed attention in the near future.

As is usual with many mathematical concepts, k-quasi-transitive digraphs
are not the only interesting generalization of quasi-transitive digraphs. On one
hand we have k-quasi-transitive digraphs, which are obtained by generalizing
the definition of a quasi-transitive digraph. As we have already mentioned, no
nice structural characterizations of k-quasi-transitive digraphs are known for
k ≥ 3. So, on the other hand, instead of generalizing the definition of quasi-
transitive digraphs, we can generalize the structure obtained by the charac-
terization theorem. Following this idea, the notion of totally Φ-decomposable
digraphs was first introduced by Bang-Jensen and Gutin in [14], precisely as
a tool to study quasi-transitive digraphs. Nonetheless, we can trace the basic
idea of this family back to [41], where Gutin used a simpler version of the
Φ-decomposable digraphs to find a polynomial algorithm to solve the min-
imum path factor problem for quasi-transitive digraphs. It has turned out
that this family is a common generalization of many interesting classes of di-
graphs, e.g., quasi-transitive digraphs, round decomposable graphs, directed
cographs, etc.

8.1.2 Chapter Overview

In Subsection 8.1.3 some terminology and notation is introduced that will be
used throughout the rest of the chapter. In Section 8.2 a brief overview of
transitive digraphs is presented, including some open problems on digraph
homomorphisms. Section 8.3 is devoted to presenting structural proper-
ties of quasi-transitive digraphs and some of their generalizations, including
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the canonical decomposition in Subsection 8.3.1, some structural proper-
ties of strong k-quasi-transitive digraphs in Subsection 8.3.2 and of k-
transitive digraphs in Subsection 8.3.3, and recognition theorems of totally
Φ-decomposable digraphs for some choices of Φ. Section 8.4 deals with paths
and cycles; Subsection 8.4.1 reviews the few known results for hamiltonicity
and traceability for k-transitive and k-quasi-transitive digraphs; Hamiltonic-
ity of quasi-transitive and totally Φ-decomposable digraphs is studied in Sub-
section 8.4.2 and some variants of vertex-cheapest paths and cycles for quasi-
transitive digraphs are studied in Subsections 8.4.3, 8.4.4, 8.4.5, and 8.4.6.
The linkage problem is covered in Section 8.5; Subsection 8.5.1 is devoted to
k-linkages, and Subsection 8.5.2 to weak k-linkages. The topic of Section 8.6
is kings and kernels; k-kings are covered in Subsection 8.6.1 and k-kernels
in Subsection 8.6.2. Section 8.7 deals with the Path Partition Conjecture, it
has two subsections, Subsection 8.7.1 presents the conjecture and some of its
known variants, and Subsection 8.7.2 deals with the known results for them.
The last section of the chapter, Section 8.8 covers miscellaneous topics; vertex
pancyclicity is covered in Subsection 8.8.1, acyclic spanning subdigraphs in
Subsection 8.8.2, orientations of digraphs almost preserving the original diam-
eter in Subsection 8.8.3, sparse subdigraphs with prescribed connectivity in
Subsection 8.8.4, and arc-disjoint in-and out-branchings in Subsection 8.8.5.

8.1.3 Terminology and Notation

In this subsection, for the reader’s convenience, we will recall some termi-
nology and notation that will be used throughout this chapter. Only general
concepts will be introduced here; more specific ones will be recalled whenever
needed.

Throughout this chapter, walks, paths and cycles in a digraph are always
meant to be directed. Let D be a digraph. An arc uv of D is symmetric if
vu is also an arc of D, and asymmetric otherwise. Notice that a symmetric
arc uv together with the arc vu form a 2-cycle of D; both this 2-cycle and
the arc uv will sometimes be referred to as a digon. When u, v are adjacent
vertices of D, we will write uv.

If X and Y are disjoint subsets of vertices of D, then X → Y means that
X dominates Y , that is, every vertex of X dominates every vertex of Y . If
additionally there is no arc from Y to X, then we say that X completely
dominates Y and denote this by X �→ Y . We shall use the same notation
when X and Y are disjoint subdigraphs rather than subsets of vertices.

Let k be an integer, k ≥ 2. A digraph D is k-quasi-transitive if for
every pair of vertices u, v of D, the existence of a (u, v)-path of length k
in D implies that uv. A quasi-transitive digraph is a 2-quasi-transitive
digraph. A digraph D is k-transitive if for every pair of vertices u, v of D,
the existence of a (u, v)-path of length k in D implies u → v. A transitive
digraph is a 2-transitive digraph. Recall that if R is a digraph on r vertices
v1, . . . , vr and L1, . . . , Lr is a collection of distinct (but possibly isomorphic)
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digraphs, then we denote by D = R[L1, . . . , Lr] the digraph with vertex set
V (L1)∪V (L2)∪. . .∪V (Lr) and arc set (

⋃r
i=1 A(Gi))∪{gigj : gi ∈ V (Gi), gj ∈

V (Gj), vivj ∈ A(D)}. If D = R[L1, . . . , Lr], then R,L1, . . . , Lr are induced
subdigraphs of D and we say that D is decomposable (into R,L1, . . . , Lr).
Let Φ be a class of digraphs. A digraph D is Φ-decomposable if D is a
member of Φ or D = H[S1, . . . , Sh] for some H ∈ Φ with h = |V (H)| ≥ 2
and some choice of digraphs S1, S2, . . . , Sh (we call this decomposition a Φ-
decomposition). A digraph D is called totally Φ-decomposable if either
D ∈ Φ or there is a Φ-decomposition D = H[S1, . . . , Sh] such that h ≥ 2, and
each Si is totally Φ-decomposable. In this case, if D /∈ Φ, a Φ-decomposition
of D, Φ-decompositions Si = Hi[Si1, . . . , Sihi

] of all Si which are not in Φ, Φ-
decompositions of those of Sij which are not in Φ, and so on, form a sequence
of decompositions which will be called a total Φ-decomposition of D. If
D ∈ Φ, we assume that the (unique) total Φ-decomposition of D consists of
itself.

If D is a digraph on n vertices, and S1, . . . , Sn are digraphs with no arcs,
then we say that the composition H = D[S1, . . . , Sn] is an extension of D, or
we say that H is a D-extension. When D belongs to some well-known class
of digraphs, we will say that H is an extended member of the class, e.g., if
D is a semicomplete digraph, we will say that H is an extended semicomplete
digraph.

A k-path-q-cycle subdigraph (k-path-q-cycle factor), F , of a di-
graph D is a (spanning) collection of k paths and q cycles, all disjoint. When
k = 0, F is a q-cycle subdigraph (and a q-cycle factor if it is span-
ning) and when q = 0, F is a k-path-subdigraph (and a k-path-factor
if it is spanning). A k-path-q-cycle subdigraph in which q may be arbitrary
(including zero) is called a k-path-cycle subdigraph.

A longest path in a digraph D is called a detour of D. The order of
a detour of D is called the detour order of D and is denoted by do(D).
For a given digraph D, let dok(D) denote the maximum number of vertices
contained in a k-path subdigraph of D. A k-path subdigraph of D which
covers dok(D) vertices is called a maximum k-path subdigraph of D. Note
that do1(D) = do(D).

The path-covering number of a digraph D (denoted by pc(D)) is the
least positive integer k such that D has a k-path factor. The path-cycle-
covering number of a digraph D (denoted by pcc(D)) is the least positive
integer k such that D has a k-path-cycle factor. The path-cycle-covering num-
ber of a digraph can easily be found in polynomial time using, in particular,
algorithms on flows in networks [10, 14, 41]. The path-covering number is
hard to calculate: note that pc(D) = 1 if and only if D has a Hamiltonian
path. Thus, the path-covering number problem generalizes the Hamiltonian
path problem.

Given a fixed digraph H, an H-colouring of a digraph D is a homomor-
phism of D to H, i.e., a mapping f : V (D) → V (H) such that f(u)f(v) is
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an arc of H whenever uv is an arc of D. The H-colouring problem asks
whether an input digraph D admits an H-colouring. In the list H-colouring
problem the input D comes equipped with lists L(u) ⊆ V (H), u ∈ V (D),
and the homomorphism f must also satisfy f(u) ∈ L(u) for all vertices u.
Finally, the H-retraction problem is a special case of the list H-colouring
problem, in which each list is either L(u) = {u} or L(u) = V (H). Note
that the H-colouring problem is a special case of the H-retraction prob-
lem, in which each L(u) = V (H). The dichromatic number of a digraph
D is the least integer χ(D) such that V (D) admits a partition into χ(D)
acyclic sets. Notice that if every arc of D is symmetric, then the dichromatic
number of D coincides with the (usual) chromatic number of the underlying
graph of D.

8.2 Transitive Digraphs

A digraph D is defined to be transitive if for any three distinct vertices
u, v, w, the existence of the arcs uv, vw implies the existence of the arc uw.
Note that an acyclic digraph is transitive if and only if its arcs define a
transitive relation in the usual sense. However, a digraph with a directed
cycle is transitive if and only if its reflexive closure (i.e., adding all loops)
defines a transitive relation. This peculiarity means that, for instance, when
taking a transitive closure of a digraph we omit any loops that would exist
in a transitive closure as a binary relation.

Acyclic transitive digraphs have a particularly nice structure, namely, they
are exactly those digraphs whose reflexive closure is a reflexive partial order.
It is well known that each transitive digraph D is obtained from an acyclic
transitive digraph J by replication, whereby each j ∈ V (J) is replaced by
kj ≥ 0 vertices forming a complete digraph, so that if ij is an arc in J , then
all ki vertices replacing i dominate in D all kj vertices replacing j. Note that
all kj vertices replacing j have exactly the same in- and out-neighbours in
D (except that each of them does not dominate itself). Note that the strong
components of a transitive digraph D are complete digraphs.

The observations in the preceding paragraph are often stated in terms
of contraction2 of the strong components of a transitive digraph, in order
to obtain an acyclic transitive digraph, rather than using the replication
operation to obtain an arbitrary transitive digraph from an acyclic one. Of
course, both points of view are equivalent, but usually this observation is
stated in the following way.

Proposition 8.2.1 Let D be a digraph with an acyclic ordering D1, . . . , Dp of
its strong components. The digraph D is transitive if and only if the following
holds:

2 Contraction is defined in Section 1.4 for directed multigraphs. We can obtain
a digraph instead of a directed multigraph by deleting spare parallel arcs after
contraction.
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1. Each digraph Di, i ∈ [p] is complete,
2. the digraph H obtained from D by contraction of D1, . . . , Dp is a transi-

tive oriented graph, and
3. D = H[D1, . . . , Dp], where p = |V (H)|.

Notice that Proposition 8.2.1 can be restated as saying that every transi-
tive digraph is totally Ψ0-decomposable, where Ψ0 is the family of all acyclic
digraphs and all the complete digraphs. Obviously, for a digraph D, the di-
graph H of Proposition 8.2.1 (which is the same as the digraph J in the above
construction by replication), is simply the strong component digraph of D.
From here, and using the fact that the strong components of a transitive di-
graph are complete digraphs, one can directly verify that some problems are
easy to solve when restricted to transitive digraphs. Recall that the strong
component digraph can be constructed in O(|V | + |A|)-time. A necessary
condition for a digraph D to be Hamiltonian is that D is strong. In the
case of transitive digraphs, this condition is also sufficient, since every tran-
sitive strong digraph is a complete digraph, and thus Hamiltonian. Hence,
hamiltonicity can be verified in linear time for transitive digraphs. Every
transitive digraph D has a kernel; to construct one, it suffices to choose one
vertex from every terminal component of D. Thus, it can be verified in con-
stant time whether a transitive digraph has a kernel, one can be constructed
in linear time, and the exact number of different kernels can be calculated in
linear time. An acyclic transitive digraph J clearly has dichromatic number
equal to one, and it follows from the description of the structure of an ar-
bitrary transitive digraph given by replication that the dichromatic number
of an arbitrary transitive digraph D obtained from an acyclic transitive J
by vertex substitutions is equal to the maximum value kj of the size of any
replacing set of vertices. Therefore, the dichromatic number of a transitive di-
graph equals the size of its largest strong component. Again, the dichromatic
number of a transitive digraph can be determined in linear time. We could
go on, enumerating problems which are NP-complete in the general digraph
case and become polynomial time solvable when restricted to transitive di-
graphs. Nonetheless, it is more revealing to exhibit a very natural problem
that remains NP-complete even when restricted to transitive digraphs.

In [29], it is shown that there are bipartite graphs H such that the H-
retraction problem is NP-complete. Hence, the following result of Feder,
Hell and Hernández-Cruz shows that there are digraphs D such that the D-
homomorphism problem is NP-complete, even when restricted to transitive
inputs.

Theorem 8.2.2 ([28]) If H is a bipartite graph such that the H-retraction
problem is NP-complete, then there exists a digraph H ′ such that the H ′-
homomorphism problem is NP-complete, even when restricted to transitive
digraphs.

Before proving Theorem 8.2.2, we will describe how the digraph H ′ can
be obtained from a bipartite graph H. Let H be a bipartite graph with its
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bipartition given by a set of white vertices and a set of black vertices, with
at most n black and at most n white vertices. We form the digraph H ′ as
follows (see Figure 8.1). We first orient all edges of H from the white vertices
to the black vertices. Let Pi be a directed path with n+ 2 vertices, in which
the first, and the (i + 1)-st, vertex have been duplicated (replicated once).
Let Ri also be a directed path with n + 2 vertices, in which the the last,
and the (i + 1)-st, vertex have been duplicated. We identify the last vertex
of each Pi with the i-th white vertex (if any) of H and the first vertex of
each Ri with the i-th black vertex (if any) of H. Then H ′ is obtained from
the resulting digraph by taking the transitive closure. It is easy to see that
the added paths ensure that the only homomorphism of H ′ to itself is the
identity. Also consider a directed path P with n + 2 vertices with only the
first vertex duplicated, and a directed path R with n + 2 vertices and only
the last vertex duplicated. Note that P admits a homomorphism to each Pi

and R admits a homomorphism to each Ri. For future reference, we define
the level of the j-th vertex of P or Pi to be j, and the level of the j-th vertex
of R or Ri to be n+ 2+ j; in this we assume the duplicated vertices to have
the same level. Note that this forces all white vertices to have level n+2 and
all black vertices to have level n + 3.

H

Figure 8.1 The construction of H ′ from H used for Theorem 8.2.2. The digraph
H ′ is obtained by taking the transitive closure of the digraph on the right.

Proof of Theorem 8.2.2: Suppose G is an instance of the H-retraction
problem, i.e., a bipartite graph containing H as a subgraph with lists {x} for
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each (black and white) vertex x of H, and lists V (H) for all other (black and
white) vertices of G. We construct an instance G′ of the H ′-colouring problem
by orienting all edges of G from the white vertices to the black vertices,
attaching paths Pi and Rj to the vertices of H as in the construction of H ′,
and then (for the vertices not in H) we identify the last vertex of a (separate)
copy of P to each white vertex of G not in H, and identify the first vertex
of a (separate) copy of R to each black vertex of G not in H, and finally we
take the transitive closure. Now it is easy to see that each homomorphism of
G′ to H ′ preserves the level of vertices, and that G′ admits an H ′-colouring
if and only if G admits a retraction to H.

Moreover, the above construction of H ′ ensures that it is itself transitive.
Thus we have the following fact.

Corollary 8.2.3 ([28]) There exists a transitive digraph H ′ such that the H ′-
homomorphism problem is NP-complete even when restricted to transitive
digraphs.

In view of Corollary 8.2.3, a natural interesting problem is the following.

Problem 8.2.4 Characterize the transitive digraphs H such that the H-
homomorphism problem restricted to transitive inputs is polynomial time solv-
able.

Although Problem 8.2.4 may look innocuous, it may be very hard in-
deed. Recall that Feder and Vardi proved in [29] that in order to classify
all constraint satisfaction problems, it is enough to classify all the digraph
homomorphism problems. In [28], Feder, Hell and Hernández-Cruz propose
the problem of determining whether for any relational structure H, a (tran-
sitive) digraph H ′ exists such that the constraint satisfaction problem for H
is polynomially equivalent to the H ′-homomorphism problem for transitive
digraphs.

8.3 Structural Properties

As mentioned before, the main appeal of quasi-transitive digraphs comes
from the fact that their structure is very well understood. Throughout this
section, we will consider structural properties of quasi-transitive, k-transitive
and k-quasi-transitive digraphs. Also, some results regarding the recognition
of Φ-decomposable digraphs for particular cases of Φ are included. We begin
by presenting the classical results due to Bang-Jensen and Huang from [17].

8.3.1 Quasi-Transitive Digraphs

The nice results that have been obtained for quasi-transitive digraphs and all
the attention this family and its generalizations have received are principally
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a consequence of the recursive characterization theorem given by Bang-Jensen
and Huang in [17]. The main purpose of this subsection is to reproduce the
proof of this theorem, including the lemmas needed, many of which are in-
teresting on their own.

Proposition 8.3.1 ([17]) Let D be a quasi-transitive digraph. Suppose that
P = x0x1 . . . xn is a shortest (x0, xn)-path. Then, the subdigraph induced by
V (P ) is a semicomplete digraph and xj → xi for every 1 ≤ i + 1 < j ≤ k,
unless n = 3, in which case the arc between x0 and xn may be absent.

Proof: The cases k ∈ {2, 3, 4, 5} are easily verified. The proof for the case
k ≥ 6 is by induction on k with the case k = 5 as the basis. By induction,
each of D[{x0, . . . , xk−1}] and D[{x1, . . . , xk}] is a semicomplete digraph and
xj → xi for any 1 < j − i < k − 2. Hence, x2 dominates x0 and xk dominates
x2, and the minimality of P implies that xk dominates x0. 	

Corollary 8.3.2 ([17]) If a quasi-transitive digraph D has an (x, y)-path but
x does not dominate y, then either y → x, or there exists vertices u, v ∈
V (D) − {x, y} such that x → u → v → y and y → u → v → x.

Proof: Consider a minimal (x, y)-path and apply Proposition 8.3.1. 	


Lemma 8.3.3 ([17]) Suppose that A and B are distinct strong components of
a quasi-transitive digraph D with at least one arc from A to B. Then A �→ B.

Proof: Suppose A and B are distinct strong components such that there
exists an arc from A to B. Then, for every choice of x ∈ A and y ∈ B, there
exists a path from x to y in D. Since A and B are distinct strong components,
none of the alternatives in Corollary 8.3.2 can hold, and hence x → y. 	


Proposition 8.3.1 and Lemma 8.3.3 will be generalized in the following sec-
tions for k-quasi-transitive digraphs. On the other hand, the following lemma
does not have any known generalizations for k-quasi-transitive digraphs when
k ≥ 3.

Lemma 8.3.4 ([17]) Let D be a strong quasi-transitive digraph on at least
two vertices. Then the following holds:

(a) UG(D) is disconnected;
(b) If S and S′ are two subdigraphs of D such that UG(S) and UG(S′) are

distinct connected components of UG(D), then either S �→ S′ or S′ �→ S,
or both S → S′ and S′ → S, in which case |V (S)| = |V (S′)| = 1.

Proof: The statement (b) can be easily verified from the definition of a quasi-
transitive digraph and the fact that S and S′ are completely adjacent in D.
We prove (a) by induction on |V (D)|. Statement (a) is trivially true when
|V (D)| ∈ {2, 3}. Assume that it holds when |V (D)| < n, where n > 3.
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Suppose that there is a vertex z such that D − z is not strong. Then,
there is an arc from (to) every terminal (initial) strong component of D − z
to (from) z. Since D is quasi-transitive, the last fact and Lemma 8.3.3 imply
that X → Y for every initial (terminal) strong component X (Y ) of D − z.
Similar arguments show that each strong component of D−z either dominates
some terminal component or is dominated by some initial component of D−z
(intermediate strong components satisfy both). These facts imply that z is
adjacent to every vertex in D − z. Therefore, UG(D) contains a component
consisting of the vertex z, implying that UG(D) is disconnected, and (a)
follows.

Assume that there is a vertex v such that D − v is strong. Since D is
strong, it contains an arc vw from v to D − v. By induction, UG(D − v) is
not connected. Let S and S′ be connected components of UG(D − v) such
that w ∈ S and S → S′ (here we use (b) and the fact that D − v is strong).
Then v is completely adjacent to S′ in D (as v → w). Hence, UG(S′) is a
connected component of UG(D) and the proof is complete. 	


In the following subsections we will see that, for some values of k, there are
nice characterizations of strong k-transitive and k-quasi-transitive digraphs.
Also it is even possible to show that the strong components of, for example,
a 3-quasi-transitive digraph, are related in a very special way. Nonetheless, it
is difficult to obtain a characterization fully describing the structure of those
families, mainly because, for sufficiently small induced subdigraphs, the k-
quasi-transitivity becomes irrelevant. The following theorem gives a complete
characterization of quasi-transitive digraphs, which makes members of this
family easier to deal with. Notice that, since the characterization is recursive,
it provides an excellent structure to apply mathematical induction in this
class of digraphs.

Theorem 8.3.5 (Bang-Jensen, Huang [17]) Let D be a digraph which is
quasi-transitive.

• If D is not strong, then there exists a transitive oriented graph T with ver-
tices {u1, u2, . . . , ut} and strong quasi-transitive digraphs H1,H2, . . . , Ht

such that D = T [H1,H2, . . . , Ht], where Hi is substituted for ui, i ∈
{1, 2, . . . , t}.

• If D is strong, then there exists a strong semicomplete digraph S with
vertices {v1, v2, . . . , vs} and quasi-transitive digraphs Q1, Q2, . . . , Qs such
that Qi is either a vertex or is non-strong and D = S[Q1, Q2, . . . , Qs],
where Qi is subsituted for vi, i ∈ {1, 2, . . . , s}.

Proof: Suppose that D is not strong and let H1, . . . , Ht be the strong com-
ponents of D. According to Lemma 8.3.3, if there is an arc between Hi and
Hj , then either Hi �→ Hj or Hj �→ Hi. Now, if Hi �→ Hj �→ Hk, then, by
quasi-transitivity, Hi �→ Hk. So, by contracting each Hi to a vertex hi, we
get a transitive oriented graph T with vertices h1, . . . , ht. This shows that
D = T [H1, . . . , Ht].
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Figure 8.2 The canonical decomposition of a non-strong quasi-transitive digraph.
Big arcs between different boxed sets indicate that there is a complete domination
in the direction shown.

Suppose that D is strong. Let Q1, . . . , Qs be the subdigraphs of D such
that each UG(Qi) is a connected component of UG(D). According to Lemma
8.3.4(a), each Qi is either non-strong or just a single vertex. By Lemma 8.3.4
(b), we obtain a strong semicomplete digraph S if each Qi is contracted to a
vertex. This shows that D = S[Q1, . . . , Qs]. 	


The decomposition described by Theorem 8.3.5 is called the canonical
decomposition of the quasi-transitive digraph D. The canonical decompo-
sition of a non-strong quasi-transitive digraph is illustrated in Figure 8.2.

8.3.2 k-Quasi-Transitive Digraphs

So far, there are no known characterizations of k-quasi-transitive digraphs
for k ≥ 3. Even if we restrict ourselves to strong digraphs, only strong 3-
quasi-transitive digraphs have a simple complete characterization. Despite
this fact, there are some structural results valid for any k ≥ 3 that have been
useful to study k-quasi-transitive digraphs.

Despite its simplicity, it could be said that the following result is the
cornerstone of the study of k-quasi-transitive digraphs; it was proved by
Galeana-Sánchez and Hernández-Cruz in [48]. Notice that it can be regarded
as a generalization of Corollary 8.3.2.
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Lemma 8.3.6 ([48]) Let k be an integer with k ≥ 2. If D is a k-quasi-
transitive digraph, and for u, v ∈ V (D) there is a (u, v)-path in D, then each
of the following holds:

1. If d(u, v) = k, then d(v, u) = 1.
2. If d(u, v) = k + 1, then d(v, u) ≤ k + 1.
3. Assume d(u, v) = r ≥ k + 2. If k is even or k and r are both odd, then

d(v, u) = 1; if k is odd and r is even, then d(v, u) ≤ 2.

Proof: Let P = x0, . . . , xr be a path of length r = k + j, j ≥ 0. Observe
that the k-quasi-transitivity of D and the fact that d(u, v) = r imply that
xr → xj . This handles 1. and 2.

To prove 3., we will proceed by induction on j. For j = 2, the existence
of the k-path xrx2Pxkx0 implies xr → x0. For j = 3, the existence of the
k-path xrx3Pxk+1x1 implies xrx1. Considering the k-path xrx1Pxk, we get
xr → xk. When k is odd, we already have d(xr, x0) ≤ 2. For even k, we will
prove by induction on i that xr → xk−2i for every 0 ≤ i ≤ k

2 . We already
have xr → xk, so suppose that xr → xk−2i for some 0 < i < k

2 . Now, the
existence of the k-path xrxk−2iPxkx0Pxk−2(i+1) implies xr → xk−2(i+1). In
particular, xr → x0

So, suppose j > 3. By the induction hypothesis, if k is even, or both k
and r are odd, we obtain xr → x2. Hence, xrx2Pxkx0 is a k-path, and thus
xr → x0. If k is odd and r is even, by the induction hypothesis we have
xr → x1. So, xrx1Pxk is a k-path, the existence of which implies xr → xk.
Since we already had xk → x0, we conclude d(xr, x0) ≤ 2. 	


Proposition 8.3.1 was generalized to k-quasi-transitive digraphs by Wang
and Zhang (when k is even) [62] and by Alva-Samos and Hernández-Cruz
(when k is odd) [1]. Its proof is long and technical, and thus will be omitted.

Proposition 8.3.7 ([1, 62]) Let k ≥ 3 be an integer and let D be a k-quasi-
transitive digraph. Suppose that P = x0x1 . . . xr is a shortest (x0, xr)-path
with r ≥ k + 2 in D.

• If k is even, then D[V (P )] is a semicomplete digraph and xj → xi for
1 ≤ i + 1 < j ≤ r.

• If k is odd, then D[V (P )] is either a semicomplete digraph and xj → xi

for 1 ≤ i + 1 < j ≤ r, or D[V (P )] is a semicomplete bipartite digraph and
xj → xi for 1 ≤ i + 1 < j ≤ r and i �≡ j (mod 2). 	


In a quasi-transitive digraph D, Lemma 8.3.3 tells us that for two different
strong components A and B, if A reaches B, then A �→ B. Unfortunately, this
is not true for k-quasi-transitive digraphs when k ≥ 3. Nonetheless, there are
some results resembling this behaviour. The following simple (but very useful)
result was originally proved by Hernández-Cruz while studying k-transitive
digraphs, [47].
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Lemma 8.3.8 ([47]) Let k be an integer, k ≥ 2, let D be a k-quasi-transitive
digraph, and let C = v0v1 . . . vr−1v0 be a directed cycle in D with r ≥ k. For
any v ∈ V (D) − V (C), if v → vi and (V (C), v) = ∅, then v → vi+(k−1); if
vi → v and (v, V (C)) = ∅, then vi−(k−1) → v, where the subscripts are taken
modulo r.

Proof: It suffices to prove the first statement, the second one is obtained
by noting that reversing every arc of a k-quasi-transitive digraphs yields a
k-quasi-transitive digraph.

The path vviCvi+(k−1) has length exactly k, and thus, vvi+(k−1). But
(V (C), v) = ∅, hence v → vi+(k−1). 	


Our previous lemma is complemented by the following result due to Wang
and Zhang. Although both results have very simple proofs, they have some
very nice consequences on the structure of k-quasi-transitive digraphs.

Lemma 8.3.9 ([62]) Let k be an integer with k ≥ 2, and let D be a strong k-
quasi-transitive digraph. Suppose that C = v0v1 . . . vr−1v0 is a cycle of length
r, with r ≥ k, in D. Then, for any v ∈ V (D)− V (C), v and C are adjacent.

Proof: Since D is strong, v must reach C and vice versa. Let P be a shortest
path from v to C, and assume without loss of generality that the endpoint
of P is v0. If the length of P is s, and s ≤ k, then vPv0Cvk−s is a k-path,
which implies vvk−s. If k < s, then by Lemma 8.3.6, v0 reaches v at distance
at most two. If v0 → v, then we are done. Otherwise, there is a vertex u in D
such that v0 → u → v. Either u ∈ V (C), and the desired result is obtained,
or vr−(k−2)Cv0uv is a k-path in D, implying vr−(k−2) → v. 	


As an example of how the previous two lemmas can be used to obtain
nice structural results for k-quasi-transitive digraph, we present the following
proposition, which is their immediate consequence.

Proposition 8.3.10 ([62]) Let k be an integer with k ≥ 2, let D be a strong k-
quasi-transitive digraph, and let C = v0v1 . . . vr−1v0 be a cycle of length r with
r ≥ k in D. Suppose that r and k−1 are coprime. For any v ∈ V (D)−V (C),
if (V (C), v) = ∅, then v �→ V (C); if (v, V (C)) = ∅, then V (C) �→ v.

We finish our discussion of general k-quasi-transitive digraphs with some
results that give us a lot of information on the structure of k-quasi-transitive
digraphs with diameter at least k + 2. Unfortunately, the proofs of these
results are long and technical and thus will be omitted.

Lemma 8.3.11 ([62]) Let k be an even integer with k ≥ 4, and let D be a
strong k-quasi-transitive digraph. Suppose that P = v0v1 . . . vk+2 is a short-
est (v0, vk+2)-path in D. For any v ∈ V (D) − V (P ), if (v, V (P )) �= ∅

and (V (P ), v) �= ∅, then either v is adjacent to every vertex of V (P ), or
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{vk+2, vk+1, vk, vk−1} �→ v �→ {v0, v1, v2, v3}. In particular, if k = 4, then v
is adjacent to every vertex of V (P ). 	

Theorem 8.3.12 ([62]) Let k be an even integer with k ≥ 4, and let D be a
strong k-quasi-transitive digraph. Suppose that P = v0 . . . vk+2 is a shortest
(v0, vk+2)-path. Then, the subdigraph induced by V (D)−V (P ) is a semicom-
plete digraph. 	


Notice that, in particular, it follows from Proposition 8.3.7, Lemma 8.3.11,
and Theorem 8.3.12, that a 4-quasi-transitive digraph of diameter at least 6
is a semicomplete digraph. As a more general case, the previous results can
be condensed in the following theorem.

Theorem 8.3.13 Let k be an even integer with k ≥ 4, and let D be a strong
k-quasi-transitive digraph. Then, V (D) admits a partition (V1, V2) such that
Vi induces a semicomplete digraph for i ∈ {1, 2}, and D[V1] is Hamiltonian.

When k is odd, Alva-Samos and Hernández-Cruz [1], through a similar
development of technical lemmas, obtained the following analogue of Theorem
8.3.13.

Theorem 8.3.14 Let k be an odd integer, k ≥ 3, and let D be a strong
k-quasi-transitive digraph. Then, V (D) admits a partition (V1, V2) such that:

• If D is bipartite, then D[Vi] is a semicomplete bipartite digraph for i ∈
{1, 2};

• Else, D[Vi] is a semicomplete digraph, i ∈ {1, 2}.
In either case, D[V1] is Hamiltonian.

In particular, it is also noted in [1] that a strong 5-quasi-transitive di-
graph of diameter at least 7 is either a semicomplete bipartite digraph or a
semicomplete digraph.

To finish our discussion of the structure of k-quasi-transitive digraphs,
we present the well understood structure of 3-quasi-transitive digraphs. Al-
though a complete characterization telling us the exact structure of 3-quasi-
transitive digraphs does not exist, a lot of information can be put together
from the existing characterization of strong 3-quasi-transitive digraphs from
[34], and the way the strong components relate to each other described in
[64].

Let Fi be the graph on i + 3 vertices, consisting of a directed 3-cycle
xyzx, together with i vertices, v1, . . . , vi, such that yvjz is a directed path
for each 1 ≤ j ≤ i, see Figure 8.3. Define the family F as F = {Fi : i ≥ 1}.
Due to space constraints, we will not give the proof of the following theorem,
originally proved by Galeana-Sánchez, Goldfeder, and Urrutia.

Theorem 8.3.15 ([34]) Let D be a strong 3-quasi-transitive digraph. Then
D is one of the following.
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1. A semicomplete digraph.
2. A semicomplete bipartite digraph.
3. An element of the family F described above. 	


y

v1

z

x vi· · ·

Figure 8.3 The digraph Fi of the family F .

Theorem 8.3.15 can be complemented with the following result, due to
Wang and Wang, found in [64].

Lemma 8.3.16 ([64]) Let D1 and D2 be two distinct non-trivial strong com-
ponents of a 3-quasi-transitive digraph, with at least one arc from D1 to D2.
Then, either D1 �→ D2, or D1 ∪ D2 is a semicomplete bipartite digraph. 	


It is not hard to see that, given two strong components D1 and D2 of a
3-quasi-transitive digraph D such that D1 reaches D2, there is an arc from
D1 to D2 unless D1 reaches D2 in distance exactly 2, and both D1 and D2

consist of a single vertex. Thus, Lemma 8.3.16 becomes very useful when
dealing with non-strong 3-quasi-transitive digraphs.

8.3.3 k-Transitive Digraphs

It is clear from the definition of both k-transitive and k-quasi-transitive di-
graphs that members of these classes having a small order do not really have
any organized structure. Nonetheless, as the order increases, a nice structure
emerges. As we have seen in the previous subsection, for k-quasi-transitive
digraphs, the existence of two vertices at distance k + 2 is sufficient for the
rest of the digraph to organize as almost a semicomplete digraph (when k
is even). In this section we will see that the tipping point for a k-transitive
digraph D seems to be the existence of a “long enough” cycle; this will be
sufficient for the digraph to be a complete digraph, or an extended cycle.
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For k = 3, this point is easily reached, and thus, the structure of 3-
transitive digraphs is easy to describe. But even for k = 4, it becomes hard
to obtain a complete description of all 4-transitive digraphs; a classification
of 4-transitive strong digraphs is given in this case. We begin with a couple
of results that show the importance of cycles in k-transitive digraphs.

Results on 3- and 4-transitive digraphs are due to Hernández-Cruz. In
this subsection we will present a new, shorter proof of Theorem 8.3.19.

Observe that the proof of Lemma 8.3.8 also yields the following result.

Proposition 8.3.17 ([47]) Let k ≥ 2 be an integer, D a k-transitive digraph
and C = v0v1 . . . vr−1v0 a directed cycle in D with r ≥ k. If v ∈ V (D)−V (C)
is such that v → v0, then v → S = {vi

∣
∣i ∈ (k − 1)Zr}.

Observe that under the same assumptions as in Proposition 8.3.17, if v0 →
v, we can conclude that S → v. This follows from the fact that reversing all
the arcs of a k-transitive digraph yields a k-transitive digraph, and applying
Proposition 8.3.17. So, in this subsection we will refer to either result as
Proposition 8.3.17.

Lemma 8.3.18 Let D be a strong digraph. If the circumference of D is 2,
then the underlying graph of D is a tree.

Proof: Assuming that the circumference of D is 2, it is easy to verify that
every arc of D is a digon. Thus, between any pair of vertices there is exactly
one path, and hence, the underlying graph of D is a tree. 	


Recall that �C3 is the directed cycle on three vertices, and let C�
3 and

C��
3 be the directed 3-cycle with exactly one symmetric arc and the directed

3-cycle with exactly two symmetric arcs, respectively. Now we give the char-
acterization of strong 3-transitive digraphs due to Hernández-Cruz, although
with a new, simpler proof.

Theorem 8.3.19 ([46]) If D is a 3-transitive strong digraph, then D is one
of the following:

1. A complete biorientation of a complete graph;
2. A complete biorientation of a complete bipartite graph; or
3. �C3, C�

3 or C��
3 .

Proof: We begin by observing that every strong digraph with fewer than
four vertices is either complete, complete bipartite or one of �C3, C�

3 or C��
3 .

Thus, we can assume that D has at least four vertices.
Claim 1. If the circumference of D is 2, then D is a complete biorientation
of a star, and hence, a complete biorientation of a complete bipartite graph.
Proof of Claim 1. It follows from Lemma 8.3.18 that D is a complete
biorientation of a tree. Since D is 3-transitive, the diameter of D should be
strictly less than 3. Hence, the underlying graph of D is a tree of diameter 2,
i.e., a star. 	
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Claim 2. If D contains a directed odd cycle, then D is a complete biorien-
tation of a complete graph.
Proof of Claim 2. It can be proved inductively that if D contains an odd
cycle, then it contains a directed 3-cycle, C. Since D has at least four vertices,
there exists a vertex v ∈ V (D) \ V (C). Since D is 3-transitive and strong,
there must be an arc from v to C and one arc from C to v. It follows from
Proposition 8.3.17 that v → C and C → v. But now, any two vertices of C
together with v induce a 3-cycle (with some symmetric arcs), and the same
argument can be used to prove that v is adjacent to any vertex in D through
a digon. Since v was chosen arbitrarily outside a 3-cycle, D is a complete
biorientation of a complete digraph. 	

Claim 3. If every directed cycle of D is even, then D is a complete biorien-
tation of a complete bipartite graph.
Proof of Claim 3. First, notice that under these assumptions, D is bipartite.

By Claim 1., we may assume that D contains a cycle of length at least
4. Again, it can be proved inductively that D contains a 4-cycle, C. One
can directly verify that every arc in a 4-cycle of a 3-transitive digraph is a
digon. Consider a 2-colouring of C with colours black and white. If there
are no more vertices in D, then we are done. Otherwise, let v be a vertex
of D not in C. Since D is 3-transitive and strong, then there is at least
one arc from v to C and vice versa. Observe that both arcs join v to only
black or only white vertices, otherwise D would not be bipartite. Suppose
without loss of generality that v is adjacent to a black vertex in C. We will
recursively colour all the vertices of D to obtain a bipartition such that every
white vertex is adjacent through digons to every black vertex. Proposition
8.3.17 implies that there are digons between v and every black vertex in C,
so, colour v white. Now, any four vertices of D already coloured, two black
and two white, induce a symmetric 4-cycle in D. Repeating the argument, it
can be shown that every vertex of D not already coloured is either adjacent
through digons to every black vertex, and we colour it white, or to every
white vertex, and we colour it black. 	


Since the cases are exhaustive, the result now follows from Claims 1–3.
	


Although more complicated than classifying strong transitive digraphs,
strong 3-transitive digraphs are still easy to classify. Nonetheless, as the value
of k grows, this task becomes increasingly difficult. In fact, 4 is the largest
value of k such that strong k-transitive digraphs are characterized. Next,
we reproduce the characterization theorem due to Hernández-Cruz found in
[47]. The proof, although not very difficult, is lengthy and technical, so we
omit it.

Theorem 8.3.20 ([47]) Let D be a strong 4-transitive digraph. Then exactly
one of the following possibilities holds.
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1. D is a complete digraph.
2. D is a 3-cycle extension.
3. D has circumference 3, a 3-cycle extension as a spanning subdigraph with

cyclical partition {V0, V1, V2}, at least one symmetrical arc exists in D and
for every symmetrical arc vivi+1 ∈ A(D), with vj ∈ Vj for j ∈ {i, i + 1}
(mod 3), |Vi| = 1 or |Vi+1| = 1.

4. D has circumference 3, UG(D) is not 2-edge-connected and {S1, S2,
. . . , Sr} are the vertex sets of the maximal 2-edge connected subgraphs
of UG(D), with Si = {ui} for every 2 ≤ i ≤ r and such that D[S1]
has a 3-cycle extension with cyclical partition {V0, V1, V2} as a spanning
subdigraph. A vertex v0 ∈ V0 (without loss of generality) exists such that
v0uj , ujv0 ∈ A(D) for every 2 ≤ j ≤ n. Also |V0| = 1 and D[S1] has the
structure described in 1. or 2., depending on the existence of symmetrical
arcs.

5. A complete biorientation of a 5-cycle.
6. D is a complete biorientation of the star K1,r, r ≥ 3.
7. D is a complete biorientation of a tree with diameter 3.
8. D is a strong digraph of order less than or equal to 4 not included in the

previous families.

For values of k greater than 4, there are no known structural charac-
terizations for strong k-transitive digraphs. As we have already mentioned
above, this situation may be a consequence of the fact that every digraph
on less than k + 1 vertices, and every digraph without paths of length k, are
k-transitive digraphs, so small k-transitive digraphs are difficult to charac-
terize. In spite of this fact, it has been observed that the existence of some
structures in a strong k-transitive digraph is enough to guarantee that the
whole digraph will have a nice structure. Hernández-Cruz and Montellano-
Ballesteros proved that k-transitive digraphs with cycles of length at least k
have a very nice structure. The proofs of the following theorems are several
pages long, so they will be omitted; it would be a nice problem to find short
proofs for both of them.

Theorem 8.3.21 ([49]) Let k ≥ 2 be an integer, and let D be a strong k-
transitive digraph. Suppose that D contains a cycle of length r such that the
g.c.d. of r and k − 1 is d, and r ≥ k + 1. Then the following hold.

1. If d = 1, then D is a complete digraph.
2. If d ≥ 2, then D is either a complete digraph, a complete bipartite digraph,

or a d-cycle extension. 	

Theorem 8.3.22 ([49]) Let k ≥ 2 be an integer, and let D be a strong k-
transitive digraph of order at least k + 1. If D contains a cycle of length k,
then D is a complete digraph. 	


It follows from Theorems 8.3.21 and 8.3.22 that a strong k-transitive
digraph is not likely to grow disorganizedly. On one hand, we have that every
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“sufficiently small” digraph is k-transitive. On the other hand, if a strong
k-transitive digraph has a large enough circumference, its structure becomes
very well determined. So a natural question arises: what happens if a strong
k-transitive digraph has circumference less than k but at least k+1 vertices?
Is there a proportion between order and circumference which allows us to
say something about the structure of a strong k-transitive digraph? Theorem
8.3.22 seems to be the most simple case of such a result. Following this idea,
there is a partial result due to Wang.

Theorem 8.3.23 ([59]) Let D be a strong k-quasi-transitive digraph with
k ≥ 4, and let C be a cycle of length k −1. Then, for every v ∈ V (D)\V (C),
the sets (v, V (C)) and (V (C), v) are non-empty. 	


Proof: Since reversing every arc of a k-transitive digraph yields a k-transitive
digraph, we only need to show (v, V (C)) �= ∅. Let C = v0 . . . vk−2v0 be
a (k − 1)-cycle. Since D is strong, there exists a path from v to C. Let
P = u0 . . . us be a shortest path from v to C, where s ≥ 1, u0 = v and
us ∈ V (C). Without loss of generality, assume that us = v0. We prove that
u0 dominates some vertex of V (C) by induction on the length s of P . It
clearly holds for s = 1. Thus, we assume that s ≥ 2. Note that u1 . . . us is a
path of length s−1. By the induction hypothesis, there is a vertex vi ∈ V (C)
such that u1 → vi. Then u0u1viCvi−1 is a path of length k in D, which
implies u0 → vi−1. 	


8.3.4 Totally Φ-Decomposable Digraphs

The structure of totally Φ-decomposable digraphs is already determined from
its definition and the choice of Φ. Thus, instead of studying their structure,
we will show that for some choices of Φ, totally Φ-decomposable digraphs can
be recognized in polynomial time.

As we will have already mentioned, Theorem 8.3.5 is the turning point on
the study of quasi-transitive digraphs; it will let us construct polynomial algo-
rithms for Hamiltonian paths and cycles in quasi-transitive digraphs, and also
solve more general problems in this class of digraphs. This theorem shows that
quasi-transitive digraphs are totally Φ-decomposable, where Φ is the union of
extended semicomplete and transitive digraphs. Since both extended semi-
complete digraphs and transitive digraphs are special subclasses of much
wider classes of digraphs, it is natural to study totally Φ-decomposable di-
graphs, where Φ is a much more general class of digraphs than the union of
extended semicomplete and transitive digraphs. However, our choice of can-
didates for the class Φ should be restricted in such a way that we can still
construct polynomial algorithms for some important problems such as the
Hamiltonian cycle problem, using properties of digraphs in Φ.

This idea was first used by Bang-Jensen and Gutin [13] to introduce the
following classes of digraphs:
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Definition 8.3.24

• Φ0 is the union of all semicomplete multipartite digraphs, all connected
extended locally semicomplete digraphs and all acyclic digraphs,

• Φ1 is the union of all semicomplete bipartite digraphs, all connected extended
locally semicomplete digraphs and all acyclic digraphs,

• Φ2 is the union of all connected extended locally semicomplete digraphs
and all acyclic digraphs, and

• Φ3 is the union of all semicomplete digraphs and all acyclic digraphs.

Note that we have Φ3 ⊂ Φ2 ⊂ Φ1 ⊂ Φ0 and that all four classes are closed
under taking extensions.

A class Φ of digraphs is hereditary if D ∈ Φ implies that every induced
subdigraph of D is in Φ. Observe that every Φi, 0 ≤ i ≤ 3, is a hereditary
class. The following results are due to Bang-Jensen and Gutin.

Lemma 8.3.25 ([13]) Let Φ be a hereditary class of digraphs. If a given di-
graph D is totally Φ-decomposable, then every induced subdigraph D′ of D is
totally Φ-decomposable. In other words, total Φ-decomposability is a heredi-
tary property.

Proof: By induction on the number of vertices of D. The claim is obviously
true if D has fewer than 3 vertices.

If D ∈ Φ, then our claim follows from the fact that Φ is hereditary. So,
we may assume that D = R[H1, . . . , Hr], r ≥ 2, where R ∈ Φ and each of
H1, . . . , Hr is totally Φ-decomposable.

Let D′ be an induced subdigraph of D. If there is an index i such that
V (D′) ⊆ V (Hi), then D′ is totally Φ-decomposable by induction. Otherwise,
D′ = R′[T1, . . . , Tr′ ], where r ≥ 2 and R′ ∈ Φ, is the subdigraph of R induced
by those vertices i of R, whose Hi has a non-empty intersection with V (D′)
and the Tj ’s are the corresponding Hi’s restricted to the vertices of D′. Ob-
serve that R′ ∈ Φ, since Φ is hereditary. Moreover, by induction, each Tj is
totally Φ-decomposable, hence so is D′. 	


The following result gives a polynomial time algorithm for verifying Φi-
decomposability, i ∈ {0, 1, 2, 3}. Its proof can be found in [9].

Lemma 8.3.26 ([13]) There exists an O(mn + n2)-algorithm for check-
ing if a digraph D with n vertices and m arcs has a decomposition D =
R[H1, . . . ,Hr], r ≥ 2, where Hi is an arbitrary digraph and the digraph Ri

is either acyclic or semicomplete multipartite or semicomplete bipartite or
connected extended locally semicomplete. 	


The previous lemma can now be used to obtain the main result of this
section. Again, its proof can be found on [9].

Theorem 8.3.27 ([13]) There exists an O(n2m+n3)-algorithm for checking
if a digraph with n vertices and m arcs is totally Φi-decomposable, for i ∈
{0, 1, 2, 3}.
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8.4 Hamiltonian, Longest and Vertex-Cheapest Paths
and Cycles

In this section we will study the Hamiltonian path and cycle problems, as well
as some problems in weighted digraphs generalizing them. The subsections on
quasi-transitive digraphs and totally Φ-decomposable digraphs in this section
are strongly based on Sections 6.7 and 6.8 of [9], where this subject has
received a full treatment. We begin by considering the few existing results
for k-transitive and k-quasi-transitive digraphs.

8.4.1 k-Transitive and k-Quasi-Transitive Digraphs

Since strong 3-transitive and 4-transitive digraphs are completely character-
ized, it suffices to make a case by case analysis for these families of digraphs
(using Theorems 8.3.19 and 8.3.20) to completely characterize Hamiltonian
3- and 4-transitive digraphs. This analysis can be summarized in the follow-
ing result. We say that a k-cycle extension D = Ck[S1, . . . , Sk] is balanced
if |Si| = |Sj | for every i �= j, and non-balanced, otherwise.

Theorem 8.4.1 If D is a strong 3-transitive digraph, then D is Hamiltonian
if and only if it is not a complete bipartite digraph D = (X,Y ) with |X| �= |Y |.

If D is a strong 4-transitive digraph, then D is Hamiltonian if and only if
it is a complete digraph, a balanced 3-cycle extension, a symmetrical 5-cycle,
or a semicomplete digraph on at most 4 vertices. 	


It follows from Theorem 8.4.1 that hamiltonicity for 3-transitive and 4-
transitive digraphs can be determined in linear time: Hamiltonian members of
these families can be easily recognized through their in-degree and out-degree
sequences. In view of this fact, the following problem is proposed.

Problem 8.4.2 For all values of k ≥ 5, determine the complexity of the
Hamiltonian cycle problem for the class of k-transitive digraphs.

Considering the results for k ∈ {2, 3, 4}, it does not seem too adventurous
to conjecture that hamiltonicity of a k-transitive digraph could be determined
in linear time for every integer k ≥ 2. From Theorems 8.3.21 and 8.3.22, easy
to verify sufficient conditions for the existence of a Hamiltonian cycle in a
strong k-transitive digraph can be derived: A k-transitive digraph containing
a cycle of length at least k is Hamiltonian unless it is a non-balanced extended
cycle.

For 3-quasi-transitive digraphs, Theorem 8.3.15 also provides enough in-
formation to completely characterize Hamiltonian members of this family.

Theorem 8.4.3 If D is a strong 3-quasi-transitive digraph, then D is Hamil-
tonian if and only if one of the following hold:
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• D is semicomplete,
• D is semicomplete bipartite with a cycle factor, or
• D is the member of the family F of order 4 (see Figure 8.3).

Proof: Clearly, all the digraphs mentioned in the statement of the theorem
are Hamiltonian. Using Theorem 8.3.15 we can rule out the remaining cases
for a strong 3-quasi-transitive digraph.

We know that a strong semicomplete bipartite digraph is Hamiltonian
if and only if it has a cycle factor (see Theorem 7.4.1), and clearly, every
digraph in F of order greater than 4 is not Hamiltonian. 	


It follows from Theorems 8.4.3 and 7.4.1 that hamiltonicity can be verified
for 3-quasi-transitive digraphs in time O(n2.5). So, the following question
comes to mind.

Problem 8.4.4 Let k be an integer, k ≥ 4. Is it true that hamiltonicity can
be determined for the class of k-quasi-transitive digraphs in polynomial time?

Regarding Hamiltonian paths, Wang and Zhang gave a sufficient condition
for traceability when k is even, [62].

Theorem 8.4.5 ([62]) Let k be an even integer with k ≥ 4 and D be a strong
k-quasi-transitive digraph. If diam(D) ≥ k + 2, then D has a Hamiltonian
path.

Proof: Since diam(D) ≥ k + 2, there exist u, v ∈ V (D) such that d(u, v) =
k + 2. Let P = x0 . . . xk+2 be a shortest (u, v)-path where u = x0 and v =
xk+2. By Lemma 8.3.6, xk+2 → x0. Let C be the cycle C = x0 . . . xk+2x0 and
H = D[V (D) − V (C)]. By Proposition 8.3.7 and Theorem 8.3.12, D[V (C)]
and H are both semicomplete digraphs. It is well known that there is a
Hamiltonian path in every semicomplete digraph. Let Q = y0 . . . yp be a
Hamiltonian path in H. By Lemma 8.3.9, for any yi ∈ V (Q), yi is adjacent
to C. If there exists an xj ∈ V (C) such that xj → y0, then xj+1Cxjy0Q is
a Hamiltonian path in D. Now assume (V (C), y0) = ∅. Note that k − 1 and
k + 3 are coprime.3 According to Proposition 8.3.10, y0 �→ V (C), and thus,
either there is an xj ∈ V (C) such that xj → y1 and therefore y0xj+1Cxjy1Q
is a Hamiltonian path in D, or y1 �→ V (C). Continuing in this way, we can
conclude that either D has a Hamiltonian path, or V (H) �→ V (C). But since
D is strong, (V (C), V (H)) �= ∅. So D has a Hamiltonian path. 	


Notice that, since every complete bipartite digraph is k-quasi-transitive
for any odd integer k ≥ 3, it is not possible to obtain a result similar to
Theorem 8.4.5 for odd values of k.

3 Recall that the g.c.d. of two integers is their least positive linear combination.
Clearly, 4 is a linear combination of k − 1 and k + 3, but since k is even, and
k − 1 �≡ k + 3 (mod 3), the least positive linear combination of k − 1 and k + 3
is 1.
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The following question was proposed by the same authors.

Problem 8.4.6 ([62]) Let k be an even integer, k ≥ 4, and suppose that
diam(D) ≥ k + 2. Is there a Hamiltonian cycle in D?

It follows from the remark after Theorem 8.3.12 that Problem 8.4.6 has
a positive answer for k = 4.

8.4.2 Hamiltonian Cycles in quasi-transitive digraphs and Totally
Φ-Decomposable Digraphs

Hamiltonicity is one of the most studied topics in both graphs and digraphs.
Having a family as nice as quasi-transitive digraphs, it is natural to have
a lot of results for this class regarding both Hamiltonian paths and cycles,
many of which come from the study of semicomplete digraphs and its cor-
responding hamiltonicity results. Since Chapter 2 is devoted to tournaments
and semicomplete digraphs, we will not elaborate on the results regarding
these digraph classes, but we will restate some of them.

As mentioned in the introduction to this chapter, totally Φ-decomposable
digraphs generalize the structure of quasi-transitive digraphs. Thus, it is
common to find that the techniques used to prove certain results for quasi-
transitive digraphs can be adapted to study this more general family of di-
graphs. In particular, the methods developed in [17] by Bang-Jensen and
Huang, and in [41] by Gutin, to characterize Hamiltonian and traceable
quasi-transitive digraphs as well as to construct polynomial algorithms for
verifying the existence of Hamilton paths and cycles in quasi-transitive di-
graphs, can be easily generalized to much wider classes of digraphs [11]. Thus,
in this subsection, along with quasi-transitive digraphs, we consider totally
Φ-decomposable digraphs for various families Φ of digraphs.

Recall that a digraph D is an extended semicomplete digraph if it can
be obtained from some semicomplete digraph S by substituting independent
sets for the vertices of S.

Recall that the decompositions given by Theorem 8.3.5 are called canon-
ical decompositions. The following characterization of Hamiltonian quasi-
transitive digraphs is due to Bang-Jensen and Huang [17].

Theorem 8.4.7 ([17]) A strong quasi-transitive digraph D with canonical
decomposition D = S[Q1, Q2, . . . , Qs] is Hamiltonian if and only if it has a
cycle factor F such that no cycle of F is a cycle of some Qi.

Proof: Clearly, a Hamilton cycle in D crosses every Qi. Thus, it suffices to
show that if D has a cycle factor F such that no cycle of F is a cycle of some
Qi, then D is Hamiltonian. Observe that V (Qi)∩F is a path factor Fi of Qi

for every i ∈ [s]. For every i ∈ [s], delete the arcs between end-vertices of all
paths in Fi except for the paths themselves, and then perform the operation
of path-contraction for all paths in Fi. As a result, one obtains an extended
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semicomplete digraph S′ (since S is semicomplete). Clearly, S′ is strong and
has a cycle factor. Hence, by Theorem 7.10.1, S′ has a Hamilton cycle C.
After replacing every vertex of S′ with the corresponding path from F , we
obtain a Hamilton cycle in D. 	


Similarly to Theorem 8.4.7, one can prove the following characterization
of traceable quasi-transitive digraphs. This result is also due to Bang-Jensen
and Huang.

Theorem 8.4.8 ([17]) A quasi-transitive digraph D with at least two vertices
and with canonical decomposition D = R[G1, G2, . . . , Gr] is traceable if and
only if it has a 1-path-cycle factor F such that no cycle or path of F is
completely in some D[V (Gi)]. 	


Theorems 8.4.7 and 8.4.8 do not imply polynomial algorithms to verify
hamiltonicity and traceability, respectively. The following characterization of
Hamiltonian quasi-transitive digraphs is given implicitly in the paper [41] by
Gutin:

Theorem 8.4.9 (Gutin [41]) Let D be a strong quasi-transitive digraph with
canonical decomposition D = S[Q1, Q2, . . . , Qs]. Let n1, . . . , ns be the orders
of the digraphs Q1, Q2, . . . , Qs, respectively. Then D is Hamiltonian if and
only if the extended semicomplete digraph S′ = S[Kn1 ,Kn2 , . . . ,Kns

] has a
cycle subdigraph which covers at least pc(Qj) vertices of Knj

for every j ∈ [s].

Proof: Suppose that D has a Hamilton cycle H. For every j ∈ [s], V (Qj)∩H
is a kj-path factor Fj of Qj . By the definition of the path covering number,
we have kj ≥ pc(Qj). For every j ∈ [s], the deletion of the arcs between
end-vertices of all paths in Fj except for the paths themselves, and then
path-contraction of all paths in Fj , transforms H into a cycle of S′ having
at least pc(Qj) vertices of Knj

for every j ∈ [s].
Suppose now that S′ has a cycle subdigraph L containing pj ≥ pc(Qj)

vertices of Knj
for every j ∈ [s]. Since S′ is a strong extended semicomplete

digraph, by Theorem 7.10.2, S′ has a cycle C such that V (C) = V (L). Clearly,
every Qj has a pj-path factor Fj . Replacing, for every j ∈ [s], the pj vertices
of Knj

in C with the paths of Fj , we obtain a Hamiltonian cycle in D. 	

Theorem 8.4.9 can be used to show that the Hamilton cycle problem for

quasi-transitive digraphs is polynomial time solvable.

Theorem 8.4.10 (Gutin [41]) There is an O(n4) algorithm which, given a
quasi-transitive digraph D, either returns a Hamiltonian cycle in D or verifies
that no such cycle exists. �

The approach used in the proofs of Theorems 8.4.9 and 8.4.10 in [41]
can be generalized to a much wider class of digraphs, as was observed by
Bang-Jensen and Gutin [11]. We follow the main ideas of [11].
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Recall the definition of Φ0, Φ1, Φ2, Φ3 in Definition 8.3.24 and the fact
that, for each of these classes, in time O(n4), one can check if a given digraph
D is totally Φi-decomposable (i ∈ {0, 1, 2, 3}) and (in case it is so) construct a
total decomposition of D. Moreover, Theorem 8.3.5 implies that every quasi-
transitive digraph is totally Φ3-decomposable.

Theorem 8.4.11 Let Φ be an extension-closed class of digraphs, i.e., Φext =
Φ, including the trivial digraph K1 on one vertex. Suppose that for every
digraph H ∈ Φ we have pcc(H) = pc(H). Let D be a totally Φ-decomposable
digraph. Then, given a total Φ-decomposition of D, the path covering number
of D can be calculated and a minimum path factor found in time O(n4).

Proof: We prove this theorem by induction on n. For n = 1 the claim is
trivial.

Let D be a totally Φ-decomposable digraph and let D = R[H1, . . . , Hr]
be a Φ-decomposition of D such that R ∈ Φ, r = |V (R)| and every Hi (of
order ni) is totally Φ-decomposable. A pc(D)-path factor of D restricted to
every Hi corresponds to a disjoint collection of some pi paths covering V (Hi).
Hence, we have pc(Hi) ≤ pi ≤ ni. Therefore, arguing similarly to the proof
of Theorem 8.4.9, we obtain

pc(D) = min{pc(R[Kp1 , . . . ,Kpr
]) : pc(Hi) ≤ pi ≤ ni, i ∈ [r]}.

Since Φ is extension-closed, and since, for every digraph Q ∈ Φ, pc(Q) =
pcc(Q), we obtain

pc(D) = min{pcc(R[Kp1 , . . . ,Kpr
]) : pc(Hi) ≤ pi ≤ ni, i ∈ [r]}. (8.1)

Given the lower and upper bounds pc(Hi) and ni (i ∈ [r]), the recursive
formula (8.1) allows us to find pc(D) in time O(n3). To show this, it suffices
to demonstrate how to find, in time O(n3), the minimum in formula 8.1
given all the values of pc(Hi) (and ni). Construct a network NR containing
the digraph R and two additional vertices (source and sink) s and t such
that s and t are adjacent to every vertex of V (R) and the arcs between s
(t, respectively) and R are oriented from s to R (from R to t, respectively).
Associate with each vertex vi of R (corresponding to Hi in D) the lower and
upper bounds pc(Hi) and ni (1 ≤ i ≤ r) on the amount of flow that can pass
through vi. It is not difficult to see that the minimum value, m, of a feasible
flow from s to t in NR, is related to the minimum in 8.1, i.e. pc(D), as follows:
pc(D) = max{1,m} (for further details, see [41]).

Let T (n) be the time needed to find the path covering number of a totally
Φ-decomposable digraph of order n. Then, by (8.1),

T (n) = O(n3) +
r∑

i=1

T (ni).

Furthermore, T (1) = O(1). Hence T (n) = O(n4). 	
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As we know, pc(D) = pcc(D) for every semicomplete multipartite digraph
D (see Theorem 7.5.2), for every extended locally semicomplete digraph D
(by Theorem 5.8.1 in [8]) and every acyclic digraph D (which is trivial).
Therefore, Theorems 8.4.11 and 8.3.27 imply the following theorem of Bang-
Jensen and Gutin:

Theorem 8.4.12 ([12]) The path covering number can be calculated in time
O(n4) for digraphs that are totally Φ0-decomposable. 	

Corollary 8.4.13 ([12]) One can verify whether a totally Φ1-decomposable
digraph is Hamiltonian in time O(n4).

Proof: Let D = R[H1, . . . , Hr], r = |R|, be a decomposition of a strong
digraph D (r ≥ 2). Then, D is Hamiltonian if and only if the following
family S of digraphs contains a Hamiltonian digraph:

S = {R[Kp1 , . . . ,Kpr
] : pc(Hi) ≤ pi ≤ |V (Hi)|, i ∈ [r]}.

Now suppose that D is a totally Φ1-decomposable digraph. Then, every
digraph of the form R[Kp1 , . . . ,Kpr

] is in Φ1. We know (see Theorem 7.4.1
and Theorem 5.8.1 in [8]) that every digraph in Φ1 is Hamiltonian if and
only if it is strong and contains a cycle factor. Thus, all we need is to verify
whether there is a digraph in S containing a cycle factor. It is easily seen
that there is a digraph in S containing a cycle factor if and only if there is a
circulation in the network formed from R by adding lower bounds pc(Hi) and
upper bounds |V (Hi)| to the vertex vi of R for every i ∈ [r]. Since the lower
bounds can be found in time O(n4) (see Theorem 8.4.11) and the existence of
a circulation checked in time O(n3) (a feasible circulation, if one exists, can
be found by just one max flow calculation in an (s, t)-flow network obtained
from our network, see [9, Exercise 4.31]), we obtain the required complexity
O(n4). 	


Since every quasi-transitive digraph is totally Φ1-decomposable this the-
orem immediately implies Theorem 8.4.10. Note that the minimum path
factors in Theorem 8.4.11 can be found in time O(n4). Also, a Hamiltonian
cycle in a Hamiltonian totally Φ1-decomposable digraph can be constructed
in time O(n4).

8.4.3 Vertex-Cheapest Paths and Cycles

For the remainder of this section, we consider problems that generalize
the Hamilton path and cycle problems in a significant way. We prove that
the problems of finding vertex-cheapest paths and cycles in vertex-weighted
quasi-transitive digraphs are polynomial time solvable. The values of the
weights can be any reals, positive or negative. Thus, we can conclude that
the longest and shortest path and cycle problems for quasi-transitive digraphs
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are polynomial time solvable. The same result holds for acyclic digraphs as
the only non-trivial problem from the above four is the longest path prob-
lem and it is well-known that it can be solved in polynomial time (see e.g.
[9, Theorem 3.3.5]). Notice that for the quasi-transitive digraphs three of
the above four problems are non-trivial (the shortest and longest cycles and
longest path) and, in fact, much more difficult than the longest path problem
for acyclic digraphs as the reader can see in the rest of this subsection. It
appears that the problems are non-trivial even for semicomplete digraphs.
Theorems 7.10.4 and 6.17.16 were proved by Bang-Jensen, Gutin and Yeo for
extended semicomplete and locally semicomplete digraphs.

The approach described in the previous subsection seems too weak to
allow us to construct polynomial time algorithms for vertex-cheapest paths
and cycles in quasi-transitive digraphs. A more powerful method that leads
to such algorithms was first suggested by Bang-Jensen, Gutin and Yeo [15]
and, in the rest of this section, we describe this method.

Recall that the cost of a subset of vertices is the sum of the costs of its
vertices and the cost of a subdigraph is the sum of the costs of its vertices.
For a digraph D of order n and i ∈ [n] we define mpi(D) (mpci(D)) to
be the minimum cost of an i-path (i-path-cycle) subdigraph of D. We set
mp0(D) = 0 and mpc0(D) is zero if D has no negative cycle and otherwise
it is the minimum cost of a cycle subdigraph in D which can be found using
minimum cost flows. Note that mp0(D) and mpc0(D) always exist as we may
take single vertices as paths and we always have mpci(D) ≤ mpi(D). For any
digraph D with at least one cycle we denote by mc(D) the minimum cost of
a cycle in D.

Let D = (V,A) be a digraph and let X be a non-empty subset of V . We
say that a cycle C in D is an X-cycle if C contains all vertices of X. In
the remaining subsections, we consider the following problems for a digraph
D = (V,A) with n vertices and real-valued costs on the vertices:

(P1) Determine mpi(D) for all i ∈ [n].
(P2) Find a cheapest cycle in D or determine that D has no cycle.

Clearly, problems (P1) and (P2) are NP-hard as determining the numbers
mp1(D) and mc(D) generalize the Hamiltonian path and cycle problems
(assign cost −1 to each vertex of D). The problem (P2) can be solved in
time O(n3) when all costs are non-negative using an all pairs shortest path
calculation. The problems (P1) and (P2) were solved in [14] for the special
case when all costs are non-negative. However, the approach of [14] cannot be
used or modified to work with negative costs. Bang-Jensen, Gutin and Yeo
[15] managed to obtain an approach suitable for arbitrary real costs.

8.4.4 Minimum Cost k-Path-Cycle Subdigraphs

Although this chapter is intended to be almost self-contained, in order to
present the main results of this subsection, we need certain notions and results



368 H. Galeana-Sánchez and C. Hernández-Cruz

on network flows. We refer the reader to Section 1.9 of this book for basic
terminology, and to chapter 4 of [9] for the proofs of the results we will state.
As in the aforementioned chapter of [9], we will allow capacities and costs on
the vertices in our networks. This makes it easier to model certain problems
for digraphs and it is easy to transform such a network into one where all
capacities and costs are on the arcs (see Subsection 4.2.4 of [9] for details).
With these remarks in mind, the following lemma of Bang-Jensen, Gutin and
Yeo follows directly from Lemma 4.2.4 and Proposition 4.10.7 in [9].

Lemma 8.4.14 ([15]) Let N = (V,A) be a network with source s and sink
t, capacities on arcs and vertices and a real-valued cost c(v) for each vertex
v ∈ V . For all integers i such that there exists a feasible (s, t)-flow of value
i in N , let fi be a minimum cost (s, t)-flow in N of value i and let c(fi) be
the cost of fi. Then, for all i where all of fi−1, fi, fi+1 exist, we have

c(fi+1) − c(fi) ≥ c(fi) − c(fi−1). (8.2)

�

Recall that a cycle subdigraph of a digraph D is a collection of vertex-
disjoint cycles of D. The following two results are also due to Bang-Jensen,
Gutin and Yeo.

Lemma 8.4.15 ([15]) Let D = (V,A) be a digraph with real-valued cost func-
tion c on the vertices. In time O(n(m+n log n)) we can determine the number
mpc0(D) and find a cycle subdigraph of cost mpc0(D) if mpc0(D) < 0.

Proof: Let H(w) be the digraph on 4 vertices w1, w2, w3, w4 and the follow-
ing arcs w1w2, w2w1, w2w3, w3w4, w4w3. Let D∗ = (V ∗, A∗) be obtained from
D as follows: replace every vertex v by the digraph H(v). Furthermore, for
every original arc uv ∈ A, D∗ contains the arc u4v1. There are no costs on the
vertices and all arcs have cost 0 except the arcs of the form v2v3 which have
cost c(v). Observe that mpc0(D) is precisely the minimum cost of a spanning
cycle subdigraph in D∗. Let V ∗ = {x1, x2, . . . , x4n}. Construct a bipartite
graph B with partite sets L = {�1, . . . , �4n} and R = {r1, . . . , r4n}, in which
�irj is an edge if and only if xixj ∈ A∗. Moreover, the cost of �irj is equal to
the cost of xixj . Observe that a minimum cost perfect matching in B corre-
sponds to a minimum cost cycle subdigraph in D∗. We can find a minimum
cost perfect matching in B in time O(n(m + n log n)), see the remark after
the proof of Theorem 11.1 in [51]. Using the transformation from B to D∗,
we can compute the minimum cost of a spanning cycle subdigraph F in D∗

in time O(n(m + n log n)). If this cost is negative, we can find a minimum
cost cycle subdigraph of D within the same time. 	
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Lemma 8.4.16 ([15]) Let D = (V,A) be a vertex-weighted digraph.

(a) In total time O(n2m + n3) we can determine the numbers
{mpc1(D),mpc2(D), . . . , mpcn(D)} and find j-path-cycle subdigraphs Fj,
j ∈ {1, 2, . . . , n}, where Fj has cost mpcj(D).

(b) The costs mpci(D) satisfy the following inequality for every i ∈ [n − 1]:

mpci+1(D) − mpci(D) ≥ mpci(D) − mpci−1(D). (8.3)

Proof: Form a network N(D) from D by adding a pair s, t of new vertices
along with arcs {(s, v), (v, t) : v ∈ V }. Let all vertices and all arcs of D have
lower bound 0 and capacity 1. Let c(s) = c(t) = 0, let each other vertex of
N(D) inherit its cost from D and let all arcs have cost 0.

Suppose Fj is a j-path-cycle subdigraph of D. Using Fj we can obtain a
feasible flow fj of value j in N(D) if we assign fj(a) = 1 to all arcs a in Fj

and those arcs a of N(D) that start (terminate) at s (t) and terminate (start)
at the initial (terminal) vertex of a path in Fj , and fj(a) = 0 for all other
arcs of N(D). Similarly, we can transform a feasible integer-valued (s, t)-flow
of value j in N(D) into a j-path-cycle subdigraph of D (see Theorem 4.3.1
in [9]).

Notice that N(D) has a feasible integer-valued (s, t)-flow of value k for
any integer k ∈ {0, 1, . . . , n}. Thus it follows from the observations above
that for every j ∈ {0, 1, . . . , n} the value mpcj(D) is exactly the minimum
cost of a flow of value j in N(D). Now (8.2) implies that the inequality (8.3)
is valid.

It remains to prove (a). It follows from Lemma 8.4.15 that we can find a
minimum cost flow f of value 0 in time O(n3). Now we can use the Buildup
algorithm from Subsection 4.10.2 in [9] starting from f. Using the Buildup
algorithm we can find feasible integer-valued flows fj for all j ∈ [n], such
that fj is a minimum cost feasible (s, t)-flow of value j in N(D), in total
time O(n2m) (the complexity of obtaining fj+1 starting from fj is O(nm)).
This proves (a). 	


8.4.5 Cheapest i-Path Subdigraphs in Quasi-Transitive Digraphs

Theorem 7.5.4, regarding semicomplete multipartite digraphs, will play an
important role in our algorithms. The next theorem due to Bang-Jensen,
Gutin and Yeo shows that (P1) is polynomially solvable for quasi-transitive
digraphs.

Theorem 8.4.17 ([15]) Let D = (V,A) be a vertex-weighted quasi-transitive
digraph. Then the following holds:

(a) In total time O(n2m + n3) we can find for every i ∈ [n], the value of
mpi(D) and an i-path subdigraph Fi of cost mpi(D).
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(b) For all i ∈ [n − 1] we have

mpi+1(D) − mpi(D) ≥ mpi(D) − mpi−1(D). (8.4)

Proof: We prove (b) by induction on n. The statement vacuously holds for
n = 1 and is easy to verify for n = 2 (recall that, by definition, mp0(D) = 0).
This proves the basis of induction and we now assume that n ≥ 3.

By Theorem 8.3.5, D has a decomposition D = T [Q1, . . . , Qt], t =
|T | ≥ 2, where T is an acyclic digraph or a semicomplete digraph. Let
D′ = T [Kn1 , . . . ,Knt

] be obtained from D by deleting all arcs inside each
Qi, i ∈ [t]. Assign costs to the vertices vk

1 , . . . , vk
nk

of Knk
, as follows:

c′(vk
j ) = mpj(Qk) − mpj−1(Qk).

By the induction hypothesis (b) holds for Qk implying that we have

c′(vk
j ) ≤ c′(vk

j+1) for every j ≥ 1. (8.5)

Let F ′
i be an i-path-cycle subdigraph of D′. If T is acyclic, then D′ is

acyclic and, thus, F ′
i is an i-path subdigraph of D′. If T is semicomplete, then

D′ is extended semicomplete and, thus, by Theorem 7.5.1 and Theorem 7.5.4,
we may assume that F ′

i is an i-path subdigraph of D′. Hence, mpi(D′) =
mpci(D′) and it follows from Lemma 8.4.16(b) that (8.4) holds for D′. Thus
it suffices to prove that mpi(D) = mpi(D′).

Let F ′
i be an i-path subdigraph of D′ and let pk denote the number of

vertices from Knk
which are covered by F ′

i . Since all vertices of Knk
are

similar it follows from (8.5) that we may assume (by making the proper re-
placements if necessary) that F ′

i includes vk
1 , . . . , vk

pk
. For each k, replace

the vertices vk
1 , . . . , vk

pk
in F ′

i by a pk-path subdigraph of Qk with cost
mppk

(Qk) =
∑pk

i=1 c′(vk
i ). As a result, we obtain, from F ′

i , an i-path subdi-
graph Fi of D for which we have c′(F ′

i ) =
∑t

k=1 mppk
(Qk) = c(Fi) and, thus,

c(Fi) = c′(F ′
i ). Reversing the process above it is easy to get, from an i-path

subdigraph of D, an i-path subdigraph F ′
i of D′ such that c(Fi) = c′(F ′

i ).
This shows that mpi(D) = mpi(D′) and hence (8.4) holds for D by the
remark above.

We prove the complexity by induction on n. Let m′ be the number of arcs
in D′ and recall that all these arcs are also in D. Clearly when a digraph H has
|V (H)| ≤ 2 we can choose a constant c1 so that we can determine the numbers
mpi(H), i = 1, 2, . . . , |V (H)|, in time at most c1|V (H)|2(|A(H)| + |V (H)|).
Now assume by induction that for each Qi we can determine the desired
numbers inside Qi in time at most c1n

2
i (mi + ni). This means that we can

find the numbers mpi(Qj) for all j ∈ [t] and i ∈ [nj ] in total time

t∑

j=1

c1n
2
j (mj + nj) ≤ c1n

2
t∑

j=1

(mj + nj) = c1n
2(m − m′ + n).
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By Lemma 8.4.16(a), Theorems 7.5.1 and 7.5.4, there is a constant c2 such
that in total time at most c2n

2(m′+n) we can find, for every j ∈ [n], a j-path-
cycle subdigraph of cost mpj(D′) in D′. It follows from the way we construct
Fi above from F ′

i that if we are given for each k ∈ [t] and each 1 ≤ j ≤ nk

a j-path subdigraph in Qk of cost mpj(Qk), then we can construct all the
path subdigraphs Fr, 1 ≤ r ≤ n, in time at most c3n

3 for some constant c3.
Hence the total time needed by the algorithm is at most

c1n
2(m − m′ + n) + c2n

2(m′ + n) + c3n
3 =

c1n
2(m + n) + (c2 − c1)n2m′ + (c2 + c3)n3,

which is at most c1n
2(m + n) for c1 sufficiently large. 	


The next theorem, also due to Bang-Jensen, Gutin and Yeo, is an easy
consequence of Theorem 8.4.17 (assign all vertices cost −1).

Theorem 8.4.18 ([15]) One can find a longest path in any quasi-transitive
digraph in time O(n2m + n3). 	


Sometimes, one is interested in finding path subdigraphs that include a
maximum number of vertices from a given set X or avoid as many vertices
of X as possible. We consider a minimum cost extension of this problem in
the next result.

Theorem 8.4.19 ([15]) Let D = (V,A) be a vertex-weighted quasi-transitive
digraph and let X ⊆ V be non-empty. Let pj be the maximum possible number
of vertices from X in a j-path subdigraph and let qj be the maximum possible
number of vertices from X not in a j-path subdigraph. In total time O(n2m+
n3) we can find, for all j ∈ [n], a cheapest j-path subdigraph which includes
pj (avoids qj, respectively) vertices of X.

Proof: Let C =
∑

v∈V |c(v)| and subtract C+1 from the cost of every vertex
in X. Now, for each j ∈ [n], every cheapest j-path subdigraph Fj must cover
as many vertices from X as possible, i.e., pj vertices. Furthermore, since
the new cost of Fj is exactly the original one minus pj(C + 1), cheapest
j-path subdigraphs covering pj vertices from X are preserved under this
transformation. Now the ‘including’ part of the claim follows from Theorem
8.4.17(a). The ‘avoiding’ part can be proved similarly, by adding C + 1 to
every vertex of X. 	


8.4.6 Finding a Cheapest Cycle in a Quasi-Transitive Digraph

Bang-Jensen, Gutin and Yeo obtained the following:

Theorem 8.4.20 ([15]) For quasi-transitive digraphs with vertex-weights the
minimum cost cycle problem can be solved in time O(n5 log n).
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Proof: Let D be a quasi-transitive digraph. If D is not strong, then we simply
look at the strong components, so assume that D is strong. By Theorem 8.3.5,
D = T [Q1, . . . , Qt], where T is a strong semicomplete digraph, and each Qi

is either a single vertex or a non-strong quasi-transitive digraph.
Suppose we have found a minimum cost cycle Ci in each Qi which con-

tains a cycle. Then clearly the minimum cost of a cycle in D is given by
min(mini(c(Ci)), c(C)), where C is a minimum cost cycle among those in-
tersecting at least two Qi’s. Hence it follows that applying this approach
recursively we can find the minimum cost cycle in D. Now we show how to
compute a minimum cost cycle C as above.

Let D′ be defined as in the proof of Theorem 8.4.17 including the vertex-
costs. It is easy to show using the same approach as when we converted
between i-path subdigraphs of D′ and D in the proof of Theorem 8.4.17,
that the cost of C is precisely mc(D′). Now it follows from Theorem 7.10.4
that we can find the cycle C in time O(n3m + n4 log n).

Since we can construct D′, including finding the costs for all the vertices in
time O(n2m + n3) by Theorem 8.4.17, and there are at most O(n) recursive
calls, the approach above will lead to a minimum cost cycle of D in time
O(n4m+n5 log n). In fact, we can bound the first term as we did in the proof
of Theorem 8.4.17 and obtain O(n3m + n5 log n) = O(n5 log n) rather than
O(n4m + n5 log n). This completes the proof. 	


8.5 Linkages

It is a well-known fact that it is easy to check (e.g., using flows) whether a
directed multigraph D = (V,A) has k (arc)-disjoint paths P1, . . . , Pk from a
subset X ⊆ V to another subset Y ⊆ V , and we can also find such paths
efficiently. On many occasions (e.g., in practical applications) we need to
be able to specify the initial and terminal vertices of each Pi, 1 ≤ i ≤ k,
that is, we wish to find a so-called linkage from X = {x1, . . . , xk} to Y =
{y1, . . . , yk} such that Pi is an (xi, yi)-path for every 1 ≤ i ≤ k. This problem
is considerably more difficult and is in fact NP-complete already when k = 2.

Recall that, for a digraph D = (V,A) with distinct vertices x, y we denote
by κD(x, y) the largest integer k such that D contains k internally disjoint
(x, y)-paths. When discussing intersections between paths P,Q we will often
use the phrase ‘let u be the first (last) vertex on P which is on Q’. By this
we mean that if, say, P is an (x, y)-path, then u is the only vertex of P [x, u]
(P [u, y]) which is also on Q.

Let x1, x2, . . . , xk, y1, y2, . . . , yk be distinct vertices of a digraph D. A
k-linkage from (x1, x2, . . . , xk) to (y1, y2, . . . , yk) in D is a system of vertex-
disjoint paths P1, P2, . . . , Pk such that Pi is an (xi, yi)-path in D.4 A digraph

4 Sometimes we allow that the paths may share one or both of their end-vertices,
i.e., V (Pi) ∩ V (Pj) ⊆ {xi, yi, xj , yj} whenever i �= j, where xi = yj or xi = xj is
possible.
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D = (V,A) is k-linked if it contains a k-linkage from (x1, x2, . . . , xk) to
(y1, y2, . . . , yk) for every choice of distinct vertices x1, x2, . . . , xk, y1, y2, . . . , yk.
The k-Disjoint paths problem is defined as follows.

k-Disjoint paths
Input: A digraph D = (V,A) and distinct vertices s1, . . . , sk, t1, . . . , tk.
Question: Does D contain vertex disjoint paths P1, . . . , Pk such that Pi

is an (si, ti)-path for i ∈ [k]?

Fortune, Hopcroft and Wyllie [30] showed that if we impose no restriction
on the input, then the k-Disjoint paths problem is NP-complete already
for k = 2. This motivates the study of subclasses of digraphs for which the
problem is polynomial-time solvable.

From the algorithmic point of view, the 2-Disjoint paths problem
for semicomplete digraphs has already been solved by Bang-Jensen and
Thomassen in Theorem 2.5.6. The proof of this result in [21] is highly non-
trivial. The basic approach is divide and conquer and several non-trivial re-
sults and steps are needed to make the algorithm work. Now we show that
the 2-Disjoint paths problem can be solved in polynomial time for quite
large classes of digraphs which can be obtained by starting from semicom-
plete digraphs and then performing certain substitutions. The algorithm we
describe uses the polynomial algorithm from Theorem 2.5.6 for the case of
semicomplete digraphs as a subroutine. The results in this section are due to
Bang-Jensen [5].

Theorem 8.5.1 ([5]) Let D = F [S1, S2, . . . , Sf ] where F is a strong digraph
on f ≥ 2 vertices and each Si is a digraph with ni vertices and let x1, x2, y1, y2
be distinct vertices of D. There exist semicomplete digraphs T1, . . . , Tf such
that V (Ti) = V (Si) for all i ∈ [f ], and the digraph D′ = F [T1, T2, . . . , Tf ]
has vertex-disjoint (x1, y1)-, (x2, y2)-paths if and only if D has such paths.
Furthermore, given D and x1, x2, y1, y2, D′ can be constructed in time O(n2),
where n is the number of vertices of D.

Proof: If D has the desired paths, then so does any digraph obtained from D
by adding arcs. Hence if D has the desired paths, then trivially D′ exists and
can be constructed in time O(n2) once we know a pair of disjoint (x1, y1)-,
(x2, y2)-paths.

If no Si contains both of x1, y1 or both of x2, y2, then it is easy to see
that D has the desired paths if and only if it has such paths which do not
use an arc inside any Sj . Thus in this case we can add arcs arbitrarily inside
each Si to obtain a D′ which satisfies the requirement.

Suppose next that some Si contains all of the vertices x1, x2, y1, y2. If
there is an (xj , yj)-path P in Si − {x3−j , y3−j}, j ∈ {1, 2}, then it follows
from that fact that F is strong that D has the desired paths and we can find
such a pair in time O(n2). Thus, by our initial remark, we may assume that
there is no (xj , yj)-path P in Si − {x3−j , y3−j} for j ∈ {1, 2}. Now it is easy
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to see that D has the desired paths if and only if it has such paths which
do not use an arc inside any Sj . Thus we can replace Si by a tournament in
which x1 and x2 both have no out-neighbours in Si−{x1, x2} and every other
Sk by an arbitrary tournament on the same vertex set. Clearly the digraph
D′ obtained in this way satisfies the requirement.

Suppose now without loss of generality that x1, y1 ∈ V (Sj) for some j
but x2 �∈ V (Sj). Suppose first that y2 ∈ V (Sj). If there is no (x1, y1)-path in
Sj − y2, then D has the desired paths if and only if it has such paths which
do not use an arc inside any Si and we can construct D′ by adding arcs in
Sj in such a way that no (x1, y1)-path avoiding y2 is created (that is, y2 will
still separate x1 from y1 in D′[V (Sj)]) and arbitrary arcs in every other Si.
On the other hand, if Sj − y2 contains an (x1, y1)-path avoiding y2, then it
follows from the fact that F is strong that D has the desired paths and hence
D′ exists, as remarked above. Hence we may assume that y2 �∈ V (Sj).

If Sj contains an (x1, y1)-path which does not cover all the vertices of Sj ,
then it follows from the fact that F is strong that D has the desired paths.
Thus we may assume that either Sj has no (x1, y1)-path, or every (x1, y1)-
path in Sj contains all the vertices of Sj . In the last case we may assume that
V (Sj) separates x2 from y2. Now D has the desired paths if and only if it
has such a pair which does not use any arcs from Sj . Thus in both cases we
can construct D′ by replacing Sj by a tournament with no (x1, y1)-path and
every other Si by an arbitrary tournament on the same vertex set, except in
the case when x2 and y2 belong to some Si, i �= j. In this case we replace
that Si by a tournament with no (x2, y2)-path (by the remark above we may
assume that Si has no (x2, y2)-path).

It follows from the considerations above that D′ can be constructed in
time O(n2). 	


Recall that Theorem 8.3.5 gives the canonical decomposition for quasi-
transitive digraphs. Hence we can apply Theorem 8.5.1 to these digraphs.

Theorem 8.5.2 ([5]) There exists a polynomial-time algorithm for the 2-
Disjoint paths problem for quasi-transitive digraphs.

Proof: Let D be a quasi-transitive digraph and x1, x2, y1, y2 specified dis-
tinct vertices for which we want to determine the existence of vertex-disjoint
(x1, y1)-,(x2, y2)-paths. First check that D−{xi, yi} contains an (x3−i, y3−i)-
path for i ∈ {1, 2}. If not, then we stop. Now it follows from Theorem 8.3.5
that either x1, x2, y1, y2 are all in the same strong component of D, or the
paths exist. For example, if D is not strong and y1, say, is not in the same
strong component as x1 then, by Theorem 8.3.5, x1 and y1 belong to different
sets Wi,Wj in the canonical decomposition D = Q[W1, . . . ,W|Q|], where Q
is a transitive digraph. Hence x1→y1 and the desired paths clearly exist.

Thus we may assume that D is strong. Let D = S[W1,W2, . . . ,W|S|] be
the canonical decomposition of D. Now apply Theorem 8.5.1 and construct
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the digraph D′ which has the desired paths if and only if D does. As remarked
in Theorem 8.5.1, D′ can be constructed in polynomial time. By the construc-
tion of D′ (replacing each Wi by a semicomplete digraph) it follows that D′

is a semicomplete digraph and hence we can apply the polynomial algorithm
of Theorem 2.5.6 to D′ in order to decide the existence of the desired paths
in D. The algorithm of Theorem 2.5.6 can be used to find vertex-disjoint
(x1, y1)-, (x2, y2)-paths in D′ if they exist and given these paths it is easy to
construct the corresponding paths in D (it suffices to take minimal paths).

	


By inspecting the proof of Theorem 8.5.1 it is not difficult to see that
the following much more general result is true. The main point is that in
the proof of Theorem 8.5.1 we either find the desired paths or decide that
they exist if and only if there are such paths that use no arcs inside any Si.
Hence instead of making each Ti semicomplete, we may just as well make it
an independent set, by deleting all arcs inside Si.

Theorem 8.5.3 ([5]) Let Φ be a class of strongly connected digraphs, let Φext

denote the class of all extensions of graphs in Φ and let

Φ∗ = {F [D1, . . . , D|F |] : F ∈ Φ, each Di is an arbitrary digraph}.

There is a polynomial algorithm for the 2-Disjoint paths problem in Φ∗ if
and only if there is a polynomial algorithm for the 2-Disjoint paths problem
for all digraphs in Φext. 	


This result shows that studying extensions of digraphs can be quite useful.
One example of such a class Φ, for which Theorem 8.5.3 applies, is the

class of strong semicomplete digraphs. This follows from the fact that we can
reduce the 2-Disjoint paths problem for extended semicomplete digraphs
to the case of semicomplete digraphs in the same way as we did for quasi-
transitive digraphs in the proof of Theorem 8.5.2. Hence the 2-Disjoint
paths problem is polynomially solvable for all digraphs that can be obtained
from strong semicomplete digraphs by substituting arbitrary digraphs for
vertices. It is important to note here that Φ must consist only of strong
digraphs, since it is not difficult to reduce the 2-Disjoint paths problem for
arbitrary digraphs (which is NP-complete) to the 2-Disjoint paths problem
for those digraphs that can be obtained from the digraph H consisting of just
an arc uv by substituting arbitrary digraphs for the vertex v.

The proof of the following easy lemma is left to the reader. Note that four
is the best possible, as can be seen from the complete biorientation of the
undirected graph consisting of a 4-cycle x1x2y1y2x1 and a vertex z joined to
each of the four other vertices.
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Lemma 8.5.4 Let D be a digraph of the form D = �C2[S1, S2], where Si is an
arbitrary digraph on ni vertices, i = 1, 2. If D is 4-strong, then D is 2-linked.
�

Theorem 2.5.1 gives a sufficient condition for a semicomplete digraph to
be 2-linked in terms of its strong connectivity. The same condition turns out
to be sufficient for quasi-transitive digraphs.

Before proving our final results of this subsection, we will be needing a
structural theorem regarding k-strong digraphs due to Bang-Jensen.

Lemma 8.5.5 ([5]) Let D = F [S1, . . . , Sf ] where F is a strong digraph on
f ≥ 2 vertices, each Si is a digraph with ni vertices, and F has as few
vertices as possible among all non-trivial decompositions of D of this kind. Let
D0 = F [Kn1 , . . . ,Knf

] be the digraph obtained from D by deleting every arc
which lies inside some Si, and let S be a minimal (with respect to inclusion)
separating set of D0. Then S is also a separating set of D, unless each of the
following holds:

(a) S =
⋃

j �=i V (Sj) for some 1 ≤ i ≤ f ,
(b) D[Si] is a strong digraph, and
(c) D = �C2[S, Si].

In particular, if F has at least three vertices, then D is k-strong if and only
if D0 is k-strong.

Theorem 8.5.6 ([5]) Let k ≥ 4 be a natural number and let F be a digraph
on f ≥ 2 vertices with the property that every k-strongly connected digraph of
the form F [T1, T2, . . . , Tf ], where each Ti, i ∈ [f ], is a semicomplete digraph,
is 2-linked. Let D = F [S1, S2, . . . , Sf ], where Si is an arbitrary digraph on ni

vertices for all i ∈ [f ]. If D is k-strongly connected, then D is 2-linked.

Proof: Let D = F [S1, S2, . . . , Sf ], where Si is an arbitrary digraph on ni

vertices for each i ∈ [f ], be given. By Lemma 8.5.4 we may assume that D

cannot be decomposed as D = �C2[R1, R2], where R1 and R2 are arbitrary
digraphs. Construct D′ as described in Theorem 8.5.1. Note that by Lemma
8.5.5, κ(D′) = κ(D). Thus D′ is k-strong and using Theorem 8.5.1 and the
assumption of the theorem we conclude that D is 2-linked. 	

Corollary 8.5.7 ([5]) Every 5-strong quasi-transitive digraph is 2-linked.

Proof: By Theorem 8.3.5, every strong quasi-transitive digraph is of the form
D = F [S1, S2, . . . , Sf ], f = |F |, where F is a strong semicomplete digraph
and each Si is a non-strong quasi-transitive digraph on ni vertices. By Lemma
8.3.4 and the connectivity assumption, |F | ≥ 3. Note that for any choice
of semicomplete digraphs T1, . . . , Tf the digraph D′ = F [T1, T2, . . . , Tf ] is
semicomplete. Hence the claim follows from Theorem 8.5.6 and the fact that,
by Theorem 2.5.12, every 5-strong semicomplete digraph is 2-linked. (Since F
has at least three vertices, it follows from Lemma 8.5.5 that κ(D′) = κ(D).)
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8.5.1 k-Linkages

As mentioned at the beginning of this section, since the k-Disjoint paths
problem is already NP-complete for k = 2, the restriction of this problem to
particular classes of digraphs has been studied by many authors. It turns out
that, for some families, the problem can be solved in polynomial time when
k is fixed. For example, consider Theorems 3.4.1, 2.5.7, and 2.5.11.

Recall that a digraph D is decomposable if there exist a digraph R on
r vertices, and distinct (but possibly isomorphic) digraphs L1, . . . , Lr, such
that D = R[L1, . . . , Lr]. In this section we will study the k-Disjoint paths
problem in decomposable digraphs. As a consequence, we will obtain polyno-
mial algorithms to solve the k-Disjoint paths problem in quasi-transitive
digraphs and extended semicomplete digraphs. The results of this section are
due to Bang-Jensen, Christiansen, and Maddaloni [7].

Let D = S[M1, ...,Ms] be a decomposable digraph and let P be a path
in D. We say that P is D-internal if P ⊆ Mi for some i, and we say that P
is D-external otherwise. When D is clear from the context we just call the
path internal or external. Similarly we say that a pair (s, t) ∈ V (D)×V (D)
is internal if s, t ∈ V (Mi) for some i, and is external otherwise.

Let Π = {(s1, t1), ..., (sk, tk)} be a set of k pairs of distinct terminals. A
Π-linkage is a collection L of k disjoint paths Pi, i ∈ [k], such that Pi is
an (si, ti)-path. If a Π-linkage L exists in the digraph D we say that L is a
linkage for (D,Π)

Lemma 8.5.8 ([7]) Let D = S[M1, ...,Ms] be a decomposable digraph and Π
a set of pairs of terminals. Then (D,Π) has a linkage if and only if it has a
linkage whose external paths do not use any arc of D[Mi] for i ∈ [s]. 	


Let D be a digraph with vertex set v1, v2, . . . , vn and let K be another
digraph. By blowing up vi into K in D we mean the operation that sub-
stitutes the digraph K for the vertex vi in D, that is, creates the digraph
D′ = D[{v1}, . . . , {vi−1},K, {vi+1}, . . . , {vn}]. We say that a class of digraphs
Φ is closed with respect to blow-up if for any D ∈ Φ, for every integer
m and for every v ∈ V (D), there exists a digraph K on m vertices such that
the blowing up of v into K results in a digraph which is still in Φ.

Lemma 8.5.9 ([7]) If the class Φ is closed with respect to the blowing-up
operation, S ∈ Φ and D = S[M1, ...,Ms], then it is possible to replace the
arcs inside each Mi, i ∈ [s], with other arcs, so that the resulting digraph is
in Φ. 	


We say that a class of digraphs Φ is a linkage ejector if

1. There exists a polynomial algorithm AΦ to find a total Φ-decomposition
of every totally Φ-decomposable digraph.

2. There exists a polynomial algorithm BΦ for solving the k-Disjoint paths
problem on Φ. The running time depends (possibly exponentially) on k
but the algorithm is polynomial when k is fixed.
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3. The class Φ is closed with respect to blow-up and there exists a poly-
nomial algorithm CΦ wich given a totally Φ-decomposable digraph D =
S[M1, ...,Ms], constructs a digraph of Φ by replacing the arcs inside each
of the Mi’s, as in Lemma 8.5.9.

Theorem 8.5.10 Let Φ be a linkage ejector. For every fixed k, there exists
a polynomial algorithm to solve the k-Disjoint paths problem on totally
Φ-decomposable digraphs. 	


Recall that, by Theorem 8.3.5, quasi-transitive digraphs are totally Φ3-
decomposable. The following result of Bang-Jensen, Christiansen, and Mad-
daloni deals with this class of digraphs, which also includes, for example,
extended semicomplete digraphs.

Lemma 8.5.11 ([7]) The class Φ3 is a linkage ejector. 	

We thus obtain the following corollary of Theorem 8.5.10

Theorem 8.5.12 For every fixed k, there exists a polynomial algorithm to
solve the k-Disjoint paths problem on quasi-transitive digraphs and ex-
tended semicomplete digraphs.

8.5.2 Weak k-Linkages

Note that for this subsection we allow both parallel arcs and loops and (for
simplicity) we still use the name digraph rather than directed pseudograph.

Let D = (V,A) be a digraph and let s1, . . . , sk, t1, . . . , tk be a collection of
(not necessarily distinct) vertices of D. A weak k-linkage from (s1, . . . , sk)
to (t1, . . . , tk) is a collection of k arc-disjoint paths P1, . . . , Pk such that, for
each i ∈ [k], Pi is an (si, ti)-path if si �= ti and a proper cycle containing si

if si = ti.

weak k-linkage
Input: A digraph D = (V,A) and not necessarily distinct vertices
s1, . . . , sk, t1, . . . , tk.
Question: Does D contain a weak k-linkage from (s1, . . . , sk) to
(t1, . . . , tk)?

It is well-known that the weak k-linkage problem is NP-complete al-
ready when k = 2 [30].

Until recently, results regarding the weak k-linkage problem were lim-
ited, both in number and depth. In Section 3.4, the case of acyclic digraphs
is discussed, and Section 2.5 presents a brief evolution of this problem, with
an obvious emphasis on the class of semicomplete digraphs. In particular, the
results of Fradkin and Seymour found in [31] (and included in Section 2.5)
mark a turning point in the scope of families for which nice results can be
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obtained. In this section we present the results obtained by Bang-Jensen and
Maddaloni in [19] regarding the weak k-linkage problem on decomposable
digraphs. We begin with a result which is implicitly stated in [31]. See Section
2.5 for the definition and a brief discussion of the concept of cutwidth.

Theorem 8.5.13 (Fradkin–Seymour [31]) For every natural number θ the
weak k-linkage problem is polynomial for every fixed k, when we consider
digraphs with cutwidth at most θ.

The following easy consequence will be used in our algorithms.

Theorem 8.5.14 For every natural number p the weak k-linkage problem
is polynomial, for every fixed k, when we consider digraphs with at most p
directed cycles.

Proof: Let D be a digraph with at most p directed cycles. Then the cutwidth
of D is at most p: we may delete an arbitrary arc from each of the at most p
cycles to get a digraph with cutwidth 0, so D has cutwidth at most p. Now
the claim follows from Theorem 8.5.13. 	


Assume we want to decide the existence of a weak k-linkage from the
vertices (s1, ..., sk) to the vertices (t1, ..., tk). We will denote by Π the list
of pairs5 (s1, t1), . . . , (sk, tk). In the rest of this subsection we will think
of Π both as a list of k pairs and as a collection of all the terminals
s1, . . . , sk, t1, . . . , tk.

We say that D has a weak Π-linkage if it contains a weak k-linkage from
(s1, . . . , sk) to (t1, . . . , tk). We sometimes also say that (D,Π) has a weak
linkage.

As in the previous subsection, we will use the term blow up of vi into a
digraph K (in D) meaning the composition D[v1, ..., vi−1,K, vi+1, ..., vn].

Recall that we allow multiple arcs (and loops) in our digraphs, and also
that μD(u, v) denotes the number of arcs from a vertex u to a vertex v. We will
assume throughout the rest of this subsection, unless otherwise stated, that k
denotes the number of pairs to be linked. An instance of the problem (D,Π)
is equivalent to (D′,Π) where V (D′) = V (D) and for every u, v ∈ V (D′)
one has μD′(u, v) = min(μD(u, v), k). Therefore from now on we will only
consider digraphs D with

μD(u, v) ≤ k ∀u, v ∈ V (D)

while studying the weak k-linkage problem.
Let D = (V,A) be a digraph and H an induced subdigraph of D. We

say that H is a module if for every a, b ∈ V (H), v ∈ V (D \ H) we have
that μD(v, a) = μD(v, b) and μD(a, v) = μD(b, v). We say that H is a clean

5 Note that the same pair (or the same vertex) may appear more than once in the
list and we may have si = ti.
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module with respect to Π if it is a module containing no terminals of Π. The
concept of module yields an alternative definition of a decomposable graph.
A digraph D is decomposable if D = S[H1, ...,Hs], for some digraph S,
with s = |V (S)| ≥ 2 and some choice of disjoint modules H1, ...,Hs. In this
case S is called the quotient digraph (of D) induced by H1, ...,Hs.

The algorithms developed in this subsection rely on the following funda-
mental fact, the proof of which we will omit: a weak linkage need not use any
arc inside clean modules. As mentioned earlier, the results of this section are
due to Bang-Jensen and Maddaloni.

Lemma 8.5.15 ([19]) Let D be a digraph, Π a list of k terminal pairs and
H ⊂ D a clean module with respect to Π. Let D′ be the contraction of H into
a single vertex h. Then D has a weak Π-linkage if and only if D′ has a weak
Π-linkage. 	


The following result is an immediate consequence of the proof of Lemma
8.5.15 (see [19]).

Lemma 8.5.16 ([19]) Let Π be a list of terminal pairs and H ⊂ D be a clean
module with respect to Π. For every weak linkage P ′

1, ..., P
′
k of (D,Π), there

exists another weak linkage P1, ..., Pk such that P ′
i = Pi on D \ H, and for

i = 1, ..., k, A(Pi ∩ H) = ∅.

As in the previous subsection, given a decomposable digraph D =
S[H1, ...,Hs] and a path P we say that P is internal if P ⊆ Hj for some Hj ,
and we say that P is external otherwise.6

Similarly, we say that a pair (s, t) is an internal pair if s, t ∈ Hj for
some j, and we say that (s, t) is an external pair otherwise.

If a module H is not clean, i.e. it contains terminals, then some of the
arcs in A(H) may be necessary to guarantee a weak linkage. See Figure 8.4.
The following lemma shows that, in a precise sense, a weak linkage need not
use too many arcs inside a given module. Together with Lemma 8.5.16, this
will allow a polynomial brute-force algorithm (Theorem 8.5.19).
For technical reasons that will become clear later, we consider the more gen-
eral case where a set of arcs F has been deleted from D.

Lemma 8.5.17 ([19]) Let D = S[H1, ...,Hs] be a decomposable digraph, let
Π ′ be a list of h terminal pairs and let F be a set of arcs in D satisfying
d−

F (v), d
+
F (v) ≤ r for all v ∈ V (D). If (D \ F,Π ′) has a weak linkage, then it

has a weak linkage P1, ..., Ph such that we have |V (
⋃

i∈E Pi∩Hj)| ≤ 2h(h+r),
for every j ∈ {1, ..., s}, where E denotes the set of indices i for which Pi is
external.

Note that from the previous proof we have that for every j ∈ {1, . . . , s}
and every i ∈ E , |A(Pi ∩ Hj)| < 2(h + r).

6 Note that an external path may still start and end in the same module Hj .
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H1

s1=s2

H2

t1=t2

Figure 8.4 An example with |Π| = 2, the only weak Π-linkage uses the arc inside
H1.

Lemma 8.5.18 ([19]) Let C be a class of digraphs for which there exists an
algorithm A to decide the weak k-linkage problem, whose running time
is bounded by f(n, k). Let D = (V,A) be a digraph, Π a list of k pairs of
terminals and F ⊆ V ×V such that D′ := (V,A∪F ) is a member of C. There
exists an algorithm A−, whose running time is bounded by f(n, k + |F |), to
decide whether D has a weak Π-linkage.

Proof: Suppose F = {s′
1t

′
1, ...., s

′
k′t′k′}, where k′ = |F |, and let Π ′ =

(s′
1, t

′
1), ..., (s

′
k′ , t′k′). D has a weak Π-linkage if and only if D′ has a weak

(Π ∪ Π ′)-linkage, from which the claim follows. Indeed, if D has a weak Π
linkage, then this extends to a weak (Π ∪ Π ′)-linkage of D′ by simply taking
the arcs s′

it
′
i as (s′

i, t
′
i)-paths. If D′ has a weak Π ∪ Π ′-linkage L, it is easy to

see that A(L) \ F contains a weak Π-linkage of D. 	

Given a digraph D and a non-negative integer c, let D(c) denote the set

of digraphs that can be obtained from D by first adding any number of arcs
parallel to the already existing ones and then blowing up b vertices, with
0 ≤ b ≤ c, to digraphs of size less than or equal to c each. We say that a class
of digraphs Φ is bombproof if there exists a polynomial algorithm AΦ to
find a total Φ-decomposition of every totally Φ-decomposable digraph and,
for every integer c, there exists a polynomial algorithm7 BΦ to decide the
weak k-linkage problem for the class

Φ(c) :=
⋃

D∈Φ

D(c).

The following theorem of Bang-Jensen and Maddaloni is the main result
in [19].

Theorem 8.5.19 ([19]) Let Φ be a bombproof class of digraphs. There is a
polynomial algorithm M which takes as input a 5 tuple [D, k, k′,Π, F ], where
D is a totally Φ-decomposable digraph, k, k′ are natural numbers with k′ ≤ k,
Π is a list of k′ terminal pairs and F ⊆ A(D) is a set of arcs satisfying

7 Note that the running time of BΦ may depend heavily on c.
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d−
F (v), d

+
F (v) ≤ k − k′for all v ∈ V (D).
|F | ≤ (k − k′)2k

and decides whether D \ F contains a weak Π-linkage. 	


For the sake of brevity we will omit the proof of Theorem 8.5.19. Nonethe-
less, we present a description for the proposed polynomial algorithm M.

1. If Π = ∅ output that a solution exists and return.
2. Run AΦ to find a total Φ-decomposition of D = S[H1, ...,Hs].
3. If this decomposition is trivial, that is D = S, then D ∈ Φ ⊆ Φ(1), so run

B−
Φ on (D \ F,Π) to decide the problem and return.

4. Find among H1, ...,Hs those modules K1, ...,Kl that contain at least one
terminal. Let D′ be obtained by contracting all the modules distinct from
K1, ...,Kl. Let F ′ be the set of arcs obtained from F after the contraction.

5. Let Πe ⊆ Π (Πi ⊆ Π) be the list of external (internal) pairs (sq, tq) in
Π.

6. For every partition of Πi = Π1 ∪ Π2 look for external paths linking the
pairs in Πe ∪ Π1 and internal paths linking the pairs in Π2. This is done
in the following way:

a) If Πe ∪ Π1 = ∅, then for i = 1, ..., l: run M recursively on input
[Ki, k, k′

i,Π∩Ki, F∩A(Ki)], where Π∩Ki denotes the list of terminal
pairs that lie inside Ki and k′

i is the number of those pairs.
b) If Πe ∪ Π1 �= ∅, let k′

i be the number of pairs in Π2 ∩ Ki. We do
the following for each possible choice of l vertex sets Wi ⊆ V (Ki),
i = 1, ..., l, of size min{|V (Ki)|, 2(k′ − k′

i)(k − k′)} and arc sets8Fi ⊆
A(Ki[Wi]) \ F , i = 1, ..., l, with Fi satisfying

d−
(F∩A(Ki))∪Fi

(v), d+(F∩A(Ki))∪Fi
(v) ≤ k′ − k′

i.

|Fi| ≤ 2(k′ − k′
i)(k − k′).

• For every module Ki remove all the vertices of V (Ki) \ Wi and
then all remaining arcs except those in Fi.

• Define D′′ to be the digraph obtained from D′ with this proce-
dure.

• Run B−
Φ on (D′′ \ F ′,Πe ∪ Π1).

• For i = 1, ..., l, run M recursively on input [Ki, k, k′
i,Π2∩Ki, (F∩

A(Ki)) ∪ Fi].
If at step 6(a) all the instances examined are linked or at step 6(b), there
is a choice of Wi, Fi, i = 1, ..., l, such that all instances examined are
linked, then output that a weak linkage exists and return.

7. If all choices of Π1,Π2 have been considered, without verifying the exis-
tence of any weak linkage, then output that no weak linkage exists.

8 Ki[Wi] is the subdigraph of Ki induced by Wi.
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Taking k′ = k and running the previous algorithm on input [D, k, k,Π, ∅]
where D is any totally Φ-decomposable digraph and Π is a list of k terminal
pairs from V (D), we obtain the main result of this subsection.

Theorem 8.5.20 Let Φ be a bombproof class of digraphs. For every fixed k
there exists a polynomial algorithm for the weak k-linkage problem for the
totally Φ-decomposable digraphs.

Based on the recursive structure given by the canonical decomposition
for quasi-transitive digraphs (Theorem 8.3.5), Bang-Jensen and Maddaloni
proved that there is a polynomial algorithm for the weak k-linkage problem
on quasi-transitive digraphs [19]. Recall that Theorem 8.3.5 can be restated
to say that quasi-transitive digraphs are totally Φ3-decomposable.

Lemma 8.5.21 The class Φ3 is bombproof.

Proof: We can get a polynomial algorithm for the total Φ3-decomposition
from Theorem 8.3.27. Given a positive integer c and a digraph D ∈ Φ3,
consider a digraph in D′ ∈ D(c): if D is semicomplete, then D′ misses no
more than c3 arcs to be semicomplete. If D is acyclic, then D′ has at most
O(cc+1) cycles or O(c · (ck)c) if there are (at most k) parallel arcs, because
all the cycles must lie in one of the blown up subdigraphs. By Theorem 2.5.5
and Lemma 8.5.18 in the first case and Theorem 8.5.14 in the second case,
there is a polynomial algorithm to decide the weak k-linkage problem in
D(c) and hence in Φ3(c). Thus we can conclude that Φ3 is bombproof. 	

Theorem 8.5.22 For every fixed k there exists a polynomial algorithm for
the weak k-linkage problem for quasi-transitive digraphs.

Proof: It follows from Theorem 8.3.5 that quasi-transitive digraphs are to-
tally Φ3-decomposable. By Lemma 8.5.21 Φ3 is bombproof, hence we can
apply Theorem 8.5.20. 	


We can apply Theorem 8.5.20 to another class of digraphs; extended semi-
complete digraphs are clearly totally Φ3-decomposable. Hence, from Theorem
8.5.20, we have the following

Theorem 8.5.23 For every fixed k there exists a polynomial algorithm for
the weak k-linkage problem for extended semicomplete digraphs. 	


8.6 Kings and Kernels

The existence of k-kings was one the first problems to be explored for quasi-
transitive digraphs. As a matter of fact, the concept of k-king was first intro-
duced in [16] for the purpose of studying quasi-transitive digraphs. In fam-
ilies of digraphs closed under the reversal of every arc, like quasi-transitive
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digraphs, the study of k-kings is closely related to the study of (k+1)-kernels:
a k-king in the reversal of D is a (k + 1)-kernel of D.

After spending some years dormant, this subject has received a lot of
attention lately. Surprisingly, many of the nice existing results for kings in
quasi-transitive digraphs admit natural generalizations to k-quasi-transitive
digraphs.

8.6.1 Kings

A k-king in a digraph D is a vertex u such that d(u, v) ≤ k for every
v ∈ V (D) − u (it is a k-dominating vertex). A king is a 2-king. The
study of kings in digraphs began with the mathematical sociologist Landau,
who proved that every vertex of maximum out-degree in a tournament is a
king, [53] (see Theorem 2.2.12). Nonetheless, the term king was introduced by
Maurer in [54], where he used tournaments to model dominance in flocks of
chickens. Some of the classical results on k-kings in digraphs can be consulted
in [9], and Section 2.2 includes the most relevant results for tournaments.

Most of the main results in this section rely on several technical lemmas,
so we prefer to omit them for the sake of presentation.

In [16], Theorem 8.3.5 is used extensively by Bang-Jensen and Huang
to prove the first results on the existence and number of 3-kings in quasi-
transitive digraphs. The main results can be condensed in the following the-
orem.

Theorem 8.6.1 ([16]) Let D be a quasi-transitive digraph. Then we have

1. D has a 3-king if and only if it has an out-branching.
2. If D has a 3-king, then the following holds:

a) Every vertex in D of maximum out-degree is a 3-king.
b) If D has no vertex of in-degree zero, then D has at least two 3-kings.
c) If the unique initial strong component of D contains at least three

vertices, then D has at least three 3-kings.

Sketch of Proof. Clearly, the existence of an out-branching is necessary.
To prove the converse, assume that D has an out-branching. This implies
that D has a unique initial strong component. Since the strong components
digraph of a quasi-transitive digraph is transitive, a vertex is a 3-king of D
if and only if it is a 3-king of the unique initial component of D. So, we may
assume that D is strong.

Let D = S[Q1, . . . , Qs] be the decomposition of D given by Theorem 8.3.5.
Since S is semicomplete, every vertex of S belongs to a 3-cycle of S. Thus,
for every 1 ≤ i ≤ s, each vertex in every Qi has distance at most 3 to every
other vertex in Qi. Assume without loss of generality that Q1 corresponds to
a vertex s1 of maximum out-degree in S. Then s1 is a 2-king in S, and hence
every vertex in Q1 is a 3-king of D.
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Observe that the vertices of maximum out-degree in D must belong to the
Qi’s corresponding to the vertices of maximum out-degree in D. If there are
no vertices of in-degree zero in D, there are at least two vertices of maximum
out-degree in S. 	


From the previous argument it can also be observed that D has a 2-king
if and only if |V (Qi)| = 1 for some Qi corresponding to a 2-king of S. Also,
similar argumentation leads to other, more specific, results regarding the
distribution of 3-kings in a quasi-transitive digraphs. As an example consider
the following proposition from [16]; a non-king is a vertex which is not a
3-king.

Proposition 8.6.2 Let D be a quasi-transitive digraph which contains a 3-
king but no vertex of in-degree zero. Every non-king is dominated by at least
three 3-kings, unless the initial component of D is a 2-cycle, in which case
every non-king is dominated by exactly two 3-kings. 	


After this first wave of results, most of the study of k-kings was restricted
to multipartite tournaments for several years. It was not until 2012 that
k-quasi-transitive digraphs were introduced in [48], and the following gener-
alization of the first item of Theorem 8.6.1 was proved between [48] and [37]
by Galeana-Sánchez, Hernández-Cruz and Juárez-Camacho.

Proposition 8.6.3 ([37, 48]) Let k ≥ 2 be an integer. If D is a k-quasi-
transitive digraph, then D has a (k + 1)-king if and only if it has a unique
initial strong component. 	


Proposition 8.6.3 was then the starting point for studying kings in k-quasi-
transitive digraphs. Further generalizations to Theorem 8.6.1 were obtained,
but also some strengthenings. Recall that we know exactly when a quasi-
transitive digraph has a 2-king; a similar situation was described by Wang
and Meng for k-quasi-transitive digraphs.

Theorem 8.6.4 ([60]) Let k ≥ 4 be an integer. If D is a k-quasi-transitive
digraph, then D has a k-king if and only if it has a unique strong component
which is not isomorphic to an extended (k + 1)-cycle �C[E0, . . . , Ek], where
each Ei is an independent set on at least two vertices. 	


Now that we know exactly when a k-king exists, it is natural to ask for the
minimum number of k-kings in a k-quasi-transitive digraph. The following
theorem of Wang and Zhang deals with this question.

Theorem 8.6.5 ([63]) Let k ≥ 5 be an integer, and let D be a strong k-
quasi-transitive digraph with at least two vertices. If D is not isomorphic to
an extended (k + 1)-cycle, then D has at least two k-kings. 	


It should be noted that this is the best possible result in terms of the
number of k-kings in a k-quasi-transitive digraph. Consider the digraph
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H = �Ck+1[{x0}, {x1}, E2, E3, . . . , Ek], where Ei is an independent set with at
least two vertices. Let D be obtained from H by adding the arc x1x0. Clearly
D is a k-quasi-transitive digraph and it is not isomorphic to an extended
(k +1)-cycle. It is not difficult to check that there are exactly two k-kings in
D, namely, x0 and x1.

Given the previous discussion, it is natural to give further consideration
to (k+1)-kings in k-quasi-transitive digraphs. Unfortunately, unlike the case
of quasi-transitive digraphs, it is not true that every vertex of maximum out-
degree in a k-quasi-transitive digraph is a (k + 1)-king. As noted in [37], the
only vertex of maximum out-degree in the 4-transitive digraph with vertex
set {v1, v2, v3, v4}, and arc set {v1v2, v2v3, v2v4, v3v4, v4v3}, is not a 5-king.
Nonetheless, there are some simple conditions that will ensure that every
vertex of maximum out-degree in a k-quasi-transitive digraphs is a (k + 1)-
king. The following condition was given by Wang and Zhang in [63]; recall
that a k-king u in a digraph D is strict if there exists a vertex v such that
d(u, v) = k.

Theorem 8.6.6 ([63]) Let k ≥ 2 be an integer and let D be a k-quasi-
transitive digraph.

1. If D is strong, then every vertex of maximum out-degree in D is a (k+1)-
king.

2. If D has a strict (k + 1)-king, then every vertex of maximum out-degree
in D is a (k + 1)-king.

	

As can be observed in Theorem 8.6.8, the number of (k + 1)-kings in

k-quasi-transitive digraphs can be very large, compared to the number of k-
kings. The proof uses the following theorem regarding 4-kings in semicomplete
bipartite digraphs, which can be obtained from the analogous result due to
Koh and Tan, on bipartite tournaments (Theorem 7.12.2), [50].

Theorem 8.6.7 Let D be a semicomplete bipartite digraph with a unique
initial strong component. If there is no 3-king in D, then there are at least
eight 4-kings in D.

Let us point out that Theorem 8.6.7 was first stated by Wang in [63], and
she cited [50] by Koh and Tan as the source of this result. Nonetheless, as
mentioned above, Koh and Tan only proved this result for bipartite tourna-
ments (Theorem 7.12.2). Wang does not give any argument in [63] to extend
this result to semicomplete bipartite digraphs, so we will give a short one
here.

Let D be a semicomplete bipartite digraph with only one initial strong
component S, and without 3-kings. By Theorem 7.1.1, every strong compo-
nent C of D contains a strong spanning subgraph C ′, which is a bipartite
tournament. Replacing every strong component C by C ′ in D results in a
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bipartite tournament with a unique strong component and without a 3-king.
We can now apply Theorem 7.12.2 to this bipartite tournament to obtain the
desired eight 4-kings. When we put back the deleted arcs, we will still have
eight 4-kings in D, and, since they are in an initial strong component, they
are 4-kings of all of D.

The following result was proved by Galeana-Sánchez, Hernández-Cruz
and Juárez-Camacho, for k = 2, and by Wang and Zhang for k ≥ 3.

Theorem 8.6.8 ([37, 63]) Let k ≥ 2 be an integer, and let D be a k-quasi-
transitive digraph. If there is no k-king in D, then the number of (k+1)-kings
in D is at least 2k + 2.

Proof: It suffices to prove the result for strong digraphs. For k = 2, consider
the decomposition D = S[Q1, . . . , Qs] given by Theorem 8.3.5. Since D is
strong, the semicomplete digraph S is also strong, and thus, by Corollary
2.2.14, it has at least three 2-kings. Since D does not have 2-kings, it follows
from the observation made after Theorem 8.6.1 that every Qi corresponding
to a 2-king of S has at least two vertices. Each of these vertices is a 3-king,
and thus, D has at least six 3-kings.

The case k = 3 can be directly verified using Theorems 8.3.15 and 8.6.7.
Finally, for k ≥ 4, as D has no k-king, it must be isomorphic to an extended
(k+1)-cycle, by Theorem 8.6.4. Every partite set in this cycle extension must
have at least two vertices, otherwise there would be a k-king in D. Since every
vertex of D is a (k + 1)-king, the number of (k + 1)-kings is at least 2k + 2.

	


8.6.2 (k, �)-Kernels

A kernel in a digraph D is an independent set K such that every vertex
not in K dominates some vertex in K. Kernels in digraphs were introduced
by von Neumann and Morgenstern while studying cooperative games [57].
Since then, digraph kernels have been studied in many contexts, including
list colouring, game theory and graph perfectness [25], mathematical logic
[22], and complexity theory [58].

There are many generalizations of this concept, one that has been widely
studied and which relates to the kings from the previous subsection is the
following. A subset K of V (D) is k-independent if the distance between
every pair of vertices of K is at least k, and it is �-absorbing if for every
vertex not in K, it reaches a vertex in K at distance at most �; if � = 1,
we simply say that K is absorbing. A (k, �)-kernel in the digraph D is a
k-independent and �-absorbing subset of V (D). A k-kernel is a (k, k − 1)-
kernel, and thus, a 2-kernel is a kernel. The decision problem k-Kernel has
an arbitrary digraph D as an input, and asks whether D has a k-kernel. When
k = 2, the corresponding problem will be referred to only as Kernel.
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Chvátal proved that Kernel is NP-complete [26]. Later Fraenkel proved
that this problem remains NP-complete even when restricted to planar di-
graphs with Δ ≤ 3, Δ+,Δ− ≤ 2, [32]. Recently, Hell and Hernández-Cruz
proved that it is also NP-complete when restricted to digraphs with 3-
colourable underlying graph (as opposed to the fact that every bipartite
digraph has a kernel) [45]. Given the nice structure of quasi-transitive di-
graphs, it is not a surprise that members of this family having a kernel admit
a simple characterization. One such characterization was given by Hell and
Hernández-Cruz in [45].

Theorem 8.6.9 ([45]) Let D be a strong quasi-transitive digraph. Then D
has a kernel if and only if there is an absorbing vertex in D.

Proof: We only prove the non-trivial implication. Let K be a kernel of D.
Since K is independent, it follows from Lemma 8.3.4 that it must be con-
tained in V (S) for some connected component of UG(D). Recalling that D is
strongly connected, there must be at least one connected component S′ �= S
of UG(D) such that V (S) → V (S′). Since K ⊆ S, it must be the case
that V (S′) → V (S). Hence, Lemma 8.3.4 implies that |V (S)| = 1, and thus
|K| = 1. If K = {v}, then v is an absorbing vertex of D. 	


In [48] Galeana-Sánchez and Hernández Cruz observe that, in order for
a k-quasi-transitive digraph D to have a k-kernel, it suffices to construct a
k-kernel for every terminal strong component of D. In particular, this applies
to kernels and quasi-transitive digraphs, and it allows us to conclude the
following observation, which appears implicitly in [45].

Corollary 8.6.10 Let D be a quasi-transitive digraph. Then D has a kernel
if and only if every terminal strong component contains an absorbing vertex.

Hence, we obtain a polynomial time algorithm for the problem Kernel
restricted to the class of quasi-transitive digraphs.

Corollary 8.6.11 The problem Kernel restricted to the class of quasi-
transitive digraphs can be solved in polynomial time. Also, if a kernel exists,
it can be constructed in polynomial time.

Proof: Let D = (V,A) be a digraph such that |V | = n and |A| = m. The
strong components digraph of D can be obtained in time O(n + m) and
it can have at most O(n) terminal strong components. For every terminal
component C, it can be verified in time O(n + m) if an absorbing vertex
exists: it suffices to construct the out-degree sequence of C. Hence, the kernel
problem can be decided in time O(n2 + nm). If D has a kernel, it can be
found in the same time. 	


In order to obtain an analogous result for 3-kernels in 3-quasi-transitive
digraphs, we need the following result of Hell and Hernández-Cruz.
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Proposition 8.6.12 ([45]) It can be determined in linear time whether a
semicomplete bipartite digraph has a 3-kernel. Also, if a 3-kernel exists, it
can be found in linear time.

This suffices to obtain the desired result. The proof of the following the-
orem implicitly uses the structure given in Theorem 8.3.15. Recall that the
digraph Fn has vertex set {x, y, z, v1 . . . , vn}, and its arcs are such that xyzx
is a directed cycle, and yviz is a directed path for every 1 ≤ i ≤ n (see Figure
8.3).

Theorem 8.6.13 ([45]) The problem 3-kernel restricted to the class of 3-
quasi-transitive digraphs can be decided in polynomial time. Also, if a 3-kernel
exists, it can be constructed in polynomial time.

Proof: Let D = (V,A) be a digraph such that |V | = n and |A| = m.
The strong components digraph of D can be constructed in time O(n +
m) and it can have at most O(n) terminal strong components. For every
semicomplete bipartite terminal component, according to Proposition 8.6.12,
it can be verified if it has a 3-kernel and, if so, a 3-kernel can be found, both
in time O(n + m). For each semicomplete terminal component, a 3-kernel
(a 2-king) can be found in time O(n + m). For every terminal component
isomorphic to Fn, a 3-kernel can be constructed in constant time. Hence, the
3-kernel problem can be decided in time O(n2 + nm). If D has a 3-kernel, it
can be found in the same time. 	


In view of Corollary 8.6.11 and Theorem 8.6.13, the following natural
question was stated by Hell and Hernández-Cruz in [45].

Problem 8.6.14 ([45]) Is k-Kernel polynomial time solvable for k-quasi-
transitive digraphs?

In [48] and [37], the existence of r-kernels for r ≥ k+2 was proved for every
k-quasi-transitive digraph by Galeana-Sánchez, Hernández-Cruz and Juárez-
Camacho. It was also proved in [36] that every quasi-transitive digraph has
an r-kernel for r ≥ 3, and in [48] it was proved that every 3-quasi-transitive
digraph contains a 4-kernel, so it was natural to conjecture the existence of a
(k + 1)-kernel for every k-quasi-transitive digraph. This conjecture was later
proved by Wang and Zhang [63].

Theorem 8.6.15 ([63]) Let D be a k-quasi-transitive digraph with k ≥ 2.
Then D has a (k + 1)-kernel.

Proof: We will only prove the case k ≥ 4. For the cases k ∈ {2, 3} we refer
the reader to [36, 48].

Note that it suffices to choose (k+1)-kernels for every terminal component
of D. To achieve this, consider the digraph

←−
D (called the converse of D)

which is obtained from D by reversing every arc. Theorem 8.6.4 guarantees
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that every initial component of
←−
D either contains a k-king, or is isomorphic

to an extended (k + 1)-cycle. The k-kings in the initial components of
←−
D

become (k + 1)-kernels in the terminal components of D. Since the reversal
of an extended (k+1)-cycle is again an extended (k+1)-cycle, and it is clear
that any partite set of an extended (k +1)-cycle is a (k +1)-kernel for it, we
can choose a (k + 1)-kernel for every terminal component of D. 	


A (k + 1)-cycle is a k-quasi-transitive digraph without a k-kernel. Thus,
Problem 8.6.14 asks whether the first integer r such that the r-Kernel prob-
lem is not trivial when restricted to k-quasi-transitive digraphs yields a poly-
nomial time solvable r-Kernel problem. Notice that k-transitive digraphs
always have a k-kernel, so, the first interesting kernel problem for k-transitive
digraphs is (k − 1)-Kernel. Regarding this problem, Hernández-Cruz char-
acterized 3-transitive digraphs with a kernel [46].

Theorem 8.6.16 ([46]) A 3-transitive digraph has a kernel if and only if
none of its terminal components is isomorphic to a 3-cycle.

Proof: Necessity is trivial to verify, we will only prove sufficiency. We will
proceed by induction on the number of strong components of D. If D is
strong, the result can be verified directly by exploring the possibilities in
Theorem 8.3.19. Let D be a non-strong 3-transitive digraph, and let S be an
initial component of D. By induction hypothesis, D − S has a kernel N . If S
is not a complete bipartite digraph, then either S consists of a single vertex,
or it contains a subdigraph isomorphic to �C3. In the former case, either the
only vertex in S is absorbed by N , and we are done, or it is not, and we can
add it to N to obtain a kernel for D. If S contains an isomorphic copy of �C3,
and since at least one vertex from S reaches at least one vertex from some
initial component of D, say S′, then Proposition 8.3.17 implies that S �→ S′.
But S′ ∩ N �= ∅, thus, every vertex of S is absorbed by N .

If S = (X,Y ) is a complete bipartite digraph, we will consider three cases.
If neither X nor Y is absorbed by N , then N ∪ X is a kernel of D. If some
vertex of X is absorbed by N , it follows from Proposition 8.3.17 that every
vertex of X is absorbed by N . If Y is also absorbed by N , then N is a kernel
of D. Else, none of the vertices of Y is absorbed by D, and thus, N ∪ Y is a
kernel of D. 	


Inspired by Theorem 8.6.16, Wang proved the following general result for
strong k-transitive digraphs.

Theorem 8.6.17 ([59]) Let D be a strong k-transitive digraph with k ≥ 4.
Then D has a (k − 1) kernel if and only if it is not isomorphic to a k-cycle.

This, again observing Theorem 8.6.16, led to the following conjecture.

Conjecture 8.6.18 ([59]) Let k ≥ 3 be an integer. If D is a k-transitive
digraph, then D has a (k − 1)-kernel if and only if has no terminal strong
component isomorphic to a k-cycle.
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In [38], García-Vázquez and Hernández-Cruz provided support to Con-
jecture 8.6.18 by proving it true for k = 4. Additionally, in the same paper
the authors characterized 4-transitive digraphs having a kernel. The charac-
terization relies heavily on a characterization of strong 4-transitive digraphs
having a kernel, found in the same paper (see Subsection 8.3.3). It is trivial to
observe that a k-kernel for a k-transitive digraph consists of a disjoint union
of k-kernels for each of its terminal components. Conjecture 8.6.18 can be
reformulated as follows: A k-transitive digraph D has a (k − 1)-kernel if and
only if each of its terminal components has a (k − 1)-kernel. To prove the
aforementioned characterization of 4-transitive digraphs with a kernel, the
authors actually prove that a 4-transitive digraph has a kernel if and only if
every terminal component has a kernel. So, the following questions come to
mind.

Problem 8.6.19 Let k ≥ 4 be an integer and let D be a k-transitive digraph.
Is it true that D has a (k −2)-kernel if and only if every terminal component
of D has a (k − 2)-kernel?

If so, which is the least value of r for 2 ≤ r ≤ k − 3 such that D has an
r-kernel if and only if every terminal component of D has an r-kernel?

An affirmative answer to the first question in Problem 8.6.19 would imply
that it suffices to solve the (k − 2)-kernel problem for strong k-transitive
digraphs to obtain a solution for all k-transitive digraphs.

Finally, another particular case of (k, �)-kernels is that of quasi-kernels.
A quasi-kernel is simply a (2, 2)-kernel. Chvátal and Lovász proved that
every digraph has a quasi-kernel. So, a question that has been raised by
Gutin, Koh, Tay and Yeo [42] is the following: Which digraphs contain (at
least) a pair of disjoint quasi-kernels? Clearly, a digraph which has a pair
of disjoint quasi-kernels cannot contain vertices of out-degree zero, since ev-
ery such vertex is included in every quasi-kernel. Unfortunately, this obvious
necessary condition is not sufficient in general for a digraph to have a pair
of disjoint quasi-kernels. Examples of digraphs which have neither vertices of
out-degree zero nor a pair of disjoint quasi-kernels are given in [42]. Nonethe-
less, Heard and Huang proved that this condition is indeed sufficient in the
class of quasi-transitive digraphs [44]. We need the following result, which is
found in [44].

Proposition 8.6.20 ([44]) Every semicomplete digraph D with no vertices
of out-degree zero contains two vertices x, y such that {x} and {y} are both
quasi-kernels of D.

We begin with strong quasi-transitive digraphs.

Proposition 8.6.21 ([44]) Every strong quasi-transitive digraph without ver-
tices of out-degree zero contains a pair of disjoint quasi-kernels.
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Proof: Let D be a strong quasi-transitive digraph without vertices of out-
degree zero. Let D = S[H1, . . . ,Hs] be the canonical decomposition of D
(Theorem 8.3.5). Since D has no vertices of out-degree zero, S must contain
at least two vertices and hence contain no vertices of out-degree zero. By
Proposition 8.6.20, there are two vertices x, y such that {x} and {y} are
both quasi-kernels of S. Suppose that Hi and Hj are the two digraphs which
substitute x and y, respectively, in the composition. Let Q and Q′ be quasi-
kernels of Hi and Hj , respectively. Then, it is easy to see that Q and Q′ are
disjoint quasi-kernels of D. 	


We now turn to the non-strong case.

Proposition 8.6.22 ([44]) Every non-strong quasi-transitive digraph without
vertices of out-degree zero contains a pair of disjoint quasi-kernels.

Proof: Let D be a non-strong quasi-transitive digraph without vertices of
out-degree zero. Let D = T [H1, . . . , Ht] be the canonical decomposition of D
(Theorem 8.3.5). Let {u1, . . . , ut} be the vertex set of T , and, without loss of
generality, suppose that u1, . . . , ur are the sinks of T . Note that {u1, . . . , ur}
is a kernel of T . Since D does not contain vertices of out-degree zero, neither
do any Hi, 1 ≤ i ≤ r. By Proposition 8.6.21, each Hi contains two disjoint
quasi-kernels, say Qi,1 and Qi,2, 1 ≤ i ≤ r. It is not hard to verify that
Q1 =

⋃r
i=1 Qi,1 and Q2 =

⋃r
i=1 Qi,2 are disjoint quasi-kernels of D. 	


Combining Propositions 8.6.21 and 8.6.22, we have the following:

Theorem 8.6.23 Every quasi-transitive digraph without vertices of out-degree
zero contains a pair of disjoint quasi-kernels.

8.7 The Path Partition Conjecture

8.7.1 The Conjecture

Recall that a longest path in a digraph D is called a detour of D. The order
of a detour of D is called the detour order of D and is denoted by do(D) .
The Gallai–Roy–Vitaver Theorem states that the chromatic number of the
underlying graph of a digraph D is at most do(D). In 1982 Laborde, Payan
and Xuong posed the following conjecture, which extends this theorem in a
natural way.

Conjecture 8.7.1 ([52]) Every digraph D contains an independent set X
such that do(D − X) < do(D).

Conjecture 8.7.1 has proved to be a very difficult problem, and only a
handful of partial results have been obtained. Nonetheless, it has not received
as much attention as one of its generalizations. The following conjecture is
probably the best known among the related path partition problems, it is
known as the Path Partition Conjecture.
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Conjecture 8.7.2 (Path Partition Conjecture) [52] For every digraph
D and every choice of positive integers �1, �2 such that do(D) = �1+ �2, there
exists a partition of D into two digraphs, D1 and D2, such that do(Di) ≤ �i

for i ∈ {1, 2}.
Clearly, Conjecture 8.7.1 is the particular case of Conjecture 8.7.2 when

�1 = 1 and �2 = do(D) − 1.
A seemingly stronger version of the conjecture is stated in [24]. Bondy

attributes it to Laborde et al. [52] although only the undirected version of
Conjecture 8.7.2 is explicitly mentioned there.

Conjecture 8.7.3 ([24]) For every digraph D and every choice of positive
integers �1, �2 such that do(D) = �1 + �2, there exists a partition of D into
two digraphs, D1 and D2, such that do(Di) = �i for i ∈ {1, 2}.

There is another problem also found in [52] which is a stronger version
of Conjecture 8.7.1, but somehow this conjecture, sometimes referred to as
the Strong Laborde–Payan–Xuong Conjecture, has received even less
attention than Conjecture 8.7.1.

Conjecture 8.7.4 ([52]) Every digraph D contains an independent set X
such that that do(D − X) < do(D), and has the additional property that
every vertex in X is the beginning of some detour of D.

One further extension of Conjecture 8.7.1 has been considered by Galeana-
Sánchez and Gómez in [35]. A path P = x0x1 . . . xn is non-augmentable
if for every v ∈ V (D) − V (P ), and for every 0 ≤ i ≤ n − 1, vx0 . . . xn,
x0 . . . xnv and x0 . . . xivxi+1 . . . xn are not paths. Clearly, every detour is non-
augmentable, so, if true, Conjecture 8.7.1 would be an immediate consequence
of the following conjecture, which appears implicitly in the paper of Galeana-
Sánchez and Gómez [35] but has never been explicitly stated.

Conjecture 8.7.5 ([35]) Every digraph D contains an independent set which
intersects every non-augmentable path of D.

8.7.2 Known Results

There are some partial results supporting each of the aforementioned con-
jectures, principally, Conjectures 8.7.1 and 8.7.2; we refer the reader to
[2, 20, 33, 35, 38, 64]. Most of the existing results prove some of these con-
jectures for restricted families of digraphs; in most cases, generalizations of
tournaments.

In [20], Conjecture 8.7.2 is considered for the family of quasi-transitive
digraphs. There, Bang-Jensen, Nielsen and Yeo prove the following theorem.
Recall that dok(D) is the maximum number of vertices contained in a k-path
subdigraph of a digraph D.
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Theorem 8.7.6 ([20]) Let D be a quasi-transitive digraph or a strong ex-
tended semicomplete digraph, and let q be any positive integer. Then there
exists a partition, (A,B), of V (D) such that the following holds:

1. do(D[A]) ≤ q;
2. dok(D[B]) ≤ dok(D)−q for all k ∈ {1, . . . , |V (B)|}, provided dok−q ≥ 0.

Although Theorem 8.7.6 implies that Conjecture 8.7.1 is also true for
quasi-transitive digraphs, it does not give us information on any of the other
conjectures mentioned in the previous subsection. In [35], Galeana-Sánchez
and Gómez proved Conjecture 8.7.5 to be true for quasi-transitive digraphs.
Again, the proof of this result relies heavily on Theorem 8.3.5, which is also
used by the following necessary lemma.

Lemma 8.7.7 ([35]) Let H be a digraph such that H = D[H1, . . . ,Hn], where
D is a transitive acyclic digraph with vertex set {v1, . . . , vn}, and Hi are ar-
bitrary digraphs for 1 ≤ i ≤ n. If Ii is a maximal independent set intersecting
every non-augmentable path of Hi, 1 ≤ i ≤ n, then I =

⋃n
i=1 Ii is a maximal

independent set that intersects every non-augmentable path in H.

Proof: Since D is acyclic and transitive, its set of vertices of in-degree zero,
S, is a maximal independent set intersecting every non-augmentable path of
D.

Let P be a non-augmentable path in H. It is not hard to verify that the
contraction9 P ′ = P/{H1, . . . , Hn} is a non-augmentable path of D, hence,
S intersects P ′. Also, if P uses at least one vertex from Hi, then it should be
the case that P ∩Hi is a non-augmentable path of Hi; otherwise, P could be
augmented.

Thus, if we let I be the union of the Ij ’s corresponding to the vertices in
S, then I is a maximal independent set intersecting every non-augmentable
path of H. 	


We will only present the general idea of the proof of the following theorem,
due to its length and technical arguments.

Theorem 8.7.8 ([35]) Let D be a quasi-transitive digraph. There exists a
maximal independent set I of D that intersects every non-augmentable path
in D. Moreover, if D is strong with decomposition D = S[Q1, . . . , Qs], and
Ii ⊆ V (Qi) is a maximal independent set intersecting every non-augmentable
path in Qi, for 1 ≤ i ≤ s, then each Ii is also a maximal independent set
intersecting every non-augmentable path in D.

Idea of Proof. The proof is by induction on |V (D)|. If |V (D)| = 1, the
result is clearly true.

9 See Section 1.4.
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If D is not strong, the result follows from Lemma 8.7.7 and the induction
hypothesis.

If D is strong, then, by Theorem 8.3.5, D = S[Q1, . . . , Qs], with S strong
semicomplete and each Qi a non-strong quasi-transitive digraph or a single
vertex. Let P be a non-augmentable path of D. Recall that a path in a semi-
complete digraph is non-augmentable if and only if it is Hamiltonian. Thus,
P must intersect every Qi. If Qi is a single vertex, then it is a maximal
independent set intersecting every non-augmentable path of D. Else, by in-
duction hypothesis there is a maximal independent set Si intersecting every
non-augmentable path in Qi. The proof finishes with an analysis of cases to
show that Si intersects every non-augmentable path of D. 	


Wang and Wang attacked Conjecture 8.7.5 in [64]. Their main result rel-
evant to our interests in this chapter is the following.

Theorem 8.7.9 ([64]) If D is a 3-quasi-transitive digraph, then there exists
an independent set intersecting every non-augmentable path in D.

Proof: If D is strong, then, using the characterization given in Theorem
8.3.15, it is easy to verify that every maximal independent set intersects every
non-augmentable path in D. Therefore, assume that D is not strong and let
D0, . . . , Dk be its strong components. Let D0, . . . , Ds be the initial strong
components and let Fi be a maximal independent set of Di, for 1 ≤ i ≤ s.
Let Z = V (D) − ⋃s

i=0 V (Ds) and define W as

W = {x ∈ Z : there exists a non-augmentable path in D starting at x}.

Observe that W is either independent or empty. If |W | ≤ 1, there is
nothing to prove. Assume |W | ≥ 2, and suppose for a contradiction that
there is a pair x, y of adjacent vertices in W . By the definition of W , x and
y must belong to the same strong component, say Dj . Since N−(V (Dj)) is
non-empty, we may choose a vertex u ∈ N−(V (Dj)). If Dj is non-bipartite,
then, by Lemma 8.3.16, u �→ Dj , and hence u �→ x, a contradiction. If Dj

is bipartite, then x and y must belong to different parts. Hence, by Lemma
8.3.16, u and one of x and y are adjacent, a contradiction.

Let F = F0 ∪ · · · ∪ Fs ∪ W . It is not difficult to deduce that F is an
independent set in D. Let P be a non-augmentable path of D with initial
vertex x0. If x0 does not belong to any initial component, then x ∈ W . Else,
x0 belongs to an initial component D0 of D. If D0 is semicomplete, then it
is not hard to observe that P ∩ D0 is a Hamiltonian path of D0, and thus,
P must intersect F0. If D0 is complete bipartite, then F0 is some part of D0,
so, F0 intersects P ∩ D0. If D0 is an element of the family F (see Theorem
8.3.15), then it is easy to verify that F0 intersects P ∩ D0. 	


Theorem 8.7.9 settles Conjecture 8.7.5 (which implies Conjecture 8.7.1)
for 3-quasi-transitive digraphs. Arroyo and Galeana-Sánchez proved Conjec-
ture 8.7.2 for strong 3-quasi-transitive digraphs in [2].
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Theorem 8.7.10 ([2]) Let D be a strong 3-quasi-transitive digraph. Consider
two positive integers �1 ≥ �2 such that �1 + �2 = do(D). Then there exists a
partition (A,B) of V (D) such that do(D[A]) ≤ �1 and do(D[B]) ≤ �2.

Proof: Since the conjecture is easy to verify for semicomplete and bipartite
digraphs, it follows from Theorem 8.3.15 that it only remains to show its
validity in the digraphs of the family F .

Let D be a digraph in the family F . Notice that 4 ≤ do(D) ≤ 5, hence, it
is easy to verify that, for every choice of �1, �2 such that �1 + �2 = do(D), the
partition ({y, z}, V (D) − {y, z}) (see Figure 8.3) has the required property.

	


Since every 3-transitive digraph is also 3-quasi-transitive, Theorems 8.7.9
and 8.7.10 also cover the 3-transitive case. Thus, the first interesting case for
k-transitive digraphs is k = 4. For 4-transitive digraphs only Conjecture 8.7.1
has been explored; García-Vázquez and Hernández-Cruz proved it true for 4-
transitive digraphs [38]. Again, the proof of the following theorem involves a
technical analysis of various cases, and thus, only an idea of the proof method
will be given.

Theorem 8.7.11 ([38]) For every 4-transitive digraph D there exists an in-
dependent set intersecting every longest path of D.

Idea of Proof. It is possible to prove that a 4-transitive digraph has a
kernel if and only if every terminal strong component has a kernel. Also,
using Theorem 8.3.20, it is not hard to characterize the strong 4-transitive
digraphs having a kernel.

Let D be a 4-transitive digraph. Using the aforementioned characteriza-
tion of the strong 4-transitive digraphs having a kernel, it is possible to find
a minimal subset S of V (D) such that D − S has a kernel K. The set K is
precisely the stable set we are looking for. 	


To finish this section, we present a table with the values of k for which
each of the discussed conjectures is known to be valid in k-transitive and
k-quasi-transitive digraphs, and their corresponding strongly connected ver-
sions. In the columns of the table, LPX stands for Laborde–Payan–Xuong
(Conjecture 8.7.1), SLPX for Strong LPX (Conjecture 8.7.4), NALPX for
Non-Augmentable LPX (Conjecture 8.7.5), PPC for the Path Partition Con-
jecture (Conjecture 8.7.2), and SPPC for Strong PPC (Conjecture 8.7.3).

LPX SLPX NALPX PPC SPPC
Strong k-transitive k ≤ 4 k ≤ 4 k ≤ 3 k ≤ 3 k = 2
k-transitive k ≤ 4 k ≤ 3 k ≤ 3 k = 2 k = 2
Strong k-quasi-transitive k ≤ 3 k ≤ 3 k ≤ 3
k-quasi-transitive k ≤ 3 k ≤ 3 k = 2
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8.8 Miscellaneous

8.8.1 Vertex Pancyclicity

Pancyclicity is one of the properties that first comes to mind when thinking
of tournaments.

Recall from Theorem 2.2.9 that every strong semicomplete digraph is
vertex-pancyclic. As a generalization of tournaments, and semicomplete di-
graphs, it is natural to ask whether a Hamiltonian quasi-transitive digraph
is vertex-pancyclic. In [17], Bang-Jensen and Huang use the similarities be-
tween extended semicomplete digraphs and quasi-transitive digraphs to de-
rive results on pancyclic and vertex-pancyclic quasi-transitive digraphs. In
this section we present a brief summary of these results.

A digraph D is triangular with partition V0, V1, V2 if the vertex set of
D can be partitioned into three disjoint sets V0, V1, V2 with V0 �→V1 �→V2 �→V0.
Note that this is equivalent to saying that D = �C3[D[V0],D[V1],D[V2]].

Gutin [40] characterized pancyclic and vertex-pancyclic extended semi-
complete digraphs. Clearly no extended semicomplete digraph of the form
D = �C2[Kn1 ,Kn2 ] with at least 3 vertices is pancyclic since all cycles are of
even length. Hence we must assume that there are at least 3 parts in order to
get a pancyclic extended semicomplete digraph. It is also easy to see that the
(unique) strong 3-partite extended semicomplete digraph on 4 vertices is not
pancyclic (since it has no 4-cycle). These observations together with Theo-
rem 7.10.8 completely characterize pancyclic and vertex-pancyclic extended
semicomplete digraphs. It is not difficult to see that Theorem 7.10.8 extends
Theorem 1.5.1, since no semicomplete digraph on n ≥ 5 vertices satisfies any
of the exceptions from (a) and (b).

The next two lemmas of Bang-Jensen and Huang [17] concern cycles in
triangular digraphs. They are used in the proof of Theorem 8.8.3, which
characterizes pancyclic and vertex-pancyclic quasi-transitive digraphs.

Lemma 8.8.1 ([17]) Suppose that D is a triangular digraph with a partition
V0, V1, V2 and suppose that D is Hamiltonian. If D[V1] contains an arc xy
and D[V2] contains an arc uv, then every vertex of V0 ∪ {x, y, u, v} is on
cycles of lengths 3, 4, . . . , n. 	

Lemma 8.8.2 ([17]) Suppose that D is a triangular digraph with a partition
V0, V1, V2 and D has a Hamiltonian cycle C. If D[V0] contains an arc of C
and a path P of length 2, then every vertex of V1 ∪ V2 ∪ V (P ) is on cycles of
lengths 3, 4, . . . , n. 	


It is easy to check that a strong quasi-transitive digraph on 4 vertices is
pancyclic if and only if it is a semicomplete digraph. For n ≥ 5 we have the
following characterization due to Bang-Jensen and Huang:

Theorem 8.8.3 ([17]) Let D = (V,A) be a Hamiltonian quasi-transitive
digraph on n ≥ 5 vertices.



398 H. Galeana-Sánchez and C. Hernández-Cruz

(a) D is pancyclic if and only if it is not triangular with a partition V0, V1, V2,
two of which induce digraphs with no arcs, such that either |V0| = |V1| =
|V2|, or no D[Vi] (i = 0, 1, 2) contains a path of length 2.

(b) D is not vertex-pancyclic if and only if D is not pancyclic or D is trian-
gular with a partition V0, V1, V2 such that one of the following occurs:
(b1) |V1| = |V2|, both D[V1] and D[V2] have no arcs, and there exists a

vertex x ∈ V0 such that x is not contained in any path of length 2 in
D[V0] (in which case x is not contained in a cycle of length 5).

(b2) one of D[V1] and D[V2] has no arcs and the other contains no path of
length 2, and there exists a vertex x ∈ V0 such that x is not contained
in any path of length 1 in D[V0] (in which case x is not contained in
a cycle of length 5);

	


8.8.2 Acyclic Spanning Subgraphs

It is well known that a semicomplete digraph T contains an (x, y)-Hamiltonian
path if and only if there is a spanning acyclic subgraph S (not necessarily
induced) such that S contains an (x, z)-path and a (z, y)-path for each vertex
z of T , cf. [56]. This also follows from the fact that semicomplete digraphs
are path-mergeable, see [3] and Section 6.2.

It follows from the characterization in Theorem 8.4.7 that a quasi-
transitive digraph D may not have a Hamiltonian path even if it is highly
connected and has a path P such that D − P has a cycle factor (see [17]
for such an example). On the other hand, Bang-Jensen and Huang proved
in [17] that if a quasi-transitive digraph has a unique initial and a unique
terminal strong component then we can always guarantee the existence of
such an acyclic spanning subgraph.

Theorem 8.8.4 ([17]) Suppose that D is a quasi-transitive digraph having
both in- and out-branchings. Then D has a spanning acyclic subgraph S with
a source x and a sink y such that for each vertex z of D, D contains an
(x, z)-path and a (z, y)-path. 	


Corollary 8.8.5 Every strong quasi-transitive digraph has a spanning acyclic
subdigraph S with a source x and a sink y such that, for each vertex z of D,
S contains an (x, z)-path and a (z, y)-path. 	


8.8.3 Orientations of Digraphs Almost Preserving Diameter

Recall that an orientation of a digraph D is a spanning subdigraph of D
obtained from D by deleting exactly one arc from every 2-cycle. Chvátal and
Thomassen [27] proved that the problem of checking whether a given undi-
rected graph has an orientation of diameter 2 is NP-complete, and the upper
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bound on the diameter of an orientation of an undirected graph obtained in
[27] is far from the best possible for many classes of undirected graphs (re-
call that undirected graphs may be regarded as digraphs where every arc is
symmetric).

We have already seen many problems which have very nice solutions for
the class of quasi-transitive digraphs, e.g., hamiltonicity, existence of kernels,
k-linkages and weak k-linkages, which are NP-complete in the general case,
are polynomial time solvable for quasi-transitive digraphs. The study of min-
imum diameter orientations of quasi-transitive digraphs is not an exception;
a surprisingly good bound on the minimum diameter of an orientation of a
quasi-transitive digraph holds. Before stating the main results of this section,
we will recall a result due to Boesch and Tindell which extends Robbins’
Theorem.

Theorem 8.8.6 ([23]) A strong digraph D has no strong orientation if and
only if there is a pair x, y of vertices in D such that the deletion of the arcs
xy, yx leaves D disconnected.

Applying Theorem 8.8.6 it is easy to see that every strong quasi-transitive
digraph of order n ≥ 3 has a strong orientation. For a digraph D, let
diammin(D) denote the minimum diameter of an orientation of D. The fol-
lowing result is due to Gutin and Yeo [43].

Theorem 8.8.7 ([43]) If D is a strong quasi-transitive digraph, then

diammin(D) ≤ max{3,diam(D)}.

The upper bound of this theorem is sharp as one can see from the fol-
lowing example. Let Tk, k ≥ 3, be a (transitive) tournament with vertices
x1, x2, ..., xk and arcs xixj for every 1 ≤ i < j ≤ k. Let y be a vertex not in
Tk, which dominates all vertices of Tk but xk and is dominated by all vertices
of Tk but x1. The resulting semicomplete digraph Dk+1 has diameter 2. How-
ever, the deletion of any arc of Dk+1 between y and the set {x2, x3, ..., xk−1}
leaves a digraph with diameter 3. Indeed, if we delete yxi, 2 ≤ 2 ≤ k − 1,
then a shortest (xk, xi)-path becomes of length 3.

8.8.4 Sparse Subdigraphs with Prescribed Connectivity

A spanning k-(arc)-strong subdigraph D′ of a directed multigraph D is called
a certificate for the k-(arc)-strong connectivity of D. A problem of practical
interest is the following. Let D = (V,A) be a k-(arc)-strong directed multi-
graph and let c be a cost function on A (possibly c(a) = 1 for all a ∈ A).
What is the minimum cost of a k-(arc)-strong spanning subdigraph D′ of D?
An optimal certificate for k-(arc)-strong connectivity in D is a spanning
k-(arc)-strong subdigraph D′ of minimum cost. Finding such an optimal cer-
tificate is a hard problem already when k = 1 and c ≡ 1. This follows from
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the fact that the optimal certificate for the strong connectivity of D has |V |
arcs if and only if D has a Hamilton cycle.

When c ≡ 1, we have the problem of finding an optimal certificate for
strong connectivity. We call this the Minimum spanning strong subdi-
graph problem (MSSS, see [18]).

For the case of quasi-transitive digraphs, we begin with a lower bound.
Recall that the path-covering number of a digraph D, pc(D), is the least
positive integer k such that D has a k-path factor. For a strong quasi-
transitive digraph D we define pc∗(D) to be equal to 0 if D is Hamiltonian,
and pc∗(D) = pc(D) otherwise. The optimal solution to the MSSS problem
for quasi-transitive digraphs was given by Bang-Jensen, Huang, and Yeo. The
proof can be found in [9].

Theorem 8.8.8 ([18]) Every minimum spanning strong subdigraph of a quasi-
transitive digraph has precisely n + pc∗(D) arcs. Furthermore, we can find a
minimum spanning strong subdigraph in time O(|V |4).

A directed cactus is a strongly connected digraph in which each arc is
contained in exactly one cycle.

Palbom [55] studied the complexity of various problems related to span-
ning directed cactii in digraphs. It is not difficult to check whether a given
digraph is a cactus, but Palbom proved that deciding whether a digraph
contains a spanning cactus is an NP-complete problem [55].

Since the directed spanning cactus problem (the problem of determin-
ing whether a digraph contains a spanning cactus) is trivial for locally in-
semicomplete digraphs, and easy for path-mergeable digraphs, but already
non-trivial for extended semicomplete digraphs (see, Exercises 12.17 and
12.20 in [9]), the following problem comes as a natural next step in this
subject.

Problem 8.8.9 ([9]) Determine the complexity of the spanning directed cac-
tus problem for quasi-transitive digraphs.

8.8.5 Arc-Disjoint In- and Out-Branchings

We now consider the problem Arc-disjoint in- and out-branchings:
Given a digraph D and vertices u, v (not necessarily distinct), decide whether
D has a pair of arc-disjoint branchings B+

u , B−
v such that B+

u is an out-
branching rooted at u and B−

v is an in-branching rooted at v. Recall from
Theorem 2.12.19 that Thomassen proved that Arc-disjoint in- and out-
branchings is NP-complete for general digraphs.

In [4], Bang-Jensen proved that a tournament T has arc-disjoint in- and
out-branchings rooted at some vertex v if and only if there is no arc that
must be on all out-branchings from v and all in-branchings to v, see Corol-
lary 2.12.21. In [17], Bang-Jensen and Huang considered digraphs having a
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vertex v which is adjacent to every other vertex; they obtained a characteri-
zation of digraphs having arc-disjoint in- and out-branchings rooted at v. As
a consequence, they obtained the following result.

Theorem 8.8.10 ([17]) Let D be a strong digraph and v a vertex of D such
that V (D) = {v}∪N+(v)∪N−(v). There is a polynomial algorithm to decide
if D has arc-disjoint in- and out-branchings F−

v , F+
v rooted at v.

The previous result can be combined with the following lemma to obtain
a polynomial algorithm to decide if a quasi-transitive digraph D has arc-
disjoint in- and out-branchings rooted at a given vertex v.

Lemma 8.8.11 ([17]) Let D be a quasi-transitive digraph and v ∈ V (D) a
vertex of D. Then D contains arc-disjoint branchings F+

v , F−
v rooted at v if

and only if D′ = D[{v}∪N−(v)∪N+(v)] has arc-disjoint branchings F ′+
v , F ′−

v

rooted at v. 	


Theorem 8.8.12 ([17]) Let D be a strong quasi-transitive digraph, and v
a vertex of D. If B = {B1 . . . , Bk} (C = {C1, . . . , Cr}) denote the set of
terminal (initial) components in D[N+(v)] (D[N−(v)]), then D contains a
pair of arc-disjoint branchings F+

v , F−
v such that F+

v is an out-branching
rooted at v and F−

v is an in-branching rooted at v if and only if there exist
two disjoint arc sets AB , AC ⊂ A(D) such that all arcs in AB ∪ AC go from
N+(v) to N−(v) and every component in Bi ∈ B (Cj ∈ C) is incident with
an arc from AB (AC). 	


From here, the following result settling the problem for quasi-transitive
digraphs is obtained.

Corollary 8.8.13 ([17]) There is a polynomial algorithm to decide if a quasi-
transitive digraph D has arc-disjoint in- and out-branchings rooted at a given
vertex v. 	


As noted in Section 2.12, already for semicomplete digraphs, the problem
of finding arc-disjoint in- and out-branchings becomes much harder when
u �= v. Even the class of semicomplete digraphs is still lacking a polynomial
time algorithm to decide this problem when u �= v.
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