
5. Planar Digraphs

Marcin Pilipczuk and Michał Pilipczuk

In this chapter we focus on planar directed graphs, that is, directed graphs
that can be drawn on a plane (or, equivalently, on a sphere) without arc
crossings. We will alternate between the planar and spherical embeddings,
picking the more convenient for the current argumentation.

A planar embedding of a digraph D is a mapping π that assigns a
distinct point in the Euclidean plane to every vertex of D, and a curve without
self-intersections to every arc of D in such a manner that for every arc e =
(u, v), the curve π(e) has endpoints π(u) and π(v), and the images of two arcs
are disjoint (except for endpoints if the arcs in question share end vertices).
A face in an embedding π is a connected component of the plane minus the
image of π; a face is incident with all vertices and arcs whose images under π
lie in the closure of the face. A spherical embedding is defined analogously
with the target surface being a sphere instead of a plane; intuitively, the
main difference between a planar and a spherical embedding is that the first
distinguishes one face as an infinite one.

After this very brief introduction, we refrain here from introducing all for-
mal definitions and notation concerning graph embeddings, assuming instead
a common intuitive understanding. In case of doubt, we refer to other mono-
graphs for formal details, e.g., to the book of Mohar and Thomassen [22].

The main goal of this chapter is to show, from multiple angles, how the
planarity assumption imposes structure on digraphs and how such structure,
in conjunction with topological arguments, can be used algorithmically. In
other words, the main focus here is to show various algorithmic techniques
used to tackle planar digraphs. Thus, instead of providing a survey of the vast
number of algorithmic results concerning embedded digraphs, we highlight
three of them, chosen to highlight different aspects of planar digraphs.

First, in Section 5.1 we show an example of a low polynomial-time al-
gorithm for planar graphs, namely a near-linear algorithm for single-source
and single-sink maximum flow. Second, in Section 5.2, we discuss the classic
problem k-Disjoint paths, where the topology assumption greatly improves
the tractability of the problem. Finally, in Section 5.3 we discuss the Directed
Grid Theorem for planar digraphs.
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While we tried to make the description in every section as self-contained as
possible, some technical details are missing in order to make the presentation
clear and concise. In every section, we provide relevant references to full
proofs and further reading.

5.1 Low Polynomial-Time Algorithms

Part of the importance of planar graphs stems from the fact that many prob-
lems admit much more efficient solutions when the input graph is required to
be planar. One of the areas where such improvements are particularly visible
are low polynomial-time algorithms, such as algorithms for shortest paths or
maximum flows. Decades of research led to linear-time or near-linear-time
(e.g., O(n log n) or even O(n log log n)) algorithms for problems requiring
significantly larger running time in general graphs.

In this section, we do not aim at a full survey of these results for planar
digraphs; the interested reader is referred to the free online book of Klein and
Mozes [19]. Instead, we present one of the most elegant results in the area,
namely the O(n log n)-time algorithm for finding the maximum flow between
two given vertices due to Borradaile and Klein [2], with the simplified analysis
due to Erickson [9]. We chose this result, as it involves a number of interesting
techniques and properties of planar (di)graphs: duality of spanning trees in
primal and dual graphs, duality of separators and cycles in dual graphs, as
well as winding numbers analyzed via universal covers. The exposition mostly
follows Chapter 10 of the book of Klein and Mozes [19], but we mainly focus
on intuition, sweeping most of the technical details under the rug.

Because we will be working with residual capacities, we assume that we
are given as an input a planar digraph D where for every arc e = (u, v) in
D its reversed twin rev(e) = (v, u) is also in D. The input also specifies two
distinguished vertices s and t, called the source and sink, and a capacity
function u : A(D) → Z≥0. If we replace every pair of arcs {e = (u, v), rev(e)}
by an undirected edge uv, we obtain a planar undirected graph G. Without
loss of generality, we can assume that G is connected. Let us fix some planar
embedding of G where t lies on the outer face, denoted f t.

In what follows, we will work with the assumed embedding of G, but also
implicitly treat every undirected edge uv of G as two arcs (u, v) and (v, u) of
D. Thus, for an arc e of D, we will speak about the face f−(e) to the right
(clockwise) of e and the face f+(e) to the left (counter-clockwise) of e. Note
that these notions formally refer to the faces of the embedding of G. We refer
to Figure 5.1 for the basic notation of the dual graphs used in this proof.

For this fixed embedding, a dual of the graph G is a graph G∗ whose
vertex set is the set of faces of the embedding, and where an edge uv ∈ E(G)
corresponds to an edge joining the two faces incident to uv in the embedding
of G. Clearly, G∗ is a planar graph with a natural embedding induced by the
embedding of G. As in the case of D and G, if we replace every edge of G∗

with two arcs in both directions, we obtain a digraph D∗. If e = (u, v) is an
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u vuv

e = (u, v)

rev(e) = (v, u)

f−(e)

f+(e)

e∗ rev(e∗)

Figure 5.1 Notation of the dual graphs, that is, graphs D, G, G∗, and D∗.

arc of D, then by e∗ = (f−(e), f+(e)) we denote the corresponding arc of D∗.
We translate the capacities in D to lengths or distances in D∗: for an arc e ∈
A(D), we assign in D∗ distances w(e∗) = u(e) and w(rev(e∗)) = u(rev(e)).

Furthermore, in this section we assume that every multiset of arcs of D∗

of polynomial size has a distinct sum of capacities. This property will turn
out to be very helpful in the analysis. In general, this can be obtained by
slightly perturbing every capacity; however, such a step would require some
technical analysis of the required precision. Luckily, as we will discuss later,
in our algorithm we can mimick such a property by a number of carefully
chosen tie-breaking rules.

5.1.1 Warm-Up: Source also Lying on the Outer Face

As a warm-up, let us consider the case when the source s also lies on the
outer face f t. Draw a curve from s to t inside f t: the curve partitions the
arcs incident to f t in D∗ into two sets, A∗

l and A∗
r , to the left and to the

right of the curve, respectively. Consider a graph D∗
lr, constructed from D∗

by splitting f t into two vertices f t
l and f t

r ; the first one is incident with arcs
A∗

l , and the second one with A∗
r . The critical observation is that a minimum

cut between s and t in D corresponds to a shortest path from f t
l to f t

r in
D∗

lr; see Figure 5.2. This can be found in O(n log n) time using Dijkstra’s
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Figure 5.2 Finding a minimum cut is equivalent to finding a shortest path in the
dual in the case of s and t lying on a common face. The edge γ is an auxiliary
edge of infinite distance that splits the face incident with s and t into two faces
f t
l and f t

r ; a shortest path in the dual graph between these faces corresponds to a
minimum cut between s and t in the primal graph.

algorithm, or in linear time using the algorithm of Henzinger, Klein, Rao,
and Subramanian [14]. Both these algorithms find not only a shortest path
from f t

l to f t
r , but also the minimum distances from f t

l to all the vertex of D∗
lr.

To obtain a maximum flow, we need to work a bit harder. Let dist(f) be
the (shortest path) distance from f t

l to f in the graph D∗
lr. This distance has

been computed already by the shortest path computation that identified a
minimum cut. For an edge f−(e)f+(e) of G∗ originating in an arc e of D,
we send a flow of size dist(f+(e)) − dist(f−(e)) along the arc e (that is, if
dist(f+(e)) < dist(f−(e)) we send a flow of dist(f−(e)) − dist(f+(e)) along
rev(e)). Let x be the flow defined. Observe the following:

• Since dist(f) is the distance from f t
l to f , the flow x respects capacities:

x(e) = dist(f+(e)) − dist(f−(e)) ≤ w(e∗) = u(e).
• Since G∗ is dual to G, the flow x respects the conservation property at

every vertex except for s and t; the latter is because in D∗
lr the face f t

has been split in two. One can view this splitting as drawing an auxiliary
edge st, that is not present in x. Consequently, x is an (s, t)-flow of value
dist(f t

r).

From the above, we can obtain the following result of [13, 14]:

Theorem 5.1.1 Given a planar digraph D with capacities and two distin-
guished vertices s and t, such that D can be embedded on a plane with s and t
lying on the same face, a maximum (s, t)-flow and a minimum (s, t)-cut can
be found in linear time.

5.1.2 The Algorithm for the General Case

In the general case, we no longer assume that s lies on the face f t, and hence
we cannot construct a planar digraph D∗

lr. However, we can still rely on the
crucial idea of the flow construction in the previous section: a shortest paths
computation from f t in D∗ yields a distance function dist(·) that can be used
as a potential on faces to define a flow.
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That is, similarly as in the previous case, let dist(f) be the distance of f
from f t in D∗, and define a flow x as before: x(e) = dist(f+(e))−dist(f−(e))
for an arc e of D with dist(f+(e)) ≥ dist(f−(e)). Since now G∗ is the actual
dual of G (we do not split f t), with the same argument as in the previous
section, x is a circulation respecting capacities.

Furthermore, let T ∗ be the computed shortest path tree in D∗, which is
an out-branching with root f t. Note that, since T ∗ is a shortest path tree,
for every arc (f−(e), f+(e)) of T ∗ we have dist(f+(e)) = dist(f−(e))+w(e∗)
and, consequently, the arc e is saturated in the flow x.

We shall now treat x as a flow from s to t. Initially the amount of the
flow sent from s to t is zero, since x is a circulation at the beginning. We will
gradually increase the amount of flow sent from s to t while maintaining the
following invariant:

T ∗ is an out-branching with root f t

and all corresponding arcs of D are saturated by x. (5.1)

At every step, given T ∗, let T ∗
G be the corresponding (undirected) span-

ning tree in G∗. Let TG be the set of edges of G that are not crossed by the
edges of T ∗

G; then TG is a spanning tree of G. The tree TG contains a unique
s-to-t path P in D. We augment x by sending the maximum possible amount
of flow along this path (which may be zero, if one of the arcs of P is already
saturated).

Then, we modify the out-branching T ∗ as follows. Let e be one of the arcs
saturated on the path P . We would like to add the arc e∗ = (f−(e), f+(e))
to T ∗. However, then T ∗ has one arc too many—it would no longer be an
out-branching—and we need to fix it.

First, consider the case when f−(e) is a descendant of f+(e) in the out-
branching T ∗ (see Figure 5.3). Then e∗, together with the path from f+(e)
to f−(e) in T ∗, form a directed cycle C∗ in D∗. Note that the cycle C∗ has
the vertex s to the left and the vertex t to the right. Consequently, the arcs of
D corresponding to the arcs of C∗ form an (s, t)-cut that, by Invariant (5.1)
and the choice of e, consists of arcs saturated by x. This cut certifies that x
is a maximum (s, t)-flow and we can terminate the algorithm.

In the other case, when f−(e) is not a descendant of f+(e) in T ∗, we
replace the arc e′ of T ∗ that has tail in f+(e) with the arc e∗; see Figure 5.4.
Since f−(e) is not a descendant of f+(e), f−(e) and f+(e) lie in different
connected components of T ∗\{e′} and, consequently, such an operation main-
tains the invariant that T ∗ is an out-branching. Furthermore, since we choose
e∗ to be saturated, Invariant (5.1) remains satisfied.

5.1.3 Implementing a Single Step

It turns out that a single step of the algorithm can be implemented very
efficiently, in O(log n) time. However, since such an improvement belongs to
the area of advanced data structures, we present here only the key ideas.
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e∗

s

t
P

Figure 5.3 When f−(e) is a descendant of f+(e), then the saturated arcs e∗ and
of T ∗ form a saturated cut certifying that the current flow is a maximum one.

Let us analyze our needs. We need to maintain the trees T ∗
G and TG. In

a single step, we first need to compute the minimum residual capacity on a
single path in TG, and then augment the flow x by sending this capacity along
the path. Then, we modify TG and T ∗

G by switching a constant number of
edges. All these operations can be performed in amortized O(log n) time per
operation using one of the elaborate data structures for maintaining dynamic
trees, such as the link-cut trees of Sleator and Tarjan [28]. For full details,
we refer to the book of Klein and Mozes [19].

Recall that, for the sake of further analysis, we have assumed that every
polynomial-size multiset of arcs of D∗ has unique total length. We remark
here that this can be mimicked in the algorithm by careful tie-breaking in
two places where the algorithm can make an arbitrary choice: when it chooses
the initial shortest-path out-branching T ∗, and when it chooses the saturated
arc e in each step of the algorithm.



5. Planar Digraphs 213

f t

f+(e)

f−(e)

s

t
Pe∗

e

Figure 5.4 When f−(e) is not a descendant of f+(e), we replace e′ with e∗ in the
out-branching T ∗.

5.1.4 Bounding the Number of Steps

In this section we focus on the following question: how many steps can the
algorithm make? We show that every arc of D∗ is evicted from T ∗ at most
once, giving an O(n) bound on the number of steps, and, consequently, the
promised O(n log n) bound on the running time of the algorithm.

Winding numbers. For the moment, it is convenient to interpret the planar
embedding of D and D∗ as an embedding on a sphere, where t is placed at
the north pole and s is placed at the south pole; see Figure 5.5. One can think
of the choice of the initial circulation x as a maximally westbound circulation
in this embedding: we circulate as much flow as possible around the north
pole in the westbound direction. Each iteration corresponds to “unwinding”
some of this flow, and sending it from s to t.

To measure this “unwinding”, we need to fix some reference curve that
would serve as a prime meridian between s and t. Although any s-to-t path
A in G would suffice, for clarity we choose Q to be the s-to-t path in TG

at the first iteration of the algorithm. In the embedding, without loss of
generality we can assume that Q is drawn as a straight line along the prime
meridian, and we can use the notion of west or east of Q. To use Q as a
reference line, we define a winding number of a walk W in D∗ as the total
number of signed crossings of Q by W . That is, we go along the walk W , and
whenever we cross Q eastbound, we add 1 to the winding number, and when
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s

t

Q

circulation
x

Figure 5.5 Visualizing t as the north pole, s as the south pole, the reference path
Q as the prime meridian, and the initial circulation x as a maximally westbound
circulation.

we cross Q westbound, we subtract 1. In the current step of the algorithm,
given the current out-branching T ∗, the winding number of a vertex f of
D∗ is the winding number of the unique root-to-f path in T ∗. Note that the
choice of Q ensures that every winding number is zero at the beginning of
the algorithm. We emphasize that, although T ∗ and TG change in the course
of the algorithm, the path (meridian) Q remains fixed.

The following critical observation due to Erickson [9] formalizes the
“unwinding” nature of a single step of the algorithm.

Lemma 5.1.2 Assume that in a step of the algorithm, in an out-branching
T ∗ a new arc e∗ is introduced and an arc e′ with tail f+(e) is removed. Then,
in the new out-branching, the winding number of every descendant of f+(e)
is increased by one, while all other winding numbers of vertices of D∗ stay
the same.

Proof: First, note that replacing e′ with e∗ changes the root-to-f paths
in T ∗ only for vertices that are descendants of f+(e) in T ∗. Consequently,
the winding number of every other vertex is not changed in the step of the
algorithm.

For the affected vertices, consider the out-branching T ∗ before the step,
and let P− and P+ be the root-to-f−(e) and root-to-f+(e) paths, respectively.
Let w be the last vertex in common of P− and P+, and let C be a closed
walk in D∗ that consists of P−, the arc e∗, and the reversed path P+. Note
that during the step, for every descendant f of f+(e) in T ∗ the root-to-f
path in T ∗ changes in the following manner: its prefix P+ is replaced by P−
followed by the arc e∗. Consequently, the change of the winding number of
the root-to-f paths equals the winding number of C.

By the choice of w and the fact that T ∗ is an out-branching, C is actually
a simple cycle in D∗. Furthermore, by the choice of e∗ in the step of the
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algorithm, C has t to its left, and s to its right; in other words, it is an
eastbound cycle in D∗, and thus has winding number exactly +1. This finishes
the proof of the claim. ��

Observe that Lemma 5.1.2 alone proves that the algorithm makes O(n2)
steps, as every winding number cannot be larger than the size of D∗ (every
root-to-f path in T ∗ is a simple path). We now present a more elaborate
argument to show a linear bound.

Shortest paths. Recall that the distances dist(·) in D∗ have been inherited
from the capacities u(·) in D in a standard manner. Given a flow y in D, we
can consider the residual capacities uy := u − y, and define accordingly the
residual distances disty.

If a flow y respects capacities—and the flow x maintained by the algorithm
does respect the capacities—then no arc of D∗ has negative length in disty.
Invariant (5.1) ensures that every arc of T ∗ has zero length in distx. As a
corollary, we infer that T ∗ is a shortest-path out-branching from f t with
respect to the distances distx.

Consider now a flow y that sends the same amount of flow from s to t as
x, but sends all the flow along the path Q, ignoring the capacities. Although
y may not respect the capacities, we can still define uy and disty. Readers
familiar with the potential method in designing shortest path algorithms will
find the following lemma immediate.

Lemma 5.1.3 T ∗ is a shortest-path out-branching from f t with respect to
the distances disty.

Proof: The crux is that a flow y′ := x − y (i.e., the flow x that additionally
sends back the flow from t to s along the reversed path Q) is a circulation
(possibly not respecting the capacities).

Since y′ is a circulation, we can define a potential function ζ : V (D∗) → R

such that y′(e) = ζ(f+(e)) − ζ(f−(e)) for arcs e of D with ζ(f+(e)) ≥
ζ(f−(e)). Indeed, we can treat the values of y′ as (possibly negative) capac-
ities of the arcs of D, translate them into a distance function dist′ in D∗

as before, and define ζ(f) to be the minimum distance from f t to f with
respect to distances dist′. A direct check shows that ζ satisfies the required
properties and, since y′ is a circulation, every walk from f t to f has total
length exactly ζ(f).

Consequently, if a path P from f t to f has length distx(P ) with respect
to distances distx, then it has length distx(P )−ζ(f) with respect to distances
disty. Since ζ(f) does not depend on the path P , but only on the endpoint
f , we have that P is a shortest path from f t with respect to distx if and only
if it is a shortest path with respect to disty. The lemma follows. ��

However, the simplicity of the flow y allows us to easily relate the distances
in disty to the distances in dist that originated from the original capacities
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Figure 5.6 Universal cover of D∗.

u. Indeed, if a path P has winding number i and the flow y sends λ amount
of flow, then

disty(P ) = dist(P ) − λ · i.

That is, the difference disty(P )−dist(P ) depends only on the winding number
of P . Consequently, we obtain the following:

Corollary 5.1.4 For every vertex f of D∗, the root-to-f path in T ∗ is the
shortest f t-to-f path in D∗ among the paths that have winding numbers equal
to the winding number of f .

Universal cover. Corollary 5.1.4 speaks about a shortest path among all
paths of a given winding number. A convenient way to tackle the winding
number is via universal covers.

In our setting, consider the following infinite cover D
∗

of the graph D∗: we
cut D∗ along the path Q (which is a simple path in D, and thus corresponds
to a face-edge curve of G∗) and glue countably many copies of D∗ cut along
the path Q; see Figure 5.6. The cover D

∗
inherits the distances dist from D∗.

We number the copies with integers, increasing in the eastbound direction.
The i-th copy of D∗ is denoted by D

∗
i , the i-th copy of a vertex f is denoted

by fi, etc. Since the path Q leads from s to t, the graph D
∗

has a single
face t∗ corresponding to the vertex t (the north pole) and a single face s∗

corresponding to the vertex s (the south pole). As in Figure 5.6, one can view
the embedding of D

∗
as an infinite strip, with t∗ and s∗ on its sides.

Observe that, given an integer i, every walk W in D∗ can be lifted uniquely
to a walk W i in D

∗
that starts in the i-th copy of the first vertex of W , and

then proceeds along the corresponding copies of the edges of W . The crux of
the construction lies in the following observation: if the winding number of
W is j, then the last vertex of W i lies in D

∗
i+j . In other words, when walking

in D
∗
, the index of the current copy reflects the winding number of the path

traversed so far (when projected back to D∗).
Consequently, if at some iteration the root-to-f path in T ∗ has winding

number i, then it corresponds to a path from f t
−i to f0 and, in the other
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−i
f t

−j−1 f t
−i−1
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fι

inside γ
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Figure 5.7 Final argument in the proof of the linear bound on the number of steps
of the algorithm: the vertex f0 has to be inside and outside γ at the same time, as
it needs to be reachable both from f t

−i−1 and f t
−j−1 without intersecting the closed

curve γ.

direction, every f t
−i-to-f0 path in D

∗
projects to a f t-to-f path in D∗ of

winding number i. By Corollary 5.1.4, we have the following.

Lemma 5.1.5 If at some iteration the root-to-f path in T ∗ has winding num-
ber i, then it corresponds to a shortest path from f t

−i to f0 in D
∗
.

Recall now that we have assumed that every nonempty multiset of arcs
in D∗ of polynomial size has unique total cost. This implies that a shortest
path from f t

−i to f0 is unique for any vertex f of D∗ and any i bounded
polynomially in the size of D. Furthermore, if we draw all these shortest
paths for a fixed vertex f and |i| ∈ O(n2), they do not cross, that is, we
obtain an in-branching in D

∗
with root f0.

Aiming at a contradiction, consider now an arc e of D∗ that was evicted
twice from the tree T ∗. Assume that the head of e is f and the tail is f ′,
and assume that the winding number of f just before the first eviction is i,
and before the second is j. Due to Lemma 5.1.2, the winding number of f
increased by one in both considered steps of the algorithm (when e is evicted
from T ∗), which implies that i < j. Furthermore, it cannot hold that i+1 = j,
as a arc from T ∗ different than e has its head in f immediately after the first
of the considered steps, and thus the root-to-f path in T ∗ needs to change
at least once between the considered steps. Thus, we have j − i ≥ 2.

As we discussed, the root-to-f paths in T ∗ in the two considered steps
correspond to two paths in D

∗
, one from f t

−i to f0 (henceforth denoted Pi)
and one from f t

−j to f0 (henceforth denoted Pj). Let P ′
i and P ′

j be the paths
Pi and Pj with the last arc removed; note that the endpoint of P ′

i and P ′
j is

f ′
ι for some ι ∈ {−1, 0, 1}. If we connect f t

−i with f t
−j by a curve inside the

face t∗, together with P ′
i and P ′

j we obtain a closed curve γ.
Since Pi and Pj are simple paths, we have that f0 does not lie on γ. Since

Pi and Pj do not intersect (by the uniqueness assumption), we can speak
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about vertices or arcs of D
∗
inside and outside the curve γ (see Figure 5.7).

The main question now is: where does the vertex f0 lie: inside or outside γ?
Consider the first discussed iteration. After the iteration, the root-to-f

path in T ∗ corresponds to an f t
−i−1-to-f0 path Pi+1 in D

∗
. Since j − i ≥ 2,

the vertex f t
−i−1 is inside γ and, as Pi+1 cannot cross Pi or Pj , the vertex

f0 also needs to lie inside γ.
After the second discussed iteration, the root-to-f path in T ∗ corresponds

to an f t
−j−1-to-f0 path Pj+1 in D

∗
. However, now f t

−j−1 lies outside γ and,
by a similar argument, implies that f0 also lies outside γ. This is the desired
contradiction. Thus, every arc can be evicted from T ∗ at most once, giving an
O(n) bound on the number of steps and, consequently, the claimed O(n log n)
running time bound for the algorithm.

5.1.5 Perspective

We have presented an algorithm for finding maximum single-source single-
sink flows in planar digraphs running in near-linear time O(n log n). While
this result definitely does not cover the vast literature on algorithms in planar
digraphs that run in low-polynomial time, we have chosen it to present key
properties of planar digraphs that allow such running times. For a more
exhaustive picture of related algorithms, as well as a presentation of the
above algorithm from a different angle, we refer to the free textbook of Klein
and Mozes [19].

5.2 The Disjoint Paths Problem

Let us consider the following problem:

k-Disjoint paths
Input: A digraph D with k pairs of terminals (s1, t1), . . . , (sk, tk).
Question: Does D have vertex-disjoint directed paths P1, . . . , Pk such
that each Pi leads from si to ti?

In the undirected setting, the fixed-parameter tractability of this prob-
lem is one of the main algorithmic corollaries of the Graph Minors project
of Robertson and Seymour: they gave an algorithm for it with running time
f(k) · n3 [24]. In directed graphs, however, the problem is completely in-
tractable, as it is already NP-hard for k = 2, as shown by Fortune, Hopcroft,
and Wyllie [11]. Some tractability can be retained in certain subclasses of
digraphs. For instance, the problem can be solved in time nk+O(1) in acyclic
digraphs by a simple dynamic programming algorithm, but it remains W[1]-
hard in this setting, as shown by Slivkins [29], which means that the existence
of a fixed-parameter algorithm with running time of the form f(k) · nO(1) is



5. Planar Digraphs 219

Figure 5.8 Three solutions to k-Disjoint paths on three terminal pairs, marked
by different shapes. The first two are homotopic to each other, but not to the third.

unlikely. In this context, planar digraphs seem to be a setting where tractabil-
ity is plausible, due to the inherent topological character of the k-Disjoint
paths problem. Indeed, in this section we will sketch the following result of
Schrijver [26].

Theorem 5.2.1 ([26]) The k-Disjoint paths problem can be solved in time
nO(k2) when the input digraph is planar.

Take an instance (D, ((si, ti))i=1,...,k) of the problem where D is planar,
and suppose there is a solution P1, . . . , Pk. Imagine each path Pi as a piece of
string in the plane; vertex-disjointness means that the strings neither cross
nor touch each other. Now abstract away the embedding of the graph and
examine the picture consisting only of the strings. In the problem we do
not care how long the paths are or which vertices they exactly traverse.
We are content with a solution as long as the paths are vertex-disjoint and
connect respective terminal pairs. Hence, we could consider two solutions
as homotopy equivalent if one can be transformed into the other by a
continuous transformation where terminals stay fixed and strings are not
allowed to jump over terminals. More formally, for each i = 1, 2 . . . , k, the
ith paths in both solutions are required to be homotopic on the sphere with
the other terminals pierced out; see Figure 5.8.

The intuition is that the number of such string pictures, or rather of the
equivalence classes of homotopy equivalence, that can be realized in the input
digraph should not be too large. If we were able to quickly search for a solution
within any such class, then the whole problem could be solved efficiently. Even
though this is not what will actually happen in the algorithm, as it will rely
on a weaker notion than homotopy equivalence, this intuition is a good first
approximation of how the problem should be attacked.

More precisely, we will consider the homology equivalence for solu-
tions, because for this notion of equivalence we are able to efficiently look for
a solution within a fixed equivalence class. Homotopy equivalent solutions
are always homologous, but the converse direction is not necessarily true. In
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order to study homology equivalence, we need to introduce a certain mathe-
matical language. In particular, we first look at the notion of cohomology
equivalence, which intuitively is the same as homology equivalence, but
in the dual digraph. While cohomology equivalence can be defined in any
digraph, the translation between homology and cohomology relies on the re-
lation between an embedded graph and its dual, and thus makes sense only
for surface-embedded graphs.

5.2.1 Cohomology Equivalence and Feasibility

Cohomology equivalence is defined for digraphs with arcs labeled by ele-
ments of some fixed group. Let us fix Λ to be a free group on k generators
g1, . . . , gk. That is, the support of Λ is the set of all finite words over symbols
g1, g

−1
1 , . . . , gk, g−1

k that are reduced: symbols gi and g−1
i standing next to

each other cancel out. The product of two elements x, y in Λ, denoted x ·y, is
defined as the concatenation of x and y followed by an exhaustive application
of reductions as above. The neutral element of Λ is the empty word, denoted
by ε. For a digraph D, a Λ-labeling of D is any function φ : A(D) → Λ that
assigns elements of Λ to the arcs of D.

Definition 5.2.2 A pair of Λ-labelings φ and ψ of a digraph D is called
cohomologous if there exists a function ρ : V (D) → Λ such that for each
arc (u, v) ∈ A(D),

ψ((u, v)) = (ρ(u))−1 · φ((u, v)) · ρ(v).

We say that ψ is cohomologous to φ via ρ.

It is clear that each Λ-labeling is cohomologous to itself by taking ρ(u) = ε
for each vertex u. Also, the relation of being cohomologous is symmetric and
transitive: if φ is cohomologous to ψ via ρ and ψ is cohomologous to ζ via
μ, then ψ is cohomologous to φ via ρ−1 and φ is cohomologous to ζ via ν
defined as ν(u) = ρ(u) · μ(u).

Before we continue, let us discuss the intuition behind this notion. It is
easy to see that a Λ-labeling φ together with ρ : V (D) → Λ uniquely define
the labeling ψ cohomologous to φ via ρ. Consider now changing the value of
such ρ in one vertex u from ρ(u) to, say, ρ(u)·g1, where g1 is the first generator
of Λ. It is easy to see that this triggers the following modification to ψ: for
each arc a with u as the head, ψ(a) gets right-multiplied by g1, while for each
arc a′ with u as the tail, ψ(a′) gets left-multiplied by g−1

1 . Intuitively, this
can be seen as “pulling” the group element g1 over u from the arcs outgoing
from it to the arcs incoming to it, and Λ-labelings cohomologous to φ are
exactly those that can be obtained from φ by a sequence of such “pulls”. If
now D was the dual of some digraph D∗, then u corresponds to some face
of D∗, and the pull can be seen as “dragging” the generator g1 over the face;



5. Planar Digraphs 221

f

g

g

g

g

ε

ε

ε

g

f

g

g

g−1

g

ε

ε

ε

g

Figure 5.9 Illustration of the “dragging” intuition. On the left panel, the values g
on the arcs in the dual graph correspond to a directed dashed path in the depicted
primal graph. By dragging the value g over the face f , one obtains the dashed path
on the right panel; note that now the value on the middle arc is g−1 as it is traversed
in the reverse direction.

see also Figure 5.9. This models a continuous modification of a solution to
the k-Disjoint paths problem by shifting some path by one face.

As we discussed, the main point of the approach is to show that we can
efficiently search for a solution within a class of candidate solutions which
are considered topologically equivalent. The main engine for this will be a
polynomial-time algorithm for the Cohomology feasibility problem, de-
fined as follows. Suppose we are given a digraph D and a Λ-labeling φ. Sup-
pose further that for each arc a ∈ A(D), we are given a set H(a) ⊆ Λ that
is hereditary in the following sense: if x ∈ H(a), then every subword of the
word x also belongs to H(a). These sets are given by an oracle, that is, we
assume there is a polynomial-time algorithm that given a word x and an arc
a, checks whether x ∈ H(a). Finally, we are also given a set S ⊆ V (D) of
fixed vertices. The goal is to determine whether there exists a Λ-labeling ψ
that is cohomologous to φ via ρ satisfying the following conditions:

• ψ(a) ∈ H(a) for each arc a ∈ A(D); and
• ρ(u) = ε for each vertex u ∈ S.

The intuition for the k-Disjoint paths problem is as follows. The digraph
D is the dual of the original digraph. The initial labeling φ corresponds to
a crude picture of the solution, where the paths can touch or even share
some subpaths, but they cannot cross in the plane. We are looking for a
solution that is homologous (that is, cohomologous in the dual) and respects
the disjointness conditions. By appropriately defining the dual and setting
sets H(a), the first property of ψ will be equivalent to the disjointness of the
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paths. The second property will be used to ensure that the paths are not
allowed to jump over terminals.

The backbone of the result of Schrijver is the following algorithmic result
for Cohomology feasibility.

Theorem 5.2.3 ([26]) The Cohomology feasibility problem for free
finitely generated groups is polynomial-time solvable.

The proof of Theorem 5.2.3 is very technical, but the crux can be ex-
plained in modern terms as follows. We think of Cohomology feasibility
as a constraint satisfaction problem (CSP) where vertices u ∈ V (D) are
to be labeled by elements ρ(u) from the domain Λ such that some specific
constraints are satisfied. It appears that the CSP problems constructed in
this way are polynomial-time solvable, because they have certain persistence
properties. Very roughly speaking, if some part of the problem can be solved
without breaking any constraint, then one can greedily fix this solution on
this part; this is the same phenomenon that leads to polynomial-time solv-
ability of the 2-SAT problem. Stating and verifying the persistence, however,
requires a lot of technical work. An interesting by-product of this approach
is that if the algorithm of Theorem 5.2.3 reports failure, it also provides a
combinatorial certificate for the non-existence of a solution, which can be
exploited algorithmically. We refer to the notes of Schrijver for details [27].

5.2.2 Homology Equivalence and Duals

Having understood cohomology equivalence and the Cohomology feasi-
bility problem, we now move to homology. Suppose we are given a planar
digraph D, say embedded on a sphere with a fixed orientation. For each arc
a ∈ A(D), let f−(a) and f+(a) be the faces incident to a on the clockwise and
counter-clockwise side, respectively. Similarly as in the previous section, we
define the dual D∗ of D as follows; see Fig. 5.10 for an example. The vertex
set of D∗ is the set F (D) of the faces of D. For each arc a of D, we add the
dual arc a∗ = (f−(a), f+(a)) to the arc set of D∗. A sphere embedding of D
naturally gives rise to a sphere embedding of D∗, where each arc crosses its
dual at one point.

Now homology is defined as a dual notion to cohomology, hence we are
allowed to pull over faces instead of vertices.

Definition 5.2.4 A pair of Λ-labelings φ and ψ of a sphere-embedded digraph
D is called homologous if there exists a function ρ : F (D) → Λ such that
for each arc a ∈ A(D),

ψ(a) = (ρ(f−(a)))−1 · φ(a) · ρ(f+(a)).

We say that ψ is homologous to φ via ρ.
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Figure 5.10 A planar digraph (black) and its dual (grey).

Thus, the Cohomology feasibility problem in the dual D∗ naturally
translates to the analogous problem in D, where we are looking for a homol-
ogous Λ-labeling satisfying certain constraints. For instance, if in the Coho-
mology feasibility problem on D∗ we put H(a∗) = {ε, g1, g2, . . . , gk} for
each arc a ∈ A(D), then we are effectively looking for a Λ-labeling ψ of D
homologous to the given labeling φ such that the label of each arc is either
the neutral element or one of the generators. Thus, each generator gi gives
rise to the arc subset ψ−1(gi) such that those subsets are pairwise disjoint.
By appropriately choosing φ we will be able ensure that ψ−1(gi) contains a
path from si to ti and these paths are non-crossing as curves in the plane,
however they may touch at vertices. To ensure real vertex-disjointness, we
need to augment the dual graph slightly.

Take the dual D∗ of D. For each vertex u ∈ V (D) and each pair of faces
f1, f2 that are incident to u, but are not consecutive in the cyclic ordering of
faces around u, we add arcs (f1, f2) and (f2, f1). These new arcs will be called
contact arcs, and the digraph obtained from the dual by adding all contact
arcs is called the extended dual, denoted D+. Note that the extended dual
is not necessarily planar, but this will not be a problem, since the algorithm
for Cohomology feasibility works on any digraph.

5.2.3 Disjoint Paths in Directed Planar Graphs

With all the tools prepared, we are ready to encode the search for a solution
within one homology type as an instance of Cohomology feasibility. We
first need to describe a homology type via a representative Λ-labeling.

Let us fix an instance (D, ((si, ti))i=1,...,k) of k-Disjoint paths. Without
loss of generality we may assume that each source si has exactly one outgoing
arc and no incoming arcs, whereas each sink ti has exactly one incoming arc
and no outgoing arcs. Indeed, we may add new sources and sinks as degree-
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one vertices adjacent only to the corresponding old sources and sinks. The
following definition describes initial labelings we are interested in.

Definition 5.2.5 A Λ-labeling φ : V (D) → Λ is consistent if the following
conditions are satisfied:

• For each source si and ti, both the only arc outgoing from si and the only
arc incoming to ti are labeled by gi in φ.

• For each non-terminal node u, if a1, . . . , a� are arcs incident to u in the
clockwise order around u, and b1, . . . , b� ∈ {−1,+1} are such that ai has u
as the head if and only if bi = +1, then

φ(a1)b1 · φ(a2)b2 · . . . · φ(a�)b� = ε.

Note that in the second condition it does not matter from which arc we
start the enumeration of arcs incident to u: if the product is ε for one possible
starting arc, it is ε for all of them.

Observe that the conditions in the above definition somewhat resemble
flow conservation equations. The first condition says that each si is a “source”
of one unit of the flow of type gi, and each ti is a “sink” of gi. The second
condition says that every nonterminal vertex satisfies a conservation property
much stronger than the usual flow conservation: not only the incoming flow
needs to be equal to the outgoing one, but also in some sense the flow paths
cannot “cross” at a vertex.

On the other hand, the definition of a consistent labeling allows for mul-
tiple paths to be routed via the same arc, and even in the wrong direction;
this corresponds to the possibility of having the label being not just a single
generator. The idea is to express the requirement that this is forbidden in
the language of the Cohomology feasibility problem.

Let φ be a consistent Λ-labeling of D. Consider now the following Coho-
mology feasibility instance I(φ) on the extended dual D+. As the given
Λ-labeling of D+ we take φ+ defined as follows:

• For each arc a of D, put φ+(a∗) = φ(a).
• For each contact arc (f1, f2), say added for a vertex u, let a1, . . . , ap be

the consecutive arcs incident to u that we encounter when scanning the
arcs around u in the clockwise order, starting from f1 and ending in f2.
Further, let b1, . . . , bp ∈ {−1,+1} be such that ai has u as the head if and
only if bi = +1. Then φ+((f1, f2)) =

∏p
i=1 φ(ai)bi .

Next, we put H(a∗) = {ε, g1, . . . , gk} for each a ∈ A(D), while for each con-
tact arc (f1, f2), we put H((f1, f2)) = {ε, g1, . . . , gk, g−1

1 , . . . , g−1
k }. Finally,

the set S of forbidden vertices of D+ consists of all faces of D that are incident
to some terminal. The following proposition, whose proof we leave as an easy
exercise, explains that solving the instance (D+, φ+,H, S) of Cohomology
feasibility immediately yields the solution to the whole problem.
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Proposition 5.2.6 Suppose ψ is a solution to the instance (D+, φ+,H, S).
For i = 1, 2, . . . , k, let Xi be the set of those arcs a of D for which ψ(a∗) = gi.
Then the subgraphs induced by X1, . . . , Xk in D are pairwise vertex-disjoint
and the subgraph induced by Xi contains a directed path leading from si to ti.

If now P = (P1, . . . , Pk) is a solution to the original instance, then we can
define a consistent labeling φP of D as follows: for each arc a ∈ A(D), put
ψP(a) = gi if a lies on Pi, and put ψP(a) = ε if a does not lie on any of the
paths Pi. Then it is easy to see that ψ+

P is a feasible solution to (D+, φ+,H, S)
for any consistent labeling φ with the following property: φ is homologous to
ψP via some ρ which maps all faces of S to ε.

Thus, we will apply the following strategy: we enumerate a small set Φ
of consistent labelings of D such that if there is a solution P to the prob-
lem, then Φ contains a labeling φ that is well-homologous to ψP , that is,
homologous via some ρ as above. Such a set Φ will be called exhaustive.
Then the algorithm for k-Disjoint paths boils down to iterating through an
exhaustive set Φ, and for each φ ∈ Φ solving the Cohomology feasibility
instance (D+, φ+,H, S). If we obtain a solution for any of these instances,
Proposition 5.2.6 gives us a way to extract a solution to the original problem.
Otherwise, if none of the instances has a solution, then we can conclude that
the original problem has no solution, because Φ is exhaustive.

Thus, to conclude the proof of Theorem 5.2.1, it remains to prove the
following lemma. Since a complete verification requires some technical details,
we give a short sketch.

Lemma 5.2.7 There exists an exhaustive set Φ of size nO(k2) which can be
constructed in time nO(k2).

Proof: (Sketch) First, we generalize the problem slightly. We will be inter-
ested in families of walks P = (P1, . . . , Pk) such that:

• Each Pi is a walk connecting si with ti in the undirected graph underlying
D. That is, we do not require that the arcs on each Pi are oriented in the
direction from si to ti, and a vertex can be visited by Pi multiple times.

• Walks Pi are pairwise arc-disjoint and non-crossing. That is, whenever we
look at two visits of a vertex u by some Pi and Pj (possibly i = j), then
the four arcs incident to u in these two visits are not interlacing in the
cyclic order of arcs around u.

We will call such families of walks pre-solutions. As before, each pre-solution
P naturally defines a consistent labeling ψP . We are interested in finding a
small set Φ of consistent labelings of D that is exhaustive for all pre-solutions:
for each pre-solution P, there exists a labeling φ in Φ that is well-homologous
to ψP as in the definition of being exhaustive. As every solution is also a
pre-solution, this suffices to prove the lemma.

The next step is to simplify the graph at hand to the case where there is
exactly one vertex other than sources and sinks. However we will introduce



226 M. Pilipczuk and M. Pilipczuk

loops (arcs with the head equal to the tail). Consider any non-loop arc a such
that neither the head nor the tail of a is a terminal. Construct the digraph
D′ by contracting a: identify the head and the tail of a and remove a from
the graph. Every arc that is parallel to a, that is, has the same head and tail
as a, or its head is the tail of a and vice versa, becomes a loop at the vertex
obtained by identifying the endpoints of a. It is easy to see that every pre-
solution in D can be naturally projected to a pre-solution in D′, and every
consistent labeling φ′ of D′ can be naturally lifted to a consistent labeling φ
of D so that the following holds: if ψP′ is well-homologous to φ′ in D′, where
P ′ is the projection of P, then ψP is well-homologous to φ in D. Thus, it
suffices to find a small exhaustive set in D′.

Supposing the original digraph is weakly connected, we can apply this
reduction exhaustively until the vertex set of D consists of sources si, each
with one outgoing arc, sinks ti, each with one incoming arc, and one vertex u
that has multiple loops attached to it. The number of these loops is bounded
by m, the number of arcs of the initial graph, which is bounded linearly in n.

Let T be the set of all terminals. Each loop a at the vertex u can be
associated with a partition {Xa, Ya} of T as follows: the drawing of a on the
sphere divides it into two regions, and Xa and Ya are the subsets of terminals
contained in these regions, respectively. Two loops a, a′ at u will be called
parallel if the partitions {Xa, Ya} and {Xa′ , Ya′} are equal; of course, being
parallel is an equivalence relation. Since the drawing of the loops is non-
crossing, it is not hard to convince oneself that parallel loops are homotopic
in the topological space formed by the sphere on which the whole drawing is
embedded, with the terminals pierced out. Therefore, the equivalence classes
of the relation of being parallel really look like sets of parallel arcs: they can
be ordered so that there are faces of length 2 between every two consecutive
ones, as in Fig. 5.11. Each such equivalence class will be called a bundle.
Since we do not care about the orientation of arcs in pre-solutions, we may
assume that all arcs in each bundle are oriented in the same manner, as in
Fig. 5.11. Formally, each 2-face between consecutive arcs of the bundle is not
an oriented 2-cycle.

We may assume that there is no bundle for which the corresponding par-
tition is {∅, T}, as arcs from such a bundle can be always removed from walks
of any pre-solution without any harm. Then it is not hard to prove that since
the bundles are non-crossing, their number is bounded by 2|T | − 3 ≤ 4k. By
somehow abusing the notation, we treat the arcs outgoing from sources and
incoming to sinks also as one-arc bundles, which increases the total number
of bundles to at most 6k.

We now explain the crux of the argument. Consider any pre-solution P =
(P1, . . . , Pk). Take any walk Pi and let a1, a2, . . . , ap be the consecutive arcs
traversed by Pi. Further, let B1, B2, . . . , Bp be bundles such that aj ∈ Bj

for each j ∈ {1, 2, . . . , p}. For each j = 1, 2, . . . , p − 1, let us charge the pair
(Bα

j , Bβ
j+1), where α is equal to ±1 depending on whether aj is oriented in the
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Figure 5.11 The situation after applying the contractions. Sources are depicted as
hexagons, sinks as stars, and the middle vertex is u. The loops at u are partitioned
into 5 bundles.

direction from si to ti on Pi, or from ti to si; β is defined in the same manner
for aj+1. For a pair (Aα, Bβ), where A,B are bundles and α, β ∈ {−1,+1},
let c(Aα, Bβ) be the number of times the pair (Aα, Bβ) is charged; obviously
c(Aα, Bβ) ≤ m.

The following claim is now crucial: the system of numbers c(Aα, Bβ)
uniquely defines a pre-solution, up to being well-homologous. The proof of this
fact is not hard and boils down to a careful reconstruction of a pre-solution
from the numbers c(Aα, Bβ), using the fact that walks in a pre-solution are
pairwise non-crossing. There are at most 4 · (6k)2 numbers c(Aα, Bβ), and
each of them attains a value between 0 and m, hence the number of pre-
solutions reconstructed in this manner is bounded by nO(k2). ��

5.2.4 Fixed-Parameter Algorithm: Highlights

The algorithm of Schrijver that we sketched above was later revisited by
Cygan, Marx, Pilipczuk, and Pilipczuk [7], who improved the running time
from the form nf(k) to fixed-parameter tractable. More precisely, they proved
the following.

Theorem 5.2.8 ([7]) The k-Disjoint paths problem can be solved in time
22

O(k2) · nc when the input digraph is planar, where c is a universal constant.

To prove Theorem 5.2.8 it is sufficient to give an exhaustive set of size
22

O(k2) · nc, as the size of an exhaustive set was the only bottleneck in the al-
gorithm of Schrijver. Unfortunately, the number of different homology classes
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of solutions can be as large as nΩ(k), hence we cannot hope for such a small
exhaustive set in general. Therefore, Cygan et al. resorted to using the irrel-
evant vertex technique as follows.

Let u be a non-terminal vertex of the input digraph D. A sequence
C1, C2, . . . , C� of vertex-disjoint cycles in D is called a concentric sequence
of alternating orientation around u if the following conditions are satis-
fied.

• Each cycle Ci separates cycles Cj for j < i from cycles Cj for j > i in the
plane.

• None of the cycles passes through u. Moreover, for each i = 1, 2, . . . , k, the
region of the plane with Ci cut out to which u belongs does not contain
any terminals.

• For even i, the cycle Ci goes around u in the clockwise direction, and for
odd i in the counterclockwise.

Intuitively, if a vertex u can be encircled by such a concentric sequence of
alternating orientation of large size, then it is “far” from terminals and not
likely to be used in the solution. Cygan et al. formalized this intuition by
proving that given the sequence is large enough, any solution can be rerouted
to a solution that does not traverse u, and hence u can be safely removed
from the instance.

Lemma 5.2.9 ([7]) There is a function d(k) ∈ 2O(k2) such that the following
holds. Suppose u is a non-terminal vertex around which there exists a concen-
tric sequence of cycles of alternating orientation of size d(k). Then if there
exists a solution, there is also a solution in which u is not traversed by any
path.

Therefore, we can remove such vertices exhaustively from the instance.
Cygan et al. then show that in the absence of such vertices, there is a small
exhaustive set.

Lemma 5.2.10 ([7]) Suppose there is no vertex u that satisfies the prerequi-
site of Lemma 5.2.9. Then there exists an exhaustive set Φ of size at most
22

O(k2)
that can be constructed in time 22

O(k2) · nO(1).

The algorithm claimed in Theorem 5.2.8 now boils down to solving an
instance of Cohomology feasibility for each labeling in Φ, exactly as in
the previous section. The improved bound on the size of the exhaustive set
gives us the fixed-parameter tractable upper bound on the running time.

The proof of Lemma 5.2.9 in [7] is based on a complicated analysis of
the interaction of a solution to the k-Disjoint paths with a sequence of
concentric cycles of alternating orientation. It is proved that if the sequence is
large enough, its cycles can be used as shortcuts for the paths in the solution,
so that the paths can be rerouted simultaneously in order not to traverse
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vertex u. This argument is based on a similar analysis for the undirected
case performed by Adler, Kolliopoulos, Krause, Lokshtanov, Saurabh, and
Thilikos [1].

The most technically involved part of the reasoning is the proof of
Lemma 5.2.10. Cygan et al. proved that in absence of vertices that are irrele-
vant in the sense of Lemma 5.2.9, the graph can be decomposed into a small
number of components, each of them embedded into a disc or into a ring in
the plane. The boundary of each component is well-behaved: if one travels
along the boundary of, say, a disc component, then the number of times one
sees an arc incoming to the component after an outgoing one, or vice versa,
is bounded by a function of k. Having computed such a decomposition, one
enumerates an exhaustive set of Λ-labelings by means of a branching pro-
cedure that “guesses” consecutive parts of a homology type. Both the depth
and the degree of the search tree of this branching procedure are bounded
in terms of k, hence the number of labelings produced by the procedure is
bounded by a function of k.

5.2.5 Perspective

The fixed-parameter algorithm of [7] has double-exponential dependency on
the parameter, namely 22

O(k2)
, which is very close to the 22

O(k)
dependency

in the fastest known algorithm for undirected planar graphs, due to Adler,
Kolliopoulos, Krause, Lokshtanov, Saurabh, and Thilikos [1]. In the undi-
rected case, the algorithm of [1] follows a typical irrelevant vertex approach:
if the treewidth of the graph is larger than Δ := 2θ(k), an irrelevant vertex
inside a O(Δ) × O(Δ) grid minor is identified and deleted, whereas in the
other case a standard dynamic programming routine on graphs of bounded
treewidth runs in time 2O((Δ+k) log Δ)n = 22

O(k)
n. In [1], the authors show

that this is the limit of this approach: the dependency Δ = 2Ω(k) is neces-
sary for the irrelevant vertex rule, while multiple lower bounds for dynamic
programming algorithms on graphs of bounded treewidth (see the survey of
Lokshtanov, Marx, and Saurabh [20]) strongly suggest that an exponential
dependency on the treewidth bound Δ is necessary for the second step of
the algorithm. Hence, while there are no known lower bounds refuting the
existence of an algorithm for k-Disjoint paths in undirected planar graphs
with only single-exponential dependency on the parameter, such an algo-
rithm would need to depart significantly from the current framework and the
question of its existence remains widely open.

5.3 Directed Grids

In this section we discuss the Directed Grid Theorem (Theorem 9.3.14) in
the context of planar digraphs. The Directed Grid Theorem is a directed
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Figure 5.12 An undirected grid and a directed cylindrical grid.

analog of the Excluded Grid Theorem for undirected graphs, asserting that
any graph of sufficiently large treewidth contains a large grid as a minor.

For digraphs, we need first to replace the notion of (undirected) treewidth
with directed treewidth, introduced by Johnson, Robertson, Seymour, and
Thomas [15]. Treewidth is a graph width measure that focuses on the struc-
ture of cuts in undirected graphs; directed treewidth is a graph width measure
that aims at understanding the structure of cuts in a graph — but, this time,
directed cuts. Directed treewidth and other digraph measures will be dis-
cussed in depth in Chapter 9 and hence we refrain here from providing the
(quite complex) formal definition of this measure. Instead, we will work with
a dual notion of well-linked sets, introduced later in this section.

Let us move to the directed counterpart of the second ingredient of the
Excluded Grid Theorem: instead of a grid, we have here the directed cylin-
drical grid. A cylindrical grid is depicted in Figure 5.12. It consists of k
vertex-disjoint directed cycles C1, C2, . . . , Cn, linked by 2k vertex-disjoint
paths P1, Q1, P2, Q2, . . . , Pk, Qk. The paths Pi connect the cycles in the in-
creasing order of indices, while the paths Qi connect the cycles in the decreas-
ing order of indices. Along every cycle, the order of paths seen on that cy-
cle is P1, Q1, P2, Q2, . . . , Pk, Qk. In 2001, Johnson, Robertson, Seymour, and
Thomas conjectured that the cylindrical grid plays the role of the undirected
grid as a canonical obstacle to small directed treewidth. This conjecture has
only been recently proven by Kawarabayashi and Kreutzer [17]:

Theorem 5.3.1 ([17]) For every positive integer k there exists an integer
f(k) such that every digraph of directed treewidth at least f(k) contains a
cylindical grid of order k as a (butterfly) minor.

A digraph D′ is a butterfly minor of D if D′ can be obtained from D by
means of arc and vertex deletion, as well as contraction of arcs e = (u, v) for
which e is the only outgoing arc of u or the only ingoing arc of v.
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Q

P

Figure 5.13 A schematic view of a relaxed cylindrical grid of order 4. Formally, the
linkages P and Q may start and end on the extreme cycles, but we will construct
them as leading between the outside and inside of the concentric cycles.

In an unpublished manuscript dating back to 2001 [16], Johnson, Robert-
son, Seymour, and Thomas proved the theorem for planar digraphs. Our goal
in this section is to sketch the proof of this theorem, following recent work
of Chekuri, Ene, and Pilipczuk [5] that applied the ideas of [16] to design an
approximation algorithm for the k-Disjoint paths. We will not obtain such
a rigid structure as the cylindrical grid, but a relaxed one (see Figure 5.13):

Definition 5.3.2 A relaxed cylindrical grid of order k in a digraph G
embedded on a sphere consists of

• a sequence C1, C2, . . . , Ck of vertex-disjoint cycles arranged concentrically,
that is, for every 1 ≤ i < j ≤ k, the cycle Ci is to the left of Cj;

• a linkage P of order k, in which every path starts at a vertex on or to the
left of C1, and ends at a vertex on or to the right of Ck;1

• a linkage Q of order k, in which every path starts at a vertex on or to the
right of Ck and ends at a vertex on or to the left of C1.

In other words, in a relaxed cylindrical grid we relax the requirement that
the paths Pi cannot intersect the paths Qj and we relax the required order
in which these paths intersect every cycle Ci. Note that due to the spherical
embedding of the graph, every path in the linkages P and Q intersects every
cycle Ci.

Having sacrificed the rigid structure of a cylindrical grid, we will aim at
a near-linear relation between the grid size and the directed treewidth. That
is, our goal is to sketch the proof of the following theorem:

Theorem 5.3.3 ([5]) There exists a polynomial p such that every planar di-
graph G of directed treewidth k contains a relaxed cylindrical grid of order at
least k/p(log k).

1 Recall that a linkage is a family of pairwise vertex-disjoint paths.
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In other words, the size of the obtained relaxed cylindrical grid is the same
as the directed treewidth, up to polylogarithmic factors.

5.3.1 Well-Linked Sets

As announced at the begining of this section, instead of directed treewidth
we will work with a dual notion of a well-linked set. To this end, let us first
recall the notion of a separation in a digraph D: a pair of vertex subsets
(A,B) is a separation in D if A ∪ B = V (D) and there is no arc with tail in
A \ B and head in B \ A. The order of the separation (A,B) is |A ∩ B|.

A set X ⊆ V (D) is node-well-linked in D if for any two disjoint subsets
A,B of X of equal size, there exists |A| = |B| vertex-disjoint paths such
that every vertex of A is a starting vertex of exactly one path, and every
vertex of B is an ending vertex of exactly one path. By relaxing vertex-
disjointness to arc-disjointness we obtain the notion of an edge-well-linked
set. By Menger’s theorem, a set X ⊆ V (D) is edge-well-linked if and only
if for any partition V (D) = A � B the number of edges in δ+(A) is at least
min{|X ∩ A|, |X ∩ B|}. Similarly, a set X ⊆ V (D) is node-well-linked if and
only if any separation (A,B) of D has order at least min{|X ∩ A|, |X ∩ B|}.
The second equivalent notion allows us to define fractional well-linkedness: for
a real α ∈ [0, 1], a set X ⊆ V (D) is α-edge-well-linked if for every partition
V (D) = A � B we have |δ+(A)| ≥ αmin{|X ∩ A|, |X ∩ B|}, while it is α-
node-well-linked if every separation (A,B) has order at least αmin{|X ∩
A|, |X ∩ B|}.

Observe that node-well-linkedness is stronger than edge-well-linkedness:
any α-node-well-linked set is also α-edge-well-linked, while in the other direc-
tion we lose a factor proportial to the maximum degree: an α-edge-well-linked
set in a digraph of maximum degree Δ is α/Δ-node-well-linked.

Johnson, Robertson, Seymour, and Thomas [15, 16] showed that the size
of the largest node-well-linked set is tightly related to directed treewidth.

Theorem 5.3.4 ([15, 16]) Every digraph of directed treewidth k contains a
node-well-linked set of size Ω(k), and, conversely, every digraph containing
a node-well-linked set of size k has directed treewidth Ω(k).

A standard tool in studying well-linked sets is the following lemma that
shows that one can extract an Ω(1)-node-well-linked set from an α-node-well-
linked set without losing much more than necessary. This particular statement
for directed graphs is due to Chekuri and Ene [4].

Lemma 5.3.5 ([4]) If X is an α-node-well-linked set in a digraph D, then
there exists a set X ′ ⊆ X of size Ω(α|X|) that is 1

32 -node-well-linked in D.
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5.3.2 Eulerian Digraphs

A digraph is Eulerian if it is weakly connected and for every vertex v, the
in-degree and the out-degree of v are equal. Note that in an Eulerian digraph,
the maximum in-degree is equal to the maximum out-degree. We will use the
following simple “balancedness” argument in Eulerian digraphs.

Lemma 5.3.6 Suppose D is an Eulerian digraph and V (D) = A � B is a
partition of the vertex set of D. Then the number of arcs of D that have tail
in A and head in B is equal to the number of arcs of D that have tail in B
and head in A.

Proof: Since D is Eulerian, by summing the in-degrees and the out-degrees
of vertices in A we infer that the number of arcs with heads in A is equal to
the number of arcs with tails in A. By subtracting the number of arcs with
both heads and tails in A we obtain the asserted equality. ��

The critical insight of the work of Johnson, Robertson, Seymour, and
Thomas [16] is that Eulerian digraphs of small maximum degree behave in
some ways similarly as undirected graphs. This can be seen in the following
simple lemma, used, e.g., in [5].

Lemma 5.3.7 Let A,B be two vertex subsets in an Eulerian digraph D of
maximum in-degree Δ, and let k be a nonnegative integer. Then, if in the
underlying undirected graph there exist (Δ+1)k+1 vertex-disjoint undirected
paths from A to B, then in D there exist k + 1 vertex-disjoint directed paths
from A to B.

Proof: If the conclusion is not true, then by Menger’s theorem there exists a
separation (A′, B′) of order at most k separating A from B. That is, we have
A′ ∪B′ = V (D), A ⊆ A′, B ⊆ B′, |A′ ∩B′| ≤ k, and no arc of D has its tail in
A′ \B′ and its head in B′ \A′. Since there are (Δ+1)k+1 undirected paths
from A to B, and only k of them can pass through A′ ∩ B′, the remaining
Δk + 1 paths need to go via arcs connecting A′ \ B′ and B′ \ A′. Since there
are no arcs with tail in A′ \ B′ and head in B′ \ A′, we infer that there are
at least Δk + 1 arcs with tail in B′ \ A′ and head in A′ \ B′. However, D
contains at most Δ|A′ ∩ B′| ≤ Δk arcs with tail in A′ \ B′ and head in B′,
as every such arc needs to have its head in A′ ∩ B′. This is a contradiction,
as by Lemma 5.3.6, the number of arcs with tail in A′ \ B′ and head in B′

should be equal to the number of arcs with tail in B′ and head in A′ \ B′. ��

Lemma 5.3.7 shows the surprising power of the “balancedness” argument
of Lemma 5.3.6. In planar digraphs, we can exploit this argument even fur-
ther, focusing on cuts represented by curves.

Let D be a digraph embedded in the plane. A curve γ on a sphere is in
general position with respect to D if γ has a finite number of intersections
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with (the embedding of) D, and whenever γ intersects an arc e of D, it
intersects e transversally, that is, in a small neighborhood of the intersection
the arc e splits γ into two parts lying on the opposite sides of e. Furthermore,
if γ in general position with respect to D does not visit any vertex of D, it is
called a face-edge curve. An imbalance of a curve γ is the difference between
the number of arcs of D traversing γ from left to right and the number of arcs
of D traversing γ from right to left. By Lemma 5.3.6, we have the following:

Lemma 5.3.8 Every closed face-edge curve γ with respect to an Eulerian
digraph D has zero imbalance.

5.3.3 Cut-Matching Game

In Theorem 5.3.3 the given digraph D may be far from being Eulerian. Quite
surprisingly, we can turn D into an Eulerian digraph with small maximum
degree without losing much on the directed treewidth assumption. In [16],
the authors obtained constant maximum degree by elaborate structural ar-
guments, yielding a significant toll on the final relation between directed
treewidth and the size of the obtained grid. The approach of [5], originating
in the techniques developed in the area of routing, is conceptually cleaner,
but leads only to a polylogarithmic bound on the maximum degree.

The key idea of [5] is to use the so-called cut-matching game to con-
struct an embedding. To define this game, we first need to recall the notion
of an edge expansion:

Definition 5.3.9 Let G be an undirected multigraph. The edge expansion
of a set S ⊆ V (G) is defined as the ratio

|δ(S)|
min{|S|, |V (G) \ S|} ,

where δ(S) is the set of edges with exactly one endpoint in S. The edge ex-
pansion of a graph is the minimum edge expansion among all sets S ⊆ V (G).

In directed (multi)graphs, the directed edge expansion is defined by
replacing δ(S) with δ+(S): the set of arcs with tails in S and heads outside
of S.

The crucial property of digraphs with large directed edge expansion is that
they contain large well-linked sets; in particular, note that the definition of
edge expansion immediately implies that if D has edge expansion α, then
V (D) is α-edge-well-linked.

The cut-matching game of Khandekar, Rao, and Vazirani [18] is played on
an n-vertex multigraph G for even n, which is initially empty. In every round,
the first player, called the Cut Player, chooses a partition V (G) = A � B
of the vertex set into two equal-sized sets A and B. Then, the second player,
called the Matching Player, chooses a perfect matching between A and
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B, which is then added to G (which may lead to G being a multigraph).
The game ends when the graph G has edge expansion at least α, where α
is a parameter of the game. The Cut Player wants to conclude the game as
quickly as possible, while the Matching Player tries to stall the game. The
main result of Khandekar, Rao, and Vazirani [18] is the following:

Theorem 5.3.10 ([18]) For every constant α there exists a randomized strat-
egy for the Cut Player in undirected graphs that finishes the game in expected
O(log2 n) rounds. A single move of the strategy is computable in polynomial
time.

In the directed version of the game, the matching is oriented from A to
B (i.e., every added arc has its tail in A and head in B), and the game ends
when the directed edge expansion reaches a required threshold. This variant
has been analyzed by Louis [21], who proved an analogous statement:

Theorem 5.3.11 ([21]) For every constant α there exists a randomized strat-
egy for the Cut Player in directed graphs that finishes the game in expected
O(log2 n) rounds. A single move of the strategy is computable in polynomial
time.

Both Theorems 5.3.10 and 5.3.11 provide a randomized strategy, with a
bound on the expected number of rounds. In this description we will hence-
forth ignore the randomization aspect, as it is irrelevant for the purely graph
theoretical existential claims.

The strength of the cut-matching game lies in the small, only polylogarith-
mic, number of rounds needed for the Cut Player. Consider a digraph D with
a node-well-linked set X. Without loss of generality assume that k := |X| is
even (we can always drop one vertex of X). We will play the directed version
of the cut-matching game, constructing a new digraph DX with vertex set
X. For the Matching Player, let us implement the following strategy. Given
a partition X = X1 � X2 into two equal-sized sets, we invoke the definition
of node-well-linkedness to obtain a linkage P(X1,X2) in D from X1 to X2.
This linkage induces a directed matching between X1 and X2: we pair up
vertices that were linked by a path in the linkage P(X1,X2). This matching
is the response of the Matching Player for the partition X = X1 � X2.

The result of Louis [21] shows that the Cut Player can obtain a digraph
with constant directed edge expansion in L := O(log2 k) rounds. Further-
more, we can assume that whenever the Cut Player plays a partition (X1,X2),
she also immediately after plays the partition (X2,X1). With the above be-
havior of the Matching Player, we obtain a final digraph DX of constant
directed edge expansion and every vertex of DX has in- and out-degree L.
This digraph DX naturally projects down to D, that is, we can construct
a digraph HX , starting from V (HX) = V (D), and for every round of the
game with partition X = X1 � X2 we add the linkage P(X1,X2) to HX .
More precisely, we add all arcs of all paths in P(X1,X2) to HX , duplicating



236 M. Pilipczuk and M. Pilipczuk

some arcs of D if necessary. In this manner, every vertex of HX has equal in-
and out-degree and these degrees are bounded by 2L. Furthermore, since DX

has edge expansion Ω(1), we have that X = V (DX) is Ω(1)-edge-well-linked
in DX ; by the construction of HX , we have that X is also Ω(1)-edge-well-
linked in HX . By the degree bound, X is Ω(1/L)-node-well-linked in HX .
By Lemma 5.3.5, we can find a set X ′ ⊆ X of size Ω(|X|/L) = Ω(k/ log2 k)
that is 1

32 -node-well-linked in HX .
The following lemma summarizes the above reasoning.

Lemma 5.3.12 Let D be a digraph with a node-well-linked set X of size k.
Then there exists an integer L = O(log2 k) and a subgraph HX of the graph D
with every edge duplicated at most L times, such that every vertex of HX has
equal in- and out-degree, these degrees are bounded by L, and X is Ω(1)-edge-
well-linked in HX . Furthermore, there exists a set X ′ ⊆ X of size Ω(k/ log2 k)
that is 1/32-node-well-linked in HX .

Observe that if D is planar, then so is the graph HX given by Lemma 5.3.12.
The final observation is that in our case it is sufficient to find a relaxed

cylindrical grid in HX instead of D: a relaxed cylindrical grid in HX projects
naturally onto D, and the duplicated edges do not break the structure, as
we required vertex-disjointness of both the cycles Ci and the linkages P
and Q. Thus, by losing an O(log2 k) factor in the size of the well-linked
set X, and relaxing node-well-linkedness to 1/32-node-well-linkedness, we
can henceforth assume that the given graph D is Eulerian with maximum
degree Δ = O(log2 k).

5.3.4 Finding a Grid in an Eulerian Digraph

In this section we show the following:

Theorem 5.3.13 If a planar Eulerian digraph D of maximum degree Δ con-
tains an α-node-well-linked set X of size k, then it also contains a relaxed
cylindrical grid of order Ω(αk/Δ2).

As the previous section reduced us to this case with α = 1/32 and Δ =
O(log2 k), for the proof of Theorem 5.3.3 it suffices to prove Theorem 5.3.13.
We follow the exposition of [5], which builds upon the arguments of [16].

The proof of Theorem 5.3.13 heavily relies on the assumption that D is
Eulerian via tools introduced in Section 5.3.2. On a very high level, we start
with a large undirected grid in D and then argue about directed structures
inside this grid using arguments relying on the assumption that D is Eule-
rian. Let G be the undirected (multi)graph underlying of D.

Obtaining an undirected grid
The first step is to obtain an undirected grid in D. To this end, we recall
that in undirected planar graphs, a linear relation between treewidth and the
largest grid minor is known [12, 25]:
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Figure 5.14 Structure obtained by Lemma 5.3.15 and how it can be found inside
a sufficiently large undirected grid minor.

Theorem 5.3.14 ([12, 25]) A planar undirected graph of treewidth k contains
a grid of sidelength 9k/2 as a minor.

Note that if X is α-node-well-linked in D, it is also α-node-well-linked in G.
Furthermore, a graph containing an α-node-well-linked set of size k has
treewidth Ω(αk). As a result we obtain the following claim; see Fig. 5.14 for
a pictorial proof. Recall that in the context of undirected graphs embedded
on a plane, a sequence C1, C2, . . . , Cr of vertex-disjoint cycles is concentric
if each cycle Ci separates the cycles {Cj : j < i} from the cycles {Cj : j > i}.

Lemma 5.3.15 There exists an integer r = Ω(αk) such that G contains a
sequence C1, C2, . . . , Cr of r concentric cycles and a set of r vertex-disjoint
paths connecting C1 with Cr.

Isles. We now need the following notion. Given a vertex v ∈ V (G), a set
Q ⊆ V (G) with v /∈ Q, and an integer �, a (v,Q, �)-isle is a set S ⊆ V (G)
such that v ∈ S, S ∩ Q = ∅, G[S] is connected, and |NG(S)| ≤ �. In other
words, S is a connected part of the graph around v with small boundary and
separated from Q.

Fix � = Θ(r/Δ) = Θ(αk/Δ). The constants hidden in the Θ(·) notation
will be chosen in the course of the argumentation, but the reader may think
that � is a small (but constant) fraction of r/Δ, in particular � is much smaller
than r. Pick a vertex v1 on the cycle C1. Since we can assume that 2Δ < � =
Θ(αk/Δ) (as otherwise the statement of Theorem 5.3.13 is immediate), {v1}
is a (v1, V (Cr), �)-isle. Let S1 be an inclusion-wise maximal (v1, V (Cr), �)-isle,
and let us analyze its properties.

First, since � < r and G contains r vertex-disjoint paths from C1 to Cr, the
set S1 cannot contain the whole cycle Ci for any i. Since G[S1] is connected
and the cycles Ci are concentric, S1 is disjoint from every cycle Ci for i > �.
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Note that � is much smaller than r; the last statement shows that S1 lives
locally in the graph G, and does not go deep into the set of concentric cycles
{Ci : 1 ≤ i ≤ r}.

Symmetrically, we pick an arbitrary vertex vr on Cr and define a maximal
(vr, V (C1), �)-isle Sr; we again have that Sr is disjoint from cycles Ci for
i ≤ r− �. Since we can assume that � is much smaller than r, the isles S1 and
Sr are disjoint and separated by r − 2� cycles Ci.

By N i
G[S] we denote the set of vertices within distance at most i from S

in G. We have that N2
G[S1] does not intersect the cycle C�+3; by the maxi-

mality of S1, there are �+1 vertex-disjoint paths connecting N2
G[S1] with Cr.

Symmetrically, there are � + 1 vertex-disjoint paths connecting N2
G[Sr] and

C1. Since � is much smaller than r, there are many more than � cycles Ci for
�+ 3 ≤ i ≤ r − � − 2; note that all these cycles are disjoint from N2

G[S1 ∪ Sr]
and separate S1 from Sr. By combining the aforementioned linkages of �+ 1
paths and these cycles, we obtain that there exists a flow of size at least
�/3 from N2

G[S1] to N2
G[Sr]: just treat the linkages and cycles as flow paths

each carrying a flow of 1/3 to avoid congestion, and combine the flow paths
naively, following first the flow paths from N2

G[S1] to Cr, then cycles Ci for
� + 3 ≤ i ≤ r − � − 2, and finally the flow paths from C1 to N2

G[Sr]. By the
integrality of flows, there exists a linkage in G of size at least �/3 leading
from N2

G[S1] to N2
G[Sr]. A symmetric reasoning yields a linkage in G of size

at least �/3 leading from N2
G[Sr] to N2

G[S1]. These linkages are undirected
(in G), but the digraph D is Eulerian: by Lemma 5.3.7, in D, there exists a
(directed) linkage P from N2

G[S1] to N2
G[Sr] and a (directed) linkage Q from

N2
G[Sr] to N2

G[S1], both of size at least �/(3(Δ+1)) = Θ(αk/Δ2). Note that
every path in P and Q intersects every cycle Ci for � + 3 ≤ i ≤ r − � − 2.
Figure 5.15 illustrates the structure obtained so far.

The linkages P and Q will form the desired linkages between the extreme
cycles in the desired relaxed cylindrical grid. To conclude the construction,
we need to show that there are Θ(αk/Δ2) concentric directed cycles with
N1

G[S1] on one side and N1
G[Sr] on the other side, so that they intersect every

path in P ∪ Q. To prove their existence, we use the (undirected) cycles Ci.

Cycles. Let D′ be the digraph D with the vertices of N1
G[S1] ∪ N1

G[Sr] re-
moved. Note that D′ is no longer Eulerian, but it is close to being Eulerian:
since S1 and Sr are isles, we have |NG(S1)|, |NG(Sr)| ≤ � and, consequently,
at most 2�Δ arcs connect N1

G[S1] ∪ N1
G[Sr] with the vertices of D′.

Consider now the spherical embedding of D and the naturally induced
embedding of D′. There are two distinguished faces of the embedding of D′:
f1, which contains S1 in the embedding of D, and fr, which contains Sr. Let
us try to find as many as possible vertex-disjoint directed cycles that have f1
to the left and fr to the right.

The crucial observation is that there is a well-defined notion of a directed
cycle that has f1 to the left, but is as close to f1 as possible, in the sense
that it has as few faces of D′ to the left as possible. To see this, consider the
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S1

N2
G[S1]

Sr

N2
G[Sr ]

Figure 5.15 Structure obtained from isles S1 and Sr. To finish the construction,
we lack sufficiently many concentric directed cycles separating S1 from Sr, but we
have many undirected ones.

following procedure: mark f1 and every face of D′ that is reachable from f1
via face-edge curves in D′ that are crossed by the arcs of D′ only from left
to right. If such a curve γ reaches a face f , then γ certifies that f needs to
be to the left of any cycle in D′ that keeps f1 to the left; in particular, if fr

is marked, the corresponding curve shows that there is no cycle in D′ that
keeps f1 to the left and fr to the right. In the other direction, it is easy to
see that the boundary of the region of unmarked faces that contain fr (if fr

is unmarked) forms the desired directed cycle.
By iterating the above argument, we can obtain the following claim:

Lemma 5.3.16 ([5]) For any integer t, in D′ there exists either:

1. a family of vertex-disjoint cycles D1,D2, . . . , Dt, each having f1 to the
left and fr to the right;

2. a curve γ in general position with respect to D′ that starts in f1, ends in
fr, passes through at most t vertices of D′, and such that every arc of D′

crossing γ crosses it from left to right.
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We pick t = Θ(αk/Δ2) and apply Lemma 5.3.16: once directly, and once
with the roles of f1 and fr swapped. If any of the application resulted in a
family of t directed cycles, these cycles, together with linkages P and Q, form
the desired relaxed grid. Thus, we are left with the case when both applica-
tions returned a curve; note that we may assume without loss of generality
that each of these curves is without self-intersections. By joining these curves
together inside f1 and fr, we obtain a closed curve γ0 in general position
with respect to D′ that intersects at most 2t vertices and every arc crossing
γ0 crosses it from left to right. We modify γ0 slightly as follows: whenever
γ0 visits a vertex v we move it a little so that it intersects a number of arcs
incident with v instead. In this manner, the obtained curve γ is a closed face-
edge curve in D′ that visits both f1 and fr, does not visit any vertex of D′,
and at most 2tΔ arcs intersecting γ cross it from right to left.

However, γ needs to cross every cycle Ci for � + 3 ≤ i ≤ r − � − 2; by
taking � to be sufficiently small compared to r, there are at least r/2 = Θ(αk)
such cycles. Since 2tΔ = Θ(αk/Δ), the absolute value of the imbalance of
the curve γ can be assumed to be at least r/4.

Consider now a digraph D′′, obtained similarly as D′ from D, but instead
of removing N1

G[S1], we contract it onto a single vertex w1, similarly we also
contract N1

G[Sr] onto a new vertex wr. Any loops thus created at w1 or wr

are removed. Note that D′′ remains Eulerian and the degree of w1 and wr

is at most �Δ in D′′. Furthermore, by slight modifications of γ inside f1
and fr, we may assume that γ is in general position with respect to D′′ as
well, visits neither w1 nor wr, and crosses every arc incident to these two
vertices at most once (they are drawn inside f1 and fr, where we can freely
manipulate γ). However, now γ is a closed curve in general position with
respect to an Eulerian digraph D′′, and thus has zero imbalance. Recall that
D′ and D′′ differ on at most 2�Δ edges, each crossed by γ at most once. By
picking a sufficiently small constant in the definition of � = Θ(r/Δ) we obtain
2�Δ < r/4, yielding a contradiction.

Thus, at least one application of Lemma 5.3.16 resulted in a family of cy-
cles, giving the final ingredient of the relaxed cylindrical grid, and concluding
the proofs of Theorems 5.3.13 and 5.3.3.

5.3.5 Perspective

Theorem 5.3.3 shows that if one relaxes the structure of the cylindrical grid
to allow intersections of the radial linkages, we can obtain good (up to poly-
logarithmic factors) dependency between directed treewidth and the size of
the grid. This resembles the situation from undirected graphs, where linear
dependency between treewidth and the size of largest grid minor gave rise to
multiple algorithmic applications through the theory of bidimensionality [10].

In the context of routing, the above theorem fits into a more general
approach for designing approximation algorithms for the k-Disjoint paths
problem, pioneered by Chekuri, Khanna, and Shepherd [3]. This approach
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turned out to be very successful in the context of undirected graphs, leading
to a poly-logarithmic approximation with congestion 2 for the edge-disjoint
version of k-Disjoint paths by Chuzhoy and Li [6].

The first step is to decompose the input instance into a number of subin-
stances where in each subinstance the set of terminals is (fractionally) well-
linked. This well-linkedness in turn allows us to reason about the existence
of a good crossbar, a grid-like routing structure. The well-linkedness also
implies the existence of a large flow between the terminals and the crossbar;
an approximate solution is formed by these flow paths, joined together inside
the crossbar in a way respecting the terminal pairs.

The crucial ingredient in this approach is to prove the existence of a
crossbar in the presence of a large well-linked set; if the approximation factor
is to be poly-logarithmic, the ratio between the size of the well-linked set and
the size of the crossbar needs to be poly-logarithmic as well. The presented
theorem serves as such an ingredient in the context of planar digraphs.

Apart from the context of routing [5], we do not know any other ap-
plications of Theorem 5.3.3. Furthermore, a number of questions regarding
generalizations appear:

1. Can we reduce the upper bound on the maximum degree to constant,
as opposed to poly-logarithmic, with only a poly-logarithmic loss on the
directed treewidth? The cut-matching game approach has an inherent
O(log2 k) factor due to the number of rounds, while the arguments of [16]
lead to a maximum degree of 6, but give a much worse parameter depen-
dency.

2. Can we conduct the final part of the proof of [16], that is, obtain a regular
cylindrical grid from a relaxed one, with only a poly-logarithmic loss on
the size? Such an improvement may be needed if one wants to lower the
allowed congestion in the approximation algorithm of [5].

3. Can we generalize these developments to other sparse graph classes? In
undirected graphs, many results in the theory of bidimensionality hold
in apex-minor-free or general proper minor-closed graph classes.

We remark here that the first part of the proof, which leads to an Eulerian
digraph with a poly-logarithmic maximum degree and is based on the cut-
matching game, works in general graphs; that is, this part does not require
the planarity assumption. On the other hand, the second part of the reasoning
seems to crucially depend on the topological structure of the digraph.

The existence of a large (relaxed) directed grid in the presence of a large
well-linked set is also related to the Erdős–Pósa property of cycles. In undi-
rected graphs, the classic result of Erdős and Pósa [8] asserts that if a graph
does not contain k vertex-disjoint cycles, it admits a set of O(k log k) vertices
that intersect every cycle. For directed graphs, a similar relation has been
conjectured by Younger [30]; the conjecture was confirmed in 1996 by Reed,
Robertson, Seymour, and Thomas [23]. However, the relation between the
number of vertex-disjoint cycles and the size of the hitting set is not explicit
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in [23] and at least exponential. Improving this relation to, say, polynomial
remains widely open. More discussion on various aspects of the Erdős–Pósa
property in directed graphs can be found in Section 9.5.3

Apart from the above questions, a number of very important questions
remain regarding the Directed Grid Theorem in the general setting, where the
proof of Kawarabayashi and Kreutzer [17] gives only a very weak parameter
dependency. A discussion on these issues can be found in Chapter 9.
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