
4. Euler Digraphs

Magnus Wahlström

An Euler digraph is a connected digraph where every vertex has in-degree
equal to its out-degree. The name, of course, comes from the directed version
of Euler’s theorem. Recall than an Euler tour in a digraph is a directed closed
walk that uses each arc exactly once. Then in this terminology, by the famous
theorem of Euler, a digraph admits an Euler tour if and only if it is an Euler
digraph.

However, beyond this point of historical interest, Euler digraphs are also
interesting since they form a class of intermediate complexity between undi-
rected graphs and fully general digraphs for many problems. For example,
consider the k-linkage and weak k-linkage problems. Recall that in
these problems, the input is a digraph D = (V,A) together with k-tuples
(s1, . . . , sk) and (t1, . . . , tk) of vertices, and the goal is to find internally
vertex-disjoint paths (respectively, arc-disjoint paths) from si to ti for every
i ∈ [k]. For undirected graphs, both problems are famously FPT parameter-
ized by k, as a central result of the graph minor theory of Robertson and
Seymour [36]. For general digraphs, both variants are NP-hard already for
k = 2 as shown by Fortune, Hopcroft and Wyllie [15]. For Euler digraphs,
the k-linkage problem is in general NP-hard, but the weak k-linkage
problem is in P at least up to k = 3, and it is a long open question whether
the weak k-linkage problem is in P for every fixed k or even FPT. (We
discuss these problems later in this chapter.)

For another example, consider the concepts regarding classes of graphs
and digraphs of restricted structure, e.g., bounded width. For undirected
graphs, although many alternatives have been considered, arguably the estab-
lished standard width notion is bounded treewidth, and the related notion
of bounded pathwidth. These width measures have several desirable prop-
erties, not least including algorithmic applications such as linear-time FPT
algorithms for a multitude of problems when parameterized by the width k.
On the other hand, for directed graphs, although directed analogues of these
basic width notions exist, not only are the basic definitions significantly more
complex, but the algorithmic implications are also typically weaker, e.g., most
problems would not be FPT parameterized by directed pathwidth. We will
see that in the general case there is no significant difference between the di-
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rected width measures on Euler digraphs and on general digraphs, but (unlike
for general digraphs) if we additionally impose that an Euler digraph is of
bounded degree, then the undirected and directed versions of pathwidth and
treewidth coincide up to a constant factor.

However, interestingly, there are also a few problems which are easier
to deal with on Euler digraphs than on undirected graphs (even undirected
Euler graphs). We will see two main examples of this. The first is the so-called
BEST theorem, which states that the number of Euler tours in a digraph can
be counted efficiently; the same is not true for undirected graphs, where the
corresponding problem is #P-hard. The second, less well known example is
Arc Multiway Cut (see later for definitions), which is NP-hard both for
undirected Euler graphs and for general digraphs, but which admits a simple
polynomial-time algorithm on Euler digraphs. We will cover both of these
results in the following.

This chapter is structured as follows. We begin with some basic construc-
tions and observations in Section 4.1; in Section 4.2 we consider the BEST
theorem and other questions of Euler tours; in Section 4.3 we consider no-
tions of Euler digraphs of bounded width; in Section 4.4 we review problems
related to packing and hitting cycles, and in Section 4.5 we review general
problems of path-packing and linkages.

4.1 Basic Constructions and Properties

To relax the definition of Euler digraphs slightly, let a digraph D be balanced
if every vertex has in-degree equal to its out-degree, but with no requirement
that D be connected. Most of our algorithmic results will apply to balanced
digraphs as well as Euler digraphs, and it will sometimes be convenient to
not have to require connectivity. In fact, we will frequently gloss over the
difference between the two notions. Also note that a balanced digraph is
strongly connected if and only if it is connected.

We review two basic properties of balanced digraphs. First, we note that a
balanced digraph can be exhaustively decomposed into simple directed cycles.
Second, we note that for every balanced digraph D = (V,A) and every vertex
v ∈ V , there are d+D(v) pairwise arc-disjoint cycles through v. Both of these
results follow via simple induction (in the latter case using the existence of
an Euler tour for the component).

4.1.1 Cuts in Euler Digraphs

The following observation is the underlying source of many of the tractability
results in this chapter.

Proposition 4.1.1 Let D = (V,A) be a balanced digraph. For any set S ⊆ V ,
it holds that d+(S) = d−(S).
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Proof: Note that
∑

v∈S d+(v) =
∑

v∈S d−(v) since D is balanced. Thus we
have

0 =
∑

v∈S

d+(v) −
∑

v∈S

d−(S) = (d+(S) + |(S, S)|) − (d−(S) + |(S, S)|,

so d+(S) = d−(S). �

The following is an easy but important consequence.

Proposition 4.1.2 Let D = (V,A) be a balanced digraph and let G =
UMG(D) be the underlying multigraph of D. Then for any S ⊆ V , we have
d+D(S) = d−

D(S) = dG(S)/2.

This implies that tools developed for edge cuts in undirected graphs will
transfer directly to arc-cuts in Euler digraphs. In particular, for an Euler
digraph D = (V,A) with two vertices s, t ∈ V , using the treewidth re-
duction theorem of Marx, O’Sullivan and Razgon [32] it follows that all
minimal s-t- and t-s arc-cuts in D of size at most k are contained in a sub-
graph of D of treewidth bounded as a function of k. Although we will not
need this result in the remainder of the chapter, it is a powerful tool for FPT
algorithms in undirected graphs and worth observing for its potential appli-
cations. The same can be said for other advanced methods for producing FPT
algorithms for undirected graph problems. In particular, there is a method
of designing FPT algorithms via recursive understanding, which was pio-
neered by Kawarabayashi and Thorup for k-Way Cut [28] and was developed
further and made more efficient using the method of randomized contrac-
tions by Chitnis, Cygan, Hajiaghayi, Pilipczuk and Pilipczuk [6]. Another
related work is the special tree decomposition used by Cygan, Lokshtanov,
Pilipczuk, Pilipczuk and Saurabh for the Minimum Bisection problem [10].
All of these cases represent advanced and successful methods for designing
FPT algorithms for cut problems on undirected graphs, which a priori seem
not to transfer in a useful way to general digraphs, but which may be worth
considering for the case of Euler digraphs.

4.1.2 Hardness Constructions

We review two simple constructions that will be useful in showing problem
hardness on Euler digraphs. Recall that for an undirected graph G = (V,E),
the complete biorientation of G is a digraph

↔
G with vertex set V and with

a pair of arcs uv, vu for every edge {u, v} ∈ E. Clearly,
↔
G is balanced, and

Euler if G is connected. This construction can frequently be used to show
that problems on Euler digraphs are “at least as hard” as the corresponding
problem on undirected graphs.

The second construction is as follows. Let D = (V,A) be a connected
digraph, and define bD(v) = d+D(v) − d−

D(v) as the balance number of v
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in D. The Euler two-vertex extension of D is the directed multigraph
obtained by adding two vertices x, y /∈ V to D, then for every vertex v ∈ V
adding |b(v)| arcs vx if b(v) < 0 and b(v) arcs yv if b(v) > 0, then finally
adding d−(x) arcs xy. It is clear that the resulting directed multigraph is
Euler. If the situation does not allow parallel arcs, we may simply subdivide
all arcs into and out of x and y. The significance of this construction is that
by simply deleting x or y from D′, we eliminate all paths not present in the
original graph D.

Above all, this means that for many problems which come in a “vertex
version” and an “arc version”, the vertex version is usually equally diffi-
cult on an Euler digraph as on general digraphs, while the arc version can
be significantly easier. For example, considering the problems mentioned in
the introduction, it is trivial to show that Vertex Multiway Cut (i.e.,
the vertex-deletion version), the k-Linkage Problem and the Vertex-

Disjoint Cycle Packing problem are all as hard on Euler digraphs as on
general digraphs (in the case of the k-linkage problem increasing k by
one), but Arc Multiway Cut, the weak k-linkage problem and Arc-

Disjoint Cycle Packing are all significantly easier on Euler digraphs, as
we see in the results surveyed in this chapter.

4.1.3 Splitting Off and Other Operations

One frequently used operation in this chapter is the splitting-off operation.
Let D = (V,A) be an Euler digraph and uv, vw a pair of arcs in D. Then
splitting off uv and vw in D refers to the operation of deleting the arcs uv
and vw, and creating a new arc uw. It is clear that this operation preserves
balance (if not necessarily connectivity). If all vertices u, v, w are distinct,
and if the result is a digraph (as opposed to a directed multigraph or pseu-
dograph), then we refer to uv and vw as a simple splitting pair. Let us
make a simple observation.

Proposition 4.1.3 Let D = (V,A) be a balanced digraph with no simple
splitting pair. Then every connected component of D is a complete digraph.

Proof: If D has no simple splitting pair, then for every pair of arcs uv and
vw such that u �= w, the arc uw already exists, i.e., D is transitive. It is well
known (and easy to see) that a strongly connected transitive digraph must
be complete. Since every connected component of a balanced digraph is also
strongly connected, the result follows. �

Other operations that preserve the balance property of a digraph include
arc contractions and the removal of a balanced subgraph.

We will also occasionally need the notion of a minor of a digraph.
There are two variants of this definition, butterfly minors and topological
minors. Let D = (V,A) be a digraph and uv ∈ A an arc. The arc uv is but-
terfly contractible in D if either uv is the only arc out of u or the only
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arc into v. A butterfly minor of D is obtained from a subgraph of D by
contracting butterfly contractible arcs. Alternatively, a topological minor
of D is produced from arc contractions of a subgraph of D by contracting an
arc uv only if either u or v has in-degree and out-degree 1.

4.2 Problems Regarding Euler Tours

Let us begin as a warm-up with the so-called BEST theorem, showing that
Euler tours of an Euler digraph can be counted in polynomial time.

The BEST theorem was implicit in the work of Tutte and Smith [41] and
was shown in full by van Aardenne-Ehrenfest and de Bruijn [42]; the theorem
takes its name from the authors.

Theorem 4.2.1 (BEST theorem) Let D = (V,A) be an Euler digraph, and
w ∈ V an arbitrary vertex. The number of Euler tours in D is

tD(w)
∏

v∈V

(d(v) − 1)!,

where tD(w) is the number of out-branchings of D rooted in w. In particular,
there is a polynomial-time algorithm for counting the number of directed Euler
tours.

Proof: Let ww′ ∈ A, and let T be an Euler tour of D. Observe that T induces
a permutation πv of the out-arcs of v for every v ∈ V , according to the order in
which these arcs are visited in T , starting the count from ww′. Also note that
T can be recovered from this collection of permutations, and conversely, every
such collection of permutations {πv}v∈V defines a closed trail in D containing
the arc ww′, although not every collection of permutations induces an Euler
tour. For a collection of permutations P = {πv}v∈V , let F (P ) = {πv(d+(v)) |
v ∈ V, v �= w} be the set containing the last outgoing arc from every vertex
except w. We claim that P defines an Euler tour if and only if F (P ) is an
in-branching in D rooted in w.

On the one hand, let P be defined via an Euler tour T . The set F (P )
forms a digraph where every vertex except w has out-degree 1; hence F (P )
forms an in-branching rooted in w if and only if it is acyclic. We claim that
for every arc uv ∈ F (P ), v �= w, the last out-arc of u is visited before the last
out-arc of v in T , if we begin the counting from ww′. Indeed, uv is the last
out-arc of u visited in T by definition, and clearly whatever arc follows uv
in T is an out-arc of v visited after uv. Since the out-degree of w in F (P ) is
zero, it follows that F (P ) is acyclic, and that F (P ) is an in-branching rooted
in w.

On the other hand, let P be a collection of permutations such that F (P )
forms an in-branching, and let T be the closed tour defined by P starting
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from the arc ww′. Then D − T is a balanced digraph. Let H be a connected
component of D − T . Clearly, for every vertex v that is not of degree zero
in D − T , the out-arc of v in F (P ) is contained in D − T . But then the set
FH of out-arcs of F (P ) of vertices in H forms a subgraph of H where every
vertex has out-degree 1, which necessarily contains a cycle. This contradicts
our assumption on P .

The formula follows from this claim. For every in-branching B of D rooted
in w, there are exactly

∏
v∈V (d+(v) − 1)! collections P of permutations such

that F (P ) = B: for every vertex v �= w, the in-branching B fixes the last
out-arc of v in P , whereas for w, the out-arc ww′ is the first out-arc of w by
definition. Any choice of a permutation πv on the remaining arcs does not
affect F (P ). Finally, it is well known that the number of rooted in-branchings
can be counted in polynomial time using Tutte’s matrix-tree theorem, see e.g.
[2]. �

Interestingly, both the Tutte–Smith paper and the van Aardenne-Ehren-
fest and de Bruijn paper have as their main interests something other than
counting Euler cycles. Tutte and Smith considered the problem of tracing a
4-regular undirected planar drawing without lifting the pen, in such a way
that the line traced never crosses itself, and showed that this can be reduced
to a question of counting Euler tours in a digraph (using arguments similar to
those used in the polynomial-time algorithm for counting planar matchings).
On the other hand, van Aardenne-Ehrenfest and de Bruijn arrived at the
question via their study of string problems, specifically De Bruijn sequences,
cyclic sequences over an alphabet Σ that contain every n-tuple over Σ exactly
once.

Other questions on Euler tours include the following. We say that two
Euler tours are compatible if they use only distinct transitions at every
vertex, i.e., for every vertex v with an in-arc uv and out-arc vw, at most
one of the tours contains the transition from uv to vw. Fleischner and Jack-
son [14] showed that every Euler digraph D of minimum degree 2k contains
�k
2 � pairwise compatible Euler tours, and conjectured that the bound can be

improved to k − 2.

4.3 Euler Digraphs of Bounded Width

The notion of width measures has been a highly successful approach for
studying graphs of restricted structure, especially for undirected graphs. The
rough idea is that a graph of simple structure can be decomposed recur-
sively into pieces that interact with each other only in a limited way, where
each piece is either very simple (e.g., constant size) or can itself be further
decomposed. For undirected graphs, arguably the default notion of bounded
structure is having bounded treewidth, motivated by a plethora of algorith-
mic results, e.g., methods such as Courcelle’s theorem [9] or other dynamic
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programming results for efficiently solving NP-hard problems on a graph,
given a decomposition of the graph that shows it has bounded treewidth.
However, many other width notions also exist, both less expressive ones such
as pathwidth or treedepth, and more expressive ones such as rankwidth.

For directed graphs, the story of bounded width measures has arguably
been more limited in terms of algorithmic applications. Although we do have
a growing understanding of the structure of graphs of small or large width
under various natural directed width notions, compared to the undirected
case, the algorithmic implications of bounded directed widths are generally
weaker (see Chapter 9 for results on bounded width measures on digraphs).
In the undirected case, it is a common occurrence that a problem is FPT
parameterized by treewidth, in fact often with a running time such as O(f(k)·
n) that is linear in the order of the graph. For directed width notions, it is
far more common that a parameterized problem is W [1]-hard – meaning
that, while it may be polynomial-time tractable on graphs of (say) bounded
directed treewidth, the running time is of the less appealing form O(nf(k))
and FPT algorithms are not expected to exist (see Section 1.11). In fact,
one could argue that the width measure that has had the widest success for
digraphs in terms of FPT algorithms is simply the undirected treewidth, i.e.,
the treewidth of the underlying undirected graph.

In view of this, it is natural to ask about the structure of Euler digraphs in
this perspective. In particular, to what extent do the directed and undirected
notions of treewidth and pathwidth differ for Euler digraphs?

We prove a simple result in this direction. First, we may observe that if
a width notion is closed under taking induced subgraphs, then there is no
sense in studying it in full generality for Euler digraphs, since (by the Euler
vertex-extension) every digraph on n vertices is an induced subgraph of a (not
necessarily simple) Euler digraph on n+2 vertices. Since most width measures
are closed under taking induced subgraphs and closed or approximately closed
under subdividing parallel arcs, in general Euler digraphs of bounded width
will not have any extra structure that is not present in other digraphs. On
the other hand, we may observe that the above reduction creates a vertex of
unbounded degree, and ask whether the situation changes under a combined
bound of bounded width and bounded maximum degree. Indeed, it is known
that an Euler digraph of maximum degree d and directed treewidth k has
undirected treewidth at most O(dk) [26]. Hence for bounded-degree Euler
digraphs, the difference between directed and undirected width disappears.
(This is certainly not true for general digraphs, as, e.g., an acyclic grid has
total degree 4, unbounded undirected treewidth, and directed pathwidth 0,
as we will see below.)

For more information on digraphs of bounded width, see Chapter 9 of this
book. In the following, we omit the technical details of directed treewidth,
and prove a simpler result that relates the undirected and directed notions
of bounded pathwidth.
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4.3.1 Cutwidth and Bounded Pathwidth

We begin by studying the directed pathwidth of Euler digraphs. Let us first
recall the notions.

We need two variants of pathwidth, undirected and directed. We begin
with the undirected version. Let G = (V,E) be an undirected graph. A path
decomposition of G is a sequence of vertex sets X1, . . . , Xs called bags
such that

⋃
i∈[s] Xi = V , where the following hold.

1. For every edge uv ∈ E, there is a bag Xi, i ∈ [s], such that u, v ∈ Xi,
and

2. for every triple of indices i < j < k, i, j, k ∈ [s], we have Xi ∩ Xk ⊆ Xj .
Equivalently, {i ∈ [s] | v ∈ Xi} forms an interval for every v ∈ V .

The width of the decomposition is maxi∈[s] |Xi| − 1. The pathwidth of G
is the minimum width of a path decomposition of G. We let the undirected
pathwidth of a digraph D = (V,A) refer to the pathwidth of its underlying
undirected graph UG(D).

Analogously, let D = (V,A) be a digraph. A directed path decompo-
sition is a sequence of vertex sets X1, . . . , Xs, again called bags, such that⋃

i∈[s] Xi = V , where the following hold.

1. For every arc uv ∈ E, there are indices i ≤ j, i, j ∈ [s] such that u ∈ Xi

and v ∈ Xj , and
2. as in the undirected case, for every triple of indices i < j < k, i, j, k ∈ [s]

we have Xi ∩ Xk ⊆ Xj .

The width of the decomposition is maxi∈[s] |Xi|−1 and the directed path-
width of D is the minimum width of a directed path decomposition of D.

We will also need a width measure that is less commonly used in general,
but which will be highly relevant for Euler digraphs. Let D = (V,A) be a di-
graph, and let σ = v1 . . . vn be an ordering of V . The undirected cutwidth
of σ equals the maximum over i of the number of arcs between {v1, . . . , vi}
and {vi+1, . . . , vn}. The undirected cutwidth of D is the minimum undi-
rected cutwidth over all orderings of V . Note that this is by its nature an
undirected width measure, i.e., we do not distinguish arcs by their direction.

We make a few simple observations.

1. For any digraph D = (V,A), the directed pathwidth is at most the undi-
rected pathwidth, which in turn is at most the undirected cutwidth.
Indeed, the former is trivial, and given any ordering σ of undirected
cutwidth k it is easy to produce a path decomposition of width k.

2. Both inequalities are strict. Indeed, a star has undirected pathwidth 1
but unbounded undirected cutwidth, and an acyclic grid has directed
pathwidth 0 (and constant degree) but unbounded undirected pathwidth.

3. A digraph has directed pathwidth 0 if and only if it is an acyclic digraph.
In particular, the only Euler digraph of directed pathwidth 0 is a single
vertex.
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We now observe formally (as already sketched) that there are Euler digraphs
of constant directed pathwidth but unbounded undirected pathwidth.

Lemma 4.3.1 For every k ≥ 1, there is an Euler digraph with undirected
treewidth at least k but directed pathwidth 1.

Proof: Let D be a k × k acyclic grid, with all arcs oriented downwards and
to the right. Add one additional vertex as in-neighbour of the top-left grid
vertex, and another as out-neighbour of the bottom-right grid vertex, and
observe that |bD(v)| ≤ 1 for every vertex in the resulting graph D. Hence we
can complete D into an Euler digraph by adding a single vertex x and for
every unbalanced vertex v either an arc vx or xv, as required. Then UG(D)
contains a k × k grid and hence has treewidth at least k, whereas D has a
path decomposition of width 1 formed by simply adding x to every bag in
the decomposition of the acyclic digraph D − x. �

Finally, we have the following positive result.

Lemma 4.3.2 If D is an Euler digraph with directed pathwidth k, then D
has undirected cutwidth at most k · Δ(D).

Proof: Let X1, . . . , Xs be a directed path decomposition of D of width
k, and construct a linear ordering σ of V (D) by first arbitrarily arranging
the vertices of X1, then the vertices of X2 \ X1, and so on until Xs. Let
d = Δ+(D). We claim that the ordering σ has undirected cutwidth at most
2dk.

Let (Li, Ri) be the vertex cut corresponding to some position i of σ, i.e., Li

is the set of vertices ordered at or before position i in σ, and Ri = V (D)\Li.
Assume that (Li, Ri) cuts through the bag Xj , j ∈ [s], and let A = Xj ∩ Li

and B = Xj ∩ Ri; assume A �= ∅. We claim that every arc of (Ri, Li)D has
either its tail in B or its head in A. Indeed, by definition every such arc has
its tail in Ri, and any such arc with tail in Ri \ B has its head in a vertex
still present in a bag Xj′ for some j′ > j; hence the head is contained in Xj .
Since there are |A|d arcs with head in A and |B|d arcs with tail in B, and
|A| + |B| ≤ k, there are at most dk such arcs. On the other hand, since D is
Euler we have d+(Li) = d−(Li) ≤ dk; hence the undirected cutwidth of σ is
at most 2dk = kΔ(D). �

Since undirected pathwidth is sandwiched between undirected cutwidth
and directed pathwidth, we also get that the undirected pathwidth of Euler
digraphs of bounded degree and bounded directed pathwidth is bounded, as
promised.

As noted, the above result also holds for the more general notion of di-
rected treewidth: If D is an Euler digraph with maximum degree d and
the directed treewidth of D is at most k, then D has undirected treewidth at
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most O(dk) [26]. Directed treewidth is the most general of the various width-
measures that serve as directed analogues of (undirected) treewidth, and has
some interesting structural properties. See, in particular, the directed grid
theorem [27] proved by Kawarabayashi and Kreutzer, which shows that ev-
ery digraph of large enough directed treewidth contains a particular canonical
obstacle known as a cylindrical grid of large order as a butterfly minor (see
Theorem 9.3.14). Hence this shows that any Euler digraph that does not
contain a large cylindrical grid as a butterfly minor, and which has bounded
degree, also has bounded undirected treewidth.

4.4 Cycle-Packing and Cycle-Hitting

In this section, we consider problems of cycle-hitting and cycle-packing in
Euler digraphs. More properly, we consider the following two problems. A
feedback arc set of a digraph D is a set F of arcs of D such that D − F is
acyclic. The problem Feedback arc set takes as input a digraph D and an
integer k, and asks whether D has a feedback arc set of cardinality k. Dually to
this, given a digraph D and an integer k, Arc-disjoint cycles asks whether
D contains a packing of k pairwise arc-disjoint cycles. For both problems,
the vertex versions (Feedback vertex set, respectively Vertex-disjoint

cycles) are defined in the natural way.
Before we proceed, we observe that these vertex-versions are not easier in

Euler digraphs than in general graphs.

Lemma 4.4.1 For both Feedback vertex set and Vertex-disjoint cy-

cles, there are polynomial-time reductions from the versions on general di-
graphs to the versions on Euler digraphs that increase the value of k by only
1.

Proof: The reduction is the same for both problems. Let D be a given
digraph D, and let D′ be its Euler two-vertex extension with added vertices x,
y. Add an additional pair of arcs xy, yx (and if needed, subdivide parallel arcs
to acquire a simple digraph). For Feedback vertex set, it is now easy to
observe that for every X ⊆ V (D), X is a feedback vertex set of D if and only if
X+x is a feedback vertex set of D′, and that there is a minimum feedback ver-
tex set X ′ of D′ for which X ′ ∩(V (D′)\V (D)) = {x}. For Vertex-disjoint

cycles, note that every cycle that intersects V (D′) \ V (D) intersects both
x and y. Let C be the cycle on x and y, contained in V (D′) \ V (D). Then
there exists an optimal cycle-packing that contains C, and having included
C, the cycle-packing problem on D′ − V (C) is equivalent to that on D. �

Regarding the hardness of these problems, we recall that Feedback ver-

tex set is NP-complete but FPT on digraphs by the algorithm of Chen,
Liu, Lu, O’Sullivan, and Razgon [5], whereas Vertex-disjoint-cycles on
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general digraphs is in XP, i.e., has an algorithm with running time O(nf(k))
for some function f(k) due to Reed, Robertson, Seymour and Thomas [35],
but is W[1]-hard due to the results of Slivkins [39]. The problem also has an
FPT approximation due to Grohe and Grüber [18], building on the results
of Reed et al. – i.e., a parameterized algorithm running in FPT time, which
either reports that D does not contain k vertex-disjoint cycles, or returns
g(k) vertex-disjoint cycles, for some growing, unbounded function g(k). By
the above reduction, all these statements hold for general digraphs as well as
for the restriction to Euler digraphs (for the vertex versions).

In the rest of this section, we will consider the arc-versions of these prob-
lems, which differ significantly in behavior on Euler digraphs.

4.4.1 Feedback Arc Set

First, let us consider Feedback arc set. We begin by showing NP-
hardness; the reduction is easy, but its correctness proof is revealing. We need
the following observation. Relative to an ordering (v1, . . . , vn) of the vertices
of an Euler digraph D = (V,A), the backward arcs are arcs vivj ∈ A with
i > j. Note that for any such ordering, the backward arcs form a feedback
arc set, and conversely, if F is a minimal feedback arc set of D, then F is
exactly the set of backward arcs for some acyclic ordering of D − F .

Lemma 4.4.2 The number of backward arcs of an ordering of vertices of
an Euler digraph is invariant under cyclic shifts, i.e., for any Euler digraph
D = (V,A) and any ordering (v1, . . . , vn) of V , the orderings (v1, . . . , vn)
and (v2, . . . , vn, v1) have the same number of backward arcs.

Proof: When v1 is in the first position, every in-arc of v1 is a backward
arc but no out-arc is; when v1 is in the last position, the opposite statement
holds. Every other arc is unaffected by the change. Since d+(v1) = d−(v), the
two orderings have the same number of backward arcs. �

An important corollary is that for every vertex v of an Euler digraph D,
there exists a minimum feedback arc set of D that contains all out-arcs of
v. Indeed, if F is a feedback arc set, let v1, . . . , vn be an acyclic ordering
of the vertices of D − F , and rotate the ordering until it ends with v. Then
the backward arcs of the new ordering form a feedback arc set F ′ of D, with
|F | = |F ′| and where every out-arc of v is contained in F ′. The NP-hardness
reduction is now trivial. Recall that fas(D) denotes the size of a minimum
feedback arc set of D.

Lemma 4.4.3 Feedback arc set is NP-hard on Euler digraphs.

Proof: We show a reduction from Feedback arc set on general digraphs.
Let D = (V,A) be a digraph, and let D′ be its Euler two-vertex extension,
with added vertices x, y. We claim that fas(D′) = fas(D) + d+(y). Indeed,
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let Y ⊆ A(D′) be the set of out-arcs of y. By the above observation, there
is a minimum feedback arc set that includes Y , and every directed cycle in
D′ − Y is also contained in D. �

Regarding properties of approximation and parameterized complexity, the
simple reduction used above gives us no lower bounds, since the output pa-
rameter value is unbounded in k. We are also not aware of any lower bounds-
preserving reduction from Feedback vertex set on undirected graphs to
Feedback arc set on Euler digraphs. Still, it can be interesting to com-
pare with what is known for general digraphs and for Feedback vertex

set on undirected graphs (recall that Feedback edge set can be solved in
polynomial time, and therefore does not serve as a point of comparison).

For (unweighted) Feedback arc set on general digraphs, the best
approximation result is an O(log τ∗ log log τ∗)-approximation, where τ∗ ≤
fas(D) is the cost of a natural LP-relaxation of the problem [13]. The prob-
lem does not admit a constant-factor approximation under the Unique Games
Conjecture (see Guruswami and Lee [20]). The problem has an FPT algo-
rithm with a running time of O∗(4kk!) [5], and it is a famous open problem
whether it has a single-exponential FPT algorithm, i.e., an FPT algorithm
with a running time of O∗(2O(k)), and whether it admits a polynomial kernel.

In contrast, Feedback vertex set on undirected graphs admits single-
exponential FPT algorithms [11, 29], a polynomial kernel with 4k2 ver-
tices [40] (recently improved to 2k2 vertices and linear time in [24]), and
a 2-approximation [7].

Therefore, natural open questions are what the status of each of these
three questions is for Euler digraphs.

Problem 4.4.4 Does Feedback arc set on Euler digraphs allow (1) a
single-exponential time FPT algorithm, (2) a polynomial kernel, and/or (3)
a constant-factor approximation?

Finally, although it does not serve to close any of the above-mentioned
open questions, we note a few properties of Feedback arc set on Euler
digraphs that do not hold for the general Feedback arc set problem. First,
we note that instances with a small feedback arc set are structurally simple.

Lemma 4.4.5 ([21]) Every Euler digraph D has undirected cutwidth at most
2fas(D).

Proof: Let F be a minimum feedback arc set of D, and let σ = (v1 . . . vn)
be an acyclic ordering of D − F . Let i ∈ [n] and let Vi = {v1, . . . , vi}. Then
for any i, d−(Vi) ≤ fas(D) since every such arc is contained in the feedback
arc set, and d+(Vi) = d−(Vi) since D is Euler. �

Recall that the undirected pathwidth is bounded by the undirected
cutwidth; therefore the undirected pathwidth is also bounded. Clearly, no
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such statement is possible for the general FAS problem, since acyclic digraphs
can have arbitrary underlying undirected graphs.

Finally, we make a remark about the iterative compression approach to
FPT algorithms. This is an important method in parameterized complex-
ity, which among many other cases is used in the algorithm for Directed

feedback vertex set [5] and in the currently fastest algorithm for (Undi-

rected) feedback vertex set [11, 29]. In this approach, a parameterized
problem is solved by iteratively solving the problem on a sequence of sub-
graphs of the original graph, in each step using the solution from the previous
step to produce a solution for the next step. Concretely, let Compression

feedback arc set be the Feedback arc set problem where the input
additionally includes a feedback arc set of size k + 1. Assume that we have
an FPT algorithm for Compression feedback arc set that either pro-
duces an output feedback arc set of size at most k, or concludes that no such
solution exists. Then we can solve Feedback arc set for general digraphs
using |A| calls to this algorithm, as follows: Let D = (V,A) be a digraph,
enumerate the arcs as A = {a1, . . . , am}, and define Di = D({a1, . . . , ai}) for
i ∈ [m]. Compute a trivial solution for Dk (e.g., the entire arc set). Then for
every k < i ≤ m, if Fi is a solution for Di with |Fi| ≤ k then Fi ∪ {ai+1} is a
solution for Di+1 of size at most k+1, which can be fed into the compression
algorithm. It remains only to observe that if any instance Di is concluded
to be negative, i.e., not to have a feedback vertex set of size k + 1, then the
same is true for D.

The obstacle to the immediate application of this strategy in Euler di-
graphs is that the digraphs D1, D2, . . . are in general no longer Euler. How-
ever, we observe that the strategy can be adopted by the use of the splitting
off operation.

Lemma 4.4.6 Feedback arc set on an Euler digraph D = (V,A) with
parameter k can be solved using polynomial-time processing and at most |A|
calls to a solver for Compression feedback arc set on balanced digraphs,
where the calls to the solver all use graphs with at most |V | vertices, at most
|A| arcs, and parameter at most k + 1.

Proof: We use the iterative compression approach, constructing a sequence
of graphs Di = (V,Ai) as follows. Begin with D = Dm, then for every
i ∈ [m − 1] we attempt to identify a simple splitting pair uv, vw in Ai+1.
If there is one, then we construct Di from Di+1 by splitting off uv and vw
in Di+1, i.e., Ai = (Ai+1 \ {uv, vw}) ∪ {uw}. If we cannot find such a pair,
then by Proposition 4.1.3, Di+1 takes the form of a disjoint union of complete
digraphs. At this point, the instance Di+1 can be solved in polynomial time,
since every ordering of the vertex sets yields the same number of backward
arcs. Therefore the sequence Dm, Dm−1, . . . can be constructed, yielding a
sequence D1, . . . , Dt of gradually larger Euler digraphs, where t ≤ m, and
where we can find a minimum solution for D1 in polynomial time.



186 M. Wahlström

It remains to show that the sequence is useful for iterative compression,
i.e., that fas(Di) ≤ fas(Di+1) ≤ fas(Di)+1 for every 1 ≤ i < t. Let i ∈ [t−1],
and let Fi be a feedback arc set for Di with at most k arcs. Assume that Di

was created by splitting off the arcs uv, vw in Di+1. Define F ′
i by replacing

uw in Fi by the pair uv, vw if uw ∈ Fi, otherwise let F ′
i = Fi. Then clearly

|F ′
i | ≤ k +1, and it is easy to verify that F ′

i is a feedback arc set for Di+1. In
the other direction, let Fi+1 be a feedback arc set for Fi+1, and construct Fi

as (Fi \ {uv, vw}) ∪ {uw} if Fi+1 ∩ {uv, vw} �= ∅, and otherwise Fi = Fi+1.
Then again it is easy to verify that Fi is a feedback arc set for Di; hence
if Di does not have a feedback arc set of size k then neither does Dj for
any j > i and we may reject the instance D. We conclude that we can solve
Feedback arc set for Euler (or balanced) digraphs using t ≤ m calls to a
solver for Compression feedback arc set for balanced digraphs, without
increasing the number of arcs or vertices or the value of k, as required. �

Finally, we note that the currently fastest algorithm for Feedback ver-

tex set on undirected graphs is actually based on an algorithm with a
running time of O∗(3w) where w is the treewidth of the graph, which yields
an FPT algorithm with a running time of O∗(3k) using iterative compression
[11]. Also note that the naive state space of the treewidth dynamic program-
ming algorithm for feedback vertex set would seem to need to enumerate
either induced forests on the vertices of the bag, or at the very least all parti-
tions of the vertices of the bag, both of which number 2Θ(w log w) for w vertices.
Therefore, it seems worthwhile to ask the following question separately from
the above.

Problem 4.4.7 Can Feedback arc set on Euler digraphs be solved in
O∗(2O(w)) time, where w is the width of a provided undirected tree decompo-
sition?

4.4.2 Arc-Disjoint Cycles

Next, we consider the Arc-disjoint cycles problem in Euler digraphs.
As we saw, this problem is hard on general digraphs; Gutin, Jones, Sheng
and Wahlström [21] showed the problem to be FPT on Euler digraphs. The
strategy is based on a win-win approach, where they show that for every Euler
digraph D, either D contains at least k pairwise arc-disjoint cycles, or D has
undirected pathwidth at most f(k) for some function f(k), in which case we
can solve the problem by dynamic programming. Gutin et al. also solve a
related problem called the Directed k-Chinese Postman Problem, but
we will focus on Arc-disjoint cycles.

The basis for the strategy is the following result of Reed, Robertson,
Seymour and Thomas [35], settling a conjecture by Younger [44].
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Theorem 4.4.8 ([35]) There is a function f : N → N such that every digraph
D contains either k pairwise arc-disjoint cycles or has a feedback arc set of
size at most f(k).

The vertex-version of the result also holds, i.e., every digraph D either
contains at least k pairwise vertex-disjoint cycles or has feedback vertex set
number of at most f(k), but the above version will be more useful to us.
We also remark that the function f(k) grows very rapidly; according to the
authors, f(k) is an iterated exponential whose height is bounded by another
iterated exponential. Therefore, the resulting FPT algorithm we describe,
which uses this theorem, will be a purely theoretical result, showing that the
problem is FPT but without giving a running time bound that would be
practically useful.

At a high level, the algorithm goes as follows. Let D be an Euler digraph
and k an integer. If D contains k cycles then the instance is positive; if not,
then by Theorem 4.4.8 D has a feedback arc set of size at most f(k), and by
Lemma 4.4.5 it has undirected cutwidth, and thereby undirected pathwidth,
at most 2f(k). Therefore, a decision algorithm could compute f(k), or an
upper bound on it; use the Feedback arc set algorithm with parameter
f(k) to check whether D has a “small” feedback arc set; and use the feedback
arc set, if it exists, to compute a bounded width path decomposition of D.
The path decomposition can then be used as the basis for a standard dynamic
programming algorithm. If the FAS algorithm instead signals that fas(D) >
f(k), then by Theorem 4.4.8 the instance must be positive.

To turn this into a constructive algorithm, i.e., an algorithm that actu-
ally produces the cycles as an output, involves some surprising subtleties.
The usual approach to this problem would be via self-reducibility: Given an
algorithm that can detect the existence of an object in D, we can apply it
repeatedly to subgraphs of D until we find a subgraph D′ of D such that D′

contains the object but no strict subgraph of D′ does, at which point finding
the object is hopefully trivial.

This strategy has two obstacles in the current situation. First, the decision
algorithm would only apply to Euler digraphs, and an arbitrary subgraph of
D would in general not be Euler. Second, even the subgraph-minimal case,
when D contains k cycles but no strict subgraph of D does, is not necessarily
trivial.

Gutin et al. [21] solved the problem by using the FPT approximation algo-
rithm of Grohe and Grüber [18] mentioned earlier. This is an FPT algorithm
parameterized by k which on an input digraph D (not necessarily Euler) ei-
ther concludes that D does not contain k disjoint cycles, or returns at least
g(k) disjoint cycles, for some growing, unbounded function g(k). Combining
this result with Theorem 4.4.8 and with the Feedback arc set algorithm as
above yields a constructive FPT algorithm (see the paper for details). Here,
instead, we show a different approach, based on the splitting-off strategy as
in Lemma 4.4.6. We begin by noting the dynamic programming result from
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Gutin et al. [21]. (We note that this algorithm was developed for a more
general problem than cycle-packing, and therefore it is possible that the run-
ning time can be improved; but we will not investigate the question of fastest
running time.)

Lemma 4.4.9 ([21]) There is an algorithm that, given a digraph D, a vertex
ordering of D of undirected cutwidth p and an integer k, finds k arc-disjoint
cycles in D if they exist, and runs in time O∗(2(p+2)k).

Theorem 4.4.10 Let f∗(k) be the smallest value such that every Euler di-
graph contains either at least k arc-disjoint cycles or has a feedback arc set
number at most f∗(k). There is an FPT algorithm, parameterized by k, that
on input (D, k) in time O∗(22kf∗(k)) either returns k arc-disjoint cycles in
D or concludes that no such solution exists. The algorithm does not need to
know the value of f∗(k).

Proof: We proceed as in Lemma 4.4.6, and starting from Dm = D we com-
pute a sequence of gradually smaller digraphs, computing Di from Di+1 using
a simple splitting pair uv, vw ∈ A(Di+1). Let D′ be the transitive digraph
resulting at the end of this process. It is trivial to find a maximum cycle pack-
ing in D′, by Proposition 4.1.3 and since the arc set of a complete digraph on
t vertices decomposes into

(
t
2

)
arc-disjoint directed cycles of length 2. Note

that the number of cycles produced in this is also identical to the feedback
arc set number of D′. Hence, we either find at least k cycles in D′ or we can
construct a feedback arc set of D′ of size less than k.

Now we “unroll” the splitting-off sequence above as follows. Let the cur-
rent graph be Di, created from Di+1 by splitting off the arcs uv, vw. As a
loop invariant, for every graph Di we have either located k arc-disjoint cy-
cles, or Di contains fewer than k arc-disjoint cycles and we have computed
a minimum feedback arc set, necessarily of size at most f∗(k). If we have
found k arc-disjoint cycles in Di, then it is clear that this cycle packing can
be transformed to a cycle packing in the original graph D, by repeatedly
undoing the splitting-off operation. Hence, we assume that the instance Di is
negative, and let Fi be a minimum feedback arc set of Di, where |Fi| ≤ f∗(k).
As in Lemma 4.4.6, we produce a feedback arc set F ′

i of Di+1 of size at most
f∗(k) + 1, by replacing uw by uv, vw in Fi if uw ∈ Fi; we then use the al-
gorithm of Chen et al. [5] to compress F ′

i to a minimum feedback arc set
Fi+1 of Di+1. This gives us a vertex ordering of Di+1 of undirected cutwidth
p ≤ 2|Fi+1| ≤ 2f∗(k) + 2, and we can determine whether Di+1 contains k
arc-disjoint cycles using Lemma 4.4.9, in time O∗(22kf∗(k)). If Di+1 contains
k arc-disjoint cycles, then we can unroll the splitting-off sequence to produce
k arc-disjoint cycles in D; otherwise, |Fi+1| ≤ f∗(k) and the process can be
repeated. �

Finally, we note that the upper bound f(k) known on the relation between
the cycle-packing number and the feedback arc set number is potentially very
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far from being tight. In fact, even for general digraphs the best reported lower
bound is Ω(k log k) due to Alon, as reported by Reed et al. [35]. However, as
we have seen, the structure of cycles in Euler digraphs is much simpler than
in general digraphs. It seems worthwhile to pursue a tighter bound for this
special class.

Problem 4.4.11 Can the bound on f(k) be improved for Euler digraphs,
possibly to polynomial or even O(k log k)?

Finally, let us consider the existence of polynomial kernels for Arc-

disjoint cycles on Euler digraphs. It is tempting to once again look at the
undirected version of the problem, i.e., Edge-disjoint cycles, to heuris-
tically indicate whether a kernel is likely. In this case, we find that Edge-

disjoint cycles does have a polynomial kernel [3], and furthermore, by the
classical Erdős–Pósa result, the corresponding function f(k) in undirected
graphs has f(k) = O(k log k) (both in the edge- and vertex-versions) [12].
However, fundamentally these results rely upon statements about short girth
in undirected graphs (e.g., a graph of minimum degree 3 has girth O(log n)),
which does not transfer to the Euler digraph case.

Problem 4.4.12 Does Arc-disjoint cycles have a polynomial kernel on
Euler digraphs?

4.4.3 Additional Topics

Finally, we review a few additional topics regarding cycle-packings in Euler
digraphs.

Questions of arc-disjoint cycle-packing have been considered in extremal
graph theory. Alon, McDiarmid and Molloy [1] showed that every k-regular
digraph contains a packing of Ω(k2) arc-disjoint cycles, and conjectured that
this can be sharpened to

(
k+1
2

)
arc-disjoint cycles. They also give a con-

struction showing that this result would be tight. Let Ck
n, n ≥ 2k + 1, be the

digraph with vertex set {0, . . . , n−1} and all arcs uv where v = u+i (mod n),
i ∈ [k]. Then fas(Ck

n) =
(
k+1
2

)
, witnessed by the vertex ordering 0, . . . , n − 1,

and Ck
n contains

(
k+1
2

)
arc-disjoint cycles, since there are k arc-disjoint cycles

through the vertex n − 1, whose removal leave a graph isomorphic to Ck−1
n−1.

Brualdi and Shen [4] gave the following further conjectures.

Conjecture 4.4.13 Let k ≥ 2 be an integer. Every bipartite Euler digraph
with partition sizes m and n and at least mn/(k +1) arcs contains a cycle of
length at most 2k.

Conjecture 4.4.14 Every bipartite Euler digraph D = (V,A) with partition
sizes m and n contains a collection of |A|2/(4mn) arc-disjoint cycles.
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In particular, the latter conjecture specializes into the conjecture that
every Euler bipartite tournament decomposes into arc-disjoint 4-cycles.

Another question is the following.

Problem 4.4.15 For which Euler digraphs is the cycle-packing number equal
to the feedback arc set number?

Let us say that a digraph D packs if D contains fas(D) arc-disjoint
cycles. To what extent can we characterize Euler digraphs which pack? One
important result here is by Seymour [38], who showed that it holds for Euler
digraphs which can be linklessly embedded in 3-space. This can be viewed as
an “Euler generalization” of the result that all planar digraphs pack, which
follows from the Lucchesi–Younger theorem [31, 38].

This result also carries over to the weighted version, as follows. Let D =
(V,A) be a digraph (not necessarily Euler) that can be linklessly embedded
in 3-space, and let w : A → Z+ be a balanced set of arc-weights, i.e., for
every vertex v ∈ V ,

∑
uv∈A w(uv) =

∑
vw∈A w(vw). Then the arc-disjoint

cycle-packing number of D, with arc capacities w, and the weighted feedback
arc set number, with arc costs w, are the same.

But for the more general question, presumably asking which individual
digraphs D pack is too ambitious to expect a good answer. For general di-
graphs, a natural option is to restrict attention to a hereditary class of di-
graphs. For the non-Euler case, Guenin and Thomas [19] characterized the
class of digraphs D such that for every subdigraph H of D, the feedback
vertex set number and the vertex-disjoint cycle-packing number of H agree.
The characterization is in terms of a list of forbidden butterfly minors for the
class. Naturally, if the line graph of D belongs to this class, then D and every
subdigraph of D pack in the above sense. However, this does not take into
account the restriction that we are only concerned with Euler digraphs. For
example, consider a digraph D on six vertices ai, bi, i ∈ [3], with arcs aibi and
biaj , i �= j, i, j ∈ [3]. It is easily verified that this graph does not pack; it has
arc-disjoint cycle-packing number 1 but feedback arc set number 2. On the
other hand, consider the graph D′ which instead contains two copies of the
arcs aibi, i ∈ [3]. Then D′ is an Euler digraph, which decomposes into three
arc-disjoint 4-cycles, and with feedback arc set number three (for example,
the two arcs a1b1 and the arc b2a3). Thus D′ packs, and it can be verified
that every Euler subdigraph of D′ also packs. Thus in particular, a question
one could ask is, what is the class of Euler digraphs D such that every Euler
subdigraph of D packs? Regarding the nature of the characterization, con-
sider the following. Let H be an Euler digraph that does not pack. If D is
a digraph which has H as a topological minor, then it follows that D has
an Euler subdigraph that does not pack. The same does not appear to be
true for butterfly minors (although we have no counterexample, the “minor
model” of a butterfly minor is usually a non-Euler subdigraph, even when
the minor itself is Euler).
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Yet further options include considering richer operations than subgraphs,
e.g., considering graph classes closed under splitting-off operations (and re-
moval of loops, i.e., taking Euler subgraphs). This may be easier to answer,
on account of having a more powerful containment operation.

We refrain from explicitly singling out one of these questions as a main
open problem, as it is not clear to us whether any one of them will be more
productive or feasible than the others.

4.5 Linkages and Cut Problems

We now move on to variants of linkages and multiflow-type problems. The
results in this section are of mainly two variants. First, in Sections 4.5.1
and 4.5.2 we consider path-packing and unsplittable multi-commodity flow
type problems in the style of weak k-linkage, where the exact endpoints of
the paths we are asked to pack are specified. We will in particular show that
two-commodity flow admits a polynomial-time algorithm, and recall the
long-open question of whether weak k-linkage is FPT parameterized by k.

Then, in Sections 4.5.3 and 4.5.4 we consider an alternative setup, where
we are asked to find a maximum path-packing on a set of terminals according
to some condition, but it is not specified exactly how many paths of each type
we are required to pack. A main result here is the classical result that the
so-called free multiflow problem is in P on Euler digraphs. We observe
(as Frank did in the 1980s [16]) that, remarkably, this implies that Arc mul-

tiway cut is in P on Euler digraphs, a result that does not carry over even
to undirected Euler graphs. We also review some weighted generalizations of
this result.

4.5.1 Two-Commodity Flow

In this section, we consider problems related to Two-commodity flow and
Multi-commodity flow.

We will use the following formulation. Let D = (V,A) and H = (V, F )
be digraphs (not necessarily Euler), where D is referred to as the supply
graph and H as the demand graph. The goal is to find a set of arc-disjoint
paths in D meeting the demand of H, or equivalently, find a collection of
pairwise arc-disjoint cycles in D + H such that every cycle uses exactly one
arc from F and all arcs of F are covered by the cycles. We refer to the non-
isolated vertices of H as the terminals. Slightly abusing notation, we refer
to this as the weak k-linkage problem, although with input represented as
a pair of directed multigraphs (D,H) as above rather than in the equivalent
alternative representation previously defined in Section 1.6.

In general digraphs, this problem is NP-hard even when H consists of
just two arcs. In fact, for general digraphs, the only polynomial-time solvable
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cases of the problem reduce to standard s-t cuts via Menger’s theorem; see
the end of this subsection.

In this section, we show that when the graph D + H is Euler, then, effec-
tively, we can handle the case where H consists of two pairs of terminals. The
same result also extends to the arc-capacitated two-commodity flow problem,
in the case when the capacities of D + H are balanced; see later.

These results are due to Frank [16], who extended similar results from
undirected Euler graphs to the directed case. The proof below is essentially
from Frank.

The central result is that given a pair of digraphs (D,H) on vertex set
V , such that D + H is Euler and H is acyclic and consists of two pairs of
parallel arcs, the instance (D,H) of weak k-linkage is positive if and only
if it satisfies the directed cut criterion:

d+
D(X) ≥ d−

H(X) for all X ⊆ V. (4.1)

Clearly, this is a necessary condition. We show that it is also sufficient. We
say that a set X ⊆ V is a tight set if equality holds for X in the statement
above, i.e., d+D(X) = d−

H(X). For the duration of this proof, for any digraph
D we will define

d∗
D(A,B) = |(A \ B,B \ A)D| + |(B \ A,A \ B)D|,

i.e., d∗
D(A,B) counts the number of arcs with one end in A \ B and one in

B \ A, regardless of orientation. We begin with some statements about tight
sets.

Lemma 4.5.1 Let (D = (V,A),H = (V, F )) be an instance of weak k-
linkage such that D + H is Euler and the directed cut criterion (4.1) holds
for (D,H). Then the following hold.

1. If X ⊆ V is a tight set, then so is V \ X.
2. If X,Y ⊆ V are tight sets, then d∗

H(X,Y ) ≥ d∗
D(X,Y ) and if equality

holds then X ∩ Y and X ∪ Y are both tight sets.
3. If X,Y ⊆ V are tight sets, then d∗

H(X,V \ Y ) ≥ d∗
D(X,V \ Y ) and if

equality holds then X \ Y and Y \ X are both tight sets.

Proof: 1. Since D + H is Euler, we have

d+
D(X) + d+H(X) = d−

D(X) + d−
H(X)

for all X ⊆ V , from which the statement follows.
2. Recall that for any digraph and any vertex set X, we have

d+(X) + d+(Y ) = d+(X ∪ Y ) + d+(X ∩ Y ) + d∗(X,Y ),

and similarly for d−(X) and d−(Y ). Therefore, rearranging terms we get
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(d+D(X) − d−
H(X)) + (d+D(Y ) − d−

H(Y )) =
(d+D(X ∩ Y ) + d+D(X ∪ Y ) + d∗

D(X,Y )) −
−(d−

H(X ∩ Y ) + d−
H(X ∪ Y ) + d∗

H(X,Y )) =
(d+D(X ∩ Y ) − d−

H(X ∩ Y )) + (d+D(X ∪ Y ) − d−
H(X ∪ Y )) +

+d∗
D(X,Y ) − d∗

H(X,Y ) = 0,

where the whole expression equals 0 since X and Y are tight. Rewriting the
last line, we have

(d+D(X∩Y )−d−
H(X∩Y ))+(d+D(X∪Y )−d−

H(X∪Y )) = d∗
H(X,Y )−d∗

D(X,Y ),

where the left-hand side is non-negative.
3. This statement follows by combining the two previous ones. �

Theorem 4.5.2 Let (D = (V,A),H = (V, F )) be an instance of weak k-
linkage such that D +H is Euler, and H is acyclic and consists of two sets
of parallel arcs. Then (D,H) is a ‘Yes’-instance if and only if it satisfies the
directed cut criterion (4.1).

Proof: Let T = {s1, t1, s2, t2} be the terminals of H, and assume that F
consists of k1 > 0 arcs t1s1 and k2 > 0 arcs t2s2. Hence the task is equivalent
to packing k1 + k2 arc-disjoint paths in D so that k1 of these are from s1 to
t1 and k2 are from s2 to t2. We may assume that D has no isolated vertices
in V \T and every connected component of D +H intersects T . Also observe
that the result follows from Menger’s theorem if T intersects more than one
connected component of D + H; hence we assume that D + H is connected.

Assume for a contradiction that the theorem is false, and let (D,H) be a
minimum counterexample with respect to |A(D + H)|. Since it is clear that
the directed cut criterion is a necessary condition, this implies that (D,H)
is a negative instance that meets the directed cut criterion, and that the
theorem holds for every instance (D′,H ′) where |A(D′ + H ′)| < |A(D + H)|.

In particular, consider a pair of arcs xy, yz ∈ A(D) such that |{x, y, z}| =
3, i.e., when x, y, z are distinct. Let D′ be the result of splitting of xy, yz in
D. Then D′ + H is Euler, and either (D′,H) fails to meet the directed cut
criterion, or the instance (D′,H) is positive. But in the latter case, the paths
packed in D′ also exist in D, by expanding one arc xz (if used) into the two
arcs xy, yz; hence we conclude that for every such pair of arcs xy, yz ∈ A(D),
splitting off xy and yz will break the directed cut criterion. Now note first that
this is possible if and only if there is a tight set X with either X ∩{x, y, z} =
{y} or X ∩ {x, y, z} = {x, z}, and second, by Lemma 4.5.1 in fact both these
tight sets would exist. Furthermore, since d+D(X), d+D(V \X) > 0 (as evidenced
by the arcs xy, yz), we also have d−

H(X), d−
H(V \ X) > 0. Therefore, we find

that for every set X such that splitting off a pair of arcs breaks the directed
cut criterion at X, we have X ∩ T = {si, tj}, i �= j.
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We proceed with the proof. First consider the case when V = T . If D
contains an arc siti, i ∈ {1, 2}, then we can remove that arc together with a
copy of tisi from H, to produce a smaller instance (D′,H ′). It is easy to see
that the directed cut condition holds in (D′,H ′), therefore there is a path-
packing in D′, which can be extended by the additional arc siti to a solution
for (D,H), and we are done. We claim that we can find a pair of arcs su, uv in
D where s ∈ {s1, s2} and |{s, u, v}| = 3. Indeed, by the cut criterion we have
d+D(si) ≥ ki for i = 1, 2, and |({s1, s2}, {t1, t2})D| ≥ k1 + k2. The only case
where you cannot find the pair su, uv is if A consists entirely of arcs s1t2 and
s2t1, but in such a case we have d+D({s1, t2}) = 0 < d−

H({s1, t2}) = k1. Hence
su, uv exist, and as above, splitting off the pair will break the cut criterion,
showing that there are tight sets X, V \ X such that X ∩ {s, u, v} = {u}
and X ∩ T = {si, tj}, i �= j. Without loss of generality we may assume that
s = s1, so that X = {s2, t1} and {s, v} = {s1, t2}. But then there is no way
to select the arcs su, uv without using an arc siti, i ∈ {1, 2}. Hence if there
is a counterexample, it has T ⊂ V .

Now, let u ∈ V \ T such that there is an arc ux ∈ A for some x ∈ T ;
clearly such a vertex exists, and there is also at least one arc vu ∈ A, v �= x.
As before, we conclude that there must exist tight sets X, V \ X such that
X ∩ T = {si, tj}, {i, j} = {1, 2}, and {v, u, x} ∩ X = {u}. Also note that
since x ∈ T in fact X ∩ T is fixed by the condition that x /∈ X. For every
arc vu ∈ A, let Xv be a tight set proving that we cannot split off vu and
ux. Then for every pair of such sets Xa and Xb, since Xa ∩ T = Xb ∩ T we
have d∗

H(Xa,Xb) = 0, so by Lemma 4.5.1 both Xa ∪ Xb and Xa ∩ Xb are
tight. Let X be the intersection of all such sets. We claim that there must be
an arc v′u ∈ A such that v′ ∈ X, v′ �= u. Assume not, and consider the set
X ′ = X \ {u}. Then this set has d−

H(X ′) = d−
H(X) and d+D(X ′) < d+D(X ′),

contrary to the directed cut criterion. But now splitting off v′u and us cannot
break the directed cut criterion, since X ⊆ Xv′ and v′ ∈ X. This gives us a
path packing in (D′,H) which can easily be converted to a path packing in
(D,H) of the same size. �

As Frank observes, this proof suggests an algorithm for finding such a
path-packing: if the directed cut criterion does not apply, reject the instance.
If there is an arc siti in D and tisi in H, then remove this pair of arcs and
continue. Otherwise, find a pair of arcs uv, vw that can be split off without
breaking the directed cut criterion and recursively find a path packing in the
resulting instance (D′,H); then finally, if the new arc uw is used in one of
the paths in D′, replace it by the old arcs uv, vw. This process will run in
polynomial time, assuming the ability to test the directed cut criterion.

Lemma 4.5.3 The directed cut criterion for the instances H considered here
can be tested with three max-flow computations.

Proof: Let X ⊆ V , and consider the cases for d−
H(X). If d−

H(X) = 0, then the
cut criterion holds for X. If d−

H(X) = ki but d+D(X) < ki, then X represents
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an arc-cut of size less than ki from si to ti for i ∈ {1, 2}, which can be tested
via max-flow computations. Finally, if d−

H(X) = k1 + k2, then X represents
an arc-cut of size less than k1 + k2 from {s1, s2} to {t1, t2}, which can be
tested with a max-flow computation by adding a new meta-source s and a
meta-sink t. �

Finally, Frank shows a strongly polynomial time solution for the weighted
version of the problem, Two-commodity flow. In this problem, the input
is a digraph D = (V,A) with an arc capacity function c : A → Z+ as well
as ordered request pairs (si, ti) with demand values ki, i ∈ {1, 2}, with the
condition that at every vertex, the sums of incoming and outgoing capacities
and demands are equal; equivalently, replacing each arc a by c(a) parallel
copies and adding ki copies of the arc tisi defines an Euler digraph. We refer
to this as a balanced two-commodity flow instance. Note that D + H itself
does not need to be Euler. The algorithm uses the same strategy as above,
using a weighted version of the splitting operation, with some additional work
required to prove that the number of steps is bounded by a polynomial. The
proof, as above, is based on reasoning about the structure of tight sets, and
shows that any sequence of weighted splitting operations has polynomially
bounded length.

Theorem 4.5.4 ([16]) The Two-commodity flow problem can be solved
in strongly polynomial time for balanced instances.

We will consider the more general weak k-linkage question later in this
section, but for now we wrap up by recalling a characterization by Frank of
when the directed cut criterion is a necessary and sufficient condition.

Let a star be a directed multigraph where there is either a common tail s
to all arcs, or a common head t to all arcs. It is not hard to see that (D,H)-
Path Packing can be solved via a max-flow computation if H is a star,
hence the problem is in P. Fortune, Hopcroft and Wyllie [15] showed that
for general digraphs, the converse is true – for any fixed digraph H which
is not a star, (D,H)-Path Packing is NP-hard. For Euler digraphs, Frank
showed the following.

Theorem 4.5.5 ([16]) Say that the directed cut criterion solves H for a
directed multigraph H if, for every digraph D such that D + H is Euler, the
instance (D,H) of weak k-linkage is positive if and only if the directed
cut criterion is met. Then for any H, the directed cut criterion solves H if
and only if H is the (arc-disjoint) union of two stars.

Proof: Assume first that H is the union of two stars. We convert (D,H) into
an equivalent instance of two-commodity flow. For each star with a common
tail ti to the arcs, introduce a new vertex si, and replace every arc tiv in H
by an arc tisi in H and an arc siv in D. For a star with a common head si,
instead introduce a new vertex ti in the same way. This reduces to the case
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where H consists of ki arcs tisi for i = 1, 2. If the resulting graph H is not
acyclic, we can additionally introduce vertices s′

i, t′i with ki arcs s′
isi and tit

′
i

in D, and replace the arcs tisi in H by t′is
′
i. It is clear that this preserves the

property of D + H being Euler and the existence of a solution, and therefore
the resulting instance can be solved by the algorithm above.

In the other direction, it is easy to observe that if H is solved by the
directed cut criterion, then so is every subgraph of H. Hence, it is sufficient
to identify a constant number of digraphs H which will occur as a subgraph
in every graph H that cannot be decomposed into two stars, and for each
such H show an instance where the directed cut criterion is insufficient. Such
a list of instances is provided by Frank [16]. �

4.5.2 General Arc-Disjoint Paths Problems

We now consider the more general question of when weak k-linkage is
tractable for Euler digraphs. This question has several variants. One may
consider the case when D + H is Euler, or when D is already Euler (or, in-
deed when both of D and H are Euler separately); one may consider either
the basic weak k-linkage problem or the weighted multi-commodity flow
variant (where arcs of D and H have capacities, respectively demands); and
one may consider H to be one-time fixed or provided as problem input. There
have also been several investigations into the complexity of the problem un-
der various restrictions, including Ibaraki and Poljak [23], Vygen [43], Naves
and Sebö [33], and Frank [17].

For the negative cases, we begin by noting that the three-commodity flow
problem is easily seen to be NP-hard when D is Euler but H is not. Let
(D,H) be the input of weak k-linkage where H consists of two arcs; as
noted, this is an NP-hard problem on general digraphs. Let D′ be the Euler
two-vertex extension of D, with new vertices x and y, and create a demand
graph H ′ from H by adding the vertices x and y as well as μD′(x, y) copies of
the arc yx. Then clearly, (D,H) is positive if and only if (D′,H ′) is positive,
and D′ is Euler (although D′ +H ′ is not). To reach a situation where D′ +H ′

is Euler, we can use a slight variation of this (used by Ibaraki and Poljak [23]).

Lemma 4.5.6 Weak k-linkage is NP-hard when D + H is Euler and the
underlying digraph of H (where all arc multiplicities are reduced to 1) has
three arcs.

Proof: Recall that weak 2-linkage is NP-hard even when A(H) =
{st, ts}. We show a reduction from this problem to an instance (D′,H ′) of
weak k-linkage where D′ +H ′ is Euler. Let (D,H) with H as above be an
instance of weak 2-linkage, and let D′ be the Euler two-vertex extension
of D + H, adding vertices x and y. Now let H ′ be H plus all copies of the
arc xy in D′, and remove the arcs xy from D′. We claim that (D′,H ′) is
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a positive instance of weak k-linkage if and only if (D,H) is a positive
instance of weak 2-linkage.

First, assume that (D′,H ′) is positive, and let P be the corresponding
collection of paths. Then P contains an st-path P1 and a ts-path P2, both
of which are contained in D′. But since x and y are a sink, respectively a
source, in D′, both P1 and P2 must exist in D as well.

In the other direction, assume that D contains an arc-disjoint pair of
an st-path P1 and a ts-path P2. Then P1 + P2 form an Euler digraph, and
therefore D′′ := (D′ + H ′) − (P1 + P2 + st + ts) is balanced. It follows that
there are μD′′(x, y) arc-disjoint cycles through y in D′′, and each of these
cycles must use an arc xy from H ′. Removing the arc xy from each of these
cycles yields a collection of yx-paths in D′′ that together with P1 and P2

forms an arc-disjoint path-packing in D′. �

Hence, in particular, the results on Two-commodity flow cannot be
extended to three or more commodities. Vygen [43] shows that the problem
is still NP-hard if D is additionally assumed to be acyclic.

For the case when H is fixed, say |A(H)| = k, the complexity of the
problem is notoriously open. The case when k = 3 was solved by Ibaraki and
Poljak [23]. Specifically, they take the following approach. Let H be an Euler
digraph with disjoint arcs tisi, i = 1, 2, 3. Then we can reduce the instance
(D,H) of weak 3-linkage to an instance where H = C3 as follows. Add
three terminals x, y, z to D, and arcs xs1, t1y, ys2, t2z, zs3, t3x. Then
the original instance has a weak 3-linkage if and only if the resulting graph
has arc-disjoint xy-, yz- and zx-paths. We then find that the problem has
a solution if there is an Euler trail of D that, starting from x, visits the
new terminals in the order x, y, z (i.e., a trail such that the first visit to y
after the start at x comes before the last visit to z). They are then able to
solve the problem in polynomial time by carefully investigating the structure
of minimal negative instances. Thus weak 3-linkage is in P if D + H is
Euler.

For general H, as far as we know, the possibilities range from the problem
being NP-complete for k = 4 to the problem being FPT parameterized by
k.

Problem 4.5.7 What is the status of weak k-linkage for inputs (D,H)
where D + H is Euler, parameterized by k? Is it FPT or in XP?

A slight variant was considered by Frank, Ibaraki and Nagamochi [17].
They consider the problem variant where the input is an Euler digraph D and
an undirected graph H, say E(H) = {ab, cd}, and the task is to find a pair
of arc-disjoint paths P1, P2 in D where P1 is either an ab-path or a ba-path,
and P2 either a cd-path or a dc-path. They show that this problem can be
solved in polynomial time, via an extensive investigation into the structure
of minimal infeasible instances.
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They note that this problem generalizes the result of Ibaraki and Nag-
amochi, as follows. Let (D,H) be an input to weak 3-linkage where D+H
is Euler and A(H) = {tisi | i ∈ [3]}. Create a graph D′ from D by adding
four new vertices a, b, c, d and arcs t1c, cs2, t2d, da, as3, t3b, bs1. Observe
that D′ is Euler. Now we may observe the following. Any ba-path in D′ will
exhaust all arcs incident with d in D′, and similarly a dc-path will exhaust
a. Thus if the instance is positive, then P1 is an ab-path and P2 is a cd-
path. Then P2 + da + P1 form a directed cb-path, hence since D′ is Euler,
D′ − (P2 + da + P1) contains a directed bc-path. It is clear that these paths
together must form a weak 3-linkage for D.

We end with a different question, again via Frank [16].

Problem 4.5.8 Is weak k-linkage with input (D,H) in P if D + H is
Euler and planar?

The undirected version of this question is known to hold, i.e., Edge-

disjoint packing for undirected graphs, with input (G,H), is in P if G+H
is planar. In fact, for this version, the problem is solved by the undirected
version of the cut criterion (4.1). (The corresponding statement does not hold
for the directed version [16].)

4.5.3 Free Multiflow and Arc Multiway Cut

We now turn to a slightly different model of path-packing problems, and in
the process we will cover a less well known, but very interesting result due to
Frank [16] on a polynomial-time solvable multicut problem on Euler digraphs.

The general setup here is as follows. We have a digraph D = (V,A) and
a set of terminals T ⊆ V , but instead of having an exact set of path requests
(encoded as a digraph H over T , as in the previous section), we have a notion
of allowed or disallowed terminal-terminal paths, and we are looking for a
maximum arc-disjoint path-packing that consists entirely of “allowed” paths.
Somewhat more generally, we can also introduce weights for paths, depending
on their type, and ask for an arc-disjoint path-packing of maximum weight.

Let us begin with the Free multiflow problem, where every simple
terminal-terminal path is “allowed” under the above notion. More concretely,
the input to Free multiflow is a digraph D = (V,A) and a set of terminals
T ⊆ V , and the task is to find a maximum arc-disjoint packing of directed
paths in D where each path goes between distinct terminals in T . Frank
showed that if D is Euler, then the problem has a simple min-max formula,
as follows. For disjoint sets X,Y ⊂ V (D) in a digraph D, let λD(X,Y ) denote
the maximum number of arc-disjoint paths from X to Y in D. We will slightly
abuse notation and use single vertices in place of singleton sets (e.g., we write
t rather than {t}). Then the maximum number of paths in the free multiflow
packing equals
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∑

t∈T

λD(t, T − t),

the sum of the sizes of isolating cuts in D.
For general digraphs, the Free multiflow problem is NP-hard for

|T | ≥ 2 as it generalizes the weak 2-linkage problem, but for undi-
rected graphs there are several classical polynomial-time results in this di-
rection. The most immediately corresponding result is due to Lovász [30],
who proved the corresponding statement for undirected Euler graphs, and on
which Frank’s result is based. However, multiple more general results exist,
including Mader’s theorem on packing internally vertex-disjoint terminal-
terminal paths in general undirected graphs (see Schrijver [37]), as well as
generalizations in terms of packing paths in group-labelled graphs (see Chud-
novsky, Geelen, Gerards, Goddyn, Lohman, and Seymour [8]) and in general
permutation-labelled graphs (see Pap [34]).

However, there is one unique feature of the Euler digraph result that is
not mirrored in any of the variants of the problem on undirected graphs
(even Euler graphs). For each of the above packing problems, one can define
a natural dual cut problem (or, alternatively expressed, a path-hitting
problem) of finding a minimum set X of edges (or arcs, or vertices) such
that removing every element of X leaves a graph with no allowed paths of
the respective type. Concretely, the dual to the Free multiflow problem
would be the classical problem Arc multiway cut, of finding a minimum
set X of arcs in a digraph D such that D − X contains no terminal-terminal
path. Whereas the undirected version, Edge multiway cut, is NP-hard
on undirected Euler graphs for 3 terminals, the min-max theorem for Euler
digraphs directly implies that for this graph class, Arc multiway cut is in
P.

For the rest of this section, let D = (V,A) be an Euler digraph and T ⊆ V
a set of terminals. Let T = {t1, . . . , tp} for p = |T |, and recall that for each
i ∈ [p], di = λD(ti, T −ti) denotes the maximum number of arc-disjoint paths
from ti to the remaining terminals.

We will prove the following theorem, from which an algorithm for Arc

multiway cut will follow easily.

Theorem 4.5.9 Let D = (V,A) be an Euler digraph and T ⊆ V a set of
terminals. There is an arc-disjoint packing P of terminal-terminal paths in
D such that each terminal ti ∈ T is the starting vertex of di paths in P.

Theorem 4.5.9 will in turn follow from the following statement.

Theorem 4.5.10 Let vw ∈ A be an arbitrary arc where v /∈ T . Then there
is an arc uv ∈ A such that splitting off uv and vw will not change the value
of di for any i ∈ [p].

Proof: Recall that d+H(S) denotes the number of arcs out of S in a digraph
H.
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Let uv, vw ∈ A be an arbitrary pair of arcs, and assume that splitting
them off in D decreases the value of di for some i ∈ [p]. Let D′ be the
result of the splitting-off operation. Then there exists a set Vi ⊆ V such
that Vi ∩ T = {ti}, and d+D′(Vi) < di in D′, which is true if and only if
d+D(Vi) = di and Vi ∩ {u, v, w} ∈ {{v}, {u,w}}. We say that the set Vi blocks
the splitting off uv, vw in D. Therefore, similarly to the concept of tight sets
in the previous section, let us refer to a set Vi ⊆ V as i-critical if Vi∩T = {ti}
and d+D(Vi) = di. A set U ⊆ V is critical if it is i-critical for some i ∈ [p]. We
make a few observations about critical sets.

Observation 1: For every i ∈ [p], the i-critical sets are closed under union
and intersection, and for two i-critical sets Vi, V ′

i , there is no arc between
Vi \ V ′

i and V ′
i \ Vi. This follows from the well-known submodularity of cuts

that for any X,Y ⊆ V we have

d+D(X) + d+D(Y ) ≥ d+D(X ∩ Y ) + d+D(X ∪ Y ),

with equality only if there are no arcs between their symmetric differences.
Observation 2: If Vi is i-critical and Vj is j-critical, i �= j, then Vi \ Vj

is i-critical and Vj \ Vi is j-critical, and there is no arc between Vi ∩ Vj and
V \ (Vi ∪ Vj). This follows similarly as above, with the additional ingredient
that for an Euler digraph D, we have d+D(S) = d+D(V \ S).

The proof now proceeds in two cases. In the first case, assume that there
is a critical set Vi, without loss of generality i-critical, such that v ∈ Vi and
w /∈ Vi. Let Vi be a minimal such set, and pick an arc uv ∈ A such that
u ∈ Vi. Such an arc must exist, as otherwise d+(Vi − v) < d+(Vi) = di. Let U
be a critical set that blocks the splitting off of uv and vw. First, assume that
v ∈ U ; hence u,w /∈ U . Then U is not i-critical, since otherwise U ∩ Vi ⊂ Vi,
contradicting the choice of Vi; but if U is j-critical, j �= i, then v ∈ U ∩ Vi

while w /∈ U∪Vi, which contradicts observation 2. Thus U∩{u, v, w} = {u,w}
But U cannot be i-critical, by observation 1 and the arc uv, and it cannot be
j-critical, i �= j, since Vi \ U ⊂ Vi, contradicting the choice of Vi. Thus the
first case is handled.

In the second case, let Vi be a maximal critical set with w ∈ Vi, v /∈ Vi.
Assume that Vi is i-critical. Let uv ∈ A such that u /∈ Vi; this exists, since
otherwise d+(Vi + v) < d+(Vi) = di. Let U be a critical set that blocks the
splitting of uv and vw. Then U ∩ {u, v, w} = {u,w}, as otherwise the set
U brings us back to case 1. If U is i-critical, then U ∪ Vi is an i-critical set
contradicting the choice of Vi, but if not, then w ∈ U ∩ Vi and v /∈ U ∪ Vi,
which is a contradiction by observation 2. Therefore, in both cases we find
that there exists an arc uv such that uv and vw can be split off, and clearly if
neither case applies then there cannot exist a critical set blocking the splitting
off of uv and vw for any arc uv. �

The proof of the path-packing statement (Theorem 4.5.9) follows from
this, by first repeatedly splitting off arcs until every vertex except T is
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isolated, then unrolling these operations while maintaining a path-packing.
Frank notes that a capacitated version can also be shown to be solvable in
strongly polynomial time.

The following is an easy corollary of the path-packing result.

Theorem 4.5.11 The Arc multiway cut problem on Euler digraphs is
polynomial-time solvable.

Proof: Clearly, the solution must have cardinality at least
∑p

i=1 di, by the
existence of a path packing. But it is not difficult to produce a solution of
exactly this size. For i = 1, . . . , p, let Vi be the i-critical set of minimum
cardinality. By observation 1 of the previous proof these sets are unique, and
by observation 2 the sets are also pairwise disjoint. Thus the set

⋃
i(Vi, V \

Vi)D is an arc multiway cut of cardinality matching the size of a path-packing,
and therefore clearly optimal. �

As noted, the remarkable aspect of this result is that no comparable state-
ment can be found for undirected graphs. If G is undirected and Euler, then
even though there is a min-max result corresponding to Theorem 4.5.9 for
the size of a path packing, there is no corresponding way to find a cut that in-
tersects every path only once. In particular, the collection of closest min-cuts
would hit some paths twice.

Finally, we have the following variant of Theorem 4.5.10, which generalizes
a result of Lovász [30] for undirected Euler graphs, and has been shown
independently by Frank [16] and by Jackson [25]. The proof is in the same
spirit as Theorem 4.5.10.

Theorem 4.5.12 Let D = (V,A) be an Euler digraph and let vw ∈ A. There
exists an arc uv ∈ A such that splitting off uv and vw does not affect the
value of λ(s, t) for any vertices s, t ∈ V − v.

4.5.4 General Integral Weighted Path Packings

We now review a weighted generalization of Free multiflow due to Hirai
and Koichi [22]. To present the result, we need to introduce several notions.

First, we define networks. We will use a slightly different notion of a
network than that given in Section 1.9, so to avoid ambiguity we introduce
a different term. A terminal network is a triple (D,T, c) consisting of a
digraph D = (V,A), a set of terminals T ⊆ V , and a set of integer arc
capacities c : A → Z+. We say that the network is balanced at v for a
vertex v ∈ V if ∑

uv∈A

c(uv) =
∑

vw∈A

c(vw).

A balanced terminal network (respectively inner balanced terminal
network) is a network which is balanced at every vertex v (respectively at
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every vertex v ∈ V \T ). This definition of a network differs from the usual one
in that instead of an explicit balance vector, we have a set of terminals over
which a flow is to be maximized. A multiflow over T is a pair (P, λ) where
P is a collection of directed paths with all endpoints in T , λ : P → R+ a set
of flow values for the paths in P, and (P, λ) satisfy the capacity constraints,
i.e., ∑

P∈P:a∈P

λ(P ) ≤ c(a)

for every arc a ∈ A. Finally, a directed distance on T is a function μ :
T × T → R+ such that μ(x, x) = 0 for every x ∈ T . Note that the triangle
inequality is not required to hold. For a directed path P , starting and ending
at terminals s and t in T , we let μ(P ) = μ(s, t). For a directed distance μ
on T and a multiflow (P, λ) over T , the μ-weighted flow value of (P, λ)
equals ∑

P∈P
λ · μ(P ).

The μ-weighted maximum multiflow problem (μ-MFP) is then defined
as the problem where the input is a terminal network (D,T, c) and a directed
distance μ on T , and the task is to find a multiflow (P, λ) over T which
maximizes the μ-weighted flow value.

This problem will in general have a fractional optimum, but for some
directed distances μ, the system will have an integral optimum for every bal-
anced terminal network – for example, if we fix a directed distance μ where
μ(s, t) = 1 for all s, t ∈ T , s �= t, then μ-MFP corresponds to the Free mul-

tiflow problem, and the statement would follow from Theorem 4.5.9. The
results of Hirai and Koichi imply a characterization of all directed distances
μ such that μ-MFP has an integral optimum for every balanced terminal
network.

The characterization is as follows. Let Γ be an oriented tree, and α a set
of non-negative (real-valued) edge weights of Γ . We define a directed metric
dΓ,α on V (Γ ) by letting dΓ,α(u, v) for u, v ∈ V (Γ ) be the sum of α(e) over
all edges e of E(Γ ) that are oriented from u to v in the path Puv from u to
v in Γ . An oriented tree realization of a directed distance μ on T is a
triple (Γ, α, {Ft}t∈T ) where Γ is an oriented tree, α : E(Γ ) → R+ a set of
of non-negative edge lengths of Γ , and {Ft}t∈T a collection of subtrees of Γ ,
such that

μ(s, t) = min
a∈Fs,b∈Ft

dΓ,α(a, b)

for all pairs s, t ∈ T .

Theorem 4.5.13 ([22]) Let μ be a directed distance on a set of terminals T .
Then the μ-MFP is integral for every balanced network (D,T, c) if and only
if μ has an oriented tree realization.
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Let us consider a few examples. First, let Γ consist of a single arc st, with
α(st) > 0. Then dΓ (s, t) = α(st) > 0, while dΓ,α(t, s) = 0 since the arc st
is traversed in the wrong direction. Hence μ-MFP reduces to the usual max-
flow problem for any directed distance μ realized by Γ . For another example,
the Free multiflow problem can be realized by a unit-weighted star Γ ,
with all arcs oriented into the root and with the collection {Ft}t∈T being a
bijection between T and the leaves of Γ .

Hirai and Koichi also give a matching min-max theorem for the positive
cases, in terms of packing cuts in the oriented tree that realizes μ; we omit
the details here.

References

1. N. Alon, C. McDiarmid, and M. Molloy. Edge-disjoint cycles in regular di-
rected graphs. J. Graph Theory, 22(3):231–237, 1996.

2. J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications.
Springer-Verlag, London, 2nd edition, 2009.
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