
2. Tournaments and Semicomplete Digraphs

Jørgen Bang-Jensen and Frédéric Havet

The class of tournaments is by far the most well-studied class of digraphs
with many deep and important results. Since Moon’s pioneering book in
1968 [146], the study of tournaments and their properties has flourished. A
search in May 2017 on MathSciNet for ‘tournament’ and 05C20 gives more
than 900 hits. Clearly we can only cover a small fraction of the research on
tournaments, but we believe that our coverage will stimulate new research
on this beautiful class of digraphs.

Being a super-class of tournaments, the class of semicomplete digraphs
inherits many of the properties of tournaments, but there are important dif-
ferences and we shall try to point out such when relevant. Due to space limi-
tations we will not mention all places where a result for tournaments extends
to semicomplete digraphs. Note that the results of Section 2.3 imply that re-
sults for k-strong tournaments often imply similar results for (3k − 2)-strong
semicomplete digraphs.

In Section 2.1 we introduce some special tournaments that occur in sev-
eral proofs and results in the chapter. Section 2.2 gives some basic proper-
ties of tournaments and semicomplete digraphs such as the fact that they
are always traceable. The short Section 2.3 is about spanning tournaments
of high connectivity in highly connected semicomplete digraphs. In Section
2.4 we give two very different proofs for the tournament case of the conjec-
ture of Seymour (and Dean in the case of tournaments) that every oriented
graph has a vertex with distance 2 to at least as many vertices as it has out-
neighbours. Section 2.5 deals with linkages and disjoint cycles in tournaments
and semicomplete digraphs. In Section 2.6 we discuss further topics related to
Hamiltonian paths and cycles and give a proof of Redéi’s theorem that every
tournament has an odd number of Hamiltonian paths. Section 2.7 is devoted
to oriented subgraphs in tournaments, in particular to oriented Hamiltonian
paths and cycles in tournaments. In Section 2.8 we study vertex-partitions
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of semicomplete digraphs where each part has to have certain properties,
e.g. being strongly connected or being acyclic. Section 2.9 deals with results
of feedback sets, that is, sets of vertices or arcs whose deletion makes the
resulting digraph acyclic. Even for tournaments, finding such a set of mini-
mum cardinality is NP-complete. In Section 2.10 we study the problem of
how many arcs one may delete from a k-(arc)-strong tournament without
reducing the connectivity of the resulting digraph. The answer is that we
may delete surprisingly many. Section 2.11 is also on connectivity, but this
time the operation we consider is that of either reversing arcs or of deori-
enting arcs, that is, adding an arc oppositely oriented to an existing arc. In
Section 2.12 we consider arc-disjoint spanning subdigraphs of semicomplete
digraphs. This includes the famous Kelly conjecture that the arc set of every
regular tournament decomposes into Hamiltonian cycles. Section 2.13 is on
minors of semicomplete digraphs. It turns out that for this class of digraphs
the notion of a minor, defined as being any digraph that can be obtained by
contracting strong subdigraphs, leads to results in the same vein as the graph
minor theory of Roberson and Seymour. Finally, in Section 2.14 we briefly
survey a few further topics on tournaments.

We will use the shorthand names n-tournament and n-semicomplete
digraph for a tournament, resp. semicomplete digraph on n vertices. Through-
out this chapter, except for Section 2.7, paths and cycles are always assumed
to be directed.

2.1 Special Tournaments

We first define a number of special tournaments that will be referred to later.
Let n ≥ 1 be an integer. The unique acyclic n-tournament is the transi-
tive tournament, denoted TTn. This has an ordering (v1, v2, . . . , vn) of its
vertices so that vivj is an arc whenever 1 ≤ i < j ≤ n.

A tournament is almost transitive if it is obtained from a transitive
tournament with acyclic ordering (v1, v2, . . . , vn) (i.e., vi → vj for all 1 ≤ i <
j ≤ n) by reversing the arc v1vn.

The random n-tournament RTn is the (random) digraph one obtains
from the complete graph Kn by choosing one from each of the two possible
orientations of each edge uv of Kn with probability 1

2 for each of the two
possible orientations.

Recall that an n-tournament is regular if n = 2k + 1 for some k ≥ 1
and every vertex has in- and out-degree k. Below we describe two important
examples of classes of regular tournaments.

Let Z2k+1 be the set of integers modulo 2k + 1 and let J be a subset of
Z2k+1 \ {0} such that for every i ∈ Z2k+1 \ {0}, we have i ∈ J if and only
if −i �∈ J . Then the circulant tournament CT2n+1(J) is the tournament
whose vertex set is Z2k+1 and ij is an arc if and only if j − i ∈ J . For some
examples of papers on circulant tournaments, see [14, 47, 136, 149].
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For each prime power q of the form q = 4k+3, the Paley tournament Pq

is the q-tournament whose vertices are the elements of the finite field GF (q)
with q elements. There is an arc from x to y if and only if y −x is a non-zero
square in the field. E.g. when q = 7 the vertex set of P7 is {0, 1, 2, 3, 4, 5, 6}
and ij is an arc of P7 if and only if ((j − i) mod 7) ∈ {1, 2, 4}. For examples
of papers dealing with Paley tournaments, see e.g. [44, 46, 47, 51].

2.2 Basic Properties of Tournaments and Semicomplete
Digraphs

We start with a very simple but important observation which is proved by a
simple counting argument.

Proposition 2.2.1 Every semicomplete digraph on n vertices contains a ver-
tex with out-degree at least �n

2 � and a vertex with in-degree at least �n
2 �.

Proof: Let T be a semicomplete digraph on n vertices. We have

∑

v∈V (T )

d+(v) =
∑

v∈V (T )

d−(v) = |A(T )| ≥
(

n

2

)
= n · n − 1

2
.

Thus there is a vertex with out-degree (resp. in-degree) at least 	n−1
2 
 = �n

2 �.
�

Proposition 2.2.2 Let k be a positive integer. Every semicomplete digraph
has at most 2k − 1 vertices of out-degree less than k.

Proof: Let D be a semicomplete digraph and let X be the set of vertices of
out-degree less than k in T . The number of arcs in the subdigraph D[X] is
at most |X|(k − 1). On the other hand, D[X] has at least

(|X|
2

)
arcs. Hence,

|X|(|X| − 1)
2

≤ |A(D[X])| ≤ |X|(k − 1),

implying that |X| ≤ 2k − 1.

Using Proposition 2.2.1 we can now give a lower bound on the largest
transitive subtournament in any tournament.

Proposition 2.2.3 Every n-tournament contains a transitive subtournament
TTk with k ≥ 	log n
.

Proof: The following algorithm produces such a transitive subtournament:
Let T ′ := T and R = ∅. While T ′ has at least one vertex: let v be a vertex
of maximum out-degree in T ′ and let R := R ∪ {v}. By Proposition 2.2.1,
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|N+
T ′(v)| ≥ �n

2 �. Hence, letting T ′ := T ′[N+(v)], the new T ′ has size at least
�n
2 �. Repeat the step above for T ′.

Clearly the set R returned by this algorithm induces a transitive subtour-
nament of T . To see that R has size at least 	log n
, consider the integer r
satisfying 2r ≤ n < 2r+1. After step number i in the algorithm above we
have 2r−i ≤ |V (T ′)|, from which it follows that |R| ≥ r + 1 ≥ 	log n
 holds
at the end. 
�

One of the first results on tournaments is the following, due to Rédei. See
Section 2.6 for a beautiful generalization of this, also due to Rédei.

Theorem 2.2.4 (Rédei’s Theorem [158]) Every tournament contains a
Hamiltonian dipath.

Proof: By induction on the number of vertices. The statement is trivial
for the 1-tournament. Let n ≥ 2, let T be an n-tournament and let v be
a vertex of T . By the induction hypothesis, T 〈N−(v)〉 and T 〈N+(v)〉 have
Hamiltonian directed paths P− and P+. Thus P−vP+ is a Hamiltonian
dipath of T 1. 
�

Since we can obtain a tournament from a semicomplete digraph by re-
moving an arbitrary arc from each 2-cycle, we obtain that Theorem 2.2.4 also
holds for semicomplete digraphs (and this can also be proved directly with
the same proof as above).

Corollary 2.2.5 Every semicomplete digraph has a Hamiltonian path.

There is no analogue to Theorem 2.2.4 for Hamiltonian dicycles since the
transitive tournaments are acyclic and in particular have no Hamiltonian
dicycle. More generally, no non-strong tournament has a Hamiltonian dicycle
because it has a vertex-partition (L,R) such that L�→R (e.g. if we take L to
be the vertices of the initial strong component and L to be the remaining
vertices). In contrast, all strong tournaments have a Hamiltonian directed
cycle as shown by Camion [56].

Theorem 2.2.6 (Camion’s Theorem [56]) Every strong tournament has
a Hamiltonian dicycle.

A simple proof of Camion’s Theorem, due to Moon [144], actually proves
a stronger result.

Theorem 2.2.7 (Moon’s Theorem [144]) Every strong tournament is
vertex-pancyclic.

1 Note that here we allowed one of the two tournaments to be empty, in which
case the corresponding path is also empty
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Proof: Let x be a vertex in a strong tournament T on n ≥ 3 vertices. The
proof is by induction on k. We first prove that T has a 3-cycle through x.
Since T is strong, each of the sets O = N+(x) and I = N−(x) are non-empty
and the set (O, I) is also non-empty. Let yz ∈ (O, I). Then xyzx is a 3-cycle
through x. Let C = x0x1 . . . xt be a dicycle in T with x = x0 = xt and
t ∈ {3, 4, . . . , n − 1}. We prove that T has a (t + 1)-cycle through x.

If there is a vertex y ∈ V (T ) \ V (C) which dominates a vertex in C and
is dominated by a vertex in C, then it is easy to see that there exists an
index i such that xi → y and y → xi+1. Therefore, C[x0, xi]yC[xi+1, xt] is a
(t + 1)-cycle through x. Thus, we may assume that every vertex outside of
C either dominates every vertex in C or is dominated by every vertex in C.
The vertices of V (T ) \ V (C) that dominate all vertices of V (C) form a set
R; the rest of the vertices in V (T ) \ V (C) form a set S. Since T is strong,
both S and R are non-empty and the set (S,R) is non-empty. Hence, taking
sr ∈ (S,R), we see that x0srC[x2, xt] is a (t + 1)-cycle through x = x0. 
�

The following is an easy consequence of Theorem 1.7.3.

Proposition 2.2.8 Every strong semicomplete digraph on n ≥ 3 vertices
contains a strong spanning tournament.

Together with Moon’s theorem, Proposition 2.2.8 implies the following.

Theorem 2.2.9 Every strong semicomplete digraph is vertex-pancyclic. 
�

This easily implies the following.

Corollary 2.2.10 Every strong semicomplete digraph D on at least four ver-
tices has two distinct vertices v1, v2 such that D − vi is strong for i ∈ [2].

This is the best possible as shown by the tournament that one obtains
from a transitive tournament TTk on at k ≥ 3 vertices by reversing the arcs
of the unique Hamiltonian path.

2.2.1 Median Orders, a Powerful Tool

Now we introduce a very useful tool for proving results about tournaments
and other classes of digraphs.

A median order of a digraph D is a linear order (v1, v2, . . . , vn) of its
vertex set such that |{(vi, vj) : i < j}| (the number of arcs directed from left
to right) is as large as possible. In the case of a tournament, such an order
can be viewed as a ranking of the players which minimizes the number of
upsets (matches won by the lower-ranked player). As we shall see, median
orders of tournaments reveal a number of interesting structural properties.
Let us first note two basic properties of median orders of tournaments whose
easy proofs are left to the reader.
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Lemma 2.2.11 Let T be a tournament and (v1, v2, . . . , vn) a median order
of T . Then, for any two indices i, j with 1 ≤ i < j ≤ n:

(M1) The suborder (vi, vi+1, . . . , vj) is a median order of the induced subtour-
nament T 〈{vi, vi+1, . . . , vj}〉 ;

(M2) The vertex vi dominates at least half of the vertices vi+1, vi+2, . . . , vj,
and vertex vj is dominated by at least half of the vertices vi, vi+1, . . . ,
vj−1.

In particular, each vertex vi, 1 ≤ i < n, dominates its successor vi+1. The
sequence v1v2 . . . vn is thus a Hamiltonian directed path, providing an alter-
native proof of Rédei’s Theorem (Theorem 2.2.4).

2.2.2 Kings

The second out-neighbourhood of a vertex v in a digraph D, denoted by
N++

D (v) or simply N++(v), is the set of vertices at distance 2 from v. In other
words, it is the set of vertices that are dominated by an out-neighbour of v
and are not in v ∪ N+(v). The dual notion of second in-neighbourhood
of a vertex v in a D is defined similarly and is denoted by N−−

D (v) or simply
N−−(v).

A king in a tournament T is a vertex v such that {v}∪N+(v)∪N++(v) =
V (T ). Landau [129] proved that every tournament has a king.

Theorem 2.2.12 ([129]) Every tournament has a king. More precisely, every
vertex with maximum out-degree is a king.

Proof: Let v be a vertex of maximum out-degree in a tournament T . Suppose
by way of contradiction that v is not a king. Then there exists a vertex w
in T that is dominated by no vertex of N+(v) ∪ {v}. Hence w dominates
N+(v) ∪ {v} and d+(w) ≥ d+(v) + 1, a contradiction. 
�

Havet and Thomassé demonstrated that the existence of a king in a tour-
nament can also be proved using median order.

Lemma 2.2.13 ([109]) Let T be a tournament. If (v1, v2, . . . , vn) is a median
order of T , then v1 is a king of T .

Proof: Consider vi for 2 ≤ i ≤ n. We shall prove that vi ∈ N+(v1) ∪
N++(v1). Assume that vi is not in N+(v1). Then it dominates v1. By the
property (M2) of Lemma 2.2.11, v1 dominates at least half of the vertices
{v2, . . . , vi}, and so, since v1 is dominated by vi, it dominates more than half
the vertices of {v2, . . . , vi−1}. Similarly, vi is dominated by more than half the
the vertices of {v2, . . . , vi−1}. Therefore, there is a vertex in {v2, . . . , vi−1},
which dominates vi and is dominated by v1. Hence vi ∈ N++(v1). 
�
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Since every tournament admits a median order, Lemma 2.2.13 directly
implies Theorem 2.2.12. Moon [145] proved that a tournament has at least
three kings, provided that it has no source (that is, a vertex with in-degree 0
and thus dominating all other vertices). Observe this condition is necessary:
if a tournament contains a source, then this vertex is its unique king.

Corollary 2.2.14 ([145]) Every tournament T with δ−(T ) ≥ 1 has at least
three kings.

Proof:
We give a proof due to Havet and Thomassé [109]. Assume that δ−(T ) ≥

1. Let (v1, v2, . . . , vn) be a median order of T . By Lemma 2.2.13, vertex v1 is a
king. Let i be the smallest index such that vi is an in-neighbour of v1, and let
j be the smallest index such that vj is an in-neighbour of vi. Those vertices
exist since T has no source. We claim that both vi and vj are kings of T .
First, observe that 1 < j < i by (M2). Now, by (M1), vi, . . . , vn is a median
order of T ′ = T 〈{vi, . . . , vn}〉, and so, by Lemma 2.2.13, vi is a king of T ′.
Moreover, via v1, which dominates all vertices in v2, . . . , vi−1 (by the choice
of i), vi is also a king of T 〈{v1, . . . , vi}〉. Hence vi is a king of T . Similarly,
vj is a king of T 〈{vj , . . . , vn}〉, and, via vi, which dominates all vertices in
v1, . . . , vj−1 (by the choice of j), is a king of T . 
�

The above results have been generalized to arc-coloured tournaments. A
monochromatic king in an arc-coloured tournament is a vertex v such that
for every vertex w, one can find a monochromatic (v, w)-dipath. There are
many examples of arc-coloured tournaments with no monochromatic king.
Firstly, a tournament with no source and with all its arcs coloured differently
has no monochromatic king. Secondly, if there is a partition (V1, V2, V3) of
the vertex set of a tournament T such that V1 → V2 → V3 → V1, then T
has no monochromatic king. Shen gave a simple necessary condition for the
existence of a monochromatic king in arc-coloured tournaments.

Theorem 2.2.15 ([169]) If we colour the arcs of a tournament T in such a
way that no subtournament of order 3 gets three different colours on its arcs,
then there exists a monochromatic king.

Proof: The proof is by induction on the number of vertices. Remove a vertex
x1 from T . By the induction hypothesis, one can find a monochromatic king
x2 in T − x1. If x2 → x1, then x2 is a monochromatic king in T . Therefore,
we may assume x1 → x2. Repeating the process for x2, and so on, either we
find a monochromatic king in T , or we find a directed cycle C = xk . . . x�xk

such that xi is a monochromatic king in T −xi−1 (with xk−1 = x�). If C does
not span T , then by the induction hypothesis, there is a monochromatic king
in T 〈C〉, say xi. Thus there is a monochromatic (xi, xi−1)-dipath in T 〈C〉.
Because, xi is a monochromatic king in T − xi−1, it follows that xi is also
a monochromatic king in T . Henceforth, we assume that C = x1 . . . xnx1
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is Hamiltonian in T . If the arcs of C are monochromatic, the conclusion
holds, so there is one particular xi such that xi−1xi and xixi+1 have different
colours, say c1 and c2. By the induction hypothesis, there is a monochromatic
dipath P from xi+1 to xi−1. If P is coloured by c1 or c2, then either xi+1

or xi respectively is a monochromatic king in T . Henceforth, we may assume
that P is coloured by c3. Set P = y1 . . . yq with y1 = xi+1 and yq = xi−1. Let
j be the smallest index such that the arc aj between xi and yj is not coloured
c2. Such a j exists because yqxi is coloured c1. Since T 〈{yj−1, yj , xi}〉 does
not have three different colours on its arcs, necessarily aj is coloured c3. If
aj = yjxi (resp. aj = xiyj), then there is a c3-monochromatic (xi+1, xi)-
dipath (resp. (xi, xi−1)-dipath) and xi+1 (resp. xi) is a monochromatic king
in T . 
�

In Shen’s paper the following question was asked: is it true that no matter
how we colour the arcs of a tournament, there is either a trichromatic 3-cycle
or a monochromatic king. This was disproved by Galeana-Sánchez and Rojas-
Monroy in [93].

2.2.3 Scores and Landau’s Theorem

Let T be a tournament. Its score sequence is the sequence of the out-degrees
of its vertices in non-decreasing order. Hence, if V (T ) = {v1, v2, . . . , vn}
with d+(v1) ≤ d+(v2) ≤ · · · ≤ d+(vn), then the score sequence of T is
(d+(v1), d+(v2), . . . , d+(vn)).

Consider a score sequence s of some n-tournament T . Any k vertices
of T induce a subtournament S and, hence, the sum of the scores in T of
these k vertices must be at least the sum of their scores in S, which is just
the total number of arcs in S, that is,

(
k
2

)
. Hence

∑
i∈I si ≥

(|I|
2

)
for all I ⊆

{1, 2, . . . , n}, with equality for I = {1, 2, . . . , n}. In particular,
∑k

i=1 si ≥
(
k
2

)
,

for all 1 ≤ k ≤ n with equality for k = n. Landau proved that this obvious
necessary condition is actually also sufficient.

Theorem 2.2.16 (Landau [129]) The sequence s = (s1 ≤ s2 ≤ · · · ≤ sn) of
integers is the score sequence of an n-tournament if and only if

k∑

i=1

si ≥
(

k

2

)
, for all 1 ≤ k ≤ n, with equality for k = n. (2.1)

There are many known proofs of Landau’s theorem (see [52, 97, 140, 160,
185]). Many of these proofs are discussed in the survey [160] by Reid. The
proof we present here is due to Griggs and Reid [97].

Proof: The specific sequence t = (0, 1, 2, . . . , n− 1) satisfies conditions (2.1)
as it is the score sequence of the transitive n-tournament. If a sequence s �= t
satisfies (2.1), then since s1 ≥ 0 and sn ≤ n − 1, s contains a repeated term.
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The object of this proof is to produce a new sequence s′ from s which also
satisfies (2.1), is ‘closer’ to t than is s, and is a score sequence if and only
if s is a score sequence. Toward this end, define j to be the smallest index
for which sj = sj+1, and define m to be the number of occurrences of the
term sj in s. Note that j ≥ 1 and m ≥ 2, and that either j + m − 1 = n or
sj = sj+1 = · · · = sj+m−1 < sj+m. Define s′ as follows:

for 1 ≤ i ≤ n, s′
i =

⎧
⎨

⎩

si − 1, if i = j,
si + 1, if i = j + m − 1,
si, otherwise.

Clearly, s′
1 ≤ s′

2 ≤ · · · ≤ s′
n.

Let us show that s′ a score sequence if and only if s is a score sequence.
If s′ is the score sequence of some n-tournament T ′ in which vertex vi has
out-degree s′

i, 1 ≤ i ≤ n, then, since s′
j+m−1 > s′

j , there is a vertex in T ′,
say vp, for which vj+m−1 → vp and vp → vj . The reversal of those two
arcs in T ′ yields an n-tournament with score sequence s. Conversely, if s
is the score sequence of some n-tournament T in which vertex vi has score
si, 1 ≤ i ≤ n, then we may suppose that vj dominates vj+m−1 in T , for
otherwise, interchanging the labels on these two vertices does not change s.
The reversal of the arc vjvj+m−1 in T yields an n-tournament with score
sequence s′.

To conclude the inductive proof, since s′ is closer to t than s, it remains
to show that s′ satisfies (2.1). By definition of s′, one needs to show that∑k

i=1 si ≥
(
k
2

)
+ 1 for all j ≤ k ≤ j + m − 2. The proof is by induction on

k ≥ j. The case k = j is very similar to the induction step and is omitted.
Suppose that for some k, j ≤ k < j + m − 2,

∑k
i=1 si ≥

(
k
2

)
+ 1. We shall

prove that
∑k+1

i=1 si ≥
(
k+1
2

)
+ 1. Suppose by way of contradiction that this

is not the case. Then by (2.1),

k+1∑

i=1

si =
(

k + 1
2

)
. (2.2)

Now since j < k + 2 ≤ j + m − 1, by definition of j and m and the above
equation, we have

sk+1 = sk+2 =
k+2∑

i=1

si −
k+1∑

i=1

si ≥
(

k + 2
2

)
−

(
k + 1

2

)
= k + 1.

Consequently, by the induction hypothesis,

k+1∑

i=1

si = sk+1 +
k∑

i=1

si ≥ sk+1 +
(

k

2

)
+ 1 ≥ k + 1 +

(
k

2

)
+ 1 ≥

(
k + 1

2

)
+ 1.

This contradicts (2.2). 
�
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2.3 Spanning k-Strong Subtournaments of
Semicomplete Digraphs

Theorem 1.7.3 asserts that every strong digraph D without a bridge con-
tains a spanning strong oriented graph (obtained by deleting one arc from
every 2-cycle in D). It is then natural to ask whether there exists, for each
non-negative integer k, a minimum integer f(k) such that every f(k)-strong
digraph contains a spanning k-strong oriented graph. Because every k-strong
oriented graph has at least 2k +1 vertices and the complete digraph on r +1
vertices is r-strong, we have f(k) ≥ 2k for all k ≥ 2. Jackson and Thomassen
(see [178]) conjectured that this lower bound is indeed tight.

Conjecture 2.3.1 (Jackson and Thomassen [178]) Every 2k-strong di-
graph contains a spanning k-strong oriented graph.

This conjecture is still widely open for general digraphs, even in the case
when k = 2. It was verified by Thomassen [186] for the special case when
k = 2 and D is a symmetric digraph (all arcs are in 2-cycles), thus improving
on a result of Jordán [115] establishing the existence of a spanning 2-strong
oriented graph in every 18-strong symmetric digraph. For all k ≥ 3 it is still
open whether there is a function g(k) such that every g(k)-strong symmetric
digraph has a spanning k-strong oriented subdigraph.

Even for the class of semicomplete digraphs the conjecture is open when
k ≥ 3. The case k = 2 and D semicomplete follows from the next result.

Improving an earlier bound of 5k, due to Bang-Jensen and Thomassen,
Guo proved the following, which implies that the case k = 2 of Conjecture
2.3.1 holds for semicomplete digraphs.

Theorem 2.3.2 ([99]) Let k be a positive integer. Every (3k−2)-strong tour-
nament contains a spanning k-strong tournament.

Bang-Jensen and Jordán proved that the function 3k − 2 is not the best
possible when k = 2.

Theorem 2.3.3 ([30]) Every 3-strong semicomplete digraph on at least 5 ver-
tices contains a spanning 2-strong tournament. There is a polynomial algo-
rithm for constructing a spanning 2-strong tournament of a given 3-strong
semicomplete digraph.

Bang-Jensen and Jordán conjectured that the bound (3k − 2) can be
improved as follows.

Conjecture 2.3.4 ([30]) For each k ≥ 1, every (2k−1)-strong semicomplete
digraph on at least 2k + 1 vertices contains a spanning k-strong tournament.
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The number (2k − 1) would be the best possible as seen from the following
construction from [30]: Let k ≥ 2 be an integer, let U and W be disjoint
copies of the complete digraph

↔
K2k−2 with vertex sets {u1, . . . , u2k−2} and

{w1, . . . , w2k−2}, respectively, and let H ′ be the semicomplete digraph ob-
tained from these by adding the arcs of a matching {uiwi|i ∈ [2k − 2]}
oriented from U to W and the arcs {wiuj |i, j ∈ [n] and i �= j} from W to U .
It is easy to check that H ′ is (2k − 2)-strong and that H ′ cannot contain a
spanning k-strong tournament, because when we delete one arc from every
2-cycle there is some vertex of U which will have out-degree at most k − 1.
By taking an arbitrary tournament C and adding all arcs from W to C and
from C to U , we obtain an infinite family of (2k − 2)-strong semicomplete
digraphs containing no spanning k-strong tournament.

2.4 The Second Neighbourhood Conjecture

One of the (apparently) simplest open questions concerning digraphs is Sey-
mour’s Second Neighbourhood Conjecture, asserting that one can always find,
in an oriented graph D, a vertex whose second out-neighbourhood is at least
as large as its out-neighbourhood (see [69]).

Conjecture 2.4.1 (Seymour’s Second Neighbourhood Conjecture)
In every oriented graph D, there exists a vertex x such that |N+

D (x)| ≤
|N++

D (x)|.

Observe that this conjecture is false for digraphs in general. Consider for
example

↔
Kn, the complete digraph on n vertices: for every vertex v, N+(v) =

V (
↔
Kn) \ {v} while N++(v) = ∅.
Kaneko and Locke [116] proved Conjecture 2.4.1 for oriented graphs with

minimum out-degree at most 6. Fidler and Yuster [79] proved that it holds
for oriented graphs D with minimum degree |V (D)|−2, tournaments minus a
star, and tournaments minus the arc set of a subtournament. Cohn, Godbole,
Wright Harkness, and Zhang [66] proved that the conjecture holds for random
oriented graphs. Gutin and Li proved Conjecture 2.4.1 for quasi-transitive
oriented graphs [102].

One approach to Conjecture 2.4.1 is to determine the maximum value
λ such that in every oriented graph D, there exists a vertex x such that
|N+

D (x)| ≤ λ|N++
D (x)|. The conjecture is that λ = 1. Chen, Shen, and Yuster

[60] proved that λ ≥ γ where γ = 0.657298... is the unique real root of
2x3 + x2 − 1 = 0. They also claim a slight improvement to λ ≥ 0.67815...

For tournaments, Seymour’s Second Neighbourhood Conjecture was also
known as Dean’s conjecture [69] and was first solved by Fisher [80].

Theorem 2.4.2 ([80]) In any tournament, there is a vertex v such that
|N+(v)| ≤ |N++(v)|.
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The original proof of Fisher used a sort of weighted version of the prob-
lem via probability distributions. It is presented in the next subsection. A
more elementary proof using median orders was then given by Havet and
Thomassé [109]. Their proof also yields the existence of two vertices v such
that |N+(v)| ≤ |N++(v)| under the condition that no vertex is a sink (that
is, a vertex of out-degree 0). This is detailed in Subsection 2.4.2.

2.4.1 Fisher’s Original Proof

A (probability) distribution on a digraph D is a function p that assigns to
each vertex a non-negative real number such that p(V (D)) =

∑
v∈V (D) p(v) =

1. For every subset S of V (D), we set p(S) =
∑

v∈S) p(v). A distribution is
losing if p(N−(v)) ≤ p(N+(v)) for all v ∈ V (D).

Let D be an oriented graph with n vertices v1, . . . , vn. The adjacency
matrix of D, denoted by AD, is the n × n matrix defined by (AD)i,j = 1 if
vi → vj , (AD)i,j = −1 if vj → vi and (AD)i,j = 0 otherwise. Observe that
AT

D = −AD.
We shall use the following well-known lemma, due to Farkas, see e.g. [92,

Lemma 1].

Lemma 2.4.3 (Farkas’s Lemma) Let A be an m × n matrix and b an m-
dimensional real vector. Then exactly one of the following two statements is
true:

1. There exists a x ∈ N
n such that Ax = b and x ≥ 0;

2. There exists a y ∈ N
m such that AT y ≥ 0 and bT y < 0.

Theorem 2.4.4 ([80]) Every digraph has a losing distribution.

Proof: Let D be a digraph with n vertices v1, . . . , vn. To each distribution
p of D, we can associate the vector wp = (p(v1), . . . , p(vn))T . Observe that
wp ≥ 0 and 1T wp = p(V (D)) = 1. Furthermore, (ADwp)i, = p(N+

D (vi)) −
p(N−

D (vi)). Hence p is a losing distribution if ADwp ≥ 0.
Suppose D has no losing distribution. Since AT

D = −AD, the following
system has no solutions. (I denotes the identity n × n matrix.)

[
AT

D I
1T 0T

] (
w
z

)
=

(
0
1

)
with

(
w
z

)
≥

(
0
0

)
.

Farkas’s Lemma implies that there exists an n-dimensional vector u and
a real number t such that

[
AD 1
I 0

](
u
t

)
≥

(
0
0

)
with

(
0T 1

) (
u
t

)
< 0.

Thus u ≥ 0, ADu+t1 ≥ 0 and t < 0. Hence ADu > 0, so 1
1Tu

u is the vector
associated to a losing distribution, a contradiction. 
�
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We shall now give some properties of losing distributions.

Lemma 2.4.5 Let D be a digraph and p a losing distribution. If p(v) > 0,
then p(N+(v)) = p(N−(v)).

Proof: We use the notation of the previous proof.
Since p is a losing distribution, then ADwp ≥ 0 and wp ≥ 0. Hence

(wp)i(ADwp)i ≥ 0 for all i. But, since AD is skew-symmetric, (wp)T ADwp =
0, so (wp)i(ADwp)i = 0 for all i. Therefore if (wp)i = p(vi) > 0, necessarily,
0 = (ADwp)i = p(N+(vi)) − p(N−(vi)). In other words, if w(vi) > 0, then
p(N+(vi)) = p(N−(vi)). 
�

Lemma 2.4.6 Let p be a losing distribution on a tournament T . Then
p(N−(v)) ≤ p(N−−(v)) for every vertex v.

Proof: Let v be a vertex of T . Since p is a losing distribution, p(N−(v)) ≤ 1
2 .

If p(N−−(v)) ≥ 1
2 , then we are done, so we may assume that p(N−−(v)) < 1

2 .
Set R = N−(v) ∪ N−−(v) and Q = V (T ) \ R. We have p(R) < 1 and so
p(Q) > 0.

Now
∑

w∈Q

p(w)p(N−
T 〈Q〉(w)) =

∑

w∈Q

∑

u∈N−
T〈Q〉(w)

p(w)p(u) =
∑

u∈Q

∑

w∈N+
T〈Q〉(u)

p(w)p(u)

=
∑

u∈Q

p(u)p(N+
T 〈Q〉(u)).

Hence, there is a vertex w ∈ Q with p(w) > 0 such that p(N−
T 〈Q〉(w)) ≥

p(N+
T 〈Q〉(w)). By Lemma 2.4.5, p(N+

T (v)) = p(N−
T (v)). Since w is not in

N−−(v), it is dominated by N−
T (v). Thus p(N−

T (w)) ≥ p(N−
T 〈Q〉(w)) +

p(N−
T (v)) and p(N+

T (w)) ≤ p(N+
T 〈Q〉(w)) + p(N−−

T (v)). Hence

p(N−
T 〈Q〉(w)) + p(N−

T (v)) ≤ p(N+
T 〈Q〉(w)) + p(N−−

T (v)).

Since p(N−
T 〈Q〉(w)) ≥ p(N+

T 〈Q〉(w), we obtain p(N−(v)) ≤ p(N−−(v)).


�
We are now ready to prove Theorem 2.4.2.

Proof of Theorem 2.4.2: Let T be a tournament. By Theorem 2.4.4, it
admits a losing distribution p.

Set E+ =
∑

v∈V (T ) p(v)|N+(v)| and let E++ =
∑

v∈V (T ) p(v)|N++(v)|.
Since w ∈ N+(v) if and only if v ∈ N−(w), we have

E+ =
∑

v∈V (T )

p(v)|N+(v)| =
∑

v∈V (T )

∑

w∈N+(v)

p(v) =
∑

w∈V (T )

∑

v∈N−(w)

p(v)

=
∑

w∈V (T )

p(N−(w)).
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Similarly, since w ∈ N++(v) if and only if v ∈ N−−(w), we have

E++ =
∑

w∈V (T )

p(N−−(w)).

Now, as p is a losing distribution, it follows from Lemma 2.4.6 that we
have p(N−(w)) ≤ p(N−−(w)) for every vertex w. Hence E+ ≤ E++. Conse-
quently, there must be a vertex v such that |N+(v)| ≤ |N++(v)|. 
�

2.4.2 Proof Using Median Orders

Theorem 2.4.7 ([109]) Let T be a tournament and σ = (v1, v2, . . . , vn) be a
median order of T . Then |N+

T (vn)| ≤ |N++
T (vn)|.

Proof: We distinguish two types of vertices of N−(vn): a vertex vj ∈ N−(vn)
is σ-good if there exists a vertex vi ∈ N+(vn), with i < j, such that vi → vj ;
otherwise vj is σ-bad. We denote by Gσ the set of σ-good vertices. Observe
that Gσ ⊆ N++

T (vn).
We shall prove by induction on n that |N+

T (vn)| ≤ |Gσ| which directly
implies the result. The case n = 1 holds vacuously. Assume now n > 1. If
there is no σ-bad vertex, then Gσ = N−(vn). Moreover, by the property (M2)
of Lemma 2.2.11, |N+(vn)| ≤ |N−(vn)|, so the conclusion holds. Assume now
that there exists a σ-bad vertex. Let i be the smallest integer i such that vi is
σ-bad. Set Tr = T 〈{vi+1, . . . , vn}〉. By the property (M1) of Lemma 2.2.11,
σr = (vi+1, . . . , vn) is a median order of Tr. By the induction hypothesis,
|N+

Tr
(vn)| ≤ |Gσr

|. Since every σr-good vertex is also σ-good, we get

|N+
T (vn) ∩ {vi+1, . . . , vn}| ≤ |Gσ ∩ {vi+1, . . . , vn}|. (2.3)

By the minimality of the index of i, every vertex of {v1, . . . , vi−1} is either in
Gσ or in N+(vn). Moreover, since vi is σ-bad, we have N+(vn)∩{v1, . . . , vi} ⊆
N+(vi) ∩ {v1, . . . , vi}, so Gσ ∩ {v1, . . . , vi} ⊇ N−(vi) ∩ {v1, . . . , vi}. Now
by property (M2) of Lemma 2.2.11, |N−(vi) ∩ {v1, . . . , vi}| ≥ |N+(vi) ∩
{v1, . . . , vi}|. Hence

|N+
T (vn) ∩ {v1, . . . , vi}| ≤ |N−(xi) ∩ {v1, . . . , vi}| ≤ |Gσ ∩ {v1, . . . , vi}| (2.4)

Equations (2.3) and (2.4) yield |N+
T (vn)| ≤ |Gσ|. 
�

A natural question is to seek another vertex v with large second out-
neighbourhood, i.e. such that |N+(v)| ≤ |N++(v)|. Obviously, this is not
always possible: consider, for instance, a regular tournament dominating a
single vertex, or simply a transitive tournament. In both cases, the sole vertex
v with |N++(v)| ≥ |N+(v)| is the sink. Still using median orders, Havet
and Thomassé [109] proved that a tournament always has two vertices with
large second out-neighbourhood, provided that every vertex has out-degree
at least 1.
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Theorem 2.4.8 ([109]) A tournament with no sink has at least two vertices
v such that |N+(v)| ≤ |N++(v)|.

To prove this result, we need the notion of the sedimentation of a
median order σ = (v1, . . . , vn) of a tournament T , denoted by Sed(σ). If
|N+(vn)| < |Gσ|, then Sed(σ) = σ. If |N+(vn)| = |Gσ|, we denote by b1, ..., bk

the σ-bad vertices and by w1, ..., wn−1−k the vertices of N+(vn) ∪ Gσ, both
enumerated in increasing order with respect to σ. In this case, Sed(σ) is the
order (b1, . . . , bk, vn, w1, . . . , wn−1−k).

Lemma 2.4.9 If σ is a median order of a tournament T , then Sed(σ) is also
a median order of T .

Proof: Let σ = (v1, . . . , vn) be a median order of T . If Sed(σ) = σ, there is
nothing to prove. So we assume it is not the case, that is, |N+(vn)| = |Gσ|.

The proof is by induction on the number k of σ-bad vertices. If k = 0,
all the vertices are σ-good or in N+(vn), in particular N−(vn) = Gσ. Thus,
|N+(vn)| = |N−(vn)| and the order Sed(σ) = (vn, v1, . . . , vn−1) is a median
order of T . Assume now that k is a positive integer. Let i be the smallest
index (wrt. σ) of a σ-bad vertex.

For convenience, for any set S, we denote by S[i, j] the set S∩{vi, . . . , vj}.
By Equation (2.3), |Gσ[i + 1, n]| ≥ |N+

T (vn)[i + 1, n]|, and by Equation (2.4),
|Gσ[1, i]| ≥ |N+

T (vn)[1, i]|. Now by assumption, |Gσ| = |N+(xn)|, that
is, |Gσ[1, i]| + |Gσ[i + 1, n]| = |N+

T (vn)[1, i]| + |N+
T (vn)[i + 1, n]|. Hence

|Gσ[1, i]| = |N+
T (vn)[1, i]| and |Gσ[i+1, n]| = |N+

T (vn)[i+1, n]|. But since xi is
σ-bad, N+(vn)[1, i] ⊆ N+(vi)[1, i] and so N−(vi)[1, i − 1] ⊆ N−(vn)[1, i − 1].
Moreover, by property (M2) of Lemma 2.2.11, |N+(vi)[1, i]| ≤ |N−(vi)[1, i]|
and by defintion of i, N−(vn)[1, i − 1] = Gσ[1, i − 1] = Gσ[1, i]. Hence,

|Gσ[1, i]| ≤ |N+(vi)[1, i]| ≤ |N−(vi)[1, i]| = Gσ[1, i].

Thus |N+(vi)[1, i]| ≤ |N−(vi)[1, i]|, and so (vi, v1, . . . , vi−1, vi+1, . . . , vn) is a
median order of T . Applying the induction hypothesis to the median order
(v1, . . . , vi−1, vi+1, . . . , vn), which has one bad vertex less than σ, we obtain
the result. 
�

Proof of Theorem 2.4.8: Let σ = (v1, . . . , vn) be a median order of T .
By Theorem 2.4.7, vn has a large second neighbourhood, so we need to find
another vertex with this property.

Observe that if (u1, . . . , un−1) is a median order of T − vn, then the order
(u1, . . . , un−1, vn) is a median order of T , and consequently un−1 → vn.

Set T ∗ = T − vn Assume first that T ∗ has a median order σ∗ =
(u1, . . . , un−1) such that σ∗ = Sed(σ∗). Then

|N+
T (un−1)| = |N+

T ∗(un−1)| + 1 ≤ |Gσ∗ | ≤ |N++
T ∗ (un−1)| ≤ |N++

T (un−1)|.



50 J. Bang-Jensen and F. Havet

Assume now that for every median order σ∗ of T ∗, σ∗ �= Sed(σ∗). Define
now inductively σ0 = (v1, . . . , vn−1) and σq+1 = Sed(σq). By property (M1)
of Lemma 2.2.11, σ0 is a median order of T ∗; Lemma 2.4.9 and an easy
induction imply that σq is a median order of T ∗ for every positive integer q.
Since T has no dominated vertex, vn has an out-neighbour vj . As observed
above, for every integer q, the last vertex of σq dominates vn. So vj is not the
last vertex of any σq. Observe also that there is a q such that vj is σq-bad,
for otherwise the index of xj would always increase. Let σq = (u1, . . . , un−1).
We have

|N+
T (un−1)| = |N+

T ∗(un−1)| + 1 = |Gσq
| + 1.

Moreover un−1 → vn → vj , so the second neighbourhood of un−1 has at least
|Gσq

| + 1 elements. Hence |N+
T (un−1)| ≤ |N++

T (un−1)|. 
�

2.4.3 Relation with Other Conjectures

One of the most celebrated problems concerning digraphs is the Caccetta–
Häggkvist conjecture.

Conjecture 2.4.10 (Caccetta and Häggkvist [54]) Every digraph D on
n vertices and with minimum out-degree at least n/k has a directed cycle of
length at most k.

Since every non-transitive tournament contains a directed 3-cycle, this
conjecture easily holds for tournaments. However, little is known about this
problem, and, more generally, questions concerning digraphs and involving
the minimum out-degree tend to be intractable. As a consequence, many
open problems flourished in this area, see [175] for a survey. The Hoàng–
Reed conjecture [112] is one of these.

A directed-cycle-tree is either a singleton or consists of a set of directed
cycles C1, . . . , Ck such that |V (Ci) ∩ (V (C1) ∪ · · · ∪ V (Ci−1))| = 1 for all
i = 2, . . . , k, where V (Cj) is the set of vertices of Cj . A less explicit, yet
concise, definition is simply that a directed-cycle-tree is a digraph in which
there exists a unique directed (x, y)-path for every choice of distinct vertices
x and y. A vertex-disjoint union of directed-cycle-trees is a directed-cycle-
forest. When all directed cycles have length 3, we speak of a triangle-tree.
For short, a k-directed-cycle-forest is a directed-cycle-forest consisting of k
directed cycles.

Conjecture 2.4.11 (Hoàng and Reed [112]) Every digraph D has a
δ+(D)-directed-cycle-forest.

In the case δ+(D) = 2, Thomassen proved in [187] that every digraph
with minimum out-degree 2 has two directed cycles intersecting on a vertex
(i.e. contains a directed-cycle-tree with two directed cycles). Welhan [192]
proved Conjecture 2.4.11 for δ+(D) = 3. The motivation of the Hoàng-Reed



2 Tournaments and Semicomplete Digraphs 51

conjecture is that it would imply the Caccetta-Häggkvist conjecture, as the
reader can easily check.

Havet, Thomassé and Yeo [111] proved Conjecture 2.4.11 for tournaments.
This result does not yield a better understanding of Hoàng–Reed conjecture.
However, it gives a little bit of insight into the triangle-structure of a tour-
nament T , that is, the 3-uniform hypergraph on the vertex set V (T ) whose
hyperedges are the directed 3-cycles of T .

Indeed, by the fact that every directed cycle in a tournament induces
a strong subtournament that contains a directed 3-cycle through any given
vertex, if a tournament T has a δ+(T )-directed-cycle-forest, then T also has
a δ+(T )-triangle-forest. Observe that a δ+(T )-triangle-forest spans exactly
2δ+(T ) + c vertices, where c is the number of components of the triangle-
forest. When T is a regular tournament with out-degree δ+(T ), hence with
2δ+(T ) + 1 vertices, a δ+(T )-triangle-forest of T is necessarily a spanning
δ+(T )-triangle-tree. Havet, Thomassé and Yeo [111] established the existence
of such a tree for every tournament.

Theorem 2.4.12 ([111]) Every tournament T has a δ+(T )-triangle-tree.

2.5 Disjoint Paths and Cycles

We now turn to results on linkages and weak linkages in semicomplete di-
graphs. The reader may wish to recall the definitions of these from Section
1.6.

2.5.1 Polynomial Algorithms for Linkage and Weak Linkage

weak k-linkage
Input: A digraph D = (V,A) and not necessarily distinct vertices
s1, . . . , sk, t1, . . . , tk.
Question: Does D contain a weak k-linkage from (s1, . . . , sk) to
(t1, . . . , tk)?

Recall that for general digraphs the weak k-linkage problem is NP-
complete already when k = 2 [84]. Bang-Jensen [16] solved the weak

k-linkage problem for semicomplete digraphs by giving a polynomial algo-
rithm and a complete characterization of those semicomplete digraphs that do
not have a weak linkage from (s1, s2) to (t1, t2) for given vertices s1, s2, t1, t2
where we may have s3−i = ti for i = 1 or i = 2 but all other vertices are
distinct (all the remaining cases are easy for semicomplete digraphs).

Fradkin and Seymour [85] generalized the algorithmic part of these results
in two ways: from weak 2-linkage to weak k-linkage for any fixed integer k and
from semicomplete digraphs to digraphs of bounded independence number.
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Theorem 2.5.1 ([85]) For every fixed positive integer α the weak

k-linkage problem is polynomially solvable for every fixed k, when we con-
sider digraphs with independence number at most α.

A key ingredient in the proof of this theorem is the notion of the cutwidth
of a digraph. Let D = (V,A) be a digraph and let O = (v1, v2, . . . , vn) be an
ordering of the vertices of D. We say that O has cutwidth at most θ if for
all j ∈ {2, 3, . . . , n} there are at most θ arcs uv with u ∈ {v1, . . . , vj−1} and
v ∈ {vj , . . . , vn} and we say that D has cutwidth at most θ if there exists
an ordering O of V (D) which has cutwidth at most θ. The minimum θ such
that D has cutwidth at most θ is called the cutwidth of D and is denoted
by cw(D).

Barbero, Paul and Pilipczuk proved that, even for semicomplete digraphs,
cutwidth is not an easy parameter to determine.

Theorem 2.5.2 ([37]) Determining the cutwidth of a semicomplete digraph
is NP-hard.

Single exponential FPT algorithms were obtained in [82, 152]. Pilipczuk
found an approximation algorithm for the cutwidth of semicomplete digraphs.

Theorem 2.5.3 ([152]) There exists an O(n2) algorithm for computing an
ordering O of an n-semicomplete digraph D whose cutwidth is at most
O(cw(D)2).

In fact, it is shown in [152] (see also [153]) that just sorting the vertices
according to their out-degrees achieves the bound above. See [153] for a dis-
cussion of which properties of a semicomplete digraph forces high cutwidth.
One such example is the result that if a semicomplete digraph D contains
a set S of 4k + 2 vertices such that the maximum difference between the
out-degrees of any pair of vertices in S is at most k, then cw(D) ≥ k/2 holds.
Many other results on cutwidth of semicomplete digraphs can be found in
the paper [81] by Fomin and Pilipczuk and in Pilipczuk’s thesis [154].

For tournaments the situation is much better. Barbero, Paul and Pilipczuk
proved the following.

Theorem 2.5.4 ([37]) One can determine the cutwidth of a tournament in
polynomial time. Furthermore, if cw(T ) = p, then T contains a subtour-
nament T ′ whose number of vertices is linear in p and such that cw(T ) =
cw(T ′).

Fradkin and Seymour also solved the weak k-linkage problem for the
class of directed pseudographs that one obtains from semicomplete digraphs
by adding arcs and loops.
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Theorem 2.5.5 (Fradkin and Seymour [85]) The weak k-linkage prob-
lem is solvable in polynomial time for every fixed k, when we consider di-
rected pseudographs that are obtained from a semicomplete digraph by replac-
ing some arcs with multiple copies of those arcs and adding any number of
loops.

We now turn to vertex-disjoint linkages.

k-linkage
Input: A digraph D = (V,A) and not necessarily distinct vertices
s1, . . . , sk, t1, . . . , tk.
Question: Does D contain a k-linkage from (s1, . . . , sk) to (t1, . . . , tk)?

Below we shall always assume that all the terminals to be linked (that
is, s1, . . . , sk, t1, . . . , tk) are distinct. Bang-Jensen and Thomassen solved the
2-linkage problem for semicomplete digraphs.

Theorem 2.5.6 ([34]) The 2-linkage problem is solvable in time O(n5) for
semicomplete digraphs.

Bang-Jensen and Thomassen also proved that if k is part of the input,
then the k-linkage problem is NP-complete already for tournaments.

Besides the trivial case k = 1, the value 2 remained the only k for which
the k-linkage problem was solved for semicomplete digraphs until Chud-
novsky, Seymour and Scott [62] found a polynomial algorithm for the k-
linkage problem for any fixed k in semicomplete digraphs. In fact, their al-
gorithm works for a more general class of digraphs which they call d-path
dominant. A digraph D = (V,A) is d-path-dominant if, for every minimal
path P on d vertices, every vertex v ∈ V − V (P ) is adjacent to at least one
vertex of V (P ). Thus D is 1-path dominant if and only if it is semicomplete
and 2-path dominant if and only if it is semicomplete multipartite. Hence
this is a very general class of digraphs.

Theorem 2.5.7 ([62]) For all fixed d, k there is a polynomial algorithm for
the k-linkage problem in d-path-dominant digraphs.

Following [62], for a given sequence x = (x1, . . . , xk) of positive inte-
gers, we say that the digraph D has an x-linkage from (s1, s2, . . . , sk)
to (t1, t2, . . . , tk) if it has a collection of disjoint paths P1, P2, . . . , Pk such
that Pi is an (si, ti)-path and has xi vertices. A sequence x = (x1, . . . , xk)
of positive integers is then a quality of (D, s1, s2, . . . , sk, t1, t2, . . . , tk) if
D has an x-linkage from (s1, s2, . . . , sk) to (t1, t2, . . . , tk). A quality x of
(D, s1, s2, . . . , sk, t1, t2, . . . , tk) is a key quality if there is no other quality
y �= x with yi ≤ xi for all i ∈ [k]. The main result of [62] is the following.

Theorem 2.5.8 ([62]) For all integers d, k ≥ 1 there exists a polynomial algo-
rithm for the following problem: Given a d-path-dominant digraph D = (V,A)
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and vertices s1, s2, . . . , sk, t1, t2, . . . , tk, compute the set of key qualities of
(D, s1, s2, . . . , sk, t1, t2, . . . , tk). The algorithm runs in time
O(n6k2d(k+d)+13k).

Corollary 2.5.9 ([62]) For all integers d, k ≥ 1 there exists a polynomial al-
gorithm for the following problem: Given a d-path-dominant digraph D =
(V,A), vertices s1, s2, . . . , sk, t1, t2, . . . , tk and integers x1, x2, . . . , xk ≥ 1,
decide whether D contains disjoint paths P1, P2, . . . , Pk such that Pi is an
(si, ti)-path and has at most xi vertices.

The proof of Theorem 2.5.7 is long but the main idea is simple: as in the
algorithm for k-linkage in acyclic digraphs (see Section 3.4) one can define
an auxiliary digraph H with two special vertices s0, t0 such that H has an
(s0, t0)-path if and only if D has the desired k-linkage.

The following problem is open even for k = 2 and independence number 2.

Problem 2.5.10 Determine the complexity of the k-linkage problem for di-
graphs with bounded independence number.

A special case of digraphs with independence number at most p is the
class of digraphs that have p-partition (V1, V2, . . . , Vp) such that D[Vi] is a
semicomplete digraph. For this class Chudnovsky, Scott and Seymour recently
found a solution.

Theorem 2.5.11 ([63]) For every pair of fixed positive integers k, p, the k-
linkage problem is polynomially solvable for digraphs which have a p-partition
each part of which is semicomplete and provided we are given such a partition
as part of the input.

For an application of that result, see the discussion around Theorem
6.11.3.

2.5.2 Sufficient Conditions for a Tournament to be k-Linked

We now turn to sufficient conditions in terms of connectivity for a semicom-
plete digraph to be k-linked. Bang-Jensen determined the minimum connec-
tivity implying 2-linkedness.

Theorem 2.5.12 ([17]) Every 5-strong semicomplete digraph is 2-linked.
Furthermore, there exists an infinite class of 4-strong tournaments which are
not 2-linked (see Figure 2.1).

We leave it to the reader to check that one can generalize the example
in Figure 2.1 to an infinite family of 4-strong semicomplete digraphs none of
which is 2-linked (see also [17]).
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y2

y1

x1

x2

Figure 2.1 A 4-strong non-2-linked semicomplete digraph T . All arcs not shown
go from left to right and x1y2x1, x2y1x2 are the only 2-cycles in T . There is no pair
of disjoint (x1, y1)-,(x2, y2)-paths in T . The tournament which results from T by
deleting the arcs y2x1 and y1x2 is also 4-strong

Thomassen [179] proved the existence of a function f(k) such that every
f(k)-strong tournament is k-linked. Clearly f(1) = 1 and by Theorem 2.5.12
we have f(2) = 5. Thomassen’s function f(k) grows exponentially in k. This
was first improved to a polynomial in k by Kühn, Lapinskas, Osthus and
Patel [124] and recently Pokrovskiy showed that a linear function suffices.
We will give the main details in the proof of that result below.

A key ingredient in Pokrovskiy’s proof of Theorem 2.5.15 is the following
interesting result which illustrates the richness of tournament structure.

Theorem 2.5.13 ([156]) Let n, p be positive integers satisfying p ≤ n/11.
Every n-tournament contains two disjoint sets of vertices {x1, . . . , xp} and
{y1, . . . , yp} such that for every permutation σ of [p], T contains vertex-
disjoint paths P1, . . . , Pp such that Pi is an (xi, yσ(i))-path.

For later reference, we call the sets {x1, . . . , xp}, {y1, . . . , yp} in the above
theorem an all-linkable pair.

We need some more concepts which were introduced by Kühn, Lapin-
skas, Osthus and Patel in [124]. A set of vertices X in-dominates (out-
dominates) another set Y in a digraph D if every y ∈ Y \ X has an
out-neighbour (in-neighbour) in X. The definition implies that any set in-
dominates (out-dominates) itself. An in-dominating (out-dominating) set
in D is then a set which in-dominates (out-dominates) V (D).
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Below we focus on semicomplete digraphs. Every n-semicomplete digraph
contains an in-dominating (out-dominating) set of size 	 log n
. Such a set X
can be constructed from the empty set by repeatedly adding a vertex v of
maximum in-degree (out-degree) in the current semicomplete digraph D to X
and then deleting v together with its in-neighbourhood (out-neighbourhood)
from D.

In a semicomplete digraph a vertex x may be both an in- and an out-
neighbour of a vertex v, so we needed to adjust the definition below a bit
compared to [124]. For a vertex v of a semicomplete digraph we define the
sets N+!(v), N−!(v) as follows: N+!(v) = V \ (N−(v) ∪ {v}) and N−!(v) =
V \ (N+(v) ∪ {v}).

A sequence of vertices (v1, v2, . . . , vk) of a semicomplete digraph D
is a partial greedy in-dominating sequence if v1 has maximum in-
degree in D and for each i, the vertex vi has maximum in-degree in
D[N+!(v1) ∩ . . . ∩ N+!(vi−1)]. Similarly, (v1, v2, . . . , vk) is a partial greedy
out-dominating sequence if v1 has maximum out-degree in D and for each
i, vi has maximum out-degree in D[N−!(v1) ∩ . . . ∩ N−!(vi−1)].

Note that if at some point the set N+!(v1) ∩ . . . ∩ N+!(vi−1) (N−!(v1) ∩
. . .∩N−!(vi−1)) becomes empty, then the sequences above may have less than
k vertices. This will not affect the validity of the proof below.

As we saw above, if k = 	log n
 then every partial greedy in-dominating
(resp. out-dominating) sequence on k vertices is an in-dominating (resp. out-
dominating) sequence. The following very nice property of partial greedy in-
and out-dominating sequences, which was first observed by Kühn et al. [124]
and later reformulated by Pokrovskiy [156], shows that already for much
smaller values of k, partial greedy dominating sequences are useful (as illus-
trated in the proof below).

Lemma 2.5.14 ([124, 156]) Let X = (v1, v2, . . . , vk) be a partial greedy in-
dominating (resp. out-dominating) sequence in a semicomplete digraph D.
Let Y be the set of vertices which are not in-dominated (resp. out-dominated)
by X. Then every y ∈ Y satisfies d+(y) ≥ 2k−1|Y | (d−(y) ≥ 2k−1|Y |).

We are now ready to state and prove the main result of [156].

Theorem 2.5.15 ([156]) Every 452k-strong semicomplete digraph is k-linked.

Proof: Pokrovskiy did not express his result for semicomplete digraphs, but
his proof, which we give below, is also valid for semicomplete digraphs. Let
D be a 452k-strong semicomplete digraph. In particular this means that
δ0(D) ≥ 452k. Let x1, . . . , xk, y1, . . . , yk be an arbitrary collection of 2k dis-
tinct vertices of D. We shall construct disjoint paths R1, . . . , Rk so that Ri

is an (xi, yi)-path for i ∈ [k]. Let D′ = D \ {x1, . . . , xk, y1, . . . , yk}.
Let I−

1 be a partial greedy in-dominating set on two vertices of D′ and
for each i = 2, . . . , 55k, let I−

i be a partial greedy in-dominating set of D′ \
(I−

1 ∪ . . . ∪ I−
i−1). Finally, let D′′ = D′ \ (I−

1 ∪ . . . ∪ I−
55k). Denote the vertices
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of I−
i by u−

i , v−
i , i ∈ [55k], where u−

i is the first vertex chosen. Note that if at
some point the first vertex we choose is already an in-dominating set, then
I−
i = {u−

i } and we let v−
i = u−

i . Otherwise I−
i = {u−

i , v−
i } and u−

i dominates
v−

i . Now let O+
1 be a partial greedy out-dominating set on two vertices of

D′′ and for each i = 2, . . . , 55k let O+
i−1 be a partial greedy out-dominating

set on two vertices of D′′ \ (O+
1 ∪ . . . ∪ O+

i−1)). As above we denote O+
i by

{u+
i , v+

i }, where possibly v+
i = u+

i and otherwise v+
i dominates u+

i .
Let X = I−

1 ∪ . . . ∪ I−
55k ∪ O+

1 ∪ . . . ∪ O+
55k ∪ {x1, . . . , xk, y1, . . . , yk}. By

construction, |X| ≤ 222k. Note that we may not have equality since, by the
remark above, some of the sets constructed may have size one instead of two.
For each i ∈ [55k] denote by E−

i (resp. E+
i ) the sets of those vertices of D−X

that are not in-dominated by I−
i (resp. out-dominated by O+

i ). By Lemma
2.5.14, each vertex in v ∈ E−

i (resp. w ∈ E+
i ) satisfies d+(v) ≥ 2|E−

i | (resp.
d−(w) ≥ 2|E+

i |).
Let V − = {v−

1 , . . . , v−
55k} and V + = {v+

1 , . . . , v+
55k}. By Theorem 2.5.13,

applied to D[V −] (resp. D[V +]), we can find two sets X−, Y − (resp. X+, Y +)
both of order 5k in V − (resp. V +) which form an all-linkable pair in D[V −]
(resp. D[V +]). Now relabel I−

1 , . . . , I55k and O+
1 , . . . , O+

55k so that X− =
{v−

1 , . . . , v−
5k} and Y + = {v+

1 , . . . , v+
5k}.

By assumption, D is 452k-strong so Menger’s theorem (Theorem 1.5.3)
implies that D[(V − X) ∪ Y − ∪ X+)] has 5k disjoint paths Q1, . . . , Q5k which
all start in Y − and end in X+. As |X| ≤ 222k, for each i ∈ [k] there exist
distinct vertices x′

1, . . . , x
′
k, y′

1, . . . , y
′
k ∈ V \ X such that x′

i is dominated by
xi and y′

i dominates yi for i ∈ [k]. Let X ′ = X ∪ {x′
1, . . . , x

′
k, y′

1, . . . , y
′
k}.

Now we consider the vertices of E−
i and E+

i , i ∈ [55k]. We saw above
that each vertex in v ∈ E−

i (resp. w ∈ E+
i ) satisfies d+(v) ≥ 2|E−

i | (resp.
d−(w) ≥ 2|E+

i |). We also have d+(v) ≥ 452k ≥ 2|X ′| + 4k (resp. d−(w) ≥
452k ≥ 2|X ′| + 4k) so by averaging these two lower bounds we get that
d+(v) ≥ |E−

i |+|X ′|+2k for every v ∈ E−
i and similarly d−(w) ≥ |E+

i |+|X ′|+
2k for every w ∈ E+

i . This implies that every v ∈ E−
i (resp. w ∈ E+

i ) has at
least 2k out-neighbours (resp. in-neighbours) outside of E−

i ∪ X ′ (E+
i ∪ X ′).

For each i ∈ [k] define x′′
i (resp. y′′

i ) as follows: If x′
i �∈ E−

i (resp. y′
i �∈ E+

i ),
then x′

i dominates (resp. y′
i is dominated by) at least one vertex of I−

i (O+
i )

and we let x′′
i = x′

i (resp. y′′
i = y′

i). Otherwise x′
i ∈ E−

i (resp. y′
i ∈ E+

i ) and
now we let x′′

i (resp. y′′
i ) be an out-neighbour of x′

i (resp. y′
i) in D−(E−

i ∪X ′)
(D − (E+

i ∪ X ′)). By the remark above, we can choose the 2k vertices (some
of which may not be new) x′′

1 , . . . , x′′
k , y′′

1 , . . . , y′′
k so that these are all distinct.

Note that x′′
i dominates (resp. y′′

i is dominated by) at least one of the
vertices in I−

i (resp. O+
i ) for i ∈ [k]. Thus, for each i ∈ [k] we can take the

(x′′
i , v−

i )-path Q−
i to be either the arc x′′

i v−
i or the path x′′

i u−
i v−

i . Similarly, we
can take the (v+

i , y′′
i )-path Q+

i to be either the arc v+
i y′′

i or the path v+
i u+

i y′′
i .

By construction, all the paths Q−
1 , . . . , Q−

k , Q+
1 , . . . , Q+

k are disjoint.
At least k of the paths Q1, . . . , Q5k do not intersect any of the paths

Q−
1 , . . . , Q−

k , Q+
1 , . . . , Q+

k so fix such a set Q′
1, . . . , Q

′
k to be such paths. Since
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Q−
i ends in X− and Q′

i starts in Y −, Theorem 2.5.13 implies that we can
find disjoint paths P−

1 , . . . , P−
k in D[V −] such that P−

i starts in v−
i and ends

in the initial vertex of Q′
i. Similarly, we can find disjoint paths P+

1 , . . . , P+
k

in D[V +] such that P+
i starts in the terminal vertex of Q′

i and ends in v+
i .

Let Ri = xix
′
iQ

−
i P−

i Q′
iP

+
i y′

iyi for i ∈ [k]. By the above arguments,
R1, . . . , Rk form the desired linkage. 
�

The value 452k is probably far from being best possible and the real
answer could be close to 2k. By Theorem 2.5.12, f(k) > 2k, at least when
k = 2.

Proposition 2.5.16 ([156]) For all n ≥ 6k, there exists a (2k − 2)-strong
n-tournament T which is not k-linked.

Note also that Theorem 2.6.15 gives a better bound when k < 449 and
even guarantees that there is a linkage that spans all vertices of T .

Pokrovskiy conjectures that when the minimum semi-degree is sufficiently
high, already 2k-strong should be sufficient to guarantee a k-linkage for every
choice of terminals.

Conjecture 2.5.17 ([156]) For every k there exists an integer d = d(k) such
that every 2k-strong tournament T with δ0(T ) ≥ d is k-linked.

2.5.3 The Bermond–Thomassen Conjecture for Tournaments

We now turn to disjoint directed cycles. We only discuss the celebrated
Bermond–Thomassen conjecture. For more results on disjoint cycles, see
Section 2.8.

Thomassen [42, 180] proved that every digraph D with δ+(D) ≥ 3 has two
disjoint cycles. Inspired by this, Bermond and Thomassen posed the following
difficult conjecture.

Conjecture 2.5.18 (Bermond–Thomassen [42]) For every positive inte-
ger k, every digraph D with δ+(D) ≥ 2k + 1 has k disjoint cycles.

This difficult conjecture is wide open. Lichiardopol, Pór and Sereni [134]
have verified the conjecture for k = 3. Alon [4] was the first to prove that a
linear bound suffices. He obtained the following result.

Theorem 2.5.19 There exists an absolute constant C such that f(k) ≤ Ck
for all k. In particular, C = 64 will do. �

We now consider tournaments and semicomplete digraphs. By Moon’s
Theorem (2.2.7), a tournament has k disjoint cycles if and only if it has
k disjoint 3-cycles so the following result, due to Bang-Jensen, Bessy and
Thomassé, shows that Conjecture 2.5.18 holds for tournaments.
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Theorem 2.5.20 ([19]) Every tournament T with δ+(T ) ≥ 2k − 1 has k
disjoint 3-cycles.

Bang-Jensen, Bessy and Thomassé showed how to improve this bound on
the minimum out-degree for tournaments with large minimum out-degree.
Roughly speaking, a tournament T with δ+(T ) > 1.5k and k large enough
contains k disjoint 3-cycles. More precisely, they proved the following.

Theorem 2.5.21 ([19]) For every real number α > 1.5, there exists a con-
stant kα such that, for every k ≥ kα, every tournament T with δ+(T ) ≥ αk
has k disjoint 3-cycles.

The constant 1.5 is the best possible as shown by the circulant tour-
naments CT2p+1({1, 2, . . . , p}): when 2p + 1 ≡ 0 mod 3, every vertex has
out-degree p = � 3

2k�, where k = 2p+1
3 , and CT2p+1({1, 2, . . . , p}) has a cycle

factor consisting of k disjoint 3-cycles covering all its vertices [19].
It is important to note that the following obvious idea does not lead to

a proof of Conjecture 2.5.18 for tournaments: find a 3-cycle C which is not
dominated by any vertex of V (T ) \ V (C), remove C and apply induction.
This approach does not work because of the following.2

Proposition 2.5.22 ([19]) For infinitely many k ≥ 3 there exists a tourna-
ment T with δ(T ) = 2k−1 such that every 3-cycle C is dominated by at least
one vertex of minimum out-degree.

Proof: Consider the Paley tournament P11. It has vertex set V (P11) =
{1, 2, . . . , 11} and arc set A(P11) = {(i, i + p (mod 11)) | i ∈ [11], p ∈
{1, 3, 4, 5, 9}}. The possible types of 3-cycles in T are i → i + 1 → i + 10 →
i, i → i + 1 → i + 6 → i, i → i + 3 → i + 6 → i, i → i + 3 → i + 7 → i,
where the indices are taken modulo 11. These are dominated by the vertices
i − 3, i − 3, i + 2, i + 2, respectively. By substituting an arbitrary tournament
for each vertex of P11, we can obtain a tournament with arbitrarily many ver-
tices which has the property that every 3-cycle is dominated by some vertex
of minimum out-degree. 
�

On the other hand, removing a 2-cycle from a digraph D with δ+(D) ≥
2k − 1 clearly results in a new digraph D′ with δ+(D′) ≥ 2(k − 1) − 1 and
hence, when trying to prove Conjecture 2.5.18, we may always assume that
the digraph in question has no 2-cycles. In particular, the following is a direct
consequence of Theorem 2.5.20.

Corollary 2.5.23 Every semicomplete digraph D with δ+(D) ≥ 2k − 1 con-
tains k disjoint cycles. 
�

2 See also [9, Section 9.1].
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For regular tournaments Lichiardopol proved the following, which streng-
thens Theorem 2.5.20 when r is larger than 20.

Theorem 2.5.24 ([132]) Every (2r−1)-regular tournament contains at least
7
6r − 7

3 disjoint cycles.

Lichiardopol posed the following conjecture, which he proved for k = 2.
The complete digraph on g(k) + 1 vertices shows that g(k) ≥ k2+3k−2

2 .

Conjecture 2.5.25 ([131]) For every k ≥ 2, there exists an integer g(k) such
that every digraph D with δ+(D) ≥ g(k) has k disjoint cycles of different
lengths.

Bensmail, Harutyunyan, Le, Li and Lichiardopol [40] confirmed the con-
jecture for tournaments.

Theorem 2.5.26 ([40]) Every tournament T with δ+(T ) ≥ k2+4k−3
2 contains

k disjoint cycles of different lengths.

It is natural to ask for the minimum function gT (k) such that every
tournament T with δ+(T ) ≥ k2+4k−3

2 contains k disjoint cycles of differ-
ent lengths. The regular tournaments on n = 2gT (k) + 1 vertices show that
gT (k) ≥ k2+5k−2

4 .
Finally, we point out that already for tournaments it is difficult to find

the maximum number of disjoint cycles. The following recent result is due
to Bessy, Marin and Thiebaut. The authors also showed that there is no
polynomial time approximation scheme for the problem unless P = NP.

Theorem 2.5.27 ([43]) Finding the maximum number of disjoint 3-cycles in
a tournament is NP-hard.

2.6 Hamiltonian Paths and Cycles

In this section we discuss results on the number of Hamiltonian paths in tour-
naments, Hamiltonian paths with prescribed end vertices and Hamiltonian
cycles containing or avoiding a set of prescribed arcs.

2.6.1 Redei’s Theorem

Rédei proved an interesting generalization of Theorem 2.2.4 concerning the
parity of the number of Hamiltonian directed paths;

Theorem 2.6.1 (Rédei [158]) Every tournament contains an odd number
of Hamiltonian directed paths.
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The proof of Theorem 2.6.1 is established by means of a proof technique
known as the Inclusion-Exclusion Principle, or the Möbius Inversion
Formula, an inversion formula with applications throughout mathematics.
We present here a simple version which suffices for our purpose. We refer the
interested reader to Chapter 21 of Handbook of Combinatorics by Gessel and
Stanley [96].

Lemma 2.6.2 (Inclusion-Exclusion Principle) Let Z be a finite set and
f : 2Z → N a real-valued function defined on the subsets of Z. Define the
function g : 2Z → N by g(X) =

∑
{Y |X⊆Y ⊆Z} f(Y ). Then

f(X) =
∑

{Y |X⊆Y ⊆Z}
(−1)|Y |−|X|g(Y ).

Proof: By the Binomial Theorem,

∑

{Y |X⊆Y ⊆W}
(−1)|Y |−|X| =

|W |∑

k=|X|

(
|W | − |X|
k − |X|

)
(−1)k−|X| = (1 − 1)|W |−|X|

which is equal to 0 if X ⊂ W , and to 1 if X = W . Therefore,

f(X) =
∑

{W |X⊆W⊆Z}
f(W )

∑

{Y |X⊆Y ⊆W}
(−1)|Y |−|X|

=
∑

{Y |X⊆Y ⊆Z}
(−1)|Y |−|X| ∑

{W |Y ⊆W⊆Z}
f(W )

=
∑

{Y |X⊆Y ⊆Z}
(−1)|Y |−|X|g(Y ).


�
Proof of Theorem 2.6.1 Let T = (V,A) be a tournament with vertex set
V = {1, 2, . . . , n} and denote by h(T ) the number of Hamiltonian paths in
T . For any permutation σ of V , let Aσ = A ∩ {σ(i)σ(i + 1) | 1 ≤ i ≤ n − 1}.
Then Aσ induces a subdigraph of T each of whose components is a directed
path.

For any subset X of A, let us define f(X) = |{σ ∈ Sn | X = Aσ}|
and g(X) = |{σ ∈ Sn | X ⊆ Aσ}|. Then g(X) =

∑

X⊆Y ⊆A

f(Y ), so by the

Inclusion-Exclusion Principle

f(X) =
∑

X⊆Y ⊆A

(−1)|Y |−|X|g(Y ).

Observe that g(Y ) = r! if and only if the spanning subdigraph of T with
arc set Y is the disjoint union of r directed paths. Thus g(Y ) is odd if and
only if Y induces a Hamiltonian directed path of T . Hence, defining h(X) =
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|{H ∈ H | X ⊆ A(H)}| with H the set of Hamiltonian directed paths of T ,
we obtain

f(X) ≡
∑

{H∈H|X⊆A(H)}
(−1)n−1−|X| ≡ h(X) (mod 2).

The theorem is true for transitive tournaments as there is a unique Hamil-
tonian directed path. Since any n-tournament may be obtained from the
transitive n-tournament by reversing the orientation of appropriate arcs, it
suffices to prove that the parity of the number of Hamiltonian directed paths
h(T ) is unaltered by the reversal of any one arc e.

Let T ′ be the tournament obtained from T by reversing e. Then h(T ′) =
h(T ) + f({e}) − h({e}). Since f({e}) ≡ h({e}) (mod 2), we have h(T ′) ≡
h(T ) (mod 2). 
�

2.6.2 Hamiltonian Connectivity

Recall that an [x, y]-path in a digraph D = (V,A) is a directed path which
either starts at x and ends at y or oppositely. We say that D is weakly
Hamiltonian-connected if it has a Hamiltonian [x, y]-path (also called an
[x, y]-Hamiltonian path) for every choice of distinct vertices x, y ∈ V .
Thomassen found the following characterization of weakly Hamiltonian-
connected tournaments.

Theorem 2.6.3 ([184]) Let D = (V,A) be a tournament and let x1, x2 be
distinct vertices of D. Then D has an [x1, x2]-Hamiltonian path if and only
if none of the following holds.

(a) D is not strong and either none of x1, x2 belongs to the initial strong com-
ponent of D or none of x1, x2 belongs to the terminal strong component
of D.

(b) D is strong and for i = 1 or 2, D − xi is not strong and x3−i belongs to
neither the initial nor the terminal strong component of D − xi.

(c) D is isomorphic to one of the two tournaments in Figure 2.2 (possibly
after interchanging the names of x1 and x2).

For semicomplete digraphs there is also a characterization which can be
read out of Theorem 6.7.3 (as every semicomplete digraph is also locally
semicomplete).

Corollary 2.6.4 ([184]) Let D be a strong tournament and let x, y, z be dis-
tinct vertices of D. Then D has a Hamiltonian path connecting two of the
vertices in the set {x, y, z}. 
�

Corollary 2.6.5 ([184]) A tournament T with at least three vertices is weakly
Hamiltonian-connected if and only if it satisfies (1)–(3) below.
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x2

x1

Figure 2.2 The exceptional tournaments in Theorem 2.6.3. The edge between x1

and x2 can be oriented arbitrarily

(1) T is strong.
(2) For every vertex v ∈ V (T ), T − v has at most two strong components.
(3) T is not isomorphic to any of the two tournaments in Figure 2.2.

We now turn to Hamiltonian paths with specified initial and terminal
vertices. An (x, y)-Hamiltonian path is a Hamiltonian path from x to
y. A digraph D = (V,A) is Hamiltonian-connected if D has an (x, y)-
Hamiltonian path for every choice of distinct vertices x, y ∈ V . The following
result of Thomassen gives a sufficient condition for a semicomplete digraph
to have an (x, y)-Hamiltonian path.

Theorem 2.6.6 (Thomassen [184]) Let D = (V,A) be a 2-strong semi-
complete digraph with distinct vertices x, y. Then D contains an (x, y)-
Hamiltonian path if either (a) or (b) below is satisfied.

(a) D contains three internally disjoint (x, y)-paths each of length at least 2.
(b) D contains a vertex z which is dominated by every vertex of V \ {x} and

D contains two internally disjoint (x, y)-paths each of length at least 2.
�

Theorem 2.6.6 and Menger’s theorem (Theorem 1.5.3) immediately imply
the following result.

Theorem 2.6.7 ([184]) If a semicomplete digraph D is 4-strong, then D is
Hamiltonian-connected. 
�

Thomassen constructed an infinite family of 3-strongly connected tour-
naments with two vertices x, y for which there is no (x, y)-Hamiltonian path
[184]. Hence, from a connectivity point of view, Theorem 2.6.7 is the best
possible.

Theorem 2.6.7 has several important consequences. Thomassen has shown
in several papers how to use Theorem 2.6.7 to obtain results on spanning
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collections of paths and cycles in semicomplete digraphs. See, e.g., the pa-
pers [179, 181] and also Section 2.6.3.

The next theorem of Bang-Jensen, Manoussakis and Thomassen general-
izes Theorem 2.6.6 (when n ≥ 10). Recall that for specified distinct vertices
s, t, an (s, t)-separator is a subset S ⊆ V \ {s, t} such that D − S has no
(s, t)-path. An (s, t)-separator is trivial if either s has out-degree 0 or t has
in-degree 0 in D − S.

Theorem 2.6.8 ([32]) Let D be a 2-strong semicomplete digraph on at least
ten vertices and let x, y be vertices of D such that xy �∈ A(D). Suppose that
both of D−x and D−y are 2-strong. If all (x, y)-separators consisting of two
vertices (if any exist) are trivial, then D has an (x, y)-Hamiltonian path. 
�

Based on Theorem 2.6.8 and several other structural results on 2-strong
semicomplete digraphs Bang-Jensen, Manoussakis and Thomassen proved the
following.

Theorem 2.6.9 ([32]) The (x, y)-Hamiltonian path problem is solvable in
polynomial time for semicomplete digraphs.

The algorithm uses a divide-and-conquer approach and cannot be easily
modified to find a longest (x, y)-path in a semicomplete digraph. There also
does not seem to be any simple reduction of this problem to the problem of
deciding the existence of a Hamiltonian path from x to y. Bang-Jensen and
Gutin conjectured that there exists a polynomial algorithm for the problem.

Conjecture 2.6.10 ([23]) There exists a polynomial algorithm that, given a
semicomplete digraph D and two distinct vertices x and y of D, finds a longest
(x, y)-path.

Note that if we ask for the longest [x, y]-path in a tournament, then this
can be answered using Theorem 2.6.3. We leave the details to the interested
reader.

The following result, due to Bang-Jensen, Maddaloni and Simonsen, shows
that if we generalize the (x, y)-Hamiltonian path problem in a natural way,
we obtain an NP-complete problem.

Theorem 2.6.11 ([31]) The following problem is NP-complete: given a
strong tournament T , a p-partition (V1, . . . , Vp) of V (T ) and distinct ver-
tices x, y of T ; determine whether T has an (x, y)-path which intersects each
of the sets Vi, i ∈ [p].

2.6.3 Hamiltonian Cycles Containing or Avoiding Prescribed Arcs

We now turn our attention to Hamiltonian cycles in digraphs with the ex-
tra condition that these cycles must either contain or avoid all arcs from a
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prescribed subset A′ of the arcs. As we shall see, problems of this type are
quite difficult even for semicomplete digraphs. If we have no restriction on the
size of A′, then we may easily formulate the Hamiltonian cycle problem for
arbitrary digraphs as an avoiding problem for semicomplete digraphs. Hence
the avoiding problem without any restrictions is certainly NP-complete. Be-
low, we study both types of problems from a connectivity as well as from a
complexity point of view. Bang-Jensen and Gutin [24] showed that when the
number of arcs to be avoided, respectively, contained in a Hamiltonian cycle,
is some constant, then, from a complexity point of view, the avoiding version
is no harder than the containing version.

Consider the following problem.

Hamiltonian cycle through k-prescribed arcs (k-hca)
Input: A digraph D and prescribed arcs e1, e2, . . . , ek

Question: Does D have a Hamiltonian cycle containing all of these arcs?

Clearly this is NP-complete for general digraphs, but even for semicom-
plete digraphs this is a difficult problem. For k = 1 the k-HCA problem is a
special case of the (x, y)-Hamiltonian path problem and hence it is polyno-
mial for semicomplete digraphs by Theorem 2.6.9. The problem is open for
semicomplete digraphs for all other values of k.

Based on the evidence from Theorem 2.6.9, Bang-Jensen, Manoussakis
and Thomassen posed the following conjecture.

Conjecture 2.6.12 ([32]) For each fixed k, the k-HCA problem is polynomial
time solvable for semicomplete digraphs.

Bang-Jensen and Thomassen proved that when k is not fixed the k-HCA
problem becomes NP-complete even for tournaments [34]. The proof of this
result in [34] contains an interesting idea which was generalized by Bang-
Jensen and Gutin in [24]. Consider a digraph D containing a set W of k
vertices such that D − W is semicomplete. Construct a new semicomplete
digraph DW as follows. First, split every vertex w ∈ W into two vertices
w1, w2 such that all arcs entering w now enter w1 and all arcs leaving w now
leave w2. Let Wi = {wi|w ∈ W}, i = 1, 2. For each w1 ∈ W1, w

′
2 ∈ W2 add

the arc w1w
′
2 except if the arc w′

2w1 is already present. Add all edges between
distinct vertices of Wi for i = 1, 2 and orient these arbitrarily. Finally, add all
arcs of the kind w1z and zw2, where w ∈ W and z ∈ V (D) − W . See Figure
2.3. It is easy to show that the following proposition holds:

Proposition 2.6.13 ([24]) Let W be a set of k vertices of a digraph D such
that D − W is a semicomplete digraph. Then D has a cycle of length c ≥ k
containing all vertices of W if and only if the semicomplete digraph DW has
a cycle of length c + k through the arcs {w1w2 : w ∈ W}.
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W

S S

W1 W2

DWD

Figure 2.3 The construction of DW from D and W . The bold arc from W1 to W2

indicates that all arcs not already going from W2 to W1 (as copies of arcs in D) go
in the direction shown. The four other bold arcs indicate that all possible arcs are
present in the shown direction

Bang-Jensen and Gutin observed that the following is equivalent to
Conjecture 2.6.12.

Conjecture 2.6.14 ([24]) Let k be a fixed positive integer. There exists a
polynomial algorithm to decide if there is a Hamiltonian cycle in a given
digraph D which is obtained from a semicomplete digraph by adding at most
k new vertices and some arcs.

The truth of this conjecture when k = 1 follows from Proposition 2.6.13
and Theorem 2.6.9. Surprisingly, when |W | = 2 the problem already seems
to be very difficult.

Using Theorem 2.6.7 Thomassen [179] proved the existence of a function
h(k) such that for every h(k)-strong semicomplete digraph D and every choice
of distinct vertices x1, y1, ..., xk, yk D has k-path factor P1 ∪ P2 ∪ ... ∪ Pk

such that Pi is an (xi, yi)-path for i = 1, ..., k. The function h(k) is super-
exponential. Recently Kim, Kühn and Osthus improved this to a polynomial.

Theorem 2.6.15 ([121]) Let k be a positive integer, and let T be a (k2+3k)-
strong tournament. For any set {x1, y1, ..., xk, yk} of distinct vertices, T has
a k-path factor P1∪P2∪ ...∪Pk such that Pi is an (xi, yi)-path for i = 1, ..., k.

Note that Theorem 2.6.15 gives a better bound than Theorem 2.5.15
when k < 449 and even guarantees a k-linkage that spans all vertices of the
tournament.
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Corollary 2.6.16 ([121]) If a1, ..., ak are arcs with no common head or tail in
a (k2 +3k)-strong tournament T , then T has a Hamiltonian cycle containing
a1, ..., ak in that cyclic order.

Pokrovskiy [155] showed that the bound in Theorem 2.6.15 can be re-
placed by a linear function, thus answering a question of Thomassen from
[179]. The constant C below is very large, which is why we also stated The-
orem 2.6.15, which gives a better bound as long as k is not very large.

Theorem 2.6.17 ([155]) There exists a constant C such that for every Ck-
strong tournament T and every set {x1, y1, ..., xk, yk} of distinct vertices, T
has a k-path-factor P1, P2, . . . , Pk such that Pi is an (xi, yi)-path for i =
1, ..., k.

By Theorem 2.3.2, similar results hold for semicomplete digraphs.
Recall that a set of arcs is independent if no two of the arcs share a

vertex. Combining the ideas of avoiding and containing, Thomassen proved
the following (below we have replaced his exponential function by the one
from Theorem 2.6.15).

Theorem 2.6.18 ([179]) Let T be a (k2 + 3k)-strong tournament. For any
set A1 of at most k arcs in T and for any set A2 of at most k independent
arcs of T \A1, the digraph T \A1 has a Hamiltonian cycle containing all arcs
of A2.

Even though tournaments have a lot of structure and the Hamiltonian
cycle problem is almost trivial, the situation changes dramatically if we delete
just a few arcs from a tournament. For some tournaments, such as the almost
transitive tournaments, the answer is that even one missing arc may destroy
all Hamiltonian cycles. If there is exactly one arc entering (resp. leaving)
a vertex, then deleting that arc clearly suffices to destroy all Hamiltonian
cycles. However, it is not just a simple degree question since, for every p,
there exists an infinite set S of strong tournaments in which δ0(T ) ≥ p for
every T ∈ S and yet there is some arc of T which is on every Hamiltonian
cycle of T ([22, Exercise 7.19]). It follows from Theorem 2.6.19 below that all
such tournaments are strong but not 2-strong.

Obviously, if a k-strong tournament T has δ0(T ) = k (this is the smallest
possible by the connectivity assumption), we may again kill all Hamilto-
nian cycles by removing just k arcs. Thomassen [181] conjectured that in a
k-strong tournament, k is the minimum number of arcs one can delete in
order to destroy all Hamiltonian cycles. The next theorem due to Fraisse and
Thomassen answers this in the affirmative.

Theorem 2.6.19 (Fraisse and Thomassen [87]) For every k-strong tour-
nament T and every set A′ ⊂ A(T ) such that |A′| ≤ k − 1, there is a Hamil-
tonian cycle C in T \ A′.
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The proof is long and non-trivial; in particular it uses Theorem 2.6.7.
Below we describe a stronger result due to Bang-Jensen, Gutin and Yeo [25].

Theorem 2.6.20 ([25]) Let T = (V,A) be a k-strong n-tournament, and let
X1,X2, . . . , Xp (p ≥ 1) be a partition of V such that 1 ≤ |X1| ≤ |X2| ≤
. . . ≤ |Xp|. Let D be the digraph obtained from T by deleting all arcs which
have both head and tail in the same Xi (i.e., D = T \

⋃p
i=1 A(T [Xi])). If

|Xp| ≤ n/2 and k ≥ |Xp| +
∑p−1

i=1 �|Xi|/2�, then D is Hamiltonian. In other
words, T has a Hamiltonian cycle which avoids all arcs with both head and
tail in some Xi. Furthermore, the bound on k is sharp.

The proof of Theorem 2.6.20 in [25] uses results on irreducible cycle fac-
tors in multipartite tournaments, in particular Yeo’s irreducible cycle factor
theorem (Theorem 7.3.2).

The main idea of the proof is as follows: By construction (deleting all arcs
inside several disjoint sets) D is a multipartite tournament. The goal is to
apply Theorem 7.3.2 to D. Hence we need to establish that D is strong and
has a cycle factor. Both of these are true and the latter can be proved using
Hoffman’s circulation theorem. Now we can apply Theorem 7.3.2 to prove
that every irreducible cycle factor in D is a Hamiltonian cycle. This last step
is non-trivial.

Problem 2.6.21 ([25]) Which sets B of edges of the complete graph Kn have
the property that every k-strong orientation of Kn induces a Hamiltonian
digraph on Kn − B?

The Fraisse–Thomassen theorem says that this is the case whenever B
contains at most k − 1 edges. Theorem 2.6.20 says that a union of dis-
joint cliques of sizes r1, . . . , rp has the property whenever

∑l
i=1�ri/2� +

max1≤i≤l{	ri/2
} ≤ k. As shown in [25] this is the best possible result for
unions of cliques.

See [22, pages 293–294] for a proof that Theorem 2.6.20 implies Theorem
2.6.19. Note that if A′ induces a tree and possibly some disjoint edges in
UG(T ), then Theorem 2.6.20 is no stronger than Theorem 2.6.19. In all other
cases Theorem 2.6.20 provides a stronger bound.

How easy is it to decide, for a given semicomplete digraph D = (V,A)
and a subset A′ ⊆ A, whether D has a Hamiltonian cycle C which avoids
all arcs of A′? As we mentioned earlier, this problem is NP-complete if we
pose no restriction on the arcs in A′. In the case when A′ is precisely the
set of those arcs that lie inside the sets of some partition X1,X2, . . . , Xr of
V , then the existence of C can be decided in polynomial time. This follows
from the fact that D \ A′ is a semicomplete multipartite digraph and, by
Theorem 7.6.1, the Hamiltonian cycle problem is polynomial for semicomplete
multipartite digraphs. The same argument also covers the case when k = 1
in the conjecture below.
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Conjecture 2.6.22 ([22]) For every fixed positive integer k, there exists a
polynomial algorithm which, for a given semicomplete digraph D and a subset
A′ ⊆ A(D) such that |A′| = k, decides whether D has a Hamiltonian cycle
that avoids all arcs in A′.

At first glance, cycles that avoid certain arcs seem to have very little to
do with cycles that contain certain specified arcs. Hence, somewhat surpris-
ingly, if Conjecture 2.6.12 is true, then so is Conjecture 2.6.22 as observed
by Thomassen3: Suppose that Conjecture 2.6.12 is true. Then it follows from
the discussion above on Hamiltonian cycles containing prescribed arcs that
Conjecture 2.6.14 also holds. Hence, for fixed k, there is a polynomial algo-
rithm Ak which, given a digraph D and a subset W ⊆ V (D) for which D−W
is semicomplete and |W | ≤ k, decides whether or not D has a Hamiltonian
cycle. Let k be fixed and D be a semicomplete digraph and let A′, |A′| ≤ k,
be a prescribed set of arcs in D. Let W be the set of all vertices such that
at least one arc of A′ has head or tail in W . Then |W | ≤ 2|A′| and D has
a Hamiltonian cycle avoiding all arcs in A′ if and only if the digraph D \ A′

has a Hamiltonian cycle. By the above remark, we can test this using the
polynomial algorithm Ar, where r = |W |.

2.7 Oriented Subgraphs of Tournaments

A digraph is n-unavoidable if it is contained in every n-tournament and sim-
ply unavoidable if there exists some n such that it is n-unavoidable. Redei’s
Theorem states that the directed n-path is n-unavoidable. A natural question
is which digraphs are unavoidable? Because the transitive tournaments are
acyclic, every digraph containing a directed cycle is not unavoidable. On the
other hand, we now prove that every acyclic digraph is unavoidable.

Theorem 2.7.1 (Folklore) A digraph is unavoidable if and only if it is
acyclic. Moreover, every acyclic n-digraph is 2n−1-unavoidable.

Proof: We already mentioned that every non-acyclic digraph is not unavoid-
able. Reciprocally, we need to prove that every acyclic digraph is unavoidable,
and more precisely that every acyclic n-digraph 2n−1-unavoidable. As every
acyclic n-digraph is a subdigraph of the transitive n-tournament TTn, it suf-
fices to prove the result for TTn. This follows directly from Proposition 2.2.3.


�

Now, for each acyclic (and hence unavoidable) digraph D, it is natural to
ask for the minimum integer unvd(D) such that D is unvd(D)-unavoidable.
Since an acyclic n-digraph is contained in TTn and so unvd(D) ≤ unvd(TTn),

3 private communication, August 1999.
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the first interesting case is that of transitive tournaments, which also yields
a good estimate of unvd(D) for digraphs D with many arcs. The unavoid-
ability of transitive tournaments is detailed in Subsection 2.7.1. We then
study the unavoidability of acyclic digraphs with few arcs, namely oriented
paths (Subsection 2.7.2), oriented cycles (Subsection 2.7.3), and oriented trees
(Subsection 2.7.4).

2.7.1 Transitive Subtournaments

Erdős and Moser [76] ask for the value of unvd(TTn).

Problem 2.7.2 ([76]) What is unvd(TTn)?

Theorem 2.7.1 yields unvd(TTn) ≤ 2n−1. This upper bound is almost
tight, as shown by the following result due to Erdős and Moser [76].

Theorem 2.7.3 ([76]) There exists a tournament on 2(n−1)/2 vertices which
contains no TTn.

Proof: The proof is probabilistic and uses the First Moment Method. (For
more on the Probabilistic Method and in particular the First Moment
Method, we refer the reader to the book of Alon and Spencer [8].) Set
N = 2(n−1)/2 and consider T = RTN , a random tournament on N vertices.

For an ordered n-tuple (v1, v2, . . . , vn) the probability that T 〈{v1, . . . , vn}〉
is a transitive tournament with Hamiltonian directed path v1v2 . . . vn is
(
1
2

)(n2). Hence the expected number of transitive n-subtournaments is

N !
(N − n)!

(
1
2

)(n2)
< Nn

(
1
2

)(n2)
≤ 1

because N ≤ 2(n−1)/2. Hence by the First Moment Principle, there exists an
N -tournament with less than 1 (i.e. no) n-subtournament. 
�

In the same way, for every acyclic n-digraph D with m arcs one can show
that unvd(D) > 2

m
n . This gives a meaningful lower bound for digraphs with

sufficiently many arcs, namely at least n log n arcs.

Clearly, unvd(TT1) = 1, unvd(TT2) = 2 and unvd(TT3) = 4. Also
unvd(TT4) = 8 because the Paley tournament P7 contains no TT4. Moreover,
Reid and Parker [162] showed that unvd(TT5) = 14 and unvd(TT6) = 28 and
Sanchez-Flores [167] showed unvd(TT7) ≤ 54. A similar induction as in the
proof of Theorem 2.7.1 yields that unvd(TTn) ≤ 54 × 2n−7 if n ≥ 7.

In addition, for 1 ≤ n ≤ 6 it has been shown [162, 167] that there is a
unique tournament of order unvd(TTn) − 1 that contains no TTn. This leads
us to the following conjecture:

Conjecture 2.7.4 (Havet, 2008) For every n, there is a unique tourna-
ment on unvd(TTn) − 1 vertices that contains no TTn.
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2.7.2 Oriented Paths in Tournaments

An oriented path is an orientation P of an undirected path x1 · · · xn. We
say that x1 is the origin of P and xn is the terminus of P . If x1 → x2, P is
an out-path, otherwise P is an in-path. The directed out-path of order n
is the orientation of x1 · · · xn in which xi → xi+1 for all i, 1 ≤ i < n; the dual
notion is directed in-path. The length of a path is its number of arcs. We
denote by ∗P (resp. P ∗) the oriented path obtained from P by removing its
origin (resp. terminus). The blocks of P are the maximal directed subpaths
of P . We enumerate the blocks of P from the origin to the terminus. The
first block of P is denoted by B1(P ) and its length by b1(P ). Likewise, the
ith block of P is denoted by Bi(P ) and its length by bi(P ). The path P
is totally described by the signed sequence sgn(P )(b1(P ), b2(P ), · · · , bk(P ))
where k is the number of blocks of P and sgn(P ) = + if P is an out-path
and sgn(P ) = − if P is an in-path. An antidirected path is an oriented
path in which all blocks have length 1.

Let X be a set of vertices of T . The out-section generated by X in
T is the set of vertices y to which there exists a directed out-path from
some x ∈ X; we denote this set by S+(X) (note that X ⊆ S+(X) since we
allow paths of length zero). We abbreviate S+({x}) to S+(x) and S+({x, y})
to S+(x, y). The dual notion, the in-section, is denoted by S−(X). We
also write s+(X) (resp. s−(X)) for the number of vertices of S+(X) (resp.
S−(X)). If X ⊆ Y ⊆ V , we write S+

Y (X) instead of S+
T [Y ](X). An out-

generator of T is a vertex x ∈ T such that S+(x) = V (T ), the dual notion
is an in-generator.

Redei’s Theorem states that the directed n-out-path is n-unavoidable. It
is then a natural question to ask whether the other oriented n-paths are also
n-unavoidable. Grünbaum [98] proved that this is the case for antidirected
paths except for three exceptions, the paths ±(1, 1) which is not contained
in the directed 3-cycle

→
C3, ±(1, 1, 1, 1) which is not contained in the regu-

lar 5-tournament R5, and ±(1, 1, 1, 1) which is not contained in the Paley
7-tournament P7. A year later, in 1972, Rosenfeld [165] gave an easier proof
of a stronger result: in a tournament on at least 9 vertices, each vertex is
the origin of an antidirected Hamiltonian path. He also made the follow-
ing conjecture: there is an integer N > 7 such that every tournament on n
vertices, n ≥ N , contains any orientation of the Hamiltonian path. The con-
dition N > 7 results from Grünbaum’s counterexamples. Several papers gave
partial answers to this conjecture: for paths with two blocks (Alspach and
Rosenfeld [13], Straight [174]), and for paths having the ith block of length
at least i + 1 (Alspach and Rosenfeld [13]); interestingly Forcade [83] proved
in a way similar to the proof of Theorem 2.6.1 that there is always an odd
number of Hamiltonian paths of any type in tournaments with 2n vertices.
Rosenfeld’s conjecture was verified by Thomason, who proved in [176] that N
exists and is less than 2128. While he did not make any attempt to sharpen
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this bound, he wrote that N = 8 should be the right value. The problem
was finally closed by Havet and Thomassé [110] who proved the following
theorem.

Theorem 2.7.5 (Havet and Thomassé [110]) Apart from Grünbaum’s
exceptions, every n-tournament contains every oriented n-path.

The proof of Havet and Thomassé relies on sufficient conditions for ver-
tices to be an origin of a given oriented path in a tournament. An easy
condition for a vertex x to be an origin of an oriented out-path P is that
s+(x) ≥ b1(P )+1. It is sometimes sufficient: for example, this condition says
that an origin of a Hamiltonian directed out-path in a tournament must be
a out-generator, and one can easily show that it is also sufficient.

Proposition 2.7.6 In a tournament T , a vertex v is an origin of a Hamil-
tonian directed out-path in T if and only if v is an out-generator of T .

In contrast, for other Hamiltonian oriented paths, the condition s+(x) ≥
b1(P ) + 1 is not sufficient to guarantee x being an origin of P . However,
Havet and Thomassé [110] proved that among two distinct vertices x, y such
that s+(x, y) ≥ b1(P )+1, there must be an origin of P except in some excep-
tional cases that they completely characterized. The proof of this result is by
induction and is tedious because of a long case analysis due to the exceptional
cases (51 small ones plus 17 infinite families). However, the general idea of
the proof is the same as that of the following weaker theorem about oriented
n-paths in (n + 1)-tournaments.

Theorem 2.7.7 ([110]) Let T be a tournament of order n+1, P an out-path
of order n and x, y two distinct vertices of T . If s+(x, y) ≥ b1(P ) + 1, then x
or y is an origin of P in T .

Proof: We prove the statement and its directional dual (where P is an in-
path and s−(x, y) ≥ b1(P )+1) by induction on n, the result holding trivially
for n = 1. Let x and y be two vertices of a tournament T = (V,A) such that
x → y and s+(x, y) ≥ b1(P ) + 1. We distinguish two cases:

Case 1 : b1(P ) ≥ 2. If d+(x) ≥ 2, let z ∈ N+(x) be an out-generator of
T 〈S+(x)\{x}〉 and let t ∈ N+(x), t �= z. By definition of z, s+V \{x}(t, z) =
s+(x) − 1 > b1(∗P ). Since ∗P is an out-path, by the induction hypothesis,
either t or z is an origin of ∗P in T − x. Thus x is an origin of P in T .

So we may assume that y is the unique out-neighbour of x. Let z be an out-
generator of T 〈N+(y)〉 (z exists since s+(x, y) ≥ 3). Then z → x and z is an
out-generator of T 〈S+(x, y)\{y}〉. It follows that s+V \{y}(x, z) = s+(x, y)− 1,
so by the induction hypothesis, either x or z is an origin of ∗P in T −y. Since
d+V \{y}(x) = 0, this origin is certainly z. We conclude that y is an origin of
P in T .
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Case 2 : b1(P ) = 1. Assume first that d+(x) ≥ 2. We denote by X
the set S−

V \{x}(N
+(x)). Consider the partition (X,Y, {x}) of V where Y =

V \(X ∪ {x}). We have Y → x, X → Y and y ∈ X. If |X| ≥ b2(P ) + 1, then
x is an origin of P in T ; indeed, let z ∈ N+(x) be an in-generator of T 〈X〉
and let u ∈ N+(x) u �= z. By the induction hypothesis, z or u is an origin of
∗P in T − x. Hence x is an origin of P in T . If |X| ≤ b2(P ), we have |Y | > 1
since b2(P ) ≤ n − 2 and |X| + |Y | = n. Let w ∈ Y be an in-generator of
T 〈Y 〉. Notice that since d+(x) > 1, S−

V \{y}(w) = V \{y}. Let u ∈ Y − w. By
the induction hypothesis, u or w is an origin of ∗P in T − y, consequently y
is an origin of P in T .

Now assume that d+(x) = 1, thus N+(x) = {y}. If d+(y) < 2, then
N−

V \{x}(y) has at least n − 2 vertices. By the induction hypothesis, one can
find ∗∗P in T 〈N−

V \{x}(y)〉, thus x is an origin of P in T . If d+(y) ≥ 2,
denote S−

V \{y}(N
+(y)) by Y and consider the partition (X,Y, {x}, {y}) of

V with X = V \(Y ∪ {x, y}). By definition, X → {x, y}, Y → X ∪ {x}.
If |Y | ≥ b2(P ) + 1, then y is an origin of P by the previous argument. If
|Y | ≤ b2(P ), then b2(P ) ≥ d+(y) ≥ 2. If |X| ≥ 2, let z ∈ X be an in-generator
of T − {x, y} and let u ∈ X u �= z. Since b2(P ) ≥ 2, ∗∗P is an in-path and
by the induction hypothesis, z or u is an origin of ∗∗P in T − {x, y}. Thus x,
(via y) is an origin of P in T . Finally, if |X| = 1 then |Y | = n − 2 and since
n−2 ≥ b2(P ) ≥ |Y | we have b2(P ) = n−2. This means that ∗P is a directed
in-path. Since y is an in-generator of T − x, x is an origin of P in T . 
�

The following result, due to Thomason, is an easy consequence of Theorem
2.7.7.

Corollary 2.7.8 ([176]) Every tournament T of order n + 1 contains each
oriented path P of order n. Moreover, any subset of b1(P )+1 vertices contains
an origin of P . In particular, at least two vertices of T are origins of P .

2.7.3 Oriented Cycles in Tournaments

As we did for paths, we can seek arbitrary orientations of cycles, i.e. ori-
ented cycles. Observe that by Camion’s Theorem (2.2.6) a tournament has
a directed Hamiltonian cycle if and only if it is strong. A natural equation is
then whether every tournament contains all Hamiltonian non-directed cycles.
The existence of Grünbaum’s exceptions implies the existence of tournaments

that do not contain certain Hamiltonian oriented cycles. Indeed
→
C3, R5 and

P7 do not contain the cycle obtained from a Hamiltonian antidirected path by
adding an arc between its terminus and its origin. Moreover, the tournaments
of order n that have a subtournament on n − 1 vertices isomorphic to one of
→
C3, R5 and P7 do not contain a Hamiltonian antidirected cycle. (Similarly to
paths, an antidirected cycle is a cycle in which every block has length 1.)
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However, as for oriented paths, Rosenfeld [164] conjectured that there
is an integer N > 8 such that every tournament of order n ≥ N contains
every non-directed cycle of order n. This was settled by Thomason [176] for
tournaments of order n ≥ 2128. While Thomason made no attempt to sharpen
this bound, he indicated that it should be true for tournaments of order at
least 9.

Conjecture 2.7.9 (Rosenfeld–Thomason) Every tournament of order
n ≥ 9 contains every non-directed cycle of order n.

Havet [107] improved Thomason’s result by showing that this conjecture
is true for n ≥ 68.

Theorem 2.7.10 ([107]) Every tournament of order n ≥ 68 contains every
non-directed cycle of order n.

The proof is based on complementary lemmas: Some establish the exis-
tence of an oriented cycle in every tournament whose strong connectivity is
small compared to the length of its longer block; others show the existence
of an oriented cycle in every tournament whose strong connectivity is large
compared to the lengths of all blocks. In particular, Conjecture 2.7.9 is true if
the tournament is either not 2-strong or 8-strong [107]. The conjecture is also
true if the tournament is either 5-strong and of order at least 43 or 4-strong
and of order at least 65.

Better results are also known for particular types of directed cycles. Con-
jecture 2.7.9 has been proved for cycles with a block of length n − 1 by
Grünbaum [98], for antidirected cycles by Thomassen [177] (n ≥ 50), Rosen-
feld [164] (n ≥ 28) and Petrović [151] (n ≥ 16), and for cycles with just two
blocks by Benhocine and Wojda [39].

2.7.4 Trees in Tournaments

As we did for paths and cycles, we can seek an arbitrary orientation of trees,
i.e. oriented trees. Observe that an oriented tree of order k is an acyclic
digraph and thus it is 2k−1-unavoidable by Theorem 2.7.1. However this
bound 2k−1 is far from tight as an oriented tree has very few arcs compared
to the transitive tournament of the same order.

Conjecture 2.7.11 (Sumner, 1972) Every oriented tree with k > 1 ver-
tices is (2k − 2)-unavoidable.

If true, this conjecture would be tight since the out-star S+
k , which is the

out-tree of order k with a root dominating k−1 leaves, is not contained in any
regular tournament of order 2k−3, because all vertices of such a tournament
have out-degree k − 2.
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The first linear bound was given by Häggkvist and Thomason [104]. Havet
and Thomassé [109] proved that the conjecture holds for out-trees (and thus
also for in-trees).

Theorem 2.7.12 ([109]) Every tournament of order 2k − 2 contains every
out-tree of order k > 1.

Proof: Let (v1, v2, . . . , v2k−2) be a median order of a tournament T on 2k −
2 vertices, and let A be an out-tree on k vertices. Consider the intervals
(v1, v2, . . . , vi), 1 ≤ i ≤ 2k − 2. We show, by induction on k, that there is a
copy of A in T whose vertex set includes at least half the vertices of any such
interval.

This is clearly true for k = 2. Suppose, then, that k ≥ 3. Delete a leaf y of
A to obtain an out-tree A′ on k−1 vertices, and set T ′ := T −{v2k−3, v2k−2}.
By (M1), (v1, v2, . . . , v2k−4) is a median order of the tournament T ′, so there
is a copy of A′ in T ′ whose vertex set includes at least half the vertices
of any interval v1, v2, . . . , vi, 1 ≤ i ≤ 2k − 4. Let x be the predecessor of
y in A. Suppose that x is located at vertex vi of T ′. In T , by (M2), vi

dominates at least half of the vertices vi+1, vi+2, . . . , v2k−2, thus at least k −
1 − i/2 of these vertices. On the other hand, A′ includes at least (i − 1)/2
of the vertices v1, v2, . . . , vi−1, thus at most k − 1 − (i + 1)/2 of the vertices
vi+1, vi+2, . . . , v2k−2. It follows that, in T , there is an out-neighbour vj of vi,
where i + 1 ≤ j ≤ 2k − 2, which is not in A′. Locating y at vj , and adding
the vertex y and the arc xy to A′, we now have a copy of A in T . It is readily
checked that this copy of A satisfies the required additional property. 
�

The same method can be easily adapted to prove that every oriented tree
of order k is (4k − 4)-unavoidable. At each step of the induction, we add
two vertices to the right and two vertices to the left of the ordering and we
insist that at each step for each vertex v at least half of the vertices to the
right of v are unused and half of the vertices to the left are unused. El Sahili
[73] used it in a clever way to show that every oriented tree of order k is
(3k − 3)-unavoidable. Recently, Kühn, Mycroft and Osthus [125] proved that
Sumner’s conjecture is true for all sufficiently large k.

Theorem 2.7.13 (Kühn, Mycroft and Osthus [125]) There exists a k0
such that every oriented tree with k ≥ k0 vertices is (2k − 2)-unavoidable.

Their complicated proof makes use of the directed version of Szemeredi’s
Regularity Lemma.

As we mentioned above, Sumner’s conjecture is tight for out-stars. On
the other hand, it is not tight for paths which are trees with two leaves.
Consequently, Havet and Thomassé made the following conjecture, which
directly implies Sumner’s conjecture because a tree of order n has at most
n − 1 leaves.
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Conjecture 2.7.14 (Havet and Thomassé, 1996) If A is an oriented tree
with n vertices and k leaves, then it is (n + k − 1)-unavoidable.

If true this conjecture would be tight because of out-stars, but also be-
cause of Grünbaum’s exceptions. Conjecture 2.7.14 holds for k = 2, as trees
with two leaves are paths, Ceroi and Havet [57] proved it for k = 3, and
it easily holds for k = n − 1, that is, when the tree is an oriented star.
Havet [106] proved that it holds for a large class of oriented trees. Häggkvist
and Thomason [104] proved that there is a function g such that every tree
with n vertices and k leaves is (n + g(k))-unavoidable.

Instead of looking for a fixed oriented tree in tournaments, one may also
seek an oriented tree having certain properties. In this vein, Lu [137] proved
that there exists an out-branching of height 2, in which all nodes except the
root have small out-degree.

Theorem 2.7.15 ([137]) Every tournament T is has an out-branching of
height 2 and whose vertices on level 1 have out-degree at most 2.

Proof: The proof we give here is due to Bondy [49]. Let x be a vertex of
maximal out-degree. By Theorem 2.2.12, x is a king, so ({x}, N+(x), N++(x))
is a partition of V (T ). Note that, by the choice of x and since in every k-
tournament there is a vertex with out-degree at least �k/2�, for every A ⊆
N++(x) we have 2|A− ∩ N+(x)| ≥ |A|. By Hall’s theorem, one can cover
N++(x) by two directed matchings from N+(x) to N++(x). This gives the
desired out-branching. 
�

2.7.5 Largest n-Unavoidable Digraphs

Let lu(n) be the largest m such that there is an n-unavoidable digraph with
m arcs. Linial, Saks and Sós [135] showed the following.

Theorem 2.7.16 ([135]) There exist positive constants c1 and c2 such that
for all positive integers n, n log n − c1n log log n ≤ lu(n) ≤ n log n − c2n.

The upper bound comes from a simple counting argument working over
all labelled n-tournaments. The lower bound follows from several propositions
that allow an inductive construction of an n-unavoidable, weakly connected
spanning digraph with n log n − c1n log log n arcs.

2.7.6 Generalization to k-Chromatic Digraphs

A tournament is an orientation of a complete graph, and the complete graph
Kk is the easiest example of a graph with chromatic number k. Recall that
the chromatic number of a digraph D, denoted by χ(D), is the chromatic
number of its underlying undirected graph. A digraph is k-chromatic if its
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chromatic number is k. One can then wonder whether some results on tour-
naments can be extended to digraphs with large chromatic number. This is in
particular the case with Rédei’s Theorem (2.2.4), which has been generalized
to the following theorem, often referred to as the Gallai–Roy Theorem, even
if it was independently proved by four researchers: Gallai [94], Hasse [105],
Roy [166] and Vitaver [191].

Theorem 2.7.17 (Gallai–Hasse–Roy–Vitaver [94, 105, 166, 191]) Every
k-chromatic digraph contains a directed path of order k.

Theorem 2.7.17 has many proofs. One of them is based on median or-
ders (see [50] Chapter 14). We present here a proof due to El-Sahili and
Kouider [74]. It is based on the concept of out-forests, which are disjoint
unions of out-trees. An out forest of D is spanning if it covers all vertices of
D.

Let F be a spanning out-forest of D. The level of x is the number of
vertices of a longest directed path of F ending at x. For instance, the level
1 vertices are the roots of the out-trees of F . We denote by Fi the set of
vertices with level i in F . A vertex y is a descendant of x in F if there is a
directed path from x to y in F .

If there is an arc xy in D from Fi to Fj , with i ≥ j, and x is not a
descendant of y, then the out-forest F ′ obtained by adding xy and removing
the arc of F with head y (if such exists, that is, if j > 1) is called an
elementary improvement of F . An out-forest F ′ is an improvement
of F if it can be obtained from an out-forest F by a sequence of elementary
improvements. The key-observation is that if F ′ is an improvement of F then
the level of every vertex in F ′ is at least its level in F . Moreover, at least
one vertex of F has its level in F ′ strictly greater than its level in F . Thus,
one cannot perform infinitely many improvements. A spanning out-forest F
is final if there is no elementary improvement of F .

The following proposition follows immediately from the definition of a
final spanning out-forest:

Proposition 2.7.18 (El Sahili and Kouider [74]) Let D be a digraph and
F a final spanning out-forest of D. If a vertex x ∈ Fi dominates in D a vertex
y ∈ Fj for j ≤ i, then x is a descendant of y in F . In particular, every level
of F is an independent set in D.

Proof of Theorem 2.7.17: Consider a final spanning out-forest of a k-
chromatic digraph D. Since every level is an independent set by Proposi-
tion 2.7.18, there are at least k levels. Hence D contains a directed path of
order at least k. 
�

More generally, one can ask which digraphs are k-universal, i.e. con-
tained in every k-chromatic digraph. A result of Erdős [75] states that for
every choice of positive integers k and g, there exist k-chromatic graphs with
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no cycle of length less than g. Consequently, k-universal digraphs must be
oriented trees.

Bondy conjectured the following generalization of Theorem 2.7.5.

Conjecture 2.7.19 (Bondy, 1995) For sufficiently large k, every oriented
path on k vertices is k-universal.

As support for this conjecture, El Sahili proved [72] that every oriented
path of order 4 is 4-universal and that the antidirected path of order 5 is
5-universal. Addario-Berry, Havet, and Thomassé [2] proved that every ori-
ented path of order k ≥ 4 with two blocks is k-universal. Their proof use the
notion of a final spanning out-forest.

Burr [53] generalized Sumner’s Conjecture as follows.

Conjecture 2.7.20 (Burr [53], 1980) Every oriented tree on k vertices is
(2k − 2)-universal.

Burr [53] showed that every oriented tree of order k is (k − 1)2-universal.
This was slightly improved by Addario-Berry, Havet, Linhares Sales, Reed,
and Thomassé [1].

Theorem 2.7.21 ([1]) Every oriented tree on k vertices is (k2/2−k/2+1)-
universal.

Addario-Berry et al. [1] proved that every oriented tree on k vertices is
contained in every acyclic digraph of order n. They also established that every
antidirected tree of order k ≥ 3 is (5k − 9)-universal. An antidirected tree
is an oriented tree in which every vertex has either in-degree 0 or out-degree
0.

Finally, Havet and Thomassé generalized Conjecture 2.7.14 about un-
avoidabiity to universality.

Conjecture 2.7.22 (Havet and Thomassé, 2000) If A is an oriented tree
with n vertices and k leaves, then it is (n + k − 1)-universal.

Let us now consider cycles. As we already saw, they cannot be universal
because there are digraphs with no cycles of small length having arbitrarily
large chromatic number, as stated by a result of Erdős [75]. However, Bondy
generalized Camion’s Theorem (2.2.6) to digraphs with large chromatic num-
ber.

Theorem 2.7.23 (Bondy [48]) Every strong digraph of chromatic number
at least k contains a directed cycle of length at least k.

A directed cycle of length at least k may be seen as a subdivision of the
directed k-cycle

→
Ck. Recall that a subdivision of a digraph D is a digraph

obtained from D by replacing each arc ab of D by a directed (a, b)-path. Hence
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a natural question is to ask whether Theorem 2.7.10 can be generalized, or
if at least every non-directed cycle C is k-universal for some large enough k.
This was answered in the negative by Cohen, Havet, Lochet, and Nisse.

Theorem 2.7.24 ([65]) Let C be an oriented cycle. There exist digraphs with
arbitrarily large chromatic number that contains no subdivision of C.

However, they conjectured that, as for the directed cycle, if we require
the digraph to be strongly connected, the picture is different.

Conjecture 2.7.25 ([65]) Let C be an oriented cycle C. There exists a con-
stant h(C) such that every strong digraph with chromatic number at least
h(C) contains a subdivision of C.

As partial evidence, Cohen, Havet, Lochet, and Nisse [65] proved this
conjecture for cycles with two blocks and the antidirected cycle of order 4. In
particular, they proved that for C(k, 	) the cycle on two blocks, one of length
k and the other of length 	, h(C(k, 	)) = O((k + 	)4). This bound on the
value was recently improved by Kim, Kim, Ma and Park [122] who proved
h(C(k, 	)) = O((k + 	)2).

2.8 Vertex-Partitions of Semicomplete Digraphs

In this section, we consider properties of vertex-partitions of semicomplete di-
graphs. A k-partition of a digraph D = (V,A) is a partition (V1, V2, . . . , Vk)
of V into k non-empty disjoint sets.

2.8.1 2-Partitions into Strong Semicomplete Digraphs

Being strongly connected is one of the basic properties of a digraph. Hence, it
is natural to determine which (semicomplete) digraphs D have a k-partition
into strong subdigraphs, that is, a partition (V1, . . . , Vk) such that D[Vi] is
strong for i = 1, . . . , k. Bang-Jensen, Cohen and Havet proved [21] that this
problem is NP-complete for general digraphs already when k = 2. The papers
[21, 26] provide a complete characterization of the complexity of a number
of related problems where we wish to partition V (D) into two sets such that
each of these have prescribed properties (e.g. both are strongly connected).

We now turn to semicomplete digraphs. Recall that a cycle factor is a
spanning collection of disjoint cycles. Since every strongly connected semi-
complete digraph is Hamiltonian, a semicomplete digraph has a 2-partition
into two strong subdigraphs if and only if it has a cycle factor with two cycles.
A pair of cycles forming a cycle factor with two cycles is also called a pair of
complementary cycles.
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Reid proved that every 2-strong n-tournament with n ≥ 8 has a 2-
partition into strong subtournaments, one of which has order 3. Song ex-
tended this result by showing that there exists such a partition with one
subtournament of any fixed order k for any 3 ≤ k ≤ n − 3.

Theorem 2.8.1 ([161, 171]) Every 2-strong tournament D on at least 8 ver-
tices has a 2-partition (V1, V2) such that D[Vi] is strong for i = 1, 2 and
|V1| = k for every 3 ≤ k ≤ n − 3.

Theorem 2.8.1 also holds for 2-strong tournaments on 6 vertices and the
only exception on 7 vertices is the Paley tournament P7 (see [161]). Fur-
thermore, there are infinite families of tournaments T with κ(T ) = 1 which
do not have complementary cycles. One such example was given in [130] by
Li and Shu. Those families show that Theorem 2.8.1 cannot be extended to
strong tournaments. However, Li and Shu proved that strong tournaments
with sufficiently large minimum in- or out-degree have a partition into strong
subtournaments.

Theorem 2.8.2 ([130]) Let T be a strong tournament on at least 6 vertices.
If max{δ−(T ), δ+(T )} ≥ 3 and T is not isomorphic to the Paley tournament
P7, then T has a 2-partition into strong subtournaments. 
�

It follows from Theorem 6.9.2 that Theorem 2.8.1 also holds for semicom-
plete digraphs. For semicomplete digraphs Bang-Jensen and Nielsen solved
the problem from a complexity point of view.

Theorem 2.8.3 ([33]) There exists a polynomial algorithm that, given semi-
complete digraph D, finds a 2-partition (V1, V2) such that D[Vi] is strong for
i = 1, 2, or correctly reports that no such pair exists.

If we require more structure on the digraphs D[Vi], such as requiring each
of these to induce a tournament, then the problem becomes very difficult,
even when the input is a semicomplete digraph. The following result is due
to Bang-Jensen and Christiansen.

Theorem 2.8.4 ([20]) It is NP-complete to decide whether a given semi-
complete digraph D has a 2-partition (V1, V2) such that D[Vi] is a strong
tournament for i = 1, 2.

In an attempt to generalize Theorem 2.8.1, Bollobás asked whether every
sufficiently large k-strong tournament has a cycle factor with k-cycles or
equivalently a k-partition into strong subtournaments (see [161]). This was
answered in the positive by Chen, Gould and Li.

Theorem 2.8.5 ([59]) Every k-strong tournament on n ≥ 8k vertices has a
k-partition into strong subtournaments.
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Furthermore, Kühn, Osthus and Townsend proved that if the tournament
is r-strong for r sufficiently high, then one can prescribe the sizes of the strong
subtournaments of the k-partition. This answers a question by Song [171].

Theorem 2.8.6 ([127]) Let T be a tournament on n vertices, let k ≥ 2 and
let n1, n2, . . . , nk ≥ 3 satisfy n = n1 + n2 + . . . + nk. If T is 1010k4 log k-
strong, then it has a partition (V1, . . . , Vk) into strong subtournaments such
that |Vi| = ni for i ∈ [k].

2.8.2 Partition into Highly Strong Subtournaments

As a generalization of Theorem 2.8.1, Thomassen (see [161]) conjectured that
for all positive integers k1, k2 there exists an integer f(k1, k2) such that every
f(k1, k2)-strong tournament T has a 2-partition (V1, V2) so that T [Vi] is ki-
strong, i = 1, 2. This is clearly equivalent to the existence, for all integers
k, t, of an integer g(k, t) such that every g(k, t)-strong tournament T has a
t-partition (V1, . . . , Vt) so that T [Vi] is k-strong, i ∈ [t]. The existence of such
a g(k, t) was established by Kühn, Osthus and Townsend [127].

Theorem 2.8.7 ([127]) Let k, t ≥ 1 be integers. Every tournament T which
is (107k6t3 log(kt2))-strong has a t-partition (V1, . . . , Vt) such that T [Vi] is
k-strong for i ∈ [t].

Kim, Kühn and Osthus proved that when the connectivity is sufficiently
high we can get an even stronger type of 2-partition. For a digraph D and a
2-partition (V1, V2), we denote by D[V1, V2] the bipartite subdigraph induced
by the arcs with one end in V1 and the other in V2.

Theorem 2.8.8 ([121]) Every 109k6 log(2k)-strong tournament has a
2-partition (V1, V2) such that each of T [V1], T [V2], T [V1, V2] is a k-strong di-
graph.

See Theorem 2.8.18 for a related partition result for out-degrees.

2.8.3 2-Partitions With Prescribed Minimum Degrees

We now turn to 2-partitions where we want a certain minimum out-, in-
or semi-degree in each of the parts. E.g. a (δ+ ≥ 1, δ+ ≥ 1)-partition is a
2-partition (V1, V2) where the digraph induced by each set has minimum out-
degree at least 1. Bang-Jensen, Cohen and Havet proved in [21] that when we
want the chosen parameter among {δ+, δ−, δ0} to be at least 1 in each side of
the partition, then we obtain an NP-complete problem for general digraphs,
except in the case of (δ+ ≥ 1, δ+ ≥ 1)- and (δ− ≥ 1, δ− ≥ 1)-partitions
for which easy polynomial algorithms exist. Furthermore, Bang-Jensen and
Christiansen proved that the (δ+ ≥ 1, δ+ ≥ 2)-partition problem (that is,



82 J. Bang-Jensen and F. Havet

deciding whether there is a 2-partition (V1, V2) of D such that δ+(D[Vi]) ≥ i
for i = 1, 2) is already NP-complete [20].

A suprisingly difficult problem is the following conjecture due indepen-
dently to Alon and Stiebitz.

Conjecture 2.8.9 ([4, 173]) There exists a function f(k, 	), where k, 	 are
positive integers, such that every digraph D with δ+(D) ≥ f(k, 	) has a (δ+ ≥
k, δ+ ≥ 	)-partition.

It is easy to see that a digraph with minimum out-degree k + 	 has a
(δ+ ≥ k, δ+ ≥ 	)-partition if and only if it has two disjoint subdigraphs
with minimum out-degree at least k and 	. Thomassen [180] proved that ev-
ery digraph D with δ+(D) ≥ 3 has two disjoint cycles, hence Conjecture 2.8.9
holds for k = 	 = 1 and f(1, 1) = 3 because the second power C2

2r+1 of an
odd cycle has no (δ+ ≥ 1, δ+ ≥ 1)-partition. But even the existence of f(1, 2)
is still open.

In the remaining part of this section, we shall see that the situation is a lot
simpler for semicomplete digraphs: Conjecture 2.8.9 holds for semicomplete
digraphs and the problem of deciding whether a semicomplete digraph has
a (δ+ ≥ k, δ+ ≥ 	)-partition can be solved in polynomial time. A crucial
notion here is that of an out-critical set. A set X of vertices of a digraph
D is k-out-critical if δ+(D〈X〉) = k and for every proper subset S ⊂ X,
δ+(D〈S〉) < k. Let X be a set of vertices in a digraph D. A set X ′ ⊆ V (D) is
called (X, k)-out-critical if X ⊆ X ′, δ+(D[X ′]) ≥ k and δ+(D[Y ]) < k for
every X ⊆ Y ⊂ X ′. Note that if δ+(D[X]) ≥ k, then X is the only (X, k)-
out-critical set in D. By definition, a digraph of minimum out-degree at least
k contains at least one (X, k)-out-critical set for every subset X of vertices
(including the empty set). The key fact is that the number of (X, k)-out-
critical sets is bounded since their size is bounded. This was first observed
by Lichiardopol for tournaments. In fact, his result holds for semicomplete
digraphs as well.

Lemma 2.8.10 ([133]) Let k be a positive integer, let D be a semicomplete
digraph with minimum degree at least k, and let X ⊆ V (D). If X ′ is an
(X, k)-out-critical set in D, then |X ′| ≤ k2+3k+2

2 + |X|. In particular, every
k-out-critical digraph in D has order at most k2+3k+2

2 .

Proof: By induction on |V (D)|. If |V (D)| ≤ k2+3k+2
2 + |X| we are done,

so assume |V (D)| > k2+3k+2
2 + |X|. Let M be the set of vertices that have

out-degree k in T and let m = |M |.
Since T [M ] is semicomplete, we have

|N+[M ]| ≤ m + mk − m(m − 1)
2

= −m2

2
+

(
3
2

+ k

)
m =: P (m).
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Now P (m) has global maximum at (3/2+k) and maximum for m integer
at k + 1 and k + 2 with P (k + 1) = P (k + 2) = k2+3k+2

2 . Hence |N+[M ]| ≤
k2+3k+2

2 and since |V (D)| > k2+3k+2
2 + |X| there exists a vertex u ∈ V (D) \

(N+[M ] ∪ X). Then δ+(T − u) ≥ k and the result follows by induction. 
�

Corollary 2.8.11 ([133]) For any pair of integers k, 	 ≥ 1, every semicom-
plete digraph D with δ+(D) ≥ (k2 + 3k + 2)/2 + 	 has a (δ+ ≥ k, δ+ ≥ 	)-
partition. Furthermore, such a partition can be constructed in polynomial
time.

Proof: This follows easily from Lemma 2.8.10 by taking a k-out-critical set
V1 (which has size at most (k2 + 3k + 2)/2) and taking V2 = V \ V1.

Let us describe a polynomial algorithm, due to Bang-Jensen and Chris-
tiansen, for deciding whether a given semicomplete digraph has a (δ+ ≥
k, δ+ ≥ 	)–partition.

Theorem 2.8.12 ([20]) For every fixed pair of integers k and 	, there exists
a polynomial algorithm that either constructs a (δ+ ≥ k, δ+ ≥ 	)-partition of
a given semicomplete digraph D or correctly outputs that none exists.

Proof: Let O be the set of vertices with out-degree less than k + 	 − 1.
For a given partition (O1, O2) of O we let X be an (O1, k)-out-critical set
such that X ⊆ V \ O2 (if no such set exists, we stop considering the pair
(O1, O2)). The following subalgorithm B will decide whether there exists a
(δ+ ≥ k, δ+ ≥ 	)-partition (V1, V2) with X ⊆ V1, O2 ⊆ V2: Starting from
the partition (V1, V2) = (X,V \ X), and moving one vertex at a time, the
algorithm will move vertices v of V2 \ O2 such that d+

T [V2]
(v) < 	 to V1. If,

at any time, this results in a vertex v ∈ O2 having d+
T [V2]

(v) < 	, or V2 = ∅,

then there is no (δ+ ≥ k, δ+ ≥ 	)-partition with Oi ⊆ Vi, = 1, 2 and B
terminates. Otherwise B will terminate with O2 ⊆ V2 �= ∅ and hence it has
found a (δ+ ≥ k, δ+ ≥ 	)-partition (V1, V2) with Oi ⊆ Vi, i = 1, 2.

The correctness of B follows from the fact that we only move vertices that
are not in O and each such vertex has at least k + 	− 1 out-neighbours in D.
Hence, when moved, a vertex has less than 	 out-neighbours in V2, so it has
at least k out-neighbours in V1. Thus δ+(D[V1]) ≥ k holds throughout the
execution of B.

By Proposition 2.2.2, |O| ≤ 2k+2	−3 and hence the number of (O1, O2)-
partitions is at most 22k+2�−3 which is a constant when k and 	 are fixed. Fur-
thermore, by Lemma 2.8.10, the size of every O1-critical set is also bounded
by a function of k and hence each (O1, O2)-partition induces only a poly-
nomial number of O1-critical sets. Thus we obtain the desired polynomial
algorithm by running the subalgorithm B for (at most) all possible partitions
(O1, O2) of O and all possible (O1, k)-out-critical sets. 
�
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Lichiardopol proved an analogue of Corollary 2.8.11 for partitions with
prescribed lower bounds on semi-degrees in tournaments. His result can easily
be extended to semicomplete digraphs.

Theorem 2.8.13 ([133]) For any choice of integers k, 	 ≥ 1, every semicom-
plete digraph D with δ0(D) ≥ (k2+3k+2)+	 has a (δ0 ≥ k, δ0 ≥ 	)-partition.
Furthermore, such a partition can be constructed in polynomial time.

The complexity of finding 2-partitions with prescribed minimum semi-
degrees has been studied by Bang-Jensen and Christiansen. Recall that for
general digraphs it is NP-complete to decide the existence of a (δ0 ≥ k, δ0 ≥
	)-partition when k + 	 ≥ 2 → k, 	 ≥ 1 [21]. Bang-Jensen and Christiansen
showed that for semicomplete digraphs the situation is better, at least when
k = 	 = 1.

Theorem 2.8.14 ([20]) There exists a polynomial algorithm that given a
semicomplete digraph D either finds a (δ0 ≥ 1, δ0 ≥ 1)-partition of D or
correctly returns that none exists.

Problem 2.8.15 For any fixed positive integers k, 	, what is the complexity
of deciding whether a semicomplete digraph has a (δ0 ≥ k, δ0 ≥ 	)-partition ?

One may also study all other possible variants, for example (δ+ ≥ k, δ− ≥
	)-partitions. The associated complexity problem is the following.

Problem 2.8.16 For any fixed positive integers k, 	, what is the complexity
of deciding whether a semicomplete digraph has a (δ+ ≥ k, δ− ≥ 	)-partition?

Bang-Jensen, Cohen and Havet proved that Problem 2.8.16 is NP-
complete for general digraphs already when k = 	 = 1. Bang-Jensen and
Christiansen [20] proved that a semicomplete digraph D has a (δ+ ≥ 1, δ− ≥
1)-partition if and only if it has two disjoint cycles. Since one can find such
a pair of disjoint cycles if one exists in polynomial time, one can decide in
polynomial time whether a semicomplete digraph D has a (δ+ ≥ 1, δ− ≥ 1)-
partition. The following partial result on Problem 2.8.16 was obtained by
Bang-Jensen and Christiansen.

Theorem 2.8.17 ([20]) For every fixed integer k ≥ 1 there exists a polyno-
mial algorithm that either constructs a (δ+ ≥ 1, δ− ≥ k)-partition of a given
semicomplete digraph D or correctly outputs that none exists.

2.8.4 2-Partitions with Restrictions Both Inside and Between Sets

For a 2-partition (V1, V2) we denote by D[V1, V2] the digraph induced by
the arcs between V1 and V2. We now consider the degree analogue of
Theorem 2.8.8, that is, we seek a 2-partition (V1, V2) so that each of
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D[V1],D[V2],D[V1, V2] has minimum out-degree at least some prescribed
number. The following results are due to Alon, Bang-Jensen and Bessy.

Theorem 2.8.18 ([6]) Except for the Paley tournament P7 every semicom-
plete digraph D with minimum out-degree at least 3 has a 2-partition (V1, V2)
such that D[V1],D[V2],D[V1, V2] has minimum out-degree at least one. Fur-
thermore, when D �= P7 one can always find such a 2-partition which is
balanced, that is, ||V1| − |V2|| ≤ 1.

For higher values of the degree bounds the authors obtained the following.

Theorem 2.8.19 ([6]) There exist two absolute positive constants c1, c2 such
that the following holds.

1. Let T = (V,E) be a semicomplete digraph with minimum out-degree at
least 2k + c1

√
k. Then there is a balanced a 2-partition (V1, V2) of V such

that δ+(D[V1]), δ+(D[V2]) and δ+(D[V1, V2]) are all at least k.
2. For infinitely many values of k there is a tournament with minimum out-

degree at least 2k+c2
√

k such that for any 2-partition (V1, V2) of V at least
one of the quantities δ+(D[V1]), δ+(D[V2]) and δ+(D[V1, V2]) is smaller
than k.

We only give the proof of the second part of Theorem 2.8.19. The proof
illustrates one of the remarkable properties of the Paley tournaments: They
behave almost like random tournaments.

Recall that for a prime q which is congruent to 3 modulo 4, the Paley
tournament Pq is the tournament whose vertices are the integers modulo p
where (i, j) is a directed edge if and only if i−j is a quadratic residue modulo
q.

Lemma 2.8.20 Let Pq = (V,A) be the Paley tournament on q vertices.
Then for any function f : V → {−1, 1} there is a vertex v ∈ V such that
|
∑

u∈N+(v) f(u)| > 1
2

√
q.

Proof: It is easy and well known (c.f., e.g., [10], Chapter 9) that every
vertex of Pq has out-degree and in-degree (q − 1)/2 and any two vertices
of it have exactly (q − 3)/4 common in-neighbours (and out-neighbours).
Let A = Aq be the adjacency matrix of Pq, that is, the 0/1 matrix whose
rows and columns are indexed by the vertices of Pq, where Aij = 1 if and
only if (i, j) is an arc. By the above comment, each diagonal entry of AtA
is (q − 1)/2 and each other entry is (q − 3)/4. Thus the eigenvalues of AtA
are (q − 1)/2 + (q − 1)(q − 3)/4 = (q − 1)2/4 (with multiplicity 1) and
(q −1)/2− (q −3)/4 = (q +1)/4 (with multiplicity (q −1)). This implies that

||Af ||22 = f tAtAf ≥ (q + 1)/4||f ||22 = q(q + 1)/4.
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It follows that there is an entry of Af whose square is at least (q + 1)/4,
completing the proof. 
�

Note that, by Lemma 2.8.20, for any partition of the vertices of Pq into
two disjoint (not necessarily nearly equal) sets V1 and V2 there is a vertex v
of Pq such that the number of its out-neighbours in V1 differs from that in
V2 by more than

√
q/4 (if there are x more neighbours in one set than in the

other, then the sum in the lemma is |
∑

u∈N+(v) f(u)| = 2x). This implies the
assertion of part (ii) of Theorem 2.8.19 for infinitely many values of k.

2.8.5 Partitioning into Transitive Tournaments

A k-dicolouring of a digraph D is a k-partition (V1, . . . , Vk) of its vertex
set such that D〈Vi〉 is acyclic. The dichromatic number of D, denoted by
→
χ (D), is the smallest positive integer such that D admits a k-dicolouring.
This notion was first treated by Neumann-Lara [148] and was independently
introduced by Mohar [142] two decades later. Note that if G is an undirected
graph, and D is the symmetric digraph obtained from G by replacing each
edge by the pair of oppositely directed arcs joining its end vertices, then
χ(G) =

→
χ(D) since any two adjacent vertices in D induce a directed 2-cycle.

Observe, moreover, that the dichromatic number of a tournament T is the
minimum integer k such that T can be partitioned into k transitive subtour-
naments.

Finding the dichromatic number of a tournament is NP-hard. Chen, Hu,
and Zhang [61] proved that it is in fact already NP-complete to decide
whether a tournament has dichromatic number 2.

Theorem 2.8.21 ([61]) Deciding whether a tournament has a 2-partition
into two transitive subtournaments is NP-complete.

Proof: The original proof by Chen et al. was a reduction from NAE-3-SAT.
We present here a simpler reduction from Monotone NAE-3-SAT (recall
that monotone means that there are no negated variables).

Let F = C1 ∧ · · · ∧ Cm be an instance of Monotone NAE-3-SAT on n
variables x1, . . . , xn. We construct a tournament TF as follows. Its vertex set
is the union of X = {x1, . . . , xn}, a set Y = {y1, y2, y3} and Z =

⋃m
j=1 Zj ,

where Zj = {z1j , z2j , z3j }. For z ∈ Z, we define xz as follows: let j and 	 be the
indices such that z = z�

j , and let i be the index such that xi is the 	th literal
of Cj ; then xz = xi.

Let σ be the following ordering of V (TF )

(x1, . . . , xn, y1, y2, y3, z
1
1 , z

2
1 , z

3
1 , z

1
2 , z

2
2 , z

3
2 , . . . , z

1
m, z2m, z3m).

All the arcs of TF agree with σ (i.e. if u precedes v in σ, then u → v)
except for a set B = BY ∩ BZ ∩ B′ of backward arcs, where BY = {y3y1},
BZ = {z3j z1j | 1 ≤ j ≤ m} and B′ = {zxz | z ∈ Z}.
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Observe that every directed cycle in TF is either the 3-cycle y1y2y3y1, or
the 3-cycle z1j z2j z3j z1j for some 1 ≤ j ≤ m, or contains an arc in B.

We shall now prove that F has an NAE-assignment if and only if TF has
a 2-partition (V1, V2) such that T [Vi] is transitive.

Let us assume that F has an NAE-assignment φ. Let X1 = {xi | φ(xi) =
true}, X2 = {xi | φ(x2) = false}, Z1 = {z | xz ∈ X2} and Z2 = {z | xz ∈
X1}. Setting V1 = X1∪{y1}∪Z1 and V1 = X2∪{y2}∪Z2, one can easily check
that (V1, V2) is a partition of TF into two transitive tournaments. Indeed, the
arcs of B have their end vertices in different part, each {z1j , z2j , z3j } contains
at least one vertex in V1 and one in V2 because φ is an NAE-assignment.

Assume now that TF admits a partition (V1, V2) into two transitive sub-
tournaments. Since Y induces a 3-cycle, at least one vertex of Y is in V1 and
another one is in V2. Without loss of generality, we may assume y1 ∈ V1 and
y2 ∈ V2. Similarly, each Zj , 1 ≤ j ≤ m has a vertex in V1 and a vertex in V2.
Now consider an arc zxz in B′. The two vertices z and xz are not in the same
Vk (k ∈ {1, 2}) for otherwise zxzykz would be a directed 3-cycle. Now one
checks easily that the truth assignment φ defined by φ(xi) = true if xi ∈ V1

and φ(xi) = false if xi ∈ V2 is an NAE-assignment. 
�

Theorem 2.8.21 implies that it is unlikely to find a characterization of
tournaments with dichromatic number k. However, it is interesting to find
properties of such tournaments. A natural question, in the same flavour as
unavoidablity (see Section 2.7), is to ask which subtournaments must appear
in every tournament with sufficiently large dichromatic number. Such a tour-
nament is called a hero. Clearly, transitive tournaments are heroes, since
every tournament of order n contains a transitive subtournament of order at
least log2 n by Proposition 2.2.3. Moreover, Theorem 2.2.7 implies that the
directed 3-cycle is contained in every tournament of dichromatic number at
least 2. Observe moreover that if H is a hero, then every subtournament of
H is also a hero.

When P , Q are tournaments, we denote by C(P,Q) the tournament that
one obtains from disjoint copies of P and Q, by adding a new vertex x
dominating P and dominated by Q, and adding all the arcs from P to Q
(thus C(P,Q) = C3[P,Q, {x}]).

Let us define the sequence (Ai)i∈N of tournaments inductively as follows:

• A1 is the tournament with one vertex and no arcs;
• Ai+1 := C(Ai, Ai).

The proof of the next proposition is left to the reader.

Proposition 2.8.22 If i ≥ 1, then
→
χ (Ai) = i.

The tournaments (Ai)i∈N imply that strongly connected heroes must have
a special form.
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Lemma 2.8.23 Every strongly connected hero is of the form C(P,Q), where
P and Q are heroes.

Proof: Let H be a hero. Then, by Proposition 2.8.22, for i sufficiently large,
Ai contains H. Let k be the minimum integer i such that Ai contains H. Let
us denote by L and R the copies of Ak−1 in Ak such that all arcs are from
L to R and let x be the vertex of Ak − (L ∪ R). By definition of k, neither
L nor R contains H, so the copy of H in Ak must contain x. Now, since
Ak is strong, H must contain at least one vertex of L and one vertex of R.
Therefore H is of the desired form.

In fact, the tournaments that are heroes have been completely character-
ized by Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and
Thomassé.

Theorem 2.8.24 ([41])

• A tournament T is a hero if and only if all its strong components are
heroes;

• a strong tournament T is a hero if and only if T = C(P, TTr) or
T = C(TTr, P ) for some hero P and some r ≥ 1.

2.9 Feedback Sets

Feedback sets in a digraph are sets of vertices or arcs whose removal leaves
the digraph acyclic. Formally, a feedback vertex set in a digraph D is a
set S of vertices such that D − S is acyclic, and a feedback arc set in a
digraph D is a set F of arcs such that D \ F is acyclic.

Feedback vertex set Parameter: k
Input: A digraph D = (V,A)
Question: Does D have a vertex set X of size at most k such that D−X
is acyclic?

Feedback Arc Set Parameter: k
Input: A digraph D = (V,A)
Question: Does D have a set of arcs A′ of size at most k such that D\A′

is acyclic?

A feedback vertex (resp. arc) set is minimal if none of its proper subsets
is also a feedback vertex (resp. arc) set. A feedback vertex (resp. arc) set is
minimum if it is of minimum size. The minimum size of a feedback vertex
set (resp. feedback arc set) in D is denoted by fvs(D) (resp. fas(D)).

We are then interested in the optimization versions of Feedback ver-

tex set and Feedback arc set where one wishes to determine fvs(D)
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and fas(D), respectively, for a given digraph D, as well as their restriction to
tournaments Feedback vertex set in tournament (FVST for short) and
Feedback arc set in tournament (FAST for short).4 These problems are
very fundamental and have many practical applications. For example, Feed-
back arc set in tournaments models the problem of ranking the teams
of a round-robin sport tournament and the problem of clustering webpages
(see e.g. the paper [190] by van Zuylen and Williamson).

An ordering associated to a feedback vertex set S (resp. feedback
arc set F ) is an acyclic ordering of D − S (resp. D \ F ). Observe that if
(v1, . . . , vn) is an ordering associated to a feedback arc set F of D, then
{vivj ∈ A(D) | i > j} is a feedback arc set contained in F . Therefore, every
minimum feedback arc set induces an acyclic digraph. In contrast, a feedback
vertex set is usually not acyclic: a digraph has an acyclic feedback vertex set
if and only if its dichromatic number is at most 2 (see Subsection 2.8.5).
Some papers studied feedback vertex sets with a certain property P, this is
the same as studying a 2-partition (V1, V2) of a digraph D such that D[V1] has
property P and D[V2] is acyclic. See e.g. the papers of Bang-Jensen, Cohen
and Havet [21, 26].

Proposition 2.9.1 Let F be a minimum feedback arc set in a digraph D.
The digraph obtained from D by reversing all arcs of F is acyclic.

Proof: Let (v1, . . . , vn) be an acyclic ordering associated to F . Observe that
every arc a of F is of the form vivj with i > j for otherwise F \ {a} would
also be a feedback arc set with (v1, . . . , vn) associated to it, contradicting
the minimality of F . Therefore reversing the arcs of F results in an acyclic
digraph with acyclic ordering (v1, . . . , vn). 
�

Proposition 2.9.1 implies that fas(D) is the minimum size of a set F of
arcs whose reversal yields an acyclic digraph.

2.9.1 Feedback Vertex Sets

Feedback vertex set is one of the the first problems shown to be NP-
complete listed by Karp in [118]. Its easy reduction from Vertex cover is
the following. Let (G, k) be an instance of Vertex cover. Let D be the
symmetric digraph associated to G, that is, the digraph obtained from G by
replacing each edge by a directed 2-cycle. One can easily check that G has a
vertex cover of size k if and only if D has a feedback vertex set of size k.

It is also not very hard to show that FVST is NP-complete. this
was shown independently by Speckenmeyer [172] and by Bang-Jensen and
Thomassen [34]. The proof below is from [34].

4 For simplicity and because they are polynomially equivalent, we do not distin-
guish between the decision and the optimization versions of these problems.
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Theorem 2.9.2 ([34]) Feedback vertex set in tournament is NP-
complete.

Proof: Reduction from Independent set which is well-known to be NP-
complete [118]. Let G be an undirected graph with vertices v0

1 , . . . , v
0
n. Let

T be the tournament defined as follows. V (T ) = V (G) ∪ {vj
i | 1 ≤ i ≤

n and 1 ≤ j ≤ n + 1} and there is an arc (vj1
i1

, vj2
i2

) whenever i1 > i2 or
i1 = i2 and j1 > j2, unless j1 = j2 = 0 and v0

i1
v0

i2
is an edge of G, in which

case T contains the arc (v0
i2

, v0
i1

). One can easily check that a vertex set S
is a maximum independent set in G if and only if V (G) \ S is a minimum
feedback vertex set in T . 
�

FVST has a trivial 3-approximation algorithm, which proceeds as follows.
As long as the tournament T is not transitive, find a directed 3-cycle C, delete
its vertices from T and add them to the feedback vertex set S. Cai, Deng,
and Zang [55] gave a 5/2-approximation. Recently, a 7/3-approximation was
found by Mnich, Vassilevska Williams, and Végh [141].

For general digraphs, no non-trivial upper bound on the number of min-
imal feedback vertex sets is known. In contrast, we have some bounds for
tournaments. Let #fvs(n) denote the maximum over all n-tournaments of
the number of minimal feedback vertex sets. Note that #fvs(n) is also the
maximum of the number of maximal transitive subtournaments since in a
tournament T , a set S is a feedback vertex set if and only if T − S is
transitive. Moon [143] was the first to give bounds on #fvs(n). He proved
1.4757n ≤ #fvs(n) ≤ 1.7170n. This was later improved by Gaspers and
Mnich [95]

1.5548n < 21n/7 ≤ #fvs(n) ≤ 1.6740n.

To get the lower bound, consider the tournament T on n = 7k vertices
obtained from a transitive k-tournament by blowing up each vertex into a
copy of the Paley tournament P7 on 7 vertices. The minimal feedback vertex
sets of P7 are also minimum feedback vertex sets and have size 4. Furthermore,
there are 21 of them. Hence T has 21n/7 minimal feedback vertex sets.

The upper bound relies on an enumeration algorithm, based on iterative
compression (see the proof of Theorem 2.9.6 for an example of iterative com-
pression), that enumerates in 1.6740n-time all minimal feedback vertex sets
in tournaments. Since a minimum feedback vertex set is also minimal, this
algorithm allows us to solve FVST in 1.6740n-time.

2.9.2 Feedback Arc Sets

Feedback arc set is also one of the the first problems known to be NP-
Complete listed by Karp in [118]. The easy reduction due to Karp and Lawler
is from Vertex cover. Given a graph G, let D be the digraph defined by
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V (D) = V (G) × {0, 1}.

A(D) = {((v, 0), (v, 1)) | v ∈ V (G)} ∪ {((u, 1), (v, 0)) | (u, v) ∈ E(G)}.

We easily check that G has a vertex cover of size k if and only if D has a
feedback arc set of size k.

In contrast, Feedback arc set in tournaments was conjectured
to be NP-complete in 1992 by Bang-Jensen and Thomassen [34]. Ailon,
Charikar, and Newman [3] proved it is NP-hard under randomized reduc-
tions. Shortly after, it was proved under deterministic reductions indepen-
dently by Alon in [5] and by Charbit, Thomassé and Yeo in [58].

Theorem 2.9.3 Feedback arc set in tournaments is NP-complete.

The proofs of Alon [5] and Charbit, Thomassé, and Yeo [58] both use the
same reduction based on the existence of bipartite tournaments with large
minimum feedback arc sets. Here, by large, we mean close to the trivial upper
bound. Indeed, consider a bipartite tournament B with both partite sets R,S
of size k. Considering the set of arcs from R to S and the one from S to R,
we obtain trivially that fas(B) ≤ k2

2 . Hence by a large minimum feedback arc
set, we mean a minimum feedback arc set of size close to k2

2 .

Lemma 2.9.4 ([58]) Let 	 be a positive integer 	 and set k = 23�. There
exists a bipartite tournament Bk with both partite sets of size k and fas(Bk) ≥
k2

2 − 2k5/3.

Proof of Theorem 2.9.3 using Lemma 2.9.4: The reduction is from Feed-

back arc set in general digraphs.
Let D be a digraph. We may assume that D has no directed cycle of

length at most 2, as deleting such a cycle decreases fas by exactly 1. Let
V (D) = {v1, . . . , vn} and set k = 26�1+log2 n�. Observe that k = O(n6) and
k ≥ 64n6.

Let Bk be the bipartite tournament defined in Lemma 2.9.4, and let
{r1, . . . , rk} and {s1, . . . , sk} be the partite set of Bk.

Let T be the tournament obtained by blowing up every vertex of D by
a transitive tournament, and adding copies of Bk between blow-ups of non-
adjacent vertices. To be precise, the vertex set of T is {wi

a | 1 ≤ a ≤ n and 1 ≤
j ≤ k} and its arc set is Aa ∪ Ab ∪ Ac, where

Aa = {wi
awj

a | 1 ≤ a ≤ n and 1 ≤ i < j ≤ k},

Ab = {wi
awj

b | vavb ∈ A(D) and 1 ≤ i, j ≤ k}, and

Ac = {wi
awj

b | ab, ba /∈ A(D) and 1 ≤ a < b ≤ n and risj ∈ A(Bk)}
∪{wj

bw
i
a | ab, ba /∈ A(D) and 1 ≤ a < b ≤ n and sjri ∈ A(Bk)}.

Let us now bound fas(T ). Without loss of generality, we may assume
that (v1, . . . , vn) is an acyclic ordering associated to a minimum feedback
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arc set of D. Observe that since a minimum feedback arc set induces an
acyclic digraph, Lemma 2.9.4 implies that the arcs of Ac contribute at least
(
(
n
2

)
− |A(D)|)(k2

2 − 2k5/3) and at most (
(
n
2

)
− |A(D)|)(k2

2 +2k5/3) to fas(T ).
Considering the ordering (w1

1 . . . , wk
1 , w1

2, . . . , w
k
2 , w1

3 . . . , wk
n), we get

fas(T ) ≤ k2 fas(D) +
((

n

2

)
− |A(D)|

) (
k2

2
+ 2k5/3

)
. (2.5)

Consider now a minimum feedback arc set of T . For any integers i1, . . . , in
in {1, . . . , k}, at least fas(D) arcs of T 〈{wi1

1 , wi2
2 , . . . , win

n }〉 are in F because
this digraph is isomorphic to D. Summing over all possible values of i1, . . . , in
we get at least kn fas(D) arcs, where each arc can be counted at most kn2

times. Hence

fas(T ) ≥ kn fas(D)
kn−2

+
((

n

2

)
− |A(D)|

) (
k2

2
− 2k5/3

)
. (2.6)

Now as k1/3 ≥ 641/3n2, we get that (
(
n
2

)
− |A(D)|) · 2k5/3 < k2

2 . Hence
Equations (2.5) and (2.6) imply the following.

fas(D) − 1
2

<
fas(T )

k2
− 1

2

((
n

2

)
− |A(D)|

)
< fas(D) +

1
2
.

Hence if we could compute fas(T ) in polynomial time, we could also compute
fas(D). 
�

For general digraphs, the best known approximation algorithm for
Feedback arc set has performance guarantee O(log n log log n). The exis-
tence of such a feedback arc set is due to Seymour [168] and the algorithmic
part is due to Even, Naor, Schieber and Sudan [77]. In contrast, for tourna-
ments van Zuylen and Williamson [190] proposed a 2-approximation. Their
algorithm is based on a linear programming relaxation of the problem and
a nice rounding procedure. This procedure is a derandomization of the al-
gorithm by Ailon, Charikar and Newman given in [3] based on the so-called
‘pivot’.

The dual maximization problem consisting in finding an acyclic spanning
subdigraph of a digraph D with the maximum number of arcs is easy to
approximate. A trivial 2-approximation consists in considering any ordering
(v1, . . . , vn) of the vertices of D and the subdigraphs D+ and D− with arc
set A+ = {vivj ∈ A(D) | i < j} and A− = {vjvi ∈ A(D) | i > j}. These
two digraphs are acyclic, and each of them has at least |A(D)|/2 arcs. There
exist polynomial time approximation schemes (PTAS) for this problem in
tournaments, see the papers [15] by Arora, Frieze and Kaplan and [91] by
Frieze and Kannan.

By the above upper bound on fas(D), for every n-tournament T , we have
fas(T ) ≤ n(n−1)

4 . This upper bound is almost tight as shown below.
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Theorem 2.9.5 For every n ≥ 3, there exists a tournament T of order n

such that fas(T ) ≥ n(n−1)
4 − 1

2

√
n3 loge n.

Proof: Consider a random tournament RTn on vertices 1, 2, . . . , n. Observe
that for every pair i �= j ∈ {1, 2, . . . , n}, ij ∈ A(RTn) with probability 1/2.

For every pair i < j ∈ {1, 2, . . . , n}, define the random variable xi,j by

xi,j :=
{

+1 if ij ∈ A(RTn)
−1 otherwise.

Let N =
(
n
2

)
. With respect to the ordering π = 1, 2, . . . , n, the number of

forward arcs minus the number of backward arcs equals
∑

1≤i<j≤n

xi,j = SN .

Then, Eπ := {|SN | > a} denotes the event that, in one of the two orderings
π = π(1), π(2), . . . , π(n)(= 1, 2, . . . , n) and π∗ = π(n), π(n−1), . . . , π(1)(= n,
n − 1, . . . , 1), the number of forward arcs exceeds n(n − 1)/4 + a/2. On the
other hand, SN is the sum of

(
n
2

)
random independent variables taking values

+1 and −1, each with probability 1/2. By the Chernoff bound (Corollary A.2
in the book of Alon and Spencer [8]),

Prob(|SN | > a) ≤ 2 exp
(

− a2

2N

)
, (2.7)

for every positive number a.
Observe that the event E that for at least one permutation of 1, 2, . . . , n,

the number of forward arcs exceeds n(n − 1)/4 + a/2 equals the union of the
events Eπ for all permutations π of 1, 2, . . . , n, whose total number is n!. Put
a =

√
n3 loge n. Applying (2.7) we obtain

Prob(E) ≤ 2n! exp(−n loge n)
≤ 2n!n−n

< 1

for every n ≥ 3. This means that with positive probability the event E does
not hold, i.e. for every permutation of 1, 2, . . . , n, the number of forward arcs
does not exceed n(n−1)

4 + 1
2

√
n3 loge n. By the definition of RTn, it follows

that there exists a tournament of order n with the above-mentioned property.

�

A slightly better result was obtained by de la Vega in [70] who proved that√
loge n in the inequality of Theorem 2.9.5 can be replaced by a constant.
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2.9.3 FPT Algorithms for Feedback vertex set in tournaments

Downey, Langston, Niedermeier, Raman, and Saurabh [157] proved that
FVST is FPT by giving a O(2.42k · nO(1))-time algorithm that solves it.
This running time was improved by Fernau [78] who gave a O(2.18k · nO(1))-
time algorithm to solve FVST. We present below a faster FPT algorithm in
O(2k · nO(1)) time due to Dom, Guo, Hüffner, Niedermeier and Truß [71].
Very recently, an even faster FPT algorithm in O(1.618k + nO(1)) time was
shown by Kumar and Lokshtanov [128].

Theorem 2.9.6 ([71]) Feedback vertex set in tournaments can be
solved in time O(2k · n3).

Proof: We present an algorithm solving FVST in O(2k ·n3) time. This algo-
rithm uses the method, called iterative compression, which was introduced
by Reed, Smith, and Vetta [159]. The key part of this algorithm is a com-
pression routine which, given a tournament and a feedback vertex set of
size k+1, computes a feedback vertex set of size k or proves that none exists.

Using such a compression routine FVST can be solved as follows. Let
{v1, . . . , vn} = V (T ), and let Ti = T 〈{v1, . . . , vi}〉. We start with S2 = ∅,
which is a minimum feedback vertex set of T2. Now for i = 3 to n, we compute
a minimum feedback vertex set of Ti using Si−1. Observe that Si−1 ∪ {vi}
is a feedback vertex set of Ti, so a minimum feedback vertex set of Ti has
size |Si−1| or |Si−1| + 1. Therefore, using the compression routine, we either
find a feedback vertex set Si of T of size |Si−1|, or we prove that none exists,
in which case we set Si = Si−1 ∪ {vi}. At the end, after n − 2 calls to the
compression routine, we obtain Sn, a minimum feedback vertex set of T .

Let us now describe the compression routine running in O(2k · n2)) time
Let T be a tournament and S a feedback vertex set of size k + 1. By brute-
force, we enumerate all O(2k) partitions (X,S \X) of S, and for each of them
we only look for feedback vertex sets that contain all vertices of S \ X and
none of X.

We delete the vertices of S \X, i.e. T ′ := T − (S \X). Observe that T has
a feedback vertex set of size k that contains all vertices of S \ X and none of
X if and only if T ′ has a feedback vertex set of size |X| − 1 disjoint from X.
If T ′〈X〉 is not acyclic, we stop as there cannot be any feedback vertex set of
T ′ disjoint from X. Hence we may assume that T ′〈X〉 is acyclic. Note also
that T ′ − X = T − S is acyclic.

We shall now determine the minimum size s of a feedback vertex set of T ′

disjoint from X. In fact, we compute |T ′| − s, which is the maximum size of
an acyclic subtournament of T ′ containing all of X. Such a tournament has
an acyclic ordering which can be thought of as resulting from the insertion
of a subset of V (T ′) \ X into the acyclic ordering (x1, . . . , x|X|) of X.

We first determine the set P of vertices v that we can insert into X, that
are the vertices such that T ′〈X ∪ {v}〉 is acyclic. Note that such a vertex
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has a unique possible position in L: there is an index i(v) = i such that
N−(v) ∩ X = {x1, . . . , xi} and N+(v) ∩ X = {xi+1, . . . , xn}. Note that for
each vertex v ∈ V (T ′) \ X, deciding if v ∈ P and, if so, computing i(v) can
be done in O(n2) time. Let L be an acyclic ordering of T ′ − X (it exists
because T ′ − X is acyclic), and let R = (r1, . . . , r|P |) be the ordering of P
in which the vertices are ordered in increasing order of i(v) and according
to L as tie-breaker: for any j < 	, either i(rj) < i(r�), or i(rj) = i(r�) and
rj is before r� in L. Now a largest acyclic subtournament of T ′ containing
all of X is obtained from X by adding a longest common subsequence of
L and P . Since L and P are permutations of each other, finding a longest
common subsequence reduces to finding a longest increasing subsequence of
the intersection. This can be done in O(n log n) time [90]. 
�

Dom, Guo, Hüffner, Niedermeier and Truß [71] also proved that FVST
admits a cubic kernel. The idea of the proof is to transform an instance of
FVST (T, k) into an equivalent instance (H, k) of Hitting set, where H
is the 3-uniform hypergraph with vertex set V (T ) and hyperedge set the
sets of 3-cycles in T . Then applying the kernelization algorithm given by
Niedermeier and Rossmanith [150] for Hitting set, one can show that the
resulting instance has cubic size.

2.9.4 FPT Algorithms for Feedback arc set in tournaments

Downey, Langston, Niedermeier, Raman, and Saurabh [157] proved that
FAST is FPT providing a O(2.42k · nO(1))-time algorithm for this prob-
lem. Alon, Lokshtanov and Saurabh [7] gave a faster algorithm that runs in
2O(

√
k log2 k) + nO(1) time. Their algorithm combines the colour coding tech-

nique (initiated in [11]) with a divide-and-conquer algorithm and a quadratic
kernel for FAST. The existence of such a kernel was established by Dom,
Guo, Hüffner, Niedermeier and Truß [71].

Theorem 2.9.7 ([71]) Feedback arc set in tournaments admits a
quadratic kernel. In particular, it is FPT.

Proof: Here we use the fact that fas(D) is the minimum size of a set of
arcs whose reversal makes the digraph acyclic (see Proposition 2.9.1). The
kernelization procedure FastKer(T, k) proceeds as follows.

1. If a vertex v is in no directed 3-cycle, then return FastKer(T − v, k);
2. If |T | = 0, then return a ‘Yes’ instance;
3. If k = 0, then return a ‘No’ instance;
4. If there is an arc a in more than k directed 3-cycles, then let T ′ be the

tournament obtained from T by reversing a and return FastKer(T ′, k−1);
5. If |T | ≤ k(k + 1), return (T, k), otherwise return a ‘No’ instance.
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Clearly, FastKer(T, k) runs in O(kn3) time. Clearly, Steps 1 to 4 of FastKer
are valid, since a feedback arc set of size k must contain each arc which is in
more than k directed 3-cycles. At Step 5, all arcs are in less than k directed
3-cycles. Hence if T has a feedback arc set of size k it has at most k(k − 1)
directed 3-cycles, spanning at most k(k + 1) vertices. Since every vertex is in
a directed 3-cycle after Step 1, |T | ≤ k(k + 1). Hence Step 5 is valid. 
�

Finally, the existence of a linear-size kernel for FAST has been proved
by Cuzzocrea, Taniar, Bessy, Fomin, Gaspers, Paul, Perez, Saurabh, and
Thomassé [67].

2.10 Small Certicates for k-(Arc)-Strong Connectivity

By a certificate for the k-(arc)-strong connectivity of a digraph D, we mean
a spanning k-(arc)-strong subdigraph D′ of D. Already for k = 1 it is NP-
hard to find a certificate with the minimum number of arcs, as this number is
|V (D)| if and only if D is Hamiltonian. Since every vertex in a k-(arc)-strong
digraph has out-degree at least k, an optimal certificate for k-(arc)-strong
connectivity has at least kn arcs.

Together with Edmonds’ branching theorem (Theorem 1.8.2) the next
result implies that, in polynomial time, one can find a certificate for k-arc-
strong connectivity with at most twice the size of an optimal certificate.

Proposition 2.10.1 Every k-arc-strong digraph contains a spanning k-arc-
strong subdigraph with at most 2k(n−1) arcs. Furthermore, such a certificate
can be constructed in polynomial time.

Proof: Let D = (V,A) be a k-arc-strong and let s ∈ V be arbitrary. By Ed-
monds’ branching theorem, D has k arc-disjoint out-branchings B+

s,1, . . . , B
+
s,k

and k arc-disjoint in-branchings B−
s,1, . . . , B

−
s,k. The union of the arcs of these

2k branchings is clearly k-arc-strong and it has exactly 2k(n − 1) arcs. The
complexity claim follows from Theorem 1.8.2. 
�

For all k ≥ 1 and n ≥ 5k + 2, we define Tn,k as the class of tournaments
that can be obtained from a transitive tournament A = TTk on k vertices and
two k-arc-strong tournaments B,C as shown in Figure 2.4. It is not difficult
to show that each tournament in Tn,k is k-arc-strong.

Let T be any member of Tn,k. Observe that every k-arc-strong subdi-
graph D of T must contain at least k(k + 1)/2 arcs from B to A and exactly
k arcs from C to B (there are no more). Hence we have [

∑
x∈B d+D(x)] −

[
∑

x∈B d−
D(x)] ≥ k(k + 1)/2 − k, implying that

∑
x∈B d+D(x) ≥ k|B| + k(k −

1)/2. This implies that D has at least nk +k(k −1)/2 arcs. Thus the tourna-
ments in Tn,k show the existence of k-arc-strong tournaments for which every
certificate has at least nk + ck2 arcs for some constant c > 0 and hence the
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TTk

B C

A

1
2
3

k

Figure 2.4 The structure of the tournaments in Tn,k. The tournament A is the
transitive tournament on k vertices, B and C are arbitrary k-arc-strong tourna-
ments. The bold arcs B → A, A → C indicate that all possible arcs are present in
that direction. There are exactly k arcs from C to B and all other arcs go from B
to C

following result of Bang-Jensen, Huang and Yeo is the best possible in terms
of the exponent on k.

Theorem 2.10.2 ([28]) For any n ≥ 3 and k ≥ 1, every k-arc-strong tour-
nament on n vertices T contains a spanning k-arc-strong subdigraph with at
most nk + 136k2 arcs.

The following result can be shown using network flows.

Proposition 2.10.3 ([28]) Every k-arc-strong tournament contains a span-
ning subdigraph D on at most nk + k(k − 1)/2 arcs such that δ0(D) ≥ k.

By the remark in Theorem 2.10.2, the truth of the following conjecture,
due to Bang-Jensen, Huang and Yeo, would imply that the right bound in
Theorem 2.10.2 would be nk + k(k − 1)/2.

Conjecture 2.10.4 ([28]) For every k-arc-strong tournament T , the mini-
mum number of arcs in a k-arc-strong spanning subdigraph of T is equal to
the minimum number of arcs in a spanning subdigraph of T with the property
that every vertex has in- and out-degree at least k.

Bang-Jensen asked [18] whether a result similar to Theorem 2.10.2 would
also hold for vertex connectivity. This was confirmed recently by Kang, Kim,
Kim and Suh.

Theorem 2.10.5 ([117]) For k ≥ 1, every k-strong n-tournament T has a
k-strong spanning subdigraph with at most nk + 750k2 log(k + 1) arcs.
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The proof of this result is long and uses several results on linkages in
tournaments. Some of the methods are very similar to those used in [156].

Below we prove a weaker, yet interesting, result from [117] which is used
in the proof of Theorem 2.10.5 in [117].

Let t, k be positive integers with t ≥ k. For a given ordering O =
(v1, v2, . . . , vn) of the vertices of a digraph D = (V,A) we denote by FO
the set of arcs vivj with i < j and call such arcs forward arcs wrt. O. An
ordering O = (v1, v2, . . . , vn) of the vertices of a digraph D is (k, t)-good if
DO = (V, FO) satisfies

(a) d+DF
(vi) ≥ k for all i ∈ [n − t],

(b) d−
DF

(vj) ≥ k for all t + 1 ≤ j ≤ n.

The following lemma is a special case of a lemma proved by Kang, Kim,
Kim and Suh [117].

Lemma 2.10.6 ([117]) Let k ≥ 1 be an integer and let T be an n-tournament.
Then there exists an ordering O of V (T ) and a spanning subdigraph D′ of
TO such that D′ is (k, 2k − 1)-good and |A(D′)| ≤ kn − k.

The following lemma is similar to Theorem 2.5.13.

Lemma 2.10.7 ([117]) Let k ≥ 1 and n ≥ 5k be integers. Every n-
tournament T contains disjoint sets of vertices X,Y , each of size k such
that, for any set S of k − 1 vertices, the tournament T −S has an (x, y)-path
for every choice of x ∈ X \ S, y ∈ Y \ S.

Let v be a vertex of a k-strong digraph D and let Z = {z1, z2, . . . , zk} be a
set of k vertices in V (D) \ v. A (v,Z)-fan (resp. (Z,v)-fan) is a collection of
internally disjoint paths P1, . . . , Pk (resp. Q1, Q2, . . . , Qk) such that Pi (resp.
Qi) is a (v, zi)-path (resp. (zi, v)-path). It is an easy consequence of Menger’s
theorem that every k-strong digraph has such a fan for arbitrary v and Z as
above. We denote it by F+

v,Z (resp. F−
Z,v). Note that it has at most n− 1 arcs

it is an out-tree (resp. in-tree) in D.

Theorem 2.10.8 ([117]) Let k be a positive integer. Every k-strong n-
tournament T contains a k-strong spanning subdigraph D with |A(D)| ≤
(5k − 2)n +

(
5k
2

)
.

Proof: Set V := V (T ). If n ≤ 5k, we let D be T itself. So assume n > 5k
and let V ′ ⊂ V be an arbitrary set of 5k vertices. By Lemma 2.10.7, we can
find two disjoint k-sets X,Y such that for every S ⊂ V with |S| = k − 1
and every choice of x ∈ X \ S, y ∈ Y \ S the tournament T [V ′ \ S] has
an (x, y)-path. Applying Lemma 2.10.6, we obtain an ordering O of V (T )
and a spanning (k, 2k − 1)-good subdigraph D′ of DO such that |A(D′)| ≤
kn − k. For each n − 2k + 2 ≤ i ≤ n, let Fvi,X be a (vi,X)-fan in T ,
and, for each 1 ≤ i ≤ 2k − 1, let FY,vi

be a (Y, vi)-fan. Now define the
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spanning digraph D∗ = (V,A∗) to be the union of all the arcs in T [V ′], D′,
Fvn−2k+2,X , . . . , Fvn,X , FY,v1 , . . . , FY,v2k−1 . By the remark on the size of fans
above, it is easy to check that |A(D∗)| ≤ (5k − 2)n +

(
5k
2

)
. We now prove

that D∗ is k-strong. To show this, let S be any subset of k − 1 vertices and
let u, v ∈ V \ S be arbitrary. We need to show that D∗ − S has a (u, v)-path.
Because D′ is (k, 2k − 1)-good, in D′ − S there is a (u, vi)-path P for some
n−2k+2 ≤ i ≤ n and a (vj , v)-path P ′ for some j ∈ [2k−1] (recall that D′ is
acyclic so every directed path moves forward in the ordering). After deleting
the vertices of S from the fans Fvi,X and FY,vj

there still remains at least one
intact path in each of these (as there are k internally disjoint such paths).
Let xs ∈ X, ys ∈ Y be such that Fvi,X − S contains a (vi, xs)-path Pvi,xs

and FY,vj
−S contains a (ys, vj)-path Pys,vj

. By Lemma 2.10.7, T [V ′ \ S] has
an (xs, ys)-path P ′′. Now the subdigraph of D∗ − S formed by the arcs of
P, P ′, P ′′, Pvi,xs

and Pys,vj
contains a (u, v)-path and we are done. 
�

2.11 Increasing Connectivity by Adding or Reversing
Arcs

In this section we consider the following problems for semicomplete digraphs

(1) Given a digraph D = (V,A) on at least k + 1 vertices for some positive
integer k, find a minimum set F of new arcs such that the digraph D′ =
(V,A ∪ F ) is k-strong. Let ak(D) = |F |.

(2) Given a digraph D = (V,A) on at least 2k + 1 vertices for some positive
integer k, find a minimum set F ⊂ A of arcs in D such that the digraph D′

obtained from D by reversing every arc in F is k-strong. Let rk(D) = |F |.

Clearly,
ak(D) ≤ rk(D), (2.8)

since, instead of reversing arcs in D, we may add exactly those new arcs we
would obtain by reversing and keep the original ones.

Frank and Jordán showed that ak(D) can be computed in polynomial
time [88, 89]. The number r1(D) can be calculated via submodular flows (see
e.g. [22, Section 13.1]). For k ≥ 2, it is not clear how we can decide whether
rk(D) even exists for a given arbitrary digraph D, let alone find an optimal
reversal (unless we try all possibilities, which clearly requires exponential
time). Indeed, this seems to be a very difficult problem.

We will now show that for semicomplete digraphs D, the function rk(D)
behaves nicely. Note that, since we are dealing with vertex-connectivity, we
gain nothing by reversing arcs that are contained in 2-cycles. Hence below
we only consider arcs that are not contained in 2-cycles for possible reversal.

Proposition 2.11.1 ([29]) If a semicomplete digraph D has at least 2k + 1
vertices, then rk(D) exists and is bounded by a function depending only on k.
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Proof: To see this it suffices to use the following two simple observations;
the proof of the first one is left to the reader, and the second one follows
directly from Proposition 2.2.2 and its directional dual.

(a) If D is a k-strong digraph and D′ is obtained from D by adding a new
vertex x and arcs from x to every vertex in a set X of k distinct vertices
of D and arcs from every vertex of a set Y of k distinct vertices of D to
x, then D′ is also k-strong.

(b) If D is a semicomplete digraph on at least 4k−1 vertices, then D contains
a vertex with in-degree and out-degree at least k.

By observations (a) and (b), for every semicomplete digraph D, rk(D) ≤
rk(D′) for some induced subdigraph D′ of D with |V (D′)| ≤ 4k − 2. We can
find such a subdigraph D′ as follows: Continue removing vertices as long as
the current semicomplete digraph graph has at least 2k + 2 vertices and a
vertex of in-degree and out-degree at least k. When this process stops, we
have 2k+1 ≤ |V (D′)| ≤ 4k−2 in the current semicomplete digraph D′. Then
we can make D′ k-strong by reversing some arcs and add back each of the
removed vertices in the reverse order of the deletion. This provides a simple
upper bound for rk(D) (and hence for ak(D)) as a function of k: we need to
reverse at most half of the arcs in D′, that is, at most (4k−2)(4k−3)

4 arcs. 
�
The process above may not lead to an optimal reversal for the original

semicomplete digraph (in terms of the number of arcs to reverse), not even
if we reverse optimally in D′.

It is easy to see that rk(TTn) = k(k+1)/2 when n ≥ 2k+1. Bang-Jensen
conjectured that no other tournament needs more reversals.

Conjecture 2.11.2 (Bang-Jensen [22]) For every tournament T with
|V (T )| = n ≥ 2k + 1, we have rk(T ) ≤ k(k + 1)/2.

Since every semicomplete digraph contains a spanning tournament, if
Conjecture 2.11.2 is true, this implies that the same conclusion holds for
semicomplete digraphs on at least 2k + 1 vertices.

Bang-Jensen and Jordán showed that as soon as the number of vertices
in the given semicomplete digraph D is sufficiently high (depending only on
k), the minimum number of arcs in D we need to reverse in order to achieve
a k-strong semicomplete digraph equals the minimum number of new arcs we
need to add to D to obtain a k-strong semicomplete digraph.

Theorem 2.11.3 ([29]) Let k ≥ 2 be an integer. If D is a semicomplete di-
graph on at least 3k − 1 vertices, then ak(D) = rk(D).

The idea, which also leads to a polynomial algorithm for finding the de-
sired reversal (see [29]), is to show that rk(D) ≤ ak(D), by demonstrating
that a certain optimal augmenting set F of D has the property that, if we
reverse the existing (opposite) arcs of F in D, then we obtain a k-strong
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semicomplete digraph. It was shown in [29] that 3k − 1 is the best possible
bound for semicomplete digraphs. However, in the case when D is a tourna-
ment, the question as to whether or not the bound is the best possible was
left open and the following conjecture was implicitly formulated.

Conjecture 2.11.4 ([29]) For every tournament T on at least 2k+1 vertices,
we have ak(T ) = rk(T ).

Now we turn to arc-strong connectivity, where we shall see that the anal-
ogous problem to the one above has been solved.

Let rdeg
k (D) be the minimum number of arcs one needs to reverse in

a directed multigraph D in order to obtain a directed multigraph D′ with
δ0(D′) ≥ k. If no such reversal exists, we let rdeg

k (D) = ∞. Determining rdeg
k

for a given digraph can be formulated as a feasibility flow problem and is
thus polynomial (see e.g. [22, Section 14.5.1]). Analogously define rarc

k (D) to
be the minimum number of arcs one needs to reverse in D in order to obtain
a k-arc-strong directed multigraph.

By the Nash-Williams orientation Theorem [147], rarc
k (D) < ∞ pre-

cisely when UMG(D) is 2k-edge-connected and one can calculate rarc
k (D)

(including detecting whether rarc
k (D) = ∞) in polynomial time using sub-

modular flows (see e.g. [22, Section 11.8]). It follows from the results below
that for tournaments the function rarc

k can be calculated just using standard
maximum-flow calculations.

The following result by Bang-Jensen and Yeo shows that for tournaments
rdeg
k (T ) and rarc

k (T ) are always bounded by a function that depends only on
k.

Theorem 2.11.5 ([36]) Let T be an n-tournament, with n ≥ 2k + 1. The
following hold:

(i) rdeg
k (T ) ≤ k(k + 1)/2.

(ii) rarc
k (T ) = max{k − λ(T ), rdeg

k (T )}.

Observe that combining (i) and (ii) of Theorem 2.11.5, we obtain rarc
k (T ) ≤

k(k + 1)/2 which provides support to Conjecture 2.11.2. Recall again that
the transitive tournaments show that this is the best possible.

The proof in [36] of Theorem 2.11.5 can be turned into a polynomial
algorithm for finding a set of q arcs whose reversal makes T k-arc-strong
using just maximum-flow calculations.

We now consider the operation of deorienting an arc. Let xy be an arc
of a digraph D which is not in a 2-cycle. By deorienting xy we mean the
operation which adds the arc yx to D. Clearly, deorienting arcs is equivalent
to adding new arcs with the restriction that we can only add an arc which is
opposite to an existing arc and we cannot create parallel arcs. Hence we may
view deorienting arcs as a restricted version of the arc addition operation.
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Let deordeg
k (D) denote the minimum number of arcs we need to deorient

in D in order to obtain a digraph D′ with δ0(D′) ≥ k. Using flows one
can determine deordeg

k (D) for an arbitrary digraph D ([22, Exercise 14.18]).
Clearly deordeg

k (D) ≤ rdeg
k (D) for every oriented graph, in particular for every

tournament. The example in Figure 2.5 shows that this inequality does not
always hold for semicomplete digraphs.

Bang-Jensen and Yeo proved that for tournaments deorienting arcs is
generally no better than reversing in terms of obtaining a desired minimum
degree.

Theorem 2.11.6 ([36]) Let T be a tournament on at least 2k + 1 vertices.
Then deordeg

k (T ) = rdeg
k (T ). In particular, deordeg

k (T ) ≤ k(k + 1)/2.

Figure 2.5 A semicomplete digraph D for which 1 = rarc2 (D) < deorarc2 (D) = 2

Analogously define deorarc
k (D) to be the minimum number of arcs one

needs to deorient in D in order to obtain a k-arc-strong digraph. It is easy
to see that deorarc

k (D) < ∞ if and only if UG(D) is k-edge-connected. Fur-
thermore, if D is an oriented graph (in particular, if D is a tournament),
then we have deorarc

k (D) ≤ rarc
k (D) since instead of reversing an optimal set

A′ of arcs we may deorient these arcs and obtain a digraph with minimum
semi-degree at least k. Figure 2.5 shows that the inequality above may not
hold when D contains 2-cycles.

The following is a corollary of the Lucchesi–Younger theorem [138] about
covering of directed cuts in a digraph.

Theorem 2.11.7 Let D be a non-strong digraph for which UG(D) is 2-edge-
connected. Then deorarc

1 (D) = rarc
1 (D). 
�

When k ≥ 2 and D is an arbitrary digraph, we do not know how to
determine deorarc

k (D) efficiently, but as we show below, this is possible when
D is a tournament.

One might expect that deorarc
k (D) < rarc

k (D) for most oriented graphs.
The next result, due to Bang-Jensen and Yeo, shows that for tournaments the
two numbers are equal and hence, with respect to increasing the arc-strong
connectivity of a tournament, there is no gain from deorienting arcs rather
than reversing arcs.
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Theorem 2.11.8 ([36]) For every tournament T on at least 2k + 1 vertices
we have deorarc

k (T ) = rarc
k (T ).

Proof: We saw in Theorem 2.11.5 that rarc
k (T ) = max{k − λ(T ), rdeg

k (T )}.
If rarc

k (T ) = rdeg
k (T ), then, by Theorem 2.11.6, we have

deorarc
k (T ) ≤ rarc

k (T )

= rdeg
k (T )

= deordeg
k (T )

≤ deorarc
k (T ),

implying that deorarc
k (T ) = rarc

k (T ). So we may assume that rarc
k (T ) =

k − λ(T ). Now the claim follows from the easy fact that deorarc
k (T ) ≥ k −

λ(T ). 
�
We argued above that, in polynomial time, for a given tournament T , we

can find a set of arcs A′ ⊂ A(T ) of size rarc
k (T ) such that reversing the arcs

of A′ results in a k-arc-strong tournament. Thus it follows from Theorem
2.11.8 that, in polynomial time, we can determine deorarc

k (T ) and find a set
of deorarc

k (T ) arcs to deorient such that the resulting semicomplete digraph
is k-arc-strong. One optimal set of arcs to deorient is simply a set that would
form an optimal reversal.

Problem 2.11.9 ([36]) Let k ≥ 1 be a fixed integer. Is there a polynomial
algorithm for determining the number deorarc

k (D) for a given input D?

As we saw above the answer is yes if either k = 1 or if D is a tournament,
but even the case of semicomplete digraphs and k = 2 is open. We also do
not know whether there exists a polynomial algorithm for general oriented
graphs when k = 2. Recall that for any digraph D and positive integer k the
number deordeg

k (D) can be calculated in polynomial time via flows.
Analogously to the definition of deorarc

k (D) we may define deork(D) to
denote the minimum number of arcs we need to deorient in D in order to
obtain a k-strong digraph. Clearly deork(D) < ∞ precisely when UG(D)
is k-connected. We have deor1(D) = deorarc

1 (D) for every digraph but for
higher values of k nothing is known about deork(D) for general digraphs.
Notice that when D is a semicomplete digraph on at least 3k − 1 vertices we
have deork(D) = ak(D) by Theorem 2.11.3.

2.12 Arc-Disjoint Spanning Subdigraphs of
Semicomplete Digraphs

Below we discuss results on arc-disjoint Hamiltonian cycles, strong spanning
subdigraphs and in- and out-branchings.
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2.12.1 Arc-Disjoint Hamiltonian Paths and Cycles

Let T be a non-strong tournament and let T1, T2, . . . , Tk be the acyclic order-
ing of its strong components. Two components Ti, Ti+1 are called consecu-
tive for i = 1, 2, . . . , k − 1.

Thomassen [181] completely characterized tournaments having a pair of
arc-disjoint Hamiltonian paths.

Theorem 2.12.1 ([181]) A tournament T fails to have two arc-disjoint
Hamiltonian paths if and only if T has a strong component which is an al-
most transitive tournament of odd order or T has two consecutive strong
components of order 1. �

Thomassen posed the following problem.

Problem 2.12.2 ([181]) What is the complexity of deciding whether a tour-
nament has a Hamiltonian path P and a Hamiltonian cycle C which are arc-
disjoint?

Thomassen solved this problem for tournaments that are arc-3-cyclic (that
is, every arc is contained in a 3-cycle) [181]. Moon proved that almost all
tournaments are arc-3-cyclic [146] so Thomassen’s result covers almost all
tournaments.

Theorem 2.12.3 ([181]) Every arc-3-cyclic n-tournament with n ≥ 6 has a
Hamiltonian path and a Hamiltonian cycle which are arc-disjoint.

Observe that Theorem 2.12.1 implies that every 2-arc-strong tournament
has two arc-disjoint Hamiltonian paths. Thomassen [181] conjectured the ex-
istence of a function h(k) such that every h(k)-strong tournament contains
k arc-disjoint Hamiltonian cycles. He proved that h(2) ≥ 3 and conjectured
that equality holds. The existence of h(k) was recently verified by Kühn,
Lapinskas, Osthus and Patel [124] who proved that h(k) ∈ O(k2 log 2(k)) suf-
fices. They conjectured that h(k) ∈ O(k2) would suffice. This was confirmed
by Pokrovskiy.

Theorem 2.12.4 ([155]) There exists a constant C such that every Ck2-
strong tournament contains k arc-disjoint Hamiltonian cycles.

By Theorem 2.6.19, h(2) = 3 would follow from the following conjecture
due to Bang-Jensen and Yeo.

Conjecture 2.12.5 ([35]) Every tournament T either contains two arc-
disjoint Hamiltonian cycles or a set A′ of at most two arcs such that T \ A′

has no Hamiltonian cycle.

Confirming a conjecture of Erdős, Kühn and Osthus proved the following.
Here ‘almost all’ means that the probability of a random n-tournament having
the desired property tends to 1 as n tends to infinity.
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Theorem 2.12.6 ([126]) Almost all tournaments have δ0(T ) arc-disjoint
Hamiltonian cycles.

Now we turn to decompositions into arc-disjoint Hamiltonian cycles.
Clearly any digraph which has an arc-decomposition into Hamiltonian cy-
cles must be regular. Tillson characterized when one can decompose the arc
set of the complete digraph into arc-disjoint Hamiltonian cycles.

Theorem 2.12.7 ([189]) The complete digraph
↔
Kk can be decomposed into

arc-disjoint Hamiltonian cycles if and only if k �= 4, 6.

The following conjecture, due to Kelly (see [146]), is the most famous
open problem on tournaments.

Conjecture 2.12.8 (Kelly, 1968) Every regular n-tournament can be par-
titioned into (n − 1)/2 Hamiltonian cycles.

This conjecture has attracted a lot of attention and a number of partial
or closely related results have been obtained, e.g. [42, 103, 113, 119, 181, 183,
196]

The major breakthrough on the Kelly conjecture was made by Kühn and
Osthus who proved the conjecture for (very) large n.

Theorem 2.12.9 ([126]) For k sufficiently large, every k-regular tournament
decomposes into k arc-disjoint Hamiltonian cycles.

The proof in [126] is very long, almost 100 pages. It still remains a major
challenge to prove Conjecture 2.12.8 in full.

For k-regular semicomplete digraphs, we do not necessarily have k-arc-
disjoint Hamiltonian cycles. For k = 2, one such example is obtained from
a 4-cycle by adding a 2-cycle between the two pairs of vertices of distance 2
along the cycle.

Problem 2.12.10 What is the complexity of deciding whether a given reg-
ular semicomplete digraph has a decomposition into arc-disjoint Hamilto-
nian cycles?

It follows from Theorem 2.12.9 that for regular tournaments there is a
polynomial algorithm to decide whether the given tournament has a decom-
position into Hamiltonian cycles. Of course, if Kelly’s conjecture is true, then
there is a trivial algorithm, because the answer will always be ‘yes’.

Let T bethe tournament on n = 4m+2 vertices obtained from two regular
tournaments T1 and T2, each on 2m + 1 vertices, by adding all arcs from the
vertices of T1 to T2. Clearly T is not strong and so has no Hamiltonian cycle.
The minimum semi-degree of T is m = n−2

4 . One can easily prove that every
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n-tournament with δ0(T ) ≥ n
4 is strongly connected. Bollobás and Häggkvist

[45] showed that if we increase the minimum semi-degree slightly, then, not
only do we obtain many arc-disjoint Hamiltonian cycles, we also obtain a
very structured set of such cycles provided that the tournament has enough
vertices.

Theorem 2.12.11 ([45]) For every ε > 0 and every positive integer k, there
is an integer n(ε, k) with the following property. If T is a tournament of order
n > n(ε, k) such that δ0(T ) ≥ ( 14 + ε)n, then T contains the kth power of a
Hamiltonian cycle. �

2.12.2 Arc-Disjoint Spanning Strong Subdigraphs

In this subsection, we study the decomposition of digraphs into strong sub-
digraphs. Since adding an arc to a strong digraph results in another strong
digraph, a digraph decomposes into k arc-disjoint spanning strong subdi-
graphs if and only of it contains k arc-disjoint spanning strong subdigraphs.

Bang-Jensen and Yeo posed the following conjecture, which contains the
Kelly conjecture (Conjecture 2.12.8) as the special case when n = 2k + 1.

Conjecture 2.12.12 (Bang-Jensen and Yeo [35]) A tournament T can
be decomposed into k arc-disjoint spanning strong subdigraphs if and only if
T is k-arc-strong.

They proved this conjecture for k = 2 and also characterized the 2-strong
semicomplete digraphs that have an arc decomposition into two spanning
strong subdigraphs.

Let S2k be the semicomplete digraph which one obtains from two disjoint
copies of the complete digraph

↔
Kk by adding a perfect matching oriented

from one copy to the other and adding all remaining arcs in the opposite
direction.

Lemma 2.12.13 ([35]) The semicomplete digraph S2k decomposes into k-
arc-disjoint spanning strong subdigraphs except when k = 2.

The following theorem implies that Conjecture 2.12.12 holds for k = 2.

Theorem 2.12.14 ([35]) Let D be a 2-arc-strong semicomplete digraph, on n
vertices. Then D decomposes in two arc-disjoint spanning strong subdigraphs
if and only if it is not isomorphic to S4.

Below we shall give a proof Conjecture 2.12.12 for the class of k-arc-strong
tournaments which have a non-trivial k arc-cut (Theorem 2.12.17). The proof,
which is due to Bang-Jensen and Yeo, uses Theorem 2.12.7 and Theorem
2.12.16, which can be deduced from the following result of Smetanuik on
completion of partial Latin squares.
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Theorem 2.12.15 ([170]) Let B be a complete bipartite graph (undirected),
with n vertices in each partite set, and let R be a set of edges in B such that
|R| ≤ n − 1. Then we can decompose E(B) into n edge-disjoint matchings
M1,M2, ...,Mn such that |Mi ∩ R| ≤ 1 for all i = 1, 2, ..., n.

Theorem 2.12.16 ([170]) Let B = (X,Y,E) be an undirected complete bi-
partite graph with |X| = t, |Y | = s and t > s. Let R be a set of edges in B
such that |R| ≤ s. Then we can colour the edges of B by |R| colours in such
a way that all edges in R receive distinct colours and every vertex in X ∪ Y
is incident with all |R| colours.

Theorem 2.12.17 Let k ≥ 1 and let D be a k-arc-strong semicomplete di-
graph such that there exists a set S ⊂ V (D) with 2 ≤ |S| ≤ |V (D)| − 2 and
d+(S) = k. There exist k arc-disjoint strong spanning subgraphs of D except
if D = S4.

Proof: By Lemma 2.12.13 we may assume that D is not isomorphic to S4.
It is not difficult to show that k ≤ |S| ≤ n − k (by showing that |S| ≥ k

and |V (D)−S| ≥ k, respectively). If |S| = |V −S| = 2 then D contains S4 as
a proper spanning subdigraph and it is easy to check that adding any arc to
S4 will result in a digraph with two arc-disjoint strong spanning subdigraphs.
Hence we may assume that n ≥ 5. Let e1, e2, . . . , ek be the k arcs from S to
V (D) − S, and let ei = xiyi, for i = 1, 2, . . . , k. Let X = {x1, x2, . . . , xk} and
Y = {y1, y2, . . . , yk}. Note that we may have |X| < k or |Y | < k or both. We
may assume, by reversing all arcs if necessary, that |V − S| ≥ |S|.

By Lemma 2.12.13 and the remark above, we may assume that |V −S| >
|S| if |S| = k. By Theorem 2.12.16 (with R = {e1, e2, . . . , ek}) we can colour
all arcs between S and V (D) − S with k colours such that the arcs from S
to V (D) − S get different colours and every vertex in V is incident with arcs
of all k colours. Note that if |V − S| = |S| > k this follows from Theorem
2.12.15.

Assume, without loss of generality, that the arc xiyi is coloured with
colour i, and let Fi contain all arcs between S and V (D) − S of colour i.

By Theorem 1.8.2 there exists k arc-disjoint out-branchings U1, U2, . . . , Uk,
in D[V (D) − S] such that Ui is rooted at yi, for i = 1, 2, . . . , k (consider k
arc-disjoint out-branchings from any vertex in S. Each of these must contain
exactly one of the arcs e1, e2, . . . , ek. Thus the out-branching that contains the
arc ei must contain an out-branching from yi in D[V (D) − S]). Analogously,
there exists k arc-disjoint in-branchings V1, V2, . . . , Vk, in D[S] such that Vi

is rooted at xi, for i = 1, 2, . . . , k. Let Ti = Vi ∪ Ui ∪ Fi, for i = 1, 2, . . . , k.
Clearly T1, T2, . . . , Tk are arc-disjoint and spanning. Each Ti is furthermore
strong: by the construction of the colouring, every vertex in V is incident to
an arc of colour i, every vertex in V (D) − S − yi is the tail of an arc in Ti

into S, and hence every vertex in V can reach yi (via Vi and the arc xiyi)
and every vertex in S − xi is the head of an arc from V (Ui) in Ti, implying
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that in Ti all vertices can be reached by yi and reach xi. This completes the
proof. 
�

The following theorem, due to Bang-Jensen and Yeo, implies that we can
always obtain about 1

37λ(T ) arc-disjoint spanning strong subdigraphs in any
tournament T . Note that in the case when λ(T ) < 37k the result below
follows from Theorem 2.12.17.

Theorem 2.12.18 ([35]) Let T be a k-arc-strong tournament, with minimum
semi-degree δ0(T ) ≥ 37k. Then there exists k arc-disjoint spanning strong
subgraphs in T .

2.12.3 Arc-Disjoint In- and Out-Branchings

We now turn to branchings and consider the following problem

Arc-disjoint in- and out-branchings

Input: A digraph D and vertices u, v (not necessarily distinct).
Question: Does D have a pair of arc-disjoint branchings B+

u , B−
v such

that B+
u is an out-branching rooted at u and B−

v is an in-branching rooted
at v?

The following result was proved by Thomassen [16].

Theorem 2.12.19 Arc-disjoint in- and out-branchings is NP-comp-
lete for arbitrary digraphs.

Bang-Jensen and Huang showed that, if the vertex that is to be the root
is adjacent to all other vertices in the digraph and is not in any 2-cycle, then
the problem becomes polynomially solvable.

Theorem 2.12.20 ([27]) Let D = (V,A) be a strongly connected digraph and
v a vertex of D such that v is not on any 2-cycle and V (D) = {v}∪N−(v)∪
N+(v). Let A = {A1, A2, . . . , Ak} (B = {B1, B2, . . . , Br}) denote the set of
terminal (initial) components in D〈N+(v)〉 (D〈N−(v)〉). Then D contains
a pair of arc-disjoint branchings B+

v , B−
v such that B+

v is an out-branching
rooted at v and B−

v is an in-branching rooted at v if and only if there exist
two disjoint arc sets EA, EB ⊂ A such that all arcs in EA ∪ EB go from
N+(v) to N−(v) and every Ai ∈ A (Bj ∈ B) is incident with an arc from
EA (EB). Furthermore, there exists a polynomial algorithm to find the desired
branchings, or demonstrate the non-existence of such branchings.

This implies the following result due to Bang-Jensen.

Corollary 2.12.21 ([16]) A tournament T = (V,A) has arc-disjoint branch-
ings B+

v , B−
v rooted at a specified vertex v ∈ V if and only if T is strong and

for every arc a ∈ A the digraph T − a contains either an out-branching or an
in-branching with root v.
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When u �= v, Arc-disjoint in- and out-branchings becomes much
harder even for semicomplete digraphs. Bang-Jensen [16] found a complete
characterization for the case of tournaments. This characterization, which is
quite complicated, implies the tournament case of the following Theorem by
Bang-Jensen and Yeo.

Theorem 2.12.22 ([35]) Every 2-arc-strong semicomplete digraph T =
(V,A) contains arc-disjoint in- and out-branchings B−

r , B+
s for every choice

of vertices r, s ∈ V .

Proof: This follows from Lemma 2.12.13 since it is easy to show that the
semicomplete digraph S4, which is the unique exception to that theorem, has
arc-disjoint in- and out-branchings B−

u , B+
v for every choice of u, v ∈ V (S4).


�

Bang-Jensen found a polynomial algorithm for Arc-disjoint in- and

out-branchings in the case of tournaments.

Theorem 2.12.23 ([16]) There is a polynomial algorithm for checking
whether a given tournament with specified distinct vertices u, v has arc-
disjoint branchings B+

u , B−
v and finding such branchings if they exist. 
�

Thomassen conjectured that every digraph which has sufficiently high arc-
strong connectivity has arc-disjoint in- and out-branchings for every choice
of roots.

Conjecture 2.12.24 ([178]) There exists a positive integer N such that ev-
ery digraph D which is N -arc-strong has arc-disjoint branchings B+

v , B−
v for

every choice of v ∈ V (D).

Bang-Jensen and Yeo generalized this as follows.

Conjecture 2.12.25 There exists a positive integer N such that every di-
graph D which is N -arc-strong has two arc-disjoint spanning strong subdi-
graphs.

Theorem 2.12.14 implies that the conjecture holds with N = 3 for semi-
complete digraphs and with N = 2 for tournaments. The following conse-
quence of Theorem 2.12.18 verifies a conjecture by Bang-Jensen and Gutin
[23].

Theorem 2.12.26 ([35]) Let T be 74k-arc-strong tournament. Then T has
2k arc-disjoint branchings B+

v,1, . . . , B
+
v,k, B−

v,1, . . . , B
−
v,k such that B+

v,1, . . . ,

B+
v,k are out-branchings rooted at v and B−

v,1, . . . , B
−
v,k are in-branchings

rooted at v, for every vertex v ∈ V (T ).

Note that if Conjecture 2.12.12 is true then we may replace 74k by 2k.
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Conjecture 2.12.27 ([35]) Theorem 2.12.26 also holds if we replace 74k by
2k.

2.13 Minors of Semicomplete Digraphs

The most important advance in graph theory in the last few decades is cer-
tainly the Robertson–Seymour minor theory and by now the minor relation
for graphs is well-established. However it is not clear how it should be ex-
tended to digraphs. A minor of a graph G is usually defined as a graph that
can be obtained from a subgraph of G by contracting edges. Unfortunately,
in digraphs, contracting an arc may yield a directed cycle, even when we are
starting from an acyclic digraph, and this seems undesirable for a theory of
excluded minors. One way to avoid this is to permit the contraction only of
certain special arcs; for instance, in the paper [114] by Johnson, Robertson,
Seymour and Thomas, an arc uv can be contracted if it is either the only
arc with tail u or the only arc with head v. Another way, called shallow
directed minors, has been introduced by Kreutzer and Tazari in [123]. A
third approach comes from the observation that a minor of a graph G can
also be defined as a graph that can be obtained from a subgraph of G by
contracting connected subgraphs. Therefore Kim and Seymour [120] defined
a minor of a digraph D as a digraph that can be obtained from a subdigraph
of D by contracting strong subdigraphs.

An important property of minors for graphs is that they define a well
quasi-order as shown by Robertson and Seymour [163]. (Recall that a quasi-
order ≤ is a reflexive and transitive relation, and that it is a well quasi-order
if for every infinite sequence q1, q2, . . . there exist j > i such that qi ≤ qj .)
The analogous statement is not true for directed minors. For example, a
directed cycle is not a minor of a bigger directed cycle, and so if we take
an infinite set of directed cycles, all of different lengths, then this set is an
infinite antichain under the minor order. However, Kim and Seymour [120]
proved that minor containment defines a well quasi-order for the class of all
semicomplete digraphs, and therefore the same is true for the class of all
tournaments.

Theorem 2.13.1 ([120]) Minor containment is a well quasi-order on the
class of all semicomplete digraphs.

Kim and Seymour [120] also showed that this result cannot be generalized
to larger classes of digraphs. In particular, they showed that minor contain-
ment is not a well quasi-order on the class of all digraphs with independence
number 2. Indeed, consider the digraphs Di, i ≥ 2, defined as follows:

• V (Di) is the disjoint union of Ci, C ′
i, Ti and T ′

i ;
• Di〈Ci〉 and Di〈C ′

i〉 are directed 3-cycles;
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• Di〈Ti〉 and Di〈T ′
i 〉 are transitive tournaments with Hamiltonian directed

paths t1 . . . ti and t′i . . . t′1, respectively;
• Ci → Ti and T ′

i → C ′
i;

• there is exactly one arc with tail in C ′
i and head in Ci;

• for every 1 ≤ j ≤ i, {tj , tj+1} → t′j with ti+1 = t1.

One can check that there do not exist j > i ≥ 2 such that Di is a minor of
Dj .

In [64], Chudnovsky and Seymour proved that immersion is a well quasi-
order on the class of all tournaments, by using the parameter cutwidth (see
the definition in Section 2.5.1). This was recently extended to the class of all
semicomplete digraphs by Barbero, Paul and Pilipczuk [38].

Kim and Seymour proved Theorem 2.13.1 by using another parameter
called path-width. For a digraph D, a sequence (W1, . . . , Wr) of subsets of
V (D) is a path decomposition of D if it satisfies the following conditions:

•
⋃r

i=1 Wi = V (D);
• for 1 ≤ h < i < j ≤ r, Wh ∩ Wj ⊆ Wi; and
• if uv ∈ A(D), then u ∈ Wi and v ∈ Wj for some i ≥ j.

The width of such a path decomposition is defined to be the number
max{|Wi| − 1 | 1 ≤ i ≤ r}. The path-width of D is the smallest width
of a path-decomposition. For example, if v1, . . . , vn is an acyclic ordering
of an acyclic digraph, then ({v1}, . . . , {vn}) is a path-decomposition of this
digraph of width 0. Hence every acyclic digraph has path-width 0.

Having bounded path-width is a minor-closed property.

Lemma 2.13.2 ([120]) If a digraph has path-width at most k, then so do all
its minors.

Proof: Let (W1, . . . , Wr) be a path-decomposition of a digraph D with width
at most k. It is also a path-decomposition of D\a for every arc a ∈ A(D) and
(W1 \ {v}, . . . , Wr \ {v}) is a path-decomposition of D − v for every vertex
v ∈ V (D). Hence, it remains to show that for every strong subdigraph H,
the digraph D/H obtained from D by contracting H into a vertex w has
path-width at most k.

Let IH = {i | Wi ∩ V (H) �= ∅}. One can check that iH is an interval and
that the path-decomposition (W ′

1, . . . , W
′
r) defined by W ′

i = (Wi\V (H))∪{w}
if i ∈ iH and W ′

i = Wi otherwise is a path-decomposition of G/H of width
at most k. 
�

The k-triple is the digraph Tk defined by

V (Tk) = {a1, . . . , ak, b1, . . . , bk, c1, . . . , ck}, and
E(Tk) = {aibj | 1 ≤ i ≤ k, 1 ≤ j ≤ k} ∪ {bicj | 1 ≤ i ≤ k, 1 ≤ j ≤ k} ∪

{ciai | 1 ≤ i ≤ k}.
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Observe that every semicomplete digraph with k vertices is a minor of the
k-triple Tk. Indeed, set B = {b1, . . . , bk}; then D〈{ai, bi, ci}〉 is strong for
each i. The digraph D′ obtained from D by contracting D〈{ai, bi, ci}〉 to a
vertex for each i is the complete symmetric digraph of order k.

A theorem of Fradkin and Seymour [86] says that a semicomplete digraph
D has large path-width if and only if it contains a large k-triple.

Theorem 2.13.3 ([86]) Let S be a set of semicomplete digraphs. The follow-
ing two statements are equivalent:

1. There exists a positive integer k1 such that for each D ∈ S, there is no
k1-triple in D.

2. There exists a positive integer k2 such that each D ∈ S has path-width at
most k2.

Hence in order to prove Theorem 2.13.1, Kim and Seymour [120] proved
the following result.

Theorem 2.13.4 ([120]) Minor containment is a well quasi-order on the
class of all semicomplete digraphs with path-width at most k.

Proof of 2.13.1 assuming Theorem 2.13.4: Let D1,D2, . . . be an infinite
sequence of semicomplete digraphs. We may assume that D1 is not a minor
of Di for each i ≥ 2. Set k1 = |D1|. By the above observation D1 is a minor of
Tk1 , so Tk1 is not contained in Di for each i ≥ 2. Hence, by Theorem 2.13.3,
there exists a k2 such that every Di, i ≥ 2, has path-width at most k2. Thus,
by Theorem 2.13.4, there exists j > i ≥ 2 such that Gi is a minor of Gj . 
�

2.14 Miscellaneous Topics

In the next few subsections we briefly survey results and problems on a few
further topics on tournaments.

2.14.1 Arc-Pancyclicity

As mentioned earlier, Moon proved that almost all tournaments are arc-3-
cyclic [146], so for tournaments this is not a very hard restriction.

Tian, Wu and Zhang characterized all tournaments that are arc-3-cyclic
but not arc-pancyclic. See Figure 2.6 for the definition of the classes D6,D8.

Theorem 2.14.1 ([188]) An arc-3-cyclic tournament is arc-pancyclic unless
it belongs to one of the families D6,D8 (in which case the arc yx belongs to
no Hamiltonian cycle).

Corollary 2.14.2 ([188]) Every arc-3-cyclic tournament has at most one arc
which is not in cycles of all lengths 3, 4, . . . , n.
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The following result due to Wu, Zhang and Zou is also a corollary of
Theorem 2.14.1.

Corollary 2.14.3 ([193]) A tournament is arc-pancyclic if and only if it is
arc-3-cyclic and arc-n-cyclic.

The following result due to Alspach is also an easy corollary:

U W

x y x y

D6 D8

Figure 2.6 The two families of non-arc-pancyclic arc-3-cyclic tournaments. Each
of the sets U and W induces an arc-3-cyclic tournament. All edges that are not
already oriented may be oriented arbitrarily, but all arcs between U and W have
the same direction

Corollary 2.14.4 ([12]) Every regular tournament is arc-pancyclic.

Finally, observe that since each tournament in the infinite family D6 is 2-
strong and the arc yx is not in any Hamiltonian cycle we obtain the following
result due to Thomassen:

Theorem 2.14.5 ([184]) There exist infinitely many 2-strong tournaments
containing an arc which is not in anyHamiltonian cycle.

Problem 2.14.6 Characterize arc-pancyclic semicomplete digraphs.

A partial result on this problem was obtained by Darrah, Liu and Zhang [68].
A vertex u in a digraph D is out-pancyclic if every arc whose tail is u is

contained in cycles of all lengths 3, 4, . . . , |V (D)|. Clearly D is arc-pancyclic
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if and only if every vertex of D is out-pancyclic and hence it is of interest to
study out-pancyclic vertices in tournaments and semicomplete digraphs.

When T is a strong tournament with δ+(T ) ≥ 2, Yao, Guo and Zhang [194]
call a vertex v ∈ V (T ) a bridgehead if there is a 2-partition (V1, V2) of V (T )
such that |V1| ≥ 2, T [V1] is strong and there is no arc from V1 \ {v} to V2.
It is easy to check that every tournament of minimum out-degree at least 2
contains a vertex which is not a bridgehead.

Theorem 2.14.7 ([194]) Let T be a strong tournament on n vertices and let
u1, u2, . . . , un be a labelling of its vertices so that d+(u1) ≤ d+(u2) ≤ . . . ≤
d+(un). Let u be the vertex u1 if d+(u1) = 1 and otherwise u is a vertex
of minimum out-degree among those that are not bridgeheads. Then u is an
out-pancyclic vertex.

Corollary 2.14.8 ([194]) Every strong tournament has an out-pancyclic ver-
tex.

Yao et al. [194] constructed an infinite family of strong tournaments with
exactly one out-pancyclic vertex.

Conjecture 2.14.9 ([194]) Every k-strong tournament has at least k out-
pancyclic vertices.

When ri ≥ k, i ∈ [3] the tournament C3[TTr1 , TTr2 , TTr3 ] is k-strong
and has exactly 3 out-pancyclic vertices, namely the vertices with out-degree
0 in each of the three transitive tournaments [195]. Yeo conjectured that
every 2-strong tournament contains three out-pancyclic vertices and this was
confirmed by Guo, Guo, Li, Li and Zhao.

Theorem 2.14.10 ([100, 101]) Every strong tournament T with δ+(T ) ≥ 2
contains at least three out-pancyclic vertices and this is the best possible.

See [108, 195] for results and conjectures by Havet and Yeo on the number
of pancyclic arcs in tournaments as well as the number of pancyclic arcs
contained in the same Hamiltonian cycle.

2.14.2 Critically k-Strong Tournaments

A digraph is critically k-strong if D is k-strong but κ(D − v) = k − 1 for
all v ∈ V . When k = 1 such digraphs are also called critically strong. The
structure of critically strong digraphs is surprisingly complicated, see the
paper [139] by Mader. By Corollary 2.2.10 the only critically strong semi-
complete digraph is the 3-cycle. For larger connectivities Thomassen gave a
construction which shows that the situation is quite different.

Theorem 2.14.11 (Thomassen [22] Section 5.7) For every k ≥ 3, there
are infinitely many critically k-strong tournaments.
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See [22, Figure 5.9] for an infinite family of critically 3-strong tourna-
ments. Let us call a tournament T minimally k-strong if T is k-strong but
no proper subtournament of T is k-strong. We saw above that there are arbi-
trarily large critically-k-strong tournaments. Lichiardopol conjectured [133]
that this is not the case for minimally k-strong tournaments.

Conjecture 2.14.12 ([133]) For every integer k ≥ 1 there exists a func-
tion f(k) such that every minimally k-strong tournament has atmost f(k)
vertices.

2.14.3 Subdivisions and Linkages

A famous conjecture due to Lovász (see e.g. [182, page 262]) states that for
every positive integer k there exists an integer r(k) such that for every pair
of vertices x, y in a r(k)-connected graph G we can find an induced (x, y)-
path P such that G − V (P ) is k-connected. Thomassen proved the following
tournament version of Lovász’s conjecture.

Theorem 2.14.13 ([179]) Let k be a positive integer and let T be a (k + 4)-
strong tournament. Then for every pair of vertices x, y and every shortest
(x, y)-path P the tournament T − V (P ) is k-strong.

Kim, Kühn and Osthus generalized this as follows. Theorem 2.14.13 is
obtained by taking d = 2 and m = 1.

Theorem 2.14.14 ([121]) Let k, d,m be positive integers. Suppose that T is
a (k + m(d + 2))-strong tournament, that X is a set of d vertices of T , that
H is a digraph on d vertices and m arcs and that φ is a bijection from V (H)
to X. Then T contains a subdivision H∗ of H such that

(i) for each h ∈ V (H), the branch vertex of H∗ corresponding to h is φ(h),
(ii) T − V (H∗) is k-strong,
(iii) for every arc a of H, the path Pa of H∗ is minimal.
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75. P. Erdős. Graph theory and probability. Can. J. Math., 11:34–38, 1959.
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151. V. Petrović. Antidirected Hamiltonian circuits in tournaments. In Graph the-
ory (Novi Sad, 1983), pages 259–269. Univ. Novi Sad, Novi Sad, 1984.

152. M. Pilipczuk. Computing cutwidth and pathwidth of semi-complete digraphs
via degree orderings. In STACS 2013: 30th International Symposium on The-
oretical Aspects of Computer Science, pages 197–208, 2013.

153. M. Pilipczuk. Computing cutwidth and pathwidth of semi-complete digraphs.
In Encyclopedia of Algorithms, pages 412–415. Springer Verlag, 2016.

154. M. Pilipczuk. Tournaments and optimality. PhD thesis, University of Bergen,
Normay, 2013.

155. A. Pokrovskiy. Edge disjoint Hamilton cycles in highly connected tournaments.
Intern. Math. Research Notes, 2015:19 pp, 2015.

156. A. Pokrovskiy. Highly linked tournaments. J. Combin. Theory Ser B, 115:339–
347, 2015.

157. V. Raman and S. Saurabh. Parameterized complexity of feedback set problems
and their duals in tournaments. Theor. Comput. Sci., 351:446–458, 2006.
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