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12.1 Introduction

Graph orientation, which provides a link between graphs and digraphs, is an
actively studied area in the theory of graphs and digraphs. One of the funda-
mental problems asks whether a given graph admits an orientation that sat-
isfies a prescribed property and to find such an orientation if it exists. A cele-
brated theorem of Robbins [34] which answers a question of this type states
that a graph has a strong orientation if and only if it is 2-edge-connected
(i.e., has no bridge). It is easy to check whether a graph is 2-edge-connected
and to obtain, using the depth-first search algorithm, a strong orientation of
a 2-edge-connected graph, cf. [35].

Which graphs have orientations in which the longest directed path has at
most k vertices? Answering this question, Gallai, Roy and Vitaver [13, 37, 47]
proved that a graph has such an orientation if and only if it is k-colourable.
The theorem nicely links orientations and colourings of graphs but it provides
little help in finding such orientations. This is due to the fact that the k-
colouring problem is NP-complete for each k ≥ 3, cf. [15].

Given a graph G, an orientation of G is a digraph D obtained from G by
replacing every edge uv of G with an arc (i.e., a directed edge that is either
u → v or v → u). Since graphs considered in this chapter are all simple (i.e.,
having no loops or multiple edges), the digraphs resulting from orientations
are oriented graphs. Let Π be a property of oriented graphs. We say that
a graph G is Π-orientable if it admits an orientation that has the property
Π. For a fixed property Π the Π-orientation problem is as follows.

Π-orientation problem
Input: A graph G.
Find: A Π-orientation of G or certify that G is not Π-orientable.
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For instance, an oriented graph D is transitive if for any three vertices
u, v, w, u → v and v → w imply u → w in D. Thus a graph is transitively
orientable if it admits an orientation that is a transitive oriented graph.
The transitive orientation problem asks whether a graph is transitively
orientable and to find a transitive orientation of the graph if it exists.

Transitively orientable graphs are also known as comparability graphs,
cf. [18]. Naturally connected to partially ordered sets, comparability graphs
are perfect (in Berge’s sense) and have been extensively studied, cf. [14, 16–
19, 33]. A classical result of Gallai [14] characterizes comparability graphs
by forbidden subgraphs (cf. [30] for the English translation). Gallai’s charac-
terization however does not immediately imply a polynomial time algorithm
for recognizing comparability graphs or finding transitive orientations. But
he proved that a graph is a comparability graph if and only if its knotting
graph (cf. [14]) is bipartite, and he also gave a procedure for constructing
knotting graphs which runs in polynomial time. It follows that comparability
graphs can be recognized in polynomial time. Polynomial time algorithms
for finding transitive orientations of comparability graphs have been given by
Ghouila-Houri [16], Habib, McConnel Paul and Viennot [21], McConnell and
Spinrad [32], and Pnueli, Lempel and Even [33].

In [22] Hell and Huang devised a very simple algorithm for determining
whether a graph G is a comparability graph and, if it is, finding a transitive
orientation of it. The algorithm first constructs the auxiliary graph G+ of
the input graph G. The auxiliary graph G+ is used to test whether G is a
comparability graph and to find, whenever possible, a transitive orientation
of G. To test whether G is a comparability graph, the algorithm proceeds
to find a 2-colouring of G+ using a lexicographic scheme. If the 2-colouring
scheme fails, G is not a comparability graph. Otherwise a 2-colouring of G+ is
obtained and the algorithm transforms the 2-colouring of G+ into a transitive
orientation of G. The 2-colourability of G+ alone is sufficient for G to be a
comparability graph. Using the lexicographic scheme to find a 2-colouring of
G+ is to guarantee that the orientation of G transformed from the 2-colouring
is transitive. The time complexity of this algorithm is O(mΔ) where m and
Δ are the number of edges and the maximum degree of the input graph.

The technique described above for recognizing comparability graphs and
obtaining transitive orientations is called the lexicographic orientation
method. The lexicographic orientation method has also been applied for
recognizing several other classes of graphs and finding desired orientations,
cf. [22]. An oriented graph D is called a local tournament (respectively,
locally transitive local tournament) if for every vertex v, the
in-neighbourhood and the out-neighbourhood of v each induces a tourna-
ment (respectively, transitive tournament) in D, cf. [26]. Local tournaments
and locally transitive local tournaments naturally generalize tournaments and
transitive tournaments, respectively, cf. [1]. Despite the fact that the class of
local tournaments properly contains the class of locally transitive local tour-
naments, it is proved by Hell and Huang [22] that they share the same class



12. Lexicographic Orientation Algorithms 577

of underlying graphs, that is, a graph is local tournament orientable if and
only if it is local transitive tournament orientable (see Corollary 12.2.7).

A graph G is called a circular arc graph if it is the intersection graph
of a family of circular arcs Iv, v ∈ V (G), on a circle (i.e., two vertices u, v
are adjacent in G if and only if Iu, Iv intersect). The family Iv, v ∈ V (G), is
called a circular arc representation of G. Circular arc graphs have also
been extensively studied by McConnell [31], Spinrad [39], Trotter and Moore
[42], and Tucker [43–46].

Circular arc graphs generalize interval graphs which are the intersec-
tion graphs of intervals on the real line. A circular arc graph (respectively,
an interval graph) is called proper if the family of circular arcs (respec-
tively, intervals) can be chosen so that none of them is contained in another.
Proper circular arc graphs and proper interval graphs are closely related to
local tournaments. In fact, as proved by Skrien [38], a connected graph is
local tournament orientable if and only if it is a proper circular arc graph
(see Corollary 12.2.7). It is proved in [22, 26] that a graph is acyclic lo-
cal tournament orientable if and only if it is a proper interval graph (see
Corollary 12.2.11). Locally transitive local tournament (respectively, acyclic
local tournament) orientations are useful in constructing proper circular arc
(respectively, proper interval) representations of their underlying graphs, cf.
[9]. Thus the lexicographic orientation method simultaneously solves the
recognition and the representation problems for proper circular arc graphs
and for proper interval graphs.

Let G be a bipartite graph with bipartition (X,Y ). Then G is called an
interval containment bigraph if there is a family of intervals Iv, v ∈ X∪Y
such that for all x ∈ X and y ∈ Y , xy is an edge of G if and only if Ix ⊃ Iy.
The family of intervals will be referred to as an interval containment rep-
resentation of G. Various characterizations of interval containment bigraphs
have been obtained by Feder, Hell and Huang [10], Hell and Huang [23],
Huang [25], and Spinrad [39], and Trotter and Moore [42]. Interval contain-
ment bigraphs are closely related to circular arc graphs. In fact, the comple-
ments of interval containment bigraphs are precisely the circular arc graphs
of clique covering number two. The lexicographic orientation method can
also be used for recognizing interval containment bigraphs and constructing
interval containment representations whenever possible.

The lexicographic orientation method has also been applied by Bang-
Jensen, Huang and Zhu in [4] to solve some orientation completion problems.
A partially oriented graph is a mixed graph which may contain both edges
and arcs. We use Q = (V,E∪A) to denote a partially oriented graph where E
consists of edges and A consists of arcs. An orientation completion of Q is
an oriented graph obtained from Q by replacing every edge in E with an arc.
For a fixed property Π of oriented graphs, the Π-orientation completion
problem is as follows.
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Π-orientation completion problem
Input: A partially oriented graph Q = (V,E ∪ A).
Find: An orientation of the edges in E to a set of arcs A′ so that
Q = (V,A ∪ A′) has property Π or certify that no such orientation is
possible.

Clearly, the Π-orientation completion problem generalizes the Π-
orientation problem. Robbins’ theorem as stated at the beginning of this
chapter provides a polynomial time solution to the strong orientation
problem. A result of Boesch and Tindell [5] implies that a partially oriented
graph can be completed to a strong oriented graph if and only if it has no
bridge and no directed cut. Either a bridge or a directed cut in a partially
oriented graph (if any exists) can be detected in polynomial time. Hence the
strong orientation completion problem is also polynomial time solv-
able. The orientation completion problem for local tournaments is polynomial
time solvable (see Theorem 12.3.4). By slightly modifying the lexicographic
orientation method for the orientation problem for acyclic local tournaments,
Bang-Jensen, Huang and Zhu [4] proved that the corresponding orientation
completion problem is polynomial time solvable (see Theorem 12.3.5). In
contrast they [4] showed that the orientation completion problem for locally
transitive local tournaments is NP-complete (see Theorem 12.3.14).

Orientation completion problems generalize certain representation exten-
sion problems. For example, the representation extension problem for
proper interval graphs asks whether it is possible to obtain a proper interval
representation of a graph G that includes a proper interval representation of
an induced subgraph of G. This problem has been studied by Klavik, Kra-
tochvil, Otachi, Rutter, Saitoh, Saumell and Vystocil in [28]. As mentioned
above, a proper interval representation of a proper interval graph corresponds
to an acyclic local tournament orientation of the graph. Thus the represen-
tation extension problem for proper interval graphs is just the orientation
completion problem for acyclic local tournaments where a partial orienta-
tion corresponds to an interval representation of an induced subgraph. The
representation extension problem for proper interval graphs was shown to be
polynomial time solvable, cf. [28]. The lexicographic orientation method can
be applied to show that the orientation completion problem for acyclic local
tournaments is polynomial time solvable.

The key notion used in the lexicographic method is the concept of lexico-
graphic order. Suppose (s1, s2, . . . , sk), (t1, t2, . . . , tk) are two ordered k-tuples
over the set {1, 2, . . . , n}. We say that (s1, s2, . . . , sk) is lexicographically
smaller than (t1, t2, . . . , tk), provided s1 < t1 or there exists an f with
1 < f ≤ k such that sf < tf and si = ti for all i < f . If S and T are two
sets of k elements, we say that S is lexicographically smaller than T pro-
vided (s1, s2, . . . , sk) is lexicographically smaller than (t1, t2, . . . , tk), where
s1, s2, . . . , sk and t1, t2, . . . , tk are the elements of S and T listed in increasing
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order. Suppose S′ is a subset of S and T ′ is lexicographically smaller than
S′. Then it is easy to see that T = (S − S′) ∪ T ′ is lexicographically smaller
than S. Note that lexicographic orders are linear, and hence any subset of a
lexicographically ordered set has a smallest element.

12.2 Algorithms for Π-Orientations

We begin by formalizing the generic idea of the lexicographic orientation
algorithm for deciding whether a graph is Π-orientable and finding (if one
exists) such a Π-orientation of G. Let G be the input graph. Define the
auxiliary graph G+ of G as follows: The vertex set of G+ consists of all
ordered pairs (u, v) such that uv is an edge of G. Note that each each edge uv
of G gives rise to two vertices (u, v), (v, u) and these two vertices are always
adjacent in G+. Depending on the property Π, G+ may contain additional
edges, which will be defined for each problemin question.

Algorithm 1 Generic lexicographic orientation
Input: A graph G with vertices 1, 2, . . . , n.
Output: A Π-orientation of G if one exists.

Construct the auxiliary graph G+.
While there exist uncoloured vertices do

Colour by A the lexicographically smallest uncoloured vertex (u, v)
Use breadth first search to 2-colour (if possible) the connected
component of G+ which contains (u, v).

If some component could not be 2-coloured then report that G is not
Π-orientable.

For every edge uv ∈ E orient it as u→v if (u, v) obtained colour A and otherwise
orient it as v→u.

The purpose of Algorithm 1 is two-fold. First, it determines whether the
input graph G is Π-orientable by verifying the 2-colourability of the auxil-
iary graph G+. Second, it constructs a Π-orientation of G in the case when
G+ is 2-colourable. The correctness of Algorithm 1 is validated by the two
statements described in the following proposition.

Proposition 12.2.1 Algorithm 1 is correct if and only if the following two
statements hold:

• If G is Π-orientable, then G+ is bipartite.
• If G+ is bipartite, then the orientation of G obtained by Algorithm 1 has
the property Π. �	

As a simple example suppose that Π is the property of being acyclic and
that G+ is the auxiliary graph of G as defined above, which contains no
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other edges except those between (u, v) and (v, u) for edges uv of G. Since
every graph is acyclically orientable and G+ is bipartite for every graph G,
the first statement holds vacuously. According to Step 2, vertex (u, v) of G+

is coloured by A if and only if u < v. It follows that the orientation of G
obtained by the algorithm is acyclic and hence the second statement holds.

We will show that the above generic lexicographic orientation algorithm
can be modified to solve the Π-orientation problem when Π is the property of
being a transitive digraph, respectively being a locally transitive local tourna-
ment, respectively being an acyclic local tournament. The only modifications
involved are on the definition of the auxiliary graph G+. We will also show
that it can be applied to recognize interval containment bigraphs and obtain
the desired orientations of their complements.

12.2.1 Comparability Graphs

For the input graph G, we modify the definition of the auxiliary graph G+ as
follows: The vertex set of G+ is the same as above (i.e., consisting of ordered
pairs (u, v), (v, u) for edges uv of G). In G+, every vertex (u, v) is adjacent
to (v, u), to any (w, u) such that v and w are not adjacent in G, and to any
(v, w) such that u and w are not adjacent in G. Figure 12.1 shows an example
of a graph G and its auxiliary graph G+.
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Figure 12.1 A graph G and its auxiliary graph G+.

Suppose that G+ is bipartite. Colour G+ with two colours A,B and orient
each edge uv of G as u→v whenever (u, v) is coloured A. Then for any edges
uv, vw with uw being a non-edge of G, (u, v) and (v, w) are adjacent and
(w, v) and (v, u) are adjacent in G+. Thus (u, v) and (v, w) are coloured by
opposite colours and (w, v) and (v, u) are coloured by opposite colours in
any 2-colouring of G+. Consequently, we have either u → v and w → v or
v → u and v → w. Therefore we obtain an orientation of G which satisfies
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the property that u→v and v→w imply that there is an arc between u and
w. An oriented graph which has this property is called quasi-transitive, cf.
[3] and Chapter 8. On the other hand, any quasi-transitive orientation of G
corresponds to a colour class of a 2-colouring of G+.

Every transitive oriented graph is quasi-transitive and thus every transi-
tively orientable graph is also quasi-transitively orientable. It was first ob-
served by Ghouila-Houri [16] that every quasi-transitively orientable graph
is also transitively orientable. Hence comparability graphs are exactly the
quasi-transitively orientable graphs. In particular, if G+ is not bipartite then
G is not a comparability graph and hence not transitively orientable. The
result of Ghouila-Houri will follow as a byproduct from the lexicographic
orientation algorithm, as stated below.

Theorem 12.2.2 ([22]) Suppose that G is a comparability graph and that D
is an orientation of G obtained by the lexicographic orientation algorithm.
Then D is a transitive orientation of G.

Proof: Since G is a comparability graph, G+ is bipartite. For each vertex
(u, v) of G+, let C(u, v) be the set of all vertices whose distance from (u, v) in
G+ is even. It follows from the definition of G+ that if (x, y), (x′, y′) ∈ C(u, v)
then there exist

(x0, y0), (x1, y0), (x1, y1), (x2, y1), . . . , (xk, yk) ∈ C(u, v)

such that (x0, y0) = (x, y) and (xk, yk) = (x′, y′) and for each i = 0, 1, . . . , k−
1, xixi+1 /∈ E(G) and yiyi+1 /∈ E(G). The following claim, known as “The
Triangle Lemma, can be found in the book [18] by Golumbic.

Claim. Let uvwu be a 3-cycle in G. Suppose that C(u, v) 
= C(w, v) and
C(u, v) 
= C(u,w). Then for any (u′, v′) ∈ C(u, v), we must have (w, v′) ∈
C(w, v) and (u′, w) ∈ C(u,w).

Proof of Claim. Since (u′, v′) ∈ C(u, v), there exist

(u0, v0), (u1, v0), (u1, v1), (u2, v1), . . . , (u�, v�) ∈ C(u, v)

such that (u0, v0) = (u, v) and (u�, v�) = (u′, v′) and for each = 0, 1, . . . , �−1,
uiui+1 /∈ E(G) and vivi+1 /∈ E(G). We prove by induction on � that
(w, v�) ∈ C(w, v) and (u�, w) ∈ C(u,w). Assume that (w, v�−1) ∈ C(w, v)
and (u�−1, w) ∈ C(u,w). Since C(u, v) 
= C(w, v) = C(w, v�−1), wu� ∈ E(G).
Since u�−1u� /∈ E(G), (u�, w) ∈ C(u�−1, w) = C(u,w). Similarly, since
C(u�, v�) 
= C(u�, w), wv ∈ E(G) and since v�−1v� /∈ E(G), (w, v�) ∈
C(w, v�−1) = C(w, v). �	

Suppose to the contrary that D is not transitive. Then there is a triangle
uvwu such that u → v, v → w and w → u in D. Assume that {u, v, w}
is the lexicographically smallest amongst all such triangles. Without loss of
generality assume that u > v and therefore (u, v) was not the first vertex
coloured A in its component of G+. It follows that there exists (u′, v′) ∈
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C(u, v) such that {u′, v′} is lexicographically smaller than {u, v}. Since u → v,
v → w and w → u, C(u, v) 
= C((w, v) and C(u, v) 
= C(u,w). Hence by the
claim above, (w, v′) ∈ C(w, v) and (u′, w) ∈ C(u,w). Since u → v, v → w
and w → u in D, we must also have u′ → v′, v′ → w and w → u′ in D. But
{u′, v′, w} is lexicographically smaller than {u, v, w}, which contradicts the
choice of {u, v, w}. �	

For k ≥ 1, a (2k +1)-asteroid in a graph is a sequence of 2k +1 vertices

u0, u1, . . . , u2k

together with 2k + 1 paths

P0, P2, . . . , P2k

where Pi is a (ui, ui+1)-path such that ui has no neighbours in Pi+k (sub-
scripts are modulo 2k+1) for each i = 0, 1, . . . , 2k. A 3-asteroid is also known
as an asteroidal triple, which is an important concept for characterizing in-
terval graphs, cf. [29]. It is easy to verify that an odd cycle in G+ corresponds
to a (2k + 1)-asteroid for some k in G.

Corollary 12.2.3 The following statements are equivalent for a graph G.

1. G is a comparability graph;
2. G is transitively orientable;
3. G is quasi-transitively orientable;
4. G+ is bipartite;
5. G contains no asteroid. �	

12.2.2 Proper Circular Arc Graphs

A round ordering of a digraph D is a cyclic ordering O = v1, v2, . . . , vn, v1
of the vertices of D such that for each vertex vi we have N+(vi) =
{vi+1, . . . , vd+(vi)+i} and N−(vi) = {vi−d−(vi), . . . , vi−1} where indices are
modulo n. A digraph which has a round ordering is called round. Round
digraphs were characterized by Huang in [27]. It is easy to see that if an ori-
ented graph has a round ordering then it is locally transitive. The following
theorem, due to Bang-Jensen, asserts that the converse is also true when D
is connected.

Theorem 12.2.4 ([1]) A connected oriented graph D has a round ordering
O = v1, v2, . . . , vn, v1 of its vertices if and only if D is a locally transitive
local tournament. Furthermore, there is a polynomial algorithm for deciding
whether a given oriented graph is round and finding a round ordering if one
exists. �	
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Suppose that G is a proper circular arc graph and that Iv, v ∈ V (G), is
a proper circular arc representation of G. We may assume without loss of
generality that if two circular arcs Iu, Iv intersect then either Iu contains the
counterclockwise endpoint of Iv or Iv contains the counterclockwise endpoint
of Iu (but not both). Orient G in such a way that each edge uv of G is
oriented as u→v if Iu contains the counterclockwise endpoint of Iv. It is
easy to see that this is a locally transitive local tournament orientation of
G. A round ordering of the orientation of G corresponds to the clockwise
ordering of clockwise endpoints of the circular arcs in the proper circular
arc representation of G. Conversely, suppose that D is a connected locally
transitive local tournament. Then D has a round ordering by Theorem 12.2.4
and a family of inclusion-free circular arcs Iv, v ∈ V (D), can be obtained such
that u→v in D if and only if Iu contains the counterclockwise endpoint of Iv,
cf. [22, 26]. Thus the underlying graph of D is a proper circular arc graph.

Theorem 12.2.5 ([22, 26]) A connected graph is a proper circular arc graph
if and only if it is orientable as a locally transitive local tournament. �	

Every locally transitive local tournament is a local tournament. Skrien [38]
proved that a connected graph is a proper circular arc graph if and only if it
is local tournament orientable. Clearly, a graph (not necessarily connected) is
local tournament (respectively, locally transitive local tournament) orientable
if and only if so is every connected component of the graph. Therefore a graph
G is orientable as a locally transitive local tournament if and only if it is
orientable as a local tournament. With this in mind we define the edge set of
the auxiliary graph G+ of G as follows: each vertex (u, v) is adjacent to (v, u),
to any vertex (u,w) such that v and w are not adjacent in G, and to any vertex
(w, v) such that u and w are not adjacent in G. As in the previous subsection,
we see that any local tournament orientation of G gives rise to a 2-colouring
of G+ and in case when G+ is 2-colourable the vertices of one colour in any
2-colouring of G+ induce a local tournament orientation of G. Not every 2-
colouring of G+ induces a locally transitive local tournament orientation of
G. However, the 2-colouring of G+ produced by the lexicographic orientation
algorithm gives a locally transitive local tournament orientation of G.

Theorem 12.2.6 ([22]) Suppose that G is a proper circular arc graph and
that D is an orientation of G obtained by the lexicographic orientation algo-
rithm. Then D is a local transitive tournament orientation of G.

Proof: Since G is a proper circular arc graph, G+ is bipartite and hence D is
a local tournament. Suppose to the contrary that D is not a locally transitive
local tournament. Then there exists a set {u, v, w, z} of vertices of D such
that u, v, w induce a directed 3-cycle u → v → w → u, which either domi-
nates z or is dominated by z. Assume that {u, v, w, z} is the lexicographically
smallest set with this property. Assume further that z dominates {u, v, w}.
(The situation is symmetric when z is dominated by {u, v, w}.) Without loss
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of generality assume that u > v and therefore (u, v) was not the first vertex
coloured A in its component of G+.

Let C(u, v) (respectively, C(v, u)) be the set of all vertices in G+ whose
distance from (u, v) in G+ is even (respectively, odd), and let (u′, v′) ∈ C(u, v)
be the first vertex coloured A in the component of (u, v). Then {u′, v′} is
lexicographically smaller than {u, v} and hence {u′, v′, w, z} is lexicograph-
ically smaller than {u, v, w, z}. We show that the subdigraph of D induced
by {u′, v′, w, z} also contains a directed 3-cycle which either dominates the
fourth vertex or is dominated by the fourth vertex. This contradicts the choice
of {u, v, w, z} and therefore D is a locally transitive local tournament.

Since (u′, v′) ∈ C(u, v), there exist

(u0, v0), (u1, v1), . . . , (u�, v�)

such that

• (u0, v0) = (u, v);
• (ui, vi) ∈ C(u, v) when i is even and (ui, vi) ∈ C(v, u) when i is odd;
• (u�, v�) = (u′, v′) when � is even and (u�, v�) = (v′, u′) when � is odd;
• for each i = 0, 1, . . . , �−1, either ui = ui+1 and vivi+1 /∈ E(G) or vi = vi+1

and uiui+1 /∈ E(G).

Let Ui = {u0, u1, . . . , ui} and Vi = {v0, v1, . . . , vi}. Note that not all
elements in Ui (respectively, Vi) are distinct. We use ||Ui|| (respectively ||Vi||)
to denote the number of distinct elements in Ui (respectively, Vi). Observe
that i and ||Ui|| + ||Vi|| have the same parity for each i. We claim that in D
the following property holds:

• when ||Ui|| is odd, {w, z} → ui → v;
• when ||Ui|| is even, v → ui → {w, z};
• when ||Vi|| is odd, {u, z} → vi → w;
• when ||Vi|| is even, w → vi → {u, z}.

When i = 0, we have ||U0|| = ||V0|| = 1 and the property holds. Assume
that i ≥ 1 and the property holds for i − 1. We consider only the case when
ui−1 = ui and vi−1vi /∈ E(G). (The other case, vi−1 = vi and ui−1ui /∈ E(G),
is symmetric.)

Suppose that i is odd. Then vi → ui = ui−1 → vi−1. Since i is odd,
||Ui|| and ||Vi|| have different parity. Suppose first that ||Ui|| is odd. Then
||Vi−1|| is also odd. By the inductive hypothesis, {w, z} → ui−1 = ui → v
and {u, z} → vi−1 → w. Hence vi, w, z are in-neighbours of ui. Since D is a
local tournament, vi is adjacent to both w and z. Since z → vi−1 → w, we
must have w → vi → z. Hence u, vi are both out-neighbours of w and must
be adjacent. Since u → vi−1 and vi−1vi /∈ E(G), we have vi → u. Therefore
w → vi → {u, z}. Suppose that ||Ui|| is even. Then ||Vi−1|| is also even. By the
inductive hypothesis, v → ui−1 = ui → {w, z} and w → vi−1 → {u, z}. Since
v, vi are both in-neighbours of ui, v, vi are adjacent. Either v → vi or vi → v
in D. Assume that v → vi. (The case when vi → v is again symmetric.).
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Then w, vi are out-neighbours of v and hence are adjacent. Since w → vi−1

and vi−1vi /∈ E(G), vi → w; thus both vi and z are in-neighbours of w. Since
vi−1 → z and vi−1vi /∈ E(G), z → vi. Hence u, vi are both out-neighbours of
z and must be adjacent. Since vi−1 → u and vi−1vi /∈ E(G), we have u → vi.
Therefore {u, z} → vi → w.

Suppose that i is even. Then vi−1 → ui−1 = ui → vi. Since i is even, ||Ui||
and ||Vi|| have the same parity. Suppose first that ||Ui|| is odd. Then ||Vi−1||
is even. By the induction hypothesis, {w, z} → ui−1 = ui → v and w →
vi−1 → {u, z}. Since v, vi are both out-neighbours of ui, v, vi are adjacent.
Either v → vi or vi → v in D. Assume that v → vi. (The case when vi → v is
again symmetric.) Then w, vi are out-neighbours of v and hence are adjacent.
Since w → vi−1 and vi−1vi /∈ E(G), vi → w; thus both vi and z are in-
neighbours of w. Since vi−1 → z and vi−1vi /∈ E(G), we have z → vi. Hence
u, vi are both out-neighbours of z and must be adjacent. Since vi−1 → u
and vi−1vi /∈ E(G), we have u → vi. Therefore {u, z} → vi → w. Suppose
now that ||Ui|| is even. Then ||Vi−1|| is odd. By the inductive hypothesis,
v → ui−1 = ui → {w, z} and {u, z} → vi−1 → w. Thus vi, w, z are out-
neighbours of ui. So vi is adjacent to both w and z. Since z → vi−1 → w and
vi−1vi /∈ E(G), w → vi → z. Now u and vi are both out-neighbours of w and
must be adjacent. Since u → vi−1 and vi−1vi /∈ E(G), we must have vi → u.
Therefore w → vi → {u, z}.

If � is even, then (u�, v�) = (u′, v′), and ||U�|| and ||V�|| have the same
parity. When ||U�|| and ||V�|| are both odd, {u′, v′, w} induces a directed cycle
and is dominated by z; when ||U�|| and ||V�|| are both even, {w, v′, z} induces
a directed cycle and is dominated by u′. If � is odd, then (u�, v�) = (v′, u′),
and ||U�|| and ||V�|| have different parity. When ||U�|| is odd and ||V�|| is even,
{w, v′, z} induces a directed cycle and dominates u′; when ||U�|| is even and
||V�|| is odd, {u′, v′, z} induces a directed cycle and dominates w. �	

Combining Theorems 12.2.5 and 12.2.6 and the remarks made between
the two theorems we have the following:

Corollary 12.2.7 The following statements are equivalent for a connected
graph G.

1. G is a proper circular arc graph;
2. G is local tournament orientable;
3. G is locally transitive local tournament orientable;
4. G+ is bipartite. �	

Through a careful analysis of the structure of proper circular arc graphs,
a full description of all local tournament orientations of a proper circular
arc graph was obtained in [24]. Let G be a graph and uv, u′v′ be two edges
of G. We say that uv, u′v′ are implicated if (u, v) and (u′, v′) are in the
same connected component of G+. The implication relation is an equivalence
relation on the set of edges of G and each equivalence class is called an
implication class of G. Call an edge uv in G balanced if N [u] = N [v]
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and unbalanced otherwise. It follows from the definition that an edge is
balanced if and only if it forms an implication class by itself. In general, two
edges of G are implicated with each other if and only if the orientation of
one uniquely determines the orientation of the other in any local tournament
orientation of G.

Theorem 12.2.8 ([24]) Let G be a connected proper circular arc graph.
Suppose that C1, C2, . . . , Ck are the connected components of G. Then all
unbalanced edges of G within a fixed Ci form an implication class and all
unbalanced edges between two fixed Ci and Cj (i 
= j) form an implication
class. Moreover, if G is not bipartite, then k = 1 and all unbalanced edges of
G form an implication class. �	

12.2.3 Proper Interval Graphs

Proper interval graphs are proper circular arc graphs and hence are locally
transitive local tournament orientable. In fact they admit locally transitive
local tournament orientations that contain no directed cycles (or equivalently,
acyclic local tournament orientations). Indeed, suppose that G is a proper
interval graph and that Iv, v ∈ V (G), is a proper interval representation
of G. Orient G in such a way that u→v if and only if Iu contains the left
endpoint of Iv. This is an acyclic local tournament orientation of G. On the
other hand, an acyclic local tournament orientation of G can be efficiently
transformed into a proper interval representation of G, cf. [26] and [22]. So
acyclic local tournament orientations of proper interval graphs are in a sense
an orientation formulation of their proper interval representations.

When the input graph G is a proper interval graph (and hence a proper
circular arc graph), the lexicographic orientation algorithm using the same
auxiliary graph G+ as defined in Subsection 12.2.2 will produce a locally
transitive local tournament orientation D of G according to Theorem 12.2.6.
But this D may not be acyclic. To make sure that D is also acyclic, we use
a perfect elimination ordering of G (that is, a vertex ordering 1, 2, . . . , n
such that for each i the set of neighbours j of i with j > i induce a com-
plete subgraph of G). It is well-known that G, which is a chordal graph, must
have such an ordering, which can be obtained in time O(m + n) using the
algorithm called Lexicographic Breadth First Search (LBFS) devised
by Rose, Tarjan and Lueker in [36]. We summarize the lexicographic orienta-
tion algorithm for finding an acyclic local tournament orientation of a proper
intervalgraph.

The proof of correctness of the algorithm makes use of a full description
of implication classes of a proper interval graph obtained in [24]. A vertex in
a graph G is called universal if it is adjacent to every other vertex in G.
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Algorithm 2 Lexicographic acyclic local-tournament-orientation
Input: A graph G.
Output: An acyclic local tournament orientation of G.

Find a perfect elimination ordering 1, 2, . . . , n of G.
If G does not have a perfect elimination ordering then report
that G is not a proper interval graph.

Construct the auxiliary graph G+.
While there exist uncoloured vertices do

Colour by A the lexicographically smallest uncoloured vertex (u, v)
Use breadth first search to 2-colour (if possible) the connected
component of G+ which contains (u, v).
If some component could not be 2-coloured then report that
G is not a proper interval graph.

Orient each edge uv of G as u→v if (u, v) obtained colour A and otherwise
orient it as v→u.
Check whether the resulting oriented graph contains a directed cycle.
If it has a directed cycle then report that G is not a proper interval graph.

Theorem 12.2.9 ([24]) Let G be a connected proper interval graph. Then
one of the following statements holds:

• if G has no universal vertex, then all unbalanced edges of G form an impli-
cation class;

• if G has universal vertices, then all unbalanced edges incident with universal
vertices form an implication class and all other unbalanced edges form an
implication class. �	

Theorem 12.2.10 ([22]) Suppose that G is a proper interval graph. Then the
orientation of G obtained by Corollary 12.2.3 is an acyclic local tournament.

Proof: Assume without loss of generality that G is connected. Suppose first
that G has no universal vertex. Then by Theorem 12.2.9, the vertices of G
can be partitioned into complete subgraphs V1, V2, . . . , Vp and G+ has the
following components: For each pair of vertices u, v in the same Vi, there is a
separate component consisting of adjacent vertices (u, v), (v, u). In addition,
there is one component containing all remaining vertices (u, v) (i.e., u ∈ Vi

and v ∈ Vj with i 
= j). Moreover, in this last component, one colour class
contains all vertices (u, v) with u ∈ Vi, v ∈ Vj and i < j. In this case, the
lexicographic orientation algorithm orients each Vi as a transitive tournament
and the remaining edges uv as u → v either for all u ∈ Vi, v ∈ Vj , i < j or
for all u ∈ Vi, v ∈ Vj , i > j. It is clear that the orientation does not contain
a directed cycle and hence is an acyclic local tournament.

Suppose now that G has universal vertices and that 1, 2, . . . , n is a perfect
elimination ordering of G. Then again by Theorem 12.2.9 the vertices of G
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can be partitioned into complete subgraphs V1, V2, . . . , Vp where Vm with
1 < m < p consists of all universal vertices that are in Vm and V1 ∪ Vp

consists of all simplicial vertices. The components of G+ are as follows: For
each u, v in the same Vi, there is a separate component consisting of adjacent
vertices (u, v), (v, u). There is again one component consisting of all vertices
(u, v) with u ∈ Vi, v ∈ Vj , i 
= j, i 
= m, and j 
= m. One colour class in this
component consists of all (u, v) with u ∈ Vi, v ∈ Vj , i < j. Finally, there is,
for each vertex w ∈ Vm, a component consisting of all vertices (v, w), (w, v)
for all v ∈ Vi with i 
= m. One colour class of this component consists of
(u,w), (w, v) for all u ∈ Vi and v ∈ Vj with 1 ≤ i < m and m < j ≤ p. The
simplicial vertex 1 is in V1 or Vp. The lexicographic orientation algorithm
orients each Vi as a transitive tournament and the remaining edges uv as
u → v either for all u ∈ Vi, v ∈ Vj , i < j or for all u ∈ Vi, v ∈ Vj , i > j. The
orientation is an acyclic local tournament. �	

Corollary 12.2.11 The following statements are equivalent for a graph G.

1. G is a proper interval graph;
2. G is acyclic local tournament orientable. �	

12.2.4 Interval Containment Bigraphs

Let G be a bipartite graph with bipartition (X,Y ). Recall that G is an interval
containment bigraph if there is a family of intervals Iv, v ∈ X ∪ Y , such that
for all x ∈ X and y ∈ Y , xy is an edge of G if and only if Ix ⊃ Iy. The family
of intervals will be refered to as an interval containment representation of G.
See Figure 12.2 for an example of an interval containment bigraph and its
interval containment representation.
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Figure 12.2 An interval containment bigraph and an interval containment repre-
sentation.

Suppose that G is an interval containment bigraph and that the collection
of intervals Iv = [�v, rv], v ∈ X ∪Y , form an interval containment representa-
tion of G. Assume without loss of generality that the ends of the intervals are
all distinct. We orient G as follows: each edge uv of G is oriented as u→v if
�u < �v. Clearly, the orientation is acyclic. We claim that it does not contain
the digraph in Figure 12.3 as an induced subdigraph.
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Figure 12.3 White vertices are in X and black vertices are in Y or the other way
around. The orientation between white vertices or between black vertices is not
specified and may be in either direction.

Indeed, suppose that u→u′ and v→v′ are oriented edges where the four
vertices u, v, v′, u′ induce a 4-cycle vv′u′u in G. By the way of orientation we
must have �u < �u′ and �v < �v′ . If u, v ∈ X and u′, v′ ∈ Y , then ru < r′

u and
rv < rv′ as uu′, vv′ /∈ E(G). Since uv′, vv′ ∈ E(G), we have

�u < �v′ < rv′ < ru and �v < �u′ < ru′ < rv.

Hence we have �v < �v′ < rv′ < ru < ru′ < rv and so Iv ⊃ Iv′ , a contradiction
to the assumption that vv′ /∈ E(G). If u, v ∈ Y and u′, v′ ∈ X, then

�u′ < �v < rv < �u′ and �v′ < �u < ru < rv′ .

Thus we have �v′ < �u < �u′ < �v < �v′ , a contradiction.
Acyclic orientations of the complements of bipartite graphs which do not

contain an induced subdigraph in Figure 12.3 may again be viewed as an
orientation formulation of interval containment representations of interval
containment bigraphs. Thus the recognition and representation problems for
interval containment bigraphs become the following:

Problem 12.2.12 Given a bipartite graph G, does G have an acyclic ori-
entation which does not contain one of the digraphs in Figure 12.3 as an
induced subdigraph?

Define the auxiliary graph G+ of G with bipartition (X,Y ) as follows:
The vertices of G+ are ordered pairs (v, v′), (v′, v) with v ∈ X, v′ ∈ Y and
vv′ /∈ E(G). In G+, each (v, v′) is adjacent to (v′, v) and for each induced 4-
cycle vv′u′u in G, (v, v′) is adjacent to (u, u′) and (v′, v) is adjacent to (u′, u).
The above observation simply asserts that if G is an interval containment
bigraph then G+ is bipartite.

Suppose that the auxiliary graph G+ of G is bipartite. Colour the vertices
of G+ with colours A,B and orient an edge vv′ of G as v′→v if (v, v′) is
coloured A and as v→v′ if (v′, v) is coloured A. This is a partial orientation
of G; all edges between X and Y are oriented but none of edges in X or in Y
is oriented. The definition of G+ implies that any completion of this partial
orientation to an orientation of G will not contain the digraph in Figure 12.3
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as an induced subdigraph. However, there may be no acyclic completion. In
order for the partial orientation of G to have an acyclic completion, particular
2-colourings of G+ are needed.

We will fix a bipartition (X,Y ) of G and use letters without primes for
vertices in X and letters with primes for vertices in Y .

Algorithm 3 Lexicographic restricted acyclic orientation
Input: A bipartite graph G with bipartition (X, Y ) and vertices 1, 2, . . . , n where
vertices of X preceede the vertices of Y .
Output: An acyclic orientation of G that does not contain one of the digraphs in
Figure 12.3 as an induced subdigraph.

Construct the auxiliary graph G+ with respect to (X, Y ).
While there exist uncoloured vertices do

Colour by A the lexicographically smallest uncoloured vertex (α, β)
Use breadth first search to 2-colour (if possible) the component
of G+ which contains (α, β).
If some component could not be 2-coloured then report that

G is not an interval containment bigraph.
Orient the edge vv′ of G as v′→v if (v, v′) is coloured A and as v→v′ otherwise.
Complete the partial orientation obtained in Step 3 to an orientation of G as
follows: orient each edge uv as u→v if N−(u) ∩ Y ⊆ N−(v) ∩ Y and orient each
edge u′v′ as u′→v′ if N+(u′) ∩ X ⊇ N+(v′) ∩ X.

The correctness of the algorithm above is ensured by the following refor-
mulation of a theorem of Hell and Huang [22].

Theorem 12.2.13 Suppose that G is an interval containment bigraph and
that D is an orientation of G obtained by Theorem 12.2.4. Then D is acyclic
and does not contain the digraph in Figure 12.3 as an induced subdigraph.

Proof: We first prove that for any u, v ∈ X, the following properties hold:

• either N−(u) ∩ Y ⊆ N−(v) ∩ Y or N−(u) ∩ Y ⊇ N−(v) ∩ Y ;
• either N+(u) ∩ Y ⊆ N+(v) ∩ Y or N+(u) ∩ Y ⊇ N+(v) ∩ Y .

We prove it by contradiction. So suppose that one of the properties does not
hold for some u, v ∈ X. Let u, v be such vertices with the minimum u + v.
Assume by symmetry that the first property does not hold for u, v, that is,
there are vertices u′, v′ ∈ Y such that

• u′→u and v′→v,
• vu′ is not an edge of G or v→u′, and
• uv′ is not an edge of G or u→v′.

Observe that at least one of vu′, uv′ must be an edge of G; otherwise (u, u′)
and (v, v′) are adjacent vertices of G+ of the same colour A, a contradiction.
Assume without loss of generality that uv′ is an edge of G. Since u→v′, the
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vertex (u, v′) was coloured B. Hence there exists a vertex (w,w′) of colour
A such that wuv′w′ is an induced 4-cycle of G. Since u→v′, w′→w. Now we
have w→w, u′→u and uw′ is not an edge of G. This implies that wu′ is an
edge of G. If w→u′, then the four vertices w, u,w′, u′ can be used in the place
of u, v, u′, v′. On the other hand, if u′→w, then w, v, u′, v′ can be used in the
place of u, v, u′, v′. Therefore we may assume without loss of generality that
for the four vertices u, v, u′, v′, vu′ is not an edge of G. We show that there
exist z, z′ with z < u such that z→u′ and v→z′. This implies that y, z are
two vertices for which one of the above two properties does not hold. This
contradicts the choice of u, v because u + v > z + v.

Since u→v′, (u, v′) was coloured B, which implies that (u, v′) is not the
lexicographically smallest vertex of its component. Let (z, z′) be the lexico-
graphically smallest vertex in the component of (u, v′). Then there are ver-
tices (ui, v

′
i), i = 1, 2, . . . , k, with (u1, v

′
1) = (u, v′), (uk, v′

k) = (z, z′) and each
uiv

′
iv

′
i+1ui+1 is an induced 4-cycle in G. Note that ui→v′

i when i is odd and
v′

i→ui when i is even. In particular, k must be even. We prove by induction
on k that z = uk < u1 = u, z = uk→u′ and v→v′

k = z′. Note that to show
uk < u1 = u it suffices to prove uk 
= u1 = u. When k = 2, clearly u2 
= u1.
As v′

2→u2, v′
1 = v′→v and u2v

′
1 is not an edge of G, vz′ is an edge of G.

Since u′→u1 and neither u1v
′
2 nor vu′ is an edge of G, v→v′

2 = z. Similarly,
as v′

2→u2, u′→u1 and u1v
′
2 is not an edge of G, u2u

′ is an edge of G. Since
v′
1→v and neither u2v

′
1 nor vu′ is an edge of G, u2→u′.

Assume that k > 2 and that, by the induction hypothesis, uk−2→u′ and
v→v′

k−2. If we can show that v′
k−1→v and u′→uk−1, then we can argue

exactly as in the case of k = 2, to conclude that both v→v′
k and uk→u′ and

uk 
= u. Thus we can again let z = uk, z′ = v′
k to complete the proof. Since

both uk−2→u′ and uk−1→v′
k−1 and uk−2v

′
k−1 is not an edge of G, uk−1u

′

is an edge of G. We must have u′→uk−1 as v→v′
k−2 and uk−1vv′

k−2u
′ is an

induced 4-cycle in G. Similarly, since v→v′
k−2, uk−1→v′

k−1 and uk−1v
′
k−2 is

not an edge of G, vv′
k−1 is an edge of G. We must have v′

k−1→v as uk−2→u′

and uk−2u
′v′

k−1v is an induced 4-cycle in G.
This justifies that the execution of Step 4 of Theorem 12.2.4 is possible.

It is easy to verify now that the orientation of G obtained by Theorem 12.2.4
is acyclic and does not contain the digraph in Figure 12.3 as an induced
subdigraph. �	

Corollary 12.2.14 The following statements are equivalent for a bipartite
graph G.

1. G is an interval containment bigraph;
2. G is a circular arc graph of clique covering number two;
3. G has an acyclic orientation that does not contain as an induced subdi-

graph the digraph in Figure 12.3;
4. G+ is bipartite. �	
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12.3 Orientation Completion Problems

It is easy to see that a partially oriented graph can be completed to an acyclic
oriented graph if and only if it does not contain a directed cycle. Algorithm
1 can be adapted to obtain an acyclic orientation completion of the input
partially oriented graph that contains no directed cycle.

We have seen in Section 12.2 that the orientation problem is polynomial
time solvable for each of the five classes: quasi-transitive oriented graphs,
transitive oriented graphs, local tournaments, locally transitive local tour-
naments, and acyclic local tournaments. The situation changes for the ori-
entation completion problem. We will show that the orientation completion
problem is NP-complete for locally transitive local tournaments, while it re-
mains polynomial time solvable for the other classes.

12.3.1 Quasi-transitive and Transitive Orientation Completions

Let Q = (V,E ∪ A) be a partially oriented graph. We use G = UG(Q) to
denote the underlying graph of Q and G+ to denote the auxiliary graph of G
as defined in Subsection 12.2.1. That is, the vertex set of G+ consists of all
ordered pairs (u, v), (v, u) for edges uv ∈ E(G) and in G+ each vertex (u, v)
is adjacent to (v, u), to any vertex (v, w) such that u and w are not adjacent
in G, and to any vertex (w, u) such that v and w are not adjacent in G. Thus
the arc set A of Q corresponds to a subset S of the vertex set of G+. An
orientation completion of Q to a quasi-transitive oriented graph corresponds
to a colour class of a 2-colouring of G+ that contains S. It follows that Q can
be completed to a quasi-transitive oriented graph if and only if the following
properties hold:

• G+ is bipartite, and
• no two vertices of S are at an odd distance in G+.

If G+ has these two properties, then it can be 2-coloured such that all
vertices of S are of the same colour and the colour class that contains S
gives rise to a quasi-transitive orientation completion of Q. Finding such a
2-colouring of G+ (if it exists) can be done in linear time. Therefore we have
the following:

Theorem 12.3.1 ([4]) The orientation completion problem is polynomial
time solvable for the class of quasi-transitive oriented graphs. �	

A partially oriented graph that can be completed to a transitive oriented
graph cannot contain directed cycles. So the additional assumption of being
acyclic is necessary for a partially oriented graph to admit a completion to a
transitive oriented graph. But this additional assumption is not sufficient as
there are acyclic partially oriented graphs which can be completed to quasi-
transitive oriented graphs but not to transitive oriented graphs. Nevertheless,
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we show that deciding whether a partially oriented graph can be completed
to a transitive oriented graph can be done in polynomial time.

A partially oriented graph Q = (V,E ∪ A) is called consentaneous if
the following properties hold: Let G+ be the auxiliary graph of UG(Q) and
S correspond to the arc set A.

• G+ is bipartite,
• no two vertices of S are at an odd distance in G+, and
• for any two vertices at an even distance in G+, either both are in S or

neither.

Theorem 12.3.2 Let Q = (V,E ∪ A) be a partially oriented graph. Suppose
that UG(Q) is a comparability graph and Q is consentaneous. Then Q can be
completed to a transitive oriented graph if and only if Q does not contain a
directed cycle.

Proof: Let σ be a vertex ordering of UG(Q) such that all arcs in A are
forward (i.e., (u, v) ∈ A implies σ−1(u) < σ−1(v)). Obtain an orientation
completion of Q using the lexicographic orientation algorithm in Subsection
12.2.1 with respect to σ. By Theorem 12.2.2 the orientation completion of Q
is a transitive oriented graph. �	
Corollary 12.3.3 The orientation completion problem for the class of tran-
sitive oriented graphs is solvable in polynomial time.

Proof: Suppose that a partially oriented graph Q = (V,A ∪ E) is given. Let
G = UG(Q). If G+ is not bipartite, then the answer is ‘no’. Assume that G+

is bipartite. Obtain the minimal consentaneous partial oriented graph Q′ =
(V,A′ ∪ E′) from Q by orienting (if needed) some edges in E. If Q′ contains
a directed cycle, then the answer is again ‘no’ by Theorem 12.3.2. Otherwise,
Q′ contains no directed cycle and we can complete Q′ to a transitive oriented
graph according to Theorem 12.3.2. This transitive oriented graph is also an
orientation completion of Q. �	

12.3.2 Local and Acyclic Local Tournament Orientation
Completions

The orientation completion problem for local tournaments can be solved in a
similar way as above for the quasi-transitive orientation completion problem.

Theorem 12.3.4 ([4]) The orientation completion problem is polynomial
time solvable for the class of local tournaments. �	

We consider next the orientation completion problem for the class of
acyclic local tournaments. For a partially oriented graph Q = (V,E ∪ A),
we use G+ to denote the auxiliary graph of UG(Q) as defined in Subsection
12.2.2 and use S to denote the set of vertices of G+ corresponding to the arc
set A. Again, we call Q consentaneous if the following conditions hold:
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• G+ is bipartite,
• no two vertices of S are at an odd distance in G+, and
• for any two vertices at an even distance in G+, either both are in S or

neither.

Theorem 12.3.5 ([4]) Let Q = (V,E ∪ A) be a partially oriented graph.
Suppose that UG(Q) is a proper interval graph and Q is consentaneous. Then
Q can be completed to an acyclic local tournament if and only if Q does not
contain a directed cycle.

Proof: If Q contains a directed cycle then it cannot be completed to an
acyclic oriented graph and hence not to an acyclic local tournament. For the
other direction, we first show that Q admits a perfect elimination ordering
v1, v2, . . . , vn such that all arcs are forward, that is, if (vi, vj) is an arc then
i < j. To obtain such an ordering we apply a modified LBFS beginning with
a vertex of out-degree 0, with preferences (in the case of ties) given to vertices
having no out-neighbours among unlabeled vertices.

Let v1, v2, . . . , vn be an ordering obtained by the modified LBFS. Ac-
cording to Rose, Tarjan and Lueker [36], it is a perfect elimination ordering.
Suppose that the ordering contains a backward arc. Let (vi, vj) ∈ A be a
backward arc having the largest subscript i. Since (vi, vj) is backward, we
have i > j. The choice of vn implies n > i. Since i > j, at the time of labeling
vi the vertex vj is an unlabeled out-neighbour of vi. The LBFS rule ensures
that vi is a vertex having the lexicographically largest neighbourhood among
the vertices vn, . . . , vi+1. If the neighbourhood of vi (among the labeled ver-
tices) is lexicographically larger than the neighbourhood of vj , some vertex
v� with � > i is adjacent to vi but not to vj in Q. The assumption that Q
is consentaneous implies (v�, vi) is an arc which is backward with respect to
the ordering. This contradicts the choice of (vi, vj). Hence vi and vj must
have the same neighbourhood among the labeled vertices. But then the rule
prefers vj to vi for the next labeled vertex, unless vj has an out-neighbour
vk among unlabeled vertices. A similar proof above (when applied to vj , vk)
implies vj and vk must have the same neighbourhood among the labeled ver-
tices. Continuing in this way, we obtain a directed cycle, which contradicts
the assumption. Hence v1, v2, . . . , vn is a perfect elimination ordering of Q
that contains no backward arcs.

Now we apply the lexicographic orientation algorithm using the perfect
elimination ordering to obtain an orientation D of UG(Q). By Theorem
12.2.10 D is an acyclic local tournament. Since the perfect elimination order-
ing has no backward arc from A, the arc set of D contains A. Hence D is an
orientation completion of Q. �	

Corollary 12.3.6 The orientation completion problem for the class of acyclic
local tournaments is solvable in polynomial time.
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Proof: Suppose that a partially oriented graph Q = (V,A ∪ E) is given. Let
G = UG(Q). If G+ is not bipartite, then the answer is ‘no’. Assume that
G+ is bipartite. Obtain the minimal consentaneous partial oriented graph
Q′ = (V,A′ ∪ E′) from Q by orienting (if needed) some edges in E. If Q′

contains a directed cycle, then the answer is again ‘no’ by Theorem 12.3.5.
Otherwise, Q′ contains no directed cycle and we can complete Q′ to an acyclic
local tournament orientation according to Theorem 12.3.5. This acyclic local
tournament is also an orientation completion of Q. �	

Corollary 12.3.7 ([28]) The problem of extending partial proper interval
representations of proper interval graphs is solvable in polynomial time.

Proof: We show how to reduce the problem of extending partial proper in-
terval representations of proper interval graphs to the orientation completion
problem for the class of acyclic local tournaments which is polynomial time
solvable according to Corollary 12.3.6. Suppose that G is a proper interval
graph and H is an induced subgraph of G. Given a proper interval represen-
tation Iv, v ∈ V (H), of H (i.e., a partial proper interval representation of G),
we obtain an orientation of H in such a way that (u, v) is an arc if and only
if Iu contains the left endpoint of Iv. The oriented edges together with the
remaining edges in G yield a partial orientation of G. This partial orientation
of G can be completed to an acyclic local tournament if and only if the partial
representation of H can be extended to a proper interval representation of
G. �	

12.3.3 Locally Transitive Local Tournament Orientation
Completions

A cyclic ordering O = v1, v2, . . . , vn, v1 of the vertices of a partially oriented
graph Q = (V,E ∪ A) is called excellent if Q has no pair of arcs vi → vj

and vs → vt (with a possibility that i = t or s = j) such that the vertices
occur as vi, vt, vs, vj in the cyclic ordering, cf. [4]. Since a round ordering of
an oriented graph is excellent, by Theorem 12.2.4, every connected locally
transitive local tournament has an excellent cyclic ordering, cf. [24]. Thus, a
necessary condition for completing Q to a locally transitive local tournament
is that it has an excellent ordering. It turns out, as we will show, that the
problem of determining whether a partially oriented graph has an excellent
ordering is polynomially equivalent to the orientation completion problem
for locally transitive local tournaments and both problems are NP-complete
(Theorem 12.3.14). The presentation below follows the paper [4] by Bang-
Jensen, Huang and Zhu.

Let O = v1, v2, . . . , vn, v1 be a cyclic ordering of the vertices of a partially
oriented graph P = (V,E ∪ A). An arc (vi, vj) ∈ A dominates an arc
(vs, vt) ∈ A with respect to O if the vertices of the two arcs appear in the
order vi, vs, vt, vj in O, where we can have i = s or j = t. An arc (vi, vj) ∈ A
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dominates an edge vpvq if both of the vertices vp, vq occur in the interval
[vi, vj ] from vi to vj according to O. An arc is maximal with respect to O
if it is not dominated by any other arc.

Lemma 12.3.8 ([4]) Suppose P = (V,E ∪ A) is a partially oriented graph
for which the digraph D = (V,A) induced by its arcs has an excellent cyclic
ordering O = v1, . . . , vn, v1 of its vertices. Then P can be completed to an
oriented graph D′ for which the same cyclic ordering O is excellent.

Proof: Let P = (V,E ∪ A) be a partially oriented graph and let O =
v1, v2, . . . , vn, v1 be an excellent cyclic ordering of D. Let a1 = (vi1 , vj1), a2 =
(vi2 , vj2), . . . , ak = (vik , vjk) be the maximal arcs of D with respect to O.
By the assumption of the lemma, for each arc ar every arc (vp, vq) for which
both vertices vp, vq occur after in the interval [vi, vj ] satisfy that the vertices
occur in the order vir , vp, vq, vjr . For each r ∈ [k] in increasing order and
all indices p, q with vir , vp, vq, vjr occurring in that order such that vpvq is
an edge of P , we orient this edge as the arc (vp, vq). Let D∗ = (V,A ∪ A∗)
be the oriented graph consisting of the original arcs and those edges which
we have oriented so far. By construction of D∗, O is an excellent ordering
of D∗. Hence if no edge of E is still unoriented we are done. It suffices to
show that we may orient one of the remaining edges, since then the claim
follows by induction on the number of unoriented edges. Let vpvq be an edge
which was not oriented and orient this as (vp, vq). We claim that O is an
excellent ordering of D∗ ∪ {(vp, vq)}. If not then there is an arc (va, vb) of
D∗ such that the vertices occur in the order vp, vb, va, vq but then the edge
vpvq is dominated by the arc (va, vb) and hence by one of the arcs a1, . . . , ak,
contradicting that it was not oriented above. �	

Lemma 12.3.9 ([4]) An oriented graph D has an excellent cyclic ordering
O if and only if it can be extended to a round local tournament D∗ by adding
new arcs. In particular, every excellent ordering of D is a round ordering of
D∗ and conversely.

Proof: Suppose first that D can be extended to a round local tournament D∗.
According to Theorem 12.2.4 there is a round ordering O = v1, v2, . . . , vn, v1
of V (D∗) = V (D). We claim that this ordering is also excellent. If not, then
there are arcs (vi, vj) and (vs, vt) so that the vertices occur in the order
vi, vt, vs, vj according to O. Since O is a round ordering, we have that (vi, vt)
and (vt, vj) are arcs of D∗ but then the neighbours of vt do not occur correctly
according to O, contradiction. So O is an excellent ordering of D∗ and hence
also of the subdigraph D. To prove the only if part let O = v1, v2, . . . , vn, v1 be
an excellent cyclic ordering of the oriented graph D. It suffices to observe that
for every maximal arc (vi, vj) with respect to O and any pair of non-adjacent
vertices va, vb in the interval [vi, vj ] with va before vb we may add the arc
(va, vb) and still have an excellent ordering of the resulting oriented graph.
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Now the claim follows by induction on the number of such non-adjacent
pairs. �	

For a given oriented graph D we denote by Dc the partially oriented
complete graph obtained from D by adding an edge between each pair of
non-adjacent vertices.

Lemma 12.3.10 ([4]) If D is a round oriented graph, then Dc can be com-
pleted to a locally transitive tournament.

Proof: We prove the statement by induction on the number of vertices in
D which are not adjacent to all other vertices. By Theorem 12.2.4, the base
case where there is no such vertex is true. So assume that all round oriented
graphs on n vertices with at most k vertices as above can be completed to
a locally transitive tournament and let D be a round digraph with k + 1
vertices, each of which has a non-neighbour. Let O = v1, v2, . . . , vn, v1 be
a round ordering of D. W.l.o.g. the vertex v1 has a non-neighbour, so we
have that vd+(v1)+2 
= vn−d−(v1). We claim that there is no arc (vp, vq) with
1 ≤ q < p < n − d−(v1). Suppose such an arc does exist. Then we have
p > d+(v1)+1 by the choice of O and we have q > 1 since vp is not adjacent to
v1. But this contradicts the fact that the vertex vp sees its out-neighbourhood
as an interval just after itself according to O because v1 is not-adjacent to vp.
Thus if we add all the arcs (v1, vd+(v1)+2), . . . , (v1, vn−d−(v1)−1) to D the order
O is an excellent ordering of the resulting digraph D′. By Lemmas 12.3.8 and
12.3.9 this implies that D′ can be extended to a round local tournament D′′

by adding new arcs. Now the claim follows by induction since D′ has fewer
vertices with non-neighbours than D does. �	

Combining Lemmas 12.3.8, 12.3.9, and 12.3.10 we have the following:

Lemma 12.3.11 ([4]) An oriented graph D has an excellent ordering if and
only if the partially oriented graph Dc has a completion to a tournament T
which is locally transitive. Furthermore, given an excellent ordering of D we
can construct T in polynomial time and conversely, given T , we can obtain
an excellent ordering of D in polynomial time. �	

The following is easy to check.

Proposition 12.3.12 Each of the two labellings X, X̄ of the same partially
oriented complete graph in Figure 12.4 have exactly two completions to a
locally transitive tournament. For X these are obtained by orienting the two
edges ab, αβ as either (b, a), (β, α) or (a, b), (α, β). For X̄ they are obtained
by orienting the two edges uv, αβ as either (v, u), (α, β) or (u, v), (β, α). �	

Lemma 12.3.13 ([4]) Consider the partially oriented 6-wheel W in Figure
12.5. Let D be an orientation completion of W . Then D does not have an ex-
cellent ordering if and only if the three edges c11c12, c21c22, c31c32 are oriented
as (c11, c12), (c21, c22), (c31, c32).
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Figure 12.4 Two different labellings of the same partially oriented complete graph
on 4 vertices. For later convenience we name these X, X̄.

c

c11 c12

c21

c22c31

c32

Figure 12.5 A partially oriented wheel W .

Proof: If the three edges c11c12, c21c22, c31c32 are oriented as (c11, c12),
(c21, c22), (c31, c32) then the vertex c has a directed 6-cycle in its out-
neighbourhood and hence Dc has no completion to a locally transitive tour-
nament. By Lemma 12.3.9, D has no excellent ordering. On the other hand,
if D contains at least one of the arcs (c12, c11), (c22, c21), (c32, c31), then D is
acyclic. Clearly Dc can be completed to a transitive tournament and hence
by Lemma 12.3.11, D has an excellent ordering. �	

Theorem 12.3.14 ([4]) The following polynomially equivalent problems are
NP-complete.

• Deciding whether an oriented graph has an excellent ordering.
• Deciding whether a given partially oriented complete graph can be completed
to a locally transitive tournament.

Proof: We describe polynomial reductions from 3-SAT to these problems.
Let F be an instance of 3-SAT with variables x1, x2, . . . , xn and clauses

C1, C2, . . . , Cm, where each clause is of the form (�1 ∨ �2 ∨ �3) and each �i is
either one of the variables xj or the negation x̄j of such a variable.

Let pi (qi) be the number of times variable xi (x̄i) occurs as a literal in
F . The enumeration of the clauses C1, . . . , Cm induces an ordering on the
occurrences of the same literal in the formula. Guided by this ordering we
now construct a partially oriented graph H ′ = H ′(F) as follows:
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Let X, X̄ be as in Figure 12.4. For each variable xi we form the partially
oriented graph Xi from pi copies of X and qi copies of X̄ (these pi+qi graphs
are vertex disjoint) by identifying all the α vertices and all the β vertices
and denote these identified vertices by α(xi), β(xi), respectively. Denote the
pi copies of a, b by ai,1, . . . , ai,pi

, bi,1, . . . , bi,pi
and the qi copies of u, v by

ui,1, . . . , ui,qi , vi,1, . . . , vi,qi .
Take m disjoint copies W1,W2, . . . , Wm of the partially oriented 6-wheel

from Figure 12.5 where we use ci, c
i
11, c

i
12, c

i
21, c

i
22, c

i
31, c

i
32 to denote the ver-

tices of Wi. Make the following association between the literals of F and the
Wi’s: If Ci = (�i,1∨�i,2∨�i,3) we associate the vertices ci

j1, c
i
j2 with the literal

�i,j of Ci, j ∈ [3].
Now we make the following vertex identifications. For each clause Ci =

(�i,1 ∨ �i,2 ∨ �i,3) we identify the vertices ci
11, c

i
12, c

i
21, c

i
22, c

i
31, c

i
32 with vertices

from the union of the graphs X1, . . . , Xn as follows: If �i,j = xr and this
is the h’th occurrence of variable xr according to the induced ordering of
that literal, then identify ci

j1 with ar,h and ci
j2 with br,h. If �i,j = x̄r and

this is the t’th occurrence of x̄r according to the induced ordering of that
literal, then identify ci

j1 with ur,t and ci
j2 with vr,t. Note that even after these

identifications each of the subdigraphs W1, . . . , Wm are still vertex disjoint.
Clearly we can construct H ′ in polynomial time from F . Denote by H

the oriented graph obtained from H ′ by deleting all (unoriented) edges. It
is easy to check that the in- and out-neighbourhoods of each vertex in H is
acyclic.

By Lemma 12.3.11 it suffices to show that H has an excellent ordering if
and only if F is satisfiable.

First suppose that H has an excellent ordering. By Lemma 12.3.11 this
means that the partially oriented complete graph Hc has a completion T as
a locally transitive tournament. We claim that the following is a satisfying
truth assignment: If the edge α(xi)β(xi) is oriented in T as (α(xi), β(xi))
then let xi be false and if it is oriented as (β(xi), α(xi)) then let xi be true.
First observe that, by Proposition 12.3.12, this implies that for each i ∈ [n]
the variable xi is false if and only if each of the edges ai,jbi,j , j ∈ [pi], are
oriented as (ai,j , bi,j) and each of the edges ui,rvi,r, r ∈ [qi], are oriented as
(vi,r, ui,r).

We now use this to show that each of the clauses of F are satisfied by our
truth assignment. As T is locally transitive, for each of the induced subdi-
graphs T [Wj ], j ∈ [m], the out-neighbourhood of cj is acyclic which implies
that at least one of three arcs of H which correspond to the literals of F
is oriented as (cj2, cj1). If this arc corresponds to the literal xs then, by the
identification rule above, this is an arc of the form (bs,t, as,t), so the variable
xs is true and Cj is satisfied. If the arc corresponds to the literal x̄s then
the identification rule implies that this is an arc of the form (vs,t, us,t), im-
plying that x̄s is true so again Cj is satisfied. Thus we have shown that F
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α(x1)

β(x1)
α(x2)

β(x2)

α(x3)β(x3)

x1

x1

x̄1 x2

x̄2

x̄2

x3x̄3x̄3

Figure 12.6 Part of the digraph H ′(F) when F = (x1 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x̄2 ∨ x3)∧
(x1 ∨ x̄2 ∨ x̄3). For better readability the vertices c1, c2, c3 are not shown.

is satisfiable if Hc has a locally transitive completion (H has an excellent
ordering).

Now suppose that t : {x1, . . . , xn} → {true, false} is a satisfying truth
assignment for F . We shall use this truth assignment to construct an excellent
ordering of the partially oriented graph H ′. Recall that this is also an excellent
ordering of the directed part H of H ′.

We first orient the edges α(x1)β(x1), . . . α(xn)β(xn) as follows: Orient
α(xi)β(xi) as (β(xi), α(xi)) if xi = true and as (α(xi), β(xi)) otherwise. De-
note by Ĥ the resulting partially oriented graph. It follows from Proposition
12.3.12, the way we made identifications between vertices of the Wj ’s and
variable vertices and the fact that t is a satisfying truth assignment that we
can now orient all the remaining edges of Ĥ (recall that those correspond to
the literals) uniquely so that the resulting full orientation

→
H of H ′ satisfies

that the in- and out-neighbourhood of each vertex is still acyclic.
We now construct an excellent ordering for

→
H. Denote by A(xi) (B(xi)),

i ∈ [n] the set of out-neighbours (in-neighbours) of α(xi) in
→
H. Note that

if t(xi) = false, then A(xi) = {bi,1, . . . , bi,pi
, ui,1, . . . , ui,qi , β(xi)}, B(xi) =

{ai,1, . . . , ai,pi
, vi,1, . . . , vi,qi} and there is no oriented arc from A(xi) to B(xi).
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Similarly, if t(xi) = true, then A(xi) = {bi,1, . . . , bi,pi
, ui,1, . . . , ui,qi}, B(xi) =

{ai,1, . . . , ai,pi
, vi,1, . . . , vi,qi , β(xi)} and there is no oriented arc from B(xi)

to A(xi).
Furthermore, observe that β(xi) has no out-neighbour when t(xi) = false

and precisely one out-neighbour, namely α(xi) when t(xi) = true. Let 1 ≤
i1 < i2 < . . . < ik ≤ n and 1 < j1 < j2 < . . . < jg ≤ n denote the
indices of the true, respectively the false variables. Consider the following
cyclic ordering O of V (

→
H):

α(xi1), α(xi2), . . . , α(xik), c1, c2, . . . , cm, A(xi1), . . . , A(xik), B(xj1), . . . ,
B(xjg ), α(xj1), . . . , α(xjg ), A(xj1), . . . , A(xjg ), B(xi1), . . . , B(xik), α(xi1),

where the ordering inside each A(xi), B(xi) is as according to the way we
listed those sets above.

We shall prove that the ordering O is excellent. Suppose for contradiction
that there is a pair of arcs (vi, vj) and (vs, vt) with the vertices occurring in
the order vi, vt, vs, vj according to O.

• We cannot have vi = α(xif ) for some f ∈ [k] because there is no backward
arc in the interval of O from α(xif ) to (the end of) A(xf ) (α(xif ) is only
adjacent to vertices in A(xif )). Similarly, we cannot have vi in the interval
[α(xj1), α(xjg )].

• We cannot have vi = cp for some p ∈ [m] because the only arcs incident to
cp are from cp to the six vertices which correspond to its three literals and
we ordered the A and B sets and α(xj1), . . . , α(xjg ) in such a way that any
arc between them goes forward in the ordering. In particular, there are no
backwards arcs with respect to the ordering in the interval
A(xi1), . . . , A(xik), B(xj1), . . . , B(xjg ), α(xj1), . . . , α(xjg ), A(xj1), . . . ,
A(xjg ), B(xi1), . . . , B(xik).

• We cannot have vi in the interval A(xi1), . . . , A(xik) since all out-neighbours
of those vertices are in the interval B(xi1), . . . , B(xik) and then the re-
mark above implies the claim. Similarly, we cannot have vi in the interval
A(xj1), . . . , A(xjg ).

• We cannot have vi in the interval B(xj1), . . . , B(xjg ) because there are no
backward arcs in the interval B(xj1), . . . , B(xjg ), α(xj1), . . . , α(xjg ),
A(xj1), . . . , A(xjg ) and this contains all out-neighbours of such a vi.

• Finally we cannot have vi in the interval B(xi1), . . . , B(xik) because all
arcs out of a vertex in this interval remain inside the interval
B(xi1), . . . , B(xik), α(xi1), α(xi2), . . . , α(xik) and there is no backward arc
here.

Thus we have shown that O is excellent and hence, by Lemma 12.3.11, the
partially oriented complete graph Hc has a completion to a locally transitive
tournament. �	
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12.4 Orientation Sandwich Completion Problems

For a fixed property Π of partially oriented graphs, the Π-sandwich prob-
lem is defined as follows:

Π-sandwich problem
Input: A pair of partially oriented graphs Q1 = (V,E1 ∪ A1) and
Q2 = (V,E2 ∪ A2).
Question: Is there a partially oriented graph Q = (V,E ∪ A) with
E1 ⊆ E ⊆ E2 and A1 ⊆ A ⊆ A2 which satisfies Π?

Sandwich problems for partially oriented graphs simultaneously general-
ize graph sandwich problems and digraph sandwich problems, which have
been studied by Golumbic, Kaplan and Shamir in [20]. Graph sandwich
problems restrict Q1, Q2 and Q in the above definition to be graphs, while
digraph sandwich problems restrict them to be digraphs.

Graph sandwich problems are polynomial time solvable for several graph
properties, including being bipartite graphs, threshold graphs, split graphs,
cographs and Eulerian graphs, and are NP-complete for properties such as be-
ing chordal graphs, interval graphs, circle graphs, circular arc graphs, proper
circular arc graphs, comparability graphs, co-comparability graphs, and per-
mutation graphs, cf. [20]. Little is known about digraph sandwich problems
but for Eulerian digraphs it is proved to be polynomial time solvable by Ford
and Fulkerson in [11].

A partially oriented graph Q = (V,E ∪ A) is called mixed Eulerian
if both (V,E) and (V,A) are Eulerian, that is, in (V,E) every vertex has
an even degree and in (V,A) every vertex has its in-degree equal to its out-
degree. Although both sandwich problems for Eulerian graphs and digraphs
are polynomial time solvable, the sandwich problem for mixed Eulerian par-
tially oriented graphs remains open.

Problem 12.4.1 Determine the complexity of the sandwich problem for
mixed Eulerian partially oriented graphs.

For a fixed property Π of oriented graphs, we define the Π-orientation
sandwich completion problem as follows:

Π-Orientation Sandwich Completion Problem
Input: A pair of partially oriented graphs Q1 = (V,E1 ∪ A1) and
Q2 = (V,E2 ∪ A2).
Question: Is there a partially oriented graph Q = (V,E ∪ A) with
E1 ⊆ E ⊆ E2 and A1 ⊆ A ⊆ A2 which can be completed to an oriented
graph that satisfies Π?

Orientation sandwich completion problems generalize orientation comple-
tion problems and hence orientation problems. Orientation sandwich comple-
tion problems and sandwich problems for partially oriented graphs are closely
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related. Let Π be a property of oriented graphs. A partially oriented graph
is said to have property Π∗ if it can be completed to an oriented graph that
has the property Π. Then the Π-orientation sandwich completion problem
is just the Π∗-sandwich problem. For instance, suppose that Π is the prop-
erty of being an Eulerian oriented graph, then a partially oriented graph has
property Π∗ if and only if it is mixed Eulerian and thus the Π-orientation
sandwich completion problem is just Problem 12.4.1. As mentioned above,
the Π-orientation completion problem is polynomial time solvable but the
Π-orientation sandwich completion problem is open. Special cases of the Π-
orientation sandwich completion problem have been studied by de Gevigney,
Klein, Nguyen and Szigeti [8].

A property Π of oriented graphs is called sup-preservable if Q1 =
(V,A1) has the property Π and A1 ⊆ A2 imply that Q2 = (V,A2) also has the
property Π. As an example, being k-arc-strong is a sup-preservable property
for each k ≥ 1. Let Π be a sup-preservable property of oriented graphs. Then
the Π-orientation sandwich completion problem can be reduced to the Π-
orientation completion problem. Indeed, suppose that Q1 = (V,E1 ∪A1) and
Q2 = (V,E2∪A2) form an instance of the Π-orientation sandwich completion
problem. In order to have a partially oriented graph Q = (V,E∪A) satisfying
E1 ⊆ E ⊆ E2 and A1 ⊆ A ⊆ A2, we must have E1 ⊆ E2 and A1 ⊆ A2. For
any such Q, Q can be completed to an oriented graph that has the property Π
if and only if Q2 can. Hence the Π-orientation sandwich completion problem
reduces to the Π-orientation completion problem. In particular, the k-arc-
strong orientation sandwich completion problem reduces to the k-arc-strong
orientation completion problem for each k ≥ 1. Each k-arc-strong-orientation
completion problem can be formulated as a feasible submodular flow prob-
lem which is polynomial time solvable (cf. [4]). Consequently, we have the
following:

Theorem 12.4.2 For each k ≥ 1, the k-arc-strong orientation sandwich
completion problem is polynomial time solvable. �	

In contrast, the k-strong orientation sandwich completion problem is NP-
complete for each k ≥ 3 as this is shown to be the case for the k-strong
orientation problem by de Gevigney [7]. Thomassen [41] proved that a graph
G has a 2-strong orientation if and only if G is 4-edge-connected and G−v is
2-edge-connected for every vertex v. This implies that the 2-strong orientation
problem is polynomial time solvable.

Theorem 12.4.3 ([7, 41]) The k-strong orientation problem is polynomial
time solvable when k ≤ 2 and NP-complete when k ≥ 3. �	

Thus to complete a dichotomy of k-strong orientation completion prob-
lems and k-strong orientation sandwich completion problems the only case
left open is k = 2.
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Problem 12.4.4 Determine the complexity of the 2-strong orientation sand-
wich completion problem and of the 2-strong orientation completion problem.

A directed cycle factor in a digraph is a spanning subdigraph that is a
vertex-disjoint union of directed cycles. The orientation completion problem
for the property of having a directed cycle factor is shown to be NP-complete
in [4].

Theorem 12.4.5 ([4]) It is NP-complete to decide whether a partially ori-
ented graph Q has a completion D with a directed cycle factor.

Proof: It was shown by Bang-Jensen and Casselgren [2] that it is NP-
complete to decide whether a bipartite digraph B has a directed cycle-factor
consisting of cycles C1, C2, . . . , Ck so that no Ci has length 2. Let B be given
and form the partially oriented graph Q from B by replacing the two arcs of
each directed 2-cycle by an edge. It is easy to see that Q has a completion
with a directed cycle factor if and only if B has a cycle factor with no directed
2-cycle, implying the theorem. �	

The complexity of the orientation sandwich completion problem for hav-
ing directed cycle factors is open.

Problem 12.4.6 Determine the complexity of the orientation sandwich com-
pletion problem for having directed cycle factors.

Let π = {(s1, t1), . . . , (sk, tk)} be a set of k pairs of distinct vertices in a
(di)graph H. A π-linkage in H is a collection of k disjoint paths R1, . . . , Rk

such that Ri starts in si and ends in ti. For a given class C of digraphs, the
C-π-linkage completion problem is defined as follows: given a partially
oriented graph Q = (V,E ∪ A) and a set π of k terminal pairs in V , is it
possible to complete the orientation of Q so that the resulting oriented graph
is in C and has a π-linkage?

For general digraphs the π-linkage problem, and hence also the comple-
tion version, is NP-complete already when k = 2 and even if the digraph is
highly connected [12, 40]. Chudnovsky, Scott and Seymour [6] proved that the
π-linkage problem is polynomial for semicomplete digraphs (that is, digraphs
whose underlying graph is complete). This implies that the tournament-
π-linkage completion problem is polynomial because such a completion
is possible if and only if the digraph that we obtain from the partially ori-
ented graph Q by replacing each undirected edge by a directed 2-cycle is
semicomplete and has a π-linkage (no two paths in a linkage intersect).

Problem 12.4.7 What is the complexity of the local-tournament-π-linkage
completion problem when k ≥ 2 is fixed?

An oriented graph is called an in-tournament if the in-neighbourhood of
every vertex induces a tournament. The orientation completion problem for
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in-tournaments is polynomial time solvable, cf. [4]. The orientation sandwich
completion problem for in-tournaments is open.

Problem 12.4.8 Determine the complexity of the orientation sandwich com-
pletion problem for in-tournaments.

The orientation problem for the class of acyclic in-tournaments is polyno-
mial time solvable. This follows from the fact that chordal graphs are exactly
the graphs which admit acyclic in-tournament orientations. However, the ori-
entation completion problem as well as the orientation sandwich completion
problem for acyclic in-tournaments remain open.

Problem 12.4.9 Determine the complexity of the orientation sandwich com-
pletion problem for acyclic in-tournaments.
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