
11. Miscellaneous Digraph Classes

Yubao Guo and Michel Surmacs

11.1 Introduction

Obviously, there are countless digraph classes, so that any attempt to give
a complete overview is doomed to failure. One has to restrict oneself to a
selection. Some will be presented in their own chapter or section, some will
only be mentioned for some specific results throughout the book and some
won’t be mentioned at all. As tournaments (tou) are arguably the best stud-
ied class of digraphs with a rich library of strong results (see Chapter 2), their
prominent place in any selection is a given. Unsurprisingly, several authors
have tried to generalize the class in different directions in order to obtain
larger classes of digraphs while retaining enough structure that most cen-
tral results on tournaments still hold. Those classes include semicomplete
digraphs (scd) (see Chapter 2), multipartite tournaments (mut) (see Chapter
7) and local tournaments (lct) (see Chapter 6). Results on hypertournaments
(hyt), an extension of tournaments to directed hypergraphs that is not fea-
tured in this book, have been obtained by Q. Guo, Y. Guo, Gutin, Kayibi,
Khan, Koh, H. Li, R. Li, S. Li, Lu, Ning, Petrović, Pirzada, Ree, Surmacs,
Thomassen, Wang, Yang, Yao, Yeo, K.M. Zhang, X. Zhang and Zhou (see,
e.g., [77–79, 100–102, 104, 109–111, 126, 145, 154, 166, 173]).

Several of those tournament generalizations have since been generalized
themselves, resulting in an array of tournament-related digraph classes. Lo-
cally semicomplete digraphs (lsd), round digraphs (rod), in/out-round di-
graphs (ird), locally in/out-tournaments (lit), locally in/out-semicomplete
digraphs (lis) and path-mergeable digraphs (pmd) are considered in Chap-
ter 6. Chapter 7 is dedicated to semicomplete multipartite digraphs (smd).
Results on transitive digraphs (trd), k-transitive digraphs (ktd), quasi-
transitive digraphs (qtd) and k-quasi-transitive digraphs (kqt) can be found
in Chapter 8.

In Section 11.8 of this chapter, we will consider another generaliza-
tion of both semicomplete and semicomplete bipartite digraphs: Arc-locally
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semicomplete digraphs (als). They are themselves generalized by H1-free di-
graphs (h1f) and H2-free digraphs (h2f) in Section 11.9. The related classes
of H3-free digraphs (h3f) and H4-free digraphs (h4f) are also briefly consid-
ered.

Of course, there are also digraph classes (fairly) unrelated to tournaments
such as acyclic digraphs (acd), investigated in Chapter 3. Kernel-perfect di-
graphs (kpd) are mentioned in several results throughout the book, for ex-
ample in Section 11.7, which is mainly dedicated to perfect digraphs (ped),
game-perfect digraphs (gpd) and weakly game-perfect digraphs (wgp).

Many digraph classes appear naturally in applications to other fields such
as mathematical logic or computer science. One such class is that of circulant
digraphs (cid), which have been considered by such authors as Alspach,
Burkard, Çela, Parsons, Van Doorn, Woeginger and Yang (see, e.g., [2, 151,
167]). They include regular round digraphs (rrd) and are themselves included
in the class of Cayley digraphs (cad), whose properties have been investigated,
for example, by Curran, Gallian, Hamidoune, Parhami, Rankin, Witte, Xiao
and Xu (see, e.g., [44, 81, 132, 160–162, 164]).

Two classes which also have applications in the construction of intercon-
nection networks (see [27] for a survey by Bermond, Homobono and Peyrat)
are de Bruijn digraphs (dbd) and Kautz digraphs (kad), which we will con-
sider in Sections 11.4 and 11.5, respectively. Both classes can be defined using
the line digraph operator, which will be investigated more closely in Section
11.2 on line digraphs (lnd) and Section 11.3 on iterated line digraphs (ild).

The closely related minimal series-parallel digraphs (msp), series-parallel
digraphs (spd) and series-parallel partial order digraphs (spo), appear in flow
diagrams and dependency charts and have an application to the problem of
scheduling under constraints. We will consider them briefly in Section 11.6
on directed cographs (dco), a generalization of series-parallel partial order
digraphs.

Figure 11.1 gives a first overview of how the previously mentioned classes
relate to one another. For more structure, we also include the subclasses of
loopless line digraphs (lld) and loopless iterated line digraphs (lil). Class
x is included in class y if the depicted digraph contains an (x, y)-path. Obvi-
ously, neither the list of considered digraph classes nor the relations depicted
are necessarily exhaustive.
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Figure 11.1 Digraph depicting relations between digraph classes.

Note that we omitted certain digraph classes, such as Euler digraphs (see
Chapter 4), planar digraphs (see Chapter 5), digraphs with bounded width
(see Chapter 9), digraph products (see Chapter 10) and underlying graphs
of digraphs (see Chapter 12), mostly because they intersect many others but
are not contained in / do not contain other classes. Intersection digraphs on
the other hand include all digraphs, as Beineke and Zamfirescu [23] and Sen,
Das, Roy and West [139] proved, which makes their inclusion in the figure
redundant. For further results on intersection digraphs and their subclass of
interval digraphs, however, we also refer to work by Brown, Busch, Dasgupta,
Feder, Francis, Hell, Huang, Lundgren, Müller, Rafiey, Sanyal and Talukdar
(see, e.g., [35, 45–47, 62, 120, 138, 140, 141, 159, 168]).

11.2 Line Digraphs

Krausz [105] defined the line graph L(G) of a graph G = (V,E) to be the
graph with vertex set E and an edge between e, f ∈ E, if and only if e and
f are incident in G. Since then, differing generalizations of the concept for
directed pseudographs have been introduced. The most common definition for
the line digraph L(D) of a directed pseudograph D = (V,A) – and the only
one we will consider here – is due to Harary and Norman [82]. Corresponding
to the undirected version, the vertex set of L(D) is the arc set A of D. Due
to the orientation of arcs, there is the additional choice of when and how
to connect two vertices a, b ∈ A of L(D), which distinguishes the competing
concepts of line digraphs. Here, (a, b) is an arc of L(D) if and only if the head
of a coincides with the tail of b. In other words, ab is a directed walk of length
2 in D. Note that the line digraph L(D) does not contain multiple arcs, but
contains a loop, if and only if D contains a loop. Therefore, technically, the
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line digraph of a directed pseudograph containing a loop is not a digraph,
but again a directed pseudograph.

A directed pseudograph D is called a line digraph if D = L(D′) for some
directed pseudograph D′.

The first easy observation Harary and Norman [82] then made is the
following.

Theorem 11.2.1 ([82]) Let D be a directed pseudograph. Then,

|V (L(D))| = |A(D)| and |A(L(D))| =
∑

v∈V (D)

d−
D(v)d+D(v).

Another nice property that directly follows from the definition is the in-
variance of the minimum and maximum semi-degree under the line digraph
operator.

Proposition 11.2.2 Let D = (V,A) be a directed pseudograph. Then,

d+L(D)(xy) = d+D(y) and d−
L(D)(xy) = d−

D(x) for all xy ∈ A.

Particularly,

δ0(L(D)) = δ0(D) and Δ0(L(D)) = Δ0(D).

x1 x2

x3

x4

x5

(a) digraph D

x1x2

x2x3 x3x4

x4x5

x5x4x2x5

(b) line digraph L(D)

Figure 11.2 A digraph and its line digraph.

In the following theorem we collect a number of characterizations of line
digraphs. Characterization (ii) is among the first results on line digraphs
and due to Harary and Norman [82]. Later, Heuchenne [90] found the local
criterion (iii) and Richards [137], in (iv) and (v), considered adjacency ma-
trices to determine line digraphs, for which we recall the following definition.
For a matrix M = [mik] ∈ {0, 1}n×n, a row i is orthogonal to a row j if∑n

k=1 mikmjk = 0. One can give a similar definition of orthogonal columns.
Conditions (ii) and (iii) have each been rediscovered by several authors, as
Hemminger and Beineke [88] found in their survey on line graphs and line
digraphs. The proof presented here is also adapted from that survey.
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Theorem 11.2.3 Let D = (V,A) be a directed pseudograph with vertex set
V = {1, 2, . . . , n} and with no multiple arcs and let M = [mij ] be its adjacency
matrix (i.e., the n × n-matrix such that mij = 1, if ij ∈ A(D), and mij = 0,
otherwise). Then the following assertions are equivalent:

(i) D is a line digraph;
(ii) there exist two partitions {Ai}i∈I and {Bi}i∈I of V (D) such that

A(D) =
⋃

i∈I

Ai × Bi;

(iii) if vw, uw and ux are arcs of D, then so is vx;
(iv) any two rows of M are either identical or orthogonal;
(v) any two columns of M are either identical or orthogonal.

Proof: We prove the following implications and equivalences: (i) ⇔ (ii), (ii)
⇒ (iii), (iii) ⇒ (iv), (iv) ⇔ (v), (iv) ⇒ (ii).

(i) ⇒ (ii). Let D = L(H). For each vi ∈ V (H), let Ai and Bi be the sets
of in-coming and out-going arcs at vi, respectively. Then the arc set of the
subdigraph of D induced by Ai ∪Bi equals Ai ×Bi. If ab ∈ A(D), then there
is an i such that a = vjvi and b = vivk. Hence, ab ∈ Ai × Bi. The result
follows.

(ii) ⇒ (i). Let Q be the directed pseudograph with ordered pairs (Ai, Bi)
as vertices, and with |Aj ∩ Bi| arcs from (Ai, Bi) to (Aj , Bj) for each i and
j (including i = j). Let σij be a bijection from Aj ∩ Bi to this set of arcs
(from (Ai, Bi) to (Aj , Bj)) of Q. Then the function σ defined on V (D) by
taking σ to be σij on Aj ∩Bi is a well-defined function of V (D) into V (L(Q)),
since {Aj ∩ Bi}i,j∈I is a partition of V (D). Moreover, σ is a bijection since
every σij is a bijection. Furthermore, it is not difficult to see that σ is an
isomorphism from D to L(Q).

(ii) ⇒ (iii). If vw, uw and ux are arcs of D, then there exist i, j such that
{u, v} ⊆ Ai and {w, x} ⊆ Bj . Hence, (v, x) ∈ Ai × Bj and vx ∈ D.

(iii) ⇒ (iv). Assume that (iv) does not hold. This means that some rows,
say i and j, are neither identical nor orthogonal. Then there exist k, h such
that mik = mjk = 1 and mih = 1,mjh = 0 (or vice versa). Hence, ik, jk, ih
are in A(D) but jh is not. This contradicts (iii).

(iv) ⇔ (v). Both (iv) and (v) are equivalent to the statement:

for all i, j, h, k, if mih = mik = mjk = 1, then mjh = 1.

(iv) ⇒ (ii). For each i and j with mij = 1, let Aij = {h : mhj = 1} and
Bij = {k : mik = 1}. Then, by (iv), Aij is the set of vertices in D whose
row vectors in M are identical to the ith row vector, whereas Bij is the set
of vertices in D whose column vectors in M are identical to the jth column
vector (we use the previously proved fact that (iv) and (v) are equivalent).
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Thus, Aij × Bij ⊆ A(D), and moreover A(D) =
⋃{Aij × Bij : mij = 1}.

By the orthogonality condition, Aij and Ahk are either equal or disjoint, as
are Bij and Bhk. For a zero row vector i in M , let Aij be the set of vertices
whose row vector in M is the zero vector, and let Bij = ∅. Doing the same
with the zero column vectors of M completes the partition as in (ii). 	


The characterizations (ii)–(v) all imply polynomial algorithms to verify
whether a given directed pseudograph is a line digraph. For an example of an
effective polynomial algorithm using (ii) to recognize acyclic line digraphs,
see [16, Page 42]. Criterion (iii) can also be reformulated to obtain a charac-
terization of line digraphs in terms of forbidden induced subdigraphs.

Corollary 11.2.4 ([16]) A directed pseudograph D is a line digraph if and
only if D does not contain, as an induced subdigraph, any directed pseudo-
graph that can be obtained from one of the directed pseudographs in Figure
11.3 (dashed arcs are missing) by adding zero or more arcs (other than the
dashed ones).

Figure 11.3 Forbidden directed pseudographs of line digraphs.

Observe that the digraph of order 4 in Figure 11.3 corresponds to the
case of distinct vertices in Part (iii) of Theorem 11.2.3, and the two directed
pseudographs of order 2 correspond to the cases x = u �= v = w and u = w �=
v = x, respectively.

From Corollary 11.2.4 a simpler characterization of the line digraphs of
digraphs (i.e. without loops and multiple arcs) is easily obtained by omitting
those forbidden induced subdigraphs that imply said loops or parallel arcs.
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More details and further characterizations of special classes of line digraphs
can be found in the surveys by Hemminger and Beineke [88] and Prisner
[131].

As, for every line digraph Q, under ‘(ii) ⇒ (i)’ in Theorem 11.2.3 a directed
pseudograph D such that Q = L(D) is constructed, it is natural to ask
whether D is unique with said property. Harary and Norman [82] answered
the question in the negative, but recognized that two directed pseudographs
with the same line digraph cannot differ too much, as the following theorem
shows.

Theorem 11.2.5 ([82]) Let D and D′ be directed pseudographs such that
L(D) = L(D′). Then the directed pseudographs obtained from D and D′, by
deleting all vertices with in-degree 0 and all vertices with out-degree 0, are
isomorphic.

Prisner [130] found that under certain circumstances, even the considera-
tion of the underlying graph may be enough to determine quasi-uniqueness,
a generalization of results due to Villar [152].

Theorem 11.2.6 ([130]) Let D and D′ be directed pseudographs without par-
allel arcs and both of minimum semi-degree at least 2. Then UG(L(D)) ∼=
UG(L(D′)) implies that D is isomorphic to D′ or its converse.

Harary and Norman [82] also gave a partial answer to the related question
of which directed pseudographs are isomorphic to their line digraph.

Theorem 11.2.7 ([82]) Let D be a unilateral (i.e., any two vertices are con-
nected by a directed path in at least one direction) directed pseudograph with-
out multiple arcs. Then D is isomorphic to L(D) if and only if each of its
vertices has in-degree 1 or each of its vertices has out-degree 1.

Aigner [1] then gave a generalization of this result.

Theorem 11.2.8 ([1]) Let D be a directed pseudograph without isolated ver-
tices. Then D is isomorphic to L(D), if and only if D ∼= D1 ∪ . . .∪Dk, where
the Dis are mutually vertex-disjoint and either Di consists of a directed cycle
and a number (possibly zero) of out-trees, each rooted at a vertex of this cycle
or Di is the converse of such a digraph.

Harary and Norman [82] provided corresponding examples which show
that these characterizations do not hold for general directed pseudographs.
Therefore, finding a general characterization is still an open problem.

11.2.1 Connectivity

In most applications, connectivity plays a vital role. Thus, Aigner’s [1] re-
sult that strong connectivity is preserved under the line digraph operator is
particularly useful.
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Theorem 11.2.9 ([1]) Let D be a directed pseudograph without isolated ver-
tices. Then D is strongly connected if and only if L(D)is strongly connected.
Furthermore, L(D) being unilateral implies D is unilateral.

Several authors then noted the following (see, e.g., [171]).

Proposition 11.2.10 Let D be a directed pseudograph without parallel arcs.
Then,

κ(L(D)) = λ(D).

Therefore, by the well-known fact that κ(D) ≤ λ(D) ≤ δ0(D) for any
directed pseudograph D without parallel arcs and Proposition 11.2.2, we
have

κ(D) ≤ λ(D) = κ(L(D)) ≤ λ(L(D)) ≤ δ0(L(D)) = δ0(D).

In other words, application of the line digraph operator can only increase the
connectivity, which is one of the reasons it has been used in the construction
of interconnection networks (see also the following section on iterated line
digraphs). In this context, more refined connectivity concepts, as a measure
of reliability, such as super connectivity, introduced by Bauer, Boesch, Suffel
and Tindell [21], have been considered. A separator (cut) of a directed pseu-
dograph is called trivial if its removal yields a strong component of order 1.
In other words, all in-neighbours or all out-neighbours (or the corresponding
arcs, respectively) of a vertex are contained in the separator (cut). A directed
pseudograph D has super (vertex-)connectivity k if κ(D) = k and every
minimum separator is trivial. Analogously, a D has super arc-connectivity
k if λ(D) = k and every minimum cut is trivial. Obviously, super connectivity
implies maximum fault tolerance, in some sense.

Although not every cut of D is a separator of L(D), we still get the
following natural-feeling result, due to Cheng, Du, Min, Ngo, Ruan, Sun and
Wu [38], which was rediscovered by Zhang, Liu and Meng [171] with a more
precise proof.

Proposition 11.2.11 ([38]) Let D be a strongly connected directed pseudo-
graph without parallel arcs. Then, D has super arc-connectivity k if and only
if L(D) has super connectivity k.

Furthermore, Cheng, et al. [38] claimed that super arc-connectivity is
preserved by the line digraph operator. Their proof is incorrect and the
claim false, as, for example, the complete digraph on 3 vertices is super arc-
connected, but its line digraph is not. However, Zhang, et al. [171] obtained
a weaker version of the claim as a corollary of the following theorem.

Theorem 11.2.12 ([171]) Let D be a strongly connected directed pseudo-
graph without parallel arcs with δ0(D) ≥ 3. Then, if L(D) has super connec-
tivity k, it also has super arc-connectivity k.

Now, we simply combine Proposition 11.2.11 and Theorem 11.2.12.
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Corollary 11.2.13 ([171]) Let D be a strongly connected directed pseudo-
graph without parallel arcs with δ0(D) ≥ 3. If D has super arc-connectivity
k, then L(D) has super arc-connectivity k.

Lü and Xu [115] and Zhang and Zhu [172] published results on even more
refined connectivity measures for line digraphs.

11.2.2 Diameter

In the previous subsection we have seen that strong connectivity is preserved
under the line digraph operator. As a consequence, it is natural to ask whether
the distances between vertices increase drastically, since the number of ver-
tices of the line digraph may possibly be up to almost the square of the order
of the corresponding digraph. In spite of this fact, Aigner [1] was able to prove
that the diameter increases by at most 1 under the line digraph operator.

Theorem 11.2.14 ([1]) Let D be a strongly connected directed pseudograph.
Then,

diam(L(D)) = diam(D) + 1,

unless D ∼= L(D) (i.e., D is a directed cycle).

As we already know that the maximum semi-degree is also invariant,
iterated application of the line digraph operator to the right digraphs is pre-
destined to obtain digraphs of high order and comparatively small degree
and diameter (cf. Sections 11.4 and 11.5 on de Bruijn and Kautz digraphs,
respectively).

11.2.3 Kernels, Solutions and Generalizations

Another popular distance related concept are kernels of digraphs. Introduced
in the context of game theory by von Neumann and Morgenstern [153], they
have since found a wide array of applications in other fields.

A set N of vertices of a digraph D is called a kernel of D if N is inde-
pendent in D and for every vertex u ∈ V (D) \ N , there is a vertex v ∈ N
such that uv ∈ A(D). A solution of D is a kernel of the converse of D.

Since the introduction of the concept, several generalizations of kernels
have been considered, many of which can be described as (k, l)-kernels. A
set N of vertices of a digraph D is called a (k, l)-kernel of D if there is no
oriented path of length shorter than k between any two distinct vertices of
N in D and for every vertex u ∈ V (D) \N , there is a directed path of length
at most l from u to a vertex in N in D. Now, obviously, a (2, 1)-kernel is a
common kernel. Furthermore, a (k, k − 1)-kernel is also called a k-kernel,
a (2, 2)-kernel is called a quasi-kernel and a (k, 2(k − 1))-kernel is called a
k-quasi-kernel.
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A (k, l)-semikernel is defined slightly differently. A set N of vertices of a
digraph D is called a (k, l)-semikernel of D if there is no oriented path of
length shorter than k between any two distinct vertices of N in D and for
every vertex u ∈ V (D) \ N , if there is a directed path of length at most l
from a vertex in N to u in D, then there is such a path from u to a vertex
in N . A (k, k − 1)-kernel is also called a k-semikernel and a 2-semikernel is
also called a semikernel.

For all these generalized concepts of kernels, again, a corresponding ver-
sion of a solution can be defined by considering the converse digraph.

Harminc [83] considered the correlation between solutions of a digraph
and its line digraph and found the following.

Theorem 11.2.15 ([83]) The cardinality of the system of all solutions of a
digraph is equal to the cardinality of the system of all solutions of its line
digraph.

More precisely, for a digraph D = (V,A), he proved that f : K → K′, S �→
{xy ∈ A | x ∈ S, y ∈ V }, where K and K′ are the systems of all solutions
of D and its line digraph, respectively, is an injective function. Conversely,
g : K′ → K, H �→ X(H)∪ Y (H), where X(H) is the set of all tails of arcs in
H and Y (H) consists of those vertices of D with out-degree 0 that are not
adjacent to any vertices in X(H), is also shown to be injective. Thus, we can
easily obtain the kernels of L(D) from the kernels of D and vice versa.

Proof: f is well-defined: Let R be a solution of D = (V,A). Suppose that
ab ∈ A(L(D)) for a, b ∈ f(r). Then, by the definition of f , the tails of both
a and b are contained in R and they are connected by the arc a ∈ A, a
contradiction to the choice of R. Now, let b ∈ A \ f(R). By the definition of
f , the tail of b is not in R and is therefore dominated by some vertex of R in
D via some arc a ∈ f(R). Hence, b is dominated by a and, all in all, f(R) is
a solution of L(D).

f is injective: Let R and S be distinct solutions of D. Without loss of
generality, we may assume that there is a vertex y ∈ R\S. Since S is a solution
of D, there is a vertex x ∈ S such that xy ∈ A and therefore, xy ∈ f(S). The
independence of R implies that xy /∈ f(R). Hence, f(R) �= f(S).

g is well-defined: Let R be a solution of D = (V,A). Suppose that there
are vertices x, y ∈ g(R) such that xy ∈ A. If x ∈ Y (R) or y ∈ Y (R), the
definition of Y (R) immediately implies a contradiction. Thus, we may assume
that x, y ∈ X(R). Consequently, x is the tail of some arc a ∈ R and y is the
tail of some arc b ∈ R. The independence of R implies xy /∈ R, as xy and b are
connected in L(D). Hence, there exists a c ∈ R that dominates xy in L(D)
and, by definition of the line digraph, also dominates a ∈ R, a contradiction
to the choice of R. Now, let y ∈ V \ g(R). If y is the head of some arc b ∈ A,
then, by the definition of g(R), b /∈ R. Therefore, b is dominated by some
a = xy ∈ R and hence, y is dominated by x ∈ X(R) ⊆ g(R). If y has out
degree 0, by the definition of g(R), y is dominated by some x ∈ X(R) ⊆ g(R).
All in all, g(R) is a solution of D.
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g is injective: Let R and S be distinct solutions of L(D). Without loss
of generality, we may assume that there is an arc b = yz ∈ R \ S. Therefore,
y ∈ X(R) ⊆ g(R). Since b /∈ S, there is some arc a = xy ∈ S that dominates
b. As x ∈ X(S) ⊆ g(S), the independence of g(S) implies y /∈ g(S). Hence,
g(R) �= g(S). 	


As an obvious corollary, we have the following.

Corollary 11.2.16 ([83]) A digraph has a solution if and only if its line
digraph has a solution.

The easily seen fact that the converse of L(D) is the line digraph of the
converse of the digraph D immediately implies the corresponding results on
kernels.

Corollary 11.2.17 ([83]) The cardinality of the system of all kernels of
a digraph is equal to the cardinality of the system of all kernels of its line
digraph.

Corollary 11.2.18 ([83]) A digraph has a kernel if and only if its line di-
graph has a kernel.

Since then, utilizing Harminc’s functions, several authors have found
similar results for the various generalizations of kernels. Galeana-Sánchez,
Ramírez and Rincón-Mejía [71] compared the number of semikernels and
quasi-kernels of digraphs D with δ−(D) ≥ 1 with the respective numbers
of their line digraphs. Galeana-Sánchez and Li [70] proved that Corollary
11.2.18 also holds for semikernels, if δ−(D) ≥ 1, which is a necessary con-
dition, and studied the relationship between the number of (k, l)-kernels of
certain digraphs and their line digraphs.

Galeana-Sánchez and Gómez [69] provided, amongst other results, a
weaker version of 11.2.17 for (k, l)-semikernels of certain digraphs, with the
use of state splittings.

Theorem 11.2.19 ([69]) Let k ≥ 2, l ≥ 2 and let D be a digraph with
g(D) ≥ k and δ−(D) ≥ 1. Then, the cardinality of the system of all (k, l)-
semikernels of D is less than or equal to the cardinality of the system of all
(k, l)-semikernels of its line digraphs.

Shan, Kang and Lu [142], found a generalization of Corollary 11.2.18 for
k-semikernels of certain digraphs.

Theorem 11.2.20 ([142]) Let D be a digraph with g(D) ≥ k ≥ 2 and
δ−(D) ≥ 1. Then, D has a k-semikernel if and only if its line digraph has a
k-semikernel.
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Lu, Shan and Zhao [116] proved that Harminc’s functions are also well-
defined and injective on the respective sets of (k, l)-kernels of certain digraphs
and thereby obtained the following generalizations of Corollaries 11.2.17 and
11.2.18.

Theorem 11.2.21 ([116]) Let k > l ≥ 2 and let D be a digraph with g(D) ≥
k and δ−(D) ≥ 1. Then, the cardinality of the system of all (k, l)-kernels
of D is equal to the cardinality of the system of all (k, l)-kernels of its line
digraphs.

Theorem 11.2.22 ([116]) Let k > l ≥ 2 and let D be a digraph with g(D) ≥
k and δ−(D) ≥ 1. Then, D has a (k, l)-kernel if and only if its line digraph
has a (k, l)-kernel.

Some additional results on kernels and related concepts in generalized
line digraphs have been found by Balbuena and Guevara [12] and Guevara,
Balbuena and Galeana-Sánchez [76].

11.2.4 Branchings

Recall that an in-branching (also called a rooted spanning tree or an arbores-
cence in the literature) is an oriented spanning tree with exactly one vertex
(the root) of out-degree 0. For a vertex x of a directed pseudograph D, let
IBx(D) be the number of in-branchings of D rooted at x.

Knuth [103] proved the following correlation (in a different form) be-
tween in-branchings of a directed pseudograph and those of its line digraph
algebraically, using Tutte’s Matrix Tree Theorem [147]. Orlin [125] gave a
combinatorial proof of the theorem in its present form.

Theorem 11.2.23 ([103]) Let D = (V,A) be a directed pseudograph without
isolated vertices. Then,

IBxy(L(D)) =

{
IBy(D) · F, if d+(y) = 0 or d−(y) = 1
d+(y)−1 IBx(D) · F, otherwise,

where F =
∏

v∈V d+(v)d
−(v)−1.

Among other results, Levine [108] found a generating function identity
for digraphs with minimum in-degree 1, which implies the following formula
for the total number of in-branchings of a line digraph.

Corollary 11.2.24 ([108]) Let D = (V,A) be a directed pseudograph with
δ−(D) ≥ 1. Then, the number of in-branchings of L(D) is

b ·
∏

v∈V

d+(v)d
−(v)−1,

where b is the number of in-branchings of D.
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Bidkhori and Kishore [30] found another proof of the result by construct-
ing an explicit bijection. Furthermore, it can be extended to iterated line
digraphs (see Corollary 11.3.9). The following identity due to Orlin [125] im-
plies that Corollary 11.2.24 is also a corollary of Theorem 11.2.23 and also
holds for directed pseudographs without isolated vertices.

Proposition 11.2.25 ([125]) Let D = (V,A) be a directed pseudograph with-
out isolated vertices. Then, for each y ∈ V ,

d+(y) IBy(D) =
∑

x∈V

axy IBx(D),

where axy is the number of arcs from x to y in D.

Branchings are not only interesting from a theoretical point of view, but,
particularly in line digraphs, as a model of interconnection networks, for their
practical use in broadcasting algorithms, that is to say, sending a message
from one vertex to all others in an efficient manner. In this context, the sheer
number of branchings in a digraph is less important than the number of
arc-disjoint or independent branchings (for fault-tolerance) and their depth,
which is to say the length of a longest directed path between the root and
a leaf (for efficiency). Two out-branchings of a directed pseudograph with
root r are called independent if, for any vertex x, the unique paths from
r to x are internally disjoint. Hasunuma and Nagamochi [85] studied both
the number of independent out-branchings and their depths in line digraphs.
Applying the following theorem, they were able to prove the well-known In-
dependent Spanning Tree Conjecture (disproved in general by Huck [91]) for
line digraphs.

Theorem 11.2.26 ([85]) Let D be a directed pseudograph without parallel
arcs and let r be a vertex of L(D). Suppose that for any vertex v �= r of L(D),
there are k internally disjoint paths from r to v in L(D). Then there are k
independent out-branchings rooted at r of L(D).

Corollary 11.2.27 (Independent Spanning Tree Conjecture [85]) Let
D be a directed pseudograph without parallel arcs. If L(D) is k-strong, then
there are k independent out-branchings rooted at any vertex of L(D).

For considerations of the depth of independent out-branchings, see The-
orems 11.3.10 and 11.3.11 in the section on iterated line digraphs.

Du, Lyuu and Hsu [51, 55, 56] introduced the related concept of spreads,
prescribing a number of vertex-disjoint paths of certain maximum length
between sets of vertices, to combine fault-tolerance and transmission delay
considerations in interconnection networks and gave results on (iterated) line
digraphs as an example of such networks.

Bermond, Munos and Marchetti-Spaccamela [28] proposed broadcasting
algorithms for the (iterated) line digraph of a regular digraph D based on a
broadcasting protocol for D.
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11.2.5 Cycles and Trails

Aigner [1] was the first to notice the natural relation between Euler trails in
a digraph and Hamiltonian cycles in its line digraph.

Theorem 11.2.28 ([1]) Let D be a directed pseudograph without isolated ver-
tices. Then, L(D) is Hamiltonian if and only if D is Eulerian.

The well-known characterization of Eulerian directed pseudographs and
the definition of line digraphs lead to the following characterization of Eule-
rian line digraphs.

Theorem 11.2.29 Let D be a strongly connected directed pseudograph. Then
L(D) is Eulerian if and only if d−

D(u) = d+D(v) for each arc uv of D.

For line graphs of strongly connected regular directed pseudographs,
Aardenne-Ehrenfest and de Bruijn [150] determined the number of Euler
trails contained, a result that can also be derived from Corollary 11.2.24.

Theorem 11.2.30 ([150]) Let D be a strongly connected d-regular directed
pseudograph of order n. Then, the number of Euler trails of L(D) is

d−1(d!)n(d−1) · t,

where t is the number of Euler trails of D.

Hasunuma and Otani [86] noted the following lower bound on the number
of arc-disjoint Hamiltonian cycles in a regular line digraph.

Theorem 11.2.31 ([86]) Let D be a strongly connected d-regular directed
pseudograph without parallel arcs. Then there are �d/2� arc-disjoint Hamil-
tonian cycles in L(D).

As a generalization of pancyclicity (i.e. containing a cycle of every possible
length), Imori, Matsumoto and Yamada [96] introduced the similar property
of pancircularity. A directed pseudograph D = (V,A) is called pancircular
if it contains closed trails of length � for all 3 ≤ � ≤ |A|. As a first obvious
result, they noted the following consequence of the fact that a cycle in L(D)
corresponds to a trail in D.

Proposition 11.2.32 ([96]) A directed pseudograph is pancircular if and only
if its line digraph is pancyclic.

For regular directed pseudographs, they gave a stronger result.

Theorem 11.2.33 ([96]) If a regular directed pseudograph is pancircular,
then its line digraph is pancircular.

Note that pancyclicity is not a sufficient condition in Theorem 11.2.33.
Furthermore, it can be iterated (see Corollary 11.3.15).
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11.2.6 NP-Complete Problems for Line-Digraphs

The following results on NP-completeness were published by Gavril [72]. He
proved that several graph problems that are known to be NP-complete on
general (di)graphs (see, e.g., [98]), are still NP-complete when restricted to
line digraphs. The considered problems are the following.

Simple max cut Parameter: k
Input: An undirected graph G = (V,E) and a positive integer k.
Question: Does there exist a set of vertices S ⊆ V such that there are
at least k edges between S and V \ S in G?

Independent set Parameter: k
Input: A digraph D = (V,A) and a positive integer k.
Question: Is there a set of vertices S ⊆ V of size k such that no vertex
in S dominates any other vertex in S?

vertex cover Parameter: k
Input: A digraph D = (V,A) and a positive integer k.
Question: Is there a set of vertices S ⊆ V of size at most k such that
every vertex not in S either dominates or is dominated by a vertex in S?

Feedback vertex set Parameter: k
Input: A digraph D = (V,A) and a positive integer k.
Question: Is there a set of vertices S ⊆ V of size at most k such that
D − S is acyclic?

Feedback arc set Parameter: k
Input: A digraph D = (V,A) and a positive integer k.
Question: Is there a set of arcs F ⊆ A of size at most k such that D−F
is acyclic?

The reductions used below are partially based on private communication
between Gavril and Knuth.

Lemma 11.2.34 ([72]) Simple Max Cut is reducible to Independent Set

for line digraphs.

Proof: Given an undirected graph G = (V,E) and a positive integer k, we
consider the complete biorientation D =

↔
G of G obtained by replacing each

edge {x, y} of G with the pair xy, yx of arcs. Now, for a cut (S, V \S) of size
at least k of G, the arc set {(x, y) | x ∈ S, y ∈ V \S} is an independent vertex
set of size at least k in L(D). Conversely, for an independent vertex set F
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of order k of L(D), let S = {x ∈ V | (x, y) ∈ F}. Since F is independent in
L(D), y ∈ V \ S for all (x, y) ∈ F and thus, (S, V \ S) is a cut of size at least
k of G. 	


Lemma 11.2.35 ([72]) Independent Set for line digraphs is reducible to
Vertex Cover for line digraphs.

Proof: A set of vertices is independent if and only if its complement is a
vertex cover. 	


Lemma 11.2.36 ([72]) Feedback Vertex Set (FVS) for line digraphs is
reducible to Feedback Arc Set (FAS) for line digraphs.

Proof: Let D = (V,A) be a line digraph. By Theorem 11.2.3, there exist two
partitions {Ai}i∈I and {Bi}i∈I of V such that A = ∪i∈IAi×Bi. We define the
digraph D′ = (V ×{0, 1}, A′) through the partitions {A′

i}i∈I′ and {B′
i}i∈I′ of

V ′, where I ′ = I ∪ V , A′
i = {(x, 1) | x ∈ Ai}, Bi = {(y, 0) | y ∈ Bi} for i ∈ I

and A′
i = {(i, 0)}, B′

i = {(i, 1)} for i ∈ V , and the arc set A′ = ∪i∈I′A′
i × B′

i.
Obviously, D′ is also a line digraph. Furthermore, a feedback vertex set S of D
implies that {((x, 0), (x, 1)) | x ∈ S} is a feedback arc set of D′. Conversely,
a feedback arc set S of D′ implies that {y ∈ V | ((x, i), (y, j)) ∈ S} is a
feedback vertex set of D. 	


Lemma 11.2.37 ([72]) Feedback Arc Set (FAS) is reducible to Feed-

back Vertex Set (FVS) for line digraphs.

Proof: It is easy to see that an arc set of a digraph is a feedback arc set if
and only if it is a feedback vertex set of its line digraph. 	


Summarizing the discussion above, we have shown the following.

Theorem 11.2.38 ([72]) Independent Set, Vertex Cover, Feedback
Vertex Set, Feedback Arc Set are NP-complete for line digraphs.

Syslo [146] showed that the Travelling Salesman Problem (TSP) –
the problem of finding a minimum weight Hamiltonian cycle in a weighted
digraph – notorious for being NP-complete in the general case, is solvable
in polynomial time in terms of the size of the digraph, for line digraphs with
constant arc weights.

By Theorem 11.2.3, we know that line digraphs can be recognized in
polynomial time. In contrast, the problem of recognizing underlying graphs of
line digraphs is NP-complete, as Chvátal and Ebenegger [41] proved. Prisner
[130] qualified the result by giving a polynomial-time algorithm to recognize
underlying graphs of line digraphs with minimum semi-degree at least 2.

Poljak and Rödl [129] found that the problem of determining the chro-
matic number of a line digraph is NP-complete.
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11.2.7 Independence Number

Since the determination of the independence number of line digraphs is NP-
complete by Theorem 11.2.38, Lichiardopol [112] searched for and found an
upper bound for the independence number of regular line digraphs.

Proposition 11.2.39 ([112]) Let D be a d-regular directed pseudograph with-
out parallel arcs, d ≥ 2. Then,

α(L(D)) ≤ |V (L(D))|
2

.

He then went on to prove that the ratio can be obtained asymptotically for
any regular line digraph, by iterated application of the line digraph operator
(see Theorem 11.3.16).

11.2.8 Chromatic Number

As we have seen in Subsection 11.2.6, the exact determination of the chro-
matic number of a line digraph is NP-complete. However, Harner and En-
tringer [84] gave bounds on the chromatic number of the line digraph of a
digraph D in terms of the chromatic number χ(D) of D.

Theorem 11.2.40 ([84]) Let D be a digraph. Then,

min{t | χ(D) ≤ 2t} ≤ χ(L(D)) ≤ min{t | χ(D) ≤
(

t

� t
2�

)
},

where the lower bound is sharp.

Iterated application of the line digraph operator eventually leads to a 3-
colourable digraph (see Corollary 11.3.18). For more on the chromatic number
of certain line digraphs, see the work of Ochem, Pinlou and Sopena [123, 124,
127, 128].

11.3 Iterated Line Digraphs

Since the 1980s, interconnection networks have attracted more and more at-
tention. In their design, for varying technical reasons, it is interesting to find
digraphs with certain attributes such as bounded maximum degree, small
diameter and good connectivity. Early on, iterated line digraphs were recog-
nized as a potential source to obtain digraphs of large order but fixed degree
and diameter that also allow for easy routing, as Fiol, Yebra and Alegre [63]
proved.

Iterated line digraphs are, as their name suggests, defined recursively.
For some directed pseudograph D, the first-order line digraph L1(D) of
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D is the line digraph of D. For an integer k ≥ 1, the (k + 1)th-order line
digraph Lk+1(D) of D is defined as the line digraph of Lk(D). A directed
pseudograph is called a kth-order line digraph if it is the kth-order line
digraph of some directed pseudograph and it is called an iterated line digraph
if it is a kth-order line digraph for some integer k ≥ 1.

It is not difficult to prove by induction that Lk(D) is isomorphic to the
digraph Q whose vertex set consists of directed walks of D of length k and
a vertex v0v1 . . . vk (which is a directed walk in D) dominates the vertex
v1v2 . . . vkvk+1 for every vk+1 ∈ V (D) such that vkvk+1 ∈ A(D). This fact
allows for a new perspective that can be useful in proofs and is, for example,
the basis for Fiol, Yebra and Alegre’s [63] routing algorithm.

While Theorem 11.2.3 provides several concise characterizations of (first-
order) line digraphs, the problem is more complicated for higher order iter-
ated line digraphs. Hemminger [87] generalized condition (iii) from Theorem
11.2.3, which he called the (first) Heuchenne condition, in the following
way. For a positive integer k, a directed pseudograph D satisfies the kth
Heuchenne condition if, for any vertices x, y, u, v ∈ V (D) such that there
is a directed walk of length k from x to u, from y to u and from y to v,
there is also a directed walk of length k from x to v. He then proposed that
a directed pseudograph without multiple arcs is a kth-order line digraph if
and only if it satisfies the first k Heuchenne conditions. He did not prove
his statement, as, at first glance, it seemed to be obvious. Like several other
such results on line digraphs, it turned out to be false. While it is true that
it is a necessary condition, it is not sufficient, as Beineke and Zamfirescu [23]
proved by constructing counterexamples.

They then set out to find further conditions to add to the kth Heuchenne
condition to obtain a characterization of iterated line digraphs. With this ap-
proach, they were able to characterize the line digraphs that also are second-
order line digraphs. Sadly, even for k = 2, the necessary conditions are much
more complicated than for first-order line digraphs, which is why we will
not consider them here in detail and why it seems unlikely that a charac-
terization of kth-order line digraphs for k > 2 can be derived in a similar
manner. This assumption is furthermore backed by an attempt by Beineke
and Zamfirescu [23] to find a characterization of second-order line digraphs
via forbidden subgraphs comparable to Corollary 11.2.4, which, again, needed
rather complicated additional conditions that could not be stated in the form
of forbidden subgraphs. Still, the problem of characterizing higher order it-
erated line digraphs, probably by different means, remains open.

To be able to give any sort of general characterization of higher order
iterated line digraphs, in the following theorem, Beineke and Zamfirescu [23]
considered only a restricted set of directed pseudographs. Their proof of the
result given below is a nice example of the natural idea of using induction on
the order of the iterated line digraph.
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Theorem 11.3.1 ([23]) Let D be a directed pseudograph without multiple
arcs and vertices of in-degree or out-degree 0. Then D is a kth-order line
digraph if and only if, for i = 1, . . . , k, the following conditions are satisfied.

(1) For any pair of vertices x, y ∈ V (D), there is at most one directed walk
of length i from x to y.

(2) D satisfies the ith Heuchenne condition.

Proof: We establish the sufficiency of these conditions using induction on k.
The result holds for k = 1, and we assume it holds for k = p. Assume that D
satisfies the hypotheses for k = p + 1. Then, by induction hypothesis, D is a
line digraph. Let Q be a directed pseudograph such that D = L(Q). Since the
removal of isolated vertices in Q does not affect L(Q), we may assume that Q
contains no isolated vertices. Suppose that there is a vertex x of in-degree 0
in Q. Since x is not isolated, there is an arc a ∈ A(Q) with x as its tail. Now
a, as a vertex of D = L(Q), has in-degree 0, a contradiction. Analogously, Q
does not contain vertices of out-degree 0.

Suppose now that, for some i ≤ p and a pair of vertices x, y ∈ V (Q), there
are two distinct directed walks P1 and P2 of length i from x to y. As there is
at least one arc a ∈ A(Q) whose head coincides with x and one arc b ∈ A(Q)
whose tail coincides with y, P1 and P2 can be extended to distinct directed
walks P ′

1 and P ′
2, respectively, of length i + 2, by appending both a and b.

Consequently, P ′
1 and P ′

2 imply distinct directed walks of length i+1 ≤ p+1
from a to b in D = L(Q), a contradiction to the choice of D.

Finally, let x, y, u, v ∈ V (Q) be vertices such that there are directed walks
of length i from x to u, from y to u and from y to v. Again, we find arcs
a, b, c, d ∈ A(Q) such that the head a coincides with x, the head of b coincides
with y, the tail of c coincides with u and the tail of d coincides with v. By
appending these arcs to the appropriate directed walks of length i in Q, we
find directed walks of length i + 1 ≤ p + 1 from a to c, from b to c and from
b to d in D = L(Q). Since D satisfies the (p + 1)th Heuchenne condition, we
also obtain a directed walk of length i + 1 from a to d in D = L(Q). By the
definition of the line digraph operator, a and d, said walk implies a directed
walk of length i from x to v in Q and hence, Q satisfies the ith Heuchenne
condition.

All in all, by induction hypothesis, Q is a pth-order line digraph and thus,
D = L(Q) is a (p + 1)th-order line digraph.

The proof of necessity can be derived from Beineke and Zamfirescu’s proof
[23] of their general characterization of second-order line digraphs. 	


Using what they called coreflexive vertex sets, whose definition is tightly
linked to the (iterated) Heuchenne condition, Liu and West [113] gave similar
characterizations of (iterated) line digraphs, viewed from a new perspective.

Harary and Norman [82] considered the characteristics of high order iter-
ated line digraphs.
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Theorem 11.3.2 ([82]) Let D be a directed pseudograph.

(i) Lk(D) = ∅ for sufficiently large k if and only if D contains no directed
cycles.

(ii) The order of Lk(D) becomes arbitrarily large for sufficiently large k, if
and only if D contains two directed cycles that are connected by a directed
path.

(iii) If D contains two cycles, which are not connected by a directed path,
then Lk(D) is disconnected for sufficiently large k.

As a corollary, Hemminger and Beineke [88] noted the following.

Corollary 11.3.3 ([88]) If D is a directed pseudograph such that D ∼= Lk(D)
for some integer k, then D is a directed cycle and particularly D ∼= L(D).

11.3.1 Connectivity

As mentioned in the previous section, refined connectivity concepts, as a
measure of reliability, are of particular importance for interconnection net-
works and have therefore been studied for line digraphs, in particular. The
well-known fact that κ(D) ≤ λ(D) ≤ δ0(D) for any digraph D, for exam-
ple, motivated the following definition. A strongly connected digraph D is
maximally connected if κ(D) = λ(D) = δ0(D). We have already seen in
the last section that the line digraph operator does not decrease connectivity
and therefore, line digraphs of maximally connected digraphs are again max-
imally connected. Fàbrega and Fiol [60] proved a stronger result for iterated
line digraphs, using the following graph invariant. For a given digraph D, let
l(D) be the largest integer such that, for any two (not necessarily distinct)
vertices x, y ∈ V (D), (a) if d(x, y) < l(D), the shortest path from x to y is
unique and there is no such path of length d(x, y) + 1; (b) if d(x, y) = l(D),
there is only one shortest path from x to y. As a corollary of a more general
result, they found that the kth-order line graph of any digraph with minimum
semi-degree at least 2 is maximally connected, for k sufficiently large.

Theorem 11.3.4 ([60]) Let D be a digraph with δ0(D) > 1. Then,

(a) λ(Lk(D)) = δ0(D) if k ≥ diam(D) − 2l(D);
(b) κ(Lk(D)) = δ0(D) if k ≥ diam(D) − 2l(D) + 1.

Fàbrega and Fiol [60] also proved a similar result on super connectivity.

Theorem 11.3.5 ([60]) Let D be a digraph with δ0(D) ≥ 3. Then,

(a) Lk(D) is super arc-connected if k ≥ diam(D) − 2l(D) + 1;
(b) Lk(D) is super connected if k ≥ diam(D) − 2l(D) + 2.

As a corollary of Theorem 11.2.12 and Corollary 11.2.13, Zhang, Liu and
Meng [171] obtained a related result.
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Corollary 11.3.6 ([171]) Let D be a strongly connected directed pseudograph
without parallel arcs with δ0(D) ≥ 3. If D is super arc-connected, then Lk(D)
is super connected and super arc-connected for any positive integer k.

11.3.2 Diameter

As previously indicated, Theorem 11.2.14 directly implies an iterated version
of the result.

Corollary 11.3.7 Let D be a strongly connected directed pseudograph that is
not a cycle. Then, for any positive integer k,

diam(Lk(D)) = diam(D) + k.

11.3.3 Branchings

For the number IB(D) of in-branchings of a regular directed pseudograph D,
Zhang, Zhang and Huang [170] gave the following formula.

Theorem 11.3.8 ([170]) Let D be a d-regular digraph of order n. Then

IB(Lk(D)) = d(d
k−1)n · IB(D).

Since line digraphs of d-regular directed pseudographs of order n are d-
regular directed pseudographs of order dkn, Theorem 11.3.8 is also an easy
corollary of Corollary 11.2.24. Levine [108] was able to extend Corollary
11.2.24 to iterated line digraphs.

Corollary 11.3.9 ([108]) Let D = (V,A) be a directed pseudograph with
δ−(D) ≥ 1. Then,

IB(Lk(D)) = IB(D) ·
∏

v∈V

d+(v)p(k,v)−1,

where p(k, v) is the number of directed walks of length k that end in v.

Xu, Zhang, Ning and Li [163] extended Levine’s results to directed pseu-
dographs without isolated vertices.

As in the previous section, Hasunuma and Nagamochi [85] studied in-
dependent out-branchings of iterated line digraphs. Their proof of Corollary
11.2.27 can be applied iteratively to obtain a corresponding result on iterated
line digraphs. But they were able to prove more.
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Theorem 11.3.10 ([85]) Let D be an l-strong directed pseudograph without
parallel arcs such that l < δ0(D). Let c be an upper bound on the depths
of l arc-disjoint out-branchings rooted at any vertex of D. Then there are l
independent out-branchings rooted at any vertex of depths at most k+log2 k+
c+1 of Lk(D) such that any vertex except for the root is contained in at most
one tree as an internal vertex.

Theorem 11.3.11 ([85]) Let D be an l-strong directed pseudograph without
parallel arcs such that l = δ0(D) ≥ 3. Let c be an upper bound on the depths of
l arc-disjoint out-branchings rooted at any vertex of D. Then there are l inde-
pendent out-branchings rooted at any vertex of depths at most k+log√

3 k+c+1
of Lk(D).

11.3.4 (h, p)-Domination Number

Another concept used in fault-tolerance analysis of interconnection networks
is (h, p)-domination. Let D = (V,A) be a directed pseudograph and S ⊂ V .
Then S is called an (h, p)-domination set if D[S] is h-strong and |({x} ∪
N−(x)) ∩ S| ≥ p and |({x} ∪ N+(x)) ∩ S| ≥ p for every vertex x ∈ V . The
(h, p)-domination number γh,p(D) of D is the minimum cardinality of an
(h, p)-domination set of D. (h, p)-domination has been studied for iterated
line digraphs by Hasunuma and Otani [86]. Particularly interesting are their
results on regular iterated line digraphs, which generalized several results for
popular interconnection networks.

Theorem 11.3.12 ([86]) Let D be a strong d-regular directed pseudograph
without parallel arcs and 1 ≤ p < d. Then,

γh,p(Lk(D)) = pdk−1|V (D)|

for all k ≥ 2 and 0 ≤ h ≤ min{p, �d/2�}.

11.3.5 Cycles and Trails

Using Theorem 11.3.8, Zhang, Zhang and Huang [170] were able to calculate
the number of Euler trails of regular iterated line digraphs.

Theorem 11.3.13 ([170]) Let D be a strongly connected d-regular digraph
of order n. Then, the number of Euler trails of Lk(D) is

(d!)ndk

ndk+n
· b,

where b is the number of in-branchings of D.



11. Miscellaneous Digraph Classes 539

By iteratively applying Theorem 11.2.30, we obtain the following corollary
of it.

Corollary 11.3.14 Let D be a strongly connected d-regular directed pseudo-
graph of order n. Then, the number of Euler trails of Lk(D) is

d−k(d!)(d
k−1)n · t,

where t is the number of Euler trails of D.

Analogous iteration of Proposition 11.2.32 and Theorem 11.2.33 produces
the following corollary.

Corollary 11.3.15 ([96]) If a regular directed pseudograph D is pancircular,
then Lk(D) is pancyclic and pancircular for any positive integer k.

11.3.6 Independence Number

In addition to the upper bound in Proposition 11.2.39, Lichiardopol [112] also
gave a (far more complicated) lower bound for the independence number of
regular iterated line digraphs, which implies that approximately half of the
vertices of a regular kth-order line digraph are contained in an independent
set for k large enough.

Theorem 11.3.16 ([112]) Let D be a d-regular directed pseudograph without
parallel arcs, d ≥ 2. Then,

lim
k→∞

α(Lk(D))
|V (Lk(D))| =

1
2
.

11.3.7 Chromatic Number

Duffus, Lefmann and Rödl [58] noted that the second-order line digraph of
a 4-colourable digraph is 3-colourable, a result that can be generalized as
follows.

Proposition 11.3.17 Let D be a digraph with χ(D) ≥ 4. Then,

χ(L2(D)) < χ(D).

Proof: Let c : V (D) → {1, . . . , χ(D)} be a proper colouring of D. We
then define a colouring c′ : V (L2(D)) → {1, . . . , χ(D) − 1} of L2(D). For
((u, v)(v, w)) ∈ V (L2(D)), let c′(((u, v)(v, w))) = c(v), if c(v) �= χ(D), and
c′(((u, v)(v, w))) = i for an arbitrary i ∈ {1, . . . , χ(D)} \ {c(u), c(v), c(w)},
otherwise. Suppose two adjacent vertices ((u, v)(v, w)) and ((v, w)(w, x))
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of L2(D) receive the same colour. Since v and w are adjacent in D, we
have c(v) �= c(w). Therefore, without loss of generality, we may assume
that c(v) �= χ(D) = c(w). Consequently, c′(((u, v)(v, w))) = c(v) and
c′(((v, w)(w, x))) ∈ {1, . . . , χ(D)} \ {c(v), c(w), c(x)}, a contradiction. Hence,
c′ is a proper colouring of L2(D). 	


Proposition 11.3.17 implies that iterated lined digraphs of any digraph
eventually become 3-colourable, a fact recognized by Prisner [131].

Corollary 11.3.18 ([131]) Let D be a digraph. Then χ(Lk(D)) ≤ 3, for k
sufficiently large.

For a digraph with large chromatic number, by Theorem 11.2.40, the
chromatic number of its iterated line digraphs decrease much faster than
suggested by Proposition 11.3.17.

11.4 de Bruijn Digraphs

As previously mentioned, the line digraph operator has been found very use-
ful in the design of interconnection networks because of its specific properties,
which are particularly suitable for the following problem: Given positive in-
tegers n and d, construct a digraph D of order n and maximum out-degree
at most d such that the diameter diam(D) is as small as possible, while the
vertex-strong connectivity κ(D) is as large as possible. In general, such 2-
objective optimization problems do not necessarily have admissible solutions.
In this case, however, solutions which (almost) maximize/minimize both ob-
jective functions exist and can be constructed via the line digraph operator.
They are presented in this and the following section.

For positive integers d and t, the de Bruijn digraph [48] DB(d, t) can
be defined as the directed pseudograph whose vertices are all words of length
t from an alphabet of d letters. There is an arc from a vertex x to a vertex y
if and only if the last t− 1 letters of x coincide with the first t− 1 letters of y
(see Figure 11.4). This definition bears a striking similarity to the alternative
definition of iterated line digraphs we gave in the previous section. In fact, if
K◦

d is the complete digraph on d vertices with a loop at each vertex, then

DB(d, t) ∼= Lt−1(K◦
d).

Therefore, all results on iterated line digraphs can be applied to de Bruijn
digraphs and many of them have been proven for exactly that purpose. The
following proposition is a collection of obvious consequences.

Proposition 11.4.1 Let d and t be positive integers. Then the de Bruijn
digraph DB(d, t):

(a) has dt vertices;
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(b) has in- and out-degree d for every vertex (counting loops);
(c) has diameter t;
(d) has no parallel arcs;
(e) has a loop at exactly those vertices represented by repetitions of a single

letter;
(f) has κ(DB(d, t)) = λ(DB(d, t)) = d − 1.

0

1

(a) DB(2, 1) = K◦
2

00

01

11

10

(b) DB(2, 2) = L(K◦
2 )

000

001

011

111

110

100010

101

(c) DB(2, 3) = L2(K◦
2 )

Figure 11.4 Construction of de Bruijn digraphs via the line digraph operator.

11.4.1 Connectivity

As, in Proposition 11.4.1, we have seen that κ(DB(d, t)) = λ(DB(d, t)) =
d − 1, de Bruijn digraphs are almost maximally connected. The connectivity
is obviously best possible for d-regular digraphs containing a loop.

Furthermore, Soneoka [143] proved that de Bruijn digraphs are super arc-
connected by relating the order, degrees and diameter of a de Bruijn digraph.

Theorem 11.4.2 ([143]) DB(d, t) is super arc-connected for all integers
d ≥ 2 and t ≥ 1.
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Zhang, Liu and Meng [171] obtained the same from a result on iterated
line digraphs (see Corollary 11.3.6). In the same manner, they were able to
prove the super connectivity of de Bruijn digraphs.

Corollary 11.4.3 ([171]) DB(d, t) is super connected for all integers d ≥ 2
and t ≥ 1.

Lü and Xu [115] and Cheng, Du, Min, Ngo, Ruan, Sun and Wu [38]
obtained the result as a corollary of their own results on iterated line digraphs.

11.4.2 Diameter

By Proposition 11.4.1, we know that diam(DB(d, t)) = t. The well-known
Moore-bound states for any strongly connected digraph on n vertices with
maximum out-degree d and diameter t that

n ≤ 1 + d + d2 + . . . + dt,

where Bridges and Toueg [34] proved that equality is not attained unless
t = 1 or d = 1. The corresponding values for de Bruijn digraphs given in
Proposition 11.4.1 now imply the following.

Proposition 11.4.4 For all positive integers d and t, the de Bruijn digraph
DB(d, t) achieves the minimum value t of diameter for directed pseudographs
of order dt and maximum out-degree at most d.

Furthermore, Imase, Soneoka and Okada [94] noted that the diameter of
de Bruijn digraphs is fairly robust against deletion of vertices and/or arcs.
They proved that, in DB(d, t), the diameter increases by at most one if fewer
than d − 1 vertices or arcs are deleted. To prove this result we will use the
following lemma.

Lemma 11.4.5 ([16]) Let d and t be positive integers and let x and y be
distinct vertices of DB(d, t) such that x → y. Then, there are d−2 internally
disjoint (x, y)-paths different from xy, each of length at most t + 1.

Proof: Let x = (x1, x2, . . . , xt) and y = (x2, . . . , xt, yt). Consider the
walk Wk given by Wk = (x1, x2, . . . , xt), (x2, . . . , xt, k), (x3, . . . , xt, k, x2),. . .,
(k, x2, . . . , xt), (x2, . . . , xt, yt), where k �= x1, yt. For each k, every internal ver-
tex of Wk has coordinates forming the same multiset Mk = {x2, . . . , xt, k}.
Since for different k, the multisets Mk are different, the walks Wk are in-
ternally disjoint. Each of these walks is of length t + 1. Therefore, DB(d, t)
contains d − 2 internally disjoint (x, y)-paths Pk with A(Pk) ⊆ A(Wk). Since
k �= x1, yt, we may form the paths Pk such that none of them coincides with
xy. 	


The result, due to Imase, Soneoka and Okada [94], now states the
following.
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Theorem 11.4.6 [94] For all positive integers d and t, from any vertex to
any other in DB(d, t), there are at least d − 1 internally-disjoint paths, one
of which has length at most t, and d − 2 have length at most t + 1.

Proof: By induction on t ≥ 1. Clearly, the claim holds for t = 1 since
DB(d, 1) contains, as spanning subdigraph,

↔
Kd. For t ≥ 2, we know that

DB(d, t) = L(DB(d, t − 1)). (11.1)

Let x, y be a pair of distinct vertices in DB(d, t) and let ex, ey be the arcs
of DB(d, t−1) corresponding to vertices x, y due to (11.1). Let u be the head
of ex and let v be the tail of ey.

If u �= v, by the induction hypothesis, DB(d, t − 1) has d − 1 internally
disjoint (u, v)-paths, one of length at most t − 1 and the others of length at
most t. The arcs of these paths together with arcs ex and ey correspond to
d − 1 internally disjoint (x, y)-paths in DB(d, t), one of length at most t and
the others of length at most t + 1.

If u = v, we have x → y in DB(d, t−1). It suffices to apply Lemma 11.4.5
to see that there are d − 1 internally disjoint (x, y)-paths in DB(d, t), one of
length one and the others of length at most t + 1. 	


11.4.3 Branchings

Zhang and Lin [169] calculated the total number of in-branchings of de Bruijn
digraphs.

Theorem 11.4.7 [169] For all positive integers d and t, the number of in-
branchings of DB(d, t) is

ddt−1.

Bermond and Fraigniaud [26] and Ge and Hakimi [73] both found d − 1
independent out-branchings rooted at any vertex of DB(d, t), while the latter
group gave the better estimation of their depths.

Theorem 11.4.8 [73] For all positive integers d and t, in DB(d, t), there
are d − 1 independent out-branchings rooted at any vertex of depths at most
�3t/2�.

As a corollary of Theorem 11.3.10, Hasunuma and Nagamochi [85] ob-
tained the following result.

Corollary 11.4.9 [85] For all positive integers d and t ≥ 2, in DB(d, t),
there are d − 1 independent out-branchings rooted at any vertex of depths at
most t + log2(t − 1) + 1 such that any vertex except for the root is contained
in at most one tree as an internal vertex.
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11.4.4 (h, p)-Domination Number

As an application of Theorem 11.3.12, Hasunuma and Otani [86] calculated
the (h, p)-domination number for certain de Bruijn digraphs.

Theorem 11.4.10 [86] Let d and p be integers such that d ≥ 2 and
1 ≤ p < d. Then,

γh,p(DB(d, t)) = pdt−1

for all t ≥ 3 and 0 ≤ h ≤ min{p, �d/2�}.

11.4.5 Cycles and Trails

Imori, Matsumoto and Yamada [96] obtained the pancyclicity and pancir-
cularity of de Bruijn digraphs as a corollary of their work on iterated line
digraphs (see Corollary 11.3.15).

Corollary 11.4.11 [96] For all positive integers d and t, DB(d, t) is pan-
cyclic and pancircular.

Due to Zhang and Lin [169] and, via different method, Zhang, Zhang and
Huang [170], we know the exact number of Euler trails contained in de Bruijn
digraphs.

Theorem 11.4.12 [169] For all positive integers d and t, the number of Euler
trails of DB(d, t) is

(d!)d
t

d−t−1.

Generalizations of de Bruijn digraphs such as generalized de Bruijn
digraphs, introduced independently by Imase and Itoh [93] and Reddy,
Pradhan and Kuhl [134], and consecutive-d digraphs suggested by Du,
Hsu and Hwang [50] share many of their desirable properties (see, e.g.,
[36, 49, 53, 54, 95]).

11.5 Kautz Digraphs

For positive integers d and t, the Kautz digraph [99] DK(d, t) can be ob-
tained from the de Bruijn digraph DB(d+1, t) by deleting all vertices repre-
senting words containing two consecutive identical letters (see Figure 11.5).
In particular, Kautz digraphs do not contain loops and are therefore actual
digraphs. Fiol, Yebra and Alegre [63] noted that Kautz digraphs, just as de
Bruijn digraphs, can be described as iterated line digraphs,

DK(d, t) ∼= Lt−1(
↔
Kd+1),
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where
↔
Kd+1 is the complete digraph on d + 1 vertices. And just as with de

Bruijn digraphs, this fact is a widely-used tool in proofs on Kautz digraphs.
For example, the following proposition is easily deduced.

Proposition 11.5.1 Let d and t be positive integers. Then the Kautz digraph
DK(d, t):

(a) has dt + dt−1 vertices;
(b) has in- and out-degree d for every vertex;
(c) has diameter t.

0

12

(a) DK(2, 1) =
↔
K3

0102

10

12

20

21

(b) DK(2, 2) = L1(
↔
K3)

00 0102

10

11

12

20

21

22

(c) DB(3, 2) = L1(
↔
K◦

3 )

Figure 11.5 Construction of a Kautz digraph via the line digraph operator or from
a de Bruijn digraph.

11.5.1 Connectivity

Reddy, Kuhl, Hosseini and Lee [133], as well as Fàbrega, Fiol and Yebra
[61] and Imase, Soneoka and Okada [95] independently noted that Kautz
digraphs are maximally connected, which is implied by corresponding results
on iterated line digraphs.
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Theorem 11.5.2 ([133]) DK(d, t) is maximally connected, i.e. κ(DK(d, t)) =
d.

In a sense, this result suggests that Kautz digraphs are better than de
Bruijn digraphs.

Fàbrega and Fiol [60] obtained the super connectivity and super arc-
connectivity of Kautz digraphs as a corollary of their more general results on
iterated line digraphs (see Theorem 11.3.5).

Corollary 11.5.3 ([60]) DK(d, t) is super connected and super arc-connected
for all integers d ≥ 3 and t ≥ 2.

Soneoka [143] independently proved the super arc-connectivity of Kautz
digraphs by relating the order, degrees and diameter of a Kautz digraph.
Furthermore, Zhang, Liu and Meng [171] and Lü and Xu [115] realized that
super connectivity and super arc-connectivity of Kautz digraphs follows from
their respective results on iterated line digraphs.

11.5.2 Diameter

By the same reasoning as for Proposition 11.4.4, Reddy, Kuhl, Hosseini and
Lee [133] noted that the diameter of Kautz digraphs is minimum for digraphs
of their order and degree, making them a solution of the optimization problem
mentioned at the beginning of the previous section.

Proposition 11.5.4 For all positive integers d and t, the Kautz digraph
DK(d, t) achieves the minimum value t of diameter for directed pseudographs
of order dt + dt−1 and maximum out-degree at most d.

Du, Hsu and Lyuu [52] improved the results on diameter vulnerabilities
due to Reddy, Kuhl, Hosseini and Lee [133] and Imase, Soneoka and Okada
[94].

Theorem 11.5.5 ([52]) For all positive integers d and t, from any vertex to
any other in DK(d, t), there are at least d internally-disjoint paths, one of
which has length at most t, d−2 have length at most t+1 and one has length
at most t + 2.

Furthermore, they determined that, in the worst case, the diameter of
DK(d, t) increases by 1, if fewer than d − 1 vertices are deleted, and by 2, if
d − 1 vertices are deleted, thereby proving their result to be best possible.

11.5.3 Branchings

As an application of Theorem 11.3.13, Zhang, Zhang and Huang [170] gave
the number of in-branchings of a Kautz digraph.
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Corollary 11.5.6 ([170]) For all positive integers d and t, the number of
in-branchings of DK(d, t) is

d(d+1)dt−1−d−1(d + 1)d.

Just as for de Bruijn digraphs, Ge and Hakimi [73] found the maximum
possible number, d, of independent out-branchings rooted at any vertex of
DK(d, t).

Theorem 11.5.7 ([73]) For all positive integers d and t, in DK(d, t), there
are d independent out-branchings rooted at any vertex of depths at most
�3t/2� + 1.

As a corollary of Theorem 11.3.11, Hasunuma and Nagamochi [85] ob-
tained the following result.

Corollary 11.5.8 ([85]) For all positive integers d and t ≥ 2, in DK(d, t),
there are d independent out-branchings rooted at any vertex of depths at most
t + logb t + 1, where b = (1 +

√
5)/2, if d = 2, and b =

√
3, if d ≥ 3.

11.5.4 (h, p)-Domination Number

Hasunuma and Otani [86] used Theorem 11.3.12 to give the (h, p)-domination
number for certain Kautz digraphs.

Corollary 11.5.9 ([86]) Let d and p be integers such that d ≥ 2 and 1 ≤ p <
d. Then,

γh,p(DK(d, t)) = p(dt−1 + dt−2)

for all t ≥ 3 and 0 ≤ h ≤ min{p, �d/2�}.

11.5.5 Cycles and Trails

As a consequence of their work on iterated line digraphs, Imori, Matsumoto
and Yamada [96] obtained the pancyclicity and pancircularity of Kautz di-
graphs.

Corollary 11.5.10 ([96]) For all positive integers d and t, DK(d, t) is pan-
cyclic and pancircular.

Zhang, Zhang and Huang [170] calculated the number of Euler trails of
Kautz digraphs.

Theorem 11.5.11 ([170]) For all positive integers d and t, the number of
Euler trails of DK(d, t) is

(d!)(d+1)dt−1
d−d−t(d + 1)d−1.
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Generalizations of Kautz digraphs such as Imase–Itoh digraphs, intro-
duced by Imase and Itoh [92], and consecutive-d digraphs suggested by
Du, Hsu and Hwang [50] share many of their desirable properties (see, e.g.,
[36, 49, 53, 54]).

11.6 Directed Cographs

A series-parallel partial order is a partially ordered set (X,≤) that can
be constructed from a single element using the series composition and
the parallel composition operation. For two disjoint series-parallel partial
orders (X1,≤) and (X2,≤), distinct elements x, y ∈ X1 ∪ X2 of the series
composition have the same order they have in X1 or X2, respectively, if they
are both from the same set, and x ≤ y, if x ∈ X1 and y ∈ X2. Elements
x, y ∈ X1 ∪ X2 of the parallel composition are comparable if and only if they
are both in X1 or both in X2, and then retain their corresponding order.

A series-parallel partial order digraph is a digraph whose vertex
set is a series-parallel partial order (V,≤) and x → y if and only if x �= y
and x ≤ y. More commonly, series-parallel partial orders are represented
by (vertex) series-parallel digraphs, which can be defined as exactly
those digraphs whose transitive closure is a series-parallel partial order di-
graph, i.e. x ≤ y, if and only if there is an (x, y)-path in the corresponding
series-parallel digraph. For some applications it might be desirable to use a
particularly sparse representation. A minimal series-parallel digraph is a
series-parallel digraph for which the removal of any arc alters its transitive clo-
sure. Valdes, Tarjan and Lawler [149] defined minimal series-parallel digraphs
recursively: The trivial digraph is minimal series-parallel. For two vertex-
disjoint minimal series-parallel digraphs D1 = (V1, A1) and D2 = (V2, A2),
P = (V1 ∪ V1, A1 ∪ A2) is a minimal series-parallel digraph. Furthermore, if
O1 ⊆ V1 is the set of vertices of out-degree zero in D1 and I2 ⊆ V2 is the set
of vertices of in-degree zero in D2, then S = (V1 ∪V1, A1 ∪A2 ∪ (O1 ×I2)) is a
minimal series-parallel digraph. Based on this definition, they defined series-
parallel digraphs as exactly those digraphs whose transitive closure equals
the transitive closure of a minimal series-parallel digraph.

Among other results, Valdes, Tarjan and Lawler [149] gave a forbidden
subdigraph characterization of series-parallel digraphs using the following
definition. A digraph is called N -free if it does not contain an induced sub-
digraph on four vertices {u, v, w, x} with the arc set {vw, uw, ux}.

Theorem 11.6.1 ([148, 149]) An acyclic digraph is series-parallel, if and
only if its transitive closure is N -free.

Note that the N -free property is fairly reminiscent of the Heuchenne con-
dition in the characterization of line digraphs (cf. Theorem 11.2.3 (iii)). In
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particular, Theorem 11.6.1 implies that transitive acyclic line digraphs are
series-parallel partial order digraphs.

Valdes, Tarjan and Lawler [149] also found a connection in the opposite
direction.

Theorem 11.6.2 ([149]) Every minimal series-parallel digraph is a line di-
graph.

In fact, they were able to characterize those directed pseudographs whose
line digraphs are minimal series-parallel digraphs, which they used in a linear-
time recognition algorithm for series-parallel digraphs.

For further results and applications, see, e.g., the work of Monma and
Sidney [119], Lawler [107], Baffi and Petreschi [11], Bertolazzi, Cohen, Di
Battista, Tamassia and Tollis [29], Rendl [135], Steiner [144] and Möhring
[117].

A cograph, short for complement-reducible graph, is an undirected
graph that, like series-parallel partial order digraphs, can be defined recur-
sively: The trivial graph is a cograph. The complement of a cograph is a
cograph. And finally, if G1 = (V1, E1) and G2 = (V2, E2) are vertex-disjoint
cographs, so is their disjoint union (V1∪V2, E1∪E2). There are several further
equivalent characterizations of cographs. Particularly, Jung [97] showed that
cographs are comparability graphs of series-parallel partial orders (X,≤), i.e.
the graph that contains an edge xy between distinct vertices x, y ∈ X if
and only if x ≤ y or y ≤ x. In other words, if we consider a graph to be a
symmetric digraph (i.e. each edge is represented by a directed 2-cycle), then
cographs can be defined as the family of digraphs that contains the trivial
digraph and is closed under the operations of disjoint union and series,
where, for h disjoint digraphs D1, . . . , Dh, the disjoint union of D1, . . . , Dh is
the digraph on the vertex set

⋃
1≤i≤h V (Di) and the arc set

⋃
1≤i≤h A(Di),

while the series composition of D1, . . . , Dh is obtained from the disjoint union
by adding all possible arcs between vertices of distinct Di.

Like series-parallel digraphs, cographs can be recognized in linear-time.
Corresponding algorithms have been found, e.g., by Corneil, Perl and Stewart
[42] and Bretscher, Corneil, Habib and Paul [33].

Finally, we arrive at the eponym of this section. Directed cographs
generalize both series parallel partial order digraphs and cographs, which is
obvious by their recursive definition: The trivial digraph is a directed co-
graph. Both the disjoint union and the series composition of disjoint di-
rected cographs are directed cographs. Additionally, the order composi-
tion of h disjoint digraphs D1, . . . , Dh, which is obtained from the disjoint
union by adding the arcs from vertices in Di to vertices in Dj if and only if
1 ≤ i < j ≤ h.

Consistent with the definition of symmetric digraphs, we call an arc
xy ∈ A(D) symmetric if yx ∈ A(D). Otherwise, we call it asymmetric.
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The symmetric part sym(D) of a digraph D is the spanning subdigraph
containing exactly the symmetric arcs of D. The asymmetric part asym(D)
is defined analogously.

Then, a result due to Bechet, de Groote and Retoré [22] implies that
the asymmetric part of a directed cograph is a series-parallel partial order
digraph and the symmetric part is a cograph. Furthermore, Crespelle and
Paul [43] noted that a forbidden subdigraph characterization can be derived
from a result due to Ehrenfeucht and Rozenberg [59].

Theorem 11.6.3 ([43]) A digraph is a directed cograph if and only if it does
not contain any of the (connected) digraphs depicted in Figure 11.6 as an
induced subdigraph.

Figure 11.6 Forbidden subdigraphs for directed cographs.

Consequently, the class of directed cographs is hereditary (that is, an in-
duced subdigraph of a directed cograph is a directed cograph) and closed
under complementation. Furthermore, by results due to Möhring and Rader-
macher [118], directed cographs have a unique representation as a modular
decomposition tree, also called a cotree. The leaves of the cotree are labelled
with the vertices of the directed cograph, while the inner nodes are labelled
with the respective operation (disjoint union, series, order) connecting its
children (see Figure 11.7).

Using the cotree representation, Crespelle and Paul [43] obtained an op-
timal algorithm for the Dynamic Recognition and Representation

Problem for directed cographs. The input of the problem is a directed co-
graph with its cotree representation and a series of modifications of the fol-
lowing form: adding/deleting a vertex and its incident arcs or adding/deleting
an arc or two symmetric arcs, where all modifications must be valid, i.e., a
vertex/arc to be deleted must exist, one to be added must not. If the resulting
digraph is again a directed cograph, the algorithm provides its representation,
if not, it provides a certificate of that fact, i.e. a forbidden subdigraph.
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x1 x2
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x5

x6

(a) directed cograph

series

d.union order

d.unionx1 x2 x3

x4 x5

x6

(b) corresponding cotree

Figure 11.7 Cotree representation of a directed cograph.

Theorem 11.6.4 ([43]) The Dynamic Recognition and Represen-

tation Problem for directed cographs is solvable in O(d) worst-case time
per update, where d is the number of arcs involved in the updating operation.
Moreover, if needed, a certificate that the modified digraph is not a directed
cograph is provided within the same time complexity.

For another problem that is solvable in polynomial time, we turn to Bang-
Jensen and Maddaloni [19], who considered the Weak k-linkage Problem

for directed cographs.

weak k-linkage
Input: A digraph D = (V,A) and not necessarily distinct vertices
s1, . . . , sk, t1, . . . , tk.
Question: Does D contain a weak-k-linkage from (s1, . . . , sk) to
(t1, . . . , tk)?

In fact, they proved that the weak k-linkage problem is solvable in
polynomial time for fixed k for totally Φ-decomposable digraphs, for certain
digraph classes Φ.

A digraph D is totally Φ-decomposable if either D ∈ Φ or D =
P [T1, . . . , Th] is composed of a digraph P ∈ Φ and pairwise vertex-disjoint
totally Φ-decomposable digraphs T1, . . . , Th. The recursive definition of to-
tally Φ-decomposable digraphs is valuable in the construction of polynomial
algorithms. Of course, the choice of the underlying digraph class Φ is im-
portant. It should be chosen large enough as to assure a rich class of totally
Φ-decomposable digraphs, while restricted enough to still allow for polyno-
mial algorithms for important problems in Φ itself.

One promising class, Φ1, was introduced by Bang-Jensen and Gutin [17],
who, among other results, proved that totally Φ1-decomposable digraphs are
recognizable in polynomial time, another desirable property.

Φ1 is the union of all semicomplete bipartite digraphs, all connected ex-
tended locally semicomplete digraphs and all acyclic digraphs.

The following result is a special case of a broader one due to Bang-Jensen
and Maddaloni [19].
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Theorem 11.6.5 ([19]) For every fixed k there exists a polynomial algorithm
for the weak k-linkage Problem for the totally Φ1-decomposable digraphs.

All that remains is to realize that directed cographs are in fact totally Φ1-
decomposable digraphs, which is fairly obvious by their recursive definition.
The trivial digraph (the initial directed cograph), arcless digraphs (realizing
disjoint unions) and transitive tournaments (realizing the order composition)
are all acyclic, while complete digraphs (realizing the series composition) are
particularly connected locally semicomplete digraphs. Thus, we obtain the
following corollary.

Corollary 11.6.6 ([19]) For every fixed k there exists a polynomial algorithm
for the Weak k-linkage Problem for directed cographs.

For more results on totally Φ-decomposable digraphs, see Chapter 8 and
for an application of directed cographs in mathematical logic, we refer to the
work of Retoré [136].

11.7 Perfect Digraphs

First, recall that an undirected graph is called perfect if the chromatic number
of every induced subgraph equals its clique number. This property is partic-
ularly interesting for its impact on complexity results, as several well-known
NP-complete problems, such as the determination of the chromatic number,
the clique number or the independence number of a graph, are solvable in
polynomial time for perfect graphs (cf. Grötschel, Lovász and Schrijver [75]).
Furthermore, the results are actually applicable in practice, since several
common graph classes, such as bipartite graphs, chordal graphs, triangulated
graphs, interval graphs and comparability graphs, are perfect.

The long-standing Strong Perfect Graph Conjecture, due to Berge [24], af-
ter inspiring generations to an array of related research, was finally proven af-
ter more than four decades by Chudnovsky, Robertson, Seymour and Thomas
[40] and is now known as the Strong Perfect Graph Theorem. It states that a
graph is perfect if and only if it contains neither odd holes nor odd antiholes
as induced subgraphs, where an odd hole is an induced cycle of odd length
at least 5 and an odd antihole is the complement of such a graph. Combined
with the corresponding result of Chudnovsky, Cornuéjols, Liu, Seymour and
Vušković [39] for graphs without odd holes and odd antiholes, the Strong
Perfect Graph Theorem furthermore implies that perfect graphs can be rec-
ognized in polynomial time.

Motivated by this breakthrough for undirected perfect graphs, Andres
and Hochstättler [9] introduced the class of perfect digraphs and, among
other results, gave a Strong Perfect Digraph Theorem. The following addi-
tional notation is needed. Particularly, in the context of this book, it has to
be pointed out that, in their definition of perfect digraphs, instead of the
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chromatic number for digraphs, as introduced in the first chapter, Andres
and Hochstättler used the dichromatic number, as introduced by Neumann-
Lara [122]: A k-dicolouring of a digraph is vertex-colouring with k colours
such that no directed cycle is monochromatic. The dichromatic number→
χ(D) of a digraph D is the smallest positive integer k such that D admits
a k-dicolouring. The clique number ω(D) of a digraph D is the order of a
largest complete subdigraph of D. Now, a digraph is called perfect if, for
any induced subdigraph, the dichromatic number equals its clique number.
Note that a graph is perfect if and only if its complete biorientation (where
every edge is replaced by a pair of opposing arcs) is perfect. Therefore, the
given concept is a natural extension of perfectness to digraphs.

Recall that the symmetric part sym(D) of a digraph D is the spanning
subdigraph containing exactly the symmetric arcs of D (see Figure 11.8(b)).
The asymmetric part asym(D) is defined analogously (see 11.8(c)). Now we
can state the Strong Perfect Digraph Theorem due to Andres and Hochstät-
tler [9] and give their proof.

Theorem 11.7.1 (Strong Perfect Digraph Theorem [9]) A digraph D
is perfect if and only if sym(D) (identified with the corresponding undirected
graph) is perfect and D does not contain any directed cycle of length at least
3 as an induced subdigraph.

Proof: Assume that sym(D) is not perfect. Then there is an induced sub-
graph G = (V,E) of sym(D) (identified with the corresponding undirected
graph) with ω(G) < χ(G). Since ω(D〈V 〉) = ω(sym(D〈V 〉)) and sym(D〈V 〉)
is the complete biorientation of G, we conclude that

ω(D〈V 〉) = ω(sym(D〈V 〉)) = ω(G) < χ(G) = χ(sym(D〈V 〉)) ≤ χ(D〈V 〉).

Therefore, D is not perfect.
If D contains a directed cycle C of length at least 3 as an induced subdi-

graph, then D is obviously not perfect, since ω(D) = 1 < 2 = χ(C).
Now, assume that sym(D) is perfect, but D is not. It suffices to show that

D contains a directed cycle of length at least 3 as an induced subdigraph.
Let D′ = (V ′, A′) be an induced subdigraph of D such that ω(D′) < χ(D′).
As sym(D) is perfect, there is a k-dicolouring of sym(D′) = sym(D)〈V ′〉
with k = ω(sym(D′)) = ω(D′) colours. By choice of D′, this cannot be a k-
dicolouring of D′. Hence, there is a (not necessarily induced) monochromatic
directed cycle C of minimal length in asym(D′), which automatically implies
its length to be at least 3. C cannot have a symmetric chord, since its head
and tail would receive the same colour, in contradiction to the definition of a
k-dicolouring of sym(D′). By minimality, C cannot have an asymmetric arc.
Therefore, C is an induced directed cycle of length at least 3 in D′, and thus
in D. 	
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Applying the Strong Perfect Graph Theorem, Theorem 11.7.1 can be re-
stated without undirected perfectness, using the following terminology. A
filled odd hole is a digraph D such that sym(D) is the complete biorienta-
tion of an odd hole. A filled odd antihole is defined analogously.

Corollary 11.7.2 ([9]) A digraph D is perfect if and only if it does not con-
tain filled odd holes, filled odd antiholes, or any directed cycle of length at
least 3 as induced subdigraphs.

Furthermore, Theorem 11.7.1 implies that, for perfect digraphs, the sym-
metric part determines the validity of a k-dicolouring.

Corollary 11.7.3 ([9]) If D is a perfect digraph, then every k-dicolouring of
sym(D) is a k-dicolouring of D.

Since the maximum order of an induced acyclic subdigraph of a digraph
D also depends solely on sym(D), as another corollary of Theorem 11.7.1
combined with the respective results on perfect graphs due to Grötschel,
Lovász and Schrijver [75], Andres and Hochstättler [9] obtained the following
complexity results.

Corollary 11.7.4 ([9]) For a perfect digraph D, the problems of determin-
ing the chromatic number, the clique number and the maximum order of an
induced acyclic subdigraph are solvable in polynomial time.

As a natural follow-up question, Andres and Hochstättler [9] asked
whether there are more interesting instances of such problems.

Problem 11.7.5 ([9]) Are there any other problems that are NP-complete
for general digraphs but solvable in polynomial time for perfect digraphs?

While the results we have considered so far all indicate that the properties
of perfect digraphs are as favourable as those of their undirected counterparts,
Andres and Hochstättler [9] had to concede that perfect digraphs lack one
central virtue: In contrast to the results of Chudnovsky, Cornuéjols, Liu,
Seymour and Vušković [39] on perfect graphs, perfect digraphs cannot be
recognized in polynomial time (unless P = NP).

Theorem 11.7.6 ([9]) Deciding whether a digraph is perfect is a co-NP-
complete problem.

Their proof is mainly based on a result of Bang-Jensen, Havet and
Trotignon [18] stating the co-NP-completeness of determining whether a
given digraph does not contain any directed cycle of length at least 3 as an
induced subdigraph (cf. Theorem 11.7.1).
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(a) D (b) sym(D) (c) asym(D) (d) D̄

Figure 11.8 A perfect digraph D with imperfect complement D̄.

The loss of another nice property of perfectness in the translation from
graphs to digraphs is implied by the following results on kernels due to Andres
and Hochstättler [9].

Theorem 11.7.7 ([9]) It is NP-complete to decide whether a perfect digraph
has a kernel.

On the other hand, a result due to Boros and Gurvich [31] can be
rephrased as follows.

Corollary 11.7.8 ([9]) The complement of a perfect digraph is kernel-perfect,
i.e. every induced subdigraph has a kernel.

Therefore, Theorem 11.7.7 and Corollary 11.7.8 imply that complements
of perfect digraphs are not necessarily perfect (see, e.g., Figures 11.8(a) and
11.8(d), respectively), in contrast to the result that, for undirected graphs, is
well-known as the Weak Perfect Graph Theorem due to Lovász [114].

Still, Andres and Hochstättler [9] were able to prove a similar result.

Theorem 11.7.9 ([9]) A digraph D is perfect if and only if its complement
D̄ is a biorientation of a perfect graph G such that no vertex set of a cycle
in asym(D̄) induces a clique in G.

Note that, if we identify an undirected graph G with its complete biorien-
tation D, then D̄ is the complete biorientation of Ḡ. Furthermore, asym(D̄)
is empty and, in particular, does not contain any cycle. Therefore, Theorem
11.7.9 is a generalization of the Weak Perfect Graph Theorem.

Before we close this section with a variation of perfectness in digraphs,
we give another problem posed by Andres and Hochstättler [9].

Problem 11.7.10 ([9]) Are there any other problems that are NP-
complete (co-NP-complete, respectively) for general digraphs that remain so
for perfect digraphs?

For several decades, game-variants of certain graph invariants have be-
come increasingly popular. Colouring games and corresponding game chro-
matic numbers are certainly among the most prominent. For an undirected
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graph, we define a maker-breaker game, where both players (starting with
maker) take turns assigning a colour to a previously uncoloured vertex from
a given finite set of colours such that no two adjacent vertices receive the
same colour. The game stops, if either the whole graph is coloured properly,
in which case maker wins, or none of the remaining uncoloured vertices can
be coloured properly, in which case breaker wins. The game chromatic
number χg(G) of a graph G is the smallest number of colours for maker to
have a winning strategy for the colouring game on G, which is well-defined,
as |V (G)| colours are obviously sufficient.

Andres [6] extended the concept to digraphs in the following way. The
colouring game is now played on a digraph and on each turn a player must
choose a vertex to assign a colour to, distinct from the colours of all its in-
neighbours. The game chromatic number χg(D) of a digraph D is then
defined as in the undirected case. Since, for a graph G and its complete
biorientation

↔
G, we have

χg(G) = χg(
↔
G),

this definition is natural and well-defined.
Yang and Zhu [165] gave another variant of the game chromatic number

for digraphs. In their colouring game, on each turn a player must colour a
vertex without creating a monochromatic directed cycle. As their colouring
rule is weaker than Andres’, they called the smallest number of colours for
maker to have a winning strategy for their colouring game on a digraph D the
weak game chromatic number. For the obvious similarity to the dichro-
matic number, we prefer the name game dichromatic number, which we
will denote by

→
χg(D). Obviously, the game chromatic number of a graph also

equals the game dichromatic number of its complete biorientation.
As with many problems, the directed versions have so far received less

attention than the undirected game chromatic number, but in addition to the
introductory paper [6], there are some results due to Andres [3, 4, 8], Yang
and Zhu [165] and Chan, Shiu, Sun and Zhu [37]. Note that the oriented
game chromatic number introduced by Nešetril and Sopena [121], while also
based on a digraph colouring game, differs greatly from the game dichromatic
number considered here. Particularly, it is only defined for orientations of
graphs.

Finally, we can give the definitions that motivated our brief excursion.
A digraph D is called game-perfect if, for any induced subdigraph, the
game chromatic number equals its clique number. Analogously, D is weakly
game-perfect if, for any induced subdigraph, the game dichromatic number
equals its clique number. Note that since

ω(D) ≤ →
χ(D) ≤ →

χg(D) ≤ χg(D)

for every digraph D, game-perfect digraphs are also weakly game-perfect and
weakly game-perfect digraphs are perfect.
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The following result due to Andres [8], in combination with Theorem
11.7.7, implies that game-perfect digraphs are a proper subclass of perfect
digraphs.

Theorem 11.7.11 ([8]) Game-perfect digraphs are kernel-perfect.

As a natural consequence of their fairly recent introduction by Andres
[5], except for Theorem 11.7.11, there are mostly only basic results on game-
perfect digraphs so far and a lot of open questions, the most interesting one
arguably being the following.

Problem 11.7.12 ([9]) Give a characterization of game-perfect digraphs by a
set of forbidden induced subdigraphs (analogue to Theorem 11.7.1 and Corol-
lary 11.7.2, respectively).

For weakly game-perfect digraphs, this problem has been solved by Andres
[8].

Theorem 11.7.13 ([8]) A digraph D is weakly game-perfect if and only if
sym(D) (identified with the corresponding undirected graph) is game-perfect
and D does not contain any directed cycle of length at least 3 as an induced
subdigraph.

Since game-perfect graphs have previously been characterized by a set
of forbidden induced graphs [7], we obtain the following characterization of
weakly game-perfect digraphs.

Corollary 11.7.14 ([8]) A digraph D is weakly game-perfect if and only if
D does not contain a directed cycle of length at least 3 or a C4, P4, a triangle
star, a Ξ-graph, two double fans, two split 3-stars, or one of each (see Figure
11.9, where an edge corresponds to a directed 2-cycle) as an induced subgraph.

(a) C4 (b) P4 (c) triangle star (d) Ξ-graph

(e) two double fans (f) two split 3-stars (g) mixed graph

Figure 11.9 Forbidden subgraphs for weak game-perfectness.
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The research on perfect and (weakly) game perfect digraphs is very much
a young and active field and further results are to be expected.

11.8 Arc-Locally Semicomplete Digraphs

Arc-locally semicomplete digraphs were initially introduced as arc-local tour-
nament digraphs by Bang-Jensen [13] as a natural analogue of locally semi-
complete digraphs (cf. Chapter 6) and a generalization of both semicomplete
and semicomplete bipartite digraphs. A digraph is called arc-locally semi-
complete if, for any pair of adjacent vertices x and y, every in-neighbour
(out-neighbour, respectively) of x is adjacent to every distinct in-neighbour
(out-neighbour, respectively) of y.

Although arc-locally semicomplete digraphs can be quite sparse, directed
cycles being among the simplest examples, the first result on the class, given
by Bang-Jensen [13], suggests that arc-locally semicomplete digraphs, in gen-
eral, are fairly dense in some sense.

Lemma 11.8.1 ([13]) Let D be a connected arc-locally semicomplete digraph
and let D′ be any non-trivial strong subdigraph of D. Every vertex x ∈ V (D)\
V (D′) is adjacent to D′.

Proof: Suppose some vertex x ∈ V (D) \ V (D′) is not adjacent to D′. Let
x = x1x2 . . . xn, n ≥ 3, xn ∈ V (D′), be a shortest path between x and D′

in UG(D). Let u ∈ V (D′) (w ∈ V (D′)) be some vertex which dominates
(is dominated by) xn in D′. Now, depending on the orientation of the edge
xn−2xn−1 in D, we conclude that xn−2 is adjacent to u or w, contradicting
the minimality of the path above. 	


A common method of proof relating to arc-locally semicomplete digraphs
is to show that the considered arc-locally semicomplete digraph either has
some desired property, or it is semicomplete or semicomplete bipartite, re-
spectively. The following lemma, which Bang-Jensen [13] derived from Lemma
11.8.1, is particularly useful.

Lemma 11.8.2 ([13]) Let D be a connected, non-strong arc-locally semicom-
plete digraph. If every vertex is on some cycle, then D is semicomplete or
semicomplete bipartite.

Combining Lemma 11.8.2 with the following one, Bang-Jensen [13] pro-
vided a characterization of Hamiltonian arc-locally semicomplete digraphs.

Lemma 11.8.3 ([13]) Every strong arc-locally semicomplete digraph D hav-
ing two disjoint cycles covering V (D) is Hamiltonian.

Theorem 11.8.4 ([13]) A strong arc-locally semicomplete digraph D has a
Hamiltonian cycle if and only if it has a directed cycle factor.
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Proof: One direction is clear, so suppose D is a strong arc-local tournament
which has a directed cycle factor. We prove by induction on its order n that
D is Hamiltonian. The cases n = 3, 4, 5 are trivial, so we proceed to the
induction step assuming n ≥ 6. Let C1, . . . , Ck, k ≥ 1, be a directed cycle
factor of D chosen such that k is minimum. We claim that k = 1, in which
case we are done. So suppose that k ≥ 2. By Lemma 11.8.3 we must have
k ≥ 3. Now it follows, from the induction hypothesis and the minimality of
k, that no proper subset of C1, . . . , Ck can induce a strong digraph. Thus if
we delete the vertices of Ci for any 1 ≤ i ≤ k, the remaining digraph D − Ci

is a non-strong arc-locally semicomplete digraph in which each vertex lies
on a cycle and hence, by Lemma 11.8.2, it is semicomplete or semicomplete
bipartite. From this and the fact that no proper subset of C1, . . . , Ck can
induce a strong digraph, we conclude that k = 3, and that there is no arc
from Ci+1 to Ci for i = 1, 2, 3, indices modulo 3. Now it is easy to see that
D has a Hamiltonian cycle, contradicting the choice of C1, . . . , Ck. 	


Moreover, Bang-Jensen [13] proved that the problem of deciding the exis-
tence of (and finding) a Hamiltonian cycle can be solved in polynomial time.
Corresponding complexity results, based on the following theorem, also hold
for Hamiltonian paths.

Theorem 11.8.5 ([13]) A connected arc-locally semicomplete digraph D has
a Hamiltonian path if and only if it has a path P (where we allow V (P ) = ∅
or V (P ) = V (D)) such that D − V (P ) has a directed cycle factor.

For a characterization of strong arc-locally semicomplete digraphs, we
need the following additional definitions. Let E1, . . . , Ek be k disjoint sets of
independent vertices, then �Ck[E1, . . . , Ek] is the digraph obtained by substi-
tuting the vertex xi for the vertex set Ei in a k-cycle �Ck = x1 . . . xkx1. In
other words, V (�Ck[E1, . . . , Ek]) = E1 ∪ . . . ∪ Ek and

xy ∈ A(�Ck[E1, . . . , Ek]) ⇔ x ∈ Ei and y ∈ Ei+1(modulo k)

for some i ∈ {1, . . . k} (see Figure 11.10(a)). We call �Ck[E1, . . . , Ek] an ex-
tended cycle. Furthermore, for an integer n ≥ 4, let Fn be the digraph on
the vertex set {u, v, x1, . . . , xn−2} and the arc set {uv, vu} ∪ {xiu, vxi | 1 ≤
i ≤ n − 2} (see Figure 11.10(b)).
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(a) Extended C4.

x1

x2

x3

u v

(b) F5

Figure 11.10 Example of an extended cycle and an Fn digraph.

Galeana-Sánchez and Goldfeder [65, 74] and, independently, Wang and
Wang [158] completed a previously deficient characterization of strong arc-
locally semicomplete digraphs due to Bang-Jensen [15].

Theorem 11.8.6 ([65, 74, 158]) Let D be a strong arc-locally semicomplete
digraph, then D is either semicomplete, semicomplete bipartite, an extended
cycle or isomorphic to Fn for some n ≥ 4.

For the following complete characterization of arc-locally semicomplete
digraphs due to Galeana-Sánchez and Goldfeder [66] we note that the concept
of extended cycles is easily transferable to paths Pk = x1 . . . xk and transitive
tournaments TTk on k vertices x1, . . . , xk such that xi → xj if and only if
1 ≤ i < j ≤ k. Furthermore, we may want to substitute a vertex xi by a
digraph Di instead of a set of independent vertices Ei. �Ck[D1, . . . , Dk], for
example, is obtained from the digraph �Ck[V (D1) ∪ . . . ∪ V (Dk)] by adding
all arcs of A(D1) ∪ . . . ∪ A(Dk).

Theorem 11.8.7 ([66]) Let D be a connected digraph. Then D is arc-locally
semicomplete if and only if it is one of the following:

(1) a subdigraph of an extended P2,
(2) P3[E1,D

′, E1], where D′ is a semicomplete digraph,
(3) TT3[E1, En, E1], for some positive integer n,
(4) Fn for some n ≥ 4,
(5) an extended path or an extended cycle,
(6) a semicomplete digraph, or
(7) semicomplete bipartite digraph.

Using Theorem 11.8.7, Arroyo and Galeana-Sánchez [10] verified the Di-
rected Path Partition Conjecture for arc-locally semicomplete digraphs.

Theorem 11.8.8 ([10]) Let D be an arc-locally semicomplete digraph. If
D contains no path with more than λ vertices, then, for every pair a, b of
positive integers with λ = a+ b, there exists a partition (A,B) of V (D) such
that no path in D〈A〉 (D〈B〉, respectively) has more than a (b, respectively)
vertices.
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One particular instance of the Directed Path Partition Conjecture due
to Laborde, Payan and Xuong [106] states that every digraph contains
a maximal independent set that intersects every longest path. Galeana-
Sánchez and Gómez [68] proved a stronger result for arc-locally semicom-
plete digraphs concerned with a generalization of longest paths. A path
P = x1 . . . xk is non-augmentable if P cannot be expanded to a path
Q = x1 . . . xiy1 . . . y�xi+1 . . . xk, 0 ≤ i ≤ k.

Theorem 11.8.9 ([68]) Let D be an arc-locally semicomplete digraph. If
δ+(D) > 0, then every maximal independent set intersects every non-
augmentable path in D.

Furthermore, Galeana-Sánchez and Gómez [68] constructed an infinite
family of arc-locally semicomplete digraphs containing a maximal indepen-
dent set that does not intersect at least one non-augmentable path. Thus,
the degree condition is necessary. For the general case, they found that there
is at least one maximal independent set that intersects a particular subset
of non-augmentable paths, a result that was extended by Wang and Wang
[157].

Theorem 11.8.10 ([157]) Let D be an arc-locally semicomplete digraph. Then
there exists a maximal independent set intersecting every non-augmentable
path in D.

Bang-Jensen and Manoussakis [20] considered a somewhat complemen-
tary problem. Instead of a set of vertices intersecting a prescribed set of
paths, they were interested in a cycle intersecting a prescribed set of vertices.
Combining their result, which is for semicomplete bipartite digraphs, and
Theorem 11.8.7 one obtains the following.

Theorem 11.8.11 ([20]) Every k-strong arc-locally semicomplete digraph
has a cycle through any set of k given vertices.

In [80], Häggkvist and Manoussakis gave examples of (k − 1)-connected
bipartite tournaments with no cycle through some set of k vertices, proving
Theorem 11.8.11 best possible.

In contrast to locally semicomplete digraphs (cf. Proposition 6.2.4), arc-
locally semicomplete digraphs are not necessarily path-mergeable. However,
Bang-Jensen [14] gave a sufficient condition for an arc-locally semicomplete
digraph to be path-mergeable. A digraph is 2-path-mergeable, if, for every
pair of vertices x and y and every pair of internally disjoint (x, y)-paths P
and P ′ of length at most 2, there is an (x, y)-path P ∗ such that V (P ∗) =
V (P ) ∪ V (P ′).

Proposition 11.8.12 ([14]) Every 2-path-mergeable arc-locally semicomplete
digraph is path-mergeable.
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A conjecture proposed by Berge and Duchet [25] stating that a graph is
perfect, if and only if any normal biorientation is kernel-perfect (where the
“only if” part has since been proven by Boros and Gurvich [31] and the “if”
part is implied by the Strong Perfect Graph Theorem [32]), inspired Galeana-
Sánchez [64] to investigate kernel-perfectness of arc-locally semicomplete di-
graphs and the relation to perfectness of their underlying graphs.

Adapted from the definition of perfect graphs, a digraph D is called
kernel-perfect if every induced subdigraph D′ contains a kernel, i.e. an
independent vertex set N ⊆ V (D′) such that, for every u ∈ V (D′) \ N , there
is a v ∈ N such that uv ∈ A(D′). A digraph is critical kernel-imperfect if
it is not kernel-perfect, but every induced subdigraph is.

Using the following additional notation, Galeana-Sánchez [64] character-
ized kernel-perfect arc-locally semicomplete digraphs. A pseudodiagonal of
a cycle C is an arc whose initial and terminal vertices belong to V (C), but
itself is not contained in A(C). A digraph is called odd-chorded if every
cycle of odd length has at least one pseudodiagonal. Furthermore, we call a
digraph normal if every semicomplete subdigraph contains a vertex that is
a kernel.

Theorem 11.8.13 ([64]) Let D be an arc-locally semicomplete digraph. Then,
D is a kernel-perfect digraph if and only if D is a normal odd-chorded digraph.

Note that the proof of Theorem 11.8.13 is based on an incomplete charac-
terization of arc-locally semicomplete digraphs, but the missing case is easily
added and thus, the result and those based on it still hold. As a corollary,
Galeana-Sánchez [64] verified a conjecture due to Meyniel [57], although dis-
proven for general digraphs, for arc-locally semicomplete digraphs.

Corollary 11.8.14 ([64]) Let D be an arc-locally semicomplete digraph. If
each odd cycle has at least two pseudodiagonals, then D is a kernel-perfect
digraph.

Furthermore, Galeana-Sánchez [64] found that critical kernel-imperfect
arc-locally semicomplete digraphs have a very specific structure.

Theorem 11.8.15 ([64]) Let D be an arc-locally semicomplete digraph. Then,
D is critical kernel-imperfect if and only if D ∼= C2n+1, n ≥ 1 or D ∼=
Cn[1,±2,±3, . . . ,±�n/2�], n ≥ 4, where Cn[j1, . . . , jk] is the digraph on the
vertex set {0, . . . , n − 1} and the arc set {u, v | u − v = js mod n for s =
1, . . . , k}.

The following result of Galeana-Sánchez [64], as a corollary, implies a
strong relation between kernel-perfectness of arc-locally semicomplete di-
graphs and perfectness of their underlying graphs. In fact, kernel-perfectness
even implies strong perfectness, that is to say, every induced subgraph G′

contains an independent vertex set which meets every maximal clique of G′.
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Theorem 11.8.16 ([64]) Let D be an arc-locally semicomplete digraph. If N
is a kernel of D, then N is an independent set of UG(D) which meets every
maximal clique of UG(D).

Corollary 11.8.17 ([64]) Let D be an arc-locally semicomplete digraph. If
D is a kernel-perfect digraph, then UG(D) is strongly perfect.

Galeana-Sánchez [64] was able to extend the result to the following char-
acterization.

Theorem 11.8.18 ([64]) Let D be an arc-locally semicomplete digraph.

(i) D is a kernel-perfect digraph if and only if UG(D) is a strongly perfect
graph.

(ii) D is a critical kernel-imperfect digraph if and only if UG(D) is a critically
imperfect graph.

Building on this result, for underlying graphs of normal arc-locally semi-
complete digraphs, Galeana-Sánchez [64] proved a variation of the Strong
Perfect Graph Theorem (cf. Section 11.7).

Theorem 11.8.19 ([64]) Let D be a normal arc-locally semicomplete di-
graph. Then UG(D) is a strongly perfect graph if and only if it contains
no induced subgraph to C2n+1, for n ≥ 2.

Unlike underlying graphs of line digraphs (cf. Section 11.2.6), those of
arc-locally semicomplete digraphs can be recognized in polynomial time, as
Bang-Jensen [13] showed by reducing the problem to 2-SAT.

11.9 Hi-Free Digraphs

Just as locally semicomplete and quasi-transitive digraphs can be charac-
terized by forbidden induced subdigraphs, so can arc-locally semicomplete
digraphs, as Bang-Jensen [15] noted. Let H denote the digraphs on 4 vertices
whose underlying graphs contain two non-adjacent vertices x and y that are
connected by a path P = xuvy of length 3. We then distinguish four subsets
based on the possible orientations of the path P . Let H1 be those digraphs
where P is oriented x → u ← v ← y. H2 are the digraphs where P is oriented
x ← u → v → y. The subset H3 contains exactly those digraphs where P
is oriented x → u → v → y. And finally, let H4 be the digraphs where P is
oriented x → u ← v → y.
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(a) H1 (b) H2 (c) H3 (d) H4

Figure 11.11 Substructures defining Hi digraphs. The dotted arc with a cross
indicates that the two vertices are not adjacent.

Now arc-locally semicomplete digraphs are exactly the {H1,H2}-free di-
graphs, i.e. those which do not contain any induced subdigraph from H1

or H2. H1-free (H2-free, respectively) digraphs were dubbed arc-locally
in-semicomplete (arc-locally out-semicomplete, respectively) digraphs
by Wang and Wang [158]. H3-free digraphs are also known as 3-quasi-
transitive (see, e.g., [89] or Chapter 8) or quasi-arc-transitive (see, e.g.,
[158]) digraphs and H4-free digraphs are sometimes called quasi-antiarc-
transitive (see, e.g., [158]).

In the introductory paper [15], Bang-Jensen conjectured that Theorem
11.8.4 also holds for Hi-free digraphs, i = 1, . . . , 4, a conjecture that was the
main motivator for further work on Hi-free digraphs and that has since been
verified, as we will see in the remainder of this section.

Since an H2-free digraph is the converse of an H1-free digraph, we will
limit our considerations to H1-free digraphs and only remark that analogous
results obviously hold for H2-free digraphs. Wang and Wang [158] extended
several structural results on arc-locally semicomplete digraphs to H1-free
digraphs aiming at a generalization of Theorem 11.8.6. For their characteri-
zation of strong H1-free digraphs, we need to define another class of digraphs.

A T-digraph is a strong digraph D = (V,A) whose vertex set has a
partition (called a T-partition) (V1, V2, V3, V4) such that

(i) |V2| = 1 and one of V3 or V4 is permitted to be empty,
(ii) D4 := D〈V4〉 is semicomplete,
(iii) Amin := A(D4) ∪ V1 × V2 ∪ V2 × V3 ∪ (V3 ∪ V4) × V1 ∪ V4 × V3 ⊆ A,
(iv) A ⊂ Amin ∪ V4 × V2 ∪ V2 × (V1 ∪ V4), and
(v) every vertex of V2 is adjacent to every vertex of V1 ∪ V4.

Note that Fn, n ≥ 4 (cf. Theorem 11.8.6), is a T-digraph with T-partition
({u}, {v}, {x1, . . . , xn−2}, ∅) and the converse of a T-digraph. Now we may
give the characterization.

Theorem 11.9.1 ([158]) Let D be a strong H1-free digraph. Then D is either
semicomplete, semicomplete bipartite, an extended cycle or a T-digraph.

So, by Theorem 11.8.6, except for T-digraphs, strong H1-free digraphs
are arc-locally semicomplete digraphs, which implies the following corollary.
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Corollary 11.9.2 ([158]) Let D be a 2-strong H1-free digraph. Then D is an
arc-locally semicomplete digraph.

Furthermore, Wang and Wang [158] used Theorem 11.9.1 to verify Bang-
Jensen’s [15] conjecture stating that Theorem 11.8.4 also holds for H1-free
digraphs.

Theorem 11.9.3 ([158]) A strong H1-free digraph has a Hamiltonian cycle
if and only if it has a directed cycle factor.

Theorem 11.9.1 also implies that the Directed Path Partition Conjecture
is true for strong H1-free digraphs, as Arroyo and Galeana-Sánchez [10] noted.

Theorem 11.9.4 ([10]) Let D be a strong H1-free digraph. If D contains no
path with more than λ vertices, then, for every pair a, b of positive integers
with λ = a + b, there exists a partition (A,B) of V (D) such that no path in
D〈A〉 (D〈B〉, respectively) has more than a (b, respectively) vertices.

Finally, Wang and Wang [158] proved Theorem 11.8.10 actually not only
for arc-locally semicomplete digraphs, but for the larger class of H1-free di-
graphs.

Theorem 11.9.5 ([157]) Let D be an H1-free digraph. Then there exists a
maximal independent set intersecting every non-augmentable path in D.

For their results (and others) on H3-free digraphs, also known as 3-quasi-
transitive digraphs, we refer to Chapter 8 and therefore turn directly to H4-
free digraphs, whose structure seems much more elaborate than those of H1-,
H2- and H3-free digraphs.

Galeana-Sánchez and Goldfeder [67] and, independently, Wang [155]
proved Bang-Jensen’s [15] conjecture for H4-free digraphs.

Theorem 11.9.6 ([67, 155]) A strong H4-free digraph has a Hamiltonian
cycle if and only if it has a directed cycle factor.

For strong Hi-free digraphs, i = 1, 2, 3, the corresponding theorems were
derived from structural results implying a close relation to semicomplete
and semicomplete bipartite digraphs. The lack of such results for H4-free
digraphs, particularly of a characterization similar to Theorem 11.9.1, made
Galeana-Sánchez and Goldfeder [67] prove Theorem 11.9.6 directly via alge-
braic methods. Wang [155] on the other hand proved the necessary structure
combinatorially.

As a consequence of Theorem 11.9.6, Galeana-Sánchez and Goldfeder [67]
obtained that Theorem 11.8.5 also holds for H4-free digraphs.

Theorem 11.9.7 ([67]) A connected H4-free digraph D has a Hamiltonian
path if and only if it has a path P (where we allow V (P ) = ∅ or V (P ) =
V (D)) such that D − V (P ) has a directed cycle factor.
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While the Directed Path Partition Conjecture remains open for H4-free
digraphs, Galeana-Sánchez and Gómez [68] proved that, in H4-free digraphs,
not only does a maximal independent set of vertices intersecting every non-
augmentable path exist (cf. Theorem 11.8.10), but every maximal indepen-
dent set has this property.

Theorem 11.9.8 ([68]) Let D be an H4-free digraph. Then every maximal
independent set intersects every non-augmentable path in D.

As Galeana-Sánchez and Gómez [68] noted, the Heuchenne condition (cf.
Theorem 11.2.3 (iii)) implies x → y for every oriented path x → u ← v → y.
Thus, H4-free digraphs are a generalization of line digraphs (without loops).

Corollary 11.9.9 ([68]) Let D be a line digraph. Then every maximal inde-
pendent set intersects every non-augmentable path in D.

Wang [156] considered a cycle analogue of Theorem 11.9.8. To account
for the missing structure of H4-free digraphs, Wang restricted his studies to
a subclass mirroring line digraphs. An H4-free digraph is called an H∗

4-free
digraph if every oriented path x → u ← v → y implies y → x. Wang then
proceeded to show that these digraphs, under certain conditions, again, are
closely related to semicomplete and semicomplete bipartite digraphs.

Theorem 11.9.10 ([156]) Let D be a strong H∗
4-free digraph. If D has a

directed cycle factor C1, . . . , Ct, t ≥ 2, then D is either semicomplete, semi-
complete bipartite or isomorphic to D∗ (see Figure 11.12).

Figure 11.12 Special H∗
4-free digraph D∗.

Finally, Wang’s [156] variation of Theorem 11.9.8 reads as follows.

Theorem 11.9.11 ([156]) Let D be a strong H∗
4-free digraph. Then there

exists a maximal independent set intersecting every longest cycle in D.
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