
10. Digraphs Products

Richard H. Hammack

For our purposes, a digraph product is a binary operation D ∗ D′ on di-
graphs, for which V (D ∗ D′) is the Cartesian product V (D) × V (D′) of the
vertex sets of the factors. There are many ways to define such products.
But if we insist on the algebraic property of associativity, and demand that
the projections to factors respect adjacency, then we are left with just four
products, known as the standard products. One of these is the Cartesian
product, introduced in Chapter 1. We review it now, and introduce the three
other products.

10.1 The Four Standard Associative Products

The four standard digraph products are the Cartesian product D �D′, the
direct product D×D′, the strong product D � D′, and the lexicographic
product D ◦ D′. Each has vertex set V (D) × V (D′). Their arcs are

A(D �D′) = {(x, x′)(y, y′) | xy ∈ A(D), x′ = y′, or x = y, x′y′ ∈ A(D′)},
A(D × D′) = {(x, x′)(y, y′) | xy ∈ A(D) and x′y′ ∈ A(D′)},
A(D � D′) = A(D �D′) ∪ A(D × D′),
A(D ◦ D′) = {(x, x′)(y, y′) | xy ∈ A(D), or x = y and x′y′ ∈ A(D′)}.

In each case D and D′ are called factors of the product. In drawing
products, we often align the factors roughly horizontally and vertically (like
x- and y-coordinate axes) below and to the left of the vertex set V (D)×V (D′),
so that (x, x′) projects vertically to x ∈ V (D) and horizontally to x′ ∈ V (D′).
This is illustrated in Figure 10.1, showing examples of the Cartesian, direct
and strong products. The lexicographic product is illustrated in Figure 10.2.

The definitions reveal immediately that the Cartesian, direct and strong
products are commutative in the sense that the map (x, x′) �→ (x′, x) yields
isomorphisms D �D′ → D′ �D, D × D′ → D′ × D, and D � D′ → D′ �D.
However, Figure 10.2 shows that the lexicographic product is not commuta-
tive.
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Figure 10.1 The three standard associative, commutative products

D ◦ D D ◦ DD D

D D

Figure 10.2 The lexicographic product. Note D ◦ D′ �∼= D′ ◦ D.

It is also easy to check that all four standard products are associative in
the sense that the identification (x, (y, z)) = ((x, y), z) yields equalities

D1 � (D2 �D3) = (D1 �D2)�D3,
D1 × (D2 × D3) = (D1 × D2) × D3,
D1 � (D2 � D3) = (D1 � D2) � D3,
D1 ◦ (D2 ◦ D3) = (D1 ◦ D2) ◦ D3.

Thus we may unambiguously define products of more than two factors with-
out regard to grouping. The product definitions extend as follows.

The vertex set of the Cartesian product D1 � · · · �Dn is the Cartesian
product of sets V (D1) × · · · × V (Dn). The arcs of the product are all pairs
(x1, . . . , xn)(y1, . . . , yn), where xiyi ∈ A(Di) for some index i ∈ [n], and
xj = yj for all j �= i.

The direct product D1 × · · · × Dn has vertices V (D1)× · · · × V (Dn) and
arcs (x1, . . . , xn)(y1, . . . , yn), where xiyi ∈ A(Di) for all i ∈ [n].

The strong product D1 � · · · �Dn has vertices V (D1)×· · ·×V (Dn), and
(x1, . . . , xn)(y1, . . . , yn) is an arc provided xi = yi or xiyi ∈ A(Di) for all
i ∈ [n], and xiyi ∈ A(Di) for at least one i ∈ [n]. Note the containment

A(D1 � · · · �Dn) ∪ A(D1 × · · · × Dn) ⊆ A(D1 � · · · �Dn),

which is only guaranteed to be an equality when n = 2. (As in the definition
on page 467.)
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Extending the lexicographic product to more than two factors, we see that
D1 ◦ · · · ◦ Dn has vertices V (D1) × · · · × V (Dn) and (x1, . . . , xn)(y1, . . . , yn)
is an arc of the product provided that there is an index i ∈ [n] for which
xiyi ∈ A(Di), while xj = yj for any 1 ≤ j < i.

We define the nth powers with respect to the four products as

D � n = D �D � · · · �D, D×n = D × D × · · · × D,
D� n = D �D � · · · � D, D◦n = D ◦ D ◦ · · · ◦ D,

where there are n factors in each case.
A digraph homomorphism ϕ : D → D′ is a map ϕ : V (D) → V (D′)

for which xy ∈ A(D) implies ϕ(x)ϕ(y) ∈ A(D′). We call ϕ a weak ho-
momorphism if xy ∈ A(D) implies ϕ(x)ϕ(y) ∈ A(D′) or ϕ(x) = ϕ(y).
A homomorphism is a weak homomorphism, but not conversely. For each
k ∈ [n], define the projection πk : V (D1) × · · · × V (Dn) → V (Dk) as
πk(x1, . . . , xn) = xk. It is straightforward to verify that each projection
πk : D1 × · · · × Dn → Dk is a homomorphism, and πk : D1 � · · · �Dn → Dk

and πk : D1 � · · · � Dn → Dk are weak homomorphisms. In general, only
the first projection π1 : D1 ◦ · · · ◦ Dn → D1 of a lexicographic product is a
weak homomorphism. Although we will not undertake such a demonstration
here, it can be shown that � , ×, � and ◦ are the only associative products
for which at least one projection is a weak homomorphism (or homomor-
phism) and each arc of each factor is a projection of an arc in the product.
See [18] for details in the class of graphs. (The arguments apply equally well
to digraphs.)

For products written as D �H, we write the projections as πD and πH .
We continue with some algebraic properties of the four products. Denote

the disjoint union of digraphs D and H as D+H. The following distributive
laws are immediate:

(D + H)�K = D �K + H �K, (D + H) × K = D × K + H × K,
(D + H)� K = D �K + H � K, (D + H) ◦ K = D ◦ K + H ◦ K.

The corresponding left-distributive laws also hold, except in the case of the
lexicographic product, where generally D◦(H+K) �= D◦H+D◦K. Regarding
this, the next proposition tells the whole story.

Proposition 10.1.1 We have D ◦ (H + K) ∼= D ◦ H + D ◦ K if and only if
D has no arcs.

Proof: If D has no arcs, then the definition of the lexicographic product
shows that both D ◦ (H +K) and D ◦H +D ◦K are |V (D)| copies of H +K.

Conversely, suppose D ◦ (H +K) ∼= D ◦H +D ◦K, so both digraphs have
the same number of arcs. Note that in general

|A(D ◦ H)| = |A(D)| · |V (H)|2 + |V (D)| · |A(H)|, (10.1)
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where the first term counts arcs (x, x′)(y, y′) with xy ∈ A(D), and the second
term counts such arcs with x = y. Using this to count the arcs of D◦(H+K),
and again to count those of D ◦ H + D ◦ K, we see that |A(D)| = 0. �


The trivial digraph K1 is a unit for � , � and ◦, that is, K1 × D = D,
K1 � D = D, and K1 ◦ D = D = D ◦ K1 (by identifying (1, x) = x = (x, 1)
for all x ∈ V (D)). However, this does not work for the direct product because
K1 × D has no arcs, even if D does. But if we admit loops and let K∗

1 be a
loop on one vertex, then K∗

1 is the unique digraph for which K∗
1 × D = D.

For this reason we often regard the direct product as a product on the class
of digraphs with loops allowed, especially when dealing with issues of unique
prime factorization, where the existence of a unit is crucial.

As mentioned above, the lexicographic product is the only one of the
four standard products that is not commutative. However, if D = H ◦n and
D′ = H ◦m are lexicographic powers of the same digraph H, then we do of
course get D ◦ D′ = D′ ◦ D. Another way that D and D′ can commute is if
they are both transitive tournaments, in which case we have

TTn ◦ TTm = TTmn = TTm ◦ TTn. (10.2)

To verify this, order the vertices of TTn as v1, v2, . . . , vn with vivj ∈ A(TTn)
provided i < j. Order those of TTm as w1, w2, . . . , wm with wkw� ∈ A(TTm)
provided k < �. Order the set V (TTn) × V (TTm) lexicographically, that is,
(vi, wk) < (vj , w�) if i < j, or i = j and k < �. The definition of ◦ reveals that
TTn ◦ TTm has an arc (vi, wk)(vj , w�) if and only if (i, k) < (j, �). Therefore
TTn ◦ TTm = TTmn.

Certainly also
↔
Kn ◦ ↔

Km =
↔
Kmn =

↔
Km ◦ ↔

Kn where
↔
Kn is the complete

biorientation of Kn. And if Dn is its complement (i.e., the arcless digraph
on n vertices) then Dn ◦ Dm = Dmn = Dm ◦ Dn. In fact, these are the only
situations in which the lexicographic product commutes, as discovered by
Dörfler and Imrich [8].

Theorem 10.1.2 Two digraphs commute with respect to the lexicographic
product if and only if they are both lexicographic powers of the same digraph,
or both transitive tournaments, or both complete symmetric digraphs, or both
arcless digraphs.

We close this section with another property of the lexicographic product.
Denote by D the complement of the digraph D, that is, the digraph on V (D)
with xy ∈ A(D) if and only if xy /∈ A(D). The equation

D ◦ H = D ◦ H (10.3)

is easily confirmed. No other standard product has this property.
The remainder of the chapter is organized as follows. Sections 10.2

and 10.3 treat distance and connectedness for the four products. Sections 10.4,
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10.5 and 10.6 deal with kings and kernels, Hamiltonian issues, and invariants.
The final five sections consider algebraic questions of cancellation and unique
prime factorization. Section 10.7 covers some preliminary material on homo-
morphisms and quotients that is used in the following section on cancellation.
Section 10.9 covers prime factorization for � and ◦. The cases × and � are
treated in Sections 10.10 and 10.11.

10.2 Distance

Recall that the distance distD(x, y) between two vertices x, y ∈ V (D) is the
length of the shortest directed path from x to y, or ∞ if no such path exists.
This is not a metric in the usual sense, as generally distD(x, y) �= distD(y, x).
Let dist′D(x, y) be the length of the shortest (x, y)-path in D (not necessarily
directed). This is a metric.

We begin by recording the distance formulas for each of the four products.
These formulas are nearly identical to the corresponding formulas for graphs;
here we adapt the proofs of Chapter 5 of Hammack, Imrich and Klavžar [18]
to digraphs. Our proofs will use the fact that if p : D → H is a weak
homomorphism, then distD(x, y) ≥ distH

(
p(x), p(y)

)
, and similarly for dist′.

This holds because if P is an (x, y)-dipath (or path) in D, then the projection
of any arc of P is either an arc of H or a single vertex of H. The projections
that are arcs constitute a (p(x), p(y))-diwalk (or walk) in H of length not
greater than the length of P . (In fact, its length is the length of P minus the
number of its arcs that are mapped to single vertices.)

Proposition 10.2.1 In a Cartesian product D = D1 � · · · �Dn, the dis-
tance between vertices (x1, . . . , xn) and (y1, . . . , yn) is

distD
(
(x1, . . . , xn), (y1, . . . , yn)

)
=

∑

1≤i≤n

distDi
(xi, yi).

For the strong product D = D1 � · · · �Dn, the distance is

distD
(
(x1, . . . , xn), (y1, . . . , yn)

)
= max

1≤i≤n
{distDi

(xi, yi)} .

The same formulas hold when dist is replaced with dist′.

Proof: By associativity, it suffices to prove the statements for the case n = 2.
First consider the Cartesian product D = D1 �D2. To begin, suppose

distD((x1, x2), (y1, y2)) is finite. Take a ((x1, x2), (y1, y2))-dipath P of length
distD((x1, x2), (y1, y2)). By definition of the Cartesian product, any arc of P is
mapped to an arc in D1 or D2 by one of the two projections π1 and π2, and to
a single vertex by the other. It follows that π1 maps P to an (x1, y1)-diwalk in
D1 of length (say) d1, and π2 maps P to an (x2, y2)-diwalk in D2 of length d2,
with distD((x1, x2), (y1, y2)) = d1 + d2 ≥ distD1(x1, y1) + distD2(x2, y2).
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In particular this means the proposition holds if distD1(x1, y1) = ∞ or
distD2(x2, y2) = ∞. If they are both finite, take a shortest (x1, y1)-dipath P1

in D1 and a shortest (x2, y2)-dipath P2 in D2. Then D1 �D2 has a dipath

(P1 × {x2}) + ({y1} × P2)

from (x1, x2) to (y1, y2), of length distD1(x1, y1) + distD2(x2, y2). Therefore
distD((x1, x2), (y1, y2)) ≤ distD1(x1, y1) + distD2(x2, y2). Equality holds by
the previous paragraph.

Now consider the strong product D1 � D2. As each πi : D1 � D2 → Di is a
weak homomorphism, it follows that distD((x1, x2), (y1, y2)) ≥ distDi

(xi, yi)
for i = 1, 2, so distD((x1, x2), (y1, y2)) ≥ max1≤i≤2{distDi

(xi, yi)}.
Thus, if at least one distDi

(xi, yi) is infinite, then distD((x1, x2), (y1, y2)) =
∞, and the proposition follows. Otherwise, take a shortest (x1, y1)-dipath
x1a1a2a3 . . . apy1 in D1 and a shortest (x2, y2)-dipath x2b1b2b3 . . . bqy2 in D2.
Say p ≥ q. We get the following ((x1, x2), (y1, y2))-dipath in D1 �D2:

(x1, x2)(a1, b1)(a2, b2)(a3, b3) . . . (aq, bq)(aq+1, y2)(aq+2, y2) . . . (ap, y2)(y1, y2).

Its length is distD1(x1, y1) = max{distDi
(xi, yi)} ≥ distD((x1, x2), (y1, y2)).

The reverse inequality was established in the previous paragraph.
The arguments for dist′ are identical, but replacing each occurrence of

the word “diwalk” with “walk,” and “dipath” with “path.” �

The situation for the direct product is quite different. It requires the

following useful result concerning directed walks in a direct product.

Proposition 10.2.2 A direct product D = D1 × · · · × Dn has a diwalk of
length k from (x1, . . . , xn) to (y1, . . . , yn) if and only if each Di has a diwalk
of length k from xi to yi.

Proof: Suppose D has a diwalk W from (x1, x2, . . . , xn) to (y1, y2, . . . , yn),
of length k. As each projection πi : G → Gi is a homomorphism, W projects
to an (xi, yi)-diwalk of length k in each Di.

Conversely, if each factor Di has a diwalk xix
1
i x

2
i x

3
i . . . xk−1

i yi of length
k, then by the definition of the direct product, D has a diwalk

(x1, . . . , xn)(x1
1, . . . , x

1
n)(x

2
1, . . . , x

2
n) . . . (xk−1

1 , . . . , xk−1
n )(y1, . . . , yn)

of length k. �

Proposition 10.2.3 In a direct product D = D1 × · · · × Dn, the distance
between two vertices (x1, . . . , xn) and (y1, . . . , yn) is

distD
(
(x1, . . . , xn), (y1, . . . , yn)

)
= min

⎧
⎨

⎩
k ∈ Z

∣
∣
∣
∣
∣
∣

each Di has an
(xi, yi) − diwalk

of length k

⎫
⎬

⎭
,

or ∞ if no such k exists.
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Proof: Let distD
(
(x1, . . . , xn), (y1, . . . , yn)

)
= d. Let d′ equal the smallest k

for which each Di has an (xi, yi)-diwalk of length k, or ∞ if no such k exists.
We must show d = d′.

If d = ∞, then d ≥ d′. But also d ≥ d′ when d < ∞, by Proposition 10.2.2.
On the other hand, if d′ = ∞, then d ≤ d′. And again d ≤ d′ when

d′ < ∞, by Proposition 10.2.2. Thus d = d′. �

Distance in the lexicographic product requires a new definition. Given

a vertex x of a digraph D, let ξD(x) be the length of a shortest non-trivial
dicycle containing x, or ∞ if no such dicycle exists. Let ξ′

D(x) be the length of
the shortest non-trivial cycle containing x. We first state the distance formula
for lexicographic products D1 ◦ D2 having just two factors (a consequence of
Theorem 4 of Szumny, Włoch and Włoch [54]).

Proposition 10.2.4 The distance formula for the lexicographic product is

distD1◦D2

(
(x1, x2), (y1, y2)

)
=

{
distD1(x1, y1) if x1 �= y1
min

{
ξD1(x1), distD2(x2, y2)

}
if x1 = y1.

The formula also holds with dist and ξ replaced with dist′ and ξ′.

Proof: Suppose x1 �= y1. Then, as the projection π1 is a weak homo-
morphism, we have distD1◦D2

(
(x1, x2), (y1, y2)

) ≥ distD1(x1, y1). On the
other hand, given a shortest (x1, y1)-dipath x1a1a2 . . . apy1 in D1, we con-
struct a dipath (x1, y1)(a1, y2)(a2, y2)(a3, y2) . . . (y1, y2) in D1 ◦ D2 of length
distD1(x1, y1), so distD1◦D2

(
(x1, x2), (y1, y2)

)
= distD1(x1, y1).

Now suppose x1 = y1. Take a shortest ((x1, x2), (y1, y2))-dipath P in
D1◦D2. Because π1 is a weak homomorphism, π1(P ) is either a closed diwalk
in D1 beginning and ending at x1 that is no longer than P , or it is the single
vertex x1. In the first case, dist((x1, x2), (y1, y2)) ≥ ξD1(x1). In the second, P
lies in the fiber {x1} ◦ D2

∼= D2, and its length is no less than distD2(x2, y2).
Thus distD1◦D2

(
(x1, x2), (y1, y2)

) ≥ min
{

ξD1(x1), distD2(x2, y2)
}
.

Conversely, if D1 has a closed dicycle x1a1a2 . . . apx1, then D1 ◦ D2 has
a dipath (x1, y1)(a1, y2)(a2, y2)(a3, y2) . . . (x1, y2) of the same length. And if
D2 has an (x2, y2)-dipath P , then {x1} ◦ P is a ((x1, x2), (y1, y2))-dipath in
D1 ◦ D2. Thus distD1◦D2

(
(x1, x2), (y1, y2)

) ≤ min
{

ξD1(x1), distD2(x2, y2)
}
.

The proof is the same for dist′. �

Corollary 10.2.5 Suppose (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are distinct
vertices of D = D1 ◦ D2 ◦ · · · ◦ Dn, and let k ∈ [n] be the smallest index for
which xk �= yk. Then

distD
(
(x1, x2, . . . , xn), (y1, y2, . . . , yn)

)
=

min
{
ξD1(x1), ξD2(x2), . . . , ξDk−1(xk−1), distDk

(xk, yk)
}

.

(For k = 1 this is distD
(
(x1, x2, . . . , xn), (y1, y2, . . . , yn)

)
= distD1(x1, y1). In

any case, the distance does not depend on any factor Di with k < i ≤ n.)
The formula also holds with dist and ξ replaced with dist′ and ξ′.
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Proof: If n = 2, this is just a restatement of Proposition 10.2.4. If n > 2,
then applying Proposition 10.2.4 to D1 ◦ (D2 ◦ · · · ◦ Dn) yields

distD
(
(x1, x2, . . . , xn), (y1, y2, . . . , yn)

)
=

min
{
ξD1(x1),distD2◦···◦Dn

(
(x2, . . . xn), (y2 . . . yn)

)}
,

and we proceed inductively. �


10.3 Connectivity

We now apply the results of the previous section to connectivity of the four
products. Our first result characterizes connectivity and strong connectivity
of three of our four products. The proofs are straightforward, with appeals
to the distance formulas of Section 10.2 as needed. The parenthetical words
(strongly) and (strong) in the proposition can be deleted to obtain parallel
results on connectedness. (Recall that a digraph is connected if any two of
its vertices can be joined by a [not necessarily directed] path.)

Theorem 10.3.1 Suppose D1, . . . , Dn are digraphs. Then:

1. The Cartesian product D1 � · · · �Dn is (strongly) connected if and only
if each factor Di is (strongly) connected. More generally, the (strong) com-
ponents of a product D1 � · · · �Dn are the subgraphs X1 � · · · �Xn for
which each Xi is a (strong) component of Di.

2. The strong product D1 � · · · �Dn is (strongly) connected if and only if
each factor Di is (strongly) connected. More generally, the (strong) com-
ponents of a product D1 � · · · � Dn are the subgraphs X1 � · · · � Xn for
which each Xi is a (strong) component of Di.

3. The lexicographic product D1 ◦· · ·◦Dn of non-trivial digraphs is (strongly)
connected if and only if the first factor D1 is (strongly) connected. More
generally, the (strong) components of a product D1 ◦ · · · ◦ Dn are the sub-
graphs X1 ◦ D2 ◦ · · · ◦ Dn, where X1 is a non-trivial strong component of
D1, as well as

X1 ◦ X2 ◦ · · · ◦ Xk ◦ Dk+1 ◦ · · · ◦ Dn,

where Xi is a trivial (strong) component of Di for 1 ≤ i < k, and Xk is
a non-trivial strong component of Dk (unless k = n, in which case Xk is
allowed to be trivial).

Theorem 10.3.1 is a key to understanding the interconnections between
the strong components of products. Recall that the strong component
digraph of a digraph D is the acyclic digraph SC(D) whose vertices are
the strong components of D, with an arc directed from X to Y precisely
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→
C 4 × −→

C 6

Figure 10.3 The direct product of strongly connected graphs is not necessarily
strongly connected.

when D has an arc from X to Y . Thus SC(D) carries information on the
interconnections between the various strong components. The SC operator
respects the Cartesian and strong products in the sense that SC(D �H) =
SC(D)�SC(H) and SC(D � H) = SC(D) � SC(H). Indeed, the pairwise
projection map X �→ (πD(X), πH(X)) sending strong components X in the
product to pairs of strong components in the factors is an isomorphism in
both cases � and � (as is easily checked).

Also, if every strong component of D is non-trivial, then SC(D ◦ H) =
SC(D). This is so because Theorem 10.3.1 says the strong components of
D ◦ H have form X ◦ H, where X is a strong component of G. From the
definition of ◦, the projection X ◦ H �→ X is an isomorphism SC(D ◦ H) →
SC(D). (But this breaks down if D has a trivial strong component X = {x0}
and H has at least two strong components Y and Z, because then the distinct
strong components X ◦ Y and X ◦ Z are both mapped to X.)

There is no result analogous to Theorem 10.3.1 for the direct product.
Indeed, Figure 10.3 shows a direct product of two strong digraphs that is not
even connected: Here

−→
C 4 × −→

C 6 = 2
−→
C 12, where the coefficient 2 means the

product is 2 disjoint copies of
−→
C 12. In fact, it is easy to verify the formula

−→
C m × −→

C n = gcd(m,n)
−→
C lcm(m,n) (10.4)

(which is an instance of Theorem 10.3.2 below).
Despite the fact that a direct product of strongly connected digraphs need

not be strongly connected, the converse is true: if D1 × · · · × Dn is strongly
connected, then each Di must be strongly connected. This is a consequence
of the fact that the projection maps are homomorphisms. Given two vertices
xi, yi of Di, take (x1, . . . , xn), (y1, . . . , yn) ∈ V (D1 × · · · × Dn). Any diwalk
joining these two vertices projects to a diwalk joining xi to yi.

Additional conditions on the factors that guarantee the product is strongly
connected were first spelled out by McAndrew [37]. For a digraph D, let d(D)
be the greatest common divisor of the lengths of all closed diwalks in D.
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Theorem 10.3.2 If D1,D2, . . . , Dn are strongly connected digraphs, then the
number of strong components of the direct product D1 × D2 × · · · × Dn is

d(D1) · d(D2) · · · d(Dn)
lcm

(
d(D1), d(D2), . . . , d(Dn)

) .

Consequently, D1 ×D2 ×· · ·×Dn is strongly connected if and only if each Di

is strongly connected and the numbers d(D1), . . . , d(Dn) are relatively prime.

Notice how this theorem agrees with Equation (10.4) and Figure 10.3. The
proof is constructive and gives a neat description of the strong components.

Proof: We need only prove the first statement. Assume each factor Di is
strongly connected, and let D = D1 × · · · × Dn.

For each index i ∈ [n], put di = d(Di), and fix a vertex ai ∈ V (Di).
Define functions fi : V (Di) → {0, 1, 2, . . . , d(Di) − 1} so that fi(v) is the
length (mod di) of an (ai, v)-diwalk W . To see that this does not depend on
W , let W ′ be any other (ai, v)-diwalk. Let Z be a (v, ai)-diwalk. Then the
concatenations W +Z and W ′ +Z are closed (ai, ai)-diwalks, and di divides
both of their lengths |W + Z| and |W ′ + Z|. Thus di divides the difference
|W |−|W ′| of their lengths, so |W | and |W ′| have the same length, modulo di.
Hence f is well defined.

Regard fi(v) as a coloring of vertex v, so Di is di-colored. Now, to each
vertex x = (x1, . . . , xn) of D, assign the n-tuple f(x) = (f1(x1), . . . , fn(xn)).
Regard the distinct n-tuples as colors, so D is colored with d1d2 · · · dn colors.

Take a vertex b = (b1, . . . , bn) of D, and let Xb be the strong component
of D that contains b. If x = (x1, . . . , xn) is in Xb, then D has a (b, x)-diwalk
of length (say) k. By Proposition 10.2.2, each Di has a (bi, xi)-diwalk of
length k. As bi is colored fi(bi), it follows from the definition of fi that xi is
colored fi(xi) = fi(bi) + k (mod di). Thus every vertex x of Xb has a color
of form f(x) = (f1(b1) + k, . . . , fn(bn) + k) for some non-negative integer k.
(Where the arithmetic in the ith coordinate is done modulo di.)

Suppose for the moment that the converse is true: If x ∈ V (D) and f(x) =
(f1(b1)+k, . . . , fn(bn)+k) for some non-negative k, then x belongs to Xb. (We
will prove this shortly.) Combined with the previous paragraph, this means
V (Xb) consists precisely of those vertices colored (f1(b1)+ k, . . . , fn(bn)+ k)
for some non-negative integer k. There are precisely lcm

(
d1, . . . , dn

)
such

colors. In summary, D has d1d2 · · · dn = d(D1) · d(D2) · · · · · d(Dn) color
classes, and any strong component of D is the union of lcm

(
d(D1), . . . , d(Dn)

)

of them. Thus D has

d(D1) · d(D2) · · · d(Dn)
lcm

(
d(D1), d(D2), . . . , d(Dn)

)

strong components, and the theorem follows.
It remains to prove the assertion made above, namely that if the vertex

b = (b1, . . . , bn) belongs to a strong component Xb, then any vertex colored
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(f1(b1)+k, . . . , fn(bn)+k) belongs to Xb. Thus let x = (x1, . . . , xn) be colored
f(x) = (f1(b1)+k, . . . , fn(bn)+k). That is, each xi has color fi(xi) = fi(bi)+k
(mod di). We need to prove that D has both a (b, x)-diwalk and an (x, b)-
diwalk. By Proposition 10.2.2, it suffices to show that there is a positive
integer K for which each Di has a (bi, xi)-diwalk of length K. (And also a
K ′ for which each Di has a (xi, bi)-diwalk of length K ′.) The following claim
assures that this is possible.
Claim. Suppose vertices bi, xi ∈ V (Di) have colors fi(bi) and fi(bi) + k,
respectively. Then there is an integer Mi such that for all mi ≥ Mi there is
a (bi, xi)-diwalk of length midi + k. Also there is an integer M ′

i such that for
all mi ≥ M ′

i there is an (xi, bi)-diwalk of length midi − k.
Once the claim is established, we can put mi = Ld1d2 · · · dn/di, where L is

large enough that each mi exceeds the maximum of all the Mi and M ′
i . Then

midi = Ld1d2 · · · dn for each i ∈ [n], and the claim then gives the required
diwalks of lengths K = Ld1d2 · · · dn + k and K ′ = Ld1d2 · · · dn − k.

To prove the claim, let vertices bi and xi of Di have colors fi(bi) and
fi(bi) + k, respectively. Because Di is strongly connected, Di has a (bi, xi)-
diwalk W . Moreover, we may assume |W | ≥ k, by concatenating with W
(if necessary) arbitrarily many closed (xi, xi)-diwalks. Because bi has color
fi(bi) and xi has color fi(bi) + k, it follows that W has length �di + k for
some non-negative integer �.

By definition of di, there are dicycles C1, C2, . . . , Cs in Di for which di =
gcd(|C1|, |C2|, . . . , |Cs|). Select a vertex ci of each Cj . Let P0 be a (bi, c1)-
diwalk, let Ps be a (cs, xi)-diwalk, and for each j ∈ [s − 1] let Pj be a
(cj , cj+1)-diwalk. See Figure 10.4. By the same reasoning used for W , the
diwalk W ′ = P0 +P1 + · · ·+Ps has length �′di + k for some non-negative �′.

By choice of the Ci, there are integers uj for which
∑s

j=1 uj |Cj | = di.
Let u = max{|u1|, . . . , |us|}. Put w =

∑s
j=1

|Cj |
di

, which is a positive integer
because di divides each |Cj |. We will show that Mi = �′ + w + w2u satisfies
the requirements of the claim: Let mi ≥ Mi. By the division algorithm

C1 C2 C3 Cs· · ·

· · ·

bi xi

color fi(bi) color fi(bi) + k

P0

P1 P2 P3

Ps

c1 c2 c3 cs

i + k
W

Figure 10.4 The diwalk W has length �di+k, and the diwalk W ′ = P0+P1+· · ·+Ps

has length �′di + k.
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mi − �′ = qw + r with 0 ≤ r < w. (10.5)

For each j ∈ [s], put vj = q + ruj . Note that each vj is positive because

vj =
(

qw + r

w
− r

w

)
+ rui

>

(
mi − �′

w
− 1

)
− wu (by (10.5) and u ≥ ui)

≥ Mi − �′

w
− 1 − wu (because mi ≥ Mi)

= 0 (by definition of Mi).

Thus we may construct a diwalk

W ′′ = P0 + v1C1 + P1 + v2C2 + P2 + v3C3 + P3 + · · · + vsCs + Ps,

where vjCj is Cj concatenated with itself vj times. The length of W ′′ is

|W ′′| =
s∑

j=0

|Pj | +
s∑

j=1

vj |Cj |

= |W ′| +
s∑

j=1

(q + ruj)|Cj | (def. of W ′, and vj)

= �′di + k + q
s∑

j=1

|Cj | + r
s∑

j=1

uj |Cj | (recall |W ′| = �′di + k)

= �′di + k + qdiw + rdi (def. of w and choice of uj)
= �′di + k + (qw + r)di

= �′di + k + (mi − �′)di (Equation (10.5))
= midi + k.

Thus for any mi ≥ Mi we have constructed a (bi, xi)-diwalk W ′′ in Di of
length midi + k, and this completes the first part of the claim. By a like
construction (reversing the walks in Figure 10.4, which is possible because
Di is strong) there is also a (xi, bi)-diwalk W ′′′ in Di of length midi −k. This
completes the proof of the claim, and also the proof of the Theorem. �


The issue of connectedness of direct products is even more subtle than
that of strong connectedness. Despite the contributions [3], [21] and [22], more
than 50 years elapsed between McAndrew’s result on strong connectedness
(Theorem 10.3.2) and the eventual characterization of connectedness by Chen
and Chen [5], which we now examine. To begin the discussion, note that
because all projections of D = D1 × · · · × Dn to factors are homomorphisms,
if D is connected, then each factor Di is connected too. The converse is
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generally false, as demonstrated by
−→
P 2×−→

P 2. Laying out the exact additional
conditions on the factors that ensure that the product is connected requires
several definitions.

A matrix A is chainable if its entries are non-negative, and it has no
rows or columns of zeros, and there are no permutation matrices M and N
for which MAN has block form

MAN =
[

A1 0
0 A2

]
.

For a positive integer �, we say A is �-chainable if A� is chainable. A digraph
is �-chainable if its adjacency matrix is �-chainable.

Given a walk W from x to y in a digraph D, its weight w(W ) is the
integer m − n, where in traversing W from x to y, we encounter m arcs in
forward orientation and n arcs in reverse orientation. The weight w(D) of
the digraph D is the greatest common divisor of the weights of all closed
walks in D, or 0 if all closed walks have weight 0.

Space limitations prevent inclusion of the proof of the following theorem.
It can be found in [5].

Theorem 10.3.3 Suppose D1, . . . , Dn are connected digraphs. Then:

1. If no w(Di) is zero, then D1 × · · · × Dn is connected if and only if both
of the following conditions hold:

• gcd
(
w(D1), . . . , w(Dn)

)
= 1,

• If some Di has a vertex of in-degree 0 (respectively out-degree 0) then
no Dj (j �= i) has a vertex of out-degree 0 (respectively in-degree 0).

2. If some w(Di) is zero, then D1 × · · · × Dn is connected if and only if the
other Dj (j �= i) are �-chainable, where � = diam(Di).

We conclude this section with characterizations of unilateral connected-
ness of the four products. Recall that a digraph is unilaterally connected
if for any two of its vertices x, y there exists an (x, y)-diwalk or a (y, x)-
diwalk. (Because this relation on vertices is not symmetric, and thus not an
equivalence relation, there is no notion of unilateral components.) Note that
strongly connected digraphs are unilaterally connected, but not conversely.

Theorem 10.3.4 A Cartesian product of digraphs is unilaterally connected
if and only if one factor is unilaterally connected and the others are strongly
connected. This is also true for the strong product.

For a proof, see the solution of Exercise 32.4 of Hammack, Imrich and
Klavžar [18]. See the solution of Exercise 32.5 for a proof of the next result.

Theorem 10.3.5 A lexicographic product of digraphs is unilaterally con-
nected but not strongly connected if and only if each factor is unilaterally
connected, and the first factor is not strongly connected.
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Finally, we have a characterization of unilaterally connected direct prod-
ucts due to Harary and Trauth [21].

Theorem 10.3.6 A direct product D1 × · · · × Dn is unilaterally connected if
and only if each of the following holds:

• At most one factor Di is unilaterally connected but not strongly con-
nected.

• D1 × · · · × Di−1 × Di+1 × · · · × Dn is strongly connected.
• D1 ×· · · Di−1 ×C ×Di+1 ×· · ·×Dn is strongly connected for each strong

component C of Di.

10.4 Neighborhoods, Kings and Kernels

The structures of vertex neighborhoods in digraph products are clear from the
definitions. For instance, N+

D � D′(x, y) =
(
N+

D (x) × {y}) ∪ ({x} × N+
D′(y)

)
,

etc. For future reference we record two particularly useful formulas, namely

N+
D×D′(x, y) = N+

D (x) × N+
D′(y), (10.6)

N+
D�D′ [(x, y)] = N+

D [x] × N+
D′ [y]. (10.7)

These also hold with the out-neighborhoods N+ replaced by in-neighborhoods
N−, and extend to arbitrarily many factors.

Recall that a k-king in a digraph is a vertex x for which there is an
(x, y)-dipath of length no greater than k for all vertices y of the digraph. The
next proposition follows from the distance properties in Section 10.2.

Proposition 10.4.1 Let D1 and D2 be digraphs. Then:

1. (x1, x2) is a k-king in D1 � D2 if and only if each xi is a k-king in Di.
2. (x1, x2) is a k-king in D1 �D2 if and only if each xi is a ki-king in Di,

where k1 + k2 = k.
3. (x1, x2) is a k-king in D1 ◦ D2 if and only if x1 is a k-king in D1, and x2

is a k-king in D2 or ξD1(x1) ≤ k (where ξ is as defined on page 473).
4. If (x1, x2) is a k-king in D1 × D2, then each xi is a k-king in Di.

This proposition is due to students P. LaBarr, M. Norge and I. Sanders,
directed by D. Taylor [40]. Concerning statement 4, no characterization of
kings in direct products is known.

Recall that a (k, l)-kernel of a digraph D is a subset J ⊆ V (D) for which
distD(x, y) ≥ k for all distinct x, y ∈ J , and to any x /∈ J there is a y ∈ J with
distD(x, y) ≤ l. Szumny, Włoch and Włoch [54] explored (k, l)-kernels in so-
called D-joins. Their Theorem 8 implies the following characterization for the
lexicographic product. (They also enumerate all (k, l)-kernels in D1 ◦ D2.)

Proposition 10.4.2 Let l ≥ k ≥ 2. Then J∗ ⊆ V (D1 ◦ D2) is a (k, l)-kernel
if and only if D1 has a (k, l)-kernel J with J∗ =

⋃
x∈J{x} × Jx, where
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• Jx is a (k, l)-kernel of D2 if ξD1(x) > l and distD2(y, x) > l for y �= x, or
• Jx is a single vertex of D2 if ξD1(x) < k, or
• distD2(x, y) ≥ k for all distinct x, y ∈ Jx otherwise.

The case k > l is open. No characterizations are known for the other
products, though Kwaśnik [33] proved the following.

Proposition 10.4.3 Let D1 and D2 be digraphs, and let Ji be a (ki, li)-kernel
of Di for each i = 1, 2.

1. J1 × J2 is a
(
min{k1, k2}, l1 + l2

)
-kernel of D1 �D2 (for k1, k2 ≥ 2).

2. J1 × J2 is a
(
min{k1, k2},max{l1, l2}

)
-kernel of D1 �D2.

See [59] for corresponding results for generalized products. Finally, we
remark that Lakshmi and Vidhyapriya [34] characterize kernels in Cartesian
products of tournaments with directed paths and cycles.

10.5 Hamiltonian Properties

Hamiltonian properties of digraphs have been studied extensively. The fol-
lowing four theorems are among the results proved in the book [44] by Schaar,
Sonntag and Teichert.

Theorem 10.5.1 If D1 and D2 are Hamiltonian digraphs, then D1�D2 and
D1 ◦ D2 are Hamiltonian. If, in addition, D1 is Hamiltonian connected, and
|D1| ≥ 3 and |D2| ≥ 4, then D1 �D2 is Hamiltonian.

The above additional conditions on the factors of a Cartesian product are
necessary, as evidenced by the next theorem of Erdős and Trotter [57].

Theorem 10.5.2 The Cartesian product
−→
C p �−→

C q is Hamiltonian if and
only if there are non-negative integers d1, d2 for which d1+d2 = gcd(p, q) ≥ 2
and gcd(p, d1) = gcd(q, d2) = 1.

Recall that a digraph is traceable if it has a Hamiltonian path. It is
homogeneously traceable if each of its vertices is the initial point of some
Hamiltonian path.

Theorem 10.5.3 If digraphs D1 and D2 are homogeneously traceable, then
so are D1 �D2, D1 � D2 and D1 ◦ D2.

Theorem 10.5.4 If D1 is homogeneously traceable and D2 is traceable, then
D1 �D2 and D1 � D2 are traceable. If D1 and D2 are traceable, then so is
D1 ◦ D2.

A digraph is Hamiltonian decomposable if it has a family of Hamil-
tonian dicycles such that every arc of the digraph belongs to exactly one of
the dicycles. Ng [39] gives the most complete result among digraph products.
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Theorem 10.5.5 If D1 and D2 are Hamiltonian decomposable digraphs, and
|V (D1)| is odd, then D1 ◦ D2 is Hamiltonian decomposable.

At present it is not known if the assumption of odd order can be removed.

Conjecture 10.5.6 If D1 and D2 are Hamiltonian decomposable digraphs,
then D1 ◦ D2 is Hamiltonian decomposable.

By Theorem 10.5.2, a Cartesian product of Hamiltonian decomposable
digraphs is not necessarily Hamiltonian decomposable. This is also the case
for the strong product, as is illustrated by

←→
K2 � ←→

K2 =
←→
K4.

Problem 10.5.7 Determine conditions under which a Cartesian or strong
product of digraphs is Hamiltonian decomposable.

A solution to this problem may shed light on the longstanding conjecture
that a Cartesian product of Hamiltonian decomposable graphs is Hamiltonian
decomposable. See Section 30.2 of [18] and the references therein.

Despite these difficulties, there has been progress on Cartesian products
of biorientations of graphs. Stong [52] proved that complete biorientations of
odd-dimensional hypercubes decompose into 2m+1 Hamiltonian cycles, and
the same is true for

←→
C n1 � · · · �←→

C nm
�←→

K 2 provided ni ≥ 3 and m > 2.
Hamiltonian results for direct products of digraphs are scarce. Keating

[28] proves that if D1 and D2 × −→
C |D1| are Hamiltonian decomposable, then

so is D1×D2. Paulraja and Sivasankar [41] establish hamilton decompositions
in direct products of biorientations of special classes of graphs.

10.6 Invariants

Here we collect various results on invariants of digraph products, beginning
with the chromatic number and proceeding to domination and independence.

The chromatic number χ(D) of a digraph D is the chromatic number of
the underlying graph of D. For the Cartesian and lexicographic products, the
underlying graph of the product is the product of the underlying graph of
the factors. Thus for � and ◦, the chromatic number of products of digraphs
coincides with that of products of graphs. This has been well-studied. See
Chapter 26 of [18] for a survey.

The situation for the direct and strong products is different. For example,
χ(G × H) ≤ min{χ(G), χ(H)} is straightforward, whether G and H are
graphs or digraphs. The celebrated Hedetniemi conjecture asserts that
χ(G × H) = min{χ(G), χ(H)} for all graphs G and H. But if G and H are
digraphs, then it is quite possible that χ(G×H) < min{χ(G), χ(H)}, as was
first noted by Poljak and Röld [43]. More recently, Bessy and Thomassé [2]
exhibit a 5-chromatic digraph D for which χ(D × TT5) = 3, and Tardif [55]



10. Digraphs Products 483

gives digraphs Gn and Hn for which χ(Gn) = n, χ(Hn) = 4 and χ(Gn×Hn) =
3. Poljak and Röld introduced the functions

f(n) = min{χ(G × H) | G and H are n-chromatic digraphs },

g(n) = min{χ(G × H) | G and H are n-chromatic graphs},

and showed that if g is bounded above, then the bound is at most 16. This
bound was improved to 3 in [42].

Notice that f(n) ≤ g(n) ≤ n, and Hedetniemi’s conjecture is equivalent to
the assertion g(n) = n. Certainly if g is bounded, then so is f . Interestingly,
the converse is true. Tardif [56] proved that f and g are either both bounded
or both unbounded. Thus Hedetniemi’s conjecture is false if f is bounded.

There is an oriented version of the chromatic number, defined on oriented
graphs, that is, digraphs with no 2-cycles. A oriented k-coloring of such
a digraph D is a map c : V (D) → [k] with the property that c(x) �= c(y)
whenever xy ∈ A(D), and, in addition, the existence of an arc from one
color class X1 to another color class X2 implies that there are no arcs from
X2 to X1. The smallest such k is called the oriented chromatic number
of D, denoted χo(D). Equivalently, this is the smallest k for which there
is a homomorphism from D to an oriented graph of order k. The oriented
chromatic number χo(G) of a graph G is the maximum oriented chromatic
number of all orientations of G. For a survey, see Sopena [51]. Tight bounds on
this invariant are rare, even for simple classes of graphs. Aravind, Narayanan
and Subramanian [1] show χo(G�Pn) ≤ (2n − 1)χo(G), and χo(G�Cn) ≤
2nχo(G), as well as 8 ≤ χo(P2 �Pn) ≤ 11 and 10 ≤ χo(P3 �Pn) ≤ 67. There
appears to have been no other work with this invariant on products other
than some progress on grids [10, 53].

A dominating set in a digraph D is a subset S ⊆ V (D) with the property
that for any y ∈ V (D) − S there exists some x ∈ S for which xy ∈ A(D).
The domination number γ(D) is the size of a smallest dominating set.
Domination in digraphs has not been studied as extensively as in graphs.
As computing the domination number of a graph is NP-hard [13], the same
is true for digraphs. (Consider the complete biorientation of an arbitrary
graph.) Thus we can expect exact formulas only for products of special classes
of digraphs. Liu et al. [35] and Shaheen [45–47] consider the case of Cartesian
products of directed paths and cycles. For example, Shaheen proves

γ
(−→
P m �−→

P n

)
=m+

⌈
m − 1

3

⌉⌈
n − 2
3

⌉ ⌈m
3

⌉
+

⌈m
3

⌉⌈
n − 3
3

⌉
+

⌈
m + 1

3

⌉⌈
n − 4
3

⌉
,

provided m,n > 3, and separate formulas are given for m ≤ 3. Similar results
for the strong product of grid graphs are considered in [48].

Concerning independence, note that (as for the chromatic number) ques-
tions of independence in Cartesian and lexicographic products of digraphs
coincide with the same questions for graphs. So only the direct and strong
product of digraphs are not covered by the theory of graph products. Despite
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this, there appears to have been little work done with them. But one interest-
ing application deserves mention. The Gallai–Milgram theorem [12] says that
the vertices of any digraph with independence number n can be partitioned
into n parts, each of which is the vertex set of a directed path (see also The-
orem 1.8.4). Hahn and Jackson [14] conjectured that this theorem is the best
possible in the sense that for each positive n there is a digraph with indepen-
dence number n, and such that removing the vertices of any n − 1 directed
paths still leaves a digraph with independence number n. Bondy, Buchwalder
and Mercier [4] used lexicographic products to construct such digraphs for
n = 2a3b. (The general conjecture was proved by Fox and Sudakov [11].)

Finally, we briefly visit the notion of the exponent exp(D) of a digraph
D, which is the least positive integer k for which any two vertices of D
are joined by a diwalk of length k (or ∞ if no such k exists). We say D is
primitive if its exponent is finite. Wielandt [58] proved that the exponent of a
primitive digraph on n vertices is bounded above by n2−n+1, and established
a family Wn of digraphs for which this bound is attained. Kim, Song and
Hwang [32] showed that if D1 and D2 have order n1 and n2, respectively,
then exp(D1 �D2) ≤ n1n2 − 1, and this upper bound can be attained only if
gcd(n1, n2) = 1. Moreover, if n1 = n2 = n, then exp(D1 �D2) ≤ n2 − n + 1,
and the bound is attained only for D1 =

−→
C n and D2 = Wn. In [30] they

compute the exponents of Cartesian products of cycles, and also show that
if D1 is a primitive graph and D2 is a strong digraph, then

exp(D1 �D2) = exp(D1) + diam(D2).

This work continues in [29], which proves exp(D1 �D2) ≤ n1 + n2 − 2, with
equality for dicycles. Concerning the direct product, the same authors [31]
show that for a primitive digraph D there is an integer m for which

diam(D) < diam(D×2) < diam(D×3) < · · ·
< diam(D×m)
= diam(D×m+1) = · · · = exp(D).

10.7 Quotients and Homomorphisms

Here we set up the notions needed in the subsequent sections on cancellation
and prime factorization of digraphs. Some of that material is most naturally
phrased within the class of digraphs in which loops are allowed. With this
in mind, let D denote the set of (isomorphism classes of) digraphs without
loops, and let D0 be the set of digraphs in which loops are allowed. Thus
D ⊂ D0. We admit as an element of D the empty digraph O with V (O) = ∅.
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This section’s main theme is that a digraph is completely determined,
up to isomorphism, by the number of homomorphisms into it. Recall that
a homomorphism f : D → D′ between digraphs D,D′ ∈ D0 is a map
f : V (D) → V (D′) for which xy ∈ A(D) implies f(x)f(y) ∈ A(D′). Also
f is a weak homomorphism if xy ∈ A(D) implies f(x)f(y) ∈ A(D′) or
f(x) = f(y).

The set of all homomorphisms D → D′ is denoted Hom(D,D′), and the
set of weak homomorphisms D → D′ is Homw(D,D′). A homomorphism
is injective if it is injective as a map from V (D) to V (D′). We denote
the set of all injective homomorphisms D → D′ as Inj(D,D′). (Necessarily
Inj(D,D′) is also the set of injective weak homomorphisms D → D′.) Let
hom(D,D′) = |Hom(D,D′)| be the number of homomorphisms D → D′.
Similarly, homw(D,D′) = |Homw(D,D′)|, and inj(D,D′) = |Inj(D,D′)|.

We will need several notions of digraph quotients. For a digraph D in D
and a partition Ω of V (D), the quotient D/Ω in D is the digraph in D
whose vertices are the partition parts U ∈ Ω, and with an arc from U to V if
U �= V and D has an arc uv with u ∈ U and v ∈ V . Notice the map D → D/Ω
sending u to the element U ∈ Ω with u ∈ U is a weak homomorphism.

On the other hand, if D ∈ D0, then the quotient D/Ω in D0 is as above,
but with a loop UU ∈ A(D/Ω) whenever D has an arc with both endpoints
in U . The map D → D/Ω sending u to the element U ∈ Ω that contains u
is a homomorphism. See Figure 10.5.

The remaining results in this section (at least in the class D0) are from
Lovász [36]. See also Hell and Nešetřil [23] for a very readable account. The
statements concerning weak homomorphisms were developed by Culp in [7].

Lemma 10.7.1 For a digraph D, let P be the set of all partitions of V (D).

1. If D,G ∈ D0, then hom(D,G) =
∑

Ω∈P

inj(D/Ω,G) (quotients in D0).

2. If D,G ∈ D , then homw(D,G) =
∑

Ω∈P

inj(D/Ω,G) (quotients in D).

Proof: For the first part, put Υ = {(Ω, f) | Ω ∈ P, f ∈ Inj(D/Ω,G)}, so
|Υ | = ∑

Ω∈P inj(D/Ω,G). It suffices to show a bijection θ : Hom(D,G) →
Υ . Define θ to be θ(f) = (Ω, f∗), where Ω = {f−1(x) | x ∈ V (G)} ∈ P, and
f∗ : D/Ω → G is defined as f∗(U) = f(u), for u ∈ U . By construction θ is
an injective map to Υ . For surjectivity, take any (Ω, f) ∈ Υ , and note that θ

sends the composition D → D/Ω
f→ G to (Ω, f∗).

The proof of part 2 is the same, except that Hom(D,G) and hom(D,G)
are replaced by Homw(D,G) and homw(D,G), and quotients are in D . �


Proposition 10.7.2 The isomorphism class of a digraph is determined by
the number of homomorphisms into it, in the following senses.
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D/Ω D/Ω

D

Figure 10.5 Left: a digraph D and a partition Ω of V (D). Center: the quotient
D/Ω in D . Right: the quotient D/Ω in D0.

1. If G,H ∈ D0 and hom(X,G) = hom(X,H) for all X ∈ D0, then G ∼= H.
2. If G,H ∈ D and homw(X,G)=homw(X,H) for all X ∈ D , then G ∼= H.
3. If G,H ∈ D and hom(X,G) = hom(X,H) for all X ∈ D , then G ∼= H.

Proof: For the first statement, say hom(X,G) = hom(X,H) for all X ∈ D0.
Our strategy is to show that this implies inj(X,G) = inj(X,H) for every X.
Then the theorem will follow because we get inj(H,G) = inj(H,H) > 0 and
inj(G,H) = inj(G,G) > 0, so there are injective homomorphisms G → H
and H → G, whence G ∼= H.

We use induction on |X| to show inj(X,G) = inj(X,H). If |X| = 1, then

inj(X,G) = hom(X,G) = hom(X,B) = inj(X,H).

If |X| > 1, Lemma 10.7.1 (1) applied to hom(X,G) = hom(X,H) yields
∑

Ω∈P

inj(X/Ω,G) =
∑

Ω∈P

inj(X/Ω,H).

Let T be the trivial partition of V (X) consisting of |X| singleton sets. Then
X/T = X and the above equation becomes

inj(X,G) +
∑

Ω∈P−T

inj(X/Ω,G) = inj(X,H) +
∑

Ω∈P−T

inj(X/Ω,H).

By the induction hypothesis, inj(X/Ω,G) = inj(X/Ω,H) for all non-trivial
partitions Ω. Consequently inj(X,G) = inj(X,H), completing the proof.

The second statement is proved in exactly the same way, but using homw

instead of hom, and part 2 of Lemma 10.7.1 instead part 1.
Finally, part 3 follows immediately from part 1, because if G,H ∈ D

and X ∈ D0 − D , then X has a loop, but neither G nor H has one, so
hom(X,G) = 0 = hom(X,H). �


Observe that hom and homw factor neatly over the direct and strong
products:

Proposition 10.7.3 Suppose X,D and G are digraphs.

1. If X,D,G ∈ D0, then hom(X, D × G) = hom(X,D) · hom(X,G).
2. If X,D,G ∈ D , then homw(X,D � G) = homw(X,D) · homw(X,G).
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Proof: The map Hom(X,D × G) → Hom(X,D) × Hom(X,G) given by
f �→ (πDf, πGf) is injective. And it is surjective because any (fD, fG) in the
codomain is the image of x �→ (fD(x), fG(x)), which is a homomorphism by
definition of the direct product. This establishes the first statement, and the
second follows analogously. �


As an application, we get a quick result for direct and strong powers.

Corollary 10.7.4 If D,G ∈ D0, then D×n ∼= G×n if and only if D ∼= G.
Also, if D,G ∈ D , then D�n ∼= G�n if and only if D ∼= G.

Proof: If D ∼= G, then clearly D×n ∼= G×n. Conversely, if D×n ∼= G×n,
then Proposition 10.7.3 gives hom(X,D)n = hom(X,G)n, so hom(X,D) =
hom(X,G) for any X ∈ D0. Thus D ∼= G, by Proposition 10.7.2. Apply a
parallel argument to the strong product. �


10.8 Cancellation

Given a product ∗ ∈ {� , � ,×, ◦} the cancellation problem seeks the
conditions under which D ∗ G ∼= D ∗ H implies G ∼= H for digraphs D,G
and H. If this is the case, we say that cancellation holds; otherwise it fails.
Obviously cancellation fails if D is the empty digraph, for then D ∗ G = O =
D ∗ H for any G and H. We will see that cancellation holds for each of the
products � , � and ◦ provided D �= O. The situation for the direct product
is much more subtle; it is reserved for the end of the section.

As in the previous section, D is the class of digraphs (without loops) and
D0 is the class of digraphs that may have loops. Our first result concerns the
strong product. The proof approach is from Culp [7].

Theorem 10.8.1 Let D,G and H be digraphs (without loops), with D �= O.
If D �G ∼= D � H, then G ∼= H.

Proof: Let D �G ∼= D � H. Proposition 10.7.3 says that for any digraph X,

homw(X,D) · homw(X,G) = homw(X,D) · homw(X,H).

If D �= O, then homw(X,D) > 0 (constant maps are weak homomorphisms),
so homw(X,G) = homw(X,H). Proposition 10.7.2 (2) yields G ∼= H. �


Theorem 10.8.1 applies only to D . Indeed, cancellation over � fails in
D0. Consider the case where D is a single vertex with a loop, and H = K1.
Then D �D = D = D � H, but D �∼= H.

Echoing Theorem 10.8.1, we get a partial cancellation result for the direct
product [36]. The proof is the same but uses part (1) of Proposition 10.7.2
instead of part (2), plus the fact that any constant map from X to a vertex
with a loop is a homomorphism. The result is due to Lovász [36].
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X

Xd/Xb

D

Xb/XdG D G

Figure 10.6 Each homomorphism X → D � G is encoded as an arc 2-coloring of X
with colors dashed and bold, and homomorphisms Xd/Xb → D and Xb/Xd → G.

Theorem 10.8.2 Suppose D,G,H ∈ D0, and D has a loop. If D × G ∼=
D × H, then G ∼= H.

Proposition 10.7.3 has no analogue for the Cartesian product, so to deduce
cancellation for it we must count our homomorphisms indirectly. The proof of
the next theorem is new. A different approach uses unique prime factorization;
see the remarks in Chapter 23 of [18].

Theorem 10.8.3 Let D,G and H be digraphs (without loops), with D �= O.
If D �G ∼= D �H, then G ∼= H.

Proof: The proof has two parts. First we derive a formula for hom(X,D �G).
Then we use it to show D �G ∼= D �H implies hom(X,G) = hom(X,H) for
all X ∈ D , whence Proposition 10.7.2 yields G ∼= H.

Our counting formula uses an arc 2-coloring scheme, shown in Figure 10.6.
Given a 2-coloring of A(X) by the colors dashed and bold, let Xd be the
spanning subdigraph of X whose arcs are the dashed arcs, and let Xb be the
spanning subdigraph whose arcs are bold. Let Xb/Xd be the contraction in
D0 of Xb in which each connected component of Xd is collapsed to a vertex.
Specifically, V (Xb/Xd) is the set of connected components of Xd, and

A(Xb/Xd) = {UV | X has a bold arc from U to V }.

Define Xd/Xb analogously, as the contraction of Xd by the connected com-
ponents of Xb. Note that Xb/Xd (resp. Xd/Xb) has a loop at U if and only
if the subdigraph of X induced on U has a bold (resp. dashed) arc.

Let C be the set of all arc 2-colorings of X by colors dashed and bold.
We claim that there is a disjoint union

Hom(X,D �G) =
⋃

C

Hom(Xd/Xb,D) × Hom(Xb/Xd, G).
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Indeed, any f ∈ Hom(X,D �G) corresponds to a 2-coloring in C and
a pair (πDf, πGf) ∈ Hom(Xd/Xb,D) × Hom(Xb/Xd, G), as follows. For
any xy ∈ A(X), either πDf(x) = πDf(y) and πGf(x)πGf(y) ∈ A(G), or
πDf(x)πDf(y) ∈ A(D) and πGf(x) = πGf(y). Color xy bold in the first case
and dashed in the second. One verifies that πDf is a well-defined homomor-
phism Xd/Xb → D, and similarly for πGf : Xb/Xd → D, and it is easy to
check that f �→ (πDf, πGf) is injective. For surjectivity, note that for any
arc 2-coloring of X and pair (fD, fG) ∈ Hom(Xd/Xb,D) × Hom(Xb/Xd, G),
there is an associated f ∈ Hom(X,D �G) defined as f(x) = (fD(U), fG(V )),
where x ∈ U, V .

It follows that we can count the homomorphisms from X to D �G as

hom(X,D �G) =
∑

C

hom(Xd/Xb,D) · hom(Xb/Xd, G). (10.8)

This completes the first part of the proof.
For the second step, suppose D �G ∼= D �H and X is arbitrary. We

will show hom(X,G) = hom(X,H) by induction on |X|. If |X| = 1, then
hom(X,G) = |G| = |H| = hom(X,H). Otherwise, by Equation (10.8),
∑

C

hom(Xd/Xb,D)·hom(Xb/Xd, G) =
∑

C

hom(Xd/Xb,D)·hom(Xb/Xd,H).

By induction, hom(Xb/Xd, G) = hom(Xb/Xd,H) for all colorings with at
least one dashed edge. Thus, for the coloring where all edges are bold, we get

hom(Xd/Xb,D) · hom(Xb/Xd, G) = hom(Xd/Xb,D) · hom(Xb/Xd,H).

But then Xd/Xb has no arcs, so hom(Xd/Xb,D) > 0. Also, Xb/Xd = X, so
we get hom(X,G) = hom(X,H). Finally, Proposition 10.7.2 says G ∼= H. �


Next we aim our homomorphism-counting program at the lexicographic
product and bag a particularly strong cancellation law. We use a coloring
scheme like that in Figure 10.6. For a homomorphism X → D ◦ G, arcs
mapping to fibers over vertices of D are colored bold, and all other arcs are
colored dashed. Equation (10.8) adapts as

hom(X,D ◦ G) =
∑

C

hom(Xd/Xb,D) · hom(Xb, G). (10.9)

Verification is left as an exercise. Using this, we can prove right- and left-
cancellation for the lexicographic product.

Lemma 10.8.4 Suppose D,G and H are digraphs (without loops) and D �=
O. If G ◦ D ∼= H ◦ D, then G ∼= H. If D ◦ G ∼= D ◦ H, then G ∼= H.

Proof: Say G ◦ D ∼= H ◦ D. We will get G ∼= H by showing hom(X,G) =
hom(X,H) for any X. If |X| = 1, then hom(X,G) = |G| = |H| = hom(X,H).
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Let |X| > 1 and assume hom(X ′, G) = hom(X ′,H) whenever |X ′| < |X|. As
hom(X,G ◦ D) = hom(X,H ◦ D), Equation 10.9 gives

∑

C

hom(Xd/Xb, G) · hom(Xb,D) =
∑

C

hom(Xd/Xb,H) · hom(Xb,D).

Now, hom(Xd/Xb, G) = hom(Xd/Xb,H) unless all arcs of X are dashed, in
which case Xd/Xb = X and Xb is the arcless digraph on V (X). From this,
the above equation reduces to hom(X,G) · |D||G| = hom(X,H) · |D||G|, and
then G ∼= H by Proposition 10.7.2. For the second statement, Equation 10.9
gives

∑

C

hom(Xd/Xb,D) · hom(Xb, G) =
∑

C

hom(Xd/Xb,D) · hom(Xb,H),

and we reason as in the first case. �


We now discuss a notion that leads to a much stronger cancellation law.
A subdigraph X of D is said to be externally related if for each b ∈
V (D) − V (X) the following holds: if there is an arc from b to a vertex of X,
then there are arcs from b to every vertex in X; and if there is an arc from
a vertex of X to b, then there are arcs from every vertex of X to b. (In the
context of graphs, see Section 10.2 of [18], and the references therein.)

Given a vertex a = (x1, x2) ∈ V (G ◦ D), let Da denote the subdigraph of
G ◦ D induced on the vertices {(x1, x) | x ∈ V (D)}. We call Da the D-layer
through a. The definition of the lexicographic product implies Da ∼= D, and
that each Da is externally related in G ◦ D. Note that each Da is also an
induced subdigraph of G ◦ D. All of these ideas are used in the proof of the
next theorem, which was first proved by Dörfler and Imrich [8].

Theorem 10.8.5 Let D,G,H and K be non-empty digraphs (without loops).
If G ◦ D ∼= H ◦ K and |D| = |K|, then G ∼= H and D ∼= K.

Proof: We prove this under the assumption that either D is disconnected, or
that both D and its complement D are connected. Once proved, this implies
the general result, because if D is connected and D is disconnected, then we
can use Equation 10.3 to get G ◦ D ∼= H ◦ K. Then G ∼= H and D ∼= K, and
the theorem follows.

Take an isomorphism ϕ : G ◦ D → H ◦ K.
We first claim that for any D-layer Da, the image πHϕ(Da) is either an

arcless subdigraph of H (i.e., one or more vertices of H), or it is a single
arc of H. Indeed, suppose it has an arc. Then ϕ(Da) has an arc cd with
πH(c) �= πH(d). We will show that if ϕ(Da) has a vertex x with πH(x) /∈
{πH(c), πH(d)}, then all arcs x′′y, yx′′ are present in ϕ(Da), for any vertex
y ∈ ϕ(Da) ∩ (Kc ∪ Kd) and x′′ ∈ Kx. This will contradict our assumption
about D, because it implies that ϕ(Da) (hence also D) is connected, but
its complement is disconnected, for in ϕ(Da) it is impossible to find a path
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from x to c or d. Thus let x be as stated above. Select vertices c′, d′, x′ in
H ◦ K − ϕ(Da) with πH(c′) = πH(c), πH(d′) = πH(d) and πH(x′) = πH(x).
(Possible because |ϕ(Da)| = |K|, and the existence of the arc cd means
that no K-layer is contained in ϕ(Da).) The definition of ◦ implies cd′, c′d ∈
A(H◦K). In turn, c′x, xd′ ∈ A(H◦K) because ϕ(Da) is externally related. By
definition of ◦ we get cx′, x′d ∈ A(H ◦ K), and then also x′c, dx′ ∈ A(H ◦ K)
because ϕ(Da) is externally related. From this, the definition of ◦ implies
that for any vertex x′′ of Kx and y of Kc ∪Kd we have yx′′, x′′y ∈ A(H ◦K).
The claim is proved. Now we break into cases.
Case 1. Suppose D is disconnected. Then πHϕ(Da) is never an arc because
then every vertex of ϕ(Da) in the fiber over the tail of the arc would be
adjacent to every vertex in the fiber over the tip, making ϕ(Da) connected.
It follows that ϕ maps components of D-layers into components of K-layers.
Further, ϕ maps each component of a D-layer onto a component of a K-layer:
Suppose to the contrary that C is a component of Da and ϕ(C) is a proper
subgraph of a component of Kϕ(a). Take a vertex x of Kϕ(a) − ϕ(C) that
is adjacent to or from ϕ(C). Then ϕ−1(x) is adjacent to or from C ⊆ Da,
which is externally related, so ϕ−1(x) is adjacent to or from every vertex
of Da. Consequently x is adjacent to or from every vertex of ϕ(Da). But
then any vertex of y of ϕ(Da) must be contained in Kϕ(a), for otherwise
it is adjacent to or from x ∈ V (Kϕ(a)), and hence also to or from ϕ(C),
which is impossible. Thus Kϕ(a) contains ϕ(Da) as well as x, contradicting
|Kϕ(a)| = |ϕ(Da)|.

Thus each component of a D-layer is isomorphic to a component of a
K-layer, and conversely, as ϕ is bijective. As there are |G| D-layers (all iso-
morphic to D), and just as many K-layers (isomorphic to K), we conclude
D ∼= K. Thus G ◦ D ∼= H ◦ D, and Lemma 10.8.4 implies G ∼= H.
Case 2. Suppose D is connected and its complement is connected. If ϕ maps
a D-layer to a K-layer, then D ∼= K and Lemma 10.8.4 implies G ∼= H.
Otherwise πHϕ(Da) is an arc for every layer Da. Thus we can define a map
f : G → H by declaring f(x) to be the tail of the arc πHϕ(π−1

G (x)). We
will finish the proof by showing f is an isomorphism. (For then G ∼= H, and
D ∼= K, by Lemma 10.8.4.) We will show that f is injective; once this is
done the isomorphism properties are simple consequences of the definitions.
Suppose to the contrary that f is not injective, which means that for some
a �= b we have πHϕ(Da) = wy and πHϕ(Db) = wz. Say the vertex set of
ϕ(Da) is Aw ∪ Ay with πH(Aw) = w and πH(Ay) = y. Likewise the vertex
set of ϕ(Db) is Bw ∪ Bz with πH(Bw) = w and πH(Bz) = z. Then there
are arcs from each vertex of ϕ(Bw) to each vertex of ϕ(Bz), and then by
definition of ◦ there are arcs from each vertex of ϕ(Aw) to each vertex of
ϕ(Bz). For the same reasons there are arcs from ϕ(Aw) to ϕ(Ay), and thus
from ϕ(Bw) to ϕ(Ay). From this we conclude that in G ◦ D there are arcs
from every vertex of Ga to every vertex of Gb, and arcs from every vertex
of Gb to every vertex of Ga. Hence there are arcs from ϕ(Bz) to ϕ(Aw), so
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there is an arc from ϕ(Bz) to ϕ(Bw). Thus πHϕ(Gb) contains two arcs wz
and zw, contradicting the fact that this projection is a single arc. �


We get a quick corollary concerning lexicographic powers.

Corollary 10.8.6 If G,H ∈ D , then G◦n ∼= H◦n if and only if G ∼= H.

Having cancellation laws for the strong, Cartesian and lexicographic prod-
ucts, we devote the remainder of this section to the direct product. The next
result due to Lovász [36] is useful in this context.

Proposition 10.8.7 Let D,C,G and H be digraphs in D0. If C×G ∼= C×H
and there is a homomorphism D → C, then D × G ∼= D × H.

Proof: As C×G ∼= C×H, Proposition 10.7.3 says hom(X,C) ·hom(X,G) =
hom(X,C) · hom(X,H) for any X. The homomorphism D → C guarantees
hom(X,D) = 0 whenever hom(X,C) = 0. Thus hom(X,D) · hom(X,G) =
hom(X,D) · hom(X,H), so hom(X,D × G) = hom(X,D × H) by Proposi-
tion 10.7.3, and then Proposition 10.7.2 gives D × G ∼= D × H. �


Now observe that cancellation can fail over the direct product. Figure 10.7
shows digraphs D,G,H ∈ D0 for which D × G ∼= 3

−→
C3

∼= D × H, but G �∼= H.
Cancellation can also fail in the class of loopless digraphs. For example, note
that for graphs we have K2 ×2C3 = 2C6 = K2 ×C6, so

←→
K2 ×2

←→
C3

∼= ←→
K2 ×←→

C6.
A digraph D is called a zero divisor if there are digraphs G �∼= H for

which D × H ∼= D × G. For example, Figure 10.7 shows that D =
−→
C3 is a

zero divisor, and the equation above shows
←→
K2 is a zero divisor. The following

characterization of zero divisors is due to Lovász [36].

Theorem 10.8.8 A digraph D is a zero divisor if and only if there exists a
homomorphism D → −→

C p1 +
−→
C p2 + · · ·+−→

C pk
into a disjoint union of directed

cycles of distinct prime lengths p1, p2, . . . , pk.

Proof: We will prove only one (the easier) direction. See [36] for the other.
Suppose there is a homomorphism D → C =

−→
C p1+

−→
C p2+· · ·+−→

C pk
, where

the pi are distinct primes. Our plan is to produce non-isomorphic digraphs
G and H for which C × G = C × H, for then Proposition 10.8.7 will insure
D × G ∼= D × H, showing D is a zero divisor.

Put n = p1p2 · · · pk. Let G be the set of positive divisors of n that are
products of an even number of the pi’s, whereas H is the set of divisors
that are products of an odd number of the pi’s. Let G and H be the disjoint
unions

G =
∑

d∈G

d
−→
C n

d
and H =

∑

d∈H

d
−→
C n

d
.

Clearly G �∼= H. As the direct product distributes over disjoint unions, C ×
G = C ×H will follow provided

−→
C pi

×G =
−→
C pi

×H for each pi. We establish
this with the aid of Equation (10.4), as follows:
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D D

G HD × G D × H

Figure 10.7 Failure of cancellation over the direct product.

−→
C pi

× G =
∑

d∈G

−→
C pi

× d
−→
C n

d
=

∑

d∈G
pi|d

−→
C pi

× d
−→
C n

d
+

∑

d∈G
pi � d

−→
C pi

× d
−→
C n

d

=
∑

d∈G
pi|d

d
−→
C pin

d
+

∑

d∈G
pi � d

pid
−→
C pin

pid

=
∑

d∈H
pi�d

dpi
−→
C pin

d
+

∑

d∈H
pi | d

d
−→
C pin

d

=
∑

d∈H
pi�d

−→
C pi

× d
−→
C n

d
+

∑

d∈H
pi | d

−→
C pi

× d
−→
C n

d

=
∑

d∈H

−→
C pi

× d
−→
C n

d
=

−→
C pi

× H.

From this, C × G = C × H, and hence D × G = D × H, as noted above. �


For example,
−→
C n is a zero divisor when n > 1, as there is a homomorphism−→

C n → −→
C p for any prime divisor p of n. Also, each

−→
P n is a zero divisor, as

there are homomorphisms
−→
P n → −→

C p.
Paraphrasing Theorem 10.8.8, if there are no homomorphisms from D

into a union of directed cycles, then D × G ∼= D × H necessarily implies
G ∼= H. But if there is such a homomorphism then D is a zero divisor and
there exist non-isomorphic digraphs G and H for which D × G ∼= D × H, as
constructed in the proof of Theorem 10.8.8.

Given a digraph G and a zero divisor D, a natural problem is to determine
all digraphs H for which G × D ∼= H × D. If there is only one such H, then
necessarily H ∼= G, and cancellation holds. Thus it is meaningful to ask if
there are conditions on G and D that force cancellation to hold, even if D
is a zero divisor. For example, if G = K∗

1 , then G × D ∼= H × D implies
G ∼= H, regardless of whether D is a zero divisor. What other graphs have
this property? We now turn our attention to this type of question, adopting
the approach of [15, 19, 20].
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For a digraph G, let SV (G) denote the symmetric group on V (G), that is,
the set of bijections from V (G) to itself. For σ ∈ SV (G), define the permuted
digraph Gσ to be V (Gσ) = V (G) and A(Gσ) = {xσ(y) | xy ∈ A(G)}. Thus
xy ∈ A(G) if and only if xσ(y) ∈ A(Gσ), and xy ∈ A(Gσ) if and only
if xσ−1(y) ∈ E(G). Figure 10.8 shows several examples. The upper part
shows a digraph G and two of its permuted digraphs. In the lower part, the
cyclic permutation (0245) of the vertices of

−→
C6 yields a permuted digraph−→

C6
(0245) = 2

−→
C3. The permuted digraph

−→
C6

(01) is also shown. For another
example, note that Gid = G for any digraph G. It may be possible that
Gσ ∼= G for some non-identity permutation σ. For instance,

−→
C6

(024) ∼= −→
C6.

The significance of permuted digraphs is given by the next proposition.
asserting that D × G ∼= D × H implies that H is a permuted digraph of G.

Proposition 10.8.9 Let G,H and D be digraphs, where D has at least one
arc. If D × G ∼= D × H, then H ∼= Gσ for some permutation σ ∈ SV (G). As
a partial converse, D × G ∼= D × Gσ for all σ ∈ SV (A), provided there is a
homomorphism D → −→

P 2.

Proof: Suppose D × G ∼= D × H, and D has at least one arc. Then there
is a homomorphism

−→
P 2 → D, and Proposition 10.8.7 yields an isomorphism

ϕ :
−→
P2 × G → −→

P2 × H. We may assume ϕ has the form (ε, x) �→ (ε, ϕε(x)),
where ε ∈ {0, 1} = V (

−→
P2), and each ϕε is a bijection V (G) → V (H). (That

a ϕ of such form exists is a consequence of Theorem 3 of [36]. However, it is
also easily verified in the present setting, when the common factor is

−→
P 2.)

Hence ϕ−1
0 ϕ1 : V (G) → V (G) is a permutation of V (G). We now show that

the map ϕ0 : Gϕ−1
0 ϕ1 → H is an isomorphism. Simply observe that

1

2 3

G

1

2 3

G(23)

1

2 3

G(13)

0

1

3

4 5

−→
C6

0

1

3

4 5

−→
C6

(0245)

0

1

3

4 5

−→
C6

(01)
2 2 2

Figure 10.8 Upper: A digraph G and permuted digraphs Gσ for transpositions
σ = (23) and σ = (13). Lower: two permutations of a directed cycle.
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xy ∈ A(Gϕ−1
0 ϕ1) ⇐⇒ x (ϕ−1

0 ϕ1)−1(y) ∈ A(G)
⇐⇒ x ϕ−1

1 ϕ0(y) ∈ A(G)
⇐⇒ (0, x) (1, ϕ−1

1 ϕ0(y)) ∈ A(
−→
P2 × G)

⇐⇒ (0, ϕ0(x)) (1, ϕ1ϕ
−1
1 ϕ0(y)) ∈ A(

−→
P2 × H) (applyϕ)

⇐⇒ (0, ϕ0(x)) (1, ϕ0(y)) ∈ A(
−→
P2 × H)

⇐⇒ ϕ0(x)ϕ0(y) ∈ A(H).

Conversely, let σ ∈ SV (G). Note that the map ϕ defined as ϕ(0, x) = (0, x)
and ϕ(1, x) = (1, σ(x)) is an isomorphism

−→
P 2 × G → −→

P 2 × Gσ because
(0, x)(1, y) ∈ A(

−→
P 2 × G) if and only if (0, x)(1, σ(y)) ∈ A(

−→
P 2 × Gσ). If there

is a homomorphism D → −→
P 2, Proposition 10.8.7 gives D × G ∼= D × Gσ. �


In general, the full converse of Proposition 10.8.9 is (as we shall see) false.
If there is no homomorphism D → −→

P 2, then not every σ will yield a digraph
H = Gσ for which D × G ∼= D × H. In addition, it is possible that σ �= τ
but Gσ ∼= Gτ . Towards clarifying these issues, we next introduce a group
action on SV (G) whose orbits correspond to isomorphism classes of permuted
digraphs.

The factorial of a digraph G is a digraph G!, defined as V (G!) = SV (G),
and αβ ∈ A(G!) provided that xy ∈ A(G) ⇐⇒ α(x)β(y) ∈ A(G) for all
pairs x, y ∈ V (G). To avoid confusion with composition, we will denote arcs
αβ of G! as [α, β]. Note that A(G!) has a group structure as a subgroup of
SV (G) × SV (G), that is, we can multiply arcs as [α, β][γ, δ] = [αγ, βδ].

Observe that the definition implies that there is a loop [α, α] at α ∈ V (G!)
if and only if α is an automorphism of G. In particular, any G! has a loop at
the identity id.

Our first example explains the origins of our term “factorial.” Let K∗
n be

the complete symmetric digraph with a loop at each vertex, and note that

K∗
n! ∼= K∗

n!
∼= K∗

n × K∗
n−1 × K∗

n−2 × · · · × K∗
3 × K∗

2 × K∗
1 .

For less obvious computations, it is helpful to keep in mind the following
interpretation of A(G!). Any arc [α, β] ∈ A(G!) is a permutation of the arcs
of G, where [α, β](xy) = α(x)β(y). This permutation preserves in-incidences
and out-incidences in the following sense: Given two arcs xy, xz of G that
have a common tail, [α, β] carries them to the two arcs α(x)β(y), α(x)β(z)
of G with a common tail. Given two arcs xy, zy with a common tip, [α, β]
carries them to the two arcs α(x)β(y), α(z)β(y) of G with a common tip.

Bear in mind, however, that even if the head of xy meets the tail of yz,
then the arcs [α, β](xy) and [α, β](yz) need not meet; they can be quite far
apart in G. To illustrate these ideas, Figure 10.9 shows the effect of a typical
[α, β] on the arcs incident with a typical vertex z of G.
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u

v

w

x

y

z

α(v)

α(w)

α(x)

β(z)

β(u)

β(w)

β(y)

α(z)

G G

Figure 10.9 Action of an arc [α, β] of G! on the neighborhood of a vertex z ∈ V (G).

Let’s use these ideas to compute the factorial of the transitive tourna-
ment TTn, which has distinct out- and in-degrees 0, 1, . . . , n − 1. The above
discussion implies if [α, β] ∈ A(TTn!), the out-degree of any x ∈ V (TTn)
equals the out-degree of α(x). Hence α = id. The same argument involving
in-degrees gives β = id. Therefore TTn! has n! vertices but only one arc
[id, id]. Figure 10.10 shows T3!, plus two other examples.

0 1 2
TT3

id (02) (01) (12) (012) (021)
TT3!

0 1 2
D

id (02) (01) (12) (012) (021)
D!

0 1 2 −→
C3

id (02) (01) (12) (012) (021) −→
C3!

Figure 10.10 Some digraphs (left) and their factorials (right).

The group A(G!) acts on SV (G) as [α, β] ·σ = ασβ−1, and this determines
the situation in which Gσ = Gτ .

Proposition 10.8.10 If σ, τ are permutations of the vertices of a digraph
G, then Gσ = Gτ if and only if σ and τ are in the same A(G!)-orbit.

Proof: If there is an isomorphism ϕ : Gσ → Gτ , then for any x, y ∈ V (G),

xy ∈ A(G) ⇐⇒ xσ(y) ∈ A(Gσ) ⇐⇒ ϕ(x)ϕσ(y) ∈ A(Gτ )

⇐⇒ ϕ(x)τ−1ϕσ(y) ∈ A(G).

This means [ϕ, τ−1ϕσ] ∈ A(G!). Then [ϕ, τ−1ϕσ] · σ = τ , so σ and τ are
indeed in the same orbit.

Conversely, suppose σ and τ are in the same orbit. Take [α, β] ∈ A(G!)
with τ = [α, β]·σ = ασβ−1. Then α : Gσ → Gασβ−1

= Gτ is an isomorphism:
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xy ∈ A(Gσ) ⇐⇒ xσ−1(y) ∈ A(G) ⇐⇒ α(x)βσ−1(y) ∈ A(G)

⇐⇒ α(x)ασβ−1βσ−1(y) ∈ A(Gασβ−1
)

⇐⇒ α(x)α(y) ∈ A(Gασβ−1
). �

Given an arc [α, β] ∈ A(G!), we have [α, β] · β = α. The previous propo-
sition then assures Gα ∼= Gβ , and therefore yields the following corollary.

Corollary 10.8.11 If two permutations σ, τ are in the same component of
G!, then Gσ ∼= Gτ .

For a given digraph G, the next theorem and corollary characterize the
complete set of digraphs H for which D × G ∼= D × H, provided D is a
zero divisor that admits a homomorphism into a directed path. Space limi-
tations prohibit inclusion of a proof of the theorem, as well as inclusion of
the characterization for general zero divisors D. For a full treatment, see
Hammack [15].

Theorem 10.8.12 Suppose G and H are digraphs, and D is a zero divisor
that admits a homomorphism D → −→

P n. Assume n ≥ 2 is the smallest such
integer. Then D × G ∼= D × H if and only if H ∼= Gσ, where σ is a vertex of
a diwalk of length n − 2 in G!.

Given a digraph G and a zero divisor D that admits a homomorphism
D → −→

P n, Theorem 10.8.12 describes a complete collection of digraphs H for
which D × G ∼= D × H. Of course it is possible that some (possibly all) of
these H are isomorphic. We next describe a means of constructing the exact
set of isomorphism classes of such H. Combining the previous theorem with
Proposition 10.8.10 yields the following.

Corollary 10.8.13 Suppose G and D are digraphs, and D is a zero divisor
that admits a homomorphism D → −→

P n. Assume n ≥ 2 is the smallest such
integer. Then the set of distinct (up to isomorphism) digraphs H for which
D × G ∼= D × H can be obtained as follows: Let Υn−2 denote the set of
vertices of G! that lie on a directed walk of length n − 2. Select a maximal
set of elements σ1, σ2, . . . , σk ∈ Υn−1 that are in distinct orbits of the A(G!)-
action on SV (G). Then the digraphs H for which D×G ∼= D×H are precisely
H ∼= Gσ1 , Gσ2 , . . . , Gσk .

Cancellation holds (D ×G ∼= D ×H implies G ∼= H) if and only if k = 1.

According to Theorem 10.8.12, if D admits a homomorphism into
−→
P 2,

then D × G ∼= D × H if and only if H ∼= Gσ, where σ is a vertex of G! on
a diwalk of length 0. In this case there are no restrictions whatsoever on σ;
it can be any permutation of V (G). Consequently, there can be potentially
|V (G)|! different H ∼= Gσ.
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We close with an application of these results that illustrates an extreme
failure of cancellation involving the transitive tournament TTn. We remarked
earlier that TTn! has n! vertices and a single arc [id, id]. Therefore each
A(TTn!)-orbit of SV (TTn) consists of a single permutation. Also Υ0 = SV (TTn).
Thus, if D is a zero divisor that admits a homomorphism to

−→
P 2, then there

are exactly n! distinct digraphs TT σ
n for which D × TTn

∼= D × TT σ
n . By

Proposition 10.8.9, this is the maximum number possible.
But notice that if we merely replace D with a zero divisor that admits a

homomorphism to
−→
P n, with n > 2, then Υn−2 = {id} and cancellation holds!

10.9 Prime Factorization

We mentioned in Section 10.1 that the trivial digraph K1 is a unit for � ,
� and ◦ in the sense that K1 �D = D, K1 � D = D and K1 ◦ D = D for
any digraph D. If ∗ ∈ {� , � , ◦}, we say a digraph D is prime over ∗ if D is
non-trivial, and for any factoring D = D1 ∗ D2, one factor Di is isomorphic
to D and the other is K1.

Certainly any non-trivial digraph D has a factoring D = D1∗D2∗· · ·∗Dn,
where each Di is prime (possibly n = 1). We call any such factoring a prime
factoring over ∗. (Note that n ≤ log2 |V (D)| because a product Di ∗ Dj

always has at least twice as many vertices as either of its factors.)
It is natural to ask whether any prime factoring of a given digraph D is

unique up to order and isomorphism of the factors. In general this is false.
For � and � , the standard counterexamples arise from the equation

(1 + x + x2)(1 + x3) = (1 + x2 + x4)(1 + x), (10.10)

giving two distinct prime factorings of the polynomial 1+x+x2+x3+x4+x5

in the semiring Z
+[x]. Let

←→
Q n be the complete biorientation of the n-cube

Qn. For typographical efficiency, let us denote
←→
Q n simply as Qn. Then Qn =←→

K � n
2 (the nth Cartesian power of

←→
K 2), and Q0 = K1. Substituting Q1 for

x in Equation (10.10) yields two factorings

(Q0 + Q1 + Q2)� (Q0 + Q3) = (Q0 + Q2 + Q4)� (Q0 + Q1),

of the digraph Q0 +Q1 +Q2 +Q3 +Q4 +Q5. It is routine to check that the
above factors are prime.

The same idea applies to the strong product. Denote the complete biori-
entation

←→
K n of Kn simply as Kn (a convention we will adhere to for the rest

of this section). Note that Km � Kn = Kmn. Then, as above,

(K1 + K2 + K4)� (K1 + K8) = (K1 + K4 + K16)� (K1 + K2)

are two distinct prime factorings of K1 + K2 + K4 + K8 + K16 + K32.
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Despite these failures of unique prime factorization, connected digraphs
do factor uniquely over the Cartesian and strong products. For the Cartesian
product, this was first proved by Feigenbaum [9], who also gives a polyno-
mial algorithm for finding the prime factors. (More recently, Crespelle and
Thierry [6] give a linear algorithm.) Our approach adapts that of Imrich,
Klavžar and Rall [25]. Their proof is for graphs; we adapt it here to digraphs.

Convexity is the central ingredient of the proof. A subdigraph H of D is
convex if any shortest path (not necessarily directed) in D that joins two
vertices of H is itself a path in H. (There are other notions of convexity. For
example, it could be phrased in terms of directed paths; however the one given
here is best suited for our present purposes.) The next lemma makes use of
dist′D(x, y), the length of a shortest (x, y)-path in D. (See Proposition 10.2.1.)

Lemma 10.9.1 A subdigraph H of D = D1 � · · · �Dk is convex if and only
if H = H1 � · · · �Hk, where each Hi is a convex subdigraph of Di.

Proof: Suppose H = H1 � · · · �Hk, with each Hi a convex subdigraph of
Di. We claim that any shortest path P joining two vertices a = (a1, . . . , ak)
and b = (b1, . . . , bk) in H lies entirely in H. By Proposition 10.2.1, the length
of P is the sum of the lengths of the shortest (ai, bi)-paths Pi in Di for i ∈ [k].
Because each arc of P projects to an arc in only one factor (and to single
vertices in all the others) it follows that each projection πi(P ) is a shortest
(ai, bi) path in Di, and therefore lies entirely in Hi, by convexity. Thus P lies
entirely in H = H1 � · · · �Hk, so H is convex.

Conversely, suppose H is convex in D. Note H ⊆ π1(H)� · · · �πk(H).
We complete the proof by showing that the inclusion is equality, and each
πi(H) is convex in Di.

To see that πi(H) is convex in Di, take vertices ai, bi ∈ πi(H). Let xi

be on a shortest (ai, bi)-path in Di. We must show xi ∈ πi(H). Choose
vertices a = (a1, . . . , ak) and b = (b1, . . . , bk) of H with πi(a) = ai and
πi(b) = bi. Define x = (x1, . . . , xk) as follows. For each index j �= i, let xj

be on a shortest (aj , bj)-path in Dj . Thus dist′Ds
(as, bs) = dist′Ds

(as, xs) +
dist′Ds

(xs, bs) for each s ∈ [k], and Proposition 10.2.1 gives dist′D(a, b) =
dist′D(a, x) + dist′D(x, b). It follows that x is on a shortest (a, b)-path in D,
so x ∈ H by convexity of H. Hence xi = πi(x) ∈ πi(H).

Finally, we prove H ⊆ π1(H)� · · · �πk(H) is equality. Since both sides
are connected, it sufficies to show that any vertex v of π1(H)� · · · �πk(H)
at distance 1 from a vertex x ∈ V (H) is also in H. Let v = (v1, . . . , vi, . . . , vk)
and x = (v1, . . . , vi−1, xi, vi+1, . . . , vk) be such vertices. As v is in the product
of the projections of H, there is a u = (x1, . . . , xi−1, vi, xi+1, . . . xk) ∈ V (H).
Proposition 10.2.1 says dist′(x, v) + dist′(v, u) = dist′(x, u), meaning v is on
a shortest path joining x, u ∈ V (H), so v ∈ V (H) by convexity of H. �


Given a vertex a = (a1, . . . , ak) of D1 � · · · �Dk, and an i ∈ [k],
we define Da

i to be the subgraph of the product induced on the vertices
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(a1, . . . , ai−1, x, ai+1, . . . , ak), where x ∈ V (Di). That is,

Da
i = a1 � · · · � ai−1 �Di � ai+1 � · · · � ak.

Thus Da
i

∼= Di, and it is a convex subdigraph of the product, by Lemma 10.9.1.
We call Da

i the Di-layer through a. We are ready for our main results on
prime factorization of digraphs over the Cartesian product.

Theorem 10.9.2 Connected digraphs factor uniquely into primes over the
Cartesian product, up to order and isomorphism of the factors. Specifically,
if a digraph D factors into primes as

D = D1 � · · · �Dk and D = G1 � · · · �G�,

then k = �, and Di
∼= Gσ(i) for some permutation σ of [k].

Proof: As remarked earlier, D has a prime factorization D = D1 � · · · �Dk.
Now suppose D has two prime factorings D = D1 � · · · �Dk and D =
G1 � · · · �G�. We may assume k ≥ �. Take an isomorphism

ϕ : D1 � · · · �Dk → G1 � · · · �G�.

Fix a = (a1, . . . , ak), and say ϕ(a) = b = (b1, . . . , b�). It suffices to show k = �,
and there is a permutation σ of [k] for which ϕ(Da

i ) = Gb
σ(i) for 1 ≤ i ≤ k.

(Recall Da
i

∼= Di and Gb
σ(i)

∼= Gσ(a).)
To this end, fix i ∈ [k]. As mentioned above, any Da

i is convex in
D1 � · · · �D�, so ϕ(Da

i ) is convex in G1 � · · · �G�. Using Lemma 10.9.1,

(b1, . . . , b�) ∈ ϕ(Da
i ) = H1 � · · · �H�,

where each Hj is a convex subgraph of Gj . But Di
∼= Da

i
∼= ϕ(Da

i ) is prime, so
Hi = {bi} for all but one index, call it σ(i). This means ϕ(Da

i ) ⊆ Gb
σ(i). But

then Da
i ⊆ ϕ−1

(
Gb

σ(i)

)
. Now, Gb

σ(i) is prime, and convex in G1 � · · · �G�, so
also ϕ−1

(
Gb

σ(i)

)
is prime, and convex in D1 � · · · �Dk. Lemma 10.9.1 gives

Da
i ⊆ ϕ−1

(
Gb

σ(i)

)
= H ′

1 � · · · �H ′
k, (10.11)

where each H ′
j is a subdigraph of Di, containing aj . Primeness assures all but

one H ′
j is trivial, and necessarily it is Hi that is nontrivial. Therefore (10.11)

implies Da
i ⊆ ϕ−1

(
Gb

σ(i)

) ⊆ Da
i , whence ϕ(Da

i ) = Gb
σ(i).

We claim that the map σ : [k] → [�] is injective. If σ(i) = σ(j), then

ϕ(Da
i ) = Gb

σ(i) = ϕ(Da
j ).

Because Gb
σ(i) is nontrivial (it is prime), it follows that Da

i and Da
j have a

nontrivial intersection. This means i = j, so σ is injective. Thus k ≤ �. We
have assumed k ≥ �, so k = �, so σ is a permutation. �


Theorem 10.9.2 implies our next result, which describes the structure of
isomorphisms between digraphs. The proof uses the notation from the proof
of Theorem 10.9.2.
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Theorem 10.9.3 Let D and G be isomorphic connected digraphs with prime
factorizations D = D1 � · · · �Dk and G = G1 � · · · �Gk. Then for any
isomorphism ϕ : D → G, there is a permutation σ of [k] and isomorphisms
ϕi : Dσ(i) → Gi for which

ϕ(x1, x2, . . . , xk) =
(
ϕ1(xσ(1)), ϕ2(xσ(2)), . . . , ϕk(xπ(k))

)
. (10.12)

Proof: By Theorem 10.9.2, there is a permutation σ of [k] for which ϕ re-
stricts to an isomorphism Da

i → Gb
σ(i) for each index i. Replacing σ with

σ−1, we can say that, for each i, ϕ restricts to an isomorphism Da
σ(i) → Hb

i .
To finish the proof, we show that πiϕ(x1, . . . , xk) depends only on xσ(i).

Then we can put ϕi(xσ(i)) = πiϕ(x1, . . . , xk), which yields Equation (10.12),
and it is immediate that the ϕi are isomorphisms.

For any xσ(i) ∈ V (Dσ(i)), define the “hyperplane” subdigraph

B[xσ(i)] := D1 �D2 � · · · �xσ(i) � · · · �Dk ⊆ D1 � · · · �Dk,

whose σ(i)th factor is the single vertex xσ(i). This subdigraph is convex, so
Lemma 10.9.1 says ϕ(B[xσ(i)]) = U1 � · · · �Uk, with each Uj convex in Gj .

Now, B[xσ(i)] ∩ Da
σ(i) = {(a1, a2, . . . , xσ(i), . . . , ak)}. Thus ϕ(B[xπ(i)]) =

U1 � · · · �Uk meets ϕ(Da
σ(i)) = Gb

i = b1 � · · · �Gi � · · · � bk at the single
vertex ϕ(a1, a2, . . . , xσ(i), . . . , ak). This means all vertices in ϕ(B[xσ(i)]) have
the same ith coordinate πiϕ(a1, a2, . . . , xσ(i), . . . , ak), so

πi

(
ϕ(B[xσ(i)])

)
= πiϕ(a1, a2, . . . , xσ(i), . . . , ak).

Now, any (x1, . . . , xσ(i), . . . , xk) ∈ V (G) belongs to B[xσ(i)]. Consequently
πiϕ(x1, . . . , xσ(i), . . . , xk) = πiϕ(a1, . . . , xσ(i), . . . , ak), which depends only on
xσ(i). �


In Theorem 10.9.3, we may relabel each vertex x of Gi with its preimage
under the isomorphism Di → Gσ(i) to make this isomorphism an identity
map. We record this observation as a useful corollary.

Corollary 10.9.4 For an isomorphism ϕ : D1 � · · · �Dk → G1 � · · · �Gk

where each Di and Gi is prime, the vertices of the Gi can be relabeled so that
ϕ(x1, x2, . . . , xk) = (xσ(1), xσ(2), . . . , xσ(k)) for some permutation σ of [k].

We turn now to the lexicographic product. It is not commutative, so we
should not expect a prime factorization to be unique up to order of the
factors. Indeed this is not so, but there is a fascinating relationship between
different prime factorings. Explaining it requires the idea of the join D ⊕ G
of two digraphs with disjoint vertex sets, which is the digraph obtained from
D + G by adding arcs from each vertex of D to every vertex of G, and from
each vertex of G to every vertex of D.
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Recall that the right-distributive law holds for ◦, but there is no general
left-distributive law. However, if Kn is the biorientation of the complete graph
on n vertices, and Dn (the arcless digraph) is its complement, we do have

Dn ◦ (G + H) = Dn ◦ G + Dn ◦ H,

Kn ◦ (G ⊕ H) = Kn ◦ G ⊕ Kn ◦ H.

The first equation follows from Proposition 10.1.1. The second follows from
the first, with the observation that G ⊕ H = G + H and D ◦ D′ = D ◦ D′
(Equation (10.3)), where the bar denotes the complement.

We see now that unique prime factorization over the lexicographic product
can fail in at least two ways: If q is prime and if Dq ◦ G+Dm is prime, then

(Dq ◦ G + Dm) ◦ Dq = Dq ◦ (G ◦ Dq + Dm)

are two different prime factorizations of the same graph. We say they are
related by a transposition of a totally disconnected graph. Analogously, if
Kq ◦ G ⊕ Km is prime, then

(Kq ◦ G ⊕ Km) ◦ Kq = Kq ◦ (G ◦ Kq ⊕ Km)

are two different prime factorizations of the same graph, and we say they are
related by a transposition of a complete graph. Also, we call the transition
from TTm ◦ TTn to TTn ◦ TTm a transposition of transitive tournaments.
(Recall that transitive tournaments commute, by Equation (10.2).)

Our final theorem of the section is due to Dörfler and Imrich [8].

Theorem 10.9.5 Any prime factorization of a digraph over the lexicographic
product can be transformed into any other prime factorization by transposi-
tions of totally disconnected graphs, transpositions of complete graphs, and
transpositions of transitive tournaments.

10.10 Cartesian Skeletons

The previous section developed prime factorization results for the Cartesian
and Lexicographic products. In order to get analogous results for the direct
and strong products, we first need to define what is called the Cartesian
skeleton of a digraph. This is an operator S that transforms a digraph D into
a symmetric digraph S(D), and, under suitable conditions, obeys S(D×G) =
S(D)�S(G). In the subsequent section we will use it to transform questions
about factorizations over × to the more manageable product � (which was
treated in the previous section).

Our exposition is a generalization to digraphs of Hammack and Im-
rich [16], which developed S in the setting of graphs. We also draw inspi-
ration from Hellmuth and Marc [24], who devised a similar skeleton operator
for which S(D � G) = S(D)�S(G). The present development is from [17].
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We need several definitions. An antiwalk in a digraph is a walk in which
the orientations of the arcs alternate as the walk is traversed. An out-
antiwalk is an antiwalk for which the first and last arcs are directed away
from the end-vertices of the walk. An in-antiwalk is one for which the first
and last arcs are directed towards the end-vertices. See Figure 10.11. Notice
that in- and out-antiwalks necessarily have even length.

For a digraph D, let D+ be the symmetric digraph on V (D) for which
xy, yx ∈ A(D+) whenever D has an out-antiwalk of length 2 from x to y,
that is, if N+

D (x) ∩ N+
D (y) �= ∅. See Figure 10.12 (left), where a dotted line

between x and y represents two arcs xy and yx in D+. It is immediate from
the definitions that (D × G)+ = D+ × G+. Note that D+ has a loop at each
vertex of positive out-degree. We define D− similarly, where xy, yx ∈ A(D−)
provided N−

D (x) ∩ N−
D �= ∅. Again, (D × G)− = D− × G−. Because they are

symmetric digraphs, D+ and D− can be regarded as graphs. (In a different
context [49, 50], D+ is also called the competition graph of D.)

Observe that D+ is connected if and only if any two vertices of D are
joined by an out-antiwalk in D, and D− is connected if and only if any two
vertices of D are joined by an in-antiwalk in D.

We now explain how to construct Cartesian skeletons S+(D) and
S−(D) of a digraph D by removing strategic edges from D+ and D−. Given a
factoring D = H × K, we say an arc (h, k)(h′, k′) of D+ is diagonal relative
to the factoring if it is a loop, or h �= h′ and k �= k′; otherwise it is Cartesian.
For example, in Figure 10.12, arcs xz and zy of D+ are Cartesian, and arcs
xy and yy of D+ are diagonal. We note two intrinsic criteria that tell us if a
non-loop arc of D+ is diagonal relative to some factoring of D.

1. In Figure 10.12, arc xy of D+ is not Cartesian, and there is a z ∈ V (D)
with
N+

D (x)∩N+
D (y) ⊂ N+

D (x)∩N+
D (z) and N+

D (x)∩N+
D (y) ⊂ N+

D (y)∩N+
D (z).

2. In Figure 10.12, arc x′y′ of D+ is not Cartesian, and there is a z′ ∈ V (G)
with N+

D (x′) ⊂ N+
D (z′) ⊂ N+

D (y′).

We will get S+(D) by removing from D+ all loops, and arcs that meet one of
these criteria. Now, these criteria are somewhat dependent on one another.
Note N+

D (x) ⊂ N+
D (z) ⊂ N+

D (y) implies N+
D (y) ∩ N+

D (x) ⊂ N+
D (y) ∩ N+

D (z).
Also, N+

D (y) ⊂ N+
D (z) ⊂ N+

D (x) implies N+
D (x) ∩ N+

D (y) ⊂ N+
D (x) ∩ N+

D (z).
This allows us to pack the above criteria into the following definition.

Definition 10.10.1 An arc xy of D+ is dispensable in D+ if it is a loop,
or if there is some z ∈ V (D) for which both of the following statements hold:

Figure 10.11 An out-antiwalk (top) and an in-antiwalk (bottom).
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K KD = H × K D = H × K

Figure 10.12 Left: Digraphs H, K, H×K (bold), and H+, K+, (H×K)+ (dotted).
Right: Digraphs H, K, H × K (bold), and S+(H), S+(K), S+(H × K) (dotted).
Note that (H × K)+ = H+ × K+, and S+(H × K) = S+(H)� S+(K).

1. N+
D (x) ∩ N+

D (y) ⊂ N+
D (x) ∩ N+

D (z) or N+
D (x) ⊂ N+

D (z)⊂ N+
D (y),

2. N+
D (y) ∩ N+

D (x) ⊂ N+
D (y) ∩ N+

D (z) or N+
D (y) ⊂ N+

D (z)⊂ N+
D (x).

Similarly, an arc xy of D− is dispensable in D− if the above conditions
hold with N−

D used in the place of N+
D .

Note that the above statements (1) and (2) are symmetric in x and y.
The next remark follows from the paragraph preceding the definition. It will
be used often.

Remark 10.10.2 An arc xy of D+ is dispensable in D+ if and only if there is
a z ∈ V (D) with N+

D (x) ⊂ N+
D (z)⊂ N+

D (y), or N+
D (y) ⊂ N+

D (z)⊂ N+
D (x), or

N+
D (x) ∩ N+

D (y) ⊂ N+
D (x) ∩ N+

D (z) and N+
D (y) ∩ N+

D (x) ⊂ N+
D (y) ∩ N+

D (z).
The same remark holds for dispensability in D− (replacing N+ with N−).

Now we come to the main definition of this section.

Definition 10.10.3 The Cartesian out-skeleton S+(D) of a digraph D is
the spanning subgraph of D+ obtained by deleting all arcs that are dispensable
in D+. The Cartesian in-skeleton S−(D) of D is the spanning subgraph of
D− obtained by deleting all arcs that are dispensable in D−. The Cartesian
skeleton S(D) of D is the graph with vertices V (D) and arcs A(S(D)) =
A(S+(D)) ∪ A(S−(D)).

Note that each of D+, D−, S+(D), S−(D) and S(D) is a symmetric di-
graph. We thus tend to refer to them as graphs, and call their arcs edges.

As an example, the right side of Figure 10.12 is the same as the left,
except that all dispensable edges of H+, K+, and (H×K)+ are deleted. Thus
the remaining dashed edges are S+(H), S+(K), and S+(H × K). Note that
although S+(D) was defined without regard to the factoring D = H ×K, we
nonetheless have S+(H×K) = S+(H)�S+(K). In fact, we will shortly prove
that this equation holds for each of S+, S− and S, under mild restrictions.
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These restrictions involve certain equivalence relations on the vertex set
of a digraph. Define an equivalence relation R+ on V (D) by declaring xR+y
whenever N+

D (x) = N+
D (y). A digraph is called R+-thin if N+

D (x) = N+
D (y)

implies x = y for all x, y ∈ V (D), that is, if each R+-class contains exactly
one vertex. Similarly, we define R− and R−-thinness as above, but replacing
N+

D with N−
D . Finally, we say D is R-thin if it is both R+ thin and R−-thin.

We will need the following.

Lemma 10.10.4 Let H and K be digraphs for which all vertices have positive
in- and out-degrees. Then H and K are R+-thin (respectively R−-thin) if and
only if H × K is R+-thin (respectively R−-thin). Consequently H and K are
R-thin if and only if H × K is R-thin.

Proof: Immediate from N+
H×K(x, y) = N+

H (x)×N+
K(y) (Equation 10.6) and

its companion N−
H×K(x, y) = N−

H (x) × N−
K(y), combined with the fact that

no neighborhoods are empty. �


The next lemma and proposition show S+(H × K) = S+(H)�S+(K)
and S−(H×K) = S−(H)�S−(K) for R+- and R−-thin digraphs. The proofs
frequently use the fact that for D = H × K,

N+
D (h, k) ∩ N+

D (h′, k′) =
(
N+

H (h) ∩ N+
H (h′)

) × (
N+

K(k) ∩ NK(k′)
)
,

which follows from N+
D (h, k) = N+

H (h) × N+
K(k) and simple set theory.

Lemma 10.10.5 Suppose D is a digraph with a factorization D = H × K.
If D is R+-thin, then every arc of S+(D) is Cartesian with respect to the fac-
torization. Similarly, if D is R−-thin, then every arc of S−(D) is Cartesian
with respect to the factorization.

Proof: We prove only the first statement. The proof of the second is identical,
but replaces N+ with N−, and the notion of R+-thinness with R−-thinness.

Let (h, k)(h′, k′) be a non-Cartesian edge of D+. We need only show that
it is dispensable. It is certainly dispensable if it is a loop. Otherwise h �= h′

and k �= k′ Observe:

N+
D (h, k) ∩ N+

D (h′, k′) =
(
N+

H (h) ∩ N+
H (h′)

) × (
N+

K(k) ∩ NK(k′)
)

⊆ N+
H (h) × (

N+
H (k) ∩ N+

H (k′)
)

= N+
D (h, k) ∩ N+

D (h, k′) ,

N+
D (h′, k′) ∩ N+

D (h, k) =
(
N+

H (h′) ∩ N+
H (h)

) × (
N+

K(k′) ∩ N+
K(k)

)

⊆ (
N+

H (h′) ∩ N+
H (h)

) × N+
K(k′)

= N+
D (h′, k′) ∩ N+

D (h, k′) .

If both of these inclusions are proper, then (h, k)(h′, k′) is dispensable. If
one inclusion is equality, then N+

H (h) ∩ N+
H (h′) = N+

H (h) in the first case or
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N+
K(k′) ∩ N+

K(k) = N+
K(k′) in the second. From this, N+

H (h) ⊆ N+
H (h′) or

N+
K(k′) ⊆ N+

K(k). By R+-thinness,

N+
H (h) ⊂ N+

H (h′) or N+
K(k′) ⊂ N+

K(k). (10.13)

Repeating this argument but interchanging h with h′, and k with k′,

N+
H (h′) ⊂ N+

H (h) or N+
K(k) ⊂ N+

K(k′). (10.14)

Inclusions (10.13) and (10.14) show N+
H (h) ⊂ N+

H (h′) and N+
K(k) ⊂ N+

K(k′),
or N+

K(k′) ⊂ N+
K(k) and N+

H (h′) ⊂ N+
H (h). The first case gives

N+
H (h) × N+

K(k) ⊂ N+
H (h) × N+

K(k′) ⊂ N+
H (h′) × N+

K(k′),

that is, N+
D (h, k) ⊂ N+

D (h, k′) ⊂ N+
D (h′, k′), so (h, k)(h′, k′) is dispensable.

The second case yields N+
D (h′, k′) ⊂ N+

D (h, k′) ⊂ N+
D (h, k), with the same

conclusion. �


Proposition 10.10.6 If H,K are R+-thin digraphs with no vertices of zero
out-degree, then S+(H × K) = S+(H)�S+(K). If H,K are R−-thin, with
no vertices of zero in-degree, then S−(H × K) = S−(H)�S−(K).

Proof: Again, we prove only the first statement; the proof of the second is
entirely analogous.

First we show S+(H ×K) ⊆ S+(H)�S+(K). By Lemma 10.10.5, all arcs
of S+(H ×K) are Cartesian, so we need only show (h, k)(h′, k) ∈ S+(H ×K)
implies hh′ ∈ S+(H). (The same argument will work for arcs (h, k)(h, k′).)
Thus suppose hh′ /∈ S+(H). Then hh′ is dispensable in H+, so there is a z′

in V (H) for which both of the following conditions hold:

N+
H (h) ∩ N+

H (h′) ⊂ N+
H (h) ∩ N+

H (z′) or N+
H (h) ⊂ N+

H (z′)⊂ N+
H (h′)

N+
H (h′) ∩ N+

H (h) ⊂ N+
H (h′) ∩ N+

H (z′) or N+
H (h′) ⊂ N+

H (z′)⊂ N+
H (h).

Because there are no vertices of zero out-degree, N+
K(k) �= ∅. Thus we can

multiply each neighborhood N+
H (u) above by N+

K(k) on the right and still
preserve the proper inclusions. Then the fact N+

H (u)×N+
K(k) = N+

H×K(u, k)
yields the dispensability conditions (1) and (2), where x = (h, k), y = (h′, k)
and z = (z′, k). Thus (h, k)(h′, k) /∈ S+(H × K).

Now we show S+(H)�S+(K) ⊆ S+(H×K). Take an arc in S(H)�S(K),
say (h, k)(h′, k) with hh′ ∈ S+(H). We must show that (h, k)(h′, k) is not
dispensable in (H × K)+. Suppose it was. Then there would be a vertex
z = (z′, z′′) in H ×K such that the dispensability conditions (1) and (2) hold
for x = (h, k), y = (h′, k), and z = (z′, z′′). The various cases are considered
below. Each leads to a contradiction.

Suppose N+
D (x) ⊂ N+

D (z) ⊂ N+
D (y). This means

N+
H (h) × N+

K(k) ⊂ N+
H (z′) × N+

K(z′′) ⊂ N+
H (h′) × N+

K(k),
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so N+
K(z′′) = N+

K(k). Then the fact that N+
K(k) �= ∅ permits cancellation

of the common factor N+
K(k), so N+

H (h) ⊂ N+
H (z′) ⊂ N+

H (h′), and hh′ is
dispensable. We reach the same contradiction if N+

D (y) ⊂ N+
D (z)⊂ N+

D (x).
Finally, suppose there is a z = (z′, z′′) for which both N+

D (x) ∩ N+
D (y) ⊂

N+
D (x) ∩ N+

D (z) and N+
D (y) ∩ N+

D (x) ⊂ N+
D (y) ∩ N+

D (z). Rewrite this as

N+
D (h, k) ∩ N+

D (h′, k) ⊂ N+
D (h, k) ∩ N+

D (z′, z′′)
N+

D (h′, k) ∩ N+
D (h, k) ⊂ N+

D (h′, k) ∩ N+
D (z′, z′′),

which is the same as
(
N+

H (h) ∩ N+
H (h′)

) × N+
K(k) ⊂ (

N+
H (h) ∩ N+

H (z′)
) × (

NK(k) ∩ NK(z′′)
)

(
N+

H (h′) ∩ N+
H (h)

) × N+
K(k) ⊂ (

N+
H (h′) ∩ N+

H (z′)
) × (

N+
K(k) ∩ N+

K(z′′)
)
.

Thus N+
K(k) ⊆ N+

K(k) ∩ N+
K(z′′), so N+

K(k) = N+
K(k) ∩ N+

K(z′′), whence

N+
H (h) ∩ N+

H (h′) ⊂ N+
H (h) ∩ N+

H (z′)
N+

H (h′) ∩ N+
H (h) ⊂ N+

H (h′) ∩ N+
H (z′) .

Thus hh′ is dispensable, a contradiction. �


The next corollary follows from Proposition 10.10.6, Definition 10.10.3,
as well as the definition of the Cartesian product. (Recall that a digraph is
R-thin if it is both R+-thin and R−-thin.)

Corollary 10.10.7 Suppose K and H are R-thin digraphs, no vertices of
which have zero in- or out-degree. Then S(K × H) = S(K)�S(H).

Because the various skeletons are defined entirely in terms of adjacency
structure, we have the following immediate consequence of Definition 10.10.3.

Proposition 10.10.8 Any isomorphism ϕ : D → D′ between digraphs, as a
map V (D) → V (D′), is also an isomorphism ϕ : S(D) → S(D′).

We next consider connectivity of S(G). The following lemma is needed.

Lemma 10.10.9 Suppose a digraph D has no vertex of zero out-degree, and
x, y ∈ V (D). If N+

D (x) ⊂ N+
D (y), then D+ has an (x, y)-path consisting of

edges that are non-dispensable in D+. Similarly, if no vertex of D has zero
in-degree and and N−

D (x) ⊂ N−
D (y), then D− has an (x, y)-path consisting of

edges that are non-dispensable in D−.

Proof: We prove the first statement; the second follows analogously.
Consider the following maximal chain of neighborhoods between N+

D (x)
and N+

D (y), ordered by proper inclusion. (It is possible that y1 = y.)

N+
D (x) ⊂ N+

D (y1) ⊂ N+
D (y2) ⊂ N+

D (y3) ⊂ · · · ⊂ N+
D (yk) ⊂ N+

D (y).
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We claim that xy1 is non-dispensable in D+. Certainly N+
D (x) ⊂ N+

D (y1)
implies xy1 is an edge of D+, because N+

D (x) �= ∅. Also, there is no z for which
N+

D (x)∩N+
D (y1) ⊂ N+

D (x)∩N+
D (z); otherwise the condition N+

D (x) ⊂ N+
D (y1)

would yield N+
D (x) ⊂ N+

D (x) ∩ N+
D (z), which is impossible. As the chain

is maximal, there is no z for which N+
D (x) ⊂ N+

D (z) ⊂ N+
D (y1). Further,

N+
D (y1) ⊂ N+

D (z) ⊂ N+
D (x) is impossible, so xy1 is non-dispensable in D+.

The same argument shows that each yiyi+1 is a non-dispensable edge of
D+, as is yky. Thus we have the required path xy1y2 . . . yky. �


Let us define a digraph to be anti-connected if any two of its vertices are
joined by an antiwalk of even length. It should be clear that a direct product
of digraphs is anti-connected if and only if all of its factors are anti-connected.

Proposition 10.10.10 If D is anti-connected, then S(D) is connected.

Proof: Take x1, x2 ∈ V (S(D)) = V (D). Suppose first that they are joined
by an (even) out-antiwalk W in D. As E(S(D)) = E(S+(D)) ∪ E(S−(D)),
and because D+ has an (x1, x2)-path P on alternate vertices of W , it suffices
to show that for any dispensable edge xy of P , there is an (x, y)-path in D+

consisting of non-dispensable edges. In fact, we will prove this for any edge
xy of D+. Given such an edge xy, define the integer

kxy = max{ |N+
D (u) ∩ N+

D (v)| − |N+
D (x) ∩ N+

D (y)| | u, v ∈ V (D), u �= v}.

Notice kxy ≥ 0. (Put u = x and v = y.) If kxy = 0, then the definition of
kxy implies that there is no z for which N+

D (x)∩N+
D (y) ⊂ N+

D (x)∩N+
D (z) or

N+
D (y) ∩ N+

D (x) ⊂ N+
D (y) ∩ N+

D (z). Then N+
D (x) ⊂ N+

D (z) ⊂ N+
D (y) is also

impossible, as it implies N+
D (y) ∩ N+

D (x) ⊂ N+
D (y) ∩ N+

D (z). Therefore xy is
not dispensable if kxy = 0.

Take N > 0, and assume that whenever D+ has an edge xy with kxy < N ,
there is a (x, y)-path in D+ composed of non-dispensable edges. Now suppose
xy is dispensable and kxy = N . If N+

D (x) ⊂ N+
D (y) or N+

D (y) ⊂ N+
D (x), then

we are done, by Lemma 10.10.9, so assume N+
D (x) �⊂ N+

D (y) and N+
D (y) �⊂

N+
D (x). As xy is dispensable, there is a vertex z with

N+
D (x) ∩ N+

D (y) ⊂ N+
D (x) ∩ N+

D (z) and N+
D (y) ∩ N+

D (x) ⊂ N+
D (y) ∩ N+

D (z).

This implies N+
D (x)∩ N+

D (z) �= ∅ �= N+
D (y)∩ N+

D (z), so xz, yz ∈ E(D+). But
it also means

|N+
D (u)∩N+

D (v)|− |N+
D (x)∩N+

D (z)| < |N+
D (u)∩N+

D (v)|− |N+
D (x)∩N+

D (y)|
for all u, v, so kxz < kxy. Similarly, kzy < kxy. The induction hypothesis
guarantees (x, z)- and (z, y)-paths of non-dispensable edges in D+, so we
have an (x, y)-path of non-dispensable edges in D+.

To finish the proof, we must treat the case where x1 and x2 are joined by
an in-antiwalk. Just repeat the above argument with N− and D−. �
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10.11 Prime Factorings of Direct and Strong Products

Now we turn to prime factorings over the direct product. Recall that the
one-vertex digraph K∗

1 with a loop is the unit for the direct product, that is,
K∗

1 × D = D for every digraph D, and K∗
1 is the unique digraph with this

property. Thus we say a digraph D is prime over the direct product if
it has more than one vertex, and in any factoring D = G × H, one factor is
K∗

1 and the other is isomorphic to D. For this reason, the entire discussion
of prime factorization over the direct product takes place in the class D0 of
digraphs that may have loops.

This section adopts the approach of Hammack and Imrich [17]. The next
lemma uses the Cartesian skeleton and unique prime factorization over �
to deliver a key ingredient to the proof of our unique prime factorization
theorem for the direct product (Theorem 10.11.2).

Lemma 10.11.1 Suppose ϕ : D1 × · · · × Dk → G1 × · · · × G� is an isomor-
phism, where all the factors are anti-connected and R-thin, and that we have
ϕ(x1, . . . , xk) =

(
ϕ1(x1, . . . , xk), ϕ2(x1, . . . , xk), . . . , ϕ�(x1, . . . , xk)

)
. If a fac-

tor Di is prime, then exactly one of the functions ϕ1, ϕ2, . . . , ϕ� depends on
xi.

Proof: By commutativity and associativity, it suffices to prove the lemma
for the case k = � = 2, and with D1 prime. Thus take an isomorphism
ϕ : D1 × D2 → G1 × G2, where ϕ(x1, x2) =

(
ϕ1(x1, x2), ϕ2(x1, x2)

)
. We will

prove the lemma by showing that if it is not the case that exactly one of ϕ1

and ϕ2 depends on x1, then D1 is not prime.
Certainly if neither ϕ1 nor ϕ2 depends on x1, then the fact that ϕ is

bijective means that |V (D1)| = 1, so D1 is not prime. Thus assume that
both ϕ1 and ϕ2 depend on x1. This means each of D1, G1, and G2 has more
than one vertex. If D2 had only one vertex, then D1

∼= G1 × G2, and D1

would not be prime. Thus each factor D1,D2, G1, and G2 has more than one
vertex. Taking skeletons, and applying Proposition 10.10.8, we see that ϕ is
also an isomorphism ϕ : S(D1 �D2) → S(G1 �G2). Because all factors are
R-thin (and anti-connectedness implies that all vertices have positive in- and
out-degrees), Corollary 10.10.7 applies, and we have an isomorphism

ϕ : S(D1)�S(D2) → S(G1)�S(G2). (10.15)

Note that ϕ is simultaneously an isomorphism ϕ : D1 × D2 → G1 × G2

and an isomorphism ϕ : S(D1)�S(D2) → S(G1)�S(G2). Because each of
D1,D2, G1, and G2 is anti-connected, each factor S(D1), S(D2), S(G1), and
S(G2) is connected, by Proposition 10.10.10. Consider prime factorizations

S(D1) = H1 �H2 � · · · �Hk, S(G1) = L1 � L2 � · · · � L�,
S(D2) = K1 �K2 � · · · �Km, S(G2) = M1 �M2 � · · · �Mn,

where each factor is prime over �. Our isomorphism (10.15) becomes
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ϕ : (H1 � · · · �Hk)� (K1 � · · · �Km) →
(L1 � · · · �L�)� (M1 � · · · �Mn). (10.16)

Corollary 10.9.4 applies here. In fact, in using it, we may order the factors Hi

and Ki and relabel the vertices of the Li and Mi so that, for some 0 < s < k
and 0 ≤ t ≤ m, the isomorphism (10.16) has form

ϕ :(H1 � · · · �Hk)� (K1 � · · · �Km) →
(
H1 � · · · �Hs �K1 � · · · �Kt

)
�

(
Hs+1 � · · · �Hk �Kt+1 � · · · �Km

)

and where

ϕ((h1, . . . , hk),(k1, . . . , km)) =
((h1, . . . , hs, k1, . . . , kt), (hs+1, . . . , hk, kt+1, . . . , km)).

Our assumption that both ϕ1 and ϕ2 depend on x1 ∈ V (G1) forces 0 < s < k.
We have now labeled the vertices of D1 with V (H1 � · · · �Hk), and

those of D2 with V (K1 � · · · �Km). We have labeled vertices of G1 with
V (H1 � · · · �Hs �K1 � · · · �Kt), and we have labeled the vertices of G2

with V (Hs+1 � · · · �Hk � Kt+1 � · · · �Km). To tame the notation, we
denote a vertex (h1, . . . , hs, hs+1, . . . , hk) ∈ V (D1) as (x, y), where x =
(h1, . . . , hs) and y = (hs+1, . . . , hk). Similarly, any (k1, . . . , kt, kt+1, . . . , km) ∈
V (D2) is denoted (u, v), where u = (k1, . . . , kt) and v = (kt+1, . . . , km). With
this convention we regard vertices of G1 and G2 as (x, u) and (y, v), respec-
tively, and we have

ϕ((x, y), (u, v)) = ((x, u), (y, v)).

Remember that this is the same isomorphism ϕ : D1 × D2 → G1 × G2 that
we began the proof with; all we have done is relabel the vertices of the factors
to put ϕ into a more convenient form.

Now we display a nontrivial factorization D1 = S × S′. Define digraphs
S and S′ as follows:

V (S) = {x | (
(x, y), (u, v)

) ∈ V (D1 × D2)} ,

A(S) = {xx′ | (
(x, y), (u, v)

)(
(x′, y′), (u′, v′)

) ∈ A(D1 × D2)} ,

V (S′) = {y | (
(x, y), (u, v)

) ∈ V (D1 × D2)} ,

A(S′) = {yy′ | (
(x, y), (u, v)

)(
(x′, y′), (u′, v′)

) ∈ A(D1 × D2)} .

We claim D1 = S × S′, that is, (x, y)(x′, y′) ∈ A(D1) if and only if
(x, y)(x′, y′) ∈ A(S × S′). Certainly if (x, y)(x′, y′) ∈ A(D1), there is an arc

(
(x, y), (u, v)

)(
(x′, y′), (u′, v′)

) ∈ A(D1 × D2).
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The definitions of S and S′ then imply (x, y)(x′, y′) ∈ A(S × S′).
Conversely, suppose (x, y)(x′, y′) ∈ A(S × S′). Then xx′ ∈ A(S) and

yy′ ∈ A(S′). By definition of S and S′, this means D1 × D2 has arcs
(
(x, y′′), (u, v)

)(
(x′, y′′′), (u′, v′)

)
and

(
(x′′, y), (u′′, v′′)

)(
(x′′′, y′), (u′′′, v′′′)

)
.

Applying the isomorphism ϕ, we see that G1 × G2 has arcs
(
(x, u), (y′′, v)

)(
(x′, u′), (y′′′, v′)

)
and

(
(x′′, u′′), (y, v′′)

)(
(x′′′, u′′′), (y′, v′′′)

)
.

Then (x, u)(x′, u′) ∈ A(G1) and (y, v′′)(y′, v′′′) ∈ A(G2). Thus G1 × G2 has
an arc

(
(x, u), (y, v′′)

)(
(x′, u′), (y′, v′′′)

)
. Applying ϕ−1 to this, we get

(
(x, y), (u, v′′)

)(
(x′, y′), (u′, v′′′)

) ∈ A(D1 × D2),

hence (x, y)(x′, y′) ∈ A(D1). Thus D1 = S × S′, and the lemma is proved. �


We now can easily prove that anti-connected R-thin digraphs factor
uniquely into primes over the direct product, up to order and isomorphism
of the factors.

Theorem 10.11.2 Take any isomorphism ϕ : D1×· · ·×Dk → G1×· · ·×G�,
where all factors Di and Gi are anti-connected, R-thin, and prime. Then
k = �, and there is a permutation σ of [k] and isomorphisms ϕi : Dσ(i) → Gi

for which ϕ(x1, x2, . . . , xk) =
(
ϕ1(xσ(1)), ϕ2(xσ(2)), . . . , ϕk(xσ(k))

)
.

Proof: Assume the hypothesis. Note that Lemma 10.11.1 implies that for
each i ∈ [k], exactly one ϕj depends on xi. But no ϕj is constant, because ϕ
is surjective and each Gi has more than one vertex (it is prime). Thus k ≥ �.
The same argument applied to ϕ−1 gives � ≥ k, therefore k = �.

Thus each ϕj depends on only one xi, call it xσ(j). The result follows. �


To see that prime factorization may fail if the hypotheses of this theorem
are not met, let D be a closed antiwalk on six vertices, which is not anti-
connected. Indeed, we have the non-unique prime factorization

D ∼= −→
P 2 × K3

∼= −→
P 2 × H,

where H is the symmetric path
←→
P3 of length two with loops at each end.

A careful examination of its proof shows that Theorem 10.11.2 still
holds if R-thinness is replaced by R+-thinness (respectively, R−-thinness)
and the assumption of anti-connectivity is replaced with the condition that
any two vertices are joined by an out-antiwalk (respectively, an in-antiwalk),
in which case we say the graph is out-anti-connected (respectively in-
anti-connected). Imrich and Klöckl [26] present a polynomial algorithm that
computes the prime factorization of any out-anti-connected R+-thin digraph.
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In [27] they weaken (but do not entirely eliminate) the R+-thinness condition.
We can remove the condition of R-thinness in Theorem 10.11.2 if we

strengthen the connectivity condition. The fundamental work of McKen-
zie [38] on relational structures yields the following corollary.

Theorem 10.11.3 Suppose each pair of vertices of a digraph is joined by
both an in-antiwalk and an out-antiwalk. Then it has a unique prime fac-
torization over the direct product, up to isomorphism and order of the factors.

It is not known whether the hypotheses of this theorem can be relaxed
to anti-connectivity, nor is there currently an algorithm that finds the prime
factors. Any progress would be a welcome contribution.

Problem 10.11.4 Find an efficient algorithm that computes the prime fac-
tors of a digraph meeting the conditions of Theorem 10.11.3.

Note that Hellmuth and Marc [24] develop such an algorithm for con-
nected strong products.

Theorem 10.11.3 yields a parallel theorem for the strong product. For a
digraph D, let L (D) be the digraph obtained from D by adding a loop to
each vertex. If D1, . . . , Dk are digraphs without loops, then

L (D1 � · · · � Dk) = L (D1) × · · · × L (Dk), (10.17)

which follows immediately from the definitions. Notice that if D is connected,
then L (D) is automatically anti-connected. In fact, any two of its vertices
can be joined by an in-antiwalk and an out-antiwalk, so Theorem 10.11.3
applies to it. And clearly if D and G are digraphs without loops, then D ∼= G
if and only if L (D) ∼= L (G).

Theorem 10.11.5 Every connected digraph (without loops) has a unique
prime factorization over � , up to isomorphism and order of the factors.

Proof: Let D be a connected digraph without loops. Then, as noted above,
Theorem 10.11.3 applies to L (D), so it has a unique prime factorization over
the direct product. Because L (D) has a loop at each vertex, each of its prime
factors also have loops at all of their vertices. Thus each prime factor has the
form L (Di) for some Di (without loops). Write the prime factorization as

L (D) = L (D1) × L (D2) × · · · × L (Dn) , (10.18)

where the L (Di) (and hence also each Di) are uniquely determined by D.
Now consider any prime factorization

D = G1 � G2 � · · · � Gk (10.19)

over the strong product. From this, Equation (10.17) yields
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L (D) = L (G1) × L (G2) × · · · × L (Gk). (10.20)

Observe that each L (Gi) is prime over ×. Indeed, any factoring of it must
have the form L (Gi) = L (H)×L (H ′) for digraphs H,H ′ (without loops),
and Equation (10.17) gives L (Gi) = L (H � H ′). Hence Gi

∼= H � H ′ and
primeness of Gi implies one of H or H ′ is K1, and therefore one of the factors
L (H) or L (H ′) is L (K1). Thus L (Gi) is prime.

Comparing prime factorizations (10.18) and (10.20), and applying The-
orem 10.11.3, we get n = k, and we may assume the ordering is such that
L (Di) ∼= L (Gi) for each 1 ≤ i ≤ n. Consequently, Di

∼= Gi for each i ∈ [k].
But, as was noted above, the Gi are uniquely determined by D, so the fac-
torization (10.19) is unique. �


A different approach is taken by Hellmuth and Marc [24], who design and
apply a skeleton operator S satisfying S(D � D′) = S(D)�S(D′).
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