
1. Basic Terminology, Notation and Results

Jørgen Bang-Jensen and Gregory Gutin

In this chapter we will provide most of the terminology and notation used
in this book. Various examples, figures and results should help the reader
to better understand the notions introduced in the chapter. We also prove
some basic results on digraphs and provide some fundamental digraph results
without proofs. Most of our terminology and notation is standard and agrees
with [4]. Thus, some readers may proceed to other chapters after a quick look
through this chapter (unfamiliar terminology and notation can be clarified
later by consulting the indices supplied at the end of this book).

In Section 1.1 we provide basic terminology and notation on sets and ma-
trices. Digraphs, directed pseudographs, subgraphs, weighted directed pseu-
dographs, neighbourhoods, semi-degrees and other basic concepts of directed
graph theory are introduced in Section 1.2. In Section 1.3, we introduce ori-
ented and directed walks, trails, paths and cycles, and related subgraphs.
Isomorphism and basic operations on digraphs are considered in Section 1.4.
Basic notions and results on strong connectivity are considered in Section
1.5. Section 1.6 provides basic definitions on linkages in digraphs. Undirected
graphs and orientations of undirected and directed graphs are considered in
Section 1.7. In Section 1.8, we briefly discuss out-branchings or in-branchings.
Section 1.9 is devoted to a brief discussion of some results on flows in net-
works. In the last three sections, we discuss algorithmic approaches and
lower bounds for solving NP-hard problems: exponential time algorithms and
the Exponential Time Hypothesis, fixed-parameter tractable algorithms and
W -complexity classes, and approximation algorithms.

1.1 Sets, Matrices, Vectors and Hypergraphs

For the sets of real numbers, rational numbers and integers we will use R, Q
and Z, respectively. Also, let Z+ = {z ∈ Z : z > 0} and Z0 = {z ∈ Z : z ≥ 0}.
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The sets R+, R0, Q+ and Q0 are defined similarly. For a positive integer n,
[n] will denote the set {1, 2, . . . , n}.

The main aim of this section is to establish some notation and terminology
on finite sets used in this book. We assume that the reader is familiar with
the following basic operations for a pair A,B of sets: the intersection A∩B,
the union A ∪ B (if A ∩ B = ∅, then we will often write A + B instead of
A∪B) and the difference A\B (often denoted by A−B). Sets A and B are
disjoint if A ∩ B = ∅.

Often we will not distinguish between a single element set (singleton) {x}
and the element x itself. For example, we may write A ∪ b or A + b instead
of A ∪ {b}. The Cartesian product of sets X1,X2, . . . , Xp is defined as
X1 × X2 × . . . × Xp = {(x1, x2, . . . , xp) : xi ∈ Xi, 1 ≤ i ≤ p}.

For sets A,B, A ⊆ B means that A is a subset of B; A ⊂ B stands for
A ⊆ B and A 
= B. A set B is a proper subset of a set A if B ⊂ A and
B 
= ∅. A collection S1, S2, . . . , St of (not necessarily non-empty) subsets of
a set S is a subpartition of S if Si ∩ Sj = ∅ for all 1 ≤ i 
= j ≤ t. A
subpartition S1, S2, . . . , St is a partition of S if ∪t

i=1Si = S. We will often
use the name family for a collection of sets. A family F = {X1,X2, . . . , Xn}
of sets is covered by a set S if S ∩ Xi 
= ∅ for every i ∈ [n]. We say that
S is a cover of F . For a finite set X, the number of elements in X (i.e.,
its cardinality) is denoted by |X|. We also say that X is an |X|-element
set (or just an |X|-set). A set S satisfying a property P is a maximum
(maximal, respectively) set with property P if there is no set S′ satisfying
P and |S′| > |S| (S ⊂ S′, respectively). Similarly, one can define minimum
(minimal) sets satisfying a property P.

In this book, we will also use multisets which, unlike sets, are allowed
to have repeated (multiple) elements. The cardinality |S| of a multiset M
is the total number of elements in S (including repetitions). Often, we will
use the words ‘family’ and ‘collection’ instead of ‘multiset’.

For an m × n matrix S = [sij ] the transposed matrix (of S) is the
n × m matrix ST = [tkl] such that tji = sij for every i ∈ [m] and j ∈ [n].
Unless otherwise specified, the vectors that we use are column-vectors. The
operation of transposition is used to obtain row-vectors.

A hypergraph is an ordered pair H = (V, E) such that V is a set (of
vertices of H) and E is a family of subsets of V (called edges of H).
The rank of H is the cardinality of the largest edge of H. For example,
H0 = ({1, 2, 3, 4}, {{1, 2, 3}, {2, 3}, {1, 2, 4}}) is a hypergraph of rank three.
The number of vertices in H is its order. We say that H is 2-colourable if
there is a function f : V → {0, 1} such that, for every edge E ∈ E , there exist
a pair of vertices x, y ∈ E such that f(x) 
= f(y). The function f is called a
2-colouring of H. It is easy to verify that H0 is 2-colourable. In particular,
f(1) = f(2) = 0, f(3) = f(4) = 1 is a 2-colouring of H0. A hypergraph is
uniform if all its edges have the same cardinality. Thus an undirected graph
is just a 2-uniform hypergraph.
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1.2 Digraphs, Subgraphs, Neighbours, Degrees

A directed graph (or just digraph1) D consists of a non-empty finite set
V (D) of elements called vertices and a finite set A(D) of ordered pairs of
distinct vertices called arcs. We call V (D) the vertex set and A(D) the
arc set of D. We will often write D = (V,A), which means that V and A
are the vertex set and arc set of D, respectively. The order (size) of D is
the number of vertices (arcs) in D; the order of D will sometimes be denoted
by |D|. For example, the digraph D in Figure 1.1 is of order and size 6;
V (D) = {u, v, w, x, y, z}, A(D) = {(u, v), (u,w), (w, u), (z, u), (x, z), (y, z)}.
Often the order (size, respectively) of the digraph under consideration is
denoted by n (m, respectively).

uz

w

vx

y

Figure 1.1 A digraph D.

For an arc (u, v) the first vertex u is its tail and the second vertex v is its
head. We also say that the arc (u, v) leaves u and enters v. The head and
tail of an arc are its end-vertices; we say that the end-vertices, are adjacent.
If (u, v) is an arc, we also say that u dominates v (v is dominated by u)
and denote it by u → v. We say that a vertex u is incident to an arc a if u
is the head or tail of a. We will often denote an arc (x, y) by xy.

For a pair X,Y of vertex sets of a digraph D, we define

(X,Y )D = {xy ∈ A(D) : x ∈ X, y ∈ Y },

i.e., (X,Y )D is the set of arcs with tail in X and head in Y . For example, for
the digraph H in Figure 1.2, ({u, v}, {w, z})H = {uw}, ({w, z}, {u, v})H =
{wv} and ({u, v}, {u, v})H = {uv, vu}. For disjoint subsets X and Y of V (D),
X → Y means that every vertex of X dominates every vertex of Y . Also,
X �→Y stands for X → Y and no vertex of Y dominates a vertex in X. For
example, in the digraph D of Figure 1.1, u → {v, w} and {x, y}�→z.

The above definition of a digraph implies that we allow a digraph to have
arcs with the same end-vertices (for example, uv and vu in the digraph H
in Figure 1.2), but we do not allow it to contain parallel (also called mul-
tiple) arcs, that is, pairs of arcs with the same tail and the same head, or

1 If we know from the context that D is directed, D may be called a graph.
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Figure 1.2 A digraph H and a directed pseudograph H ′.

loops (i.e., arcs whose head and tail coincide). When parallel arcs and loops
are admissible we speak of directed pseudographs; directed pseudographs
without loops are directed multigraphs. In Figure 1.2 the directed pseu-
dograph H ′ is obtained from H by appending a loop zz and two parallel arcs
from u to w. Clearly, for a directed pseudograph D, A(D) and (X,Y )D (for
every pair X,Y of vertex sets of D) are multisets (parallel arcs provide re-
peated elements). We use the symbol μD(x, y) to denote the number of arcs
from a vertex x to a vertex y in a directed pseudograph D. In particular,
μD(x, y) = 0 means that there is no arc from x to y.

We will sometimes give terminology and notation for digraphs only, but we
will provide necessary remarks on their extension to directed pseudographs,
unless this is trivial.

Below, unless otherwise specified, D = (V,A) is a directed pseudograph.
For a vertex v in D, we use the following notation:

N+
D (v) = {u ∈ V − v : vu ∈ A}, N−

D (v) = {w ∈ V − v : wv ∈ A)}.

The sets N+
D (v), N−

D (v) and ND(v) = N+
D (v) ∪ N−

D (v) are called the
out-neighbourhood, in-neighbourhood and neighbourhood of v. We
call the vertices in N+

D (v), N−
D (v) and ND(v) the out-neighbours, in-

neighbours and neighbours of v.
In Figure 1.2, N+

H (u) = {v, w}, N−
H (u) = {v}, NH(u) = {v, w}, N+

H′(w) =
{v, z}, N−

H′(w) = {u, z}, N+
H′(z) = {w}. For a set W ⊆ V , we let

N+
D (W ) =

⋃

w∈W

N+
D (w) − W, N−

D (W ) =
⋃

w∈W

N−
D (w) − W.

That is, N+
D (W ) consists of those vertices from V − W which are out-

neighbours of at least one vertex from W . In Figure 1.2, N+
H ({w, z}) = {v}

and N−
H ({w, z}) = {u}.

Recursively, we can define the ith out-neighbourhood of a set W as
follows: N+i(W ) = N+(N+(i−1)(W )) for i ≥ 2. We will denote N+2(W ) as
N++(W ). Similarly, we can define the ith in-neighbourhood of a set W .
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The neighbourhoods above are sometimes called open neighbourhoods.
Closed neighbourhoods are defined as follows: For a set W ⊆ V and
positive integer p, let N+p[W ] = N+p(W )∪W and N−p[W ] = N−p(W )∪W.

A digraph is called an oriented graph if it has no pair of arcs of the
form xy, yx. Seymour’s Second Neighbourhood Conjecture is one of the most
interesting open questions in digraph theory. It has the following simple for-
mulation.

Conjecture 1.2.1 (Seymour’s Second Neighbourhood Conjecture)In
every oriented graph D, there exists a vertex x such that |N+

D (x)| ≤
|N++

D (x)|.
The conjecture is discussed in detail in Chapter 2 including two proofs of

the conjecture for tournaments. In addition, recently Gutin and Li [23] proved
the conjecture for quasi-transitive oriented graphs; a digraph D is called
quasi-transitive if whenever x → y and y → z (x 
= z) we have that x → z
or z → x (or both). Quasi-transitive digraphs and their generalizations are
considered in Chapter 8.

For a set W ⊆ V , the out-degree of W (denoted by d+D(W )) is the
number of arcs in D whose tails are in W and heads are in V − W , i.e.,
d+D(W ) = |(W,V − W )D|. The in-degree of W , d−

D(W ) = |(V − W,W )D|.
In particular, for a vertex v, the out-degree is the number of arcs, except for
loops, with tail v. If D is a digraph (that is, it has no loops or multiple arcs),
then the out-degree of a vertex equals the number of out-neighbours of this
vertex. We call the out-degree and in-degree of a set of vertices W its semi-
degrees. The degree of W is the sum of its semi-degrees, i.e., the number
dD(W ) = d+D(W ) + d−

D(W ). For example, in Figure 1.2, d+H(u) = 2, d−
H(u) =

1, dH(u) = 3, d+H′(w) = 2, d−
H′(w) = 4, d+H′(z) = d−

H′(z) = 1, d+H({u, v, w}) =
d−

H({u, v, w}) = 1. Sometimes, it is useful to count loops in the semi-degrees:
the out-pseudodegree of a vertex v of a directed pseudograph D is the
number of arcs with tail v. Similarly, one can define the in-pseudodegree
of a vertex. In Figure 1.2, both the in-pseudodegree and out-pseudodegree of
z in H ′ are equal to 2.

The minimum out-degree (minimum in-degree) of D is

δ+(D) = min{d+D(x) : x ∈ V (D)} (δ−(D) = min{d−
D(x) : x ∈ V (D)}).

The minimum semi-degree of D is

δ0(D) = min{δ+(D), δ−(D)}.

Finally, the minimum degree of D is

δ(D) = min{d+(v) + d−(v) : v ∈ V (D)}.

Similarly, one can define the maximum out-degree of D, Δ+(D), and the
maximum in-degree, Δ−(D). The maximum semi-degree of D is
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Δ0(D) = max{Δ+(D),Δ−(D)}.

We say that D is regular if δ0(D) = Δ0(D). In this case, D is also called
δ0(D)-regular.

For degrees, semi-degrees and for other parameters and sets of digraphs,
we will usually omit the subscript for the digraph when it is clear which
digraph is meant.

Since the number of arcs in a directed multigraph equals the number of
their tails (or their heads), we obtain the following very basic result. Recall
that m denotes the number of arcs in the digraph under consideration.

Proposition 1.2.2 For every directed multigraph D we have
∑

x∈V (D) d−(x) =
∑

x∈V (D) d+(x) = m.

�
Clearly, this proposition is valid for directed pseudographs if in-degrees

and out-degrees are replaced by in-pseudodegrees and out-pseudodegrees.
A digraph H is a subdigraph (or just subgraph) of a digraph D if

V (H) ⊆ V (D), A(H) ⊆ A(D) and every arc in A(H) has both end-vertices
in V (H). If V (H) = V (D), we say that H is a spanning subgraph (or a fac-
tor) of D. The digraph L with vertex set {u, v, w, z} and arc set {uv, uw,wz}
is a spanning subgraph of H in Figure 1.2. If every arc of A(D) with both
end-vertices in V (H) is in A(H), we say that H is induced by X = V (H)
(we write H = D[X] or H = D〈X〉 ) and call H an induced subgraph of
D. The digraph G with vertex set {u, v, w} and arc set {uw,wv, vu} is a
subgraph of the digraph H in Figure 1.2; G is neither a spanning subgraph
nor an induced subgraph of H. The digraph G along with the arc uv is an
induced subgraph of H. For a subset A′ ⊆ A(D) the subgraph arc-induced
by A′ is the digraph D[A′] = (V ′, A′), where V ′ is the set of vertices in V
which are incident with at least one arc from A′. For example, in Figure 1.2,
H[{zw, uw}] has vertex set {u,w, z} and arc set {zw, uw}. If H is a subgraph
of D, then we say that D is a supergraph of H.

It is trivial to extend the above definitions of subgraphs to directed pseu-
dographs. To avoid lengthy terminology, we call the ‘parts’ of directed pseu-
dographs just subgraphs (instead of, say, subpseudographs).

For vertex-disjoint subgraphs H, L of a digraph D, we will often use
the shorthand notation (H,L)D and H → L instead of (V (H), V (L))D and
V (H) → V (L), respectively. We may also drop the index D when the digraph
is clear from the context.

A weighted directed pseudograph is a directed pseudograph D along
with a mapping c : A(D) → R. Thus, a weighted directed pseudograph is
a triple D = (V (D), A(D), c). We will also consider vertex-weighted di-
rected pseudographs, i.e., directed pseudographs D along with a mapping
c : V (D) → R. (See Figure 1.3.) If a is an element (i.e., a vertex or an
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arc) of a weighted directed pseudograph D = (V (D), A(D), c), then c(a) is
called the weight or the cost of a. An (unweighted) directed pseudograph
can be viewed as a (vertex-)weighted directed pseudograph whose elements
are all of weight 1. For a set B of arcs of a weighted directed pseudograph
D = (V,A, c), we define the weight of B as follows: c(B) =

∑
a∈B c(a).

Similarly, one can define the weight of a set of vertices in a vertex-weighted
directed pseudograph. The weight of a subgraph H of a weighted (vertex-
weighted) directed pseudograph D is the sum of the weights of the arcs in
H (vertices in H). For example, in the weighted directed pseudograph D in
Figure 1.3 the set of arcs {xy, yz, zx} has weight 9.5 (here we have assumed
that we used the arc zx of weight 1). In the directed pseudograph H in Figure
1.3 the subgraph U = ({u, x, z}, {xz, zu}) has weight 5.

3.5

0.3

5

y

z

x(2) z(0) u(3)

y(2.5)

1

x

2

D H

Figure 1.3 Weighted and vertex-weighted directed pseudographs (the vertex
weights are given in brackets).

1.3 Walks, Trails, Paths, Cycles and Path-Cycle
Subgraphs

In the following, D is always a directed pseudograph, unless otherwise spec-
ified. An oriented walk (or, just a walk) in D is an alternating sequence
W = x1a1x2a2x3 . . . xk−1ak−1xk of vertices xi and arcs aj from D such that
xi and xi+1 are end-vertices of ai for every i ∈ [k −1]. In particular, if xi and
xi+1 are the tail and head of ai, respectively, for every i ∈ [k − 1], then W is
a directed walk (diwalk). When the fact that W is directed is known from
the context, we will often say that W is a walk (this convention extends to
every type of walk, i.e. trials, paths and cycles defined below). A walk W is
closed if x1 = xk, and open otherwise. The set of vertices {xi : i ∈ [k]} is
denoted by V (W ); the set of arcs {aj : j ∈ [k − 1]} is denoted by A(W ). We
say that W is a diwalk from x1 to xk or an (x1, xk)-diwalk. If a diwalk
W is open, then we say that the vertex x1 is the initial vertex of W , the
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vertex xk is the terminal vertex of W , and x1 and xk are end-vertices of
W (the last term can be used for any oriented walk). The length of a walk
is its number of arcs. Hence the walk W above has length k − 1; we will say
that W is a (k − 1)-walk. A walk is even (odd) if its length is even (odd).
When the arcs of W are defined from the context or simply unimportant, we
will denote W by x1x2 . . . xk.

A trail is a walk in which all arcs are distinct. Sometimes, we identify
a trail W with the directed pseudograph (V (W ), A(W )), which is a subgraph
of D. If the vertices of the diwalk W are distinct, W is a directed path
(dipath). If the vertices x1, x2, . . . , xk−1 are distinct, k ≥ 3 and x1 = xk, W
is a directed cycle (dicycle). Note that a loop is a directed cycle of length
1 and a pair of opposite arcs forms a directed cycle of length 2. A digraph
is acyclic if it has no dicycle. An ordering v1, v2, . . . , vn of the vertices of a
digraph D is called an acyclic ordering if for every arc vivj ∈ A(D), we
have i < j. The following proposition is well-known and not hard to prove
(see Chapter 3).

Proposition 1.3.1 Every acyclic digraph has an acyclic ordering of its ver-
tices.

Since paths and cycles are special cases of walks, the length of a path
and a cycle is already defined. The same remark is valid for other parameters
and notions, e.g., an (x, y)-path. A directed path P is an [x, y]-path if
P is a path between x and y, e.g., P is either an (x, y)-path or a (y, x)-
path. A longest (shortest) (x, y)-dipath in a digraph D is a (x, y)-dipath of
maximum (minimum) length in D. The distance dist(x, y) from a vertex x to
a vertex y is the length of a shortest (x, y)-dipath. If in a digraph D there is a
dipath from every vertex to every other vertex (i.e., D is strongly connected,
see Section 1.5), then the diameter of D is the maximum of the distances
dist(x, y) over all vertices x and y in D. If D is not strongly connected, the
diameter of D is ∞. An (x, y)-dipath P is a minimal (x, y)-dipath if it is
the only (x, y)-dipath in D[V (P )].

When W is a cycle and x is a vertex of W , we say that W is a cycle
through x. The girth g(D) of D is the length of a shortest dicycle in D.
If D does not have a cycle, we define g(D) = ∞. A digraph D is vertex-
k-cyclic (arc-k-cyclic, respectively) if every vertex (arc, respectively) of
D is contained in a directed k-cycle. A digraph D is pancyclic if it has a
k-cycle for every k ∈ {3, 4, . . . , n}; D is vertex-pancyclic (arc-pancyclic,
respectively) if D is vertex-k-cyclic (arc-k-cyclic, respectively) for every k ∈
{3, 4, . . . , n}.

For subsets X,Y of V (D), a directed (x, y)-path P is an (X, Y )-path if
x ∈ X, y ∈ Y and V (P ) ∩ (X ∪ Y ) = {x, y}. Note that if X ∩ Y 
= ∅, then
a vertex x ∈ X ∩ Y forms an (X,Y )-path by itself. Sometimes we will talk
about an (H,H ′)-path when H and H ′ are subgraphs of D. By this we mean
a (V (H), V (H ′))-path in D.
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For a cycle C = x1x2 . . . xpx1, the subscripts are considered modulo p,
i.e., xs = xi for every s and i such that i ≡ s mod p. As pointed out
above (for trails), we will often view paths and cycles as subgraphs. We can
also consider paths and cycles as digraphs themselves. Let �Pn ( �Cn ) denote a
dipath (a dicycle) with n vertices, i.e., �Pn = ([n], {(1, 2), (2, 3), . . . , (n−1, n)})
and �Cn = �Pn + (n, 1).

A directed walk (path, cycle) W is a Hamilton (or Hamiltonian) walk
(path, cycle) if V (W ) = V (D). A digraph D is Hamiltonian (traceable)
if D contains a Hamilton dicycle (Hamilton dipath). A directed trail W is an
Euler (or Eulerian) trail if W is closed, V (W ) = V (D) and A(W ) = A(D);
a directed multigraph D is Eulerian if it has an Euler trail.

To illustrate these definitions, consider Figure 1.4.

x2

x1 x3

x4x5

x6

x7

Figure 1.4 A directed graph H.

The walk x1x2x6x3x4x6x7x4x5x1 is a Hamiltonian diwalk in D. The path
x5x1x2x3x4x6x7 is a Hamiltonian dipath in D. The path x1x2x3x4x6 is an
(x1, x6)-path and x2x3x4x6x3 is an (x2, x3)-trail. The cycle x1x2x3x4x5x1 is
a 5-cycle in D. The girth of D is 3 and the longest dicycle in D has length 6.

Let W = x1x2 . . . xk, Q = y1y2 . . . yt be a pair of walks in a digraph D.
The walks W and Q are disjoint if V (W ) ∩ V (Q) = ∅ and arc-disjoint if
A(W ) ∩ A(Q) = ∅. If W and Q are open walks, they are called internally
disjoint if {x2, x3, . . . , xk−1}∩V (Q) = ∅ and V (W )∩{y2, y3, . . . , yt−1} = ∅.

We will use the following notation for a path or a cycle W = x1x2 . . . xk

(recall that x1 = xk if W is a cycle):

W [xi, xj ] = xixi+1 . . . xj .

It is easy to see that W [xi, xj ] is a path for xi 
= xj ; we call it the subpath
of W from xi to xj . If 1 < i ≤ k, then the predecessor of xi on W is the
vertex xi−1. If 1 ≤ i < k, then the successor of xi on W is the vertex xi+1.

Proposition 1.3.2 Let D be a digraph and let x, y be a pair of distinct ver-
tices in D. If D has an (x, y)-diwalk W , then D contains an (x, y)-dipath P
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such that A(P ) ⊆ A(W ). If D has a closed (x, x)-diwalk W , then D contains
a dicycle C through x such that A(C) ⊆ A(W ).

Proof: Consider a diwalk P from x to y of minimum length among all (x, y)-
diwalks whose arcs belong to A(W ). We show that P is a path. Let P =
x1x2 . . . xk, where x = x1 and y = xk. If xi = xj for some 1 ≤ i < j ≤ k,
then the walk P [x1, xi]P [xj+1, xk] is shorter than P ; a contradiction. Thus,
all vertices of P are distinct, so P is a dipath with A(P ) ⊆ A(W ).

Let W = z1z2 . . . zk be a diwalk from x = z1 to itself (x = zk). Since
D has no loop, zk−1 
= zk. Let y1y2 . . . yt be a shortest diwalk from y1 =
z1 to yt = zk−1. We have proved above that y1y2 . . . yt is a dipath. Thus,
y1y2 . . . yty1 is a dicycle through y1 = x. �

An oriented graph is a digraph with no cycle of length two. A tourna-
ment is an oriented graph where every pair of distinct vertices are adjacent.
In other words, a digraph T with vertex set {vi : i ∈ [n]} is a tournament if
exactly one of the arcs vivj and vjvi is in T for every i 
= j ∈ [n]. In Figure
1.5, one can see a pair of tournaments. It is easy to see that each of them
contains a Hamilton dipath. Actually, this is not a coincidence due to the
following theorem of Rédei [32].

Theorem 1.3.3 (Redei’s theorem) Every tournament T is traceable.

Proof: Let x1, . . . , xn be an ordering of the vertices of T such that the number
of forward arcs, i.e. arcs of the form xixj (i < j), is maximal. Observe that
xi → xi+1 for each i ∈ [n − 1]. Indeed, if we had xi+1 → xi for some i, we
could swap vertices xi and xi+1 in the ordering and obtain one more forward
arc, a contradiction. Thus, x1 . . . xn is a Hamiltonian dipath. �

In fact, Rédei proved a stronger result: every tournament contains an odd
number of Hamiltonian dipaths (see Theorem 2.6.1).

Figure 1.5 Tournaments.

A directed q-path-cycle subgraph F of a digraph D is a collec-
tion of q dipaths P1,. . . , Pq and t dicycles C1,. . . ,Ct such that all of
P1, . . . , Pq, C1, . . . , Ct are pairwise disjoint (possibly, q = 0 or t = 0). We
will denote F by F = P1 ∪ . . . ∪ Pq ∪ C1 ∪ . . . ∪ Ct (the paths always being
listed first). Quite often, we will consider directed q-path-cycle factors,
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i.e., spanning directed q-path-cycle subgraphs. If t = 0, F is a directed q-
path subgraph and it is a directed q-path factor (or just a directed
path factor) if it is spanning. If q = 0, we say that F is a directed t-cycle
subgraph (or just a directed cycle subgraph) and it is a directed t-
cycle factor (or just a directed cycle factor) if it is spanning. In Figure
1.6, abc∪ defd is a directed 1-path-cycle factor, and abcea∪ dfd is a directed
cycle factor (or, more precisely, a directed 2-cycle factor).

a

b

c

d

e

f

H

Figure 1.6 A digraph H.

A multipartite tournament is a digraph obtained from a complete
multipartite undirected graph by replacing every edge by an arc with the same
end-vertices. The following extension of Redei’s theorem (Theorem 1.3.3) to
multipartite tournaments was proved by Gutin [22].

Theorem 1.3.4 A multipartite tournament has a Hamilton dipath if and
only if it contains a 1-path-cycle factor.

Chapter 7 is devoted to multipartite tournaments and their generalization,
semicomplete multipartite digraphs.

The path covering number pc(D) of D is the minimum positive integer
k such that D contains a k-path factor. In particular, pc(D) = 1 if and only
if D is traceable. The path-cycle covering number pcc(D) of D is the
minimum positive integer k such that D contains a k-path-cycle factor.
Clearly, pcc(D) ≤ pc(D). The following simple yet helpful assertion on the
path covering number is not hard to show and so it is left without a proof.

Proposition 1.3.5 Let D be a digraph, and let k be a positive integer. Then
the following statements are equivalent:

1. pc(D) = k.
2. There are k − 1 (new) arcs e1, . . . , ek−1 such that D + {e1, . . . , ek−1} is

traceable, but there is no set of k − 2 arcs with this property.
3. k − 1 is the minimum integer s such that addition of s new vertices to

D together with all possible arcs between V (D) and these new vertices
results in a traceable digraph. �
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1.4 Isomorphism and Basic Operations on Digraphs

Suppose D = (V,A) is a directed multigraph. A directed multigraph obtained
from D by deleting multiple arcs is a digraph H = (V,A′) where xy ∈ A′

if and only if μD(x, y) ≥ 1. Let xy be an arc of D. By reversing the
arc xy, we mean that we replace the arc xy by the arc yx. That is, in
the resulting directed multigraph D′ we have μD′(x, y) = μD(x, y) − 1 and
μD′(y, x) = μD(y, x) + 1.

A pair of (unweighted) directed pseudographs D and H are isomorphic
(denoted by D ∼= H) if there exists a bijection φ : V (D) → V (H) such that
μD(x, y) = μH(φ(x), φ(y)) for every ordered pair x, y of vertices in D. The
mapping φ is an isomorphism. Quite often, we will not distinguish between
isomorphic digraphs or directed pseudographs. For example, we may say that
there is only one digraph on a single vertex and there are exactly three
digraphs with two vertices. Also, there is only one digraph of order 2 and size
2, but there are two directed multigraphs and six directed pseudographs of
order and size 2. For a set Ψ of directed pseudographs, we say that a directed
pseudograph D belongs to Ψ or is a member of Ψ (denoted D ∈ Ψ) if
D is isomorphic to a directed pseudograph in Ψ . Since we usually do not
distinguish between isomorphic directed pseudographs, we will often write
D = H instead of D ∼= H for isomorphic D and H.

In case we do want to distinguish between isomorphic digraphs, we speak
of labelled digraphs. In this case, a pair of digraphs D and H is indistin-
guishable if and only if they completely coincide (i.e., V (D) = V (H) and
A(D) = A(H)). In particular, there are four labeled digraphs with vertex set
{1, 2}. Indeed, the labeled digraphs ({1, 2}, {(1, 2)}) and ({1, 2}, {(2, 1)}) are
distinct, even though they are isomorphic.

The converse of a directed multigraph D is the directed multigraph H
which one obtains from D by reversing all arcs. It is easy to verify, using
only the definitions of isomorphism and converse, that a pair of directed
multigraphs are isomorphic if and only if their converses are isomorphic.
To obtain subdigraphs, we use the following operations of deletion. For a
directed multigraph D and a set B ⊆ A(D), the directed multigraph D − B
(sometimes denoted by D \ B) is the spanning subgraph of D with arc set
A(D) \ B. If X ⊆ V (D), the directed multigraph D −X (sometimes denoted
by D\X) is the subgraph induced by V (D)\X, i.e., D−X = D〈V (D)−X〉.
For a subgraph H of D, we define D − H = D − V (H). Since we do not
distinguish between a single element set {x} and the element x itself, we will
often write D − x rather than D − {x}. If H is a non-induced subgraph of
a digraph D and xy ∈ A(D) − A(H) with x, y ∈ V (H), we can construct
another subgraph H ′ of D by adding the arc xy of H; H ′ = H + xy.

Let G be a subgraph of a directed multigraph D. The contraction of G
in D is a directed multigraph D/G with V (D/G) = {g} ∪ (V (D) − V (G)),
where g is a ‘new’ vertex not in D, and μD/G(x, y) = μD(x, y), and for all
distinct vertices x, y ∈ V (D) − V (G) we have
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μD/G(x, g) =
∑

v∈V (G)

μD(x, v), μD/G(g, y) =
∑

v∈V (G)

μD(v, y).

(Note that there is no loop in D/G.) Let G1, G2, . . . , Gt be vertex-disjoint
subgraphs of D. Then

D/{G1, G2, . . . , Gt} = (. . . ((D/G1)/G2) . . .)/Gt.

Clearly, the resulting directed multigraph D/{G1, G2, . . . , Gt} does not de-
pend on the order of G1, G2, . . . , Gt. Contraction can be defined for sets of
vertices, rather than subgraphs. It suffices to view a set of vertices X as a
subgraph with vertex set X and no arcs. Figure 1.7 depicts a digraph H and
the contraction H/L, where L is the subgraph of H induced by the vertices
y and z.

x

y

v

z x

v

H T = H/L, L = H[{y, z}]

Figure 1.7 Contraction.

We will often use the following variation of the operation of contraction.
This operation is called path-contraction and is defined as follows. Let P
be a directed (x, y)-path in a directed multigraph D = (V,A). Then D//P
stands for the directed multigraph with vertex set V (D//P ) = V ∪ {z} −
V (P ), where z /∈ V , and μD//P (u, v) = μD(u, v), μD//P (u, z) = μD(u, x),
μD//P (z, v) = μD(y, v) for all distinct u, v ∈ V − V (P ). In other words,
D//P is obtained from D by deleting all vertices of P and adding a new vertex
z such that every arc with head x (tail y) and tail (head) in V −V (P ) becomes
an arc with head (tail) z and the same tail (head). Observe that a path-
contraction in a digraph results in a digraph (no parallel arcs arise). We will
often consider path-contractions of paths of length one, i.e., arcs e. Clearly,
a directed multigraph D has a directed k-cycle (k ≥ 3) through an arc e if
and only if D//e has a cycle through z. Observe that the obvious analogue of
path-contraction for undirected multigraphs does not have this nice property,
which is of use in this section. The difference between (ordinary) contraction
(which is also called set-contraction) and path-contraction is reflected in
Figure 1.8.
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a

b
x u v y

d

c

a

b

c

d b

a

d

c

2

3

2 2

z z

D

D/{x, u, v, y} D//P, P = xuvy

Figure 1.8 The two different kinds of contraction, set-contraction and path-
contraction. The integers 2 and 3 indicate the number of corresponding parallel
arcs.

As for set-contraction, for vertex-disjoint paths P1, P2, . . . , Pt in D, the
path-contraction D//{P1, . . . , Pt} is defined as the directed multigraph
(. . . ((D//P1)//P2) . . .)//Pt; clearly, the result does not depend on the or-
der of P1, P2, . . . , Pt.

To construct ‘bigger’ digraphs from ‘smaller’ ones, we will often use the
following operation called composition. Let D be a digraph with vertex set
{vi : i ∈ [n]}, and let G1, G2, . . . , Gn be digraphs which are pairwise vertex-
disjoint. The composition D[G1, G2, . . . , Gn] is the digraph L with vertex set
V (G1)∪V (G2)∪. . .∪V (Gn) and arc set (∪n

i=1A(Gi))∪{gigj : gi ∈ V (Gi), gj ∈
V (Gj), vivj ∈ A(D)}. Figure 1.9 shows the composition T [Gx, Gl, Gv], where
Gx consists of a pair of vertices and an arc between them, Gl has a single
vertex, Gv consists of a pair of vertices and the pair of mutually opposite
arcs between them, and the digraph T is from Figure 1.7.

If D = H[S1, . . . , Sh] and none of the digraphs S1, . . . Sh has an arc, then
D is an extension of H. This notion is also used for classes of digraphs.
Hence an extended tournament is any digraph D = T [S1, . . . , St] that can
be obtained from a tournament T by substituting each vertex i of T by an
independent set Si. Distinct vertices x, y are similar if x, y have the same
in- and out-neighbours in D. For every i ∈ [h], the vertices of Si are similar
in D.

Chapter 10 is devoted to digraph products. Here we will consider just one
suchproduct. The Cartesian product of a family of digraphs D1,D2, . . . , Dn,
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Gx

G

Gv

Figure 1.9 T [Gx, G�, Gv].

denoted by D1�D2� . . . �Dn or �n
i=1Di, where n ≥ 2, is the digraph D hav-

ing

V (D) = V (D1) × V (D2) × . . . × V (Dn)
= {(w1, w2, . . . , wn) : wi ∈ V (Di), i ∈ [n]}

and a vertex (u1, u2, . . . , un) dominates a vertex (v1, v2, . . . , vn) of D if and
only if there exists an r ∈ [n] such that urvr ∈ A(Dr) and ui = vi for all
i ∈ [n] \ {r}. (See Figure 1.10.)

1

2

3

(2, a)

(3, b)

(2, b)

(1, a) (3, a)

(1, b)
b

a

D HHD

Figure 1.10 The Cartesian product of two digraphs.

The operation of splitting a vertex v of a directed multigraph D consists
of replacing v by two new vertices v′, v′′, replacing all arcs of the form xv by
an arc xv′, replacing all arcs of the form vy by an arc v′′y and finally adding
the arc v′v′′. The subdivision of an arc uv of D consists of replacing uv by
two arcs uw,wv, where w is a new vertex. If H can be obtained from D by
subdividing one or more arcs (here we allow subdividing arcs that are already
subdivided), then H is a subdivision of D. For a positive integer p and a
digraph D, the pth power Dp of D is defined as follows: V (Dp) = V (D),
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x → y in Dp if x 
= y and there are k ≤ p − 1 vertices z1, z2, . . . , zk such that
x → z1 → z2 → . . . → zk → y in D. According to this definition D1 = D.
For example, for the digraph Hn = ([n], {(i, i + 1) : i ∈ [n − 1]}), we have
H2

n = ([n], {(i, j) : 1 ≤ i < j ≤ i + 2 ≤ n} ∪ {(n − 1, n)}). See Figure 1.11 for
the second power of a digraph.

D D2

Figure 1.11 A digraph D and its second power D2.

Let H and L be a pair of directed pseudographs. The union H ∪ L of H
and L is the directed pseudograph D such that V (D) = V (H) ∪ V (L) and
μD(x, y) = μH(x, y) + μL(x, y) for every pair x, y of vertices in V (D). Here
we assume that the function μH is naturally extended, i.e., μH(x, y) = 0 if at
least one of x, y is not in V (H) (and similarly for μL). Figure 1.12 illustrates
this definition.

c

d

b

c

d

e

f

g

ca

d

b
e

f

g

a

b

H L H ∪ L

Figure 1.12 The union D = H ∪ L of the directed pseudographs H and L.

1.5 Strong Connectivity

In a digraph D a vertex y is reachable from a vertex x if D has an (x, y)-
diwalk. In particular, a vertex is reachable from itself. By Proposition 1.3.2,
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y is reachable from x if and only if D contains an (x, y)-dipath. A digraph
D is strongly connected (or, just, strong) if, for every pair x, y of distinct
vertices in D, there exists an (x, y)-diwalk and a (y, x)-diwalk. In other words,
D is strong if every vertex of D is reachable from every other vertex of D.
We define a digraph with one vertex to be strongly connected. It is easy to
see that D is strong if and only if it has a closed Hamiltonian diwalk. As �Cn

is strong, every Hamiltonian digraph is strong.
Recall that a digraph D is vertex-pancyclic if for every x ∈ V (D) and

every integer k ∈ {3, 4, . . . , n}, there exists a k-cycle through x in D. The
following basic result on tournaments is due to Moon [30] and is proved in
Chapter 2.

Theorem 1.5.1 Every strong tournament is vertex-pancyclic.

A digraph D is semicomplete if there is an arc between every pair of
vertices in D. The class of semicomplete digraphs is a generalization of tour-
naments and many results for tournaments can be extended to semicomplete
digraphs. In particular, it follows from Theorem 1.7.3 and Moon’s theorem
that every strong semicomplete digraph is vertex-pancyclic. A digraph D is
complete if, for every pair x, y of distinct vertices of D, both xy and yx are
in D. The complete digraph on n vertices will be denoted by

↔
Kn.

A digraph D is locally in-semicomplete (locally out-semicomplete,
respectively) if, for every vertex x of D, all in-neighbours (out-neighbours,
respectively) of D induce a semicomplete digraph. It follows from Moon’s
theorem that every strong tournament is Hamiltonian. The following is an
extension of this result by Bang-Jensen, Huang and Prisner [6].

Theorem 1.5.2 Every strong locally in-semicomplete digraph is Hamilto-
nian.

As the converse of every locally out-semicomplete digraph is locally in-
semicomplete and the converse of a Hamiltonian dicycle is a Hamiltonian
dicycle, Theorem 1.5.2 holds for locally out-semicomplete digraphs as well.
Chapter 6 is devoted to results on locally in- and out-semicomplete digraphs.

For a strong digraph D = (V,A), a set S ⊂ V is a separator (or a sep-
arating set) if D − S is not strong. A digraph D is k-strongly connected
(or k-strong) if |V | ≥ k+1 and D has no separator with less than k vertices.
It follows from the definition of strong connectivity that a complete digraph
with n vertices is (n − 1)-strong, but is not n-strong. The largest integer k
such that D is k-strongly connected is the vertex-strong connectivity of
D (denoted by κ(D)). If a digraph D is not strong, we set κ(D) = 0. For
a pair s, t of distinct vertices of a digraph D, a set S ⊆ V (D) − {s, t} is an
(s, t)-separator if D − S has no (s, t)-dipaths.

For a strong digraph D = (V,A), a set of arcs W ⊆ A is a cut (or a
cutset) if D − W is not strong. Clearly, every minimal cut is of the form
(X, X̄), where X ⊂ V and X̄ = V − X. A cut (X, X̄) is called a (u, v)-
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cut if u ∈ X and v ∈ X̄. A digraph D is k-arc-strong (or k-arc-strongly
connected) if D has no cut with less than k arcs. The largest integer k such
that D is k-arc-strongly connected is the arc-strong connectivity of D
(denoted by λ(D)). If D is not strong, we set λ(D) = 0. Note that λ(D) ≥ k
if and only if d+(X), d−(X) ≥ k for all proper subsets X of V. A collection
P of paths is called arc-disjoint if no pair of paths in P has common arcs.

The following theorem is one of the most fundamental results in graph
theory.

Theorem 1.5.3 (Menger’s theorem)[29] Let D be a directed multigraph
and let u, v ∈ V (D) be a pair of distinct vertices. Then the following holds:

(a) The maximum number of arc-disjoint (u, v)-dipaths equals the minimum
number of arcs covering all (u, v)-dipaths and this minimum is attained
for some (u, v)-cut (X, X̄).

(b) If the arc uv is not in A(D), then the maximum number of internally
disjoint (u, v)-dipaths equals the minimum number of vertices in a (u, v)-
separator.

A strong component of a digraph D is a maximal induced subgraph
of D which is strong. If D1,. . . ,Dt are the strong components of D, then
clearly V (D1) ∪ . . . ∪ V (Dt) = V (D) (recall that a digraph with only one
vertex is strong). Moreover, we must have V (Di)∩V (Dj) = ∅ for every i 
= j
as otherwise all the vertices V (Di) ∪ V (Dj) are reachable from each other,
implying that the vertices of V (Di) ∪ V (Dj) belong to the same strong com-
ponent of D. We call V (D1)∪ . . .∪V (Dt) the strong decomposition of D.
The strong component digraph SC(D) of D is obtained by contracting
the strong components of D and deleting any parallel arcs obtained in this
process. In other words, if D1,. . . ,Dt are the strong components of D, then
V (SC(D)) = {vi : i ∈ [t]} and A(SC(D)) = {vivj : (V (Di), V (Dj))D 
= ∅}.
The subgraph of D induced by the vertices of a dicycle in D is strong, and
hence is contained in a strong component of D. Thus, SC(D) is acyclic. By
Proposition 3.1.2 in Chapter 3, the vertices of SC(D) have an acyclic order-
ing. This implies that the strong components of D can be labelled D1,. . . ,Dt

such that there is no arc from Dj to Di unless j < i. We call such an ordering
an acyclic ordering of the strong components of D. The strong components
of D corresponding to the vertices of SC(D) of in-degree (out-degree) zero
are the initial (terminal) strong components of D. The remaining strong
components of D are called the intermediate strong components of D.
Figure 1.13 shows a digraph D and its strong component digraph SC(D).

It is easy to see that the strong component digraph of a tournament T is
an acyclic tournament. Thus, there is a unique acyclic ordering of the strong
components of T , namely, T1,. . . ,Tt such that Ti → Tj for every i < j. Clearly,
every tournament has only one initial (terminal) strong component.
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D SC(D)

Figure 1.13 A digraph D and its strong component digraph SC(D). The vertices
s1, s2, s3, s4, s5 are obtained by contracting the sets {a, b}, {c, d, e}, {f, g, h, i}, {j, k}
and {l,m, n} which correspond to the strong components of D. The digraph D has
two initial components, D1, D2 with V (D1) = {a, b} and V (D2) = {c, d, e}. It has
one terminal component D5 with vertices V (D5) = {l,m, n} and two intermediate
components D3, D4 with vertices V (D3) = {f, g, h, i} and V (D4) = {j, k}.

1.6 Linkages

Let D = (V,A) be a digraph and let s1, . . . , sk, t1, . . . , tk be a collection
of (not necessarily distinct) vertices of D. A k-linkage from (s1, . . . , sk) to
(t1, . . . , tk) is a collection of k internally disjoint dipaths P1, . . . , Pk such that,
for each i ∈ [k], Pi is an (si, ti)-dipath if si 
= ti and a dicycle containing si

if si = ti and si, ti are not internal vertices of Pj for any j 
= i. In the case
of a cycle C containing si, the term internally disjoint means the same as
for paths, i.e., no other path or cycle contains vertices V (C) − {si, ti}. Note
that a dicycle with just one vertex must be a loop, not just a vertex itself.
A weak k-linkage from (s1, . . . , sk) to (t1, . . . , tk) is a collection of k arc-
disjoint dipaths P1, . . . , Pk such that, for each i ∈ [k], Pi is an (si, ti)-dipath
if si 
= ti and a dicycle containing si if si = ti. The next two problems on
linkages are fundamental and of central importance in digraph theory.

k-linkage
Input: A digraph D = (V,A) and not necessarily distinct vertices
s1, . . . , sk, t1, . . . , tk.
Question: Does D contain a k-linkage from (s1, . . . , sk) to (t1, . . . , tk)?
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weak k-linkage
Input: A digraph D = (V,A) and not necessarily distinct vertices
s1, . . . , sk, t1, . . . , tk.
Question: Does D contain a weak k-linkage from (s1, . . . , sk) to
(t1, . . . , tk)?

A digraph is k-linked (weakly k-linked, respectively) if it has a k-
linkage (a weak k-linkage, respectively) for every choice of vertices as above.

Kühn and Osthus [27] proved the following:

Theorem 1.6.1 Let k ≥ 2 be an integer. Every digraph D of order n ≥ 400k3

which satisfies δ0(D) ≥ n/2 + k − 1 is k-linked.

The k-linkage and the weak k-linkage problems are both NP-hard
even for k = 2 [20], Still, somewhat surprisingly, weakly k-linked digraphs
are easy to classify due to the following result of Shiloach [35]. Its proof,
due to Shiloach, is a beautiful application of Edmonds’ branching theorem
(Theorem 1.8.2), see [35].

Theorem 1.6.2 A digraph is weakly k-linked if and only if it is k-arc-strong.
Furthermore, there is a polynomial algorithm for finding a weak k-linkage
from (s1, . . . , sk) to (t1, . . . , tk), for any choice of these vertices, in a k-arc-
strong digraph.

So for weak k-linkages, the interesting case is when the arc-strong con-
nectivity is less than k.

1.7 Undirected Graphs and Orientations of Undirected
and Directed Graphs

An undirected graph G = (V,E) consists of a non-empty finite set V =
V (G) of elements called vertices and a finite set E = E(G) of unordered
pairs of distinct vertices called edges. We call V (G) the vertex set and
E(G) the edge set of G. In other words, an edge {x, y} is a 2-element subset
of V (G). We will often denote {x, y} just by xy. If xy ∈ E(G), we say that
the vertices x and y are adjacent. Notice that, in the above definition of an
undirected graph, we do not allow loops (i.e., pairs consisting of the same
vertex) or parallel edges (i.e., multiple pairs with the same end-vertices).
The complement G of an undirected graph G is the undirected graph with
vertex set V (G) in which two vertices are adjacent if and only if they are not
adjacent in G.

When parallel edges and loops are admissible we speak of undirected
pseudographs; pseudographs with no loops are multigraphs. For a pair
u, v of vertices in a pseudograph G, μG(u, v) denotes the number of edges
between u and v. In particular, μG(u, u) is the number of loops at u.
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A multigraph G is complete if every pair of distinct vertices in G are
adjacent (that is, μG(u, v) > 0 for all u, v ∈ V , u 
= v). We will denote the
complete undirected graph on n vertices (which is unique up to isomorphism)
by Kn. Its complement Kn has no edge.

A multigraph H is p-partite if there exists a partition V1, V2, . . . , Vp of
V (H) into p partite sets (i.e., V (H) = V1 ∪ . . . ∪ Vp, Vi ∩ Vj = ∅ for every
i 
= j) such that every edge of H has its end-vertices in different partite
sets. The special case of a p-partite graph when p = 2 is called a bipartite
graph. We often denote a bipartite graph B by B = (V1, V2;E). A p-partite
multigraph H is complete p-partite if, for every pair x ∈ Vi, y ∈ Vj (i 
= j),
an edge xy is in H. A complete graph on n vertices is clearly a complete
n-partite graph for which every partite set is a singleton. We denote the
complete p-partite graph with partite sets of cardinalities n1, n2, . . . , np by
Kn1,n2,...,np

. Complete p-partite graphs for p ≥ 2 are also called complete
multipartite graphs.

To obtain short proofs of various results on subgraphs of a directed multi-
graph D = (V,A) the following transformation to the class of bipartite (undi-
rected) multigraphs is extremely useful. Let BG(D) = (V ′, V ′′;E) denote the
bipartite multigraph with partite sets V ′ = {v′ : v ∈ V }, V ′′ = {v′′ : v ∈ V }
such that μBG(D)(u′, w′′) = μD(u,w) for every pair u,w of vertices in D. We
call BG(D) the bipartite representation of D; see Figure 1.14.

1

2

3

4

1

2

3

4

5

1

2

3

4

5

5

D BG(D)

Figure 1.14 A directed multigraph and its bipartite representation.

An orientation of an undirected graph G is an oriented graph H obtained
from G by replacing every edge xy by either arc (x, y) or arc (y, x). Let D be
a directed multigraph. The underlying multigraph UMG(D) of D is an
undirected multigraph obtained from D by replacing every arc (x, y) with the
edge xy. The underlying graph UG(D) of D is obtained from UMG(D)
by deleting all multiple edges between every pair of vertices apart from one.
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For example, for a digraph H with vertices u, v and arcs uv, vu, UG(H) has
one edge and UMG(H) has two parallel edges. Chapter 12 is devoted to
underlying graphs of digraphs.

A digraph D = (V,A) is symmetric if xy ∈ A implies yx ∈ A. For
an undirected graph G, the complete biorientation of G is a symmetric
digraph

↔
G obtained from G by replacing each edge {x, y} with the pair xy, yx

of arcs. Clearly, D is symmetric if and only if D is the complete biorientation
of some graph.

An undirected pseudograph G is connected if its complete biorientation
↔
G is strongly connected. Similarly, G is k-connected if

↔
G is k-strong. Strong

components in
↔
G are connected components, or just components in G.

A bridge in an undirected pseudograph G is an edge whose deletion from G
increases the number of connected components. An undirected pseudograph
G is k-edge-connected if the graph obtained from G after deletion of at
most k−1 edges is connected. Clearly, a connected undirected pseudograph is
bridgeless if and only if it is 2-edge-connected. The neighbourhood NG(x)
of a vertex x in G is the set of vertices adjacent to x. The degree d(x) of a
vertex x is the number of edges except loops having x as an end-vertex The
minimum (maximum) degree of G is

δ(G) = min{d(x) : x ∈ V (G)} (Δ(G) = max{d(x) : x ∈ V (G)}).

We say that G is regular (or δ(G)-regular) if δ(G) = Δ(G). A pair of
undirected graphs G and H is isomorphic if

↔
G and

↔
H are isomorphic.

A digraph is connected if its underlying graph is connected. The follow-
ing well-known theorem is due to Robbins [33]. This theorem is a special case
of Theorem 1.7.3.

Theorem 1.7.1 A connected graph G has a strongly connected orientation
if and only if G has no bridge.

Here is a well-known characterization of Eulerian directed multigraphs
(clearly, the deletion of loops in a directed pseudograph D does not change
the property of D of being Eulerian or otherwise): A directed multigraph D
is Eulerian if and only if D is connected and d+(x) = d−(x) for every vertex
x in D [4]. Eulerian directed multigraphs are considered in Chapter 4.

The notions of walks, trails, paths and cycles in undirected pseudographs
are analogous to those for directed pseudographs (we merely disregard ori-
entations). An xy-path in an undirected pseudograph is a path whose end-
vertices are x and y. An undirected graph is a forest if it has no cycle. A
connected forest is a tree. It is easy to see that every connected undirected
graph has a spanning tree, i.e., a spanning subgraph, which is a tree.

A matching M in a directed (an undirected) pseudograph G is a set of
arcs (edges) with no common end-vertices. We also require that no element
of M is a loop. If M is a matching, then we say that the edges (arcs) of
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M are independent. A matching M in G is maximum if M contains the
maximum possible number of edges. A maximum matching is perfect if it
has n/2 edges, where n is the order of G. A set Q of vertices in a directed
or undirected pseudograph H is independent if the graph H〈Q〉 has no
edges (arcs). The independence number, α(H), of H is the maximum
integer k such that H has an independent set of cardinality k. A (proper)
colouring of a directed or undirected graph H is a partition of V (H) into
(disjoint) independent sets. The minimum number, χ(H), of independent sets
in a proper colouring of H is the chromatic number of H.

In Section 1.4, the operation of composition of digraphs was intro-
duced. Similarly, we can define the operation of composition of undi-
rected graphs. Let H be a graph with vertex set {vi : i ∈ [n]}, and let
G1, G2, . . . , Gn be graphs which are pairwise vertex-disjoint. The composition
H[G1, G2, . . . , Gn] is the graph L with vertex set V (G1)∪V (G2)∪. . .∪V (Gn)
and edge set

∪n
i=1E(Gi) ∪ {gigj : gi ∈ V (Gi), gj ∈ V (Gj), vivj ∈ E(H)}.

If none of the graphs G1, . . . , Gn in this definition of H[G1, . . . , Gn] have
edges, then H[G1, . . . , Gn] is an extension of H.

We conclude this section with the notion of an orientation of a digraph,
which extends the notion of an orientation of an undirected graph. An ori-
entation of a digraph D is a subgraph of D obtained from D by deleting
exactly one arc between x and y for every pair x 
= y of vertices such that
both xy and yx are in D. See Figure 1.15 for an illustration of this definition.

D H H

Figure 1.15 A digraph D and subgraphs H and H ′ of D. The digraph H is an
orientation of D but H ′ is not.
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Lemma 1.7.2 Let D be a strong digraph and x, y vertices of D such that
both xy and yx are arcs. Then either D − xy or D − yx is strong if and only
if e is not a bridge in UG(D).

Proof: If e is a bridge in UG(D), then clearly neither D − xy nor D − yx
is strong. Assume that e is not a bridge in UG(D) and consider D′ = D −
{xy, yx}. If D′ is strong, then clearly both D − xy and D − yx are strong.
Thus, assume that D′ is not strong. Since e is not a bridge, D′ is connected.
Let L1, L2, . . . , Lk be strong components of D′. Since D is strong, there is
only one initial strong component, say L1, and only one terminal strong
component, say Lk. Since D is strong, one of the vertices x and y is in L1

and the other in Lk. Without loss of generality, x is in L1 and y is in Lk.
Then D − xy is strong. �

This lemma immediately implies the following theorem of Boesch and
Tindell [12], which generalizes Theorem 1.7.1.

Theorem 1.7.3 A strong digraph D has a strong orientation if and only if
UG(D) has no bridge.

1.8 Trees in Digraphs

A digraph D is an oriented forest (tree) if D is an orientation of a forest
(tree). A digraph T is an out-tree (an in-tree) if T is an oriented tree with
just one vertex s of in-degree zero (out-degree zero). The vertex s is the root
of T . A digraph F is an out-forest (an in-forest) if F is the vertex disjoint
union of out-trees (in-trees).

If an out-tree (in-tree) T is a spanning subgraph of D, T is called an
out-branching (an in-branching). (See Figure 1.16.)

D H L

r

s

Figure 1.16 The digraph D has an out-branching with root r (shown in bold);
H contains an in-branching with root s (shown in bold); L possesses neither an
out-branching nor an in-branching.

Since each spanning oriented tree R of a connected digraph is acyclic, R
has at least one vertex of out-degree zero and at least one vertex of in-degree
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zero (see Proposition 3.1.1 of Chapter 3). Hence, the out-branchings and in-
branchings capture the important cases of uniqueness of the corresponding
vertices. The following is a characterization of digraphs with in-branchings
(out-branchings).

Proposition 1.8.1 A connected digraph D contains an out-branching (in-
branching) if and only if D has only one initial (terminal) strong component.

Proof: We prove this characterization only for out-branchings since the sec-
ond claim follows from the first one by considering the converse of D.

Assume that D contains at least two initial strong components and sup-
pose that D has an out-branching T . Observe that the root r of T is an initial
strong component of D. Let x be a vertex in another initial strong component
of D. Since r is the root of T , there is a path from r to x in T and, thus, in
D, which is a contradiction to the assumption that r and x are in different
initial strong components of D.

Now we assume that D contains only one initial strong component D1,
and r is an arbitrary vertex of D1. We prove that D has an out-branching
rooted at r. In SC(D), the vertex x corresponding to D1 is the only vertex of
in-degree zero and, hence every vertex v of SC(D) is reachable from x (the
longest path to v must start at x). Thus, every vertex of D is reachable from
r. We construct an oriented tree T as follows. In the first step T consists of
r. In Step i ≥ 2, for every vertex y appended to T in the previous step, we
add to T a vertex z, such that y → z and z 
∈ V (T ), together with the arc
yz. We stop when no vertex can be included in T . Since every vertex of D
is reachable from r, T is spanning. Clearly, r is the only vertex of in-degree
zero in T . Hence, T is an out-branching. �

The following theorem is a very important result, which can be viewed
as just a fairly simple generalization of Menger’s theorem. However, it has
many important consequences, see the book [4] by Bang-Jensen and Gutin
for many such applications of the theorem.

Theorem 1.8.2 (Edmonds’ branching theorem) [citeedmonds1973] A
directed multigraph D = (V,A) with a special vertex z has k arc-disjoint
out-branchings rooted at z if and only2 if

d−(X) ≥ k ∀ ∅ 
= X ⊆ V − z. (1.1)

There exists a polynomial algorithm for finding k arc-disjoint out-branchings
from a given root s in a directed multigraph which satisfies (1.1).

A leaf in an out-tree (in-tree) is a vertex of out-degree (in-degree) zero.
The minimum (maximum, respectively) number of leaves in an out-branching

2 By Menger’s theorem (Theorem 1.5.3), (1.1) is equivalent to the existence of k
arc-disjoint dipaths from z to every other vertex of D.
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of a digraph D will be denoted by �min(D) (�max(D), respectively). Clearly,
the problem of finding �min(D) is NP-hard as even the problem of deciding
whether �min(D) = 1 is NP-complete as it is equivalent to the Hamilton
dipath problem. The following theorem of Las Vergnas gives a bound to the
minimum number of leaves in an out-branching. Recall that for a digraph
D, α(D) denotes the maximum number of vertices without an arc between
them.

Theorem 1.8.3 ([28]) Let D be a digraph and let �min(D) be the minimum
number of leaves in an out-branching of D. Then �min(D) ≤ α(D).

This theorem implies the Gallai–Milgram theorem (Theorem 1.8.4), for a
proof of this fact see the paper [5] by Bang-Jensen and Gutin.

The problem of finding �max(D) is NP-hard; Alon, Fomin, Gutin, Kriv-
elevich and Saurabh showed that it in fact remains NP-hard when re-
stricted to acyclic digraphs [1]. Daligault and Thomassé [17] designed a 92-
approximation algorithm for the (general) problem and Daligault, Gutin, Kim
and Yeo [16] obtained an O∗(3.72k)-time algorithm for deciding whether a
digraph D contains an out-branching with at least k leaves.

Rédei’s theorem (Theorem 2.2.4) can be rephrased as saying that every
digraph with independence number one has a Hamiltonian dipath and hence
has path covering number one. Gallai and Milgram generalized this as follows.

Theorem 1.8.4 (Gallai–Milgram theorem) [21] For every digraph D the
path covering number is at most its independence number, that is pc(D) ≤
α(D).

In fact, the following stronger result holds. It can be useful in certain
applications, see, e.g., Section 3.10.3.

Theorem 1.8.5 (Gallai–Milgram theorem) [21] Let D be a digraph, let
P = P1∪. . . P� be a dipath factor of D, and let I(P ) and T (P ) denote the sets
of initial and terminal vertices, respectively, of dipaths of P . If � > α(D), then
D contains a dipath factor P ′ with � − 1 paths and such that I(P ′) ⊂ I(P )
and T (P ′) ⊂ T (P ).

1.9 Flows in Networks

A network N is a digraph D = (V,A) in which each arc a is associated with a
capacity u(a). A flow in a network N associates each arc a of N with a non-
negative number which must not exceed the capacity u(a) of the arc. Flows
in networks are widely used to model systems in which some quantity passes
through channels (arcs in the network) that meet at junctions (vertices);
examples include traffic in a road system, fluids in pipes, or electrical current
in circuits. Here is a formal definition of networks and flows in these.
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A network is a tuple N = (V,A, l, u, c), where D = (V,A) is a digraph
with vertex set V and arc set A, and l : A → Z0, u : A → Z0 and c : A → R

are functions. Intuitively, l and u represent lower bounds and capacities
(also called upper bounds), respectively, on how much flow can pass through
each arc, and c represents the cost associated with each unit of flow in each
arc. If there are no costs specified and l(a) = 0 for each a ∈ A, then we omit
the relevant letters from the notation. For example, if N = (V,A, u, c), then
l(a) = 0 for each a ∈ A. Sometimes we also specify a function b : V → Z

such that
∑

v∈V b(v) = 0. This is called a balance vector and if this is also
specified, we denote the network by N = (V,A, l, u, c, b).

Given a network N = (V,A, l, u, c) (or N = (V,A, l, u, c, b)), a function
x : A → R0 is called a flow in N ; it is an integer flow if x(a) ∈ Z0 for each
a ∈ A. For a flow x, define the balance vector bx as follows:
bx(v) =

∑
v′∈N+(v) x(vv′)−∑

v′∈N−(v) x(v′v) for every v ∈ V. For two distinct
vertices s, t ∈ V , a flow x is an (s, t)-flow if bx(s) = −bx(t) ≥ 0 and bx(v) = 0
for each v ∈ V \ {s, t}. The value of an (s, t)-flow x is |x| = bx(s). A flow x
is a circulation if bx(v) = 0 for every v ∈ V . The cost of a flow x is given
by c(x) =

∑
vv′∈A c(vv′)x(vv′). A flow x is feasible in N = (V,A, l, u, c, b) if

the following conditions are satisfied:

(a) l(a) ≤ x(a) ≤ u(a) for every vv′ ∈ A;
(b) bx(v) = b(v) for every v ∈ V .

If no balance constraint is specified, that is, N = (V,A, l, u, c), then a feasible
flow in N just has to satisfy (a) above.

See Figure 1.17 for an example of a feasible flow.

b
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d

e

a f

(1, 3, 4, 3)

(0, 0, 3, 1)

(2, 4, 5, 6)

(1, 1, 4, 1)

(3, 3, 3, 1)
(5, 6, 8, 4)

(0, 3, 3, 2)

(4, 5, 7, 8)

(2, 2, 4, 1)

Figure 1.17 A network N = (V,A, l, u, c) with a feasible flow x specified. The
specification on each arc uv is (l(vw), x(vw), u(vw), c(vw)). The cost of the flow is
109.
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The following two simple propositions allow us to reduce problems about
general feasible flows to problems about feasible (s, t)-flows. See [4, Section
4.2].

Proposition 1.9.1 Let N = (V,A, l, u, b, c) be a network.

(a) Suppose that the arc ij ∈ A has l(ij) > 0. Let N ′ be obtained from
N by making the following changes: b(j) := b(j) + l(ij), b(i) := b(i) −
l(ij), u(ij) := u(ij) − l(ij), l(ij) := 0. Then every feasible flow x in N
corresponds to a feasible flow x′ in N ′ and vice versa. Furthermore, the
costs of these two flows are related by c(x) = c(x′) + l(ij)c(ij).

(b) There exists a network Nl≡0 in which all lower bounds are zero such
that every feasible flow x in N corresponds to a feasible flow x′ in Nl≡0

and vice versa. Furthermore, the costs of these two flows are related by
c(x) = c(x′) +

∑
ij∈A l(ij)c(ij).

Proposition 1.9.2 Let N = (V,A, l ≡ 0, u, b, c) be a network. Let M =∑
{v:b(v)>0} b(v) and let Nst be the network defined as follows: Nst = (V ∪

{s, t}, A′, l′ ≡ 0, u′, b′, c′), where

(a) A′ = A ∪ {sr : b(r) > 0} ∪ {rt : b(r) < 0},
(b) u′(ij) = u(ij) for all ij ∈ A, usr = b(r) for all r such that b(r) > 0 and

u(qt) = −b(q) for all q such that b(q) < 0,
(c) c′(ij) = c(ij) for all ij ∈ A and c′ = 0 for all arcs leaving s or entering

t,
(d) b′(v) = 0 for all v ∈ V , b′(s) = M , b′(t) = −M.

Then every feasible flow x in N corresponds to a feasible flow x′ in Nst and
vice versa. Furthermore, the costs of x and x′ are the same.

For a function f : A → Z and a proper subset X of V , let X = V \X and
f(X,X) =

∑
yz∈(X,X) f(yz). It is not hard to see that given a network N =

(V,A, l, u) if l(S, S) > u(S, S) then N has no feasible circulation. Hoffman
[26] proved that the converse holds as well.

Theorem 1.9.3 (Hoffman’s circulation theorem) Let N = (V,A, l, u)
be a network with lower bounds on the arcs, then N has a feasible circulation
if and only if the following holds for every proper subset S of V :

l(S, S) ≤ u(S, S). (1.2)

1.10 Polynomial and Exponential Time Algorithms,
SAT and ETH

Unless explicitly stated otherwise, when we say that an algorithm is polyno-
mial, respectively that a problem is polynomial, we mean that the running
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time of the algorithm is polynomial in the size of the input, respectively that
there exists a polynomial algorithm for solving the problem.

Recall that a CNF formula is a conjunction of clauses. Each clause is
a disjunction of literals, each of which is either a variable or its negation. A
CNF formula F is satisfiable if there is a truth assignment to the variables
of F such that every clause contains at least one literal equal true. In k-
CNF formula every clause has exactly k literals. For k ≥ 2, the problem
k-SAT is stated as follows: Given a k-CNF formula F , decide whether F
is satisfiable. It is well-known that while 2-SAT is polynomial-time solvable
(see e.g. Section 17.5 in [4]), k-SAT is NP-complete for every k ≥ 3. The
following variations of 3-SAT are also NP-hard. In NAE-3-SAT, we are
to decide whether there is a truth assignment for which each clause of a 3-
CNF formula F has a literal equal true and a literal equal false. The problem
monotone-NAE-3-SAT is a special case of NAE-3-SAT in which a 3-CNF
formula contains no negations of variables. Finally, in 1-in-3-SAT, given a
3-CNF formula F , decide whether there is a truth assignment making exactly
one literal true in each clause of F .

It is widely believed that P 
= NP and thus there are no polynomial
time algorithms for NP-complete problems. Unfortunately, many problems in
graph theory are NP-complete and just declaring them intractable seems too
simplistic. In this and the next two sections we will briefly consider modern
approaches for dealing with NP-hard problems. We will consider only theory-
based methods largely ignoring many heuristic approaches, which are of great
interest in graph theory applications, but unfortunately are outside the scope
of this book.

It seems that the oldest practical way to deal with NP-hard problems
is to use exponential time algorithms such as branch-and-bound. The theo-
retical foundations of such algorithms have been largely ignored for a while,
but in the last two decades the situation has changed and many approaches
and results on exponential-time algorithms have been obtained, see, e.g., [19]
which is the only monograph on the topic. One such example is Schöning’s
randomized k-SAT algorithm [34] and its derandomization by Moser and
Scheder [31]. The runtimes of Schöning’s algorithm and of its derandom-
ization are O∗((2(k−1)

k )n) and O∗((2(k−1)
k + ε)n), where n is the number of

variables and ε is an arbitrary positive number. As customary in the area of
exponential algorithms, we used above O∗ which hides not only constant fac-
tors, but also polynomial ones. Note that the obvious brute-force algorithm
for k-SAT is of runtime O∗(2n).

Recently many lower bound results for the complexity of exponential time
algorithms have been proved under the assumption that the Exponential
Time Hypothesis (ETH) (see [15]) holds. ETH claims that there exists a real
number δ > 0 such that 3-SAT cannot be solved in time O(2δn), where n is
the number of variables in the CNF formula of 3-SAT. For example, Cygan,
Fomin, Golovnev, Kulikov, Mihajlin, Pachocki and Socala [14] proved that,
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subject to ETH, there is no 2o(n log n)-time algorithm deciding whether an
n-vertex graph H is a subgraph of another n-vertex graph G (the obvious
brute-force algorithm solves this problem in time 2O(n log n)).

1.11 Parameterized Algorithms and Complexity

Parameterized algorithms and complexity is one of the approaches for deal-
ing with NP-hard problems. The main idea of this approach is that using
only the size of the problem in the complexity bound for the problem is often
too simplistic as the instances of the problem under consideration which are
of our interest, often have some small parameter k (such as the maximum
semi-degree of a digraph or the treewidth of an undirected graph). Problems
with parameters are called parameterized problems; an instance of a pa-
rameterized problem is a pair (I, k), where I is an instance of the problem (no
parameter) and k is the value of the parameter.For a parameterized problem
with parameter k, an algorithm of runtime O∗(f(k)) := O(f(k)nc), where
f(k) is an arbitrary computable function, n is the size of the problem and
c is a constant (independent of k and n), can be viewed as a generalization
of a polynomial algorithm and, thus, an efficient algorithm (especially when
f(k) grows relatively slowly and c is of moderate value). Such algorithms
are called fixed-parameter tractable (FPT) and parameterized problems
admitting such algorithms are also called FPT. The class of FPT problems
is denoted by FPT.

From the practical point of view, the chosen parameters should be rel-
atively small on practically-interesting instances of the problem under con-
sideration. The Directed rural postman problem (DRPP) is formulated as
follows: Given a strongly connected directed multigraph D = (V,A) with
nonnegative integral weights on the arcs, a subset R of required arcs and a
nonnegative integer �, we are to decide whether D has a closed directed walk
of weight at most � containing every arc of R. DRPP is NP-hard. Let k be
the number of connected components in the subgraph of UG(D) induced by
R. In [37] Sorge, van Bevern, Niedermeier and Weller commented that “k
is presumably small in a number of applications” and Sorge [36] noted that
in planning for snow plowing routes for Berliner Stadtreinigung, k is only
between 3 and 5. Gutin, Wahlström and Yeo [25] developed an O∗(2k)-time
randomized algorithm for DRPP. Unfortunately, the existence of a determin-
istic FPT algorithm for DRPP parameterized by k still remains “a more than
thirty years open ... question with significant practical relevance” (see [37]).

When the runtime O(f(k)nc) is replaced by the much more powerful
nO(f(k)), we obtain the class XP where each problem is polynomial-time
solvable for any fixed value of k. There are a number of parameterized com-
plexity classes between FPT and XP (for each integer t ≥ 1, there is a class
W[t]) and they form the following tower:
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FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P ] ⊆ XP.

Here W[P] is the class of all parameterized problems (with parameter k) that
can be solved in f(k)nO(1) time by a non-deterministic Turing machine that
makes at most f(k) log n non-deterministic steps for some function f . For the
definition of classes W[t], see, e.g., the monographs [15] by Cygan, Fomin,
Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk and Saurabh, and [18] by
Downey and Fellows. It is widely believed that FPT 
= W[1]. One reason
for this is that if FPT = W[1], then ETH fails, see, e.g., [18]. The problem
of deciding whether a graph has a clique with k vertices is W[1]-complete
[15, 18], so it is highly unlikely that the problem is FPT.

For parameterized problems Π and Π ′, a bikernelization is a polynomial
algorithm that maps an instance (I, k) of Π to an instance (I ′, k′) of Π ′ (the
bikernel) such that (i) (I, k) ∈ Π if and only if (I ′, k′) ∈ Π ′, (ii) k′ ≤ g(k),
and (iii) |I ′| ≤ g(k) for some function g. The function g(k) is called the size
of the bikernel. When Π ′ = Π, a bikernel is called a problem kernel or
just a kernel. It is well-known that a parameterized problem Π is fixed-
parameter tractable if and only if it is decidable and admits a kernelization
[15, 18]. The same holds if “kernel” is replaced by a “bikernel” (see [2] by
Alon, Gutin, Kim, Szeider and Yeo).

Due to applications, low degree polynomial size kernels are of main inter-
est. Unfortunately, many FPT problems do not have kernels of polynomial
size unless NP ⊆ coNP/poly, which is highly unlikely as NP = coNP/poly
would imply that the polynomial hierarchy collapses to its third level; for def-
initions and more information, see, e.g., [15, 18]. In particular, the problem of
whether a digraph contains a k-dipath is FPT but has no polynomial kernel
unless coNP ⊆ NP/poly [11]. Binkele-Raible, Fernau, Fomin, Lokshtanov,
Saurabh and Villanger [10] proved that the problem of deciding whether a
digraph D and a vertex v ∈ V (D) has an out-tree rooted at v with least k
leaves admits a problem kernel with at most O(k3) vertices (and, hence, at
most O(k6) arcs). Interestingly, Binkele-Raible et al. [10] also proved that if
we allow the out-tree to be rooted at any vertex of D, then the “unrooted”
problem does not admit a polynomial kernel unless coNP ⊆ NP/poly. For
further background and terminology on parameterized complexity we refer
the reader to the monographs [15, 18].

Let us consider a couple of recent results on parameterized complexity of
problems on digraphs.

Bang-Jensen and Yeo [7] asked whether the following problem is FPT.

connectivity preserving path contractions Parameter: k
Input: A strongly connected digraph D.
Question: Can we path-contract k arcs from D such that D remains
strongly connected?
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Gutin, Ramanujan, Reidl and Wahlström [24] proved that the problem
is, in fact, W[1]-hard. However, the problem is FPT if the operation of path-
contraction is replaced by deletion, which was proved by Basavaraju, Misra,
Ramanujan and Saurabh [8].

We complete this section with an open questions on the parameterized
complexity of the following digraph problem introduced by Bezáková, Curt-
icapean, Dell and Fomin [9].

Problem 1.11.1 For given vertices s and t of a digraph D, and an integer
(parameter) k, decide whether D has an (s, t)-path in D that is at least k
longer than a shortest (s, t)-path.

If “at least” is replaced by “exactly”, then the problem is FPT [9]. How-
ever, it is unknown whether the original problem is even in XP.

1.12 Approximation Algorithms

There are several situations when the use of exact optimization algorithms
does not seem to be a good idea. One is when the time is greatly limited
or the problem should be solved online. Another is when the data is not
exact or the objective function is not well-defined and, thus, we cannot get
an optimal solution even by exhaustive search. In such situations, we can use
approximation algorithms for finding a solution that is often not optimal, but
we have some performance guarantee in each case.

Let P be a combinatorial optimization problem, and let A be an approx-
imation algorithm for P . Let X(I) denote the set of all feasible solutions for
some instance I ∈ P and let |I| be the size of I. We denote the solution
obtained by A for an instance I of P by x(I). Furthermore let opt(I) denote
the optimal solution of I. The weight of a solution y of P will be denoted by
w(y).

The theoretical performance of an approximation algorithm is normally
measured by the (worst case) performance ratio. Usually, upper or lower
bounds for the worst case performance ratio are obtained, where the perfor-
mance ratio is defined as

max
I∈P :|I|=n

{
w(x(I))

w(opt(I))
,
w(opt(I))
w(x(I))

}

The performance ratio defined in this way has its advantage in the fact that
it is always at least 1 (for both minimization and maximization problems).

We normally require that an approximation algorithm has a polynomial
running time. Some approximation algorithms provide a good performance
guarantee. For example, the well-known Christofides algorithm [13] for the
symmetric TSP3 with triangle inequality (i.e., wij + wjk ≥ wik for every

3 The symmetric TSP is the problem of finding a minimum weight Hamilton cycle
in a weighted complete undirected graph.
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triple i, j, k of vertices, where wij is the weight of an edge ij) has performance
ratio 1.5. Unless P=NP, there are no approximation algorithms of constant
performance ratio for the (general) symmetric TSP [3].

A polynomial-time approximation scheme (PTAS) is an algorithm
which takes an instance of a minimization problem Q and a parameter ε > 0
and, in polynomial time, returns a solution that is within a factor 1 + ε of
being optimal. The definition remains the same for maximization problems,
but the solution must be within a factor 1 − ε of being optimal. It is well-
known that MaxSNP-hard problems do not admit PTAS unless P = NP.

For many results on approximation algorithms and in-approximability,
see, e.g., the monograph [38] by Williamson and Shmoys.
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