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Preface

The two editions of our book Digraphs: Theory, Algorithms and Applications,
which were published by Springer in 2000 and 2009, respectively, remain the only
modern books on graph theory covering more than a small fraction of the theory of
directed graphs. We are happy to see that the book has been useful, both for
students of advanced courses and to researchers from a wide range of areas, some of
which are far from mathematics, such as sociology and medicine.

Since we completed the second edition in 2008, the theory of directed graphs has
continued to evolve at a high speed; many important results, including solutions
some of the conjectures from Digraphs, have appeared and new methods have been
developed. So we were faced with the choice of either writing a 3rd edition of our
book or developing a new book from scratch. We decided to do the latter for the
following main reason: By taking a new, somewhat orthogonal, approach of writing
chapters on different and important classes of digraphs, we could give a different
viewpoint of digraph theory and include a number of authors whose combined
expertise would greatly simplify the process and at the same time increase the
quality of the book. We are very happy that the following authors agreed to
(co)author chapters for the book: César Hernández-Cruz, Hortensia
Galeana-Sánchez, Yubao Guo, Richard Hammack, Frédéric Havet, Jing Huang,
Stephan Kreutzer, O-joun Kwon, Marcin Pilipczuk, Michał Pilipczuk, Michel
Surmacs, Magnus Wahlström and Anders Yeo.

The book contains more than 120 open problems and conjectures, a feature
which should help to stimulate lots of new research. Even though this book should
not be seen as an encyclopedia on directed graphs, we have included as many
important results as possible. The book contains a considerable number of proofs,
illustrating various approaches, techniques and algorithms used in digraph theory.

As was the case with ‘Digraphs’, one of the main features of this book is its
strong emphasis on algorithms. Algorithms on (directed) graphs often play an
important role in problems arising in several areas, including computer science and
operations research. Secondly, many problems on (directed) graphs are inherently
algorithmic. Hence, the book contains many constructive proofs from which one
can often extract an efficient algorithm for the problem studied.
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To facilitate the use of this book as a reference book and as a graduate textbook,
we have added comprehensive symbol and subject indexes. The latter includes
separate entries for open problems, conjectures and proof-techniques as well as
NP-complete problems. It is our hope that the organization of the book, as well as
the detailed subject index, will help many readers to find what they are looking for
without having to read through whole chapters.

Highlights

The book covers the majority of important topics on some of the most important
classes of directed graphs, ranging from quite elementary to very advanced results.
By organizing the book so as to single out important classes of digraphs, we hope to
make it easy for the readers to find results and problems of their interest.

Below we give a brief outline of some of the main highlights of this book.
Readers who are looking for more detailed information are advised to consult the
list of contents or the subject index at the end of the book.

Chapter 1, by Bang-Jensen and Gutin, contains most of the terminology and
notation used in this book as well as several basic results. These are not only used
frequently in other chapters, but also serve as illustrations of digraph concepts.
Since the terminology and notation used in this book is similar to that in ‘Digraphs’
some readers may skip parts of this chapter.

Chapter 2, by Bang-Jensen and Havet, deals with tournaments (orientations of
complete graphs) and semicomplete digraphs (digraphs whose underlying graphs are
complete). Tournaments form undoubtedly the most well-understood class digraphs
and they continue to fascinate researchers due to their beautiful theory and a sur-
prisingly large number of difficult open problems. The literature on tournaments is so
extensive that one could write a whole book on these, so the chapter attempts to give
a comprehensive overview of the theory, various proof techniques and many
challenging open problems on tournaments. The chapter contains a number of
classical results, including Rédei’s theorem that every tournament has an odd
number of Hamiltonian paths and Camion’s theorem that every strongly connected
tournament has a Hamiltonian cycle. It covers important topics such as arc-disjoint
in- and out-branchings, decompositions into arc-disjoint Hamiltonian cycles or
strong spanning subdigraphs, feedback sets, Seymour’s second neighbourhood
conjecture, vertex-partitions with prescribed properties, oriented Hamiltonian paths
and cycles, (Hamiltonian)-connectivity, Hamiltonian cycles avoiding prescribed
arcs, disjoint cycles and finally linkages (disjoint paths with prescribed end vertices).
The chapter also contains a beautiful proof, due to Pokrovskiy, of the result that a
linear bound on the vertex connectivity suffices to ensure that a semicomplete
digraph is k-linked.

Chapter 3, by Gutin, deals with acyclic digraphs, that is, digraphs with no
directed cycles. This class of digraphs is often used in digraph applications. Thus,
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Sections 3.9–3.12 are devoted to four different applications: embedded computing,
cryptographic enforcement schemes, project scheduling, and website text analysis.
All other sections of the chapter, apart from the last section, consider results on
various problems restricted to acyclic digraphs. Most results are on decision prob-
lems on subgraphs of acyclic digraphs such as out- and in-branchings, k-linkages,
and dicuts, but Section 3.5 describes some enumeration results and algebraic
techniques to prove them. The last section is devoted to generalizations of acyclic
digraphs to the class of edge-coloured graphs. Somewhat surprisingly there are five
such generalizations to edge-coloured graphs. This is partially due to the fact that
some notions on directed walks, which are equivalent in digraphs, are no longer
equivalent for properly coloured walks in edge-coloured graphs.

Chapter 4, by Wahlström, deals with Euler digraphs, that is, digraphs which are
connected and in which every vertex has the same number of in-neighbours and
out-neighbours. It is well known that the 1736 result of Euler, probably the first
result in graph theory, which says that every connected graph in which all degrees
are positive even numbers has a closed walk (called an Euler tour) that uses each
edge exactly once, extends directly to Euler digraphs. Euler digraphs are interesting,
not only because they have a closed Euler tour but also since they can often be
viewed as a “half-way” between undirected and directed graphs. Several problems
are tractable for undirected graphs, but intractable for directed graphs. Such
problems may be either tractable or intractable for Euler digraphs. Good examples
of such problems are linkage problems. However, there are exceptions. One of them
is the well-known problem on enumerating Euler tours. While this problem is
#P-hard on undirected graphs, it is polynomial-time solvable on Euler digraphs by
the so-called BEST theorem proved in the chapter.

Chapter 5, by Pilipczuk and Pilipczuk, deals with planar digraphs, that is,
digraphs which can be embedded in the plane with no arc crossings. The main goal
of the chapter is to show, from multiple angles, how planarity imposes structure on
digraphs and how such structure can be used algorithmically. The main focus of the
chapter is to show various techniques used in algorithms on planar digraphs. The
chapter is not a survey on planar digraphs, instead the authors concentrate on three
topics: the Oðn log nÞ-time algorithm for finding a maximum flow between two
vertices by Borradaile and Klein, the polynomial-time algorithm, based on
advanced algebraic techniques by Schrijver for the k-Linkage Problem, and the
Directed Grid Theorem.

Chapter 6, by Bang-Jensen, deals with locally semicomplete digraphs and
some generalizations of these. A digraph is locally semicomplete if both the out-
neighbourhood and the in-neighbourhood of each vertex induces a semicomplete
digraph. Locally semicomplete digraphs were discovered by Bang-Jensen in 1988
and have since then been the focus of much attention, including several Ph.D.
theses. The reason for this is that many results on tournaments and semicomplete
digraphs extend to this much larger class of digraphs whose structure is well
understood: they consist of three subclasses, namely semicomplete digraphs,
round-decomposable digraphs and finally, so-called evil locally semicomplete
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digraphs. The last class is by far the most complicated of the two non-semicomplete
subclasses of locally semicomplete digraphs. The chapter contains a full proof
of the above classification of locally semicomplete digraphs as well as several
examples on how to use this classification to extend many results on semicomplete
digraphs to locally semicomplete digraphs. These include results on pancyclicity,
arc-disjoint in- and out-branchings, decompositions into arc-disjoint strong span-
ning subdigraphs, feedback sets, (Hamiltonian)-connectivity, disjoint cycles, link-
ages and finally orientations of locally semicomplete digraphs, that is, digraphs that
can be obtained by deleting one arcs from every 2-cycle. The chapter also discusses
results on superclasses of the class of locally semicomplete digraphs, such as locally
in-semicomplete and path-mergeable digraphs.

Chapter 7, by Yeo, deals with semicomplete multipartite digraphs, that is,
digraphs whose underlying undirected graphs are complete multipartite. Clearly
semicomplete digraphs form a subclass of this class so it is natural to ask how much
of the structure of semicomplete digraphs carries over to semicomplete multipartite
digraphs. Moon’s book on tournaments from 1968 already contains some results
along these lines and in 1976 Bondy initiated the study of cycles intersecting each
partite set at least once. In 1988 Gutin solved the Hamiltonian path problem by
giving a simple necessary and sufficient condition, and he, Häggkvist and
Manoussakis characterized Hamiltonian semicomplete bipartite digraphs. To this
date no necessary and sufficient condition for a semicomplete multipartite digraph
to be Hamiltonian is known. One of the main results on semicomplete multipartite
digraphs is Yeo’s irreducible cycle factor theorem from 1997. Using this theorem,
many deep results on semicomplete multipartite digraphs have been obtained, e.g.
in 1997 Yeo proved a long standing conjecture that every regular semicomplete
multipartite digraph is Hamiltonian and Bang-Jensen, Gutin and Yeo used Yeo’s
theorem to prove the existence of a polynomial algorithm to decide the existence of
a Hamiltonian cycle in semicomplete multipartite digraphs. In this chapter Yeo, one
of the main contributors to the area, gives a detailed account of the state of the art of
results on this important class of digraphs. Besides results on the full class of
semicomplete multipartite digraphs and on (almost) regular semicomplete multi-
partite digraphs, the chapter also contains a number of results on two subclasses,
extended semicomplete digraphs and semicomplete bipartite digraphs. For these
two classes there is a simple characterization of the length of a longest cycle,
leading to a polynomial algorithm to find such a cycle. For the full class of
semicomplete multipartite digraphs it is still open whether a polynomial algorithm
exists.

Chapter 8, by Galeana-Sánchez and Hernández-Cruz, deals with transitive and
quasi-transitive digraphs as well as generalizations of these. A digraph is transitive,
respectively, quasi-transitive if it satisfies that whenever x; y; z are distinct vertices
so that xy and yz are arcs, then there is also an arc from x to z, respectively, between
x and z. In 1962 Ghouila-Houri proved that a graph G has a quasi-transitive ori-
entation if and only if it has a transitive orientation and hence G is a comparability
graph. It was only after 1993, when Bang-Jensen and Huang gave a very useful
structural characterization of quasi-transitive digraphs, that research into structural
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and algorithmic aspects of this class of digraphs flourished. They showed that
quasi-transitive digraphs have a recursive structure which allows one to decompose
them into smaller pieces, each of which is either a transitive oriented graph or a
strong semicomplete digraph. The first non-trivial algorithmic application of the
characterization was due to Gutin. The characterization and his approach have led
to the study of totally U-decomposable digraphs for different choices of digraph
classes U. These are digraphs which can be decomposed into smaller pieces, each of
which belong to the class U. This research has revealed that many problems,
including the Hamiltonian path and cycle problems and linkage problems, can be
solved efficiently for quasi-transitive digraphs and much more general classes of
totally U-decomposable digraphs. The chapter gives a detailed account of these
results as well as results on kings, kernels and the path-partition conjecture by
Laborde et al. from 1983. The chapter also contains a number of results on
k-transitive and k-quasi-transitive digraphs. These are classes where the definition
of transitive and quasi-transitive digraphs is relaxed.

Chapter 9, by Kreutzer and Kwon, considers structural parameters for digraphs.
For undirected graphs, tree-width played a key role in developing an undirected
graph structure theory and in designing efficient algorithms for intractable problems
restricted to graphs of bounded tree-width. In the chapter, Kreutzer and Kwon
classify digraph structural parameter approaches into three categories: tree-width
inspired, rank-width inspired and density-based. Each of the approaches has its
advantages and disadvantages described in numerous results obtained by various
authors. While the great success of tree-width on undirected graphs has not been
replicated on directed graphs (in fact, some negative results explain this situation), a
number of important positive results and approaches have been obtained recently,
such as the Directed Grid Theorem of Kawarabayashi and Kreutzer, Kanté’s
rank-width concepts, and the directed bounded expansion and nowhere density
approaches which generalize their undirected counterparts introduced by Nešetřil
and Ossona de Mendez.

Chapter 10, by Hammack, is devoted to products of digraphs. Hammack con-
siders results on four standard digraph products: Cartesian product, direct product,
strong product, and lexicographic product. The products have many common
properties and several differences. For example, all four products are associative,
but only the first three are commutative, and unlike for the three other products, K1

is not a unit for the direct product. While many results on undirected graph products
are well known, those on digraph products are less known outside the community
of researchers who study the area. We hope this chapter will change the situation.

Chapter 11, by Guo and Surmacs, covers a number of classes of digraphs for
which we could not devote a separate chapter, because there are not so many results
on the class and also due to space limitations. Several of these classes have
applications in interconnection networks and other areas. The classes considered
include line digraphs, iterated line digraphs, de Bruijn digraphs, Kautz digraphs,
directed cographs, perfect digraphs, arc-locally semicomplete digraphs and finally
some generalizations of the latter class. Line digraphs as defined by Harary and
Norman in 1960 naturally generalize line graphs of undirected graphs and they have
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applications in interconnection networks. The chapter contains a number of struc-
tural results on line digraphs and two other classes of digraphs, closely related to
line digraphs, namely the de Bruijn and Kautz digraphs. These play an important
role in network design as they combine the properties of having low out-degree,
high connectivity and low diameter, something which is very important in com-
munication networks. The chapter also contains results on directed cographs, in
particular on linkages, and on perfect digraphs. The latter is a recent generalization
of perfect graphs to digraphs due to Andres and Hochstättler. In contrast to perfect
graphs, which can be recognized in polynomial time, recognizing perfect digraphs
is NP-complete. In the last sections of the chapter the authors discuss results on
arc-locally semicomplete digraphs and some related classes. A digraph is
arc-locally semicomplete if, for any choice of 4 distinct vertices x; y; u; v the
presence of the arcs xu; yv implies that either none of the pairs x; y and u; v are
adjacent or both pairs are adjacent. This class contains all semicomplete and all
semicomplete bipartite digraphs and several characterizations, such as those for
having a Hamiltonian path or cycle, carry over from semicomplete bipartite
digraphs to arc-locally semicomplete digraphs.

Chapter 12, by Huang, deals with orientations of undirected graphs and mixed
graphs (which may have both arcs and edges), that is, assigning for each edge xy
one of the two possible orientations x ! y; y ! x. The central topic is deciding
whether the given graph has an orientation as an oriented graph which has a certain
prescribed property P. This could be the property of belonging to a certain class of
digraphs, e.g. quasi-transitive digraphs or locally semicomplete digraphs, being
strongly connected, or being acyclic and not containing a prescribed set of digraphs
as an induced subdigraph. The chapter illustrates a general technique, the lexico-
graphic orientation method, due to Hell and Huang, for achieving such orientations
for graphs that are comparability graphs or proper circular arc graphs. When instead
the input is a mixed graph M ¼ ðV ;E;AÞ with edge set E and arc set A we must
orient the edges of E but leave the arcs of A untouched and again the goal is that the
final oriented graph has a prescribed property P. This is called the P-orientation
completion problem. It is shown in this chapter that even for semicomplete digraphs
there are natural NP-hard P-orientation completion problems.

Technical Remarks

We have tried to unify the book by using common terminology and notation for all
chapters. We also used special environments for algorithms and problems, and used
a special script for problem names as customary in the modern literature on algo-
rithms. All the above should facilitate the reading of this book.
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1. Basic Terminology, Notation and Results

Jørgen Bang-Jensen and Gregory Gutin

In this chapter we will provide most of the terminology and notation used
in this book. Various examples, figures and results should help the reader
to better understand the notions introduced in the chapter. We also prove
some basic results on digraphs and provide some fundamental digraph results
without proofs. Most of our terminology and notation is standard and agrees
with [4]. Thus, some readers may proceed to other chapters after a quick look
through this chapter (unfamiliar terminology and notation can be clarified
later by consulting the indices supplied at the end of this book).

In Section 1.1 we provide basic terminology and notation on sets and ma-
trices. Digraphs, directed pseudographs, subgraphs, weighted directed pseu-
dographs, neighbourhoods, semi-degrees and other basic concepts of directed
graph theory are introduced in Section 1.2. In Section 1.3, we introduce ori-
ented and directed walks, trails, paths and cycles, and related subgraphs.
Isomorphism and basic operations on digraphs are considered in Section 1.4.
Basic notions and results on strong connectivity are considered in Section
1.5. Section 1.6 provides basic definitions on linkages in digraphs. Undirected
graphs and orientations of undirected and directed graphs are considered in
Section 1.7. In Section 1.8, we briefly discuss out-branchings or in-branchings.
Section 1.9 is devoted to a brief discussion of some results on flows in net-
works. In the last three sections, we discuss algorithmic approaches and
lower bounds for solving NP-hard problems: exponential time algorithms and
the Exponential Time Hypothesis, fixed-parameter tractable algorithms and
W -complexity classes, and approximation algorithms.

1.1 Sets, Matrices, Vectors and Hypergraphs

For the sets of real numbers, rational numbers and integers we will use R, Q
and Z, respectively. Also, let Z+ = {z ∈ Z : z > 0} and Z0 = {z ∈ Z : z ≥ 0}.
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2 J. Bang-Jensen and G. Gutin

The sets R+, R0, Q+ and Q0 are defined similarly. For a positive integer n,
[n] will denote the set {1, 2, . . . , n}.

The main aim of this section is to establish some notation and terminology
on finite sets used in this book. We assume that the reader is familiar with
the following basic operations for a pair A,B of sets: the intersection A∩B,
the union A ∪ B (if A ∩ B = ∅, then we will often write A + B instead of
A∪B) and the difference A\B (often denoted by A−B). Sets A and B are
disjoint if A ∩ B = ∅.

Often we will not distinguish between a single element set (singleton) {x}
and the element x itself. For example, we may write A ∪ b or A + b instead
of A ∪ {b}. The Cartesian product of sets X1,X2, . . . , Xp is defined as
X1 × X2 × . . . × Xp = {(x1, x2, . . . , xp) : xi ∈ Xi, 1 ≤ i ≤ p}.

For sets A,B, A ⊆ B means that A is a subset of B; A ⊂ B stands for
A ⊆ B and A 
= B. A set B is a proper subset of a set A if B ⊂ A and
B 
= ∅. A collection S1, S2, . . . , St of (not necessarily non-empty) subsets of
a set S is a subpartition of S if Si ∩ Sj = ∅ for all 1 ≤ i 
= j ≤ t. A
subpartition S1, S2, . . . , St is a partition of S if ∪t

i=1Si = S. We will often
use the name family for a collection of sets. A family F = {X1,X2, . . . , Xn}
of sets is covered by a set S if S ∩ Xi 
= ∅ for every i ∈ [n]. We say that
S is a cover of F . For a finite set X, the number of elements in X (i.e.,
its cardinality) is denoted by |X|. We also say that X is an |X|-element
set (or just an |X|-set). A set S satisfying a property P is a maximum
(maximal, respectively) set with property P if there is no set S′ satisfying
P and |S′| > |S| (S ⊂ S′, respectively). Similarly, one can define minimum
(minimal) sets satisfying a property P.

In this book, we will also use multisets which, unlike sets, are allowed
to have repeated (multiple) elements. The cardinality |S| of a multiset M
is the total number of elements in S (including repetitions). Often, we will
use the words ‘family’ and ‘collection’ instead of ‘multiset’.

For an m × n matrix S = [sij ] the transposed matrix (of S) is the
n × m matrix ST = [tkl] such that tji = sij for every i ∈ [m] and j ∈ [n].
Unless otherwise specified, the vectors that we use are column-vectors. The
operation of transposition is used to obtain row-vectors.

A hypergraph is an ordered pair H = (V, E) such that V is a set (of
vertices of H) and E is a family of subsets of V (called edges of H).
The rank of H is the cardinality of the largest edge of H. For example,
H0 = ({1, 2, 3, 4}, {{1, 2, 3}, {2, 3}, {1, 2, 4}}) is a hypergraph of rank three.
The number of vertices in H is its order. We say that H is 2-colourable if
there is a function f : V → {0, 1} such that, for every edge E ∈ E , there exist
a pair of vertices x, y ∈ E such that f(x) 
= f(y). The function f is called a
2-colouring of H. It is easy to verify that H0 is 2-colourable. In particular,
f(1) = f(2) = 0, f(3) = f(4) = 1 is a 2-colouring of H0. A hypergraph is
uniform if all its edges have the same cardinality. Thus an undirected graph
is just a 2-uniform hypergraph.
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1.2 Digraphs, Subgraphs, Neighbours, Degrees

A directed graph (or just digraph1) D consists of a non-empty finite set
V (D) of elements called vertices and a finite set A(D) of ordered pairs of
distinct vertices called arcs. We call V (D) the vertex set and A(D) the
arc set of D. We will often write D = (V,A), which means that V and A
are the vertex set and arc set of D, respectively. The order (size) of D is
the number of vertices (arcs) in D; the order of D will sometimes be denoted
by |D|. For example, the digraph D in Figure 1.1 is of order and size 6;
V (D) = {u, v, w, x, y, z}, A(D) = {(u, v), (u,w), (w, u), (z, u), (x, z), (y, z)}.
Often the order (size, respectively) of the digraph under consideration is
denoted by n (m, respectively).

uz

w

vx

y

Figure 1.1 A digraph D.

For an arc (u, v) the first vertex u is its tail and the second vertex v is its
head. We also say that the arc (u, v) leaves u and enters v. The head and
tail of an arc are its end-vertices; we say that the end-vertices, are adjacent.
If (u, v) is an arc, we also say that u dominates v (v is dominated by u)
and denote it by u → v. We say that a vertex u is incident to an arc a if u
is the head or tail of a. We will often denote an arc (x, y) by xy.

For a pair X,Y of vertex sets of a digraph D, we define

(X,Y )D = {xy ∈ A(D) : x ∈ X, y ∈ Y },

i.e., (X,Y )D is the set of arcs with tail in X and head in Y . For example, for
the digraph H in Figure 1.2, ({u, v}, {w, z})H = {uw}, ({w, z}, {u, v})H =
{wv} and ({u, v}, {u, v})H = {uv, vu}. For disjoint subsets X and Y of V (D),
X → Y means that every vertex of X dominates every vertex of Y . Also,
X �→Y stands for X → Y and no vertex of Y dominates a vertex in X. For
example, in the digraph D of Figure 1.1, u → {v, w} and {x, y}�→z.

The above definition of a digraph implies that we allow a digraph to have
arcs with the same end-vertices (for example, uv and vu in the digraph H
in Figure 1.2), but we do not allow it to contain parallel (also called mul-
tiple) arcs, that is, pairs of arcs with the same tail and the same head, or

1 If we know from the context that D is directed, D may be called a graph.
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u w

zv

u

v

w

HH

z

Figure 1.2 A digraph H and a directed pseudograph H ′.

loops (i.e., arcs whose head and tail coincide). When parallel arcs and loops
are admissible we speak of directed pseudographs; directed pseudographs
without loops are directed multigraphs. In Figure 1.2 the directed pseu-
dograph H ′ is obtained from H by appending a loop zz and two parallel arcs
from u to w. Clearly, for a directed pseudograph D, A(D) and (X,Y )D (for
every pair X,Y of vertex sets of D) are multisets (parallel arcs provide re-
peated elements). We use the symbol μD(x, y) to denote the number of arcs
from a vertex x to a vertex y in a directed pseudograph D. In particular,
μD(x, y) = 0 means that there is no arc from x to y.

We will sometimes give terminology and notation for digraphs only, but we
will provide necessary remarks on their extension to directed pseudographs,
unless this is trivial.

Below, unless otherwise specified, D = (V,A) is a directed pseudograph.
For a vertex v in D, we use the following notation:

N+
D (v) = {u ∈ V − v : vu ∈ A}, N−

D (v) = {w ∈ V − v : wv ∈ A)}.

The sets N+
D (v), N−

D (v) and ND(v) = N+
D (v) ∪ N−

D (v) are called the
out-neighbourhood, in-neighbourhood and neighbourhood of v. We
call the vertices in N+

D (v), N−
D (v) and ND(v) the out-neighbours, in-

neighbours and neighbours of v.
In Figure 1.2, N+

H (u) = {v, w}, N−
H (u) = {v}, NH(u) = {v, w}, N+

H′(w) =
{v, z}, N−

H′(w) = {u, z}, N+
H′(z) = {w}. For a set W ⊆ V , we let

N+
D (W ) =

⋃

w∈W

N+
D (w) − W, N−

D (W ) =
⋃

w∈W

N−
D (w) − W.

That is, N+
D (W ) consists of those vertices from V − W which are out-

neighbours of at least one vertex from W . In Figure 1.2, N+
H ({w, z}) = {v}

and N−
H ({w, z}) = {u}.

Recursively, we can define the ith out-neighbourhood of a set W as
follows: N+i(W ) = N+(N+(i−1)(W )) for i ≥ 2. We will denote N+2(W ) as
N++(W ). Similarly, we can define the ith in-neighbourhood of a set W .
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The neighbourhoods above are sometimes called open neighbourhoods.
Closed neighbourhoods are defined as follows: For a set W ⊆ V and
positive integer p, let N+p[W ] = N+p(W )∪W and N−p[W ] = N−p(W )∪W.

A digraph is called an oriented graph if it has no pair of arcs of the
form xy, yx. Seymour’s Second Neighbourhood Conjecture is one of the most
interesting open questions in digraph theory. It has the following simple for-
mulation.

Conjecture 1.2.1 (Seymour’s Second Neighbourhood Conjecture)In
every oriented graph D, there exists a vertex x such that |N+

D (x)| ≤
|N++

D (x)|.
The conjecture is discussed in detail in Chapter 2 including two proofs of

the conjecture for tournaments. In addition, recently Gutin and Li [23] proved
the conjecture for quasi-transitive oriented graphs; a digraph D is called
quasi-transitive if whenever x → y and y → z (x 
= z) we have that x → z
or z → x (or both). Quasi-transitive digraphs and their generalizations are
considered in Chapter 8.

For a set W ⊆ V , the out-degree of W (denoted by d+D(W )) is the
number of arcs in D whose tails are in W and heads are in V − W , i.e.,
d+D(W ) = |(W,V − W )D|. The in-degree of W , d−

D(W ) = |(V − W,W )D|.
In particular, for a vertex v, the out-degree is the number of arcs, except for
loops, with tail v. If D is a digraph (that is, it has no loops or multiple arcs),
then the out-degree of a vertex equals the number of out-neighbours of this
vertex. We call the out-degree and in-degree of a set of vertices W its semi-
degrees. The degree of W is the sum of its semi-degrees, i.e., the number
dD(W ) = d+D(W ) + d−

D(W ). For example, in Figure 1.2, d+H(u) = 2, d−
H(u) =

1, dH(u) = 3, d+H′(w) = 2, d−
H′(w) = 4, d+H′(z) = d−

H′(z) = 1, d+H({u, v, w}) =
d−

H({u, v, w}) = 1. Sometimes, it is useful to count loops in the semi-degrees:
the out-pseudodegree of a vertex v of a directed pseudograph D is the
number of arcs with tail v. Similarly, one can define the in-pseudodegree
of a vertex. In Figure 1.2, both the in-pseudodegree and out-pseudodegree of
z in H ′ are equal to 2.

The minimum out-degree (minimum in-degree) of D is

δ+(D) = min{d+D(x) : x ∈ V (D)} (δ−(D) = min{d−
D(x) : x ∈ V (D)}).

The minimum semi-degree of D is

δ0(D) = min{δ+(D), δ−(D)}.

Finally, the minimum degree of D is

δ(D) = min{d+(v) + d−(v) : v ∈ V (D)}.

Similarly, one can define the maximum out-degree of D, Δ+(D), and the
maximum in-degree, Δ−(D). The maximum semi-degree of D is
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Δ0(D) = max{Δ+(D),Δ−(D)}.

We say that D is regular if δ0(D) = Δ0(D). In this case, D is also called
δ0(D)-regular.

For degrees, semi-degrees and for other parameters and sets of digraphs,
we will usually omit the subscript for the digraph when it is clear which
digraph is meant.

Since the number of arcs in a directed multigraph equals the number of
their tails (or their heads), we obtain the following very basic result. Recall
that m denotes the number of arcs in the digraph under consideration.

Proposition 1.2.2 For every directed multigraph D we have
∑

x∈V (D) d−(x) =
∑

x∈V (D) d+(x) = m.

�
Clearly, this proposition is valid for directed pseudographs if in-degrees

and out-degrees are replaced by in-pseudodegrees and out-pseudodegrees.
A digraph H is a subdigraph (or just subgraph) of a digraph D if

V (H) ⊆ V (D), A(H) ⊆ A(D) and every arc in A(H) has both end-vertices
in V (H). If V (H) = V (D), we say that H is a spanning subgraph (or a fac-
tor) of D. The digraph L with vertex set {u, v, w, z} and arc set {uv, uw,wz}
is a spanning subgraph of H in Figure 1.2. If every arc of A(D) with both
end-vertices in V (H) is in A(H), we say that H is induced by X = V (H)
(we write H = D[X] or H = D〈X〉 ) and call H an induced subgraph of
D. The digraph G with vertex set {u, v, w} and arc set {uw,wv, vu} is a
subgraph of the digraph H in Figure 1.2; G is neither a spanning subgraph
nor an induced subgraph of H. The digraph G along with the arc uv is an
induced subgraph of H. For a subset A′ ⊆ A(D) the subgraph arc-induced
by A′ is the digraph D[A′] = (V ′, A′), where V ′ is the set of vertices in V
which are incident with at least one arc from A′. For example, in Figure 1.2,
H[{zw, uw}] has vertex set {u,w, z} and arc set {zw, uw}. If H is a subgraph
of D, then we say that D is a supergraph of H.

It is trivial to extend the above definitions of subgraphs to directed pseu-
dographs. To avoid lengthy terminology, we call the ‘parts’ of directed pseu-
dographs just subgraphs (instead of, say, subpseudographs).

For vertex-disjoint subgraphs H, L of a digraph D, we will often use
the shorthand notation (H,L)D and H → L instead of (V (H), V (L))D and
V (H) → V (L), respectively. We may also drop the index D when the digraph
is clear from the context.

A weighted directed pseudograph is a directed pseudograph D along
with a mapping c : A(D) → R. Thus, a weighted directed pseudograph is
a triple D = (V (D), A(D), c). We will also consider vertex-weighted di-
rected pseudographs, i.e., directed pseudographs D along with a mapping
c : V (D) → R. (See Figure 1.3.) If a is an element (i.e., a vertex or an
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arc) of a weighted directed pseudograph D = (V (D), A(D), c), then c(a) is
called the weight or the cost of a. An (unweighted) directed pseudograph
can be viewed as a (vertex-)weighted directed pseudograph whose elements
are all of weight 1. For a set B of arcs of a weighted directed pseudograph
D = (V,A, c), we define the weight of B as follows: c(B) =

∑
a∈B c(a).

Similarly, one can define the weight of a set of vertices in a vertex-weighted
directed pseudograph. The weight of a subgraph H of a weighted (vertex-
weighted) directed pseudograph D is the sum of the weights of the arcs in
H (vertices in H). For example, in the weighted directed pseudograph D in
Figure 1.3 the set of arcs {xy, yz, zx} has weight 9.5 (here we have assumed
that we used the arc zx of weight 1). In the directed pseudograph H in Figure
1.3 the subgraph U = ({u, x, z}, {xz, zu}) has weight 5.

3.5

0.3

5

y

z

x(2) z(0) u(3)

y(2.5)

1

x

2

D H

Figure 1.3 Weighted and vertex-weighted directed pseudographs (the vertex
weights are given in brackets).

1.3 Walks, Trails, Paths, Cycles and Path-Cycle
Subgraphs

In the following, D is always a directed pseudograph, unless otherwise spec-
ified. An oriented walk (or, just a walk) in D is an alternating sequence
W = x1a1x2a2x3 . . . xk−1ak−1xk of vertices xi and arcs aj from D such that
xi and xi+1 are end-vertices of ai for every i ∈ [k −1]. In particular, if xi and
xi+1 are the tail and head of ai, respectively, for every i ∈ [k − 1], then W is
a directed walk (diwalk). When the fact that W is directed is known from
the context, we will often say that W is a walk (this convention extends to
every type of walk, i.e. trials, paths and cycles defined below). A walk W is
closed if x1 = xk, and open otherwise. The set of vertices {xi : i ∈ [k]} is
denoted by V (W ); the set of arcs {aj : j ∈ [k − 1]} is denoted by A(W ). We
say that W is a diwalk from x1 to xk or an (x1, xk)-diwalk. If a diwalk
W is open, then we say that the vertex x1 is the initial vertex of W , the
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vertex xk is the terminal vertex of W , and x1 and xk are end-vertices of
W (the last term can be used for any oriented walk). The length of a walk
is its number of arcs. Hence the walk W above has length k − 1; we will say
that W is a (k − 1)-walk. A walk is even (odd) if its length is even (odd).
When the arcs of W are defined from the context or simply unimportant, we
will denote W by x1x2 . . . xk.

A trail is a walk in which all arcs are distinct. Sometimes, we identify
a trail W with the directed pseudograph (V (W ), A(W )), which is a subgraph
of D. If the vertices of the diwalk W are distinct, W is a directed path
(dipath). If the vertices x1, x2, . . . , xk−1 are distinct, k ≥ 3 and x1 = xk, W
is a directed cycle (dicycle). Note that a loop is a directed cycle of length
1 and a pair of opposite arcs forms a directed cycle of length 2. A digraph
is acyclic if it has no dicycle. An ordering v1, v2, . . . , vn of the vertices of a
digraph D is called an acyclic ordering if for every arc vivj ∈ A(D), we
have i < j. The following proposition is well-known and not hard to prove
(see Chapter 3).

Proposition 1.3.1 Every acyclic digraph has an acyclic ordering of its ver-
tices.

Since paths and cycles are special cases of walks, the length of a path
and a cycle is already defined. The same remark is valid for other parameters
and notions, e.g., an (x, y)-path. A directed path P is an [x, y]-path if
P is a path between x and y, e.g., P is either an (x, y)-path or a (y, x)-
path. A longest (shortest) (x, y)-dipath in a digraph D is a (x, y)-dipath of
maximum (minimum) length in D. The distance dist(x, y) from a vertex x to
a vertex y is the length of a shortest (x, y)-dipath. If in a digraph D there is a
dipath from every vertex to every other vertex (i.e., D is strongly connected,
see Section 1.5), then the diameter of D is the maximum of the distances
dist(x, y) over all vertices x and y in D. If D is not strongly connected, the
diameter of D is ∞. An (x, y)-dipath P is a minimal (x, y)-dipath if it is
the only (x, y)-dipath in D[V (P )].

When W is a cycle and x is a vertex of W , we say that W is a cycle
through x. The girth g(D) of D is the length of a shortest dicycle in D.
If D does not have a cycle, we define g(D) = ∞. A digraph D is vertex-
k-cyclic (arc-k-cyclic, respectively) if every vertex (arc, respectively) of
D is contained in a directed k-cycle. A digraph D is pancyclic if it has a
k-cycle for every k ∈ {3, 4, . . . , n}; D is vertex-pancyclic (arc-pancyclic,
respectively) if D is vertex-k-cyclic (arc-k-cyclic, respectively) for every k ∈
{3, 4, . . . , n}.

For subsets X,Y of V (D), a directed (x, y)-path P is an (X, Y )-path if
x ∈ X, y ∈ Y and V (P ) ∩ (X ∪ Y ) = {x, y}. Note that if X ∩ Y 
= ∅, then
a vertex x ∈ X ∩ Y forms an (X,Y )-path by itself. Sometimes we will talk
about an (H,H ′)-path when H and H ′ are subgraphs of D. By this we mean
a (V (H), V (H ′))-path in D.
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For a cycle C = x1x2 . . . xpx1, the subscripts are considered modulo p,
i.e., xs = xi for every s and i such that i ≡ s mod p. As pointed out
above (for trails), we will often view paths and cycles as subgraphs. We can
also consider paths and cycles as digraphs themselves. Let �Pn ( �Cn ) denote a
dipath (a dicycle) with n vertices, i.e., �Pn = ([n], {(1, 2), (2, 3), . . . , (n−1, n)})
and �Cn = �Pn + (n, 1).

A directed walk (path, cycle) W is a Hamilton (or Hamiltonian) walk
(path, cycle) if V (W ) = V (D). A digraph D is Hamiltonian (traceable)
if D contains a Hamilton dicycle (Hamilton dipath). A directed trail W is an
Euler (or Eulerian) trail if W is closed, V (W ) = V (D) and A(W ) = A(D);
a directed multigraph D is Eulerian if it has an Euler trail.

To illustrate these definitions, consider Figure 1.4.

x2

x1 x3

x4x5

x6

x7

Figure 1.4 A directed graph H.

The walk x1x2x6x3x4x6x7x4x5x1 is a Hamiltonian diwalk in D. The path
x5x1x2x3x4x6x7 is a Hamiltonian dipath in D. The path x1x2x3x4x6 is an
(x1, x6)-path and x2x3x4x6x3 is an (x2, x3)-trail. The cycle x1x2x3x4x5x1 is
a 5-cycle in D. The girth of D is 3 and the longest dicycle in D has length 6.

Let W = x1x2 . . . xk, Q = y1y2 . . . yt be a pair of walks in a digraph D.
The walks W and Q are disjoint if V (W ) ∩ V (Q) = ∅ and arc-disjoint if
A(W ) ∩ A(Q) = ∅. If W and Q are open walks, they are called internally
disjoint if {x2, x3, . . . , xk−1}∩V (Q) = ∅ and V (W )∩{y2, y3, . . . , yt−1} = ∅.

We will use the following notation for a path or a cycle W = x1x2 . . . xk

(recall that x1 = xk if W is a cycle):

W [xi, xj ] = xixi+1 . . . xj .

It is easy to see that W [xi, xj ] is a path for xi 
= xj ; we call it the subpath
of W from xi to xj . If 1 < i ≤ k, then the predecessor of xi on W is the
vertex xi−1. If 1 ≤ i < k, then the successor of xi on W is the vertex xi+1.

Proposition 1.3.2 Let D be a digraph and let x, y be a pair of distinct ver-
tices in D. If D has an (x, y)-diwalk W , then D contains an (x, y)-dipath P
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such that A(P ) ⊆ A(W ). If D has a closed (x, x)-diwalk W , then D contains
a dicycle C through x such that A(C) ⊆ A(W ).

Proof: Consider a diwalk P from x to y of minimum length among all (x, y)-
diwalks whose arcs belong to A(W ). We show that P is a path. Let P =
x1x2 . . . xk, where x = x1 and y = xk. If xi = xj for some 1 ≤ i < j ≤ k,
then the walk P [x1, xi]P [xj+1, xk] is shorter than P ; a contradiction. Thus,
all vertices of P are distinct, so P is a dipath with A(P ) ⊆ A(W ).

Let W = z1z2 . . . zk be a diwalk from x = z1 to itself (x = zk). Since
D has no loop, zk−1 
= zk. Let y1y2 . . . yt be a shortest diwalk from y1 =
z1 to yt = zk−1. We have proved above that y1y2 . . . yt is a dipath. Thus,
y1y2 . . . yty1 is a dicycle through y1 = x. �

An oriented graph is a digraph with no cycle of length two. A tourna-
ment is an oriented graph where every pair of distinct vertices are adjacent.
In other words, a digraph T with vertex set {vi : i ∈ [n]} is a tournament if
exactly one of the arcs vivj and vjvi is in T for every i 
= j ∈ [n]. In Figure
1.5, one can see a pair of tournaments. It is easy to see that each of them
contains a Hamilton dipath. Actually, this is not a coincidence due to the
following theorem of Rédei [32].

Theorem 1.3.3 (Redei’s theorem) Every tournament T is traceable.

Proof: Let x1, . . . , xn be an ordering of the vertices of T such that the number
of forward arcs, i.e. arcs of the form xixj (i < j), is maximal. Observe that
xi → xi+1 for each i ∈ [n − 1]. Indeed, if we had xi+1 → xi for some i, we
could swap vertices xi and xi+1 in the ordering and obtain one more forward
arc, a contradiction. Thus, x1 . . . xn is a Hamiltonian dipath. �

In fact, Rédei proved a stronger result: every tournament contains an odd
number of Hamiltonian dipaths (see Theorem 2.6.1).

Figure 1.5 Tournaments.

A directed q-path-cycle subgraph F of a digraph D is a collec-
tion of q dipaths P1,. . . , Pq and t dicycles C1,. . . ,Ct such that all of
P1, . . . , Pq, C1, . . . , Ct are pairwise disjoint (possibly, q = 0 or t = 0). We
will denote F by F = P1 ∪ . . . ∪ Pq ∪ C1 ∪ . . . ∪ Ct (the paths always being
listed first). Quite often, we will consider directed q-path-cycle factors,
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i.e., spanning directed q-path-cycle subgraphs. If t = 0, F is a directed q-
path subgraph and it is a directed q-path factor (or just a directed
path factor) if it is spanning. If q = 0, we say that F is a directed t-cycle
subgraph (or just a directed cycle subgraph) and it is a directed t-
cycle factor (or just a directed cycle factor) if it is spanning. In Figure
1.6, abc∪ defd is a directed 1-path-cycle factor, and abcea∪ dfd is a directed
cycle factor (or, more precisely, a directed 2-cycle factor).

a

b

c

d

e

f

H

Figure 1.6 A digraph H.

A multipartite tournament is a digraph obtained from a complete
multipartite undirected graph by replacing every edge by an arc with the same
end-vertices. The following extension of Redei’s theorem (Theorem 1.3.3) to
multipartite tournaments was proved by Gutin [22].

Theorem 1.3.4 A multipartite tournament has a Hamilton dipath if and
only if it contains a 1-path-cycle factor.

Chapter 7 is devoted to multipartite tournaments and their generalization,
semicomplete multipartite digraphs.

The path covering number pc(D) of D is the minimum positive integer
k such that D contains a k-path factor. In particular, pc(D) = 1 if and only
if D is traceable. The path-cycle covering number pcc(D) of D is the
minimum positive integer k such that D contains a k-path-cycle factor.
Clearly, pcc(D) ≤ pc(D). The following simple yet helpful assertion on the
path covering number is not hard to show and so it is left without a proof.

Proposition 1.3.5 Let D be a digraph, and let k be a positive integer. Then
the following statements are equivalent:

1. pc(D) = k.
2. There are k − 1 (new) arcs e1, . . . , ek−1 such that D + {e1, . . . , ek−1} is

traceable, but there is no set of k − 2 arcs with this property.
3. k − 1 is the minimum integer s such that addition of s new vertices to

D together with all possible arcs between V (D) and these new vertices
results in a traceable digraph. �
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1.4 Isomorphism and Basic Operations on Digraphs

Suppose D = (V,A) is a directed multigraph. A directed multigraph obtained
from D by deleting multiple arcs is a digraph H = (V,A′) where xy ∈ A′

if and only if μD(x, y) ≥ 1. Let xy be an arc of D. By reversing the
arc xy, we mean that we replace the arc xy by the arc yx. That is, in
the resulting directed multigraph D′ we have μD′(x, y) = μD(x, y) − 1 and
μD′(y, x) = μD(y, x) + 1.

A pair of (unweighted) directed pseudographs D and H are isomorphic
(denoted by D ∼= H) if there exists a bijection φ : V (D) → V (H) such that
μD(x, y) = μH(φ(x), φ(y)) for every ordered pair x, y of vertices in D. The
mapping φ is an isomorphism. Quite often, we will not distinguish between
isomorphic digraphs or directed pseudographs. For example, we may say that
there is only one digraph on a single vertex and there are exactly three
digraphs with two vertices. Also, there is only one digraph of order 2 and size
2, but there are two directed multigraphs and six directed pseudographs of
order and size 2. For a set Ψ of directed pseudographs, we say that a directed
pseudograph D belongs to Ψ or is a member of Ψ (denoted D ∈ Ψ) if
D is isomorphic to a directed pseudograph in Ψ . Since we usually do not
distinguish between isomorphic directed pseudographs, we will often write
D = H instead of D ∼= H for isomorphic D and H.

In case we do want to distinguish between isomorphic digraphs, we speak
of labelled digraphs. In this case, a pair of digraphs D and H is indistin-
guishable if and only if they completely coincide (i.e., V (D) = V (H) and
A(D) = A(H)). In particular, there are four labeled digraphs with vertex set
{1, 2}. Indeed, the labeled digraphs ({1, 2}, {(1, 2)}) and ({1, 2}, {(2, 1)}) are
distinct, even though they are isomorphic.

The converse of a directed multigraph D is the directed multigraph H
which one obtains from D by reversing all arcs. It is easy to verify, using
only the definitions of isomorphism and converse, that a pair of directed
multigraphs are isomorphic if and only if their converses are isomorphic.
To obtain subdigraphs, we use the following operations of deletion. For a
directed multigraph D and a set B ⊆ A(D), the directed multigraph D − B
(sometimes denoted by D \ B) is the spanning subgraph of D with arc set
A(D) \ B. If X ⊆ V (D), the directed multigraph D −X (sometimes denoted
by D\X) is the subgraph induced by V (D)\X, i.e., D−X = D〈V (D)−X〉.
For a subgraph H of D, we define D − H = D − V (H). Since we do not
distinguish between a single element set {x} and the element x itself, we will
often write D − x rather than D − {x}. If H is a non-induced subgraph of
a digraph D and xy ∈ A(D) − A(H) with x, y ∈ V (H), we can construct
another subgraph H ′ of D by adding the arc xy of H; H ′ = H + xy.

Let G be a subgraph of a directed multigraph D. The contraction of G
in D is a directed multigraph D/G with V (D/G) = {g} ∪ (V (D) − V (G)),
where g is a ‘new’ vertex not in D, and μD/G(x, y) = μD(x, y), and for all
distinct vertices x, y ∈ V (D) − V (G) we have
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μD/G(x, g) =
∑

v∈V (G)

μD(x, v), μD/G(g, y) =
∑

v∈V (G)

μD(v, y).

(Note that there is no loop in D/G.) Let G1, G2, . . . , Gt be vertex-disjoint
subgraphs of D. Then

D/{G1, G2, . . . , Gt} = (. . . ((D/G1)/G2) . . .)/Gt.

Clearly, the resulting directed multigraph D/{G1, G2, . . . , Gt} does not de-
pend on the order of G1, G2, . . . , Gt. Contraction can be defined for sets of
vertices, rather than subgraphs. It suffices to view a set of vertices X as a
subgraph with vertex set X and no arcs. Figure 1.7 depicts a digraph H and
the contraction H/L, where L is the subgraph of H induced by the vertices
y and z.

x

y

v

z x

v

H T = H/L, L = H[{y, z}]

Figure 1.7 Contraction.

We will often use the following variation of the operation of contraction.
This operation is called path-contraction and is defined as follows. Let P
be a directed (x, y)-path in a directed multigraph D = (V,A). Then D//P
stands for the directed multigraph with vertex set V (D//P ) = V ∪ {z} −
V (P ), where z /∈ V , and μD//P (u, v) = μD(u, v), μD//P (u, z) = μD(u, x),
μD//P (z, v) = μD(y, v) for all distinct u, v ∈ V − V (P ). In other words,
D//P is obtained from D by deleting all vertices of P and adding a new vertex
z such that every arc with head x (tail y) and tail (head) in V −V (P ) becomes
an arc with head (tail) z and the same tail (head). Observe that a path-
contraction in a digraph results in a digraph (no parallel arcs arise). We will
often consider path-contractions of paths of length one, i.e., arcs e. Clearly,
a directed multigraph D has a directed k-cycle (k ≥ 3) through an arc e if
and only if D//e has a cycle through z. Observe that the obvious analogue of
path-contraction for undirected multigraphs does not have this nice property,
which is of use in this section. The difference between (ordinary) contraction
(which is also called set-contraction) and path-contraction is reflected in
Figure 1.8.
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a

b
x u v y

d

c

a

b

c

d b

a

d

c

2

3

2 2

z z

D

D/{x, u, v, y} D//P, P = xuvy

Figure 1.8 The two different kinds of contraction, set-contraction and path-
contraction. The integers 2 and 3 indicate the number of corresponding parallel
arcs.

As for set-contraction, for vertex-disjoint paths P1, P2, . . . , Pt in D, the
path-contraction D//{P1, . . . , Pt} is defined as the directed multigraph
(. . . ((D//P1)//P2) . . .)//Pt; clearly, the result does not depend on the or-
der of P1, P2, . . . , Pt.

To construct ‘bigger’ digraphs from ‘smaller’ ones, we will often use the
following operation called composition. Let D be a digraph with vertex set
{vi : i ∈ [n]}, and let G1, G2, . . . , Gn be digraphs which are pairwise vertex-
disjoint. The composition D[G1, G2, . . . , Gn] is the digraph L with vertex set
V (G1)∪V (G2)∪. . .∪V (Gn) and arc set (∪n

i=1A(Gi))∪{gigj : gi ∈ V (Gi), gj ∈
V (Gj), vivj ∈ A(D)}. Figure 1.9 shows the composition T [Gx, Gl, Gv], where
Gx consists of a pair of vertices and an arc between them, Gl has a single
vertex, Gv consists of a pair of vertices and the pair of mutually opposite
arcs between them, and the digraph T is from Figure 1.7.

If D = H[S1, . . . , Sh] and none of the digraphs S1, . . . Sh has an arc, then
D is an extension of H. This notion is also used for classes of digraphs.
Hence an extended tournament is any digraph D = T [S1, . . . , St] that can
be obtained from a tournament T by substituting each vertex i of T by an
independent set Si. Distinct vertices x, y are similar if x, y have the same
in- and out-neighbours in D. For every i ∈ [h], the vertices of Si are similar
in D.

Chapter 10 is devoted to digraph products. Here we will consider just one
suchproduct. The Cartesian product of a family of digraphs D1,D2, . . . , Dn,
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Gx

G

Gv

Figure 1.9 T [Gx, G�, Gv].

denoted by D1�D2� . . . �Dn or �n
i=1Di, where n ≥ 2, is the digraph D hav-

ing

V (D) = V (D1) × V (D2) × . . . × V (Dn)
= {(w1, w2, . . . , wn) : wi ∈ V (Di), i ∈ [n]}

and a vertex (u1, u2, . . . , un) dominates a vertex (v1, v2, . . . , vn) of D if and
only if there exists an r ∈ [n] such that urvr ∈ A(Dr) and ui = vi for all
i ∈ [n] \ {r}. (See Figure 1.10.)

1

2

3

(2, a)

(3, b)

(2, b)

(1, a) (3, a)

(1, b)
b

a

D HHD

Figure 1.10 The Cartesian product of two digraphs.

The operation of splitting a vertex v of a directed multigraph D consists
of replacing v by two new vertices v′, v′′, replacing all arcs of the form xv by
an arc xv′, replacing all arcs of the form vy by an arc v′′y and finally adding
the arc v′v′′. The subdivision of an arc uv of D consists of replacing uv by
two arcs uw,wv, where w is a new vertex. If H can be obtained from D by
subdividing one or more arcs (here we allow subdividing arcs that are already
subdivided), then H is a subdivision of D. For a positive integer p and a
digraph D, the pth power Dp of D is defined as follows: V (Dp) = V (D),



16 J. Bang-Jensen and G. Gutin

x → y in Dp if x 
= y and there are k ≤ p − 1 vertices z1, z2, . . . , zk such that
x → z1 → z2 → . . . → zk → y in D. According to this definition D1 = D.
For example, for the digraph Hn = ([n], {(i, i + 1) : i ∈ [n − 1]}), we have
H2

n = ([n], {(i, j) : 1 ≤ i < j ≤ i + 2 ≤ n} ∪ {(n − 1, n)}). See Figure 1.11 for
the second power of a digraph.

D D2

Figure 1.11 A digraph D and its second power D2.

Let H and L be a pair of directed pseudographs. The union H ∪ L of H
and L is the directed pseudograph D such that V (D) = V (H) ∪ V (L) and
μD(x, y) = μH(x, y) + μL(x, y) for every pair x, y of vertices in V (D). Here
we assume that the function μH is naturally extended, i.e., μH(x, y) = 0 if at
least one of x, y is not in V (H) (and similarly for μL). Figure 1.12 illustrates
this definition.

c

d

b

c

d

e

f

g

ca

d

b
e

f

g

a

b

H L H ∪ L

Figure 1.12 The union D = H ∪ L of the directed pseudographs H and L.

1.5 Strong Connectivity

In a digraph D a vertex y is reachable from a vertex x if D has an (x, y)-
diwalk. In particular, a vertex is reachable from itself. By Proposition 1.3.2,
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y is reachable from x if and only if D contains an (x, y)-dipath. A digraph
D is strongly connected (or, just, strong) if, for every pair x, y of distinct
vertices in D, there exists an (x, y)-diwalk and a (y, x)-diwalk. In other words,
D is strong if every vertex of D is reachable from every other vertex of D.
We define a digraph with one vertex to be strongly connected. It is easy to
see that D is strong if and only if it has a closed Hamiltonian diwalk. As �Cn

is strong, every Hamiltonian digraph is strong.
Recall that a digraph D is vertex-pancyclic if for every x ∈ V (D) and

every integer k ∈ {3, 4, . . . , n}, there exists a k-cycle through x in D. The
following basic result on tournaments is due to Moon [30] and is proved in
Chapter 2.

Theorem 1.5.1 Every strong tournament is vertex-pancyclic.

A digraph D is semicomplete if there is an arc between every pair of
vertices in D. The class of semicomplete digraphs is a generalization of tour-
naments and many results for tournaments can be extended to semicomplete
digraphs. In particular, it follows from Theorem 1.7.3 and Moon’s theorem
that every strong semicomplete digraph is vertex-pancyclic. A digraph D is
complete if, for every pair x, y of distinct vertices of D, both xy and yx are
in D. The complete digraph on n vertices will be denoted by

↔
Kn.

A digraph D is locally in-semicomplete (locally out-semicomplete,
respectively) if, for every vertex x of D, all in-neighbours (out-neighbours,
respectively) of D induce a semicomplete digraph. It follows from Moon’s
theorem that every strong tournament is Hamiltonian. The following is an
extension of this result by Bang-Jensen, Huang and Prisner [6].

Theorem 1.5.2 Every strong locally in-semicomplete digraph is Hamilto-
nian.

As the converse of every locally out-semicomplete digraph is locally in-
semicomplete and the converse of a Hamiltonian dicycle is a Hamiltonian
dicycle, Theorem 1.5.2 holds for locally out-semicomplete digraphs as well.
Chapter 6 is devoted to results on locally in- and out-semicomplete digraphs.

For a strong digraph D = (V,A), a set S ⊂ V is a separator (or a sep-
arating set) if D − S is not strong. A digraph D is k-strongly connected
(or k-strong) if |V | ≥ k+1 and D has no separator with less than k vertices.
It follows from the definition of strong connectivity that a complete digraph
with n vertices is (n − 1)-strong, but is not n-strong. The largest integer k
such that D is k-strongly connected is the vertex-strong connectivity of
D (denoted by κ(D)). If a digraph D is not strong, we set κ(D) = 0. For
a pair s, t of distinct vertices of a digraph D, a set S ⊆ V (D) − {s, t} is an
(s, t)-separator if D − S has no (s, t)-dipaths.

For a strong digraph D = (V,A), a set of arcs W ⊆ A is a cut (or a
cutset) if D − W is not strong. Clearly, every minimal cut is of the form
(X, X̄), where X ⊂ V and X̄ = V − X. A cut (X, X̄) is called a (u, v)-
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cut if u ∈ X and v ∈ X̄. A digraph D is k-arc-strong (or k-arc-strongly
connected) if D has no cut with less than k arcs. The largest integer k such
that D is k-arc-strongly connected is the arc-strong connectivity of D
(denoted by λ(D)). If D is not strong, we set λ(D) = 0. Note that λ(D) ≥ k
if and only if d+(X), d−(X) ≥ k for all proper subsets X of V. A collection
P of paths is called arc-disjoint if no pair of paths in P has common arcs.

The following theorem is one of the most fundamental results in graph
theory.

Theorem 1.5.3 (Menger’s theorem)[29] Let D be a directed multigraph
and let u, v ∈ V (D) be a pair of distinct vertices. Then the following holds:

(a) The maximum number of arc-disjoint (u, v)-dipaths equals the minimum
number of arcs covering all (u, v)-dipaths and this minimum is attained
for some (u, v)-cut (X, X̄).

(b) If the arc uv is not in A(D), then the maximum number of internally
disjoint (u, v)-dipaths equals the minimum number of vertices in a (u, v)-
separator.

A strong component of a digraph D is a maximal induced subgraph
of D which is strong. If D1,. . . ,Dt are the strong components of D, then
clearly V (D1) ∪ . . . ∪ V (Dt) = V (D) (recall that a digraph with only one
vertex is strong). Moreover, we must have V (Di)∩V (Dj) = ∅ for every i 
= j
as otherwise all the vertices V (Di) ∪ V (Dj) are reachable from each other,
implying that the vertices of V (Di) ∪ V (Dj) belong to the same strong com-
ponent of D. We call V (D1)∪ . . .∪V (Dt) the strong decomposition of D.
The strong component digraph SC(D) of D is obtained by contracting
the strong components of D and deleting any parallel arcs obtained in this
process. In other words, if D1,. . . ,Dt are the strong components of D, then
V (SC(D)) = {vi : i ∈ [t]} and A(SC(D)) = {vivj : (V (Di), V (Dj))D 
= ∅}.
The subgraph of D induced by the vertices of a dicycle in D is strong, and
hence is contained in a strong component of D. Thus, SC(D) is acyclic. By
Proposition 3.1.2 in Chapter 3, the vertices of SC(D) have an acyclic order-
ing. This implies that the strong components of D can be labelled D1,. . . ,Dt

such that there is no arc from Dj to Di unless j < i. We call such an ordering
an acyclic ordering of the strong components of D. The strong components
of D corresponding to the vertices of SC(D) of in-degree (out-degree) zero
are the initial (terminal) strong components of D. The remaining strong
components of D are called the intermediate strong components of D.
Figure 1.13 shows a digraph D and its strong component digraph SC(D).

It is easy to see that the strong component digraph of a tournament T is
an acyclic tournament. Thus, there is a unique acyclic ordering of the strong
components of T , namely, T1,. . . ,Tt such that Ti → Tj for every i < j. Clearly,
every tournament has only one initial (terminal) strong component.
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Figure 1.13 A digraph D and its strong component digraph SC(D). The vertices
s1, s2, s3, s4, s5 are obtained by contracting the sets {a, b}, {c, d, e}, {f, g, h, i}, {j, k}
and {l,m, n} which correspond to the strong components of D. The digraph D has
two initial components, D1, D2 with V (D1) = {a, b} and V (D2) = {c, d, e}. It has
one terminal component D5 with vertices V (D5) = {l,m, n} and two intermediate
components D3, D4 with vertices V (D3) = {f, g, h, i} and V (D4) = {j, k}.

1.6 Linkages

Let D = (V,A) be a digraph and let s1, . . . , sk, t1, . . . , tk be a collection
of (not necessarily distinct) vertices of D. A k-linkage from (s1, . . . , sk) to
(t1, . . . , tk) is a collection of k internally disjoint dipaths P1, . . . , Pk such that,
for each i ∈ [k], Pi is an (si, ti)-dipath if si 
= ti and a dicycle containing si

if si = ti and si, ti are not internal vertices of Pj for any j 
= i. In the case
of a cycle C containing si, the term internally disjoint means the same as
for paths, i.e., no other path or cycle contains vertices V (C) − {si, ti}. Note
that a dicycle with just one vertex must be a loop, not just a vertex itself.
A weak k-linkage from (s1, . . . , sk) to (t1, . . . , tk) is a collection of k arc-
disjoint dipaths P1, . . . , Pk such that, for each i ∈ [k], Pi is an (si, ti)-dipath
if si 
= ti and a dicycle containing si if si = ti. The next two problems on
linkages are fundamental and of central importance in digraph theory.

k-linkage
Input: A digraph D = (V,A) and not necessarily distinct vertices
s1, . . . , sk, t1, . . . , tk.
Question: Does D contain a k-linkage from (s1, . . . , sk) to (t1, . . . , tk)?
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weak k-linkage
Input: A digraph D = (V,A) and not necessarily distinct vertices
s1, . . . , sk, t1, . . . , tk.
Question: Does D contain a weak k-linkage from (s1, . . . , sk) to
(t1, . . . , tk)?

A digraph is k-linked (weakly k-linked, respectively) if it has a k-
linkage (a weak k-linkage, respectively) for every choice of vertices as above.

Kühn and Osthus [27] proved the following:

Theorem 1.6.1 Let k ≥ 2 be an integer. Every digraph D of order n ≥ 400k3

which satisfies δ0(D) ≥ n/2 + k − 1 is k-linked.

The k-linkage and the weak k-linkage problems are both NP-hard
even for k = 2 [20], Still, somewhat surprisingly, weakly k-linked digraphs
are easy to classify due to the following result of Shiloach [35]. Its proof,
due to Shiloach, is a beautiful application of Edmonds’ branching theorem
(Theorem 1.8.2), see [35].

Theorem 1.6.2 A digraph is weakly k-linked if and only if it is k-arc-strong.
Furthermore, there is a polynomial algorithm for finding a weak k-linkage
from (s1, . . . , sk) to (t1, . . . , tk), for any choice of these vertices, in a k-arc-
strong digraph.

So for weak k-linkages, the interesting case is when the arc-strong con-
nectivity is less than k.

1.7 Undirected Graphs and Orientations of Undirected
and Directed Graphs

An undirected graph G = (V,E) consists of a non-empty finite set V =
V (G) of elements called vertices and a finite set E = E(G) of unordered
pairs of distinct vertices called edges. We call V (G) the vertex set and
E(G) the edge set of G. In other words, an edge {x, y} is a 2-element subset
of V (G). We will often denote {x, y} just by xy. If xy ∈ E(G), we say that
the vertices x and y are adjacent. Notice that, in the above definition of an
undirected graph, we do not allow loops (i.e., pairs consisting of the same
vertex) or parallel edges (i.e., multiple pairs with the same end-vertices).
The complement G of an undirected graph G is the undirected graph with
vertex set V (G) in which two vertices are adjacent if and only if they are not
adjacent in G.

When parallel edges and loops are admissible we speak of undirected
pseudographs; pseudographs with no loops are multigraphs. For a pair
u, v of vertices in a pseudograph G, μG(u, v) denotes the number of edges
between u and v. In particular, μG(u, u) is the number of loops at u.
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A multigraph G is complete if every pair of distinct vertices in G are
adjacent (that is, μG(u, v) > 0 for all u, v ∈ V , u 
= v). We will denote the
complete undirected graph on n vertices (which is unique up to isomorphism)
by Kn. Its complement Kn has no edge.

A multigraph H is p-partite if there exists a partition V1, V2, . . . , Vp of
V (H) into p partite sets (i.e., V (H) = V1 ∪ . . . ∪ Vp, Vi ∩ Vj = ∅ for every
i 
= j) such that every edge of H has its end-vertices in different partite
sets. The special case of a p-partite graph when p = 2 is called a bipartite
graph. We often denote a bipartite graph B by B = (V1, V2;E). A p-partite
multigraph H is complete p-partite if, for every pair x ∈ Vi, y ∈ Vj (i 
= j),
an edge xy is in H. A complete graph on n vertices is clearly a complete
n-partite graph for which every partite set is a singleton. We denote the
complete p-partite graph with partite sets of cardinalities n1, n2, . . . , np by
Kn1,n2,...,np

. Complete p-partite graphs for p ≥ 2 are also called complete
multipartite graphs.

To obtain short proofs of various results on subgraphs of a directed multi-
graph D = (V,A) the following transformation to the class of bipartite (undi-
rected) multigraphs is extremely useful. Let BG(D) = (V ′, V ′′;E) denote the
bipartite multigraph with partite sets V ′ = {v′ : v ∈ V }, V ′′ = {v′′ : v ∈ V }
such that μBG(D)(u′, w′′) = μD(u,w) for every pair u,w of vertices in D. We
call BG(D) the bipartite representation of D; see Figure 1.14.

1

2

3

4

1

2

3

4

5

1

2

3

4

5

5

D BG(D)

Figure 1.14 A directed multigraph and its bipartite representation.

An orientation of an undirected graph G is an oriented graph H obtained
from G by replacing every edge xy by either arc (x, y) or arc (y, x). Let D be
a directed multigraph. The underlying multigraph UMG(D) of D is an
undirected multigraph obtained from D by replacing every arc (x, y) with the
edge xy. The underlying graph UG(D) of D is obtained from UMG(D)
by deleting all multiple edges between every pair of vertices apart from one.
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For example, for a digraph H with vertices u, v and arcs uv, vu, UG(H) has
one edge and UMG(H) has two parallel edges. Chapter 12 is devoted to
underlying graphs of digraphs.

A digraph D = (V,A) is symmetric if xy ∈ A implies yx ∈ A. For
an undirected graph G, the complete biorientation of G is a symmetric
digraph

↔
G obtained from G by replacing each edge {x, y} with the pair xy, yx

of arcs. Clearly, D is symmetric if and only if D is the complete biorientation
of some graph.

An undirected pseudograph G is connected if its complete biorientation
↔
G is strongly connected. Similarly, G is k-connected if

↔
G is k-strong. Strong

components in
↔
G are connected components, or just components in G.

A bridge in an undirected pseudograph G is an edge whose deletion from G
increases the number of connected components. An undirected pseudograph
G is k-edge-connected if the graph obtained from G after deletion of at
most k−1 edges is connected. Clearly, a connected undirected pseudograph is
bridgeless if and only if it is 2-edge-connected. The neighbourhood NG(x)
of a vertex x in G is the set of vertices adjacent to x. The degree d(x) of a
vertex x is the number of edges except loops having x as an end-vertex The
minimum (maximum) degree of G is

δ(G) = min{d(x) : x ∈ V (G)} (Δ(G) = max{d(x) : x ∈ V (G)}).

We say that G is regular (or δ(G)-regular) if δ(G) = Δ(G). A pair of
undirected graphs G and H is isomorphic if

↔
G and

↔
H are isomorphic.

A digraph is connected if its underlying graph is connected. The follow-
ing well-known theorem is due to Robbins [33]. This theorem is a special case
of Theorem 1.7.3.

Theorem 1.7.1 A connected graph G has a strongly connected orientation
if and only if G has no bridge.

Here is a well-known characterization of Eulerian directed multigraphs
(clearly, the deletion of loops in a directed pseudograph D does not change
the property of D of being Eulerian or otherwise): A directed multigraph D
is Eulerian if and only if D is connected and d+(x) = d−(x) for every vertex
x in D [4]. Eulerian directed multigraphs are considered in Chapter 4.

The notions of walks, trails, paths and cycles in undirected pseudographs
are analogous to those for directed pseudographs (we merely disregard ori-
entations). An xy-path in an undirected pseudograph is a path whose end-
vertices are x and y. An undirected graph is a forest if it has no cycle. A
connected forest is a tree. It is easy to see that every connected undirected
graph has a spanning tree, i.e., a spanning subgraph, which is a tree.

A matching M in a directed (an undirected) pseudograph G is a set of
arcs (edges) with no common end-vertices. We also require that no element
of M is a loop. If M is a matching, then we say that the edges (arcs) of
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M are independent. A matching M in G is maximum if M contains the
maximum possible number of edges. A maximum matching is perfect if it
has n/2 edges, where n is the order of G. A set Q of vertices in a directed
or undirected pseudograph H is independent if the graph H〈Q〉 has no
edges (arcs). The independence number, α(H), of H is the maximum
integer k such that H has an independent set of cardinality k. A (proper)
colouring of a directed or undirected graph H is a partition of V (H) into
(disjoint) independent sets. The minimum number, χ(H), of independent sets
in a proper colouring of H is the chromatic number of H.

In Section 1.4, the operation of composition of digraphs was intro-
duced. Similarly, we can define the operation of composition of undi-
rected graphs. Let H be a graph with vertex set {vi : i ∈ [n]}, and let
G1, G2, . . . , Gn be graphs which are pairwise vertex-disjoint. The composition
H[G1, G2, . . . , Gn] is the graph L with vertex set V (G1)∪V (G2)∪. . .∪V (Gn)
and edge set

∪n
i=1E(Gi) ∪ {gigj : gi ∈ V (Gi), gj ∈ V (Gj), vivj ∈ E(H)}.

If none of the graphs G1, . . . , Gn in this definition of H[G1, . . . , Gn] have
edges, then H[G1, . . . , Gn] is an extension of H.

We conclude this section with the notion of an orientation of a digraph,
which extends the notion of an orientation of an undirected graph. An ori-
entation of a digraph D is a subgraph of D obtained from D by deleting
exactly one arc between x and y for every pair x 
= y of vertices such that
both xy and yx are in D. See Figure 1.15 for an illustration of this definition.

D H H

Figure 1.15 A digraph D and subgraphs H and H ′ of D. The digraph H is an
orientation of D but H ′ is not.
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Lemma 1.7.2 Let D be a strong digraph and x, y vertices of D such that
both xy and yx are arcs. Then either D − xy or D − yx is strong if and only
if e is not a bridge in UG(D).

Proof: If e is a bridge in UG(D), then clearly neither D − xy nor D − yx
is strong. Assume that e is not a bridge in UG(D) and consider D′ = D −
{xy, yx}. If D′ is strong, then clearly both D − xy and D − yx are strong.
Thus, assume that D′ is not strong. Since e is not a bridge, D′ is connected.
Let L1, L2, . . . , Lk be strong components of D′. Since D is strong, there is
only one initial strong component, say L1, and only one terminal strong
component, say Lk. Since D is strong, one of the vertices x and y is in L1

and the other in Lk. Without loss of generality, x is in L1 and y is in Lk.
Then D − xy is strong. �

This lemma immediately implies the following theorem of Boesch and
Tindell [12], which generalizes Theorem 1.7.1.

Theorem 1.7.3 A strong digraph D has a strong orientation if and only if
UG(D) has no bridge.

1.8 Trees in Digraphs

A digraph D is an oriented forest (tree) if D is an orientation of a forest
(tree). A digraph T is an out-tree (an in-tree) if T is an oriented tree with
just one vertex s of in-degree zero (out-degree zero). The vertex s is the root
of T . A digraph F is an out-forest (an in-forest) if F is the vertex disjoint
union of out-trees (in-trees).

If an out-tree (in-tree) T is a spanning subgraph of D, T is called an
out-branching (an in-branching). (See Figure 1.16.)

D H L

r

s

Figure 1.16 The digraph D has an out-branching with root r (shown in bold);
H contains an in-branching with root s (shown in bold); L possesses neither an
out-branching nor an in-branching.

Since each spanning oriented tree R of a connected digraph is acyclic, R
has at least one vertex of out-degree zero and at least one vertex of in-degree
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zero (see Proposition 3.1.1 of Chapter 3). Hence, the out-branchings and in-
branchings capture the important cases of uniqueness of the corresponding
vertices. The following is a characterization of digraphs with in-branchings
(out-branchings).

Proposition 1.8.1 A connected digraph D contains an out-branching (in-
branching) if and only if D has only one initial (terminal) strong component.

Proof: We prove this characterization only for out-branchings since the sec-
ond claim follows from the first one by considering the converse of D.

Assume that D contains at least two initial strong components and sup-
pose that D has an out-branching T . Observe that the root r of T is an initial
strong component of D. Let x be a vertex in another initial strong component
of D. Since r is the root of T , there is a path from r to x in T and, thus, in
D, which is a contradiction to the assumption that r and x are in different
initial strong components of D.

Now we assume that D contains only one initial strong component D1,
and r is an arbitrary vertex of D1. We prove that D has an out-branching
rooted at r. In SC(D), the vertex x corresponding to D1 is the only vertex of
in-degree zero and, hence every vertex v of SC(D) is reachable from x (the
longest path to v must start at x). Thus, every vertex of D is reachable from
r. We construct an oriented tree T as follows. In the first step T consists of
r. In Step i ≥ 2, for every vertex y appended to T in the previous step, we
add to T a vertex z, such that y → z and z 
∈ V (T ), together with the arc
yz. We stop when no vertex can be included in T . Since every vertex of D
is reachable from r, T is spanning. Clearly, r is the only vertex of in-degree
zero in T . Hence, T is an out-branching. �

The following theorem is a very important result, which can be viewed
as just a fairly simple generalization of Menger’s theorem. However, it has
many important consequences, see the book [4] by Bang-Jensen and Gutin
for many such applications of the theorem.

Theorem 1.8.2 (Edmonds’ branching theorem) [citeedmonds1973] A
directed multigraph D = (V,A) with a special vertex z has k arc-disjoint
out-branchings rooted at z if and only2 if

d−(X) ≥ k ∀ ∅ 
= X ⊆ V − z. (1.1)

There exists a polynomial algorithm for finding k arc-disjoint out-branchings
from a given root s in a directed multigraph which satisfies (1.1).

A leaf in an out-tree (in-tree) is a vertex of out-degree (in-degree) zero.
The minimum (maximum, respectively) number of leaves in an out-branching

2 By Menger’s theorem (Theorem 1.5.3), (1.1) is equivalent to the existence of k
arc-disjoint dipaths from z to every other vertex of D.
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of a digraph D will be denoted by �min(D) (�max(D), respectively). Clearly,
the problem of finding �min(D) is NP-hard as even the problem of deciding
whether �min(D) = 1 is NP-complete as it is equivalent to the Hamilton
dipath problem. The following theorem of Las Vergnas gives a bound to the
minimum number of leaves in an out-branching. Recall that for a digraph
D, α(D) denotes the maximum number of vertices without an arc between
them.

Theorem 1.8.3 ([28]) Let D be a digraph and let �min(D) be the minimum
number of leaves in an out-branching of D. Then �min(D) ≤ α(D).

This theorem implies the Gallai–Milgram theorem (Theorem 1.8.4), for a
proof of this fact see the paper [5] by Bang-Jensen and Gutin.

The problem of finding �max(D) is NP-hard; Alon, Fomin, Gutin, Kriv-
elevich and Saurabh showed that it in fact remains NP-hard when re-
stricted to acyclic digraphs [1]. Daligault and Thomassé [17] designed a 92-
approximation algorithm for the (general) problem and Daligault, Gutin, Kim
and Yeo [16] obtained an O∗(3.72k)-time algorithm for deciding whether a
digraph D contains an out-branching with at least k leaves.

Rédei’s theorem (Theorem 2.2.4) can be rephrased as saying that every
digraph with independence number one has a Hamiltonian dipath and hence
has path covering number one. Gallai and Milgram generalized this as follows.

Theorem 1.8.4 (Gallai–Milgram theorem) [21] For every digraph D the
path covering number is at most its independence number, that is pc(D) ≤
α(D).

In fact, the following stronger result holds. It can be useful in certain
applications, see, e.g., Section 3.10.3.

Theorem 1.8.5 (Gallai–Milgram theorem) [21] Let D be a digraph, let
P = P1∪. . . P� be a dipath factor of D, and let I(P ) and T (P ) denote the sets
of initial and terminal vertices, respectively, of dipaths of P . If � > α(D), then
D contains a dipath factor P ′ with � − 1 paths and such that I(P ′) ⊂ I(P )
and T (P ′) ⊂ T (P ).

1.9 Flows in Networks

A network N is a digraph D = (V,A) in which each arc a is associated with a
capacity u(a). A flow in a network N associates each arc a of N with a non-
negative number which must not exceed the capacity u(a) of the arc. Flows
in networks are widely used to model systems in which some quantity passes
through channels (arcs in the network) that meet at junctions (vertices);
examples include traffic in a road system, fluids in pipes, or electrical current
in circuits. Here is a formal definition of networks and flows in these.
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A network is a tuple N = (V,A, l, u, c), where D = (V,A) is a digraph
with vertex set V and arc set A, and l : A → Z0, u : A → Z0 and c : A → R

are functions. Intuitively, l and u represent lower bounds and capacities
(also called upper bounds), respectively, on how much flow can pass through
each arc, and c represents the cost associated with each unit of flow in each
arc. If there are no costs specified and l(a) = 0 for each a ∈ A, then we omit
the relevant letters from the notation. For example, if N = (V,A, u, c), then
l(a) = 0 for each a ∈ A. Sometimes we also specify a function b : V → Z

such that
∑

v∈V b(v) = 0. This is called a balance vector and if this is also
specified, we denote the network by N = (V,A, l, u, c, b).

Given a network N = (V,A, l, u, c) (or N = (V,A, l, u, c, b)), a function
x : A → R0 is called a flow in N ; it is an integer flow if x(a) ∈ Z0 for each
a ∈ A. For a flow x, define the balance vector bx as follows:
bx(v) =

∑
v′∈N+(v) x(vv′)−∑

v′∈N−(v) x(v′v) for every v ∈ V. For two distinct
vertices s, t ∈ V , a flow x is an (s, t)-flow if bx(s) = −bx(t) ≥ 0 and bx(v) = 0
for each v ∈ V \ {s, t}. The value of an (s, t)-flow x is |x| = bx(s). A flow x
is a circulation if bx(v) = 0 for every v ∈ V . The cost of a flow x is given
by c(x) =

∑
vv′∈A c(vv′)x(vv′). A flow x is feasible in N = (V,A, l, u, c, b) if

the following conditions are satisfied:

(a) l(a) ≤ x(a) ≤ u(a) for every vv′ ∈ A;
(b) bx(v) = b(v) for every v ∈ V .

If no balance constraint is specified, that is, N = (V,A, l, u, c), then a feasible
flow in N just has to satisfy (a) above.

See Figure 1.17 for an example of a feasible flow.
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(1, 3, 4, 3)

(0, 0, 3, 1)

(2, 4, 5, 6)

(1, 1, 4, 1)

(3, 3, 3, 1)
(5, 6, 8, 4)

(0, 3, 3, 2)

(4, 5, 7, 8)

(2, 2, 4, 1)

Figure 1.17 A network N = (V,A, l, u, c) with a feasible flow x specified. The
specification on each arc uv is (l(vw), x(vw), u(vw), c(vw)). The cost of the flow is
109.



28 J. Bang-Jensen and G. Gutin

The following two simple propositions allow us to reduce problems about
general feasible flows to problems about feasible (s, t)-flows. See [4, Section
4.2].

Proposition 1.9.1 Let N = (V,A, l, u, b, c) be a network.

(a) Suppose that the arc ij ∈ A has l(ij) > 0. Let N ′ be obtained from
N by making the following changes: b(j) := b(j) + l(ij), b(i) := b(i) −
l(ij), u(ij) := u(ij) − l(ij), l(ij) := 0. Then every feasible flow x in N
corresponds to a feasible flow x′ in N ′ and vice versa. Furthermore, the
costs of these two flows are related by c(x) = c(x′) + l(ij)c(ij).

(b) There exists a network Nl≡0 in which all lower bounds are zero such
that every feasible flow x in N corresponds to a feasible flow x′ in Nl≡0

and vice versa. Furthermore, the costs of these two flows are related by
c(x) = c(x′) +

∑
ij∈A l(ij)c(ij).

Proposition 1.9.2 Let N = (V,A, l ≡ 0, u, b, c) be a network. Let M =∑
{v:b(v)>0} b(v) and let Nst be the network defined as follows: Nst = (V ∪

{s, t}, A′, l′ ≡ 0, u′, b′, c′), where

(a) A′ = A ∪ {sr : b(r) > 0} ∪ {rt : b(r) < 0},
(b) u′(ij) = u(ij) for all ij ∈ A, usr = b(r) for all r such that b(r) > 0 and

u(qt) = −b(q) for all q such that b(q) < 0,
(c) c′(ij) = c(ij) for all ij ∈ A and c′ = 0 for all arcs leaving s or entering

t,
(d) b′(v) = 0 for all v ∈ V , b′(s) = M , b′(t) = −M.

Then every feasible flow x in N corresponds to a feasible flow x′ in Nst and
vice versa. Furthermore, the costs of x and x′ are the same.

For a function f : A → Z and a proper subset X of V , let X = V \X and
f(X,X) =

∑
yz∈(X,X) f(yz). It is not hard to see that given a network N =

(V,A, l, u) if l(S, S) > u(S, S) then N has no feasible circulation. Hoffman
[26] proved that the converse holds as well.

Theorem 1.9.3 (Hoffman’s circulation theorem) Let N = (V,A, l, u)
be a network with lower bounds on the arcs, then N has a feasible circulation
if and only if the following holds for every proper subset S of V :

l(S, S) ≤ u(S, S). (1.2)

1.10 Polynomial and Exponential Time Algorithms,
SAT and ETH

Unless explicitly stated otherwise, when we say that an algorithm is polyno-
mial, respectively that a problem is polynomial, we mean that the running
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time of the algorithm is polynomial in the size of the input, respectively that
there exists a polynomial algorithm for solving the problem.

Recall that a CNF formula is a conjunction of clauses. Each clause is
a disjunction of literals, each of which is either a variable or its negation. A
CNF formula F is satisfiable if there is a truth assignment to the variables
of F such that every clause contains at least one literal equal true. In k-
CNF formula every clause has exactly k literals. For k ≥ 2, the problem
k-SAT is stated as follows: Given a k-CNF formula F , decide whether F
is satisfiable. It is well-known that while 2-SAT is polynomial-time solvable
(see e.g. Section 17.5 in [4]), k-SAT is NP-complete for every k ≥ 3. The
following variations of 3-SAT are also NP-hard. In NAE-3-SAT, we are
to decide whether there is a truth assignment for which each clause of a 3-
CNF formula F has a literal equal true and a literal equal false. The problem
monotone-NAE-3-SAT is a special case of NAE-3-SAT in which a 3-CNF
formula contains no negations of variables. Finally, in 1-in-3-SAT, given a
3-CNF formula F , decide whether there is a truth assignment making exactly
one literal true in each clause of F .

It is widely believed that P 
= NP and thus there are no polynomial
time algorithms for NP-complete problems. Unfortunately, many problems in
graph theory are NP-complete and just declaring them intractable seems too
simplistic. In this and the next two sections we will briefly consider modern
approaches for dealing with NP-hard problems. We will consider only theory-
based methods largely ignoring many heuristic approaches, which are of great
interest in graph theory applications, but unfortunately are outside the scope
of this book.

It seems that the oldest practical way to deal with NP-hard problems
is to use exponential time algorithms such as branch-and-bound. The theo-
retical foundations of such algorithms have been largely ignored for a while,
but in the last two decades the situation has changed and many approaches
and results on exponential-time algorithms have been obtained, see, e.g., [19]
which is the only monograph on the topic. One such example is Schöning’s
randomized k-SAT algorithm [34] and its derandomization by Moser and
Scheder [31]. The runtimes of Schöning’s algorithm and of its derandom-
ization are O∗((2(k−1)

k )n) and O∗((2(k−1)
k + ε)n), where n is the number of

variables and ε is an arbitrary positive number. As customary in the area of
exponential algorithms, we used above O∗ which hides not only constant fac-
tors, but also polynomial ones. Note that the obvious brute-force algorithm
for k-SAT is of runtime O∗(2n).

Recently many lower bound results for the complexity of exponential time
algorithms have been proved under the assumption that the Exponential
Time Hypothesis (ETH) (see [15]) holds. ETH claims that there exists a real
number δ > 0 such that 3-SAT cannot be solved in time O(2δn), where n is
the number of variables in the CNF formula of 3-SAT. For example, Cygan,
Fomin, Golovnev, Kulikov, Mihajlin, Pachocki and Socala [14] proved that,
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subject to ETH, there is no 2o(n log n)-time algorithm deciding whether an
n-vertex graph H is a subgraph of another n-vertex graph G (the obvious
brute-force algorithm solves this problem in time 2O(n log n)).

1.11 Parameterized Algorithms and Complexity

Parameterized algorithms and complexity is one of the approaches for deal-
ing with NP-hard problems. The main idea of this approach is that using
only the size of the problem in the complexity bound for the problem is often
too simplistic as the instances of the problem under consideration which are
of our interest, often have some small parameter k (such as the maximum
semi-degree of a digraph or the treewidth of an undirected graph). Problems
with parameters are called parameterized problems; an instance of a pa-
rameterized problem is a pair (I, k), where I is an instance of the problem (no
parameter) and k is the value of the parameter.For a parameterized problem
with parameter k, an algorithm of runtime O∗(f(k)) := O(f(k)nc), where
f(k) is an arbitrary computable function, n is the size of the problem and
c is a constant (independent of k and n), can be viewed as a generalization
of a polynomial algorithm and, thus, an efficient algorithm (especially when
f(k) grows relatively slowly and c is of moderate value). Such algorithms
are called fixed-parameter tractable (FPT) and parameterized problems
admitting such algorithms are also called FPT. The class of FPT problems
is denoted by FPT.

From the practical point of view, the chosen parameters should be rel-
atively small on practically-interesting instances of the problem under con-
sideration. The Directed rural postman problem (DRPP) is formulated as
follows: Given a strongly connected directed multigraph D = (V,A) with
nonnegative integral weights on the arcs, a subset R of required arcs and a
nonnegative integer �, we are to decide whether D has a closed directed walk
of weight at most � containing every arc of R. DRPP is NP-hard. Let k be
the number of connected components in the subgraph of UG(D) induced by
R. In [37] Sorge, van Bevern, Niedermeier and Weller commented that “k
is presumably small in a number of applications” and Sorge [36] noted that
in planning for snow plowing routes for Berliner Stadtreinigung, k is only
between 3 and 5. Gutin, Wahlström and Yeo [25] developed an O∗(2k)-time
randomized algorithm for DRPP. Unfortunately, the existence of a determin-
istic FPT algorithm for DRPP parameterized by k still remains “a more than
thirty years open ... question with significant practical relevance” (see [37]).

When the runtime O(f(k)nc) is replaced by the much more powerful
nO(f(k)), we obtain the class XP where each problem is polynomial-time
solvable for any fixed value of k. There are a number of parameterized com-
plexity classes between FPT and XP (for each integer t ≥ 1, there is a class
W[t]) and they form the following tower:
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FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P ] ⊆ XP.

Here W[P] is the class of all parameterized problems (with parameter k) that
can be solved in f(k)nO(1) time by a non-deterministic Turing machine that
makes at most f(k) log n non-deterministic steps for some function f . For the
definition of classes W[t], see, e.g., the monographs [15] by Cygan, Fomin,
Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk and Saurabh, and [18] by
Downey and Fellows. It is widely believed that FPT 
= W[1]. One reason
for this is that if FPT = W[1], then ETH fails, see, e.g., [18]. The problem
of deciding whether a graph has a clique with k vertices is W[1]-complete
[15, 18], so it is highly unlikely that the problem is FPT.

For parameterized problems Π and Π ′, a bikernelization is a polynomial
algorithm that maps an instance (I, k) of Π to an instance (I ′, k′) of Π ′ (the
bikernel) such that (i) (I, k) ∈ Π if and only if (I ′, k′) ∈ Π ′, (ii) k′ ≤ g(k),
and (iii) |I ′| ≤ g(k) for some function g. The function g(k) is called the size
of the bikernel. When Π ′ = Π, a bikernel is called a problem kernel or
just a kernel. It is well-known that a parameterized problem Π is fixed-
parameter tractable if and only if it is decidable and admits a kernelization
[15, 18]. The same holds if “kernel” is replaced by a “bikernel” (see [2] by
Alon, Gutin, Kim, Szeider and Yeo).

Due to applications, low degree polynomial size kernels are of main inter-
est. Unfortunately, many FPT problems do not have kernels of polynomial
size unless NP ⊆ coNP/poly, which is highly unlikely as NP = coNP/poly
would imply that the polynomial hierarchy collapses to its third level; for def-
initions and more information, see, e.g., [15, 18]. In particular, the problem of
whether a digraph contains a k-dipath is FPT but has no polynomial kernel
unless coNP ⊆ NP/poly [11]. Binkele-Raible, Fernau, Fomin, Lokshtanov,
Saurabh and Villanger [10] proved that the problem of deciding whether a
digraph D and a vertex v ∈ V (D) has an out-tree rooted at v with least k
leaves admits a problem kernel with at most O(k3) vertices (and, hence, at
most O(k6) arcs). Interestingly, Binkele-Raible et al. [10] also proved that if
we allow the out-tree to be rooted at any vertex of D, then the “unrooted”
problem does not admit a polynomial kernel unless coNP ⊆ NP/poly. For
further background and terminology on parameterized complexity we refer
the reader to the monographs [15, 18].

Let us consider a couple of recent results on parameterized complexity of
problems on digraphs.

Bang-Jensen and Yeo [7] asked whether the following problem is FPT.

connectivity preserving path contractions Parameter: k
Input: A strongly connected digraph D.
Question: Can we path-contract k arcs from D such that D remains
strongly connected?
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Gutin, Ramanujan, Reidl and Wahlström [24] proved that the problem
is, in fact, W[1]-hard. However, the problem is FPT if the operation of path-
contraction is replaced by deletion, which was proved by Basavaraju, Misra,
Ramanujan and Saurabh [8].

We complete this section with an open questions on the parameterized
complexity of the following digraph problem introduced by Bezáková, Curt-
icapean, Dell and Fomin [9].

Problem 1.11.1 For given vertices s and t of a digraph D, and an integer
(parameter) k, decide whether D has an (s, t)-path in D that is at least k
longer than a shortest (s, t)-path.

If “at least” is replaced by “exactly”, then the problem is FPT [9]. How-
ever, it is unknown whether the original problem is even in XP.

1.12 Approximation Algorithms

There are several situations when the use of exact optimization algorithms
does not seem to be a good idea. One is when the time is greatly limited
or the problem should be solved online. Another is when the data is not
exact or the objective function is not well-defined and, thus, we cannot get
an optimal solution even by exhaustive search. In such situations, we can use
approximation algorithms for finding a solution that is often not optimal, but
we have some performance guarantee in each case.

Let P be a combinatorial optimization problem, and let A be an approx-
imation algorithm for P . Let X(I) denote the set of all feasible solutions for
some instance I ∈ P and let |I| be the size of I. We denote the solution
obtained by A for an instance I of P by x(I). Furthermore let opt(I) denote
the optimal solution of I. The weight of a solution y of P will be denoted by
w(y).

The theoretical performance of an approximation algorithm is normally
measured by the (worst case) performance ratio. Usually, upper or lower
bounds for the worst case performance ratio are obtained, where the perfor-
mance ratio is defined as

max
I∈P :|I|=n

{
w(x(I))

w(opt(I))
,
w(opt(I))
w(x(I))

}

The performance ratio defined in this way has its advantage in the fact that
it is always at least 1 (for both minimization and maximization problems).

We normally require that an approximation algorithm has a polynomial
running time. Some approximation algorithms provide a good performance
guarantee. For example, the well-known Christofides algorithm [13] for the
symmetric TSP3 with triangle inequality (i.e., wij + wjk ≥ wik for every

3 The symmetric TSP is the problem of finding a minimum weight Hamilton cycle
in a weighted complete undirected graph.
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triple i, j, k of vertices, where wij is the weight of an edge ij) has performance
ratio 1.5. Unless P=NP, there are no approximation algorithms of constant
performance ratio for the (general) symmetric TSP [3].

A polynomial-time approximation scheme (PTAS) is an algorithm
which takes an instance of a minimization problem Q and a parameter ε > 0
and, in polynomial time, returns a solution that is within a factor 1 + ε of
being optimal. The definition remains the same for maximization problems,
but the solution must be within a factor 1 − ε of being optimal. It is well-
known that MaxSNP-hard problems do not admit PTAS unless P = NP.

For many results on approximation algorithms and in-approximability,
see, e.g., the monograph [38] by Williamson and Shmoys.
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2. Tournaments and Semicomplete Digraphs

Jørgen Bang-Jensen and Frédéric Havet

The class of tournaments is by far the most well-studied class of digraphs
with many deep and important results. Since Moon’s pioneering book in
1968 [146], the study of tournaments and their properties has flourished. A
search in May 2017 on MathSciNet for ‘tournament’ and 05C20 gives more
than 900 hits. Clearly we can only cover a small fraction of the research on
tournaments, but we believe that our coverage will stimulate new research
on this beautiful class of digraphs.

Being a super-class of tournaments, the class of semicomplete digraphs
inherits many of the properties of tournaments, but there are important dif-
ferences and we shall try to point out such when relevant. Due to space limi-
tations we will not mention all places where a result for tournaments extends
to semicomplete digraphs. Note that the results of Section 2.3 imply that re-
sults for k-strong tournaments often imply similar results for (3k − 2)-strong
semicomplete digraphs.

In Section 2.1 we introduce some special tournaments that occur in sev-
eral proofs and results in the chapter. Section 2.2 gives some basic proper-
ties of tournaments and semicomplete digraphs such as the fact that they
are always traceable. The short Section 2.3 is about spanning tournaments
of high connectivity in highly connected semicomplete digraphs. In Section
2.4 we give two very different proofs for the tournament case of the conjec-
ture of Seymour (and Dean in the case of tournaments) that every oriented
graph has a vertex with distance 2 to at least as many vertices as it has out-
neighbours. Section 2.5 deals with linkages and disjoint cycles in tournaments
and semicomplete digraphs. In Section 2.6 we discuss further topics related to
Hamiltonian paths and cycles and give a proof of Redéi’s theorem that every
tournament has an odd number of Hamiltonian paths. Section 2.7 is devoted
to oriented subgraphs in tournaments, in particular to oriented Hamiltonian
paths and cycles in tournaments. In Section 2.8 we study vertex-partitions
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of semicomplete digraphs where each part has to have certain properties,
e.g. being strongly connected or being acyclic. Section 2.9 deals with results
of feedback sets, that is, sets of vertices or arcs whose deletion makes the
resulting digraph acyclic. Even for tournaments, finding such a set of mini-
mum cardinality is NP-complete. In Section 2.10 we study the problem of
how many arcs one may delete from a k-(arc)-strong tournament without
reducing the connectivity of the resulting digraph. The answer is that we
may delete surprisingly many. Section 2.11 is also on connectivity, but this
time the operation we consider is that of either reversing arcs or of deori-
enting arcs, that is, adding an arc oppositely oriented to an existing arc. In
Section 2.12 we consider arc-disjoint spanning subdigraphs of semicomplete
digraphs. This includes the famous Kelly conjecture that the arc set of every
regular tournament decomposes into Hamiltonian cycles. Section 2.13 is on
minors of semicomplete digraphs. It turns out that for this class of digraphs
the notion of a minor, defined as being any digraph that can be obtained by
contracting strong subdigraphs, leads to results in the same vein as the graph
minor theory of Roberson and Seymour. Finally, in Section 2.14 we briefly
survey a few further topics on tournaments.

We will use the shorthand names n-tournament and n-semicomplete
digraph for a tournament, resp. semicomplete digraph on n vertices. Through-
out this chapter, except for Section 2.7, paths and cycles are always assumed
to be directed.

2.1 Special Tournaments

We first define a number of special tournaments that will be referred to later.
Let n ≥ 1 be an integer. The unique acyclic n-tournament is the transi-
tive tournament, denoted TTn. This has an ordering (v1, v2, . . . , vn) of its
vertices so that vivj is an arc whenever 1 ≤ i < j ≤ n.

A tournament is almost transitive if it is obtained from a transitive
tournament with acyclic ordering (v1, v2, . . . , vn) (i.e., vi → vj for all 1 ≤ i <
j ≤ n) by reversing the arc v1vn.

The random n-tournament RTn is the (random) digraph one obtains
from the complete graph Kn by choosing one from each of the two possible
orientations of each edge uv of Kn with probability 1

2 for each of the two
possible orientations.

Recall that an n-tournament is regular if n = 2k + 1 for some k ≥ 1
and every vertex has in- and out-degree k. Below we describe two important
examples of classes of regular tournaments.

Let Z2k+1 be the set of integers modulo 2k + 1 and let J be a subset of
Z2k+1 \ {0} such that for every i ∈ Z2k+1 \ {0}, we have i ∈ J if and only
if −i �∈ J . Then the circulant tournament CT2n+1(J) is the tournament
whose vertex set is Z2k+1 and ij is an arc if and only if j − i ∈ J . For some
examples of papers on circulant tournaments, see [14, 47, 136, 149].
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For each prime power q of the form q = 4k+3, the Paley tournament Pq

is the q-tournament whose vertices are the elements of the finite field GF (q)
with q elements. There is an arc from x to y if and only if y −x is a non-zero
square in the field. E.g. when q = 7 the vertex set of P7 is {0, 1, 2, 3, 4, 5, 6}
and ij is an arc of P7 if and only if ((j − i) mod 7) ∈ {1, 2, 4}. For examples
of papers dealing with Paley tournaments, see e.g. [44, 46, 47, 51].

2.2 Basic Properties of Tournaments and Semicomplete
Digraphs

We start with a very simple but important observation which is proved by a
simple counting argument.

Proposition 2.2.1 Every semicomplete digraph on n vertices contains a ver-
tex with out-degree at least �n

2 � and a vertex with in-degree at least �n
2 �.

Proof: Let T be a semicomplete digraph on n vertices. We have

∑

v∈V (T )

d+(v) =
∑

v∈V (T )

d−(v) = |A(T )| ≥
(

n

2

)
= n · n − 1

2
.

Thus there is a vertex with out-degree (resp. in-degree) at least 	n−1
2 
 = �n

2 �.
�

Proposition 2.2.2 Let k be a positive integer. Every semicomplete digraph
has at most 2k − 1 vertices of out-degree less than k.

Proof: Let D be a semicomplete digraph and let X be the set of vertices of
out-degree less than k in T . The number of arcs in the subdigraph D[X] is
at most |X|(k − 1). On the other hand, D[X] has at least

(|X|
2

)
arcs. Hence,

|X|(|X| − 1)
2

≤ |A(D[X])| ≤ |X|(k − 1),

implying that |X| ≤ 2k − 1.

Using Proposition 2.2.1 we can now give a lower bound on the largest
transitive subtournament in any tournament.

Proposition 2.2.3 Every n-tournament contains a transitive subtournament
TTk with k ≥ 	log n
.

Proof: The following algorithm produces such a transitive subtournament:
Let T ′ := T and R = ∅. While T ′ has at least one vertex: let v be a vertex
of maximum out-degree in T ′ and let R := R ∪ {v}. By Proposition 2.2.1,
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|N+
T ′(v)| ≥ �n

2 �. Hence, letting T ′ := T ′[N+(v)], the new T ′ has size at least
�n
2 �. Repeat the step above for T ′.

Clearly the set R returned by this algorithm induces a transitive subtour-
nament of T . To see that R has size at least 	log n
, consider the integer r
satisfying 2r ≤ n < 2r+1. After step number i in the algorithm above we
have 2r−i ≤ |V (T ′)|, from which it follows that |R| ≥ r + 1 ≥ 	log n
 holds
at the end. �

One of the first results on tournaments is the following, due to Rédei. See
Section 2.6 for a beautiful generalization of this, also due to Rédei.

Theorem 2.2.4 (Rédei’s Theorem [158]) Every tournament contains a
Hamiltonian dipath.

Proof: By induction on the number of vertices. The statement is trivial
for the 1-tournament. Let n ≥ 2, let T be an n-tournament and let v be
a vertex of T . By the induction hypothesis, T 〈N−(v)〉 and T 〈N+(v)〉 have
Hamiltonian directed paths P− and P+. Thus P−vP+ is a Hamiltonian
dipath of T 1. �

Since we can obtain a tournament from a semicomplete digraph by re-
moving an arbitrary arc from each 2-cycle, we obtain that Theorem 2.2.4 also
holds for semicomplete digraphs (and this can also be proved directly with
the same proof as above).

Corollary 2.2.5 Every semicomplete digraph has a Hamiltonian path.

There is no analogue to Theorem 2.2.4 for Hamiltonian dicycles since the
transitive tournaments are acyclic and in particular have no Hamiltonian
dicycle. More generally, no non-strong tournament has a Hamiltonian dicycle
because it has a vertex-partition (L,R) such that L�→R (e.g. if we take L to
be the vertices of the initial strong component and L to be the remaining
vertices). In contrast, all strong tournaments have a Hamiltonian directed
cycle as shown by Camion [56].

Theorem 2.2.6 (Camion’s Theorem [56]) Every strong tournament has
a Hamiltonian dicycle.

A simple proof of Camion’s Theorem, due to Moon [144], actually proves
a stronger result.

Theorem 2.2.7 (Moon’s Theorem [144]) Every strong tournament is
vertex-pancyclic.

1 Note that here we allowed one of the two tournaments to be empty, in which
case the corresponding path is also empty
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Proof: Let x be a vertex in a strong tournament T on n ≥ 3 vertices. The
proof is by induction on k. We first prove that T has a 3-cycle through x.
Since T is strong, each of the sets O = N+(x) and I = N−(x) are non-empty
and the set (O, I) is also non-empty. Let yz ∈ (O, I). Then xyzx is a 3-cycle
through x. Let C = x0x1 . . . xt be a dicycle in T with x = x0 = xt and
t ∈ {3, 4, . . . , n − 1}. We prove that T has a (t + 1)-cycle through x.

If there is a vertex y ∈ V (T ) \ V (C) which dominates a vertex in C and
is dominated by a vertex in C, then it is easy to see that there exists an
index i such that xi → y and y → xi+1. Therefore, C[x0, xi]yC[xi+1, xt] is a
(t + 1)-cycle through x. Thus, we may assume that every vertex outside of
C either dominates every vertex in C or is dominated by every vertex in C.
The vertices of V (T ) \ V (C) that dominate all vertices of V (C) form a set
R; the rest of the vertices in V (T ) \ V (C) form a set S. Since T is strong,
both S and R are non-empty and the set (S,R) is non-empty. Hence, taking
sr ∈ (S,R), we see that x0srC[x2, xt] is a (t + 1)-cycle through x = x0. �

The following is an easy consequence of Theorem 1.7.3.

Proposition 2.2.8 Every strong semicomplete digraph on n ≥ 3 vertices
contains a strong spanning tournament.

Together with Moon’s theorem, Proposition 2.2.8 implies the following.

Theorem 2.2.9 Every strong semicomplete digraph is vertex-pancyclic. �

This easily implies the following.

Corollary 2.2.10 Every strong semicomplete digraph D on at least four ver-
tices has two distinct vertices v1, v2 such that D − vi is strong for i ∈ [2].

This is the best possible as shown by the tournament that one obtains
from a transitive tournament TTk on at k ≥ 3 vertices by reversing the arcs
of the unique Hamiltonian path.

2.2.1 Median Orders, a Powerful Tool

Now we introduce a very useful tool for proving results about tournaments
and other classes of digraphs.

A median order of a digraph D is a linear order (v1, v2, . . . , vn) of its
vertex set such that |{(vi, vj) : i < j}| (the number of arcs directed from left
to right) is as large as possible. In the case of a tournament, such an order
can be viewed as a ranking of the players which minimizes the number of
upsets (matches won by the lower-ranked player). As we shall see, median
orders of tournaments reveal a number of interesting structural properties.
Let us first note two basic properties of median orders of tournaments whose
easy proofs are left to the reader.



40 J. Bang-Jensen and F. Havet

Lemma 2.2.11 Let T be a tournament and (v1, v2, . . . , vn) a median order
of T . Then, for any two indices i, j with 1 ≤ i < j ≤ n:

(M1) The suborder (vi, vi+1, . . . , vj) is a median order of the induced subtour-
nament T 〈{vi, vi+1, . . . , vj}〉 ;

(M2) The vertex vi dominates at least half of the vertices vi+1, vi+2, . . . , vj,
and vertex vj is dominated by at least half of the vertices vi, vi+1, . . . ,
vj−1.

In particular, each vertex vi, 1 ≤ i < n, dominates its successor vi+1. The
sequence v1v2 . . . vn is thus a Hamiltonian directed path, providing an alter-
native proof of Rédei’s Theorem (Theorem 2.2.4).

2.2.2 Kings

The second out-neighbourhood of a vertex v in a digraph D, denoted by
N++

D (v) or simply N++(v), is the set of vertices at distance 2 from v. In other
words, it is the set of vertices that are dominated by an out-neighbour of v
and are not in v ∪ N+(v). The dual notion of second in-neighbourhood
of a vertex v in a D is defined similarly and is denoted by N−−

D (v) or simply
N−−(v).

A king in a tournament T is a vertex v such that {v}∪N+(v)∪N++(v) =
V (T ). Landau [129] proved that every tournament has a king.

Theorem 2.2.12 ([129]) Every tournament has a king. More precisely, every
vertex with maximum out-degree is a king.

Proof: Let v be a vertex of maximum out-degree in a tournament T . Suppose
by way of contradiction that v is not a king. Then there exists a vertex w
in T that is dominated by no vertex of N+(v) ∪ {v}. Hence w dominates
N+(v) ∪ {v} and d+(w) ≥ d+(v) + 1, a contradiction. �

Havet and Thomassé demonstrated that the existence of a king in a tour-
nament can also be proved using median order.

Lemma 2.2.13 ([109]) Let T be a tournament. If (v1, v2, . . . , vn) is a median
order of T , then v1 is a king of T .

Proof: Consider vi for 2 ≤ i ≤ n. We shall prove that vi ∈ N+(v1) ∪
N++(v1). Assume that vi is not in N+(v1). Then it dominates v1. By the
property (M2) of Lemma 2.2.11, v1 dominates at least half of the vertices
{v2, . . . , vi}, and so, since v1 is dominated by vi, it dominates more than half
the vertices of {v2, . . . , vi−1}. Similarly, vi is dominated by more than half the
the vertices of {v2, . . . , vi−1}. Therefore, there is a vertex in {v2, . . . , vi−1},
which dominates vi and is dominated by v1. Hence vi ∈ N++(v1). �
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Since every tournament admits a median order, Lemma 2.2.13 directly
implies Theorem 2.2.12. Moon [145] proved that a tournament has at least
three kings, provided that it has no source (that is, a vertex with in-degree 0
and thus dominating all other vertices). Observe this condition is necessary:
if a tournament contains a source, then this vertex is its unique king.

Corollary 2.2.14 ([145]) Every tournament T with δ−(T ) ≥ 1 has at least
three kings.

Proof:
We give a proof due to Havet and Thomassé [109]. Assume that δ−(T ) ≥

1. Let (v1, v2, . . . , vn) be a median order of T . By Lemma 2.2.13, vertex v1 is a
king. Let i be the smallest index such that vi is an in-neighbour of v1, and let
j be the smallest index such that vj is an in-neighbour of vi. Those vertices
exist since T has no source. We claim that both vi and vj are kings of T .
First, observe that 1 < j < i by (M2). Now, by (M1), vi, . . . , vn is a median
order of T ′ = T 〈{vi, . . . , vn}〉, and so, by Lemma 2.2.13, vi is a king of T ′.
Moreover, via v1, which dominates all vertices in v2, . . . , vi−1 (by the choice
of i), vi is also a king of T 〈{v1, . . . , vi}〉. Hence vi is a king of T . Similarly,
vj is a king of T 〈{vj , . . . , vn}〉, and, via vi, which dominates all vertices in
v1, . . . , vj−1 (by the choice of j), is a king of T . �

The above results have been generalized to arc-coloured tournaments. A
monochromatic king in an arc-coloured tournament is a vertex v such that
for every vertex w, one can find a monochromatic (v, w)-dipath. There are
many examples of arc-coloured tournaments with no monochromatic king.
Firstly, a tournament with no source and with all its arcs coloured differently
has no monochromatic king. Secondly, if there is a partition (V1, V2, V3) of
the vertex set of a tournament T such that V1 → V2 → V3 → V1, then T
has no monochromatic king. Shen gave a simple necessary condition for the
existence of a monochromatic king in arc-coloured tournaments.

Theorem 2.2.15 ([169]) If we colour the arcs of a tournament T in such a
way that no subtournament of order 3 gets three different colours on its arcs,
then there exists a monochromatic king.

Proof: The proof is by induction on the number of vertices. Remove a vertex
x1 from T . By the induction hypothesis, one can find a monochromatic king
x2 in T − x1. If x2 → x1, then x2 is a monochromatic king in T . Therefore,
we may assume x1 → x2. Repeating the process for x2, and so on, either we
find a monochromatic king in T , or we find a directed cycle C = xk . . . x�xk

such that xi is a monochromatic king in T −xi−1 (with xk−1 = x�). If C does
not span T , then by the induction hypothesis, there is a monochromatic king
in T 〈C〉, say xi. Thus there is a monochromatic (xi, xi−1)-dipath in T 〈C〉.
Because, xi is a monochromatic king in T − xi−1, it follows that xi is also
a monochromatic king in T . Henceforth, we assume that C = x1 . . . xnx1
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is Hamiltonian in T . If the arcs of C are monochromatic, the conclusion
holds, so there is one particular xi such that xi−1xi and xixi+1 have different
colours, say c1 and c2. By the induction hypothesis, there is a monochromatic
dipath P from xi+1 to xi−1. If P is coloured by c1 or c2, then either xi+1

or xi respectively is a monochromatic king in T . Henceforth, we may assume
that P is coloured by c3. Set P = y1 . . . yq with y1 = xi+1 and yq = xi−1. Let
j be the smallest index such that the arc aj between xi and yj is not coloured
c2. Such a j exists because yqxi is coloured c1. Since T 〈{yj−1, yj , xi}〉 does
not have three different colours on its arcs, necessarily aj is coloured c3. If
aj = yjxi (resp. aj = xiyj), then there is a c3-monochromatic (xi+1, xi)-
dipath (resp. (xi, xi−1)-dipath) and xi+1 (resp. xi) is a monochromatic king
in T . �

In Shen’s paper the following question was asked: is it true that no matter
how we colour the arcs of a tournament, there is either a trichromatic 3-cycle
or a monochromatic king. This was disproved by Galeana-Sánchez and Rojas-
Monroy in [93].

2.2.3 Scores and Landau’s Theorem

Let T be a tournament. Its score sequence is the sequence of the out-degrees
of its vertices in non-decreasing order. Hence, if V (T ) = {v1, v2, . . . , vn}
with d+(v1) ≤ d+(v2) ≤ · · · ≤ d+(vn), then the score sequence of T is
(d+(v1), d+(v2), . . . , d+(vn)).

Consider a score sequence s of some n-tournament T . Any k vertices
of T induce a subtournament S and, hence, the sum of the scores in T of
these k vertices must be at least the sum of their scores in S, which is just
the total number of arcs in S, that is,

(
k
2

)
. Hence

∑
i∈I si ≥

(|I|
2

)
for all I ⊆

{1, 2, . . . , n}, with equality for I = {1, 2, . . . , n}. In particular,
∑k

i=1 si ≥
(
k
2

)
,

for all 1 ≤ k ≤ n with equality for k = n. Landau proved that this obvious
necessary condition is actually also sufficient.

Theorem 2.2.16 (Landau [129]) The sequence s = (s1 ≤ s2 ≤ · · · ≤ sn) of
integers is the score sequence of an n-tournament if and only if

k∑

i=1

si ≥
(

k

2

)
, for all 1 ≤ k ≤ n, with equality for k = n. (2.1)

There are many known proofs of Landau’s theorem (see [52, 97, 140, 160,
185]). Many of these proofs are discussed in the survey [160] by Reid. The
proof we present here is due to Griggs and Reid [97].

Proof: The specific sequence t = (0, 1, 2, . . . , n− 1) satisfies conditions (2.1)
as it is the score sequence of the transitive n-tournament. If a sequence s �= t
satisfies (2.1), then since s1 ≥ 0 and sn ≤ n − 1, s contains a repeated term.
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The object of this proof is to produce a new sequence s′ from s which also
satisfies (2.1), is ‘closer’ to t than is s, and is a score sequence if and only
if s is a score sequence. Toward this end, define j to be the smallest index
for which sj = sj+1, and define m to be the number of occurrences of the
term sj in s. Note that j ≥ 1 and m ≥ 2, and that either j + m − 1 = n or
sj = sj+1 = · · · = sj+m−1 < sj+m. Define s′ as follows:

for 1 ≤ i ≤ n, s′
i =

⎧
⎨

⎩

si − 1, if i = j,
si + 1, if i = j + m − 1,
si, otherwise.

Clearly, s′
1 ≤ s′

2 ≤ · · · ≤ s′
n.

Let us show that s′ a score sequence if and only if s is a score sequence.
If s′ is the score sequence of some n-tournament T ′ in which vertex vi has
out-degree s′

i, 1 ≤ i ≤ n, then, since s′
j+m−1 > s′

j , there is a vertex in T ′,
say vp, for which vj+m−1 → vp and vp → vj . The reversal of those two
arcs in T ′ yields an n-tournament with score sequence s. Conversely, if s
is the score sequence of some n-tournament T in which vertex vi has score
si, 1 ≤ i ≤ n, then we may suppose that vj dominates vj+m−1 in T , for
otherwise, interchanging the labels on these two vertices does not change s.
The reversal of the arc vjvj+m−1 in T yields an n-tournament with score
sequence s′.

To conclude the inductive proof, since s′ is closer to t than s, it remains
to show that s′ satisfies (2.1). By definition of s′, one needs to show that∑k

i=1 si ≥
(
k
2

)
+ 1 for all j ≤ k ≤ j + m − 2. The proof is by induction on

k ≥ j. The case k = j is very similar to the induction step and is omitted.
Suppose that for some k, j ≤ k < j + m − 2,

∑k
i=1 si ≥

(
k
2

)
+ 1. We shall

prove that
∑k+1

i=1 si ≥
(
k+1
2

)
+ 1. Suppose by way of contradiction that this

is not the case. Then by (2.1),

k+1∑

i=1

si =
(

k + 1
2

)
. (2.2)

Now since j < k + 2 ≤ j + m − 1, by definition of j and m and the above
equation, we have

sk+1 = sk+2 =
k+2∑

i=1

si −
k+1∑

i=1

si ≥
(

k + 2
2

)
−

(
k + 1

2

)
= k + 1.

Consequently, by the induction hypothesis,

k+1∑

i=1

si = sk+1 +
k∑

i=1

si ≥ sk+1 +
(

k

2

)
+ 1 ≥ k + 1 +

(
k

2

)
+ 1 ≥

(
k + 1

2

)
+ 1.

This contradicts (2.2). �
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2.3 Spanning k-Strong Subtournaments of
Semicomplete Digraphs

Theorem 1.7.3 asserts that every strong digraph D without a bridge con-
tains a spanning strong oriented graph (obtained by deleting one arc from
every 2-cycle in D). It is then natural to ask whether there exists, for each
non-negative integer k, a minimum integer f(k) such that every f(k)-strong
digraph contains a spanning k-strong oriented graph. Because every k-strong
oriented graph has at least 2k +1 vertices and the complete digraph on r +1
vertices is r-strong, we have f(k) ≥ 2k for all k ≥ 2. Jackson and Thomassen
(see [178]) conjectured that this lower bound is indeed tight.

Conjecture 2.3.1 (Jackson and Thomassen [178]) Every 2k-strong di-
graph contains a spanning k-strong oriented graph.

This conjecture is still widely open for general digraphs, even in the case
when k = 2. It was verified by Thomassen [186] for the special case when
k = 2 and D is a symmetric digraph (all arcs are in 2-cycles), thus improving
on a result of Jordán [115] establishing the existence of a spanning 2-strong
oriented graph in every 18-strong symmetric digraph. For all k ≥ 3 it is still
open whether there is a function g(k) such that every g(k)-strong symmetric
digraph has a spanning k-strong oriented subdigraph.

Even for the class of semicomplete digraphs the conjecture is open when
k ≥ 3. The case k = 2 and D semicomplete follows from the next result.

Improving an earlier bound of 5k, due to Bang-Jensen and Thomassen,
Guo proved the following, which implies that the case k = 2 of Conjecture
2.3.1 holds for semicomplete digraphs.

Theorem 2.3.2 ([99]) Let k be a positive integer. Every (3k−2)-strong tour-
nament contains a spanning k-strong tournament.

Bang-Jensen and Jordán proved that the function 3k − 2 is not the best
possible when k = 2.

Theorem 2.3.3 ([30]) Every 3-strong semicomplete digraph on at least 5 ver-
tices contains a spanning 2-strong tournament. There is a polynomial algo-
rithm for constructing a spanning 2-strong tournament of a given 3-strong
semicomplete digraph.

Bang-Jensen and Jordán conjectured that the bound (3k − 2) can be
improved as follows.

Conjecture 2.3.4 ([30]) For each k ≥ 1, every (2k−1)-strong semicomplete
digraph on at least 2k + 1 vertices contains a spanning k-strong tournament.
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The number (2k − 1) would be the best possible as seen from the following
construction from [30]: Let k ≥ 2 be an integer, let U and W be disjoint
copies of the complete digraph

↔
K2k−2 with vertex sets {u1, . . . , u2k−2} and

{w1, . . . , w2k−2}, respectively, and let H ′ be the semicomplete digraph ob-
tained from these by adding the arcs of a matching {uiwi|i ∈ [2k − 2]}
oriented from U to W and the arcs {wiuj |i, j ∈ [n] and i �= j} from W to U .
It is easy to check that H ′ is (2k − 2)-strong and that H ′ cannot contain a
spanning k-strong tournament, because when we delete one arc from every
2-cycle there is some vertex of U which will have out-degree at most k − 1.
By taking an arbitrary tournament C and adding all arcs from W to C and
from C to U , we obtain an infinite family of (2k − 2)-strong semicomplete
digraphs containing no spanning k-strong tournament.

2.4 The Second Neighbourhood Conjecture

One of the (apparently) simplest open questions concerning digraphs is Sey-
mour’s Second Neighbourhood Conjecture, asserting that one can always find,
in an oriented graph D, a vertex whose second out-neighbourhood is at least
as large as its out-neighbourhood (see [69]).

Conjecture 2.4.1 (Seymour’s Second Neighbourhood Conjecture)
In every oriented graph D, there exists a vertex x such that |N+

D (x)| ≤
|N++

D (x)|.

Observe that this conjecture is false for digraphs in general. Consider for
example

↔
Kn, the complete digraph on n vertices: for every vertex v, N+(v) =

V (
↔
Kn) \ {v} while N++(v) = ∅.
Kaneko and Locke [116] proved Conjecture 2.4.1 for oriented graphs with

minimum out-degree at most 6. Fidler and Yuster [79] proved that it holds
for oriented graphs D with minimum degree |V (D)|−2, tournaments minus a
star, and tournaments minus the arc set of a subtournament. Cohn, Godbole,
Wright Harkness, and Zhang [66] proved that the conjecture holds for random
oriented graphs. Gutin and Li proved Conjecture 2.4.1 for quasi-transitive
oriented graphs [102].

One approach to Conjecture 2.4.1 is to determine the maximum value
λ such that in every oriented graph D, there exists a vertex x such that
|N+

D (x)| ≤ λ|N++
D (x)|. The conjecture is that λ = 1. Chen, Shen, and Yuster

[60] proved that λ ≥ γ where γ = 0.657298... is the unique real root of
2x3 + x2 − 1 = 0. They also claim a slight improvement to λ ≥ 0.67815...

For tournaments, Seymour’s Second Neighbourhood Conjecture was also
known as Dean’s conjecture [69] and was first solved by Fisher [80].

Theorem 2.4.2 ([80]) In any tournament, there is a vertex v such that
|N+(v)| ≤ |N++(v)|.
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The original proof of Fisher used a sort of weighted version of the prob-
lem via probability distributions. It is presented in the next subsection. A
more elementary proof using median orders was then given by Havet and
Thomassé [109]. Their proof also yields the existence of two vertices v such
that |N+(v)| ≤ |N++(v)| under the condition that no vertex is a sink (that
is, a vertex of out-degree 0). This is detailed in Subsection 2.4.2.

2.4.1 Fisher’s Original Proof

A (probability) distribution on a digraph D is a function p that assigns to
each vertex a non-negative real number such that p(V (D)) =

∑
v∈V (D) p(v) =

1. For every subset S of V (D), we set p(S) =
∑

v∈S) p(v). A distribution is
losing if p(N−(v)) ≤ p(N+(v)) for all v ∈ V (D).

Let D be an oriented graph with n vertices v1, . . . , vn. The adjacency
matrix of D, denoted by AD, is the n × n matrix defined by (AD)i,j = 1 if
vi → vj , (AD)i,j = −1 if vj → vi and (AD)i,j = 0 otherwise. Observe that
AT

D = −AD.
We shall use the following well-known lemma, due to Farkas, see e.g. [92,

Lemma 1].

Lemma 2.4.3 (Farkas’s Lemma) Let A be an m × n matrix and b an m-
dimensional real vector. Then exactly one of the following two statements is
true:

1. There exists a x ∈ N
n such that Ax = b and x ≥ 0;

2. There exists a y ∈ N
m such that AT y ≥ 0 and bT y < 0.

Theorem 2.4.4 ([80]) Every digraph has a losing distribution.

Proof: Let D be a digraph with n vertices v1, . . . , vn. To each distribution
p of D, we can associate the vector wp = (p(v1), . . . , p(vn))T . Observe that
wp ≥ 0 and 1T wp = p(V (D)) = 1. Furthermore, (ADwp)i, = p(N+

D (vi)) −
p(N−

D (vi)). Hence p is a losing distribution if ADwp ≥ 0.
Suppose D has no losing distribution. Since AT

D = −AD, the following
system has no solutions. (I denotes the identity n × n matrix.)

[
AT

D I
1T 0T

] (
w
z

)
=

(
0
1

)
with

(
w
z

)
≥

(
0
0

)
.

Farkas’s Lemma implies that there exists an n-dimensional vector u and
a real number t such that

[
AD 1
I 0

](
u
t

)
≥

(
0
0

)
with

(
0T 1

) (
u
t

)
< 0.

Thus u ≥ 0, ADu+t1 ≥ 0 and t < 0. Hence ADu > 0, so 1
1Tu

u is the vector
associated to a losing distribution, a contradiction. �
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We shall now give some properties of losing distributions.

Lemma 2.4.5 Let D be a digraph and p a losing distribution. If p(v) > 0,
then p(N+(v)) = p(N−(v)).

Proof: We use the notation of the previous proof.
Since p is a losing distribution, then ADwp ≥ 0 and wp ≥ 0. Hence

(wp)i(ADwp)i ≥ 0 for all i. But, since AD is skew-symmetric, (wp)T ADwp =
0, so (wp)i(ADwp)i = 0 for all i. Therefore if (wp)i = p(vi) > 0, necessarily,
0 = (ADwp)i = p(N+(vi)) − p(N−(vi)). In other words, if w(vi) > 0, then
p(N+(vi)) = p(N−(vi)). �

Lemma 2.4.6 Let p be a losing distribution on a tournament T . Then
p(N−(v)) ≤ p(N−−(v)) for every vertex v.

Proof: Let v be a vertex of T . Since p is a losing distribution, p(N−(v)) ≤ 1
2 .

If p(N−−(v)) ≥ 1
2 , then we are done, so we may assume that p(N−−(v)) < 1

2 .
Set R = N−(v) ∪ N−−(v) and Q = V (T ) \ R. We have p(R) < 1 and so
p(Q) > 0.

Now
∑

w∈Q

p(w)p(N−
T 〈Q〉(w)) =

∑

w∈Q

∑

u∈N−
T〈Q〉(w)

p(w)p(u) =
∑

u∈Q

∑

w∈N+
T〈Q〉(u)

p(w)p(u)

=
∑

u∈Q

p(u)p(N+
T 〈Q〉(u)).

Hence, there is a vertex w ∈ Q with p(w) > 0 such that p(N−
T 〈Q〉(w)) ≥

p(N+
T 〈Q〉(w)). By Lemma 2.4.5, p(N+

T (v)) = p(N−
T (v)). Since w is not in

N−−(v), it is dominated by N−
T (v). Thus p(N−

T (w)) ≥ p(N−
T 〈Q〉(w)) +

p(N−
T (v)) and p(N+

T (w)) ≤ p(N+
T 〈Q〉(w)) + p(N−−

T (v)). Hence

p(N−
T 〈Q〉(w)) + p(N−

T (v)) ≤ p(N+
T 〈Q〉(w)) + p(N−−

T (v)).

Since p(N−
T 〈Q〉(w)) ≥ p(N+

T 〈Q〉(w), we obtain p(N−(v)) ≤ p(N−−(v)).

�
We are now ready to prove Theorem 2.4.2.

Proof of Theorem 2.4.2: Let T be a tournament. By Theorem 2.4.4, it
admits a losing distribution p.

Set E+ =
∑

v∈V (T ) p(v)|N+(v)| and let E++ =
∑

v∈V (T ) p(v)|N++(v)|.
Since w ∈ N+(v) if and only if v ∈ N−(w), we have

E+ =
∑

v∈V (T )

p(v)|N+(v)| =
∑

v∈V (T )

∑

w∈N+(v)

p(v) =
∑

w∈V (T )

∑

v∈N−(w)

p(v)

=
∑

w∈V (T )

p(N−(w)).
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Similarly, since w ∈ N++(v) if and only if v ∈ N−−(w), we have

E++ =
∑

w∈V (T )

p(N−−(w)).

Now, as p is a losing distribution, it follows from Lemma 2.4.6 that we
have p(N−(w)) ≤ p(N−−(w)) for every vertex w. Hence E+ ≤ E++. Conse-
quently, there must be a vertex v such that |N+(v)| ≤ |N++(v)|. �

2.4.2 Proof Using Median Orders

Theorem 2.4.7 ([109]) Let T be a tournament and σ = (v1, v2, . . . , vn) be a
median order of T . Then |N+

T (vn)| ≤ |N++
T (vn)|.

Proof: We distinguish two types of vertices of N−(vn): a vertex vj ∈ N−(vn)
is σ-good if there exists a vertex vi ∈ N+(vn), with i < j, such that vi → vj ;
otherwise vj is σ-bad. We denote by Gσ the set of σ-good vertices. Observe
that Gσ ⊆ N++

T (vn).
We shall prove by induction on n that |N+

T (vn)| ≤ |Gσ| which directly
implies the result. The case n = 1 holds vacuously. Assume now n > 1. If
there is no σ-bad vertex, then Gσ = N−(vn). Moreover, by the property (M2)
of Lemma 2.2.11, |N+(vn)| ≤ |N−(vn)|, so the conclusion holds. Assume now
that there exists a σ-bad vertex. Let i be the smallest integer i such that vi is
σ-bad. Set Tr = T 〈{vi+1, . . . , vn}〉. By the property (M1) of Lemma 2.2.11,
σr = (vi+1, . . . , vn) is a median order of Tr. By the induction hypothesis,
|N+

Tr
(vn)| ≤ |Gσr

|. Since every σr-good vertex is also σ-good, we get

|N+
T (vn) ∩ {vi+1, . . . , vn}| ≤ |Gσ ∩ {vi+1, . . . , vn}|. (2.3)

By the minimality of the index of i, every vertex of {v1, . . . , vi−1} is either in
Gσ or in N+(vn). Moreover, since vi is σ-bad, we have N+(vn)∩{v1, . . . , vi} ⊆
N+(vi) ∩ {v1, . . . , vi}, so Gσ ∩ {v1, . . . , vi} ⊇ N−(vi) ∩ {v1, . . . , vi}. Now
by property (M2) of Lemma 2.2.11, |N−(vi) ∩ {v1, . . . , vi}| ≥ |N+(vi) ∩
{v1, . . . , vi}|. Hence

|N+
T (vn) ∩ {v1, . . . , vi}| ≤ |N−(xi) ∩ {v1, . . . , vi}| ≤ |Gσ ∩ {v1, . . . , vi}| (2.4)

Equations (2.3) and (2.4) yield |N+
T (vn)| ≤ |Gσ|. �

A natural question is to seek another vertex v with large second out-
neighbourhood, i.e. such that |N+(v)| ≤ |N++(v)|. Obviously, this is not
always possible: consider, for instance, a regular tournament dominating a
single vertex, or simply a transitive tournament. In both cases, the sole vertex
v with |N++(v)| ≥ |N+(v)| is the sink. Still using median orders, Havet
and Thomassé [109] proved that a tournament always has two vertices with
large second out-neighbourhood, provided that every vertex has out-degree
at least 1.
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Theorem 2.4.8 ([109]) A tournament with no sink has at least two vertices
v such that |N+(v)| ≤ |N++(v)|.

To prove this result, we need the notion of the sedimentation of a
median order σ = (v1, . . . , vn) of a tournament T , denoted by Sed(σ). If
|N+(vn)| < |Gσ|, then Sed(σ) = σ. If |N+(vn)| = |Gσ|, we denote by b1, ..., bk

the σ-bad vertices and by w1, ..., wn−1−k the vertices of N+(vn) ∪ Gσ, both
enumerated in increasing order with respect to σ. In this case, Sed(σ) is the
order (b1, . . . , bk, vn, w1, . . . , wn−1−k).

Lemma 2.4.9 If σ is a median order of a tournament T , then Sed(σ) is also
a median order of T .

Proof: Let σ = (v1, . . . , vn) be a median order of T . If Sed(σ) = σ, there is
nothing to prove. So we assume it is not the case, that is, |N+(vn)| = |Gσ|.

The proof is by induction on the number k of σ-bad vertices. If k = 0,
all the vertices are σ-good or in N+(vn), in particular N−(vn) = Gσ. Thus,
|N+(vn)| = |N−(vn)| and the order Sed(σ) = (vn, v1, . . . , vn−1) is a median
order of T . Assume now that k is a positive integer. Let i be the smallest
index (wrt. σ) of a σ-bad vertex.

For convenience, for any set S, we denote by S[i, j] the set S∩{vi, . . . , vj}.
By Equation (2.3), |Gσ[i + 1, n]| ≥ |N+

T (vn)[i + 1, n]|, and by Equation (2.4),
|Gσ[1, i]| ≥ |N+

T (vn)[1, i]|. Now by assumption, |Gσ| = |N+(xn)|, that
is, |Gσ[1, i]| + |Gσ[i + 1, n]| = |N+

T (vn)[1, i]| + |N+
T (vn)[i + 1, n]|. Hence

|Gσ[1, i]| = |N+
T (vn)[1, i]| and |Gσ[i+1, n]| = |N+

T (vn)[i+1, n]|. But since xi is
σ-bad, N+(vn)[1, i] ⊆ N+(vi)[1, i] and so N−(vi)[1, i − 1] ⊆ N−(vn)[1, i − 1].
Moreover, by property (M2) of Lemma 2.2.11, |N+(vi)[1, i]| ≤ |N−(vi)[1, i]|
and by defintion of i, N−(vn)[1, i − 1] = Gσ[1, i − 1] = Gσ[1, i]. Hence,

|Gσ[1, i]| ≤ |N+(vi)[1, i]| ≤ |N−(vi)[1, i]| = Gσ[1, i].

Thus |N+(vi)[1, i]| ≤ |N−(vi)[1, i]|, and so (vi, v1, . . . , vi−1, vi+1, . . . , vn) is a
median order of T . Applying the induction hypothesis to the median order
(v1, . . . , vi−1, vi+1, . . . , vn), which has one bad vertex less than σ, we obtain
the result. �

Proof of Theorem 2.4.8: Let σ = (v1, . . . , vn) be a median order of T .
By Theorem 2.4.7, vn has a large second neighbourhood, so we need to find
another vertex with this property.

Observe that if (u1, . . . , un−1) is a median order of T − vn, then the order
(u1, . . . , un−1, vn) is a median order of T , and consequently un−1 → vn.

Set T ∗ = T − vn Assume first that T ∗ has a median order σ∗ =
(u1, . . . , un−1) such that σ∗ = Sed(σ∗). Then

|N+
T (un−1)| = |N+

T ∗(un−1)| + 1 ≤ |Gσ∗ | ≤ |N++
T ∗ (un−1)| ≤ |N++

T (un−1)|.
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Assume now that for every median order σ∗ of T ∗, σ∗ �= Sed(σ∗). Define
now inductively σ0 = (v1, . . . , vn−1) and σq+1 = Sed(σq). By property (M1)
of Lemma 2.2.11, σ0 is a median order of T ∗; Lemma 2.4.9 and an easy
induction imply that σq is a median order of T ∗ for every positive integer q.
Since T has no dominated vertex, vn has an out-neighbour vj . As observed
above, for every integer q, the last vertex of σq dominates vn. So vj is not the
last vertex of any σq. Observe also that there is a q such that vj is σq-bad,
for otherwise the index of xj would always increase. Let σq = (u1, . . . , un−1).
We have

|N+
T (un−1)| = |N+

T ∗(un−1)| + 1 = |Gσq
| + 1.

Moreover un−1 → vn → vj , so the second neighbourhood of un−1 has at least
|Gσq

| + 1 elements. Hence |N+
T (un−1)| ≤ |N++

T (un−1)|. �

2.4.3 Relation with Other Conjectures

One of the most celebrated problems concerning digraphs is the Caccetta–
Häggkvist conjecture.

Conjecture 2.4.10 (Caccetta and Häggkvist [54]) Every digraph D on
n vertices and with minimum out-degree at least n/k has a directed cycle of
length at most k.

Since every non-transitive tournament contains a directed 3-cycle, this
conjecture easily holds for tournaments. However, little is known about this
problem, and, more generally, questions concerning digraphs and involving
the minimum out-degree tend to be intractable. As a consequence, many
open problems flourished in this area, see [175] for a survey. The Hoàng–
Reed conjecture [112] is one of these.

A directed-cycle-tree is either a singleton or consists of a set of directed
cycles C1, . . . , Ck such that |V (Ci) ∩ (V (C1) ∪ · · · ∪ V (Ci−1))| = 1 for all
i = 2, . . . , k, where V (Cj) is the set of vertices of Cj . A less explicit, yet
concise, definition is simply that a directed-cycle-tree is a digraph in which
there exists a unique directed (x, y)-path for every choice of distinct vertices
x and y. A vertex-disjoint union of directed-cycle-trees is a directed-cycle-
forest. When all directed cycles have length 3, we speak of a triangle-tree.
For short, a k-directed-cycle-forest is a directed-cycle-forest consisting of k
directed cycles.

Conjecture 2.4.11 (Hoàng and Reed [112]) Every digraph D has a
δ+(D)-directed-cycle-forest.

In the case δ+(D) = 2, Thomassen proved in [187] that every digraph
with minimum out-degree 2 has two directed cycles intersecting on a vertex
(i.e. contains a directed-cycle-tree with two directed cycles). Welhan [192]
proved Conjecture 2.4.11 for δ+(D) = 3. The motivation of the Hoàng-Reed
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conjecture is that it would imply the Caccetta-Häggkvist conjecture, as the
reader can easily check.

Havet, Thomassé and Yeo [111] proved Conjecture 2.4.11 for tournaments.
This result does not yield a better understanding of Hoàng–Reed conjecture.
However, it gives a little bit of insight into the triangle-structure of a tour-
nament T , that is, the 3-uniform hypergraph on the vertex set V (T ) whose
hyperedges are the directed 3-cycles of T .

Indeed, by the fact that every directed cycle in a tournament induces
a strong subtournament that contains a directed 3-cycle through any given
vertex, if a tournament T has a δ+(T )-directed-cycle-forest, then T also has
a δ+(T )-triangle-forest. Observe that a δ+(T )-triangle-forest spans exactly
2δ+(T ) + c vertices, where c is the number of components of the triangle-
forest. When T is a regular tournament with out-degree δ+(T ), hence with
2δ+(T ) + 1 vertices, a δ+(T )-triangle-forest of T is necessarily a spanning
δ+(T )-triangle-tree. Havet, Thomassé and Yeo [111] established the existence
of such a tree for every tournament.

Theorem 2.4.12 ([111]) Every tournament T has a δ+(T )-triangle-tree.

2.5 Disjoint Paths and Cycles

We now turn to results on linkages and weak linkages in semicomplete di-
graphs. The reader may wish to recall the definitions of these from Section
1.6.

2.5.1 Polynomial Algorithms for Linkage and Weak Linkage

weak k-linkage
Input: A digraph D = (V,A) and not necessarily distinct vertices
s1, . . . , sk, t1, . . . , tk.
Question: Does D contain a weak k-linkage from (s1, . . . , sk) to
(t1, . . . , tk)?

Recall that for general digraphs the weak k-linkage problem is NP-
complete already when k = 2 [84]. Bang-Jensen [16] solved the weak

k-linkage problem for semicomplete digraphs by giving a polynomial algo-
rithm and a complete characterization of those semicomplete digraphs that do
not have a weak linkage from (s1, s2) to (t1, t2) for given vertices s1, s2, t1, t2
where we may have s3−i = ti for i = 1 or i = 2 but all other vertices are
distinct (all the remaining cases are easy for semicomplete digraphs).

Fradkin and Seymour [85] generalized the algorithmic part of these results
in two ways: from weak 2-linkage to weak k-linkage for any fixed integer k and
from semicomplete digraphs to digraphs of bounded independence number.
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Theorem 2.5.1 ([85]) For every fixed positive integer α the weak

k-linkage problem is polynomially solvable for every fixed k, when we con-
sider digraphs with independence number at most α.

A key ingredient in the proof of this theorem is the notion of the cutwidth
of a digraph. Let D = (V,A) be a digraph and let O = (v1, v2, . . . , vn) be an
ordering of the vertices of D. We say that O has cutwidth at most θ if for
all j ∈ {2, 3, . . . , n} there are at most θ arcs uv with u ∈ {v1, . . . , vj−1} and
v ∈ {vj , . . . , vn} and we say that D has cutwidth at most θ if there exists
an ordering O of V (D) which has cutwidth at most θ. The minimum θ such
that D has cutwidth at most θ is called the cutwidth of D and is denoted
by cw(D).

Barbero, Paul and Pilipczuk proved that, even for semicomplete digraphs,
cutwidth is not an easy parameter to determine.

Theorem 2.5.2 ([37]) Determining the cutwidth of a semicomplete digraph
is NP-hard.

Single exponential FPT algorithms were obtained in [82, 152]. Pilipczuk
found an approximation algorithm for the cutwidth of semicomplete digraphs.

Theorem 2.5.3 ([152]) There exists an O(n2) algorithm for computing an
ordering O of an n-semicomplete digraph D whose cutwidth is at most
O(cw(D)2).

In fact, it is shown in [152] (see also [153]) that just sorting the vertices
according to their out-degrees achieves the bound above. See [153] for a dis-
cussion of which properties of a semicomplete digraph forces high cutwidth.
One such example is the result that if a semicomplete digraph D contains
a set S of 4k + 2 vertices such that the maximum difference between the
out-degrees of any pair of vertices in S is at most k, then cw(D) ≥ k/2 holds.
Many other results on cutwidth of semicomplete digraphs can be found in
the paper [81] by Fomin and Pilipczuk and in Pilipczuk’s thesis [154].

For tournaments the situation is much better. Barbero, Paul and Pilipczuk
proved the following.

Theorem 2.5.4 ([37]) One can determine the cutwidth of a tournament in
polynomial time. Furthermore, if cw(T ) = p, then T contains a subtour-
nament T ′ whose number of vertices is linear in p and such that cw(T ) =
cw(T ′).

Fradkin and Seymour also solved the weak k-linkage problem for the
class of directed pseudographs that one obtains from semicomplete digraphs
by adding arcs and loops.
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Theorem 2.5.5 (Fradkin and Seymour [85]) The weak k-linkage prob-
lem is solvable in polynomial time for every fixed k, when we consider di-
rected pseudographs that are obtained from a semicomplete digraph by replac-
ing some arcs with multiple copies of those arcs and adding any number of
loops.

We now turn to vertex-disjoint linkages.

k-linkage
Input: A digraph D = (V,A) and not necessarily distinct vertices
s1, . . . , sk, t1, . . . , tk.
Question: Does D contain a k-linkage from (s1, . . . , sk) to (t1, . . . , tk)?

Below we shall always assume that all the terminals to be linked (that
is, s1, . . . , sk, t1, . . . , tk) are distinct. Bang-Jensen and Thomassen solved the
2-linkage problem for semicomplete digraphs.

Theorem 2.5.6 ([34]) The 2-linkage problem is solvable in time O(n5) for
semicomplete digraphs.

Bang-Jensen and Thomassen also proved that if k is part of the input,
then the k-linkage problem is NP-complete already for tournaments.

Besides the trivial case k = 1, the value 2 remained the only k for which
the k-linkage problem was solved for semicomplete digraphs until Chud-
novsky, Seymour and Scott [62] found a polynomial algorithm for the k-
linkage problem for any fixed k in semicomplete digraphs. In fact, their al-
gorithm works for a more general class of digraphs which they call d-path
dominant. A digraph D = (V,A) is d-path-dominant if, for every minimal
path P on d vertices, every vertex v ∈ V − V (P ) is adjacent to at least one
vertex of V (P ). Thus D is 1-path dominant if and only if it is semicomplete
and 2-path dominant if and only if it is semicomplete multipartite. Hence
this is a very general class of digraphs.

Theorem 2.5.7 ([62]) For all fixed d, k there is a polynomial algorithm for
the k-linkage problem in d-path-dominant digraphs.

Following [62], for a given sequence x = (x1, . . . , xk) of positive inte-
gers, we say that the digraph D has an x-linkage from (s1, s2, . . . , sk)
to (t1, t2, . . . , tk) if it has a collection of disjoint paths P1, P2, . . . , Pk such
that Pi is an (si, ti)-path and has xi vertices. A sequence x = (x1, . . . , xk)
of positive integers is then a quality of (D, s1, s2, . . . , sk, t1, t2, . . . , tk) if
D has an x-linkage from (s1, s2, . . . , sk) to (t1, t2, . . . , tk). A quality x of
(D, s1, s2, . . . , sk, t1, t2, . . . , tk) is a key quality if there is no other quality
y �= x with yi ≤ xi for all i ∈ [k]. The main result of [62] is the following.

Theorem 2.5.8 ([62]) For all integers d, k ≥ 1 there exists a polynomial algo-
rithm for the following problem: Given a d-path-dominant digraph D = (V,A)
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and vertices s1, s2, . . . , sk, t1, t2, . . . , tk, compute the set of key qualities of
(D, s1, s2, . . . , sk, t1, t2, . . . , tk). The algorithm runs in time
O(n6k2d(k+d)+13k).

Corollary 2.5.9 ([62]) For all integers d, k ≥ 1 there exists a polynomial al-
gorithm for the following problem: Given a d-path-dominant digraph D =
(V,A), vertices s1, s2, . . . , sk, t1, t2, . . . , tk and integers x1, x2, . . . , xk ≥ 1,
decide whether D contains disjoint paths P1, P2, . . . , Pk such that Pi is an
(si, ti)-path and has at most xi vertices.

The proof of Theorem 2.5.7 is long but the main idea is simple: as in the
algorithm for k-linkage in acyclic digraphs (see Section 3.4) one can define
an auxiliary digraph H with two special vertices s0, t0 such that H has an
(s0, t0)-path if and only if D has the desired k-linkage.

The following problem is open even for k = 2 and independence number 2.

Problem 2.5.10 Determine the complexity of the k-linkage problem for di-
graphs with bounded independence number.

A special case of digraphs with independence number at most p is the
class of digraphs that have p-partition (V1, V2, . . . , Vp) such that D[Vi] is a
semicomplete digraph. For this class Chudnovsky, Scott and Seymour recently
found a solution.

Theorem 2.5.11 ([63]) For every pair of fixed positive integers k, p, the k-
linkage problem is polynomially solvable for digraphs which have a p-partition
each part of which is semicomplete and provided we are given such a partition
as part of the input.

For an application of that result, see the discussion around Theorem
6.11.3.

2.5.2 Sufficient Conditions for a Tournament to be k-Linked

We now turn to sufficient conditions in terms of connectivity for a semicom-
plete digraph to be k-linked. Bang-Jensen determined the minimum connec-
tivity implying 2-linkedness.

Theorem 2.5.12 ([17]) Every 5-strong semicomplete digraph is 2-linked.
Furthermore, there exists an infinite class of 4-strong tournaments which are
not 2-linked (see Figure 2.1).

We leave it to the reader to check that one can generalize the example
in Figure 2.1 to an infinite family of 4-strong semicomplete digraphs none of
which is 2-linked (see also [17]).
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y2

y1

x1

x2

Figure 2.1 A 4-strong non-2-linked semicomplete digraph T . All arcs not shown
go from left to right and x1y2x1, x2y1x2 are the only 2-cycles in T . There is no pair
of disjoint (x1, y1)-,(x2, y2)-paths in T . The tournament which results from T by
deleting the arcs y2x1 and y1x2 is also 4-strong

Thomassen [179] proved the existence of a function f(k) such that every
f(k)-strong tournament is k-linked. Clearly f(1) = 1 and by Theorem 2.5.12
we have f(2) = 5. Thomassen’s function f(k) grows exponentially in k. This
was first improved to a polynomial in k by Kühn, Lapinskas, Osthus and
Patel [124] and recently Pokrovskiy showed that a linear function suffices.
We will give the main details in the proof of that result below.

A key ingredient in Pokrovskiy’s proof of Theorem 2.5.15 is the following
interesting result which illustrates the richness of tournament structure.

Theorem 2.5.13 ([156]) Let n, p be positive integers satisfying p ≤ n/11.
Every n-tournament contains two disjoint sets of vertices {x1, . . . , xp} and
{y1, . . . , yp} such that for every permutation σ of [p], T contains vertex-
disjoint paths P1, . . . , Pp such that Pi is an (xi, yσ(i))-path.

For later reference, we call the sets {x1, . . . , xp}, {y1, . . . , yp} in the above
theorem an all-linkable pair.

We need some more concepts which were introduced by Kühn, Lapin-
skas, Osthus and Patel in [124]. A set of vertices X in-dominates (out-
dominates) another set Y in a digraph D if every y ∈ Y \ X has an
out-neighbour (in-neighbour) in X. The definition implies that any set in-
dominates (out-dominates) itself. An in-dominating (out-dominating) set
in D is then a set which in-dominates (out-dominates) V (D).
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Below we focus on semicomplete digraphs. Every n-semicomplete digraph
contains an in-dominating (out-dominating) set of size 	 log n
. Such a set X
can be constructed from the empty set by repeatedly adding a vertex v of
maximum in-degree (out-degree) in the current semicomplete digraph D to X
and then deleting v together with its in-neighbourhood (out-neighbourhood)
from D.

In a semicomplete digraph a vertex x may be both an in- and an out-
neighbour of a vertex v, so we needed to adjust the definition below a bit
compared to [124]. For a vertex v of a semicomplete digraph we define the
sets N+!(v), N−!(v) as follows: N+!(v) = V \ (N−(v) ∪ {v}) and N−!(v) =
V \ (N+(v) ∪ {v}).

A sequence of vertices (v1, v2, . . . , vk) of a semicomplete digraph D
is a partial greedy in-dominating sequence if v1 has maximum in-
degree in D and for each i, the vertex vi has maximum in-degree in
D[N+!(v1) ∩ . . . ∩ N+!(vi−1)]. Similarly, (v1, v2, . . . , vk) is a partial greedy
out-dominating sequence if v1 has maximum out-degree in D and for each
i, vi has maximum out-degree in D[N−!(v1) ∩ . . . ∩ N−!(vi−1)].

Note that if at some point the set N+!(v1) ∩ . . . ∩ N+!(vi−1) (N−!(v1) ∩
. . .∩N−!(vi−1)) becomes empty, then the sequences above may have less than
k vertices. This will not affect the validity of the proof below.

As we saw above, if k = 	log n
 then every partial greedy in-dominating
(resp. out-dominating) sequence on k vertices is an in-dominating (resp. out-
dominating) sequence. The following very nice property of partial greedy in-
and out-dominating sequences, which was first observed by Kühn et al. [124]
and later reformulated by Pokrovskiy [156], shows that already for much
smaller values of k, partial greedy dominating sequences are useful (as illus-
trated in the proof below).

Lemma 2.5.14 ([124, 156]) Let X = (v1, v2, . . . , vk) be a partial greedy in-
dominating (resp. out-dominating) sequence in a semicomplete digraph D.
Let Y be the set of vertices which are not in-dominated (resp. out-dominated)
by X. Then every y ∈ Y satisfies d+(y) ≥ 2k−1|Y | (d−(y) ≥ 2k−1|Y |).

We are now ready to state and prove the main result of [156].

Theorem 2.5.15 ([156]) Every 452k-strong semicomplete digraph is k-linked.

Proof: Pokrovskiy did not express his result for semicomplete digraphs, but
his proof, which we give below, is also valid for semicomplete digraphs. Let
D be a 452k-strong semicomplete digraph. In particular this means that
δ0(D) ≥ 452k. Let x1, . . . , xk, y1, . . . , yk be an arbitrary collection of 2k dis-
tinct vertices of D. We shall construct disjoint paths R1, . . . , Rk so that Ri

is an (xi, yi)-path for i ∈ [k]. Let D′ = D \ {x1, . . . , xk, y1, . . . , yk}.
Let I−

1 be a partial greedy in-dominating set on two vertices of D′ and
for each i = 2, . . . , 55k, let I−

i be a partial greedy in-dominating set of D′ \
(I−

1 ∪ . . . ∪ I−
i−1). Finally, let D′′ = D′ \ (I−

1 ∪ . . . ∪ I−
55k). Denote the vertices



2 Tournaments and Semicomplete Digraphs 57

of I−
i by u−

i , v−
i , i ∈ [55k], where u−

i is the first vertex chosen. Note that if at
some point the first vertex we choose is already an in-dominating set, then
I−
i = {u−

i } and we let v−
i = u−

i . Otherwise I−
i = {u−

i , v−
i } and u−

i dominates
v−

i . Now let O+
1 be a partial greedy out-dominating set on two vertices of

D′′ and for each i = 2, . . . , 55k let O+
i−1 be a partial greedy out-dominating

set on two vertices of D′′ \ (O+
1 ∪ . . . ∪ O+

i−1)). As above we denote O+
i by

{u+
i , v+

i }, where possibly v+
i = u+

i and otherwise v+
i dominates u+

i .
Let X = I−

1 ∪ . . . ∪ I−
55k ∪ O+

1 ∪ . . . ∪ O+
55k ∪ {x1, . . . , xk, y1, . . . , yk}. By

construction, |X| ≤ 222k. Note that we may not have equality since, by the
remark above, some of the sets constructed may have size one instead of two.
For each i ∈ [55k] denote by E−

i (resp. E+
i ) the sets of those vertices of D−X

that are not in-dominated by I−
i (resp. out-dominated by O+

i ). By Lemma
2.5.14, each vertex in v ∈ E−

i (resp. w ∈ E+
i ) satisfies d+(v) ≥ 2|E−

i | (resp.
d−(w) ≥ 2|E+

i |).
Let V − = {v−

1 , . . . , v−
55k} and V + = {v+

1 , . . . , v+
55k}. By Theorem 2.5.13,

applied to D[V −] (resp. D[V +]), we can find two sets X−, Y − (resp. X+, Y +)
both of order 5k in V − (resp. V +) which form an all-linkable pair in D[V −]
(resp. D[V +]). Now relabel I−

1 , . . . , I55k and O+
1 , . . . , O+

55k so that X− =
{v−

1 , . . . , v−
5k} and Y + = {v+

1 , . . . , v+
5k}.

By assumption, D is 452k-strong so Menger’s theorem (Theorem 1.5.3)
implies that D[(V − X) ∪ Y − ∪ X+)] has 5k disjoint paths Q1, . . . , Q5k which
all start in Y − and end in X+. As |X| ≤ 222k, for each i ∈ [k] there exist
distinct vertices x′

1, . . . , x
′
k, y′

1, . . . , y
′
k ∈ V \ X such that x′

i is dominated by
xi and y′

i dominates yi for i ∈ [k]. Let X ′ = X ∪ {x′
1, . . . , x

′
k, y′

1, . . . , y
′
k}.

Now we consider the vertices of E−
i and E+

i , i ∈ [55k]. We saw above
that each vertex in v ∈ E−

i (resp. w ∈ E+
i ) satisfies d+(v) ≥ 2|E−

i | (resp.
d−(w) ≥ 2|E+

i |). We also have d+(v) ≥ 452k ≥ 2|X ′| + 4k (resp. d−(w) ≥
452k ≥ 2|X ′| + 4k) so by averaging these two lower bounds we get that
d+(v) ≥ |E−

i |+|X ′|+2k for every v ∈ E−
i and similarly d−(w) ≥ |E+

i |+|X ′|+
2k for every w ∈ E+

i . This implies that every v ∈ E−
i (resp. w ∈ E+

i ) has at
least 2k out-neighbours (resp. in-neighbours) outside of E−

i ∪ X ′ (E+
i ∪ X ′).

For each i ∈ [k] define x′′
i (resp. y′′

i ) as follows: If x′
i �∈ E−

i (resp. y′
i �∈ E+

i ),
then x′

i dominates (resp. y′
i is dominated by) at least one vertex of I−

i (O+
i )

and we let x′′
i = x′

i (resp. y′′
i = y′

i). Otherwise x′
i ∈ E−

i (resp. y′
i ∈ E+

i ) and
now we let x′′

i (resp. y′′
i ) be an out-neighbour of x′

i (resp. y′
i) in D−(E−

i ∪X ′)
(D − (E+

i ∪ X ′)). By the remark above, we can choose the 2k vertices (some
of which may not be new) x′′

1 , . . . , x′′
k , y′′

1 , . . . , y′′
k so that these are all distinct.

Note that x′′
i dominates (resp. y′′

i is dominated by) at least one of the
vertices in I−

i (resp. O+
i ) for i ∈ [k]. Thus, for each i ∈ [k] we can take the

(x′′
i , v−

i )-path Q−
i to be either the arc x′′

i v−
i or the path x′′

i u−
i v−

i . Similarly, we
can take the (v+

i , y′′
i )-path Q+

i to be either the arc v+
i y′′

i or the path v+
i u+

i y′′
i .

By construction, all the paths Q−
1 , . . . , Q−

k , Q+
1 , . . . , Q+

k are disjoint.
At least k of the paths Q1, . . . , Q5k do not intersect any of the paths

Q−
1 , . . . , Q−

k , Q+
1 , . . . , Q+

k so fix such a set Q′
1, . . . , Q

′
k to be such paths. Since
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Q−
i ends in X− and Q′

i starts in Y −, Theorem 2.5.13 implies that we can
find disjoint paths P−

1 , . . . , P−
k in D[V −] such that P−

i starts in v−
i and ends

in the initial vertex of Q′
i. Similarly, we can find disjoint paths P+

1 , . . . , P+
k

in D[V +] such that P+
i starts in the terminal vertex of Q′

i and ends in v+
i .

Let Ri = xix
′
iQ

−
i P−

i Q′
iP

+
i y′

iyi for i ∈ [k]. By the above arguments,
R1, . . . , Rk form the desired linkage. �

The value 452k is probably far from being best possible and the real
answer could be close to 2k. By Theorem 2.5.12, f(k) > 2k, at least when
k = 2.

Proposition 2.5.16 ([156]) For all n ≥ 6k, there exists a (2k − 2)-strong
n-tournament T which is not k-linked.

Note also that Theorem 2.6.15 gives a better bound when k < 449 and
even guarantees that there is a linkage that spans all vertices of T .

Pokrovskiy conjectures that when the minimum semi-degree is sufficiently
high, already 2k-strong should be sufficient to guarantee a k-linkage for every
choice of terminals.

Conjecture 2.5.17 ([156]) For every k there exists an integer d = d(k) such
that every 2k-strong tournament T with δ0(T ) ≥ d is k-linked.

2.5.3 The Bermond–Thomassen Conjecture for Tournaments

We now turn to disjoint directed cycles. We only discuss the celebrated
Bermond–Thomassen conjecture. For more results on disjoint cycles, see
Section 2.8.

Thomassen [42, 180] proved that every digraph D with δ+(D) ≥ 3 has two
disjoint cycles. Inspired by this, Bermond and Thomassen posed the following
difficult conjecture.

Conjecture 2.5.18 (Bermond–Thomassen [42]) For every positive inte-
ger k, every digraph D with δ+(D) ≥ 2k + 1 has k disjoint cycles.

This difficult conjecture is wide open. Lichiardopol, Pór and Sereni [134]
have verified the conjecture for k = 3. Alon [4] was the first to prove that a
linear bound suffices. He obtained the following result.

Theorem 2.5.19 There exists an absolute constant C such that f(k) ≤ Ck
for all k. In particular, C = 64 will do. �

We now consider tournaments and semicomplete digraphs. By Moon’s
Theorem (2.2.7), a tournament has k disjoint cycles if and only if it has
k disjoint 3-cycles so the following result, due to Bang-Jensen, Bessy and
Thomassé, shows that Conjecture 2.5.18 holds for tournaments.
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Theorem 2.5.20 ([19]) Every tournament T with δ+(T ) ≥ 2k − 1 has k
disjoint 3-cycles.

Bang-Jensen, Bessy and Thomassé showed how to improve this bound on
the minimum out-degree for tournaments with large minimum out-degree.
Roughly speaking, a tournament T with δ+(T ) > 1.5k and k large enough
contains k disjoint 3-cycles. More precisely, they proved the following.

Theorem 2.5.21 ([19]) For every real number α > 1.5, there exists a con-
stant kα such that, for every k ≥ kα, every tournament T with δ+(T ) ≥ αk
has k disjoint 3-cycles.

The constant 1.5 is the best possible as shown by the circulant tour-
naments CT2p+1({1, 2, . . . , p}): when 2p + 1 ≡ 0 mod 3, every vertex has
out-degree p = � 3

2k�, where k = 2p+1
3 , and CT2p+1({1, 2, . . . , p}) has a cycle

factor consisting of k disjoint 3-cycles covering all its vertices [19].
It is important to note that the following obvious idea does not lead to

a proof of Conjecture 2.5.18 for tournaments: find a 3-cycle C which is not
dominated by any vertex of V (T ) \ V (C), remove C and apply induction.
This approach does not work because of the following.2

Proposition 2.5.22 ([19]) For infinitely many k ≥ 3 there exists a tourna-
ment T with δ(T ) = 2k−1 such that every 3-cycle C is dominated by at least
one vertex of minimum out-degree.

Proof: Consider the Paley tournament P11. It has vertex set V (P11) =
{1, 2, . . . , 11} and arc set A(P11) = {(i, i + p (mod 11)) | i ∈ [11], p ∈
{1, 3, 4, 5, 9}}. The possible types of 3-cycles in T are i → i + 1 → i + 10 →
i, i → i + 1 → i + 6 → i, i → i + 3 → i + 6 → i, i → i + 3 → i + 7 → i,
where the indices are taken modulo 11. These are dominated by the vertices
i − 3, i − 3, i + 2, i + 2, respectively. By substituting an arbitrary tournament
for each vertex of P11, we can obtain a tournament with arbitrarily many ver-
tices which has the property that every 3-cycle is dominated by some vertex
of minimum out-degree. �

On the other hand, removing a 2-cycle from a digraph D with δ+(D) ≥
2k − 1 clearly results in a new digraph D′ with δ+(D′) ≥ 2(k − 1) − 1 and
hence, when trying to prove Conjecture 2.5.18, we may always assume that
the digraph in question has no 2-cycles. In particular, the following is a direct
consequence of Theorem 2.5.20.

Corollary 2.5.23 Every semicomplete digraph D with δ+(D) ≥ 2k − 1 con-
tains k disjoint cycles. �

2 See also [9, Section 9.1].
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For regular tournaments Lichiardopol proved the following, which streng-
thens Theorem 2.5.20 when r is larger than 20.

Theorem 2.5.24 ([132]) Every (2r−1)-regular tournament contains at least
7
6r − 7

3 disjoint cycles.

Lichiardopol posed the following conjecture, which he proved for k = 2.
The complete digraph on g(k) + 1 vertices shows that g(k) ≥ k2+3k−2

2 .

Conjecture 2.5.25 ([131]) For every k ≥ 2, there exists an integer g(k) such
that every digraph D with δ+(D) ≥ g(k) has k disjoint cycles of different
lengths.

Bensmail, Harutyunyan, Le, Li and Lichiardopol [40] confirmed the con-
jecture for tournaments.

Theorem 2.5.26 ([40]) Every tournament T with δ+(T ) ≥ k2+4k−3
2 contains

k disjoint cycles of different lengths.

It is natural to ask for the minimum function gT (k) such that every
tournament T with δ+(T ) ≥ k2+4k−3

2 contains k disjoint cycles of differ-
ent lengths. The regular tournaments on n = 2gT (k) + 1 vertices show that
gT (k) ≥ k2+5k−2

4 .
Finally, we point out that already for tournaments it is difficult to find

the maximum number of disjoint cycles. The following recent result is due
to Bessy, Marin and Thiebaut. The authors also showed that there is no
polynomial time approximation scheme for the problem unless P = NP.

Theorem 2.5.27 ([43]) Finding the maximum number of disjoint 3-cycles in
a tournament is NP-hard.

2.6 Hamiltonian Paths and Cycles

In this section we discuss results on the number of Hamiltonian paths in tour-
naments, Hamiltonian paths with prescribed end vertices and Hamiltonian
cycles containing or avoiding a set of prescribed arcs.

2.6.1 Redei’s Theorem

Rédei proved an interesting generalization of Theorem 2.2.4 concerning the
parity of the number of Hamiltonian directed paths;

Theorem 2.6.1 (Rédei [158]) Every tournament contains an odd number
of Hamiltonian directed paths.
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The proof of Theorem 2.6.1 is established by means of a proof technique
known as the Inclusion-Exclusion Principle, or the Möbius Inversion
Formula, an inversion formula with applications throughout mathematics.
We present here a simple version which suffices for our purpose. We refer the
interested reader to Chapter 21 of Handbook of Combinatorics by Gessel and
Stanley [96].

Lemma 2.6.2 (Inclusion-Exclusion Principle) Let Z be a finite set and
f : 2Z → N a real-valued function defined on the subsets of Z. Define the
function g : 2Z → N by g(X) =

∑
{Y |X⊆Y ⊆Z} f(Y ). Then

f(X) =
∑

{Y |X⊆Y ⊆Z}
(−1)|Y |−|X|g(Y ).

Proof: By the Binomial Theorem,

∑

{Y |X⊆Y ⊆W}
(−1)|Y |−|X| =

|W |∑

k=|X|

(
|W | − |X|
k − |X|

)
(−1)k−|X| = (1 − 1)|W |−|X|

which is equal to 0 if X ⊂ W , and to 1 if X = W . Therefore,

f(X) =
∑

{W |X⊆W⊆Z}
f(W )

∑

{Y |X⊆Y ⊆W}
(−1)|Y |−|X|

=
∑

{Y |X⊆Y ⊆Z}
(−1)|Y |−|X| ∑

{W |Y ⊆W⊆Z}
f(W )

=
∑

{Y |X⊆Y ⊆Z}
(−1)|Y |−|X|g(Y ).

�
Proof of Theorem 2.6.1 Let T = (V,A) be a tournament with vertex set
V = {1, 2, . . . , n} and denote by h(T ) the number of Hamiltonian paths in
T . For any permutation σ of V , let Aσ = A ∩ {σ(i)σ(i + 1) | 1 ≤ i ≤ n − 1}.
Then Aσ induces a subdigraph of T each of whose components is a directed
path.

For any subset X of A, let us define f(X) = |{σ ∈ Sn | X = Aσ}|
and g(X) = |{σ ∈ Sn | X ⊆ Aσ}|. Then g(X) =

∑

X⊆Y ⊆A

f(Y ), so by the

Inclusion-Exclusion Principle

f(X) =
∑

X⊆Y ⊆A

(−1)|Y |−|X|g(Y ).

Observe that g(Y ) = r! if and only if the spanning subdigraph of T with
arc set Y is the disjoint union of r directed paths. Thus g(Y ) is odd if and
only if Y induces a Hamiltonian directed path of T . Hence, defining h(X) =
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|{H ∈ H | X ⊆ A(H)}| with H the set of Hamiltonian directed paths of T ,
we obtain

f(X) ≡
∑

{H∈H|X⊆A(H)}
(−1)n−1−|X| ≡ h(X) (mod 2).

The theorem is true for transitive tournaments as there is a unique Hamil-
tonian directed path. Since any n-tournament may be obtained from the
transitive n-tournament by reversing the orientation of appropriate arcs, it
suffices to prove that the parity of the number of Hamiltonian directed paths
h(T ) is unaltered by the reversal of any one arc e.

Let T ′ be the tournament obtained from T by reversing e. Then h(T ′) =
h(T ) + f({e}) − h({e}). Since f({e}) ≡ h({e}) (mod 2), we have h(T ′) ≡
h(T ) (mod 2). �

2.6.2 Hamiltonian Connectivity

Recall that an [x, y]-path in a digraph D = (V,A) is a directed path which
either starts at x and ends at y or oppositely. We say that D is weakly
Hamiltonian-connected if it has a Hamiltonian [x, y]-path (also called an
[x, y]-Hamiltonian path) for every choice of distinct vertices x, y ∈ V .
Thomassen found the following characterization of weakly Hamiltonian-
connected tournaments.

Theorem 2.6.3 ([184]) Let D = (V,A) be a tournament and let x1, x2 be
distinct vertices of D. Then D has an [x1, x2]-Hamiltonian path if and only
if none of the following holds.

(a) D is not strong and either none of x1, x2 belongs to the initial strong com-
ponent of D or none of x1, x2 belongs to the terminal strong component
of D.

(b) D is strong and for i = 1 or 2, D − xi is not strong and x3−i belongs to
neither the initial nor the terminal strong component of D − xi.

(c) D is isomorphic to one of the two tournaments in Figure 2.2 (possibly
after interchanging the names of x1 and x2).

For semicomplete digraphs there is also a characterization which can be
read out of Theorem 6.7.3 (as every semicomplete digraph is also locally
semicomplete).

Corollary 2.6.4 ([184]) Let D be a strong tournament and let x, y, z be dis-
tinct vertices of D. Then D has a Hamiltonian path connecting two of the
vertices in the set {x, y, z}. �

Corollary 2.6.5 ([184]) A tournament T with at least three vertices is weakly
Hamiltonian-connected if and only if it satisfies (1)–(3) below.
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x2

x1

Figure 2.2 The exceptional tournaments in Theorem 2.6.3. The edge between x1

and x2 can be oriented arbitrarily

(1) T is strong.
(2) For every vertex v ∈ V (T ), T − v has at most two strong components.
(3) T is not isomorphic to any of the two tournaments in Figure 2.2.

We now turn to Hamiltonian paths with specified initial and terminal
vertices. An (x, y)-Hamiltonian path is a Hamiltonian path from x to
y. A digraph D = (V,A) is Hamiltonian-connected if D has an (x, y)-
Hamiltonian path for every choice of distinct vertices x, y ∈ V . The following
result of Thomassen gives a sufficient condition for a semicomplete digraph
to have an (x, y)-Hamiltonian path.

Theorem 2.6.6 (Thomassen [184]) Let D = (V,A) be a 2-strong semi-
complete digraph with distinct vertices x, y. Then D contains an (x, y)-
Hamiltonian path if either (a) or (b) below is satisfied.

(a) D contains three internally disjoint (x, y)-paths each of length at least 2.
(b) D contains a vertex z which is dominated by every vertex of V \ {x} and

D contains two internally disjoint (x, y)-paths each of length at least 2.�

Theorem 2.6.6 and Menger’s theorem (Theorem 1.5.3) immediately imply
the following result.

Theorem 2.6.7 ([184]) If a semicomplete digraph D is 4-strong, then D is
Hamiltonian-connected. �

Thomassen constructed an infinite family of 3-strongly connected tour-
naments with two vertices x, y for which there is no (x, y)-Hamiltonian path
[184]. Hence, from a connectivity point of view, Theorem 2.6.7 is the best
possible.

Theorem 2.6.7 has several important consequences. Thomassen has shown
in several papers how to use Theorem 2.6.7 to obtain results on spanning
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collections of paths and cycles in semicomplete digraphs. See, e.g., the pa-
pers [179, 181] and also Section 2.6.3.

The next theorem of Bang-Jensen, Manoussakis and Thomassen general-
izes Theorem 2.6.6 (when n ≥ 10). Recall that for specified distinct vertices
s, t, an (s, t)-separator is a subset S ⊆ V \ {s, t} such that D − S has no
(s, t)-path. An (s, t)-separator is trivial if either s has out-degree 0 or t has
in-degree 0 in D − S.

Theorem 2.6.8 ([32]) Let D be a 2-strong semicomplete digraph on at least
ten vertices and let x, y be vertices of D such that xy �∈ A(D). Suppose that
both of D−x and D−y are 2-strong. If all (x, y)-separators consisting of two
vertices (if any exist) are trivial, then D has an (x, y)-Hamiltonian path. �

Based on Theorem 2.6.8 and several other structural results on 2-strong
semicomplete digraphs Bang-Jensen, Manoussakis and Thomassen proved the
following.

Theorem 2.6.9 ([32]) The (x, y)-Hamiltonian path problem is solvable in
polynomial time for semicomplete digraphs.

The algorithm uses a divide-and-conquer approach and cannot be easily
modified to find a longest (x, y)-path in a semicomplete digraph. There also
does not seem to be any simple reduction of this problem to the problem of
deciding the existence of a Hamiltonian path from x to y. Bang-Jensen and
Gutin conjectured that there exists a polynomial algorithm for the problem.

Conjecture 2.6.10 ([23]) There exists a polynomial algorithm that, given a
semicomplete digraph D and two distinct vertices x and y of D, finds a longest
(x, y)-path.

Note that if we ask for the longest [x, y]-path in a tournament, then this
can be answered using Theorem 2.6.3. We leave the details to the interested
reader.

The following result, due to Bang-Jensen, Maddaloni and Simonsen, shows
that if we generalize the (x, y)-Hamiltonian path problem in a natural way,
we obtain an NP-complete problem.

Theorem 2.6.11 ([31]) The following problem is NP-complete: given a
strong tournament T , a p-partition (V1, . . . , Vp) of V (T ) and distinct ver-
tices x, y of T ; determine whether T has an (x, y)-path which intersects each
of the sets Vi, i ∈ [p].

2.6.3 Hamiltonian Cycles Containing or Avoiding Prescribed Arcs

We now turn our attention to Hamiltonian cycles in digraphs with the ex-
tra condition that these cycles must either contain or avoid all arcs from a



2 Tournaments and Semicomplete Digraphs 65

prescribed subset A′ of the arcs. As we shall see, problems of this type are
quite difficult even for semicomplete digraphs. If we have no restriction on the
size of A′, then we may easily formulate the Hamiltonian cycle problem for
arbitrary digraphs as an avoiding problem for semicomplete digraphs. Hence
the avoiding problem without any restrictions is certainly NP-complete. Be-
low, we study both types of problems from a connectivity as well as from a
complexity point of view. Bang-Jensen and Gutin [24] showed that when the
number of arcs to be avoided, respectively, contained in a Hamiltonian cycle,
is some constant, then, from a complexity point of view, the avoiding version
is no harder than the containing version.

Consider the following problem.

Hamiltonian cycle through k-prescribed arcs (k-hca)
Input: A digraph D and prescribed arcs e1, e2, . . . , ek

Question: Does D have a Hamiltonian cycle containing all of these arcs?

Clearly this is NP-complete for general digraphs, but even for semicom-
plete digraphs this is a difficult problem. For k = 1 the k-HCA problem is a
special case of the (x, y)-Hamiltonian path problem and hence it is polyno-
mial for semicomplete digraphs by Theorem 2.6.9. The problem is open for
semicomplete digraphs for all other values of k.

Based on the evidence from Theorem 2.6.9, Bang-Jensen, Manoussakis
and Thomassen posed the following conjecture.

Conjecture 2.6.12 ([32]) For each fixed k, the k-HCA problem is polynomial
time solvable for semicomplete digraphs.

Bang-Jensen and Thomassen proved that when k is not fixed the k-HCA
problem becomes NP-complete even for tournaments [34]. The proof of this
result in [34] contains an interesting idea which was generalized by Bang-
Jensen and Gutin in [24]. Consider a digraph D containing a set W of k
vertices such that D − W is semicomplete. Construct a new semicomplete
digraph DW as follows. First, split every vertex w ∈ W into two vertices
w1, w2 such that all arcs entering w now enter w1 and all arcs leaving w now
leave w2. Let Wi = {wi|w ∈ W}, i = 1, 2. For each w1 ∈ W1, w

′
2 ∈ W2 add

the arc w1w
′
2 except if the arc w′

2w1 is already present. Add all edges between
distinct vertices of Wi for i = 1, 2 and orient these arbitrarily. Finally, add all
arcs of the kind w1z and zw2, where w ∈ W and z ∈ V (D) − W . See Figure
2.3. It is easy to show that the following proposition holds:

Proposition 2.6.13 ([24]) Let W be a set of k vertices of a digraph D such
that D − W is a semicomplete digraph. Then D has a cycle of length c ≥ k
containing all vertices of W if and only if the semicomplete digraph DW has
a cycle of length c + k through the arcs {w1w2 : w ∈ W}.
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W

S S

W1 W2

DWD

Figure 2.3 The construction of DW from D and W . The bold arc from W1 to W2

indicates that all arcs not already going from W2 to W1 (as copies of arcs in D) go
in the direction shown. The four other bold arcs indicate that all possible arcs are
present in the shown direction

Bang-Jensen and Gutin observed that the following is equivalent to
Conjecture 2.6.12.

Conjecture 2.6.14 ([24]) Let k be a fixed positive integer. There exists a
polynomial algorithm to decide if there is a Hamiltonian cycle in a given
digraph D which is obtained from a semicomplete digraph by adding at most
k new vertices and some arcs.

The truth of this conjecture when k = 1 follows from Proposition 2.6.13
and Theorem 2.6.9. Surprisingly, when |W | = 2 the problem already seems
to be very difficult.

Using Theorem 2.6.7 Thomassen [179] proved the existence of a function
h(k) such that for every h(k)-strong semicomplete digraph D and every choice
of distinct vertices x1, y1, ..., xk, yk D has k-path factor P1 ∪ P2 ∪ ... ∪ Pk

such that Pi is an (xi, yi)-path for i = 1, ..., k. The function h(k) is super-
exponential. Recently Kim, Kühn and Osthus improved this to a polynomial.

Theorem 2.6.15 ([121]) Let k be a positive integer, and let T be a (k2+3k)-
strong tournament. For any set {x1, y1, ..., xk, yk} of distinct vertices, T has
a k-path factor P1∪P2∪ ...∪Pk such that Pi is an (xi, yi)-path for i = 1, ..., k.

Note that Theorem 2.6.15 gives a better bound than Theorem 2.5.15
when k < 449 and even guarantees a k-linkage that spans all vertices of the
tournament.
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Corollary 2.6.16 ([121]) If a1, ..., ak are arcs with no common head or tail in
a (k2 +3k)-strong tournament T , then T has a Hamiltonian cycle containing
a1, ..., ak in that cyclic order.

Pokrovskiy [155] showed that the bound in Theorem 2.6.15 can be re-
placed by a linear function, thus answering a question of Thomassen from
[179]. The constant C below is very large, which is why we also stated The-
orem 2.6.15, which gives a better bound as long as k is not very large.

Theorem 2.6.17 ([155]) There exists a constant C such that for every Ck-
strong tournament T and every set {x1, y1, ..., xk, yk} of distinct vertices, T
has a k-path-factor P1, P2, . . . , Pk such that Pi is an (xi, yi)-path for i =
1, ..., k.

By Theorem 2.3.2, similar results hold for semicomplete digraphs.
Recall that a set of arcs is independent if no two of the arcs share a

vertex. Combining the ideas of avoiding and containing, Thomassen proved
the following (below we have replaced his exponential function by the one
from Theorem 2.6.15).

Theorem 2.6.18 ([179]) Let T be a (k2 + 3k)-strong tournament. For any
set A1 of at most k arcs in T and for any set A2 of at most k independent
arcs of T \A1, the digraph T \A1 has a Hamiltonian cycle containing all arcs
of A2.

Even though tournaments have a lot of structure and the Hamiltonian
cycle problem is almost trivial, the situation changes dramatically if we delete
just a few arcs from a tournament. For some tournaments, such as the almost
transitive tournaments, the answer is that even one missing arc may destroy
all Hamiltonian cycles. If there is exactly one arc entering (resp. leaving)
a vertex, then deleting that arc clearly suffices to destroy all Hamiltonian
cycles. However, it is not just a simple degree question since, for every p,
there exists an infinite set S of strong tournaments in which δ0(T ) ≥ p for
every T ∈ S and yet there is some arc of T which is on every Hamiltonian
cycle of T ([22, Exercise 7.19]). It follows from Theorem 2.6.19 below that all
such tournaments are strong but not 2-strong.

Obviously, if a k-strong tournament T has δ0(T ) = k (this is the smallest
possible by the connectivity assumption), we may again kill all Hamilto-
nian cycles by removing just k arcs. Thomassen [181] conjectured that in a
k-strong tournament, k is the minimum number of arcs one can delete in
order to destroy all Hamiltonian cycles. The next theorem due to Fraisse and
Thomassen answers this in the affirmative.

Theorem 2.6.19 (Fraisse and Thomassen [87]) For every k-strong tour-
nament T and every set A′ ⊂ A(T ) such that |A′| ≤ k − 1, there is a Hamil-
tonian cycle C in T \ A′.
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The proof is long and non-trivial; in particular it uses Theorem 2.6.7.
Below we describe a stronger result due to Bang-Jensen, Gutin and Yeo [25].

Theorem 2.6.20 ([25]) Let T = (V,A) be a k-strong n-tournament, and let
X1,X2, . . . , Xp (p ≥ 1) be a partition of V such that 1 ≤ |X1| ≤ |X2| ≤
. . . ≤ |Xp|. Let D be the digraph obtained from T by deleting all arcs which
have both head and tail in the same Xi (i.e., D = T \

⋃p
i=1 A(T [Xi])). If

|Xp| ≤ n/2 and k ≥ |Xp| +
∑p−1

i=1 �|Xi|/2�, then D is Hamiltonian. In other
words, T has a Hamiltonian cycle which avoids all arcs with both head and
tail in some Xi. Furthermore, the bound on k is sharp.

The proof of Theorem 2.6.20 in [25] uses results on irreducible cycle fac-
tors in multipartite tournaments, in particular Yeo’s irreducible cycle factor
theorem (Theorem 7.3.2).

The main idea of the proof is as follows: By construction (deleting all arcs
inside several disjoint sets) D is a multipartite tournament. The goal is to
apply Theorem 7.3.2 to D. Hence we need to establish that D is strong and
has a cycle factor. Both of these are true and the latter can be proved using
Hoffman’s circulation theorem. Now we can apply Theorem 7.3.2 to prove
that every irreducible cycle factor in D is a Hamiltonian cycle. This last step
is non-trivial.

Problem 2.6.21 ([25]) Which sets B of edges of the complete graph Kn have
the property that every k-strong orientation of Kn induces a Hamiltonian
digraph on Kn − B?

The Fraisse–Thomassen theorem says that this is the case whenever B
contains at most k − 1 edges. Theorem 2.6.20 says that a union of dis-
joint cliques of sizes r1, . . . , rp has the property whenever

∑l
i=1�ri/2� +

max1≤i≤l{	ri/2
} ≤ k. As shown in [25] this is the best possible result for
unions of cliques.

See [22, pages 293–294] for a proof that Theorem 2.6.20 implies Theorem
2.6.19. Note that if A′ induces a tree and possibly some disjoint edges in
UG(T ), then Theorem 2.6.20 is no stronger than Theorem 2.6.19. In all other
cases Theorem 2.6.20 provides a stronger bound.

How easy is it to decide, for a given semicomplete digraph D = (V,A)
and a subset A′ ⊆ A, whether D has a Hamiltonian cycle C which avoids
all arcs of A′? As we mentioned earlier, this problem is NP-complete if we
pose no restriction on the arcs in A′. In the case when A′ is precisely the
set of those arcs that lie inside the sets of some partition X1,X2, . . . , Xr of
V , then the existence of C can be decided in polynomial time. This follows
from the fact that D \ A′ is a semicomplete multipartite digraph and, by
Theorem 7.6.1, the Hamiltonian cycle problem is polynomial for semicomplete
multipartite digraphs. The same argument also covers the case when k = 1
in the conjecture below.
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Conjecture 2.6.22 ([22]) For every fixed positive integer k, there exists a
polynomial algorithm which, for a given semicomplete digraph D and a subset
A′ ⊆ A(D) such that |A′| = k, decides whether D has a Hamiltonian cycle
that avoids all arcs in A′.

At first glance, cycles that avoid certain arcs seem to have very little to
do with cycles that contain certain specified arcs. Hence, somewhat surpris-
ingly, if Conjecture 2.6.12 is true, then so is Conjecture 2.6.22 as observed
by Thomassen3: Suppose that Conjecture 2.6.12 is true. Then it follows from
the discussion above on Hamiltonian cycles containing prescribed arcs that
Conjecture 2.6.14 also holds. Hence, for fixed k, there is a polynomial algo-
rithm Ak which, given a digraph D and a subset W ⊆ V (D) for which D−W
is semicomplete and |W | ≤ k, decides whether or not D has a Hamiltonian
cycle. Let k be fixed and D be a semicomplete digraph and let A′, |A′| ≤ k,
be a prescribed set of arcs in D. Let W be the set of all vertices such that
at least one arc of A′ has head or tail in W . Then |W | ≤ 2|A′| and D has
a Hamiltonian cycle avoiding all arcs in A′ if and only if the digraph D \ A′

has a Hamiltonian cycle. By the above remark, we can test this using the
polynomial algorithm Ar, where r = |W |.

2.7 Oriented Subgraphs of Tournaments

A digraph is n-unavoidable if it is contained in every n-tournament and sim-
ply unavoidable if there exists some n such that it is n-unavoidable. Redei’s
Theorem states that the directed n-path is n-unavoidable. A natural question
is which digraphs are unavoidable? Because the transitive tournaments are
acyclic, every digraph containing a directed cycle is not unavoidable. On the
other hand, we now prove that every acyclic digraph is unavoidable.

Theorem 2.7.1 (Folklore) A digraph is unavoidable if and only if it is
acyclic. Moreover, every acyclic n-digraph is 2n−1-unavoidable.

Proof: We already mentioned that every non-acyclic digraph is not unavoid-
able. Reciprocally, we need to prove that every acyclic digraph is unavoidable,
and more precisely that every acyclic n-digraph 2n−1-unavoidable. As every
acyclic n-digraph is a subdigraph of the transitive n-tournament TTn, it suf-
fices to prove the result for TTn. This follows directly from Proposition 2.2.3.

�

Now, for each acyclic (and hence unavoidable) digraph D, it is natural to
ask for the minimum integer unvd(D) such that D is unvd(D)-unavoidable.
Since an acyclic n-digraph is contained in TTn and so unvd(D) ≤ unvd(TTn),

3 private communication, August 1999.
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the first interesting case is that of transitive tournaments, which also yields
a good estimate of unvd(D) for digraphs D with many arcs. The unavoid-
ability of transitive tournaments is detailed in Subsection 2.7.1. We then
study the unavoidability of acyclic digraphs with few arcs, namely oriented
paths (Subsection 2.7.2), oriented cycles (Subsection 2.7.3), and oriented trees
(Subsection 2.7.4).

2.7.1 Transitive Subtournaments

Erdős and Moser [76] ask for the value of unvd(TTn).

Problem 2.7.2 ([76]) What is unvd(TTn)?

Theorem 2.7.1 yields unvd(TTn) ≤ 2n−1. This upper bound is almost
tight, as shown by the following result due to Erdős and Moser [76].

Theorem 2.7.3 ([76]) There exists a tournament on 2(n−1)/2 vertices which
contains no TTn.

Proof: The proof is probabilistic and uses the First Moment Method. (For
more on the Probabilistic Method and in particular the First Moment
Method, we refer the reader to the book of Alon and Spencer [8].) Set
N = 2(n−1)/2 and consider T = RTN , a random tournament on N vertices.

For an ordered n-tuple (v1, v2, . . . , vn) the probability that T 〈{v1, . . . , vn}〉
is a transitive tournament with Hamiltonian directed path v1v2 . . . vn is
(
1
2

)(n2). Hence the expected number of transitive n-subtournaments is

N !
(N − n)!

(
1
2

)(n2)
< Nn

(
1
2

)(n2)
≤ 1

because N ≤ 2(n−1)/2. Hence by the First Moment Principle, there exists an
N -tournament with less than 1 (i.e. no) n-subtournament. �

In the same way, for every acyclic n-digraph D with m arcs one can show
that unvd(D) > 2

m
n . This gives a meaningful lower bound for digraphs with

sufficiently many arcs, namely at least n log n arcs.

Clearly, unvd(TT1) = 1, unvd(TT2) = 2 and unvd(TT3) = 4. Also
unvd(TT4) = 8 because the Paley tournament P7 contains no TT4. Moreover,
Reid and Parker [162] showed that unvd(TT5) = 14 and unvd(TT6) = 28 and
Sanchez-Flores [167] showed unvd(TT7) ≤ 54. A similar induction as in the
proof of Theorem 2.7.1 yields that unvd(TTn) ≤ 54 × 2n−7 if n ≥ 7.

In addition, for 1 ≤ n ≤ 6 it has been shown [162, 167] that there is a
unique tournament of order unvd(TTn) − 1 that contains no TTn. This leads
us to the following conjecture:

Conjecture 2.7.4 (Havet, 2008) For every n, there is a unique tourna-
ment on unvd(TTn) − 1 vertices that contains no TTn.
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2.7.2 Oriented Paths in Tournaments

An oriented path is an orientation P of an undirected path x1 · · · xn. We
say that x1 is the origin of P and xn is the terminus of P . If x1 → x2, P is
an out-path, otherwise P is an in-path. The directed out-path of order n
is the orientation of x1 · · · xn in which xi → xi+1 for all i, 1 ≤ i < n; the dual
notion is directed in-path. The length of a path is its number of arcs. We
denote by ∗P (resp. P ∗) the oriented path obtained from P by removing its
origin (resp. terminus). The blocks of P are the maximal directed subpaths
of P . We enumerate the blocks of P from the origin to the terminus. The
first block of P is denoted by B1(P ) and its length by b1(P ). Likewise, the
ith block of P is denoted by Bi(P ) and its length by bi(P ). The path P
is totally described by the signed sequence sgn(P )(b1(P ), b2(P ), · · · , bk(P ))
where k is the number of blocks of P and sgn(P ) = + if P is an out-path
and sgn(P ) = − if P is an in-path. An antidirected path is an oriented
path in which all blocks have length 1.

Let X be a set of vertices of T . The out-section generated by X in
T is the set of vertices y to which there exists a directed out-path from
some x ∈ X; we denote this set by S+(X) (note that X ⊆ S+(X) since we
allow paths of length zero). We abbreviate S+({x}) to S+(x) and S+({x, y})
to S+(x, y). The dual notion, the in-section, is denoted by S−(X). We
also write s+(X) (resp. s−(X)) for the number of vertices of S+(X) (resp.
S−(X)). If X ⊆ Y ⊆ V , we write S+

Y (X) instead of S+
T [Y ](X). An out-

generator of T is a vertex x ∈ T such that S+(x) = V (T ), the dual notion
is an in-generator.

Redei’s Theorem states that the directed n-out-path is n-unavoidable. It
is then a natural question to ask whether the other oriented n-paths are also
n-unavoidable. Grünbaum [98] proved that this is the case for antidirected
paths except for three exceptions, the paths ±(1, 1) which is not contained
in the directed 3-cycle

→
C3, ±(1, 1, 1, 1) which is not contained in the regu-

lar 5-tournament R5, and ±(1, 1, 1, 1) which is not contained in the Paley
7-tournament P7. A year later, in 1972, Rosenfeld [165] gave an easier proof
of a stronger result: in a tournament on at least 9 vertices, each vertex is
the origin of an antidirected Hamiltonian path. He also made the follow-
ing conjecture: there is an integer N > 7 such that every tournament on n
vertices, n ≥ N , contains any orientation of the Hamiltonian path. The con-
dition N > 7 results from Grünbaum’s counterexamples. Several papers gave
partial answers to this conjecture: for paths with two blocks (Alspach and
Rosenfeld [13], Straight [174]), and for paths having the ith block of length
at least i + 1 (Alspach and Rosenfeld [13]); interestingly Forcade [83] proved
in a way similar to the proof of Theorem 2.6.1 that there is always an odd
number of Hamiltonian paths of any type in tournaments with 2n vertices.
Rosenfeld’s conjecture was verified by Thomason, who proved in [176] that N
exists and is less than 2128. While he did not make any attempt to sharpen



72 J. Bang-Jensen and F. Havet

this bound, he wrote that N = 8 should be the right value. The problem
was finally closed by Havet and Thomassé [110] who proved the following
theorem.

Theorem 2.7.5 (Havet and Thomassé [110]) Apart from Grünbaum’s
exceptions, every n-tournament contains every oriented n-path.

The proof of Havet and Thomassé relies on sufficient conditions for ver-
tices to be an origin of a given oriented path in a tournament. An easy
condition for a vertex x to be an origin of an oriented out-path P is that
s+(x) ≥ b1(P )+1. It is sometimes sufficient: for example, this condition says
that an origin of a Hamiltonian directed out-path in a tournament must be
a out-generator, and one can easily show that it is also sufficient.

Proposition 2.7.6 In a tournament T , a vertex v is an origin of a Hamil-
tonian directed out-path in T if and only if v is an out-generator of T .

In contrast, for other Hamiltonian oriented paths, the condition s+(x) ≥
b1(P ) + 1 is not sufficient to guarantee x being an origin of P . However,
Havet and Thomassé [110] proved that among two distinct vertices x, y such
that s+(x, y) ≥ b1(P )+1, there must be an origin of P except in some excep-
tional cases that they completely characterized. The proof of this result is by
induction and is tedious because of a long case analysis due to the exceptional
cases (51 small ones plus 17 infinite families). However, the general idea of
the proof is the same as that of the following weaker theorem about oriented
n-paths in (n + 1)-tournaments.

Theorem 2.7.7 ([110]) Let T be a tournament of order n+1, P an out-path
of order n and x, y two distinct vertices of T . If s+(x, y) ≥ b1(P ) + 1, then x
or y is an origin of P in T .

Proof: We prove the statement and its directional dual (where P is an in-
path and s−(x, y) ≥ b1(P )+1) by induction on n, the result holding trivially
for n = 1. Let x and y be two vertices of a tournament T = (V,A) such that
x → y and s+(x, y) ≥ b1(P ) + 1. We distinguish two cases:

Case 1 : b1(P ) ≥ 2. If d+(x) ≥ 2, let z ∈ N+(x) be an out-generator of
T 〈S+(x)\{x}〉 and let t ∈ N+(x), t �= z. By definition of z, s+V \{x}(t, z) =
s+(x) − 1 > b1(∗P ). Since ∗P is an out-path, by the induction hypothesis,
either t or z is an origin of ∗P in T − x. Thus x is an origin of P in T .

So we may assume that y is the unique out-neighbour of x. Let z be an out-
generator of T 〈N+(y)〉 (z exists since s+(x, y) ≥ 3). Then z → x and z is an
out-generator of T 〈S+(x, y)\{y}〉. It follows that s+V \{y}(x, z) = s+(x, y)− 1,
so by the induction hypothesis, either x or z is an origin of ∗P in T −y. Since
d+V \{y}(x) = 0, this origin is certainly z. We conclude that y is an origin of
P in T .
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Case 2 : b1(P ) = 1. Assume first that d+(x) ≥ 2. We denote by X
the set S−

V \{x}(N
+(x)). Consider the partition (X,Y, {x}) of V where Y =

V \(X ∪ {x}). We have Y → x, X → Y and y ∈ X. If |X| ≥ b2(P ) + 1, then
x is an origin of P in T ; indeed, let z ∈ N+(x) be an in-generator of T 〈X〉
and let u ∈ N+(x) u �= z. By the induction hypothesis, z or u is an origin of
∗P in T − x. Hence x is an origin of P in T . If |X| ≤ b2(P ), we have |Y | > 1
since b2(P ) ≤ n − 2 and |X| + |Y | = n. Let w ∈ Y be an in-generator of
T 〈Y 〉. Notice that since d+(x) > 1, S−

V \{y}(w) = V \{y}. Let u ∈ Y − w. By
the induction hypothesis, u or w is an origin of ∗P in T − y, consequently y
is an origin of P in T .

Now assume that d+(x) = 1, thus N+(x) = {y}. If d+(y) < 2, then
N−

V \{x}(y) has at least n − 2 vertices. By the induction hypothesis, one can
find ∗∗P in T 〈N−

V \{x}(y)〉, thus x is an origin of P in T . If d+(y) ≥ 2,
denote S−

V \{y}(N
+(y)) by Y and consider the partition (X,Y, {x}, {y}) of

V with X = V \(Y ∪ {x, y}). By definition, X → {x, y}, Y → X ∪ {x}.
If |Y | ≥ b2(P ) + 1, then y is an origin of P by the previous argument. If
|Y | ≤ b2(P ), then b2(P ) ≥ d+(y) ≥ 2. If |X| ≥ 2, let z ∈ X be an in-generator
of T − {x, y} and let u ∈ X u �= z. Since b2(P ) ≥ 2, ∗∗P is an in-path and
by the induction hypothesis, z or u is an origin of ∗∗P in T − {x, y}. Thus x,
(via y) is an origin of P in T . Finally, if |X| = 1 then |Y | = n − 2 and since
n−2 ≥ b2(P ) ≥ |Y | we have b2(P ) = n−2. This means that ∗P is a directed
in-path. Since y is an in-generator of T − x, x is an origin of P in T . �

The following result, due to Thomason, is an easy consequence of Theorem
2.7.7.

Corollary 2.7.8 ([176]) Every tournament T of order n + 1 contains each
oriented path P of order n. Moreover, any subset of b1(P )+1 vertices contains
an origin of P . In particular, at least two vertices of T are origins of P .

2.7.3 Oriented Cycles in Tournaments

As we did for paths, we can seek arbitrary orientations of cycles, i.e. ori-
ented cycles. Observe that by Camion’s Theorem (2.2.6) a tournament has
a directed Hamiltonian cycle if and only if it is strong. A natural equation is
then whether every tournament contains all Hamiltonian non-directed cycles.
The existence of Grünbaum’s exceptions implies the existence of tournaments

that do not contain certain Hamiltonian oriented cycles. Indeed
→
C3, R5 and

P7 do not contain the cycle obtained from a Hamiltonian antidirected path by
adding an arc between its terminus and its origin. Moreover, the tournaments
of order n that have a subtournament on n − 1 vertices isomorphic to one of
→
C3, R5 and P7 do not contain a Hamiltonian antidirected cycle. (Similarly to
paths, an antidirected cycle is a cycle in which every block has length 1.)
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However, as for oriented paths, Rosenfeld [164] conjectured that there
is an integer N > 8 such that every tournament of order n ≥ N contains
every non-directed cycle of order n. This was settled by Thomason [176] for
tournaments of order n ≥ 2128. While Thomason made no attempt to sharpen
this bound, he indicated that it should be true for tournaments of order at
least 9.

Conjecture 2.7.9 (Rosenfeld–Thomason) Every tournament of order
n ≥ 9 contains every non-directed cycle of order n.

Havet [107] improved Thomason’s result by showing that this conjecture
is true for n ≥ 68.

Theorem 2.7.10 ([107]) Every tournament of order n ≥ 68 contains every
non-directed cycle of order n.

The proof is based on complementary lemmas: Some establish the exis-
tence of an oriented cycle in every tournament whose strong connectivity is
small compared to the length of its longer block; others show the existence
of an oriented cycle in every tournament whose strong connectivity is large
compared to the lengths of all blocks. In particular, Conjecture 2.7.9 is true if
the tournament is either not 2-strong or 8-strong [107]. The conjecture is also
true if the tournament is either 5-strong and of order at least 43 or 4-strong
and of order at least 65.

Better results are also known for particular types of directed cycles. Con-
jecture 2.7.9 has been proved for cycles with a block of length n − 1 by
Grünbaum [98], for antidirected cycles by Thomassen [177] (n ≥ 50), Rosen-
feld [164] (n ≥ 28) and Petrović [151] (n ≥ 16), and for cycles with just two
blocks by Benhocine and Wojda [39].

2.7.4 Trees in Tournaments

As we did for paths and cycles, we can seek an arbitrary orientation of trees,
i.e. oriented trees. Observe that an oriented tree of order k is an acyclic
digraph and thus it is 2k−1-unavoidable by Theorem 2.7.1. However this
bound 2k−1 is far from tight as an oriented tree has very few arcs compared
to the transitive tournament of the same order.

Conjecture 2.7.11 (Sumner, 1972) Every oriented tree with k > 1 ver-
tices is (2k − 2)-unavoidable.

If true, this conjecture would be tight since the out-star S+
k , which is the

out-tree of order k with a root dominating k−1 leaves, is not contained in any
regular tournament of order 2k−3, because all vertices of such a tournament
have out-degree k − 2.
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The first linear bound was given by Häggkvist and Thomason [104]. Havet
and Thomassé [109] proved that the conjecture holds for out-trees (and thus
also for in-trees).

Theorem 2.7.12 ([109]) Every tournament of order 2k − 2 contains every
out-tree of order k > 1.

Proof: Let (v1, v2, . . . , v2k−2) be a median order of a tournament T on 2k −
2 vertices, and let A be an out-tree on k vertices. Consider the intervals
(v1, v2, . . . , vi), 1 ≤ i ≤ 2k − 2. We show, by induction on k, that there is a
copy of A in T whose vertex set includes at least half the vertices of any such
interval.

This is clearly true for k = 2. Suppose, then, that k ≥ 3. Delete a leaf y of
A to obtain an out-tree A′ on k−1 vertices, and set T ′ := T −{v2k−3, v2k−2}.
By (M1), (v1, v2, . . . , v2k−4) is a median order of the tournament T ′, so there
is a copy of A′ in T ′ whose vertex set includes at least half the vertices
of any interval v1, v2, . . . , vi, 1 ≤ i ≤ 2k − 4. Let x be the predecessor of
y in A. Suppose that x is located at vertex vi of T ′. In T , by (M2), vi

dominates at least half of the vertices vi+1, vi+2, . . . , v2k−2, thus at least k −
1 − i/2 of these vertices. On the other hand, A′ includes at least (i − 1)/2
of the vertices v1, v2, . . . , vi−1, thus at most k − 1 − (i + 1)/2 of the vertices
vi+1, vi+2, . . . , v2k−2. It follows that, in T , there is an out-neighbour vj of vi,
where i + 1 ≤ j ≤ 2k − 2, which is not in A′. Locating y at vj , and adding
the vertex y and the arc xy to A′, we now have a copy of A in T . It is readily
checked that this copy of A satisfies the required additional property. �

The same method can be easily adapted to prove that every oriented tree
of order k is (4k − 4)-unavoidable. At each step of the induction, we add
two vertices to the right and two vertices to the left of the ordering and we
insist that at each step for each vertex v at least half of the vertices to the
right of v are unused and half of the vertices to the left are unused. El Sahili
[73] used it in a clever way to show that every oriented tree of order k is
(3k − 3)-unavoidable. Recently, Kühn, Mycroft and Osthus [125] proved that
Sumner’s conjecture is true for all sufficiently large k.

Theorem 2.7.13 (Kühn, Mycroft and Osthus [125]) There exists a k0
such that every oriented tree with k ≥ k0 vertices is (2k − 2)-unavoidable.

Their complicated proof makes use of the directed version of Szemeredi’s
Regularity Lemma.

As we mentioned above, Sumner’s conjecture is tight for out-stars. On
the other hand, it is not tight for paths which are trees with two leaves.
Consequently, Havet and Thomassé made the following conjecture, which
directly implies Sumner’s conjecture because a tree of order n has at most
n − 1 leaves.
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Conjecture 2.7.14 (Havet and Thomassé, 1996) If A is an oriented tree
with n vertices and k leaves, then it is (n + k − 1)-unavoidable.

If true this conjecture would be tight because of out-stars, but also be-
cause of Grünbaum’s exceptions. Conjecture 2.7.14 holds for k = 2, as trees
with two leaves are paths, Ceroi and Havet [57] proved it for k = 3, and
it easily holds for k = n − 1, that is, when the tree is an oriented star.
Havet [106] proved that it holds for a large class of oriented trees. Häggkvist
and Thomason [104] proved that there is a function g such that every tree
with n vertices and k leaves is (n + g(k))-unavoidable.

Instead of looking for a fixed oriented tree in tournaments, one may also
seek an oriented tree having certain properties. In this vein, Lu [137] proved
that there exists an out-branching of height 2, in which all nodes except the
root have small out-degree.

Theorem 2.7.15 ([137]) Every tournament T is has an out-branching of
height 2 and whose vertices on level 1 have out-degree at most 2.

Proof: The proof we give here is due to Bondy [49]. Let x be a vertex of
maximal out-degree. By Theorem 2.2.12, x is a king, so ({x}, N+(x), N++(x))
is a partition of V (T ). Note that, by the choice of x and since in every k-
tournament there is a vertex with out-degree at least �k/2�, for every A ⊆
N++(x) we have 2|A− ∩ N+(x)| ≥ |A|. By Hall’s theorem, one can cover
N++(x) by two directed matchings from N+(x) to N++(x). This gives the
desired out-branching. �

2.7.5 Largest n-Unavoidable Digraphs

Let lu(n) be the largest m such that there is an n-unavoidable digraph with
m arcs. Linial, Saks and Sós [135] showed the following.

Theorem 2.7.16 ([135]) There exist positive constants c1 and c2 such that
for all positive integers n, n log n − c1n log log n ≤ lu(n) ≤ n log n − c2n.

The upper bound comes from a simple counting argument working over
all labelled n-tournaments. The lower bound follows from several propositions
that allow an inductive construction of an n-unavoidable, weakly connected
spanning digraph with n log n − c1n log log n arcs.

2.7.6 Generalization to k-Chromatic Digraphs

A tournament is an orientation of a complete graph, and the complete graph
Kk is the easiest example of a graph with chromatic number k. Recall that
the chromatic number of a digraph D, denoted by χ(D), is the chromatic
number of its underlying undirected graph. A digraph is k-chromatic if its
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chromatic number is k. One can then wonder whether some results on tour-
naments can be extended to digraphs with large chromatic number. This is in
particular the case with Rédei’s Theorem (2.2.4), which has been generalized
to the following theorem, often referred to as the Gallai–Roy Theorem, even
if it was independently proved by four researchers: Gallai [94], Hasse [105],
Roy [166] and Vitaver [191].

Theorem 2.7.17 (Gallai–Hasse–Roy–Vitaver [94, 105, 166, 191]) Every
k-chromatic digraph contains a directed path of order k.

Theorem 2.7.17 has many proofs. One of them is based on median or-
ders (see [50] Chapter 14). We present here a proof due to El-Sahili and
Kouider [74]. It is based on the concept of out-forests, which are disjoint
unions of out-trees. An out forest of D is spanning if it covers all vertices of
D.

Let F be a spanning out-forest of D. The level of x is the number of
vertices of a longest directed path of F ending at x. For instance, the level
1 vertices are the roots of the out-trees of F . We denote by Fi the set of
vertices with level i in F . A vertex y is a descendant of x in F if there is a
directed path from x to y in F .

If there is an arc xy in D from Fi to Fj , with i ≥ j, and x is not a
descendant of y, then the out-forest F ′ obtained by adding xy and removing
the arc of F with head y (if such exists, that is, if j > 1) is called an
elementary improvement of F . An out-forest F ′ is an improvement
of F if it can be obtained from an out-forest F by a sequence of elementary
improvements. The key-observation is that if F ′ is an improvement of F then
the level of every vertex in F ′ is at least its level in F . Moreover, at least
one vertex of F has its level in F ′ strictly greater than its level in F . Thus,
one cannot perform infinitely many improvements. A spanning out-forest F
is final if there is no elementary improvement of F .

The following proposition follows immediately from the definition of a
final spanning out-forest:

Proposition 2.7.18 (El Sahili and Kouider [74]) Let D be a digraph and
F a final spanning out-forest of D. If a vertex x ∈ Fi dominates in D a vertex
y ∈ Fj for j ≤ i, then x is a descendant of y in F . In particular, every level
of F is an independent set in D.

Proof of Theorem 2.7.17: Consider a final spanning out-forest of a k-
chromatic digraph D. Since every level is an independent set by Proposi-
tion 2.7.18, there are at least k levels. Hence D contains a directed path of
order at least k. �

More generally, one can ask which digraphs are k-universal, i.e. con-
tained in every k-chromatic digraph. A result of Erdős [75] states that for
every choice of positive integers k and g, there exist k-chromatic graphs with
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no cycle of length less than g. Consequently, k-universal digraphs must be
oriented trees.

Bondy conjectured the following generalization of Theorem 2.7.5.

Conjecture 2.7.19 (Bondy, 1995) For sufficiently large k, every oriented
path on k vertices is k-universal.

As support for this conjecture, El Sahili proved [72] that every oriented
path of order 4 is 4-universal and that the antidirected path of order 5 is
5-universal. Addario-Berry, Havet, and Thomassé [2] proved that every ori-
ented path of order k ≥ 4 with two blocks is k-universal. Their proof use the
notion of a final spanning out-forest.

Burr [53] generalized Sumner’s Conjecture as follows.

Conjecture 2.7.20 (Burr [53], 1980) Every oriented tree on k vertices is
(2k − 2)-universal.

Burr [53] showed that every oriented tree of order k is (k − 1)2-universal.
This was slightly improved by Addario-Berry, Havet, Linhares Sales, Reed,
and Thomassé [1].

Theorem 2.7.21 ([1]) Every oriented tree on k vertices is (k2/2−k/2+1)-
universal.

Addario-Berry et al. [1] proved that every oriented tree on k vertices is
contained in every acyclic digraph of order n. They also established that every
antidirected tree of order k ≥ 3 is (5k − 9)-universal. An antidirected tree
is an oriented tree in which every vertex has either in-degree 0 or out-degree
0.

Finally, Havet and Thomassé generalized Conjecture 2.7.14 about un-
avoidabiity to universality.

Conjecture 2.7.22 (Havet and Thomassé, 2000) If A is an oriented tree
with n vertices and k leaves, then it is (n + k − 1)-universal.

Let us now consider cycles. As we already saw, they cannot be universal
because there are digraphs with no cycles of small length having arbitrarily
large chromatic number, as stated by a result of Erdős [75]. However, Bondy
generalized Camion’s Theorem (2.2.6) to digraphs with large chromatic num-
ber.

Theorem 2.7.23 (Bondy [48]) Every strong digraph of chromatic number
at least k contains a directed cycle of length at least k.

A directed cycle of length at least k may be seen as a subdivision of the
directed k-cycle

→
Ck. Recall that a subdivision of a digraph D is a digraph

obtained from D by replacing each arc ab of D by a directed (a, b)-path. Hence
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a natural question is to ask whether Theorem 2.7.10 can be generalized, or
if at least every non-directed cycle C is k-universal for some large enough k.
This was answered in the negative by Cohen, Havet, Lochet, and Nisse.

Theorem 2.7.24 ([65]) Let C be an oriented cycle. There exist digraphs with
arbitrarily large chromatic number that contains no subdivision of C.

However, they conjectured that, as for the directed cycle, if we require
the digraph to be strongly connected, the picture is different.

Conjecture 2.7.25 ([65]) Let C be an oriented cycle C. There exists a con-
stant h(C) such that every strong digraph with chromatic number at least
h(C) contains a subdivision of C.

As partial evidence, Cohen, Havet, Lochet, and Nisse [65] proved this
conjecture for cycles with two blocks and the antidirected cycle of order 4. In
particular, they proved that for C(k, 	) the cycle on two blocks, one of length
k and the other of length 	, h(C(k, 	)) = O((k + 	)4). This bound on the
value was recently improved by Kim, Kim, Ma and Park [122] who proved
h(C(k, 	)) = O((k + 	)2).

2.8 Vertex-Partitions of Semicomplete Digraphs

In this section, we consider properties of vertex-partitions of semicomplete di-
graphs. A k-partition of a digraph D = (V,A) is a partition (V1, V2, . . . , Vk)
of V into k non-empty disjoint sets.

2.8.1 2-Partitions into Strong Semicomplete Digraphs

Being strongly connected is one of the basic properties of a digraph. Hence, it
is natural to determine which (semicomplete) digraphs D have a k-partition
into strong subdigraphs, that is, a partition (V1, . . . , Vk) such that D[Vi] is
strong for i = 1, . . . , k. Bang-Jensen, Cohen and Havet proved [21] that this
problem is NP-complete for general digraphs already when k = 2. The papers
[21, 26] provide a complete characterization of the complexity of a number
of related problems where we wish to partition V (D) into two sets such that
each of these have prescribed properties (e.g. both are strongly connected).

We now turn to semicomplete digraphs. Recall that a cycle factor is a
spanning collection of disjoint cycles. Since every strongly connected semi-
complete digraph is Hamiltonian, a semicomplete digraph has a 2-partition
into two strong subdigraphs if and only if it has a cycle factor with two cycles.
A pair of cycles forming a cycle factor with two cycles is also called a pair of
complementary cycles.
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Reid proved that every 2-strong n-tournament with n ≥ 8 has a 2-
partition into strong subtournaments, one of which has order 3. Song ex-
tended this result by showing that there exists such a partition with one
subtournament of any fixed order k for any 3 ≤ k ≤ n − 3.

Theorem 2.8.1 ([161, 171]) Every 2-strong tournament D on at least 8 ver-
tices has a 2-partition (V1, V2) such that D[Vi] is strong for i = 1, 2 and
|V1| = k for every 3 ≤ k ≤ n − 3.

Theorem 2.8.1 also holds for 2-strong tournaments on 6 vertices and the
only exception on 7 vertices is the Paley tournament P7 (see [161]). Fur-
thermore, there are infinite families of tournaments T with κ(T ) = 1 which
do not have complementary cycles. One such example was given in [130] by
Li and Shu. Those families show that Theorem 2.8.1 cannot be extended to
strong tournaments. However, Li and Shu proved that strong tournaments
with sufficiently large minimum in- or out-degree have a partition into strong
subtournaments.

Theorem 2.8.2 ([130]) Let T be a strong tournament on at least 6 vertices.
If max{δ−(T ), δ+(T )} ≥ 3 and T is not isomorphic to the Paley tournament
P7, then T has a 2-partition into strong subtournaments. �

It follows from Theorem 6.9.2 that Theorem 2.8.1 also holds for semicom-
plete digraphs. For semicomplete digraphs Bang-Jensen and Nielsen solved
the problem from a complexity point of view.

Theorem 2.8.3 ([33]) There exists a polynomial algorithm that, given semi-
complete digraph D, finds a 2-partition (V1, V2) such that D[Vi] is strong for
i = 1, 2, or correctly reports that no such pair exists.

If we require more structure on the digraphs D[Vi], such as requiring each
of these to induce a tournament, then the problem becomes very difficult,
even when the input is a semicomplete digraph. The following result is due
to Bang-Jensen and Christiansen.

Theorem 2.8.4 ([20]) It is NP-complete to decide whether a given semi-
complete digraph D has a 2-partition (V1, V2) such that D[Vi] is a strong
tournament for i = 1, 2.

In an attempt to generalize Theorem 2.8.1, Bollobás asked whether every
sufficiently large k-strong tournament has a cycle factor with k-cycles or
equivalently a k-partition into strong subtournaments (see [161]). This was
answered in the positive by Chen, Gould and Li.

Theorem 2.8.5 ([59]) Every k-strong tournament on n ≥ 8k vertices has a
k-partition into strong subtournaments.
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Furthermore, Kühn, Osthus and Townsend proved that if the tournament
is r-strong for r sufficiently high, then one can prescribe the sizes of the strong
subtournaments of the k-partition. This answers a question by Song [171].

Theorem 2.8.6 ([127]) Let T be a tournament on n vertices, let k ≥ 2 and
let n1, n2, . . . , nk ≥ 3 satisfy n = n1 + n2 + . . . + nk. If T is 1010k4 log k-
strong, then it has a partition (V1, . . . , Vk) into strong subtournaments such
that |Vi| = ni for i ∈ [k].

2.8.2 Partition into Highly Strong Subtournaments

As a generalization of Theorem 2.8.1, Thomassen (see [161]) conjectured that
for all positive integers k1, k2 there exists an integer f(k1, k2) such that every
f(k1, k2)-strong tournament T has a 2-partition (V1, V2) so that T [Vi] is ki-
strong, i = 1, 2. This is clearly equivalent to the existence, for all integers
k, t, of an integer g(k, t) such that every g(k, t)-strong tournament T has a
t-partition (V1, . . . , Vt) so that T [Vi] is k-strong, i ∈ [t]. The existence of such
a g(k, t) was established by Kühn, Osthus and Townsend [127].

Theorem 2.8.7 ([127]) Let k, t ≥ 1 be integers. Every tournament T which
is (107k6t3 log(kt2))-strong has a t-partition (V1, . . . , Vt) such that T [Vi] is
k-strong for i ∈ [t].

Kim, Kühn and Osthus proved that when the connectivity is sufficiently
high we can get an even stronger type of 2-partition. For a digraph D and a
2-partition (V1, V2), we denote by D[V1, V2] the bipartite subdigraph induced
by the arcs with one end in V1 and the other in V2.

Theorem 2.8.8 ([121]) Every 109k6 log(2k)-strong tournament has a
2-partition (V1, V2) such that each of T [V1], T [V2], T [V1, V2] is a k-strong di-
graph.

See Theorem 2.8.18 for a related partition result for out-degrees.

2.8.3 2-Partitions With Prescribed Minimum Degrees

We now turn to 2-partitions where we want a certain minimum out-, in-
or semi-degree in each of the parts. E.g. a (δ+ ≥ 1, δ+ ≥ 1)-partition is a
2-partition (V1, V2) where the digraph induced by each set has minimum out-
degree at least 1. Bang-Jensen, Cohen and Havet proved in [21] that when we
want the chosen parameter among {δ+, δ−, δ0} to be at least 1 in each side of
the partition, then we obtain an NP-complete problem for general digraphs,
except in the case of (δ+ ≥ 1, δ+ ≥ 1)- and (δ− ≥ 1, δ− ≥ 1)-partitions
for which easy polynomial algorithms exist. Furthermore, Bang-Jensen and
Christiansen proved that the (δ+ ≥ 1, δ+ ≥ 2)-partition problem (that is,
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deciding whether there is a 2-partition (V1, V2) of D such that δ+(D[Vi]) ≥ i
for i = 1, 2) is already NP-complete [20].

A suprisingly difficult problem is the following conjecture due indepen-
dently to Alon and Stiebitz.

Conjecture 2.8.9 ([4, 173]) There exists a function f(k, 	), where k, 	 are
positive integers, such that every digraph D with δ+(D) ≥ f(k, 	) has a (δ+ ≥
k, δ+ ≥ 	)-partition.

It is easy to see that a digraph with minimum out-degree k + 	 has a
(δ+ ≥ k, δ+ ≥ 	)-partition if and only if it has two disjoint subdigraphs
with minimum out-degree at least k and 	. Thomassen [180] proved that ev-
ery digraph D with δ+(D) ≥ 3 has two disjoint cycles, hence Conjecture 2.8.9
holds for k = 	 = 1 and f(1, 1) = 3 because the second power C2

2r+1 of an
odd cycle has no (δ+ ≥ 1, δ+ ≥ 1)-partition. But even the existence of f(1, 2)
is still open.

In the remaining part of this section, we shall see that the situation is a lot
simpler for semicomplete digraphs: Conjecture 2.8.9 holds for semicomplete
digraphs and the problem of deciding whether a semicomplete digraph has
a (δ+ ≥ k, δ+ ≥ 	)-partition can be solved in polynomial time. A crucial
notion here is that of an out-critical set. A set X of vertices of a digraph
D is k-out-critical if δ+(D〈X〉) = k and for every proper subset S ⊂ X,
δ+(D〈S〉) < k. Let X be a set of vertices in a digraph D. A set X ′ ⊆ V (D) is
called (X, k)-out-critical if X ⊆ X ′, δ+(D[X ′]) ≥ k and δ+(D[Y ]) < k for
every X ⊆ Y ⊂ X ′. Note that if δ+(D[X]) ≥ k, then X is the only (X, k)-
out-critical set in D. By definition, a digraph of minimum out-degree at least
k contains at least one (X, k)-out-critical set for every subset X of vertices
(including the empty set). The key fact is that the number of (X, k)-out-
critical sets is bounded since their size is bounded. This was first observed
by Lichiardopol for tournaments. In fact, his result holds for semicomplete
digraphs as well.

Lemma 2.8.10 ([133]) Let k be a positive integer, let D be a semicomplete
digraph with minimum degree at least k, and let X ⊆ V (D). If X ′ is an
(X, k)-out-critical set in D, then |X ′| ≤ k2+3k+2

2 + |X|. In particular, every
k-out-critical digraph in D has order at most k2+3k+2

2 .

Proof: By induction on |V (D)|. If |V (D)| ≤ k2+3k+2
2 + |X| we are done,

so assume |V (D)| > k2+3k+2
2 + |X|. Let M be the set of vertices that have

out-degree k in T and let m = |M |.
Since T [M ] is semicomplete, we have

|N+[M ]| ≤ m + mk − m(m − 1)
2

= −m2

2
+

(
3
2

+ k

)
m =: P (m).
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Now P (m) has global maximum at (3/2+k) and maximum for m integer
at k + 1 and k + 2 with P (k + 1) = P (k + 2) = k2+3k+2

2 . Hence |N+[M ]| ≤
k2+3k+2

2 and since |V (D)| > k2+3k+2
2 + |X| there exists a vertex u ∈ V (D) \

(N+[M ] ∪ X). Then δ+(T − u) ≥ k and the result follows by induction. �

Corollary 2.8.11 ([133]) For any pair of integers k, 	 ≥ 1, every semicom-
plete digraph D with δ+(D) ≥ (k2 + 3k + 2)/2 + 	 has a (δ+ ≥ k, δ+ ≥ 	)-
partition. Furthermore, such a partition can be constructed in polynomial
time.

Proof: This follows easily from Lemma 2.8.10 by taking a k-out-critical set
V1 (which has size at most (k2 + 3k + 2)/2) and taking V2 = V \ V1.

Let us describe a polynomial algorithm, due to Bang-Jensen and Chris-
tiansen, for deciding whether a given semicomplete digraph has a (δ+ ≥
k, δ+ ≥ 	)–partition.

Theorem 2.8.12 ([20]) For every fixed pair of integers k and 	, there exists
a polynomial algorithm that either constructs a (δ+ ≥ k, δ+ ≥ 	)-partition of
a given semicomplete digraph D or correctly outputs that none exists.

Proof: Let O be the set of vertices with out-degree less than k + 	 − 1.
For a given partition (O1, O2) of O we let X be an (O1, k)-out-critical set
such that X ⊆ V \ O2 (if no such set exists, we stop considering the pair
(O1, O2)). The following subalgorithm B will decide whether there exists a
(δ+ ≥ k, δ+ ≥ 	)-partition (V1, V2) with X ⊆ V1, O2 ⊆ V2: Starting from
the partition (V1, V2) = (X,V \ X), and moving one vertex at a time, the
algorithm will move vertices v of V2 \ O2 such that d+

T [V2]
(v) < 	 to V1. If,

at any time, this results in a vertex v ∈ O2 having d+
T [V2]

(v) < 	, or V2 = ∅,

then there is no (δ+ ≥ k, δ+ ≥ 	)-partition with Oi ⊆ Vi, = 1, 2 and B
terminates. Otherwise B will terminate with O2 ⊆ V2 �= ∅ and hence it has
found a (δ+ ≥ k, δ+ ≥ 	)-partition (V1, V2) with Oi ⊆ Vi, i = 1, 2.

The correctness of B follows from the fact that we only move vertices that
are not in O and each such vertex has at least k + 	− 1 out-neighbours in D.
Hence, when moved, a vertex has less than 	 out-neighbours in V2, so it has
at least k out-neighbours in V1. Thus δ+(D[V1]) ≥ k holds throughout the
execution of B.

By Proposition 2.2.2, |O| ≤ 2k+2	−3 and hence the number of (O1, O2)-
partitions is at most 22k+2�−3 which is a constant when k and 	 are fixed. Fur-
thermore, by Lemma 2.8.10, the size of every O1-critical set is also bounded
by a function of k and hence each (O1, O2)-partition induces only a poly-
nomial number of O1-critical sets. Thus we obtain the desired polynomial
algorithm by running the subalgorithm B for (at most) all possible partitions
(O1, O2) of O and all possible (O1, k)-out-critical sets. �
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Lichiardopol proved an analogue of Corollary 2.8.11 for partitions with
prescribed lower bounds on semi-degrees in tournaments. His result can easily
be extended to semicomplete digraphs.

Theorem 2.8.13 ([133]) For any choice of integers k, 	 ≥ 1, every semicom-
plete digraph D with δ0(D) ≥ (k2+3k+2)+	 has a (δ0 ≥ k, δ0 ≥ 	)-partition.
Furthermore, such a partition can be constructed in polynomial time.

The complexity of finding 2-partitions with prescribed minimum semi-
degrees has been studied by Bang-Jensen and Christiansen. Recall that for
general digraphs it is NP-complete to decide the existence of a (δ0 ≥ k, δ0 ≥
	)-partition when k + 	 ≥ 2 → k, 	 ≥ 1 [21]. Bang-Jensen and Christiansen
showed that for semicomplete digraphs the situation is better, at least when
k = 	 = 1.

Theorem 2.8.14 ([20]) There exists a polynomial algorithm that given a
semicomplete digraph D either finds a (δ0 ≥ 1, δ0 ≥ 1)-partition of D or
correctly returns that none exists.

Problem 2.8.15 For any fixed positive integers k, 	, what is the complexity
of deciding whether a semicomplete digraph has a (δ0 ≥ k, δ0 ≥ 	)-partition ?

One may also study all other possible variants, for example (δ+ ≥ k, δ− ≥
	)-partitions. The associated complexity problem is the following.

Problem 2.8.16 For any fixed positive integers k, 	, what is the complexity
of deciding whether a semicomplete digraph has a (δ+ ≥ k, δ− ≥ 	)-partition?

Bang-Jensen, Cohen and Havet proved that Problem 2.8.16 is NP-
complete for general digraphs already when k = 	 = 1. Bang-Jensen and
Christiansen [20] proved that a semicomplete digraph D has a (δ+ ≥ 1, δ− ≥
1)-partition if and only if it has two disjoint cycles. Since one can find such
a pair of disjoint cycles if one exists in polynomial time, one can decide in
polynomial time whether a semicomplete digraph D has a (δ+ ≥ 1, δ− ≥ 1)-
partition. The following partial result on Problem 2.8.16 was obtained by
Bang-Jensen and Christiansen.

Theorem 2.8.17 ([20]) For every fixed integer k ≥ 1 there exists a polyno-
mial algorithm that either constructs a (δ+ ≥ 1, δ− ≥ k)-partition of a given
semicomplete digraph D or correctly outputs that none exists.

2.8.4 2-Partitions with Restrictions Both Inside and Between Sets

For a 2-partition (V1, V2) we denote by D[V1, V2] the digraph induced by
the arcs between V1 and V2. We now consider the degree analogue of
Theorem 2.8.8, that is, we seek a 2-partition (V1, V2) so that each of
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D[V1],D[V2],D[V1, V2] has minimum out-degree at least some prescribed
number. The following results are due to Alon, Bang-Jensen and Bessy.

Theorem 2.8.18 ([6]) Except for the Paley tournament P7 every semicom-
plete digraph D with minimum out-degree at least 3 has a 2-partition (V1, V2)
such that D[V1],D[V2],D[V1, V2] has minimum out-degree at least one. Fur-
thermore, when D �= P7 one can always find such a 2-partition which is
balanced, that is, ||V1| − |V2|| ≤ 1.

For higher values of the degree bounds the authors obtained the following.

Theorem 2.8.19 ([6]) There exist two absolute positive constants c1, c2 such
that the following holds.

1. Let T = (V,E) be a semicomplete digraph with minimum out-degree at
least 2k + c1

√
k. Then there is a balanced a 2-partition (V1, V2) of V such

that δ+(D[V1]), δ+(D[V2]) and δ+(D[V1, V2]) are all at least k.
2. For infinitely many values of k there is a tournament with minimum out-

degree at least 2k+c2
√

k such that for any 2-partition (V1, V2) of V at least
one of the quantities δ+(D[V1]), δ+(D[V2]) and δ+(D[V1, V2]) is smaller
than k.

We only give the proof of the second part of Theorem 2.8.19. The proof
illustrates one of the remarkable properties of the Paley tournaments: They
behave almost like random tournaments.

Recall that for a prime q which is congruent to 3 modulo 4, the Paley
tournament Pq is the tournament whose vertices are the integers modulo p
where (i, j) is a directed edge if and only if i−j is a quadratic residue modulo
q.

Lemma 2.8.20 Let Pq = (V,A) be the Paley tournament on q vertices.
Then for any function f : V → {−1, 1} there is a vertex v ∈ V such that
|
∑

u∈N+(v) f(u)| > 1
2

√
q.

Proof: It is easy and well known (c.f., e.g., [10], Chapter 9) that every
vertex of Pq has out-degree and in-degree (q − 1)/2 and any two vertices
of it have exactly (q − 3)/4 common in-neighbours (and out-neighbours).
Let A = Aq be the adjacency matrix of Pq, that is, the 0/1 matrix whose
rows and columns are indexed by the vertices of Pq, where Aij = 1 if and
only if (i, j) is an arc. By the above comment, each diagonal entry of AtA
is (q − 1)/2 and each other entry is (q − 3)/4. Thus the eigenvalues of AtA
are (q − 1)/2 + (q − 1)(q − 3)/4 = (q − 1)2/4 (with multiplicity 1) and
(q −1)/2− (q −3)/4 = (q +1)/4 (with multiplicity (q −1)). This implies that

||Af ||22 = f tAtAf ≥ (q + 1)/4||f ||22 = q(q + 1)/4.
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It follows that there is an entry of Af whose square is at least (q + 1)/4,
completing the proof. �

Note that, by Lemma 2.8.20, for any partition of the vertices of Pq into
two disjoint (not necessarily nearly equal) sets V1 and V2 there is a vertex v
of Pq such that the number of its out-neighbours in V1 differs from that in
V2 by more than

√
q/4 (if there are x more neighbours in one set than in the

other, then the sum in the lemma is |
∑

u∈N+(v) f(u)| = 2x). This implies the
assertion of part (ii) of Theorem 2.8.19 for infinitely many values of k.

2.8.5 Partitioning into Transitive Tournaments

A k-dicolouring of a digraph D is a k-partition (V1, . . . , Vk) of its vertex
set such that D〈Vi〉 is acyclic. The dichromatic number of D, denoted by
→
χ (D), is the smallest positive integer such that D admits a k-dicolouring.
This notion was first treated by Neumann-Lara [148] and was independently
introduced by Mohar [142] two decades later. Note that if G is an undirected
graph, and D is the symmetric digraph obtained from G by replacing each
edge by the pair of oppositely directed arcs joining its end vertices, then
χ(G) =

→
χ(D) since any two adjacent vertices in D induce a directed 2-cycle.

Observe, moreover, that the dichromatic number of a tournament T is the
minimum integer k such that T can be partitioned into k transitive subtour-
naments.

Finding the dichromatic number of a tournament is NP-hard. Chen, Hu,
and Zhang [61] proved that it is in fact already NP-complete to decide
whether a tournament has dichromatic number 2.

Theorem 2.8.21 ([61]) Deciding whether a tournament has a 2-partition
into two transitive subtournaments is NP-complete.

Proof: The original proof by Chen et al. was a reduction from NAE-3-SAT.
We present here a simpler reduction from Monotone NAE-3-SAT (recall
that monotone means that there are no negated variables).

Let F = C1 ∧ · · · ∧ Cm be an instance of Monotone NAE-3-SAT on n
variables x1, . . . , xn. We construct a tournament TF as follows. Its vertex set
is the union of X = {x1, . . . , xn}, a set Y = {y1, y2, y3} and Z =

⋃m
j=1 Zj ,

where Zj = {z1j , z2j , z3j }. For z ∈ Z, we define xz as follows: let j and 	 be the
indices such that z = z�

j , and let i be the index such that xi is the 	th literal
of Cj ; then xz = xi.

Let σ be the following ordering of V (TF )

(x1, . . . , xn, y1, y2, y3, z
1
1 , z

2
1 , z

3
1 , z

1
2 , z

2
2 , z

3
2 , . . . , z

1
m, z2m, z3m).

All the arcs of TF agree with σ (i.e. if u precedes v in σ, then u → v)
except for a set B = BY ∩ BZ ∩ B′ of backward arcs, where BY = {y3y1},
BZ = {z3j z1j | 1 ≤ j ≤ m} and B′ = {zxz | z ∈ Z}.
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Observe that every directed cycle in TF is either the 3-cycle y1y2y3y1, or
the 3-cycle z1j z2j z3j z1j for some 1 ≤ j ≤ m, or contains an arc in B.

We shall now prove that F has an NAE-assignment if and only if TF has
a 2-partition (V1, V2) such that T [Vi] is transitive.

Let us assume that F has an NAE-assignment φ. Let X1 = {xi | φ(xi) =
true}, X2 = {xi | φ(x2) = false}, Z1 = {z | xz ∈ X2} and Z2 = {z | xz ∈
X1}. Setting V1 = X1∪{y1}∪Z1 and V1 = X2∪{y2}∪Z2, one can easily check
that (V1, V2) is a partition of TF into two transitive tournaments. Indeed, the
arcs of B have their end vertices in different part, each {z1j , z2j , z3j } contains
at least one vertex in V1 and one in V2 because φ is an NAE-assignment.

Assume now that TF admits a partition (V1, V2) into two transitive sub-
tournaments. Since Y induces a 3-cycle, at least one vertex of Y is in V1 and
another one is in V2. Without loss of generality, we may assume y1 ∈ V1 and
y2 ∈ V2. Similarly, each Zj , 1 ≤ j ≤ m has a vertex in V1 and a vertex in V2.
Now consider an arc zxz in B′. The two vertices z and xz are not in the same
Vk (k ∈ {1, 2}) for otherwise zxzykz would be a directed 3-cycle. Now one
checks easily that the truth assignment φ defined by φ(xi) = true if xi ∈ V1

and φ(xi) = false if xi ∈ V2 is an NAE-assignment. �

Theorem 2.8.21 implies that it is unlikely to find a characterization of
tournaments with dichromatic number k. However, it is interesting to find
properties of such tournaments. A natural question, in the same flavour as
unavoidablity (see Section 2.7), is to ask which subtournaments must appear
in every tournament with sufficiently large dichromatic number. Such a tour-
nament is called a hero. Clearly, transitive tournaments are heroes, since
every tournament of order n contains a transitive subtournament of order at
least log2 n by Proposition 2.2.3. Moreover, Theorem 2.2.7 implies that the
directed 3-cycle is contained in every tournament of dichromatic number at
least 2. Observe moreover that if H is a hero, then every subtournament of
H is also a hero.

When P , Q are tournaments, we denote by C(P,Q) the tournament that
one obtains from disjoint copies of P and Q, by adding a new vertex x
dominating P and dominated by Q, and adding all the arcs from P to Q
(thus C(P,Q) = C3[P,Q, {x}]).

Let us define the sequence (Ai)i∈N of tournaments inductively as follows:

• A1 is the tournament with one vertex and no arcs;
• Ai+1 := C(Ai, Ai).

The proof of the next proposition is left to the reader.

Proposition 2.8.22 If i ≥ 1, then
→
χ (Ai) = i.

The tournaments (Ai)i∈N imply that strongly connected heroes must have
a special form.
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Lemma 2.8.23 Every strongly connected hero is of the form C(P,Q), where
P and Q are heroes.

Proof: Let H be a hero. Then, by Proposition 2.8.22, for i sufficiently large,
Ai contains H. Let k be the minimum integer i such that Ai contains H. Let
us denote by L and R the copies of Ak−1 in Ak such that all arcs are from
L to R and let x be the vertex of Ak − (L ∪ R). By definition of k, neither
L nor R contains H, so the copy of H in Ak must contain x. Now, since
Ak is strong, H must contain at least one vertex of L and one vertex of R.
Therefore H is of the desired form.

In fact, the tournaments that are heroes have been completely character-
ized by Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and
Thomassé.

Theorem 2.8.24 ([41])

• A tournament T is a hero if and only if all its strong components are
heroes;

• a strong tournament T is a hero if and only if T = C(P, TTr) or
T = C(TTr, P ) for some hero P and some r ≥ 1.

2.9 Feedback Sets

Feedback sets in a digraph are sets of vertices or arcs whose removal leaves
the digraph acyclic. Formally, a feedback vertex set in a digraph D is a
set S of vertices such that D − S is acyclic, and a feedback arc set in a
digraph D is a set F of arcs such that D \ F is acyclic.

Feedback vertex set Parameter: k
Input: A digraph D = (V,A)
Question: Does D have a vertex set X of size at most k such that D−X
is acyclic?

Feedback Arc Set Parameter: k
Input: A digraph D = (V,A)
Question: Does D have a set of arcs A′ of size at most k such that D\A′

is acyclic?

A feedback vertex (resp. arc) set is minimal if none of its proper subsets
is also a feedback vertex (resp. arc) set. A feedback vertex (resp. arc) set is
minimum if it is of minimum size. The minimum size of a feedback vertex
set (resp. feedback arc set) in D is denoted by fvs(D) (resp. fas(D)).

We are then interested in the optimization versions of Feedback ver-

tex set and Feedback arc set where one wishes to determine fvs(D)
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and fas(D), respectively, for a given digraph D, as well as their restriction to
tournaments Feedback vertex set in tournament (FVST for short) and
Feedback arc set in tournament (FAST for short).4 These problems are
very fundamental and have many practical applications. For example, Feed-
back arc set in tournaments models the problem of ranking the teams
of a round-robin sport tournament and the problem of clustering webpages
(see e.g. the paper [190] by van Zuylen and Williamson).

An ordering associated to a feedback vertex set S (resp. feedback
arc set F ) is an acyclic ordering of D − S (resp. D \ F ). Observe that if
(v1, . . . , vn) is an ordering associated to a feedback arc set F of D, then
{vivj ∈ A(D) | i > j} is a feedback arc set contained in F . Therefore, every
minimum feedback arc set induces an acyclic digraph. In contrast, a feedback
vertex set is usually not acyclic: a digraph has an acyclic feedback vertex set
if and only if its dichromatic number is at most 2 (see Subsection 2.8.5).
Some papers studied feedback vertex sets with a certain property P, this is
the same as studying a 2-partition (V1, V2) of a digraph D such that D[V1] has
property P and D[V2] is acyclic. See e.g. the papers of Bang-Jensen, Cohen
and Havet [21, 26].

Proposition 2.9.1 Let F be a minimum feedback arc set in a digraph D.
The digraph obtained from D by reversing all arcs of F is acyclic.

Proof: Let (v1, . . . , vn) be an acyclic ordering associated to F . Observe that
every arc a of F is of the form vivj with i > j for otherwise F \ {a} would
also be a feedback arc set with (v1, . . . , vn) associated to it, contradicting
the minimality of F . Therefore reversing the arcs of F results in an acyclic
digraph with acyclic ordering (v1, . . . , vn). �

Proposition 2.9.1 implies that fas(D) is the minimum size of a set F of
arcs whose reversal yields an acyclic digraph.

2.9.1 Feedback Vertex Sets

Feedback vertex set is one of the the first problems shown to be NP-
complete listed by Karp in [118]. Its easy reduction from Vertex cover is
the following. Let (G, k) be an instance of Vertex cover. Let D be the
symmetric digraph associated to G, that is, the digraph obtained from G by
replacing each edge by a directed 2-cycle. One can easily check that G has a
vertex cover of size k if and only if D has a feedback vertex set of size k.

It is also not very hard to show that FVST is NP-complete. this
was shown independently by Speckenmeyer [172] and by Bang-Jensen and
Thomassen [34]. The proof below is from [34].

4 For simplicity and because they are polynomially equivalent, we do not distin-
guish between the decision and the optimization versions of these problems.
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Theorem 2.9.2 ([34]) Feedback vertex set in tournament is NP-
complete.

Proof: Reduction from Independent set which is well-known to be NP-
complete [118]. Let G be an undirected graph with vertices v0

1 , . . . , v
0
n. Let

T be the tournament defined as follows. V (T ) = V (G) ∪ {vj
i | 1 ≤ i ≤

n and 1 ≤ j ≤ n + 1} and there is an arc (vj1
i1

, vj2
i2

) whenever i1 > i2 or
i1 = i2 and j1 > j2, unless j1 = j2 = 0 and v0

i1
v0

i2
is an edge of G, in which

case T contains the arc (v0
i2

, v0
i1

). One can easily check that a vertex set S
is a maximum independent set in G if and only if V (G) \ S is a minimum
feedback vertex set in T . �

FVST has a trivial 3-approximation algorithm, which proceeds as follows.
As long as the tournament T is not transitive, find a directed 3-cycle C, delete
its vertices from T and add them to the feedback vertex set S. Cai, Deng,
and Zang [55] gave a 5/2-approximation. Recently, a 7/3-approximation was
found by Mnich, Vassilevska Williams, and Végh [141].

For general digraphs, no non-trivial upper bound on the number of min-
imal feedback vertex sets is known. In contrast, we have some bounds for
tournaments. Let #fvs(n) denote the maximum over all n-tournaments of
the number of minimal feedback vertex sets. Note that #fvs(n) is also the
maximum of the number of maximal transitive subtournaments since in a
tournament T , a set S is a feedback vertex set if and only if T − S is
transitive. Moon [143] was the first to give bounds on #fvs(n). He proved
1.4757n ≤ #fvs(n) ≤ 1.7170n. This was later improved by Gaspers and
Mnich [95]

1.5548n < 21n/7 ≤ #fvs(n) ≤ 1.6740n.

To get the lower bound, consider the tournament T on n = 7k vertices
obtained from a transitive k-tournament by blowing up each vertex into a
copy of the Paley tournament P7 on 7 vertices. The minimal feedback vertex
sets of P7 are also minimum feedback vertex sets and have size 4. Furthermore,
there are 21 of them. Hence T has 21n/7 minimal feedback vertex sets.

The upper bound relies on an enumeration algorithm, based on iterative
compression (see the proof of Theorem 2.9.6 for an example of iterative com-
pression), that enumerates in 1.6740n-time all minimal feedback vertex sets
in tournaments. Since a minimum feedback vertex set is also minimal, this
algorithm allows us to solve FVST in 1.6740n-time.

2.9.2 Feedback Arc Sets

Feedback arc set is also one of the the first problems known to be NP-
Complete listed by Karp in [118]. The easy reduction due to Karp and Lawler
is from Vertex cover. Given a graph G, let D be the digraph defined by
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V (D) = V (G) × {0, 1}.

A(D) = {((v, 0), (v, 1)) | v ∈ V (G)} ∪ {((u, 1), (v, 0)) | (u, v) ∈ E(G)}.

We easily check that G has a vertex cover of size k if and only if D has a
feedback arc set of size k.

In contrast, Feedback arc set in tournaments was conjectured
to be NP-complete in 1992 by Bang-Jensen and Thomassen [34]. Ailon,
Charikar, and Newman [3] proved it is NP-hard under randomized reduc-
tions. Shortly after, it was proved under deterministic reductions indepen-
dently by Alon in [5] and by Charbit, Thomassé and Yeo in [58].

Theorem 2.9.3 Feedback arc set in tournaments is NP-complete.

The proofs of Alon [5] and Charbit, Thomassé, and Yeo [58] both use the
same reduction based on the existence of bipartite tournaments with large
minimum feedback arc sets. Here, by large, we mean close to the trivial upper
bound. Indeed, consider a bipartite tournament B with both partite sets R,S
of size k. Considering the set of arcs from R to S and the one from S to R,
we obtain trivially that fas(B) ≤ k2

2 . Hence by a large minimum feedback arc
set, we mean a minimum feedback arc set of size close to k2

2 .

Lemma 2.9.4 ([58]) Let 	 be a positive integer 	 and set k = 23�. There
exists a bipartite tournament Bk with both partite sets of size k and fas(Bk) ≥
k2

2 − 2k5/3.

Proof of Theorem 2.9.3 using Lemma 2.9.4: The reduction is from Feed-

back arc set in general digraphs.
Let D be a digraph. We may assume that D has no directed cycle of

length at most 2, as deleting such a cycle decreases fas by exactly 1. Let
V (D) = {v1, . . . , vn} and set k = 26�1+log2 n�. Observe that k = O(n6) and
k ≥ 64n6.

Let Bk be the bipartite tournament defined in Lemma 2.9.4, and let
{r1, . . . , rk} and {s1, . . . , sk} be the partite set of Bk.

Let T be the tournament obtained by blowing up every vertex of D by
a transitive tournament, and adding copies of Bk between blow-ups of non-
adjacent vertices. To be precise, the vertex set of T is {wi

a | 1 ≤ a ≤ n and 1 ≤
j ≤ k} and its arc set is Aa ∪ Ab ∪ Ac, where

Aa = {wi
awj

a | 1 ≤ a ≤ n and 1 ≤ i < j ≤ k},

Ab = {wi
awj

b | vavb ∈ A(D) and 1 ≤ i, j ≤ k}, and

Ac = {wi
awj

b | ab, ba /∈ A(D) and 1 ≤ a < b ≤ n and risj ∈ A(Bk)}
∪{wj

bw
i
a | ab, ba /∈ A(D) and 1 ≤ a < b ≤ n and sjri ∈ A(Bk)}.

Let us now bound fas(T ). Without loss of generality, we may assume
that (v1, . . . , vn) is an acyclic ordering associated to a minimum feedback
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arc set of D. Observe that since a minimum feedback arc set induces an
acyclic digraph, Lemma 2.9.4 implies that the arcs of Ac contribute at least
(
(
n
2

)
− |A(D)|)(k2

2 − 2k5/3) and at most (
(
n
2

)
− |A(D)|)(k2

2 +2k5/3) to fas(T ).
Considering the ordering (w1

1 . . . , wk
1 , w1

2, . . . , w
k
2 , w1

3 . . . , wk
n), we get

fas(T ) ≤ k2 fas(D) +
((

n

2

)
− |A(D)|

) (
k2

2
+ 2k5/3

)
. (2.5)

Consider now a minimum feedback arc set of T . For any integers i1, . . . , in
in {1, . . . , k}, at least fas(D) arcs of T 〈{wi1

1 , wi2
2 , . . . , win

n }〉 are in F because
this digraph is isomorphic to D. Summing over all possible values of i1, . . . , in
we get at least kn fas(D) arcs, where each arc can be counted at most kn2

times. Hence

fas(T ) ≥ kn fas(D)
kn−2

+
((

n

2

)
− |A(D)|

) (
k2

2
− 2k5/3

)
. (2.6)

Now as k1/3 ≥ 641/3n2, we get that (
(
n
2

)
− |A(D)|) · 2k5/3 < k2

2 . Hence
Equations (2.5) and (2.6) imply the following.

fas(D) − 1
2

<
fas(T )

k2
− 1

2

((
n

2

)
− |A(D)|

)
< fas(D) +

1
2
.

Hence if we could compute fas(T ) in polynomial time, we could also compute
fas(D). �

For general digraphs, the best known approximation algorithm for
Feedback arc set has performance guarantee O(log n log log n). The exis-
tence of such a feedback arc set is due to Seymour [168] and the algorithmic
part is due to Even, Naor, Schieber and Sudan [77]. In contrast, for tourna-
ments van Zuylen and Williamson [190] proposed a 2-approximation. Their
algorithm is based on a linear programming relaxation of the problem and
a nice rounding procedure. This procedure is a derandomization of the al-
gorithm by Ailon, Charikar and Newman given in [3] based on the so-called
‘pivot’.

The dual maximization problem consisting in finding an acyclic spanning
subdigraph of a digraph D with the maximum number of arcs is easy to
approximate. A trivial 2-approximation consists in considering any ordering
(v1, . . . , vn) of the vertices of D and the subdigraphs D+ and D− with arc
set A+ = {vivj ∈ A(D) | i < j} and A− = {vjvi ∈ A(D) | i > j}. These
two digraphs are acyclic, and each of them has at least |A(D)|/2 arcs. There
exist polynomial time approximation schemes (PTAS) for this problem in
tournaments, see the papers [15] by Arora, Frieze and Kaplan and [91] by
Frieze and Kannan.

By the above upper bound on fas(D), for every n-tournament T , we have
fas(T ) ≤ n(n−1)

4 . This upper bound is almost tight as shown below.
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Theorem 2.9.5 For every n ≥ 3, there exists a tournament T of order n

such that fas(T ) ≥ n(n−1)
4 − 1

2

√
n3 loge n.

Proof: Consider a random tournament RTn on vertices 1, 2, . . . , n. Observe
that for every pair i �= j ∈ {1, 2, . . . , n}, ij ∈ A(RTn) with probability 1/2.

For every pair i < j ∈ {1, 2, . . . , n}, define the random variable xi,j by

xi,j :=
{

+1 if ij ∈ A(RTn)
−1 otherwise.

Let N =
(
n
2

)
. With respect to the ordering π = 1, 2, . . . , n, the number of

forward arcs minus the number of backward arcs equals
∑

1≤i<j≤n

xi,j = SN .

Then, Eπ := {|SN | > a} denotes the event that, in one of the two orderings
π = π(1), π(2), . . . , π(n)(= 1, 2, . . . , n) and π∗ = π(n), π(n−1), . . . , π(1)(= n,
n − 1, . . . , 1), the number of forward arcs exceeds n(n − 1)/4 + a/2. On the
other hand, SN is the sum of

(
n
2

)
random independent variables taking values

+1 and −1, each with probability 1/2. By the Chernoff bound (Corollary A.2
in the book of Alon and Spencer [8]),

Prob(|SN | > a) ≤ 2 exp
(

− a2

2N

)
, (2.7)

for every positive number a.
Observe that the event E that for at least one permutation of 1, 2, . . . , n,

the number of forward arcs exceeds n(n − 1)/4 + a/2 equals the union of the
events Eπ for all permutations π of 1, 2, . . . , n, whose total number is n!. Put
a =

√
n3 loge n. Applying (2.7) we obtain

Prob(E) ≤ 2n! exp(−n loge n)
≤ 2n!n−n

< 1

for every n ≥ 3. This means that with positive probability the event E does
not hold, i.e. for every permutation of 1, 2, . . . , n, the number of forward arcs
does not exceed n(n−1)

4 + 1
2

√
n3 loge n. By the definition of RTn, it follows

that there exists a tournament of order n with the above-mentioned property.
�

A slightly better result was obtained by de la Vega in [70] who proved that√
loge n in the inequality of Theorem 2.9.5 can be replaced by a constant.
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2.9.3 FPT Algorithms for Feedback vertex set in tournaments

Downey, Langston, Niedermeier, Raman, and Saurabh [157] proved that
FVST is FPT by giving a O(2.42k · nO(1))-time algorithm that solves it.
This running time was improved by Fernau [78] who gave a O(2.18k · nO(1))-
time algorithm to solve FVST. We present below a faster FPT algorithm in
O(2k · nO(1)) time due to Dom, Guo, Hüffner, Niedermeier and Truß [71].
Very recently, an even faster FPT algorithm in O(1.618k + nO(1)) time was
shown by Kumar and Lokshtanov [128].

Theorem 2.9.6 ([71]) Feedback vertex set in tournaments can be
solved in time O(2k · n3).

Proof: We present an algorithm solving FVST in O(2k ·n3) time. This algo-
rithm uses the method, called iterative compression, which was introduced
by Reed, Smith, and Vetta [159]. The key part of this algorithm is a com-
pression routine which, given a tournament and a feedback vertex set of
size k+1, computes a feedback vertex set of size k or proves that none exists.

Using such a compression routine FVST can be solved as follows. Let
{v1, . . . , vn} = V (T ), and let Ti = T 〈{v1, . . . , vi}〉. We start with S2 = ∅,
which is a minimum feedback vertex set of T2. Now for i = 3 to n, we compute
a minimum feedback vertex set of Ti using Si−1. Observe that Si−1 ∪ {vi}
is a feedback vertex set of Ti, so a minimum feedback vertex set of Ti has
size |Si−1| or |Si−1| + 1. Therefore, using the compression routine, we either
find a feedback vertex set Si of T of size |Si−1|, or we prove that none exists,
in which case we set Si = Si−1 ∪ {vi}. At the end, after n − 2 calls to the
compression routine, we obtain Sn, a minimum feedback vertex set of T .

Let us now describe the compression routine running in O(2k · n2)) time
Let T be a tournament and S a feedback vertex set of size k + 1. By brute-
force, we enumerate all O(2k) partitions (X,S \X) of S, and for each of them
we only look for feedback vertex sets that contain all vertices of S \ X and
none of X.

We delete the vertices of S \X, i.e. T ′ := T − (S \X). Observe that T has
a feedback vertex set of size k that contains all vertices of S \ X and none of
X if and only if T ′ has a feedback vertex set of size |X| − 1 disjoint from X.
If T ′〈X〉 is not acyclic, we stop as there cannot be any feedback vertex set of
T ′ disjoint from X. Hence we may assume that T ′〈X〉 is acyclic. Note also
that T ′ − X = T − S is acyclic.

We shall now determine the minimum size s of a feedback vertex set of T ′

disjoint from X. In fact, we compute |T ′| − s, which is the maximum size of
an acyclic subtournament of T ′ containing all of X. Such a tournament has
an acyclic ordering which can be thought of as resulting from the insertion
of a subset of V (T ′) \ X into the acyclic ordering (x1, . . . , x|X|) of X.

We first determine the set P of vertices v that we can insert into X, that
are the vertices such that T ′〈X ∪ {v}〉 is acyclic. Note that such a vertex
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has a unique possible position in L: there is an index i(v) = i such that
N−(v) ∩ X = {x1, . . . , xi} and N+(v) ∩ X = {xi+1, . . . , xn}. Note that for
each vertex v ∈ V (T ′) \ X, deciding if v ∈ P and, if so, computing i(v) can
be done in O(n2) time. Let L be an acyclic ordering of T ′ − X (it exists
because T ′ − X is acyclic), and let R = (r1, . . . , r|P |) be the ordering of P
in which the vertices are ordered in increasing order of i(v) and according
to L as tie-breaker: for any j < 	, either i(rj) < i(r�), or i(rj) = i(r�) and
rj is before r� in L. Now a largest acyclic subtournament of T ′ containing
all of X is obtained from X by adding a longest common subsequence of
L and P . Since L and P are permutations of each other, finding a longest
common subsequence reduces to finding a longest increasing subsequence of
the intersection. This can be done in O(n log n) time [90]. �

Dom, Guo, Hüffner, Niedermeier and Truß [71] also proved that FVST
admits a cubic kernel. The idea of the proof is to transform an instance of
FVST (T, k) into an equivalent instance (H, k) of Hitting set, where H
is the 3-uniform hypergraph with vertex set V (T ) and hyperedge set the
sets of 3-cycles in T . Then applying the kernelization algorithm given by
Niedermeier and Rossmanith [150] for Hitting set, one can show that the
resulting instance has cubic size.

2.9.4 FPT Algorithms for Feedback arc set in tournaments

Downey, Langston, Niedermeier, Raman, and Saurabh [157] proved that
FAST is FPT providing a O(2.42k · nO(1))-time algorithm for this prob-
lem. Alon, Lokshtanov and Saurabh [7] gave a faster algorithm that runs in
2O(

√
k log2 k) + nO(1) time. Their algorithm combines the colour coding tech-

nique (initiated in [11]) with a divide-and-conquer algorithm and a quadratic
kernel for FAST. The existence of such a kernel was established by Dom,
Guo, Hüffner, Niedermeier and Truß [71].

Theorem 2.9.7 ([71]) Feedback arc set in tournaments admits a
quadratic kernel. In particular, it is FPT.

Proof: Here we use the fact that fas(D) is the minimum size of a set of
arcs whose reversal makes the digraph acyclic (see Proposition 2.9.1). The
kernelization procedure FastKer(T, k) proceeds as follows.

1. If a vertex v is in no directed 3-cycle, then return FastKer(T − v, k);
2. If |T | = 0, then return a ‘Yes’ instance;
3. If k = 0, then return a ‘No’ instance;
4. If there is an arc a in more than k directed 3-cycles, then let T ′ be the

tournament obtained from T by reversing a and return FastKer(T ′, k−1);
5. If |T | ≤ k(k + 1), return (T, k), otherwise return a ‘No’ instance.
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Clearly, FastKer(T, k) runs in O(kn3) time. Clearly, Steps 1 to 4 of FastKer
are valid, since a feedback arc set of size k must contain each arc which is in
more than k directed 3-cycles. At Step 5, all arcs are in less than k directed
3-cycles. Hence if T has a feedback arc set of size k it has at most k(k − 1)
directed 3-cycles, spanning at most k(k + 1) vertices. Since every vertex is in
a directed 3-cycle after Step 1, |T | ≤ k(k + 1). Hence Step 5 is valid. �

Finally, the existence of a linear-size kernel for FAST has been proved
by Cuzzocrea, Taniar, Bessy, Fomin, Gaspers, Paul, Perez, Saurabh, and
Thomassé [67].

2.10 Small Certicates for k-(Arc)-Strong Connectivity

By a certificate for the k-(arc)-strong connectivity of a digraph D, we mean
a spanning k-(arc)-strong subdigraph D′ of D. Already for k = 1 it is NP-
hard to find a certificate with the minimum number of arcs, as this number is
|V (D)| if and only if D is Hamiltonian. Since every vertex in a k-(arc)-strong
digraph has out-degree at least k, an optimal certificate for k-(arc)-strong
connectivity has at least kn arcs.

Together with Edmonds’ branching theorem (Theorem 1.8.2) the next
result implies that, in polynomial time, one can find a certificate for k-arc-
strong connectivity with at most twice the size of an optimal certificate.

Proposition 2.10.1 Every k-arc-strong digraph contains a spanning k-arc-
strong subdigraph with at most 2k(n−1) arcs. Furthermore, such a certificate
can be constructed in polynomial time.

Proof: Let D = (V,A) be a k-arc-strong and let s ∈ V be arbitrary. By Ed-
monds’ branching theorem, D has k arc-disjoint out-branchings B+

s,1, . . . , B
+
s,k

and k arc-disjoint in-branchings B−
s,1, . . . , B

−
s,k. The union of the arcs of these

2k branchings is clearly k-arc-strong and it has exactly 2k(n − 1) arcs. The
complexity claim follows from Theorem 1.8.2. �

For all k ≥ 1 and n ≥ 5k + 2, we define Tn,k as the class of tournaments
that can be obtained from a transitive tournament A = TTk on k vertices and
two k-arc-strong tournaments B,C as shown in Figure 2.4. It is not difficult
to show that each tournament in Tn,k is k-arc-strong.

Let T be any member of Tn,k. Observe that every k-arc-strong subdi-
graph D of T must contain at least k(k + 1)/2 arcs from B to A and exactly
k arcs from C to B (there are no more). Hence we have [

∑
x∈B d+D(x)] −

[
∑

x∈B d−
D(x)] ≥ k(k + 1)/2 − k, implying that

∑
x∈B d+D(x) ≥ k|B| + k(k −

1)/2. This implies that D has at least nk +k(k −1)/2 arcs. Thus the tourna-
ments in Tn,k show the existence of k-arc-strong tournaments for which every
certificate has at least nk + ck2 arcs for some constant c > 0 and hence the
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TTk

B C

A

1
2
3

k

Figure 2.4 The structure of the tournaments in Tn,k. The tournament A is the
transitive tournament on k vertices, B and C are arbitrary k-arc-strong tourna-
ments. The bold arcs B → A, A → C indicate that all possible arcs are present in
that direction. There are exactly k arcs from C to B and all other arcs go from B
to C

following result of Bang-Jensen, Huang and Yeo is the best possible in terms
of the exponent on k.

Theorem 2.10.2 ([28]) For any n ≥ 3 and k ≥ 1, every k-arc-strong tour-
nament on n vertices T contains a spanning k-arc-strong subdigraph with at
most nk + 136k2 arcs.

The following result can be shown using network flows.

Proposition 2.10.3 ([28]) Every k-arc-strong tournament contains a span-
ning subdigraph D on at most nk + k(k − 1)/2 arcs such that δ0(D) ≥ k.

By the remark in Theorem 2.10.2, the truth of the following conjecture,
due to Bang-Jensen, Huang and Yeo, would imply that the right bound in
Theorem 2.10.2 would be nk + k(k − 1)/2.

Conjecture 2.10.4 ([28]) For every k-arc-strong tournament T , the mini-
mum number of arcs in a k-arc-strong spanning subdigraph of T is equal to
the minimum number of arcs in a spanning subdigraph of T with the property
that every vertex has in- and out-degree at least k.

Bang-Jensen asked [18] whether a result similar to Theorem 2.10.2 would
also hold for vertex connectivity. This was confirmed recently by Kang, Kim,
Kim and Suh.

Theorem 2.10.5 ([117]) For k ≥ 1, every k-strong n-tournament T has a
k-strong spanning subdigraph with at most nk + 750k2 log(k + 1) arcs.



98 J. Bang-Jensen and F. Havet

The proof of this result is long and uses several results on linkages in
tournaments. Some of the methods are very similar to those used in [156].

Below we prove a weaker, yet interesting, result from [117] which is used
in the proof of Theorem 2.10.5 in [117].

Let t, k be positive integers with t ≥ k. For a given ordering O =
(v1, v2, . . . , vn) of the vertices of a digraph D = (V,A) we denote by FO
the set of arcs vivj with i < j and call such arcs forward arcs wrt. O. An
ordering O = (v1, v2, . . . , vn) of the vertices of a digraph D is (k, t)-good if
DO = (V, FO) satisfies

(a) d+DF
(vi) ≥ k for all i ∈ [n − t],

(b) d−
DF

(vj) ≥ k for all t + 1 ≤ j ≤ n.

The following lemma is a special case of a lemma proved by Kang, Kim,
Kim and Suh [117].

Lemma 2.10.6 ([117]) Let k ≥ 1 be an integer and let T be an n-tournament.
Then there exists an ordering O of V (T ) and a spanning subdigraph D′ of
TO such that D′ is (k, 2k − 1)-good and |A(D′)| ≤ kn − k.

The following lemma is similar to Theorem 2.5.13.

Lemma 2.10.7 ([117]) Let k ≥ 1 and n ≥ 5k be integers. Every n-
tournament T contains disjoint sets of vertices X,Y , each of size k such
that, for any set S of k − 1 vertices, the tournament T −S has an (x, y)-path
for every choice of x ∈ X \ S, y ∈ Y \ S.

Let v be a vertex of a k-strong digraph D and let Z = {z1, z2, . . . , zk} be a
set of k vertices in V (D) \ v. A (v,Z)-fan (resp. (Z,v)-fan) is a collection of
internally disjoint paths P1, . . . , Pk (resp. Q1, Q2, . . . , Qk) such that Pi (resp.
Qi) is a (v, zi)-path (resp. (zi, v)-path). It is an easy consequence of Menger’s
theorem that every k-strong digraph has such a fan for arbitrary v and Z as
above. We denote it by F+

v,Z (resp. F−
Z,v). Note that it has at most n− 1 arcs

it is an out-tree (resp. in-tree) in D.

Theorem 2.10.8 ([117]) Let k be a positive integer. Every k-strong n-
tournament T contains a k-strong spanning subdigraph D with |A(D)| ≤
(5k − 2)n +

(
5k
2

)
.

Proof: Set V := V (T ). If n ≤ 5k, we let D be T itself. So assume n > 5k
and let V ′ ⊂ V be an arbitrary set of 5k vertices. By Lemma 2.10.7, we can
find two disjoint k-sets X,Y such that for every S ⊂ V with |S| = k − 1
and every choice of x ∈ X \ S, y ∈ Y \ S the tournament T [V ′ \ S] has
an (x, y)-path. Applying Lemma 2.10.6, we obtain an ordering O of V (T )
and a spanning (k, 2k − 1)-good subdigraph D′ of DO such that |A(D′)| ≤
kn − k. For each n − 2k + 2 ≤ i ≤ n, let Fvi,X be a (vi,X)-fan in T ,
and, for each 1 ≤ i ≤ 2k − 1, let FY,vi

be a (Y, vi)-fan. Now define the



2 Tournaments and Semicomplete Digraphs 99

spanning digraph D∗ = (V,A∗) to be the union of all the arcs in T [V ′], D′,
Fvn−2k+2,X , . . . , Fvn,X , FY,v1 , . . . , FY,v2k−1 . By the remark on the size of fans
above, it is easy to check that |A(D∗)| ≤ (5k − 2)n +

(
5k
2

)
. We now prove

that D∗ is k-strong. To show this, let S be any subset of k − 1 vertices and
let u, v ∈ V \ S be arbitrary. We need to show that D∗ − S has a (u, v)-path.
Because D′ is (k, 2k − 1)-good, in D′ − S there is a (u, vi)-path P for some
n−2k+2 ≤ i ≤ n and a (vj , v)-path P ′ for some j ∈ [2k−1] (recall that D′ is
acyclic so every directed path moves forward in the ordering). After deleting
the vertices of S from the fans Fvi,X and FY,vj

there still remains at least one
intact path in each of these (as there are k internally disjoint such paths).
Let xs ∈ X, ys ∈ Y be such that Fvi,X − S contains a (vi, xs)-path Pvi,xs

and FY,vj
−S contains a (ys, vj)-path Pys,vj

. By Lemma 2.10.7, T [V ′ \ S] has
an (xs, ys)-path P ′′. Now the subdigraph of D∗ − S formed by the arcs of
P, P ′, P ′′, Pvi,xs

and Pys,vj
contains a (u, v)-path and we are done. �

2.11 Increasing Connectivity by Adding or Reversing
Arcs

In this section we consider the following problems for semicomplete digraphs

(1) Given a digraph D = (V,A) on at least k + 1 vertices for some positive
integer k, find a minimum set F of new arcs such that the digraph D′ =
(V,A ∪ F ) is k-strong. Let ak(D) = |F |.

(2) Given a digraph D = (V,A) on at least 2k + 1 vertices for some positive
integer k, find a minimum set F ⊂ A of arcs in D such that the digraph D′

obtained from D by reversing every arc in F is k-strong. Let rk(D) = |F |.

Clearly,
ak(D) ≤ rk(D), (2.8)

since, instead of reversing arcs in D, we may add exactly those new arcs we
would obtain by reversing and keep the original ones.

Frank and Jordán showed that ak(D) can be computed in polynomial
time [88, 89]. The number r1(D) can be calculated via submodular flows (see
e.g. [22, Section 13.1]). For k ≥ 2, it is not clear how we can decide whether
rk(D) even exists for a given arbitrary digraph D, let alone find an optimal
reversal (unless we try all possibilities, which clearly requires exponential
time). Indeed, this seems to be a very difficult problem.

We will now show that for semicomplete digraphs D, the function rk(D)
behaves nicely. Note that, since we are dealing with vertex-connectivity, we
gain nothing by reversing arcs that are contained in 2-cycles. Hence below
we only consider arcs that are not contained in 2-cycles for possible reversal.

Proposition 2.11.1 ([29]) If a semicomplete digraph D has at least 2k + 1
vertices, then rk(D) exists and is bounded by a function depending only on k.
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Proof: To see this it suffices to use the following two simple observations;
the proof of the first one is left to the reader, and the second one follows
directly from Proposition 2.2.2 and its directional dual.

(a) If D is a k-strong digraph and D′ is obtained from D by adding a new
vertex x and arcs from x to every vertex in a set X of k distinct vertices
of D and arcs from every vertex of a set Y of k distinct vertices of D to
x, then D′ is also k-strong.

(b) If D is a semicomplete digraph on at least 4k−1 vertices, then D contains
a vertex with in-degree and out-degree at least k.

By observations (a) and (b), for every semicomplete digraph D, rk(D) ≤
rk(D′) for some induced subdigraph D′ of D with |V (D′)| ≤ 4k − 2. We can
find such a subdigraph D′ as follows: Continue removing vertices as long as
the current semicomplete digraph graph has at least 2k + 2 vertices and a
vertex of in-degree and out-degree at least k. When this process stops, we
have 2k+1 ≤ |V (D′)| ≤ 4k−2 in the current semicomplete digraph D′. Then
we can make D′ k-strong by reversing some arcs and add back each of the
removed vertices in the reverse order of the deletion. This provides a simple
upper bound for rk(D) (and hence for ak(D)) as a function of k: we need to
reverse at most half of the arcs in D′, that is, at most (4k−2)(4k−3)

4 arcs. �
The process above may not lead to an optimal reversal for the original

semicomplete digraph (in terms of the number of arcs to reverse), not even
if we reverse optimally in D′.

It is easy to see that rk(TTn) = k(k+1)/2 when n ≥ 2k+1. Bang-Jensen
conjectured that no other tournament needs more reversals.

Conjecture 2.11.2 (Bang-Jensen [22]) For every tournament T with
|V (T )| = n ≥ 2k + 1, we have rk(T ) ≤ k(k + 1)/2.

Since every semicomplete digraph contains a spanning tournament, if
Conjecture 2.11.2 is true, this implies that the same conclusion holds for
semicomplete digraphs on at least 2k + 1 vertices.

Bang-Jensen and Jordán showed that as soon as the number of vertices
in the given semicomplete digraph D is sufficiently high (depending only on
k), the minimum number of arcs in D we need to reverse in order to achieve
a k-strong semicomplete digraph equals the minimum number of new arcs we
need to add to D to obtain a k-strong semicomplete digraph.

Theorem 2.11.3 ([29]) Let k ≥ 2 be an integer. If D is a semicomplete di-
graph on at least 3k − 1 vertices, then ak(D) = rk(D).

The idea, which also leads to a polynomial algorithm for finding the de-
sired reversal (see [29]), is to show that rk(D) ≤ ak(D), by demonstrating
that a certain optimal augmenting set F of D has the property that, if we
reverse the existing (opposite) arcs of F in D, then we obtain a k-strong
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semicomplete digraph. It was shown in [29] that 3k − 1 is the best possible
bound for semicomplete digraphs. However, in the case when D is a tourna-
ment, the question as to whether or not the bound is the best possible was
left open and the following conjecture was implicitly formulated.

Conjecture 2.11.4 ([29]) For every tournament T on at least 2k+1 vertices,
we have ak(T ) = rk(T ).

Now we turn to arc-strong connectivity, where we shall see that the anal-
ogous problem to the one above has been solved.

Let rdeg
k (D) be the minimum number of arcs one needs to reverse in

a directed multigraph D in order to obtain a directed multigraph D′ with
δ0(D′) ≥ k. If no such reversal exists, we let rdeg

k (D) = ∞. Determining rdeg
k

for a given digraph can be formulated as a feasibility flow problem and is
thus polynomial (see e.g. [22, Section 14.5.1]). Analogously define rarc

k (D) to
be the minimum number of arcs one needs to reverse in D in order to obtain
a k-arc-strong directed multigraph.

By the Nash-Williams orientation Theorem [147], rarc
k (D) < ∞ pre-

cisely when UMG(D) is 2k-edge-connected and one can calculate rarc
k (D)

(including detecting whether rarc
k (D) = ∞) in polynomial time using sub-

modular flows (see e.g. [22, Section 11.8]). It follows from the results below
that for tournaments the function rarc

k can be calculated just using standard
maximum-flow calculations.

The following result by Bang-Jensen and Yeo shows that for tournaments
rdeg
k (T ) and rarc

k (T ) are always bounded by a function that depends only on
k.

Theorem 2.11.5 ([36]) Let T be an n-tournament, with n ≥ 2k + 1. The
following hold:

(i) rdeg
k (T ) ≤ k(k + 1)/2.

(ii) rarc
k (T ) = max{k − λ(T ), rdeg

k (T )}.

Observe that combining (i) and (ii) of Theorem 2.11.5, we obtain rarc
k (T ) ≤

k(k + 1)/2 which provides support to Conjecture 2.11.2. Recall again that
the transitive tournaments show that this is the best possible.

The proof in [36] of Theorem 2.11.5 can be turned into a polynomial
algorithm for finding a set of q arcs whose reversal makes T k-arc-strong
using just maximum-flow calculations.

We now consider the operation of deorienting an arc. Let xy be an arc
of a digraph D which is not in a 2-cycle. By deorienting xy we mean the
operation which adds the arc yx to D. Clearly, deorienting arcs is equivalent
to adding new arcs with the restriction that we can only add an arc which is
opposite to an existing arc and we cannot create parallel arcs. Hence we may
view deorienting arcs as a restricted version of the arc addition operation.
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Let deordeg
k (D) denote the minimum number of arcs we need to deorient

in D in order to obtain a digraph D′ with δ0(D′) ≥ k. Using flows one
can determine deordeg

k (D) for an arbitrary digraph D ([22, Exercise 14.18]).
Clearly deordeg

k (D) ≤ rdeg
k (D) for every oriented graph, in particular for every

tournament. The example in Figure 2.5 shows that this inequality does not
always hold for semicomplete digraphs.

Bang-Jensen and Yeo proved that for tournaments deorienting arcs is
generally no better than reversing in terms of obtaining a desired minimum
degree.

Theorem 2.11.6 ([36]) Let T be a tournament on at least 2k + 1 vertices.
Then deordeg

k (T ) = rdeg
k (T ). In particular, deordeg

k (T ) ≤ k(k + 1)/2.

Figure 2.5 A semicomplete digraph D for which 1 = rarc2 (D) < deorarc2 (D) = 2

Analogously define deorarc
k (D) to be the minimum number of arcs one

needs to deorient in D in order to obtain a k-arc-strong digraph. It is easy
to see that deorarc

k (D) < ∞ if and only if UG(D) is k-edge-connected. Fur-
thermore, if D is an oriented graph (in particular, if D is a tournament),
then we have deorarc

k (D) ≤ rarc
k (D) since instead of reversing an optimal set

A′ of arcs we may deorient these arcs and obtain a digraph with minimum
semi-degree at least k. Figure 2.5 shows that the inequality above may not
hold when D contains 2-cycles.

The following is a corollary of the Lucchesi–Younger theorem [138] about
covering of directed cuts in a digraph.

Theorem 2.11.7 Let D be a non-strong digraph for which UG(D) is 2-edge-
connected. Then deorarc

1 (D) = rarc
1 (D). �

When k ≥ 2 and D is an arbitrary digraph, we do not know how to
determine deorarc

k (D) efficiently, but as we show below, this is possible when
D is a tournament.

One might expect that deorarc
k (D) < rarc

k (D) for most oriented graphs.
The next result, due to Bang-Jensen and Yeo, shows that for tournaments the
two numbers are equal and hence, with respect to increasing the arc-strong
connectivity of a tournament, there is no gain from deorienting arcs rather
than reversing arcs.
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Theorem 2.11.8 ([36]) For every tournament T on at least 2k + 1 vertices
we have deorarc

k (T ) = rarc
k (T ).

Proof: We saw in Theorem 2.11.5 that rarc
k (T ) = max{k − λ(T ), rdeg

k (T )}.
If rarc

k (T ) = rdeg
k (T ), then, by Theorem 2.11.6, we have

deorarc
k (T ) ≤ rarc

k (T )

= rdeg
k (T )

= deordeg
k (T )

≤ deorarc
k (T ),

implying that deorarc
k (T ) = rarc

k (T ). So we may assume that rarc
k (T ) =

k − λ(T ). Now the claim follows from the easy fact that deorarc
k (T ) ≥ k −

λ(T ). �
We argued above that, in polynomial time, for a given tournament T , we

can find a set of arcs A′ ⊂ A(T ) of size rarc
k (T ) such that reversing the arcs

of A′ results in a k-arc-strong tournament. Thus it follows from Theorem
2.11.8 that, in polynomial time, we can determine deorarc

k (T ) and find a set
of deorarc

k (T ) arcs to deorient such that the resulting semicomplete digraph
is k-arc-strong. One optimal set of arcs to deorient is simply a set that would
form an optimal reversal.

Problem 2.11.9 ([36]) Let k ≥ 1 be a fixed integer. Is there a polynomial
algorithm for determining the number deorarc

k (D) for a given input D?

As we saw above the answer is yes if either k = 1 or if D is a tournament,
but even the case of semicomplete digraphs and k = 2 is open. We also do
not know whether there exists a polynomial algorithm for general oriented
graphs when k = 2. Recall that for any digraph D and positive integer k the
number deordeg

k (D) can be calculated in polynomial time via flows.
Analogously to the definition of deorarc

k (D) we may define deork(D) to
denote the minimum number of arcs we need to deorient in D in order to
obtain a k-strong digraph. Clearly deork(D) < ∞ precisely when UG(D)
is k-connected. We have deor1(D) = deorarc

1 (D) for every digraph but for
higher values of k nothing is known about deork(D) for general digraphs.
Notice that when D is a semicomplete digraph on at least 3k − 1 vertices we
have deork(D) = ak(D) by Theorem 2.11.3.

2.12 Arc-Disjoint Spanning Subdigraphs of
Semicomplete Digraphs

Below we discuss results on arc-disjoint Hamiltonian cycles, strong spanning
subdigraphs and in- and out-branchings.
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2.12.1 Arc-Disjoint Hamiltonian Paths and Cycles

Let T be a non-strong tournament and let T1, T2, . . . , Tk be the acyclic order-
ing of its strong components. Two components Ti, Ti+1 are called consecu-
tive for i = 1, 2, . . . , k − 1.

Thomassen [181] completely characterized tournaments having a pair of
arc-disjoint Hamiltonian paths.

Theorem 2.12.1 ([181]) A tournament T fails to have two arc-disjoint
Hamiltonian paths if and only if T has a strong component which is an al-
most transitive tournament of odd order or T has two consecutive strong
components of order 1. �

Thomassen posed the following problem.

Problem 2.12.2 ([181]) What is the complexity of deciding whether a tour-
nament has a Hamiltonian path P and a Hamiltonian cycle C which are arc-
disjoint?

Thomassen solved this problem for tournaments that are arc-3-cyclic (that
is, every arc is contained in a 3-cycle) [181]. Moon proved that almost all
tournaments are arc-3-cyclic [146] so Thomassen’s result covers almost all
tournaments.

Theorem 2.12.3 ([181]) Every arc-3-cyclic n-tournament with n ≥ 6 has a
Hamiltonian path and a Hamiltonian cycle which are arc-disjoint.

Observe that Theorem 2.12.1 implies that every 2-arc-strong tournament
has two arc-disjoint Hamiltonian paths. Thomassen [181] conjectured the ex-
istence of a function h(k) such that every h(k)-strong tournament contains
k arc-disjoint Hamiltonian cycles. He proved that h(2) ≥ 3 and conjectured
that equality holds. The existence of h(k) was recently verified by Kühn,
Lapinskas, Osthus and Patel [124] who proved that h(k) ∈ O(k2 log 2(k)) suf-
fices. They conjectured that h(k) ∈ O(k2) would suffice. This was confirmed
by Pokrovskiy.

Theorem 2.12.4 ([155]) There exists a constant C such that every Ck2-
strong tournament contains k arc-disjoint Hamiltonian cycles.

By Theorem 2.6.19, h(2) = 3 would follow from the following conjecture
due to Bang-Jensen and Yeo.

Conjecture 2.12.5 ([35]) Every tournament T either contains two arc-
disjoint Hamiltonian cycles or a set A′ of at most two arcs such that T \ A′

has no Hamiltonian cycle.

Confirming a conjecture of Erdős, Kühn and Osthus proved the following.
Here ‘almost all’ means that the probability of a random n-tournament having
the desired property tends to 1 as n tends to infinity.



2 Tournaments and Semicomplete Digraphs 105

Theorem 2.12.6 ([126]) Almost all tournaments have δ0(T ) arc-disjoint
Hamiltonian cycles.

Now we turn to decompositions into arc-disjoint Hamiltonian cycles.
Clearly any digraph which has an arc-decomposition into Hamiltonian cy-
cles must be regular. Tillson characterized when one can decompose the arc
set of the complete digraph into arc-disjoint Hamiltonian cycles.

Theorem 2.12.7 ([189]) The complete digraph
↔
Kk can be decomposed into

arc-disjoint Hamiltonian cycles if and only if k �= 4, 6.

The following conjecture, due to Kelly (see [146]), is the most famous
open problem on tournaments.

Conjecture 2.12.8 (Kelly, 1968) Every regular n-tournament can be par-
titioned into (n − 1)/2 Hamiltonian cycles.

This conjecture has attracted a lot of attention and a number of partial
or closely related results have been obtained, e.g. [42, 103, 113, 119, 181, 183,
196]

The major breakthrough on the Kelly conjecture was made by Kühn and
Osthus who proved the conjecture for (very) large n.

Theorem 2.12.9 ([126]) For k sufficiently large, every k-regular tournament
decomposes into k arc-disjoint Hamiltonian cycles.

The proof in [126] is very long, almost 100 pages. It still remains a major
challenge to prove Conjecture 2.12.8 in full.

For k-regular semicomplete digraphs, we do not necessarily have k-arc-
disjoint Hamiltonian cycles. For k = 2, one such example is obtained from
a 4-cycle by adding a 2-cycle between the two pairs of vertices of distance 2
along the cycle.

Problem 2.12.10 What is the complexity of deciding whether a given reg-
ular semicomplete digraph has a decomposition into arc-disjoint Hamilto-
nian cycles?

It follows from Theorem 2.12.9 that for regular tournaments there is a
polynomial algorithm to decide whether the given tournament has a decom-
position into Hamiltonian cycles. Of course, if Kelly’s conjecture is true, then
there is a trivial algorithm, because the answer will always be ‘yes’.

Let T bethe tournament on n = 4m+2 vertices obtained from two regular
tournaments T1 and T2, each on 2m + 1 vertices, by adding all arcs from the
vertices of T1 to T2. Clearly T is not strong and so has no Hamiltonian cycle.
The minimum semi-degree of T is m = n−2

4 . One can easily prove that every



106 J. Bang-Jensen and F. Havet

n-tournament with δ0(T ) ≥ n
4 is strongly connected. Bollobás and Häggkvist

[45] showed that if we increase the minimum semi-degree slightly, then, not
only do we obtain many arc-disjoint Hamiltonian cycles, we also obtain a
very structured set of such cycles provided that the tournament has enough
vertices.

Theorem 2.12.11 ([45]) For every ε > 0 and every positive integer k, there
is an integer n(ε, k) with the following property. If T is a tournament of order
n > n(ε, k) such that δ0(T ) ≥ ( 14 + ε)n, then T contains the kth power of a
Hamiltonian cycle. �

2.12.2 Arc-Disjoint Spanning Strong Subdigraphs

In this subsection, we study the decomposition of digraphs into strong sub-
digraphs. Since adding an arc to a strong digraph results in another strong
digraph, a digraph decomposes into k arc-disjoint spanning strong subdi-
graphs if and only of it contains k arc-disjoint spanning strong subdigraphs.

Bang-Jensen and Yeo posed the following conjecture, which contains the
Kelly conjecture (Conjecture 2.12.8) as the special case when n = 2k + 1.

Conjecture 2.12.12 (Bang-Jensen and Yeo [35]) A tournament T can
be decomposed into k arc-disjoint spanning strong subdigraphs if and only if
T is k-arc-strong.

They proved this conjecture for k = 2 and also characterized the 2-strong
semicomplete digraphs that have an arc decomposition into two spanning
strong subdigraphs.

Let S2k be the semicomplete digraph which one obtains from two disjoint
copies of the complete digraph

↔
Kk by adding a perfect matching oriented

from one copy to the other and adding all remaining arcs in the opposite
direction.

Lemma 2.12.13 ([35]) The semicomplete digraph S2k decomposes into k-
arc-disjoint spanning strong subdigraphs except when k = 2.

The following theorem implies that Conjecture 2.12.12 holds for k = 2.

Theorem 2.12.14 ([35]) Let D be a 2-arc-strong semicomplete digraph, on n
vertices. Then D decomposes in two arc-disjoint spanning strong subdigraphs
if and only if it is not isomorphic to S4.

Below we shall give a proof Conjecture 2.12.12 for the class of k-arc-strong
tournaments which have a non-trivial k arc-cut (Theorem 2.12.17). The proof,
which is due to Bang-Jensen and Yeo, uses Theorem 2.12.7 and Theorem
2.12.16, which can be deduced from the following result of Smetanuik on
completion of partial Latin squares.
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Theorem 2.12.15 ([170]) Let B be a complete bipartite graph (undirected),
with n vertices in each partite set, and let R be a set of edges in B such that
|R| ≤ n − 1. Then we can decompose E(B) into n edge-disjoint matchings
M1,M2, ...,Mn such that |Mi ∩ R| ≤ 1 for all i = 1, 2, ..., n.

Theorem 2.12.16 ([170]) Let B = (X,Y,E) be an undirected complete bi-
partite graph with |X| = t, |Y | = s and t > s. Let R be a set of edges in B
such that |R| ≤ s. Then we can colour the edges of B by |R| colours in such
a way that all edges in R receive distinct colours and every vertex in X ∪ Y
is incident with all |R| colours.

Theorem 2.12.17 Let k ≥ 1 and let D be a k-arc-strong semicomplete di-
graph such that there exists a set S ⊂ V (D) with 2 ≤ |S| ≤ |V (D)| − 2 and
d+(S) = k. There exist k arc-disjoint strong spanning subgraphs of D except
if D = S4.

Proof: By Lemma 2.12.13 we may assume that D is not isomorphic to S4.
It is not difficult to show that k ≤ |S| ≤ n − k (by showing that |S| ≥ k

and |V (D)−S| ≥ k, respectively). If |S| = |V −S| = 2 then D contains S4 as
a proper spanning subdigraph and it is easy to check that adding any arc to
S4 will result in a digraph with two arc-disjoint strong spanning subdigraphs.
Hence we may assume that n ≥ 5. Let e1, e2, . . . , ek be the k arcs from S to
V (D) − S, and let ei = xiyi, for i = 1, 2, . . . , k. Let X = {x1, x2, . . . , xk} and
Y = {y1, y2, . . . , yk}. Note that we may have |X| < k or |Y | < k or both. We
may assume, by reversing all arcs if necessary, that |V − S| ≥ |S|.

By Lemma 2.12.13 and the remark above, we may assume that |V −S| >
|S| if |S| = k. By Theorem 2.12.16 (with R = {e1, e2, . . . , ek}) we can colour
all arcs between S and V (D) − S with k colours such that the arcs from S
to V (D) − S get different colours and every vertex in V is incident with arcs
of all k colours. Note that if |V − S| = |S| > k this follows from Theorem
2.12.15.

Assume, without loss of generality, that the arc xiyi is coloured with
colour i, and let Fi contain all arcs between S and V (D) − S of colour i.

By Theorem 1.8.2 there exists k arc-disjoint out-branchings U1, U2, . . . , Uk,
in D[V (D) − S] such that Ui is rooted at yi, for i = 1, 2, . . . , k (consider k
arc-disjoint out-branchings from any vertex in S. Each of these must contain
exactly one of the arcs e1, e2, . . . , ek. Thus the out-branching that contains the
arc ei must contain an out-branching from yi in D[V (D) − S]). Analogously,
there exists k arc-disjoint in-branchings V1, V2, . . . , Vk, in D[S] such that Vi

is rooted at xi, for i = 1, 2, . . . , k. Let Ti = Vi ∪ Ui ∪ Fi, for i = 1, 2, . . . , k.
Clearly T1, T2, . . . , Tk are arc-disjoint and spanning. Each Ti is furthermore
strong: by the construction of the colouring, every vertex in V is incident to
an arc of colour i, every vertex in V (D) − S − yi is the tail of an arc in Ti

into S, and hence every vertex in V can reach yi (via Vi and the arc xiyi)
and every vertex in S − xi is the head of an arc from V (Ui) in Ti, implying
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that in Ti all vertices can be reached by yi and reach xi. This completes the
proof. �

The following theorem, due to Bang-Jensen and Yeo, implies that we can
always obtain about 1

37λ(T ) arc-disjoint spanning strong subdigraphs in any
tournament T . Note that in the case when λ(T ) < 37k the result below
follows from Theorem 2.12.17.

Theorem 2.12.18 ([35]) Let T be a k-arc-strong tournament, with minimum
semi-degree δ0(T ) ≥ 37k. Then there exists k arc-disjoint spanning strong
subgraphs in T .

2.12.3 Arc-Disjoint In- and Out-Branchings

We now turn to branchings and consider the following problem

Arc-disjoint in- and out-branchings

Input: A digraph D and vertices u, v (not necessarily distinct).
Question: Does D have a pair of arc-disjoint branchings B+

u , B−
v such

that B+
u is an out-branching rooted at u and B−

v is an in-branching rooted
at v?

The following result was proved by Thomassen [16].

Theorem 2.12.19 Arc-disjoint in- and out-branchings is NP-comp-
lete for arbitrary digraphs.

Bang-Jensen and Huang showed that, if the vertex that is to be the root
is adjacent to all other vertices in the digraph and is not in any 2-cycle, then
the problem becomes polynomially solvable.

Theorem 2.12.20 ([27]) Let D = (V,A) be a strongly connected digraph and
v a vertex of D such that v is not on any 2-cycle and V (D) = {v}∪N−(v)∪
N+(v). Let A = {A1, A2, . . . , Ak} (B = {B1, B2, . . . , Br}) denote the set of
terminal (initial) components in D〈N+(v)〉 (D〈N−(v)〉). Then D contains
a pair of arc-disjoint branchings B+

v , B−
v such that B+

v is an out-branching
rooted at v and B−

v is an in-branching rooted at v if and only if there exist
two disjoint arc sets EA, EB ⊂ A such that all arcs in EA ∪ EB go from
N+(v) to N−(v) and every Ai ∈ A (Bj ∈ B) is incident with an arc from
EA (EB). Furthermore, there exists a polynomial algorithm to find the desired
branchings, or demonstrate the non-existence of such branchings.

This implies the following result due to Bang-Jensen.

Corollary 2.12.21 ([16]) A tournament T = (V,A) has arc-disjoint branch-
ings B+

v , B−
v rooted at a specified vertex v ∈ V if and only if T is strong and

for every arc a ∈ A the digraph T − a contains either an out-branching or an
in-branching with root v.
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When u �= v, Arc-disjoint in- and out-branchings becomes much
harder even for semicomplete digraphs. Bang-Jensen [16] found a complete
characterization for the case of tournaments. This characterization, which is
quite complicated, implies the tournament case of the following Theorem by
Bang-Jensen and Yeo.

Theorem 2.12.22 ([35]) Every 2-arc-strong semicomplete digraph T =
(V,A) contains arc-disjoint in- and out-branchings B−

r , B+
s for every choice

of vertices r, s ∈ V .

Proof: This follows from Lemma 2.12.13 since it is easy to show that the
semicomplete digraph S4, which is the unique exception to that theorem, has
arc-disjoint in- and out-branchings B−

u , B+
v for every choice of u, v ∈ V (S4).

�

Bang-Jensen found a polynomial algorithm for Arc-disjoint in- and

out-branchings in the case of tournaments.

Theorem 2.12.23 ([16]) There is a polynomial algorithm for checking
whether a given tournament with specified distinct vertices u, v has arc-
disjoint branchings B+

u , B−
v and finding such branchings if they exist. �

Thomassen conjectured that every digraph which has sufficiently high arc-
strong connectivity has arc-disjoint in- and out-branchings for every choice
of roots.

Conjecture 2.12.24 ([178]) There exists a positive integer N such that ev-
ery digraph D which is N -arc-strong has arc-disjoint branchings B+

v , B−
v for

every choice of v ∈ V (D).

Bang-Jensen and Yeo generalized this as follows.

Conjecture 2.12.25 There exists a positive integer N such that every di-
graph D which is N -arc-strong has two arc-disjoint spanning strong subdi-
graphs.

Theorem 2.12.14 implies that the conjecture holds with N = 3 for semi-
complete digraphs and with N = 2 for tournaments. The following conse-
quence of Theorem 2.12.18 verifies a conjecture by Bang-Jensen and Gutin
[23].

Theorem 2.12.26 ([35]) Let T be 74k-arc-strong tournament. Then T has
2k arc-disjoint branchings B+

v,1, . . . , B
+
v,k, B−

v,1, . . . , B
−
v,k such that B+

v,1, . . . ,

B+
v,k are out-branchings rooted at v and B−

v,1, . . . , B
−
v,k are in-branchings

rooted at v, for every vertex v ∈ V (T ).

Note that if Conjecture 2.12.12 is true then we may replace 74k by 2k.
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Conjecture 2.12.27 ([35]) Theorem 2.12.26 also holds if we replace 74k by
2k.

2.13 Minors of Semicomplete Digraphs

The most important advance in graph theory in the last few decades is cer-
tainly the Robertson–Seymour minor theory and by now the minor relation
for graphs is well-established. However it is not clear how it should be ex-
tended to digraphs. A minor of a graph G is usually defined as a graph that
can be obtained from a subgraph of G by contracting edges. Unfortunately,
in digraphs, contracting an arc may yield a directed cycle, even when we are
starting from an acyclic digraph, and this seems undesirable for a theory of
excluded minors. One way to avoid this is to permit the contraction only of
certain special arcs; for instance, in the paper [114] by Johnson, Robertson,
Seymour and Thomas, an arc uv can be contracted if it is either the only
arc with tail u or the only arc with head v. Another way, called shallow
directed minors, has been introduced by Kreutzer and Tazari in [123]. A
third approach comes from the observation that a minor of a graph G can
also be defined as a graph that can be obtained from a subgraph of G by
contracting connected subgraphs. Therefore Kim and Seymour [120] defined
a minor of a digraph D as a digraph that can be obtained from a subdigraph
of D by contracting strong subdigraphs.

An important property of minors for graphs is that they define a well
quasi-order as shown by Robertson and Seymour [163]. (Recall that a quasi-
order ≤ is a reflexive and transitive relation, and that it is a well quasi-order
if for every infinite sequence q1, q2, . . . there exist j > i such that qi ≤ qj .)
The analogous statement is not true for directed minors. For example, a
directed cycle is not a minor of a bigger directed cycle, and so if we take
an infinite set of directed cycles, all of different lengths, then this set is an
infinite antichain under the minor order. However, Kim and Seymour [120]
proved that minor containment defines a well quasi-order for the class of all
semicomplete digraphs, and therefore the same is true for the class of all
tournaments.

Theorem 2.13.1 ([120]) Minor containment is a well quasi-order on the
class of all semicomplete digraphs.

Kim and Seymour [120] also showed that this result cannot be generalized
to larger classes of digraphs. In particular, they showed that minor contain-
ment is not a well quasi-order on the class of all digraphs with independence
number 2. Indeed, consider the digraphs Di, i ≥ 2, defined as follows:

• V (Di) is the disjoint union of Ci, C ′
i, Ti and T ′

i ;
• Di〈Ci〉 and Di〈C ′

i〉 are directed 3-cycles;
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• Di〈Ti〉 and Di〈T ′
i 〉 are transitive tournaments with Hamiltonian directed

paths t1 . . . ti and t′i . . . t′1, respectively;
• Ci → Ti and T ′

i → C ′
i;

• there is exactly one arc with tail in C ′
i and head in Ci;

• for every 1 ≤ j ≤ i, {tj , tj+1} → t′j with ti+1 = t1.

One can check that there do not exist j > i ≥ 2 such that Di is a minor of
Dj .

In [64], Chudnovsky and Seymour proved that immersion is a well quasi-
order on the class of all tournaments, by using the parameter cutwidth (see
the definition in Section 2.5.1). This was recently extended to the class of all
semicomplete digraphs by Barbero, Paul and Pilipczuk [38].

Kim and Seymour proved Theorem 2.13.1 by using another parameter
called path-width. For a digraph D, a sequence (W1, . . . , Wr) of subsets of
V (D) is a path decomposition of D if it satisfies the following conditions:

•
⋃r

i=1 Wi = V (D);
• for 1 ≤ h < i < j ≤ r, Wh ∩ Wj ⊆ Wi; and
• if uv ∈ A(D), then u ∈ Wi and v ∈ Wj for some i ≥ j.

The width of such a path decomposition is defined to be the number
max{|Wi| − 1 | 1 ≤ i ≤ r}. The path-width of D is the smallest width
of a path-decomposition. For example, if v1, . . . , vn is an acyclic ordering
of an acyclic digraph, then ({v1}, . . . , {vn}) is a path-decomposition of this
digraph of width 0. Hence every acyclic digraph has path-width 0.

Having bounded path-width is a minor-closed property.

Lemma 2.13.2 ([120]) If a digraph has path-width at most k, then so do all
its minors.

Proof: Let (W1, . . . , Wr) be a path-decomposition of a digraph D with width
at most k. It is also a path-decomposition of D\a for every arc a ∈ A(D) and
(W1 \ {v}, . . . , Wr \ {v}) is a path-decomposition of D − v for every vertex
v ∈ V (D). Hence, it remains to show that for every strong subdigraph H,
the digraph D/H obtained from D by contracting H into a vertex w has
path-width at most k.

Let IH = {i | Wi ∩ V (H) �= ∅}. One can check that iH is an interval and
that the path-decomposition (W ′

1, . . . , W
′
r) defined by W ′

i = (Wi\V (H))∪{w}
if i ∈ iH and W ′

i = Wi otherwise is a path-decomposition of G/H of width
at most k. �

The k-triple is the digraph Tk defined by

V (Tk) = {a1, . . . , ak, b1, . . . , bk, c1, . . . , ck}, and
E(Tk) = {aibj | 1 ≤ i ≤ k, 1 ≤ j ≤ k} ∪ {bicj | 1 ≤ i ≤ k, 1 ≤ j ≤ k} ∪

{ciai | 1 ≤ i ≤ k}.
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Observe that every semicomplete digraph with k vertices is a minor of the
k-triple Tk. Indeed, set B = {b1, . . . , bk}; then D〈{ai, bi, ci}〉 is strong for
each i. The digraph D′ obtained from D by contracting D〈{ai, bi, ci}〉 to a
vertex for each i is the complete symmetric digraph of order k.

A theorem of Fradkin and Seymour [86] says that a semicomplete digraph
D has large path-width if and only if it contains a large k-triple.

Theorem 2.13.3 ([86]) Let S be a set of semicomplete digraphs. The follow-
ing two statements are equivalent:

1. There exists a positive integer k1 such that for each D ∈ S, there is no
k1-triple in D.

2. There exists a positive integer k2 such that each D ∈ S has path-width at
most k2.

Hence in order to prove Theorem 2.13.1, Kim and Seymour [120] proved
the following result.

Theorem 2.13.4 ([120]) Minor containment is a well quasi-order on the
class of all semicomplete digraphs with path-width at most k.

Proof of 2.13.1 assuming Theorem 2.13.4: Let D1,D2, . . . be an infinite
sequence of semicomplete digraphs. We may assume that D1 is not a minor
of Di for each i ≥ 2. Set k1 = |D1|. By the above observation D1 is a minor of
Tk1 , so Tk1 is not contained in Di for each i ≥ 2. Hence, by Theorem 2.13.3,
there exists a k2 such that every Di, i ≥ 2, has path-width at most k2. Thus,
by Theorem 2.13.4, there exists j > i ≥ 2 such that Gi is a minor of Gj . �

2.14 Miscellaneous Topics

In the next few subsections we briefly survey results and problems on a few
further topics on tournaments.

2.14.1 Arc-Pancyclicity

As mentioned earlier, Moon proved that almost all tournaments are arc-3-
cyclic [146], so for tournaments this is not a very hard restriction.

Tian, Wu and Zhang characterized all tournaments that are arc-3-cyclic
but not arc-pancyclic. See Figure 2.6 for the definition of the classes D6,D8.

Theorem 2.14.1 ([188]) An arc-3-cyclic tournament is arc-pancyclic unless
it belongs to one of the families D6,D8 (in which case the arc yx belongs to
no Hamiltonian cycle).

Corollary 2.14.2 ([188]) Every arc-3-cyclic tournament has at most one arc
which is not in cycles of all lengths 3, 4, . . . , n.
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The following result due to Wu, Zhang and Zou is also a corollary of
Theorem 2.14.1.

Corollary 2.14.3 ([193]) A tournament is arc-pancyclic if and only if it is
arc-3-cyclic and arc-n-cyclic.

The following result due to Alspach is also an easy corollary:

U W

x y x y

D6 D8

Figure 2.6 The two families of non-arc-pancyclic arc-3-cyclic tournaments. Each
of the sets U and W induces an arc-3-cyclic tournament. All edges that are not
already oriented may be oriented arbitrarily, but all arcs between U and W have
the same direction

Corollary 2.14.4 ([12]) Every regular tournament is arc-pancyclic.

Finally, observe that since each tournament in the infinite family D6 is 2-
strong and the arc yx is not in any Hamiltonian cycle we obtain the following
result due to Thomassen:

Theorem 2.14.5 ([184]) There exist infinitely many 2-strong tournaments
containing an arc which is not in anyHamiltonian cycle.

Problem 2.14.6 Characterize arc-pancyclic semicomplete digraphs.

A partial result on this problem was obtained by Darrah, Liu and Zhang [68].
A vertex u in a digraph D is out-pancyclic if every arc whose tail is u is

contained in cycles of all lengths 3, 4, . . . , |V (D)|. Clearly D is arc-pancyclic
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if and only if every vertex of D is out-pancyclic and hence it is of interest to
study out-pancyclic vertices in tournaments and semicomplete digraphs.

When T is a strong tournament with δ+(T ) ≥ 2, Yao, Guo and Zhang [194]
call a vertex v ∈ V (T ) a bridgehead if there is a 2-partition (V1, V2) of V (T )
such that |V1| ≥ 2, T [V1] is strong and there is no arc from V1 \ {v} to V2.
It is easy to check that every tournament of minimum out-degree at least 2
contains a vertex which is not a bridgehead.

Theorem 2.14.7 ([194]) Let T be a strong tournament on n vertices and let
u1, u2, . . . , un be a labelling of its vertices so that d+(u1) ≤ d+(u2) ≤ . . . ≤
d+(un). Let u be the vertex u1 if d+(u1) = 1 and otherwise u is a vertex
of minimum out-degree among those that are not bridgeheads. Then u is an
out-pancyclic vertex.

Corollary 2.14.8 ([194]) Every strong tournament has an out-pancyclic ver-
tex.

Yao et al. [194] constructed an infinite family of strong tournaments with
exactly one out-pancyclic vertex.

Conjecture 2.14.9 ([194]) Every k-strong tournament has at least k out-
pancyclic vertices.

When ri ≥ k, i ∈ [3] the tournament C3[TTr1 , TTr2 , TTr3 ] is k-strong
and has exactly 3 out-pancyclic vertices, namely the vertices with out-degree
0 in each of the three transitive tournaments [195]. Yeo conjectured that
every 2-strong tournament contains three out-pancyclic vertices and this was
confirmed by Guo, Guo, Li, Li and Zhao.

Theorem 2.14.10 ([100, 101]) Every strong tournament T with δ+(T ) ≥ 2
contains at least three out-pancyclic vertices and this is the best possible.

See [108, 195] for results and conjectures by Havet and Yeo on the number
of pancyclic arcs in tournaments as well as the number of pancyclic arcs
contained in the same Hamiltonian cycle.

2.14.2 Critically k-Strong Tournaments

A digraph is critically k-strong if D is k-strong but κ(D − v) = k − 1 for
all v ∈ V . When k = 1 such digraphs are also called critically strong. The
structure of critically strong digraphs is surprisingly complicated, see the
paper [139] by Mader. By Corollary 2.2.10 the only critically strong semi-
complete digraph is the 3-cycle. For larger connectivities Thomassen gave a
construction which shows that the situation is quite different.

Theorem 2.14.11 (Thomassen [22] Section 5.7) For every k ≥ 3, there
are infinitely many critically k-strong tournaments.
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See [22, Figure 5.9] for an infinite family of critically 3-strong tourna-
ments. Let us call a tournament T minimally k-strong if T is k-strong but
no proper subtournament of T is k-strong. We saw above that there are arbi-
trarily large critically-k-strong tournaments. Lichiardopol conjectured [133]
that this is not the case for minimally k-strong tournaments.

Conjecture 2.14.12 ([133]) For every integer k ≥ 1 there exists a func-
tion f(k) such that every minimally k-strong tournament has atmost f(k)
vertices.

2.14.3 Subdivisions and Linkages

A famous conjecture due to Lovász (see e.g. [182, page 262]) states that for
every positive integer k there exists an integer r(k) such that for every pair
of vertices x, y in a r(k)-connected graph G we can find an induced (x, y)-
path P such that G − V (P ) is k-connected. Thomassen proved the following
tournament version of Lovász’s conjecture.

Theorem 2.14.13 ([179]) Let k be a positive integer and let T be a (k + 4)-
strong tournament. Then for every pair of vertices x, y and every shortest
(x, y)-path P the tournament T − V (P ) is k-strong.

Kim, Kühn and Osthus generalized this as follows. Theorem 2.14.13 is
obtained by taking d = 2 and m = 1.

Theorem 2.14.14 ([121]) Let k, d,m be positive integers. Suppose that T is
a (k + m(d + 2))-strong tournament, that X is a set of d vertices of T , that
H is a digraph on d vertices and m arcs and that φ is a bijection from V (H)
to X. Then T contains a subdivision H∗ of H such that

(i) for each h ∈ V (H), the branch vertex of H∗ corresponding to h is φ(h),
(ii) T − V (H∗) is k-strong,
(iii) for every arc a of H, the path Pa of H∗ is minimal.
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Schüte’s tournament problem. Miskolc Math. Notes, 15:39–50, 2014.

52. R.A. Brualdi and K. Kiernan. Landau’s and Rado’s Theorems and partial
tournaments. Elec. J. Combin., 16:# N2, 2009.

http://arxiv.org/abs/1707.03563
http://arxiv.org/abs/1510.06667v2
http://arxiv.org/abs/1707.04220


118 J. Bang-Jensen and F. Havet

53. S.A. Burr. Subtrees of directed graphs and hypergraphs. Congress. Numer.,
28:227–239, 1980.
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3. Acyclic Digraphs
Gregory Gutin

Recall that a digraph D is acyclic if it has no dicycle. Acyclic digraphs form
a well-studied family of digraphs of great interest in graph theory, algorithms
and applications. This chapter is organised as follows. We start with the
terminology used throughout this chapter. In the next section we consider
some basic results on acyclic digraphs including the existence of an acyclic
ordering (called a topologic ordering in most of the literature). In Section 3.2,
we introduce transitive digraphs, and the transitive closure and transitive
reduction of a digraph. In particular, we prove that an acyclic digraph has a
unique transitive reduction.

Results on out- and in-branchings of acyclic digraphs are discussed
in Section 3.3. The k-linkage problem for acyclic digraphs in studied in
Section 3.4. Enumeration results are considered in Section 3.5. In Section 3.6
we consider bounds on maximum dicuts in acyclic digraphs and compare them
to those in general digraphs. Section 3.7 is devoted to the problems of find-
ing maximum spanning and induced acyclic subdigraphs. We consider some
parameterizations of the problems and bounds on oriented planar graphs for
the maximum induced acyclic subgraph and dichromatic number. Section 3.8
is devoted to the multicut problem, where given a digraph and a set of pairs
(si, ti) of vertices of D, our goal is to eliminate all dipaths from si to ti for
every pair (si, ti).

The next four sections are devoted to applications of acyclic digraphs.1
Convex sets of acyclic digraphs, which are of interest in embedded com-

puting, are considered in Section 3.9. Section 3.10 is devoted to recently in-
troduced cryptographic enforcement schemes based on spanning out-forests
in transitive acyclic digraphs. In Section 3.11 we consider a classical area of
acyclic digraph applications – project scheduling. In Section 3.12, we intro-

1 In this chapter, we consider only some applications of acyclic digraphs. There are
many others and some even appeared while the chapter was being written, see
e.g. [6], where Antoniou, Araújo, Bustamante and Gibali used basic properties of
acyclic digraphs to design an algorithm for disassembling toy models produced
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duce a problem related to analyzing how short, distinctive phrases (typically,
parts or mutations of quotations) spread to various news sites and blogs.
In the problem, we are to find a minimum-weight set of arcs whose deletion
leaves connected components with unique vertices of out-degree zero. Finally,
Section 3.13 is devoted to generalisations of acyclic digraphs by edge-coloured
undirected graphs.

A vertex is called a source (sink, respectively) if it is of in-degree zero (of
out-degree zero, respectively). Recall that an out-tree is an orientation of a
tree which has only one source, called the root. An out-forest is a collection
of vertex-disjoint out-trees. Similarly, one defines in-trees and in-forests, but
in an in-tree the root is a sink.

3.1 Acyclic Orderings and Longest and Shortest Paths

Recall that an ordering v1, v2, . . . , vn of vertices of a digraph D is called
acyclic if for every arc vivj ∈ A(D), we have i < j. We will show that every
acyclic digraph has an acyclic ordering of vertices.

Proposition 3.1.1 Every acyclic digraph has at least one source and at least
one sink.

Proof: Let D be a digraph in which all vertices have positive out-degrees. We
show that D has a cycle. Choose a vertex v1 in D. Since d+(v1) > 0, there is
a vertex v2 such that v1 → v2. As d+(v2) > 0, v2 dominates some vertex v3.
Proceeding in this manner, we obtain a walk of the form v1v2 . . . vk. As V (D)
is finite, there exists a least k > 2 such that vk = vi for some 1 ≤ i < k.
Clearly, vivi+1 . . . vk is a closed walk and thus contains a cycle. Therefore, an
acyclic digraph D has a source. Since the converse of D is also acyclic, D has
a sink as well. ��

The procedure in the above proof allows one to decide whether a digraph
D is acyclic. However, there is another, O(n+m)-time, algorithm for verify-
ing whether a digraph is acyclic based on a depth-first search, see, e.g., [9].
(Recall that n and m denote the order and size of D.) The algorithm allows us
to find an acyclic ordering of vertices in an acyclic digraph. Such an ordering
exists due to the following:

Proposition 3.1.2 Every acyclic digraph has an acyclic ordering of vertices.

Proof: We give a constructive proof by describing a procedure that generates
an acyclic ordering of the vertices in an acyclic digraph D. At the first step,
we choose a source v (such a vertex exists by Proposition 3.1.1). Set x1 = v
and delete x1 from D. At the ith step, we find a source u in the remaining
acyclic digraph, set xi = u and delete xi from the remaining acyclic digraph.
The procedure has n steps.

Suppose that xi → xj in D, but i > j. As xj was chosen before xi, it
means that xj was not of in-degree zero at the jth step of the procedure; a
contradiction. ��
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Now it is easy to see the following:

Corollary 3.1.3 A digraph D is acyclic if and only if every subgraph of D
has a source.

Let D = (V,A, c) be an acyclic digraph with weight function c : A(D)→R.
We will show that shortest and longest paths from a vertex s to the rest of the
vertices can be found quite easily, using dynamic programming. Without loss
of generality, we may assume that s is a source. Let L = v1, v2, . . . , vn be an
acyclic ordering of the vertices of D such that v1 = s. Clearly, dist(s, v1) = 0.
For every i, 2 ≤ i ≤ n, we have

dist(s, vi) =
{
min{dist(s, vj) + c(vj , vi) : vj ∈ N−(vi)} if N−(vi) �= ∅
∞ otherwise.

(3.1)
The correctness of this formula can be shown by the following argument.
We may assume that vi is reachable from s. Since the ordering L is acyclic,
the vertices of a shortest path P from s to vi belong to {v1, v2, . . . , vi}. Let
vk be the vertex dominating vi in P . By induction, dist(s, vk) is computed
correctly using (3.1). The term dist(s, vk) + c(vk, vi) is one of the terms in
the right-hand side of (3.1). Clearly, it provides the minimum.

The algorithm has two phases: the first finds an acyclic ordering, the
second implements Formula (3.1). The complexity of this algorithm is O(n+
m) since the first phase runs in time O(n + m) and the second phase re-
quires the same asymptotic time due to the formula

∑
x∈V d−(x) = m in

Proposition 1.2.2. Hence we have shown the following:

Theorem 3.1.4 The lengths of shortest paths from a fixed vertex s to all
other vertices can be found in time O(n + m) for acyclic digraphs.

We can also find the length of longest (s, x)-paths in linear time in any
acyclic digraph, by replacing the weight c(uv) of every arc uv with −c(uv). In
particular, we can see immediately that the longest path problem for acyclic
digraphs is solvable in polynomial time. In fact, a longest path of an acyclic
digraph can always be found in linear time:

Theorem 3.1.5 For acyclic digraphs a longest path can be found in time
O(n + m).

3.2 Transitive Acyclic Digraphs

A digraph D is transitive if, for every pair xy and yz of arcs in D with
x �= z, the arc xz is also in D. Transitive digraphs form the underlying
graph-theoretical model in a number of applications. For example, transitive
acyclic digraphs are graphic representations of partial orders. The aim of this
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Section is to give a brief overview of some properties of transitive digraphs as
well as transitive closures and reductions of acyclic digraphs.

The following result is the famous Dilworth’s theorem [29] formulated in
the language of transitive acyclic digraphs. Recall that for a digraph D, pc(D)
and α(D) denote the minimum number of vertex-disjoint dipaths covering
V (D) and the maximum number of vertices without an arc between them.

Theorem 3.2.1 (Dilworth’s theorem) For every transitive acyclic di-
graph D, we have pc(D) = α(D).

Theorem 3.2.1 is equivalent to Theorem 3.3.2 proved below (for details,
see [9, Theorem 13.5.8]).

The transitive closure TC(D) of a digraph D is a digraph with
V (TC(D)) = V (D) and, for distinct vertices u, v, the arc uv ∈ A(TC(D)) if
and only if D has a (u, v)-path. The uniqueness of the transitive closure of an
arbitrary digraph is obvious. To compute the transitive closure of a digraph
we can use the fact discovered by a number of researchers (see, e.g., the paper
[32] by Fisher and Meyer, or [35] by Furman) that the transitive closure prob-
lem and the matrix multiplication problem are closely related: there exists an
O(na)-algorithm, with a ≥ 2, to compute the transitive closure of a digraph
of order n if and only if the product of two boolean n × n matrices can be
computed in O(na) time. Coppersmith and Winograd [21] showed that there
exists an O(nω)-algorithm for the matrix multiplication with ω < 2.3755. Le
Gall [54] improved the bound on ω to 2.3729. Goralcikova and Koubek [38]
designed an O(nmred)-algorithm to find the transitive closure of an acyclic
digraph D with n vertices and mred arcs in the transitive reduction of D (the
notion of transitive reduction is introduced below). This algorithm was also
studied and improved by Mehlhorn [64] and Simon [79].

An arc uv in a digraph D is redundant if there is a (u, v)-path in D
which does not contain the arc uv. A transitive reduction of a digraph D
is a spanning subgraph H of D with no redundant arc such that the transitive
closures of D and H coincide. Not every digraph D has a unique transitive
reduction. Indeed, if D has a pair of Hamiltonian directed cycles, then each
of these cycles is a transitive reduction of D. Below we show that a transitive
reduction of an acyclic digraph is unique, i.e., we may speak of the transitive
reduction of an acyclic digraph.

The intersection of digraphs D1, . . . , Dk with the same vertex set V is
the digraph H with vertex set V and arc set A(D1) ∩ . . . ∩ A(Dk). Similarly
one can define the union of digraphs with the same vertex sets (see Section 1.4).
Let S(D) be the set of all spanning subdigraphs L of D for which TC(L) =
TC(D).

Theorem 3.2.2 ([2]) For an acyclic digraph D, there exists a unique digraph
D′ with the property that TC(D′) = TC(D) and every proper subdigraph H of
D′ satisfies TC(H) �= TC(D′). The digraph D′ is the intersection of digraphs
in S(D).
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The proof of this theorem, which is due to Aho, Garey and Ullman [2],
follows from Lemmas 3.2.3 and 3.2.4.

Lemma 3.2.3 Let D and H be a pair of acyclic digraphs on the same vertex
set such that TC(D) = TC(H) and A(D) − A(H) �= ∅. Then, for every
e ∈ A(D) − A(H), we have TC(D − e) = TC(D).

Proof: Let e = xy ∈ A(D) − A(H). Since e �∈ A(H), H must have an
(x, y)-dipath passing through some other vertex, say z. Hence, D has an
(x, z)-dipath Pxz and a (z, y)-dipath Pzy. If Pxz contains e, then D has a
(y, z)-dipath. The existence of this path contradicts the existence of Pzy and
the hypothesis that D is acyclic. Similarly, one can show that Pzy does not
contain e. Therefore, D−e has an (x, y)-dipath. Hence, TC(D−e) = TC(D).

��

Lemma 3.2.4 Let D be an acyclic digraph. Then the set S(D) is closed under
union and intersection.

Proof: Let G,H be a pair of digraphs in S(D). Since TC(G) = TC(H) =
TC(D), G ∪ H is a subgraph of TC(D). The transitivity of TC(D) now
implies that TC(G ∪ H) is a subgraph of TC(D). Since G is a subgraph of
G ∪ H, we have that TC(D) (= TC(G)) is a subgraph of TC(G ∪ H). Thus,
we conclude that TC(G ∪ H) = TC(D) and G ∪ H ∈ S(D).

Now let e1, . . . , ep be the arcs of G − A(G ∩ H). By repeated application
of Lemma 3.2.3, we obtain TC(G − e1 − e2 − . . . − ep) = TC(G). This means
that TC(G ∩ H) = TC(G) = TC(D), hence G ∩ H ∈ S(D). ��

Aho, Garey and Ullman [2] also proved that there exists an O(na)-
algorithm, with a ≥ 2, to compute the transitive closure of an arbitrary
digraph D of order n if and only if a transitive reduction of D can be con-
structed in time O(na). Therefore, we have

Proposition 3.2.5 For an arbitrary digraph D, the transitive closure and a
transitive reduction can be computed in time O(n2.376). 

3.3 Out-branchings and in-branchings

The next simple but useful result follows immediately from Proposition 1.8.1.
However, it also follows from the fact that if we choose an in-arc of every ver-
tex of non-zero in-degree in an acyclic digraph D, then we obtain a spanning
out-forest. The number of out-trees in this out-forest equals the number of
vertices of in-degree zero in D.

Proposition 3.3.1 An acyclic digraph has an out-branching if and only if it
has only one source.
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In the Minimum weight out-branching problem, given a digraph D
with non-negative weights on its arcs and a vertex s ∈ V (D), we are required
to find an out-branching of D rooted at s of minimum total weight. Edmonds
[30] found a polynomial time algorithm for solving the problem for general
digraphs. In the case of acyclic digraphs, we can simply apply the following
greedy algorithm used by Crampton, Farley, Gutin, Jones and Poettering
[24, 25], see Section 3.10. Let D be an acyclic digraph containing a unique
source s. For every vertex v ∈ V (D) − {s} choose an arc to v of minimum
weight. Clearly, the chosen arcs form a minimum weight out-branching.

In the next two subsections, we consider out-branchings with the mini-
mum and maximum number of leaves, and with bounded out-degrees.

3.3.1 Extremal number of leaves

Recall that a leaf in an out-branching is a vertex of out-degree zero. We will
denote the minimum and maximum number of leaves in an out-branching of
a digraph D by �min(D) and �max(D), respectively. The problems of finding
out-branchings with �min(D) and �max(D) leaves are both NP-hard for gen-
eral digraphs. The problem of finding �max(D) restricted to acyclic digraphs
remains NP-hard [5] and moreover it was proved by Schwartges, Spoerhase
and Wolff [78] that there is no PTAS for the restricted problem. However,
Schwartges et al. [78] obtained a 2-approximation algorithm for the restricted
problem. For the general problem the currently best known approximation
ratio is 92, obtained by Daligault and Thomassé [27].

The algorithm of Schwartges et al. [78] inputs an acyclic digraph D with a
unique source r, outputs an out-tree T , and consists of two phases. At Phase
1, called expansion, the algorithm starts from an empty out-forest F and
empty sets V and A. All vertices of D apart from r are initially unmarked (r
is marked). For every v �∈ V , the algorithm adds v to V and if v has at least
two unmarked out-neighbours, then all arcs from v to such out-neighbours
are added to A and such out-neighbours are all marked. At Phase 2, called
connection, for every unmarked vertex u the algorithm marks u and adds
an incoming arc to u to A. The output T is the subgraph of D induced by A.

The problem of finding �min(D) becomes polynomial-time solvable when
restricted to acyclic digraphs. This result is of interest as it has an application
to the area of database systems, see, e.g., the US patent [28] by Demers and
Downing. Before describing the polynomial-time algorithm, we will prove the
following result, which is equivalent to Dilworth’s theorem (Theorem 3.2.1)
as shown by Bang-Jensen and Gutin [10].

Recall that α(D) denotes the maximum number of vertices in a digraph
D with no arc between any pair of them.

Theorem 3.3.2 If D is a transitive acyclic digraph with a unique source s,
then �min(D) = α(D).
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Proof: By Proposition 3.3.1 and Las Vergnas’ theorem (Theorem 1.8.3), D
contains an out-branching B with k ≤ α(D) leaves. Observe that B is rooted
at s and the vertices of every dipath in B starting at s and terminating at a
leaf induce a clique in UG(D). Thus, the vertices of UG(D) can be covered
by k cliques and, hence, α(D) ≤ k. We conclude that �min(D) = α(D). ��

Let D = (V,A) be an acyclic digraph. Let us assume that D has a unique
source r as, by Proposition 3.3.1, this is a necessary and sufficient condition
for D to have an out-branching. Let V ′ = {v′ : v ∈ V } and let us define a
bipartite graph B with partite sets X and X ′ as follows: X = V , X ′ = V ′\{r′}
and E(B) = {xy′ : x ∈ X, y′ ∈ X ′, xy ∈ A}. Let M be a maximum matching
in B and let M∗ be obtained from M by adding to it any edge uv′ ∈ E(B)
for each v′ not covered by M . We have the following lemma of Gutin, Razgon
and Kim [45].

Lemma 3.3.3 The minimum number of leaves in an out-branching of D
equals the number of isolated vertices in the subgraph of B induced by M∗.

Proof A set N of edges of B is called nice if each vertex of X ′ is incident
to exactly one edge in N and N contains an edge incident to r. Let T be
an out-branching of D and let N(T ) = {xy′ : xy ∈ A(T )}. We will prove
that T → N(T ) is a bijection between all out-branchings of D and all nice
edge sets of B. Indeed, if P is an out-branching, then clearly N(P ) is a nice
edge set. Let N be a nice edge set and let Q be a spanning subgraph of
D constructed as follows: xy ∈ A(Q) if and only if xy′ ∈ N . Since every
vertex of X ′ is incident to exactly one edge of N , we have d−

Q(z) = 1 for each
z ∈ V (Q) \ {r}. Since Q is acyclic with a unique source, by Proposition 3.3.1,
Q is an out-branching.

Let T be an out-branching of D and let B[N(T )] be the subgraph of B
induced by the edge set N(T ). Observe that the leaves of T are exactly the
isolated vertices of B[N(T )]. Thus, an out-branching of D with the minimum
number of leaves corresponds to a nice set N such that B[N ] has the minimum
possible number of isolated vertices.

Let N be a nice edge set in B, let m(N) denote the maximum size of
a matching in B[N ] and let H be a matching in B[N ] of size m(N). Let
y′ ∈ X ′ be a vertex of B not incident to an edge of H and let xy′ ∈ N. Since
H is maximum, x is incident to an edge of H. Notice that r is covered by
H. Indeed, there exists a vertex u such that r is the only in-neighbour of u
in D. Hence if r was not covered by H then u′ would not be covered by H
either, which means we could extend H by ru′, a contradiction. Thus, the
number of isolated vertices in B[N ] equals |X| − m(N). Hence, the number
of leaves in T is minimum if and only if m(N(T )) = max{m(N) : N is nice}.
Notice that we constructed M∗ in such a way as to guarantee that m(M∗) =
max{m(N) : N is nice} and, thus, �min(D) is the number of isolated vertices
in B[M∗]. ��
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This lemma and its proof leads to the following algorithm for finding a
minimum leaf out-branching T in an input acyclic digraph D.

Algorithm 1 MINLEAF
Input: An acyclic digraph D with vertex set V .
Output: A minimum leaf out-branching T of D if �min(D) > 0 and “NO”, otherwise.
1: Find a source r in D. If there is another source in D, return “no out-branching”.

Let V ′ = {v′ : v ∈ V }.
2: Construct a bipartite graph B = B(D) of D with partite sets V, V ′ − r′ and

edge xy′ for each arc xy ∈ A(D).
3: Find a maximum matching M in B.
4: M∗ := M . For all y′ ∈ V ′ not covered by M , set M∗ := M∗ ∪ {an arbitrary

edge incident with y′}.
5: A(T ) := ∅. For all xy′ ∈ M∗, set A(T ) := A(T ) ∪ {xy}.
6: Return T .

Figure 3.1 illustrates MINLEAF.
It is not hard to implement MINLEAF such that its time complexity is

O(m +
√

mn3), where n = |V | and m = |A| (see, e.g., [45]). Thus, we have
the following result proved by Gutin, Razgon and Kim [45].

Theorem 3.3.4 Let D be an acyclic digraph with n vertices and m arcs. We
can decide whether D has an out-branching and find one with the minimum
number of leaves in time O(m + n1.5

√
m).

3.3.2 Bounded out-degrees

For acyclic directed multigraphs, Bang-Jensen, Thomassé and Yeo [12] gave
a complete characterization for the existence of an out-branching satisfying
given (not necessarily uniform) restrictions on the out-degree of each vertex.
For a set X of vertices, let X− =

⋃
x∈X N−(x).

Theorem 3.3.5 ([12]) Let D = (V,A) be an acyclic directed multigraph and
let f : V → Z0. Suppose that D has precisely one source s. Then D has an
out-branching B rooted at s satisfying

d+B(v) ≤ f(v) for all v ∈ V (3.2)

if and only if ∑
x∈X−

f(x) ≥ |X| for all X ⊂ V − s. (3.3)

Furthermore, there exists a polynomial algorithm which, given an acyclic di-
rected multigraph and a non-negative integer assignment to its vertices, either
finds an out-branching satisfying (3.2) or a set X of vertices violating (3.3).
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Figure 3.1 Example for MINLEAF. In D, the thick arcs belong to T .

Proof: We start by constructing a flow network N as follows. The vertex
set of N consists of two copies v′, v′′ of each vertex v ∈ V − s, one copy s′′

of s and finally a new vertex z. The arc set of N is A(N) = {u′′v′ : uv ∈
A} ∪ {v′z : v ∈ V − s} ∪ {zv′′ : v ∈ V }. We have the following upper and
lower bounds on the arcs:

• all arcs to z have upper and lower bound equal to one.
• all arcs u′′v′ corresponding to arcs in D have lower bound zero and infinite

upper bound.
• all arcs from zv′′ have lower bound zero and upper bound equal to f(v).

We claim that D has an out-branching T rooted at s satisfying (3.2) if and
only if N has a feasible circulation. First assume that T is an out-branching
rooted at s in D which satisfies (3.2). Since the in-degree of every vertex
except s is precisely one in T it follows that the following x is a feasible
circulation in N :

• x(u′′v′) = 1 if uv is an arc of T .
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• x(v′z) = 1 for all arcs to z.
• x(zv′′) = d+T (v) for all arcs from z.

Conversely, if x is a feasible integer-valued circulation in N , then let A′

be the set of those arcs uv in D for which x(u′′v′) = 1. It is easy to see that
these arcs form a spanning acyclic subgraph T ′ of D with n − 1 arcs and in
which s is the only source. Thus, by Proposition 3.3.1 T ′ is an out-branching
rooted at s. Furthermore, by the capacity constraint on the arcs from z, no
vertex v is the tail of more than f(v) arcs in T ′.

Now we are ready to prove the first claim of the theorem. Since every
vertex except s has in-degree one in an out-branching from s, it is easy to
see that (3.3) must hold if D has an out-branching satisfying (3.2). Suppose
now that D and f satisfy (3.3). By the arguments above it suffices to prove
that N has a feasible circulation.

Assume this is not the case. Then by Hoffman’s circulation theorem (The-
orem 1.9.3) there exists some partition S, S̄ of V (N) such that the sum l(S, S̄)
of the lower bounds on the arcs from S to S̄ is strictly larger than the sum
u(S̄, S) of the capacities on the arcs from S̄ to S. Since only arcs into z have
a non-zero lower bound we have z ∈ S̄. Let X ′ be the set of those v′ that
belong to S and let X be the corresponding set of vertices in D. Note that
l(S, S̄) = |X ′| = |X|. By the choice of capacities in N we see that every vertex
w′′ which has an arc to a vertex in X ′ must belong to S. Since z has an arc
to all such vertices w′′ with capacity f(w) and each such arc contributes to
u(S̄, S) we have

l(S, S̄) > u(S̄, S) ≥
∑

w∈X−
f(w) ≥ |X| = l(S, S̄),

a contradiction. Hence N has a feasible circulation and the desired out-
branching exists in D.

The second part of the theorem follows from the fact that our proof can be
turned into an algorithm for checking the existence of the desired branching
(and finding one if it exists) by using flow techniques to search for a feasible
integer-valued circulation in the corresponding network N . ��

It is easy to see that if an acyclic digraph D has arc-disjoint branchings
F+, F−, where F+ is an out-branching rooted at s and F− is an in-branching
rooted at t, then s (t) must be the unique vertex of in-degree (out-degree)
zero in D. The following result characterises when an acyclic digraph contains
such a pair of arc-disjoint branchings.

Corollary 3.3.6 ([12]) Let D be an acyclic digraph such that there is ex-
actly one source s and exactly one sink t in D. Then D contains arc-disjoint
branchings F+ and F− where the first is an out-branching rooted at s and
the second is an in-branching rooted at t if and only if we have∑

x∈X−
(d+(x) − 1) ≥ |X| for all X ⊆ V − s. (3.4)
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Furthermore, it can be decided in polynomial time whether D has such branch-
ings.

Proof: As remarked above, an acyclic digraph H has an in-branching rooted
at a vertex z if and only if z is the unique sink in H. Now we see that D
has the desired branchings if and only if D has an out-branching rooted at s
which satisfies (3.2) with respect to f(v) = d+(v)− 1 for v �= t and f(t) = 0.
By Theorem3.3.5 this is equivalent to requiring that (3.4) must hold.

The complexity claim follows from the last part of Theorem 3.3.5. ��
The complexity part of Corollary 3.3.6 was also obtained by Bérczi, Fu-

jishige and Kamiyama [14].

3.4 The k-Linkage problem

When the digraph considered is acyclic there is enough structure to allow
an efficient solution of the k-linkage problem for every fixed k. Perl and
Shiloach [68] proved that the 2-linkage problem is solvable in polynomial
time for acyclic digraphs. In their elegant proof they showed how to reduce
the 2-linkage problem for a given acyclic digraph to a simple path finding
problem in another digraph. Fortune, Hopcroft and Wyllie extended Perl and
Shiloach’s result to arbitrary k. The proof of this result below is an extension
of the proof by Perl and Shiloach (see also Thomassen’s survey [84]).

Theorem 3.4.1 ([33]) For each fixed k, the k-linkage problem is solvable
in polynomial time for acyclic digraphs.

Proof: Let D = (V,A) be an acyclic digraph for which we wish to find a k-
linkage from (x1, x2, . . . , xk) to (y1, y2, . . . , yk). We may assume that d−

D(xi) =
d+D(yi) = 0 for all i ∈ [k], since arcs from yi and to xi play no role in
the problem and may thus be deleted. We may also assume that vertices
x1, x2, . . . , xk, y1, y2, . . . , yk are all distinct. Indeed, if there are p appearances
of xi in the sequence x1, x2, . . . , xk, y1, y2, . . . , yk then we will replace xi by p
copies such that they have the same in- and out-neighbours as xi.

Form a new digraph D′ = (V ′, A′) whose vertex set is the set of all k-
tuples of distinct vertices of V . For any such k-tuple (v1, v2, . . . , vk) there is
at least one vertex, say vr, which cannot be reached from any of the other
vi by a path in D. (Here we used the fact that D is acyclic.) For each out-
neighbour w of vr such that w �∈ {v1, v2, . . . , vk}, we let A′ contain an arc from
(v1, v2, . . . , vr−1, vr, vr+1, . . . , vk) to (v1, v2, . . . , vr−1, w, vr+1, . . . , vk). Only
arcs as those described above are in A′.

We claim that D′ has a directed path from the vertex (x1, x2, . . . , xk) to
the vertex (y1, y2, . . . , yk) if and only if D contains disjoint paths P1, P2, . . . ,
Pk such that Pi is an (xi, yi)-path for each i ∈ [k].
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Suppose first that D′ has a path P from (x1, x2, . . . , xk) to (y1, y2, . . . , yk).
By definition, every arc of P corresponds to one arc in D. Hence we get a col-
lection of paths P1, P2, . . . , Pk such that Pi is an (xi, yi)-path for each i ∈ [k]
by letting Pi contain those arcs that correspond to a shift in the ith vertex of
a k-tuple. Suppose two of these paths, Pi, Pj are not disjoint. Then it follows
from the assumption that d−

D(xi) = d+D(yi) = 0 for all i ∈ [k] and the defi-
nition of D′ that there is some vertex u ∈ V − {x1, x2, . . . , xk, y1, y2, . . . , yk}
such that u ∈ V (Pi) ∩ V (Pj). Let w (z) be the predecessor of u on Pi (Pj).
We may assume without loss of generality that the arc on P corresponding
to wu is used before that corresponding to zu. This means that at the time
we change from w to u in the ith coordinate, the jth coordinate corresponds
to a vertex z′ which can reach u in D (through z). Now it follows from the
definition of the arcs in A′ that we could not have changed the ith coordinate
again before we have used the arc corresponding to zu in D′. However, that
would lead to a k-tuple which contains two copies of the same vertex u from
D, contradicting the definition of D′. Hence Pi and Pj must be disjoint.

Suppose now that D contains disjoint paths Q1, Q2, . . . , Qk such that
Qi is an (xi, yi)-path for all i ∈ [k]. Then we can construct a path from
(x1, x2, . . . , xk) to (y1, y2, . . . , yk) in D′ as follows. Start with the tuple
(x1, x2, . . . , xk). At any time we choose a coordinate j of the current k-tuple
(z1, z2, . . . , zk) such that the vertex zj is not in {y1, y2, . . . , yk} and zj cannot
be reached in D by any other vertex from the tuple. Note that such a vertex
exists since D is acyclic and d+(yi) = 0 for all i ∈ [k]. It is easy to show
by induction that we will always have zj ∈ V (Qj). Now we use the arc zjw
corresponding to the arc out of zj on Qj and change the j’th coordinate from
zj to w. If follows from the fact that Q1, . . . , Qk are disjoint that this will
produce a path from (x1, x2, . . . , xk) to (y1, y2, . . . , yk) in D′.

Given any instance (D,x1, x2, . . . , xk, y1, y2, . . . , yk) we can produce the
digraph D′ in time O(k!nk+2) by forming all possible k-tuples and deciding
which arcs to add based on the definition of D′. Then we can decide the
existence of a path from (x1, x2, . . . , xk) to (y1, y2, . . . , yk) in polynomial time
using, say, a breadth-first search on D′. This proves that the k-linkage
problem is polynomial for each fixed k. ��

Note that we do not actually have to construct D′ in advance. It suffices
to introduce the vertices and arcs when they become relevant for the search
for a path from (x1, x2, . . . , xk) to (y1, y2, . . . , yk) in D′.

It is not difficult to see that we can also use the approach above to find the
cheapest collection of k disjoint paths where the ith path is an (xi, yi)-path
in a given acyclic digraph with non-negative costs on the arcs. Here the goal
is to minimize the total cost of the arcs used by the paths.

Producing D′ in the proof above cannot lead to an FPT algorithm for the
k-linkage problem parameterized by k. A natural question is whether there
is an FPT algorithm for the problem. Unfortunately, it is highly unlikely as
was shown by Slivkins:
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Theorem 3.4.2 ([81]) The k-linkage problem parameterized by k is W[1]-
hard for acyclic digraphs.

Bang-Jensen and Kriesell [11] considered a generalisation of the k-linkage
problem when some of the paths may be oriented, not necessarily directed.
They proved that even the generalisation of 2-linkage is NP-hard when
one of the paths is required to be directed and the other oriented.

It is not hard to see that Theorem 3.4.1 also holds for the Weak k-
linkage problem, where we require the paths to be arc-disjoint rather than
internally vertex-disjoint. Indeed, consider an acyclic digraph D = (V,A)
and two k-tuples x1, x2, . . . , xk and y1, y2, . . . , yk of distinct vertices of D for
which we wish to find a weak (i.e. arc-disjoint) k-linkage from (x1, x2, . . . , xk)
to (y1, y2, . . . , yk). Add to D extra vertices {x′

i, y
′
i : i ∈ [k]} and arcs AX ∪AY ,

where AX = {x′
ixi : i ∈ [k]} and AY = {yiy

′
i i ∈ [k]}. Observe that the line

digraph of the resulting graph has a k-linkage from the vertices corresponding
to the arcs of AX to the vertices corresponding to the arcs AY if and only
if D has a weak k-linkage from (x1, x2, . . . , xk) to (y1, y2, . . . , yk). Thus, we
have the following:

Corollary 3.4.3 For each fixed k, Weak k-linkage is polynomial-time
solvable for acyclic digraphs.

A collection F of flows in a network N = (A,A) is called vertex-disjoint
if for every vertex x ∈ V at most one flow from F has a positive value on any
arc incident to x. Bang-Jensen and Bessy [8] considered vertex-disjoint flows
in acyclic networks, i.e. in networks whose digraph is acyclic. Generalising
the proof of Theorem 3.4.1, they proved the following:

Theorem 3.4.4 For every fixed collection of integers k, v1, . . . , vk, U, there
is a polynomial-time algorithm for deciding whether an acyclic network N =
(V,A, u) with u(ij) ∈ [U ] for all ij ∈ A has vertex-disjoint flows x1, . . . , xk

such that xi is an (si, ti)-flow of value vi for i ∈ [k], where s1, . . . , sk, t1, . . . , tk
are distinct vertices of V .

3.5 Enumeration

In this section we consider enumeration results for acyclic digraphs. We start
from theorems on enumeration of labelled acyclic digraphs and the fact that
the number of n × n (0,1)-matrices whose eigenvalues are positive real num-
bers equals the number of labelled acyclic digraphs. We then briefly discuss
enumeration of unlabelled acyclic digraphs. Finally, we consider dipath enu-
meration in acyclic digraphs.

Labelled acyclic digraphs were first counted by Robinson [75, 77], and
independently by Stanley [82]. The short proof below is by Liskovets [57].
The proof uses Corollary 3.1.3.
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Theorem 3.5.1 Let an be the number of acyclic digraphs on n ≥ 1 labelled
vertices. Then an =

∑n−1
t=0 (−1)n−t−1

(
n
t

)
2t(n−t)at.

Proof: Let [n] be the set of vertices of n-vertex acyclic digraphs, let X ⊆ [n],
and let an(X) be the number of n-vertex acyclic digraphs in which every
vertex from X is a source. Observe that an(X) = 2t(n−t)at, where t = n−|X|.
Using the inclusion-exclusion principle, we obtain

n∑
t=0

(−1)n−t

(
n

t

)
2t(n−t)at = 0,

which implies the claimed formula. ��
Gessel [36] enumerated acyclic digraphs with specified numbers of sources

and sinks. Acyclic digraphs are the basic representation of the structure
underlying Bayesian networks. In many practical applications, such as the
reverse engineering of gene regulatory networks, the reconstruction of the
network is of great interest. Such reconstructions can be obtained if we can
generate acyclic digraphs randomly and uniformly. Kuipers and Moffa [53]
showed how Theorem 3.5.1 can be used to generate large acyclic digraphs
randomly and uniformly.

McKay, Foggier, Royle, Sloane, Wanless and Wilf [63] associated acyclic
digraphs with (0,1)-matrices whose eigenvalues are positive real numbers and
proved the following:

Theorem 3.5.2 The number of acyclic digraphs on n ≥ 1 labelled vertices
equals the number of n × n (0,1)-matrices whose eigenvalues are positive real
numbers.

Proof: Let D be an acyclic digraph on vertex set [n] such that 1, 2, . . . , n
is an acyclic ordering. Let A be the adjacency matrix of D and B = I + A,
where I is the n × n identity matrix. We claim that B has only positive
eigenvalues. Indeed, B is upper triangular with 1’s on the diagonal. Hence all
of its eigenvalues are equal to 1.

Conversely, let B be a (0, 1)-matrix whose eigenvalues λi are all positive
real numbers. Then we have

1 ≥ 1
n
trace(B)

=
1
n
(λ1 + λ2 + · · · + λn)

≥ (λ1λ2 . . . λn)1/n

= (det(B))1/n

≥ 1.

The last equality is due to the fact that det(B − λI) =
∏
(λi − λ) and so

setting λ to zero, we obtain det(B) = λ1λ2 . . . λn. The last inequality holds
since det(B) is a positive integer.
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Thus, λ1λ2 . . . λn = 1 and λ1 = λ2 = · · · = λn due to the equality between
arithmetic and geometric means. Therefore, λi = 1 for each i ∈ [n].

Now view B as the adjacency matrix of a directed pseudograph H, which
has a loop at every vertex but no parallel arcs. Since

trace(Bk) =
k∑

i=1

λk
i =

k∑
i=1

1 = n,

for all k, the number of closed diwalks in H, of each length k, is n.
Since trace(B) = n, all diagonal entries of B are 1’s. Thus we account

for all n of the closed diwalks of length k that exist in H by the loops only.
Hence there are no closed diwalks of any length that use an arc of H other
than the loops at the vertices. Set A = B − I. Then A is a (0, 1)-matrix that
is the adjacency matrix of an acyclic digraph. ��

Robinson [77] enumerated unlabelled (i.e., non-isomorphic) acyclic di-
graphs using standard enumeration techniques for unlabelled graphs [47].
Later Robinson [76] came up with a more efficient method to count unla-
belled acyclic digraphs using the inclusion-exclusion principle.

Recall that a multipartite tournament is an orientation of a complete
multipartite undirected graph. Gutin [39] enumerated “almost” unlabelled
acyclic multipartite tournaments using bijections from classes of multipar-
tite tournaments to sets of integral sequences. An almost unlabelled p-
partite tournament is an ordered (p + 1)-tuple (T, V1, ..., Vp), where T is a
p-partite tournament and (V1, ..., Vp) an ordered p-tuple of its partite sets.
If the partite sets of T are of size n1, ..., np respectively (ni > 0, i ∈ [p]),
then T is called an (n1, ..., np)-tournament. We say that almost unlabelled
(n1, ..., np)-tournaments (T, V1, ..., Vp) and (M,U1, ..., Up) are equivalent if
there exists an isomorphism f from T to M such that f(Vi) = Ui for every
i ∈ [p]. Intuitively, this means that vertices in the partite set are interchange-
able, but the partite sets themselves are not. Gutin [39] proved that the
number of non-equivalent almost unlabelled acyclic (n1, ..., np)-tournaments
equals the multinomial coefficient

(
n

n1,...,np

)
.

Stanley [83] studied dipath enumeration in acyclic digraphs. A simple
technical lemma is followed by the main result. An n × n matrix B = [bij ] is
called special if bij = 1 for all i ≥ j.

Lemma 3.5.3 Let B = [bij ] be a special n × n matrix. Then

detB =
n−1∏
i=1

(1 − bi,i+1).

Proof: We will use induction on n, the case n = 1 being trivial. Expand
detB by the first row. By induction, the first two terms are
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n−1∏
i=2

(1 − bi,i+1) − b12

n−1∏
i=2

(1 − bi,i+1) =
n−1∏
i=1

(1 − bi,i+1).

In the remaining terms, the first two columns of the cofactor are equal, so
the terms are all zero. ��

Theorem 3.5.4 ([83]) Let H be an acyclic digraph with an acyclic ordering
v1, v2, . . . , vnof its vertices. Let A = [aij ] be an n×n (0,1)-matrix with aij = 0
if and only if vi → vj and let D = diag(x1, . . . , xn), where X = {x1, . . . , xn}
is a set of variables. Then

det(I + zDA) =
n∑

j=0

(
∑
P

xk1 . . . xkj
)zj ,

where P ranges over all dipaths vk1 . . . vkj
of H with j vertices.

Proof: The coefficient of zj in det(I +zDA) is the sum of the principal j × j
minors of DA. The rows and columns of a principal submatrix DA[W ] are
indexed by a j-element subset W of [n]. We claim that

det(DA[W ]) =

{∏
j∈W xj , if W is a set of vertices of a dipath,

0, otherwise.

from which the theorem immediate follows. Observe that

det(DA[W ]) = (
∏

j∈W

xj)detA[W ].

Therefore, we need to prove that

detA[W ] =

{
1, if W is a set of vertices of a dipath
0, otherwise

Since v1, v2, . . . , vn is an acyclic ordering, A[W ] is special. Let W be a set
of vertices of a dipath. Then all the entries of A[W ] on the diagonal just
above the main diagonal are equal to 0, and so by Lemma 3.5.3 the above
formula for detA[W ] holds. Suppose now that W is not the set of vertices
of a dipath. Since at least one entry of A[W ] on the diagonal just above the
main diagonal is equal to 1, by Lemma 3.5.3 the above formula for detA[W ]
holds as well. ��

In the dipath polynomial PH(z) =
∑

cjz
j of a digraph H, every cj

is the number of j-vertex dipaths in H. For instance, if H is the digraph of
proper relations of a poset Q (i.e., (x, y) is an arc of H if x < y in Q), then
cj is just the number of j-element chains of Q. By setting xj = 1 for every
j ∈ [n] in the formula of Theorem 3.5.4, we have the following:

Corollary 3.5.5 Let H be an acyclic digraph with an acyclic ordering v1,
v2, . . . , vnof its vertices and let A be as in Theorem 3.5.4. Then PH(z) =
det(I + zA).
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3.6 Maximum Dicuts

The Max Cut problem has been extensively studied. In this problem, as in
other related problems, the term cut is understood as a minimal cut, i.e. a
cut of the form (X,Y ) = {xy : x ∈ X, y ∈ Y }, where X and Y partition the
vertices of a directed or undirected graph G. The size of a cut is the number
of arcs or edges in it. Max Cut is the problem of finding a cut of maximum
size. The size of a maximum cut of an undirected graph G will be denoted by
f(G). Let f(m) be the minimum of f(G) over all undirected graphs G with
m edges. Edwards [31] proved that

f(m) ≥ m

2
+

√
m

8
+

1
64

− 1
8
. (3.5)

This bound is sharp as the equality holds for complete graphs of odd order.
The size of a maximum cut of a digraph D will be denoted by g(D), and the
minimum g(D) over all digraphs D with m arcs will be denoted by g(m). It
follows from (3.5) that

g(m) ≥ m

4
+

√
m

32
+

1
256

− 1
16

.

This bound is also sharp as the equality holds for tournaments in which the
out-degree and in-degree of every vertex coincide.

In this section we consider this problem for acyclic digraphs, where the
question of the lower bound seems more complicated. Let h(m) be the mini-
mum g(D) over all acyclic digraphs D with m arcs. Clearly, h(m) ≥ f(m)/2,
and so h(m) ≥ m/4. A natural question (with an application mentioned in
[4]) is whether there is a constant c > 1/4 such that h(m) ≥ cm. Alon,
Bollobás, Gyárfás, Lehel and Scott [4] provided a negative answer to this
question by proving the following:

Theorem 3.6.1 For m ≥ 1, h(m) ≤ m
4 + O(m4/5).

Proof: Fix n ≥ 1 and let r = �n1/3�. We will construct an acyclic digraph
D′ with m = m(n) = (1 + o(1))n5/3 arcs, and no dicut of size more than
m
4 + O(m4/5).

We first define a digraph D as follows. By a well-known theorem of Singer
[80], there exists a set A of r natural numbers such that all differences a − b,
with a, b ∈ A and a �= b, are distinct and maxA ≤ (1 + o(1))r2. Let V (D) =
Zn and A(D) = {(i + a, i + b) : i ∈ Zn, a, b ∈ A, a < b} (the sums are
taken modulo n). By the definition of A, there are no multiple arcs, and so
|A(D)| = n

(
r
2

)
.

Let G be the underlying graph of D. Since G is a union of n copies of
Kr (where the ith copy has vertex set {i + a : a ∈ A}), we have f(G) ≤
nf(Kr) ≤ nr2/4. Since D is Eulerian, g(D) = 1

2f(G) ≤ nr2/8.
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To obtain an acyclic digraph D′ from D delete all arcs (i, j) with i > j
(where we identify the vertices of Zn with the integers 0, . . . , n − 1). Since
maxA ≤ (1 + o(1))r2, we have deleted at most

(1 + o(1))r2
(

r

2

)
≤ (1 + o(1))

r4

2

arcs. Thus the number of arcs in D′ is

m ≥ n

(
r

2

)
− (1 + o(1))

r4

2
=

nr2

2
− nr

2
− (1 + o(1))

r4

2

and

g(D′) ≤ nr2/8

≤ m

4
+

nr

8
+ (1 + o(1))

r4

8

≤ m

4
+ (1 + o(1))

n4/3

4
.

Observe that m = (1 + o(1))n5/3/2 and thus

g(D′) ≤ m

4
+ (1 + o(1))

m4/5

26/5
.

��
Alon et al. [4] also proved that h(m) ≥ m

4 + Ω(m2/3). They posed the
following question:

Problem 3.6.2 What is the infimum of d such that, for m ≥ 1, h(m) =
m
4 + O(md)?

3.7 Acyclic Subdigraphs

We may consider two types of subdigraphs: spanning and induced. Subsec-
tion 3.7.1 studies the problem of finding an acyclic subgraph with maximum
number of arcs. In Subsection 3.7.1, we also mention an interesting sharp re-
sult on partitioning the arc set of a digraph into subsets which induce acyclic
subgraphs with bounded out-degree of each vertex. Subsection 3.7.2 mainly
addresses the problem of partitioning of vertices of a digraph into the mini-
mum number of subsets such that each subset induces an acyclic subgraph.
The main problems on the subsections are dual to the Feedback arc set
problem and Feedback vertex set problem, respectively. In Feedback
arc set, given a digraph D and an integer k, we are to decide whether
D contains k arcs whose deletion makes D acyclic. Directed Feedback
Vertex Set is the same problem, but instead of k arcs, we can delete k
vertices.
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3.7.1 Spanning Acyclic Subdigraphs

The goal of the Maximum acyclic subdigraph problem is to find an acyclic
subgraph H with maximum number of arcs in a given digraph D. Recall
that Maximum acyclic subdigraph is dual to the Feedback arc set
problem and hence NP-hard even for tournaments, see Theorem 2.9.3. In this
subsection, we will consider results for some parameterizations of Maximum
acyclic subdigraph and Feedback arc set.

Let D = (V,A) be a digraph with m arcs and vertices v1, . . . , vn. Consider
subdigraphs (V,A1) and (V,A2) of D such that A1 = {vivj ∈ A : i < j} and
A2 = {vivj ∈ A : i > j}. Observe that both subgraphs are acyclic, and as
|A1|+ |A2| = m, at least one of them has at least m/2 arcs. Replacing every
edge xy of an undirected graph by two arcs, xy and yx, we obtain a digraph
D whose maximum acyclic subgraph has just half of the arcs of D. Thus the
lower bound m/2 is tight. This bound is no longer tight if D has no directed
2-cycle.

Since Maximum acyclic subdigraph is NP-hard, it is natural to study
parameterized versions of the problem. Let us consider such a parameteriza-
tion for a weighted version of Maximum acyclic subdigraph: every arc
(i, j) ∈ A is assigned an integral positive integer wij and we are to decide
whether D contains an acyclic subgraph of total weight at least W/2 + k,
where W is the total weight of D and k is the parameter.2 Mahajan, Raman,
and Sikdar [62] asked whether this parameterized problem is FPT for the
special case when all arcs are of weight 1. Gutin, Kim, Szeider and Yeo [44]
solved the parameterized weighted problem by obtaining a quadratic kernel.
Let us consider their solution.

A random variable is discrete if its distribution function has a finite or
countable number of positive increases. A random variable X is symmetric
if −X has the same distribution as X. If X is discrete, then X is symmetric
if and only if Prob(X = a) = Prob(X = −a) for each real a. Let X be a
symmetric variable for which the first moment E(X) exists. Then E(X) =
E(−X) = −E(X) and, thus, E(X) = 0. We will use below the following
easy-to-prove result [44].

Lemma 3.7.1 If X is a symmetric random variable and E(X2) is finite, then

Prob( X ≥
√
E(X2) ) > 0.

Consider the following simple reduction rule. For every directed 2-cycle
iji, (i) delete the cycle if wij = wji, and (ii) delete the arc ji and replace
wij by wij − wji if wij > wji. Clearly, after applying the reduction rule, we
obtain an oriented graph (i.e., a digraph with no directed 2-cycle). Clearly,

2 Note that in this parameterization k is not necessarily an integer, but an integer
divided by 2, such that W/2 + k is an integer. A similar remark also holds for
the other parameterization of this section.
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the original input D is a positive instance of the parameterized weighted
problem if and only if so is the oriented graph obtained by the reduction
rule.

Theorem 3.7.2 ([44]) The weighted version of Maximum acyclic subdi-
graph has a kernel with O(k2) arcs.

Proof: Consider a random ordering: α : V → [n] and a random variable
X(α) = 1

2

∑
ij∈A xij(α), where xij(α) = wij if α(i) < α(j) and xij(α) =

−wij , otherwise. It is easy to see that X(α) =
∑

{wij : ij ∈ A,α(i) <
α(j)} − W/2. Thus, the answer to the parameterized weighted problem is
Yes if and only if there is an ordering α : V → [n] such that X(α) ≥ k.

By the reduction rule, we may assume that the input of the parameterized
weighted problem is an oriented graph D = (V,A). Let α : V → [n] be a
random ordering. Since X(−α) = −X(α), where −α(i) = n + 1 − α(i), X is
a symmetric random variable and, thus, we can apply Lemma 3.7.1. It was
proved in [44] that E(X2) ≥ m/12. By this inequality and Lemma 3.7.1, we
have Prob( X ≥

√
m/12 ) > 0. Thus, if

√
m/12 ≥ k, there is an ordering

β : V → [n] such that X(β) ≥ k and so the answer to the parameterized
weighted problem is Yes. Otherwise,

√
m/12 ≤ k implying m ≤ 12k2 and

we are done. ��
Kim and Williams [51] showed that in the case of all weights equal to 1

the parameterized weighted problem admits a kernel with a linear number of
vertices.

Let us revert to the unweighted Maximum acyclic subdigraph, but
consider a lower bound stronger than m/2 in many cases. Poljak and Turzík
[70] proved that every connected oriented graph D contains an acyclic sub-
graph with at least m

2 + n−1
4 arcs. To see that this bound is tight, consider

a directed path x1x2 . . . x2t+1 and add to it arcs x3x1, x5x3, . . . , x2t+1x2t−1.
This oriented graph Ht consists of t directed 3-cycles and has 2t+ 1 vertices
and 3t arcs. Thus, m

2 + n−1
4 = 2t and 2t is the maximum size of an acyclic

subgraph of Ht: we have to delete an arc from every directed 3-cycle as the
cycles are arc-disjoint.

The following natural question was asked by Raman and Saurabh [72]:
what is the parameterized complexity of deciding whether a connected ori-
ented graph D has an acyclic subgraph with at least m

2 + n−1
4 +k arcs, where

k is the parameter. (Note that for connected oriented graphs, the parameter k
in this parameterization is smaller than that in the m/2+k one, which means
that the former parameterization is of greater interest.) Crowston, Gutin and
Jones [26] answered this question by proving the following result.

Theorem 3.7.3 The parameterization of Raman and Saurabh admits an al-
gorithm of runtime O∗((12k)!) and a kernel with O(k2) vertices and O(k2)
arcs.
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Mnich, Philip, Saurabh, and Suchý [65] proved independently that the
parameterization of Raman and Saurabh is FPT, but they did not obtain a
polynomial size kernel.

The following open problem is of interest.

Problem 3.7.4 Is there a kernel for the parameterization of Raman and
Saurabh with a linear number of vertices?

The lower bound m
2 + n−1

4 can be easily generalized to oriented graphs
with c connected components: m

2 + n−c
4 . It is not hard to generalize the

results of [26] and [65] and prove that we can decide in FPT time whether
an oriented graph with c connected components contains an acyclic subgraph
with at least m

2 + n−c
4 + k arcs: For each connected component H find the

maximum integer pH := mH

2 + nH−1
4 + kH such that H contains an acyclic

subgraph with at least pH arcs, where mH and nH is the number of arcs
and vertices in H and kH ≤ k. This will require O(log k) applications of an
FPT algorithm. It remains to compare

∑
H pH , where the sum runs over all

connected components of D, and m
2 + n−c

4 + k.
We can apply the Poljak–Turzík bound (and the corresponding parame-

terization) to general digraphs after the reduction rule is carried out (note
that the reduction rule may increase the number of connected components).

Consider now the standard parameterization of Feedback arc set:
given a digraph D and an integer k, we are to decide whether D contains k
arcs whose deletion makes D acyclic, where k is the parameter. It had been
a challenging open problem to decide whether the parameterized Feedback
arc set problem is FPT untill Chen, Liu, Lu, O’Sullivan and Razgon [17, 18]
proved the following:

Theorem 3.7.5 The parameterized Feedback arc set and Feedback
vertex set problems are FPT.

It is not hard to show that Feedback arc set is FPT if and only if so is
Feedback vertex set. Thus, it was sufficient for Chen et al. [18] to prove
the theorem only for Feedback vertex set.

Let us finish this subsection with the following interesting result of Wood
[87], which is the best possible.

Theorem 3.7.6 For every integer s ≥ 2, arcs of every digraph D can be
partitioned into s subsets such that each subset Ai induces an acyclic digraph
D[Ai] and the out-degree of every vertex v in D[Ai] is at most �d+(v)/(s−1)�.

3.7.2 Induced Acyclic Subgraphs

A set X of vertices of a digraph D is called acyclic if D[X] is acyclic. The
dichromatic number of a digraph D is the minimum number χA(D) such



146 G. Gutin

that V (D) can be partitioned into χA(D) acyclic sets. A digraph D is weakly
k-degenerate if every subgraph H of D contains a vertex v with either
d+H(v) ≤ k or d−

H(v) ≤ k.
Neumann-Lara [67] conjectured the following:

Conjecture 3.7.7 Every oriented planar graph is of dichromatic number 1
or 2.

This conjecture has not been resolved, but the following weaker result was
proved by Bokal, Fijavz, Juvan, Kayll, and Mohar [15].

Theorem 3.7.8 Every oriented planar graph is of dichromatic number at
most 3.

This theorem is a corollary of the fact that every planar undirected graph
has a vertex of degree at most 5 and the following result of [15].

Theorem 3.7.9 If a digraph D is weakly k-degenerate, then χA(D) ≤ k+1.

Proof: Let v1, . . . , vn be the vertices of D ordered so that for every i ∈ [n]
the vertex vi has either in-degree or out-degree at most k in the induced
subdigraph Di = D[{v1, . . . , vi}]. We can obtain such an ordering by first
choosing vn with d+(vn) ≤ k or d−(vn) ≤ k, then choosing vn−1 in D − vn,
etc. Now define A0, . . . , Ak as follows. Start with empty sets. For every i ∈ [n],
there is a set Aj , with j = j(i), such that Aj contains either no out-neighbours
or no in-neighbours of vi in Di. Then put vi in Aj .

Suppose that one of the resulting sets Aj contains a dicycle C. If vi is the
vertex on C with largest index i, then vi has an in- and an out-neighbour
among the other vertices on C, which is impossible by the construction of the
sets A0, . . . , Ak. Therefore, each Ai is acyclic. ��

Harutyunyan and Mohar [48], confirmed Conjecture 3.7.7 for all oriented
planar graphs of girth at least 5.

Theorem 3.7.8 implies that every oriented planar graph of order n has
an acyclic set of size at least n/3. If confirmed Conjecture 3.7.7 would
imply that every oriented planar graph has an acyclic set of size at least n/2.
Harutyunyan and Mohar [48] conjectured an even stronger bound which, if
true, would be tight.

Conjecture 3.7.10 Every oriented planar graph of order n has an acyclic
set of size at least 3n/5.

Golowich and Rolnick [37] proved this conjecture for all oriented planar
graphs of girth at least 8.
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3.8 The Multicut Problem

We now consider the following problem, called Multicut.3

Multicut Parameter: p
Input: A digraph D, a set T = {(si, ti) : i ∈ [r]} of pairs of terminal
vertices, and an integer p
Question: Does D contain a set Z of at most p non-terminal vertices of
D that separate the terminal pairs (i.e. in D − Z there is no directed
(si, ti)-path for any i ∈ [r])?

Clearly, for r = 1, Multicut is a well-understood and polynomial-
solvable problem. The situation is already different for r = 2, see e.g. Corol-
lary 3.8.4 below. Pilipczuk and Wahlström [69] proved that Multicut pa-
rameterized by p is already W[1]-hard for r = 4. The problem is FPT for
r = 2 as proved by Chitnis, Hajiaghayi and Marx [20], but its paramerized
complexity for r = 3 is currently unknown.

For acyclic digraphs, Kratsch, Pilipczuk, Pilipczuk, and Wahlström [52]
proved the following:

Theorem 3.8.1 Multicut on acyclic digraphs can be solved in time
O∗(2O(r2p+r2O(p))).

Thus, Multicut on acyclic digraphs is FPT when parameterized by two
parameters, r and p. Unless FPT=W[1], which is highly unlikely, by the next
theorem the problem is not FPT when parameterized by p only.

Theorem 3.8.2 ([52]) Multicut on acyclic digraphs parameterized by p
only is W[1]-hard.

The Skew multicut problem is a special case of Multicut, where we
are given d sources si and d sinks ti such that the set of terminal pairs is
T = {(si, tj) : 1 ≤ i ≤ j ≤ d}.

It is even less likely that Multicut on acyclic digraphs is FPT when
parameterized by r only, due to Corollary 3.8.4, which immediately follows
from the next theorem. Note that Skew Multicut is of interest as it was
used in the proof of Theorem 3.7.5.

Theorem 3.8.3 ([52]) Skew Multicut on acyclic digraphs is NP-complete
even if d = 2.

Corollary 3.8.4 ([52]) Multicut on acyclic digraphs is NP-complete even
if r = 2.

3 There is an arc version of Multicut, where arcs are to separate the terminal
pairs of vertices. However, the vertex and arc versions have the same classical
and parameterized complexity for digraphs [20].
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The Multicut problem has several applications, see, e.g., [52]. Let us
consider one of them for classes of digraphs close to acyclic. Let Feedback
arc set be the following problem: given a digraph D and natural number p,
decide whether D has at most p arcs whose deletion makes D acyclic. Let Dr

be the set of digraphs which have at most r vertices whose deletion makes the
digraphs acyclic. Bang-Jensen and Yeo [13] proved the following dichotomy.

Theorem 3.8.5 Feedback arc set is polynomial-time solvable on D1 and
NP-complete already on D2.

3.9 Convex Sets and Embedded Computing

A non-empty set X of vertices in an acyclic digraph D is convex if for any
x, y ∈ X, all vertices of every (x, y)-dipath are in X. In the graph depicted
in Figure 3.2, sets A and B are convex, but C is not. Let conv(D) denote the
number of convex sets in D. Let X = V (D) \ X. A vertex y ∈ X is called
an input vertex of X if y dominates a vertex in X. A vertex x ∈ X is an
output vertex of X if x dominates a vertex in X. In Figure 3.2, set A has
three input vertices and one output vertex. For B the numbers are four and
two.

VAR:a VAR:c INT:4 VAR:b

ROOTINT:2

MUL

MUL

MUL

SUB

MUL

ADD

NEG

DIV

A

C

B

Figure 3.2 Data dependency graph for −b+
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b2−4ac

2a
.

An embedded system is a computer system with a dedicated function
within a larger mechanical or electrical system. Embedded systems control
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many devices in common use today. One of the major design choices for any
new computer processor is the selection of the machine instruction set. In
an embedded system, the processor will only execute a single fixed program
during its lifetime, and significant efficiency gains can be made by choosing
the machine instruction set, and associated hardware, to support the program
that will be executed.

In particular there exist extensible general purpose processors that can
be customised for specific applications by the addition of custom-designed
machine instructions and supporting hardware. The approach is to choose a
set of application specific machine instructions by examination of the target
program; candidate instructions are likely to involve a combination of sev-
eral basic computations. For example, a program solving a system of linear
equations may find it useful to have a single instruction to perform matrix
inversion on a set of values held in registers.

Candidate instruction identification is carried out on data dependency
graphs (DDGs), which are obtained from the application program by first
splitting it into basic blocks, regions of sequential computation with no
control transfer into their bodies, and then creating vertices for each instruc-
tion. The resulting DDGs are acyclic and any convex subset of vertices is a
candidate for a custom instruction which could be implemented in hardware.
Figure 3.2 depicts a DDG.

Thus, algorithms generating convex sets in acyclic digraphs are of inter-
est and such an algorithm, presented below, was designed by Balister, Gerke,
Gutin, Johnstone, Reddington, Scott, Soleimanfallah and Yeo [7]. However,
in practice a given hardware application will have specific, and usually small,
input and output constraints. This significantly reduces the size of the solu-
tion space and thus presents an opportunity for a more efficient enumeration
algorithm. Furthermore, certain instructions, such as writes to main memory,
cannot be combined into a custom instruction, and thus certain vertices in
the acyclic digraph can be designated as forbidden from the point of view
of inclusion in a candidate set. Therefore, we are interested in finding all con-
vex sets which have specified upper bounds, nin and nout, on the numbers
of input and output vertices and which do not contain any vertices from a
specified forbidden set F . We call such convex sets valid convex sets.

Bonzini and Pozzi [16] and Chen, Maskell and Sun [19] proved that with
the two constraints above there are at most O(nnin+nout) valid convex sets
in an n-vertex acyclic digraph D. Note that in practice, nin and nout are
small constants. Both papers above designed algorithms for generating all
valid convex sets. However, while the algorithm in [16] has running time
O(nnin+nout+1), it does not produce all valid convex sets, see [40, 73]. The
algorithm of [19] is correct but it is given without an upper bound of its
complexity; its performance was tested in computational experiments. Pozzi,
Atasu and Ienne [71] obtained an algorithm of running time O(nnin+nout+1).
Gutin, Johnstone, Reddington, Scott and Yeo [40] designed another correct
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algorithm, its running time is O(m ·n2
in(vconv(D)+nnout)), where vconv(D)

is the number of valid convex sets in D. Reddington, Gutin, Johnstone, Scott
and Yeo [74] designed a modification of the algorithm in [40], which while
having a worse upper bound on running time, performs better than all the
above algorithms in computational experiments.

As the valid convex set algorithms above are quite complicated, we will
not describe them in this chapter. In the following subsection, we will consider
bounds on the number of convex sets which induce connected subgraphs. In
the subsection afterwards we will look at the algorithm introduced in [7] for
generating all convex sets.

3.9.1 Bounds for the Number of Connected Convex Sets

For a set X of a digraph D, the subgraph D[X] is called connected convex
(or just a cc-subgraph) if it is connected and X is convex. The number
of cc-subgraphs in an acyclic digraph D is denoted by cc(D). The following
results obtained by Gutin and Yeo [46] give tight bounds for cc(D) of an
n-vertex acyclic digraph D.

Theorem 3.9.1 For every connected acyclic digraph D of order n, cc(D) ≥
n(n + 1)/2. If an acyclic digraph D of order n has a Hamilton dipath, then
cc(D) = n(n + 1)/2.

Consider a complete bipartite graph Ka,b with partite sets A,B (|A| =
a, |B| = b) and orient all its edges from A to B. The resulting bipartite
tournament will be denoted by BTa,b.

Theorem 3.9.2 Let f(n) = 2n+n+1−dn, where dn = 2·2n/2 for every even
n and dn = 3 · 2(n−1)/2 for every odd n. For every connected acyclic digraph
D of order n, cc(D) ≤ f(n). We also have cc(BTa,n−a) = f(n) provided
|n − 2a| ≤ 1. ��

A proof of Theorem 3.9.1 can be found in [46] and [9]. In the remainder
of this subsection, we give a proof of Theorem 3.9.2.

Lemma 3.9.3 Let n = a+ b. We have cc(BTa,b) = 2a+b − 2a − 2b + a+ b+1
and

max{cc(BTa,b) : a + b = n} = 2n + n + 1 − dn,

where dn = 2 · 2n/2 for every even n and dn = 3 · 2(n−1)/2 for every odd n.

Proof: Let g(a, b) = 2a+b − 2a − 2b + a + b + 1. Since all non-empty sets of
vertices of BTa,b, excluding those that are subsets of A or B of cardinality
at least 2, induce cc-subgraphs, we have cc(BTa,b) = g(a, b). It remains to
observe that max{g(a, b) : a + b = n} is obtained when a and b differ by at
most 1. ��

In the following theorem, we will show that the bipartite tournaments
BTa,n−a with |n − 2a| ≤ 1 have the maximum possible number of cc-
subgraphs.
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Theorem 3.9.4 Let H be a connected acyclic digraph of order n and let
f(n) = 2n+n+1−dn, where dn = 2·2n/2 for every even n and dn = 3·2(n−1)/2

for every odd n. Then cc(H) ≤ f(n).

Proof: Clearly, we may assume that n ≥ 3. Suppose that H has a dipath of
length 2. We will prove that cc(H) ≤ f(n). If xyz is a dipath of length 2 in
H, then we have the following:

(C1) There are at most 2n−2 cc-subgraphs containing x but not z.
(C2) There are at most 2n−2 cc-subgraphs containing z but not x.
(C3) There are at most 2n−2 − 1 cc-subgraphs containing neither x nor z.
(C4) There are at most 2n−3 cc-subgraphs containing x and z.

(C4) is true as if x and z belong to a cc-subgraph, then y has to belong
to it as well. Therefore there are at most 7 · 2n−3 − 1 cc-subgraphs. Observe
that 7 · 2n−3 − 1 ≤ f(n) for every n ≥ 3 apart from n = 5. Indeed, it is not
difficult to prove that f(n) − 7 · 2n−3 + 1 > 2

n
2 +1(2

n
2 −4 − 1) for every even

n and that f(n) − 7 · 2n−3 + 1 > 2
n−1
2 (2

n−5
2 − 3) for every odd n. These two

inequalities imply 7 · 2n−3 − 1 ≤ f(n) for each n ≥ 8. The cases n = 3, 4, 6, 7
can be easily checked separately. Thus, it remains to consider the case n = 5.

Suppose that H has a dipath P with n−1 vertices and let u be the vertex
not on P . Then by Theorem 3.9.1, cc(H −u) = n(n−1)/2. There are at most
2n−1 induced subgraphs of H containing u. Thus, cc(H) ≤ 2n−1+n(n−1)/2.
Observe that 2n−1+n(n−1)/2 ≤ f(n) for every n ≥ 5. Thus, we may assume
that if n ≥ 5, then H has no directed path with n − 1 vertices.

Let n = 5 and let u ∈ V (H) \ {x, y, z}. By (C4), at most 2n−3 subgraphs
containing x and z are not cc-subgraphs. Observe that (2n−1−2n−3)−f(n) =
1 for n = 5. Thus, to show that cc(H) ≤ f(5), it suffices to find a non-empty
non-cc-subgraph of H that does not contain at least one of the vertices x and
z. Since H has no dipath of length 3, u is not adjacent with at least one of
the vertices x, y, z. The subgraph induced by any such pair of non-adjacent
vertices is not a cc-subgraph.

So we may now assume that there is no dipath of length 2. This means
that the vertices can be partitioned into sets A and B such that A contains
all vertices with in-degree zero and B contains all the vertices with out-
degree zero. Observe that now every connected induced subgraph of H is a
cc-subgraph. This implies that cc(H) is maximum when there is an arc from
a to b for each a ∈ A, b ∈ B. Now our result follows from Lemma 3.9.3. ��

3.9.2 Algorithm for Generating Convex Sets

Let D be a connected acyclic digraph of order n. The family of all convex
sets of D will be denoted by CONV(D); thus conv(D) = |CONV(D)|.

To obtain all convex sets of D (and ∅, which is not convex by definition),
we call the following recursive procedure with the original digraph D and with
F = ∅. This call yields an algorithm whose properties are studied below.
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In general, the procedure CS takes as input an acyclic digraph D = (V,A)
and a set F ⊆ V and outputs all convex sets of D which contain F . The
procedure CS outputs V and then considers all sources and sinks of the
graph that are not in F . For each such source or sink s, we call CS(D − s, F )
and then add s to F . Thus, for each sink or source s ∈ V \ F we consider all
sets that contain s and all sets that do not contain s.

Algorithm 2 CS(D = (V,A), F )
Input: An acyclic digraph D = (V, A) and a set F ⊆ V
Output: all convex sets of D which contain F .
1: output V ; set X := V \ F
2: for all s ∈ X with |N+(s)| = 0 or |N−(s)| = 0 do{
3: for all vertices v find N+

D−s(v) and N−
D−s(v)

4: call CS(D − s, F ); set F := F ∪ {s}
5: for all vertices v find N+

D (v) and N−
D (v) }

Correctness of the procedure. Proposition 3.9.6 and Theorem 3.9.7 imply
that the procedure CS is correct. We first show that all sets generated in line
1 are, in fact, convex sets. To this end, we use the following lemma whose
proof is left as an exercise.

Lemma 3.9.5 Let D be an acyclic graph, let X be a convex set of D and let
s ∈ X be a source or sink of D[X]. Then X \ {s} is a convex set of D. 

Now we can prove the following proposition.

Proposition 3.9.6 Let D = (V,A) be an acyclic digraph and let F ⊆ V .
Then every set output by CS(D,F ) is convex.

Proof: We prove the result by induction on the number of vertices of the
output set. The entire vertex set V is convex and is output by the procedure.
Now assume all sets of size n − i ≥ 2 that are output by the procedure are
convex. We will show that all sets of size n − i − 1 that are output are also
convex. When a set C is output the procedure CS(D[C], F ′) was called for
some set F ′ ⊆ V . The only way CS(D[C], F ′) can be invoked is that there
exist a set C ′ ⊂ V and a source or sink c of D[C ′] with C = C ′\{c}. Moreover,
C ′ will be output by the procedure and, thus, by our assumption is convex.
The result now follows from Lemma 3.9.5. ��

Theorem 3.9.7 Let D = (V,A) be an acyclic digraph and let F ⊆ V . Then
every convex set of D containing F is output exactly once by CS(D,F ).

Proof: Let C be a convex set of D containing F . We first claim that there
exist vertices c1, c2, . . . , ct ∈ V with V = {c1, c2, . . . , ct}∪C and ci is a source
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or sink of D〈C ∪ {ci, ci+1, . . . , ct}〉 for all i ∈ [t]. To prove the claim we will
show that for every convex set H with C ⊂ H ⊆ V , there exists a source
or sink s ∈ H \ C of the digraph D[H]. This will prove our claim as by
Lemma 3.9.5 H \ {s} is a convex set of D and we can repeatedly apply the
claim.

If there exists no arc from a vertex of C to a vertex of D[H \ C], then
any source of H \ C is a source of D[H]. Note that D[H \ C] is an acyclic
digraph and, thus, has at least one source (and sink). Thus we may assume
that there is an arc from a vertex u of C to a vertex v of H \ C. Consider
a longest path v = v1v2 . . . vr in D[H \ C] leaving v. Observe that vr is a
sink of D[H \ C] and, moreover, there is no arc from vr to any vertex of C
since otherwise there would be a directed path from u ∈ C to a vertex in C
containing vertices in H \ C, which is impossible as C is convex. Hence vr is
a sink of D[H] and the claim is shown.

Next note that a sink or source remains a sink or source when vertices are
deleted. Thus when CS(D,F ) is executed and a source or sink s is considered,
then we distinguish the cases when s = ci for some i ∈ [t] or when this is not
the case. If s = ci and we currently consider the digraph D′ and the fixed
set F ′, then we follow the execution path calling CS(D′ − s, F ′). Otherwise
we follow the execution path that adds s to the fixed set. When the last ci is
deleted, we call CS(D[C], F ′′) for some F ′′ and the set C is output. It remains
to show that there is a unique execution path yielding C. To see this, note
that when we consider a source or sink s, then either it is deleted or moved
to the fixed set F . Thus every vertex is considered at most once and then
deleted or fixed. Therefore each time we consider a source or sink there is a
unique decision that finally yields C. ��

Running time of CS. We will use the following data structure for a set Y =
{y1, y2, . . . , y|Y |} ⊆ {1, 2, . . . , n} that supports unit time element insertion
and deletion, unit time checking whether Y is empty, and allows us to iterate
over the elements of Y in O(|Y |) time. We maintain arrays of integers succ
and pred indexed from 0 to |Y | where succk = k and predk = k if and only
if k �∈ Y . If Y = ∅, then pred0= succ0=0. If Y �= ∅, then predi (succi)
hold yi−1 (yi+1), where i − 1 and i + 1 are taken modulo |Y |, and we can
iterate over the elements of V by following the chain of links from succ0.
Notice that succ0 holds y1 and pred0 holds y|Y |.

By analogy with conventional doubly-linked list insertion and deletion,
we have

insert(k)
succk ← 0
predk ←pred0

succpred0 ← k
pred0 ← k

delete(k)
succpredk

← succk

predsucck
← predk

predk ← k
succk ← k
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We can use this data structure for sets V , X, N+
D (v), N−

D (v), v ∈ V , and F
for the input acyclic digraph D = (V,A) of order n. We can initialize the data
structures for all these sets in time O(n2) using, say, the adjacency matrix
of D. Observe that we output the vertex set of D as one convex set. Thus,
it suffices to show that the running time of CS(D,F ) without the recursive
calls is O(|V |). This will yield the running time O(

∑
C∈CONV(D) |C|) of CS

by Theorem 3.9.7.
Using our data structure, we can determine all sources and sinks in O(|V |)

time. For the recursive calls of CS we delete one vertex and have to update the
number of in-, respectively, out-neighbours of all neighbours of the deleted
vertex s by iterating over V. The vertex s has at most |V |−1 neighbours and
we can charge the cost of the updating information to the call of CS(D−s, F ).
Moreover we store the neighbours of s so that we can reintroduce them after
the call of CS(D − s, F ). Moving the sinks and sources to F needs constant
time for each source or sink and thus we obtain O(|V |) time in total.

In summary we initially need O(n2) time, and then each call of CS(D,F )
is charged with O(|V |) before it is called and then additionally with O(|V |)
time during its execution. Since we output a convex set of size O(|V |), the
total running time is O(n2)+O(

∑
C∈CONV(D) |C|). Since

∑
C∈CONV(D) |C| =

Ω(n2) by Theorem 3.9.1, the running time of CS is O(
∑

C∈CONV(D) |C|).

3.10 Out-forest-based Cryptographic Enforcement
Schemes

In this section, we discuss results due to Crampton, Farley, Gutin, Jones
and Poettering [23–25] in the area of cryptographic access control, which
gives rise to some interesting problems connected with acyclic digraphs. We
describe these results from the perspective of digraphs using digraph notation
and terminology (rather than the notation and terminology associated with
partially ordered sets that was used in the original papers). In particular, we
use the following notation for a vertex v of an n-vertex digraph D: N+

D [v] =
N+

D (v) ∪ {v}; N−p
D [v] is the set of vertices that can reach v by dipaths of

length at most p; in particular, N−n+1
D [v] is the set of vertices that can reach

v, and N−
D [v] = N−1

D [v].
Cryptographic access control provides a method of regulating access to

sensitive resources by users, without the use of a trusted software component.
This form of access control is particularly suitable in environments where
the data is stored by a third party who cannot be trusted to enforce the
desired access control policy. We focus on the use of symmetric cryptographic
primitives to enforce information flow policies. In this setting, each user and
resource is associated with a security label taken from a partially ordered
set of security labels (X,�). A user u is authorized to access resource r if
the label of u, denoted λ(u), is greater than or equal to the label of r, λ(r).
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Resource r is encrypted with the key associated with λ(r), which we denote
by κ(λ(r)), before being transmitted to the storage provider. Hence, in order
to decrypt the resources for which a user u is authorised, u must be able to
derive κ(y) for all y � λ(u). Henceforth, we write Ux to denote the set of
users assigned to label x ∈ X.

In many schemes for this type of cryptographic access control, each user
u ∈ Ux is supplied with the key κ(x) and this key, together with public
information, is used to derive κ(y) for y < x. In many schemes, key derivation
is performed by successively deriving keys associated with labels on a directed
path from x to y in the Hasse diagram of (X,�). Crampton, Daud and
Martin [22] suggested an alternative approach in which each user is supplied
with several keys, the trade-off being that no public information is required for
key derivation. Thus, there are three important parameters that characterise
schemes for cryptographic access control: the number of keys required by
users; the amount of public information required for key derivation; and the
number of key derivation operations that are required.

Note that (X,�) can be represented as a transitive acyclic digraph
D = (X,A), where xy ∈ A if and only if x � y, and Crampton et al. [22]
partition X into a disjoint collection P of dipaths. If a user u is assigned
a label (vertex) x in Pi ∈ P then u can derive every key reachable from x
along the path Pi using only a one-way function with the keys for succes-
sive vertices as input. The important point here is that in the path factor
P of D no vertex has more than one in-neighbour, which enables the use of
a one-way function for key derivation. However, Crampton, Daud and Mar-
tin [22] did not study the problem of finding an optimal path factor, which,
e.g. is a factor that minimises the total number of keys required by users.
This optimisation problem was solved by Crampton, Farley, Gutin and Jones
[23], who obtained a polynomial-time algorithm for the problem. Moreover,
Crampton et al. extended eligible spanning subgraphs F of D under consid-
eration while preserving the above property that every vertex of F has at
most one in-neighbour [24, 25]. This means that F can be any spanning
out-forest, i.e. a collection of vertex-disjoint out-trees covering X. Cramp-
ton et al. [24, 25] designed a polynomial-time algorithm to find a spanning
out-forest with minimum total number of keys.

The rest of this section is organised as follows. In Subsection 3.10.1 we
consider the optimal key allocation for a given spanning out-forest. In Sub-
sections 3.10.2 and 3.10.3, we describe algorithms for finding a spanning out-
forest with the minimum total number of keys and a dipath factor with the
minimum total number of keys, respectively.

3.10.1 Optimal Key Allocation

After an optimal spanning out-forest is found, one also has to allocate keys
to users in an optimal way. Crampton, Farley, Gutin, Jones and Poettering
[24, 25] showed that this can be done in polynomial time as well. Let us start
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from this phase, i.e. let us assume that we are given a spanning out-forest F
(not necessarily optimal) and we wish to find an optimal key allocation for
F , i.e. an assignment with the minimum total number of keys (for F ).

A key allocation can be viewed as a function ψF : X → 2X such
that ψF (x) is the set of labels (vertices) which are assigned certain keys
such that every user in Ux can access all authorised resources as described
above. Informally, ψF represents the set of starting points for key derivation;
alternatively, one might view the pair (x, y), for each y ∈ ψF (x) \ {x}, as a
“shortcut” arc to “compensate” for arcs deleted from D to obtain F. A key
allocation ψ has to satisfy two properties: (a) if y ∈ N+

D [x] then there exists
a z ∈ ψF (x) such that y ∈ N+

F [z], and (b) if y �∈ N+
D [x] then there is no

z ∈ ψF (x) such that y ∈ N+
F [z].

In the rest of this section, let D = (X,A) be a transitive acyclic digraph,
F a spanning out-forest of D, and n = |X|. For a vertex z of D, note that if
N−

F (z) �= ∅ then N−
F (z) is a singleton consisting of the vertex of F dominating

z. For simplicity, N−
F (z) will often denote the vertex itself.

Crampton et al. [25] showed that an optimal function ψF , denoted φF ,
can be computed as follows. Let x, y ∈ X be such that y ∈ N+

D [x]. This means
that for some p ∈ {0, 1, . . . , n}, N+

D [x] ∩ N−p
F [y] �= ∅ and for every such p,

N+
D [x] ∩ N−p

F [y] is a vertex on a dipath of F terminating at y. Now let the
vertex for the maximum such p be denoted by α(xy). Then

φF (x) = {α(xy) : y ∈ N+[x]}.

Figure 3.3 depicts the transitive reduction H of a transitive acyclic digraph
D (recall that such a reduction is unique by Theorem 3.2.2) and a spanning
out-forest F of D (induced by the thick arcs). Table 3.1 contains the values
of φF (x) for all vertices of D.

a

b

c

d

e g

f h

i

Figure 3.3 Spanning out-forest.

Since for a user u ∈ Ux, |φF (x)| is the minimum number of keys that
needs to be allocated, the minimum total number of keys to be allocated for
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Table 3.1 Values of φF (x)

x a b c d e f g h i

φF (x) a b, e c, f, i d e f, i g, h h i

F is
K(F ) =

∑
x∈X

|φF (x)||Ux|. (3.6)

Below we will use the following characterisation of φF .

Lemma 3.10.1 For every x ∈ X and every z ∈ X, we have z ∈ φF (x) if
and only if exactly one of the following conditions hold:

(i) z = x;
(ii) xz ∈ A, N−

F (z) �= ∅, and (x,N−
F (z)) �∈ A;

(iii) xz ∈ A and d−
F (z) = 0.

Proof: Suppose xz ∈ A and (x,N−
F (z)) �∈ A. Since (x,N−

F (z)) �∈ A but
(N−

F (z), z) ∈ A(F ), we have z = α(xz). Similarly, if d−
F (z) = 0 or z = x, then

z = α(xz). Thus, z ∈ φF (x).
Conversely, if z ∈ φF (x), then x = z or xz ∈ A, by definition, and α(xz) =

z. Thus, (x,N−
F (z)) �∈ A if d−

F (z) > 0. Otherwise, N−
F (z) ∈ N+

D [x] ∩ N−n
F [z]

and z �= α(xz). ��

Proposition 3.10.2 We can compute φF in time O(n2).

Proof: By Lemma 3.10.1, for all x ∈ X, besides x itself, we add all those
elements z ∈ X, xz ∈ A, to φF (x) that are of zero in-degree in F or, if not,
satisfy (x,N−

F (z)) �∈ A. In both cases, we must determine whether xz ∈ A
for some z ∈ X.

After O(n2) time preprocessing, we may assume that we have data struc-
tures allowing us to check whether xz ∈ A in O(1) time, and test whether z is
of zero in-degree in F (and compute N−

F (z) otherwise) in O(1) time. Hence,
we can compute φF in O(n2) time. ��

3.10.2 Optimal Spanning Out-forests

Now we consider how to find an optimal spanning out-forest, i.e. a spanning
out-forest with the minimum total number of keys. We will minimise K(F )
given in (3.6) over all spanning out-forests F of D. Let us define γD(yz) =
{x ∈ X : x ∈ N−

D [z], x �∈ N−
D [y]} for an arc yz of D = (X,A). We will need

the following:

Lemma 3.10.3 For every dipath xyz of D, γD(yz) ⊂ γD(xz).
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Proof: Let t ∈ γD(yz). Then tz ∈ A and ty �∈ A. Now if tx ∈ A, we would
have ty ∈ A by transitivity of D. Thus, tx �∈ A and hence t ∈ γD(xz).
Moreover, y ∈ γD(xz), since yz ∈ A and yx �∈ A, and y �∈ γD(yz), so the
inclusion is strict. ��

If y = N−
F (z) then we will write γD(yz) as γF (z). Now we will define a

weight function ΩF : X → N, where

ΩF (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
x∈N−

D [z]

|Ux| if d−
F (z) = 0,

∑
x∈γF (z)

|Ux| otherwise.

The following result can be derived from formula (3.6) using Lemma
3.10.1; its proof can be found in [25].

Lemma 3.10.4 We have

K(F ) =
∑
z∈X

ΩF (z). (3.7)

Define a weight function ωD : A → N as follows: for yz ∈ A, ωD(yz) =∑
x∈γD(yz) |Ux|. We will prove the following:

Theorem 3.10.5 Let H = (X,A′) be the transitive reduction of D. We can
compute an optimal spanning out-forest F̂ of D in time4 O(|A′| + n2).

Proof: Let R(F̂ ) be the set of roots of out-trees forming an optimal spanning
out-forest F̂ . Observe that if d−

D(z) > 0, then z �∈ R(F̂ ). Indeed, suppose
d−

F̂
(z) = 0 and let y ∈ N−

D (z). Then ΩF̂ (z) > ΩF ′(z), where F ′ is obtained
from F̂ by adding arc yz, since γF ′(z) ⊂ N−[z]; the inclusion is strict since
y is in the second set but not the first. Thus, R(F̂ ) = {x ∈ X : d−

D(x) = 0}.
Now to obtain an optimal spanning out-forest F̂ it remains to find the

in-neighbour in F̂ of every vertex z �∈ R(F̂ ). Note that ΩF̂ (z) = ωD(N−
F̂
(z)z).

By Lemma 3.10.3, we have γD(yz) ⊂ γD(xz) for a dipath xyz of D. It follows
that ωD(yz) ≤ ωD(xz), the inequality being strict if we assume that at least
one user is assigned to each vertex in X. Thus it suffices to consider only in-
neighbours of z in H when constructing F̂ and choose among them a vertex
y with minimum ωD(yz).

Finally, we analyze the running time to compute F̂ . We can compute
ωD(yz) for each z �∈ R(F̂ ) and each in-neighbour y of z in H in time O(n2)
using an algorithm similar to that used in the proof of Proposition 3.10.2.
This allows us to find, in time O(|A′|), for each z �∈ R(F̂ ) an in-neighbour y
in H such that ωD(yz) is minimum. ��

4 We can clearly reduce O(|A′|+n2) to O(n2); the reason we keep |A′| is to stress
that we can consider only arcs of H.
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Let us find an optimal spanning out-forest for the transitive acyclic di-
graph D whose transitive reduction H = (X,A′) is depicted in Figure 3.3.
We assume that |Ux| = 1 for every vertex x of D. By the proof of Theorem
3.10.5, we first find the weight ωD(yz) of every arc of H. Since |Ux| = 1 for
every vertex x of D, we have ωD(yz) = |γD(yz)| for every yz ∈ A′. Every
arc of the dipaths abc and adg is of weight 1, every arc of the dipaths cfi
and ghi is of weight 3, and every other arc is of weight 2. Thus, the spanning
out-forest F of D depicted in Figure 3.3 with thick arcs is optimal. Recall
that the optimal key allocation for F is given in Table 3.1, which implies that
the minimum total number of keys for a spanning out-forest of D is 14. The
sum of the weights of F is 13, but it is not a contradiction since one key has
to be allocated to the root a of F .

3.10.3 Optimal Dipath Factors

We call a dipath factor optimal if it requires the minimum total number of
keys among all dipath factors of D. We first show the following somewhat
unexpected result: The number of keys required when a dipath factor P is
used depends only on the terminal vertices of paths in P . This in turn implies
that there exists an optimal dipath factor which has the minimum possible
number of paths among all dipath factors.

In this subsection, as above, D = (X,A) is a transitive acyclic digraph.
In what follows, let P = P1 ∪ · · · ∪ P� be a dipath factor of D and let
Pi = zi

1 . . . zi
ci , i ∈ [�].

Lemma 3.10.6 We have

K(P ) =
�∑

i=1

∑
x∈N−[zi

ci
]

|Ux|. (3.8)

Proof: Observe that N−
D [zi

ci ] is the disjoint union of sets Xi, i ∈ [ci], where
X1 = {x ∈ X : x ∈ N−

D [zi
1]} and Xj = {x ∈ X : x �∈ N−

D [zi
j−1], x ∈ N−

D [zi
j ]},

2 ≤ j ≤ ci. Observe that Xj = {x ∈ X : x ∈ γP (zi
j)}, 2 ≤ j ≤ ci. This

decomposition of N−
D [zi

ci ] into sets Xi, i ∈ [ci], will be used in the following
derivation. By (3.7) and the definition of ΩP (z),

K(P ) =
∑
z∈X

ΩP (z)

=
�∑

i=1

∑
x∈X1

|Ux| +
�∑

i=1

ci∑
j=2

∑
x∈Xj

|Ux|

=
�∑

i=1

∑
x∈N−[zi

ci
]

|Ux|.

��
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By Dilworth’s theorem (Theorem 3.2.1), the minimum number of paths
in a dipath factor of D is α(D). Let us show that D contains an optimal
directed α(D)-path factor. Let P = P1 ∪ · · · ∪P� be an optimal dipath factor
with the minimum number of paths and suppose that � > α(D). By the
Gallai-Milgram theorem (Theorem1.8.5) D contains a directed (� − 1)-path
factor P ′ such that the terminal vertices of the paths of P ′ are a subset
of the terminal vertices of the paths of P. By (3.8) and optimality of P ,
K(P ′) = K(P ), a contradiction.

Figure 3.4 depicts an optimal directed α(D)-path factor (induced by the
thick arcs) of a transitive acyclic digraph D (all arcs form the transitive
reduction of D).

1

2

3

2

4 3

6 6

9

Figure 3.4 Optimal directed α(D)-path factor. The number given for every vertex
x is |N−[x]|.

One can find an optimal directed α(D)-path in polynomial time as follows.
Transform D into a flow network5 by adding adding new vertices s and t to
D such that s dominates every vertex in D and every vertex of D dominates
t. Let us set lower and upper bounds equal to one for every vertex6 in X and
assign a cost of

∑
x∈N−[v] |Ux| to arc vt for each v ∈ X. The cost of all other

arcs is zero. It is not hard to see that an optimal directed α(D)-path factor
corresponds to a minimum cost (s, t)-flow of value α(D). For more details,
see [23, 25]. Thus, we have the following:

Theorem 3.10.7 Every D contains an optimal directed α(D)-path factor,
which can be found in polynomial time.

5 For the basics on network flows, see Section 1.9 of Chapter 1.
6 We can assign bounds to vertices rather than arcs as every vertex can be split,

i.e., replaced by an arc, see Section 1.4 of Chapter 1.
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3.11 PERT/CPM in Project Scheduling

Often a large project consists of many activities, some of which can be done
in parallel, others can start only after certain activities have been accom-
plished. In such cases, the critical path method (CPM) and Program
Evaluation and Review Technique (PERT) are of interest. They allow
us to predict when the project will be finished and monitor the progress of
the project. They allow one to identify certain activities which should be
finished on time if the predicted completion time is to be achieved.

CPM and PERT were developed independently in the late 1950s. They
have many features in common and several others that distinguish them.
However, over the years the two methods have practically merged into one
combined approach often called PERT/CPM. Notice that PERT/CPM has
been used in a large number of projects including a new plant construction,
NASA space exploration, movie production and ship building (see, e.g., the
book [49] by Hillier and Lieberman). PERT/CPM has many tools for project
management, but we will restrict ourselves only to a brief introduction and
refer the reader to various books on operations research such as [49, 50, 66]
for more information on the method.

We will introduce PERT/CPM using an example, see Figure 3.5. Suppose
the tasks to complete the construction of a house are as follows (in brackets we
give their abbreviation and duration in days): Wiring (Wi, 5), Plumbing (Pl,
8), Walls & Ceilings (WC, 10), Floors (Fl, 4), Exterior Decorating (ED, 3)
and Interior Decorating (ID, 12). We cannot start doing Walls & Ceilings or
Floors before Wiring and Plumbing are accomplished, we cannot do Exterior
Decorating before Walls & Ceilings are completed, and we cannot do Interior
Decorating before Walls & Ceilings and Floors are accomplished. How much
time do we need to accomplish the construction?

S

0

Pl

8

Wi

5

Fl

4

WC

10

ID

12

ED

3

F

0

Figure 3.5 House construction network
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To solve the problem we first construct a digraph N , which is called an
activity-on-node (AON) project network.7 We associate the vertices of N
with the starting and finishing points of the projects (vertices S and F ) and
with the activities described above, i.e., Wiring (Wi), Plumbing (Pl), Floors
(Fl), Walls & Ceiling (WC), Interior Decoration (ID) and Exterior Decorat-
ing (ED). The network N is a vertex-weighted digraph, where the weights
of S and F are 0 and the weight of any other vertex is the duration of the
corresponding activities. Observe that the duration of the house construction
project equals the maximum weight of an (S, F )-path.

As in the example above, in the general case, an AON network D is a
vertex-weighted digraph with the starting and finishing vertices S and F .
Our initial aim is to find the maximum weight of an (S, F )-path in D. Since
D is an acyclic digraph, this can be done in linear time using the algorithm of
Theorem 3.1.5 after a vertex splitting procedure, which replaces every vertex
x by arc x′x′′ such that N+(x′′) = {y′ : y ∈ N+(x)} and N−(x′) = {y′′ :
y ∈ N−(x)}. We can also use dynamic programming directly: for a vertex
x of D let t(x) be the earlier time when the activity corresponding to x
can be accomplished. Then t(S) = 0 and for any other vertex x, we have
t(x) = �(x) + max{t(y) : y ∈ N−(x)}, where �(x) is the duration of the
activity associated with x. To ensure that we know the value of t(y) for each
in-neighbour of y of x, we consider the vertices of D in an acyclic ordering.

It is easy to see that the maximum weight of an (S, F )-path in N (our
example) is 27 days and the path is (S,Wi,WC, ID, F ). Every maximum
weight (S, F )-path is called critical and every vertex (and the correspond-
ing activity) belonging to a critical path is critical. Observe that to ensure
that the project takes no longer than required, no critical activity should be
delayed. At the same time, delay with non-critical activities may not affect
the duration of the project. For example, if we do Plumbing in 13 days in-
stead of 8 days, the project will be finished in 27 days anyway. This means
that the project manager mainly has to monitor critical activities and may
delay non-critical activities in order to enforce critical ones (e.g., by moving
workforce from a non-critical activity to a critical one).

The manager may want to expedite the project (if, for example, earlier
completion will result in a considerable bonus) by spending more money on
it. This issue can be investigated using linear programming, see Hillier and
Lieberman [49].

7 The original versions of PERT and CPM used another type of network, activity-
on-arc (AOA) project networks, but AOA networks are significantly harder to
construct and change than AON networks and it makes more sense to use AON
networks rather than AOA networks.
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3.12 One-sink Partitioning

For an acyclic digraph D, an arc set P is called a partitioning set if every
connected component in D − P has just one sink. Consider the following
problem introduced by Leskovec, Backstrom and Kleinberg [55]:

Directed acyclic digraph (DAG) partitioning
Input: An arc-weighted acyclic digraph D = (V,A).
Find: a partitioning set P of minimum weight.

The problem is motivated by our interest in analyzing how short, distinc-
tive phrases (typically, parts or mutations of quotations) spread to various
news sites and blogs. To demonstrate their approach, Leskovec et al. [55]
collected and analyzed phrases from 90 million articles that appeared during
the time of the 2008 United States presidential elections; the results were
featured in the New York Times [61]. Leskovec et al. [55] create an arc-
weighted acyclic digraph with phrases as vertices and an arc from phrase p
to phrase q if p presumably originates from q. (Unfortunately, the description
of the weight of an arc in [55] is not precise.)

Leskovec et al. [55] proved that DAG partitioning is NP-hard and
suggested a heuristic to solve it. Alamdari and Mehrabian [3] proved that the
problem is hard to approximate: for fixed ε > 0, it is NP-hard to approxi-
mate the minimum weight of a partitioning set within a factor of O(n1−ε).
This result holds even for digraphs with unit weights, maximum out-degree
3 and with just two sinks. van Bevern, Bredereck, Chopin, Hartung, Hüffner,
Nichterlein and Suchý [86] studied DAG partitioning parameterized by the
weight k of a partitioning set, i.e., we are to decide whether an arc-weighted
acyclic digraph D = (V,A) has a partitioning set of weight at most k. They
assumed that no arc weight is smaller than 1. They proved that DAG parti-
tioning admits an O(2k|V |2)-time algorithm and that there is no algorithm
for the problem of running time 2o(k)|V |O(1) unless the Exponential Time
Hypothesis fails. Also, they proved that the problem does not admit a kernel
with size polynomial in k, unless NP ⊆ coNP/poly.

In a newer version [85] of [86] it is proved that DAG partitioning admits
an asymptotically faster O(2k(|V |+ |A|))-time algorithm. Also, they demon-
strated, in computational experiments, that using their faster algorithm and
some polynomial-time preprocessing rules, within five minutes one can solve
instances of the problem with more than 107 arcs and k ≤ 190. Even such an
algorithm may be too slow to be practical, but it allowed van Bevern et al.
[85] to evaluate8 the heuristic of Leskovec et al. [55].

Let us describe the FPT algorithm of [86] as it is simpler than the one in
[85]. The algorithm of [86] is based on the following:

8 The idea of using FPT algorithms to evaluate heuristics was likely coined first
by Gutin, Karapetyan and Razgon [43].
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Proposition 3.12.1 ([85]) For an acyclic digraph D and its minimal par-
titioning set P , a vertex v is a sink in D − P if and only if v is a sink in
D.

Proof: Observe that arc deletion cannot make a sink become a non-sink.
Thus, it suffices to show that no sink of D − P is a non-sink in D. Suppose
that u is a non-sink in D. Then u dominates some vertex v in D. Let Cu

and Cv be the vertices of connected components of D − P containing u and
v, respectively, and let v′ be a sink in Cv. Then D[Cu ∪ Cv] has the unique
sink v′. This means that P \ {uv} is a partitioning set, contradicting the
assumption that P is minimal. ��

In the rest of this section we will assume that the input D = (V,A) of
DAG partitioning is connected. Otherwise, we can deal with its connected
component separately. The algorithm of [86] uses the fact that no new sinks
are created after deleting a minimal partitioning set. Assume that there is a
vertex v with a unique out-neighbour u; then the arc vu is not in any minimal
partitioning set. This observation leads to the following reduction rule.

Reduction Rule. Let v ∈ V be of out-degree one and let u be the unique
out-neighbour of v. Then for each arc wv ∈ A, add an arc wu of the same
weight. If an arc wu was already in D, increase the weight of this arc by the
weight of wv. Finally, delete v.

Clearly, the resulting digraph has a solution for DAG partitioning if
and only if the original D = (V,A) does. Let n = |V |. It is not hard to see
that for each appropriate v we can apply this rule in time O(n). Thus, in
time O(n2), we can obtain a digraph, which is irreducible by the reduction
rule and either has at most two vertices or has no vertices of out-degree zero
or one. This fact will be used in the following:

Theorem 3.12.2 ([85]) The DAG partitioning problem can be solved in
time O(2kn2).

Proof: Recall that D is connected. We may assume that D is irreducible. Let
S be the set of sinks of D. Assume that D has at least three vertices. Then
|S| ≥ 2 and consider a sink t in D − S. Let d = d+D(t). Then every minimal
partitioning set contains exactly d−1 arcs leaving t. Thus, we may branch by
considering all d possibilities of keeping just one arc leaving t. Since no arc
weight is smaller than 1, at each branch we reduce the value of k by at least
d − 1. Thus, the running time Tk as a function of k satisfies the following:
Tk ≥ dTk−d+1. Observe that 2k satisfies this inequality as long as d ≥ 2,
which holds as D is irreducible. It remains to observe that fully executing
the reduction rule and finding vertices t can be done in time O(n2). ��
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3.13 Acyclic edge-coloured graphs

In this section, we consider edge-coloured graphs which are undirected
graphs with a colour assigned to every edge. An edge-coloured graph is
c-edge-coloured if all colours are from the set [c]. For 2-edge-coloured
graphs we use colours blue and red instead of 1 and 2. A walk W =
v1e1v2 . . . vp−1ep−1vp is properly coloured (PC) if edges ei and ei+1 are
of different colours for every i ∈ [p − 2] and, in addition, if W is closed then
edges ep−1 and e1 are of different colours. PC walks are of interest in graph
theory applications and in graph theory itself as generalisations of walks in
digraphs. Indeed, consider the standard transformation from a digraph D into
a 2-edge-coloured graph G by replacing every arc uv of D by a path with
blue edge uwuv and red edge wuvv, where wuv is a new vertex. Clearly, every
diwalk in D corresponds to a PC walk in G and vice versa. There is an ex-
tensive literature on PC walks: for a detailed survey of pre-2009 publications,
see [9, Chapter 16], and more recent papers include [1, 34, 41, 42, 56, 58–60].

It is well-known and easy to prove that every directed graph with no
dicycles has no closed diwalks either. This is not the case for PC cycles and
PC walks. In fact, the properties of having no PC cycles, having no PC closed
trails, and having no PC closed walks, are all distinct, as we will see below.

The following notion of a monochromatic vertex will often be used in this
section. A vertex v in an edge-coloured graph G is called G-monochromatic
if all edges incident to v in G are of the same colour. Clearly, a PC closed
walk has no G-monochromatic vertex.

In order to better understand the structure of acyclic edge-coloured
graphs, following Gutin, Jones, Sheng, Wahlström and Yeo [41] we introduce
five types of PC acyclicity as follows.

Definition 3.13.1 Let G be an edge-coloured undirected graph. An ordering
v1, v2, . . . , vn of vertices of G is of type

1 if for every i ∈ [n], all edges from vi to each connected component of
G[{vi+1, vi+2, . . . , vn}] have the same colour;

2 if for every i ∈ [n], all edges from vi to {vi+1, vi+2, . . . , vn} which are not
bridges in G[{vi, vi+1, . . . , vn}] have the same colour.

3 if for every i ∈ [n], all edges from vi to {vi+1, vi+2, . . . , vn} have the same
colour;

4 if for every i ∈ [n], all edges from vi to {vi+1, vi+2, . . . , vn} have the same
colour and all edges from vi to {v1, v2, . . . , vi−1} have the same colour;

5 if for every i ∈ [n], all edges from vi to {vi+1, vi+2, . . . , vn} have the same
colour and all edges from vi to {v1, v2, . . . , vi−1} have the same colour but
different from the colour of edges from vi to {vi+1, vi+2, . . . , vn}.

Definition 3.13.2 Let i ∈ [5]. G is PC acyclic of type i if it has an
ordering v1, v2, . . . , vn of vertices of type i.
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Clearly, the class of edge-coloured acyclic graphs of type i contains the
class of edge-coloured acyclic graphs of type i + 1, i ∈ [4]. We will see below
that the containments are proper. We will also see that edge-coloured acyclic
graphs of type i ∈ [3] are precisely those without PC cycles (for i = 1),
without PC trails (for i = 2), and without PC walks (for i = 3). One reason
to study the five types instead of just the first three is the fact that the first
three types have quite a complicated structure, e.g., Menger’s theorem does
not hold for them. An example from [41] of an acyclic edge-coloured graph
of type 3 for which Menger’s theorem does not hold is depicted in Fig. 3.6.
Let x = v1 and y = v8; note that any PC path between x and y uses at
least two blue edges, thus there is at most one internally vertex-disjoint PC
path between x and y. However, after deleting any vertex apart from {x, y}
the remaining graph will still have a PC path between x and y. However,
Menger’s theorem holds for type 4 [41].

v4

v5

x = v1

v3

v2 v6

v7

v8 = y

red edges

blue edges

Figure 3.6 Menger’s theorem fails on G; the blue edges are v2v3, v4v5, v6v7;
v8v7v6v1v2v3v4v5 is an ordering of type 3.

Let us consider a characterisation of types 1, 2 and 3 obtained by Gutin
et al. [41].

Theorem 3.13.3 An edge-coloured graph G is PC acyclic of type i ∈ [3] if
and only if G has no PC cycle (for i = 1), no PC trail (for i = 2), no PC
walk (for i = 3).

Theorem 3.13.3 for i = 1 is an easy consequence of the following result of
Yeo [88].

Theorem 3.13.4 (Yeo’s theorem) If an edge-coloured graph G has no PC
cycle then G has a vertex z such that every connected component of G − z is
joined to z by edges of the same colour.

Using Yeo’s theorem it is not hard to design a polynomial time algorithm
for deciding whether an edge-coloured graph is acyclic of type 1. Theorem
3.13.3 for i = 2 easily follows from a theorem of Abouelaoualim, Das, Faria,
Manoussakis, Martinhon and Saad [1] which states that an edge-coloured
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graph G has either a bridge or a PC closed trail or a G-monochromatic
vertex. Theorem3.13.3 for i = 3 can easily be derived from the following
proposition.

Proposition 3.13.5 ([41]) If an edge-coloured graph G has no PC closed
walk then G has a G-monochromatic vertex.

Proof: We call an edge-coloured graph H an extension of an edge-coloured
graph G if H is obtained from G by replacing every vertex u by a set Iu

of independent vertices with the same adjacencies and edge colours as u.
Observe that G has no PC closed walk if and only if no extension of G, in
which Iu is sufficiently large, has a PC cycle. Now apply Yeo’s theorem to an
extension H of a connected edge-coloured graph G in which |Iu| > 1 for each
u ∈ V (G), and note that for every vertex z ∈ V (H), H − z is connected. ��

To see that containment is proper between PC acyclicities of type 1
and type 2, consider a graph with vertex set {v1, v2, x, u1, u2} and edge set
{v1v2, v1x, v2x, u1u2, u1x, u2x}, where v1v2, u1x, u2x are coloured red, and
u1u2, v1x, v2x are coloured blue. Clearly, this 2-edge-coloured graph G has
no PC cycle, but it has a PC closed trail. Thus, G is PC acyclic of type 1
but not PC acyclic of type 2.

To see that containment is proper between PC acyclicities of type 2 and
type 3, consider the following graph G with V (G) = {a1, a2, a3, b1, b2, b3},
with blue edges a1b1, a2b2 and a3b3 and red edges a1a2, b1a2, a3b2 and b3b2.
In G we have a PC closed walk a1a2b2b3a3b2a2b1a1. This walk uses the edge
a2b2 twice. There is no PC closed trail in G: as a2b2 is a bridge it does not
belong to a closed trail and removing a2b2 makes it obvious that there is no
PC closed trail in the remainder.

To see that containment is proper between PC acyclicities of type 3 and
type 4, consider a complete graph on three vertices with two blue edges and
one red edge. It is easy to find an ordering of type 3 and to see that there is
no ordering of type 4. Finally, to see that containment is proper between PC
acyclicities of type 4 and type 5, consider any non-bipartite 2-edge-coloured
graph with all edges being blue.

Using Yeo’s theorem, the theorem of Abouelaoualim et al. and Proposition
3.13.5 it is easy to see that one can decide in polynomial time whether an
edge-coloured graph is acyclic of type 1, 2 and 3, respectively. We are not
aware of a nice characterisation of type 4. In fact, it is NP-complete to decide
whether a 2-edge-coloured graph is acyclic of type 4 [41]. Interestingly, we
can decide in polynomial time whether an edge-coloured graph is acyclic of
type 5 [41].
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4. Euler Digraphs

Magnus Wahlström

An Euler digraph is a connected digraph where every vertex has in-degree
equal to its out-degree. The name, of course, comes from the directed version
of Euler’s theorem. Recall than an Euler tour in a digraph is a directed closed
walk that uses each arc exactly once. Then in this terminology, by the famous
theorem of Euler, a digraph admits an Euler tour if and only if it is an Euler
digraph.

However, beyond this point of historical interest, Euler digraphs are also
interesting since they form a class of intermediate complexity between undi-
rected graphs and fully general digraphs for many problems. For example,
consider the k-linkage and weak k-linkage problems. Recall that in
these problems, the input is a digraph D = (V,A) together with k-tuples
(s1, . . . , sk) and (t1, . . . , tk) of vertices, and the goal is to find internally
vertex-disjoint paths (respectively, arc-disjoint paths) from si to ti for every
i ∈ [k]. For undirected graphs, both problems are famously FPT parameter-
ized by k, as a central result of the graph minor theory of Robertson and
Seymour [36]. For general digraphs, both variants are NP-hard already for
k = 2 as shown by Fortune, Hopcroft and Wyllie [15]. For Euler digraphs,
the k-linkage problem is in general NP-hard, but the weak k-linkage
problem is in P at least up to k = 3, and it is a long open question whether
the weak k-linkage problem is in P for every fixed k or even FPT. (We
discuss these problems later in this chapter.)

For another example, consider the concepts regarding classes of graphs
and digraphs of restricted structure, e.g., bounded width. For undirected
graphs, although many alternatives have been considered, arguably the estab-
lished standard width notion is bounded treewidth, and the related notion
of bounded pathwidth. These width measures have several desirable prop-
erties, not least including algorithmic applications such as linear-time FPT
algorithms for a multitude of problems when parameterized by the width k.
On the other hand, for directed graphs, although directed analogues of these
basic width notions exist, not only are the basic definitions significantly more
complex, but the algorithmic implications are also typically weaker, e.g., most
problems would not be FPT parameterized by directed pathwidth. We will
see that in the general case there is no significant difference between the di-
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rected width measures on Euler digraphs and on general digraphs, but (unlike
for general digraphs) if we additionally impose that an Euler digraph is of
bounded degree, then the undirected and directed versions of pathwidth and
treewidth coincide up to a constant factor.

However, interestingly, there are also a few problems which are easier
to deal with on Euler digraphs than on undirected graphs (even undirected
Euler graphs). We will see two main examples of this. The first is the so-called
BEST theorem, which states that the number of Euler tours in a digraph can
be counted efficiently; the same is not true for undirected graphs, where the
corresponding problem is #P-hard. The second, less well known example is
Arc Multiway Cut (see later for definitions), which is NP-hard both for
undirected Euler graphs and for general digraphs, but which admits a simple
polynomial-time algorithm on Euler digraphs. We will cover both of these
results in the following.

This chapter is structured as follows. We begin with some basic construc-
tions and observations in Section 4.1; in Section 4.2 we consider the BEST
theorem and other questions of Euler tours; in Section 4.3 we consider no-
tions of Euler digraphs of bounded width; in Section 4.4 we review problems
related to packing and hitting cycles, and in Section 4.5 we review general
problems of path-packing and linkages.

4.1 Basic Constructions and Properties

To relax the definition of Euler digraphs slightly, let a digraph D be balanced
if every vertex has in-degree equal to its out-degree, but with no requirement
that D be connected. Most of our algorithmic results will apply to balanced
digraphs as well as Euler digraphs, and it will sometimes be convenient to
not have to require connectivity. In fact, we will frequently gloss over the
difference between the two notions. Also note that a balanced digraph is
strongly connected if and only if it is connected.

We review two basic properties of balanced digraphs. First, we note that a
balanced digraph can be exhaustively decomposed into simple directed cycles.
Second, we note that for every balanced digraph D = (V,A) and every vertex
v ∈ V , there are d+D(v) pairwise arc-disjoint cycles through v. Both of these
results follow via simple induction (in the latter case using the existence of
an Euler tour for the component).

4.1.1 Cuts in Euler Digraphs

The following observation is the underlying source of many of the tractability
results in this chapter.

Proposition 4.1.1 Let D = (V,A) be a balanced digraph. For any set S ⊆ V ,
it holds that d+(S) = d−(S).
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Proof: Note that
∑

v∈S d+(v) =
∑

v∈S d−(v) since D is balanced. Thus we
have

0 =
∑

v∈S

d+(v) −
∑

v∈S

d−(S) = (d+(S) + |(S, S)|) − (d−(S) + |(S, S)|,

so d+(S) = d−(S). �

The following is an easy but important consequence.

Proposition 4.1.2 Let D = (V,A) be a balanced digraph and let G =
UMG(D) be the underlying multigraph of D. Then for any S ⊆ V , we have
d+D(S) = d−

D(S) = dG(S)/2.

This implies that tools developed for edge cuts in undirected graphs will
transfer directly to arc-cuts in Euler digraphs. In particular, for an Euler
digraph D = (V,A) with two vertices s, t ∈ V , using the treewidth re-
duction theorem of Marx, O’Sullivan and Razgon [32] it follows that all
minimal s-t- and t-s arc-cuts in D of size at most k are contained in a sub-
graph of D of treewidth bounded as a function of k. Although we will not
need this result in the remainder of the chapter, it is a powerful tool for FPT
algorithms in undirected graphs and worth observing for its potential appli-
cations. The same can be said for other advanced methods for producing FPT
algorithms for undirected graph problems. In particular, there is a method
of designing FPT algorithms via recursive understanding, which was pio-
neered by Kawarabayashi and Thorup for k-Way Cut [28] and was developed
further and made more efficient using the method of randomized contrac-
tions by Chitnis, Cygan, Hajiaghayi, Pilipczuk and Pilipczuk [6]. Another
related work is the special tree decomposition used by Cygan, Lokshtanov,
Pilipczuk, Pilipczuk and Saurabh for the Minimum Bisection problem [10].
All of these cases represent advanced and successful methods for designing
FPT algorithms for cut problems on undirected graphs, which a priori seem
not to transfer in a useful way to general digraphs, but which may be worth
considering for the case of Euler digraphs.

4.1.2 Hardness Constructions

We review two simple constructions that will be useful in showing problem
hardness on Euler digraphs. Recall that for an undirected graph G = (V,E),
the complete biorientation of G is a digraph

↔
G with vertex set V and with

a pair of arcs uv, vu for every edge {u, v} ∈ E. Clearly,
↔
G is balanced, and

Euler if G is connected. This construction can frequently be used to show
that problems on Euler digraphs are “at least as hard” as the corresponding
problem on undirected graphs.

The second construction is as follows. Let D = (V,A) be a connected
digraph, and define bD(v) = d+D(v) − d−

D(v) as the balance number of v



176 M. Wahlström

in D. The Euler two-vertex extension of D is the directed multigraph
obtained by adding two vertices x, y /∈ V to D, then for every vertex v ∈ V
adding |b(v)| arcs vx if b(v) < 0 and b(v) arcs yv if b(v) > 0, then finally
adding d−(x) arcs xy. It is clear that the resulting directed multigraph is
Euler. If the situation does not allow parallel arcs, we may simply subdivide
all arcs into and out of x and y. The significance of this construction is that
by simply deleting x or y from D′, we eliminate all paths not present in the
original graph D.

Above all, this means that for many problems which come in a “vertex
version” and an “arc version”, the vertex version is usually equally diffi-
cult on an Euler digraph as on general digraphs, while the arc version can
be significantly easier. For example, considering the problems mentioned in
the introduction, it is trivial to show that Vertex Multiway Cut (i.e.,
the vertex-deletion version), the k-Linkage Problem and the Vertex-

Disjoint Cycle Packing problem are all as hard on Euler digraphs as on
general digraphs (in the case of the k-linkage problem increasing k by
one), but Arc Multiway Cut, the weak k-linkage problem and Arc-

Disjoint Cycle Packing are all significantly easier on Euler digraphs, as
we see in the results surveyed in this chapter.

4.1.3 Splitting Off and Other Operations

One frequently used operation in this chapter is the splitting-off operation.
Let D = (V,A) be an Euler digraph and uv, vw a pair of arcs in D. Then
splitting off uv and vw in D refers to the operation of deleting the arcs uv
and vw, and creating a new arc uw. It is clear that this operation preserves
balance (if not necessarily connectivity). If all vertices u, v, w are distinct,
and if the result is a digraph (as opposed to a directed multigraph or pseu-
dograph), then we refer to uv and vw as a simple splitting pair. Let us
make a simple observation.

Proposition 4.1.3 Let D = (V,A) be a balanced digraph with no simple
splitting pair. Then every connected component of D is a complete digraph.

Proof: If D has no simple splitting pair, then for every pair of arcs uv and
vw such that u �= w, the arc uw already exists, i.e., D is transitive. It is well
known (and easy to see) that a strongly connected transitive digraph must
be complete. Since every connected component of a balanced digraph is also
strongly connected, the result follows. �

Other operations that preserve the balance property of a digraph include
arc contractions and the removal of a balanced subgraph.

We will also occasionally need the notion of a minor of a digraph.
There are two variants of this definition, butterfly minors and topological
minors. Let D = (V,A) be a digraph and uv ∈ A an arc. The arc uv is but-
terfly contractible in D if either uv is the only arc out of u or the only
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arc into v. A butterfly minor of D is obtained from a subgraph of D by
contracting butterfly contractible arcs. Alternatively, a topological minor
of D is produced from arc contractions of a subgraph of D by contracting an
arc uv only if either u or v has in-degree and out-degree 1.

4.2 Problems Regarding Euler Tours

Let us begin as a warm-up with the so-called BEST theorem, showing that
Euler tours of an Euler digraph can be counted in polynomial time.

The BEST theorem was implicit in the work of Tutte and Smith [41] and
was shown in full by van Aardenne-Ehrenfest and de Bruijn [42]; the theorem
takes its name from the authors.

Theorem 4.2.1 (BEST theorem) Let D = (V,A) be an Euler digraph, and
w ∈ V an arbitrary vertex. The number of Euler tours in D is

tD(w)
∏

v∈V

(d(v) − 1)!,

where tD(w) is the number of out-branchings of D rooted in w. In particular,
there is a polynomial-time algorithm for counting the number of directed Euler
tours.

Proof: Let ww′ ∈ A, and let T be an Euler tour of D. Observe that T induces
a permutation πv of the out-arcs of v for every v ∈ V , according to the order in
which these arcs are visited in T , starting the count from ww′. Also note that
T can be recovered from this collection of permutations, and conversely, every
such collection of permutations {πv}v∈V defines a closed trail in D containing
the arc ww′, although not every collection of permutations induces an Euler
tour. For a collection of permutations P = {πv}v∈V , let F (P ) = {πv(d+(v)) |
v ∈ V, v �= w} be the set containing the last outgoing arc from every vertex
except w. We claim that P defines an Euler tour if and only if F (P ) is an
in-branching in D rooted in w.

On the one hand, let P be defined via an Euler tour T . The set F (P )
forms a digraph where every vertex except w has out-degree 1; hence F (P )
forms an in-branching rooted in w if and only if it is acyclic. We claim that
for every arc uv ∈ F (P ), v �= w, the last out-arc of u is visited before the last
out-arc of v in T , if we begin the counting from ww′. Indeed, uv is the last
out-arc of u visited in T by definition, and clearly whatever arc follows uv
in T is an out-arc of v visited after uv. Since the out-degree of w in F (P ) is
zero, it follows that F (P ) is acyclic, and that F (P ) is an in-branching rooted
in w.

On the other hand, let P be a collection of permutations such that F (P )
forms an in-branching, and let T be the closed tour defined by P starting
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from the arc ww′. Then D − T is a balanced digraph. Let H be a connected
component of D − T . Clearly, for every vertex v that is not of degree zero
in D − T , the out-arc of v in F (P ) is contained in D − T . But then the set
FH of out-arcs of F (P ) of vertices in H forms a subgraph of H where every
vertex has out-degree 1, which necessarily contains a cycle. This contradicts
our assumption on P .

The formula follows from this claim. For every in-branching B of D rooted
in w, there are exactly

∏
v∈V (d+(v) − 1)! collections P of permutations such

that F (P ) = B: for every vertex v �= w, the in-branching B fixes the last
out-arc of v in P , whereas for w, the out-arc ww′ is the first out-arc of w by
definition. Any choice of a permutation πv on the remaining arcs does not
affect F (P ). Finally, it is well known that the number of rooted in-branchings
can be counted in polynomial time using Tutte’s matrix-tree theorem, see e.g.
[2]. �

Interestingly, both the Tutte–Smith paper and the van Aardenne-Ehren-
fest and de Bruijn paper have as their main interests something other than
counting Euler cycles. Tutte and Smith considered the problem of tracing a
4-regular undirected planar drawing without lifting the pen, in such a way
that the line traced never crosses itself, and showed that this can be reduced
to a question of counting Euler tours in a digraph (using arguments similar to
those used in the polynomial-time algorithm for counting planar matchings).
On the other hand, van Aardenne-Ehrenfest and de Bruijn arrived at the
question via their study of string problems, specifically De Bruijn sequences,
cyclic sequences over an alphabet Σ that contain every n-tuple over Σ exactly
once.

Other questions on Euler tours include the following. We say that two
Euler tours are compatible if they use only distinct transitions at every
vertex, i.e., for every vertex v with an in-arc uv and out-arc vw, at most
one of the tours contains the transition from uv to vw. Fleischner and Jack-
son [14] showed that every Euler digraph D of minimum degree 2k contains
�k
2 � pairwise compatible Euler tours, and conjectured that the bound can be

improved to k − 2.

4.3 Euler Digraphs of Bounded Width

The notion of width measures has been a highly successful approach for
studying graphs of restricted structure, especially for undirected graphs. The
rough idea is that a graph of simple structure can be decomposed recur-
sively into pieces that interact with each other only in a limited way, where
each piece is either very simple (e.g., constant size) or can itself be further
decomposed. For undirected graphs, arguably the default notion of bounded
structure is having bounded treewidth, motivated by a plethora of algorith-
mic results, e.g., methods such as Courcelle’s theorem [9] or other dynamic
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programming results for efficiently solving NP-hard problems on a graph,
given a decomposition of the graph that shows it has bounded treewidth.
However, many other width notions also exist, both less expressive ones such
as pathwidth or treedepth, and more expressive ones such as rankwidth.

For directed graphs, the story of bounded width measures has arguably
been more limited in terms of algorithmic applications. Although we do have
a growing understanding of the structure of graphs of small or large width
under various natural directed width notions, compared to the undirected
case, the algorithmic implications of bounded directed widths are generally
weaker (see Chapter 9 for results on bounded width measures on digraphs).
In the undirected case, it is a common occurrence that a problem is FPT
parameterized by treewidth, in fact often with a running time such as O(f(k)·
n) that is linear in the order of the graph. For directed width notions, it is
far more common that a parameterized problem is W [1]-hard – meaning
that, while it may be polynomial-time tractable on graphs of (say) bounded
directed treewidth, the running time is of the less appealing form O(nf(k))
and FPT algorithms are not expected to exist (see Section 1.11). In fact,
one could argue that the width measure that has had the widest success for
digraphs in terms of FPT algorithms is simply the undirected treewidth, i.e.,
the treewidth of the underlying undirected graph.

In view of this, it is natural to ask about the structure of Euler digraphs in
this perspective. In particular, to what extent do the directed and undirected
notions of treewidth and pathwidth differ for Euler digraphs?

We prove a simple result in this direction. First, we may observe that if
a width notion is closed under taking induced subgraphs, then there is no
sense in studying it in full generality for Euler digraphs, since (by the Euler
vertex-extension) every digraph on n vertices is an induced subgraph of a (not
necessarily simple) Euler digraph on n+2 vertices. Since most width measures
are closed under taking induced subgraphs and closed or approximately closed
under subdividing parallel arcs, in general Euler digraphs of bounded width
will not have any extra structure that is not present in other digraphs. On
the other hand, we may observe that the above reduction creates a vertex of
unbounded degree, and ask whether the situation changes under a combined
bound of bounded width and bounded maximum degree. Indeed, it is known
that an Euler digraph of maximum degree d and directed treewidth k has
undirected treewidth at most O(dk) [26]. Hence for bounded-degree Euler
digraphs, the difference between directed and undirected width disappears.
(This is certainly not true for general digraphs, as, e.g., an acyclic grid has
total degree 4, unbounded undirected treewidth, and directed pathwidth 0,
as we will see below.)

For more information on digraphs of bounded width, see Chapter 9 of this
book. In the following, we omit the technical details of directed treewidth,
and prove a simpler result that relates the undirected and directed notions
of bounded pathwidth.
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4.3.1 Cutwidth and Bounded Pathwidth

We begin by studying the directed pathwidth of Euler digraphs. Let us first
recall the notions.

We need two variants of pathwidth, undirected and directed. We begin
with the undirected version. Let G = (V,E) be an undirected graph. A path
decomposition of G is a sequence of vertex sets X1, . . . , Xs called bags
such that

⋃
i∈[s] Xi = V , where the following hold.

1. For every edge uv ∈ E, there is a bag Xi, i ∈ [s], such that u, v ∈ Xi,
and

2. for every triple of indices i < j < k, i, j, k ∈ [s], we have Xi ∩ Xk ⊆ Xj .
Equivalently, {i ∈ [s] | v ∈ Xi} forms an interval for every v ∈ V .

The width of the decomposition is maxi∈[s] |Xi| − 1. The pathwidth of G
is the minimum width of a path decomposition of G. We let the undirected
pathwidth of a digraph D = (V,A) refer to the pathwidth of its underlying
undirected graph UG(D).

Analogously, let D = (V,A) be a digraph. A directed path decompo-
sition is a sequence of vertex sets X1, . . . , Xs, again called bags, such that⋃

i∈[s] Xi = V , where the following hold.

1. For every arc uv ∈ E, there are indices i ≤ j, i, j ∈ [s] such that u ∈ Xi

and v ∈ Xj , and
2. as in the undirected case, for every triple of indices i < j < k, i, j, k ∈ [s]

we have Xi ∩ Xk ⊆ Xj .

The width of the decomposition is maxi∈[s] |Xi|−1 and the directed path-
width of D is the minimum width of a directed path decomposition of D.

We will also need a width measure that is less commonly used in general,
but which will be highly relevant for Euler digraphs. Let D = (V,A) be a di-
graph, and let σ = v1 . . . vn be an ordering of V . The undirected cutwidth
of σ equals the maximum over i of the number of arcs between {v1, . . . , vi}
and {vi+1, . . . , vn}. The undirected cutwidth of D is the minimum undi-
rected cutwidth over all orderings of V . Note that this is by its nature an
undirected width measure, i.e., we do not distinguish arcs by their direction.

We make a few simple observations.

1. For any digraph D = (V,A), the directed pathwidth is at most the undi-
rected pathwidth, which in turn is at most the undirected cutwidth.
Indeed, the former is trivial, and given any ordering σ of undirected
cutwidth k it is easy to produce a path decomposition of width k.

2. Both inequalities are strict. Indeed, a star has undirected pathwidth 1
but unbounded undirected cutwidth, and an acyclic grid has directed
pathwidth 0 (and constant degree) but unbounded undirected pathwidth.

3. A digraph has directed pathwidth 0 if and only if it is an acyclic digraph.
In particular, the only Euler digraph of directed pathwidth 0 is a single
vertex.
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We now observe formally (as already sketched) that there are Euler digraphs
of constant directed pathwidth but unbounded undirected pathwidth.

Lemma 4.3.1 For every k ≥ 1, there is an Euler digraph with undirected
treewidth at least k but directed pathwidth 1.

Proof: Let D be a k × k acyclic grid, with all arcs oriented downwards and
to the right. Add one additional vertex as in-neighbour of the top-left grid
vertex, and another as out-neighbour of the bottom-right grid vertex, and
observe that |bD(v)| ≤ 1 for every vertex in the resulting graph D. Hence we
can complete D into an Euler digraph by adding a single vertex x and for
every unbalanced vertex v either an arc vx or xv, as required. Then UG(D)
contains a k × k grid and hence has treewidth at least k, whereas D has a
path decomposition of width 1 formed by simply adding x to every bag in
the decomposition of the acyclic digraph D − x. �

Finally, we have the following positive result.

Lemma 4.3.2 If D is an Euler digraph with directed pathwidth k, then D
has undirected cutwidth at most k · Δ(D).

Proof: Let X1, . . . , Xs be a directed path decomposition of D of width
k, and construct a linear ordering σ of V (D) by first arbitrarily arranging
the vertices of X1, then the vertices of X2 \ X1, and so on until Xs. Let
d = Δ+(D). We claim that the ordering σ has undirected cutwidth at most
2dk.

Let (Li, Ri) be the vertex cut corresponding to some position i of σ, i.e., Li

is the set of vertices ordered at or before position i in σ, and Ri = V (D)\Li.
Assume that (Li, Ri) cuts through the bag Xj , j ∈ [s], and let A = Xj ∩ Li

and B = Xj ∩ Ri; assume A �= ∅. We claim that every arc of (Ri, Li)D has
either its tail in B or its head in A. Indeed, by definition every such arc has
its tail in Ri, and any such arc with tail in Ri \ B has its head in a vertex
still present in a bag Xj′ for some j′ > j; hence the head is contained in Xj .
Since there are |A|d arcs with head in A and |B|d arcs with tail in B, and
|A| + |B| ≤ k, there are at most dk such arcs. On the other hand, since D is
Euler we have d+(Li) = d−(Li) ≤ dk; hence the undirected cutwidth of σ is
at most 2dk = kΔ(D). �

Since undirected pathwidth is sandwiched between undirected cutwidth
and directed pathwidth, we also get that the undirected pathwidth of Euler
digraphs of bounded degree and bounded directed pathwidth is bounded, as
promised.

As noted, the above result also holds for the more general notion of di-
rected treewidth: If D is an Euler digraph with maximum degree d and
the directed treewidth of D is at most k, then D has undirected treewidth at
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most O(dk) [26]. Directed treewidth is the most general of the various width-
measures that serve as directed analogues of (undirected) treewidth, and has
some interesting structural properties. See, in particular, the directed grid
theorem [27] proved by Kawarabayashi and Kreutzer, which shows that ev-
ery digraph of large enough directed treewidth contains a particular canonical
obstacle known as a cylindrical grid of large order as a butterfly minor (see
Theorem 9.3.14). Hence this shows that any Euler digraph that does not
contain a large cylindrical grid as a butterfly minor, and which has bounded
degree, also has bounded undirected treewidth.

4.4 Cycle-Packing and Cycle-Hitting

In this section, we consider problems of cycle-hitting and cycle-packing in
Euler digraphs. More properly, we consider the following two problems. A
feedback arc set of a digraph D is a set F of arcs of D such that D − F is
acyclic. The problem Feedback arc set takes as input a digraph D and an
integer k, and asks whether D has a feedback arc set of cardinality k. Dually to
this, given a digraph D and an integer k, Arc-disjoint cycles asks whether
D contains a packing of k pairwise arc-disjoint cycles. For both problems,
the vertex versions (Feedback vertex set, respectively Vertex-disjoint

cycles) are defined in the natural way.
Before we proceed, we observe that these vertex-versions are not easier in

Euler digraphs than in general graphs.

Lemma 4.4.1 For both Feedback vertex set and Vertex-disjoint cy-

cles, there are polynomial-time reductions from the versions on general di-
graphs to the versions on Euler digraphs that increase the value of k by only
1.

Proof: The reduction is the same for both problems. Let D be a given
digraph D, and let D′ be its Euler two-vertex extension with added vertices x,
y. Add an additional pair of arcs xy, yx (and if needed, subdivide parallel arcs
to acquire a simple digraph). For Feedback vertex set, it is now easy to
observe that for every X ⊆ V (D), X is a feedback vertex set of D if and only if
X+x is a feedback vertex set of D′, and that there is a minimum feedback ver-
tex set X ′ of D′ for which X ′ ∩(V (D′)\V (D)) = {x}. For Vertex-disjoint

cycles, note that every cycle that intersects V (D′) \ V (D) intersects both
x and y. Let C be the cycle on x and y, contained in V (D′) \ V (D). Then
there exists an optimal cycle-packing that contains C, and having included
C, the cycle-packing problem on D′ − V (C) is equivalent to that on D. �

Regarding the hardness of these problems, we recall that Feedback ver-

tex set is NP-complete but FPT on digraphs by the algorithm of Chen,
Liu, Lu, O’Sullivan, and Razgon [5], whereas Vertex-disjoint-cycles on
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general digraphs is in XP, i.e., has an algorithm with running time O(nf(k))
for some function f(k) due to Reed, Robertson, Seymour and Thomas [35],
but is W[1]-hard due to the results of Slivkins [39]. The problem also has an
FPT approximation due to Grohe and Grüber [18], building on the results
of Reed et al. – i.e., a parameterized algorithm running in FPT time, which
either reports that D does not contain k vertex-disjoint cycles, or returns
g(k) vertex-disjoint cycles, for some growing, unbounded function g(k). By
the above reduction, all these statements hold for general digraphs as well as
for the restriction to Euler digraphs (for the vertex versions).

In the rest of this section, we will consider the arc-versions of these prob-
lems, which differ significantly in behavior on Euler digraphs.

4.4.1 Feedback Arc Set

First, let us consider Feedback arc set. We begin by showing NP-
hardness; the reduction is easy, but its correctness proof is revealing. We need
the following observation. Relative to an ordering (v1, . . . , vn) of the vertices
of an Euler digraph D = (V,A), the backward arcs are arcs vivj ∈ A with
i > j. Note that for any such ordering, the backward arcs form a feedback
arc set, and conversely, if F is a minimal feedback arc set of D, then F is
exactly the set of backward arcs for some acyclic ordering of D − F .

Lemma 4.4.2 The number of backward arcs of an ordering of vertices of
an Euler digraph is invariant under cyclic shifts, i.e., for any Euler digraph
D = (V,A) and any ordering (v1, . . . , vn) of V , the orderings (v1, . . . , vn)
and (v2, . . . , vn, v1) have the same number of backward arcs.

Proof: When v1 is in the first position, every in-arc of v1 is a backward
arc but no out-arc is; when v1 is in the last position, the opposite statement
holds. Every other arc is unaffected by the change. Since d+(v1) = d−(v), the
two orderings have the same number of backward arcs. �

An important corollary is that for every vertex v of an Euler digraph D,
there exists a minimum feedback arc set of D that contains all out-arcs of
v. Indeed, if F is a feedback arc set, let v1, . . . , vn be an acyclic ordering
of the vertices of D − F , and rotate the ordering until it ends with v. Then
the backward arcs of the new ordering form a feedback arc set F ′ of D, with
|F | = |F ′| and where every out-arc of v is contained in F ′. The NP-hardness
reduction is now trivial. Recall that fas(D) denotes the size of a minimum
feedback arc set of D.

Lemma 4.4.3 Feedback arc set is NP-hard on Euler digraphs.

Proof: We show a reduction from Feedback arc set on general digraphs.
Let D = (V,A) be a digraph, and let D′ be its Euler two-vertex extension,
with added vertices x, y. We claim that fas(D′) = fas(D) + d+(y). Indeed,
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let Y ⊆ A(D′) be the set of out-arcs of y. By the above observation, there
is a minimum feedback arc set that includes Y , and every directed cycle in
D′ − Y is also contained in D. �

Regarding properties of approximation and parameterized complexity, the
simple reduction used above gives us no lower bounds, since the output pa-
rameter value is unbounded in k. We are also not aware of any lower bounds-
preserving reduction from Feedback vertex set on undirected graphs to
Feedback arc set on Euler digraphs. Still, it can be interesting to com-
pare with what is known for general digraphs and for Feedback vertex

set on undirected graphs (recall that Feedback edge set can be solved in
polynomial time, and therefore does not serve as a point of comparison).

For (unweighted) Feedback arc set on general digraphs, the best
approximation result is an O(log τ∗ log log τ∗)-approximation, where τ∗ ≤
fas(D) is the cost of a natural LP-relaxation of the problem [13]. The prob-
lem does not admit a constant-factor approximation under the Unique Games
Conjecture (see Guruswami and Lee [20]). The problem has an FPT algo-
rithm with a running time of O∗(4kk!) [5], and it is a famous open problem
whether it has a single-exponential FPT algorithm, i.e., an FPT algorithm
with a running time of O∗(2O(k)), and whether it admits a polynomial kernel.

In contrast, Feedback vertex set on undirected graphs admits single-
exponential FPT algorithms [11, 29], a polynomial kernel with 4k2 ver-
tices [40] (recently improved to 2k2 vertices and linear time in [24]), and
a 2-approximation [7].

Therefore, natural open questions are what the status of each of these
three questions is for Euler digraphs.

Problem 4.4.4 Does Feedback arc set on Euler digraphs allow (1) a
single-exponential time FPT algorithm, (2) a polynomial kernel, and/or (3)
a constant-factor approximation?

Finally, although it does not serve to close any of the above-mentioned
open questions, we note a few properties of Feedback arc set on Euler
digraphs that do not hold for the general Feedback arc set problem. First,
we note that instances with a small feedback arc set are structurally simple.

Lemma 4.4.5 ([21]) Every Euler digraph D has undirected cutwidth at most
2fas(D).

Proof: Let F be a minimum feedback arc set of D, and let σ = (v1 . . . vn)
be an acyclic ordering of D − F . Let i ∈ [n] and let Vi = {v1, . . . , vi}. Then
for any i, d−(Vi) ≤ fas(D) since every such arc is contained in the feedback
arc set, and d+(Vi) = d−(Vi) since D is Euler. �

Recall that the undirected pathwidth is bounded by the undirected
cutwidth; therefore the undirected pathwidth is also bounded. Clearly, no
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such statement is possible for the general FAS problem, since acyclic digraphs
can have arbitrary underlying undirected graphs.

Finally, we make a remark about the iterative compression approach to
FPT algorithms. This is an important method in parameterized complex-
ity, which among many other cases is used in the algorithm for Directed

feedback vertex set [5] and in the currently fastest algorithm for (Undi-

rected) feedback vertex set [11, 29]. In this approach, a parameterized
problem is solved by iteratively solving the problem on a sequence of sub-
graphs of the original graph, in each step using the solution from the previous
step to produce a solution for the next step. Concretely, let Compression

feedback arc set be the Feedback arc set problem where the input
additionally includes a feedback arc set of size k + 1. Assume that we have
an FPT algorithm for Compression feedback arc set that either pro-
duces an output feedback arc set of size at most k, or concludes that no such
solution exists. Then we can solve Feedback arc set for general digraphs
using |A| calls to this algorithm, as follows: Let D = (V,A) be a digraph,
enumerate the arcs as A = {a1, . . . , am}, and define Di = D({a1, . . . , ai}) for
i ∈ [m]. Compute a trivial solution for Dk (e.g., the entire arc set). Then for
every k < i ≤ m, if Fi is a solution for Di with |Fi| ≤ k then Fi ∪ {ai+1} is a
solution for Di+1 of size at most k+1, which can be fed into the compression
algorithm. It remains only to observe that if any instance Di is concluded
to be negative, i.e., not to have a feedback vertex set of size k + 1, then the
same is true for D.

The obstacle to the immediate application of this strategy in Euler di-
graphs is that the digraphs D1, D2, . . . are in general no longer Euler. How-
ever, we observe that the strategy can be adopted by the use of the splitting
off operation.

Lemma 4.4.6 Feedback arc set on an Euler digraph D = (V,A) with
parameter k can be solved using polynomial-time processing and at most |A|
calls to a solver for Compression feedback arc set on balanced digraphs,
where the calls to the solver all use graphs with at most |V | vertices, at most
|A| arcs, and parameter at most k + 1.

Proof: We use the iterative compression approach, constructing a sequence
of graphs Di = (V,Ai) as follows. Begin with D = Dm, then for every
i ∈ [m − 1] we attempt to identify a simple splitting pair uv, vw in Ai+1.
If there is one, then we construct Di from Di+1 by splitting off uv and vw
in Di+1, i.e., Ai = (Ai+1 \ {uv, vw}) ∪ {uw}. If we cannot find such a pair,
then by Proposition 4.1.3, Di+1 takes the form of a disjoint union of complete
digraphs. At this point, the instance Di+1 can be solved in polynomial time,
since every ordering of the vertex sets yields the same number of backward
arcs. Therefore the sequence Dm, Dm−1, . . . can be constructed, yielding a
sequence D1, . . . , Dt of gradually larger Euler digraphs, where t ≤ m, and
where we can find a minimum solution for D1 in polynomial time.
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It remains to show that the sequence is useful for iterative compression,
i.e., that fas(Di) ≤ fas(Di+1) ≤ fas(Di)+1 for every 1 ≤ i < t. Let i ∈ [t−1],
and let Fi be a feedback arc set for Di with at most k arcs. Assume that Di

was created by splitting off the arcs uv, vw in Di+1. Define F ′
i by replacing

uw in Fi by the pair uv, vw if uw ∈ Fi, otherwise let F ′
i = Fi. Then clearly

|F ′
i | ≤ k +1, and it is easy to verify that F ′

i is a feedback arc set for Di+1. In
the other direction, let Fi+1 be a feedback arc set for Fi+1, and construct Fi

as (Fi \ {uv, vw}) ∪ {uw} if Fi+1 ∩ {uv, vw} �= ∅, and otherwise Fi = Fi+1.
Then again it is easy to verify that Fi is a feedback arc set for Di; hence
if Di does not have a feedback arc set of size k then neither does Dj for
any j > i and we may reject the instance D. We conclude that we can solve
Feedback arc set for Euler (or balanced) digraphs using t ≤ m calls to a
solver for Compression feedback arc set for balanced digraphs, without
increasing the number of arcs or vertices or the value of k, as required. �

Finally, we note that the currently fastest algorithm for Feedback ver-

tex set on undirected graphs is actually based on an algorithm with a
running time of O∗(3w) where w is the treewidth of the graph, which yields
an FPT algorithm with a running time of O∗(3k) using iterative compression
[11]. Also note that the naive state space of the treewidth dynamic program-
ming algorithm for feedback vertex set would seem to need to enumerate
either induced forests on the vertices of the bag, or at the very least all parti-
tions of the vertices of the bag, both of which number 2Θ(w log w) for w vertices.
Therefore, it seems worthwhile to ask the following question separately from
the above.

Problem 4.4.7 Can Feedback arc set on Euler digraphs be solved in
O∗(2O(w)) time, where w is the width of a provided undirected tree decompo-
sition?

4.4.2 Arc-Disjoint Cycles

Next, we consider the Arc-disjoint cycles problem in Euler digraphs.
As we saw, this problem is hard on general digraphs; Gutin, Jones, Sheng
and Wahlström [21] showed the problem to be FPT on Euler digraphs. The
strategy is based on a win-win approach, where they show that for every Euler
digraph D, either D contains at least k pairwise arc-disjoint cycles, or D has
undirected pathwidth at most f(k) for some function f(k), in which case we
can solve the problem by dynamic programming. Gutin et al. also solve a
related problem called the Directed k-Chinese Postman Problem, but
we will focus on Arc-disjoint cycles.

The basis for the strategy is the following result of Reed, Robertson,
Seymour and Thomas [35], settling a conjecture by Younger [44].
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Theorem 4.4.8 ([35]) There is a function f : N → N such that every digraph
D contains either k pairwise arc-disjoint cycles or has a feedback arc set of
size at most f(k).

The vertex-version of the result also holds, i.e., every digraph D either
contains at least k pairwise vertex-disjoint cycles or has feedback vertex set
number of at most f(k), but the above version will be more useful to us.
We also remark that the function f(k) grows very rapidly; according to the
authors, f(k) is an iterated exponential whose height is bounded by another
iterated exponential. Therefore, the resulting FPT algorithm we describe,
which uses this theorem, will be a purely theoretical result, showing that the
problem is FPT but without giving a running time bound that would be
practically useful.

At a high level, the algorithm goes as follows. Let D be an Euler digraph
and k an integer. If D contains k cycles then the instance is positive; if not,
then by Theorem 4.4.8 D has a feedback arc set of size at most f(k), and by
Lemma 4.4.5 it has undirected cutwidth, and thereby undirected pathwidth,
at most 2f(k). Therefore, a decision algorithm could compute f(k), or an
upper bound on it; use the Feedback arc set algorithm with parameter
f(k) to check whether D has a “small” feedback arc set; and use the feedback
arc set, if it exists, to compute a bounded width path decomposition of D.
The path decomposition can then be used as the basis for a standard dynamic
programming algorithm. If the FAS algorithm instead signals that fas(D) >
f(k), then by Theorem 4.4.8 the instance must be positive.

To turn this into a constructive algorithm, i.e., an algorithm that actu-
ally produces the cycles as an output, involves some surprising subtleties.
The usual approach to this problem would be via self-reducibility: Given an
algorithm that can detect the existence of an object in D, we can apply it
repeatedly to subgraphs of D until we find a subgraph D′ of D such that D′

contains the object but no strict subgraph of D′ does, at which point finding
the object is hopefully trivial.

This strategy has two obstacles in the current situation. First, the decision
algorithm would only apply to Euler digraphs, and an arbitrary subgraph of
D would in general not be Euler. Second, even the subgraph-minimal case,
when D contains k cycles but no strict subgraph of D does, is not necessarily
trivial.

Gutin et al. [21] solved the problem by using the FPT approximation algo-
rithm of Grohe and Grüber [18] mentioned earlier. This is an FPT algorithm
parameterized by k which on an input digraph D (not necessarily Euler) ei-
ther concludes that D does not contain k disjoint cycles, or returns at least
g(k) disjoint cycles, for some growing, unbounded function g(k). Combining
this result with Theorem 4.4.8 and with the Feedback arc set algorithm as
above yields a constructive FPT algorithm (see the paper for details). Here,
instead, we show a different approach, based on the splitting-off strategy as
in Lemma 4.4.6. We begin by noting the dynamic programming result from
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Gutin et al. [21]. (We note that this algorithm was developed for a more
general problem than cycle-packing, and therefore it is possible that the run-
ning time can be improved; but we will not investigate the question of fastest
running time.)

Lemma 4.4.9 ([21]) There is an algorithm that, given a digraph D, a vertex
ordering of D of undirected cutwidth p and an integer k, finds k arc-disjoint
cycles in D if they exist, and runs in time O∗(2(p+2)k).

Theorem 4.4.10 Let f∗(k) be the smallest value such that every Euler di-
graph contains either at least k arc-disjoint cycles or has a feedback arc set
number at most f∗(k). There is an FPT algorithm, parameterized by k, that
on input (D, k) in time O∗(22kf∗(k)) either returns k arc-disjoint cycles in
D or concludes that no such solution exists. The algorithm does not need to
know the value of f∗(k).

Proof: We proceed as in Lemma 4.4.6, and starting from Dm = D we com-
pute a sequence of gradually smaller digraphs, computing Di from Di+1 using
a simple splitting pair uv, vw ∈ A(Di+1). Let D′ be the transitive digraph
resulting at the end of this process. It is trivial to find a maximum cycle pack-
ing in D′, by Proposition 4.1.3 and since the arc set of a complete digraph on
t vertices decomposes into

(
t
2

)
arc-disjoint directed cycles of length 2. Note

that the number of cycles produced in this is also identical to the feedback
arc set number of D′. Hence, we either find at least k cycles in D′ or we can
construct a feedback arc set of D′ of size less than k.

Now we “unroll” the splitting-off sequence above as follows. Let the cur-
rent graph be Di, created from Di+1 by splitting off the arcs uv, vw. As a
loop invariant, for every graph Di we have either located k arc-disjoint cy-
cles, or Di contains fewer than k arc-disjoint cycles and we have computed
a minimum feedback arc set, necessarily of size at most f∗(k). If we have
found k arc-disjoint cycles in Di, then it is clear that this cycle packing can
be transformed to a cycle packing in the original graph D, by repeatedly
undoing the splitting-off operation. Hence, we assume that the instance Di is
negative, and let Fi be a minimum feedback arc set of Di, where |Fi| ≤ f∗(k).
As in Lemma 4.4.6, we produce a feedback arc set F ′

i of Di+1 of size at most
f∗(k) + 1, by replacing uw by uv, vw in Fi if uw ∈ Fi; we then use the al-
gorithm of Chen et al. [5] to compress F ′

i to a minimum feedback arc set
Fi+1 of Di+1. This gives us a vertex ordering of Di+1 of undirected cutwidth
p ≤ 2|Fi+1| ≤ 2f∗(k) + 2, and we can determine whether Di+1 contains k
arc-disjoint cycles using Lemma 4.4.9, in time O∗(22kf∗(k)). If Di+1 contains
k arc-disjoint cycles, then we can unroll the splitting-off sequence to produce
k arc-disjoint cycles in D; otherwise, |Fi+1| ≤ f∗(k) and the process can be
repeated. �

Finally, we note that the upper bound f(k) known on the relation between
the cycle-packing number and the feedback arc set number is potentially very
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far from being tight. In fact, even for general digraphs the best reported lower
bound is Ω(k log k) due to Alon, as reported by Reed et al. [35]. However, as
we have seen, the structure of cycles in Euler digraphs is much simpler than
in general digraphs. It seems worthwhile to pursue a tighter bound for this
special class.

Problem 4.4.11 Can the bound on f(k) be improved for Euler digraphs,
possibly to polynomial or even O(k log k)?

Finally, let us consider the existence of polynomial kernels for Arc-

disjoint cycles on Euler digraphs. It is tempting to once again look at the
undirected version of the problem, i.e., Edge-disjoint cycles, to heuris-
tically indicate whether a kernel is likely. In this case, we find that Edge-

disjoint cycles does have a polynomial kernel [3], and furthermore, by the
classical Erdős–Pósa result, the corresponding function f(k) in undirected
graphs has f(k) = O(k log k) (both in the edge- and vertex-versions) [12].
However, fundamentally these results rely upon statements about short girth
in undirected graphs (e.g., a graph of minimum degree 3 has girth O(log n)),
which does not transfer to the Euler digraph case.

Problem 4.4.12 Does Arc-disjoint cycles have a polynomial kernel on
Euler digraphs?

4.4.3 Additional Topics

Finally, we review a few additional topics regarding cycle-packings in Euler
digraphs.

Questions of arc-disjoint cycle-packing have been considered in extremal
graph theory. Alon, McDiarmid and Molloy [1] showed that every k-regular
digraph contains a packing of Ω(k2) arc-disjoint cycles, and conjectured that
this can be sharpened to

(
k+1
2

)
arc-disjoint cycles. They also give a con-

struction showing that this result would be tight. Let Ck
n, n ≥ 2k + 1, be the

digraph with vertex set {0, . . . , n−1} and all arcs uv where v = u+i (mod n),
i ∈ [k]. Then fas(Ck

n) =
(
k+1
2

)
, witnessed by the vertex ordering 0, . . . , n − 1,

and Ck
n contains

(
k+1
2

)
arc-disjoint cycles, since there are k arc-disjoint cycles

through the vertex n − 1, whose removal leave a graph isomorphic to Ck−1
n−1.

Brualdi and Shen [4] gave the following further conjectures.

Conjecture 4.4.13 Let k ≥ 2 be an integer. Every bipartite Euler digraph
with partition sizes m and n and at least mn/(k +1) arcs contains a cycle of
length at most 2k.

Conjecture 4.4.14 Every bipartite Euler digraph D = (V,A) with partition
sizes m and n contains a collection of |A|2/(4mn) arc-disjoint cycles.
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In particular, the latter conjecture specializes into the conjecture that
every Euler bipartite tournament decomposes into arc-disjoint 4-cycles.

Another question is the following.

Problem 4.4.15 For which Euler digraphs is the cycle-packing number equal
to the feedback arc set number?

Let us say that a digraph D packs if D contains fas(D) arc-disjoint
cycles. To what extent can we characterize Euler digraphs which pack? One
important result here is by Seymour [38], who showed that it holds for Euler
digraphs which can be linklessly embedded in 3-space. This can be viewed as
an “Euler generalization” of the result that all planar digraphs pack, which
follows from the Lucchesi–Younger theorem [31, 38].

This result also carries over to the weighted version, as follows. Let D =
(V,A) be a digraph (not necessarily Euler) that can be linklessly embedded
in 3-space, and let w : A → Z+ be a balanced set of arc-weights, i.e., for
every vertex v ∈ V ,

∑
uv∈A w(uv) =

∑
vw∈A w(vw). Then the arc-disjoint

cycle-packing number of D, with arc capacities w, and the weighted feedback
arc set number, with arc costs w, are the same.

But for the more general question, presumably asking which individual
digraphs D pack is too ambitious to expect a good answer. For general di-
graphs, a natural option is to restrict attention to a hereditary class of di-
graphs. For the non-Euler case, Guenin and Thomas [19] characterized the
class of digraphs D such that for every subdigraph H of D, the feedback
vertex set number and the vertex-disjoint cycle-packing number of H agree.
The characterization is in terms of a list of forbidden butterfly minors for the
class. Naturally, if the line graph of D belongs to this class, then D and every
subdigraph of D pack in the above sense. However, this does not take into
account the restriction that we are only concerned with Euler digraphs. For
example, consider a digraph D on six vertices ai, bi, i ∈ [3], with arcs aibi and
biaj , i �= j, i, j ∈ [3]. It is easily verified that this graph does not pack; it has
arc-disjoint cycle-packing number 1 but feedback arc set number 2. On the
other hand, consider the graph D′ which instead contains two copies of the
arcs aibi, i ∈ [3]. Then D′ is an Euler digraph, which decomposes into three
arc-disjoint 4-cycles, and with feedback arc set number three (for example,
the two arcs a1b1 and the arc b2a3). Thus D′ packs, and it can be verified
that every Euler subdigraph of D′ also packs. Thus in particular, a question
one could ask is, what is the class of Euler digraphs D such that every Euler
subdigraph of D packs? Regarding the nature of the characterization, con-
sider the following. Let H be an Euler digraph that does not pack. If D is
a digraph which has H as a topological minor, then it follows that D has
an Euler subdigraph that does not pack. The same does not appear to be
true for butterfly minors (although we have no counterexample, the “minor
model” of a butterfly minor is usually a non-Euler subdigraph, even when
the minor itself is Euler).
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Yet further options include considering richer operations than subgraphs,
e.g., considering graph classes closed under splitting-off operations (and re-
moval of loops, i.e., taking Euler subgraphs). This may be easier to answer,
on account of having a more powerful containment operation.

We refrain from explicitly singling out one of these questions as a main
open problem, as it is not clear to us whether any one of them will be more
productive or feasible than the others.

4.5 Linkages and Cut Problems

We now move on to variants of linkages and multiflow-type problems. The
results in this section are of mainly two variants. First, in Sections 4.5.1
and 4.5.2 we consider path-packing and unsplittable multi-commodity flow
type problems in the style of weak k-linkage, where the exact endpoints of
the paths we are asked to pack are specified. We will in particular show that
two-commodity flow admits a polynomial-time algorithm, and recall the
long-open question of whether weak k-linkage is FPT parameterized by k.

Then, in Sections 4.5.3 and 4.5.4 we consider an alternative setup, where
we are asked to find a maximum path-packing on a set of terminals according
to some condition, but it is not specified exactly how many paths of each type
we are required to pack. A main result here is the classical result that the
so-called free multiflow problem is in P on Euler digraphs. We observe
(as Frank did in the 1980s [16]) that, remarkably, this implies that Arc mul-

tiway cut is in P on Euler digraphs, a result that does not carry over even
to undirected Euler graphs. We also review some weighted generalizations of
this result.

4.5.1 Two-Commodity Flow

In this section, we consider problems related to Two-commodity flow and
Multi-commodity flow.

We will use the following formulation. Let D = (V,A) and H = (V, F )
be digraphs (not necessarily Euler), where D is referred to as the supply
graph and H as the demand graph. The goal is to find a set of arc-disjoint
paths in D meeting the demand of H, or equivalently, find a collection of
pairwise arc-disjoint cycles in D + H such that every cycle uses exactly one
arc from F and all arcs of F are covered by the cycles. We refer to the non-
isolated vertices of H as the terminals. Slightly abusing notation, we refer
to this as the weak k-linkage problem, although with input represented as
a pair of directed multigraphs (D,H) as above rather than in the equivalent
alternative representation previously defined in Section 1.6.

In general digraphs, this problem is NP-hard even when H consists of
just two arcs. In fact, for general digraphs, the only polynomial-time solvable



192 M. Wahlström

cases of the problem reduce to standard s-t cuts via Menger’s theorem; see
the end of this subsection.

In this section, we show that when the graph D + H is Euler, then, effec-
tively, we can handle the case where H consists of two pairs of terminals. The
same result also extends to the arc-capacitated two-commodity flow problem,
in the case when the capacities of D + H are balanced; see later.

These results are due to Frank [16], who extended similar results from
undirected Euler graphs to the directed case. The proof below is essentially
from Frank.

The central result is that given a pair of digraphs (D,H) on vertex set
V , such that D + H is Euler and H is acyclic and consists of two pairs of
parallel arcs, the instance (D,H) of weak k-linkage is positive if and only
if it satisfies the directed cut criterion:

d+
D(X) ≥ d−

H(X) for all X ⊆ V. (4.1)

Clearly, this is a necessary condition. We show that it is also sufficient. We
say that a set X ⊆ V is a tight set if equality holds for X in the statement
above, i.e., d+D(X) = d−

H(X). For the duration of this proof, for any digraph
D we will define

d∗
D(A,B) = |(A \ B,B \ A)D| + |(B \ A,A \ B)D|,

i.e., d∗
D(A,B) counts the number of arcs with one end in A \ B and one in

B \ A, regardless of orientation. We begin with some statements about tight
sets.

Lemma 4.5.1 Let (D = (V,A),H = (V, F )) be an instance of weak k-
linkage such that D + H is Euler and the directed cut criterion (4.1) holds
for (D,H). Then the following hold.

1. If X ⊆ V is a tight set, then so is V \ X.
2. If X,Y ⊆ V are tight sets, then d∗

H(X,Y ) ≥ d∗
D(X,Y ) and if equality

holds then X ∩ Y and X ∪ Y are both tight sets.
3. If X,Y ⊆ V are tight sets, then d∗

H(X,V \ Y ) ≥ d∗
D(X,V \ Y ) and if

equality holds then X \ Y and Y \ X are both tight sets.

Proof: 1. Since D + H is Euler, we have

d+
D(X) + d+H(X) = d−

D(X) + d−
H(X)

for all X ⊆ V , from which the statement follows.
2. Recall that for any digraph and any vertex set X, we have

d+(X) + d+(Y ) = d+(X ∪ Y ) + d+(X ∩ Y ) + d∗(X,Y ),

and similarly for d−(X) and d−(Y ). Therefore, rearranging terms we get
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(d+D(X) − d−
H(X)) + (d+D(Y ) − d−

H(Y )) =
(d+D(X ∩ Y ) + d+D(X ∪ Y ) + d∗

D(X,Y )) −
−(d−

H(X ∩ Y ) + d−
H(X ∪ Y ) + d∗

H(X,Y )) =
(d+D(X ∩ Y ) − d−

H(X ∩ Y )) + (d+D(X ∪ Y ) − d−
H(X ∪ Y )) +

+d∗
D(X,Y ) − d∗

H(X,Y ) = 0,

where the whole expression equals 0 since X and Y are tight. Rewriting the
last line, we have

(d+D(X∩Y )−d−
H(X∩Y ))+(d+D(X∪Y )−d−

H(X∪Y )) = d∗
H(X,Y )−d∗

D(X,Y ),

where the left-hand side is non-negative.
3. This statement follows by combining the two previous ones. �

Theorem 4.5.2 Let (D = (V,A),H = (V, F )) be an instance of weak k-
linkage such that D +H is Euler, and H is acyclic and consists of two sets
of parallel arcs. Then (D,H) is a ‘Yes’-instance if and only if it satisfies the
directed cut criterion (4.1).

Proof: Let T = {s1, t1, s2, t2} be the terminals of H, and assume that F
consists of k1 > 0 arcs t1s1 and k2 > 0 arcs t2s2. Hence the task is equivalent
to packing k1 + k2 arc-disjoint paths in D so that k1 of these are from s1 to
t1 and k2 are from s2 to t2. We may assume that D has no isolated vertices
in V \T and every connected component of D +H intersects T . Also observe
that the result follows from Menger’s theorem if T intersects more than one
connected component of D + H; hence we assume that D + H is connected.

Assume for a contradiction that the theorem is false, and let (D,H) be a
minimum counterexample with respect to |A(D + H)|. Since it is clear that
the directed cut criterion is a necessary condition, this implies that (D,H)
is a negative instance that meets the directed cut criterion, and that the
theorem holds for every instance (D′,H ′) where |A(D′ + H ′)| < |A(D + H)|.

In particular, consider a pair of arcs xy, yz ∈ A(D) such that |{x, y, z}| =
3, i.e., when x, y, z are distinct. Let D′ be the result of splitting of xy, yz in
D. Then D′ + H is Euler, and either (D′,H) fails to meet the directed cut
criterion, or the instance (D′,H) is positive. But in the latter case, the paths
packed in D′ also exist in D, by expanding one arc xz (if used) into the two
arcs xy, yz; hence we conclude that for every such pair of arcs xy, yz ∈ A(D),
splitting off xy and yz will break the directed cut criterion. Now note first that
this is possible if and only if there is a tight set X with either X ∩{x, y, z} =
{y} or X ∩ {x, y, z} = {x, z}, and second, by Lemma 4.5.1 in fact both these
tight sets would exist. Furthermore, since d+D(X), d+D(V \X) > 0 (as evidenced
by the arcs xy, yz), we also have d−

H(X), d−
H(V \ X) > 0. Therefore, we find

that for every set X such that splitting off a pair of arcs breaks the directed
cut criterion at X, we have X ∩ T = {si, tj}, i �= j.
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We proceed with the proof. First consider the case when V = T . If D
contains an arc siti, i ∈ {1, 2}, then we can remove that arc together with a
copy of tisi from H, to produce a smaller instance (D′,H ′). It is easy to see
that the directed cut condition holds in (D′,H ′), therefore there is a path-
packing in D′, which can be extended by the additional arc siti to a solution
for (D,H), and we are done. We claim that we can find a pair of arcs su, uv in
D where s ∈ {s1, s2} and |{s, u, v}| = 3. Indeed, by the cut criterion we have
d+D(si) ≥ ki for i = 1, 2, and |({s1, s2}, {t1, t2})D| ≥ k1 + k2. The only case
where you cannot find the pair su, uv is if A consists entirely of arcs s1t2 and
s2t1, but in such a case we have d+D({s1, t2}) = 0 < d−

H({s1, t2}) = k1. Hence
su, uv exist, and as above, splitting off the pair will break the cut criterion,
showing that there are tight sets X, V \ X such that X ∩ {s, u, v} = {u}
and X ∩ T = {si, tj}, i �= j. Without loss of generality we may assume that
s = s1, so that X = {s2, t1} and {s, v} = {s1, t2}. But then there is no way
to select the arcs su, uv without using an arc siti, i ∈ {1, 2}. Hence if there
is a counterexample, it has T ⊂ V .

Now, let u ∈ V \ T such that there is an arc ux ∈ A for some x ∈ T ;
clearly such a vertex exists, and there is also at least one arc vu ∈ A, v �= x.
As before, we conclude that there must exist tight sets X, V \ X such that
X ∩ T = {si, tj}, {i, j} = {1, 2}, and {v, u, x} ∩ X = {u}. Also note that
since x ∈ T in fact X ∩ T is fixed by the condition that x /∈ X. For every
arc vu ∈ A, let Xv be a tight set proving that we cannot split off vu and
ux. Then for every pair of such sets Xa and Xb, since Xa ∩ T = Xb ∩ T we
have d∗

H(Xa,Xb) = 0, so by Lemma 4.5.1 both Xa ∪ Xb and Xa ∩ Xb are
tight. Let X be the intersection of all such sets. We claim that there must be
an arc v′u ∈ A such that v′ ∈ X, v′ �= u. Assume not, and consider the set
X ′ = X \ {u}. Then this set has d−

H(X ′) = d−
H(X) and d+D(X ′) < d+D(X ′),

contrary to the directed cut criterion. But now splitting off v′u and us cannot
break the directed cut criterion, since X ⊆ Xv′ and v′ ∈ X. This gives us a
path packing in (D′,H) which can easily be converted to a path packing in
(D,H) of the same size. �

As Frank observes, this proof suggests an algorithm for finding such a
path-packing: if the directed cut criterion does not apply, reject the instance.
If there is an arc siti in D and tisi in H, then remove this pair of arcs and
continue. Otherwise, find a pair of arcs uv, vw that can be split off without
breaking the directed cut criterion and recursively find a path packing in the
resulting instance (D′,H); then finally, if the new arc uw is used in one of
the paths in D′, replace it by the old arcs uv, vw. This process will run in
polynomial time, assuming the ability to test the directed cut criterion.

Lemma 4.5.3 The directed cut criterion for the instances H considered here
can be tested with three max-flow computations.

Proof: Let X ⊆ V , and consider the cases for d−
H(X). If d−

H(X) = 0, then the
cut criterion holds for X. If d−

H(X) = ki but d+D(X) < ki, then X represents
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an arc-cut of size less than ki from si to ti for i ∈ {1, 2}, which can be tested
via max-flow computations. Finally, if d−

H(X) = k1 + k2, then X represents
an arc-cut of size less than k1 + k2 from {s1, s2} to {t1, t2}, which can be
tested with a max-flow computation by adding a new meta-source s and a
meta-sink t. �

Finally, Frank shows a strongly polynomial time solution for the weighted
version of the problem, Two-commodity flow. In this problem, the input
is a digraph D = (V,A) with an arc capacity function c : A → Z+ as well
as ordered request pairs (si, ti) with demand values ki, i ∈ {1, 2}, with the
condition that at every vertex, the sums of incoming and outgoing capacities
and demands are equal; equivalently, replacing each arc a by c(a) parallel
copies and adding ki copies of the arc tisi defines an Euler digraph. We refer
to this as a balanced two-commodity flow instance. Note that D + H itself
does not need to be Euler. The algorithm uses the same strategy as above,
using a weighted version of the splitting operation, with some additional work
required to prove that the number of steps is bounded by a polynomial. The
proof, as above, is based on reasoning about the structure of tight sets, and
shows that any sequence of weighted splitting operations has polynomially
bounded length.

Theorem 4.5.4 ([16]) The Two-commodity flow problem can be solved
in strongly polynomial time for balanced instances.

We will consider the more general weak k-linkage question later in this
section, but for now we wrap up by recalling a characterization by Frank of
when the directed cut criterion is a necessary and sufficient condition.

Let a star be a directed multigraph where there is either a common tail s
to all arcs, or a common head t to all arcs. It is not hard to see that (D,H)-
Path Packing can be solved via a max-flow computation if H is a star,
hence the problem is in P. Fortune, Hopcroft and Wyllie [15] showed that
for general digraphs, the converse is true – for any fixed digraph H which
is not a star, (D,H)-Path Packing is NP-hard. For Euler digraphs, Frank
showed the following.

Theorem 4.5.5 ([16]) Say that the directed cut criterion solves H for a
directed multigraph H if, for every digraph D such that D + H is Euler, the
instance (D,H) of weak k-linkage is positive if and only if the directed
cut criterion is met. Then for any H, the directed cut criterion solves H if
and only if H is the (arc-disjoint) union of two stars.

Proof: Assume first that H is the union of two stars. We convert (D,H) into
an equivalent instance of two-commodity flow. For each star with a common
tail ti to the arcs, introduce a new vertex si, and replace every arc tiv in H
by an arc tisi in H and an arc siv in D. For a star with a common head si,
instead introduce a new vertex ti in the same way. This reduces to the case
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where H consists of ki arcs tisi for i = 1, 2. If the resulting graph H is not
acyclic, we can additionally introduce vertices s′

i, t′i with ki arcs s′
isi and tit

′
i

in D, and replace the arcs tisi in H by t′is
′
i. It is clear that this preserves the

property of D + H being Euler and the existence of a solution, and therefore
the resulting instance can be solved by the algorithm above.

In the other direction, it is easy to observe that if H is solved by the
directed cut criterion, then so is every subgraph of H. Hence, it is sufficient
to identify a constant number of digraphs H which will occur as a subgraph
in every graph H that cannot be decomposed into two stars, and for each
such H show an instance where the directed cut criterion is insufficient. Such
a list of instances is provided by Frank [16]. �

4.5.2 General Arc-Disjoint Paths Problems

We now consider the more general question of when weak k-linkage is
tractable for Euler digraphs. This question has several variants. One may
consider the case when D + H is Euler, or when D is already Euler (or, in-
deed when both of D and H are Euler separately); one may consider either
the basic weak k-linkage problem or the weighted multi-commodity flow
variant (where arcs of D and H have capacities, respectively demands); and
one may consider H to be one-time fixed or provided as problem input. There
have also been several investigations into the complexity of the problem un-
der various restrictions, including Ibaraki and Poljak [23], Vygen [43], Naves
and Sebö [33], and Frank [17].

For the negative cases, we begin by noting that the three-commodity flow
problem is easily seen to be NP-hard when D is Euler but H is not. Let
(D,H) be the input of weak k-linkage where H consists of two arcs; as
noted, this is an NP-hard problem on general digraphs. Let D′ be the Euler
two-vertex extension of D, with new vertices x and y, and create a demand
graph H ′ from H by adding the vertices x and y as well as μD′(x, y) copies of
the arc yx. Then clearly, (D,H) is positive if and only if (D′,H ′) is positive,
and D′ is Euler (although D′ +H ′ is not). To reach a situation where D′ +H ′

is Euler, we can use a slight variation of this (used by Ibaraki and Poljak [23]).

Lemma 4.5.6 Weak k-linkage is NP-hard when D + H is Euler and the
underlying digraph of H (where all arc multiplicities are reduced to 1) has
three arcs.

Proof: Recall that weak 2-linkage is NP-hard even when A(H) =
{st, ts}. We show a reduction from this problem to an instance (D′,H ′) of
weak k-linkage where D′ +H ′ is Euler. Let (D,H) with H as above be an
instance of weak 2-linkage, and let D′ be the Euler two-vertex extension
of D + H, adding vertices x and y. Now let H ′ be H plus all copies of the
arc xy in D′, and remove the arcs xy from D′. We claim that (D′,H ′) is
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a positive instance of weak k-linkage if and only if (D,H) is a positive
instance of weak 2-linkage.

First, assume that (D′,H ′) is positive, and let P be the corresponding
collection of paths. Then P contains an st-path P1 and a ts-path P2, both
of which are contained in D′. But since x and y are a sink, respectively a
source, in D′, both P1 and P2 must exist in D as well.

In the other direction, assume that D contains an arc-disjoint pair of
an st-path P1 and a ts-path P2. Then P1 + P2 form an Euler digraph, and
therefore D′′ := (D′ + H ′) − (P1 + P2 + st + ts) is balanced. It follows that
there are μD′′(x, y) arc-disjoint cycles through y in D′′, and each of these
cycles must use an arc xy from H ′. Removing the arc xy from each of these
cycles yields a collection of yx-paths in D′′ that together with P1 and P2

forms an arc-disjoint path-packing in D′. �

Hence, in particular, the results on Two-commodity flow cannot be
extended to three or more commodities. Vygen [43] shows that the problem
is still NP-hard if D is additionally assumed to be acyclic.

For the case when H is fixed, say |A(H)| = k, the complexity of the
problem is notoriously open. The case when k = 3 was solved by Ibaraki and
Poljak [23]. Specifically, they take the following approach. Let H be an Euler
digraph with disjoint arcs tisi, i = 1, 2, 3. Then we can reduce the instance
(D,H) of weak 3-linkage to an instance where H = C3 as follows. Add
three terminals x, y, z to D, and arcs xs1, t1y, ys2, t2z, zs3, t3x. Then
the original instance has a weak 3-linkage if and only if the resulting graph
has arc-disjoint xy-, yz- and zx-paths. We then find that the problem has
a solution if there is an Euler trail of D that, starting from x, visits the
new terminals in the order x, y, z (i.e., a trail such that the first visit to y
after the start at x comes before the last visit to z). They are then able to
solve the problem in polynomial time by carefully investigating the structure
of minimal negative instances. Thus weak 3-linkage is in P if D + H is
Euler.

For general H, as far as we know, the possibilities range from the problem
being NP-complete for k = 4 to the problem being FPT parameterized by
k.

Problem 4.5.7 What is the status of weak k-linkage for inputs (D,H)
where D + H is Euler, parameterized by k? Is it FPT or in XP?

A slight variant was considered by Frank, Ibaraki and Nagamochi [17].
They consider the problem variant where the input is an Euler digraph D and
an undirected graph H, say E(H) = {ab, cd}, and the task is to find a pair
of arc-disjoint paths P1, P2 in D where P1 is either an ab-path or a ba-path,
and P2 either a cd-path or a dc-path. They show that this problem can be
solved in polynomial time, via an extensive investigation into the structure
of minimal infeasible instances.
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They note that this problem generalizes the result of Ibaraki and Nag-
amochi, as follows. Let (D,H) be an input to weak 3-linkage where D+H
is Euler and A(H) = {tisi | i ∈ [3]}. Create a graph D′ from D by adding
four new vertices a, b, c, d and arcs t1c, cs2, t2d, da, as3, t3b, bs1. Observe
that D′ is Euler. Now we may observe the following. Any ba-path in D′ will
exhaust all arcs incident with d in D′, and similarly a dc-path will exhaust
a. Thus if the instance is positive, then P1 is an ab-path and P2 is a cd-
path. Then P2 + da + P1 form a directed cb-path, hence since D′ is Euler,
D′ − (P2 + da + P1) contains a directed bc-path. It is clear that these paths
together must form a weak 3-linkage for D.

We end with a different question, again via Frank [16].

Problem 4.5.8 Is weak k-linkage with input (D,H) in P if D + H is
Euler and planar?

The undirected version of this question is known to hold, i.e., Edge-

disjoint packing for undirected graphs, with input (G,H), is in P if G+H
is planar. In fact, for this version, the problem is solved by the undirected
version of the cut criterion (4.1). (The corresponding statement does not hold
for the directed version [16].)

4.5.3 Free Multiflow and Arc Multiway Cut

We now turn to a slightly different model of path-packing problems, and in
the process we will cover a less well known, but very interesting result due to
Frank [16] on a polynomial-time solvable multicut problem on Euler digraphs.

The general setup here is as follows. We have a digraph D = (V,A) and
a set of terminals T ⊆ V , but instead of having an exact set of path requests
(encoded as a digraph H over T , as in the previous section), we have a notion
of allowed or disallowed terminal-terminal paths, and we are looking for a
maximum arc-disjoint path-packing that consists entirely of “allowed” paths.
Somewhat more generally, we can also introduce weights for paths, depending
on their type, and ask for an arc-disjoint path-packing of maximum weight.

Let us begin with the Free multiflow problem, where every simple
terminal-terminal path is “allowed” under the above notion. More concretely,
the input to Free multiflow is a digraph D = (V,A) and a set of terminals
T ⊆ V , and the task is to find a maximum arc-disjoint packing of directed
paths in D where each path goes between distinct terminals in T . Frank
showed that if D is Euler, then the problem has a simple min-max formula,
as follows. For disjoint sets X,Y ⊂ V (D) in a digraph D, let λD(X,Y ) denote
the maximum number of arc-disjoint paths from X to Y in D. We will slightly
abuse notation and use single vertices in place of singleton sets (e.g., we write
t rather than {t}). Then the maximum number of paths in the free multiflow
packing equals
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∑

t∈T

λD(t, T − t),

the sum of the sizes of isolating cuts in D.
For general digraphs, the Free multiflow problem is NP-hard for

|T | ≥ 2 as it generalizes the weak 2-linkage problem, but for undi-
rected graphs there are several classical polynomial-time results in this di-
rection. The most immediately corresponding result is due to Lovász [30],
who proved the corresponding statement for undirected Euler graphs, and on
which Frank’s result is based. However, multiple more general results exist,
including Mader’s theorem on packing internally vertex-disjoint terminal-
terminal paths in general undirected graphs (see Schrijver [37]), as well as
generalizations in terms of packing paths in group-labelled graphs (see Chud-
novsky, Geelen, Gerards, Goddyn, Lohman, and Seymour [8]) and in general
permutation-labelled graphs (see Pap [34]).

However, there is one unique feature of the Euler digraph result that is
not mirrored in any of the variants of the problem on undirected graphs
(even Euler graphs). For each of the above packing problems, one can define
a natural dual cut problem (or, alternatively expressed, a path-hitting
problem) of finding a minimum set X of edges (or arcs, or vertices) such
that removing every element of X leaves a graph with no allowed paths of
the respective type. Concretely, the dual to the Free multiflow problem
would be the classical problem Arc multiway cut, of finding a minimum
set X of arcs in a digraph D such that D − X contains no terminal-terminal
path. Whereas the undirected version, Edge multiway cut, is NP-hard
on undirected Euler graphs for 3 terminals, the min-max theorem for Euler
digraphs directly implies that for this graph class, Arc multiway cut is in
P.

For the rest of this section, let D = (V,A) be an Euler digraph and T ⊆ V
a set of terminals. Let T = {t1, . . . , tp} for p = |T |, and recall that for each
i ∈ [p], di = λD(ti, T −ti) denotes the maximum number of arc-disjoint paths
from ti to the remaining terminals.

We will prove the following theorem, from which an algorithm for Arc

multiway cut will follow easily.

Theorem 4.5.9 Let D = (V,A) be an Euler digraph and T ⊆ V a set of
terminals. There is an arc-disjoint packing P of terminal-terminal paths in
D such that each terminal ti ∈ T is the starting vertex of di paths in P.

Theorem 4.5.9 will in turn follow from the following statement.

Theorem 4.5.10 Let vw ∈ A be an arbitrary arc where v /∈ T . Then there
is an arc uv ∈ A such that splitting off uv and vw will not change the value
of di for any i ∈ [p].

Proof: Recall that d+H(S) denotes the number of arcs out of S in a digraph
H.
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Let uv, vw ∈ A be an arbitrary pair of arcs, and assume that splitting
them off in D decreases the value of di for some i ∈ [p]. Let D′ be the
result of the splitting-off operation. Then there exists a set Vi ⊆ V such
that Vi ∩ T = {ti}, and d+D′(Vi) < di in D′, which is true if and only if
d+D(Vi) = di and Vi ∩ {u, v, w} ∈ {{v}, {u,w}}. We say that the set Vi blocks
the splitting off uv, vw in D. Therefore, similarly to the concept of tight sets
in the previous section, let us refer to a set Vi ⊆ V as i-critical if Vi∩T = {ti}
and d+D(Vi) = di. A set U ⊆ V is critical if it is i-critical for some i ∈ [p]. We
make a few observations about critical sets.

Observation 1: For every i ∈ [p], the i-critical sets are closed under union
and intersection, and for two i-critical sets Vi, V ′

i , there is no arc between
Vi \ V ′

i and V ′
i \ Vi. This follows from the well-known submodularity of cuts

that for any X,Y ⊆ V we have

d+D(X) + d+D(Y ) ≥ d+D(X ∩ Y ) + d+D(X ∪ Y ),

with equality only if there are no arcs between their symmetric differences.
Observation 2: If Vi is i-critical and Vj is j-critical, i �= j, then Vi \ Vj

is i-critical and Vj \ Vi is j-critical, and there is no arc between Vi ∩ Vj and
V \ (Vi ∪ Vj). This follows similarly as above, with the additional ingredient
that for an Euler digraph D, we have d+D(S) = d+D(V \ S).

The proof now proceeds in two cases. In the first case, assume that there
is a critical set Vi, without loss of generality i-critical, such that v ∈ Vi and
w /∈ Vi. Let Vi be a minimal such set, and pick an arc uv ∈ A such that
u ∈ Vi. Such an arc must exist, as otherwise d+(Vi − v) < d+(Vi) = di. Let U
be a critical set that blocks the splitting off of uv and vw. First, assume that
v ∈ U ; hence u,w /∈ U . Then U is not i-critical, since otherwise U ∩ Vi ⊂ Vi,
contradicting the choice of Vi; but if U is j-critical, j �= i, then v ∈ U ∩ Vi

while w /∈ U∪Vi, which contradicts observation 2. Thus U∩{u, v, w} = {u,w}
But U cannot be i-critical, by observation 1 and the arc uv, and it cannot be
j-critical, i �= j, since Vi \ U ⊂ Vi, contradicting the choice of Vi. Thus the
first case is handled.

In the second case, let Vi be a maximal critical set with w ∈ Vi, v /∈ Vi.
Assume that Vi is i-critical. Let uv ∈ A such that u /∈ Vi; this exists, since
otherwise d+(Vi + v) < d+(Vi) = di. Let U be a critical set that blocks the
splitting of uv and vw. Then U ∩ {u, v, w} = {u,w}, as otherwise the set
U brings us back to case 1. If U is i-critical, then U ∪ Vi is an i-critical set
contradicting the choice of Vi, but if not, then w ∈ U ∩ Vi and v /∈ U ∪ Vi,
which is a contradiction by observation 2. Therefore, in both cases we find
that there exists an arc uv such that uv and vw can be split off, and clearly if
neither case applies then there cannot exist a critical set blocking the splitting
off of uv and vw for any arc uv. �

The proof of the path-packing statement (Theorem 4.5.9) follows from
this, by first repeatedly splitting off arcs until every vertex except T is
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isolated, then unrolling these operations while maintaining a path-packing.
Frank notes that a capacitated version can also be shown to be solvable in
strongly polynomial time.

The following is an easy corollary of the path-packing result.

Theorem 4.5.11 The Arc multiway cut problem on Euler digraphs is
polynomial-time solvable.

Proof: Clearly, the solution must have cardinality at least
∑p

i=1 di, by the
existence of a path packing. But it is not difficult to produce a solution of
exactly this size. For i = 1, . . . , p, let Vi be the i-critical set of minimum
cardinality. By observation 1 of the previous proof these sets are unique, and
by observation 2 the sets are also pairwise disjoint. Thus the set

⋃
i(Vi, V \

Vi)D is an arc multiway cut of cardinality matching the size of a path-packing,
and therefore clearly optimal. �

As noted, the remarkable aspect of this result is that no comparable state-
ment can be found for undirected graphs. If G is undirected and Euler, then
even though there is a min-max result corresponding to Theorem 4.5.9 for
the size of a path packing, there is no corresponding way to find a cut that in-
tersects every path only once. In particular, the collection of closest min-cuts
would hit some paths twice.

Finally, we have the following variant of Theorem 4.5.10, which generalizes
a result of Lovász [30] for undirected Euler graphs, and has been shown
independently by Frank [16] and by Jackson [25]. The proof is in the same
spirit as Theorem 4.5.10.

Theorem 4.5.12 Let D = (V,A) be an Euler digraph and let vw ∈ A. There
exists an arc uv ∈ A such that splitting off uv and vw does not affect the
value of λ(s, t) for any vertices s, t ∈ V − v.

4.5.4 General Integral Weighted Path Packings

We now review a weighted generalization of Free multiflow due to Hirai
and Koichi [22]. To present the result, we need to introduce several notions.

First, we define networks. We will use a slightly different notion of a
network than that given in Section 1.9, so to avoid ambiguity we introduce
a different term. A terminal network is a triple (D,T, c) consisting of a
digraph D = (V,A), a set of terminals T ⊆ V , and a set of integer arc
capacities c : A → Z+. We say that the network is balanced at v for a
vertex v ∈ V if ∑

uv∈A

c(uv) =
∑

vw∈A

c(vw).

A balanced terminal network (respectively inner balanced terminal
network) is a network which is balanced at every vertex v (respectively at



202 M. Wahlström

every vertex v ∈ V \T ). This definition of a network differs from the usual one
in that instead of an explicit balance vector, we have a set of terminals over
which a flow is to be maximized. A multiflow over T is a pair (P, λ) where
P is a collection of directed paths with all endpoints in T , λ : P → R+ a set
of flow values for the paths in P, and (P, λ) satisfy the capacity constraints,
i.e., ∑

P∈P:a∈P

λ(P ) ≤ c(a)

for every arc a ∈ A. Finally, a directed distance on T is a function μ :
T × T → R+ such that μ(x, x) = 0 for every x ∈ T . Note that the triangle
inequality is not required to hold. For a directed path P , starting and ending
at terminals s and t in T , we let μ(P ) = μ(s, t). For a directed distance μ
on T and a multiflow (P, λ) over T , the μ-weighted flow value of (P, λ)
equals ∑

P∈P
λ · μ(P ).

The μ-weighted maximum multiflow problem (μ-MFP) is then defined
as the problem where the input is a terminal network (D,T, c) and a directed
distance μ on T , and the task is to find a multiflow (P, λ) over T which
maximizes the μ-weighted flow value.

This problem will in general have a fractional optimum, but for some
directed distances μ, the system will have an integral optimum for every bal-
anced terminal network – for example, if we fix a directed distance μ where
μ(s, t) = 1 for all s, t ∈ T , s �= t, then μ-MFP corresponds to the Free mul-

tiflow problem, and the statement would follow from Theorem 4.5.9. The
results of Hirai and Koichi imply a characterization of all directed distances
μ such that μ-MFP has an integral optimum for every balanced terminal
network.

The characterization is as follows. Let Γ be an oriented tree, and α a set
of non-negative (real-valued) edge weights of Γ . We define a directed metric
dΓ,α on V (Γ ) by letting dΓ,α(u, v) for u, v ∈ V (Γ ) be the sum of α(e) over
all edges e of E(Γ ) that are oriented from u to v in the path Puv from u to
v in Γ . An oriented tree realization of a directed distance μ on T is a
triple (Γ, α, {Ft}t∈T ) where Γ is an oriented tree, α : E(Γ ) → R+ a set of
of non-negative edge lengths of Γ , and {Ft}t∈T a collection of subtrees of Γ ,
such that

μ(s, t) = min
a∈Fs,b∈Ft

dΓ,α(a, b)

for all pairs s, t ∈ T .

Theorem 4.5.13 ([22]) Let μ be a directed distance on a set of terminals T .
Then the μ-MFP is integral for every balanced network (D,T, c) if and only
if μ has an oriented tree realization.
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Let us consider a few examples. First, let Γ consist of a single arc st, with
α(st) > 0. Then dΓ (s, t) = α(st) > 0, while dΓ,α(t, s) = 0 since the arc st
is traversed in the wrong direction. Hence μ-MFP reduces to the usual max-
flow problem for any directed distance μ realized by Γ . For another example,
the Free multiflow problem can be realized by a unit-weighted star Γ ,
with all arcs oriented into the root and with the collection {Ft}t∈T being a
bijection between T and the leaves of Γ .

Hirai and Koichi also give a matching min-max theorem for the positive
cases, in terms of packing cuts in the oriented tree that realizes μ; we omit
the details here.
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5. Planar Digraphs

Marcin Pilipczuk and Michał Pilipczuk

In this chapter we focus on planar directed graphs, that is, directed graphs
that can be drawn on a plane (or, equivalently, on a sphere) without arc
crossings. We will alternate between the planar and spherical embeddings,
picking the more convenient for the current argumentation.

A planar embedding of a digraph D is a mapping π that assigns a
distinct point in the Euclidean plane to every vertex of D, and a curve without
self-intersections to every arc of D in such a manner that for every arc e =
(u, v), the curve π(e) has endpoints π(u) and π(v), and the images of two arcs
are disjoint (except for endpoints if the arcs in question share end vertices).
A face in an embedding π is a connected component of the plane minus the
image of π; a face is incident with all vertices and arcs whose images under π
lie in the closure of the face. A spherical embedding is defined analogously
with the target surface being a sphere instead of a plane; intuitively, the
main difference between a planar and a spherical embedding is that the first
distinguishes one face as an infinite one.

After this very brief introduction, we refrain here from introducing all for-
mal definitions and notation concerning graph embeddings, assuming instead
a common intuitive understanding. In case of doubt, we refer to other mono-
graphs for formal details, e.g., to the book of Mohar and Thomassen [22].

The main goal of this chapter is to show, from multiple angles, how the
planarity assumption imposes structure on digraphs and how such structure,
in conjunction with topological arguments, can be used algorithmically. In
other words, the main focus here is to show various algorithmic techniques
used to tackle planar digraphs. Thus, instead of providing a survey of the vast
number of algorithmic results concerning embedded digraphs, we highlight
three of them, chosen to highlight different aspects of planar digraphs.

First, in Section 5.1 we show an example of a low polynomial-time al-
gorithm for planar graphs, namely a near-linear algorithm for single-source
and single-sink maximum flow. Second, in Section 5.2, we discuss the classic
problem k-Disjoint paths, where the topology assumption greatly improves
the tractability of the problem. Finally, in Section 5.3 we discuss the Directed
Grid Theorem for planar digraphs.
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While we tried to make the description in every section as self-contained as
possible, some technical details are missing in order to make the presentation
clear and concise. In every section, we provide relevant references to full
proofs and further reading.

5.1 Low Polynomial-Time Algorithms

Part of the importance of planar graphs stems from the fact that many prob-
lems admit much more efficient solutions when the input graph is required to
be planar. One of the areas where such improvements are particularly visible
are low polynomial-time algorithms, such as algorithms for shortest paths or
maximum flows. Decades of research led to linear-time or near-linear-time
(e.g., O(n log n) or even O(n log log n)) algorithms for problems requiring
significantly larger running time in general graphs.

In this section, we do not aim at a full survey of these results for planar
digraphs; the interested reader is referred to the free online book of Klein and
Mozes [19]. Instead, we present one of the most elegant results in the area,
namely the O(n log n)-time algorithm for finding the maximum flow between
two given vertices due to Borradaile and Klein [2], with the simplified analysis
due to Erickson [9]. We chose this result, as it involves a number of interesting
techniques and properties of planar (di)graphs: duality of spanning trees in
primal and dual graphs, duality of separators and cycles in dual graphs, as
well as winding numbers analyzed via universal covers. The exposition mostly
follows Chapter 10 of the book of Klein and Mozes [19], but we mainly focus
on intuition, sweeping most of the technical details under the rug.

Because we will be working with residual capacities, we assume that we
are given as an input a planar digraph D where for every arc e = (u, v) in
D its reversed twin rev(e) = (v, u) is also in D. The input also specifies two
distinguished vertices s and t, called the source and sink, and a capacity
function u : A(D) → Z≥0. If we replace every pair of arcs {e = (u, v), rev(e)}
by an undirected edge uv, we obtain a planar undirected graph G. Without
loss of generality, we can assume that G is connected. Let us fix some planar
embedding of G where t lies on the outer face, denoted f t.

In what follows, we will work with the assumed embedding of G, but also
implicitly treat every undirected edge uv of G as two arcs (u, v) and (v, u) of
D. Thus, for an arc e of D, we will speak about the face f−(e) to the right
(clockwise) of e and the face f+(e) to the left (counter-clockwise) of e. Note
that these notions formally refer to the faces of the embedding of G. We refer
to Figure 5.1 for the basic notation of the dual graphs used in this proof.

For this fixed embedding, a dual of the graph G is a graph G∗ whose
vertex set is the set of faces of the embedding, and where an edge uv ∈ E(G)
corresponds to an edge joining the two faces incident to uv in the embedding
of G. Clearly, G∗ is a planar graph with a natural embedding induced by the
embedding of G. As in the case of D and G, if we replace every edge of G∗

with two arcs in both directions, we obtain a digraph D∗. If e = (u, v) is an
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u vuv

e = (u, v)

rev(e) = (v, u)

f−(e)

f+(e)

e∗ rev(e∗)

Figure 5.1 Notation of the dual graphs, that is, graphs D, G, G∗, and D∗.

arc of D, then by e∗ = (f−(e), f+(e)) we denote the corresponding arc of D∗.
We translate the capacities in D to lengths or distances in D∗: for an arc e ∈
A(D), we assign in D∗ distances w(e∗) = u(e) and w(rev(e∗)) = u(rev(e)).

Furthermore, in this section we assume that every multiset of arcs of D∗

of polynomial size has a distinct sum of capacities. This property will turn
out to be very helpful in the analysis. In general, this can be obtained by
slightly perturbing every capacity; however, such a step would require some
technical analysis of the required precision. Luckily, as we will discuss later,
in our algorithm we can mimick such a property by a number of carefully
chosen tie-breaking rules.

5.1.1 Warm-Up: Source also Lying on the Outer Face

As a warm-up, let us consider the case when the source s also lies on the
outer face f t. Draw a curve from s to t inside f t: the curve partitions the
arcs incident to f t in D∗ into two sets, A∗

l and A∗
r , to the left and to the

right of the curve, respectively. Consider a graph D∗
lr, constructed from D∗

by splitting f t into two vertices f t
l and f t

r ; the first one is incident with arcs
A∗

l , and the second one with A∗
r . The critical observation is that a minimum

cut between s and t in D corresponds to a shortest path from f t
l to f t

r in
D∗

lr; see Figure 5.2. This can be found in O(n log n) time using Dijkstra’s
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s t
γ

G

ft
l

ft
r

Figure 5.2 Finding a minimum cut is equivalent to finding a shortest path in the
dual in the case of s and t lying on a common face. The edge γ is an auxiliary
edge of infinite distance that splits the face incident with s and t into two faces
f t
l and f t

r ; a shortest path in the dual graph between these faces corresponds to a
minimum cut between s and t in the primal graph.

algorithm, or in linear time using the algorithm of Henzinger, Klein, Rao,
and Subramanian [14]. Both these algorithms find not only a shortest path
from f t

l to f t
r , but also the minimum distances from f t

l to all the vertex of D∗
lr.

To obtain a maximum flow, we need to work a bit harder. Let dist(f) be
the (shortest path) distance from f t

l to f in the graph D∗
lr. This distance has

been computed already by the shortest path computation that identified a
minimum cut. For an edge f−(e)f+(e) of G∗ originating in an arc e of D,
we send a flow of size dist(f+(e)) − dist(f−(e)) along the arc e (that is, if
dist(f+(e)) < dist(f−(e)) we send a flow of dist(f−(e)) − dist(f+(e)) along
rev(e)). Let x be the flow defined. Observe the following:

• Since dist(f) is the distance from f t
l to f , the flow x respects capacities:

x(e) = dist(f+(e)) − dist(f−(e)) ≤ w(e∗) = u(e).
• Since G∗ is dual to G, the flow x respects the conservation property at

every vertex except for s and t; the latter is because in D∗
lr the face f t

has been split in two. One can view this splitting as drawing an auxiliary
edge st, that is not present in x. Consequently, x is an (s, t)-flow of value
dist(f t

r).

From the above, we can obtain the following result of [13, 14]:

Theorem 5.1.1 Given a planar digraph D with capacities and two distin-
guished vertices s and t, such that D can be embedded on a plane with s and t
lying on the same face, a maximum (s, t)-flow and a minimum (s, t)-cut can
be found in linear time.

5.1.2 The Algorithm for the General Case

In the general case, we no longer assume that s lies on the face f t, and hence
we cannot construct a planar digraph D∗

lr. However, we can still rely on the
crucial idea of the flow construction in the previous section: a shortest paths
computation from f t in D∗ yields a distance function dist(·) that can be used
as a potential on faces to define a flow.
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That is, similarly as in the previous case, let dist(f) be the distance of f
from f t in D∗, and define a flow x as before: x(e) = dist(f+(e))−dist(f−(e))
for an arc e of D with dist(f+(e)) ≥ dist(f−(e)). Since now G∗ is the actual
dual of G (we do not split f t), with the same argument as in the previous
section, x is a circulation respecting capacities.

Furthermore, let T ∗ be the computed shortest path tree in D∗, which is
an out-branching with root f t. Note that, since T ∗ is a shortest path tree,
for every arc (f−(e), f+(e)) of T ∗ we have dist(f+(e)) = dist(f−(e))+w(e∗)
and, consequently, the arc e is saturated in the flow x.

We shall now treat x as a flow from s to t. Initially the amount of the
flow sent from s to t is zero, since x is a circulation at the beginning. We will
gradually increase the amount of flow sent from s to t while maintaining the
following invariant:

T ∗ is an out-branching with root f t

and all corresponding arcs of D are saturated by x. (5.1)

At every step, given T ∗, let T ∗
G be the corresponding (undirected) span-

ning tree in G∗. Let TG be the set of edges of G that are not crossed by the
edges of T ∗

G; then TG is a spanning tree of G. The tree TG contains a unique
s-to-t path P in D. We augment x by sending the maximum possible amount
of flow along this path (which may be zero, if one of the arcs of P is already
saturated).

Then, we modify the out-branching T ∗ as follows. Let e be one of the arcs
saturated on the path P . We would like to add the arc e∗ = (f−(e), f+(e))
to T ∗. However, then T ∗ has one arc too many—it would no longer be an
out-branching—and we need to fix it.

First, consider the case when f−(e) is a descendant of f+(e) in the out-
branching T ∗ (see Figure 5.3). Then e∗, together with the path from f+(e)
to f−(e) in T ∗, form a directed cycle C∗ in D∗. Note that the cycle C∗ has
the vertex s to the left and the vertex t to the right. Consequently, the arcs of
D corresponding to the arcs of C∗ form an (s, t)-cut that, by Invariant (5.1)
and the choice of e, consists of arcs saturated by x. This cut certifies that x
is a maximum (s, t)-flow and we can terminate the algorithm.

In the other case, when f−(e) is not a descendant of f+(e) in T ∗, we
replace the arc e′ of T ∗ that has tail in f+(e) with the arc e∗; see Figure 5.4.
Since f−(e) is not a descendant of f+(e), f−(e) and f+(e) lie in different
connected components of T ∗\{e′} and, consequently, such an operation main-
tains the invariant that T ∗ is an out-branching. Furthermore, since we choose
e∗ to be saturated, Invariant (5.1) remains satisfied.

5.1.3 Implementing a Single Step

It turns out that a single step of the algorithm can be implemented very
efficiently, in O(log n) time. However, since such an improvement belongs to
the area of advanced data structures, we present here only the key ideas.
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f t

f+(e)

f−(e)

e∗

s

t
P

Figure 5.3 When f−(e) is a descendant of f+(e), then the saturated arcs e∗ and
of T ∗ form a saturated cut certifying that the current flow is a maximum one.

Let us analyze our needs. We need to maintain the trees T ∗
G and TG. In

a single step, we first need to compute the minimum residual capacity on a
single path in TG, and then augment the flow x by sending this capacity along
the path. Then, we modify TG and T ∗

G by switching a constant number of
edges. All these operations can be performed in amortized O(log n) time per
operation using one of the elaborate data structures for maintaining dynamic
trees, such as the link-cut trees of Sleator and Tarjan [28]. For full details,
we refer to the book of Klein and Mozes [19].

Recall that, for the sake of further analysis, we have assumed that every
polynomial-size multiset of arcs of D∗ has unique total length. We remark
here that this can be mimicked in the algorithm by careful tie-breaking in
two places where the algorithm can make an arbitrary choice: when it chooses
the initial shortest-path out-branching T ∗, and when it chooses the saturated
arc e in each step of the algorithm.
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f t

f+(e)

f−(e)

s

t
Pe∗

e

Figure 5.4 When f−(e) is not a descendant of f+(e), we replace e′ with e∗ in the
out-branching T ∗.

5.1.4 Bounding the Number of Steps

In this section we focus on the following question: how many steps can the
algorithm make? We show that every arc of D∗ is evicted from T ∗ at most
once, giving an O(n) bound on the number of steps, and, consequently, the
promised O(n log n) bound on the running time of the algorithm.

Winding numbers. For the moment, it is convenient to interpret the planar
embedding of D and D∗ as an embedding on a sphere, where t is placed at
the north pole and s is placed at the south pole; see Figure 5.5. One can think
of the choice of the initial circulation x as a maximally westbound circulation
in this embedding: we circulate as much flow as possible around the north
pole in the westbound direction. Each iteration corresponds to “unwinding”
some of this flow, and sending it from s to t.

To measure this “unwinding”, we need to fix some reference curve that
would serve as a prime meridian between s and t. Although any s-to-t path
A in G would suffice, for clarity we choose Q to be the s-to-t path in TG

at the first iteration of the algorithm. In the embedding, without loss of
generality we can assume that Q is drawn as a straight line along the prime
meridian, and we can use the notion of west or east of Q. To use Q as a
reference line, we define a winding number of a walk W in D∗ as the total
number of signed crossings of Q by W . That is, we go along the walk W , and
whenever we cross Q eastbound, we add 1 to the winding number, and when
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s

t

Q

circulation
x

Figure 5.5 Visualizing t as the north pole, s as the south pole, the reference path
Q as the prime meridian, and the initial circulation x as a maximally westbound
circulation.

we cross Q westbound, we subtract 1. In the current step of the algorithm,
given the current out-branching T ∗, the winding number of a vertex f of
D∗ is the winding number of the unique root-to-f path in T ∗. Note that the
choice of Q ensures that every winding number is zero at the beginning of
the algorithm. We emphasize that, although T ∗ and TG change in the course
of the algorithm, the path (meridian) Q remains fixed.

The following critical observation due to Erickson [9] formalizes the
“unwinding” nature of a single step of the algorithm.

Lemma 5.1.2 Assume that in a step of the algorithm, in an out-branching
T ∗ a new arc e∗ is introduced and an arc e′ with tail f+(e) is removed. Then,
in the new out-branching, the winding number of every descendant of f+(e)
is increased by one, while all other winding numbers of vertices of D∗ stay
the same.

Proof: First, note that replacing e′ with e∗ changes the root-to-f paths
in T ∗ only for vertices that are descendants of f+(e) in T ∗. Consequently,
the winding number of every other vertex is not changed in the step of the
algorithm.

For the affected vertices, consider the out-branching T ∗ before the step,
and let P− and P+ be the root-to-f−(e) and root-to-f+(e) paths, respectively.
Let w be the last vertex in common of P− and P+, and let C be a closed
walk in D∗ that consists of P−, the arc e∗, and the reversed path P+. Note
that during the step, for every descendant f of f+(e) in T ∗ the root-to-f
path in T ∗ changes in the following manner: its prefix P+ is replaced by P−
followed by the arc e∗. Consequently, the change of the winding number of
the root-to-f paths equals the winding number of C.

By the choice of w and the fact that T ∗ is an out-branching, C is actually
a simple cycle in D∗. Furthermore, by the choice of e∗ in the step of the
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algorithm, C has t to its left, and s to its right; in other words, it is an
eastbound cycle in D∗, and thus has winding number exactly +1. This finishes
the proof of the claim. ��

Observe that Lemma 5.1.2 alone proves that the algorithm makes O(n2)
steps, as every winding number cannot be larger than the size of D∗ (every
root-to-f path in T ∗ is a simple path). We now present a more elaborate
argument to show a linear bound.

Shortest paths. Recall that the distances dist(·) in D∗ have been inherited
from the capacities u(·) in D in a standard manner. Given a flow y in D, we
can consider the residual capacities uy := u − y, and define accordingly the
residual distances disty.

If a flow y respects capacities—and the flow x maintained by the algorithm
does respect the capacities—then no arc of D∗ has negative length in disty.
Invariant (5.1) ensures that every arc of T ∗ has zero length in distx. As a
corollary, we infer that T ∗ is a shortest-path out-branching from f t with
respect to the distances distx.

Consider now a flow y that sends the same amount of flow from s to t as
x, but sends all the flow along the path Q, ignoring the capacities. Although
y may not respect the capacities, we can still define uy and disty. Readers
familiar with the potential method in designing shortest path algorithms will
find the following lemma immediate.

Lemma 5.1.3 T ∗ is a shortest-path out-branching from f t with respect to
the distances disty.

Proof: The crux is that a flow y′ := x − y (i.e., the flow x that additionally
sends back the flow from t to s along the reversed path Q) is a circulation
(possibly not respecting the capacities).

Since y′ is a circulation, we can define a potential function ζ : V (D∗) → R

such that y′(e) = ζ(f+(e)) − ζ(f−(e)) for arcs e of D with ζ(f+(e)) ≥
ζ(f−(e)). Indeed, we can treat the values of y′ as (possibly negative) capac-
ities of the arcs of D, translate them into a distance function dist′ in D∗

as before, and define ζ(f) to be the minimum distance from f t to f with
respect to distances dist′. A direct check shows that ζ satisfies the required
properties and, since y′ is a circulation, every walk from f t to f has total
length exactly ζ(f).

Consequently, if a path P from f t to f has length distx(P ) with respect
to distances distx, then it has length distx(P )−ζ(f) with respect to distances
disty. Since ζ(f) does not depend on the path P , but only on the endpoint
f , we have that P is a shortest path from f t with respect to distx if and only
if it is a shortest path with respect to disty. The lemma follows. ��

However, the simplicity of the flow y allows us to easily relate the distances
in disty to the distances in dist that originated from the original capacities
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Figure 5.6 Universal cover of D∗.

u. Indeed, if a path P has winding number i and the flow y sends λ amount
of flow, then

disty(P ) = dist(P ) − λ · i.

That is, the difference disty(P )−dist(P ) depends only on the winding number
of P . Consequently, we obtain the following:

Corollary 5.1.4 For every vertex f of D∗, the root-to-f path in T ∗ is the
shortest f t-to-f path in D∗ among the paths that have winding numbers equal
to the winding number of f .

Universal cover. Corollary 5.1.4 speaks about a shortest path among all
paths of a given winding number. A convenient way to tackle the winding
number is via universal covers.

In our setting, consider the following infinite cover D
∗

of the graph D∗: we
cut D∗ along the path Q (which is a simple path in D, and thus corresponds
to a face-edge curve of G∗) and glue countably many copies of D∗ cut along
the path Q; see Figure 5.6. The cover D

∗
inherits the distances dist from D∗.

We number the copies with integers, increasing in the eastbound direction.
The i-th copy of D∗ is denoted by D

∗
i , the i-th copy of a vertex f is denoted

by fi, etc. Since the path Q leads from s to t, the graph D
∗

has a single
face t∗ corresponding to the vertex t (the north pole) and a single face s∗

corresponding to the vertex s (the south pole). As in Figure 5.6, one can view
the embedding of D

∗
as an infinite strip, with t∗ and s∗ on its sides.

Observe that, given an integer i, every walk W in D∗ can be lifted uniquely
to a walk W i in D

∗
that starts in the i-th copy of the first vertex of W , and

then proceeds along the corresponding copies of the edges of W . The crux of
the construction lies in the following observation: if the winding number of
W is j, then the last vertex of W i lies in D

∗
i+j . In other words, when walking

in D
∗
, the index of the current copy reflects the winding number of the path

traversed so far (when projected back to D∗).
Consequently, if at some iteration the root-to-f path in T ∗ has winding

number i, then it corresponds to a path from f t
−i to f0 and, in the other
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f t
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Figure 5.7 Final argument in the proof of the linear bound on the number of steps
of the algorithm: the vertex f0 has to be inside and outside γ at the same time, as
it needs to be reachable both from f t

−i−1 and f t
−j−1 without intersecting the closed

curve γ.

direction, every f t
−i-to-f0 path in D

∗
projects to a f t-to-f path in D∗ of

winding number i. By Corollary 5.1.4, we have the following.

Lemma 5.1.5 If at some iteration the root-to-f path in T ∗ has winding num-
ber i, then it corresponds to a shortest path from f t

−i to f0 in D
∗
.

Recall now that we have assumed that every nonempty multiset of arcs
in D∗ of polynomial size has unique total cost. This implies that a shortest
path from f t

−i to f0 is unique for any vertex f of D∗ and any i bounded
polynomially in the size of D. Furthermore, if we draw all these shortest
paths for a fixed vertex f and |i| ∈ O(n2), they do not cross, that is, we
obtain an in-branching in D

∗
with root f0.

Aiming at a contradiction, consider now an arc e of D∗ that was evicted
twice from the tree T ∗. Assume that the head of e is f and the tail is f ′,
and assume that the winding number of f just before the first eviction is i,
and before the second is j. Due to Lemma 5.1.2, the winding number of f
increased by one in both considered steps of the algorithm (when e is evicted
from T ∗), which implies that i < j. Furthermore, it cannot hold that i+1 = j,
as a arc from T ∗ different than e has its head in f immediately after the first
of the considered steps, and thus the root-to-f path in T ∗ needs to change
at least once between the considered steps. Thus, we have j − i ≥ 2.

As we discussed, the root-to-f paths in T ∗ in the two considered steps
correspond to two paths in D

∗
, one from f t

−i to f0 (henceforth denoted Pi)
and one from f t

−j to f0 (henceforth denoted Pj). Let P ′
i and P ′

j be the paths
Pi and Pj with the last arc removed; note that the endpoint of P ′

i and P ′
j is

f ′
ι for some ι ∈ {−1, 0, 1}. If we connect f t

−i with f t
−j by a curve inside the

face t∗, together with P ′
i and P ′

j we obtain a closed curve γ.
Since Pi and Pj are simple paths, we have that f0 does not lie on γ. Since

Pi and Pj do not intersect (by the uniqueness assumption), we can speak
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about vertices or arcs of D
∗
inside and outside the curve γ (see Figure 5.7).

The main question now is: where does the vertex f0 lie: inside or outside γ?
Consider the first discussed iteration. After the iteration, the root-to-f

path in T ∗ corresponds to an f t
−i−1-to-f0 path Pi+1 in D

∗
. Since j − i ≥ 2,

the vertex f t
−i−1 is inside γ and, as Pi+1 cannot cross Pi or Pj , the vertex

f0 also needs to lie inside γ.
After the second discussed iteration, the root-to-f path in T ∗ corresponds

to an f t
−j−1-to-f0 path Pj+1 in D

∗
. However, now f t

−j−1 lies outside γ and,
by a similar argument, implies that f0 also lies outside γ. This is the desired
contradiction. Thus, every arc can be evicted from T ∗ at most once, giving an
O(n) bound on the number of steps and, consequently, the claimed O(n log n)
running time bound for the algorithm.

5.1.5 Perspective

We have presented an algorithm for finding maximum single-source single-
sink flows in planar digraphs running in near-linear time O(n log n). While
this result definitely does not cover the vast literature on algorithms in planar
digraphs that run in low-polynomial time, we have chosen it to present key
properties of planar digraphs that allow such running times. For a more
exhaustive picture of related algorithms, as well as a presentation of the
above algorithm from a different angle, we refer to the free textbook of Klein
and Mozes [19].

5.2 The Disjoint Paths Problem

Let us consider the following problem:

k-Disjoint paths
Input: A digraph D with k pairs of terminals (s1, t1), . . . , (sk, tk).
Question: Does D have vertex-disjoint directed paths P1, . . . , Pk such
that each Pi leads from si to ti?

In the undirected setting, the fixed-parameter tractability of this prob-
lem is one of the main algorithmic corollaries of the Graph Minors project
of Robertson and Seymour: they gave an algorithm for it with running time
f(k) · n3 [24]. In directed graphs, however, the problem is completely in-
tractable, as it is already NP-hard for k = 2, as shown by Fortune, Hopcroft,
and Wyllie [11]. Some tractability can be retained in certain subclasses of
digraphs. For instance, the problem can be solved in time nk+O(1) in acyclic
digraphs by a simple dynamic programming algorithm, but it remains W[1]-
hard in this setting, as shown by Slivkins [29], which means that the existence
of a fixed-parameter algorithm with running time of the form f(k) · nO(1) is
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Figure 5.8 Three solutions to k-Disjoint paths on three terminal pairs, marked
by different shapes. The first two are homotopic to each other, but not to the third.

unlikely. In this context, planar digraphs seem to be a setting where tractabil-
ity is plausible, due to the inherent topological character of the k-Disjoint
paths problem. Indeed, in this section we will sketch the following result of
Schrijver [26].

Theorem 5.2.1 ([26]) The k-Disjoint paths problem can be solved in time
nO(k2) when the input digraph is planar.

Take an instance (D, ((si, ti))i=1,...,k) of the problem where D is planar,
and suppose there is a solution P1, . . . , Pk. Imagine each path Pi as a piece of
string in the plane; vertex-disjointness means that the strings neither cross
nor touch each other. Now abstract away the embedding of the graph and
examine the picture consisting only of the strings. In the problem we do
not care how long the paths are or which vertices they exactly traverse.
We are content with a solution as long as the paths are vertex-disjoint and
connect respective terminal pairs. Hence, we could consider two solutions
as homotopy equivalent if one can be transformed into the other by a
continuous transformation where terminals stay fixed and strings are not
allowed to jump over terminals. More formally, for each i = 1, 2 . . . , k, the
ith paths in both solutions are required to be homotopic on the sphere with
the other terminals pierced out; see Figure 5.8.

The intuition is that the number of such string pictures, or rather of the
equivalence classes of homotopy equivalence, that can be realized in the input
digraph should not be too large. If we were able to quickly search for a solution
within any such class, then the whole problem could be solved efficiently. Even
though this is not what will actually happen in the algorithm, as it will rely
on a weaker notion than homotopy equivalence, this intuition is a good first
approximation of how the problem should be attacked.

More precisely, we will consider the homology equivalence for solu-
tions, because for this notion of equivalence we are able to efficiently look for
a solution within a fixed equivalence class. Homotopy equivalent solutions
are always homologous, but the converse direction is not necessarily true. In
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order to study homology equivalence, we need to introduce a certain mathe-
matical language. In particular, we first look at the notion of cohomology
equivalence, which intuitively is the same as homology equivalence, but
in the dual digraph. While cohomology equivalence can be defined in any
digraph, the translation between homology and cohomology relies on the re-
lation between an embedded graph and its dual, and thus makes sense only
for surface-embedded graphs.

5.2.1 Cohomology Equivalence and Feasibility

Cohomology equivalence is defined for digraphs with arcs labeled by ele-
ments of some fixed group. Let us fix Λ to be a free group on k generators
g1, . . . , gk. That is, the support of Λ is the set of all finite words over symbols
g1, g

−1
1 , . . . , gk, g−1

k that are reduced: symbols gi and g−1
i standing next to

each other cancel out. The product of two elements x, y in Λ, denoted x ·y, is
defined as the concatenation of x and y followed by an exhaustive application
of reductions as above. The neutral element of Λ is the empty word, denoted
by ε. For a digraph D, a Λ-labeling of D is any function φ : A(D) → Λ that
assigns elements of Λ to the arcs of D.

Definition 5.2.2 A pair of Λ-labelings φ and ψ of a digraph D is called
cohomologous if there exists a function ρ : V (D) → Λ such that for each
arc (u, v) ∈ A(D),

ψ((u, v)) = (ρ(u))−1 · φ((u, v)) · ρ(v).

We say that ψ is cohomologous to φ via ρ.

It is clear that each Λ-labeling is cohomologous to itself by taking ρ(u) = ε
for each vertex u. Also, the relation of being cohomologous is symmetric and
transitive: if φ is cohomologous to ψ via ρ and ψ is cohomologous to ζ via
μ, then ψ is cohomologous to φ via ρ−1 and φ is cohomologous to ζ via ν
defined as ν(u) = ρ(u) · μ(u).

Before we continue, let us discuss the intuition behind this notion. It is
easy to see that a Λ-labeling φ together with ρ : V (D) → Λ uniquely define
the labeling ψ cohomologous to φ via ρ. Consider now changing the value of
such ρ in one vertex u from ρ(u) to, say, ρ(u)·g1, where g1 is the first generator
of Λ. It is easy to see that this triggers the following modification to ψ: for
each arc a with u as the head, ψ(a) gets right-multiplied by g1, while for each
arc a′ with u as the tail, ψ(a′) gets left-multiplied by g−1

1 . Intuitively, this
can be seen as “pulling” the group element g1 over u from the arcs outgoing
from it to the arcs incoming to it, and Λ-labelings cohomologous to φ are
exactly those that can be obtained from φ by a sequence of such “pulls”. If
now D was the dual of some digraph D∗, then u corresponds to some face
of D∗, and the pull can be seen as “dragging” the generator g1 over the face;



5. Planar Digraphs 221

f

g

g

g

g

ε

ε

ε

g

f

g

g

g−1

g

ε

ε

ε

g

Figure 5.9 Illustration of the “dragging” intuition. On the left panel, the values g
on the arcs in the dual graph correspond to a directed dashed path in the depicted
primal graph. By dragging the value g over the face f , one obtains the dashed path
on the right panel; note that now the value on the middle arc is g−1 as it is traversed
in the reverse direction.

see also Figure 5.9. This models a continuous modification of a solution to
the k-Disjoint paths problem by shifting some path by one face.

As we discussed, the main point of the approach is to show that we can
efficiently search for a solution within a class of candidate solutions which
are considered topologically equivalent. The main engine for this will be a
polynomial-time algorithm for the Cohomology feasibility problem, de-
fined as follows. Suppose we are given a digraph D and a Λ-labeling φ. Sup-
pose further that for each arc a ∈ A(D), we are given a set H(a) ⊆ Λ that
is hereditary in the following sense: if x ∈ H(a), then every subword of the
word x also belongs to H(a). These sets are given by an oracle, that is, we
assume there is a polynomial-time algorithm that given a word x and an arc
a, checks whether x ∈ H(a). Finally, we are also given a set S ⊆ V (D) of
fixed vertices. The goal is to determine whether there exists a Λ-labeling ψ
that is cohomologous to φ via ρ satisfying the following conditions:

• ψ(a) ∈ H(a) for each arc a ∈ A(D); and
• ρ(u) = ε for each vertex u ∈ S.

The intuition for the k-Disjoint paths problem is as follows. The digraph
D is the dual of the original digraph. The initial labeling φ corresponds to
a crude picture of the solution, where the paths can touch or even share
some subpaths, but they cannot cross in the plane. We are looking for a
solution that is homologous (that is, cohomologous in the dual) and respects
the disjointness conditions. By appropriately defining the dual and setting
sets H(a), the first property of ψ will be equivalent to the disjointness of the
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paths. The second property will be used to ensure that the paths are not
allowed to jump over terminals.

The backbone of the result of Schrijver is the following algorithmic result
for Cohomology feasibility.

Theorem 5.2.3 ([26]) The Cohomology feasibility problem for free
finitely generated groups is polynomial-time solvable.

The proof of Theorem 5.2.3 is very technical, but the crux can be ex-
plained in modern terms as follows. We think of Cohomology feasibility
as a constraint satisfaction problem (CSP) where vertices u ∈ V (D) are
to be labeled by elements ρ(u) from the domain Λ such that some specific
constraints are satisfied. It appears that the CSP problems constructed in
this way are polynomial-time solvable, because they have certain persistence
properties. Very roughly speaking, if some part of the problem can be solved
without breaking any constraint, then one can greedily fix this solution on
this part; this is the same phenomenon that leads to polynomial-time solv-
ability of the 2-SAT problem. Stating and verifying the persistence, however,
requires a lot of technical work. An interesting by-product of this approach
is that if the algorithm of Theorem 5.2.3 reports failure, it also provides a
combinatorial certificate for the non-existence of a solution, which can be
exploited algorithmically. We refer to the notes of Schrijver for details [27].

5.2.2 Homology Equivalence and Duals

Having understood cohomology equivalence and the Cohomology feasi-
bility problem, we now move to homology. Suppose we are given a planar
digraph D, say embedded on a sphere with a fixed orientation. For each arc
a ∈ A(D), let f−(a) and f+(a) be the faces incident to a on the clockwise and
counter-clockwise side, respectively. Similarly as in the previous section, we
define the dual D∗ of D as follows; see Fig. 5.10 for an example. The vertex
set of D∗ is the set F (D) of the faces of D. For each arc a of D, we add the
dual arc a∗ = (f−(a), f+(a)) to the arc set of D∗. A sphere embedding of D
naturally gives rise to a sphere embedding of D∗, where each arc crosses its
dual at one point.

Now homology is defined as a dual notion to cohomology, hence we are
allowed to pull over faces instead of vertices.

Definition 5.2.4 A pair of Λ-labelings φ and ψ of a sphere-embedded digraph
D is called homologous if there exists a function ρ : F (D) → Λ such that
for each arc a ∈ A(D),

ψ(a) = (ρ(f−(a)))−1 · φ(a) · ρ(f+(a)).

We say that ψ is homologous to φ via ρ.
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Figure 5.10 A planar digraph (black) and its dual (grey).

Thus, the Cohomology feasibility problem in the dual D∗ naturally
translates to the analogous problem in D, where we are looking for a homol-
ogous Λ-labeling satisfying certain constraints. For instance, if in the Coho-
mology feasibility problem on D∗ we put H(a∗) = {ε, g1, g2, . . . , gk} for
each arc a ∈ A(D), then we are effectively looking for a Λ-labeling ψ of D
homologous to the given labeling φ such that the label of each arc is either
the neutral element or one of the generators. Thus, each generator gi gives
rise to the arc subset ψ−1(gi) such that those subsets are pairwise disjoint.
By appropriately choosing φ we will be able ensure that ψ−1(gi) contains a
path from si to ti and these paths are non-crossing as curves in the plane,
however they may touch at vertices. To ensure real vertex-disjointness, we
need to augment the dual graph slightly.

Take the dual D∗ of D. For each vertex u ∈ V (D) and each pair of faces
f1, f2 that are incident to u, but are not consecutive in the cyclic ordering of
faces around u, we add arcs (f1, f2) and (f2, f1). These new arcs will be called
contact arcs, and the digraph obtained from the dual by adding all contact
arcs is called the extended dual, denoted D+. Note that the extended dual
is not necessarily planar, but this will not be a problem, since the algorithm
for Cohomology feasibility works on any digraph.

5.2.3 Disjoint Paths in Directed Planar Graphs

With all the tools prepared, we are ready to encode the search for a solution
within one homology type as an instance of Cohomology feasibility. We
first need to describe a homology type via a representative Λ-labeling.

Let us fix an instance (D, ((si, ti))i=1,...,k) of k-Disjoint paths. Without
loss of generality we may assume that each source si has exactly one outgoing
arc and no incoming arcs, whereas each sink ti has exactly one incoming arc
and no outgoing arcs. Indeed, we may add new sources and sinks as degree-
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one vertices adjacent only to the corresponding old sources and sinks. The
following definition describes initial labelings we are interested in.

Definition 5.2.5 A Λ-labeling φ : V (D) → Λ is consistent if the following
conditions are satisfied:

• For each source si and ti, both the only arc outgoing from si and the only
arc incoming to ti are labeled by gi in φ.

• For each non-terminal node u, if a1, . . . , a� are arcs incident to u in the
clockwise order around u, and b1, . . . , b� ∈ {−1,+1} are such that ai has u
as the head if and only if bi = +1, then

φ(a1)b1 · φ(a2)b2 · . . . · φ(a�)b� = ε.

Note that in the second condition it does not matter from which arc we
start the enumeration of arcs incident to u: if the product is ε for one possible
starting arc, it is ε for all of them.

Observe that the conditions in the above definition somewhat resemble
flow conservation equations. The first condition says that each si is a “source”
of one unit of the flow of type gi, and each ti is a “sink” of gi. The second
condition says that every nonterminal vertex satisfies a conservation property
much stronger than the usual flow conservation: not only the incoming flow
needs to be equal to the outgoing one, but also in some sense the flow paths
cannot “cross” at a vertex.

On the other hand, the definition of a consistent labeling allows for mul-
tiple paths to be routed via the same arc, and even in the wrong direction;
this corresponds to the possibility of having the label being not just a single
generator. The idea is to express the requirement that this is forbidden in
the language of the Cohomology feasibility problem.

Let φ be a consistent Λ-labeling of D. Consider now the following Coho-
mology feasibility instance I(φ) on the extended dual D+. As the given
Λ-labeling of D+ we take φ+ defined as follows:

• For each arc a of D, put φ+(a∗) = φ(a).
• For each contact arc (f1, f2), say added for a vertex u, let a1, . . . , ap be

the consecutive arcs incident to u that we encounter when scanning the
arcs around u in the clockwise order, starting from f1 and ending in f2.
Further, let b1, . . . , bp ∈ {−1,+1} be such that ai has u as the head if and
only if bi = +1. Then φ+((f1, f2)) =

∏p
i=1 φ(ai)bi .

Next, we put H(a∗) = {ε, g1, . . . , gk} for each a ∈ A(D), while for each con-
tact arc (f1, f2), we put H((f1, f2)) = {ε, g1, . . . , gk, g−1

1 , . . . , g−1
k }. Finally,

the set S of forbidden vertices of D+ consists of all faces of D that are incident
to some terminal. The following proposition, whose proof we leave as an easy
exercise, explains that solving the instance (D+, φ+,H, S) of Cohomology
feasibility immediately yields the solution to the whole problem.
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Proposition 5.2.6 Suppose ψ is a solution to the instance (D+, φ+,H, S).
For i = 1, 2, . . . , k, let Xi be the set of those arcs a of D for which ψ(a∗) = gi.
Then the subgraphs induced by X1, . . . , Xk in D are pairwise vertex-disjoint
and the subgraph induced by Xi contains a directed path leading from si to ti.

If now P = (P1, . . . , Pk) is a solution to the original instance, then we can
define a consistent labeling φP of D as follows: for each arc a ∈ A(D), put
ψP(a) = gi if a lies on Pi, and put ψP(a) = ε if a does not lie on any of the
paths Pi. Then it is easy to see that ψ+

P is a feasible solution to (D+, φ+,H, S)
for any consistent labeling φ with the following property: φ is homologous to
ψP via some ρ which maps all faces of S to ε.

Thus, we will apply the following strategy: we enumerate a small set Φ
of consistent labelings of D such that if there is a solution P to the prob-
lem, then Φ contains a labeling φ that is well-homologous to ψP , that is,
homologous via some ρ as above. Such a set Φ will be called exhaustive.
Then the algorithm for k-Disjoint paths boils down to iterating through an
exhaustive set Φ, and for each φ ∈ Φ solving the Cohomology feasibility
instance (D+, φ+,H, S). If we obtain a solution for any of these instances,
Proposition 5.2.6 gives us a way to extract a solution to the original problem.
Otherwise, if none of the instances has a solution, then we can conclude that
the original problem has no solution, because Φ is exhaustive.

Thus, to conclude the proof of Theorem 5.2.1, it remains to prove the
following lemma. Since a complete verification requires some technical details,
we give a short sketch.

Lemma 5.2.7 There exists an exhaustive set Φ of size nO(k2) which can be
constructed in time nO(k2).

Proof: (Sketch) First, we generalize the problem slightly. We will be inter-
ested in families of walks P = (P1, . . . , Pk) such that:

• Each Pi is a walk connecting si with ti in the undirected graph underlying
D. That is, we do not require that the arcs on each Pi are oriented in the
direction from si to ti, and a vertex can be visited by Pi multiple times.

• Walks Pi are pairwise arc-disjoint and non-crossing. That is, whenever we
look at two visits of a vertex u by some Pi and Pj (possibly i = j), then
the four arcs incident to u in these two visits are not interlacing in the
cyclic order of arcs around u.

We will call such families of walks pre-solutions. As before, each pre-solution
P naturally defines a consistent labeling ψP . We are interested in finding a
small set Φ of consistent labelings of D that is exhaustive for all pre-solutions:
for each pre-solution P, there exists a labeling φ in Φ that is well-homologous
to ψP as in the definition of being exhaustive. As every solution is also a
pre-solution, this suffices to prove the lemma.

The next step is to simplify the graph at hand to the case where there is
exactly one vertex other than sources and sinks. However we will introduce
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loops (arcs with the head equal to the tail). Consider any non-loop arc a such
that neither the head nor the tail of a is a terminal. Construct the digraph
D′ by contracting a: identify the head and the tail of a and remove a from
the graph. Every arc that is parallel to a, that is, has the same head and tail
as a, or its head is the tail of a and vice versa, becomes a loop at the vertex
obtained by identifying the endpoints of a. It is easy to see that every pre-
solution in D can be naturally projected to a pre-solution in D′, and every
consistent labeling φ′ of D′ can be naturally lifted to a consistent labeling φ
of D so that the following holds: if ψP′ is well-homologous to φ′ in D′, where
P ′ is the projection of P, then ψP is well-homologous to φ in D. Thus, it
suffices to find a small exhaustive set in D′.

Supposing the original digraph is weakly connected, we can apply this
reduction exhaustively until the vertex set of D consists of sources si, each
with one outgoing arc, sinks ti, each with one incoming arc, and one vertex u
that has multiple loops attached to it. The number of these loops is bounded
by m, the number of arcs of the initial graph, which is bounded linearly in n.

Let T be the set of all terminals. Each loop a at the vertex u can be
associated with a partition {Xa, Ya} of T as follows: the drawing of a on the
sphere divides it into two regions, and Xa and Ya are the subsets of terminals
contained in these regions, respectively. Two loops a, a′ at u will be called
parallel if the partitions {Xa, Ya} and {Xa′ , Ya′} are equal; of course, being
parallel is an equivalence relation. Since the drawing of the loops is non-
crossing, it is not hard to convince oneself that parallel loops are homotopic
in the topological space formed by the sphere on which the whole drawing is
embedded, with the terminals pierced out. Therefore, the equivalence classes
of the relation of being parallel really look like sets of parallel arcs: they can
be ordered so that there are faces of length 2 between every two consecutive
ones, as in Fig. 5.11. Each such equivalence class will be called a bundle.
Since we do not care about the orientation of arcs in pre-solutions, we may
assume that all arcs in each bundle are oriented in the same manner, as in
Fig. 5.11. Formally, each 2-face between consecutive arcs of the bundle is not
an oriented 2-cycle.

We may assume that there is no bundle for which the corresponding par-
tition is {∅, T}, as arcs from such a bundle can be always removed from walks
of any pre-solution without any harm. Then it is not hard to prove that since
the bundles are non-crossing, their number is bounded by 2|T | − 3 ≤ 4k. By
somehow abusing the notation, we treat the arcs outgoing from sources and
incoming to sinks also as one-arc bundles, which increases the total number
of bundles to at most 6k.

We now explain the crux of the argument. Consider any pre-solution P =
(P1, . . . , Pk). Take any walk Pi and let a1, a2, . . . , ap be the consecutive arcs
traversed by Pi. Further, let B1, B2, . . . , Bp be bundles such that aj ∈ Bj

for each j ∈ {1, 2, . . . , p}. For each j = 1, 2, . . . , p − 1, let us charge the pair
(Bα

j , Bβ
j+1), where α is equal to ±1 depending on whether aj is oriented in the
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Figure 5.11 The situation after applying the contractions. Sources are depicted as
hexagons, sinks as stars, and the middle vertex is u. The loops at u are partitioned
into 5 bundles.

direction from si to ti on Pi, or from ti to si; β is defined in the same manner
for aj+1. For a pair (Aα, Bβ), where A,B are bundles and α, β ∈ {−1,+1},
let c(Aα, Bβ) be the number of times the pair (Aα, Bβ) is charged; obviously
c(Aα, Bβ) ≤ m.

The following claim is now crucial: the system of numbers c(Aα, Bβ)
uniquely defines a pre-solution, up to being well-homologous. The proof of this
fact is not hard and boils down to a careful reconstruction of a pre-solution
from the numbers c(Aα, Bβ), using the fact that walks in a pre-solution are
pairwise non-crossing. There are at most 4 · (6k)2 numbers c(Aα, Bβ), and
each of them attains a value between 0 and m, hence the number of pre-
solutions reconstructed in this manner is bounded by nO(k2). ��

5.2.4 Fixed-Parameter Algorithm: Highlights

The algorithm of Schrijver that we sketched above was later revisited by
Cygan, Marx, Pilipczuk, and Pilipczuk [7], who improved the running time
from the form nf(k) to fixed-parameter tractable. More precisely, they proved
the following.

Theorem 5.2.8 ([7]) The k-Disjoint paths problem can be solved in time
22

O(k2) · nc when the input digraph is planar, where c is a universal constant.

To prove Theorem 5.2.8 it is sufficient to give an exhaustive set of size
22

O(k2) · nc, as the size of an exhaustive set was the only bottleneck in the al-
gorithm of Schrijver. Unfortunately, the number of different homology classes
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of solutions can be as large as nΩ(k), hence we cannot hope for such a small
exhaustive set in general. Therefore, Cygan et al. resorted to using the irrel-
evant vertex technique as follows.

Let u be a non-terminal vertex of the input digraph D. A sequence
C1, C2, . . . , C� of vertex-disjoint cycles in D is called a concentric sequence
of alternating orientation around u if the following conditions are satis-
fied.

• Each cycle Ci separates cycles Cj for j < i from cycles Cj for j > i in the
plane.

• None of the cycles passes through u. Moreover, for each i = 1, 2, . . . , k, the
region of the plane with Ci cut out to which u belongs does not contain
any terminals.

• For even i, the cycle Ci goes around u in the clockwise direction, and for
odd i in the counterclockwise.

Intuitively, if a vertex u can be encircled by such a concentric sequence of
alternating orientation of large size, then it is “far” from terminals and not
likely to be used in the solution. Cygan et al. formalized this intuition by
proving that given the sequence is large enough, any solution can be rerouted
to a solution that does not traverse u, and hence u can be safely removed
from the instance.

Lemma 5.2.9 ([7]) There is a function d(k) ∈ 2O(k2) such that the following
holds. Suppose u is a non-terminal vertex around which there exists a concen-
tric sequence of cycles of alternating orientation of size d(k). Then if there
exists a solution, there is also a solution in which u is not traversed by any
path.

Therefore, we can remove such vertices exhaustively from the instance.
Cygan et al. then show that in the absence of such vertices, there is a small
exhaustive set.

Lemma 5.2.10 ([7]) Suppose there is no vertex u that satisfies the prerequi-
site of Lemma 5.2.9. Then there exists an exhaustive set Φ of size at most
22

O(k2)
that can be constructed in time 22

O(k2) · nO(1).

The algorithm claimed in Theorem 5.2.8 now boils down to solving an
instance of Cohomology feasibility for each labeling in Φ, exactly as in
the previous section. The improved bound on the size of the exhaustive set
gives us the fixed-parameter tractable upper bound on the running time.

The proof of Lemma 5.2.9 in [7] is based on a complicated analysis of
the interaction of a solution to the k-Disjoint paths with a sequence of
concentric cycles of alternating orientation. It is proved that if the sequence is
large enough, its cycles can be used as shortcuts for the paths in the solution,
so that the paths can be rerouted simultaneously in order not to traverse
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vertex u. This argument is based on a similar analysis for the undirected
case performed by Adler, Kolliopoulos, Krause, Lokshtanov, Saurabh, and
Thilikos [1].

The most technically involved part of the reasoning is the proof of
Lemma 5.2.10. Cygan et al. proved that in absence of vertices that are irrele-
vant in the sense of Lemma 5.2.9, the graph can be decomposed into a small
number of components, each of them embedded into a disc or into a ring in
the plane. The boundary of each component is well-behaved: if one travels
along the boundary of, say, a disc component, then the number of times one
sees an arc incoming to the component after an outgoing one, or vice versa,
is bounded by a function of k. Having computed such a decomposition, one
enumerates an exhaustive set of Λ-labelings by means of a branching pro-
cedure that “guesses” consecutive parts of a homology type. Both the depth
and the degree of the search tree of this branching procedure are bounded
in terms of k, hence the number of labelings produced by the procedure is
bounded by a function of k.

5.2.5 Perspective

The fixed-parameter algorithm of [7] has double-exponential dependency on
the parameter, namely 22

O(k2)
, which is very close to the 22

O(k)
dependency

in the fastest known algorithm for undirected planar graphs, due to Adler,
Kolliopoulos, Krause, Lokshtanov, Saurabh, and Thilikos [1]. In the undi-
rected case, the algorithm of [1] follows a typical irrelevant vertex approach:
if the treewidth of the graph is larger than Δ := 2θ(k), an irrelevant vertex
inside a O(Δ) × O(Δ) grid minor is identified and deleted, whereas in the
other case a standard dynamic programming routine on graphs of bounded
treewidth runs in time 2O((Δ+k) log Δ)n = 22

O(k)
n. In [1], the authors show

that this is the limit of this approach: the dependency Δ = 2Ω(k) is neces-
sary for the irrelevant vertex rule, while multiple lower bounds for dynamic
programming algorithms on graphs of bounded treewidth (see the survey of
Lokshtanov, Marx, and Saurabh [20]) strongly suggest that an exponential
dependency on the treewidth bound Δ is necessary for the second step of
the algorithm. Hence, while there are no known lower bounds refuting the
existence of an algorithm for k-Disjoint paths in undirected planar graphs
with only single-exponential dependency on the parameter, such an algo-
rithm would need to depart significantly from the current framework and the
question of its existence remains widely open.

5.3 Directed Grids

In this section we discuss the Directed Grid Theorem (Theorem 9.3.14) in
the context of planar digraphs. The Directed Grid Theorem is a directed
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Figure 5.12 An undirected grid and a directed cylindrical grid.

analog of the Excluded Grid Theorem for undirected graphs, asserting that
any graph of sufficiently large treewidth contains a large grid as a minor.

For digraphs, we need first to replace the notion of (undirected) treewidth
with directed treewidth, introduced by Johnson, Robertson, Seymour, and
Thomas [15]. Treewidth is a graph width measure that focuses on the struc-
ture of cuts in undirected graphs; directed treewidth is a graph width measure
that aims at understanding the structure of cuts in a graph — but, this time,
directed cuts. Directed treewidth and other digraph measures will be dis-
cussed in depth in Chapter 9 and hence we refrain here from providing the
(quite complex) formal definition of this measure. Instead, we will work with
a dual notion of well-linked sets, introduced later in this section.

Let us move to the directed counterpart of the second ingredient of the
Excluded Grid Theorem: instead of a grid, we have here the directed cylin-
drical grid. A cylindrical grid is depicted in Figure 5.12. It consists of k
vertex-disjoint directed cycles C1, C2, . . . , Cn, linked by 2k vertex-disjoint
paths P1, Q1, P2, Q2, . . . , Pk, Qk. The paths Pi connect the cycles in the in-
creasing order of indices, while the paths Qi connect the cycles in the decreas-
ing order of indices. Along every cycle, the order of paths seen on that cy-
cle is P1, Q1, P2, Q2, . . . , Pk, Qk. In 2001, Johnson, Robertson, Seymour, and
Thomas conjectured that the cylindrical grid plays the role of the undirected
grid as a canonical obstacle to small directed treewidth. This conjecture has
only been recently proven by Kawarabayashi and Kreutzer [17]:

Theorem 5.3.1 ([17]) For every positive integer k there exists an integer
f(k) such that every digraph of directed treewidth at least f(k) contains a
cylindical grid of order k as a (butterfly) minor.

A digraph D′ is a butterfly minor of D if D′ can be obtained from D by
means of arc and vertex deletion, as well as contraction of arcs e = (u, v) for
which e is the only outgoing arc of u or the only ingoing arc of v.
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Q

P

Figure 5.13 A schematic view of a relaxed cylindrical grid of order 4. Formally, the
linkages P and Q may start and end on the extreme cycles, but we will construct
them as leading between the outside and inside of the concentric cycles.

In an unpublished manuscript dating back to 2001 [16], Johnson, Robert-
son, Seymour, and Thomas proved the theorem for planar digraphs. Our goal
in this section is to sketch the proof of this theorem, following recent work
of Chekuri, Ene, and Pilipczuk [5] that applied the ideas of [16] to design an
approximation algorithm for the k-Disjoint paths. We will not obtain such
a rigid structure as the cylindrical grid, but a relaxed one (see Figure 5.13):

Definition 5.3.2 A relaxed cylindrical grid of order k in a digraph G
embedded on a sphere consists of

• a sequence C1, C2, . . . , Ck of vertex-disjoint cycles arranged concentrically,
that is, for every 1 ≤ i < j ≤ k, the cycle Ci is to the left of Cj;

• a linkage P of order k, in which every path starts at a vertex on or to the
left of C1, and ends at a vertex on or to the right of Ck;1

• a linkage Q of order k, in which every path starts at a vertex on or to the
right of Ck and ends at a vertex on or to the left of C1.

In other words, in a relaxed cylindrical grid we relax the requirement that
the paths Pi cannot intersect the paths Qj and we relax the required order
in which these paths intersect every cycle Ci. Note that due to the spherical
embedding of the graph, every path in the linkages P and Q intersects every
cycle Ci.

Having sacrificed the rigid structure of a cylindrical grid, we will aim at
a near-linear relation between the grid size and the directed treewidth. That
is, our goal is to sketch the proof of the following theorem:

Theorem 5.3.3 ([5]) There exists a polynomial p such that every planar di-
graph G of directed treewidth k contains a relaxed cylindrical grid of order at
least k/p(log k).

1 Recall that a linkage is a family of pairwise vertex-disjoint paths.
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In other words, the size of the obtained relaxed cylindrical grid is the same
as the directed treewidth, up to polylogarithmic factors.

5.3.1 Well-Linked Sets

As announced at the begining of this section, instead of directed treewidth
we will work with a dual notion of a well-linked set. To this end, let us first
recall the notion of a separation in a digraph D: a pair of vertex subsets
(A,B) is a separation in D if A ∪ B = V (D) and there is no arc with tail in
A \ B and head in B \ A. The order of the separation (A,B) is |A ∩ B|.

A set X ⊆ V (D) is node-well-linked in D if for any two disjoint subsets
A,B of X of equal size, there exists |A| = |B| vertex-disjoint paths such
that every vertex of A is a starting vertex of exactly one path, and every
vertex of B is an ending vertex of exactly one path. By relaxing vertex-
disjointness to arc-disjointness we obtain the notion of an edge-well-linked
set. By Menger’s theorem, a set X ⊆ V (D) is edge-well-linked if and only
if for any partition V (D) = A � B the number of edges in δ+(A) is at least
min{|X ∩ A|, |X ∩ B|}. Similarly, a set X ⊆ V (D) is node-well-linked if and
only if any separation (A,B) of D has order at least min{|X ∩ A|, |X ∩ B|}.
The second equivalent notion allows us to define fractional well-linkedness: for
a real α ∈ [0, 1], a set X ⊆ V (D) is α-edge-well-linked if for every partition
V (D) = A � B we have |δ+(A)| ≥ αmin{|X ∩ A|, |X ∩ B|}, while it is α-
node-well-linked if every separation (A,B) has order at least αmin{|X ∩
A|, |X ∩ B|}.

Observe that node-well-linkedness is stronger than edge-well-linkedness:
any α-node-well-linked set is also α-edge-well-linked, while in the other direc-
tion we lose a factor proportial to the maximum degree: an α-edge-well-linked
set in a digraph of maximum degree Δ is α/Δ-node-well-linked.

Johnson, Robertson, Seymour, and Thomas [15, 16] showed that the size
of the largest node-well-linked set is tightly related to directed treewidth.

Theorem 5.3.4 ([15, 16]) Every digraph of directed treewidth k contains a
node-well-linked set of size Ω(k), and, conversely, every digraph containing
a node-well-linked set of size k has directed treewidth Ω(k).

A standard tool in studying well-linked sets is the following lemma that
shows that one can extract an Ω(1)-node-well-linked set from an α-node-well-
linked set without losing much more than necessary. This particular statement
for directed graphs is due to Chekuri and Ene [4].

Lemma 5.3.5 ([4]) If X is an α-node-well-linked set in a digraph D, then
there exists a set X ′ ⊆ X of size Ω(α|X|) that is 1

32 -node-well-linked in D.
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5.3.2 Eulerian Digraphs

A digraph is Eulerian if it is weakly connected and for every vertex v, the
in-degree and the out-degree of v are equal. Note that in an Eulerian digraph,
the maximum in-degree is equal to the maximum out-degree. We will use the
following simple “balancedness” argument in Eulerian digraphs.

Lemma 5.3.6 Suppose D is an Eulerian digraph and V (D) = A � B is a
partition of the vertex set of D. Then the number of arcs of D that have tail
in A and head in B is equal to the number of arcs of D that have tail in B
and head in A.

Proof: Since D is Eulerian, by summing the in-degrees and the out-degrees
of vertices in A we infer that the number of arcs with heads in A is equal to
the number of arcs with tails in A. By subtracting the number of arcs with
both heads and tails in A we obtain the asserted equality. ��

The critical insight of the work of Johnson, Robertson, Seymour, and
Thomas [16] is that Eulerian digraphs of small maximum degree behave in
some ways similarly as undirected graphs. This can be seen in the following
simple lemma, used, e.g., in [5].

Lemma 5.3.7 Let A,B be two vertex subsets in an Eulerian digraph D of
maximum in-degree Δ, and let k be a nonnegative integer. Then, if in the
underlying undirected graph there exist (Δ+1)k+1 vertex-disjoint undirected
paths from A to B, then in D there exist k + 1 vertex-disjoint directed paths
from A to B.

Proof: If the conclusion is not true, then by Menger’s theorem there exists a
separation (A′, B′) of order at most k separating A from B. That is, we have
A′ ∪B′ = V (D), A ⊆ A′, B ⊆ B′, |A′ ∩B′| ≤ k, and no arc of D has its tail in
A′ \B′ and its head in B′ \A′. Since there are (Δ+1)k+1 undirected paths
from A to B, and only k of them can pass through A′ ∩ B′, the remaining
Δk + 1 paths need to go via arcs connecting A′ \ B′ and B′ \ A′. Since there
are no arcs with tail in A′ \ B′ and head in B′ \ A′, we infer that there are
at least Δk + 1 arcs with tail in B′ \ A′ and head in A′ \ B′. However, D
contains at most Δ|A′ ∩ B′| ≤ Δk arcs with tail in A′ \ B′ and head in B′,
as every such arc needs to have its head in A′ ∩ B′. This is a contradiction,
as by Lemma 5.3.6, the number of arcs with tail in A′ \ B′ and head in B′

should be equal to the number of arcs with tail in B′ and head in A′ \ B′. ��

Lemma 5.3.7 shows the surprising power of the “balancedness” argument
of Lemma 5.3.6. In planar digraphs, we can exploit this argument even fur-
ther, focusing on cuts represented by curves.

Let D be a digraph embedded in the plane. A curve γ on a sphere is in
general position with respect to D if γ has a finite number of intersections
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with (the embedding of) D, and whenever γ intersects an arc e of D, it
intersects e transversally, that is, in a small neighborhood of the intersection
the arc e splits γ into two parts lying on the opposite sides of e. Furthermore,
if γ in general position with respect to D does not visit any vertex of D, it is
called a face-edge curve. An imbalance of a curve γ is the difference between
the number of arcs of D traversing γ from left to right and the number of arcs
of D traversing γ from right to left. By Lemma 5.3.6, we have the following:

Lemma 5.3.8 Every closed face-edge curve γ with respect to an Eulerian
digraph D has zero imbalance.

5.3.3 Cut-Matching Game

In Theorem 5.3.3 the given digraph D may be far from being Eulerian. Quite
surprisingly, we can turn D into an Eulerian digraph with small maximum
degree without losing much on the directed treewidth assumption. In [16],
the authors obtained constant maximum degree by elaborate structural ar-
guments, yielding a significant toll on the final relation between directed
treewidth and the size of the obtained grid. The approach of [5], originating
in the techniques developed in the area of routing, is conceptually cleaner,
but leads only to a polylogarithmic bound on the maximum degree.

The key idea of [5] is to use the so-called cut-matching game to con-
struct an embedding. To define this game, we first need to recall the notion
of an edge expansion:

Definition 5.3.9 Let G be an undirected multigraph. The edge expansion
of a set S ⊆ V (G) is defined as the ratio

|δ(S)|
min{|S|, |V (G) \ S|} ,

where δ(S) is the set of edges with exactly one endpoint in S. The edge ex-
pansion of a graph is the minimum edge expansion among all sets S ⊆ V (G).

In directed (multi)graphs, the directed edge expansion is defined by
replacing δ(S) with δ+(S): the set of arcs with tails in S and heads outside
of S.

The crucial property of digraphs with large directed edge expansion is that
they contain large well-linked sets; in particular, note that the definition of
edge expansion immediately implies that if D has edge expansion α, then
V (D) is α-edge-well-linked.

The cut-matching game of Khandekar, Rao, and Vazirani [18] is played on
an n-vertex multigraph G for even n, which is initially empty. In every round,
the first player, called the Cut Player, chooses a partition V (G) = A � B
of the vertex set into two equal-sized sets A and B. Then, the second player,
called the Matching Player, chooses a perfect matching between A and
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B, which is then added to G (which may lead to G being a multigraph).
The game ends when the graph G has edge expansion at least α, where α
is a parameter of the game. The Cut Player wants to conclude the game as
quickly as possible, while the Matching Player tries to stall the game. The
main result of Khandekar, Rao, and Vazirani [18] is the following:

Theorem 5.3.10 ([18]) For every constant α there exists a randomized strat-
egy for the Cut Player in undirected graphs that finishes the game in expected
O(log2 n) rounds. A single move of the strategy is computable in polynomial
time.

In the directed version of the game, the matching is oriented from A to
B (i.e., every added arc has its tail in A and head in B), and the game ends
when the directed edge expansion reaches a required threshold. This variant
has been analyzed by Louis [21], who proved an analogous statement:

Theorem 5.3.11 ([21]) For every constant α there exists a randomized strat-
egy for the Cut Player in directed graphs that finishes the game in expected
O(log2 n) rounds. A single move of the strategy is computable in polynomial
time.

Both Theorems 5.3.10 and 5.3.11 provide a randomized strategy, with a
bound on the expected number of rounds. In this description we will hence-
forth ignore the randomization aspect, as it is irrelevant for the purely graph
theoretical existential claims.

The strength of the cut-matching game lies in the small, only polylogarith-
mic, number of rounds needed for the Cut Player. Consider a digraph D with
a node-well-linked set X. Without loss of generality assume that k := |X| is
even (we can always drop one vertex of X). We will play the directed version
of the cut-matching game, constructing a new digraph DX with vertex set
X. For the Matching Player, let us implement the following strategy. Given
a partition X = X1 � X2 into two equal-sized sets, we invoke the definition
of node-well-linkedness to obtain a linkage P(X1,X2) in D from X1 to X2.
This linkage induces a directed matching between X1 and X2: we pair up
vertices that were linked by a path in the linkage P(X1,X2). This matching
is the response of the Matching Player for the partition X = X1 � X2.

The result of Louis [21] shows that the Cut Player can obtain a digraph
with constant directed edge expansion in L := O(log2 k) rounds. Further-
more, we can assume that whenever the Cut Player plays a partition (X1,X2),
she also immediately after plays the partition (X2,X1). With the above be-
havior of the Matching Player, we obtain a final digraph DX of constant
directed edge expansion and every vertex of DX has in- and out-degree L.
This digraph DX naturally projects down to D, that is, we can construct
a digraph HX , starting from V (HX) = V (D), and for every round of the
game with partition X = X1 � X2 we add the linkage P(X1,X2) to HX .
More precisely, we add all arcs of all paths in P(X1,X2) to HX , duplicating
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some arcs of D if necessary. In this manner, every vertex of HX has equal in-
and out-degree and these degrees are bounded by 2L. Furthermore, since DX

has edge expansion Ω(1), we have that X = V (DX) is Ω(1)-edge-well-linked
in DX ; by the construction of HX , we have that X is also Ω(1)-edge-well-
linked in HX . By the degree bound, X is Ω(1/L)-node-well-linked in HX .
By Lemma 5.3.5, we can find a set X ′ ⊆ X of size Ω(|X|/L) = Ω(k/ log2 k)
that is 1

32 -node-well-linked in HX .
The following lemma summarizes the above reasoning.

Lemma 5.3.12 Let D be a digraph with a node-well-linked set X of size k.
Then there exists an integer L = O(log2 k) and a subgraph HX of the graph D
with every edge duplicated at most L times, such that every vertex of HX has
equal in- and out-degree, these degrees are bounded by L, and X is Ω(1)-edge-
well-linked in HX . Furthermore, there exists a set X ′ ⊆ X of size Ω(k/ log2 k)
that is 1/32-node-well-linked in HX .

Observe that if D is planar, then so is the graph HX given by Lemma 5.3.12.
The final observation is that in our case it is sufficient to find a relaxed

cylindrical grid in HX instead of D: a relaxed cylindrical grid in HX projects
naturally onto D, and the duplicated edges do not break the structure, as
we required vertex-disjointness of both the cycles Ci and the linkages P
and Q. Thus, by losing an O(log2 k) factor in the size of the well-linked
set X, and relaxing node-well-linkedness to 1/32-node-well-linkedness, we
can henceforth assume that the given graph D is Eulerian with maximum
degree Δ = O(log2 k).

5.3.4 Finding a Grid in an Eulerian Digraph

In this section we show the following:

Theorem 5.3.13 If a planar Eulerian digraph D of maximum degree Δ con-
tains an α-node-well-linked set X of size k, then it also contains a relaxed
cylindrical grid of order Ω(αk/Δ2).

As the previous section reduced us to this case with α = 1/32 and Δ =
O(log2 k), for the proof of Theorem 5.3.3 it suffices to prove Theorem 5.3.13.
We follow the exposition of [5], which builds upon the arguments of [16].

The proof of Theorem 5.3.13 heavily relies on the assumption that D is
Eulerian via tools introduced in Section 5.3.2. On a very high level, we start
with a large undirected grid in D and then argue about directed structures
inside this grid using arguments relying on the assumption that D is Eule-
rian. Let G be the undirected (multi)graph underlying of D.

Obtaining an undirected grid
The first step is to obtain an undirected grid in D. To this end, we recall
that in undirected planar graphs, a linear relation between treewidth and the
largest grid minor is known [12, 25]:
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Figure 5.14 Structure obtained by Lemma 5.3.15 and how it can be found inside
a sufficiently large undirected grid minor.

Theorem 5.3.14 ([12, 25]) A planar undirected graph of treewidth k contains
a grid of sidelength 9k/2 as a minor.

Note that if X is α-node-well-linked in D, it is also α-node-well-linked in G.
Furthermore, a graph containing an α-node-well-linked set of size k has
treewidth Ω(αk). As a result we obtain the following claim; see Fig. 5.14 for
a pictorial proof. Recall that in the context of undirected graphs embedded
on a plane, a sequence C1, C2, . . . , Cr of vertex-disjoint cycles is concentric
if each cycle Ci separates the cycles {Cj : j < i} from the cycles {Cj : j > i}.

Lemma 5.3.15 There exists an integer r = Ω(αk) such that G contains a
sequence C1, C2, . . . , Cr of r concentric cycles and a set of r vertex-disjoint
paths connecting C1 with Cr.

Isles. We now need the following notion. Given a vertex v ∈ V (G), a set
Q ⊆ V (G) with v /∈ Q, and an integer �, a (v,Q, �)-isle is a set S ⊆ V (G)
such that v ∈ S, S ∩ Q = ∅, G[S] is connected, and |NG(S)| ≤ �. In other
words, S is a connected part of the graph around v with small boundary and
separated from Q.

Fix � = Θ(r/Δ) = Θ(αk/Δ). The constants hidden in the Θ(·) notation
will be chosen in the course of the argumentation, but the reader may think
that � is a small (but constant) fraction of r/Δ, in particular � is much smaller
than r. Pick a vertex v1 on the cycle C1. Since we can assume that 2Δ < � =
Θ(αk/Δ) (as otherwise the statement of Theorem 5.3.13 is immediate), {v1}
is a (v1, V (Cr), �)-isle. Let S1 be an inclusion-wise maximal (v1, V (Cr), �)-isle,
and let us analyze its properties.

First, since � < r and G contains r vertex-disjoint paths from C1 to Cr, the
set S1 cannot contain the whole cycle Ci for any i. Since G[S1] is connected
and the cycles Ci are concentric, S1 is disjoint from every cycle Ci for i > �.
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Note that � is much smaller than r; the last statement shows that S1 lives
locally in the graph G, and does not go deep into the set of concentric cycles
{Ci : 1 ≤ i ≤ r}.

Symmetrically, we pick an arbitrary vertex vr on Cr and define a maximal
(vr, V (C1), �)-isle Sr; we again have that Sr is disjoint from cycles Ci for
i ≤ r− �. Since we can assume that � is much smaller than r, the isles S1 and
Sr are disjoint and separated by r − 2� cycles Ci.

By N i
G[S] we denote the set of vertices within distance at most i from S

in G. We have that N2
G[S1] does not intersect the cycle C�+3; by the maxi-

mality of S1, there are �+1 vertex-disjoint paths connecting N2
G[S1] with Cr.

Symmetrically, there are � + 1 vertex-disjoint paths connecting N2
G[Sr] and

C1. Since � is much smaller than r, there are many more than � cycles Ci for
�+ 3 ≤ i ≤ r − � − 2; note that all these cycles are disjoint from N2

G[S1 ∪ Sr]
and separate S1 from Sr. By combining the aforementioned linkages of �+ 1
paths and these cycles, we obtain that there exists a flow of size at least
�/3 from N2

G[S1] to N2
G[Sr]: just treat the linkages and cycles as flow paths

each carrying a flow of 1/3 to avoid congestion, and combine the flow paths
naively, following first the flow paths from N2

G[S1] to Cr, then cycles Ci for
� + 3 ≤ i ≤ r − � − 2, and finally the flow paths from C1 to N2

G[Sr]. By the
integrality of flows, there exists a linkage in G of size at least �/3 leading
from N2

G[S1] to N2
G[Sr]. A symmetric reasoning yields a linkage in G of size

at least �/3 leading from N2
G[Sr] to N2

G[S1]. These linkages are undirected
(in G), but the digraph D is Eulerian: by Lemma 5.3.7, in D, there exists a
(directed) linkage P from N2

G[S1] to N2
G[Sr] and a (directed) linkage Q from

N2
G[Sr] to N2

G[S1], both of size at least �/(3(Δ+1)) = Θ(αk/Δ2). Note that
every path in P and Q intersects every cycle Ci for � + 3 ≤ i ≤ r − � − 2.
Figure 5.15 illustrates the structure obtained so far.

The linkages P and Q will form the desired linkages between the extreme
cycles in the desired relaxed cylindrical grid. To conclude the construction,
we need to show that there are Θ(αk/Δ2) concentric directed cycles with
N1

G[S1] on one side and N1
G[Sr] on the other side, so that they intersect every

path in P ∪ Q. To prove their existence, we use the (undirected) cycles Ci.

Cycles. Let D′ be the digraph D with the vertices of N1
G[S1] ∪ N1

G[Sr] re-
moved. Note that D′ is no longer Eulerian, but it is close to being Eulerian:
since S1 and Sr are isles, we have |NG(S1)|, |NG(Sr)| ≤ � and, consequently,
at most 2�Δ arcs connect N1

G[S1] ∪ N1
G[Sr] with the vertices of D′.

Consider now the spherical embedding of D and the naturally induced
embedding of D′. There are two distinguished faces of the embedding of D′:
f1, which contains S1 in the embedding of D, and fr, which contains Sr. Let
us try to find as many as possible vertex-disjoint directed cycles that have f1
to the left and fr to the right.

The crucial observation is that there is a well-defined notion of a directed
cycle that has f1 to the left, but is as close to f1 as possible, in the sense
that it has as few faces of D′ to the left as possible. To see this, consider the
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S1

N2
G[S1]

Sr

N2
G[Sr ]

Figure 5.15 Structure obtained from isles S1 and Sr. To finish the construction,
we lack sufficiently many concentric directed cycles separating S1 from Sr, but we
have many undirected ones.

following procedure: mark f1 and every face of D′ that is reachable from f1
via face-edge curves in D′ that are crossed by the arcs of D′ only from left
to right. If such a curve γ reaches a face f , then γ certifies that f needs to
be to the left of any cycle in D′ that keeps f1 to the left; in particular, if fr

is marked, the corresponding curve shows that there is no cycle in D′ that
keeps f1 to the left and fr to the right. In the other direction, it is easy to
see that the boundary of the region of unmarked faces that contain fr (if fr

is unmarked) forms the desired directed cycle.
By iterating the above argument, we can obtain the following claim:

Lemma 5.3.16 ([5]) For any integer t, in D′ there exists either:

1. a family of vertex-disjoint cycles D1,D2, . . . , Dt, each having f1 to the
left and fr to the right;

2. a curve γ in general position with respect to D′ that starts in f1, ends in
fr, passes through at most t vertices of D′, and such that every arc of D′

crossing γ crosses it from left to right.
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We pick t = Θ(αk/Δ2) and apply Lemma 5.3.16: once directly, and once
with the roles of f1 and fr swapped. If any of the application resulted in a
family of t directed cycles, these cycles, together with linkages P and Q, form
the desired relaxed grid. Thus, we are left with the case when both applica-
tions returned a curve; note that we may assume without loss of generality
that each of these curves is without self-intersections. By joining these curves
together inside f1 and fr, we obtain a closed curve γ0 in general position
with respect to D′ that intersects at most 2t vertices and every arc crossing
γ0 crosses it from left to right. We modify γ0 slightly as follows: whenever
γ0 visits a vertex v we move it a little so that it intersects a number of arcs
incident with v instead. In this manner, the obtained curve γ is a closed face-
edge curve in D′ that visits both f1 and fr, does not visit any vertex of D′,
and at most 2tΔ arcs intersecting γ cross it from right to left.

However, γ needs to cross every cycle Ci for � + 3 ≤ i ≤ r − � − 2; by
taking � to be sufficiently small compared to r, there are at least r/2 = Θ(αk)
such cycles. Since 2tΔ = Θ(αk/Δ), the absolute value of the imbalance of
the curve γ can be assumed to be at least r/4.

Consider now a digraph D′′, obtained similarly as D′ from D, but instead
of removing N1

G[S1], we contract it onto a single vertex w1, similarly we also
contract N1

G[Sr] onto a new vertex wr. Any loops thus created at w1 or wr

are removed. Note that D′′ remains Eulerian and the degree of w1 and wr

is at most �Δ in D′′. Furthermore, by slight modifications of γ inside f1
and fr, we may assume that γ is in general position with respect to D′′ as
well, visits neither w1 nor wr, and crosses every arc incident to these two
vertices at most once (they are drawn inside f1 and fr, where we can freely
manipulate γ). However, now γ is a closed curve in general position with
respect to an Eulerian digraph D′′, and thus has zero imbalance. Recall that
D′ and D′′ differ on at most 2�Δ edges, each crossed by γ at most once. By
picking a sufficiently small constant in the definition of � = Θ(r/Δ) we obtain
2�Δ < r/4, yielding a contradiction.

Thus, at least one application of Lemma 5.3.16 resulted in a family of cy-
cles, giving the final ingredient of the relaxed cylindrical grid, and concluding
the proofs of Theorems 5.3.13 and 5.3.3.

5.3.5 Perspective

Theorem 5.3.3 shows that if one relaxes the structure of the cylindrical grid
to allow intersections of the radial linkages, we can obtain good (up to poly-
logarithmic factors) dependency between directed treewidth and the size of
the grid. This resembles the situation from undirected graphs, where linear
dependency between treewidth and the size of largest grid minor gave rise to
multiple algorithmic applications through the theory of bidimensionality [10].

In the context of routing, the above theorem fits into a more general
approach for designing approximation algorithms for the k-Disjoint paths
problem, pioneered by Chekuri, Khanna, and Shepherd [3]. This approach
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turned out to be very successful in the context of undirected graphs, leading
to a poly-logarithmic approximation with congestion 2 for the edge-disjoint
version of k-Disjoint paths by Chuzhoy and Li [6].

The first step is to decompose the input instance into a number of subin-
stances where in each subinstance the set of terminals is (fractionally) well-
linked. This well-linkedness in turn allows us to reason about the existence
of a good crossbar, a grid-like routing structure. The well-linkedness also
implies the existence of a large flow between the terminals and the crossbar;
an approximate solution is formed by these flow paths, joined together inside
the crossbar in a way respecting the terminal pairs.

The crucial ingredient in this approach is to prove the existence of a
crossbar in the presence of a large well-linked set; if the approximation factor
is to be poly-logarithmic, the ratio between the size of the well-linked set and
the size of the crossbar needs to be poly-logarithmic as well. The presented
theorem serves as such an ingredient in the context of planar digraphs.

Apart from the context of routing [5], we do not know any other ap-
plications of Theorem 5.3.3. Furthermore, a number of questions regarding
generalizations appear:

1. Can we reduce the upper bound on the maximum degree to constant,
as opposed to poly-logarithmic, with only a poly-logarithmic loss on the
directed treewidth? The cut-matching game approach has an inherent
O(log2 k) factor due to the number of rounds, while the arguments of [16]
lead to a maximum degree of 6, but give a much worse parameter depen-
dency.

2. Can we conduct the final part of the proof of [16], that is, obtain a regular
cylindrical grid from a relaxed one, with only a poly-logarithmic loss on
the size? Such an improvement may be needed if one wants to lower the
allowed congestion in the approximation algorithm of [5].

3. Can we generalize these developments to other sparse graph classes? In
undirected graphs, many results in the theory of bidimensionality hold
in apex-minor-free or general proper minor-closed graph classes.

We remark here that the first part of the proof, which leads to an Eulerian
digraph with a poly-logarithmic maximum degree and is based on the cut-
matching game, works in general graphs; that is, this part does not require
the planarity assumption. On the other hand, the second part of the reasoning
seems to crucially depend on the topological structure of the digraph.

The existence of a large (relaxed) directed grid in the presence of a large
well-linked set is also related to the Erdős–Pósa property of cycles. In undi-
rected graphs, the classic result of Erdős and Pósa [8] asserts that if a graph
does not contain k vertex-disjoint cycles, it admits a set of O(k log k) vertices
that intersect every cycle. For directed graphs, a similar relation has been
conjectured by Younger [30]; the conjecture was confirmed in 1996 by Reed,
Robertson, Seymour, and Thomas [23]. However, the relation between the
number of vertex-disjoint cycles and the size of the hitting set is not explicit
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in [23] and at least exponential. Improving this relation to, say, polynomial
remains widely open. More discussion on various aspects of the Erdős–Pósa
property in directed graphs can be found in Section 9.5.3

Apart from the above questions, a number of very important questions
remain regarding the Directed Grid Theorem in the general setting, where the
proof of Kawarabayashi and Kreutzer [17] gives only a very weak parameter
dependency. A discussion on these issues can be found in Chapter 9.
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6. Locally Semicomplete Digraphs and
Generalizations
Jørgen Bang-Jensen

Locally semicomplete digraphs were introduced by Bang-Jensen [9], who
discovered them by coincidence in 1988 while working on homomorphism
problems for semicomplete digraphs. He wanted to find another class of di-
graphs for which the so-called sub-indicator construction (see the paper [21]
by Bang-Jensen, MacGillivray and Hell) would be useful. This prompted him
to look at digraphs where the out-neighbourhoods and the in-neighbourhoods
were semicomplete. From then it took only curiosity to start the research on
locally semicomplete digraphs. The research on these digraphs and some of
their generalizations has been very successful, leading to several doctoral the-
ses such as those by Guo, Huang and Tewes [43, 55, 66] and more than 100
research papers on these topics.

The research, which we will shed some light on in this chapter, has re-
vealed that locally semicomplete digraphs share a large number of properties
with semicomplete digraphs. Sometimes the proofs of results for locally semi-
complete digraphs are almost identical to those for semicomplete digraphs
(e.g. for existence of a Hamiltonian path or cycle) but, not surprisingly, they
are often more complicated. In that case one may often benefit from a classifi-
cation theorem that we describe in Section 6.6. This allows one to concentrate
only on those locally semicomplete digraphs that are not semicomplete (when
trying to extend a result from that class). The classification theorem which
we prove in Section 6.6 implies that locally semicomplete digraphs that are
not semicomplete can be divided into two classes: round decomposable locally
semicomplete digraphs, which are very well structured and allow for easy so-
lution of several hard problems, and the so-called evil locally semicomplete di-
graphs , which are much closer to semicomplete digraphs when it comes to the
difficulty of many problems. The chapter is organized as follows: In Section
6.1 we give some necessary new definitions. In Section 6.2 we introduce an im-
portant property, called the path merging property, which is already sufficient
to imply hamiltonicity for strong digraphs with no cut-vertex. In Section 6.3
we describe the structure of non-strong locally (in-)semicomplete digraphs.
In Section 6.4 we consider the existence of Hamiltonian paths and cycles in
locally semicomplete digraphs and some generalizations. Section 6.5 intro-
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duces round (decomposable) digraphs which form an important subclass of
locally semicomplete digraphs. In Section 6.6 we give a classification of lo-
cally semicomplete digraphs that has been very useful in proofs of a number
of results for the class. Section 6.7 deals with Hamiltonian connectivity and
Section 6.8 with pancyclicity of locally semicomplete digraphs. In Section 6.9
we discuss various results on cycle factors with a given number of cycles.
Then in Sections 6.10 and 6.11 we describe a number of results on weak
linkages, respectively linkages in locally semicomplete digraphs. Section 6.12
deals with results concerning arc-disjoint spanning subdigraphs, Section 6.13
deals with kernels and Section 6.14 with feedback sets in locally semicomplete
digraphs. Section 6.15 is about orientations of locally semicomplete digraphs,
that is, oriented graphs that we obtain by deleting one arc from every 2-cycle.
In Section 6.16 we present a generalization of round digraphs and finally in
Section 6.17 we cover a few more topics on locally semicomplete digraphs.

6.1 New Definitions

For notational simplicity we will use Pn and Cn for the path, respectively
cycle on n vertices instead of

→
P n,

→
Cn. Also every path and cycle in this

chapter will be directed.
A digraph D is locally in-semicomplete (locally out-semicomplete)

if the induced subdigraph D[N−(v)] (D[N+(v)])) is semicomplete for every
vertex v ∈ V (D). Clearly, the converse of a locally in-semicomplete digraph
is a locally out-semicomplete digraph and vice versa. A digraph D is locally
semicomplete if it is both locally in- and locally out-semicomplete. Clearly
every semicomplete digraph is locally semicomplete.

A locally in-semicomplete digraph with no cycle of length 2 is a locally in-
tournament digraph. Similarly, one can define locally out-tournament
digraphs and locally tournament digraphs. For convenience, we will
often refer to locally tournament digraphs as local tournaments and to
locally in-tournament (out-tournament) digraphs as local in-tournaments
(local out-tournaments). As every result for local in-tournaments has an
analogue for local out-tournaments by considering the converse digraphs, we
will often just state a result for one of these classes.

Recall that an extension of a digraph D is any digraph D′ which can
be obtained by substituting an independent set Iv for each vertex v ∈ V (D).
Thus D′ = D[Iv1 , Iv2 , . . . , Ivn

], where n = |V (D)|. This definition also applies
to classes of digraphs, e.g. an extended locally in-semicomplete digraph
is any digraph D′ which is an extension of some locally in-semicomplete
digraph D.

The second power1 of a cycle Cn, denoted by C2
n, is the digraph

obtained from Cn by adding the arcs {vivi+2 : 1 ≤ i ≤ n}, where
Cn = v1v2 . . . vn−1vnv1 and the subscripts are modulo n.

1 Also called the square.
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6.2 The Path Merging Property

The sorting problem for a set S = {x1, x2, . . . , xn} of distinct integers2 is a
special case of the Hamiltonian path problem for tournaments: Define T (S)
to be the tournament on n vertices v1, . . . , vn and arcs {vivj |i �= j and vi <
vj}. Clearly T (S) is a transitive tournament. Now the unique Hamiltonian
path P = vi1vi2 . . . vin in T (S) corresponds to the sorted order xi1 < xi2 <
. . . < xin on S. Conversely, one can generalize several sorting algorithms,
including the merge-sort algorithm, to algorithms for finding Hamiltonian
paths in arbitrary tournaments. This inspired Bang-Jensen [4] to introduce
the following notion for digraphs.

A digraph D is path-mergeable if for every choice of vertices x, y ∈
V (D) and every pair of internally disjoint (x, y)-paths P, P ′ there exists an
(x, y)-path P ∗ in D such that V (P ∗) = V (P ) ∪ V (P ′).

Theorem 6.2.1 ([4]) A digraph D = (V,A) is path-mergeable if and only if
for every pair of distinct vertices x, y ∈ V (D) and every pair of internally
disjoint (x, y)-paths P = xx1 . . . xry, P ′ = xy1 . . . ysy, r, s ≥ 1 in D, either
there exists an i ∈ {1, . . . , r} such that xiy1 ∈ A, or there exists a j ∈ [s]
such that yjx1 ∈ A.

Proof: We prove the ‘only if’ statement by induction on r+s. It is obvious for
r = s = 1, so suppose that r + s ≥ 3. If there is no arc between {x1, . . . , xr}
and {y1, . . . , ys}, then clearly P, P ′ cannot be merged into one path. Hence
we may assume without loss of generality that there is an arc xiyj for some
i, j, 1 ≤ i ≤ r, 1 ≤ j ≤ s. If j = 1, then the claim follows. Otherwise apply
induction to the paths P [x, xi]yj , xP ′[y1, yj ].

The proof of the ‘if’ statement is left to the reader. It is similar to the
proof of Proposition 6.2.3 below. ��

Bang-Jensen showed how to use Theorem 6.2.1 to obtain the following.

Theorem 6.2.2 ([4]) Path-mergeable digraphs can be recognized in polyno-
mial time. 	

The next result shows that if a digraph is path-mergeable, then the merg-
ing of paths can always be done in a particularly nice way. This illustrates
the similarity between path-merging and the merging subroutine in the well-
known merge sort algorithm, see e.g. [36, Chapter 2].

Proposition 6.2.3 Let D = (V,A) be a digraph which is path-mergeable and
let P = xx1 . . . xry, P ′ = xy1 . . . ysy, r, s ≥ 0 be internally disjoint (x, y)-
paths in D. The paths P and P ′ can be merged into one (x, y)-path P ∗ such

2 The reduction also works when some numbers may be equal, in which case we
obtain a semicomplete digraph instead.
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that vertices from P (respectively, P ′) remain in the same order as on that
path. Furthermore, the merging can be done in at most 2(r + s) steps.

Proof: We prove the result by induction on r + s. It is obvious if r = 0 or
s = 0, so suppose that r, s ≥ 1. By Theorem 6.2.1 there exists an i such that
either xiy1 or yix1 is an arc. By scanning both paths forward one arc at a
time, we can find i in at most 2i steps; suppose without loss of generality
xiy1 ∈ A. By applying the induction hypothesis to the paths P [xi, xr]y and
xiP

′[y1, ys]y, we see that we can merge them into a single path Q in the
required order-preserving way in at most 2(r + s − i) steps. The required
path P ∗ is obtained by concatenating the paths xP [x1, xi] and Q, and we
have found it in at most 2(r + s) steps, as required. ��

The path-mergeability can be generalized in a natural way as follows.
A digraph D is in-path-mergeable (out-path-mergeable) if, for every
vertex y ∈ V (D) and every pair P,Q of internally disjoint paths with common
terminal (initial) vertex y, there is a path R such that V (R) = V (P )∪V (Q),
the path R terminates (starts) at y and starts (terminates) at a vertex which
is the initial (terminal) vertex of either P or Q (or, possibly, both). Observe
that, in this definition, the initial vertices of the paths P and Q may coincide.
Therefore, every in-path-mergeable (out-path-mergeable) digraph is path-
mergeable. However, it is easy to see that not every path-mergeable digraph
is in-path-mergeable. Clearly, every in-path-mergeable (out-path-mergeable)
digraph is locally in-semicomplete (locally out-semicomplete). The converse is
also true (hence this is another way of characterizing locally in-semicomplete
digraphs).

Proposition 6.2.4 ([16]) Every locally in-semicomplete (out-semicomplete)
digraph is in-path-mergeable (out-path-mergeable). 	

Proof: Let D be a locally in-semicomplete digraph and let P = y1y2 . . . yk,
Q = z1z2 . . . zt be a pair of internally disjoint paths such that yk = zt. We
show that there exists a path R in D such that V (R) = V (P )∪ V (Q) and R
starts in either y1 or z1 and ends in yk = zt. When |A(P )| + |A(Q)| = 2
our claim follows from the definition of an in-semicomplete digraph. As-
sume now that |A(P )| + |A(Q)| ≥ 3. Since D is in-semicomplete, either
yk−1zt−1 or zt−1yk−1 (or both) is an arc. Now the claim follows by induc-
tion applied to either the paths P [y1, yk−1]zt−1 and Q[z1, zt−1] or the paths
P [y1, yk−1], Q[z1, zt−1]yk−1. The claim for locally out-semicomplete digraphs
holds as they are the converses of locally in-semicomplete digraphs. ��

Corollary 6.2.5 ([4]) Every locally in-semicomplete (out-semicomplete) di-
graph and hence every locally semicomplete digraph is path-mergeable.
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6.3 The Structure of Non-strong Locally
(In-)Semicomplete Digraphs

In this section we describe basic results on the structure of non-strong locally
in-semicomplete digraphs and locally semicomplete digraphs. We start with
the following results due to Bang-Jensen, Huang and Prisner.

Lemma 6.3.1 ([24]) Every connected locally in-semicomplete digraph D has
an out-branching. ��

Proof: Consider an out-tree T+
s which has the maximum number of arcs

among all out-trees in D. We show that T+
s must be an out-branching. Sup-

pose not and let y ∈ V (D)− V (T+
s ) be a vertex such that there is an arc yz

from y to V (T+
s ). Considering the directed path from s to z in T+

s and using
the maximality of T+

s we conclude that ys is an arc of A(D), contradicting
the maximality of T+

s as we can get a better out-tree rooted at y. ��

Theorem 6.3.2 ([24]) Let D be a locally in-semicomplete digraph.

(i) Let X and Y be distinct strong components of D. If a vertex x ∈ X
dominates some vertex in Y , then x
→Y .

(ii) If D is connected, then the strong component digraph SC(D) has an out-
branching.

Proof: Let X and Y be strong components of D for which there is an arc
xy from X to Y . Since Y is strong, there is a (y′, y)-path in Y for every
y′ ∈ V (Y ). By the definition of locally in-semicomplete digraphs and the fact
that there is no arc from Y to X, we can conclude that xy′ ∈ A. This proves
(i).

Part (ii) follows from the fact that, by (i), SC(D) is itself a locally in-
tournament digraph and Lemma 6.3.1. ��

The most basic properties of strong components of a connected non-strong
locally semicomplete digraph are given in the following result, due to Bang-
Jensen.

Theorem 6.3.3 ([9]) Let D be a connected locally semicomplete digraph that
is not strong. Then the following holds for D.

(a) If X and Y are distinct strong components of D with at least one arc
between them, then either X 
→Y or Y 
→X.

(b) If X and Y are strong components of D such that X 
→Y , then X and Y
are semicomplete digraphs.

(c) The strong components of D can be ordered uniquely as D1,D2, . . . , Dp

such that there is no arc from Dj to Di when j > i, and Di dominates
Di+1 for i ∈ [p − 1].
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Proof: Recall that a locally semicomplete digraph is a locally in-semicomplete
digraph as well as a locally out-semicomplete digraph. Part (a) of this the-
orem follows immediately from Part (i) of Theorem 6.3.2 and its analogue
for locally out-semicomplete digraphs. Part (b) can be easily obtained from
the definition of a locally semicomplete digraph. Finally, to prove (c) first ob-
serve that by Theorem 6.3.2 (and its analogue for locally out-semicomplete
digraphs), SC(D) has an out-branching and an in-branching. This implies
that D has a unique initial component D1 and a unique terminal component
Dp and thus every internal strong component Di is reachable for D1 and can
reach Dp. Combining this with the fact that D is path-mergeable proves the
claim. ��

Guo and Volkmann introduced the following very useful way of decom-
posing non-strong locally semicomplete digraphs.

Theorem 6.3.4 ([47, 48]) Let D be a connected locally semicomplete digraph
that is not strong and let D1, . . . , Dp be the acyclic ordering of strong com-
ponents of D. Then D can be decomposed into r ≥ 2 induced semicomplete
subdigraphs D′

1,D
′
2, . . . , D

′
r as follows:

• D′
1 = Dp, λ1 = p,

• λi+1 = min{ j | N+(Dj) ∩ V (D′
i) �= ∅}, for each i ∈ [r − 1],

• D′
i+1 = D〈V (Dλi+1)∪V (Dλi+1+1)∪ · · · ∪V (Dλi−1)〉, for each i ∈ [r − 1].

The subdigraphs D′
1,D

′
2, . . . , D

′
r satisfy the properties below:

(a) D′
i consists of some strong components of D and is semicomplete for each

i ∈ [r];
(b) D′

i+1 dominates the initial component of D′
i and there exists no arc from

D′
i to D′

i+1 for any i ∈ [r − 1];
(c) if r ≥ 3, then there is no arc between D′

i and D′
j for i, j satisfying |j−i| ≥

2. 	
For a connected, but not strongly connected locally semicomplete digraph

D, the unique sequence D′
1,D

′
2, . . . , D

′
r defined in Theorem 6.3.4 is called the

semicomplete decomposition of D.

6.4 Hamiltonian Paths and Cycles

Recall that we call a digraph traceable if it has a Hamiltonian path. Below
we shall characterize traceable locally in-semicomplete digraphs and show
that a locally in-semicomplete digraph has a Hamiltonian cycle whenever it
satisfies the obviously necessary condition of being strongly connected. In
order to save some space below, we shall state and prove the relevant result
for the largest class among locally semicomplete, locally in-semicomplete and
path-mergeable digraphs for which it holds. See [9] and [24] for short proofs
of hamiltonicity in strong locally semicomplete digraphs and strong locally
in-semicomplete digraphs.
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Theorem 6.4.1 A locally in-semicomplete digraph has a Hamiltonian path
ending at a vertex s if and only it has an in-branching rooted at s.

Proof: Necessity is obvious. We prove the sufficiency by induction on the
number n of vertices. If n ≤ 2, then every in-branching is also a Hamiltonian
path so we can proceed to the induction step. Let B−

s be an in-branching of
D, let u be a leaf of B−

s and let v be the out-neighbour of u in B−
s . Then

B−
s −u is an in-branching in D −u so by induction D −u has a Hamiltonian

path v1v2 . . . vn−1. Note that v = vj for some j ∈ [n − 1]. Let i ∈ [j] be the
minimum index such that u dominates vi. Then v1 . . . vi−1uvi . . . vn−1 is the
desired Hamiltonian path. ��

Detecting whether an arbitrary digraph has an in-branching can be done
in time O(n+m) so the proof above can be turned into an O(n2) algorithm
for finding a Hamiltonian path in an in-semicomplete digraph or detecting
that it has no branching. Bang-Jensen and Hell [20] gave a faster algorithm.

Theorem 6.4.2 ([20]) Suppose we are given an in-semicomplete digraph D
with an in-branching B−

s . Then in time O(n log n) one can construct a Hamil-
tonian path of D.

Bang-Jensen and Hell also proved the following.

Theorem 6.4.3 ([20]) There is an O(m + n log n) algorithm for finding a
longest path in an in-semicomplete digraph.

Corollary 6.4.4 ([9]) Every connected locally semicomplete digraph has a
Hamiltonian path. Furthermore such a path ending (starting) in v exists if
and only if v belongs to the terminal (initial) strong component of D.

The complexity of the Hamiltonian path problem for path-mergeable di-
graphs is open.

Problem 6.4.5 ([17]) Characterize traceable path-mergeable digraphs. Is there
a polynomial algorithm to decide whether a path-mergeable digraph is trace-
able?

6.4.1 Hamilton Cycles in Path-Mergeable Digraphs

We now show that the property of being path-mergeable and strongly con-
nected is already sufficient to guarantee a Hamiltonian cycle, provided that D
satisfies the obviously necessary condition that the underlying digraph has no
cut-vertex. A corollary of this result is that every strongly connected locally
in-semicomplete digraph is Hamiltonian.
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We begin with a simple lemma which forms the basis for the proof of
Theorem 6.4.7. For a cycle C, a C- bypass is a path of length at least two
with both end-vertices on C and no other vertices on C.

Lemma 6.4.6 ([4]) Let D be a path-mergeable digraph and let C be a cycle in
D. If D has a C-bypass P , then there exists a cycle in D containing precisely
the vertices V (C) ∪ V (P ).

Proof: Let P be an (x, y)-path. Then the paths P and C[x, y] can be
merged into one (x, y)-path R, which together with C[y, x] forms the desired
cycle. ��

Theorem 6.4.7 ([4]) A path-mergeable digraph D of order n ≥ 2 is Hamil-
tonian if and only if D is strong and UG(D) is 2-connected.

Proof: ‘Only if’ is obvious; we prove ‘if’. Suppose that D is strong, UG(D)
is 2-connected and D is not Hamiltonian. Let C = u1u2 . . . upu1 be a longest
cycle in D. Observe that, by Lemma 6.4.6, there is no C-bypass. For each
i ∈ [p] let Xi (respectively, Yi) be the set of vertices of D − V (C) that can
be reached from ui (respectively, from which ui can be reached) by a path in
D − (V (C) − ui). Since D is strong,

X1 ∪ . . . ∪ Xp = Y1 ∪ . . . ∪ Yp = V (D) − V (C).

Since there is no C-bypass, every path starting at a vertex in Xi and ending
at a vertex in C must end at ui. Thus, Xi ⊆ Yi. Similarly, Yi ⊆ Xi and,
hence, Xi = Yi. Since there is no C-bypass, the sets Xi are disjoint. Since
we assumed that D is not Hamiltonian, at least one of these sets, say X1, is
non-empty. Since UG(D) is 2-connected, there is an arc with one end-vertex
in X1 and the other in V (D)− (X1 ∪u1), and no matter what its orientation
is, this implies that there is a C-bypass, a contradiction. ��

Using the proof of this theorem, Lemma 6.4.6 and Proposition 6.2.3, it is
not difficult to show the following:

Corollary 6.4.8 ([4]) There is an O(nm) algorithm to decide whether a given
strong path-mergeable digraph has a Hamiltonian cycle and find one if it
exists. 	

Clearly, Theorem 6.4.7 and Corollary 6.4.8 imply an obvious characteriza-
tion of longest cycles in path-mergeable digraphs and a polynomial algorithm
to find a longest cycle.

It is easy to show that a strong locally in-semicomplete digraph cannot
have a cut-vertex and hence we get the following.

Theorem 6.4.9 ([24]) A locally in-semicomplete digraph is Hamiltonian if
and only if it is strongly connected.

Bang-Jensen and Hell [20] showed that one can find a Hamiltonian cycle
in a strong locally in-semicomplete digraph in time O(m + n log n).
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6.5 Round Decomposable Digraphs

We now study a subclass of locally semicomplete digraphs with a particularly
nice structure which implies a lot of useful properties, as we shall see later
in this chapter. A digraph on n vertices is round if we can label its vertices
v1, v2, . . . , vn so that for each i, we have N+(vi) = {vi+1, . . . , vi+d+(vi)} and
N−(vi) = {vi−d−(vi), . . . , vi−1} (all subscripts are taken modulo n). We will
refer to the labelling v1, v2, . . . , vn as a round labelling of D. See Figure 6.1
for an example of a round digraph. Observe that every strong round digraph
D is Hamiltonian, since v1v2 . . . vnv1 form a Hamiltonian cycle, whenever
v1, v2, . . . , vn is a round labelling. Round digraphs form a subclass of locally
semicomplete digraphs.

1

3

4

56

R

2

Figure 6.1 A round digraph with a round labelling.

Proposition 6.5.1 ([56]) Every round digraph is locally semicomplete.

Proof: Let D be a round digraph and let v1, v2, . . . , vn be a round labelling of
D. Consider an arbitrary vertex, say vi. Let x, y be a pair of out-neighbours
of vi. We show that x and y are adjacent. Assume without loss of generality
that vi, x, y appear in that circular order in the round labelling. Since vi → y
and the in-neighbours of y appear consecutively preceding y, we must have
x → y. Thus the out-neighbours of vi are pairwise adjacent. Similarly, we can
show that the in-neighbours of vi are also pairwise adjacent. Therefore, D is
locally semicomplete. ��

The main result of this subsection is Theorem 6.5.2, due to Huang [56],
which gives a characterization of round locally semicomplete digraphs. This
characterization generalizes the corresponding characterizations of round lo-
cal tournaments and tournaments, due to Bang-Jensen [9] and Alspach and
Tabib [2], respectively.

An arc xy of a digraph D is ordinary if yx is not in D. A cycle or path
Q of a digraph D is ordinary if all arcs of Q are ordinary.

Theorem 6.5.2 (Huang [56]) A connected locally semicomplete digraph D
is round if and only if the following holds for each vertex x of D:
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(d)(a) (b) (c)

Figure 6.2 Some forbidden digraphs in Huang’s characterization.

(a) N+(x) \ N−(x) and N−(x) \ N+(x) induce transitive tournaments; and
(b) N+(x) ∩ N−(x) induces a (semicomplete) subdigraph containing no or-

dinary cycle. 	

The proof of sufficiency of the conditions of this theorem in [15, 56] can be
transformed into a polynomial time algorithm to decide whether a digraph
D is round and to find a round labelling of D (if D is round).

Corollary 6.5.3 ([9]) A connected local tournament D is round if and only
if, for each vertex x of D, N+(x) and N−(x) induce transitive tournaments.

��

We now turn to locally semicomplete digraphs that are not round but
which can be obtained from such a digraph by substituting sets of vertices
for each vertex. A locally semicomplete digraph D is round decompos-
able if there exists a round local tournament R on r ≥ 2 vertices such that
D = R[S1, . . . , Sr], where each Si is a strong semicomplete digraph. We call
R[S1, . . . , Sr] a round decomposition of D.

Corollary 6.5.4 ([9]) Every connected non-strong locally semicomplete di-
graph D has a unique round decomposition given by R[D1,D2, . . . , Dp], where
D1,D2, . . . , Dp is the acyclic ordering of strong components of D and R is
the acyclic round local tournament which one obtains by taking an arbitrary
vertex from each Di. 	

6.5.1 Strong Round Decomposable Locally Semicomplete
Digraphs

In the previous subsection we saw that every connected non-strong locally
semicomplete digraph is round decomposable. This property does not hold
for strong locally semicomplete digraphs (see Lemma 6.6.4).

The following assertions, due to Bang-Jensen, Guo, Gutin and Volk-
mann, provides some important properties concerning round decompositions
of strong locally semicomplete digraphs.
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Proposition 6.5.5 ([13]) Let R[H1,H2, . . . , Hα] be a round decomposition
of a strong locally semicomplete digraph D. Then, for every inclusion-wise
minimal separating set S, there are two integers i and k ≥ 0 such that S =
V (Hi) ∪ . . . ∪ V (Hi+k).

Corollary 6.5.6 ([13]) If a locally semicomplete digraph D is round decom-
posable, then it has a unique round decomposition D = R[D1,D2, . . . , Dα].

Proof: Suppose that D has two different round decompositions: D =
R[D1, . . . , Dα] and D = R′[H1, . . . , Hβ ].

By Corollary 6.5.4, we may assume that D is strong. By the definition
of a round decomposition, this implies that α, β ≥ 3. Let S be a minimal
separating set of D. By Proposition 6.5.5, we may assume without loss of
generality that S = V (D1 ∪ . . . ∪ Di) = V (H1 ∪ . . . ∪ Hj) for some i and j.
Since D − S is non-strong, by Corollary 6.5.4, Di+1 = Hj+1,. . . , Dα = Hβ

(in particular, α − i = β − j). Now it suffices to prove that

D1 = H1, . . . , Di = Hj(in particular, i = j). (6.1)

If D[S] is non-strong, then (6.1) follows by Corollary 6.5.4. If D[S] is
strong, then first consider the case α = 3. Then S = V (D1), because D−S is
non-strong and α = 3. Assuming that j > 1, we obtain that the subdigraph of
D induced by S has a strong round decomposition. This contradicts the fact
that R′ is a local tournament, since the in-neighbourhood of the vertex r′

j+1

in R′ contains a cycle (where r′
p corresponds to Hp, p = 1, . . . , β). Therefore,

(6.1) is true for α = 3. If α > 3, then we can find a separating set in D〈S〉
and conclude by induction that (6.1) holds. ��

Proposition 6.5.5 allows us to construct a polynomial algorithm for check-
ing whether a locally semicomplete digraph is round decomposable.

Proposition 6.5.7 ([13]) There exists a polynomial algorithm for deciding
whether a given locally semicomplete digraph D has a round decomposition
and to find this decomposition if it exists.

Proof: We only give a sketch of such an algorithm. Find a minimal separat-
ing set S in D starting with S′ = N+(x) for a vertex x ∈ V (D) and deleting
vertices from S′ until a minimal separating set is obtained. Construct the
strong components of D〈S〉 and D−S and label these D1,D2, . . . , Dα, where
D1, . . . , Dp, p ≥ 1, form an acyclic ordering of the strong components of D[S]
and Dp+1, . . . , Dα form an acyclic ordering of the strong components of D−S.
For every pair Di and Dj (1 ≤ i �= j ≤ α), we check the following: if there ex-
ist some arcs between Di and Dj , then either Di 
→Dj or Dj 
→Di. If we find a
pair for which the above condition is false, then D is not round decomposable.
Otherwise, we form a digraph R = D〈{x1, x2, . . . , xα}〉, where xi ∈ V (Di)
for each i ∈ [α]. We check whether R is round using Corollary 6.5.3.
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If R is not round, then D is not round decomposable. Otherwise, D is round
decomposable and D = R[D1, . . . , Dα].

It is not difficult to verify that our algorithm is correct and polynomial. ��

6.6 Classification of Locally Semicomplete Digraphs

Based on the results from the previous sections we are now ready to take the
final step towards a full classification of locally semicomplete digraphs. We
start this subsection with an important lemma on minimal separating sets of
locally semicomplete digraphs.

Lemma 6.6.1 ([9]) Let D be a strong locally semicomplete digraph and S a
minimal separating set in D, then D − S is connected.

Lemma 6.6.2 ([13]) If a strong locally semicomplete digraph D is not semi-
complete, then there exists a minimal separating set S ⊂ V (D) such that
D − S is connected but not semicomplete. Furthermore, if D1,D2, . . . , Dp is
the acyclic ordering of the strong components of D and D′

1,D
′
2, . . . , D

′
r is the

semicomplete decomposition of D −S, then r ≥ 3, D〈S〉 is semicomplete and
we have Dp 
→S 
→D1.

Proof: Suppose D − S is semicomplete for every minimal separating set S.
Then D − S is semicomplete for all separating sets S. Hence D is semicom-
plete, because any pair of non-adjacent vertices can be separated by some
separating set S. Together with Lemma 6.6.1 this proves the first claim of
the lemma.

Let S be a minimal separating set such that D − S is not semicomplete.
Clearly, if r = 2 (in Theorem 6.3.4), then D−S would be semicomplete. Thus,
r ≥ 3. By the minimality of S every vertex s ∈ S dominates a vertex in D1

and is dominated by a vertex in Dp. Thus if some x ∈ Dp was dominated by
s ∈ S, then, by the definition of a locally semicomplete digraph, we would
have D1 
→Dp, contradicting the fact that r ≥ 3. Hence (using that Dp is
strongly connected) we get that Dp 
→S and similarly S 
→D1. From the last
observation it follows that S is semicomplete. ��

Now we consider strongly connected locally semicomplete digraphs which
are not semicomplete and not round decomposable. We first show that the
semicomplete decomposition of D−S has exactly three components, whenever
S is a minimal separating set such that D − S is not semicomplete.

Lemma 6.6.3 ([13]) Let D be a strong locally semicomplete digraph which
is not semicomplete. Either D is round decomposable, or D has a minimal
separating set S such that the semicomplete decomposition of D − S has
exactly three components D′

1,D
′
2,D

′
3.



6. Locally Semicomplete Digraphs and Generalizations 257

Proof: By Lemma 6.6.2, D has a minimal separating set S such that the
semicomplete decomposition of D − S has at least three components.

Assume now that the semicomplete decomposition of D − S has more
than three components D′

1, . . . , D
′
r (r ≥ 4). Let D1,D2, . . . , Dp be the acyclic

ordering of strong components of D−S. According to Theorem 6.3.4 (c), there
is no arc between D′

i and D′
j if |i − j| ≥ 2. It follows from the definition of a

locally semicomplete digraph that

N+(D′
i) ∩ S = ∅ for i ≥ 3 and N−(D′

j) ∩ S = ∅ for j ≤ r − 2. (6.2)

By Lemma 6.6.2, D〈S〉 is semicomplete and S = N+(Dp). Let Dp+1, . . . ,
Dp+q be the acyclic ordering of the strong components of D〈S〉. Using (6.2)
and the assumption r ≥ 4, it is easy to check that if there is an arc be-
tween Di and Dj (1 ≤ i �= j ≤ p + q), then Di 
→Dj or Dj 
→Di. Let
R = D〈{x1, x2, . . . , xp+q}〉 with xi ∈ V (Di) for each i ∈ [p + q]. Now it
suffices to prove that R is a round local tournament.

Since R is a subdigraph of D and no pair Di, Dj induces a strong di-
graph, we see that R is a local tournament. By Corollary 6.5.4 each of
the subdigraphs R′ = R − {xp+1, . . . , xp+q}, R′′ = R − V (R) ∩ V (D′

r−1)
and R′′′ = R − V (R) ∩ V (D′

2) is round. Since N+(v) ∩ V (R) (as well as
N−(v) ∩ V (R)) is completely contained in one of the sets V (R′), V (R′′) and
V (R′′′) for every v ∈ V (R), we see that R is round.

Thus if r ≥ 4, then D is round decomposable. ��
Now we are ready to give a characterization of locally semicomplete di-

graphs which are not semicomplete and not round decomposable. This char-
acterization was proved for the first time by Guo in [43]. A weaker form was
obtained earlier by Bang-Jensen in [3]. Here we give the proof of this result
from [13].

Lemma 6.6.4 Let D be a strong locally semicomplete digraph which is not
semicomplete. Then D is not round decomposable if and only if the following
conditions are satisfied:

(a) There is a minimal separating set S such that D − S is not semicom-
plete and for each such S, D〈S〉 is semicomplete and the semicomplete
decomposition of D − S has exactly three components D′

1,D
′
2,D

′
3,

(b) There are integers α, β, μ, ν with λ2 ≤ α ≤ β ≤ p − 1 and p + 1 ≤ μ ≤
ν ≤ p + q such that

N−(Dα) ∩ V (Dμ) �= ∅ and N+(Dα) ∩ V (Dν) �= ∅,

or N−(Dμ) ∩ V (Dα) �= ∅ and N+(Dμ) ∩ V (Dβ) �= ∅,
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where D1,D2, . . . , Dp and Dp+1, . . . , Dp+q are the acyclic orderings of the
strong components of D−S and D〈S〉, respectively, and Dλ2 is the initial
component of D′

2.

Proof: If D is round decomposable and satisfies (a), then we must have D =
R[D1,D2, . . . , Dp+q], where R is the digraph obtained from D by contracting
each Di into one vertex. This follows from Corollary 6.5.4 and the fact that
each of the digraphs D − S and D − V (D′

2) has a round decomposition that
agrees with this structure. Now it is easy to see that D does not satisfy (b).

Suppose now that D is not round decomposable. By Lemmas 6.6.2 and
6.6.3, D satisfies (a), so we only have to prove that it also satisfies (b).

If there are no arcs from S to D′
2, then it is easy to see that D has a

round decomposition. If there exist components Dp+i and Dj with V (Dj) ⊆
V (D′

2) such that there are arcs in both directions between Dp+i and Dj ,
then D satisfies (b). So we can assume that for every pair of sets from the
collection D1,D2, . . . , Dp+q, either there are no arcs between these sets, or
one set completely dominates the other. Then, by Corollary 6.5.3, D is round
decomposable, with round decomposition D = R[D1,D2, . . . , Dp+q] as above,
unless we have three subdigraphs X,Y,Z ∈ {D1,D2, . . . , Dp+q} such that
X 
→Y 
→Z 
→X and there exists a subdigraph W ∈ {D1,D2, . . . , Dp+q} −
{X,Y,Z} such that either W 
→X,Y,Z or X,Y,Z 
→W .

One of the subdigraphs X,Y,Z, say without loss of generality X, is a
strong component of D〈S〉. If we also have V (Y ) ⊆ S, then V (Z) ⊆ V (D′

2)
and W is either in D〈S〉 or in D′

2 (there are four possible positions for W
satisfying either W 
→X,Y,Z or X,Y,Z 
→W ). In each of these cases it is easy
to see that D satisfies (b). For example, if W is in D〈S〉 and W 
→X,Y,Z,
then any arc from W to Z and from Z to X satisfies the first part of (b). The
proof is similar when V (Y ) ⊆ V (D′

3). Hence we can assume that V (Y ) ⊆
V (D′

2). If Z = Dp, then W must be either in D〈S〉 and X,Y,Z 
→W , or
V (W ) ⊆ V (D′

2) and W 
→X,Y,Z (which means that W = Di and Y = Dj

for some λ2 ≤ i < j < p). In both cases it is easy to see that D satisfies (b).
The last case V (Y ), V (Z) ⊆ V (D′

2) can be treated similarly. ��
We can now state the classification of locally semicomplete digraphs due

to Bang-Jensen, Guo, Gutin and Volkmann.

Theorem 6.6.5 (Bang-Jensen, Guo, Gutin, Volkmann [13]) Let D be
a connected locally semicomplete digraph. Then exactly one of the following
possibilities holds.

(a) D is round decomposable with a unique round decomposition given by
D = R[D1,D2, . . . , Dα], where R is a round local tournament on α ≥ 2
vertices and Di is a strong semicomplete digraph for each i ∈ [α],

(b) D is not round decomposable and not semicomplete and it has the struc-
ture as described in Lemma 6.6.4 (so D is evil),

(c) D is a semicomplete digraph which is not round decomposable. ��
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Locally semicomplete digraphs which are not semicomplete and not round
decomposable are also called evil locally semicomplete digraphs [12], since
this is by far the most complicated class among the two non-semicomplete
cases classes (a) and (b) above.

We finish this section with the following useful result which has been used
in many proofs on locally semicomplete digraphs (see e.g. the proof of Lemma
6.8.5 below).

Proposition 6.6.6 ([13]) Let D be a strong evil locally semicomplete digraph
and let S be a minimal separating set of D such that D − S is not semicom-
plete. Let D1, . . . , Dp be the acyclic ordering of the strong components of
D − S and Dp+1, . . . , Dp+q be the acyclic ordering of the strong components
of D〈S〉. Suppose that there is an arc s → v from S to D′

2 with s ∈ V (Di)
and v ∈ V (Dj), then

Di∪Di+1∪. . .∪Dp+q 
→D′
3 
→Dλ2 ∪. . .∪Dj . ��

Problem 6.6.7 Does there exist a nice structural characterization of those
locally in-semicomplete digraphs that are not locally semicomplete?

6.7 Hamiltonian Connectivity

Recall that an [x, y]-path in a digraph D = (V,A) is a path which ei-
ther starts at x and ends at y or oppositely. We say that D is weakly
Hamiltonian-connected if it has a Hamiltonian [x, y]-path (also called an
[x, y]-Hamiltonian path) for every choice of distinct vertices x, y ∈ V . Our
next goal is to describe the solution of the [x, y]-Hamiltonian path problem
for locally semicomplete digraphs. Notice that this solution also covers the
case of semicomplete digraphs and so, in particular, it generalizes Theorem
2.6.3 to semicomplete digraphs.

We start by establishing the notation for some special locally semicom-
plete digraphs. Up to isomorphism there is a unique strong tournament with
four vertices. We denote this by T 1

4 . It has the following vertices and arcs:

V (T 1
4 ) = {a1, a2, a3, a4}, A(T 1

4 ) = {a1a2, a2a3, a3a4, a4a1, a1a3, a2a4}.

The semicomplete digraphs T 2
4 , T 3

4 , and T 4
4 are obtained from T 1

4 by adding
some arcs, namely:

A(T 2
4 ) = A(T 1

4 ) ∪ {a3a1, a4a2},

A(T 3
4 ) = A(T 1

4 ) ∪ {a3a1}, A(T 4
4 ) = A(T 1

4 ) ∪ {a1a4}.
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Let T4 = {T 1
4 , T 2

4 , T 3
4 , T 4

4 }. It is easy to check that every digraph of T4 has a
unique Hamiltonian cycle and has no Hamiltonian path between two vertices
which are not consecutive on this Hamiltonian cycle (two such vertices are
called opposite).

Let T6 be the set of semicomplete digraphs with the vertex set {x1, x2, a1,
a2, a3, a4} such that each member D of T6 has a cycle a1a2a3a4a1 and the
digraph D〈{a1, a2, a3, a4}〉 is isomorphic to one member of T4, in addition,
xi → {a1, a3} → x3−i → {a2, a4} → xi for i = 1 or i = 2. It is straightforward
to verify that T6 contains only two tournaments (denoted by T ′

6 and T ′′
6 ),

namely, the ones shown in Fig. 2.2, and that |T6| = 11. Since none of the
digraphs of T4 has a Hamiltonian path connecting any two opposite vertices,
no digraph of T6 has a Hamiltonian path between x1 and x2.

For every even integer n ≥ 4 there is only one 2-strong, 2-regular locally
semicomplete digraph on n vertices, namely, the second power �C2

n of an n-
cycle. We define

T ∗ = {C2
n | n is even and n ≥ 4}.

It is not difficult to prove that every digraph of T ∗ has a unique Hamiltonian
cycle and is not weakly Hamiltonian-connected (see [10]). For instance, if
the unique Hamiltonian cycle of C2

6 is denoted by u1u2u3u4u5u6u1, then
u1u3u5u1 and u2u4u6u2 are two cycles of C2

6 and there is no Hamiltonian
path between any two vertices of {u1, u3, u5} or of {u2, u4, u6}.

Let T 1
8 be the digraph consisting of C2

6 together with two new vertices x1

and x2 such that x1 → {u1, u3, u5} → x2 → {u2, u4, u6} → x1. Furthermore,
T 2
8 (T 3

8 , respectively) is defined as the digraph obtained from T 1
8 by adding

the arc x1x2 (the arcs x1x2 and x2x1, respectively). Let T8 = {T 1
8 , T 2

8 , T 3
8 }.

It is easy to see that every element of T8 is a 3-strong locally semicomplete
digraph and has no Hamiltonian path between x1 and x2.

Before we present the main result, we state the following two lemmas that
were used in the proof of Theorem 6.7.3 by Bang-Jensen, Guo and Volkmann
in [14]. The first lemma generalizes the structure found in the last part of the
proof of Theorem 2.6.3.

Lemma 6.7.1 ([14]) Let D be a strong locally semicomplete digraph on n ≥ 4
vertices and x1, x2 two distinct vertices of D. If D − {x1, x2} is strong, and
N+(x1) ∩ N+(x2) �= ∅ or N−(x1) ∩ N−(x2) �= ∅, then D has a Hamiltonian
path connecting x1 and x2.

Another useful ingredient in the proof of Theorem 6.7.3 is the following
linking result. An odd chain is the second power, P 2

2k+1 for some k ≥ 1, of
a path on an odd number of vertices.
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Lemma 6.7.2 ([14]) Let D be a connected, locally semicomplete digraph with
p ≥ 4 strong components and an acyclic ordering D1,D2, ...,Dp of these.
Suppose that V (D1) = {u1} and V (Dp) = {v1} and that D − x is connected
for every vertex x. Then, for every choice of u2 ∈ V (D2) and v2 ∈ V (Dp−1),
D has two vertex disjoint paths P1 from u2 to v1 and P2 from u1 to v2 with
V (P1) ∪ V (P2) = V (D) if and only if D is not an odd chain from u1 to v1.

Proof: If D is an odd chain, it is easy to see that D has no two vertex-disjoint
(ui, v3−i)-paths, for i = 1, 2. We prove by induction on p that the converse
is true as well. Suppose that D is not an odd chain from u1 to v1. Since
the subdigraph D − x is connected for every vertex x, |N+(Di)| ≥ 2 for all
i ≤ p − 2 and |N−(Dj)| ≥ 2 for all j ≥ 3. If p = 4, then it is not difficult to
see that D has two vertex-disjoint paths P1 from u2 to v1 and P2 from u1 to
v2 with V (P1)∪ V (P2) = V (D). If p = 5, it is also not difficult to check that
D has the desired paths, unless D is a chain on five vertices. So we assume
that p ≥ 6. Now we consider the digraph D′, which is obtained from D by
deleting the vertex sets {u1, v1}, V (D2 − u2) and V (Dp−1 − v2).

Using the assumption on D, it is not difficult to show that D′ is a con-
nected, but not strongly connected locally semicomplete digraph with the
acyclic ordering {u2},D3,D4, . . . , Dp−2, {v2} of its strong components. Fur-
thermore, for every vertex y of D′, the subdigraph D′ − y is still connected.
Let u be an arbitrary vertex of D3 and v an arbitrary vertex of Dp−2. Note
that there is a (u1, u)-Hamiltonian path P in D[{u1, u} ∪ V (D2 − u2)] and
similarly there is a (v, v1)-Hamiltonian path Q in D[{v, v1} ∪ V (Dp−1 − v2)].
Hence if D′ has disjoint (u2, v)-, (u, v2)-paths which cover all vertices of D′,
then D has the desired paths. So we can assume D′ has no such paths. By
induction, D′ is an odd chain from u2 to v2. Now using that D is not an odd
chain from u1 to v1 it is easy to see that D has the desired paths. We leave
the details to the reader. ��

A weaker version of Lemma 6.7.2 was proved in [10, Theorem 4.5].

Below we give a characterization, due to Bang-Jensen, Guo and
Volkmann, for the existence of an [x, y]-Hamiltonian path in a locally semi-
complete digraph. Note again the similarity to Theorem 2.6.3.

Theorem 6.7.3 ([14]) Let D be a connected locally semicomplete digraph
on n vertices and x1 and x2 be two distinct vertices of D. Then D has no
Hamiltonian [x1, x2]-path if and only if one of the following conditions is
satisfied:

(1) D is not strong and either the initial or the terminal component of D (or
both) contains none of x1, x2.

(2) D is strongly connected, but not 2-strong,
(2.1) there is an i ∈ {1, 2} such that D −xi is not strong and x3−i belongs

to neither the initial nor the terminal component of D − xi;
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(2.2) D − x1 and D − x2 are strong, s is a separating vertex of D,
D1,D2, ...,Dp is the acyclic ordering of the strong components of
D − s, xi ∈ V (Dα) and x3−i ∈ V (Dβ) with α ≤ β − 2. Further-
more, V (Dα+1) ∪ V (Dα+2) ∪ ... ∪ V (Dβ−1) contains a separating
vertex of D, or D′ = D〈V (Dα) ∪ V (Dα+1) ∪ ... ∪ V (Dβ)〉 is an odd
chain from xi to x3−i with N−(Dα+2) ∩ V (D − V (D′)) = ∅ and
N+(Dβ−2) ∩ V (D − V (D′)) = ∅.

(3) D is 2-strong and is isomorphic to T 2
4 or to one member of T6 ∪ T8 ∪ T ∗

and x1, x2 are the corresponding vertices in the definitions. 	

As an easy consequence of Theorem 6.7.3, we obtain a characterization
of weakly Hamiltonian-connected locally semicomplete digraphs. The proof
is left to the interested reader.

Theorem 6.7.4 ([14]) A locally semicomplete digraph D with at least three
vertices is weakly Hamiltonian–connected if and only if it satisfies (a), (b)
and (c) below:

(a) D is strong,
(b) For every x ∈ V (D), D − x has at most two strong components,
(c) D is not isomorphic to any member of T6 ∪ T8 ∪ T ∗. 	

The following is an easy corollary of Theorem 6.7.3.

Corollary 6.7.5 There exists a polynomial algorithm for deciding whether a
given locally semicomplete digraph D has an [x, y]-Hamiltonian path for two
specified vertices x, y.

We conjecture that this can be extended to locally in-semicomplete di-
graphs.

Conjecture 6.7.6 There exists a polynomial algorithm for deciding whether
a given locally in-semicomplete digraph D has an [x, y]-Hamiltonian path for
two specified vertices x, y.

Guo [45] extended Theorem 2.6.7 to locally semicomplete digraphs.

Theorem 6.7.7 (Guo [45]) Let D be a 2-strong locally semicomplete digraph
and let x, y be two distinct vertices of D. Then D contains a Hamiltonian
path from x to y if (a) or (b) below is satisfied.

(a) There are three internally disjoint (x, y)-paths in D, each of which is of
length at least 2 and D is not isomorphic to any of the digraphs T 1

8 and
T 2
8 (see the definition in the preceding section).

(b) The digraph D has two internally disjoint (x, y)-paths P1, P2, each of
which is of length at least 2 and a path P which either starts at x or
ends at y and has only x or y in common with P1, P2 such that V (D) =
V (P1) ∪ V (P2) ∪ V (P ). Furthermore, for any vertex z �∈ V (P1) ∪ V (P2),
z has a neighbour on P1 − {x, y} if and only if it has a neighbour on
P2 − {x, y}. 	
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Since neither of the two exceptions in (a) is 4-strong, Theorem 6.7.7 im-
plies the following generalization of Theorem 2.6.7:

Corollary 6.7.8 ([45]) If a locally semicomplete digraph is 4-strong, then it
is Hamiltonian-connected. 	

In [43] Guo used Theorem 6.7.7 to give a complete characterization of
those 3-strongly connected arc-3-cyclic (that is, every arc is in a 3-cycle) lo-
cally tournament digraphs with no Hamiltonian path from x to y for specified
vertices x and y. In particular, this characterization shows that there exist in-
finitely many 3-strongly connected digraphs which are locally tournament di-
graphs (but not semicomplete digraphs) and are not Hamiltonian-connected.
Thus, as far as this problem is concerned, it is not only the subclass of semi-
complete digraphs which contain difficult instances within the class of locally
semicomplete digraphs. It should be noted that Guo’s proof does not rely on
Theorem 2.6.7. However, due to the non-semicomplete exceptions mentioned
above, it seems unlikely that a much simpler proof of Corollary 6.7.8 can be
found using Theorems 2.6.7 and 6.6.5.

We conjecture the following generalization of Theorem 2.6.9.

Conjecture 6.7.9 There exists a polynomial algorithm for deciding whether
a given locally semicomplete digraph D has an (x, y)-Hamiltonian path for
two specified vertices x, y.

6.8 Pancyclicity

Recall that by Moon’s theorem (Theorem 2.2.7) and Theorem 2.2.9 every
strong semicomplete digraph is vertex-pancyclic, that is, every vertex is con-
tained in a k-cycle for every k = 3, 4, . . . , n. Below we use the structure
theorem for locally semicomplete digraphs (Theorem 6.6.5) to find a charac-
terization of those locally semicomplete digraphs which are pancyclic (vertex-
pancyclic). By the remark above, we need only consider locally semicomplete
digraphs that are not semicomplete, corresponding to cases (a) and (b) of
Theorem 6.6.5.

Our first goal (Corollary 6.8.4) is a characterization of those round de-
composable locally semicomplete digraphs which are (vertex-)pancyclic.

Lemma 6.8.1 Let R be a strong round local tournament and let C be a
shortest cycle of R and suppose C has k ≥ 3 vertices. Then for every round
labelling v0, v1, . . . , vn−1 of R such that v0 ∈ V (C) there exist indices 0 <
a1 < a2 < . . . < ak−1 < n such that C = v0va1va2 . . . vak−1v0.

Proof: Let C be a shortest cycle and let L = v0, v1, . . . , vn−1 be a round
labelling of R such that v0 ∈ V (C). If the claim is not true, then there
exists a number 2 ≤ l < k − 1 such that C = v0va1va2 . . . vak−1v0, where
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0 < a1 < . . . < al−1 and al < al−1. Now the fact that L is a round labelling
of R implies that vl−1 → v0, contradicting the fact that C is a shortest cycle.

��
Recall that the girth g(D) of a digraph is the length of a shortest cycle

in D = (V,A). For a vertex v ∈ V we let gv(D) denote the length of a
shortest cycle in D through v. The next lemma shows that every round local
tournament R is g(R)-pancyclic.

Lemma 6.8.2 A strong round local tournament digraph R on r vertices has
cycles of length k, k + 1, ..., r, where k = g(R).

Proof: By Lemma 6.8.1 we may assume that R contains a cycle of the form
vi1vi2 ...vikvi1 , where 0 = i1 < i2 < ... < ik < r. Because D is strong,
vim dominates all the vertices vim+1, . . . , vim+1 for m = 1, 2, ..., k. Now it is
easy to see that D has cycles of lengths k, k + 1, ..., r through the vertices
vi1 , vi2 , ..., vik . ��

There is also a very nice structure on cycles through a given vertex in
a round local tournament digraph. The proof is very similar to the proof of
Lemma 6.8.2.

Lemma 6.8.3 ([13]) If a strong round local tournament digraph with r ver-
tices has a cycle of length k through a vertex v, then it has cycles of all lengths
k, k + 1, . . . , r through v. 	

Corollary 6.8.4 ([13]) Let D be a strongly connected round decomposable
locally semicomplete digraph with round decomposition D = R[S1, . . . , Sp].
Let V (R) = {r1, r2, . . . , rp}, where ri is the vertex of R corresponding to Si.
Then

(1) D is pancyclic if and only if either the girth of R is 3 or g(R) ≤
max1≤i≤p |V (Si)| + 1.

(2) D is vertex-pancyclic if and only if, for each i = 1, ..., p, either gri
(R) = 3

or gri
(R) ≤ |V (Si)| + 1.

Proof: As each Si is semicomplete, it has a Hamiltonian path Pi. Further-
more, since R is a strong locally semicomplete digraph, it is Hamiltonian
by Theorem 6.4.9. Thus, starting from a p-cycle with one vertex from each
Si, we can get cycles of all lengths p + 1, p + 2, . . . , n, by taking appropriate
pieces of Hamiltonian paths P1, P2, . . . , Pp in S1, . . . , Sp. Thus, if g(R) = 3,
then D is pancyclic by Lemma 6.8.2. If g(R) ≤ max1≤i≤r |V (Si)|+1, then D
is pancyclic by Lemma 6.8.2 and the fact that (by Theorem 2.2.9) every Si

has cycles of lengths 3, 4, . . . , |V (Si)|. If g(R) > 3 and, for every i = 1, ..., r,
g(R) > |V (Si)| + 1, then D is not pancyclic since it has no (g(R) − 1)-cycle.
The second part of the lemma can be proved analogously by first proving
that for each i = 1, 2, . . . , p, every vertex in Si is on cycles of all lengths



6. Locally Semicomplete Digraphs and Generalizations 265

gri
(R), gri

(R) + 1, . . . , n (using Lemma 6.8.3) and then applying Theorem
2.2.9. ��

To complete the characterization of (vertex-)pancyclic locally semicom-
plete digraphs it suffices to prove the following lemma (recall Theorem 6.6.5).

Lemma 6.8.5 ([13]) Let D be a strong locally semicomplete digraph on n
vertices which is not round decomposable. Then D is vertex-pancyclic.

Proof: If D is semicomplete, then the claim follows from Theorem 2.2.9. So
we assume that D is not semicomplete. Thus, D has the structure described
in Lemma 6.6.4.

Let S be a minimal separating set of D such that D − S is not semi-
complete and let D1,D2, ...,Dp be the acyclic ordering of the strong compo-
nents of D − S. Since the subdigraph D〈S〉 is semicomplete, it has a unique
acyclic ordering Dp+1, ...,Dp+q with q ≥ 1 of its strong components. Re-
calling Lemma 6.6.4(a), the semicomplete decomposition of D − S contains
exactly three components D′

1,D
′
2,D

′
3. Recall that the index of the initial

component of D′
2 is λ2. From Theorem 6.3.4 and Lemma 6.6.2, we see that

D′
2 ⇒ D′

1 ⇒ S ⇒ D1 and there is no arc between D′
1 and D′

3.
We first consider the spanning subdigraph D∗ of D which is obtained

by deleting all the arcs between S and D′
2. By Lemma 6.6.4, D∗ is a round

decomposable locally semicomplete digraph and D∗ = R∗[D1,D2, . . . , Dp+q],
where R∗ is the round locally semicomplete digraph obtained from D∗ by
contracting each Di to one vertex (or, equivalently, R∗ is the digraph obtained
by keeping an arbitrary vertex from each Di and deleting the rest). It can
be checked easily that gv(R∗) ≤ 5 for every v ∈ V (R∗). Thus D∗ is vertex
5-pancyclic by the remark in the proof of Corollary 6.8.4 (in the case when
n = 4, D is easily seen to be vertex-pancyclic so we may assume n ≥ 5). Thus,
it remains to show that every vertex of D lies on a 3-cycle and a 4-cycle.

We define

t = max{ i |N+(S) ∩ V (Di) �= ∅, λ2 ≤ i < p},

A = V (Dλ2) ∪ ... ∪ V (Dt),

t′ = min{ j |N+(Dj) ∩ V (D′
2) �= ∅, p + 1 ≤ j ≤ p + q}

and B = V (Dt′) ∪ ... ∪ V (Dp+q).

It follows from Proposition 6.6.6 that B 
→D′
3 
→A.

Since we have S 
→D1 
→Dλ2 
→D′
1 
→S, every vertex of S is in a 4-cycle

and since we have B 
→D′
3 
→A
→D′

1 
→S, each vertex of V (D′
3)∪ A ∪ V (D′

1) is
contained in a 4-cycle.

By the definition of t′ and A, there is an arc sa from Dt′ to A. It follows
from Lemma 6.6.4(b) that there is an arc a′s′ from A to B. Let v ∈ V (D′

1)
and w ∈ V (D′

3) be arbitrarily chosen. Then savs and s′wa′s′ are 3-cycles.



266 J. Bang-Jensen

Suppose D′
2 contains a vertex x that is not in A, then A
→x. We also have

x, s′ ∈ N+(a′) and this implies that x → s′. From this we get that x
→Dt′ ,
in particular, x → s. Hence xsax is a 3-cycle and xvsax is a 4-cycle. Thus,
it only remains to show that every vertex of S ∪ A is contained in a 3-cycle.

Let u be a vertex of S and let D� be the strong component containing u.
If D� has at least three vertices, then u lies on a 3-cycle by Theorem 2.2.7.
So we assume |V (D�)| ≤ 2. If � < t′, then u and a′ are adjacent because
D� dominates the vertex s′ of B. If � ≥ t′, then either u = s or s → u (if
V (D�) = {s, u}, then usu is a 2-cycle) and hence u, a are adjacent. Therefore,
in any case, u is adjacent to one of {a, a′}. Assume without loss of generality
that a and u are adjacent. If u → a, then uavu is a 3-cycle. If a → u, then
uwau is a 3-cycle because D′

3 → A. Hence, every vertex of S has the desired
property.

Finally, we note that S′ = N+(D′
3) is a subset of V (D′

2) and it is also a
minimal separating set of D. Furthermore, D −S′ is not semicomplete. From
the proof above, every vertex of S′ is also in a 3-cycle. So the proof of the
theorem is completed by the fact that A ⊆ S′. ��

Combining Corollary 6.8.4 and Lemma 6.8.5 we have the following char-
acterization of pancyclic and vertex-pancyclic locally semicomplete digraphs
due to Bang-Jensen, Guo, Gutin and Volkmann:

Theorem 6.8.6 ([13]) A strong locally semicomplete digraph D is pancyclic
if and only if it is not of the form D = R[S1, . . . , Sp], where R is a round local
tournament digraph on p vertices with g(R) > max{2, |V (S1)|, . . . , |V (Sp)|}+
1. Furthermore, D is vertex-pancyclic if and only if D is not of the form D =
R[S1, . . . , Sp], where R is a round local tournament digraph with gri

(R) >
max{2, |V (Si)|} + 1 for some i ∈ {1, . . . , p}, where ri is the vertex of R
corresponding to Si. 	

Tewes studied pancyclicity for locally in-tournament digraphs and ob-
tained several bounds on the minimum in-degree which guarantees the exis-
tence of a cycle of a given length k.

Theorem 6.8.7 ([67]) Let D be a strong locally in-tournament digraph on n
vertices and let 3 ≤ k ≤ n be an integer such that δ−(D) ≥ 3n/(2k + 2) − 1

2 .
Then D has a cycle of length k.

Tewes showed that the bound on the in-degree is the best possible when
k ≥

√
n + 1. For values of k with 3 ≤ k ≤

√
n + 1 Tewes proved the existence

of a function f(k) such that δ−(D) > f(k) implies k-pancyclicity and proved
that the function, which we will not define here (see [67, Definition 4.2]), is
the best possible.

Theorem 6.8.7 immediately implies the following.

Corollary 6.8.8 ([67]) Let D be a strong locally in-tournament digraph on
n vertices such that δ−(D) > 3n/(2k + 2) − 1

2 for some integer 3 ≤ k ≤ n.
Then D is k-pancyclic.
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For further work on pancyclicity of locally in-tournament digraphs, see
the papers [65] by Peters and Volkmann on vertex 6-pancyclic locally in-
semicomplete digraphs and [68] by Tewes on pancyclic orderings of locally
in-semicomplete digraphs.

6.9 Cycle Factors with a Fixed Number of Cycles

An obvious necessary condition for a digraph D on n vertices to contain
a 2-cycle factor is that the girth of D is at most n/2. The second power
D = C2

2k+1 of an odd cycle has girth k + 1 and D is a 2-strong locally
semicomplete digraph. This shows that Theorem 2.8.1 cannot be extended to
locally semicomplete digraphs. Confirming a conjecture by Bang-Jensen [10],
Guo and Volkmann proved that powers of odd cycles are the only exceptions
when n ≥ 8.

Theorem 6.9.1 ([47]) Let D be a 2-strong locally semicomplete digraph on
n ≥ 8 vertices. Then D has a 2-cycle factor such that both cycles have length
at least 3 if and only if D is not the second power of an odd cycle. 	

Guo and Volkmann have shown that, although Theorem 2.8.1 cannot be
extended to locally semicomplete digraphs, there is still enough structure to
allow 2-cycle factors with many different lengths.

Theorem 6.9.2 ([46]) Let D be a 2-strong locally semicomplete digraph on
n ≥ 8 vertices. If D has no induced cycle of length at least 4, then for every
3 ≤ k ≤ n − 3, D has a pair of disjoint cycles of lengths k and n − k,
respectively.

Meierling and Volkmann proved the following extension of Theorem 6.9.1
in the case of oriented graphs.

Theorem 6.9.3 ([61]) Every 2-strong locally in-tournament digraph D on
n ≥ 8 vertices has a pair of complementary cycles if and only if D is not the
second power of an odd cycle. ��

Bang-Jensen and Nielsen [28] gave a polynomial algorithm for checking
whether a given locally semicomplete digraph has a 2-cycle factor.

Guo posed the following problem.

Problem 6.9.4 ([43]) Does there exists an analogue of Theorem 2.8.6 for
locally semicomplete digraphs?

Denote by gi(D) the length of a longest induced cycle in D. If D is locally
semicomplete, then gi(D) ≤ 4 unless D is round decomposable. This is due
to the following easy consequence of Theorem 6.6.5.
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Theorem 6.9.5 A locally semicomplete digraph D has the property that ei-
ther D is round decomposable with a unique round decomposition, or the
vertex set of every cycle induces a digraph containing a cycle on at most 4
vertices.

Gould and Guo found an analogue of Theorem 2.8.6 for the case of round
decomposable locally semicomplete digraphs.

Theorem 6.9.6 ([42]) Let D = R[S1, S2, . . . , Sr] be a k-strong round decom-
posable locally semicomplete digraph on n ≥ 2(k − 1)g(R) vertices. Then D
contains a g(R)-cycle C such that D − V (C) is (k − 1)-strong.

Corollary 6.9.7 ([42]) Let D be a round decomposable k-strong locally semi-
complete digraph on n ≥ 2(k − 1)gi(D) vertices. Then for every choice of k
integers n1, n2, . . . , nk ≥ gi(D) such that n1 + n2 + . . . + nk = n, D has a
k-cycle factor C1, C2, . . . , Ck such that Ci has length ni, i ∈ [k].

Proof: Let D = R1[S1
1 , S1

2 , . . . , S1
|V (R1)|] be the round decomposition of D.

By Theorem 6.9.6, the induced subdigraph R1 of D1 has a shortest cycle C ′
1

such that D2 = D−V (C ′
1) is (k−1)-strong. It is easy to check that D2 is also

round decomposable with unique round decomposition R2[S2
1 , . . . , S2

|V (R2)|].
Hence we can repeat the process k − 1 more times, always picking a shortest
cycle in the current round digraph Ri, to obtain disjoint cycles C ′

1, C
′
2 . . . , C ′

k

each of which are cycles in R and have length at most gi(D). Note that,
the choice of the cycles C ′

1, C
′
2 . . . , C ′

k (each going once around in the round
ordering of R1) implies that every vertex of D has at least one in-neighbour
and at least one out-neighbour on C ′

j for j ∈ [k]. This implies that for each
i ∈ [k] we can insert exactly ni − |V (C ′

i)| vertices among the vertices of
V (D)− (V (C ′

1)∪ . . . ∪V (C ′
k)) into C ′

i such that the resulting subdigraph Hi

is a strong locally semicomplete digraph on ni vertices. Thus if Ci denotes
a Hamiltonian cycle of Hi, i ∈ [k], we see that C1, C2, . . . , Ck is the desired
k-factor. ��

Gould and Guo showed that in the case of k-strong evil locally semicom-
plete digraphs one can always obtain a cycle factor on k cycles such that
almost all of the cycles are short.

Theorem 6.9.8 ([42]) Let D be an evil locally semicomplete digraph on n ≥
20(k − 1) vertices. Then D has a cycle factor consisting of k cycles such that
at least (k − 2) of these have length at most 4.
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6.10 Arc-Disjoint Paths

The next topic we consider is the weak-k-linkage problem.

weak-k-linkage
Input: A digraph D = (V,A) and not necessarily distinct vertices
s1, . . . , sk, t1, . . . , tk.
Question: Does D contain arc disjoint paths P1, . . . , Pk such that Pi is
an (si, ti)-path for i ∈ [k]?

Recall from Theorem 2.5.1 that Fradkin and Seymour gave a polynomial
algorithm for the weak-k-linkage problem in digraphs of bounded inde-
pendence number. Using that result, Theorem 6.6.5 as well as some new
results concerning the structure of arc-disjoint paths in round decomposable
digraphs, which are described in Section 8.5.2, Bang-Jensen and Maddaloni
obtained the following.

Theorem 6.10.1 ([26]) For every fixed natural number k there exists a poly-
nomial algorithm for the weak-k-linkage problem for locally semicomplete
digraphs.

Conjecture 6.10.2 For every fixed natural number k the weak-k-linkage
problem is polynomially solvable for locally in-semicomplete digraphs.

The conjecture is open even for k = 2. Below we illustrate a solution, due
to Bang-Jensen, for the special case of the weak 2-linkage problem where
we are seeking arc-disjoint (x, y)- and (y, z)-paths for distinct vertices x, y, z.
In this case it is possible to find a complete charaterization even for extended
locally in-semicomplete digraphs

Two vertices are called similar if and only if they are non-adjacent and
have the same in- and out-neighbours. Note that if x, y are non-adjacent ver-
tices with a common out-neighbour w in an extended locally in-semicomplete
digraph, then x and y are similar vertices, by the definition of an extension
and the definition of a locally in-semicomplete digraph.

The following lemma can be proved along the same lines as Lemma 6.10.4.

Lemma 6.10.3 ([16]) Let D be a strong extended locally in-semicomplete
digraph and let x, y be distinct vertices of D. Then D has arc-disjoint paths
P,Q such that P is an (x, y)-path and Q is a (y, x)-path if and only if there
is no arc a such that D − a contains no (x, y)-path and no (y, x)-path. 	

Lemma 6.10.4 ([5]) Let D = (V,A) be an extended locally in-semicomplete
digraph and x, y, z vertices of D such that x �= z and D contains a path from
y to z. If D has arc-disjoint (x, y)-, (x, z)-paths, then D contains arc-disjoint
(x, y)-, (y, z)-paths.
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Proof: Let P1 and P2 be arc-disjoint paths such that P2 is an (x, z)-path
and P1 is a minimal (x, y)-path. If y ∈ V (P2), or yx ∈ A, then the claim is
trivial, so we assume that none of these hold. We can also assume that x and
y are not similar vertices, because if they are, then y dominates the successor
of x on P2 and again the claim is trivial.

If D has a (y, z)-path whose first intersection with V (P1)∪V (P2) (starting
from y) is on P2, then the desired paths clearly exist. Hence we may assume
that D contains a path from y to V (P1) ∪ V (P2) − y whose only vertex w
from V (P1) ∪ V (P2) − y is in V (P1) − V (P2). Now choose P among all such
paths so that w is as close as possible to x on P1. By the assumption above
w �= x. Let u (v) denote the predecessor of w on P1 (P ), i.e., u = w−

P1
and

v = w−
P .

Suppose first that u and v are not adjacent. Then, by the remark just
before Lemma 6.10.3, u and v are similar. Now the choice of P implies that
v = y (otherwise the predecessor of v on P dominates u, contradicting the
choice of P ). By the assumption that x and y are not similar we conclude
that u �= x, but then u−

P1
y ∈ A, contradicting the minimality of P1.

Thus we may assume that u and v are adjacent. By the choice of P , this
implies that uv ∈ A. Choose r as the first vertex on P which is dominated by
u. By the minimality of P1, r �= y. Let s be the predecessor of r on P . The
choice of r and P implies that u and s are similar. Thus as above, we must
have s = y, and since u �= x we reach a contradiction as before. ��

The digraph D = (V,A) with vertex set V = {x, u, v, y, z} and arc set
A = {xu, uv, vy, yu, vz, xz} shows that the conclusion of Lemma 6.10.4 does
not hold for general digraphs.

Using Lemma 6.10.4 we can now characterize those extended locally in-
semicomplete digraphs which do not have arc-disjoint (x, y)-, (y, z)-paths.

Theorem 6.10.5 ([5]) An extended locally in-semicomplete digraph D has
arc-disjoint (x, y)-, (y, z)-paths if and only if it has an (x, y)-path and a (y, z)-
path and D has no arc e such that D−e has no (x, y)-path and no (y, z)-path.

Proof: Clearly if D has an arc e whose removal separates x from y and y
from z, then the paths cannot exist. Now assume that D has no such arc and
that D has an (x, y)-path and a (y, z)-path. We prove that D has the desired
paths. By Lemma 6.10.3 we may assume x �= z.

By Lemma 6.10.4, we may assume that D contains no pair of arc-disjoint
(x, y)-,(x, z)-paths. Thus, by Menger’s theorem, there exists an arc e = uv
such that D − e has no path from x to {y, z}. Let X = {w : ∃(x,w) −
path in D − e} and B = V (D) − X. Then x ∈ X, y, z ∈ B and the only arc
from X to B is e.

Since D contains an (x, y)-path, D[X] has an (x, u)-path and D[B] has
a (v, y)-path. D[B] also has a (y, z)-path, since e does not destroy all paths
from y to z.
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If v = y, the desired paths clearly exist (and can in fact be chosen vertex
disjoint). If v = z, then it follows from our assumption that there is no arc
a in D[B] which separates y from z and also z from y. Now it follows from
Lemma 6.10.3 that D[B] contains arc-disjoint (z, y)-, (y, z)-paths and hence
D contains the desired paths. Thus we may assume v �= y, z.

Now it is clear that the desired paths exist if and only if D[B] has arc-
disjoint (v, y)-, (y, z)-paths. By induction this is the case unless there exists
an arc e′ = ab in D[B] such that D[B] − e′ has no path from v to y and
no path from y to z, but then e′ separates x from y and y from z in D,
contradicting the assumption that D has no such arc. ��

The proof above is constructive and hence we have the following

Corollary 6.10.6 ([6]) There exists a polynomial algorithm which, given an
extended in-semicomplete digraph D and distinct vertices x, y, z, either re-
turns a pair of arc-disjoint (x, y)-, (y, z)-paths or an arc a such that D − a
has no (x, y)-path and no(y, z)-path. ��

6.11 Vertex-Disjoint Paths

We now turn to vertex-disjoint paths with prescribed end vertices.

k-Disjoint Paths
Input: A digraph D = (V,A) and distinct vertices s1, . . . , sk, t1, . . . , tk.
Question: Does D contain vertex disjoint paths P1, . . . , Pk such that Pi

is an (si, ti)-path for i ∈ [k]?

Note that this is the same as the k-linkage problem defined in Chapter
1, except that now we insist that the paths are completely disjoint.

6.11.1 Algorithmic Results

Recall from Theorem 2.5.11 that for every fixed pair of integers p, k the
k-Disjoint paths problem is polynomially solvable for all digraphs whose
vertex sets can be partitioned into p disjoint sets, each of which induces a
semicomplete digraph.

Bang-Jensen, Christiansen and Maddaloni used this result, Theorem 6.6.5
and a number of new results, primarily on linkings in round decomposable
digraphs to obtain a polynomial algorithm for the k-Disjoint paths problem
in locally semicomplete digraphs.

We show below that the case of round digraphs can be solved using the
algorithms for the k-Disjoint paths problem on acyclic digraphs.
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Theorem 6.11.1 ([11]) For every fixed k, there exists a polynomial algorithm
which solves the k-Disjoint paths problem on round digraphs.

Proof: Let D be a round digraph with round ordering v1, ..., vn and let
Π = {(s1, t1), ..., (sk, tk)} be a set of pairs of vertices of D for which we seek
a Π-linkage. Given j ∈ [n−1], we say that an arc vavb ∈ A(D) is over vjvj+1

if vb ∈ {vj+1, vj+2, ..., va−1}. Note that the removal of all the arcs over vjvj+1

from D leaves an acyclic digraph. We show that if (D,Π) has a Π-linkage,
then there exists a linkage such that each of the paths uses at most one arc
over any vjvj+1, namely the linkage that minimizes the total number of used
vertices.

Suppose, by contradiction, that an (si, ti)-path P uses two arcs over
vjvj+1 and call them u1w1 and u2w2. Assume without loss of generality that
the arc u1w1 precedes u2w2 on the path P . There are four possibilities for
the relative positions of the four vertices in the round ordering:

(u1, u2, w1, w2), (u2, u1, w1, w2), (u1, u2, w2, w1), (u2, u1, w2, w1).

In all these cases the path P can be shortened by using, for instance, the
arc u1u2 in the first case and u1w2 in the other cases (such arcs exist by the
round property). It follows that P uses at most one arc over vjvj+1.

A polynomial algorithm is obtained by selecting a j ∈ [n − 1], then for
every choice of an ordered h-tuple of pairs ((si1 , ti1), ..., (sih , tih)) (with 0 ≤
h ≤ k) and every choice of arcs u1w1, ..., uhwh over vjvj+1 we do the following:
construct the digraph D′ by deleting all the arcs over vjvj+1 from D and
run the algorithm for k-linkage on acyclic digraphs (from Theorem 3.4.1)
with input D′ and terminals (si1 , u1), (w1, ti1), ..., (sih , uh), (wh, tih) plus the
remaining original pairs. If a solution is found, construct a solution for the
original instance by using the selected arcs u1w1, ..., uhwh. If there is no
solution for each of the possible choices, it means there is no linkage using at
most k arcs over vjvj+1, and hence no linkage at all.

The above algorithm involves running a polynomial number of times the
polynomial algorithm from Theorem 3.4.1 and hence is polynomial. ��

Theorem 6.11.2 ([11]) For every fixed k, there exists a polynomial algorithm
to solve the k-Disjoint paths problem on round decomposable digraphs.

Lemma 6.6.4 implies that if D is an evil locally semicomplete digraph, then
D can be covered by 3 disjoint semicomplete subdigraphs of D (e.g. the di-
graphs D′

3,D
′
2,D〈V (S) ∪ V (D′

1)〉). In fact two semicomplete digraphs always
suffice [54] but we only need the weaker version below. By Corollary 6.5.6
it is possible to decide in polynomial time whether a locally semicomplete
digraph D is round decomposable. By running the algorithm from Theorem
6.11.2 if D is round-decomposable and the algorithm from Theorem 2.5.11 if
D is not round-decomposable, we get the following theorem.
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Theorem 6.11.3 ([11]) For every fixed k, there exists a polynomial algorithm
to solve the k-Disjoint paths problem on locally semicomplete digraphs.

We believe that the following much stronger assertion holds. The conjec-
ture is open already for k = 2.

Conjecture 6.11.4 For every fixed k, there exists a polynomial algorithm to
solve the k-Disjoint paths problem on locally in-semicomplete digraphs.

6.11.2 Sufficient Conditions for Being k-Linked

Recall that by Theorem 2.5.15, every 452k-strong semicomplete digraph is
k-linked. Our first result is a characterization, due to Bang-Jensen, Chris-
tiansen and Maddaloni, of k-linked round-decomposable digraphs. We need
the following lemma.

Lemma 6.11.5 ([11]) If D is digraph which has a decomposition as D =
R[M1, ...,Mr], with R round, such that d+(Mi) ≥ 2k − 1 for i = 1, ..., r, then
D is k-linked.

Proof: We use induction on k.
For k = 1, the above condition, together with the round property of R,

implies strong connectivity for D, so there is a path between each pair of
vertices.

Assume that the statement is true for k, we prove that every digraph
decomposable as D = R[M1, ...,Mr], with R round such that d+(Mi) ≥
2k+1 for i = 1, ..., q is k+1-linked. Suppose that we want a linking between
s1, ..., sk+1 ∈ V (D) and t1, ..., tk+1 ∈ V (D), respectively. We construct an
(s1, t1)-path P whose removal leaves a digraph D′ = Q[M ′

1, ...,M
′
q], with Q

round and d+D′(M ′
i) ≥ 2k−1 for i = 1, ..., q. Thus, by the induction hypothesis,

D′ is k-linked, so we are done.

The path P starts from s1 ∈ Mi and uses an available widest arc: an arc
s1v such that v �∈ {s2, ..., sk+1, t2, ..., tk+1} and v ∈ Mj , with Mj maximizing
the distance from Mi in the round ordering of R, namely for every l such
that Mi < Mj < Ml in the round ordering s1 has no arc to Ml; the path
P keeps using widest available arcs until a vertex adjacent to t1 is reached,
in which case the path continues to t1. Now for i = 1, ..., r, define M ′

i :=
Mi − V (P ), let r′ be the number of nonempty sets of the form M ′

i , and R′

be the round digraph obtained from R by removing the vertices vi such that
M ′

i = ∅. The digraph D′ = R′[M ′
1, ...M

′
r′ ] is as desired. Indeed, for every i

there do not exist three vertices x, y, z of P inside N+
D (Mi), since, by the fact

that x, y, z ∈ N+
D (Mi) and by the round property of R, one of the vertices

dominates the other two or the three vertices belong to the same module
in the decomposition. In both cases one of the arcs of P would not be the
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widest available or will not be directed to the target. It follows that for every
i, N+

D′(M ′
i) has size at least 2k − 1, so D′ has the desired property. ��

Corollary 6.11.6 ([11]) Let D be a digraph on n ≥ 2k vertices that is not
semicomplete and is decomposable as D = R[M1, ...,Mr], with R round and
M1, ...,Mr semicomplete. The digraph D is k-linked if and only if it is (2k−1)-
strong.

Proof: Suppose that D is (2k − 1)-strong. Given that D = R[M1, ...,Mr] is
not semicomplete, we have r ≥ 3 and for every i, D − N+(Mi) is non-empty.
It follows that for every i, N+(Mi) is a separator and hence must be of size
at least 2k − 1. Therefore D satisfies the hypothesis of Lemma 6.11.5 and
thus D is k-linked.

Vice versa: a k-linked digraph on n ≥ 2k vertices must necessarily be
(2k − 1)-strong, otherwise a set of size at most 2k − 2 would separate two
vertices s, t of the digraph, so if these vertices formed the first k−1 pairs and
s, t the k-th pair, there is no good linkage. ��

Corollary 6.11.6 immediately applies to round decomposable digraphs.

Theorem 6.11.7 ([11]) Let D be a round decomposable digraph on n ≥ 2k
vertices that is not semicomplete. Then D is k-linked if and only if it is
(2k − 1)-strong.

Note that the decomposition of Lemma 6.11.5, D = R[M1, ...,Mr], need
not be a proper decomposition (that is, R �= D), indeed even if |Mi| = 1
for every i, the proof holds. Therefore the previous results hold for round
digraphs too.

Theorem 6.11.8 ([11]) Let k be an integer. A round digraph on n ≥ 2k
vertices is (2k − 1)-strong if and only if it is k-linked.

Bang-Jensen proved the following result, which generalizes a previous re-
sult by Thomassen for semicomplete digraphs.

Theorem 6.11.9 ([8]) There exists, for each natural number k, a natural
number f(k) such that every f(k)-strong locally semicomplete digraph is k-
linked.

We believe that Pokrovskiey’s result on k-linked semicomplete digraphs
(Theorem 2.5.15) can be extended to locally semicomplete digraphs.

Conjecture 6.11.10 There exists a constant B such that every Bk-strong
locally semicomplete digraph is k-linked.
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By Theorems 6.11.7 and 2.5.15 the conjecture holds for locally semicom-
plete digraphs that are not evil.

Bang-Jensen, Christiansen and Maddaloni extended Theorem 2.5.12 to
locally semicomplete digraphs. The proof of Theorem 6.11.11 makes extensive
use of Theorem 6.6.5 and several refinements of this concerning the structure
of evil locally semicomplete digraphs.

Theorem 6.11.11 ([11]) Every 5-strong locally semicomplete digraph is 2-
linked.

6.12 Arc-Disjoint Spanning Subdigraphs

Recall from Theorem 2.12.14 that every 2-arc-strong semicomplete digraph
which is not the second power of a 4-cycle has an arc-decomposition into two
spanning strong subdigraphs. It is easy to see that the second power C2

n of
an n-cycle is a 2-strong locally semicomplete digraph and that it has an arc-
decomposition into two spanning strong subdigraphs if and only if n is odd.
Hence there are infinitely many 2-arc-strong locally semicomplete digraphs,
which do not have an arc-decomposition into two spanning strong subdi-
graphs. Bang-Jensen and Huang proved that second powers of odd cycles are
the only exceptions.

Theorem 6.12.1 ([23]) A 2-arc-strong locally semicomplete digraph D =
(V,A) has an arc-decomposition into two spanning strong subdigraphs D1 =
(V,A1), D2 = (V,A2) if and only if D is not the second power of an even
cycle. Furthermore, there exists a polynomial algorithm for constructing an
arc-decomposition into two spanning strong subdigraphs whenever the input
is a 2-arc-strong locally semicomplete digraph which is not the second power
of an even cycle.

The complicated proof makes heavy use of Theorem 6.6.5 as well as several
other tools.

Since no second power of a cycle is 3-arc-strong, Theorem 6.12.1 implies
the following:

Corollary 6.12.2 Every 3-arc-strong locally semicomplete digraph has an
arc-decomposition into two spanning strong subdigraphs. ��

Conjecture 2.12.12 does not hold if we replace ‘semicomplete digraph’ by
‘locally semicomplete digraph’ as by Theorem 6.12.1 the second power of an
even cycle cannot be decomposed into two arc-disjoint Hamiltonian cycles.
If n is relatively prime to both 2 and 3, then it is easy to see that C3

n can
be decomposed into three arc-disjoint Hamiltonian cycles. In fact, such a
decomposition does not exist for any other n.
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Proposition 6.12.3 ([23]) If n is not relatively prime to 2 or 3, then C3
n

cannot be decomposed into arc-disjoint Hamiltonian cycles.

Conjecture 6.12.4 ([23]) A k-arc-strong locally semicomplete digraph D can
be decomposed into k arc-disjoint strong spanning subdigraphs if and only if
D is not the k-th power Ck

n of an n-cycle Cn where n is divisible by some
i = 2, 3, . . . , k.

If true the above conjecture would imply the following:

Conjecture 6.12.5 ([23]) For every natural number k there exists a natural
number f(k) such that every k-arc-strong locally semicomplete digraph D =
(V,A) with δ(D) ≥ f(k) has an arc-decomposition A = A1 ∪ A2 ∪ . . . ∪ Ak

such that each of the spanning subdigraphs Di = (V,Ai), i = 1, 2, . . . , k are
strong.

The following result due to Bang-Jensen and Huang shows that for round
decomposable locally semicomplete digraphs that are not round we can
choose one of the digraphs D1,D2 in the decomposition into arc-disjoint
spanning subdigraphs to be a Hamiltonian cycle.

Lemma 6.12.6 ([23]) Let D = R[D1,D2, . . . , Dr], r ≥ 3 be a 2-arc-strong
round decomposable locally semicomplete digraph for which at least one Di

has more than one vertex. Then D contains a Hamiltonian cycle C such that
D − A(C) is strong. Furthermore, we can find C in polynomial time.

Proof: First note that if |V (Di)| > 1 then Di contains a Hamiltonian cycle
as Di is semicomplete. Denote by Ci a Hamiltonian cycle in Di for each i with
|V (Di)| > 1. Let s1, s2, . . . , sr be a round labeling of R. Form a Hamiltonian
cycle C of D by replacing each si for which |V (Di)| > 1 by Ci minus one arc
ai = uivi. Let ui be the only vertex in Di when |V (Di)| = 1. To show that D−
A(C) is strong, form a subdigraph D′ of D as follows: First of all D′ contains
all arcs ai. For each i, j such that |V (Di)| > 1, |V (Dj)| > 1 and |V (Dk)| = 1
with i < k < j, D′ contains all arcs of the two paths viui+1ui+3 . . . uj−2uj ,
viui+2ui+4 . . . uj−1uj when j = i + 2p + 1 modulo n for some p and all arcs
of the two paths viui+1ui+3 . . . uj−1uj , viui+2ui+4 . . . uj−2uj when j = i+2p
modulo n for some p. It is easy to see that D′ is strong and contains no arc
from C. Every vertex of D which is not in D′ (they all belong to Di’s with at
least 3 vertices) can be added as an ear via a path of length 2 without using
any arc from C and hence D′ is strong. Hence D − A(C) is strong. ��

As mentioned in Section 2.12, Thomassen conjectured that every 3-strong
tournament has a pair of arc-disjoint Hamiltonian cycles. Bang-Jensen and
Huang posed the following extension of Thomassen’s conjecture.

Conjecture 6.12.7 ([23]) Every 3-strong arc-local tournament digraph has
a pair of arc-disjoint Hamiltonian cycles.
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Li and Han [58] have verified the conjecture for round decomposable lo-
cally semicomplete digraphs.

We now consider arc-disjoint in-and out-branchings and start with the
following consequence of Theorem 6.12.1.

Corollary 6.12.8 Every 2-arc-strong locally semicomplete digraph D =
(V,A) contains arc-disjoint in- and out-branchings B−

u , B+
v for every choice

of u, v ∈ V . Furthermore, there is a polynomial algorithm which constructs
such a pair of branchings in a given 2-arc-strong locally semicomplete digraph.

Proof: If D is not the second power of an even cycle, then by Theorem
6.12.1, D has an arc-decomposition into strong spanning subdigraphs D1,D2

and such a decomposition can be found in polynomial time. Now we can
take B−

u to be any in-branching rooted at u in D1 and B+
v to be any out-

branching rooted at v in D2. Suppose that D is the second power of an
even cycle v1v2 . . . v2kv1. Assume without loss of generality that v = v1. It
is easy to verify that D′ = D − A(P ) is strong where P is the Hamiltonian
path v1v3v4 . . . v2kv2. Thus we can take any in-branching rooted at u in D′.
Clearly this implies the complexity claim. ��

No characterization is known of those locally semicomplete digraphs that
do not have a pair of disjoint branchings B+

s , B−
t for given distinct vertices

s, t. When s = t, that is, the two branchings are rooted at the same vertex,
Bang-Jensen and Huang found such a characterization [22]. The complicated
proof makes heavy use of Theorem 6.6.5 as well as several other tools such
as arc-contractions, etc. The characterization in [22] implies the following.

Theorem 6.12.9 ([22]) There exists a polynomial algorithm for deciding if
a given locally semicomplete digraph D with a special vertex s has a pair of
arc-disjoint in- and out-branchings B−

s , B+
s rooted at s.

6.13 Kernels and Quasi-Kernels

A set K of vertices in a digraph D = (V,A) is a kernel if K is indepen-
dent and the first closed neighbourhood of K, N−[K], is equal to V. This
notion was introduced by von Neumann in [71]; kernels have found many ap-
plications, for instance in game theory (a kernel represents a set of winning
positions, cf. [71] and Chapter 14 in the book by Berge [31]), in logic [32] and
in list edge-colouring of graphs (see [16, Section 17.9]). The problem Kernel
is to decide whether a given digraph D has a kernel. Chvátal (see [41], p. 204)
proved that kernel is NP-complete.

Using Theorem 6.6.5 Bang-Jensen, Guo, Gutin and Volkmann showed
that Kernel is polynomial for locally semicomplete digraphs.

Theorem 6.13.1 ([13]) Kernel is polynomially solvable for locally semi-
complete digraphs.
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The key lemma used in the proof of Theorem 6.13.1 is the following. Note
that for the kernel problem, the difficulty lies in handling locally semicomplete
digraphs that are neither semicomplete nor evil as the independence number
of the later is at most 2.

Lemma 6.13.2 ([13]) There exists a polynomial algorithm to decide if a
round local tournament has a kernel.

Proof: Let R be a round local tournament with vertex set {v0, v1, . . . , vr−1}.
Let TR be a clock with a dial on r hours v0, v1, . . . , vr−1 corresponding to
the vertices of R, and define for each vi the time interval Ti = [vi, vi+d+(vi)].
It is easy to see that R has a kernel if and only if the dial of the time clock
TR can be covered by pairwise non-overlapping time intervals. This can be
checked in time O(r2). Note that if R is not strong and R has a kernel, then
it is unique (this corresponds to a unique way to cover the dial of TR). ��

Conjecture 6.13.3 ([17]) Kernel is polynomially solvable for locally in-
semicomplete digraphs.

Problem 6.13.4 ([17]) What is the complexity of Kernel for path-merge-
able digraphs?

A digraph D is critically kernel imperfect if D has no kernel but every
proper induced subdigraph of D has a kernel. Galeana-Sánchez and Olsen
[40] characterized locally semicomplete digraphs that are critically kernel
imperfect. For each integer m ≥ 4 the semicomplete digraph Qm is obtained
from the complete digraph

↔
Km by deleting the arcs of a Hamiltonian cycle.

Theorem 6.13.5 ([40]) A locally semicomplete digraph is critically kernel
imperfect if and only if it is either the second power C2

7 of a 7-cycle, an odd
cycle or one of the semicomplete digraphs Qm defined above, where m ≥ 4.

A quasi-kernel in a digraph D = (V,A) is an independent set Q ⊆ V
with the property that for every vertex x ∈ V − Q, either x dominates some
vertex in Q or x dominates a vertex y ∈ V − Q which has an out-neighbour
in Q. In other words every vertex has distance at most 2 to Q. Chvátal and
Lovász [35] proved that every digraph has a quasi-kernel. For a beautiful
proof of this, due to Thomassé see [34].

Clearly a digraph containing a vertex x of out-degree zero cannot have
two disjoint quasi-kernels as x must belong to every quasi-kernel. Heard and
Huang showed that not having a sink (i.e. a vertex of out-degree zero) is a
sufficient condition for a locally semicomplete digraphs to have two disjoint
quasi-kernels.
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Theorem 6.13.6 ([51]) Every locally semicomplete digraph D with δ+(D) ≥
1 has a pair of disjoint quasi-kernels.

In [49] an example of a locally out-tournament digraph of minimum out-
degree 1 and no pair of disjoint quasi-kernels is given.

Problem 6.13.7 Characterize locally out-semicomplete digraphs with a pair
of disjoint quasi-kernels.

Problem 6.13.8 Does every locally in-semicomplete digraph D which has
δ+(D) ≥ 1 have a pair of disjoint quasi-kernels?

6.14 Feedback Sets in Locally Semicomplete Digraphs

Most of the results we discuss in this section are due to Bang-Jensen, Mad-
daloni and Saurabh [27]. Recall that a set of arcs (vertices) X is a feedback
arc set (feedback vertex set) in a digraph D if D − X is acyclic. The
problems we focus on in this section are the decision versions of the feedback
arc set and feedback vertex set problems, namely.

Feedback arc set (k-FAS) Parameter: k
Input: A digraph D and a positive integer k.
Question: Does there exist a feedback arc set of size at most k?

Feedback vertex set (k-FVS) Parameter: k
Input: A digraph D and a positive integer k.
Question: Does there exist a feedback vertex set of size at most k?

On general digraphs both k-FAS and k-FVS are equivalent [38]. Indeed, it
is not difficult to see that given an instance (D, k) of k-FAS one can produce
an equivalent instance of k-FVS by taking the line digraph of D. On the other
hand, to obtain a reduction from k-FVS to k-FAS consider the following:
given an instance (D, k) of k-FVS one can produce an equivalent instance
of k-FAS by performing the vertex splitting procedure on D. The vertex
splitting procedure consists in substituting each vertex v by two new vertices
v+, v−, deleting v, adding the arc v−v+, making all out-neighbours of v in D
out-neighbours of v+ and making all in-neighbours of v in D in-neighbours
of v−.

6.14.1 Feedback Vertex Sets

Lemma 6.14.1 ([27]) Let D be a round digraph. For all v ∈ V (D) the di-
graphs D−N+(v) and D−N−(v) are both acyclic and the minimum feedback
vertex sets of D are exactly the minimum neighbourhoods of D.
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Proof: The first claim follows from the definition of a round digraph:
Let v1, v2, . . . , vn be a round labelling of V (D). If vivj is an arc then
vi+1vj , . . . , vj−1vj and vivi+1, . . . , vivj−1 are also arcs and every cycle C con-
tains an arc which is over vivi+1 for every i ∈ [n]. So deleting any in- or out-
neighbourhood kills all cycles. To prove the second part, let F be a feedback
vertex set of D. There exists a v ∈ V such that min(d+D−F (v), d

−
D−F (v)) = 0,

in particular F contains a set of the form N+(v) or N−(v).

Let N = {va, va+1..., vb} be an out-neighbourhood and suppose there ex-
ist a cycle C in D − N . Then C contains an arc vivj , which is over vava+1,
implying vi ∈ N−(vb+1), vj ∈ N+(va−1). But then N cannot be a neigh-
bourhood (of va−1 or vb+1), contradiction. It follows that N is a feedback
vertex set.

Now given a minimum fvs F , there exists a neighbourhood, and thus
fvs, N such that F ⊇ N , but |F | ≤ |N |, thus F = N , moreover N is
a minimum neighbourhood, otherwise if there existed a neighbourhood N ′

with |N ′| < |N |, it would be a feedback vertex set of size smaller than |F |.
Similarly every minimum neighbourhood is a minimum fvs. ��

From Lemma 6.14.1 we can get the following:

Corollary 6.14.2 ([27]) There exists a linear time algorithm for FVS on
round digraphs.

For the full class of locally semicomplete digraphs it is also possible to
obtain a polynomial size problem-kernel. The proof of this is considerably
more complicated than for the round case.

Theorem 6.14.3 ([27]) There is an O(k4) problem-kernel for k-FVS on lo-
cally semicomplete digraphs

6.14.2 Feedback Arc Sets

Bessy et al., proved the following.

Theorem 6.14.4 ([37]) The problem k-FAS on tournaments has a kernel
with O(k) vertices.

Below we use the abbreviation ‘fas’ for ‘feedback arc set’.

Lemma 6.14.5 ([27]) Let R be a round directed multigraph without 2-cycles
and with round labelling O = v1, ..., vn, n ≥ 2. There exists a minimum fas
of R consisting of all the arcs over vava+1, for some a ∈ [n].

Proof: We use induction on the number n of vertices. If n = 2, then R
is acyclic since v1v2 /∈ A(R) or v2v1 /∈ A(R) and the statement vacuously
holds. Therefore assume that n > 2 and that R is strong (otherwise it is
acyclic). Then, by the definition of a round digraph, we have vava+1 ∈ A(R),
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for a = 1, ..., n (where vn+1 = v1). Let F be a minimum fas of R. There must
exist a vertex vi such that d−

R−F (vi) = 0.
Consider the round digraph R′ := R−vi, with the round labelling induced

by the round labelling of R. By induction hypothesis, there exists a minimum
fas F ′ of R′ consisting of the arcs over wz, for some consecutive vertices w, z
with respect to the labelling of R′ (it could be that w and z are not consecutive
in the labelling of R, when w = vi−1, z = vi+1). We can assume F ′ �= ∅,
otherwise F consists of the arcs over vi−1vi. Note that if F ′ is a minimum
fas of R we are done; if not, then there is a cycle and thus an arc over wz
in R − F ′, but the only arcs in R − F ′ over wz are those incident with vi,
hence either z ∈ N+(vi) or vi ∈ N+(w). Assume that the first case holds. Let
X := N+(vi)∩N−(z) and Y := N+(vi)∩N+(w) and note that X and Y are
proper segments of the round labelling starting at vi+1 and z, respectively
(this follows from the fact that R has no 2-cycles: if Z and X overlapped in
some vertex x then xwx would be a 2-cycle). Let φ be the number of arcs
from N−(vi) to Y (they are all over wz). By the minimality of F ′, we have
that |F |−d−(vi) ≥ |F ′|. We also have that |F | ≤ |F ′|+ |A(vi, Y )|, given that
F ′ ∪A(vi, Y ) is a fas3 of R. These two inequalities imply d−(vi) ≤ |A(vi, Y )|.

Now let F ′′ be the set of arcs over vi−1vi (in R), we have:

|F ′′| ≤ d−(vi) · |X| + d−(vi) + φ

≤ |A(vi, Y )| · |X| + d−(vi) + φ

≤ |A(X,Y )| + d−(vi) + φ.

On the other hand

|F | ≥ |F ′| + d−(vi) ≥ |A(X,Y )| + d−(vi) + φ.

We deduce that |F ′′| ≤ |F | and thus F ′′ is a minimum fas as required.
Similarly, if vi ∈ N+(w), let X := N+(vi) ∩ N+(w) and Y := N−(vi) ∩

N−(z). Again we have |F |−d−(vi) ≥ |F ′| and |F | ≤ |F ′|+|A(Y, vi)|, implying
that d−(vi) ≤ |A(Y, vi)|. (In fact d−(vi) = |A(Y, vi)| and we are in the case
w = vi−1, z = vi+1.) So letting F ′′ be the set of arcs over vi−1vi in R, we have:
|F ′′| ≤ d−(vi) · |X|+d−(vi) = |A(Y, vi)| · |X|+d−(vi) ≤ |A(Y,X)|+d−(vi) ≤
|F ′| + d−(vi) ≤ |F |, showing that F ′′ is a minimum fas as required. ��

By finding the minimum size set of arcs over vava+1, for 1 ≤ a ≤ n we
get the following

Corollary 6.14.6 ([27]) There is a linear algorithm to find a minimum fas
on round directed multigraphs without 2-cycles.

There is also a problem kernel for k-FAS on round decomposable digraphs.

3 This is not necessarily true if there are 2-cycles.
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Theorem 6.14.7 ([27]) There exists an O(k) problem-kernel for k-FAS on
round decomposable digraphs.

Using probabilistic techniques combined with ideas from [1] the authors
of [27] obtained the following two results.

Theorem 6.14.8 ([27]) For locally semicomplete digraphs that are neither
semicomplete nor round decomposable k-FAS can be solved in expected time
O(n3 ·2O(

√
k log k)+n2M(n) log2(n)), where M(n) is the complexity of matrix

multiplication [38].

Theorem 6.14.9 There exists an algorithm with running time O(n3 log n ·
2O(

√
k(log k)O(1)) + n2M(n) log2(n)) for solving k-fas on the class of digraphs

whose vertex set can be partitioned into two sets inducing semicomplete di-
graphs and, in particular, for locally semicomplete digraphs that are not round
decomposable.

Combining the results above with Theorem 6.6.5 and the solution for
semicomplete digraphs in [1] Bang-Jensen, Maddaloni and Saurabh obtained
the following.

Theorem 6.14.10 ([27]) For locally semicomplete digraphs the k-FAS prob-
lem can be solved in O(n3 log n · 2O(

√
k(log k)O(1)) + n2M(n) log2(n)) time.

6.15 Orientations of Locally Semicomplete Digraphs

Recall that an orientation of a digraph D is any spanning oriented graph
that can be obtained by deleting exactly one arc from every 2-cycle in D and
keeping all ordinary arcs. It is easy to see that every orientation of a locally
semicomplete digraph is a local tournament.

6.15.1 Diameter Preserving Orientations

Denote by diammin(D) the minimum diameter among all orientations of D.
The following example, due to Gutin and Yeo, shows that for general locally
semicomplete digraphs we cannot guarantee the existence of an orientation
whose diameter is the same as that of the original digraph, no matter how
large the diameter of D is. Consider the following digraph Dk = (V,A):

V = {x1, x2, ..., xk}, A = {xixi+1 : i ∈ [k − 1]} ∪ {xkx1, xkx2, x1x3, x2x1}.

It is easy to check that diam(Dk) = k−2 and diam(Dk −x1x2) = diam(Dk −
x2x1) = k − 1. The digraph Dk contains a pair of vertices that are twins,
namely x1 and x2. Two vertices x and y of a digraph D are twins if N+[x] =
N+[y] and N−[x] = N−[y]. Observe that if x and y are twins, then the 2-cycle
xyx is in D.

Gutin and Yeo proved that we can almost preserve the diameter of the
original locally semicomplete digraph D in some orientation of D.
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Theorem 6.15.1 ([50]) If D is a strong locally semicomplete digraph then

diammin(D) ≤ max{5,diam(D) + 1}.

If D has no pair of twin vertices then diammin(D) ≤ max{4,diam(D)}.

6.15.2 Highly Connected Orientations of Locally Semicomplete
Digraphs

We now turn to highly connected orientations of locally semicomplete di-
graphs. Note that this is the same as studying highly connected spanning
local tournaments in locally semicomplete digraphs. By Theorem 6.4.9 every
strong locally semicomplete digraph has a Hamiltonian cycle and this implies
that every strong locally semicomplete digraph has a spanning strong local
tournament. Below we study which degree of strong connectivity suffices to
guarantee a spanning k-strong local tournament when k ≥ 2.

Guo [44] proved that the bound of Theorem 2.3.2 also holds for locally
semicomplete digraphs.

Theorem 6.15.2 ([44]) For every positive integer k, every (3k − 2)-strong
locally semicomplete digraph contains a spanning local tournament.

Huang [53] showed that we may delete one arc from every 2-cycle in any
round decomposable locally semicomplete digraph and still maintain the same
degree of strong connectivity.

Theorem 6.15.3 ([53]) Every k-strong round-decomposable locally semicom-
plete digraph contains a spanning k-strong local tournament.

Proposition 6.15.4 ([7]) For every k ≥ 4 there exists a (2k − 4)-strong
locally semicomplete digraph which is not semicomplete and which has no
spanning k-strong local tournament.

Proof: Consider the locally semicomplete digraph Dr in Figure 6.3 and take
r = 2k−4. Notice that D′

2k−4 = D2k−4 −{u, v} is a (2k−4)-strong semicom-
plete digraph which does not contain a spanning (k − 1)-strong tournament,
because in every spanning tournament of D′

2k−4 at least one vertex in U (W )
will have out-degree (in-degree) at most k − 2. This implies that D2k−4 has
no spanning k-strong local tournament since each vertex in U has only one
new out-neighbour (u) in D2k−4. It is easy to check (see e.g. [16, Proposition
5.8.5]) that D2k−4 is (2k − 4)-strong. ��

Lemma 6.15.5 ([16]) Let D = (V,A) be a k-strong digraph and let D′ be
obtained from D by adding a new vertex x and joining it to V in such a
way that x has at least k in-neighbours in V and at least k out-neighbours
in V . Then D′ is k-strong and if it is not also (k + 1)-strong, then either
min{d+D′(x), d−

D′(x)} = k or every minimum separating set in D′ is also a
minimum separating set in D.
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u v

U

W

Figure 6.3 A locally semicomplete digraph Dr. Each of the digraphs U, W is a
copy of

↔
Kr, the complete digraph on r ≥ 2 vertices. Bold arcs between two sets

indicate that all arcs have the direction shown, except between U and W where
the arcs of a matching go from U to W and all other arcs go from W to U . Thus
Dr − {u, v} is the semicomplete digraph H ′ described just after Conjecture 2.3.4.
The only pair of non-adjacent vertices in Dr is u, v. The figure is from [7].

Figure 6.4 A 3-strong non-semicomplete locally semicomplete digraph containing
no 3-strong spanning local tournament. The figure is from [7].

Theorem 6.15.6 ([7]) Suppose g(k) is an integer-valued function such that
g(1) ≥ 1 and g(k) ≥ g(k − 1) + 2 and for every k ≥ 1 every g(k)-strong
semicomplete digraph contains a spanning k-strong tournament. Then every
g(k)-strong locally semicomplete digraph contains a spanning k-strong local
tournament which contains an arc from every 2-cycle of D.

Proof: The proof is by induction on k with the base case k = 1 following
from Theorem 6.4.9. If D is semicomplete there is nothing to prove by the
choice of g(k), so assume below that D is not a semicomplete digraph. By
Lemma 6.6.2, D has a minimal separating set S such that D−S is connected
but not semicomplete. Let D1,D2, . . . , Dp be the strong decomposition of
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D − S and let D′
1,D

′
2, . . . , D

′
h be the semicomplete decomposition of D − S

(according to Theorem 6.3.4). As D is g(k)-strong and not semicomplete we
have |S|, |V (D′

2)| ≥ g(k) ≥ 2k − 1 and h ≥ 3. Using the definition of a locally
semicomplete digraph it is easy to show that D′

2⇒D′
1⇒S⇒D1.

Let x1 ∈ V (D1), x2 ∈ V (Dp) and D∗ = D − {x1, x2}. Since g(k) ≥ g(k −
1)+2, D∗ is a g(k−1)-strong locally semicomplete digraph. By the induction
hypothesis, D∗ contains a (k−1)-strong spanning local tournament T ∗ which
contains an arc of every 2-cycle in D∗. Since we have D′

2⇒D′
1⇒S⇒D1, each

of the sets {x2s|s ∈ S}, {yx2|y ∈ V (D′
2)}, {sx1|s ∈ S} and {yx2|y ∈ V (D′

2)}
contain at least g(k) arcs and none of the latter arcs are in 2-cycles (implying
that x1 has at least g(k) out-neighbours outside S). This shows that we
may add x1, x2 to T ∗ together with all arcs from D between {x1, x2} and
V − {x1, x2} and delete one arc from each 2-cycle incident with x1 or x2 in
such a way that in the resulting local tournament T the vertices x1, x2 both
have in- and out-degree at least g(k).

By Lemma 6.15.5, T is (k−1)-strong. Suppose it is not k-strong and let S′

be a separating set of size k−1. By Lemma 6.15.5, S′ is also a separating set of
T ′ and none of x1, x2 are in S′. Let T1, T2, . . . , Tq be the strong decomposition
of T − S′ and let T ′

1 = Tq, T
′
2, . . . , T

′
t be the semicomplete decomposition of

T − S′. As x1 and x2 are not adjacent (there is no arc in D from V (D′
h)

to V (D′
1) = V (Dp)), T − S′ is not semicomplete, so we must have t ≥ 3.

But now in T all out-neighbours of V (Tq) are in S′. As T is a spanning local
tournament of the g(k)-strong digraph D and g(k) ≥ 2k − 1 > k − 1, there
must be arcs from V (Tq) to V −S′ −V (Tq) in D. Since there are no arcs in T
between V (T ′

3) and V (T ′
1) = V (Tq) and T contains an arc from every 2-cycle

in D, there is also no arc in D between V (T ′
3) and V (T ′

1) = V (Tq). On the
other hand, since D − S′ is strong, it contains a path from V (Tq) to V (T ′

3)
so there is some 2-cycle xyx in D with x ∈ V (T ′

2) and y ∈ V (T ′
3). However,

this and the fact that V (T ′
2)⇒V (Tq) implies that x is adjacent to all vertices

of V (Tq), a contradiction. This shows that T must be k-strong and the proof
is complete. ��

Corollary 6.15.7 Every 3-strong locally semicomplete digraph D contains a
spanning 2-strong local tournament and every 5-strong locally semicomplete
digraph which is not semicomplete contains a spanning 3-strong local tourna-
ment.

Proof: This follows from Theorem 2.3.3 and the proof of Theorem 6.15.6.
When D is 5-strong we need Theorem 2.3.3 to guarantee that the digraph
D∗ in the proof of Theorem 6.15.6 has a 2-strong spanning strong local tour-
nament T ∗ because D∗ may be semicomplete. ��

Bang-Jensen conjectured the following extension of Conjecture 2.3.4.

Conjecture 6.15.8 ([7]) For every integer k ≥ 1 every (2k−1)-strong locally
semicomplete digraph contains a spanning k-strong local tournament.
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Theorem 6.15.3 shows that the conjecture holds for round decomposable
locally semicomplete digraphs. By Theorem 6.15.6 the truth of Conjecture
2.3.4 would imply that Conjecture 6.15.8 is true.

The example in Figure 6.3 shows that the connectivity bound in this
conjecture cannot be significantly better than 2k − 1, namely it cannot be
less than 2k − 3.

6.16 Out-Round Digraphs

Li, Zhang and Meng [59] (see also [57]) introduced the following generalization
of round digraphs.4 A digraph is out-round (in-round) if we can label its
vertices v1, . . . , vn so that for each i, we have N+(vi) = {vi+1, . . . , vi+d+(vi)}
(N−(vi) = {vi−d−(vi), . . . , vi−1}), where all subscripts are taken modulo n.
The labelling v1, . . . , vn is referred as an out-round labelling (in-round
labelling) of D.

See Figure 6.5 for examples of out-round digraphs that are not locally
semicomplete and an example of a locally in-semicomplete digraph which is
not out-round.

1
2

4

1 2

3

4

5

1

2

3

4 5

3

D1 D2

D3 D4

Figure 6.5 The digraphs D1, D3, D4 are out-round with the given labelling. The
digraph D2 is not out-round.

Proposition 6.16.1 ([59]) If a digraph is out-round, then it is also locally
in-semicomplete.

4 They used the name positive round instead of out-round.
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Proof: Let D be an out-round digraph and let v1, . . . , vn be an out-round
labelling of D. Consider an arbitrary vertex, say vi. Let x, y be a pair of
in-neighbours of vi. We show that x and y are adjacent. Without loss of gen-
erality, assume that vi, x, y appear in that circular order in the positive-round
labelling. Since x → vi and the out-neighbours of x appear consecutively suc-
ceeding x, we must have x → y. Therefore, D is locally in-semicomplete. ��

Li, Zhang and Meng obtained the following sufficient condition for a strong
locally in-semicomplete digraph to be out-round.

Theorem 6.16.2 ([59]) Let D be a strong locally in-semicomplete. Then D
is out-round if the following holds for each vertex x of D:

(a) N+(x)∩ N−(x) induces a (semicomplete) subdigraph containing no ordi-
nary cycle;

(b) N−(x) \ N+(x) induces a transitive tournament; and
(c) N+(x) \ N−(x) induces an acyclic digraph with a Hamiltonian path.

Furthermore, there exists a polynomial algorithm for producing an out-round
labelling of any digraph which satisfies the conditions above.

The following gives a necessary condition for a digraph to be out-round.

Lemma 6.16.3 Let D be an out-round digraph, then the following is true:

(a) Every induced subdigraph of D is out-round.
(b) For each x ∈ V (D), the subdigraphs induced by N−(x) \ N+(x), N+(x) \

N−(x) and N+(x) ∩ N−(x) contain no ordinary cycles.

Proof: The statement (a) follows directly from the definition of an out-round
digraph.

Suppose D[N−(x) \ N+(x)] contains an ordinary cycle C for some vertex
x. Let v1, v2, . . . , vn be an out-round labelling of D. Without loss of general-
ity, assume that x = v1. The cycle C must contain an arc vivj such that i > j.
As C is ordinary, vjvi �∈ A but then we have v1 ∈ N+(vj) and vi /∈ N+(vj),
contradicting the assumption that v1, v2, . . . , vn is an out-round labelling
of D. Similarly, it is easy to show that for each vertex x the subdigraphs
induced by D[N+(x) \ N−(x)] and D[N+(x) ∩ N−(x)] contain no ordinary
cycles. ��

It follows from the definition that if D is a strong out-round digraph,
then the subdigraph induced by N+(x) contains a Hamiltonian path for each
vertex x of D. Thus Theorem 6.16.2 and Lemma 6.16.3 imply the following
characterization of strong out-round locally in-tournament digraphs.

Theorem 6.16.4 ([59]) A strong locally in-tournament digraph D is out-
round if and only if, for each vertex x of D, N−(x) induces a transitive
tournament and N+(x) induces an acyclic digraph with a Hamiltonian path.
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As the proof of Theorem 6.16.2 in [59] is algorithmic, we obtain the fol-
lowing.

Corollary 6.16.5 There exists a polynomial algorithm for recognizing out-
round locally in-tournament digraphs and producing an out-round labelling of
such a digraph.

As can be seen from the digraph D4 in Figure 6.5, Theorem 6.16.4 does
not extend to non-strong out-round locally in-semicomplete digraphs.

Problem 6.16.6 ([59]) Characterize out-round digraphs.

Problem 6.16.7 Find a polynomial algorithm for recognizing out-round di-
graphs.

6.17 Miscellaneous Topics

6.17.1 Kings

A k-king in a digraph is a vertex that can reach every other vertex by a
path of length at most k. We saw in Theorem 2.2.12 that every tournament
has a 2-king. Since directed cycles are locally semicomplete digraphs, there
is no integer k such that every locally semicomplete digraph has a k-king.
However, as shown by Wang, Yang and Wang [72], evil locally semicomplete
digraphs all have a 2-king. More precisely, using the classification of locally
semicomplete digraphs, they obtained the following:

Theorem 6.17.1 ([72]) Let D be a connected locally semicomplete digraph.
Then the following holds:

(a) If D is not strong and D′
1,D

′
2, . . . , D

′
r is the semicomplete decomposition

of D, then D has a 2-king if r = 2 and if r ≥ 3, then D has an (r−1)-king.
(b) If D is an evil locally semicomplete digraph, then it has a 2-king.
(c) If D is strongly connected and round decomposable with round decompo-

sition D = R[S1, S2, . . . , Sr], then D has a g(R)-king, where g(R) is the
girth of the round digraph R.

Problem 6.17.2 Characterize those locally in-semicomplete digraphs that
have a k-king for some finite integer k.
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6.17.2 Cycle Extendability

The following definitions are due to Hendry [52]. A non-Hamiltonian cycle C
in a digraph D is extendable if D has a cycle C ′ with V (C ′) = V (C)∪ {y}
for some vertex y ∈ V − V (C). A digraph D which has at least one cycle is
cycle extendable if every non-Hamiltonian cycle of D is extendable. Clearly
a cycle extendable digraph is pancyclic if and only if it contains a 3-cycle and
vertex-pancyclic if and only if every vertex is in a 3-cycle.

The following is an easy consequence of the proof of Theorem 2.2.7:

Theorem 6.17.3 ([64]) A strong tournament T = (V,A) is cycle extendable
unless V can be partitioned into sets U,W,Z such that W 
→U 
→Z and T [U ]
is strong. 	

Tewes and Volkmann [70] generalized Hendry’s definition as follows: Let
D be a digraph on n vertices and let 3 ≤ k < n be an integer. Then D
is k-extendable if every non-Hamiltonian cycle C on at least k vertices is
extendable. If D is k-extendable and every vertex is in a k-cycle, then D is
fully k-extendable. Tewes and Volkmann studied cycle extendability for
locally in-tournament digraphs and obtained several results, including the
following two.

Theorem 6.17.4 ([69]) Every connected locally in-tournament digraph D on
n and minimum semi-degree δ0(D) ≥ 1 vertices is (n − � 4δ0(D)

3 �)-extendable.

Theorem 6.17.5 ([70]) Every strong locally in-tournament digraph D on n

vertices and δ0(D) = 2 or δ0(D) > 8n−17
31 is fully (n − � 4δ0(D)

3 �)-extendable.

When δ0(D) = 1 we have (n − � 4δ0(D)
3 �) = n − 1 and there are many

locally in-tournament digraphs with minimum semi-degree 1 which are not
fully (n − 1)-extendable.

Meierling proved the following result.

Theorem 6.17.6 ([60]) Let D be a strong locally in-tournament digraph on
n vertices such that 3 ≤ δ0(D) ≤ 3n−2

8 . Then every vertex of D is in a cycle
of length n − � 4δ0(D)+1

3 �.

Combining this with Theorem 6.17.5, Meierling obtained the following
result, which was conjectured by Tewes and Volkmann in [70].

Theorem 6.17.7 ([60]) Let D be a strong locally in-tournament digraph on n

vertices such that 3 ≤ δ0(D) ≤ 8n−17
31 , then D is fully (n− 4δ0+1

3 )-extendable.
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6.17.3 Pancyclic Arcs and Arc-Traceability

Recall that a vertex u in a digraph D is out-pancyclic if every arc uv with
tail u is contained in a k-cycle for every k = 3, . . . , n.

By Theorem 2.14.7 every strong tournament has an out-pancyclic vertex.
The round local tournament D = C2

6 shows that this result does not extend
directly to local tournaments.

Meng, Li, Guo and Xu define the pseudo-girth, gs(D), of a local tour-
nament D as follows: If D is round-decomposable with round decomposition
D = R[S1, S2, . . . , Sr], r = |V (R)|, then

gs(D) = min{n, max
1≤i≤r

{gri
(R)} + 1},

where ri is the ith vertex of R (the one corresponding to Si in D) and
gri

(R) is the length of a shortest cycle containing ri in R. If D is not round
decomposable, then we let gs(D) = 3.

Theorem 6.17.8 ([62]) Let D be a strong local tournament on n vertices.
Then D has a vertex u such that all out-arcs of u are pseudo-girth-pancyclic,
that is, they are in cycles of all lengths from gs(D) and up, if and only if D
is not the second power of an even cycle of length at least 6.

To see that this result is tight, consider the round decomposable local
tournament D = C4[C3, C3, C3, C3] that we obtain by substituting a 3-cycle
for each vertex of a 4-cycle. The pseudo-girth of D is 5 and it is easy to check
that no arc between two vertices of the same C3 is contained in a 4-cycle.
Hence for every vertex u, at least one of its out-arcs is not 4-pancyclic.

6.17.4 Hamiltonicity of Digraphs with Degree Bounds on Certain
Vertices

There are several well-known sufficient conditions for hamiltonicity in di-
graphs in terms of degrees of certain pairs of vertices, e.g. pairs of non-
adjacent vertices. Examples are the sufficient conditions of Woodall [73] and
Meyniel [63].

We saw in Section 6.4 that every strong locally semicomplete digraph
is Hamiltonian. One could ask whether it is possible to obtain a sufficient
condition for hamiltonicity that only applies to pairs of vertices that should
be adjacent, had the digraph in question been locally semicomplete. The
results below, due to Bang-Jensen, Gutin and Li, show that this is indeed the
case. We say that a pair of vertices x, y is a dominated pair (dominating
pair) if they have a common in-neighbour (out-neighbour). Note that in a
locally semicomplete digraph the vertices of any dominated (dominating) pair
is adjacent.
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Theorem 6.17.9 ([18]) Let D be a strong digraph on n vertices such that for
every dominated pair of non-adjacent vertices x1, x2 we have that d(xi) ≥ n
and d(x3−i) ≥ n − 1 for i = 1 or i = 2. Then D is Hamiltonian.

Theorem 6.17.10 ([18]) Let D be a strong digraph on n vertices such that
for every pair of non-adjacent vertices x1, x2 which form either a dominating
pair or a dominated pair we have d+(xi) + d−(x3−i) ≥ n for i = 1, 2. Then
D is Hamiltonian.

Both of the theorems above are sharp [18]. Bang-Jensen, Gutin and Li
[18] proposed the following generalization of Meyniel’s theorem.

Conjecture 6.17.11 ([18]) Let D be a strong digraph on n vertices such that
d(x) + d(y) ≥ 2n − 1 for every pair of non-adjacent vertices x, y which form
either a dominating pair or a dominated pair. Then D is Hamiltonian.

6.17.5 The Directed Steiner Problem

Consider the following three problems

Directed Steiner problem
Input: A strong digraph D and a non-empty subset X of its vertices.
Find: A strong subdigraph D′ of D which contains all vertices of X and
has as few arcs as possible.

Minimum cost strong subdigraph
Input: A strong digraph D with real-valued costs on the vertices.
Find: A strong subdigraph of D of minimum cost.

minimum cost cycle
Input: A strong digraph D with real-valued costs on the vertices.
Find: A cycle of minimum cost in D.

All three problems are NP-hard as they contain the Hamiltonian cy-
cle problem as a special case. Feldman and Ruhl [39] proved that if |X| is
bounded by a constant k, then the Directed Steiner problem is solv-
able in polynomial time (for fixed k). Their solution is quite complicated,
even in the case when |X| = 2. The special case X = V (D) of Directed
Steiner problem is also known as the minimum spanning strong subdi-
graph problem (MSSS) and has been considered in several papers, including
[25, 29, 30, 33].

The result below implies that for locally in-semicomplete digraphs the
Directed Steiner problem is a special case of the Minimum cost cycle
problem.
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Lemma 6.17.12 ([19]) If D = (V,A) is a strong locally in-semicomplete
digraph and X ⊆ V , then the solution to the Directed Steiner problem
is always a shortest cycle (measured in number of arcs) covering X.

Proof: Suppose A′ is an optimal solution to the Directed Steiner prob-
lem (for X). Let V ′ be the set of vertices incident with the arcs in A′. Then
D′ = D[A′] is a spanning subdigraph of the locally in-semicomplete digraph
D∗ = D[V ′], implying that D∗ is strong. By Theorem 6.4.9, D∗ has a Hamil-
tonian cycle C. By the minimality of A′, we get |A′| = |A(C)|. ��

Lemma 6.17.12 implies that the Directed Steiner problem for locally
in-semicomplete digraphs reduces to the Minimum cost cycle problem for
locally in-semicomplete digraphs in linear time.

Theorem 6.17.13 ([19]) The Directed Steiner problem is solvable in
time O(n2) for locally semicomplete digraphs. ��

In the rest of this section concentrate on the Minimum cost cycle
problem for locally semicomplete digraphs.

The case of round digraphs has a particularly nice solution.

Lemma 6.17.14 ([19]) Let D be a strong round local tournament with round
enumeration v1, v2, . . . , vn and with real-valued costs on the vertices. Then
every minimum cost cycle includes all the vertices of negative costs and D has
such a cycle of the form va1va2 . . . vak

va1 where 1 ≤ a1 < a2 < . . . < ak ≤ n.
Furthermore, given a round enumeration of D, a minimum cost cycle can be
found in time O(n2).

Lemma 6.17.15 ([19]) Let D be a strong semicomplete digraph with real-
valued costs on the vertices. In time O(n(m+n log n)) we can find a minimum
cost cycle of D.

Combining the two lemmas above with solutions for the round decom-
posable case (which uses the solution for round digraphs) and for evil locally
semicomplete digraphs Bang-Jensen, Gutin and Yeo obtained the following
result.

Theorem 6.17.16 ([19]) The Minimum cost cycle problem is solvable in
time O(nm + n2 log n) for locally semicomplete digraphs.

We can now show that the Minimum cost strong subdigraph problem
is polynomially solvable for locally semicomplete digraphs.

Theorem 6.17.17 ([19]) A minimum cost strong subdigraph of a locally
semicomplete digraph D can be found in time O(nm + n2 log n).
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Proof: Since D is locally semicomplete, every strong subdigraph of D with at
least 2 vertices contains a spanning cycle by Theorem 6.4.9. Hence a minimum
cost strong subdigraph D′ of D can be found in time O(nm + n2 log n) by
finding a minimum cost cycle and a minimum cost vertex of D and taking
the cheapest of these two as D′. ��
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7. Semicomplete Multipartite Digraphs

Anders Yeo

In this chapter we will consider the class of semicomplete multipartite di-
graphs (SMD). A digraph is semicomplete multipartite if it is obtained
from a complete multipartite graph by replacing every edge by an arc or a
pair of opposite arcs. In other words, the vertex set of a semicomplete mul-
tipartite digraph can be partitioned into sets V1, V2, . . . , Vk for some k such
that vertices within the same set are non-adjacent and vertices between dif-
ferent sets are adjacent (there is at least one arc between them). The sets
V1, V2, . . . , Vk are called the partite sets, or colour classes, of the digraph.
See Figure 7.1 for examples of semicomplete multipartite digraphs. All cycles
and paths in this chapter are directed.

V1 V3

V2

(a)

V1 V3

V2

(b)

x1

y2

y1

r2

r1

(c)

Figure 7.1 Examples of semicomplete multipartite digraphs. Figure (a) is not a
multipartite tournament as it contains 2-cycles. Figure (b) is also a multipartite
tournament. Figure (c) is the same semicomplete multipartite digraph as (b), but
uses an alternative way of illustrating the partite sets (colour classes) V1, V2 and
V3.

Multipartite tournaments were already considered in the book [52] (1968)
on tournaments by Moon. The first study of cycles in multipartite tourna-
ments was by Bondy [15] in 1976. Bipartite tournaments were then considered
in 1981 by Beineke [13]. In the following years more and more people studied
multipartite tournaments and semicomplete multipartite digraphs. In partic-
ular, these digraph classes were studied in the Ph.D. theses of Gutin, [32]
(1993), Yeo, [77] (1998), Tewes, [58] (1999), Winzen, [70] (2004), and the
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habilitation thesis of Guo, [24] (1998). This research has continued into the
twenty-first century and is still ongoing.

7.1 Overview of Chapter 7

Section 7.3 will begin with a structural result on cycle factors and cycle
subgraphs in semicomplete multipartite digraphs that allowed first Yeo and
then others to solve several conjectures in the area.

Before considering paths and cycles in general semicomplete multipartite
digraphs we will, in Section 7.4, consider the class of semicomplete bipartite
digraphs, which is the class of semicomplete multipartite digraphs with only
two partite sets. This is a widely studied class of digraphs. In Section 7.4 we
will mainly focus on paths and cycles.

In Section 7.5 we then consider results on paths in semicomplete mul-
tipartite digraphs. Many of these generalize Redei’s Theorem which states
that every tournament contains a Hamilton path. Hamilton paths containing
given arcs are also considered in this section.

In Section 7.6 we then consider results on cycles that hold for semi-
complete multipartite digraphs. Some of these generalize Camion’s Theorem
which states that every strong tournament contains a Hamilton cycle (Theo-
rem 2.2.6). However the class of semicomplete multipartite digraphs is much
more complex than that of tournaments and so several results for tourna-
ments are not easily extendable to semicomplete multipartite digraphs. In
general this section is devoted to long cycles and pancyclicity. In Section 7.7
we consider short cycles in semicomplete multipartite digraphs.

Section 7.8 is devoted to regular and close to regular semicomplete mul-
tipartite digraphs. It turns out that many (but not all) results that hold for
regular semicomplete multipartite digraphs also hold for (large) semicomplete
multipartite digraphs that are close to being regular.

In Section 7.9 we consider semicomplete multipartite digraphs with given
connectivity. In fact we mainly consider which kind of cycles exist in k-strong
semicomplete multipartite digraphs.

In Section 7.10 we study extended semicomplete digraphs, which is the
class of semicomplete multipartite digraphs where if there is an arc from
partite set Vi to partite set Vj then all arcs exist from Vi to Vj . In other
words, one can think of extended semicomplete digraphs as semicomplete di-
graphs where each vertex is blown up to an independent set. It turns out that
many of the results that hold semicomplete digraphs also hold for extended
semicomplete digraphs.

In Section 7.11 we consider orientations of semicomplete multipartite di-
graphs, which are the spanning subgraphs obtained by deleting one arc from
every 2-cycle in the semicomplete multipartite digraph.

Section 7.12 is devoted to r-kings in semicomplete multipartite digraphs.
An r-king is a vertex that can reach all other vertices with a path of length
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at most r. For semicomplete multipartite digraphs the notion of 4-kings is
especially interesting.

In Section 7.13 we consider out-paths in semicomplete multipartite di-
graphs. Out-paths in semicomplete multipartite digraphs generalize cycles in
tournaments and it turns out that several results on cycles in tournaments
can be extended to out-paths in semicomplete multipartite digraphs. In Sec-
tion 7.14 we then study a generalization of paths in tournaments.

In Section 7.15 we look for strongly connected spanning subgraphs with
the minimum number of arcs. Results are given for semicomplete bipartite
digraphs and extended semicomplete digraphs and an open problem for semi-
complete multipartite digraphs is stated.

In Section 7.16 we consider k-coloured kernels in arc-coloured semicom-
plete multipartite digraphs. This extends the notion of kernels for digraphs.

Section 7.17 is devoted to complementary cycles in semicomplete multi-
partite digraphs. These results are extensions of the known result that all
2-strong tournaments of order n ≥ 8 contain vertex disjoint cycles of length
3 and n − 3 (see Theorem 2.8.1).

In Section 7.18 we mention how results for semicomplete multipartite
digraphs can be used to prove results for tournaments. In particular, when a
tournament contains a Hamilton cycle avoiding prescribed arcs.

Finally, in Section 7.19 we list a number of conjectures.
Many of the results given below for strong multipartite tournaments also

hold for strong semicomplete multipartite digraphs, due to the following re-
sult of Volkmann.

Theorem 7.1.1 ([62]) Every strong semicomplete c-partite digraph with c ≥
3 contains a spanning strong oriented subdigraph.

7.2 Further Notation

In Section 1.3 some of the following terms are defined. We recall their defini-
tions as they will be frequently used in this chapter.

A multipartite tournament (MT) is a semicomplete multipartite digraph
without 2-cycles. In other words, vertices in different partite sets have exactly
one arc between them. See Figure 7.1 (b) (and (c)) for an example of a multi-
partite tournament. Note that Example (a) in Figure 7.1 is not a multipartite
tournament as it contains at least one 2-cycle.

Let D be a digraph. A q-path-cycle factor of D is a spanning collection
of q vertex disjoint paths and any number of cycles of D. That is, every vertex
in D belongs to exactly one path or cycle of the path-cycle factor. The path
covering number of D is the minimum number of vertex disjoint paths
needed to cover all the vertices of D, and is denoted by pc(D). Note that the
path covering number can also be thought of as the minimum q such that D
contains a q-path-cycle factor with no cycles, which is also called a q-path
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factor. The path cycle covering number of D is the minimum number,
q, such that D contains a q-path-cycle factor and is denoted by pcc(D). A
cycle factor of D is a collection vertex disjoint cycles of D.

7.3 The Irreducible Cycle Subgraph Theorem

Several results on paths and cycles are proved using Theorem 7.3.2 below,
which was obtained by Yeo in [75]. Before giving the statement of this theorem
we need the following notation and definitions.

Recall that if v belongs to a cycle then we denote the successor of v on
the cycle by v+ and the predecessor by v−. Let C1 and C2 be two disjoint
cycles in a semicomplete multipartite digraph D. Suppose that there exists
some partite set Vi such that the following holds.

For every arc u2v1 from C2 to C1 we have {u+
2 , v−

1 } ⊆ Vi, where u+
2 is the

successor of u2 on C2 and v−
1 is the predecessor of v1 on C1.

In this case we say that C1 Vi-weakly-dominates C2 and denote this
by C1 �Vi

C2. If C1 �Vi
C2 for some i then we also say that C1 weakly-

dominates C2 and denote this simply by C1 � C2.
See Figure 7.2 for an illustration of this definition. For example, in Fig-

ure 7.2 w1y2 is the only arc from C3 to C2 and {w+
1 , y−

2 } ∈ V3 (as w+
1 = w2

and y−
2 = y1). Therefore C2 �V3 C3.

C1 C2 C3

x1

x2

x3

y1

y2

y3

y4

w1

w2

V1 denoted by
V2 denoted by
V3 denoted by

Figure 7.2 Arcs from cycle Ci to Cj , for 1 ≤ i < j ≤ 3, are not shown. Note that
C1 �V1 C2 (which we also write as C1 C2) and C2 �V3 C3 (which we also

write as C2 C3). As there are no arcs from C3 to C1 we have C1 �Vi C3 for
all i = 1, 2, 3.

We are now in a position to give the simplest version of the main result
of this section. Yeo proved the following result.

Theorem 7.3.1 (Yeo [75]) Let D be a semicomplete multipartite digraph
with partite sets V1, V2, . . . , Vc. Let F be a cycle factor of D consisting of
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t cycles such that t is minimum. If t ≥ 2, then there exists an ordering,
C1, C2, . . . , Ct, of the cycles of F such that Ci � Cj for all 1 ≤ i < j ≤ t
and the following also holds.

(1): There exists indices 1 = i0 < i1 < i2 < · · · < il = t and a set of numbers
j1, j2, . . . , jl ∈ [c] such that if vjui is an arc from Cj to Ci with j > i
then ia−1 ≤ i < j ≤ ia for some a ∈ [l] and Ci �Vja

Cj.

Consider Figure 7.2 as an illustration of Theorem 7.3.1. Here there exist
indices (i0, i1, i2) = (1, 2, 3) and (j1, j2) = (1, 3). We note that there are three
arcs from a cycle with higher index to one with lower index. The arc y1x2

from C2 to C1 satisfies statement (1) in Theorem 7.3.1 as 1 = i0 ≤ 1 < 2 ≤ i1
and C1 �Vj1

C2. It can easily be checked that the arcs y3x2 and w1y2 also
satisfy (1). Note that as i1 = 2 there can be no arcs from C3 to C1. In general,
there can be no arcs from a Cj to a Ci if i < ia < j for some a.

It is shown in [75] that Theorem 7.3.1 is close to being best possible in the
sense that if a cycle factor satisfies the structural conditions of Theorem 7.3.1
then any cycle factor with fewer than t cycles would have to use internal arcs
of the cycles C1, C2, . . . , Ct. Theorem 7.3.1 turns out to be very useful when
studying cycle factors in semicomplete multipartite digraphs. If we want to
consider cycle subgraphs instead then we need a stronger version of this
theorem, which we will now state.

Theorem 7.3.2 ([75]) Let D be a semicomplete multipartite digraph with
partite sets V1, V2, . . . , Vc and let X ⊆ V (D). Let F be a cycle subgraph of
D consisting of t cycles and covering X, such that t is minimum. If t ≥ 2,
then there exists an ordering, C1, C2, . . . , Ct, of the cycles of F , such that
Ci � Cj for all 1 ≤ i < j ≤ t. Furthermore,

(1): There exist indices 1 = i0 < i1 < i2 < · · · < il = t and a set of numbers
j1, j2, . . . , jl ∈ [c], such that the following holds. Let P be a path from
vj ∈ V (Cj) to ui ∈ V (Ci) such that V (P ) ∩ V (F) = {ui, vj} and j > i.
Then ia−1 ≤ i < j ≤ ia for some a ∈ [l] and {v+

j , u−
i } ⊆ Vja .

Note that Theorem 7.3.1 follows from Theorem 7.3.2, by letting X =
V (D). This completes the description of Theorem 7.3.1 and Theorem 7.3.2
which were the main theorems in this section.

7.3.1 An Outline of the Proof of Theorem 7.3.1

For the sake of simplicity we will only outline the proof of Theorem 7.3.1.
We refer the reader to [75] for a full proof of this theorem and for a proof of
Theorem 7.3.2.

Let P be an (x, y)-path in a digraph D and let Q = v1v2 . . . vl be a path
or cycle in D − V (P ). Then we say that P has a partner on Q if there
is an arc (the partner of P ) vivi+1 on Q such that vix, yvi+1 ∈ A(D). In
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this case the path, P , can be inserted in Q to give a new path (or cycle)
Q[v1, vi]PQ[vi+1, vl].

Let D be a digraph and X,Y ⊆ V (D). Then X⇒Y means that there is no
arc from Y to X. Let D be a digraph with two disjoint cycles C1 and C2. We
will write C1�>C2 when the following holds. There is a vertex x1 ∈ V (C1)
such that x1⇒V (C2) and there is no vertex y1 ∈ V (C1) such that V (C2)⇒y1.
Furthermore, there is a vertex x2 ∈ V (C2) such that V (C1)⇒x2 and there is
no vertex y2 ∈ V (C2) such that y2⇒V (C1).

The following two results were proved by Bang-Jensen, Gutin and Huang
in [4].

Theorem 7.3.3 ([4]) Let D be a digraph and suppose that P = p1p2 . . . pl
is a path in D and C is a cycle in D − V (P ). Suppose that for each odd i
the arc pipi+1 has a partner on C and if l is odd then pl has a partner on C.
Then D contains a cycle with vertex set V (P ) ∪ V (C).

Bang-Jensen, Gutin and Huang used the above theorem to prove the
following result.

Theorem 7.3.4 ([4]) Let D be a semicomplete multipartite digraph contain-
ing a cycle factor F = C1 ∪ C2 ∪ . . . ∪ Ct such that t is minimum possible.
Then for all i and j, with 1 ≤ i 
= j ≤ t, we either have Ci�>Cj or Cj�>Ci

(but not both).

The first part of the proof of Theorem 7.3.1 is to prove the following
lemma.

Lemma 7.3.5 ([75]) Let D be a semicomplete multipartite digraph, and let
C1 and C2 be two disjoint cycles in D such that C1�>C2 and there is some arc
from C2 to C1. Assume that there is no cycle in D with vertex set V (C1) ∪
V (C2). Then there exists a unique partite set Vi of D such that for any
(C2, C1)-path, P = p1p2 . . . pl, in D, either {p+1 , p−

l } ⊆ Vi or there exists a
cycle C∗ in D with V (C∗) = V (C1) ∪ V (C2) ∪ V (P ).

Proof: Since C1�>C2 and there is some arc from C2 to C1, we can find an
x ∈ V (C1) such that x⇒C2 and y−x+ ∈ A(D), for some y ∈ V (C2). Let Vi

be the partite set containing x.
We must have y ∈ Vi as otherwise C = C2[y, y−]C1[x+, x]y is a cycle with

V (C) = V (C1) ∪ V (C2), a contradiction. We will now prove the following
three claims, where Claim (B) and (C) (where P = p1p2 . . . pl is an arbitrary
(C2, C1)-path) imply the lemma.

Claim A. C1⇒y.

Proof of Claim A. Label the vertices in C2 such that C2 = y1y2 . . . ymy1,
where y1 = y, and assume that Claim A is not true. That is, there is an arc
from y1 to C1. We define the statements αk and βk for all odd k as follows.
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αk: The vertex yl ∈ Vi and yl has an arc to C1 for all l = 1, 3, 5, . . . , k.
βk: The arc ylyl+1 has a partner in C1[x+, x] for all l = 1, 3, 5, . . . , k.

We will now prove that αk and βk are true for all odd k, with 1 ≤ k < m.
Clearly α1 holds, so if we prove the following two operations we are done by
induction.

αk and βk−2 imply βk (when k = 1, αk implies βk): First consider the case
when yk has a partner in C1. As x and yk both belong to Vi (by αk) we
note that the partner is not xx+ and therefore the partner is on C1[x+, x].
By βk−2 and Theorem 7.3.3 we can insert the path C2[y1, yk] into the
cycle C1[x+, x]C2[yk+1, ym]x+, a contradiction.
So we may assume that yk has no partner in C1. Since yk has an arc to C1

(by αk) and an arc from C1 (as C1�>C2), this implies that there exists a
zk ∈ V (C1) such that zk ∈ Vi and z−

k → yk → z+k . Therefore yk+1 → zk,
since otherwise there would be a cycle, C = C2[yk+1, yk]C1[z+k , zk]yk+1,
in D with V (C) = V (C1) ∪ V (C2). Thus ykyk+1 has the partner z−

k zk
in C1, which implies that ykyk+1 has a partner in C1[x+, x], as z−

k 
= x
(z−

k 
∈ Vi).

αk−2 and βk−2 imply αk: yk ∈ Vi, since if not, then by βk−2 and Theo-
rem 7.3.3, we can obtain a cycle in D with vertex set V (C1)∪V (C2) by in-
serting the path P = y1y2 . . . yk−1 into the cycle C1[x+, x]C1[yk, ym]x+.
If C1⇒yk then z−

k−2 → yk, where zk−2 was defined when we proved βk−2.
When we defined zk−2, we found that yk−1 → zk−2 and therefore C =
C1[zk−2, z

−
k−2]C2[yk, yk−1]zk−2 is a cycle with V (C) = V (C1) ∪ V (C2), a

contradiction. Therefore αk holds.

Since ym has a partner in C1 (namely xx+), Theorem 7.3.3 implies that
we can insert the path C2[y1, ym] into C2 such that we obtain a new cycle in
D with vertex set V (C1) ∪ V (C2). This contradiction implies that C1⇒y.

Claim B. {p+1 , p−
l } ∩ Vi 
= ∅, otherwise we are done.

Proof of Claim B. If {p+1 , p−
l } ∩ Vi = ∅, then the following cycle has

V (C∗) = V (C1) ∪ V (C2) ∪ V (P ) and we are done.

C∗ = C1[x+, p−
l ]C2[y, p1]PC1[pl, x]C2[p+1 , y−]x+.

Claim C. p+1 and p−
l belong to the same partite set, otherwise we are

done.

Proof of Claim C. Assume that p+1 and p−
l do not belong to the same

partite set. Claim (B) implies that either p+1 ∈ Vi or p−
l ∈ Vi (but not

both by the assumption of Claim C). We may assume that p+1 → p−
l , since

otherwise C∗ = C1[pl, p−
l ]C2[p+1 , p1]P would be a cycle with V (C∗) = V (P )∪

V (C1) ∪ V (C2) and we would be done.
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Now Claim (B), used for the path P ′ = p+1 p−
l , implies that either p++

1 ∈ Vi

or p−−
l ∈ Vi, but not both, since either p+1 ∈ Vi or p−

l ∈ Vi. Continuing this
process we obtain that p+1 → p−

l , p++
1 → p−−

l , . . . which clearly is impossible
since C1 has a vertex which strongly dominates C2. This is a contradiction
and hence p+1 and p−

l belong to the same partite set.

As mentioned earlier Claim (B) and (C) imply Lemma 7.3.5. �
The next theorem is now needed.

Theorem 7.3.6 ([75]) Let F be a cycle factor in a semicomplete multipartite
digraph with the minimum possible number of cycles. Then the cycles in F
can be labeled in a unique way C1, C2, . . . , Ct such that Ci�>Cj for all i, j
satisfying 1 ≤ i < j ≤ t.

Proof: One can show that if such an ordering is not possible then there
must be 3 distinct cycles Ci, Cj and Ck such that Ci�>Cj�>Ck�>Ci (as
a non-transitive tournament contains a 3-cycle). First assume that there is
some arc from Cj to Ci. Assume V ∗ is the partite set found in Lemma 7.3.5
and let x ∈ V (Cj) ∩ V ∗ be arbitrary. As Cj�>Ck there is an arc, say xy,
from x to Ck. Similarly there is an arc, say y−z from y− to Ci. Now the path
xCk[y, y−]z is a path from Cj to Ci starting in V ∗, which by Lemma 7.3.5 is
a contradiction.

Therefore we may assume that there is no arc from Cj to Ci. Analogously
we may assume that there is no arc from Ck to Cj or from Ci to Ck. However
in this case it was shown in [4] that there is a cycle C∗ in D with vertex set
V (Ci) ∪ V (Cj) ∪ V (Ck), contradicting the minimality of t. �

These were the main ideas of the proof in [75]. We will now give a slightly
different proof for the remaining part of the proof of Theorem 7.3.1.

Lemma 7.3.7 Let F be a cycle factor in a semicomplete multipartite digraph
with the minimum possible number of cycles. Let C1, C2, . . . , Ct be the order-
ing of the cycles in F given by Theorem 7.3.6. Assume there is a (Cj , Ci)-arc,
xjxi, and a (Ck, Ci)-arc, ykyi, where i < j < k. Let Vij be the partite set
found in Lemma 7.3.5 when considering Ci and Cj and let Vik be the partite
set found in Lemma 7.3.5 when considering Ci and Ck. Then Vij = Vik.

Proof: Define the ordering C1, C2, . . . , Ct, the arcs xjxi and ykyi and the
partite sets Vij and Vik as in the statement of the lemma. For the sake of
contradiction assume that Vij 
= Vik. This implies that y−

i → x+
j (as x++

j 
∈
Vij and y−

i ∈ Vik and x+
j ∈ Vij) and x−

i → y+
k (as y++

k 
∈ Vik and x−
i ∈ Vij

and y+
k ∈ Vik). We can now define two new cycles C∗

1 = Ci[xi, y
−
i ]Cj [x+

j , xj ]xi

and C∗
2 = Ci[yi, x−

i ]Ck[y+
k , yk]yi such that V (C∗

1 )∪V (C∗
2 ) = V (Ci)∪V (Cj)∪

V (Ck), contradicting the minimality of t. �

By Lemma 7.3.7 we can define a partite set V ∗
i such that all (Cj , Ci)-arcs,

xy, with j > i have y+, x− ∈ V ∗
i (if there are no (Cj , Ci)-arcs with j > i then

let V ∗
i = V ∗

i−1 if i > 1 and let V ∗
i be arbitrary if i = 1).
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Lemma 7.3.8 Let F be a cycle factor in a semicomplete multipartite digraph
with the minimum possible number of cycles. Let C1, C2, . . . , Ct be the order-
ing of the cycles in F given by Theorem 7.3.6. Assume there is a (Cj , Ci)-arc
in D where i < j. Then V ∗

i = V ∗
i+1 = V ∗

i+2 = · · · = V ∗
j−1.

Proof: Define the ordering C1, C2, . . . , Ct as in the statement of the lemma
and assume that xy is a (Cj , Ci)-arc with i < j. For the sake of contradiction,
assume that V ∗

k 
= V ∗
i for some i < k < j. Note that there is an arc, say y−z,

from y− to Ck (as Ci�>Ck). Now P = xCi[y, y−]z is a path from Cj to Ck

where x+ 
∈ V ∗
k (as x+ ∈ V ∗

i ), contradicting Lemma 7.3.5. �

Theorem 7.3.1 follows from the above by the following argument. Let i0 =
1 and then let i1 be the smallest value greater than i0 such that V ∗

i1

= V ∗

i1−1.
Then let i2 be the smallest integer greater than i1 such that V ∗

i2

= V ∗

i2−1.
Continuing this procedure gives us the correct i-values in Theorem 7.3.1. Now
it is not difficult to see that Theorem 7.3.1 follows from the above results.

7.4 Semicomplete Bipartite Digraphs

A semicomplete bipartite digraph is a semicomplete multipartite digraph with
only 2 partite sets. This graph class has been widely studied and some results
are much nicer and/or easier for semicomplete bipartite digraphs than for
semicomplete multipartite digraphs in general. We consider cycles and paths
in semicomplete bipartite digraphs separately.

7.4.1 Cycles in Semicomplete Bipartite Digraphs

25 years after Rédei proved Theorem 2.2.4 Camion proved Theorem 2.2.6,
which was the next major result for tournaments.

Theorem 2.2.6 (Camion’s Theorem [17], 1959) Every strong tournament
contains a Hamiltonian cycle.

Unfortunately such a nice and simple theorem does not hold for semicom-
plete bipartite digraphs or semicomplete multipartite digraphs. However, it is
still easy to determine when a semicomplete bipartite digraph has a Hamilton
cycle. The following characterization was obtained independently by Gutin
[31] and Häggkvist and Manoussakis [43]. The original proof of this theo-
rem was longer, but using Theorem 7.3.1 we will give a shorter proof of the
structural part.

Theorem 7.4.1 ([31, 43]) A semicomplete bipartite digraph has a Hamilton
cycle if and only if it contains a cycle factor and is strongly connected. Fur-
thermore, one can verify whether D contains a Hamilton cycle (and find one
if it does) in time O(|V (D)|2.5).
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Proof: Clearly if a digraph contains a Hamilton cycle then it is strong and
has a cycle factor (as the Hamilton cycle is a cycle factor). So let D be a strong
semicomplete bipartite digraph with a cycle factor F = C1∪C2∪· · ·∪Ct where
t is minimum. If t = 1 then D is Hamiltonian and we are done, so assume for
the sake of contradiction that t ≥ 2. As D is strong, there exists an arc xy
from V (Ct) to V (Ci) for some i < t. By Theorem 7.3.1 the successor of x on
Ct and the predecessor of y on Ci belong to the same partite set. However
this implies that x and y belong to the same partite set, contradicting the
fact that the arc xy exists.

This completes the first part of the proof. We refer the reader to [31, 43]
for the complexity part. �

Theorem 7.4.1 can also be used to find longest cycles in semicomplete
bipartite digraphs, as we will see below. This was first proved by Gutin in
[32, 34].

Theorem 7.4.2 ([32, 34]) Let D be a strong semicomplete bipartite digraph
of order n. The length of a longest cycle in D is equal to the maximum order
of a cycle subgraph in D.

This implies that one can find a longest cycle in D in time O(n3).

Proof: We will prove the structural part of the theorem and refer the reader
to [32, 34] for the complexity proof.

Let D be a strong semicomplete bipartite digraph. Let F = C1 ∪ C2 ∪
· · · ∪ Ct be a cycle subgraph of maximum order. Of all such cycle subgraphs
choose t to be the smallest possible. If t = 1 then we are done, so assume that
t ≥ 2. If any subset of at least two cycles in F induce a strong subgraph of
D then they can be merged to one cycle due to Theorem 7.4.1, contradicting
the minimality of t. Therefore this is not the case, which implies that we can,
without loss of generality, assume that the cycles are numbered such that
there is no arc from Cj to Ci for any j > i.

As D is strong, there must be a path, P , from V (Ct) to V (C1) ∪ V (C2) ∪
· · · ∪ V (Ct−1). Assume P is a (x, y)-path and y ∈ V (Ci), where 1 ≤ i < t.
Let y+ be the successor of y on Ct and let x− be the predecessor of x on
Ci. If x− and y+ are adjacent then we can merge Ci, Ct and P into a cycle
(using the arc x−y+). This cycle has more vertices than V (Ci) ∪ V (Ct) (as
P is not just an arc), a contradiction. Therefore x− and y+ belong to the
same partite set. However, then the predecessor, x−−, of x− on Ci lies in a
different partite set to y+. Therefore x−−y+ is an arc in D and adding P
and x−−y+ to Ci and Cj and deleting x−−x−, x−x and yy+ we obtain a
cycle containing V (Ci) ∪ V (Ct) ∪ V (P ) \ {x−} of at least the same order as
V (Ci) ∪ V (Ct), contradicting the minimality of t. �

If F is a cycle subgraph of maximum order in a strong semicomplete
bipartite digraph then there is not necessarily a cycle on the same set of
vertices. A similar result as that given in Theorem 7.4.2 holds for extended
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semicomplete digraphs (see Theorem 7.10.2), but for extended semicomplete
digraphs one can always find a longest cycle with the same vertex set as
any cycle subgraph of maximum order. So even though Theorem 7.4.2 and
Theorem 7.10.2 look very similar the proofs are somewhat different.

The following result of Yeo holds when the desired cycle has to cover a
given set of vertices.

Theorem 7.4.3 ([71]) Let D be a strong semicomplete bipartite digraph of
order n and let X ⊆ V (D). One can decide if there is a cycle covering X in
D in time O(n5). Furthermore, if it exists, then we can find such a cycle in
time O(n5).

Yeo conjectured that the above also holds for semicomplete multipartite
digraphs.

Conjecture 7.4.4 ([71]) Let D be a semicomplete multipartite digraph and
X ⊆ V (D). There is a polynomial time algorithm for finding a cycle covering
X (if it exists), and which is the longest among all suchcycles.

7.4.2 Even Pancyclic Bipartite Tournaments

A digraph D is even pancyclic if it contains all cycles of even length from 4
to 2�|V (D)|/2�. Similarly we can define vertex-even-pancyclic (arc even
pancyclic) if for every vertex (arc) there exists cycles of all even lengths
from 4 to 2�|V (D)|/2� containing this vertex (arc). Let B(r, r, r, r) denote
the bipartite tournament with partite sets V1 ∪ V ′

1 and V2 ∪ V ′
2 , where |V1| =

|V ′
1 | = |V2| = |V ′

2 | = r and V1 → V2 → V ′
1 → V ′

2 → V1. See Figure 7.3 for an
illustration of B(r, r, r, r).

V1

V1

V2

V2

Figure 7.3 The bipartite tournament B(r, r, r, r). Note that |V1| = |V ′
1 | = |V2| =

|V ′
2 | = r.

The following characterizations of even pancyclic and vertex-even-pan-
breakcyclic bipartite tournaments were derived by Beineke and Little in [14]
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and by Zhang [78], respectively. Note that the last characterization was ob-
tained independently by Häggkvist and Manoussakis in [43] as well.

Theorem 7.4.5 ([14, 43, 78]) A bipartite tournament is even pancyclic as
well as vertex-even-pancyclic if and only if it is Hamiltonian and is not iso-
morphic to the bipartite tournament B(r, r, r, r) (r = 2, 3, . . .).

Considering regular bipartite tournaments, Amar and Manoussakis [1]
and, independently, Wang [69] showed the following.

Theorem 7.4.6 ([1, 69]) An r-regular bipartite tournament is arc even pan-
cyclic unless it is isomorphic to B(r, r, r, r).

7.4.3 Paths in Semicomplete Bipartite Digraphs

Theorem 7.4.1 can be used to prove the following theorem of Bang-Jensen
and Gutin.

Theorem 7.4.7 ([3]) A semicomplete bipartite digraph, D, has a Hamilton
path starting at the vertex x if and only if D contains a 1-path-cycle factor
where the path starts at x and x can reach every other vertex of D.

Furthermore, given a 1-path-cycle factor where the path starts at x and
x can reach all vertices in V (D) \ {x}, we can find a Hamilton path in D
starting at x in time O(|V (D)|2).
Proof: Let D be a semicomplete bipartite digraph with a 1-path-cycle factor
F with cycles C1, C2, . . . , Ct and path P . Assume that P is a (x, y)-path and
x can reach all vertices in D. Let V1 and V2 be the partite sets of D and,
without loss of generality, assume that x ∈ V1.

If y ∈ V2, then let D1 be the semicomplete bipartite digraph obtained
from D by adding all arcs from V2 to x. As x can reach all vertices in D we
note that D1 is strong. As yx ∈ A(D1) we note that D1 has a cycle factor
and therefore by Theorem 7.4.1 a Hamilton cycle, C1. Removing the arc into
x in C1 gives us the desired Hamilton path in D starting in x.

If y ∈ V1 then let D2 be the semicomplete bipartite digraph obtained
from D by adding a new vertex z to V2 and all arcs from V1 to z as well
as the arc zx. As x can reach all vertices in D we note that D2 is strong.
As yzx is a path in D2 we note that D2 has a cycle factor and therefore by
Theorem 7.4.1 a Hamilton cycle, C2. As N+(z) = {x} we note that zx is an
arc in C2. Removing z and the arcs incident with z we obtain the desired
Hamilton path in D starting in x.

This completes the first part of the proof. We refer the reader to [3] for
the complexity part. �

The following result was proved by Amar, Manoussakis and Wang in [1,
69] and also follows from Theorem 7.4.6. Recall that a digraph is
r-regular if all out-degrees and in-degrees have the value r and it is regu-
lar if it is r-regular for some r.
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Theorem 7.4.8 ([1, 69]) Every arc of a regular bipartite tournament is con-
tained in a Hamiltonian cycle.

In Section 7.8 we say that a digraph D is almost regular if the maxi-
mum of all out- and in-degrees is at most one larger than the minimum of
all out- and in-degrees (this will also be denoted by ig(D) ≤ 1). See also
Section 7.8 for more results on semicomplete multipartite digraphs that are
close to regular.

If D is an almost regular bipartite tournament then the partite sets differ
by at most two in size. However if the size of the partite sets differ by two
then there is no Hamilton path in D. Therefore in the following theorem of
Volkmann we consider the case when the size of the partite sets differ by at
most one.

Theorem 7.4.9 ([63]) Let T be an almost regular bipartite tournament with
the partite sets X and Y such that 1 ≤ |X| ≤ |Y | ≤ |X| + 1. Every arc of T
is contained in a Hamiltonian path if and only if T is not isomorphic to T3,3

shown in Figure 7.4.

x

y

Figure 7.4 The strong semicomplete bipartite digraph T3,3, with no Hamilton path
containing the arc xy.

7.5 Paths in Semicomplete Multipartite Digraphs

One of the first results on tournaments is Theorem 2.2.4, due to Rédei. We
recall its statement here.
Theorem 2.2.4 (Rédei’s Theorem [55]) Every tournament contains a
Hamiltonian path.

Theorem 2.2.4 is not true in general for semicomplete multipartite di-
graphs. However the following characterization was proved by Gutin in [29].
We give a different proof below in order to illustrate the usefulness of Theo-
rem 7.3.1.
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Theorem 7.5.1 ([29]) A semicomplete multipartite digraph, D, has a Hamil-
ton path if and only if it has a 1-path-cycle factor.

Furthermore, one can verify whether D contains a Hamilton path (and
find one if it does) in time O(|V (D)|2.5).
Proof: Let D be a semicomplete multipartite digraph. If D has a hamilton-
inan path then clearly it has a 1-path-cycle factor as the Hamilton path is a
1-path-cycle factor. Now assume that D has a 1-path-cycle factor. Add a new
vertex x to D that is connected to all other vertices in D with a 2-cycle and
let the resulting digraph be D′. Clearly D′ is a semicomplete multipartite
digraph with x being in a partite set by itself. Note that D′ contains a cycle
factor as the path, P , in the 1-path-cycle factor of D can be made into a
cycle in D′ by adding the vertex x and arcs from the end of P to x and from
x to the start of P .

Let F be a cycle factor of D′ with the minimum number of cycles, t.
By Theorem 7.3.1 we have t = 1, as the cycle containing x cannot weakly-
dominate or be weakly-dominated by any other cycle. Therefore D′ contains
a Hamilton cycle. Removing x from this Hamilton cycle gives us the desired
Hamilton path.

We have now proved the structural part of the theorem. We refer the
reader to [29] for a proof of the complexity. �

Theorem 7.5.1 can also be formulated as: a semicomplete multipartite
digraph D has pc(D) = 1 if and only if pcc(D) = 1. In fact, the following was
proved by Gutin and easily follows from Theorem 7.5.1.

Theorem 7.5.2 ([32]) pc(D) = pcc(D) for all semicomplete multipartite
digraph D. Furthermore, pc(D) can be calculated in time O(|V (D)|2.5).

Theorem 7.5.1 also implies that it is easy to find a longest path in a
semicomplete multipartite digraph. The following result was first proved by
Gutin.

Theorem 7.5.3 ([33]) Let D be a semicomplete multipartite digraph of order
n and let F be a 1-path-cycle subgraph in D. Then there exists a path, P , in
D with V (P ) = V (F).

As we can find a 1-path-cycle subgraph in D of maximum order in O(n3)
time (see Chapter 4 in [2]) we can find a longest path in O(n3) time.

In fact Theorem 7.5.1 can be generalised to semicomplete multipartite
digraphs with costs on its vertices. If D is a digraph with costs on its vertices
mpi(D) is defined to be the minimum cost of an i-path subgraph (that is,
collection of i paths) of D. By definition mp0(D) = 0. Furthermore, mpci(D)
is defined to be the minimum cost of an i-path-cycle subgraph (that is, a
collection of i paths and any number of cycles) of D. Theorem 7.5.1 implies
the following result of Gutin.

Theorem 7.5.4 ([32]) mpi(D) = mpci(D) for all semicomplete multipartite
digraphs D and all i ∈ [n].
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7.5.1 Hamilton Paths Containing Arcs

In Corollary 7.9.4 below we will see that all k-strong semicomplete multipar-
tite digraphs with at most k vertices in each partite set have a Hamilton cycle.
One could imagine that all k-strong semicomplete multipartite digraphs with
at most k vertices in each partite set might therefore also have a Hamilton
path through any given arc. However this is false even for tournaments, by
Figure 7.5. Nevertheless Volkmann proved the following.

Theorem 7.5.5 ([64]) If a (k +1)-strong semicomplete multipartite digraph
D has at most k vertices in each partite set then D contains a Hamilton path
through any given arc.

Proof: Let D be a (k +1)-strong semicomplete multipartite digraph with at
most k vertices in each partite set and let xy ∈ A(D) be arbitrary. Clearly
the semicomplete multipartite digraph D − x is k-strong and has at most
k vertices in each partite set and therefore contains a Hamilton cycle C by
Corollary 7.9.4 (which we will see in Section 7.9). Deleting the arc into y on
C and adding the arc xy gives us the desired Hamilton path. �

x y

Figure 7.5 A strong tournament with no Hamilton path containing the arc xy.

Observe that the proof above actually implies that in Theorem 7.5.5 we
could have required the Hamilton path to start (or end) with the desired arc.
Clearly Theorem 7.5.5 is best possible as in Figure 7.5 (see also [16]) we have
a 1-strong semicomplete multipartite digraph with at most 1 vertex in each
partite set and there is no Hamilton path containing the arc xy.

Meng and Li [50] proved the following result (where α(D) is the size
of a maximum independent set in D, which for semicomplete multipartite
digraphs corresponds to the maximum size of a partite set).

Theorem 7.5.6 ([50]) Let D be a semicomplete multipartite digraph of order
n and with partite sets V1, V2, . . . , Vc. If d+(xi, Vj), d−(xi, Vj) ≥ (|Vj | + 1)/2
for all xi ∈ Vi and j 
= i and α(D) ≤ n−1

2 , then every arc of D is contained
in a Hamilton path of D.
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V1 · · · V1· · ·

V2 · · · V3· · ·

Figure 7.6 A k-strong semicomplete multipartite digraph with a cycle factor but
no Hamilton cycle (when |V ′

1 | = |V ′′
1 | = |V2| = |V3| = k).

7.6 Cycles in Semicomplete Multipartite Digraphs

Unfortunately Theorem 7.4.1, which states that every strong semicomplete
bipartite digraph with a cycle factor contains a Hamilton cycle, doesn’t easily
extend to semicomplete multipartite digraphs. In fact, no degree of strong
connectivity and a cycle factor guarantees a Hamilton cycle in a semicomplete
multipartite digraph, as can be seen in Figure 7.6. In Figure 7.6 we note that
there is a cycle containing V ′

1 ∪V2 and a cycle containing V ′′
1 ∪V3, so there is

a cycle factor. However, to get from V ′′
1 ∪V3 to V ′

1 ∪V2 we need to use an arc
from V3 to V2 and since half the vertices belong to the partite set V ′

1 ∪V ′′
1 no

Hamilton cycle contains an arc from V3 to V2. Therefore the digraph is not
Hamiltonian.

Despite the fact that no degree of strong connectivity and a cycle fac-
tor implies hamiltonicity we can still decide if a semicomplete multipartite
digraph has a Hamilton cycle in polynomial time. This was proved by Bang-
Jensen, Gutin and Yeo in [6].

Theorem 7.6.1 ([6]) One can decide if a semicomplete multipartite digraph
of order n has a Hamilton cycle (and find one if it exists) in time O(n7).

The proof of Theorem 7.6.1 is very complicated and uses the structural
result given in Theorem 7.3.1. In [71] Yeo generalised Theorem 7.6.1 to cycles
covering a given set of vertices.

Theorem 7.6.2 ([71]) Let D be a strong semicomplete multipartite digraph
of order n and let X ⊆ V (D). One can decide if there is a cycle covering X
in D (and find one if it exists) in time O(n5).

Note that Theorem 7.6.2 not only generalizes Theorem 7.6.1 but also
improves the complexity from O(n7) to O(n5). For the case when D is a
semicomplete bipartite digraph Theorem 7.6.2 was strengthened in Theo-
rem 7.4.3. That is, we showed that if D is a strong semicomplete bipartite
digraph and X ⊆ V (D) then we can decide if there is a cycle covering X in
D and if there is then we can find a longest such cycle in polynomial time.
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7.6.1 Pancyclicity

Recall the following definitions from Section 1.3. A digraph D is vertex-k-
cyclic (arc-k-cyclic, respectively) if every vertex (arc, respectively) of D is
contained in a k-cycle. A digraph D of order n is pancyclic if it has a k-
cycle for every k ∈ {3, 4, . . . , n}. Furthermore, D is vertex-pancyclic (arc-
pancyclic, respectively) if D is vertex-k-cyclic (arc-k-cyclic, respectively) for
every k ∈ {3, 4, . . . , n}.

In 1966 Moon extended Camion’s Theorem (Theorem 2.2.6) to Theo-
rem 1.5.1. Recall this theorem.

Theorem 1.5.1 (Moon’s Theorem [51]) Every strong tournament is vertex-
pancyclic.

Moon’s Theorem has been extended to multipartite tournaments and
semicomplete multipartite digraphs in several ways. For example, Volkmann
and Guo proved the following result in [28].

Theorem 7.6.3 ([28]) Let D be a strongly connected c-partite tournament.
Then every partite set of D has at least one vertex which belongs to cycles
C3, C4, . . . , Cc such that |V (Ci)| = i for all i ∈ {3, 4, . . . , c} and V (C3) ⊂
V (C4) ⊂ · · · ⊂ V (Cc).

The result in Theorem 7.6.3 cannot be extended to every vertex of a
partite set, as can be seen in the multipartite tournament in Figure 7.7.(c),
where x2 does not belong to a 4-cycle in the strong 4-partite tournament.
It is not difficult to see that Theorem 7.6.3 extends Moon’s Theorem, as a
strong tournament of order n is also a strong n-partite tournament where all
partite sets have size one.

Another generalization of Moon’s Theorem was given by Goddard and
Oellermann in [21].

Theorem 7.6.4 ([21]) Every vertex of a strongly connected c-partite tour-
nament D belongs to a cycle that contains vertices from exactly q partite sets
for each q ∈ {3, 4, . . . , c}.

Again it is not difficult to see that this theorem extends Moon’s Theorem.

7.7 Short Cycles in Semicomplete Multipartite Digraphs

Most of the results in this section will be stated for multipartite tournaments.
However, due to Theorem 7.1.1, many of them also hold for semicomplete
multipartite digraphs. Recall the following theorem of Volkmann.

Theorem 7.1.1 ([62]) Every strong semicomplete c-partite digraph with c ≥ 3
contains a spanning strong oriented subdigraph.
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x1 x2

(a)

x1 x2

(b)

x1 x2

(c)

Figure 7.7 (a) A strong 3-partite tournament with no 3-cycle containing x2. (b) A
strong 4-partite tournament with no 3-cycle containing x2. (c) A strong 4-partite
tournament with no 4-cycle containing x2.

Recall Theorem 7.6.3, which generalizes many of the known results in this
area.

Theorem 7.6.3 Let D be a strong c-partite tournament with c ≥ 3 and with
partite sets V1, V2, . . . , Vc. For each i ∈ [c], there exists a vertex v ∈ Vi that
belongs to a k-cycle, Ck, for all k ∈ {3, 4, . . . , c} such that V (C3) ⊂ V (C4) ⊂
· · · ⊂ V (Cc).

Note that Theorem 7.6.3 also holds for semicomplete multipartite di-
graphs due to Theorem 7.1.1. An immediate corollary of this result is the
following well known result, also due to Volkmann and Guo.

Corollary 7.7.1 ([27]) Let D be a strong c-partite tournament with c ≥ 3
and with partite sets V1, V2, . . . , Vc. For each i ∈ [c], there exists a vertex
v ∈ Vi that belongs to a k-cycle for all k ∈ {3, 4, . . . , c}.

Clearly Theorem 7.6.3 and Corollary 7.7.1 both generalize the fact that
a strong tournament is vertex-pancyclic. A different way to generalize this
was seen in Theorem 7.6.4, where it was shown that every vertex of a strong
c-partite tournament D belongs to a cycle containing vertices from exactly t
partite sets of D for each t ∈ {3, 4, . . . , c}.

Theorem 7.6.3 cannot be extended to all vertices in a partite set, as can
be seen from the examples in Figure 7.7. Even though there are vertices in
the c-partite digraphs in Figure 7.7 which do not belong to cycles of lengths
3, 4, . . . , c, clearly all vertices belong to cycles that contain vertices from t
partite sets for all t = 3, 4, . . . , c (as promised by Theorem 7.6.4).

In fact, every vertex of a strong multipartite tournament belongs to cycles
of length k or k + 1, as proved in the following theorem of Guo, Pinkernell
and Volkmann.

Theorem 7.7.2 ([25]) Let D be a strong c-partite tournament and let v ∈
V (D) be arbitrary. Then v belongs to a k-cycle or a (k + 1)-cycle in D for
every k ∈ {3, 4, . . . , c}.
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In [38] Gutin, Rafiey and Yeo characterize the strong c-partite tourna-
ments with a unique c-cycle. The characterization is quite complex, so it is
not given here. By Theorem 7.6.3 we observe that a c-cycle always exists in
a strong c-partite tournament D. Any vertex not in a c-cycle belongs to a
(c+1)-cycle by Theorem 7.7.2. Therefore if D is a c-partite tournament, but
not a tournament, and it has a unique c-cycle, then it will contain cycles of
length more than c.

It is not difficult to construct strong c-partite multipartite tournaments
where the longest cycle has length c. Examples of such multipartite tourna-
ments can be seen in Figure 7.8. In fact, the strong c-partite tournaments for
which the longest cycle has length c were characterized by Gutin in [37].

Figure 7.8 Examples of strong 4-partite tournaments whose longest cycle has
length 4.

If we not only know that the multipartite tournament is strong, but also
regular, then the following generalization of Alspach’s theorem was proved
by Guo.

Theorem 7.7.3 ([24]) Let D be a regular c-partite tournament. If every
arc of D belongs to a 3-cycle, then every arc of D is on a k-cycle for all
k ∈ {3, 4, . . . , c}.

The following theorem was proved by Zhou and Zhang.

Theorem 7.7.4 ([80]) If D is a regular c-partite tournament with c ≥ 6,
then every arc of D belongs to a k-cycle for all k ∈ {4, 5, . . . , c}.

7.8 Regular and Close to Regular Semicomplete
Multipartite Digraphs

In Section 1.2 an r-regular digraph is defined as a digraph where all out-
and in-degrees are equal to r. There are several measures of how much a
digraph differs from being regular. In [74] the local irregularity is defined
as il(D) = max{|d+(x) − d−(x)|} over all vertices x of D and the global
irregularity as ig(D) = max{Δ+(D),Δ−(D)} − min{δ+(D), δ−(D)}. That
is, the global irregularity is the difference between the maximum out- or in-
degree and the minimum out- or in-degree. Note that il(D) ≤ ig(D) and that
if ig(D) = 0 then D is regular.
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Alspach proved the following result, which was stated previously as Corol-
lary 2.14.4.

Corollary 2.14.4 All regular tournaments are arc-pancyclic.

We will refer to the above result as Alspach’s Theorem. This theorem does
not extend to multipartite tournaments. In fact C.Q. Zhang conjectured that
all regular semicomplete multipartite digraphs contain a Hamilton cycle and
this conjecture was open for several years in the 1990s. The conjecture was
eventually proved by Yeo in [75] using Theorem 7.3.1. We give the proof here
as another example of how to use Theorem 7.3.1.

Theorem 7.8.1 ([75]) Every regular semicomplete multipartite digraph con-
tains a Hamilton cycle.

Proof: Let D be a diregular semicomplete multipartite digraph. Ore proved
(in [53]) that every regular digraph contains a cycle factor, so let F = C1 ∪
C2 ∪ . . . ∪ Ct be a cycle factor of D. We may assume that F is chosen such
that t is minimum. If t = 1 then D is Hamiltonian, so assume for the sake of
contradiction that t > 1.

By Theorem 7.3.1 we may assume that Ci � Cj for all 1 ≤ i < j ≤ t.
Furthermore, by Theorem 7.3.1, there exists an index j1, such that C1 �Vj1

Ck for all 2 ≤ k ≤ t.
Let yx ∈ A(D) be an arc from y ∈ V (Ck), with k ∈ {2, 3, . . . , t}, to

x ∈ V (C1). By Theorem 7.3.1 we have x−, y+ ∈ Vj1 . Now we define the two
distinct arcs a1(yx) = xy+ and a2(yx) = x−y. By Theorem 7.3.1, a1(yx) and
a2(yx) are arcs in D.

If y′x′ and yx are distinct arcs from V (D) \ V (C1) to V (C1), then we see
that a1(yx), a2(yx), a1(y′x′) and a2(y′x′) are four distinct arcs from V (C1) to
V (D) \V (C1). Therefore the number of arcs leaving V (C1) is at least double
as large as the number of arcs entering V (C1). However this contradicts the
fact that D is an Eulerian digraph (and therefore has equally many arcs from
V (C1) to V (D) \ V (C1) as from V (D) \ V (C1) to V (C1)). �

Much research has gone into semicomplete multipartite digraphs that are
close to regular. For example, the following result of Yeo.

Theorem 7.8.2 ([74]) Let D be a semicomplete multipartite digraph of order
n. Let n1 denote the size of the largest partite set in D and let n2 denote the
size of the second largest partite set (n1 = n2 is possible). If either of the
following holds then D is Hamiltonian.

• ig(D) ≤ n−2n1−n2
2 + 1.

• il(D) ≤ min
{
n − 3n1 + 1, n−2n1−n2

2 + 1
}
.
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a1

a2

b1

b2

c1

c2

c3

V1

V2

V3

Figure 7.9 A semicomplete multipartite digraph, D, with no Hamilton cycle (or
cycle factor) and with ig(D) = il(D) = 1. Note that there is no cycle factor in D
as if there was then between any two vertices from V3 we must have a vertex from
V2 and |V2| < |V3|.

Theorem 7.8.2 is best possible, as in [74] there are constructed in-
finitely many semicomplete multipartite digraphs, D, with il(D) = ig(D) =
n−2n1−n2

2 + 3
2 ≤ n − 3n1 + 2, which are not Hamiltonian. The smallest such

example given in [74] contains 11 vertices and is a bit to big to illustrate
here. However, consider the semicomplete multipartite digraph, D, given in
Figure 7.9. Note that for this digraph we have |V (D)| = 7 and all out- and
in-degrees are either 2 or 3 and therefore ig(D) = il(D) = 1. Furthermore,
the size of the largest partite set is n1 = |V3| = 3 and the size of the second
largest is n2 = |V2| = 2. Therefore ig(D) = |V (D)|−2n1−n2

2 + 3
2 , which shows

that one part of Theorem 7.8.2 is tight.
Another way of generalizing Theorem 7.8.1 is the following. For a digraph

D with vertex set V and a positive integer k define f(D, k) as follows

f(D, k) =
∑

x∈V,d+(x)>k

(d+(x) − k) +
∑

x∈V,d−(x)<k

(k − d−(x)).

Note that f(D, k) ≥ 0 and if f(D, k) = 0 then D is k-regular. This is the
case as if d+(x) ≤ k for all x and d−(x) ≥ k for all x then d+(x) = d−(x) = k
for all x (as

∑
x∈V d+(x) = |A(D)| =

∑
x∈V d−(x)). One can show that if

f(D, k) ≤ k − 1 then D has a cycle factor. We can in fact show that, except
for a special class of semicomplete multipartite digraphs, f(D, k) ≤ k−1 also
implies hamiltonicity for semicomplete multipartite digraphs.

For every k ≥ 2 define G′
k to be the 3-partite digraph with partite sets

V1 = {x}, V2 = {y2, y3, . . . , yk} and V3 = {z1, z2, . . . , zk} and the following
arc set

{yx, xz, zy, yv | y ∈ V2, z ∈ V3, v ∈ V3 \ {z1}} ∪ {z1x}.
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See Figure 7.10 for an illustration of G′
k. For the sake of contradiction

assume that H is a Hamiltonian cycle in G′
k. As d−(z1) = 1, H has to

include the arc xz1. As xz1 belongs to H we note that z1x does not belong
to H and therefore some arc from V2 to x must belong to H (as some arc has
to enter x). As half the vertices of G′

k belong to V3 no arc from V2 to x can
belong to H, a contradiction. Therefore G′

k is not Hamiltonian. Furthermore
f(G′

k, k) = k − 1.

d+(z1) = k

d−(z1) = 1
z1 z2 z3 z4 · · · zk

d+(zi) = k − 1

d−(zi) = k

d+(x) = k

d−(x) = k
x y2 y3 y4 · · · yk

d+(yi) = k

d−(yi) = k

Figure 7.10 The graph class G′
k.

Let G′′
k be the converse1 of G′

k for all k ≥ 2. The following theorem was
proved by Guo, Tewes, Volkmann and Yeo.

Theorem 7.8.3 ([26]) Let D be a semicomplete multipartite digraph such
that f(D, k) ≤ k − 1. If D is not isomorphic to G′

k or G′′
k, then D contains

a Hamilton cycle.

In [26] Guo, Tewes, Volkmann and Yeo defined the notion of a semi-
partitioncomplete digraph and proved the theorem below. A semicom-
plete multipartite digraph is called semi-partitioncomplete if both the out-
neighbourhood and the in-neighbourhood of every vertex contains at least
half the vertices from every partite set, except the partite set that the vertex
belongs to.

Theorem 7.8.4 ([26]) Let D be a strong semi-partitioncomplete semicom-
plete multipartite digraph with no partite set containing more than half the
vertices. Then D contains a Hamilton cycle.

It is also interesting to consider Hamiltonian paths in regular or close to
regular multipartite tournaments. The following result was first proved by
Volkmann and Yeo in [68].

Theorem 7.8.5 ([68]) Every arc of a regular multipartite tournament is
contained in a Hamilton path.

1 Recall that the converse of a digraph D is the digraph H which one obtains from
D by reversing all arcs.
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A similar result almost holds for almost regular multipartite tournaments,
as can be seen in the following theorem of Volkmann.

Theorem 7.8.6 ([63]) Let D be an almost regular c-partite tournament with
the partite sets V1, V2, . . . , Vc such that |V1| = |V2| = · · · = |Vc|. Then each arc
of D is contained in a Hamiltonian path if and only if D is not isomorphic
to T3,3 (see Figure 7.4).

Note that Theorem 7.8.6 generalizes Theorem 7.8.5 as any regular multi-
partite tournament has equally many vertices in each partite set.

Considering Theorem 7.8.6, it is interesting to determine a smallest pos-
sible value g(i) such that all c-partite tournaments, D, with ig(D) ≤ i and
c ≥ g(i) have a Hamiltonian path through any given arc. In the following
theorem of Volkmann and Winzen we note that g(i) ≤ 4i + 4 and g(1) = 5.

Theorem 7.8.7 ([66]) For all i ≥ 0 the following holds. All c-partite tour-
naments, D, with ig(D) ≤ i and c ≥ 4i + 4 have a Hamiltonian path through
any given arc. Furthermore, the following two statements also hold.

• All c-partite tournaments, D, with ig(D) ≤ 1 and c ≥ 5 have a Hamiltonian
path through any given arc.

• All regular c-partite tournaments with c ≥ 2 have a Hamiltonian path
through any given arc (see Theorem 7.8.5).

If we are interested in Hamilton paths through paths instead of just arcs,
then the following theorem of Volkmann and Yeo is useful.

Theorem 7.8.8 ([68]) Let D be a c-partite tournament with partite sets
V1, V2, . . . , Vc such that |V1| ≤ |V2| ≤ · · · ≤ |Vc| and let P be a path of length
q in D. If |V (D)| ≥ 2ig(D) + 3q + 2|Vc| + |Vc−1| − 2, then there exists a
Hamiltonian path in D, starting with the path P .

See also Theorems 7.4.8 and 7.4.9 in Section 7.4.3 for results on regu-
lar and close to regular semicomplete bipartite digraphs. For example, The-
orem 7.4.8 is a fundamental theorem showing that every arc of a regular
bipartite tournament is contained in a Hamiltonian cycle.

7.8.1 Connectivity in Close to Regular Semicomplete Multipartite
Digraphs

In the proofs of several of the other results in this section the following results
due to Yeo have been used.

Theorem 7.8.9 ([77]) If D is a semicomplete multipartite digraph and the
largest partite set has size v∗ then D is

⌈
|V (D)|−2il(D)−v∗

3

⌉
-strong.

An easy corollary of the above theorem is the following.
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Theorem 7.8.10 ([72]) If D is a regular multipartite tournament with v∗

vertices in each partite set then D is
⌈

|V (D)|−v∗

3

⌉
-strong.

In fact, Theorem 7.8.9 can be slightly improved in the sense that Volk-
mann and Winzen, [67], characterized when equality was obtained for mul-
tipartite tournaments in Theorem 7.8.9. This characterization led to an im-
proved bound of

⌈
|V (D)|−2il(D)−v∗+1

3

⌉
when v∗ is odd.

7.8.2 Pancyclicity in Close to Regular Semicomplete Multipartite
Digraphs

By Theorem 7.8.1 every regular semicomplete multipartite digraph contains
a Hamilton cycle. This result can in many cases be extended to pancyclicity.
The following results were proved by Yeo.

Theorem 7.8.11 ([72]) Every regular multipartite tournament with at least
5 partite sets is vertex-pancyclic.

For large multipartite tournaments the following holds.

Theorem 7.8.12 ([76]) If D is a c-partite tournament with c ≥ 4 and
|V (G)| > 476ig(D) + 13917 then there exists a path of length l between any
two vertices in D for all 42 ≤ l < |V (D)|.

In fact, the lower bound of 42 can be improved as follows.

Theorem 7.8.13 ([76]) If D is a c-partite tournament with c ≥ 4 and
|V (G)| > 715ig(D) + 13917 and e ∈ A(D) is arbitrary, then there exists
a cycle of length l containing e for all 5 ≤ l < |V (D)|.

Theorem 7.8.13 can be used to prove the following corollaries.

Corollary 7.8.14 ([76]) Every c-partite tournament with c ≥ 5 and |V (G)| >
715ig(D) + 13917 is vertex-pancyclic.

Note that Corollary 7.8.14 compliments Theorem 7.8.11, which states that
every c-partite tournament with c ≥ 5 is vertex-pancyclic.

Corollary 7.8.15 ([76]) Every regular 4-partite tournament of order at least
13918 is vertex-pancyclic.

The above results of Yeo give strong support for the following conjecture
of Volkmann.

Conjecture 7.8.16 ([62]) Every regular 4-partite tournament is vertex-
pancyclic.
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Since it is very easy to see that every arc in a regular tournament is
contained in a 3-cycle, the next result of Guo is an extension of Alspach’s
Theorem (see Corollary 2.14.4).

Theorem 7.8.17 ([22]) Let D be a regular c-partite tournament. If every
arc of D is contained in a 3-cycle, then every arc of D belongs to an m-cycle
for each m ∈ {4, 5, . . . , c}.

If we consider almost regular semicomplete multipartite digraphs instead
of regular semicomplete multipartite digraphs, then the following result was
proved by Tewes, Volkmann and Yeo.

Theorem 7.8.18 ([59]) Let D be an almost regular c-partite tournament. If
c ≥ 8, then D is vertex-pancyclic. If 5 ≤ c ≤ 7, then D is vertex-pancyclic,
except for possibly a finite number of counterexamples, whose partite sets have
different cardinalities.

Tewes, Volkmann and Yeo constructed some infinite families of almost
regular 4-partite tournaments that are not vertex-pancyclic. Thus, Theo-
rem 7.8.18 as well as the following conjecture cannot be extended to almost
regular 4-partite tournaments.

Conjecture 7.8.19 ([59]) An almost regular c-partite tournament with 5 ≤
c ≤ 7 is vertex-pancyclic.

7.9 k-Strong Semicomplete Multipartite Digraphs

Recall that in Section 1.5 a k-strong digraph is defined as a digraph on at
least k+1 vertices which is still strong after the removal of any k−1 vertices.
The following result of Bang-Jensen, Gutin and Yeo turns out to be very
useful.

Theorem 7.9.1 ([9]) If D is a k-strong digraph, and X ⊆ V (D), has
independence number α(D[X]) ≤ k, then there is a cycle subgraph in D that
covers X.

Using Theorem 7.3.2 the following result was proved by Yeo in [75].

Theorem 7.9.2 ([75]) Let D be a (�k/2� + 1)-strong semicomplete multi-
partite digraph, and let X be an arbitrary set of vertices in D such that X
includes at most k vertices from any partite set of D. If there exists a cy-
cle subgraph in D which covers X, then there is a cycle C in D such that
X ⊆ V (C).
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A1 A2

B C

Figure 7.11 A non-Hamiltonian �k/2�-strong semicomplete multipartite digraph,
with a cycle factor, where |A1| = |B| = �k/2� and |A2| = |C| = �k/2�.

Theorem 7.9.2 is best possible, as can be seen by the example in Fig-
ure 7.11, which we will denote by D∗. Note that D∗ is a semicomplete multi-
partite digraph with partite sets A1 ∪A2, B and C and is �k/2�-strong, as all
sets A1, A2, B and C have size at least �k/2� and C is a separating set of size
�k/2�. Furthermore, D∗ contains a cycle factor as there is a cycle covering
A1 ∪ B and another cycle covering A2 ∪ C. However, D∗ does not contain a
Hamilton cycle as if H was a Hamilton cycle then the vertices on H would
have to alternate between A1 ∪A2 and B ∪C (as A1 ∪A2 is independent and
|A1 ∪A2| = |B ∪C|). So no arc from C to B lies on H, which contradicts the
fact that some arc has to go from A2 ∪ C to A1 ∪ B on H. Therefore D∗ is
a non-Hamiltonian �k/2�-strong semicomplete multipartite digraph with at
most k vertices in any partite set and which contains a cycle factor.

There are several consequences of Theorem 7.9.2. For example, the fol-
lowing results of Yeo.

Corollary 7.9.3 ([75]) Let D be a k-strong semicomplete multipartite di-
graph, and let X ⊆ V (D) be an arbitrary set of vertices in D with at most k
vertices from each partite set. Then there exists a cycle C with X ⊆ V (C).

Proof: By Theorem 7.9.1 there is a cycle subgraph in D covering X. Theo-
rem 7.9.2 now implies the corollary. �

Corollary 7.9.3 furthermore implies the following.

Corollary 7.9.4 ([75]) If a k-strong semicomplete multipartite digraph D
has at most k vertices in each partite set then D contains a Hamilton cycle.

Corollary 7.9.5 ([75]) A k-strong semicomplete multipartite digraph has a
cycle through any set of k vertices.

The above corollaries were originally conjectured by Guo and Volkmann,
[60], and Bang-Jensen, Gutin and Yeo, [9], respectively.
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Figure 7.12 An example of an extended semicomplete digraph.

7.10 Extended Semicomplete Digraphs

An extended semicomplete digraph is a semicomplete multipartite digraph
such that if there is one arc between two partite sets, say from Vi to Vj , then
there is an arc from every vertex in Vi to every vertex in Vj . See Figure 7.12
for an example of an extended semicomplete digraph. One can also think of an
extended semicomplete digraph as a semicomplete digraph where every vertex
has been blown up in the natural way to an independent set. For example, the
extended semicomplete digraph in Figure 7.12 would be obtained from the
semicomplete digraph on 3 vertices consisting of a 3-cycle and an extra edge
(creating a 2-cycle with one of the existing edges). Extended semicomplete
digraphs have been extensively studied. We will give some of the main results
on this class of digraphs below. The main results in this area include the
following theorems of Gutin.

Theorem 7.10.1 ([30]) An extended semicomplete digraph, D, has a Hamil-
ton cycle if and only if it contains a cycle factor and is strongly connected.
Furthermore, one can verify whether D contains a Hamilton cycle (and find
one if it does) in time O(|V (D)|2.5).

Proof: Let D be a strong extended semicomplete digraph and let F =
C1 ∪ C2 ∪ · · · ∪ Ct be a cycle factor in D where t is minimum. If t = 1 then
D is Hamiltonian and we are done, so assume for the sake of contradiction
that t ≥ 2.

If some partite set Vi intersects two distinct cycles Ca and Cb then let xa ∈
V (Ca)∩Vi and xb ∈ V (Cb)∩Vi be arbitrary. Let x−

a be the predecessor of xa

on Ca and let x−
b be the predecessor of xb on Cb. As x−

a xa ∈ A(D) and x−
b xb ∈

A(D) and D is an extended semicomplete digraph we also have x−
a xb ∈ A(D)

and x−
b xa ∈ A(D). Removing x−

a xa and x−
b xb from Ca and Cb and adding

x−
a xb and x−

b xa we get one cycle in D with vertex set V (Ca) ∪ V (Cb), a
contradiction to the minimality of t. Therefore no partite set intersects more
than one cycle.

However, by Theorem 7.3.1 there exists an ordering of the cycles of F
such that any arc, xy, from V (Ct) to V (C1) ∪ V (C2) ∪ · · · ∪ V (Ct−1) has the
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property that the successor of x on Ct and the predecessor of y in F lie in
the same partite set. This contradicts the fact that no partite set intersects
two distinct cycles. Therefore there is no arc out of Ct, contradicting the fact
that D was strong.

This completes the first part of the proof. We refer the reader to [30] for
the complexity part. �

Theorem 7.10.2 ([32]) Let D be a strong extended semicomplete digraph
and let F be a cycle subgraph of D. Then D has a cycle C which contains all
vertices of F . The cycle C can be found in time O(|V (D)|3).

In particular, if |V (F)| is maximum then V (C) = V (F) and C is a longest
cycle of D.

In fact, Theorem 7.10.2 can be extended in the following way, which was
first done by Bang-Jensen, Huang and Yeo.

Theorem 7.10.3 ([10]) Let D be a strong extended semicomplete digraph
with partite sets V1, V2, . . . , Vs and assume that some longest cycle contains
mi vertices from Vi for all i = 1, 2, . . . , s. Then every longest cycle contains
mi vertices from Vi and no cycle subdigraph in D can contain more than mi

vertices from Vi.

The following result on an extended semicomplete digraph with costs on
its vertices was proved by Bang-Jensen, Gutin and Yeo.

Theorem 7.10.4 ([7]) Let D be an extended semicomplete digraph with real-
valued costs on its vertices. In time O(n3m + n4 log(n)) we can find a mini-
mum cost cycle in D (or determine that no cycle exists).

7.10.1 Paths in Extended Semicomplete Digraphs

Recall that an [x, y]-path is a path that starts in x and ends in y or starts
in y and ends in x. If a digraph, D, contains a Hamiltonian [x, y]-path for all
distinct vertices x and y in D, then D is weakly Hamiltonian connected.

The following theorem of Bang-Jensen, Gutin and Huang gives a char-
acterization of when there exists a Hamiltonian [x, y]-path in an extended
tournament. Note the strong similarity with Theorem 2.6.3.

Theorem 7.10.5 ([5]) Let D be an extended tournament with distinct ver-
tices x1 and x2. Then D has a Hamiltonian [x1, x2]-path if and only if D
contains a 1-path-cycle factor where the path, P , is a [x1, x2]-path and D
does not satisfy any of the below.

• D is not strong and either the initial or terminal component of D (or both)
contains neither x1 or x2.

• D is strong and the following holds for some i ∈ {1, 2}: D−xi is not strong
and one of the following holds.
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– x3−i belongs to neither the initial nor the terminal component of D−xi.
– x3−i belongs to the initial component of D−xi, but there is no (x3−i, xi)-

path, P ′ in D such that D − P ′ contains a cycle factor.
– x3−i belongs to the terminal component of D − xi, but there is no

(xi, x3−i)-path, P ′′ in D such that D − P ′′ contains a cycle factor.
• D, D − x1 and D − x2 are all strong and D is isomorphic to one of the

tournaments in Figure 7.13.

x1

x2
w4 w3

w1 w2

Figure 7.13 The exceptional tournaments in Theorem 7.10.5. The edge between
x1 and x2 can be oriented arbitrarily.

Let T denote one of the two tournaments depicted in Figure 7.13 (depend-
ing on the orientation of the arc between x1 and x2). T − {x1, x2} contains a
4-cycle, w1w2w3w4w1, so T contains a 1-path-cycle factor where the path is
a [x1, x2]-path (containing the arc between x1 and x2). Furthermore, it is not
difficult to see that T , T − x1 and T − x2 are all strong. We will now show
that there is no Hamiltonian [x1, x2]-path in T . For the sake of contradiction
assume that P is a Hamiltonian [x1, x2]-path in T . First consider the case
when P starts in x1. The second vertex on P is either w1 or w3. If it is w1

then the second last vertex on P has to be w3 (considering the arcs into x2).
However, there is no Hamiltonian path in P − {x1, x2} from w1 to w3. Anal-
ogously if the second vertex on P is w3, then the second last vertex on P is
w1, but again there is no Hamiltonian path from w3 ot w1 in T − {x1, x2}.
So, there is no Hamiltonian path from x1 to x2 in T . Analogously one can
show that there is no Hamiltonian path from x2 to x1 in T . Therefore there
is no Hamiltonian [x1, x2]-path in T .

The proof of Theorem 7.10.5 is constructive and implies the following
result, also from [5].

Theorem 7.10.6 ([5]) Let D be an extended tournament of order n
and size m and with distinct vertices x1 and x2. There exists an O(

√
nm)
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algorithm to decide if D contains a Hamiltonian path connecting x1 and x2.
Furthermore, within the same time bound a Hamiltonian [x1, x2]-path can be
found if it exists.

Using Theorem 7.10.5 one can also give a characterization of which ex-
tended semicomplete digraphs are weakly Hamiltonian connected. As the
characterization is basically identical to using Theorem 7.10.5 for all pair of
vertices in the extended semicomplete digraph, we will omit the characteri-
zation and refer the reader to [5].

We will end this section with the following result of Bang-Jensen, Huang
and Gutin.

Theorem 7.10.7 ([5]) Let {x1, x2, x3} be a set of three distinct vertices in
a strong extended tournament D. Suppose that for every choice of distinct
xi, xj ∈ {x1, x2, x3} there exists a 1-path-cycle factor in D where the path is
a [xi, xj ]-path. Then there exists a Hamilton path in D connecting two of the
vertices in {x1, x2, x3}.

7.10.2 Pancyclicity in Extended Semicomplete Digraphs

A zigzag digraph is an extended semicomplete digraph with partite sets
V1, V2, . . . , Vc, where V ∗ = V3 ∪V4 ∪· · ·∪Vc and c ≥ 3 and |V1| = |V2| = |V ∗|.
Furthermore, V1 → V2 → V ∗ → V1 and no vertex of V1 ∪ V2 is contained in
a 2-cycle. See Figure 7.14 for an example of a zigzag digraph. Note that a
zigzag digraph of order n > 3 has no cycle of length n−1. Also note that a 4-
partite tournament on at least 5 vertices does not contain a 5-cycle, as if C is
a 5-cycle then at least 2 vertices, say x and y, on C belong to the same partite
set and any path from x to y (or y to x) must contain at least 3 vertices,
so C contains at least 6 vertices, a contradiction. In [30] Gutin characterized
pancyclic and vertex-pancyclic extended semicomplete digraphs as follows.

Theorem 7.10.8 ([30]) Let D be a Hamiltonian extended semicomplete di-
graph of order n ≥ 5 with c partite sets (c ≥ 3). Then D is pancyclic if and
only if D is not a zigzag digraph and not a 4-partite tournament.

Furthermore, D is vertex-pancyclic if and only if it is pancyclic and either
c > 3 or c = 3 and D contains two cycles Z, Z ′ of length 2 such that Z ∪ Z ′

has vertices in the three partite sets.

7.11 Orientations

An orientation of a digraph D is an oriented graph H obtained from D by
deleting one arc in every 2-cycle of D. It is often desirable to find orientations
with the minimum possible diameter, as this in some sense makes for more
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V1

V2

V3

V4

Figure 7.14 An example of a zigzag digraph.

reliable systems in real-world applications. A digraph is called bridgeless
if its underlying graph has no bridge. By Theorem 1.7.3 any strong bridge-
less digraph has an orientation with finite diameter. Therefore we can define
diammin(D) to be the minimum possible diameter taken over all orientations
of D whenever D is strong and bridgeless.

The following result is proved in [41] by Gutin and Yeo.

Theorem 7.11.1 ([41]) If D is a strong semicomplete bipartite digraph not
isomorphic to

↔
K1,n−1, then diammin(D) ≤ max{5,diam(D)}.

It was furthermore shown in [41] that Theorem 7.11.1 is best possible. If
diam(D) ≥ 5 it implies that we can find an orientation of D that does not
increase the diameter. Theorem 7.11.1 also has a similar flavour to the fact
that for all strong semicomplete digraphs, D, (of order at least 3) we have
diammin(D) ≤ max{3,diam(D)}.

It is not true that diammin(D) ≤ max{k,diam(D)} for all strong bridge-
less semicomplete multipartite digraphs for any k, as can be seen by the
example in Figure 7.15. However the following is conjectured by Gutin, Koh,
Tay and Yeo in [36].

x

y

V1 ∪ V2 V3 V4 V5 Vc

Figure 7.15 An example of a strong semicomplete c-partite digraph, D, with
diam(D) = c, where all arcs not shown go from right-to-left. Note that the only
2-cycle, xyx, goes between V1 and V2. Furthermore, diam(D − xy) = c + 1 and
diam(D − yx) = c + 1, so diammin(D) = c + 1.
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Conjecture 7.11.2 ([36]) There is an absolute constant k such that for
every strong semicomplete multipartite digraph D, different from

↔
K1,n−1, we

have diammin(D) ≤ diam(D) + k.

In [36] the following results were proved by Gutin, Koh, Tay and Yeo for
extended semicomplete digraphs.

Theorem 7.11.3 ([36]) Let D be a strong extended c-partite digraph with
c ≥ 3 and where all partite sets have size at least two and diam(D) ≥ 3. Then
diammin(D) ≤ diam(D) + 2.

In [36] it was conjectured that the bound should be diam(D) + 1 instead
of diam(D) + 2.

Conjecture 7.11.4 ([36]) Let D be a strong extended c-partite digraph with
c ≥ 3 and where all partite sets have size at least two and diam(D) ≥ 3. Then
diammin(D) ≤ diam(D) + 1.

In the case when diam(D) ≥ 4 and each partite set contains at least four
vertices the following improvement is known.

Theorem 7.11.5 ([36]) Let D be a strong extended c-partite digraph with
c ≥ 3 and where all partite sets have size at least four and diam(D) ≥ 4.
Then diammin(D) = diam(D).

A different problem is to find orientations of semicomplete multipartite
digraphs where the length of the longest path does not change. It turns out
that this is not always possible. However the following was proved by Gutin,
Tewes and Yeo.

Theorem 7.11.6 ([39]) Let D be a strong semicomplete multipartite digraph
of order n which is not isomorphic to

↔
K1,n−1 and with a longest path of length

l. Then there exists a strong spanning orientation of D containing a path of
length l − 2.

Theorem 7.11.6 is shown in [39] to be best possible in the sense that the
bound l − 2 cannot be improved.

One can also bound the length of a longest path in a semicomplete mul-
tipartite digraph by the length of a longest cycle, as was done by Gutin and
Yeo in the following theorem.

Theorem 7.11.7 ([42]) Let D be strong semicomplete multipartite digraph
with a longest path of length l and a longest cycle of length c. Then l ≤ 2c−1.
Furthermore, this bound is sharp.
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7.12 Kings in Semicomplete Multipartite Digraphs

In a digraph D, an r-king is a vertex q such that every vertex in D can be
reached from q by a path of length at most r.

It is well known that every tournament T has a 2-king (see Theo-
rem 2.2.12). In fact, every vertex of maximum out-degree in T is a 2-king.
Multipartite tournaments may have two or more vertices of in-degree zero,
and, thus, no r-king for any integer r. However, Gutin [35] (and, indepen-
dently, Petrovic and Thomassen [54]) proved that every multipartite tourna-
ment with at most one vertex of in-degree zero contains a 4-king. Moreover,
it is easy to construct infinite families of c-partite tournaments (for every
c ≥ 2) which contain 4-kings but have no 3-kings (see the papers [35, 45]
by Gutin and Koh and Tan, respectively). Therefore, in the study of mul-
tipartite tournaments, 4-kings are of special interest. Notice that while in
a bipartite tournament every vertex of maximum out-degree is a 4-king, the
obvious extension of this result to c-partite tournaments for c ≥ 3 is not valid
[20].

The latest result on 4-kings is the following of Gutin and Yeo.

Theorem 7.12.1 ([40]) Let D = (V,A) be a semicomplete multipartite
digraph and let k be the number of 4-kings in D. Then,

(a): k = 1 if and only if D has exactly one vertex of in-degree zero.
(b): k = 2, 3 or 4 if and only if the initial strong component of D has k

vertices.
(c): k = 5 if and only if either the initial strong component Q of D has five

vertices or Q contains at least six vertices and possesses a path P =
p0p1p2p3p4 such that dist(p0, p4) = 4 and there is no arc from V − V (P )
to {p1, p2, p3, p4}) (see Figure 7.16).

For multipartite tournaments the following was shown by Koh and Tan
in [46] (for bipartite tournaments) and [47] (for c-partite tournaments when
c ≥ 3).

Theorem 7.12.2 ([46, 47]) If a multipartite tournament has a unique initial
strong component and no 3-king then it has at least eight 4-kings.

7.13 Out-Paths in Semicomplete Multipartite Digraphs

An out-path of a vertex x (an arc xy, respectively) in a digraph is a directed
path starting at x (xy, respectively) such that either the end-vertex dominates
x or the end-vertex and x are not adjacent. Using out-paths, both Moon’s
and Alspach’s famous theorems for tournaments have been extended by Guo
as follows.
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p0 p1 p2 p3 p4

V (D) \ {p0, p1, p2, p3, p4}

Figure 7.16 A strong semicomplete multipartite digraph, D, with five 4-kings
({p0, p1, p2, p3, p4}). The dotted lines may or may not exist. That is, p0 is non-
adjacent to all vertices that belong to the same partite set as p0 itself and all other
vertices in V (D) \ {p0, p1, p2, p3, p4} have either one arc to or from p0 or belong to
a 2-cycle with p0.

Theorem 7.13.1 ([23]) If D is a strongly connected semicomplete c-partite
digraph (c ≥ 3), then every vertex v of D has an out-path of length k − 1 for
all k ∈ {3, 4, . . . , n}.

Theorem 7.13.1 generalizes Moon’s Theorem (Theorem 1.5.1), which
states that a strong tournament is vertex-pancyclic.

Theorem 7.13.2 ([23]) if D is a regular c-partite tournament c ≥ 3, then
every arc of D has an out-path of length k − 1 for all k satisfying 3 ≤ k ≤ n.

This result extends Alspach’s Theorem (see Corollary 2.14.4), which states
that all regular tournaments are arc-pancyclic.

7.14 Quasi-Hamiltonian Paths in Semicomplete
Multipartite Digraphs

A quasi-Hamiltonian path in a semicomplete multipartite digraph, D, is a
path which visits each partite set of D at least once. This is a generalization
of a Hamiltonian path in a tournament.

In [11] the following results are proved by Bang-Jensen, Maddaloni and
Simonsen.

Theorem 7.14.1 ([11]) It is NP -complete to decide if a given semicom-
plete multipartite digraph D has a quasi-Hamiltonian (x, y)-path, where
x, y ∈ V (D).
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Theorem 7.14.2 ([11]) It is polynomial time solvable to decide if there is
a quasi-Hamiltonian path between x and y in a semicomplete multipartite
digraph, D, where x, y ∈ V (D).

The results in Theorems 7.14.1 and 7.14.2 are somewhat surprising as the
two problems considered seem quite similar. The fact that in Theorem 7.14.1
we require the path to start in x and end in y, as opposed to allowing either
direction in Theorem 7.14.2, changes the complexity of the problem.

If the connectivity is high enough then a quasi-Hamiltonian path always
exists in a multipartite tournament, as can be seen by the following theorem
of Lu, Guo and Surmacs.

Theorem 7.14.3 ([49]) If D is a 4-strong multipartite tournament then D is
quasi-Hamiltonian-connected (that is, there exists a quasi-Hamiltonian path
starting in x and ending in y for all choices of x and y).

Theorem 7.14.3 generalizes Thomassen’s result that every 4-strong tour-
nament is strongly Hamiltonian-connected, which was stated earlier as The-
orem 2.6.7. Since Thomassen proved the existence of an infinite number of
3-strong tournaments which are not strongly Hamiltonian-connected as well,
Theorem 7.14.3 is, in a sense, best possible.

7.15 Strongly Connected Spanning Subgraphs with
Minimum Number of Arcs

Let D be a strong digraph. Finding a strongly connected spanning subgraph
with minimum number of arcs is NP-hard, as it generalizes the Hamiltonian
cycle problem. However it is polynomial time solvable for semicomplete bi-
partite digraphs and for extended semicomplete digraphs, as can be seen in
the following theorems of Bang-Jensen and Yeo.

Theorem 7.15.1 ([12]) One can find a strongly connected spanning sub-
graph with the minimum number of arcs in a strong digraph D which is
either a semicomplete bipartite digraph or an extended semicomplete digraph
in polynomial time.

Recall that pcc(D) is smallest positive integer k such that D contains a
k-path-cycle factor. Define the number pcc∗(D) as follows: If D contains a
cycle factor, then pcc∗(D) = 0 and otherwise pcc∗(D) = pcc(D). Bang-Jensen
and Yeo proved in [12] that every strong spanning subdigraph of a strong
digraph D has at least |V (D)| + pcc∗(D) arcs. The following result shows
that for strong digraphs that are either semicomplete bipartite or extended
semicomplete, one can always find a spanning strong subdigraph with this
number of arcs.
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Theorem 7.15.2 ([12]) If D is a strong semicomplete bipartite digraph or
a strong extended semicomplete digraph then there exists a strong spanning
strong subgraph of D with |V (D)| + pcc∗(D) arcs.

The class of semicomplete bipartite digraphs and extended semicomplete
digraphs are subclasses of semicomplete multipartite digraphs. However, The-
orem 7.15.2 cannot be extended to semicomplete multipartite digraphs. For
example, there exist strong semicomplete multipartite digraphs, D, with
pcc(D) = 0 (that is, they contain a cycle factor) that are not Hamiltonian.
It was, however, conjectured by Bang-Jensen and Yeo in [12] that Theo-
rem 7.15.1 can be extended to semicomplete multipartite digraphs.

Conjecture 7.15.3 ([12]) One can find a strongly connected spanning sub-
graphs with minimum number of arcs in a strong semicomplete multipartite
digraph in polynomial time.

Clearly Conjecture 7.15.3 is true when the semicomplete multipartite di-
graph has a Hamiltonian cycle, by Theorem 7.6.1. However, in general, Con-
jecture 7.15.3 is still open.

7.16 k-Coloured Kernels in Arc-Coloured Semicomplete
Multipartite Digraphs

A digraph D is said to be m-coloured if the arcs of D are coloured with m
colours. Given u, v ∈ V (D), a directed path from u to v in D is j-coloured if
its arc set uses exactly j colours.

A set S is called a k-coloured kernel if the following holds.

• Every vertex not in S has a j-coloured path to a vertex in S with j ≤ k.
• There are no two distinct vertices in S that are connected by a j-coloured

path where j ≤ k.

Q∗
4 Q∗

5

Figure 7.17 The digraphs Q∗
4 and Q∗

5.

The main result in this area was proved by Galeana-Sánchez, Llano and
Montellano-Ballesteros in [19].
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Theorem 7.16.1 ([19]) An m-coloured semicomplete c-partite digraph D
has a k-coloured kernel provided that c ≥ 3 and one of the following hold.

(i): k ≥ 4.
(ii): k = 3 and every 4-cycle in D is at most 2-coloured and, either every

5-cycle in D is at most 3-coloured or every Q∗
4 (see Figure 7.17) con-

tained in D is at most 2-coloured.
(iii): k = 2 and every 3-cycle and every 4-cycle in D is monochromatic (that

is, 1-coloured).

Furthermore, if D is an m-coloured semicomplete bipartite digraph and
k = 2 (resp. k = 3) and every Q∗

5 (see Figure 7.17) contained in D is at
most 2-coloured (resp. 3-coloured), then D has a 2-coloured (resp. 3-coloured)
kernel.

7.17 Complementary Cycles in Semicomplete
Multipartite Digraphs

Reid proved in Theorem 2.8.1 that a 2-strong tournament of order n ≥ 8 has
2 disjoint cycles of length 3 and n − 3, respectively. Song (see [57]) improved
this to cycles of length t and n − t for all 3 ≤ t ≤ n − 3. Reid’s result was
generalized to multipartite tournaments by Li, Meng and Guo in the following
two theorems (recall that for semicomplete multipartite digraphs α(D) is the
size of the largest partite set).

Theorem 7.17.1 ([48]) If D is a (α(D) + 1)-strong c-partite tournament
with c ≥ 6 then D contains two disjoint cycles of length 3 and c − 3 respec-
tively, unless D is isomorphic to T 1

7 (see Figure 7.18).

Theorem 7.17.2 ([48]) If D is a (α(D) + 1)-strong c-partite tournament
with c ≥ 6 then D contains two disjoint cycles that pass through exactly 3 and
c−3 partite sets, respectively, unless D is isomorphic to T 1

7 (see Figure 7.18).

A digraph is cycle complementary if it contains a cycle factor with
exactly two cycles. For regular semicomplete multipartite digraphs Volkmann
proved the following result.

Theorem 7.17.3 ([61]) If D is a regular semicomplete multipartite digraph
with |V (D)| ≥ 8, then D is cycle complementary.

For bipartite tournaments the above result was proved by Song [56] and
Zhang and Song [79]. In [62] Volkmann conjectures the following.

Conjecture 7.17.4 ([62]) Let D be a multipartite tournament. If D is
(α(D) + 1)-strong then D is cycle complementary, unless D is a member
of a finite family of multipartite tournaments.

More information on complementary cycles in multipartite tournaments
can be found in [65], where Volkmann gives a survey on this topic.
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Figure 7.18 The tournament T 1
7 .

7.18 Applications of Semicomplete Multipartite
Digraphs

The following result is proved by Fraisse and Thomassen in [18].

Theorem 7.18.1 ([18]) Let T be a k-strong tournament and A′ ⊂ A(T )
such that |A′| ≤ k − 1. Then there exists a Hamilton cycle in T − A′.

This was extended by Bang-Jensen, Gutin and Yeo to the theorem
below (using Theorem 7.3.1 on semicomplete multipartite digraphs), which
was previously mentioned as Theorem 2.6.20. Note that in the theorem below
D becomes a multipartite tournament with partite sets V1, V2, . . . , Vc.

Theorem 7.18.2 ([8]) Let T = (V,A) be a k-strong tournament of order
n and let V1, V2, . . . , Vc be a partition of V such that n/2 ≥ |V1| ≥ |V2| ≥
· · · ≥ |Vc| ≥ 1. Let D be the digraph obtained from T by deleting all arcs with
endpoints in the same set Vi, for all i.

If k ≥ |V1| +
∑c

i=2�|Vi|/2�, then D is Hamiltonian. In other words, T
contains a Hamiltonian cycle avoiding all arcs with endpoints in the same set
Vi.

Note that Theorem 7.18.2 generalizes Theorem 7.18.1, due to the follow-
ing. Let V1, V2, . . . , Vc be the vertex sets of the connected components induced
by A′ (where A′ was a set of at most k − 1 arcs in the tournament T ). It
is not difficult to see that using these sets in Theorem 7.18.2 implies that T
contains a Hamilton cycle avoiding the arcs of A′. Clearly in Theorem 7.18.2
we can avoid a lot more than k − 1 arcs, so Theorem 7.18.2 is stronger than
Theorem 7.18.1. It was also shown in [8] that Theorem 7.18.2 is best possible.
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If we consider close to regular tournaments instead of k-strong tourna-
ments then the following was proved by Yeo.

Theorem 7.18.3 ([73]) Let T = (V,A) be a tournament of order n and let
n/2 ≥ |V1| ≥ |V2| ≥ · · · ≥ |Vc| ≥ 1. Let D be the digraph obtained from T by
deleting all arcs with endpoints in the same set Vi, for all i. Note that D is
a multipartite tournament with partite sets V1, V2, . . . , Vc.

If |V (T )| ≥ max{2il(T ) + 2|V1| + 2|V2| − 2, il(T ) + 3|V1| − 1} then D is
Hamiltonian.

Furthermore, if T is regular and the following holds, then D is Hamilto-
nian (ignore the term 2|V1|+2|V2|−2

√
2|V2| − |V1| + 2 when 2|V2|−|V1|+2 <

0)

|V (T )| ≥ max{ 2|V1| + 2|V2| − 2
√|V2|,

2|V1| + 2|V2| − 2
√

2|V2| − |V1| + 2,
3|V1| − 2,
2|V1| + 2}.

7.19 Conjectures

In this section we will state the main conjectures in the areas covered in this
chapter. There are many other interesting problems and conjectures in the
class of semicomplete multipartite digraphs, but due to space restrictions it
is impossible to mention them all. The following conjectures were stated by
Gutin, Bang-Jensen and Yeo in [6].

Conjecture 7.19.1 (Bang-Jensen, Gutin, Yeo [6], 1998) There is a
polynomial algorithm to find a longest cycle in a semicomplete multipartite
digraph.

By Theorem 7.4.2 we note that Conjecture 7.19.1 is true for semicomplete
bipartite digraphs, but it is open for semicomplete multipartite digraphs.

Conjecture 7.19.2 (Bang-Jensen, Gutin, Yeo [6], 1998) Let D be a
semicomplete multipartite digraph and X ⊆ V (D). There is a polynomial
time algorithm for finding a cycle containing the maximum possible number
of vertices from X.

Conjecture 7.19.2 is even open for the restricted class of semicomplete
bipartite digraphs. Recall Conjecture 7.4.4.

Conjecture 7.4.4 (Yeo [71], 1999) Let D be a semicomplete multipartite
digraph and X ⊆ V (D). There is a polynomial time algorithm for finding a
cycle covering X (if it exists), and which is the longest of all such cycles.
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By Theorem 7.4.3, Conjecture 7.4.4 is true for semicomplete bipartite
digraphs. However, Conjecture 7.4.4 is still open for semicomplete multipar-
tite digraphs in general. The following conjecture would imply that Conjec-
ture 7.4.4 is true (by setting Y = V (D)).

Conjecture 7.19.3 (Yeo [71], 1999) Let D be a semicomplete multipartite
digraph and X ⊆ Y ⊆ V (D). There is a polynomial time algorithm for finding
a cycle covering X (if it exists), and containing the maximum number of
vertices of Y of all such cycles.

Recall Conjecture 7.8.16.

Conjecture 7.8.16 (Volkmann [62], 2002) Every regular 4-partite tourna-
ment is vertex-pancyclic.

Recall Conjectures 7.11.2 and 7.11.4.

Conjecture 7.11.2 (Gutin, Koh, Tay, Yeo [36], 2002) There is an abso-
lute constant k such that for every strong semicomplete multipartite digraph
D, different from

↔
K1,n−1, we have diammin(D) ≤ diam(D) + k.

Conjecture 7.11.4 (Gutin, Koh, Tay, Yeo [36], 2002) Let D be a strong
extended c-partite digraph with c ≥ 3 and where all partite sets have size at
least two and diam(D) ≥ 3. Then diammin(D) ≤ diam(D) + 1.

Recall Conjecture 7.15.3.

Conjecture 7.15.3 (Bang-Jensen, Yeo [12], 2001) One can find a strongly
connected spanning subgraph with minimum number of arcs in a strong semi-
complete multipartite digraph in polynomial time.

Conjecture 7.19.4 (Bang-Jensen, Maddaloni, Simonsen [11], 2013)
There exists a polynomial algorithm for finding the longest [x, y]-path in a
semicomplete multipartite digraph.

Problem 7.19.5 (Bang-Jensen, Maddaloni, Simonsen [11], 2013) Is
there a polynomial algorithm that, given a semicomplete multipartite digraph
D and x, y ∈ V (D), finds a longest [x, y]-quasi-Hamiltonian path?

It is possible to show that there always exists an [x, y]-path intersecting at
most 3 different partite sets in a semicomplete multipartite digraph. This im-
plies a polynomial algorithm to find an [x, y]-path that minimizes the number
of partite sets intersected. The shortest path version of the above conjecture
seems harder, though.

Problem 7.19.6 (Bang-Jensen, Maddaloni, Simonsen [11], 2013) Is
there a polynomial algorithm that, given a semicomplete multipartite digraph
D and x, y ∈ V (D), finds a shortest [x, y]-quasi-Hamiltonian path?
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Problem 7.19.7 (Bang-Jensen, Maddaloni, Simonsen [11], 2013) Is
there a polynomial algorithm, that given an integer k and a semicomplete
multipartite digraph D with partite sets V1, V2, . . . , Vc, decides whether D has
a path covering at least min{k, |Vi|} vertices from each Vi, i = 1, 2, . . . , c?

The following conjecture of Jackson has the same flavour as the famous
Kelly Conjecture, which was previously mentioned as Conjecture 2.12.8.

Conjecture 7.19.8 (Jackson [44], 2013) Every regular bipartite tourna-
ment is decomposable into Hamilton cycles.

Recall Conjecture 7.8.19.

Conjecture 7.8.19 ([59]) An almost regular c-partite tournament with 5 ≤
c ≤ 7 is vertex-pancyclic.

Recall Conjecture 7.17.4.

Conjecture 7.17.4 (Volkmann [62], 2002) Let D be a multipartite tourna-
ment. If D is (α(D) + 1)-strong then D is cycle complementary, unless D is
a member of a finite family of multipartite tournaments.
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8. Quasi-Transitive Digraphs and Their
Extensions
Hortensia Galeana-Sánchez and César Hernández-Cruz

8.1 Introduction

8.1.1 General Overview

Initially, quasi-transitive digraphs were studied by Ghouila-Houri in [39] be-
cause of their relation to comparability graphs.1 Nonetheless, in their seminal
paper [17] of 1995, Bang-Jensen and Huang began the study of this family
in its own right. Through the last 20 years, quasi-transitive digraphs have
gained a place among the most studied and better understood families of
digraphs. Probably the main reason is the characterization theorem found in
[17], which has led to solutions of many (usually difficult) problems.

Also, this is a family containing two very well known classes of digraphs:
tournaments (and semicomplete digraphs) and transitive digraphs. It is well
known that some interesting problems are very easy to solve for both families,
e.g., determining hamiltonicity. The appeal of quasi-transitive digraphs comes
from the fact that a lot of problems are hard enough to be interesting, but
it is still possible to find results similar to those of tournaments or transitive
digraphs, yet, it is by no means trivial to do it.

Since a fair number of the classical problems for digraphs have already
been studied for the family of quasi-transitive digraphs, it was a natural step
to introduce a new class of digraphs generalizing it. Bang-Jensen introduced
the family of 3-quasi-transitive digraphs in the context of strong arc-locally
semicomplete digraphs [6]. Afterwards, in the context of k-kernels of digraphs,
Galeana-Sánchez and Hernández-Cruz began in [48] the study of k-quasi-
transitive digraphs. It came as a surprise that many nice structural properties
of quasi-transitive digraphs have a natural generalization to k-quasi-transitive
digraphs. This made it possible to generalize some of the classical results of

1 He proved that a graph G admits a quasi-transitive orientation if and only if it
admits a transitive orientation if and only if it is a comparability graph.
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quasi-transitive digraphs to k-quasi-transitive digraphs, proving the latter to
be an interesting family of digraphs.

Despite this fact, k-quasi-transitive digraphs are harder to handle than
quasi-transitive digraphs. For larger values of k, their structure becomes in-
creasingly complicated; as a matter of fact, the structure of strong 4-quasi-
transitive digraphs is not completely understood. In view of this difficulty,
Hernández-Cruz studied the classes of 3- and 4-transitive digraphs, [46, 47]
obtaining a complete structural characterization of strong 3-transitive and
4-transitive digraphs. In [61], Wang and Wang proved that 3-quasi-transitive
digraphs and 3-transitive digraphs are related in the same way as quasi-
transitive and transitive digraphs: the underlying graphs of 3-quasi-transitive
digraphs can be oriented as 3-transitive digraphs. This motivated the study
of k-transitive digraphs on their own.

Finally, after reaching the most general case of the k-quasi-transitive di-
graphs and going back through the k-transitive digraphs, very recently the
class of transitive digraphs has been considered again in the context of digraph
homomorphisms. In [28], Feder, Hell and Hernández-Cruz showed that al-
though many classical problems for digraphs are trivially solved in the class of
transitive digraphs, there are many natural problems that are NP-complete
when restricted to this family. It is to be expected that both transitive and
quasi-transitive digraphs will receive renewed attention in the near future.

As is usual with many mathematical concepts, k-quasi-transitive digraphs
are not the only interesting generalization of quasi-transitive digraphs. On one
hand we have k-quasi-transitive digraphs, which are obtained by generalizing
the definition of a quasi-transitive digraph. As we have already mentioned, no
nice structural characterizations of k-quasi-transitive digraphs are known for
k ≥ 3. So, on the other hand, instead of generalizing the definition of quasi-
transitive digraphs, we can generalize the structure obtained by the charac-
terization theorem. Following this idea, the notion of totally Φ-decomposable
digraphs was first introduced by Bang-Jensen and Gutin in [14], precisely as
a tool to study quasi-transitive digraphs. Nonetheless, we can trace the basic
idea of this family back to [41], where Gutin used a simpler version of the
Φ-decomposable digraphs to find a polynomial algorithm to solve the min-
imum path factor problem for quasi-transitive digraphs. It has turned out
that this family is a common generalization of many interesting classes of di-
graphs, e.g., quasi-transitive digraphs, round decomposable graphs, directed
cographs, etc.

8.1.2 Chapter Overview

In Subsection 8.1.3 some terminology and notation is introduced that will be
used throughout the rest of the chapter. In Section 8.2 a brief overview of
transitive digraphs is presented, including some open problems on digraph
homomorphisms. Section 8.3 is devoted to presenting structural proper-
ties of quasi-transitive digraphs and some of their generalizations, including
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the canonical decomposition in Subsection 8.3.1, some structural proper-
ties of strong k-quasi-transitive digraphs in Subsection 8.3.2 and of k-
transitive digraphs in Subsection 8.3.3, and recognition theorems of totally
Φ-decomposable digraphs for some choices of Φ. Section 8.4 deals with paths
and cycles; Subsection 8.4.1 reviews the few known results for hamiltonicity
and traceability for k-transitive and k-quasi-transitive digraphs; Hamiltonic-
ity of quasi-transitive and totally Φ-decomposable digraphs is studied in Sub-
section 8.4.2 and some variants of vertex-cheapest paths and cycles for quasi-
transitive digraphs are studied in Subsections 8.4.3, 8.4.4, 8.4.5, and 8.4.6.
The linkage problem is covered in Section 8.5; Subsection 8.5.1 is devoted to
k-linkages, and Subsection 8.5.2 to weak k-linkages. The topic of Section 8.6
is kings and kernels; k-kings are covered in Subsection 8.6.1 and k-kernels
in Subsection 8.6.2. Section 8.7 deals with the Path Partition Conjecture, it
has two subsections, Subsection 8.7.1 presents the conjecture and some of its
known variants, and Subsection 8.7.2 deals with the known results for them.
The last section of the chapter, Section 8.8 covers miscellaneous topics; vertex
pancyclicity is covered in Subsection 8.8.1, acyclic spanning subdigraphs in
Subsection 8.8.2, orientations of digraphs almost preserving the original diam-
eter in Subsection 8.8.3, sparse subdigraphs with prescribed connectivity in
Subsection 8.8.4, and arc-disjoint in-and out-branchings in Subsection 8.8.5.

8.1.3 Terminology and Notation

In this subsection, for the reader’s convenience, we will recall some termi-
nology and notation that will be used throughout this chapter. Only general
concepts will be introduced here; more specific ones will be recalled whenever
needed.

Throughout this chapter, walks, paths and cycles in a digraph are always
meant to be directed. Let D be a digraph. An arc uv of D is symmetric if
vu is also an arc of D, and asymmetric otherwise. Notice that a symmetric
arc uv together with the arc vu form a 2-cycle of D; both this 2-cycle and
the arc uv will sometimes be referred to as a digon. When u, v are adjacent
vertices of D, we will write uv.

If X and Y are disjoint subsets of vertices of D, then X → Y means that
X dominates Y , that is, every vertex of X dominates every vertex of Y . If
additionally there is no arc from Y to X, then we say that X completely
dominates Y and denote this by X �→ Y . We shall use the same notation
when X and Y are disjoint subdigraphs rather than subsets of vertices.

Let k be an integer, k ≥ 2. A digraph D is k-quasi-transitive if for
every pair of vertices u, v of D, the existence of a (u, v)-path of length k
in D implies that uv. A quasi-transitive digraph is a 2-quasi-transitive
digraph. A digraph D is k-transitive if for every pair of vertices u, v of D,
the existence of a (u, v)-path of length k in D implies u → v. A transitive
digraph is a 2-transitive digraph. Recall that if R is a digraph on r vertices
v1, . . . , vr and L1, . . . , Lr is a collection of distinct (but possibly isomorphic)
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digraphs, then we denote by D = R[L1, . . . , Lr] the digraph with vertex set
V (L1)∪V (L2)∪. . .∪V (Lr) and arc set (

⋃r
i=1 A(Gi))∪{gigj : gi ∈ V (Gi), gj ∈

V (Gj), vivj ∈ A(D)}. If D = R[L1, . . . , Lr], then R,L1, . . . , Lr are induced
subdigraphs of D and we say that D is decomposable (into R,L1, . . . , Lr).
Let Φ be a class of digraphs. A digraph D is Φ-decomposable if D is a
member of Φ or D = H[S1, . . . , Sh] for some H ∈ Φ with h = |V (H)| ≥ 2
and some choice of digraphs S1, S2, . . . , Sh (we call this decomposition a Φ-
decomposition). A digraph D is called totally Φ-decomposable if either
D ∈ Φ or there is a Φ-decomposition D = H[S1, . . . , Sh] such that h ≥ 2, and
each Si is totally Φ-decomposable. In this case, if D /∈ Φ, a Φ-decomposition
of D, Φ-decompositions Si = Hi[Si1, . . . , Sihi

] of all Si which are not in Φ, Φ-
decompositions of those of Sij which are not in Φ, and so on, form a sequence
of decompositions which will be called a total Φ-decomposition of D. If
D ∈ Φ, we assume that the (unique) total Φ-decomposition of D consists of
itself.

If D is a digraph on n vertices, and S1, . . . , Sn are digraphs with no arcs,
then we say that the composition H = D[S1, . . . , Sn] is an extension of D, or
we say that H is a D-extension. When D belongs to some well-known class
of digraphs, we will say that H is an extended member of the class, e.g., if
D is a semicomplete digraph, we will say that H is an extended semicomplete
digraph.

A k-path-q-cycle subdigraph (k-path-q-cycle factor), F , of a di-
graph D is a (spanning) collection of k paths and q cycles, all disjoint. When
k = 0, F is a q-cycle subdigraph (and a q-cycle factor if it is span-
ning) and when q = 0, F is a k-path-subdigraph (and a k-path-factor
if it is spanning). A k-path-q-cycle subdigraph in which q may be arbitrary
(including zero) is called a k-path-cycle subdigraph.

A longest path in a digraph D is called a detour of D. The order of
a detour of D is called the detour order of D and is denoted by do(D).
For a given digraph D, let dok(D) denote the maximum number of vertices
contained in a k-path subdigraph of D. A k-path subdigraph of D which
covers dok(D) vertices is called a maximum k-path subdigraph of D. Note
that do1(D) = do(D).

The path-covering number of a digraph D (denoted by pc(D)) is the
least positive integer k such that D has a k-path factor. The path-cycle-
covering number of a digraph D (denoted by pcc(D)) is the least positive
integer k such that D has a k-path-cycle factor. The path-cycle-covering num-
ber of a digraph can easily be found in polynomial time using, in particular,
algorithms on flows in networks [10, 14, 41]. The path-covering number is
hard to calculate: note that pc(D) = 1 if and only if D has a Hamiltonian
path. Thus, the path-covering number problem generalizes the Hamiltonian
path problem.

Given a fixed digraph H, an H-colouring of a digraph D is a homomor-
phism of D to H, i.e., a mapping f : V (D) → V (H) such that f(u)f(v) is
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an arc of H whenever uv is an arc of D. The H-colouring problem asks
whether an input digraph D admits an H-colouring. In the list H-colouring
problem the input D comes equipped with lists L(u) ⊆ V (H), u ∈ V (D),
and the homomorphism f must also satisfy f(u) ∈ L(u) for all vertices u.
Finally, the H-retraction problem is a special case of the list H-colouring
problem, in which each list is either L(u) = {u} or L(u) = V (H). Note
that the H-colouring problem is a special case of the H-retraction prob-
lem, in which each L(u) = V (H). The dichromatic number of a digraph
D is the least integer χ(D) such that V (D) admits a partition into χ(D)
acyclic sets. Notice that if every arc of D is symmetric, then the dichromatic
number of D coincides with the (usual) chromatic number of the underlying
graph of D.

8.2 Transitive Digraphs

A digraph D is defined to be transitive if for any three distinct vertices
u, v, w, the existence of the arcs uv, vw implies the existence of the arc uw.
Note that an acyclic digraph is transitive if and only if its arcs define a
transitive relation in the usual sense. However, a digraph with a directed
cycle is transitive if and only if its reflexive closure (i.e., adding all loops)
defines a transitive relation. This peculiarity means that, for instance, when
taking a transitive closure of a digraph we omit any loops that would exist
in a transitive closure as a binary relation.

Acyclic transitive digraphs have a particularly nice structure, namely, they
are exactly those digraphs whose reflexive closure is a reflexive partial order.
It is well known that each transitive digraph D is obtained from an acyclic
transitive digraph J by replication, whereby each j ∈ V (J) is replaced by
kj ≥ 0 vertices forming a complete digraph, so that if ij is an arc in J , then
all ki vertices replacing i dominate in D all kj vertices replacing j. Note that
all kj vertices replacing j have exactly the same in- and out-neighbours in
D (except that each of them does not dominate itself). Note that the strong
components of a transitive digraph D are complete digraphs.

The observations in the preceding paragraph are often stated in terms
of contraction2 of the strong components of a transitive digraph, in order
to obtain an acyclic transitive digraph, rather than using the replication
operation to obtain an arbitrary transitive digraph from an acyclic one. Of
course, both points of view are equivalent, but usually this observation is
stated in the following way.

Proposition 8.2.1 Let D be a digraph with an acyclic ordering D1, . . . , Dp of
its strong components. The digraph D is transitive if and only if the following
holds:

2 Contraction is defined in Section 1.4 for directed multigraphs. We can obtain
a digraph instead of a directed multigraph by deleting spare parallel arcs after
contraction.
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1. Each digraph Di, i ∈ [p] is complete,
2. the digraph H obtained from D by contraction of D1, . . . , Dp is a transi-

tive oriented graph, and
3. D = H[D1, . . . , Dp], where p = |V (H)|.

Notice that Proposition 8.2.1 can be restated as saying that every transi-
tive digraph is totally Ψ0-decomposable, where Ψ0 is the family of all acyclic
digraphs and all the complete digraphs. Obviously, for a digraph D, the di-
graph H of Proposition 8.2.1 (which is the same as the digraph J in the above
construction by replication), is simply the strong component digraph of D.
From here, and using the fact that the strong components of a transitive di-
graph are complete digraphs, one can directly verify that some problems are
easy to solve when restricted to transitive digraphs. Recall that the strong
component digraph can be constructed in O(|V | + |A|)-time. A necessary
condition for a digraph D to be Hamiltonian is that D is strong. In the
case of transitive digraphs, this condition is also sufficient, since every tran-
sitive strong digraph is a complete digraph, and thus Hamiltonian. Hence,
hamiltonicity can be verified in linear time for transitive digraphs. Every
transitive digraph D has a kernel; to construct one, it suffices to choose one
vertex from every terminal component of D. Thus, it can be verified in con-
stant time whether a transitive digraph has a kernel, one can be constructed
in linear time, and the exact number of different kernels can be calculated in
linear time. An acyclic transitive digraph J clearly has dichromatic number
equal to one, and it follows from the description of the structure of an ar-
bitrary transitive digraph given by replication that the dichromatic number
of an arbitrary transitive digraph D obtained from an acyclic transitive J
by vertex substitutions is equal to the maximum value kj of the size of any
replacing set of vertices. Therefore, the dichromatic number of a transitive di-
graph equals the size of its largest strong component. Again, the dichromatic
number of a transitive digraph can be determined in linear time. We could
go on, enumerating problems which are NP-complete in the general digraph
case and become polynomial time solvable when restricted to transitive di-
graphs. Nonetheless, it is more revealing to exhibit a very natural problem
that remains NP-complete even when restricted to transitive digraphs.

In [29], it is shown that there are bipartite graphs H such that the H-
retraction problem is NP-complete. Hence, the following result of Feder,
Hell and Hernández-Cruz shows that there are digraphs D such that the D-
homomorphism problem is NP-complete, even when restricted to transitive
inputs.

Theorem 8.2.2 ([28]) If H is a bipartite graph such that the H-retraction
problem is NP-complete, then there exists a digraph H ′ such that the H ′-
homomorphism problem is NP-complete, even when restricted to transitive
digraphs.

Before proving Theorem 8.2.2, we will describe how the digraph H ′ can
be obtained from a bipartite graph H. Let H be a bipartite graph with its
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bipartition given by a set of white vertices and a set of black vertices, with
at most n black and at most n white vertices. We form the digraph H ′ as
follows (see Figure 8.1). We first orient all edges of H from the white vertices
to the black vertices. Let Pi be a directed path with n+ 2 vertices, in which
the first, and the (i + 1)-st, vertex have been duplicated (replicated once).
Let Ri also be a directed path with n + 2 vertices, in which the the last,
and the (i + 1)-st, vertex have been duplicated. We identify the last vertex
of each Pi with the i-th white vertex (if any) of H and the first vertex of
each Ri with the i-th black vertex (if any) of H. Then H ′ is obtained from
the resulting digraph by taking the transitive closure. It is easy to see that
the added paths ensure that the only homomorphism of H ′ to itself is the
identity. Also consider a directed path P with n + 2 vertices with only the
first vertex duplicated, and a directed path R with n + 2 vertices and only
the last vertex duplicated. Note that P admits a homomorphism to each Pi

and R admits a homomorphism to each Ri. For future reference, we define
the level of the j-th vertex of P or Pi to be j, and the level of the j-th vertex
of R or Ri to be n+ 2+ j; in this we assume the duplicated vertices to have
the same level. Note that this forces all white vertices to have level n+2 and
all black vertices to have level n + 3.

H

Figure 8.1 The construction of H ′ from H used for Theorem 8.2.2. The digraph
H ′ is obtained by taking the transitive closure of the digraph on the right.

Proof of Theorem 8.2.2: Suppose G is an instance of the H-retraction
problem, i.e., a bipartite graph containing H as a subgraph with lists {x} for
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each (black and white) vertex x of H, and lists V (H) for all other (black and
white) vertices of G. We construct an instance G′ of the H ′-colouring problem
by orienting all edges of G from the white vertices to the black vertices,
attaching paths Pi and Rj to the vertices of H as in the construction of H ′,
and then (for the vertices not in H) we identify the last vertex of a (separate)
copy of P to each white vertex of G not in H, and identify the first vertex
of a (separate) copy of R to each black vertex of G not in H, and finally we
take the transitive closure. Now it is easy to see that each homomorphism of
G′ to H ′ preserves the level of vertices, and that G′ admits an H ′-colouring
if and only if G admits a retraction to H.

Moreover, the above construction of H ′ ensures that it is itself transitive.
Thus we have the following fact.

Corollary 8.2.3 ([28]) There exists a transitive digraph H ′ such that the H ′-
homomorphism problem is NP-complete even when restricted to transitive
digraphs.

In view of Corollary 8.2.3, a natural interesting problem is the following.

Problem 8.2.4 Characterize the transitive digraphs H such that the H-
homomorphism problem restricted to transitive inputs is polynomial time solv-
able.

Although Problem 8.2.4 may look innocuous, it may be very hard in-
deed. Recall that Feder and Vardi proved in [29] that in order to classify
all constraint satisfaction problems, it is enough to classify all the digraph
homomorphism problems. In [28], Feder, Hell and Hernández-Cruz propose
the problem of determining whether for any relational structure H, a (tran-
sitive) digraph H ′ exists such that the constraint satisfaction problem for H
is polynomially equivalent to the H ′-homomorphism problem for transitive
digraphs.

8.3 Structural Properties

As mentioned before, the main appeal of quasi-transitive digraphs comes
from the fact that their structure is very well understood. Throughout this
section, we will consider structural properties of quasi-transitive, k-transitive
and k-quasi-transitive digraphs. Also, some results regarding the recognition
of Φ-decomposable digraphs for particular cases of Φ are included. We begin
by presenting the classical results due to Bang-Jensen and Huang from [17].

8.3.1 Quasi-Transitive Digraphs

The nice results that have been obtained for quasi-transitive digraphs and all
the attention this family and its generalizations have received are principally
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a consequence of the recursive characterization theorem given by Bang-Jensen
and Huang in [17]. The main purpose of this subsection is to reproduce the
proof of this theorem, including the lemmas needed, many of which are in-
teresting on their own.

Proposition 8.3.1 ([17]) Let D be a quasi-transitive digraph. Suppose that
P = x0x1 . . . xn is a shortest (x0, xn)-path. Then, the subdigraph induced by
V (P ) is a semicomplete digraph and xj → xi for every 1 ≤ i + 1 < j ≤ k,
unless n = 3, in which case the arc between x0 and xn may be absent.

Proof: The cases k ∈ {2, 3, 4, 5} are easily verified. The proof for the case
k ≥ 6 is by induction on k with the case k = 5 as the basis. By induction,
each of D[{x0, . . . , xk−1}] and D[{x1, . . . , xk}] is a semicomplete digraph and
xj → xi for any 1 < j − i < k − 2. Hence, x2 dominates x0 and xk dominates
x2, and the minimality of P implies that xk dominates x0. 	

Corollary 8.3.2 ([17]) If a quasi-transitive digraph D has an (x, y)-path but
x does not dominate y, then either y → x, or there exists vertices u, v ∈
V (D) − {x, y} such that x → u → v → y and y → u → v → x.

Proof: Consider a minimal (x, y)-path and apply Proposition 8.3.1. 	


Lemma 8.3.3 ([17]) Suppose that A and B are distinct strong components of
a quasi-transitive digraph D with at least one arc from A to B. Then A �→ B.

Proof: Suppose A and B are distinct strong components such that there
exists an arc from A to B. Then, for every choice of x ∈ A and y ∈ B, there
exists a path from x to y in D. Since A and B are distinct strong components,
none of the alternatives in Corollary 8.3.2 can hold, and hence x → y. 	


Proposition 8.3.1 and Lemma 8.3.3 will be generalized in the following sec-
tions for k-quasi-transitive digraphs. On the other hand, the following lemma
does not have any known generalizations for k-quasi-transitive digraphs when
k ≥ 3.

Lemma 8.3.4 ([17]) Let D be a strong quasi-transitive digraph on at least
two vertices. Then the following holds:

(a) UG(D) is disconnected;
(b) If S and S′ are two subdigraphs of D such that UG(S) and UG(S′) are

distinct connected components of UG(D), then either S �→ S′ or S′ �→ S,
or both S → S′ and S′ → S, in which case |V (S)| = |V (S′)| = 1.

Proof: The statement (b) can be easily verified from the definition of a quasi-
transitive digraph and the fact that S and S′ are completely adjacent in D.
We prove (a) by induction on |V (D)|. Statement (a) is trivially true when
|V (D)| ∈ {2, 3}. Assume that it holds when |V (D)| < n, where n > 3.
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Suppose that there is a vertex z such that D − z is not strong. Then,
there is an arc from (to) every terminal (initial) strong component of D − z
to (from) z. Since D is quasi-transitive, the last fact and Lemma 8.3.3 imply
that X → Y for every initial (terminal) strong component X (Y ) of D − z.
Similar arguments show that each strong component of D−z either dominates
some terminal component or is dominated by some initial component of D−z
(intermediate strong components satisfy both). These facts imply that z is
adjacent to every vertex in D − z. Therefore, UG(D) contains a component
consisting of the vertex z, implying that UG(D) is disconnected, and (a)
follows.

Assume that there is a vertex v such that D − v is strong. Since D is
strong, it contains an arc vw from v to D − v. By induction, UG(D − v) is
not connected. Let S and S′ be connected components of UG(D − v) such
that w ∈ S and S → S′ (here we use (b) and the fact that D − v is strong).
Then v is completely adjacent to S′ in D (as v → w). Hence, UG(S′) is a
connected component of UG(D) and the proof is complete. 	


In the following subsections we will see that, for some values of k, there are
nice characterizations of strong k-transitive and k-quasi-transitive digraphs.
Also it is even possible to show that the strong components of, for example,
a 3-quasi-transitive digraph, are related in a very special way. Nonetheless, it
is difficult to obtain a characterization fully describing the structure of those
families, mainly because, for sufficiently small induced subdigraphs, the k-
quasi-transitivity becomes irrelevant. The following theorem gives a complete
characterization of quasi-transitive digraphs, which makes members of this
family easier to deal with. Notice that, since the characterization is recursive,
it provides an excellent structure to apply mathematical induction in this
class of digraphs.

Theorem 8.3.5 (Bang-Jensen, Huang [17]) Let D be a digraph which is
quasi-transitive.

• If D is not strong, then there exists a transitive oriented graph T with ver-
tices {u1, u2, . . . , ut} and strong quasi-transitive digraphs H1,H2, . . . , Ht

such that D = T [H1,H2, . . . , Ht], where Hi is substituted for ui, i ∈
{1, 2, . . . , t}.

• If D is strong, then there exists a strong semicomplete digraph S with
vertices {v1, v2, . . . , vs} and quasi-transitive digraphs Q1, Q2, . . . , Qs such
that Qi is either a vertex or is non-strong and D = S[Q1, Q2, . . . , Qs],
where Qi is subsituted for vi, i ∈ {1, 2, . . . , s}.

Proof: Suppose that D is not strong and let H1, . . . , Ht be the strong com-
ponents of D. According to Lemma 8.3.3, if there is an arc between Hi and
Hj , then either Hi �→ Hj or Hj �→ Hi. Now, if Hi �→ Hj �→ Hk, then, by
quasi-transitivity, Hi �→ Hk. So, by contracting each Hi to a vertex hi, we
get a transitive oriented graph T with vertices h1, . . . , ht. This shows that
D = T [H1, . . . , Ht].
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Figure 8.2 The canonical decomposition of a non-strong quasi-transitive digraph.
Big arcs between different boxed sets indicate that there is a complete domination
in the direction shown.

Suppose that D is strong. Let Q1, . . . , Qs be the subdigraphs of D such
that each UG(Qi) is a connected component of UG(D). According to Lemma
8.3.4(a), each Qi is either non-strong or just a single vertex. By Lemma 8.3.4
(b), we obtain a strong semicomplete digraph S if each Qi is contracted to a
vertex. This shows that D = S[Q1, . . . , Qs]. 	


The decomposition described by Theorem 8.3.5 is called the canonical
decomposition of the quasi-transitive digraph D. The canonical decompo-
sition of a non-strong quasi-transitive digraph is illustrated in Figure 8.2.

8.3.2 k-Quasi-Transitive Digraphs

So far, there are no known characterizations of k-quasi-transitive digraphs
for k ≥ 3. Even if we restrict ourselves to strong digraphs, only strong 3-
quasi-transitive digraphs have a simple complete characterization. Despite
this fact, there are some structural results valid for any k ≥ 3 that have been
useful to study k-quasi-transitive digraphs.

Despite its simplicity, it could be said that the following result is the
cornerstone of the study of k-quasi-transitive digraphs; it was proved by
Galeana-Sánchez and Hernández-Cruz in [48]. Notice that it can be regarded
as a generalization of Corollary 8.3.2.
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Lemma 8.3.6 ([48]) Let k be an integer with k ≥ 2. If D is a k-quasi-
transitive digraph, and for u, v ∈ V (D) there is a (u, v)-path in D, then each
of the following holds:

1. If d(u, v) = k, then d(v, u) = 1.
2. If d(u, v) = k + 1, then d(v, u) ≤ k + 1.
3. Assume d(u, v) = r ≥ k + 2. If k is even or k and r are both odd, then

d(v, u) = 1; if k is odd and r is even, then d(v, u) ≤ 2.

Proof: Let P = x0, . . . , xr be a path of length r = k + j, j ≥ 0. Observe
that the k-quasi-transitivity of D and the fact that d(u, v) = r imply that
xr → xj . This handles 1. and 2.

To prove 3., we will proceed by induction on j. For j = 2, the existence
of the k-path xrx2Pxkx0 implies xr → x0. For j = 3, the existence of the
k-path xrx3Pxk+1x1 implies xrx1. Considering the k-path xrx1Pxk, we get
xr → xk. When k is odd, we already have d(xr, x0) ≤ 2. For even k, we will
prove by induction on i that xr → xk−2i for every 0 ≤ i ≤ k

2 . We already
have xr → xk, so suppose that xr → xk−2i for some 0 < i < k

2 . Now, the
existence of the k-path xrxk−2iPxkx0Pxk−2(i+1) implies xr → xk−2(i+1). In
particular, xr → x0

So, suppose j > 3. By the induction hypothesis, if k is even, or both k
and r are odd, we obtain xr → x2. Hence, xrx2Pxkx0 is a k-path, and thus
xr → x0. If k is odd and r is even, by the induction hypothesis we have
xr → x1. So, xrx1Pxk is a k-path, the existence of which implies xr → xk.
Since we already had xk → x0, we conclude d(xr, x0) ≤ 2. 	


Proposition 8.3.1 was generalized to k-quasi-transitive digraphs by Wang
and Zhang (when k is even) [62] and by Alva-Samos and Hernández-Cruz
(when k is odd) [1]. Its proof is long and technical, and thus will be omitted.

Proposition 8.3.7 ([1, 62]) Let k ≥ 3 be an integer and let D be a k-quasi-
transitive digraph. Suppose that P = x0x1 . . . xr is a shortest (x0, xr)-path
with r ≥ k + 2 in D.

• If k is even, then D[V (P )] is a semicomplete digraph and xj → xi for
1 ≤ i + 1 < j ≤ r.

• If k is odd, then D[V (P )] is either a semicomplete digraph and xj → xi

for 1 ≤ i + 1 < j ≤ r, or D[V (P )] is a semicomplete bipartite digraph and
xj → xi for 1 ≤ i + 1 < j ≤ r and i �≡ j (mod 2). 	


In a quasi-transitive digraph D, Lemma 8.3.3 tells us that for two different
strong components A and B, if A reaches B, then A �→ B. Unfortunately, this
is not true for k-quasi-transitive digraphs when k ≥ 3. Nonetheless, there are
some results resembling this behaviour. The following simple (but very useful)
result was originally proved by Hernández-Cruz while studying k-transitive
digraphs, [47].
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Lemma 8.3.8 ([47]) Let k be an integer, k ≥ 2, let D be a k-quasi-transitive
digraph, and let C = v0v1 . . . vr−1v0 be a directed cycle in D with r ≥ k. For
any v ∈ V (D) − V (C), if v → vi and (V (C), v) = ∅, then v → vi+(k−1); if
vi → v and (v, V (C)) = ∅, then vi−(k−1) → v, where the subscripts are taken
modulo r.

Proof: It suffices to prove the first statement, the second one is obtained
by noting that reversing every arc of a k-quasi-transitive digraphs yields a
k-quasi-transitive digraph.

The path vviCvi+(k−1) has length exactly k, and thus, vvi+(k−1). But
(V (C), v) = ∅, hence v → vi+(k−1). 	


Our previous lemma is complemented by the following result due to Wang
and Zhang. Although both results have very simple proofs, they have some
very nice consequences on the structure of k-quasi-transitive digraphs.

Lemma 8.3.9 ([62]) Let k be an integer with k ≥ 2, and let D be a strong k-
quasi-transitive digraph. Suppose that C = v0v1 . . . vr−1v0 is a cycle of length
r, with r ≥ k, in D. Then, for any v ∈ V (D)− V (C), v and C are adjacent.

Proof: Since D is strong, v must reach C and vice versa. Let P be a shortest
path from v to C, and assume without loss of generality that the endpoint
of P is v0. If the length of P is s, and s ≤ k, then vPv0Cvk−s is a k-path,
which implies vvk−s. If k < s, then by Lemma 8.3.6, v0 reaches v at distance
at most two. If v0 → v, then we are done. Otherwise, there is a vertex u in D
such that v0 → u → v. Either u ∈ V (C), and the desired result is obtained,
or vr−(k−2)Cv0uv is a k-path in D, implying vr−(k−2) → v. 	


As an example of how the previous two lemmas can be used to obtain
nice structural results for k-quasi-transitive digraph, we present the following
proposition, which is their immediate consequence.

Proposition 8.3.10 ([62]) Let k be an integer with k ≥ 2, let D be a strong k-
quasi-transitive digraph, and let C = v0v1 . . . vr−1v0 be a cycle of length r with
r ≥ k in D. Suppose that r and k−1 are coprime. For any v ∈ V (D)−V (C),
if (V (C), v) = ∅, then v �→ V (C); if (v, V (C)) = ∅, then V (C) �→ v.

We finish our discussion of general k-quasi-transitive digraphs with some
results that give us a lot of information on the structure of k-quasi-transitive
digraphs with diameter at least k + 2. Unfortunately, the proofs of these
results are long and technical and thus will be omitted.

Lemma 8.3.11 ([62]) Let k be an even integer with k ≥ 4, and let D be a
strong k-quasi-transitive digraph. Suppose that P = v0v1 . . . vk+2 is a short-
est (v0, vk+2)-path in D. For any v ∈ V (D) − V (P ), if (v, V (P )) �= ∅

and (V (P ), v) �= ∅, then either v is adjacent to every vertex of V (P ), or
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{vk+2, vk+1, vk, vk−1} �→ v �→ {v0, v1, v2, v3}. In particular, if k = 4, then v
is adjacent to every vertex of V (P ). 	

Theorem 8.3.12 ([62]) Let k be an even integer with k ≥ 4, and let D be a
strong k-quasi-transitive digraph. Suppose that P = v0 . . . vk+2 is a shortest
(v0, vk+2)-path. Then, the subdigraph induced by V (D)−V (P ) is a semicom-
plete digraph. 	


Notice that, in particular, it follows from Proposition 8.3.7, Lemma 8.3.11,
and Theorem 8.3.12, that a 4-quasi-transitive digraph of diameter at least 6
is a semicomplete digraph. As a more general case, the previous results can
be condensed in the following theorem.

Theorem 8.3.13 Let k be an even integer with k ≥ 4, and let D be a strong
k-quasi-transitive digraph. Then, V (D) admits a partition (V1, V2) such that
Vi induces a semicomplete digraph for i ∈ {1, 2}, and D[V1] is Hamiltonian.

When k is odd, Alva-Samos and Hernández-Cruz [1], through a similar
development of technical lemmas, obtained the following analogue of Theorem
8.3.13.

Theorem 8.3.14 Let k be an odd integer, k ≥ 3, and let D be a strong
k-quasi-transitive digraph. Then, V (D) admits a partition (V1, V2) such that:

• If D is bipartite, then D[Vi] is a semicomplete bipartite digraph for i ∈
{1, 2};

• Else, D[Vi] is a semicomplete digraph, i ∈ {1, 2}.
In either case, D[V1] is Hamiltonian.

In particular, it is also noted in [1] that a strong 5-quasi-transitive di-
graph of diameter at least 7 is either a semicomplete bipartite digraph or a
semicomplete digraph.

To finish our discussion of the structure of k-quasi-transitive digraphs,
we present the well understood structure of 3-quasi-transitive digraphs. Al-
though a complete characterization telling us the exact structure of 3-quasi-
transitive digraphs does not exist, a lot of information can be put together
from the existing characterization of strong 3-quasi-transitive digraphs from
[34], and the way the strong components relate to each other described in
[64].

Let Fi be the graph on i + 3 vertices, consisting of a directed 3-cycle
xyzx, together with i vertices, v1, . . . , vi, such that yvjz is a directed path
for each 1 ≤ j ≤ i, see Figure 8.3. Define the family F as F = {Fi : i ≥ 1}.
Due to space constraints, we will not give the proof of the following theorem,
originally proved by Galeana-Sánchez, Goldfeder, and Urrutia.

Theorem 8.3.15 ([34]) Let D be a strong 3-quasi-transitive digraph. Then
D is one of the following.
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1. A semicomplete digraph.
2. A semicomplete bipartite digraph.
3. An element of the family F described above. 	


y

v1

z

x vi· · ·

Figure 8.3 The digraph Fi of the family F .

Theorem 8.3.15 can be complemented with the following result, due to
Wang and Wang, found in [64].

Lemma 8.3.16 ([64]) Let D1 and D2 be two distinct non-trivial strong com-
ponents of a 3-quasi-transitive digraph, with at least one arc from D1 to D2.
Then, either D1 �→ D2, or D1 ∪ D2 is a semicomplete bipartite digraph. 	


It is not hard to see that, given two strong components D1 and D2 of a
3-quasi-transitive digraph D such that D1 reaches D2, there is an arc from
D1 to D2 unless D1 reaches D2 in distance exactly 2, and both D1 and D2

consist of a single vertex. Thus, Lemma 8.3.16 becomes very useful when
dealing with non-strong 3-quasi-transitive digraphs.

8.3.3 k-Transitive Digraphs

It is clear from the definition of both k-transitive and k-quasi-transitive di-
graphs that members of these classes having a small order do not really have
any organized structure. Nonetheless, as the order increases, a nice structure
emerges. As we have seen in the previous subsection, for k-quasi-transitive
digraphs, the existence of two vertices at distance k + 2 is sufficient for the
rest of the digraph to organize as almost a semicomplete digraph (when k
is even). In this section we will see that the tipping point for a k-transitive
digraph D seems to be the existence of a “long enough” cycle; this will be
sufficient for the digraph to be a complete digraph, or an extended cycle.
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For k = 3, this point is easily reached, and thus, the structure of 3-
transitive digraphs is easy to describe. But even for k = 4, it becomes hard
to obtain a complete description of all 4-transitive digraphs; a classification
of 4-transitive strong digraphs is given in this case. We begin with a couple
of results that show the importance of cycles in k-transitive digraphs.

Results on 3- and 4-transitive digraphs are due to Hernández-Cruz. In
this subsection we will present a new, shorter proof of Theorem 8.3.19.

Observe that the proof of Lemma 8.3.8 also yields the following result.

Proposition 8.3.17 ([47]) Let k ≥ 2 be an integer, D a k-transitive digraph
and C = v0v1 . . . vr−1v0 a directed cycle in D with r ≥ k. If v ∈ V (D)−V (C)
is such that v → v0, then v → S = {vi

∣
∣i ∈ (k − 1)Zr}.

Observe that under the same assumptions as in Proposition 8.3.17, if v0 →
v, we can conclude that S → v. This follows from the fact that reversing all
the arcs of a k-transitive digraph yields a k-transitive digraph, and applying
Proposition 8.3.17. So, in this subsection we will refer to either result as
Proposition 8.3.17.

Lemma 8.3.18 Let D be a strong digraph. If the circumference of D is 2,
then the underlying graph of D is a tree.

Proof: Assuming that the circumference of D is 2, it is easy to verify that
every arc of D is a digon. Thus, between any pair of vertices there is exactly
one path, and hence, the underlying graph of D is a tree. 	


Recall that �C3 is the directed cycle on three vertices, and let C�
3 and

C��
3 be the directed 3-cycle with exactly one symmetric arc and the directed

3-cycle with exactly two symmetric arcs, respectively. Now we give the char-
acterization of strong 3-transitive digraphs due to Hernández-Cruz, although
with a new, simpler proof.

Theorem 8.3.19 ([46]) If D is a 3-transitive strong digraph, then D is one
of the following:

1. A complete biorientation of a complete graph;
2. A complete biorientation of a complete bipartite graph; or
3. �C3, C�

3 or C��
3 .

Proof: We begin by observing that every strong digraph with fewer than
four vertices is either complete, complete bipartite or one of �C3, C�

3 or C��
3 .

Thus, we can assume that D has at least four vertices.
Claim 1. If the circumference of D is 2, then D is a complete biorientation
of a star, and hence, a complete biorientation of a complete bipartite graph.
Proof of Claim 1. It follows from Lemma 8.3.18 that D is a complete
biorientation of a tree. Since D is 3-transitive, the diameter of D should be
strictly less than 3. Hence, the underlying graph of D is a tree of diameter 2,
i.e., a star. 	
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Claim 2. If D contains a directed odd cycle, then D is a complete biorien-
tation of a complete graph.
Proof of Claim 2. It can be proved inductively that if D contains an odd
cycle, then it contains a directed 3-cycle, C. Since D has at least four vertices,
there exists a vertex v ∈ V (D) \ V (C). Since D is 3-transitive and strong,
there must be an arc from v to C and one arc from C to v. It follows from
Proposition 8.3.17 that v → C and C → v. But now, any two vertices of C
together with v induce a 3-cycle (with some symmetric arcs), and the same
argument can be used to prove that v is adjacent to any vertex in D through
a digon. Since v was chosen arbitrarily outside a 3-cycle, D is a complete
biorientation of a complete digraph. 	

Claim 3. If every directed cycle of D is even, then D is a complete biorien-
tation of a complete bipartite graph.
Proof of Claim 3. First, notice that under these assumptions, D is bipartite.

By Claim 1., we may assume that D contains a cycle of length at least
4. Again, it can be proved inductively that D contains a 4-cycle, C. One
can directly verify that every arc in a 4-cycle of a 3-transitive digraph is a
digon. Consider a 2-colouring of C with colours black and white. If there
are no more vertices in D, then we are done. Otherwise, let v be a vertex
of D not in C. Since D is 3-transitive and strong, then there is at least
one arc from v to C and vice versa. Observe that both arcs join v to only
black or only white vertices, otherwise D would not be bipartite. Suppose
without loss of generality that v is adjacent to a black vertex in C. We will
recursively colour all the vertices of D to obtain a bipartition such that every
white vertex is adjacent through digons to every black vertex. Proposition
8.3.17 implies that there are digons between v and every black vertex in C,
so, colour v white. Now, any four vertices of D already coloured, two black
and two white, induce a symmetric 4-cycle in D. Repeating the argument, it
can be shown that every vertex of D not already coloured is either adjacent
through digons to every black vertex, and we colour it white, or to every
white vertex, and we colour it black. 	


Since the cases are exhaustive, the result now follows from Claims 1–3.
	


Although more complicated than classifying strong transitive digraphs,
strong 3-transitive digraphs are still easy to classify. Nonetheless, as the value
of k grows, this task becomes increasingly difficult. In fact, 4 is the largest
value of k such that strong k-transitive digraphs are characterized. Next,
we reproduce the characterization theorem due to Hernández-Cruz found in
[47]. The proof, although not very difficult, is lengthy and technical, so we
omit it.

Theorem 8.3.20 ([47]) Let D be a strong 4-transitive digraph. Then exactly
one of the following possibilities holds.



358 H. Galeana-Sánchez and C. Hernández-Cruz

1. D is a complete digraph.
2. D is a 3-cycle extension.
3. D has circumference 3, a 3-cycle extension as a spanning subdigraph with

cyclical partition {V0, V1, V2}, at least one symmetrical arc exists in D and
for every symmetrical arc vivi+1 ∈ A(D), with vj ∈ Vj for j ∈ {i, i + 1}
(mod 3), |Vi| = 1 or |Vi+1| = 1.

4. D has circumference 3, UG(D) is not 2-edge-connected and {S1, S2,
. . . , Sr} are the vertex sets of the maximal 2-edge connected subgraphs
of UG(D), with Si = {ui} for every 2 ≤ i ≤ r and such that D[S1]
has a 3-cycle extension with cyclical partition {V0, V1, V2} as a spanning
subdigraph. A vertex v0 ∈ V0 (without loss of generality) exists such that
v0uj , ujv0 ∈ A(D) for every 2 ≤ j ≤ n. Also |V0| = 1 and D[S1] has the
structure described in 1. or 2., depending on the existence of symmetrical
arcs.

5. A complete biorientation of a 5-cycle.
6. D is a complete biorientation of the star K1,r, r ≥ 3.
7. D is a complete biorientation of a tree with diameter 3.
8. D is a strong digraph of order less than or equal to 4 not included in the

previous families.

For values of k greater than 4, there are no known structural charac-
terizations for strong k-transitive digraphs. As we have already mentioned
above, this situation may be a consequence of the fact that every digraph
on less than k + 1 vertices, and every digraph without paths of length k, are
k-transitive digraphs, so small k-transitive digraphs are difficult to charac-
terize. In spite of this fact, it has been observed that the existence of some
structures in a strong k-transitive digraph is enough to guarantee that the
whole digraph will have a nice structure. Hernández-Cruz and Montellano-
Ballesteros proved that k-transitive digraphs with cycles of length at least k
have a very nice structure. The proofs of the following theorems are several
pages long, so they will be omitted; it would be a nice problem to find short
proofs for both of them.

Theorem 8.3.21 ([49]) Let k ≥ 2 be an integer, and let D be a strong k-
transitive digraph. Suppose that D contains a cycle of length r such that the
g.c.d. of r and k − 1 is d, and r ≥ k + 1. Then the following hold.

1. If d = 1, then D is a complete digraph.
2. If d ≥ 2, then D is either a complete digraph, a complete bipartite digraph,

or a d-cycle extension. 	

Theorem 8.3.22 ([49]) Let k ≥ 2 be an integer, and let D be a strong k-
transitive digraph of order at least k + 1. If D contains a cycle of length k,
then D is a complete digraph. 	


It follows from Theorems 8.3.21 and 8.3.22 that a strong k-transitive
digraph is not likely to grow disorganizedly. On one hand, we have that every
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“sufficiently small” digraph is k-transitive. On the other hand, if a strong
k-transitive digraph has a large enough circumference, its structure becomes
very well determined. So a natural question arises: what happens if a strong
k-transitive digraph has circumference less than k but at least k+1 vertices?
Is there a proportion between order and circumference which allows us to
say something about the structure of a strong k-transitive digraph? Theorem
8.3.22 seems to be the most simple case of such a result. Following this idea,
there is a partial result due to Wang.

Theorem 8.3.23 ([59]) Let D be a strong k-quasi-transitive digraph with
k ≥ 4, and let C be a cycle of length k −1. Then, for every v ∈ V (D)\V (C),
the sets (v, V (C)) and (V (C), v) are non-empty. 	


Proof: Since reversing every arc of a k-transitive digraph yields a k-transitive
digraph, we only need to show (v, V (C)) �= ∅. Let C = v0 . . . vk−2v0 be
a (k − 1)-cycle. Since D is strong, there exists a path from v to C. Let
P = u0 . . . us be a shortest path from v to C, where s ≥ 1, u0 = v and
us ∈ V (C). Without loss of generality, assume that us = v0. We prove that
u0 dominates some vertex of V (C) by induction on the length s of P . It
clearly holds for s = 1. Thus, we assume that s ≥ 2. Note that u1 . . . us is a
path of length s−1. By the induction hypothesis, there is a vertex vi ∈ V (C)
such that u1 → vi. Then u0u1viCvi−1 is a path of length k in D, which
implies u0 → vi−1. 	


8.3.4 Totally Φ-Decomposable Digraphs

The structure of totally Φ-decomposable digraphs is already determined from
its definition and the choice of Φ. Thus, instead of studying their structure,
we will show that for some choices of Φ, totally Φ-decomposable digraphs can
be recognized in polynomial time.

As we will have already mentioned, Theorem 8.3.5 is the turning point on
the study of quasi-transitive digraphs; it will let us construct polynomial algo-
rithms for Hamiltonian paths and cycles in quasi-transitive digraphs, and also
solve more general problems in this class of digraphs. This theorem shows that
quasi-transitive digraphs are totally Φ-decomposable, where Φ is the union of
extended semicomplete and transitive digraphs. Since both extended semi-
complete digraphs and transitive digraphs are special subclasses of much
wider classes of digraphs, it is natural to study totally Φ-decomposable di-
graphs, where Φ is a much more general class of digraphs than the union of
extended semicomplete and transitive digraphs. However, our choice of can-
didates for the class Φ should be restricted in such a way that we can still
construct polynomial algorithms for some important problems such as the
Hamiltonian cycle problem, using properties of digraphs in Φ.

This idea was first used by Bang-Jensen and Gutin [13] to introduce the
following classes of digraphs:
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Definition 8.3.24

• Φ0 is the union of all semicomplete multipartite digraphs, all connected
extended locally semicomplete digraphs and all acyclic digraphs,

• Φ1 is the union of all semicomplete bipartite digraphs, all connected extended
locally semicomplete digraphs and all acyclic digraphs,

• Φ2 is the union of all connected extended locally semicomplete digraphs
and all acyclic digraphs, and

• Φ3 is the union of all semicomplete digraphs and all acyclic digraphs.

Note that we have Φ3 ⊂ Φ2 ⊂ Φ1 ⊂ Φ0 and that all four classes are closed
under taking extensions.

A class Φ of digraphs is hereditary if D ∈ Φ implies that every induced
subdigraph of D is in Φ. Observe that every Φi, 0 ≤ i ≤ 3, is a hereditary
class. The following results are due to Bang-Jensen and Gutin.

Lemma 8.3.25 ([13]) Let Φ be a hereditary class of digraphs. If a given di-
graph D is totally Φ-decomposable, then every induced subdigraph D′ of D is
totally Φ-decomposable. In other words, total Φ-decomposability is a heredi-
tary property.

Proof: By induction on the number of vertices of D. The claim is obviously
true if D has fewer than 3 vertices.

If D ∈ Φ, then our claim follows from the fact that Φ is hereditary. So,
we may assume that D = R[H1, . . . , Hr], r ≥ 2, where R ∈ Φ and each of
H1, . . . , Hr is totally Φ-decomposable.

Let D′ be an induced subdigraph of D. If there is an index i such that
V (D′) ⊆ V (Hi), then D′ is totally Φ-decomposable by induction. Otherwise,
D′ = R′[T1, . . . , Tr′ ], where r ≥ 2 and R′ ∈ Φ, is the subdigraph of R induced
by those vertices i of R, whose Hi has a non-empty intersection with V (D′)
and the Tj ’s are the corresponding Hi’s restricted to the vertices of D′. Ob-
serve that R′ ∈ Φ, since Φ is hereditary. Moreover, by induction, each Tj is
totally Φ-decomposable, hence so is D′. 	


The following result gives a polynomial time algorithm for verifying Φi-
decomposability, i ∈ {0, 1, 2, 3}. Its proof can be found in [9].

Lemma 8.3.26 ([13]) There exists an O(mn + n2)-algorithm for check-
ing if a digraph D with n vertices and m arcs has a decomposition D =
R[H1, . . . ,Hr], r ≥ 2, where Hi is an arbitrary digraph and the digraph Ri

is either acyclic or semicomplete multipartite or semicomplete bipartite or
connected extended locally semicomplete. 	


The previous lemma can now be used to obtain the main result of this
section. Again, its proof can be found on [9].

Theorem 8.3.27 ([13]) There exists an O(n2m+n3)-algorithm for checking
if a digraph with n vertices and m arcs is totally Φi-decomposable, for i ∈
{0, 1, 2, 3}.
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8.4 Hamiltonian, Longest and Vertex-Cheapest Paths
and Cycles

In this section we will study the Hamiltonian path and cycle problems, as well
as some problems in weighted digraphs generalizing them. The subsections on
quasi-transitive digraphs and totally Φ-decomposable digraphs in this section
are strongly based on Sections 6.7 and 6.8 of [9], where this subject has
received a full treatment. We begin by considering the few existing results
for k-transitive and k-quasi-transitive digraphs.

8.4.1 k-Transitive and k-Quasi-Transitive Digraphs

Since strong 3-transitive and 4-transitive digraphs are completely character-
ized, it suffices to make a case by case analysis for these families of digraphs
(using Theorems 8.3.19 and 8.3.20) to completely characterize Hamiltonian
3- and 4-transitive digraphs. This analysis can be summarized in the follow-
ing result. We say that a k-cycle extension D = Ck[S1, . . . , Sk] is balanced
if |Si| = |Sj | for every i �= j, and non-balanced, otherwise.

Theorem 8.4.1 If D is a strong 3-transitive digraph, then D is Hamiltonian
if and only if it is not a complete bipartite digraph D = (X,Y ) with |X| �= |Y |.

If D is a strong 4-transitive digraph, then D is Hamiltonian if and only if
it is a complete digraph, a balanced 3-cycle extension, a symmetrical 5-cycle,
or a semicomplete digraph on at most 4 vertices. 	


It follows from Theorem 8.4.1 that hamiltonicity for 3-transitive and 4-
transitive digraphs can be determined in linear time: Hamiltonian members of
these families can be easily recognized through their in-degree and out-degree
sequences. In view of this fact, the following problem is proposed.

Problem 8.4.2 For all values of k ≥ 5, determine the complexity of the
Hamiltonian cycle problem for the class of k-transitive digraphs.

Considering the results for k ∈ {2, 3, 4}, it does not seem too adventurous
to conjecture that hamiltonicity of a k-transitive digraph could be determined
in linear time for every integer k ≥ 2. From Theorems 8.3.21 and 8.3.22, easy
to verify sufficient conditions for the existence of a Hamiltonian cycle in a
strong k-transitive digraph can be derived: A k-transitive digraph containing
a cycle of length at least k is Hamiltonian unless it is a non-balanced extended
cycle.

For 3-quasi-transitive digraphs, Theorem 8.3.15 also provides enough in-
formation to completely characterize Hamiltonian members of this family.

Theorem 8.4.3 If D is a strong 3-quasi-transitive digraph, then D is Hamil-
tonian if and only if one of the following hold:
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• D is semicomplete,
• D is semicomplete bipartite with a cycle factor, or
• D is the member of the family F of order 4 (see Figure 8.3).

Proof: Clearly, all the digraphs mentioned in the statement of the theorem
are Hamiltonian. Using Theorem 8.3.15 we can rule out the remaining cases
for a strong 3-quasi-transitive digraph.

We know that a strong semicomplete bipartite digraph is Hamiltonian
if and only if it has a cycle factor (see Theorem 7.4.1), and clearly, every
digraph in F of order greater than 4 is not Hamiltonian. 	


It follows from Theorems 8.4.3 and 7.4.1 that hamiltonicity can be verified
for 3-quasi-transitive digraphs in time O(n2.5). So, the following question
comes to mind.

Problem 8.4.4 Let k be an integer, k ≥ 4. Is it true that hamiltonicity can
be determined for the class of k-quasi-transitive digraphs in polynomial time?

Regarding Hamiltonian paths, Wang and Zhang gave a sufficient condition
for traceability when k is even, [62].

Theorem 8.4.5 ([62]) Let k be an even integer with k ≥ 4 and D be a strong
k-quasi-transitive digraph. If diam(D) ≥ k + 2, then D has a Hamiltonian
path.

Proof: Since diam(D) ≥ k + 2, there exist u, v ∈ V (D) such that d(u, v) =
k + 2. Let P = x0 . . . xk+2 be a shortest (u, v)-path where u = x0 and v =
xk+2. By Lemma 8.3.6, xk+2 → x0. Let C be the cycle C = x0 . . . xk+2x0 and
H = D[V (D) − V (C)]. By Proposition 8.3.7 and Theorem 8.3.12, D[V (C)]
and H are both semicomplete digraphs. It is well known that there is a
Hamiltonian path in every semicomplete digraph. Let Q = y0 . . . yp be a
Hamiltonian path in H. By Lemma 8.3.9, for any yi ∈ V (Q), yi is adjacent
to C. If there exists an xj ∈ V (C) such that xj → y0, then xj+1Cxjy0Q is
a Hamiltonian path in D. Now assume (V (C), y0) = ∅. Note that k − 1 and
k + 3 are coprime.3 According to Proposition 8.3.10, y0 �→ V (C), and thus,
either there is an xj ∈ V (C) such that xj → y1 and therefore y0xj+1Cxjy1Q
is a Hamiltonian path in D, or y1 �→ V (C). Continuing in this way, we can
conclude that either D has a Hamiltonian path, or V (H) �→ V (C). But since
D is strong, (V (C), V (H)) �= ∅. So D has a Hamiltonian path. 	


Notice that, since every complete bipartite digraph is k-quasi-transitive
for any odd integer k ≥ 3, it is not possible to obtain a result similar to
Theorem 8.4.5 for odd values of k.

3 Recall that the g.c.d. of two integers is their least positive linear combination.
Clearly, 4 is a linear combination of k − 1 and k + 3, but since k is even, and
k − 1 �≡ k + 3 (mod 3), the least positive linear combination of k − 1 and k + 3
is 1.
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The following question was proposed by the same authors.

Problem 8.4.6 ([62]) Let k be an even integer, k ≥ 4, and suppose that
diam(D) ≥ k + 2. Is there a Hamiltonian cycle in D?

It follows from the remark after Theorem 8.3.12 that Problem 8.4.6 has
a positive answer for k = 4.

8.4.2 Hamiltonian Cycles in quasi-transitive digraphs and Totally
Φ-Decomposable Digraphs

Hamiltonicity is one of the most studied topics in both graphs and digraphs.
Having a family as nice as quasi-transitive digraphs, it is natural to have
a lot of results for this class regarding both Hamiltonian paths and cycles,
many of which come from the study of semicomplete digraphs and its cor-
responding hamiltonicity results. Since Chapter 2 is devoted to tournaments
and semicomplete digraphs, we will not elaborate on the results regarding
these digraph classes, but we will restate some of them.

As mentioned in the introduction to this chapter, totally Φ-decomposable
digraphs generalize the structure of quasi-transitive digraphs. Thus, it is
common to find that the techniques used to prove certain results for quasi-
transitive digraphs can be adapted to study this more general family of di-
graphs. In particular, the methods developed in [17] by Bang-Jensen and
Huang, and in [41] by Gutin, to characterize Hamiltonian and traceable
quasi-transitive digraphs as well as to construct polynomial algorithms for
verifying the existence of Hamilton paths and cycles in quasi-transitive di-
graphs, can be easily generalized to much wider classes of digraphs [11]. Thus,
in this subsection, along with quasi-transitive digraphs, we consider totally
Φ-decomposable digraphs for various families Φ of digraphs.

Recall that a digraph D is an extended semicomplete digraph if it can
be obtained from some semicomplete digraph S by substituting independent
sets for the vertices of S.

Recall that the decompositions given by Theorem 8.3.5 are called canon-
ical decompositions. The following characterization of Hamiltonian quasi-
transitive digraphs is due to Bang-Jensen and Huang [17].

Theorem 8.4.7 ([17]) A strong quasi-transitive digraph D with canonical
decomposition D = S[Q1, Q2, . . . , Qs] is Hamiltonian if and only if it has a
cycle factor F such that no cycle of F is a cycle of some Qi.

Proof: Clearly, a Hamilton cycle in D crosses every Qi. Thus, it suffices to
show that if D has a cycle factor F such that no cycle of F is a cycle of some
Qi, then D is Hamiltonian. Observe that V (Qi)∩F is a path factor Fi of Qi

for every i ∈ [s]. For every i ∈ [s], delete the arcs between end-vertices of all
paths in Fi except for the paths themselves, and then perform the operation
of path-contraction for all paths in Fi. As a result, one obtains an extended



364 H. Galeana-Sánchez and C. Hernández-Cruz

semicomplete digraph S′ (since S is semicomplete). Clearly, S′ is strong and
has a cycle factor. Hence, by Theorem 7.10.1, S′ has a Hamilton cycle C.
After replacing every vertex of S′ with the corresponding path from F , we
obtain a Hamilton cycle in D. 	


Similarly to Theorem 8.4.7, one can prove the following characterization
of traceable quasi-transitive digraphs. This result is also due to Bang-Jensen
and Huang.

Theorem 8.4.8 ([17]) A quasi-transitive digraph D with at least two vertices
and with canonical decomposition D = R[G1, G2, . . . , Gr] is traceable if and
only if it has a 1-path-cycle factor F such that no cycle or path of F is
completely in some D[V (Gi)]. 	


Theorems 8.4.7 and 8.4.8 do not imply polynomial algorithms to verify
hamiltonicity and traceability, respectively. The following characterization of
Hamiltonian quasi-transitive digraphs is given implicitly in the paper [41] by
Gutin:

Theorem 8.4.9 (Gutin [41]) Let D be a strong quasi-transitive digraph with
canonical decomposition D = S[Q1, Q2, . . . , Qs]. Let n1, . . . , ns be the orders
of the digraphs Q1, Q2, . . . , Qs, respectively. Then D is Hamiltonian if and
only if the extended semicomplete digraph S′ = S[Kn1 ,Kn2 , . . . ,Kns

] has a
cycle subdigraph which covers at least pc(Qj) vertices of Knj

for every j ∈ [s].

Proof: Suppose that D has a Hamilton cycle H. For every j ∈ [s], V (Qj)∩H
is a kj-path factor Fj of Qj . By the definition of the path covering number,
we have kj ≥ pc(Qj). For every j ∈ [s], the deletion of the arcs between
end-vertices of all paths in Fj except for the paths themselves, and then
path-contraction of all paths in Fj , transforms H into a cycle of S′ having
at least pc(Qj) vertices of Knj

for every j ∈ [s].
Suppose now that S′ has a cycle subdigraph L containing pj ≥ pc(Qj)

vertices of Knj
for every j ∈ [s]. Since S′ is a strong extended semicomplete

digraph, by Theorem 7.10.2, S′ has a cycle C such that V (C) = V (L). Clearly,
every Qj has a pj-path factor Fj . Replacing, for every j ∈ [s], the pj vertices
of Knj

in C with the paths of Fj , we obtain a Hamiltonian cycle in D. 	

Theorem 8.4.9 can be used to show that the Hamilton cycle problem for

quasi-transitive digraphs is polynomial time solvable.

Theorem 8.4.10 (Gutin [41]) There is an O(n4) algorithm which, given a
quasi-transitive digraph D, either returns a Hamiltonian cycle in D or verifies
that no such cycle exists. �

The approach used in the proofs of Theorems 8.4.9 and 8.4.10 in [41]
can be generalized to a much wider class of digraphs, as was observed by
Bang-Jensen and Gutin [11]. We follow the main ideas of [11].
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Recall the definition of Φ0, Φ1, Φ2, Φ3 in Definition 8.3.24 and the fact
that, for each of these classes, in time O(n4), one can check if a given digraph
D is totally Φi-decomposable (i ∈ {0, 1, 2, 3}) and (in case it is so) construct a
total decomposition of D. Moreover, Theorem 8.3.5 implies that every quasi-
transitive digraph is totally Φ3-decomposable.

Theorem 8.4.11 Let Φ be an extension-closed class of digraphs, i.e., Φext =
Φ, including the trivial digraph K1 on one vertex. Suppose that for every
digraph H ∈ Φ we have pcc(H) = pc(H). Let D be a totally Φ-decomposable
digraph. Then, given a total Φ-decomposition of D, the path covering number
of D can be calculated and a minimum path factor found in time O(n4).

Proof: We prove this theorem by induction on n. For n = 1 the claim is
trivial.

Let D be a totally Φ-decomposable digraph and let D = R[H1, . . . , Hr]
be a Φ-decomposition of D such that R ∈ Φ, r = |V (R)| and every Hi (of
order ni) is totally Φ-decomposable. A pc(D)-path factor of D restricted to
every Hi corresponds to a disjoint collection of some pi paths covering V (Hi).
Hence, we have pc(Hi) ≤ pi ≤ ni. Therefore, arguing similarly to the proof
of Theorem 8.4.9, we obtain

pc(D) = min{pc(R[Kp1 , . . . ,Kpr
]) : pc(Hi) ≤ pi ≤ ni, i ∈ [r]}.

Since Φ is extension-closed, and since, for every digraph Q ∈ Φ, pc(Q) =
pcc(Q), we obtain

pc(D) = min{pcc(R[Kp1 , . . . ,Kpr
]) : pc(Hi) ≤ pi ≤ ni, i ∈ [r]}. (8.1)

Given the lower and upper bounds pc(Hi) and ni (i ∈ [r]), the recursive
formula (8.1) allows us to find pc(D) in time O(n3). To show this, it suffices
to demonstrate how to find, in time O(n3), the minimum in formula 8.1
given all the values of pc(Hi) (and ni). Construct a network NR containing
the digraph R and two additional vertices (source and sink) s and t such
that s and t are adjacent to every vertex of V (R) and the arcs between s
(t, respectively) and R are oriented from s to R (from R to t, respectively).
Associate with each vertex vi of R (corresponding to Hi in D) the lower and
upper bounds pc(Hi) and ni (1 ≤ i ≤ r) on the amount of flow that can pass
through vi. It is not difficult to see that the minimum value, m, of a feasible
flow from s to t in NR, is related to the minimum in 8.1, i.e. pc(D), as follows:
pc(D) = max{1,m} (for further details, see [41]).

Let T (n) be the time needed to find the path covering number of a totally
Φ-decomposable digraph of order n. Then, by (8.1),

T (n) = O(n3) +
r∑

i=1

T (ni).

Furthermore, T (1) = O(1). Hence T (n) = O(n4). 	
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As we know, pc(D) = pcc(D) for every semicomplete multipartite digraph
D (see Theorem 7.5.2), for every extended locally semicomplete digraph D
(by Theorem 5.8.1 in [8]) and every acyclic digraph D (which is trivial).
Therefore, Theorems 8.4.11 and 8.3.27 imply the following theorem of Bang-
Jensen and Gutin:

Theorem 8.4.12 ([12]) The path covering number can be calculated in time
O(n4) for digraphs that are totally Φ0-decomposable. 	

Corollary 8.4.13 ([12]) One can verify whether a totally Φ1-decomposable
digraph is Hamiltonian in time O(n4).

Proof: Let D = R[H1, . . . , Hr], r = |R|, be a decomposition of a strong
digraph D (r ≥ 2). Then, D is Hamiltonian if and only if the following
family S of digraphs contains a Hamiltonian digraph:

S = {R[Kp1 , . . . ,Kpr
] : pc(Hi) ≤ pi ≤ |V (Hi)|, i ∈ [r]}.

Now suppose that D is a totally Φ1-decomposable digraph. Then, every
digraph of the form R[Kp1 , . . . ,Kpr

] is in Φ1. We know (see Theorem 7.4.1
and Theorem 5.8.1 in [8]) that every digraph in Φ1 is Hamiltonian if and
only if it is strong and contains a cycle factor. Thus, all we need is to verify
whether there is a digraph in S containing a cycle factor. It is easily seen
that there is a digraph in S containing a cycle factor if and only if there is a
circulation in the network formed from R by adding lower bounds pc(Hi) and
upper bounds |V (Hi)| to the vertex vi of R for every i ∈ [r]. Since the lower
bounds can be found in time O(n4) (see Theorem 8.4.11) and the existence of
a circulation checked in time O(n3) (a feasible circulation, if one exists, can
be found by just one max flow calculation in an (s, t)-flow network obtained
from our network, see [9, Exercise 4.31]), we obtain the required complexity
O(n4). 	


Since every quasi-transitive digraph is totally Φ1-decomposable this the-
orem immediately implies Theorem 8.4.10. Note that the minimum path
factors in Theorem 8.4.11 can be found in time O(n4). Also, a Hamiltonian
cycle in a Hamiltonian totally Φ1-decomposable digraph can be constructed
in time O(n4).

8.4.3 Vertex-Cheapest Paths and Cycles

For the remainder of this section, we consider problems that generalize
the Hamilton path and cycle problems in a significant way. We prove that
the problems of finding vertex-cheapest paths and cycles in vertex-weighted
quasi-transitive digraphs are polynomial time solvable. The values of the
weights can be any reals, positive or negative. Thus, we can conclude that
the longest and shortest path and cycle problems for quasi-transitive digraphs
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are polynomial time solvable. The same result holds for acyclic digraphs as
the only non-trivial problem from the above four is the longest path prob-
lem and it is well-known that it can be solved in polynomial time (see e.g.
[9, Theorem 3.3.5]). Notice that for the quasi-transitive digraphs three of
the above four problems are non-trivial (the shortest and longest cycles and
longest path) and, in fact, much more difficult than the longest path problem
for acyclic digraphs as the reader can see in the rest of this subsection. It
appears that the problems are non-trivial even for semicomplete digraphs.
Theorems 7.10.4 and 6.17.16 were proved by Bang-Jensen, Gutin and Yeo for
extended semicomplete and locally semicomplete digraphs.

The approach described in the previous subsection seems too weak to
allow us to construct polynomial time algorithms for vertex-cheapest paths
and cycles in quasi-transitive digraphs. A more powerful method that leads
to such algorithms was first suggested by Bang-Jensen, Gutin and Yeo [15]
and, in the rest of this section, we describe this method.

Recall that the cost of a subset of vertices is the sum of the costs of its
vertices and the cost of a subdigraph is the sum of the costs of its vertices.
For a digraph D of order n and i ∈ [n] we define mpi(D) (mpci(D)) to
be the minimum cost of an i-path (i-path-cycle) subdigraph of D. We set
mp0(D) = 0 and mpc0(D) is zero if D has no negative cycle and otherwise
it is the minimum cost of a cycle subdigraph in D which can be found using
minimum cost flows. Note that mp0(D) and mpc0(D) always exist as we may
take single vertices as paths and we always have mpci(D) ≤ mpi(D). For any
digraph D with at least one cycle we denote by mc(D) the minimum cost of
a cycle in D.

Let D = (V,A) be a digraph and let X be a non-empty subset of V . We
say that a cycle C in D is an X-cycle if C contains all vertices of X. In
the remaining subsections, we consider the following problems for a digraph
D = (V,A) with n vertices and real-valued costs on the vertices:

(P1) Determine mpi(D) for all i ∈ [n].
(P2) Find a cheapest cycle in D or determine that D has no cycle.

Clearly, problems (P1) and (P2) are NP-hard as determining the numbers
mp1(D) and mc(D) generalize the Hamiltonian path and cycle problems
(assign cost −1 to each vertex of D). The problem (P2) can be solved in
time O(n3) when all costs are non-negative using an all pairs shortest path
calculation. The problems (P1) and (P2) were solved in [14] for the special
case when all costs are non-negative. However, the approach of [14] cannot be
used or modified to work with negative costs. Bang-Jensen, Gutin and Yeo
[15] managed to obtain an approach suitable for arbitrary real costs.

8.4.4 Minimum Cost k-Path-Cycle Subdigraphs

Although this chapter is intended to be almost self-contained, in order to
present the main results of this subsection, we need certain notions and results
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on network flows. We refer the reader to Section 1.9 of this book for basic
terminology, and to chapter 4 of [9] for the proofs of the results we will state.
As in the aforementioned chapter of [9], we will allow capacities and costs on
the vertices in our networks. This makes it easier to model certain problems
for digraphs and it is easy to transform such a network into one where all
capacities and costs are on the arcs (see Subsection 4.2.4 of [9] for details).
With these remarks in mind, the following lemma of Bang-Jensen, Gutin and
Yeo follows directly from Lemma 4.2.4 and Proposition 4.10.7 in [9].

Lemma 8.4.14 ([15]) Let N = (V,A) be a network with source s and sink
t, capacities on arcs and vertices and a real-valued cost c(v) for each vertex
v ∈ V . For all integers i such that there exists a feasible (s, t)-flow of value
i in N , let fi be a minimum cost (s, t)-flow in N of value i and let c(fi) be
the cost of fi. Then, for all i where all of fi−1, fi, fi+1 exist, we have

c(fi+1) − c(fi) ≥ c(fi) − c(fi−1). (8.2)

�

Recall that a cycle subdigraph of a digraph D is a collection of vertex-
disjoint cycles of D. The following two results are also due to Bang-Jensen,
Gutin and Yeo.

Lemma 8.4.15 ([15]) Let D = (V,A) be a digraph with real-valued cost func-
tion c on the vertices. In time O(n(m+n log n)) we can determine the number
mpc0(D) and find a cycle subdigraph of cost mpc0(D) if mpc0(D) < 0.

Proof: Let H(w) be the digraph on 4 vertices w1, w2, w3, w4 and the follow-
ing arcs w1w2, w2w1, w2w3, w3w4, w4w3. Let D∗ = (V ∗, A∗) be obtained from
D as follows: replace every vertex v by the digraph H(v). Furthermore, for
every original arc uv ∈ A, D∗ contains the arc u4v1. There are no costs on the
vertices and all arcs have cost 0 except the arcs of the form v2v3 which have
cost c(v). Observe that mpc0(D) is precisely the minimum cost of a spanning
cycle subdigraph in D∗. Let V ∗ = {x1, x2, . . . , x4n}. Construct a bipartite
graph B with partite sets L = {�1, . . . , �4n} and R = {r1, . . . , r4n}, in which
�irj is an edge if and only if xixj ∈ A∗. Moreover, the cost of �irj is equal to
the cost of xixj . Observe that a minimum cost perfect matching in B corre-
sponds to a minimum cost cycle subdigraph in D∗. We can find a minimum
cost perfect matching in B in time O(n(m + n log n)), see the remark after
the proof of Theorem 11.1 in [51]. Using the transformation from B to D∗,
we can compute the minimum cost of a spanning cycle subdigraph F in D∗

in time O(n(m + n log n)). If this cost is negative, we can find a minimum
cost cycle subdigraph of D within the same time. 	




8. Quasi-Transitive Digraphs and Their Extensions 369

Lemma 8.4.16 ([15]) Let D = (V,A) be a vertex-weighted digraph.

(a) In total time O(n2m + n3) we can determine the numbers
{mpc1(D),mpc2(D), . . . , mpcn(D)} and find j-path-cycle subdigraphs Fj,
j ∈ {1, 2, . . . , n}, where Fj has cost mpcj(D).

(b) The costs mpci(D) satisfy the following inequality for every i ∈ [n − 1]:

mpci+1(D) − mpci(D) ≥ mpci(D) − mpci−1(D). (8.3)

Proof: Form a network N(D) from D by adding a pair s, t of new vertices
along with arcs {(s, v), (v, t) : v ∈ V }. Let all vertices and all arcs of D have
lower bound 0 and capacity 1. Let c(s) = c(t) = 0, let each other vertex of
N(D) inherit its cost from D and let all arcs have cost 0.

Suppose Fj is a j-path-cycle subdigraph of D. Using Fj we can obtain a
feasible flow fj of value j in N(D) if we assign fj(a) = 1 to all arcs a in Fj

and those arcs a of N(D) that start (terminate) at s (t) and terminate (start)
at the initial (terminal) vertex of a path in Fj , and fj(a) = 0 for all other
arcs of N(D). Similarly, we can transform a feasible integer-valued (s, t)-flow
of value j in N(D) into a j-path-cycle subdigraph of D (see Theorem 4.3.1
in [9]).

Notice that N(D) has a feasible integer-valued (s, t)-flow of value k for
any integer k ∈ {0, 1, . . . , n}. Thus it follows from the observations above
that for every j ∈ {0, 1, . . . , n} the value mpcj(D) is exactly the minimum
cost of a flow of value j in N(D). Now (8.2) implies that the inequality (8.3)
is valid.

It remains to prove (a). It follows from Lemma 8.4.15 that we can find a
minimum cost flow f of value 0 in time O(n3). Now we can use the Buildup
algorithm from Subsection 4.10.2 in [9] starting from f. Using the Buildup
algorithm we can find feasible integer-valued flows fj for all j ∈ [n], such
that fj is a minimum cost feasible (s, t)-flow of value j in N(D), in total
time O(n2m) (the complexity of obtaining fj+1 starting from fj is O(nm)).
This proves (a). 	


8.4.5 Cheapest i-Path Subdigraphs in Quasi-Transitive Digraphs

Theorem 7.5.4, regarding semicomplete multipartite digraphs, will play an
important role in our algorithms. The next theorem due to Bang-Jensen,
Gutin and Yeo shows that (P1) is polynomially solvable for quasi-transitive
digraphs.

Theorem 8.4.17 ([15]) Let D = (V,A) be a vertex-weighted quasi-transitive
digraph. Then the following holds:

(a) In total time O(n2m + n3) we can find for every i ∈ [n], the value of
mpi(D) and an i-path subdigraph Fi of cost mpi(D).
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(b) For all i ∈ [n − 1] we have

mpi+1(D) − mpi(D) ≥ mpi(D) − mpi−1(D). (8.4)

Proof: We prove (b) by induction on n. The statement vacuously holds for
n = 1 and is easy to verify for n = 2 (recall that, by definition, mp0(D) = 0).
This proves the basis of induction and we now assume that n ≥ 3.

By Theorem 8.3.5, D has a decomposition D = T [Q1, . . . , Qt], t =
|T | ≥ 2, where T is an acyclic digraph or a semicomplete digraph. Let
D′ = T [Kn1 , . . . ,Knt

] be obtained from D by deleting all arcs inside each
Qi, i ∈ [t]. Assign costs to the vertices vk

1 , . . . , vk
nk

of Knk
, as follows:

c′(vk
j ) = mpj(Qk) − mpj−1(Qk).

By the induction hypothesis (b) holds for Qk implying that we have

c′(vk
j ) ≤ c′(vk

j+1) for every j ≥ 1. (8.5)

Let F ′
i be an i-path-cycle subdigraph of D′. If T is acyclic, then D′ is

acyclic and, thus, F ′
i is an i-path subdigraph of D′. If T is semicomplete, then

D′ is extended semicomplete and, thus, by Theorem 7.5.1 and Theorem 7.5.4,
we may assume that F ′

i is an i-path subdigraph of D′. Hence, mpi(D′) =
mpci(D′) and it follows from Lemma 8.4.16(b) that (8.4) holds for D′. Thus
it suffices to prove that mpi(D) = mpi(D′).

Let F ′
i be an i-path subdigraph of D′ and let pk denote the number of

vertices from Knk
which are covered by F ′

i . Since all vertices of Knk
are

similar it follows from (8.5) that we may assume (by making the proper re-
placements if necessary) that F ′

i includes vk
1 , . . . , vk

pk
. For each k, replace

the vertices vk
1 , . . . , vk

pk
in F ′

i by a pk-path subdigraph of Qk with cost
mppk

(Qk) =
∑pk

i=1 c′(vk
i ). As a result, we obtain, from F ′

i , an i-path subdi-
graph Fi of D for which we have c′(F ′

i ) =
∑t

k=1 mppk
(Qk) = c(Fi) and, thus,

c(Fi) = c′(F ′
i ). Reversing the process above it is easy to get, from an i-path

subdigraph of D, an i-path subdigraph F ′
i of D′ such that c(Fi) = c′(F ′

i ).
This shows that mpi(D) = mpi(D′) and hence (8.4) holds for D by the
remark above.

We prove the complexity by induction on n. Let m′ be the number of arcs
in D′ and recall that all these arcs are also in D. Clearly when a digraph H has
|V (H)| ≤ 2 we can choose a constant c1 so that we can determine the numbers
mpi(H), i = 1, 2, . . . , |V (H)|, in time at most c1|V (H)|2(|A(H)| + |V (H)|).
Now assume by induction that for each Qi we can determine the desired
numbers inside Qi in time at most c1n

2
i (mi + ni). This means that we can

find the numbers mpi(Qj) for all j ∈ [t] and i ∈ [nj ] in total time

t∑

j=1

c1n
2
j (mj + nj) ≤ c1n

2
t∑

j=1

(mj + nj) = c1n
2(m − m′ + n).
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By Lemma 8.4.16(a), Theorems 7.5.1 and 7.5.4, there is a constant c2 such
that in total time at most c2n

2(m′+n) we can find, for every j ∈ [n], a j-path-
cycle subdigraph of cost mpj(D′) in D′. It follows from the way we construct
Fi above from F ′

i that if we are given for each k ∈ [t] and each 1 ≤ j ≤ nk

a j-path subdigraph in Qk of cost mpj(Qk), then we can construct all the
path subdigraphs Fr, 1 ≤ r ≤ n, in time at most c3n

3 for some constant c3.
Hence the total time needed by the algorithm is at most

c1n
2(m − m′ + n) + c2n

2(m′ + n) + c3n
3 =

c1n
2(m + n) + (c2 − c1)n2m′ + (c2 + c3)n3,

which is at most c1n
2(m + n) for c1 sufficiently large. 	


The next theorem, also due to Bang-Jensen, Gutin and Yeo, is an easy
consequence of Theorem 8.4.17 (assign all vertices cost −1).

Theorem 8.4.18 ([15]) One can find a longest path in any quasi-transitive
digraph in time O(n2m + n3). 	


Sometimes, one is interested in finding path subdigraphs that include a
maximum number of vertices from a given set X or avoid as many vertices
of X as possible. We consider a minimum cost extension of this problem in
the next result.

Theorem 8.4.19 ([15]) Let D = (V,A) be a vertex-weighted quasi-transitive
digraph and let X ⊆ V be non-empty. Let pj be the maximum possible number
of vertices from X in a j-path subdigraph and let qj be the maximum possible
number of vertices from X not in a j-path subdigraph. In total time O(n2m+
n3) we can find, for all j ∈ [n], a cheapest j-path subdigraph which includes
pj (avoids qj, respectively) vertices of X.

Proof: Let C =
∑

v∈V |c(v)| and subtract C+1 from the cost of every vertex
in X. Now, for each j ∈ [n], every cheapest j-path subdigraph Fj must cover
as many vertices from X as possible, i.e., pj vertices. Furthermore, since
the new cost of Fj is exactly the original one minus pj(C + 1), cheapest
j-path subdigraphs covering pj vertices from X are preserved under this
transformation. Now the ‘including’ part of the claim follows from Theorem
8.4.17(a). The ‘avoiding’ part can be proved similarly, by adding C + 1 to
every vertex of X. 	


8.4.6 Finding a Cheapest Cycle in a Quasi-Transitive Digraph

Bang-Jensen, Gutin and Yeo obtained the following:

Theorem 8.4.20 ([15]) For quasi-transitive digraphs with vertex-weights the
minimum cost cycle problem can be solved in time O(n5 log n).
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Proof: Let D be a quasi-transitive digraph. If D is not strong, then we simply
look at the strong components, so assume that D is strong. By Theorem 8.3.5,
D = T [Q1, . . . , Qt], where T is a strong semicomplete digraph, and each Qi

is either a single vertex or a non-strong quasi-transitive digraph.
Suppose we have found a minimum cost cycle Ci in each Qi which con-

tains a cycle. Then clearly the minimum cost of a cycle in D is given by
min(mini(c(Ci)), c(C)), where C is a minimum cost cycle among those in-
tersecting at least two Qi’s. Hence it follows that applying this approach
recursively we can find the minimum cost cycle in D. Now we show how to
compute a minimum cost cycle C as above.

Let D′ be defined as in the proof of Theorem 8.4.17 including the vertex-
costs. It is easy to show using the same approach as when we converted
between i-path subdigraphs of D′ and D in the proof of Theorem 8.4.17,
that the cost of C is precisely mc(D′). Now it follows from Theorem 7.10.4
that we can find the cycle C in time O(n3m + n4 log n).

Since we can construct D′, including finding the costs for all the vertices in
time O(n2m + n3) by Theorem 8.4.17, and there are at most O(n) recursive
calls, the approach above will lead to a minimum cost cycle of D in time
O(n4m+n5 log n). In fact, we can bound the first term as we did in the proof
of Theorem 8.4.17 and obtain O(n3m + n5 log n) = O(n5 log n) rather than
O(n4m + n5 log n). This completes the proof. 	


8.5 Linkages

It is a well-known fact that it is easy to check (e.g., using flows) whether a
directed multigraph D = (V,A) has k (arc)-disjoint paths P1, . . . , Pk from a
subset X ⊆ V to another subset Y ⊆ V , and we can also find such paths
efficiently. On many occasions (e.g., in practical applications) we need to
be able to specify the initial and terminal vertices of each Pi, 1 ≤ i ≤ k,
that is, we wish to find a so-called linkage from X = {x1, . . . , xk} to Y =
{y1, . . . , yk} such that Pi is an (xi, yi)-path for every 1 ≤ i ≤ k. This problem
is considerably more difficult and is in fact NP-complete already when k = 2.

Recall that, for a digraph D = (V,A) with distinct vertices x, y we denote
by κD(x, y) the largest integer k such that D contains k internally disjoint
(x, y)-paths. When discussing intersections between paths P,Q we will often
use the phrase ‘let u be the first (last) vertex on P which is on Q’. By this
we mean that if, say, P is an (x, y)-path, then u is the only vertex of P [x, u]
(P [u, y]) which is also on Q.

Let x1, x2, . . . , xk, y1, y2, . . . , yk be distinct vertices of a digraph D. A
k-linkage from (x1, x2, . . . , xk) to (y1, y2, . . . , yk) in D is a system of vertex-
disjoint paths P1, P2, . . . , Pk such that Pi is an (xi, yi)-path in D.4 A digraph

4 Sometimes we allow that the paths may share one or both of their end-vertices,
i.e., V (Pi) ∩ V (Pj) ⊆ {xi, yi, xj , yj} whenever i �= j, where xi = yj or xi = xj is
possible.
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D = (V,A) is k-linked if it contains a k-linkage from (x1, x2, . . . , xk) to
(y1, y2, . . . , yk) for every choice of distinct vertices x1, x2, . . . , xk, y1, y2, . . . , yk.
The k-Disjoint paths problem is defined as follows.

k-Disjoint paths
Input: A digraph D = (V,A) and distinct vertices s1, . . . , sk, t1, . . . , tk.
Question: Does D contain vertex disjoint paths P1, . . . , Pk such that Pi

is an (si, ti)-path for i ∈ [k]?

Fortune, Hopcroft and Wyllie [30] showed that if we impose no restriction
on the input, then the k-Disjoint paths problem is NP-complete already
for k = 2. This motivates the study of subclasses of digraphs for which the
problem is polynomial-time solvable.

From the algorithmic point of view, the 2-Disjoint paths problem
for semicomplete digraphs has already been solved by Bang-Jensen and
Thomassen in Theorem 2.5.6. The proof of this result in [21] is highly non-
trivial. The basic approach is divide and conquer and several non-trivial re-
sults and steps are needed to make the algorithm work. Now we show that
the 2-Disjoint paths problem can be solved in polynomial time for quite
large classes of digraphs which can be obtained by starting from semicom-
plete digraphs and then performing certain substitutions. The algorithm we
describe uses the polynomial algorithm from Theorem 2.5.6 for the case of
semicomplete digraphs as a subroutine. The results in this section are due to
Bang-Jensen [5].

Theorem 8.5.1 ([5]) Let D = F [S1, S2, . . . , Sf ] where F is a strong digraph
on f ≥ 2 vertices and each Si is a digraph with ni vertices and let x1, x2, y1, y2
be distinct vertices of D. There exist semicomplete digraphs T1, . . . , Tf such
that V (Ti) = V (Si) for all i ∈ [f ], and the digraph D′ = F [T1, T2, . . . , Tf ]
has vertex-disjoint (x1, y1)-, (x2, y2)-paths if and only if D has such paths.
Furthermore, given D and x1, x2, y1, y2, D′ can be constructed in time O(n2),
where n is the number of vertices of D.

Proof: If D has the desired paths, then so does any digraph obtained from D
by adding arcs. Hence if D has the desired paths, then trivially D′ exists and
can be constructed in time O(n2) once we know a pair of disjoint (x1, y1)-,
(x2, y2)-paths.

If no Si contains both of x1, y1 or both of x2, y2, then it is easy to see
that D has the desired paths if and only if it has such paths which do not
use an arc inside any Sj . Thus in this case we can add arcs arbitrarily inside
each Si to obtain a D′ which satisfies the requirement.

Suppose next that some Si contains all of the vertices x1, x2, y1, y2. If
there is an (xj , yj)-path P in Si − {x3−j , y3−j}, j ∈ {1, 2}, then it follows
from that fact that F is strong that D has the desired paths and we can find
such a pair in time O(n2). Thus, by our initial remark, we may assume that
there is no (xj , yj)-path P in Si − {x3−j , y3−j} for j ∈ {1, 2}. Now it is easy
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to see that D has the desired paths if and only if it has such paths which
do not use an arc inside any Sj . Thus we can replace Si by a tournament in
which x1 and x2 both have no out-neighbours in Si−{x1, x2} and every other
Sk by an arbitrary tournament on the same vertex set. Clearly the digraph
D′ obtained in this way satisfies the requirement.

Suppose now without loss of generality that x1, y1 ∈ V (Sj) for some j
but x2 �∈ V (Sj). Suppose first that y2 ∈ V (Sj). If there is no (x1, y1)-path in
Sj − y2, then D has the desired paths if and only if it has such paths which
do not use an arc inside any Si and we can construct D′ by adding arcs in
Sj in such a way that no (x1, y1)-path avoiding y2 is created (that is, y2 will
still separate x1 from y1 in D′[V (Sj)]) and arbitrary arcs in every other Si.
On the other hand, if Sj − y2 contains an (x1, y1)-path avoiding y2, then it
follows from the fact that F is strong that D has the desired paths and hence
D′ exists, as remarked above. Hence we may assume that y2 �∈ V (Sj).

If Sj contains an (x1, y1)-path which does not cover all the vertices of Sj ,
then it follows from the fact that F is strong that D has the desired paths.
Thus we may assume that either Sj has no (x1, y1)-path, or every (x1, y1)-
path in Sj contains all the vertices of Sj . In the last case we may assume that
V (Sj) separates x2 from y2. Now D has the desired paths if and only if it
has such a pair which does not use any arcs from Sj . Thus in both cases we
can construct D′ by replacing Sj by a tournament with no (x1, y1)-path and
every other Si by an arbitrary tournament on the same vertex set, except in
the case when x2 and y2 belong to some Si, i �= j. In this case we replace
that Si by a tournament with no (x2, y2)-path (by the remark above we may
assume that Si has no (x2, y2)-path).

It follows from the considerations above that D′ can be constructed in
time O(n2). 	


Recall that Theorem 8.3.5 gives the canonical decomposition for quasi-
transitive digraphs. Hence we can apply Theorem 8.5.1 to these digraphs.

Theorem 8.5.2 ([5]) There exists a polynomial-time algorithm for the 2-
Disjoint paths problem for quasi-transitive digraphs.

Proof: Let D be a quasi-transitive digraph and x1, x2, y1, y2 specified dis-
tinct vertices for which we want to determine the existence of vertex-disjoint
(x1, y1)-,(x2, y2)-paths. First check that D−{xi, yi} contains an (x3−i, y3−i)-
path for i ∈ {1, 2}. If not, then we stop. Now it follows from Theorem 8.3.5
that either x1, x2, y1, y2 are all in the same strong component of D, or the
paths exist. For example, if D is not strong and y1, say, is not in the same
strong component as x1 then, by Theorem 8.3.5, x1 and y1 belong to different
sets Wi,Wj in the canonical decomposition D = Q[W1, . . . ,W|Q|], where Q
is a transitive digraph. Hence x1→y1 and the desired paths clearly exist.

Thus we may assume that D is strong. Let D = S[W1,W2, . . . ,W|S|] be
the canonical decomposition of D. Now apply Theorem 8.5.1 and construct
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the digraph D′ which has the desired paths if and only if D does. As remarked
in Theorem 8.5.1, D′ can be constructed in polynomial time. By the construc-
tion of D′ (replacing each Wi by a semicomplete digraph) it follows that D′

is a semicomplete digraph and hence we can apply the polynomial algorithm
of Theorem 2.5.6 to D′ in order to decide the existence of the desired paths
in D. The algorithm of Theorem 2.5.6 can be used to find vertex-disjoint
(x1, y1)-, (x2, y2)-paths in D′ if they exist and given these paths it is easy to
construct the corresponding paths in D (it suffices to take minimal paths).

	


By inspecting the proof of Theorem 8.5.1 it is not difficult to see that
the following much more general result is true. The main point is that in
the proof of Theorem 8.5.1 we either find the desired paths or decide that
they exist if and only if there are such paths that use no arcs inside any Si.
Hence instead of making each Ti semicomplete, we may just as well make it
an independent set, by deleting all arcs inside Si.

Theorem 8.5.3 ([5]) Let Φ be a class of strongly connected digraphs, let Φext

denote the class of all extensions of graphs in Φ and let

Φ∗ = {F [D1, . . . , D|F |] : F ∈ Φ, each Di is an arbitrary digraph}.

There is a polynomial algorithm for the 2-Disjoint paths problem in Φ∗ if
and only if there is a polynomial algorithm for the 2-Disjoint paths problem
for all digraphs in Φext. 	


This result shows that studying extensions of digraphs can be quite useful.
One example of such a class Φ, for which Theorem 8.5.3 applies, is the

class of strong semicomplete digraphs. This follows from the fact that we can
reduce the 2-Disjoint paths problem for extended semicomplete digraphs
to the case of semicomplete digraphs in the same way as we did for quasi-
transitive digraphs in the proof of Theorem 8.5.2. Hence the 2-Disjoint
paths problem is polynomially solvable for all digraphs that can be obtained
from strong semicomplete digraphs by substituting arbitrary digraphs for
vertices. It is important to note here that Φ must consist only of strong
digraphs, since it is not difficult to reduce the 2-Disjoint paths problem for
arbitrary digraphs (which is NP-complete) to the 2-Disjoint paths problem
for those digraphs that can be obtained from the digraph H consisting of just
an arc uv by substituting arbitrary digraphs for the vertex v.

The proof of the following easy lemma is left to the reader. Note that four
is the best possible, as can be seen from the complete biorientation of the
undirected graph consisting of a 4-cycle x1x2y1y2x1 and a vertex z joined to
each of the four other vertices.
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Lemma 8.5.4 Let D be a digraph of the form D = �C2[S1, S2], where Si is an
arbitrary digraph on ni vertices, i = 1, 2. If D is 4-strong, then D is 2-linked.
�

Theorem 2.5.1 gives a sufficient condition for a semicomplete digraph to
be 2-linked in terms of its strong connectivity. The same condition turns out
to be sufficient for quasi-transitive digraphs.

Before proving our final results of this subsection, we will be needing a
structural theorem regarding k-strong digraphs due to Bang-Jensen.

Lemma 8.5.5 ([5]) Let D = F [S1, . . . , Sf ] where F is a strong digraph on
f ≥ 2 vertices, each Si is a digraph with ni vertices, and F has as few
vertices as possible among all non-trivial decompositions of D of this kind. Let
D0 = F [Kn1 , . . . ,Knf

] be the digraph obtained from D by deleting every arc
which lies inside some Si, and let S be a minimal (with respect to inclusion)
separating set of D0. Then S is also a separating set of D, unless each of the
following holds:

(a) S =
⋃

j �=i V (Sj) for some 1 ≤ i ≤ f ,
(b) D[Si] is a strong digraph, and
(c) D = �C2[S, Si].

In particular, if F has at least three vertices, then D is k-strong if and only
if D0 is k-strong.

Theorem 8.5.6 ([5]) Let k ≥ 4 be a natural number and let F be a digraph
on f ≥ 2 vertices with the property that every k-strongly connected digraph of
the form F [T1, T2, . . . , Tf ], where each Ti, i ∈ [f ], is a semicomplete digraph,
is 2-linked. Let D = F [S1, S2, . . . , Sf ], where Si is an arbitrary digraph on ni

vertices for all i ∈ [f ]. If D is k-strongly connected, then D is 2-linked.

Proof: Let D = F [S1, S2, . . . , Sf ], where Si is an arbitrary digraph on ni

vertices for each i ∈ [f ], be given. By Lemma 8.5.4 we may assume that D

cannot be decomposed as D = �C2[R1, R2], where R1 and R2 are arbitrary
digraphs. Construct D′ as described in Theorem 8.5.1. Note that by Lemma
8.5.5, κ(D′) = κ(D). Thus D′ is k-strong and using Theorem 8.5.1 and the
assumption of the theorem we conclude that D is 2-linked. 	

Corollary 8.5.7 ([5]) Every 5-strong quasi-transitive digraph is 2-linked.

Proof: By Theorem 8.3.5, every strong quasi-transitive digraph is of the form
D = F [S1, S2, . . . , Sf ], f = |F |, where F is a strong semicomplete digraph
and each Si is a non-strong quasi-transitive digraph on ni vertices. By Lemma
8.3.4 and the connectivity assumption, |F | ≥ 3. Note that for any choice
of semicomplete digraphs T1, . . . , Tf the digraph D′ = F [T1, T2, . . . , Tf ] is
semicomplete. Hence the claim follows from Theorem 8.5.6 and the fact that,
by Theorem 2.5.12, every 5-strong semicomplete digraph is 2-linked. (Since F
has at least three vertices, it follows from Lemma 8.5.5 that κ(D′) = κ(D).)
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8.5.1 k-Linkages

As mentioned at the beginning of this section, since the k-Disjoint paths
problem is already NP-complete for k = 2, the restriction of this problem to
particular classes of digraphs has been studied by many authors. It turns out
that, for some families, the problem can be solved in polynomial time when
k is fixed. For example, consider Theorems 3.4.1, 2.5.7, and 2.5.11.

Recall that a digraph D is decomposable if there exist a digraph R on
r vertices, and distinct (but possibly isomorphic) digraphs L1, . . . , Lr, such
that D = R[L1, . . . , Lr]. In this section we will study the k-Disjoint paths
problem in decomposable digraphs. As a consequence, we will obtain polyno-
mial algorithms to solve the k-Disjoint paths problem in quasi-transitive
digraphs and extended semicomplete digraphs. The results of this section are
due to Bang-Jensen, Christiansen, and Maddaloni [7].

Let D = S[M1, ...,Ms] be a decomposable digraph and let P be a path
in D. We say that P is D-internal if P ⊆ Mi for some i, and we say that P
is D-external otherwise. When D is clear from the context we just call the
path internal or external. Similarly we say that a pair (s, t) ∈ V (D)×V (D)
is internal if s, t ∈ V (Mi) for some i, and is external otherwise.

Let Π = {(s1, t1), ..., (sk, tk)} be a set of k pairs of distinct terminals. A
Π-linkage is a collection L of k disjoint paths Pi, i ∈ [k], such that Pi is
an (si, ti)-path. If a Π-linkage L exists in the digraph D we say that L is a
linkage for (D,Π)

Lemma 8.5.8 ([7]) Let D = S[M1, ...,Ms] be a decomposable digraph and Π
a set of pairs of terminals. Then (D,Π) has a linkage if and only if it has a
linkage whose external paths do not use any arc of D[Mi] for i ∈ [s]. 	


Let D be a digraph with vertex set v1, v2, . . . , vn and let K be another
digraph. By blowing up vi into K in D we mean the operation that sub-
stitutes the digraph K for the vertex vi in D, that is, creates the digraph
D′ = D[{v1}, . . . , {vi−1},K, {vi+1}, . . . , {vn}]. We say that a class of digraphs
Φ is closed with respect to blow-up if for any D ∈ Φ, for every integer
m and for every v ∈ V (D), there exists a digraph K on m vertices such that
the blowing up of v into K results in a digraph which is still in Φ.

Lemma 8.5.9 ([7]) If the class Φ is closed with respect to the blowing-up
operation, S ∈ Φ and D = S[M1, ...,Ms], then it is possible to replace the
arcs inside each Mi, i ∈ [s], with other arcs, so that the resulting digraph is
in Φ. 	


We say that a class of digraphs Φ is a linkage ejector if

1. There exists a polynomial algorithm AΦ to find a total Φ-decomposition
of every totally Φ-decomposable digraph.

2. There exists a polynomial algorithm BΦ for solving the k-Disjoint paths
problem on Φ. The running time depends (possibly exponentially) on k
but the algorithm is polynomial when k is fixed.
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3. The class Φ is closed with respect to blow-up and there exists a poly-
nomial algorithm CΦ wich given a totally Φ-decomposable digraph D =
S[M1, ...,Ms], constructs a digraph of Φ by replacing the arcs inside each
of the Mi’s, as in Lemma 8.5.9.

Theorem 8.5.10 Let Φ be a linkage ejector. For every fixed k, there exists
a polynomial algorithm to solve the k-Disjoint paths problem on totally
Φ-decomposable digraphs. 	


Recall that, by Theorem 8.3.5, quasi-transitive digraphs are totally Φ3-
decomposable. The following result of Bang-Jensen, Christiansen, and Mad-
daloni deals with this class of digraphs, which also includes, for example,
extended semicomplete digraphs.

Lemma 8.5.11 ([7]) The class Φ3 is a linkage ejector. 	

We thus obtain the following corollary of Theorem 8.5.10

Theorem 8.5.12 For every fixed k, there exists a polynomial algorithm to
solve the k-Disjoint paths problem on quasi-transitive digraphs and ex-
tended semicomplete digraphs.

8.5.2 Weak k-Linkages

Note that for this subsection we allow both parallel arcs and loops and (for
simplicity) we still use the name digraph rather than directed pseudograph.

Let D = (V,A) be a digraph and let s1, . . . , sk, t1, . . . , tk be a collection of
(not necessarily distinct) vertices of D. A weak k-linkage from (s1, . . . , sk)
to (t1, . . . , tk) is a collection of k arc-disjoint paths P1, . . . , Pk such that, for
each i ∈ [k], Pi is an (si, ti)-path if si �= ti and a proper cycle containing si

if si = ti.

weak k-linkage
Input: A digraph D = (V,A) and not necessarily distinct vertices
s1, . . . , sk, t1, . . . , tk.
Question: Does D contain a weak k-linkage from (s1, . . . , sk) to
(t1, . . . , tk)?

It is well-known that the weak k-linkage problem is NP-complete al-
ready when k = 2 [30].

Until recently, results regarding the weak k-linkage problem were lim-
ited, both in number and depth. In Section 3.4, the case of acyclic digraphs
is discussed, and Section 2.5 presents a brief evolution of this problem, with
an obvious emphasis on the class of semicomplete digraphs. In particular, the
results of Fradkin and Seymour found in [31] (and included in Section 2.5)
mark a turning point in the scope of families for which nice results can be
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obtained. In this section we present the results obtained by Bang-Jensen and
Maddaloni in [19] regarding the weak k-linkage problem on decomposable
digraphs. We begin with a result which is implicitly stated in [31]. See Section
2.5 for the definition and a brief discussion of the concept of cutwidth.

Theorem 8.5.13 (Fradkin–Seymour [31]) For every natural number θ the
weak k-linkage problem is polynomial for every fixed k, when we consider
digraphs with cutwidth at most θ.

The following easy consequence will be used in our algorithms.

Theorem 8.5.14 For every natural number p the weak k-linkage problem
is polynomial, for every fixed k, when we consider digraphs with at most p
directed cycles.

Proof: Let D be a digraph with at most p directed cycles. Then the cutwidth
of D is at most p: we may delete an arbitrary arc from each of the at most p
cycles to get a digraph with cutwidth 0, so D has cutwidth at most p. Now
the claim follows from Theorem 8.5.13. 	


Assume we want to decide the existence of a weak k-linkage from the
vertices (s1, ..., sk) to the vertices (t1, ..., tk). We will denote by Π the list
of pairs5 (s1, t1), . . . , (sk, tk). In the rest of this subsection we will think
of Π both as a list of k pairs and as a collection of all the terminals
s1, . . . , sk, t1, . . . , tk.

We say that D has a weak Π-linkage if it contains a weak k-linkage from
(s1, . . . , sk) to (t1, . . . , tk). We sometimes also say that (D,Π) has a weak
linkage.

As in the previous subsection, we will use the term blow up of vi into a
digraph K (in D) meaning the composition D[v1, ..., vi−1,K, vi+1, ..., vn].

Recall that we allow multiple arcs (and loops) in our digraphs, and also
that μD(u, v) denotes the number of arcs from a vertex u to a vertex v. We will
assume throughout the rest of this subsection, unless otherwise stated, that k
denotes the number of pairs to be linked. An instance of the problem (D,Π)
is equivalent to (D′,Π) where V (D′) = V (D) and for every u, v ∈ V (D′)
one has μD′(u, v) = min(μD(u, v), k). Therefore from now on we will only
consider digraphs D with

μD(u, v) ≤ k ∀u, v ∈ V (D)

while studying the weak k-linkage problem.
Let D = (V,A) be a digraph and H an induced subdigraph of D. We

say that H is a module if for every a, b ∈ V (H), v ∈ V (D \ H) we have
that μD(v, a) = μD(v, b) and μD(a, v) = μD(b, v). We say that H is a clean

5 Note that the same pair (or the same vertex) may appear more than once in the
list and we may have si = ti.
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module with respect to Π if it is a module containing no terminals of Π. The
concept of module yields an alternative definition of a decomposable graph.
A digraph D is decomposable if D = S[H1, ...,Hs], for some digraph S,
with s = |V (S)| ≥ 2 and some choice of disjoint modules H1, ...,Hs. In this
case S is called the quotient digraph (of D) induced by H1, ...,Hs.

The algorithms developed in this subsection rely on the following funda-
mental fact, the proof of which we will omit: a weak linkage need not use any
arc inside clean modules. As mentioned earlier, the results of this section are
due to Bang-Jensen and Maddaloni.

Lemma 8.5.15 ([19]) Let D be a digraph, Π a list of k terminal pairs and
H ⊂ D a clean module with respect to Π. Let D′ be the contraction of H into
a single vertex h. Then D has a weak Π-linkage if and only if D′ has a weak
Π-linkage. 	


The following result is an immediate consequence of the proof of Lemma
8.5.15 (see [19]).

Lemma 8.5.16 ([19]) Let Π be a list of terminal pairs and H ⊂ D be a clean
module with respect to Π. For every weak linkage P ′

1, ..., P
′
k of (D,Π), there

exists another weak linkage P1, ..., Pk such that P ′
i = Pi on D \ H, and for

i = 1, ..., k, A(Pi ∩ H) = ∅.

As in the previous subsection, given a decomposable digraph D =
S[H1, ...,Hs] and a path P we say that P is internal if P ⊆ Hj for some Hj ,
and we say that P is external otherwise.6

Similarly, we say that a pair (s, t) is an internal pair if s, t ∈ Hj for
some j, and we say that (s, t) is an external pair otherwise.

If a module H is not clean, i.e. it contains terminals, then some of the
arcs in A(H) may be necessary to guarantee a weak linkage. See Figure 8.4.
The following lemma shows that, in a precise sense, a weak linkage need not
use too many arcs inside a given module. Together with Lemma 8.5.16, this
will allow a polynomial brute-force algorithm (Theorem 8.5.19).
For technical reasons that will become clear later, we consider the more gen-
eral case where a set of arcs F has been deleted from D.

Lemma 8.5.17 ([19]) Let D = S[H1, ...,Hs] be a decomposable digraph, let
Π ′ be a list of h terminal pairs and let F be a set of arcs in D satisfying
d−

F (v), d
+
F (v) ≤ r for all v ∈ V (D). If (D \ F,Π ′) has a weak linkage, then it

has a weak linkage P1, ..., Ph such that we have |V (
⋃

i∈E Pi∩Hj)| ≤ 2h(h+r),
for every j ∈ {1, ..., s}, where E denotes the set of indices i for which Pi is
external.

Note that from the previous proof we have that for every j ∈ {1, . . . , s}
and every i ∈ E , |A(Pi ∩ Hj)| < 2(h + r).

6 Note that an external path may still start and end in the same module Hj .
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H1

s1=s2

H2

t1=t2

Figure 8.4 An example with |Π| = 2, the only weak Π-linkage uses the arc inside
H1.

Lemma 8.5.18 ([19]) Let C be a class of digraphs for which there exists an
algorithm A to decide the weak k-linkage problem, whose running time
is bounded by f(n, k). Let D = (V,A) be a digraph, Π a list of k pairs of
terminals and F ⊆ V ×V such that D′ := (V,A∪F ) is a member of C. There
exists an algorithm A−, whose running time is bounded by f(n, k + |F |), to
decide whether D has a weak Π-linkage.

Proof: Suppose F = {s′
1t

′
1, ...., s

′
k′t′k′}, where k′ = |F |, and let Π ′ =

(s′
1, t

′
1), ..., (s

′
k′ , t′k′). D has a weak Π-linkage if and only if D′ has a weak

(Π ∪ Π ′)-linkage, from which the claim follows. Indeed, if D has a weak Π
linkage, then this extends to a weak (Π ∪ Π ′)-linkage of D′ by simply taking
the arcs s′

it
′
i as (s′

i, t
′
i)-paths. If D′ has a weak Π ∪ Π ′-linkage L, it is easy to

see that A(L) \ F contains a weak Π-linkage of D. 	

Given a digraph D and a non-negative integer c, let D(c) denote the set

of digraphs that can be obtained from D by first adding any number of arcs
parallel to the already existing ones and then blowing up b vertices, with
0 ≤ b ≤ c, to digraphs of size less than or equal to c each. We say that a class
of digraphs Φ is bombproof if there exists a polynomial algorithm AΦ to
find a total Φ-decomposition of every totally Φ-decomposable digraph and,
for every integer c, there exists a polynomial algorithm7 BΦ to decide the
weak k-linkage problem for the class

Φ(c) :=
⋃

D∈Φ

D(c).

The following theorem of Bang-Jensen and Maddaloni is the main result
in [19].

Theorem 8.5.19 ([19]) Let Φ be a bombproof class of digraphs. There is a
polynomial algorithm M which takes as input a 5 tuple [D, k, k′,Π, F ], where
D is a totally Φ-decomposable digraph, k, k′ are natural numbers with k′ ≤ k,
Π is a list of k′ terminal pairs and F ⊆ A(D) is a set of arcs satisfying

7 Note that the running time of BΦ may depend heavily on c.
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d−
F (v), d

+
F (v) ≤ k − k′for all v ∈ V (D).
|F | ≤ (k − k′)2k

and decides whether D \ F contains a weak Π-linkage. 	


For the sake of brevity we will omit the proof of Theorem 8.5.19. Nonethe-
less, we present a description for the proposed polynomial algorithm M.

1. If Π = ∅ output that a solution exists and return.
2. Run AΦ to find a total Φ-decomposition of D = S[H1, ...,Hs].
3. If this decomposition is trivial, that is D = S, then D ∈ Φ ⊆ Φ(1), so run

B−
Φ on (D \ F,Π) to decide the problem and return.

4. Find among H1, ...,Hs those modules K1, ...,Kl that contain at least one
terminal. Let D′ be obtained by contracting all the modules distinct from
K1, ...,Kl. Let F ′ be the set of arcs obtained from F after the contraction.

5. Let Πe ⊆ Π (Πi ⊆ Π) be the list of external (internal) pairs (sq, tq) in
Π.

6. For every partition of Πi = Π1 ∪ Π2 look for external paths linking the
pairs in Πe ∪ Π1 and internal paths linking the pairs in Π2. This is done
in the following way:

a) If Πe ∪ Π1 = ∅, then for i = 1, ..., l: run M recursively on input
[Ki, k, k′

i,Π∩Ki, F∩A(Ki)], where Π∩Ki denotes the list of terminal
pairs that lie inside Ki and k′

i is the number of those pairs.
b) If Πe ∪ Π1 �= ∅, let k′

i be the number of pairs in Π2 ∩ Ki. We do
the following for each possible choice of l vertex sets Wi ⊆ V (Ki),
i = 1, ..., l, of size min{|V (Ki)|, 2(k′ − k′

i)(k − k′)} and arc sets8Fi ⊆
A(Ki[Wi]) \ F , i = 1, ..., l, with Fi satisfying

d−
(F∩A(Ki))∪Fi

(v), d+(F∩A(Ki))∪Fi
(v) ≤ k′ − k′

i.

|Fi| ≤ 2(k′ − k′
i)(k − k′).

• For every module Ki remove all the vertices of V (Ki) \ Wi and
then all remaining arcs except those in Fi.

• Define D′′ to be the digraph obtained from D′ with this proce-
dure.

• Run B−
Φ on (D′′ \ F ′,Πe ∪ Π1).

• For i = 1, ..., l, run M recursively on input [Ki, k, k′
i,Π2∩Ki, (F∩

A(Ki)) ∪ Fi].
If at step 6(a) all the instances examined are linked or at step 6(b), there
is a choice of Wi, Fi, i = 1, ..., l, such that all instances examined are
linked, then output that a weak linkage exists and return.

7. If all choices of Π1,Π2 have been considered, without verifying the exis-
tence of any weak linkage, then output that no weak linkage exists.

8 Ki[Wi] is the subdigraph of Ki induced by Wi.
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Taking k′ = k and running the previous algorithm on input [D, k, k,Π, ∅]
where D is any totally Φ-decomposable digraph and Π is a list of k terminal
pairs from V (D), we obtain the main result of this subsection.

Theorem 8.5.20 Let Φ be a bombproof class of digraphs. For every fixed k
there exists a polynomial algorithm for the weak k-linkage problem for the
totally Φ-decomposable digraphs.

Based on the recursive structure given by the canonical decomposition
for quasi-transitive digraphs (Theorem 8.3.5), Bang-Jensen and Maddaloni
proved that there is a polynomial algorithm for the weak k-linkage problem
on quasi-transitive digraphs [19]. Recall that Theorem 8.3.5 can be restated
to say that quasi-transitive digraphs are totally Φ3-decomposable.

Lemma 8.5.21 The class Φ3 is bombproof.

Proof: We can get a polynomial algorithm for the total Φ3-decomposition
from Theorem 8.3.27. Given a positive integer c and a digraph D ∈ Φ3,
consider a digraph in D′ ∈ D(c): if D is semicomplete, then D′ misses no
more than c3 arcs to be semicomplete. If D is acyclic, then D′ has at most
O(cc+1) cycles or O(c · (ck)c) if there are (at most k) parallel arcs, because
all the cycles must lie in one of the blown up subdigraphs. By Theorem 2.5.5
and Lemma 8.5.18 in the first case and Theorem 8.5.14 in the second case,
there is a polynomial algorithm to decide the weak k-linkage problem in
D(c) and hence in Φ3(c). Thus we can conclude that Φ3 is bombproof. 	

Theorem 8.5.22 For every fixed k there exists a polynomial algorithm for
the weak k-linkage problem for quasi-transitive digraphs.

Proof: It follows from Theorem 8.3.5 that quasi-transitive digraphs are to-
tally Φ3-decomposable. By Lemma 8.5.21 Φ3 is bombproof, hence we can
apply Theorem 8.5.20. 	


We can apply Theorem 8.5.20 to another class of digraphs; extended semi-
complete digraphs are clearly totally Φ3-decomposable. Hence, from Theorem
8.5.20, we have the following

Theorem 8.5.23 For every fixed k there exists a polynomial algorithm for
the weak k-linkage problem for extended semicomplete digraphs. 	


8.6 Kings and Kernels

The existence of k-kings was one the first problems to be explored for quasi-
transitive digraphs. As a matter of fact, the concept of k-king was first intro-
duced in [16] for the purpose of studying quasi-transitive digraphs. In fam-
ilies of digraphs closed under the reversal of every arc, like quasi-transitive
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digraphs, the study of k-kings is closely related to the study of (k+1)-kernels:
a k-king in the reversal of D is a (k + 1)-kernel of D.

After spending some years dormant, this subject has received a lot of
attention lately. Surprisingly, many of the nice existing results for kings in
quasi-transitive digraphs admit natural generalizations to k-quasi-transitive
digraphs.

8.6.1 Kings

A k-king in a digraph D is a vertex u such that d(u, v) ≤ k for every
v ∈ V (D) − u (it is a k-dominating vertex). A king is a 2-king. The
study of kings in digraphs began with the mathematical sociologist Landau,
who proved that every vertex of maximum out-degree in a tournament is a
king, [53] (see Theorem 2.2.12). Nonetheless, the term king was introduced by
Maurer in [54], where he used tournaments to model dominance in flocks of
chickens. Some of the classical results on k-kings in digraphs can be consulted
in [9], and Section 2.2 includes the most relevant results for tournaments.

Most of the main results in this section rely on several technical lemmas,
so we prefer to omit them for the sake of presentation.

In [16], Theorem 8.3.5 is used extensively by Bang-Jensen and Huang
to prove the first results on the existence and number of 3-kings in quasi-
transitive digraphs. The main results can be condensed in the following the-
orem.

Theorem 8.6.1 ([16]) Let D be a quasi-transitive digraph. Then we have

1. D has a 3-king if and only if it has an out-branching.
2. If D has a 3-king, then the following holds:

a) Every vertex in D of maximum out-degree is a 3-king.
b) If D has no vertex of in-degree zero, then D has at least two 3-kings.
c) If the unique initial strong component of D contains at least three

vertices, then D has at least three 3-kings.

Sketch of Proof. Clearly, the existence of an out-branching is necessary.
To prove the converse, assume that D has an out-branching. This implies
that D has a unique initial strong component. Since the strong components
digraph of a quasi-transitive digraph is transitive, a vertex is a 3-king of D
if and only if it is a 3-king of the unique initial component of D. So, we may
assume that D is strong.

Let D = S[Q1, . . . , Qs] be the decomposition of D given by Theorem 8.3.5.
Since S is semicomplete, every vertex of S belongs to a 3-cycle of S. Thus,
for every 1 ≤ i ≤ s, each vertex in every Qi has distance at most 3 to every
other vertex in Qi. Assume without loss of generality that Q1 corresponds to
a vertex s1 of maximum out-degree in S. Then s1 is a 2-king in S, and hence
every vertex in Q1 is a 3-king of D.
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Observe that the vertices of maximum out-degree in D must belong to the
Qi’s corresponding to the vertices of maximum out-degree in D. If there are
no vertices of in-degree zero in D, there are at least two vertices of maximum
out-degree in S. 	


From the previous argument it can also be observed that D has a 2-king
if and only if |V (Qi)| = 1 for some Qi corresponding to a 2-king of S. Also,
similar argumentation leads to other, more specific, results regarding the
distribution of 3-kings in a quasi-transitive digraphs. As an example consider
the following proposition from [16]; a non-king is a vertex which is not a
3-king.

Proposition 8.6.2 Let D be a quasi-transitive digraph which contains a 3-
king but no vertex of in-degree zero. Every non-king is dominated by at least
three 3-kings, unless the initial component of D is a 2-cycle, in which case
every non-king is dominated by exactly two 3-kings. 	


After this first wave of results, most of the study of k-kings was restricted
to multipartite tournaments for several years. It was not until 2012 that
k-quasi-transitive digraphs were introduced in [48], and the following gener-
alization of the first item of Theorem 8.6.1 was proved between [48] and [37]
by Galeana-Sánchez, Hernández-Cruz and Juárez-Camacho.

Proposition 8.6.3 ([37, 48]) Let k ≥ 2 be an integer. If D is a k-quasi-
transitive digraph, then D has a (k + 1)-king if and only if it has a unique
initial strong component. 	


Proposition 8.6.3 was then the starting point for studying kings in k-quasi-
transitive digraphs. Further generalizations to Theorem 8.6.1 were obtained,
but also some strengthenings. Recall that we know exactly when a quasi-
transitive digraph has a 2-king; a similar situation was described by Wang
and Meng for k-quasi-transitive digraphs.

Theorem 8.6.4 ([60]) Let k ≥ 4 be an integer. If D is a k-quasi-transitive
digraph, then D has a k-king if and only if it has a unique strong component
which is not isomorphic to an extended (k + 1)-cycle �C[E0, . . . , Ek], where
each Ei is an independent set on at least two vertices. 	


Now that we know exactly when a k-king exists, it is natural to ask for the
minimum number of k-kings in a k-quasi-transitive digraph. The following
theorem of Wang and Zhang deals with this question.

Theorem 8.6.5 ([63]) Let k ≥ 5 be an integer, and let D be a strong k-
quasi-transitive digraph with at least two vertices. If D is not isomorphic to
an extended (k + 1)-cycle, then D has at least two k-kings. 	


It should be noted that this is the best possible result in terms of the
number of k-kings in a k-quasi-transitive digraph. Consider the digraph
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H = �Ck+1[{x0}, {x1}, E2, E3, . . . , Ek], where Ei is an independent set with at
least two vertices. Let D be obtained from H by adding the arc x1x0. Clearly
D is a k-quasi-transitive digraph and it is not isomorphic to an extended
(k +1)-cycle. It is not difficult to check that there are exactly two k-kings in
D, namely, x0 and x1.

Given the previous discussion, it is natural to give further consideration
to (k+1)-kings in k-quasi-transitive digraphs. Unfortunately, unlike the case
of quasi-transitive digraphs, it is not true that every vertex of maximum out-
degree in a k-quasi-transitive digraph is a (k + 1)-king. As noted in [37], the
only vertex of maximum out-degree in the 4-transitive digraph with vertex
set {v1, v2, v3, v4}, and arc set {v1v2, v2v3, v2v4, v3v4, v4v3}, is not a 5-king.
Nonetheless, there are some simple conditions that will ensure that every
vertex of maximum out-degree in a k-quasi-transitive digraphs is a (k + 1)-
king. The following condition was given by Wang and Zhang in [63]; recall
that a k-king u in a digraph D is strict if there exists a vertex v such that
d(u, v) = k.

Theorem 8.6.6 ([63]) Let k ≥ 2 be an integer and let D be a k-quasi-
transitive digraph.

1. If D is strong, then every vertex of maximum out-degree in D is a (k+1)-
king.

2. If D has a strict (k + 1)-king, then every vertex of maximum out-degree
in D is a (k + 1)-king.

	

As can be observed in Theorem 8.6.8, the number of (k + 1)-kings in

k-quasi-transitive digraphs can be very large, compared to the number of k-
kings. The proof uses the following theorem regarding 4-kings in semicomplete
bipartite digraphs, which can be obtained from the analogous result due to
Koh and Tan, on bipartite tournaments (Theorem 7.12.2), [50].

Theorem 8.6.7 Let D be a semicomplete bipartite digraph with a unique
initial strong component. If there is no 3-king in D, then there are at least
eight 4-kings in D.

Let us point out that Theorem 8.6.7 was first stated by Wang in [63], and
she cited [50] by Koh and Tan as the source of this result. Nonetheless, as
mentioned above, Koh and Tan only proved this result for bipartite tourna-
ments (Theorem 7.12.2). Wang does not give any argument in [63] to extend
this result to semicomplete bipartite digraphs, so we will give a short one
here.

Let D be a semicomplete bipartite digraph with only one initial strong
component S, and without 3-kings. By Theorem 7.1.1, every strong compo-
nent C of D contains a strong spanning subgraph C ′, which is a bipartite
tournament. Replacing every strong component C by C ′ in D results in a
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bipartite tournament with a unique strong component and without a 3-king.
We can now apply Theorem 7.12.2 to this bipartite tournament to obtain the
desired eight 4-kings. When we put back the deleted arcs, we will still have
eight 4-kings in D, and, since they are in an initial strong component, they
are 4-kings of all of D.

The following result was proved by Galeana-Sánchez, Hernández-Cruz
and Juárez-Camacho, for k = 2, and by Wang and Zhang for k ≥ 3.

Theorem 8.6.8 ([37, 63]) Let k ≥ 2 be an integer, and let D be a k-quasi-
transitive digraph. If there is no k-king in D, then the number of (k+1)-kings
in D is at least 2k + 2.

Proof: It suffices to prove the result for strong digraphs. For k = 2, consider
the decomposition D = S[Q1, . . . , Qs] given by Theorem 8.3.5. Since D is
strong, the semicomplete digraph S is also strong, and thus, by Corollary
2.2.14, it has at least three 2-kings. Since D does not have 2-kings, it follows
from the observation made after Theorem 8.6.1 that every Qi corresponding
to a 2-king of S has at least two vertices. Each of these vertices is a 3-king,
and thus, D has at least six 3-kings.

The case k = 3 can be directly verified using Theorems 8.3.15 and 8.6.7.
Finally, for k ≥ 4, as D has no k-king, it must be isomorphic to an extended
(k+1)-cycle, by Theorem 8.6.4. Every partite set in this cycle extension must
have at least two vertices, otherwise there would be a k-king in D. Since every
vertex of D is a (k + 1)-king, the number of (k + 1)-kings is at least 2k + 2.

	


8.6.2 (k, �)-Kernels

A kernel in a digraph D is an independent set K such that every vertex
not in K dominates some vertex in K. Kernels in digraphs were introduced
by von Neumann and Morgenstern while studying cooperative games [57].
Since then, digraph kernels have been studied in many contexts, including
list colouring, game theory and graph perfectness [25], mathematical logic
[22], and complexity theory [58].

There are many generalizations of this concept, one that has been widely
studied and which relates to the kings from the previous subsection is the
following. A subset K of V (D) is k-independent if the distance between
every pair of vertices of K is at least k, and it is �-absorbing if for every
vertex not in K, it reaches a vertex in K at distance at most �; if � = 1,
we simply say that K is absorbing. A (k, �)-kernel in the digraph D is a
k-independent and �-absorbing subset of V (D). A k-kernel is a (k, k − 1)-
kernel, and thus, a 2-kernel is a kernel. The decision problem k-Kernel has
an arbitrary digraph D as an input, and asks whether D has a k-kernel. When
k = 2, the corresponding problem will be referred to only as Kernel.
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Chvátal proved that Kernel is NP-complete [26]. Later Fraenkel proved
that this problem remains NP-complete even when restricted to planar di-
graphs with Δ ≤ 3, Δ+,Δ− ≤ 2, [32]. Recently, Hell and Hernández-Cruz
proved that it is also NP-complete when restricted to digraphs with 3-
colourable underlying graph (as opposed to the fact that every bipartite
digraph has a kernel) [45]. Given the nice structure of quasi-transitive di-
graphs, it is not a surprise that members of this family having a kernel admit
a simple characterization. One such characterization was given by Hell and
Hernández-Cruz in [45].

Theorem 8.6.9 ([45]) Let D be a strong quasi-transitive digraph. Then D
has a kernel if and only if there is an absorbing vertex in D.

Proof: We only prove the non-trivial implication. Let K be a kernel of D.
Since K is independent, it follows from Lemma 8.3.4 that it must be con-
tained in V (S) for some connected component of UG(D). Recalling that D is
strongly connected, there must be at least one connected component S′ �= S
of UG(D) such that V (S) → V (S′). Since K ⊆ S, it must be the case
that V (S′) → V (S). Hence, Lemma 8.3.4 implies that |V (S)| = 1, and thus
|K| = 1. If K = {v}, then v is an absorbing vertex of D. 	


In [48] Galeana-Sánchez and Hernández Cruz observe that, in order for
a k-quasi-transitive digraph D to have a k-kernel, it suffices to construct a
k-kernel for every terminal strong component of D. In particular, this applies
to kernels and quasi-transitive digraphs, and it allows us to conclude the
following observation, which appears implicitly in [45].

Corollary 8.6.10 Let D be a quasi-transitive digraph. Then D has a kernel
if and only if every terminal strong component contains an absorbing vertex.

Hence, we obtain a polynomial time algorithm for the problem Kernel
restricted to the class of quasi-transitive digraphs.

Corollary 8.6.11 The problem Kernel restricted to the class of quasi-
transitive digraphs can be solved in polynomial time. Also, if a kernel exists,
it can be constructed in polynomial time.

Proof: Let D = (V,A) be a digraph such that |V | = n and |A| = m. The
strong components digraph of D can be obtained in time O(n + m) and
it can have at most O(n) terminal strong components. For every terminal
component C, it can be verified in time O(n + m) if an absorbing vertex
exists: it suffices to construct the out-degree sequence of C. Hence, the kernel
problem can be decided in time O(n2 + nm). If D has a kernel, it can be
found in the same time. 	


In order to obtain an analogous result for 3-kernels in 3-quasi-transitive
digraphs, we need the following result of Hell and Hernández-Cruz.
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Proposition 8.6.12 ([45]) It can be determined in linear time whether a
semicomplete bipartite digraph has a 3-kernel. Also, if a 3-kernel exists, it
can be found in linear time.

This suffices to obtain the desired result. The proof of the following the-
orem implicitly uses the structure given in Theorem 8.3.15. Recall that the
digraph Fn has vertex set {x, y, z, v1 . . . , vn}, and its arcs are such that xyzx
is a directed cycle, and yviz is a directed path for every 1 ≤ i ≤ n (see Figure
8.3).

Theorem 8.6.13 ([45]) The problem 3-kernel restricted to the class of 3-
quasi-transitive digraphs can be decided in polynomial time. Also, if a 3-kernel
exists, it can be constructed in polynomial time.

Proof: Let D = (V,A) be a digraph such that |V | = n and |A| = m.
The strong components digraph of D can be constructed in time O(n +
m) and it can have at most O(n) terminal strong components. For every
semicomplete bipartite terminal component, according to Proposition 8.6.12,
it can be verified if it has a 3-kernel and, if so, a 3-kernel can be found, both
in time O(n + m). For each semicomplete terminal component, a 3-kernel
(a 2-king) can be found in time O(n + m). For every terminal component
isomorphic to Fn, a 3-kernel can be constructed in constant time. Hence, the
3-kernel problem can be decided in time O(n2 + nm). If D has a 3-kernel, it
can be found in the same time. 	


In view of Corollary 8.6.11 and Theorem 8.6.13, the following natural
question was stated by Hell and Hernández-Cruz in [45].

Problem 8.6.14 ([45]) Is k-Kernel polynomial time solvable for k-quasi-
transitive digraphs?

In [48] and [37], the existence of r-kernels for r ≥ k+2 was proved for every
k-quasi-transitive digraph by Galeana-Sánchez, Hernández-Cruz and Juárez-
Camacho. It was also proved in [36] that every quasi-transitive digraph has
an r-kernel for r ≥ 3, and in [48] it was proved that every 3-quasi-transitive
digraph contains a 4-kernel, so it was natural to conjecture the existence of a
(k + 1)-kernel for every k-quasi-transitive digraph. This conjecture was later
proved by Wang and Zhang [63].

Theorem 8.6.15 ([63]) Let D be a k-quasi-transitive digraph with k ≥ 2.
Then D has a (k + 1)-kernel.

Proof: We will only prove the case k ≥ 4. For the cases k ∈ {2, 3} we refer
the reader to [36, 48].

Note that it suffices to choose (k+1)-kernels for every terminal component
of D. To achieve this, consider the digraph

←−
D (called the converse of D)

which is obtained from D by reversing every arc. Theorem 8.6.4 guarantees
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that every initial component of
←−
D either contains a k-king, or is isomorphic

to an extended (k + 1)-cycle. The k-kings in the initial components of
←−
D

become (k + 1)-kernels in the terminal components of D. Since the reversal
of an extended (k+1)-cycle is again an extended (k+1)-cycle, and it is clear
that any partite set of an extended (k +1)-cycle is a (k +1)-kernel for it, we
can choose a (k + 1)-kernel for every terminal component of D. 	


A (k + 1)-cycle is a k-quasi-transitive digraph without a k-kernel. Thus,
Problem 8.6.14 asks whether the first integer r such that the r-Kernel prob-
lem is not trivial when restricted to k-quasi-transitive digraphs yields a poly-
nomial time solvable r-Kernel problem. Notice that k-transitive digraphs
always have a k-kernel, so, the first interesting kernel problem for k-transitive
digraphs is (k − 1)-Kernel. Regarding this problem, Hernández-Cruz char-
acterized 3-transitive digraphs with a kernel [46].

Theorem 8.6.16 ([46]) A 3-transitive digraph has a kernel if and only if
none of its terminal components is isomorphic to a 3-cycle.

Proof: Necessity is trivial to verify, we will only prove sufficiency. We will
proceed by induction on the number of strong components of D. If D is
strong, the result can be verified directly by exploring the possibilities in
Theorem 8.3.19. Let D be a non-strong 3-transitive digraph, and let S be an
initial component of D. By induction hypothesis, D − S has a kernel N . If S
is not a complete bipartite digraph, then either S consists of a single vertex,
or it contains a subdigraph isomorphic to �C3. In the former case, either the
only vertex in S is absorbed by N , and we are done, or it is not, and we can
add it to N to obtain a kernel for D. If S contains an isomorphic copy of �C3,
and since at least one vertex from S reaches at least one vertex from some
initial component of D, say S′, then Proposition 8.3.17 implies that S �→ S′.
But S′ ∩ N �= ∅, thus, every vertex of S is absorbed by N .

If S = (X,Y ) is a complete bipartite digraph, we will consider three cases.
If neither X nor Y is absorbed by N , then N ∪ X is a kernel of D. If some
vertex of X is absorbed by N , it follows from Proposition 8.3.17 that every
vertex of X is absorbed by N . If Y is also absorbed by N , then N is a kernel
of D. Else, none of the vertices of Y is absorbed by D, and thus, N ∪ Y is a
kernel of D. 	


Inspired by Theorem 8.6.16, Wang proved the following general result for
strong k-transitive digraphs.

Theorem 8.6.17 ([59]) Let D be a strong k-transitive digraph with k ≥ 4.
Then D has a (k − 1) kernel if and only if it is not isomorphic to a k-cycle.

This, again observing Theorem 8.6.16, led to the following conjecture.

Conjecture 8.6.18 ([59]) Let k ≥ 3 be an integer. If D is a k-transitive
digraph, then D has a (k − 1)-kernel if and only if has no terminal strong
component isomorphic to a k-cycle.
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In [38], García-Vázquez and Hernández-Cruz provided support to Con-
jecture 8.6.18 by proving it true for k = 4. Additionally, in the same paper
the authors characterized 4-transitive digraphs having a kernel. The charac-
terization relies heavily on a characterization of strong 4-transitive digraphs
having a kernel, found in the same paper (see Subsection 8.3.3). It is trivial to
observe that a k-kernel for a k-transitive digraph consists of a disjoint union
of k-kernels for each of its terminal components. Conjecture 8.6.18 can be
reformulated as follows: A k-transitive digraph D has a (k − 1)-kernel if and
only if each of its terminal components has a (k − 1)-kernel. To prove the
aforementioned characterization of 4-transitive digraphs with a kernel, the
authors actually prove that a 4-transitive digraph has a kernel if and only if
every terminal component has a kernel. So, the following questions come to
mind.

Problem 8.6.19 Let k ≥ 4 be an integer and let D be a k-transitive digraph.
Is it true that D has a (k −2)-kernel if and only if every terminal component
of D has a (k − 2)-kernel?

If so, which is the least value of r for 2 ≤ r ≤ k − 3 such that D has an
r-kernel if and only if every terminal component of D has an r-kernel?

An affirmative answer to the first question in Problem 8.6.19 would imply
that it suffices to solve the (k − 2)-kernel problem for strong k-transitive
digraphs to obtain a solution for all k-transitive digraphs.

Finally, another particular case of (k, �)-kernels is that of quasi-kernels.
A quasi-kernel is simply a (2, 2)-kernel. Chvátal and Lovász proved that
every digraph has a quasi-kernel. So, a question that has been raised by
Gutin, Koh, Tay and Yeo [42] is the following: Which digraphs contain (at
least) a pair of disjoint quasi-kernels? Clearly, a digraph which has a pair
of disjoint quasi-kernels cannot contain vertices of out-degree zero, since ev-
ery such vertex is included in every quasi-kernel. Unfortunately, this obvious
necessary condition is not sufficient in general for a digraph to have a pair
of disjoint quasi-kernels. Examples of digraphs which have neither vertices of
out-degree zero nor a pair of disjoint quasi-kernels are given in [42]. Nonethe-
less, Heard and Huang proved that this condition is indeed sufficient in the
class of quasi-transitive digraphs [44]. We need the following result, which is
found in [44].

Proposition 8.6.20 ([44]) Every semicomplete digraph D with no vertices
of out-degree zero contains two vertices x, y such that {x} and {y} are both
quasi-kernels of D.

We begin with strong quasi-transitive digraphs.

Proposition 8.6.21 ([44]) Every strong quasi-transitive digraph without ver-
tices of out-degree zero contains a pair of disjoint quasi-kernels.
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Proof: Let D be a strong quasi-transitive digraph without vertices of out-
degree zero. Let D = S[H1, . . . ,Hs] be the canonical decomposition of D
(Theorem 8.3.5). Since D has no vertices of out-degree zero, S must contain
at least two vertices and hence contain no vertices of out-degree zero. By
Proposition 8.6.20, there are two vertices x, y such that {x} and {y} are
both quasi-kernels of S. Suppose that Hi and Hj are the two digraphs which
substitute x and y, respectively, in the composition. Let Q and Q′ be quasi-
kernels of Hi and Hj , respectively. Then, it is easy to see that Q and Q′ are
disjoint quasi-kernels of D. 	


We now turn to the non-strong case.

Proposition 8.6.22 ([44]) Every non-strong quasi-transitive digraph without
vertices of out-degree zero contains a pair of disjoint quasi-kernels.

Proof: Let D be a non-strong quasi-transitive digraph without vertices of
out-degree zero. Let D = T [H1, . . . , Ht] be the canonical decomposition of D
(Theorem 8.3.5). Let {u1, . . . , ut} be the vertex set of T , and, without loss of
generality, suppose that u1, . . . , ur are the sinks of T . Note that {u1, . . . , ur}
is a kernel of T . Since D does not contain vertices of out-degree zero, neither
do any Hi, 1 ≤ i ≤ r. By Proposition 8.6.21, each Hi contains two disjoint
quasi-kernels, say Qi,1 and Qi,2, 1 ≤ i ≤ r. It is not hard to verify that
Q1 =

⋃r
i=1 Qi,1 and Q2 =

⋃r
i=1 Qi,2 are disjoint quasi-kernels of D. 	


Combining Propositions 8.6.21 and 8.6.22, we have the following:

Theorem 8.6.23 Every quasi-transitive digraph without vertices of out-degree
zero contains a pair of disjoint quasi-kernels.

8.7 The Path Partition Conjecture

8.7.1 The Conjecture

Recall that a longest path in a digraph D is called a detour of D. The order
of a detour of D is called the detour order of D and is denoted by do(D) .
The Gallai–Roy–Vitaver Theorem states that the chromatic number of the
underlying graph of a digraph D is at most do(D). In 1982 Laborde, Payan
and Xuong posed the following conjecture, which extends this theorem in a
natural way.

Conjecture 8.7.1 ([52]) Every digraph D contains an independent set X
such that do(D − X) < do(D).

Conjecture 8.7.1 has proved to be a very difficult problem, and only a
handful of partial results have been obtained. Nonetheless, it has not received
as much attention as one of its generalizations. The following conjecture is
probably the best known among the related path partition problems, it is
known as the Path Partition Conjecture.
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Conjecture 8.7.2 (Path Partition Conjecture) [52] For every digraph
D and every choice of positive integers �1, �2 such that do(D) = �1+ �2, there
exists a partition of D into two digraphs, D1 and D2, such that do(Di) ≤ �i

for i ∈ {1, 2}.
Clearly, Conjecture 8.7.1 is the particular case of Conjecture 8.7.2 when

�1 = 1 and �2 = do(D) − 1.
A seemingly stronger version of the conjecture is stated in [24]. Bondy

attributes it to Laborde et al. [52] although only the undirected version of
Conjecture 8.7.2 is explicitly mentioned there.

Conjecture 8.7.3 ([24]) For every digraph D and every choice of positive
integers �1, �2 such that do(D) = �1 + �2, there exists a partition of D into
two digraphs, D1 and D2, such that do(Di) = �i for i ∈ {1, 2}.

There is another problem also found in [52] which is a stronger version
of Conjecture 8.7.1, but somehow this conjecture, sometimes referred to as
the Strong Laborde–Payan–Xuong Conjecture, has received even less
attention than Conjecture 8.7.1.

Conjecture 8.7.4 ([52]) Every digraph D contains an independent set X
such that that do(D − X) < do(D), and has the additional property that
every vertex in X is the beginning of some detour of D.

One further extension of Conjecture 8.7.1 has been considered by Galeana-
Sánchez and Gómez in [35]. A path P = x0x1 . . . xn is non-augmentable
if for every v ∈ V (D) − V (P ), and for every 0 ≤ i ≤ n − 1, vx0 . . . xn,
x0 . . . xnv and x0 . . . xivxi+1 . . . xn are not paths. Clearly, every detour is non-
augmentable, so, if true, Conjecture 8.7.1 would be an immediate consequence
of the following conjecture, which appears implicitly in the paper of Galeana-
Sánchez and Gómez [35] but has never been explicitly stated.

Conjecture 8.7.5 ([35]) Every digraph D contains an independent set which
intersects every non-augmentable path of D.

8.7.2 Known Results

There are some partial results supporting each of the aforementioned con-
jectures, principally, Conjectures 8.7.1 and 8.7.2; we refer the reader to
[2, 20, 33, 35, 38, 64]. Most of the existing results prove some of these con-
jectures for restricted families of digraphs; in most cases, generalizations of
tournaments.

In [20], Conjecture 8.7.2 is considered for the family of quasi-transitive
digraphs. There, Bang-Jensen, Nielsen and Yeo prove the following theorem.
Recall that dok(D) is the maximum number of vertices contained in a k-path
subdigraph of a digraph D.
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Theorem 8.7.6 ([20]) Let D be a quasi-transitive digraph or a strong ex-
tended semicomplete digraph, and let q be any positive integer. Then there
exists a partition, (A,B), of V (D) such that the following holds:

1. do(D[A]) ≤ q;
2. dok(D[B]) ≤ dok(D)−q for all k ∈ {1, . . . , |V (B)|}, provided dok−q ≥ 0.

Although Theorem 8.7.6 implies that Conjecture 8.7.1 is also true for
quasi-transitive digraphs, it does not give us information on any of the other
conjectures mentioned in the previous subsection. In [35], Galeana-Sánchez
and Gómez proved Conjecture 8.7.5 to be true for quasi-transitive digraphs.
Again, the proof of this result relies heavily on Theorem 8.3.5, which is also
used by the following necessary lemma.

Lemma 8.7.7 ([35]) Let H be a digraph such that H = D[H1, . . . ,Hn], where
D is a transitive acyclic digraph with vertex set {v1, . . . , vn}, and Hi are ar-
bitrary digraphs for 1 ≤ i ≤ n. If Ii is a maximal independent set intersecting
every non-augmentable path of Hi, 1 ≤ i ≤ n, then I =

⋃n
i=1 Ii is a maximal

independent set that intersects every non-augmentable path in H.

Proof: Since D is acyclic and transitive, its set of vertices of in-degree zero,
S, is a maximal independent set intersecting every non-augmentable path of
D.

Let P be a non-augmentable path in H. It is not hard to verify that the
contraction9 P ′ = P/{H1, . . . , Hn} is a non-augmentable path of D, hence,
S intersects P ′. Also, if P uses at least one vertex from Hi, then it should be
the case that P ∩Hi is a non-augmentable path of Hi; otherwise, P could be
augmented.

Thus, if we let I be the union of the Ij ’s corresponding to the vertices in
S, then I is a maximal independent set intersecting every non-augmentable
path of H. 	


We will only present the general idea of the proof of the following theorem,
due to its length and technical arguments.

Theorem 8.7.8 ([35]) Let D be a quasi-transitive digraph. There exists a
maximal independent set I of D that intersects every non-augmentable path
in D. Moreover, if D is strong with decomposition D = S[Q1, . . . , Qs], and
Ii ⊆ V (Qi) is a maximal independent set intersecting every non-augmentable
path in Qi, for 1 ≤ i ≤ s, then each Ii is also a maximal independent set
intersecting every non-augmentable path in D.

Idea of Proof. The proof is by induction on |V (D)|. If |V (D)| = 1, the
result is clearly true.

9 See Section 1.4.
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If D is not strong, the result follows from Lemma 8.7.7 and the induction
hypothesis.

If D is strong, then, by Theorem 8.3.5, D = S[Q1, . . . , Qs], with S strong
semicomplete and each Qi a non-strong quasi-transitive digraph or a single
vertex. Let P be a non-augmentable path of D. Recall that a path in a semi-
complete digraph is non-augmentable if and only if it is Hamiltonian. Thus,
P must intersect every Qi. If Qi is a single vertex, then it is a maximal
independent set intersecting every non-augmentable path of D. Else, by in-
duction hypothesis there is a maximal independent set Si intersecting every
non-augmentable path in Qi. The proof finishes with an analysis of cases to
show that Si intersects every non-augmentable path of D. 	


Wang and Wang attacked Conjecture 8.7.5 in [64]. Their main result rel-
evant to our interests in this chapter is the following.

Theorem 8.7.9 ([64]) If D is a 3-quasi-transitive digraph, then there exists
an independent set intersecting every non-augmentable path in D.

Proof: If D is strong, then, using the characterization given in Theorem
8.3.15, it is easy to verify that every maximal independent set intersects every
non-augmentable path in D. Therefore, assume that D is not strong and let
D0, . . . , Dk be its strong components. Let D0, . . . , Ds be the initial strong
components and let Fi be a maximal independent set of Di, for 1 ≤ i ≤ s.
Let Z = V (D) − ⋃s

i=0 V (Ds) and define W as

W = {x ∈ Z : there exists a non-augmentable path in D starting at x}.

Observe that W is either independent or empty. If |W | ≤ 1, there is
nothing to prove. Assume |W | ≥ 2, and suppose for a contradiction that
there is a pair x, y of adjacent vertices in W . By the definition of W , x and
y must belong to the same strong component, say Dj . Since N−(V (Dj)) is
non-empty, we may choose a vertex u ∈ N−(V (Dj)). If Dj is non-bipartite,
then, by Lemma 8.3.16, u �→ Dj , and hence u �→ x, a contradiction. If Dj

is bipartite, then x and y must belong to different parts. Hence, by Lemma
8.3.16, u and one of x and y are adjacent, a contradiction.

Let F = F0 ∪ · · · ∪ Fs ∪ W . It is not difficult to deduce that F is an
independent set in D. Let P be a non-augmentable path of D with initial
vertex x0. If x0 does not belong to any initial component, then x ∈ W . Else,
x0 belongs to an initial component D0 of D. If D0 is semicomplete, then it
is not hard to observe that P ∩ D0 is a Hamiltonian path of D0, and thus,
P must intersect F0. If D0 is complete bipartite, then F0 is some part of D0,
so, F0 intersects P ∩ D0. If D0 is an element of the family F (see Theorem
8.3.15), then it is easy to verify that F0 intersects P ∩ D0. 	


Theorem 8.7.9 settles Conjecture 8.7.5 (which implies Conjecture 8.7.1)
for 3-quasi-transitive digraphs. Arroyo and Galeana-Sánchez proved Conjec-
ture 8.7.2 for strong 3-quasi-transitive digraphs in [2].
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Theorem 8.7.10 ([2]) Let D be a strong 3-quasi-transitive digraph. Consider
two positive integers �1 ≥ �2 such that �1 + �2 = do(D). Then there exists a
partition (A,B) of V (D) such that do(D[A]) ≤ �1 and do(D[B]) ≤ �2.

Proof: Since the conjecture is easy to verify for semicomplete and bipartite
digraphs, it follows from Theorem 8.3.15 that it only remains to show its
validity in the digraphs of the family F .

Let D be a digraph in the family F . Notice that 4 ≤ do(D) ≤ 5, hence, it
is easy to verify that, for every choice of �1, �2 such that �1 + �2 = do(D), the
partition ({y, z}, V (D) − {y, z}) (see Figure 8.3) has the required property.

	


Since every 3-transitive digraph is also 3-quasi-transitive, Theorems 8.7.9
and 8.7.10 also cover the 3-transitive case. Thus, the first interesting case for
k-transitive digraphs is k = 4. For 4-transitive digraphs only Conjecture 8.7.1
has been explored; García-Vázquez and Hernández-Cruz proved it true for 4-
transitive digraphs [38]. Again, the proof of the following theorem involves a
technical analysis of various cases, and thus, only an idea of the proof method
will be given.

Theorem 8.7.11 ([38]) For every 4-transitive digraph D there exists an in-
dependent set intersecting every longest path of D.

Idea of Proof. It is possible to prove that a 4-transitive digraph has a
kernel if and only if every terminal strong component has a kernel. Also,
using Theorem 8.3.20, it is not hard to characterize the strong 4-transitive
digraphs having a kernel.

Let D be a 4-transitive digraph. Using the aforementioned characteriza-
tion of the strong 4-transitive digraphs having a kernel, it is possible to find
a minimal subset S of V (D) such that D − S has a kernel K. The set K is
precisely the stable set we are looking for. 	


To finish this section, we present a table with the values of k for which
each of the discussed conjectures is known to be valid in k-transitive and
k-quasi-transitive digraphs, and their corresponding strongly connected ver-
sions. In the columns of the table, LPX stands for Laborde–Payan–Xuong
(Conjecture 8.7.1), SLPX for Strong LPX (Conjecture 8.7.4), NALPX for
Non-Augmentable LPX (Conjecture 8.7.5), PPC for the Path Partition Con-
jecture (Conjecture 8.7.2), and SPPC for Strong PPC (Conjecture 8.7.3).

LPX SLPX NALPX PPC SPPC
Strong k-transitive k ≤ 4 k ≤ 4 k ≤ 3 k ≤ 3 k = 2
k-transitive k ≤ 4 k ≤ 3 k ≤ 3 k = 2 k = 2
Strong k-quasi-transitive k ≤ 3 k ≤ 3 k ≤ 3
k-quasi-transitive k ≤ 3 k ≤ 3 k = 2
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8.8 Miscellaneous

8.8.1 Vertex Pancyclicity

Pancyclicity is one of the properties that first comes to mind when thinking
of tournaments.

Recall from Theorem 2.2.9 that every strong semicomplete digraph is
vertex-pancyclic. As a generalization of tournaments, and semicomplete di-
graphs, it is natural to ask whether a Hamiltonian quasi-transitive digraph
is vertex-pancyclic. In [17], Bang-Jensen and Huang use the similarities be-
tween extended semicomplete digraphs and quasi-transitive digraphs to de-
rive results on pancyclic and vertex-pancyclic quasi-transitive digraphs. In
this section we present a brief summary of these results.

A digraph D is triangular with partition V0, V1, V2 if the vertex set of
D can be partitioned into three disjoint sets V0, V1, V2 with V0 �→V1 �→V2 �→V0.
Note that this is equivalent to saying that D = �C3[D[V0],D[V1],D[V2]].

Gutin [40] characterized pancyclic and vertex-pancyclic extended semi-
complete digraphs. Clearly no extended semicomplete digraph of the form
D = �C2[Kn1 ,Kn2 ] with at least 3 vertices is pancyclic since all cycles are of
even length. Hence we must assume that there are at least 3 parts in order to
get a pancyclic extended semicomplete digraph. It is also easy to see that the
(unique) strong 3-partite extended semicomplete digraph on 4 vertices is not
pancyclic (since it has no 4-cycle). These observations together with Theo-
rem 7.10.8 completely characterize pancyclic and vertex-pancyclic extended
semicomplete digraphs. It is not difficult to see that Theorem 7.10.8 extends
Theorem 1.5.1, since no semicomplete digraph on n ≥ 5 vertices satisfies any
of the exceptions from (a) and (b).

The next two lemmas of Bang-Jensen and Huang [17] concern cycles in
triangular digraphs. They are used in the proof of Theorem 8.8.3, which
characterizes pancyclic and vertex-pancyclic quasi-transitive digraphs.

Lemma 8.8.1 ([17]) Suppose that D is a triangular digraph with a partition
V0, V1, V2 and suppose that D is Hamiltonian. If D[V1] contains an arc xy
and D[V2] contains an arc uv, then every vertex of V0 ∪ {x, y, u, v} is on
cycles of lengths 3, 4, . . . , n. 	

Lemma 8.8.2 ([17]) Suppose that D is a triangular digraph with a partition
V0, V1, V2 and D has a Hamiltonian cycle C. If D[V0] contains an arc of C
and a path P of length 2, then every vertex of V1 ∪ V2 ∪ V (P ) is on cycles of
lengths 3, 4, . . . , n. 	


It is easy to check that a strong quasi-transitive digraph on 4 vertices is
pancyclic if and only if it is a semicomplete digraph. For n ≥ 5 we have the
following characterization due to Bang-Jensen and Huang:

Theorem 8.8.3 ([17]) Let D = (V,A) be a Hamiltonian quasi-transitive
digraph on n ≥ 5 vertices.
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(a) D is pancyclic if and only if it is not triangular with a partition V0, V1, V2,
two of which induce digraphs with no arcs, such that either |V0| = |V1| =
|V2|, or no D[Vi] (i = 0, 1, 2) contains a path of length 2.

(b) D is not vertex-pancyclic if and only if D is not pancyclic or D is trian-
gular with a partition V0, V1, V2 such that one of the following occurs:
(b1) |V1| = |V2|, both D[V1] and D[V2] have no arcs, and there exists a

vertex x ∈ V0 such that x is not contained in any path of length 2 in
D[V0] (in which case x is not contained in a cycle of length 5).

(b2) one of D[V1] and D[V2] has no arcs and the other contains no path of
length 2, and there exists a vertex x ∈ V0 such that x is not contained
in any path of length 1 in D[V0] (in which case x is not contained in
a cycle of length 5);

	


8.8.2 Acyclic Spanning Subgraphs

It is well known that a semicomplete digraph T contains an (x, y)-Hamiltonian
path if and only if there is a spanning acyclic subgraph S (not necessarily
induced) such that S contains an (x, z)-path and a (z, y)-path for each vertex
z of T , cf. [56]. This also follows from the fact that semicomplete digraphs
are path-mergeable, see [3] and Section 6.2.

It follows from the characterization in Theorem 8.4.7 that a quasi-
transitive digraph D may not have a Hamiltonian path even if it is highly
connected and has a path P such that D − P has a cycle factor (see [17]
for such an example). On the other hand, Bang-Jensen and Huang proved
in [17] that if a quasi-transitive digraph has a unique initial and a unique
terminal strong component then we can always guarantee the existence of
such an acyclic spanning subgraph.

Theorem 8.8.4 ([17]) Suppose that D is a quasi-transitive digraph having
both in- and out-branchings. Then D has a spanning acyclic subgraph S with
a source x and a sink y such that for each vertex z of D, D contains an
(x, z)-path and a (z, y)-path. 	


Corollary 8.8.5 Every strong quasi-transitive digraph has a spanning acyclic
subdigraph S with a source x and a sink y such that, for each vertex z of D,
S contains an (x, z)-path and a (z, y)-path. 	


8.8.3 Orientations of Digraphs Almost Preserving Diameter

Recall that an orientation of a digraph D is a spanning subdigraph of D
obtained from D by deleting exactly one arc from every 2-cycle. Chvátal and
Thomassen [27] proved that the problem of checking whether a given undi-
rected graph has an orientation of diameter 2 is NP-complete, and the upper
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bound on the diameter of an orientation of an undirected graph obtained in
[27] is far from the best possible for many classes of undirected graphs (re-
call that undirected graphs may be regarded as digraphs where every arc is
symmetric).

We have already seen many problems which have very nice solutions for
the class of quasi-transitive digraphs, e.g., hamiltonicity, existence of kernels,
k-linkages and weak k-linkages, which are NP-complete in the general case,
are polynomial time solvable for quasi-transitive digraphs. The study of min-
imum diameter orientations of quasi-transitive digraphs is not an exception;
a surprisingly good bound on the minimum diameter of an orientation of a
quasi-transitive digraph holds. Before stating the main results of this section,
we will recall a result due to Boesch and Tindell which extends Robbins’
Theorem.

Theorem 8.8.6 ([23]) A strong digraph D has no strong orientation if and
only if there is a pair x, y of vertices in D such that the deletion of the arcs
xy, yx leaves D disconnected.

Applying Theorem 8.8.6 it is easy to see that every strong quasi-transitive
digraph of order n ≥ 3 has a strong orientation. For a digraph D, let
diammin(D) denote the minimum diameter of an orientation of D. The fol-
lowing result is due to Gutin and Yeo [43].

Theorem 8.8.7 ([43]) If D is a strong quasi-transitive digraph, then

diammin(D) ≤ max{3,diam(D)}.

The upper bound of this theorem is sharp as one can see from the fol-
lowing example. Let Tk, k ≥ 3, be a (transitive) tournament with vertices
x1, x2, ..., xk and arcs xixj for every 1 ≤ i < j ≤ k. Let y be a vertex not in
Tk, which dominates all vertices of Tk but xk and is dominated by all vertices
of Tk but x1. The resulting semicomplete digraph Dk+1 has diameter 2. How-
ever, the deletion of any arc of Dk+1 between y and the set {x2, x3, ..., xk−1}
leaves a digraph with diameter 3. Indeed, if we delete yxi, 2 ≤ 2 ≤ k − 1,
then a shortest (xk, xi)-path becomes of length 3.

8.8.4 Sparse Subdigraphs with Prescribed Connectivity

A spanning k-(arc)-strong subdigraph D′ of a directed multigraph D is called
a certificate for the k-(arc)-strong connectivity of D. A problem of practical
interest is the following. Let D = (V,A) be a k-(arc)-strong directed multi-
graph and let c be a cost function on A (possibly c(a) = 1 for all a ∈ A).
What is the minimum cost of a k-(arc)-strong spanning subdigraph D′ of D?
An optimal certificate for k-(arc)-strong connectivity in D is a spanning
k-(arc)-strong subdigraph D′ of minimum cost. Finding such an optimal cer-
tificate is a hard problem already when k = 1 and c ≡ 1. This follows from
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the fact that the optimal certificate for the strong connectivity of D has |V |
arcs if and only if D has a Hamilton cycle.

When c ≡ 1, we have the problem of finding an optimal certificate for
strong connectivity. We call this the Minimum spanning strong subdi-
graph problem (MSSS, see [18]).

For the case of quasi-transitive digraphs, we begin with a lower bound.
Recall that the path-covering number of a digraph D, pc(D), is the least
positive integer k such that D has a k-path factor. For a strong quasi-
transitive digraph D we define pc∗(D) to be equal to 0 if D is Hamiltonian,
and pc∗(D) = pc(D) otherwise. The optimal solution to the MSSS problem
for quasi-transitive digraphs was given by Bang-Jensen, Huang, and Yeo. The
proof can be found in [9].

Theorem 8.8.8 ([18]) Every minimum spanning strong subdigraph of a quasi-
transitive digraph has precisely n + pc∗(D) arcs. Furthermore, we can find a
minimum spanning strong subdigraph in time O(|V |4).

A directed cactus is a strongly connected digraph in which each arc is
contained in exactly one cycle.

Palbom [55] studied the complexity of various problems related to span-
ning directed cactii in digraphs. It is not difficult to check whether a given
digraph is a cactus, but Palbom proved that deciding whether a digraph
contains a spanning cactus is an NP-complete problem [55].

Since the directed spanning cactus problem (the problem of determin-
ing whether a digraph contains a spanning cactus) is trivial for locally in-
semicomplete digraphs, and easy for path-mergeable digraphs, but already
non-trivial for extended semicomplete digraphs (see, Exercises 12.17 and
12.20 in [9]), the following problem comes as a natural next step in this
subject.

Problem 8.8.9 ([9]) Determine the complexity of the spanning directed cac-
tus problem for quasi-transitive digraphs.

8.8.5 Arc-Disjoint In- and Out-Branchings

We now consider the problem Arc-disjoint in- and out-branchings:
Given a digraph D and vertices u, v (not necessarily distinct), decide whether
D has a pair of arc-disjoint branchings B+

u , B−
v such that B+

u is an out-
branching rooted at u and B−

v is an in-branching rooted at v. Recall from
Theorem 2.12.19 that Thomassen proved that Arc-disjoint in- and out-
branchings is NP-complete for general digraphs.

In [4], Bang-Jensen proved that a tournament T has arc-disjoint in- and
out-branchings rooted at some vertex v if and only if there is no arc that
must be on all out-branchings from v and all in-branchings to v, see Corol-
lary 2.12.21. In [17], Bang-Jensen and Huang considered digraphs having a
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vertex v which is adjacent to every other vertex; they obtained a characteri-
zation of digraphs having arc-disjoint in- and out-branchings rooted at v. As
a consequence, they obtained the following result.

Theorem 8.8.10 ([17]) Let D be a strong digraph and v a vertex of D such
that V (D) = {v}∪N+(v)∪N−(v). There is a polynomial algorithm to decide
if D has arc-disjoint in- and out-branchings F−

v , F+
v rooted at v.

The previous result can be combined with the following lemma to obtain
a polynomial algorithm to decide if a quasi-transitive digraph D has arc-
disjoint in- and out-branchings rooted at a given vertex v.

Lemma 8.8.11 ([17]) Let D be a quasi-transitive digraph and v ∈ V (D) a
vertex of D. Then D contains arc-disjoint branchings F+

v , F−
v rooted at v if

and only if D′ = D[{v}∪N−(v)∪N+(v)] has arc-disjoint branchings F ′+
v , F ′−

v

rooted at v. 	


Theorem 8.8.12 ([17]) Let D be a strong quasi-transitive digraph, and v
a vertex of D. If B = {B1 . . . , Bk} (C = {C1, . . . , Cr}) denote the set of
terminal (initial) components in D[N+(v)] (D[N−(v)]), then D contains a
pair of arc-disjoint branchings F+

v , F−
v such that F+

v is an out-branching
rooted at v and F−

v is an in-branching rooted at v if and only if there exist
two disjoint arc sets AB , AC ⊂ A(D) such that all arcs in AB ∪ AC go from
N+(v) to N−(v) and every component in Bi ∈ B (Cj ∈ C) is incident with
an arc from AB (AC). 	


From here, the following result settling the problem for quasi-transitive
digraphs is obtained.

Corollary 8.8.13 ([17]) There is a polynomial algorithm to decide if a quasi-
transitive digraph D has arc-disjoint in- and out-branchings rooted at a given
vertex v. 	


As noted in Section 2.12, already for semicomplete digraphs, the problem
of finding arc-disjoint in- and out-branchings becomes much harder when
u �= v. Even the class of semicomplete digraphs is still lacking a polynomial
time algorithm to decide this problem when u �= v.
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9. Digraphs of Bounded Width

Stephan Kreutzer and O-joung Kwon

9.1 Introduction

Structural parameters for undirected graphs such as the path-width or tree-
width of graphs have played a crucial role in developing a structure theory
for graphs based on the minor relation and they have also found many algo-
rithmic applications. Starting in the late 1990s, several ideas for generalizing
this theory to digraphs have appeared. Broadly, for the purpose of this chap-
ter, we distinguish these approaches into three categories: tree-width inspired,
rank-width inspired and density based. The tree-width inspired approaches
are based on the idea of generalizing the concept of undirected tree-width
(or path-width) to digraphs. The various attempts, which we will discuss
below, all have the goal of generalizing some natural property or some nat-
ural characterization of tree-width of undirected graphs to digraphs. In the
same way as tree-width can be seen as a global connectivity measure for
undirected graphs, the various versions of a directed analogue of tree-width
measure global connectivity in digraphs. However, on digraphs, connectivity
can be measured in many different natural ways. It turns out that equivalent
characterizations of tree-width on undirected graphs yield different concepts
on digraphs, with different properties, advantages and disadvantages. We will
outline the most prominent of these concepts in Section 9.2 below.

The “tree-width inspired” approaches have in common that they define
new classes of digraphs using structural parameters for digraphs which can
not also be explained by structural parameters of the underlying undirected
graphs. In particular, classes C of digraphs of, e.g., bounded DAG-width, do
not automatically have bounded undirected tree-width (in the sense that the
class of undirected graphs obtained from C by ignoring the direction of arc
has bounded tree-width).

Another feature that almost all of these approaches have in common is
that the class of DAGs has low width in all these definitions. This is a con-
sequence of the fact that these approaches measure strong connectivity in
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various forms. Unfortunately, this does have problematic algorithmic conse-
quences, as many NP-hard computational problems remain hard on acyclic
digraphs, and hence remain hard on classes of bounded width in these mea-
sures. Therefore, research in algorithmic applications of digraph width mea-
sures has tried to develop width measures for separating the class of DAGs
into easy and hard instances. The next two types of digraph width measures
achieve this goal.

A different approach to digraph width measures is taken in the definition
of directed versions of rank-width [82] (a graph measure broadly equivalent
to clique-width [25]).

Clique-width can naturally be defined on digraphs and it was indeed de-
fined this way right from the beginning. However, algorithms for computing
clique-width are not based on clique-width but on rank-width of graphs. Rank
decompositions can be computed efficiently [82] and from a rank decomposi-
tion a clique-width decomposition can be computed.

In order to translate concepts from undirected rank-width, such as vertex-
minors, to the directed setting, Kanté developed concepts of rank width for
digraphs such as bi-rank-width and F4-rank-width [56]. This approach
has led to a theory of directed rank-width with connections to other types
of digraphs. A feature that distinguishes this approach from the tree-width
inspired approaches above is that if a class of digraphs has bounded directed
clique or rank-width then the class of underlying undirected graphs also has
bounded undirected clique width. As a consequence, any graph property de-
finable in monadic second order logic can be decided in linear time on
any class of digraphs of bounded bi-rank-width [26]. Another consequence of
this fact is that the class of DAGs no longer has bounded width. Those DAGs
have low width in the tree-width inspired approaches has led to problems for
algorithmic applications of tree width based directed width measures as sev-
eral interesting computational problems remain hard on DAGs. This problem
therefore does not appear in classes of bounded bi-rank-width etc.

Whereas on undirected graphs, classes of graphs of bounded tree-width
also have bounded clique-width, in the directed setting these concepts are
incomparable. We will present the concepts of directed rank-widths in Sec-
tion 9.9.

A third, and final, approach to digraph width measures covered in this
chapter are concepts based on density arguments. In their quest for a solid
mathematical definition of “sparse” classes of graphs, Nešetřil and Ossona de
Mendez defined classes of graphs of bounded expansion and classes which
are nowhere dense [74, 75]. These concepts can be generalized to digraphs
as well and lead to a surprisingly elegant theory. We will cover the resulting
theory in Section 9.6.

Overview. The remaining chapter is organized as follows. In Section 9.2 we
cover the tree-width inspired width measures. In particular, we will briefly
introduce graph searching games (Section 9.2.1), which provide an intuitive
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way of defining graph and digraph decompositions, introduce some of the
more prominent digraph decompositions (Section 9.2.4 and Theorem 9.2.13)
and compare them with respect to generality (Section 9.2.5).

In Section 9.3, we provide a brief overview of the existing structure the-
ory for digraphs based on directed tree-width. In particular we review known
obstructions to directed tree width. This also leads to a fixed-parameter algo-
rithm for computing directed tree-decompositions which, together with some
algorithmic applications, we present in Section 9.4 and 9.5.

In Sections 9.6 to 9.8 we cover the relatively recent theory of density based
width measures: classes of digraphs of bounded expansion (Section 9.7) and
nowhere dense classes of digraphs (Section 9.8).

Finally, in the last part of the chapter, Section 9.9, we present the concepts
of digraph width measures based on rank-width.

9.2 Tree-Width Inspired Width Measures

In this section we will present some of the best known tree-width inspired
width measures for digraphs. Many of them can be explained in terms of
graph searching games and these games provide an intuitive way to un-
derstand these measures. We will therefore first give a brief overview of graph
searching games, also known as Cops and Robber games.

9.2.1 Graph Searching Games

Graph searching games have been studied intensively in graph theory and
they have found a wide range of applications. See [2, 38, 68] for surveys
on the subject. Here we will only review the absolute basics needed for our
exposition of digraph width measures.

A graph searching game is played on a graph by two players, often called
the cops and the robber or the searchers and the fugitive. The general
goal for the cops is to catch the robber, whereas the robber tries to evade.
The cop player controls a number of cops each of which occupies a single
vertex of the graph. The robber also occupies a single vertex. In every round
of the game, the cop player can move some of the cops from their current
position to new positions on the graph or he can place new cops on the graph.
However, he first has to announce his move and lift up all cops he wants to
move, releasing their current position. Then the robber can react to this by
changing his own position. The rules for the robber movement differ between
the various types of graph searching games. Finally, the cops are placed on
their new positions. If any cop is placed on the vertex occupied by the robber,
then the cops win. Otherwise, if the robber can escape forever, he wins.

More formally, given a graph G = (V (G), E(G)), a current position in the
game can be described by a pair (X, v), where X ⊆ V (G) are the vertices
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occupied by the cops and v ∈ V (G) is the vertex occupied by the robber. A
single round of the play can therefore be described as a move from a position
(X, v) to a new position (X ′, v′). The game always starts at a position (∅, v),
for some vertex v ∈ V (G).

In most games of interest to us, the cops can move freely, i.e. from the
current position (X, v) they can move to any new position X ′. The robber is
more restricted and the various restrictions on the movement of the robber
define different variations of the game. To give an example, the game cor-
responding exactly to tree-width is played on an undirected graph. From a
current position (X, v), once the cops announce their move to X ′, the robber
can choose any vertex v′ reachable from v in the graph G− (X ∩X ′), i.e. any
position reachable from v by a path not occupied by a cop that remains on
the board.

Given a play (Xi, vi)0≤i<l, for some l ∈ N∪{ω}, we can define the width
of the play as max{|Xi| : 0 ≤ i < l}. In this way, any graph searching game
defines a graph parameter assigning to every graph or digraph G the minimal
number k such that the cops have a winning strategy against the robber on
G of width at most k. A trivial strategy for the cop player to win on any
given graph is to put a cop on every single vertex of the graph. Hence, the
width is always well defined and it is the minimal number of cops required
for a winning strategy that yields an interesting graph parameter.

Graph searching games can be classified in many different ways. An impor-
tant distinction is whether the cops can always see the robber, called visible
graph searching, or whether they need to search the graph without knowing
where the robber is. This is referred to as invisible graph searching. It is
known that in the game variant above where the robber can move along any
cop free path, the graph parameter defined by the visible variant is exactly
tree-width whereas the invisible variant defines path-width [15, 92].

An important concept in graph searching is monotonicity. Monotonicity
restricts the winning strategies for the cops. We distinguish two forms of
monotonicity: cop monotonicity and robber monotonicity. In a cop-
monotone strategy, the cop player is not allowed to place a cop on a vertex
that had already been occupied by a cop in the past. That is, once a cop
is lifted from a vertex v ∈ V (G), no cop can later on be placed on v. In
a robber-monotone strategy, the cops have to play in a way such that
once, at any particular point in the play, a vertex v is not reachable for the
robber, it has to remain unreachable for the rest of the play. More precisely,
let (Xi, vi)0≤i<n be a play, for some n ∈ N ∪ {ω}. For all i let Ri be the
set of vertices available to the robber starting from vi in G − Xi. The play
is robber-monotone, if Rj ⊆ Ri for all 0 ≤ i < j. It is known, that on
undirected graphs, in the visible and the invisible graph searching games, the
cops have a winning strategy of width k if, and only if, they have a cop- and
robber-monotone winning strategy of width k. For digraphs, this will often
not be the case and monotone and non-monotone versions will define different
parameters, see e.g. [1, 69].
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There is a natural correspondence between winning strategies of the cops
in a graph searching game and graph decompositions. For instance, in the
visible graph searching game on undirected graphs described above, a winning
strategy for the cop player can be seen as a tree with the initial position in
the game as the root and a child for every possible move of the robber and
the corresponding move of the cops. This monotone winning strategy tree
immediately defines a tree decomposition of the graph of width one less than
the width of the winning strategy. Conversely, a tree decomposition of width k
of a graph immediately defines a winning strategy for the cop player of width
k+1. It is this natural correspondence between winning strategies and graph
decompositions that makes graph searching games an elegant characterization
of width measures for graphs and digraphs.

9.2.2 Decompositions of Directed Graphs

In the following sections we will define several width measures of directed
graphs. All of them are defined in terms of a decomposition of digraphs.
The type of decompositions will vary but in general they will all have a
common structure. A decomposition of a digraph D consists of a digraph T ,
usually a tree or a DAG, and a labeling function β assigning to every vertex
of T a subset of vertices of D. Furthermore, there is a guarding function
γ that assigns to every arc or to every vertex (or both) a guard. Usually, a
guard is also a set of vertices. The role of the guard of an arc e ∈ A(T ) is
that if e = (u, v) ∈ A(T ) and X :=

⋃
{β(t) : t is reachable from v in T − e},

then γ(e) controls connectivity between X and the rest of D. Control can
mean that there is no path from X to any vertex outside of X in D−γ(e), or
that there is no strong component in D − γ(e) containing a vertex of X and
a vertex not in X. The various types of decompositions defined in the sequel
are obtained by varying the type of guards and the type of the decomposition
structure T .

Definition 9.2.1 (Strong and Weak Guarding) Let D be a digraph and
let X,Y ⊆ V (D) be sets.

1. We say that Y strongly guards X, or is a strong guard of X, if ev-
ery directed walk starting and ending in X which contains a vertex of
V (D) \ X also contains a vertex of Y . In other words, X \ Y is the union
of the vertex sets of some set of strong components of D − Y .

2. We say that Y weakly guards X, or is a weak guard of X, if every arc
e = (u, v) ∈ A(D) with u ∈ X \ Y has v ∈ X ∪ Y .

As an example for the two notions of guarding in the previous defini-
tion, consider the set X := {3, 4, 5} of vertices in the digraph shown in
Figure 9.1 a): The set {6, 9} is a weak guard for X. The set {6} containing
only the vertex 6 is already a strong guard, as every path from X to itself
that does contain any vertex not in X must go through 6. But {6} is not a
weak guard for X.
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The names strong and weak guards come from the intuition that strong
guards control strong components, i.e. strong connectivity, whereas weak
guards control directed paths and therefore weak reachability. Of course,
every weak guard is also strong and therefore weak guarding is the more
restrictive concept of guards.

Note that for every set X of vertices in a digraph G there is a uniquely
defined minimal weak guard, which consists of every vertex in G\X which is
an out-neighbour of a vertex in X. But there can be many distinct and even
disjoint minimal strong guards.

Definition 9.2.2 (Abstract Digraph Decomposition) Let D be a di-
graph. An abstract digraph decomposition of D is a triple (T, β, γ),
where T is a digraph, β : V (T ) → 2V (D) and γ : A(T ) → 2V (D) such that⋃

{β(t) : t ∈ V (T )} = V (D).
For every t ∈ V (T ) we define

Tt := T
[
{s ∈ V (T ) : s is reachable from t by a directed path in T}

]

as the subgraph of T induced by the vertices reachable from t. Furthermore,
if S ⊆ T then we define β(S) :=

⋃
{β(s) : s ∈ V (S)}.

With every decomposition we will define a width w(t) for every t ∈ V (T ).
The width w(T, β, γ) is then defined as max{w(t) : t ∈ V (T )}.

Finally, for every v ∈ V (D), we define β−1(v) := {t ∈ V (T ) : v ∈ β(t)}.
Sometimes, guards are more naturally associated with vertices of T instead

of its arcs and hence γ is a function from V (T ) into 2V (D). We call such
abstract decompositions node guarded.

Several decompositions below use rooted directed trees as underlying di-
graph.

Definition 9.2.3 A rooted directed tree1 is a digraph obtained from an
undirected tree by selecting a vertex r as a root and orienting every arc away
from the root vertex r.

9.2.3 Tree-Width Based Digraph Width Measures

In this section we describe some of the most prominent tree-width inspired
digraph decompositions proposed in the literature. Throughout the section we
will illustrate the different decompositions by the following example digraph
shown in Figure 9.1 a).

The first generalization of tree-width to digraphs proposed in the litera-
ture was directed tree-width [54, 84].

1 This is also called an out-tree.
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Figure 9.1 a) An example digraph D and b) a directed tree decomposition of D
of width 2.

Definition 9.2.4 (Directed Tree Decompositions) A directed tree de-
composition of a digraph D is an abstract digraph decomposition (T, β, γ)
such that T is a rooted directed tree, {β(t) : t ∈ V (T )} is a partition of V (D)
into non-empty sets and for every e = (s, t) ∈ A(T ), γ(e) is a strong guard
of β(Tt).

For every t ∈ V (T ) we define Γ (t) := β(t) ∪
⋃

e∼t γ(e) and we define the
width w(t) as w(t) :=

∣
∣Γ (t)

∣
∣−1, where e ∼ t means that the arc e is incident

to t.

See Figure 9.1 b) for an illustration of a directed tree decomposition of
the digraph in Figure 9.1. The figure also demonstrates some of the (algo-
rithmically) problematic aspects of directed tree decompositions: The guard
6 on the branch from the root to node labelled by 12 is actually a vertex
that is being decomposed in an entirely different subtree of the root. Hence,
directed tree decompositions can use vertices in a guard that are contained
in strong components which are part of different subtrees. This can cause
problems in algorithmic applications. Furthermore, arcs of the digraph D
can cross between subtrees in the directed tree decomposition, something
that cannot happen in the undirected case. This happens for instance with
the arc (8, 9) ∈ A(D). Finally, on a branch of a directed tree decomposition
from its root to a leaf it could happen that a vertex w is contained in a guard
of an arc e = (u, v), it then disappears from the next arc of the branch and
then reappears later on as a guard on the branch. This phenomenon does not
appear in the decomposition on Figure 9.1 but can happen in general.

The second problem, that arcs can cross subtrees – but only in one direc-
tion – is an intrinsic feature of directed decompositions. If this were disallowed
then we would essentially speak about undirected tree decompositions. The
first and the third problem, however, are unavoidable. We will see next the
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concept of D-decompositions, which are similar to directed tree decomposi-
tions but avoid these problems. However, it was shown in [3] that there are
classes of digraphs of bounded directed tree-width but unbounded D-width
(see Section 9.2.5). The examples separating the two concepts precisely use
these properties of guards containing vertices from different strong compo-
nents as well as guards reappearing along branches, showing that these prop-
erties of directed tree decompositions are unavoidable.

In [90], Safari suggests D-width as another structural complexity measure.
The definition of D-decompositions is perhaps the most natural translation
of undirected tree decompositions to the directed settings in terms of strong
connectivity. However, as we will see below, in terms of structural properties,
it is directed tree-width that shares most structural properties of undirected
tree-width. In the following definition we give a slightly different version of
D-decompositions. But the width defined by this concept differs from the
original definition at most by a factor of 2. See Figure 9.2 for an illustration.

Definition 9.2.5 (D-Decompositions) A D-decomposition of a digraph
D is an abstract digraph decomposition (T, β, γ) such that T is a rooted di-
rected tree, γ(e) := β(u) ∩ β(v) for every e = (u, v) ∈ A(T ) and γ(e) is a
strong guard of β(Tv) and β−1(v) induces a non-empty subtree of T for every
v ∈ V (D).

For every t ∈ V (T ) we define the width w(t) as w(t) :=
∣
∣β(t)

∣
∣.

6, 2, 74, 6

12, 9 6, 7, 8

12, 6

12, 11 12, 105, 4, 6

1, 2, 6

3, 4, 6

Figure 9.2 A D-decomposition of width 3 of the digraph in Figure 9.1.

Directed tree-width and D-width are related to each other because they
both correspond to the same graph searching game, the game where the rob-
ber can only stay within a strong component, but they are related to different
type of strategies for the cops. The next following three decompositions are
based on a different form of game, where the robber can follow any directed
path. DAG-width was defined in [11] and independently in [77], cf. [12]. See
Figure 9.3 a) for an illustration.
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Definition 9.2.6 (DAG Decompositions [12]) Let D be a digraph. A
DAG-decomposition of D is an abstract digraph decomposition (T, β, γ)
such that:

1. T is a DAG.
2. γ(e) = β(u) ∩ β(v), for every arc e = (u, v) ∈ A(T ), and γ(e) is a weak

guard of β(Tv).
3. β(a) ∩ β(c) ⊆ β(b) for every triple a, b, c ∈ V (T ) such that a, b, c appear

in this order on some directed path in T .
4. For every root t ∈ V (T ), β(Tt) = N+[β(Tt)].

For every t ∈ V (T ) we define the width w(t) := |β(t)|.

3, 5, 6 6, 7, 8

1, 2, 6

4, 5, 6
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1, 2, 6
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12
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6, 7

12
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6
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a) b)

Figure 9.3 a) A DAG-decomposition and b) a Kelly-decomposition of the digraph
in Figure 9.1, both of width 3.

A related width measure is Kelly-width which is based on so-called Kelly-
decompositions. It was introduced in [51] to overcome some problems of DAG-
decompositions. See Figure 9.3 b) for an illustration.

Definition 9.2.7 (Kelly Decompositions [51]) A Kelly-decomposition
of a digraph D is a node-guarded abstract decomposition (T, β, γ) so that

1. T is a DAG.
2. {β(t) : t ∈ V (T )} is a partition of V (D) into non-empty subsets.
3. γ(t) is a weak guard of β(Tt) for every t ∈ V (T ).
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4, 5, 66, 7, 8 10, 12 11, 126, 122, 6, 7 9, 121, 2, 6 3, 4, 6

Figure 9.4 A directed path decomposition of the digraph in Figure 9.1 of width
3.

4. For all s ∈ V (T ) there is a linear order <s on its children t1, . . . , tp so
that for all 1 ≤ i ≤ p, γ(ti) ⊆ β(s) ∪ γ(s) ∪

⋃
j<si β(V (Ttj )).

5. Similarly, there is a linear order <r on the roots such that γ(ri) ⊆⋃
j<ri β(V (Trj

)).

The width w(t) of a vertex t ∈ V (T ) is defined as β(t) ∪ γ(t).

Note that the number of nodes in a Kelly-decomposition is at most the
number of vertices of the decomposed digraphs, as the bags form a partition.
This is not the case for DAG-decompositions and we will see below that DAG-
decompositions of optimal width k can become super-polynomially large,
i.e. have number of bags proportional to nk+1 (see [3]). See Section 9.4.1 for
details.

Finally, we introduce the concept of directed path decompositions, in-
troduced by Robin Thomas in the mid-90s but unpublished. See [8, 9] for
published references. See Figure 9.4 for an illustration.

Definition 9.2.8 (Directed Path Decompositions) A directed path
decomposition of a digraph D is a DAG-decomposition (T, β, γ) of D such
that T is a directed path.

Every type of decomposition introduced above naturally defines a digraph
width measure, summarized in the following definition.

Definition 9.2.9 (Directed Width Measures) Let D be a digraph. The
directed tree-width dtw(D) of D is defined as the minimum width of any
directed tree decomposition of D. Analogously, the D-width D-width(D),
DAG-width dag-width(D), Kelly-width Kelly-width(D) and the directed
path-width dpw(D) are defined as the minimum width of the corresponding
decomposition of D.

A class C of digraphs has bounded directed tree-width if there is a constant
c ≥ 0 such that dtw(D) ≤ c for every D ∈ C. Classes of bounded width for
other width measures are defined analogously.

Digraphs with no directed cycles longer than a fixed constant form an
example of a class of digraphs with bounded DAG-width, Kelly-width and
directed tree-width. This follows from the following results by Bang-Jensen
and Christiansen, respectively, Kintali.

Theorem 9.2.10 [7] For every natural number p, every D digraph having
no directed cycle of length more than p has DAG-width at most p and this is
best possible.
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Theorem 9.2.11 [63] For every natural number p, every D digraph having
no directed cycle of length more than p has directed tree-width and Kelly-width
at most p + 1.

We close this section by mentioning two other digraph width measures
which do not fall naturally within the framework of abstract decompositions.
The first is the DAG-depth, defined in [41]. To define it, we need the concept
of reachability component. Let D be a digraph. For v ∈ V (D) we define
ReachD(v) := {u ∈ V (D) : u is reachable from v by a directed path in D}.
A reachability component is a subgraph of D induced by an inclusion-
wise maximal non-empty set in {ReachD(v) : v ∈ V (D)}, i.e. an inclusion-
wise maximal induced subgraph with only one initial strong component (see
Section 1.5 for the definition of an initial component).

Definition 9.2.12 (DAG-depth) Let D be a digraph. The DAG-depth
dag-depth(D) of D is inductively defined as follows: if |V (D)| = 0, then
dag-depth(D) = 0. If D has a single reachability component, then we let
dag-depth(D) = 1 + min{dag-depth(D−v) : v ∈ V (D)}. Otherwise, if
D1, . . . , Dc are the reachability components of D for some C > 1, then
dag-depth(D) := max{dag-depth(Di) : 1 ≤ i ≤ c}.

There are various other width measures for digraphs that have been de-
fined in the literature, for instance oriented tree-width, Kenny-width,
entanglement, cycle rank and others, see e.g. [3, 13, 14, 41, 55].

9.2.4 Alternative Characterizations of Digraph Width Measures

In the previous section we have defined several width measures for directed
graphs based on variations of digraph decompositions. Many of these mea-
sures can also be defined equivalently and the equivalent definitions yield
additional insights and intuition about the corresponding width measures.

All width measures defined above can be characterized by graph searching
games. We have already covered the basics of graph searching games in Sec-
tion 9.2.1. For digraphs, two main variants of games have emerged, depending
on the ability of the robber to move. Let (X, v) be the current position in a
graph searching game on a digraph D. Suppose the cops announce to move
from X to X ′. In the strong reachability game, the robber can choose any
new position v′ within the strongly connected component of D − (X ∩ X ′)
that contains v. In the weak reachability game, the robber can choose any
position v′ that is reachable from v in D − (X ∩X ′). Combining this distinc-
tion with the distinction between a visible and an invisible robber yields a
range of graph searching games on directed graphs that can be used to give
game based characterizations of the width measures introduced above.

https://doi.org/10.1007/978-3-319-71840-8_1
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Theorem 9.2.13 Let D be a digraph and k ∈ N.

1. If dtw(D) ≤ k, then k cops have a robber monotone winning strategy
in the visible strong cops and robber game on D. Conversely, if k cops
have a winning strategy in this game on D, robber-monotone or not, then
dtw(D) ≤ 3k + 2. If k cops have a winning strategy in the visible strong
cops and robber game on D, then 3k + 2 cops have a robber-monotone
winning strategy on D [1, 54].

2. D has DAG-width ≤ k if, and only if, k cops have a cop-monotone winning
strategy on D if, and only if, k cops have a robber-monotone winning
strategy on D in the visible weak reachability game [12].

3. D has Kelly-width ≤ k if, and only if, k cops have robber-monotone win-
ning strategy on D in the invisible inert weak reachability game. Here,
in the inert game variant the robber can only move when the cop player
announces to place a cop on the current robber position [51].

4. D has directed path-width k if, and only if, k cops have a cop-monotone
winning strategy on D if, and only if, k cops have robber-monotone win-
ning strategy on D in the invisible weak reachability game [8].

5. D has DAG-depth ≤ k if, and only if, the cop player has a winning strategy
with at most k cops in the visible weak reachability game in which he never
moves any cop, i.e. in every round the cop player has to use new cops [41].

Part (1) of the previous theorem follows from the observation that any
directed tree decomposition of a digraph of width k yields a winning strategy
for k + 1 cops. Part (2) − (3), on the other hand, follow from Theorem 9.3.8
below, as a haven of order k yields a winning strategy for the robber against
fewer than k cops. See below for details.

We close this section by giving an alternative characterization of Kelly-
width in terms of elimination ordering and partial k-DAGs.

Definition 9.2.14 (Directed elimination ordering [51]) An elimina-
tion order � for a digraph D is a linear order on V (D). For a vertex v
define Vv� := {u ∈ V : v � u}. The support of a vertex v with respect to �
is

supp�(v) := {u ∈ Vv� : there is v′ ∈ ReachG−Vv�(v) with (v′, u) ∈ E} .

The width of an elimination order � is maxv∈V |supp�(v)|.

The name elimination ordering originates in the following equivalent way
of defining the width of an elimination ordering based on an explicit elimi-
nation process. Let D be a digraph and let � be a linear order on V (D). Let
(v0, v1, . . . , vn−1) be the enumeration of V (D) with respect to �. We define
G�

0 := G and G�
i+1 as the graph obtained from G�

i by deleting vi and adding
(if necessary) new arcs (u, v) if (u, vi), (vi, v) ∈ E(G�

i ) and u �= v. G�
i is the

directed elimination graph at step i with respect to �.
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Now it is readily verified that the width of the elimination order � is the
maximum over all i of the out-degree of vi in G�

i .

Definition 9.2.15 ((Partial) k-DAG [51]) The class of k-DAGs is defined
recursively as follows:

• A complete digraph with k vertices is a k-DAG.
• A k-DAG with n + 1 vertices can be constructed from a k-DAG H with n

vertices by adding a vertex v and arcs satisfying the following:
– there are at most k arcs from v to H and
– if X is the set of endpoints of the arcs added in the previous sub-

condition, then there is an arc from u ∈ V (H) to v if (u,w) ∈ E(H)
for all w ∈ X \ {u}. Note that if X = ∅, this condition is true for all
u ∈ V (H).

A partial k-DAG is a subgraph of a k-DAG.

Theorem 9.2.16 ([51]) Let G be a digraph. The following are equivalent:

1. G has Kelly-width at most k + 1.
2. G has a directed elimination ordering of width ≤ k.
3. k + 1 cops have a robber-monotone winning strategy to capture an inert

invisible robber.
4. G is a partial k-DAG.

Further characterizations of classes of digraphs of bounded width have
been given in terms of forbidden subgraphs and forbidden minors, e.g. in
[65], where Kintali and Zhang characterized partial 1-DAGs in terms of
forbidden directed minors. See also [33, 73].

9.2.5 Comparing Directed Width Measures

In this section we compare the width measures introduced in the previous
section with respect to generality. In particular, we are interested in the
question whether classes of digraphs of bounded width with respect to one
measure automatically have bounded width in another measure. As we will
see, the width measures introduced above form the partial order shown in
Figure 9.5.
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dtw

DAG-width Kelly-width

D-width

dpw DAG-depth
<

<

≤
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<
<

Figure 9.5 The relation between different measures. An arrow labelled by “<”
means bounded only in one direction, an arrow labelled by “≤” means bounded at
least in one direction. A bidirected arrow labelled “ �∼” means not bounded in any
direction.

Lemma 9.2.17 ([12])

1. Every class of digraphs of bounded DAG-width has bounded directed tree-
width.

2. Conversely, there are classes of digraphs of bounded directed tree-width
and unbounded DAG-width.

Part 1 can easily be seen by considering the game characterization of DAG
width and directed tree-width (see Theorem 9.2.13): the set of positions the
robber can choose at any particular time in the directed tree-width game is
a subset (proper or not) of the set of positions he can choose in the DAG
width game. Hence, if k cops can catch the robber in the latter, they can also
do so in the former.

Towards Part 2, let Tt be a complete directed binary tree of height t, i.e. a
tree with all arcs oriented away from the root towards the leaves and every
vertex has two or zero successors. Furthermore, every path from the root to a
leaf has length t. Now add to Tt an arc from every vertex v ∈ V (Tt) to every
ancestor u ∈ V (Tt) of v, i.e. to every u �= v ∈ V (Tt) on the unique path from
the root r of Tt to v. We call this a tree with back arcs.

It is not hard to see that two cops can catch the robber on this tree for
any value of t in the directed tree-width game: they just start with one cop
at the root r. Then the robber has to decide into which of the two subtrees
he wants to move. The cops can then put the second cop on the root of this
subtree, i.e. on the successor v of r which is the root of the subtree containing
the robber. If the robber is on this vertex v, he can only move further down
into the subtree, i.e. into a subtree rooted at a successor v′ of v. Once the cop
on v is in place, the first cop on the root can be lifted and moved to v′. The
cops continue in this way chasing the robber down. This is possible because
once a cop is on v, every path that starts at the subtree of v containing the
robber and which ends in this subtree but has an inner vertex outside of this
tree has to go through v. Hence, even with only one cop on v the robber can
no longer leave the subtree rooted at v.

In the DAG-width game, however, the robber can simply follow a directed
path. In this game, to chase the robber down the tree the cops need to occupy
the entire path from the root of Tt to the root of the current subtree containing



9. Digraphs of Bounded Width 419

the robber. This results in a strategy using t cops. With a little extra work
one can show that there is no other, substantially better strategy. Hence, the
DAG width of Tt is proportional to t. See [12] for details.

The next result we state is that the DAG-width of a digraph is bounded
by a function of its Kelly-width. The question whether DAG-width and Kelly-
width of a class of digraphs are mutually bounded is equivalent to the question
whether the monotone cop numbers of the DAG-width and Kelly-width game
on digraphs are bounded by each other. This is a long open problem in
the theory of graph searching games. A partial answer was finally given by
Rabinovich [3, 83] who introduced the concept of weak monotonicity in the
DAG-width game and proved that every strategy for k cops in the Kelly-
width game can be translated into a weakly monotone strategy for k cops in
the DAG-width game. Furthermore, any winning strategy for k cops in the
weakly monotone game can be translated into a monotone strategy for k2

cops in the DAG width game. This implies the following lemma.

Lemma 9.2.18 Every class C of digraphs with bounded Kelly-width has
bounded DAG-width.

The converse of the lemma is still open and it is related to one of the
biggest open problems in graph searching, namely whether the monotonicity
costs for Kelly- and DAG-width games are bounded, i.e. if there is a function
f : N → N such that for every digraph D, if k cops have a winning strategy on
D in the Kelly-game then they also have a robber-monotone winning strategy
on D using at most f(k) cops (likewise for DAG-width games).

The next result we mention relates directed path-width to Kelly-width.
Again it follows immediately from the game characterizations of the width
measures that Kelly-width is more general than directed path width. Towards
the converse, it can again be shown through the game connection that if C
is a class of bidirected digraphs, i.e. digraphs where for every arc (u, v) also
the reverse arc (v, u) is present, the DAG-width, Kelly-width, directed tree-
width and D width all coincide with the undirected tree-width of the class C′

of graphs obtained from C by replacing every directed arc by an undirected arc
(removing duplicates). Furthermore, the directed path width of C equals the
path-width of C′ and the DAG-depth equals the tree-depth. As, for instance,
the class of trees has unbounded path width but bounded tree-width, the
next lemma follows.

Lemma 9.2.19 Every class of digraphs of bounded directed path-width has
bounded Kelly-width. Conversely, there are classes of digraphs of bounded
Kelly-width but unbounded directed path-width.

Finally, we compare D-width to the other classes. When D-width was in-
troduced, it was conjectured to be equivalent to directed tree-width in the
sense that classes of digraphs have bounded D-width if, and only if, they have
bounded directed tree-width [90, Page 756]. The observation that bounded
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D-width implies bounded directed tree-width is easily seen. One of the main
differences between directed tree decompositions and D-decompositions is the
concept of guarding. As the example in Figure 9.1 b) and the discussion in
the paragraphs following the example show, the guard of an arc e can con-
tain vertices which are contained in bags of an entirely different part of the
tree decompositions. Also, along a branch of the directed tree decomposi-
tion, vertices can appear in a guard, then disappear from the guards and
then reappear later. This leads to strategies for the cop-player which are not
cop-monotone. This “external” guarding as well as the non-monotonicity is
not possible in D-decompositions. Amiri et al. [3] manage to exploit these
differences to exhibit classes of digraphs of bounded directed tree-width but
where an unbounded number of cops is needed for the cop-monotone visible
strong cops and robber game. This already implies that the D-width is also
unbounded. They also exhibited classes of digraphs where a bounded number
of cops have cop-monotone winning strategies but where the D-width is still
unbounded.

Lemma 9.2.20 ([3][90])

1. Every class of digraphs of bounded D-width has bounded directed tree-
width.

2. Conversely, there are classes of digraphs of bounded directed tree-width
with unbounded D-width.

In [3], D-width is shown to be incomparable to Kelly and DAG-width.

Lemma 9.2.21

1. There are classes of digraphs of bounded D-width and unbounded Kelly-
and DAG-width.

2. There are classes of digraphs of bounded DAG-width unbounded D-width.
3. Every class of digraphs of bounded DAG-depth has bounded directed path-

width but the converse is false.

Finally, it can again be shown using the game characterization that classes
of digraphs of bounded directed path-width have bounded D-width and also
bounded Kelly-width. The converse fails in both cases as explained above:
the class of trees has bounded tree-width but unbounded path-width in the
undirected case and replacing in trees arcs by two directed arcs in opposite
directions separates directed path-width from D- and Kelly-width.

To separate directed path-width from DAG-depth note that the class of
directed paths has directed path-width 2 but unbounded DAG-depth. On the
other hand, one can show that if a digraph D has no path longer than t, then
this implies that t + 1 cops can win the invisible cops and robber game on
D and hence, by the game characterization of directed path-width in [8] and
[50], the directed path-width is also at most t + 1.
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9.3 Structure Theory for Directed Graphs Based on
Directed Minors

Originally, Robertson and Seymour introduced the tree-width of undirected
graphs as part of their monumental graph minor project culminating in the
proof of Wagner’s conjecture. At the heart of this project is a very powerful
structure theorem explaining what can be said about a graph G knowing
that it does not contain a fixed graph H as a minor. One simple reason
for this could be that the tree width of G is too small. But G may fail to
contain H as a minor even if the tree-width is very high. Therefore the major
part of the graph minors project deals with graphs of very high tree-width
that do not contain a fixed H as a minor. For this, one needs to understand
what information can be gained about a graph knowing that its tree width
is very high. The most fundamental result in this context is the excluded
grid theorem in [89] stating that any graph of sufficiently high tree-width
contains a large grid as a minor. Once this grid is found one can then analyze
how the rest of the graph attaches to this grid which eventually leads to
the local structure theorem and furthermore to the full structure theorem
mentioned before.

With the introduction of directed tree-width, Reed, Robertson, Seymour
and Thomas initiated the programme of generalizing this structure theory
from undirected graphs to digraphs. Again, a major challenge is to under-
stand what information can be obtained about a digraph knowing that its
directed tree-width is very high, i.e. what can we say about obstructions
to small directed tree-width. Consequently, the main open conjecture in the
initial papers is the directed analogue of the excluded grid theorem, which,
however, was only proved more than a decade after directed tree-width was
introduced. In this section we present several powerful duality results between
directed tree-width and various forms of obstructions. These results are not
only interesting from a structural perspective but have found important al-
gorithmic applications. We will comment on these applications in Section 9.4
below.

We begin by establishing a few fundamental properties of directed tree
decompositions. Let (T, β, γ) be a directed tree decomposition of a digraph
D.

The next lemma follows easily from the definition of directed tree decom-
positions and establishes a connection between decompositions and strong
separators, i.e. sets of vertices separating strongly connected components into
smaller components.

Lemma 9.3.1 Let T := (T, β, γ) be a directed tree decomposition of a di-
graph D.

1. For every e ∈ E(T ), γ(e) is a strong separator in D, i.e. if S1, S2 are
the two components of T − e, then every strong component of D − γ(e) is
either contained in β(S1) or β(S2).
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2. If t ∈ V (T ) and T1, . . . , Ts are the components of T − t, then every strong
component of D − Γ (t) is contained in exactly one β(Ti) for some i.

Definition 9.3.2 Let D be a digraph and W ⊆ V (D).

1. A balanced W -separator is a set S ⊆ V (D) such that every strong
component of D − S contains at most |W |

2 vertices of W . The order of
the separator is |S|.

2. The set W ⊆ V (D) is k-linked if D does not contain a balanced W -
separator of order k.

We show first that in a digraph of directed tree-width at most k −1 every
set has a balanced separator of order k, i.e. D does not contain a k-linked
set.

Lemma 9.3.3 Let D be a digraph of directed tree-width at most k − 1. Then
every set W ⊆ V (D) has a balanced W -separator of order at most k.

We sketch the proof of the lemma. See [70, 84] for details. Let (T, β, γ) be
a directed tree decomposition of D of order k. For every arc e = (u, v) ∈ A(T )
let C1, . . . , Cl be the strong components of D − γ(e) containing an element
of W . If none of the Ci contains more than 1

2 |W | elements of W , then γ(e)
is a balanced W -separator and we are done. Otherwise, by Lemma 9.3.1, one
of the two components Tu, Tv of T − e contains the (unique) component Ci

containing more than half of the elements of W . We orient e towards u if Ci

is contained in β(Tu) and towards v otherwise. This defines an orientation of
T and as T is a tree there must be a vertex t ∈ V (T ) such that all incident
arcs point towards t. It is easily seen that Γ (t) is a balanced W -separator.

The next theorem establishes an even more precise relation between k-
linked sets and the directed tree-width.

Theorem 9.3.4 ([54]) Every digraph D either has directed tree-width at most
3k + 2 or contains a set W which is k-linked and is a witness that D has
directed tree-width at least k.

We give the proof of this theorem as it will be the basis of an FPT algo-
rithm2 for computing, for a given digraph D a directed tree decomposition
whose width is an approximation of the directed tree-width of D. in Sec-
tion 9.4.

2 By an FPT algorithm we mean an algorithm with running time f(k) · nc, for
some function f and constant c, where n is the input size and k is a parameter
defined in the definition of the problem the algorithm solves. See Section 1.11
for details.

https://doi.org/10.1007/978-3-319-71840-8_1
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Proof. To prove the theorem we inductively construct a directed tree decom-
position (T, β, γ) of D. We maintain the property that for every inner vertex
t ∈ V (T ), |Γ (t)| ≤ 3k + 2 and for every arc e ∈ E(T ), |γ(e)| ≤ 2k + 1.

Either this process will succeed and therefore produce a directed tree
decomposition of the required width or it will fail at some point at which we
obtain a k-linked set.

We initialize the construction by the trivial directed tree decomposition
T :=

(
T, β, γ), where T is the tree with one node r and β(r) := V (D). Clearly

this satisfies the invariant above.
Now suppose T = (T, β, γ) has already been constructed. If T does not

contain a leaf t ∈ V (T ) with |Γ (t)| > 3k+2, then we are done. So let t ∈ V (T )
be such a leaf.

Let e be the arc incident with t. By construction, |γ(e)| ≤ 2k + 1. If γ(e)
is k-linked, we are done. Otherwise, let S be a balanced γ(e)-separator of
order at most k. Let v ∈ β(t) be an arbitrary vertex and let X := S ∪ {v}.
By construction, |X| ≤ k + 1, X ∩ β(t) �= ∅ and every strong component C
of D − X contains at most 1

2 |γ(e)| ≤ k elements of γ(e). Let C1, . . . , Cs be
the strong components of D − (X ∪γ(e)). By the definition of a directed tree
decomposition, either V (Ci) ⊆ β(t) or V (Ci) ∩ β(t) = ∅, for all 1 ≤ i ≤ s.
Let D1, . . . , Dl be the components among {C1, . . . , Cs} with V (Ci) ⊆ β(t).
For each Di, let D′

i be the component of D − X, such that V (Di) ⊆ V (D′
i)

and let Wi =
(
γ(e) ∩ V (D′

i)
)

∪ X. Then

|Wi| ≤ |γ(e) ∩ V (D′
i)| ∪ |X| ≤ k + k + 1 = 2k + 1

and Di is also a strong component of D − Wi.
We extend T as follows to obtain a new decomposition T ′ := (T ′, β′, γ′):

add new vertices t1, . . . , tl and arcs ei := (t, ti) to T , for all 1 ≤ i ≤ l, and
set β′(t) := X ∩ β(t), β′(ti) := V (Di) and γ′(ei) := Wi. For all other nodes
t and arcs e we set β′(t) := β(t) and γ′(e) := γ(e). It is easily seen that
T ′ is a directed tree-decomposition of D maintaining the invariant above. In
particular, |β′(t)| ≤ |X| ≤ k + 1 and |γ′(ei)| ≤ 2k + 1. Furthermore, γ′(ei) ⊆
X ∪ γ(e) and thus Γ ′(t) = β′(t) ∪ γ′(e) ∪

⋃
{γ′(ei) : 1 ≤ i ≤ s} ⊆ X ∪ γ(e).

It follows that |Γ ′(t)| ≤ k + 1+ 2k + 1 = 3k + 2. Furthermore, as D1, . . . , Dl

are strong components of D − (X ∪ γ(e)), the conditions of directed tree
decompositions are still satisfied. �

A consequence of the proof of the previous lemma is that if a digraph D
has directed tree-width at most k then it also has a directed tree decompo-
sition of width at most 3k + 2 which has a particularly nice form.

Definition 9.3.5 (Nice Directed Tree Decomposition) Let D be a di-
graph. A directed tree decomposition (T, β, γ) of D is nice if

a) for all e = (s, t) ∈ A(T ) the set β(Tt) is a strong component of G − γ(e)
and

b) if t ∈ V (T ) and s1, . . . , sl are the children of t in T , then
⋃

1≤i≤l β(si) ∩⋃
e∼t γ(e) = ∅.
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Nice decompositions are easier to work with in algorithmic applications
and we will use them in the applications in Section 9.4. One immediate con-
sequence of this definition is the following lemma which is algorithmically
useful.

Lemma 9.3.6 Let (T, β, γ) be a directed tree-decomposition of a digraph D.
For every t ∈ V (T ) there is an ordering <t on the successors s1, . . . , sk of t
in T so that if si <t sj, then D does not contain any arc e = (u, v) ∈ E(D)
with u ∈ β(Tsi

) and v ∈ β(Tsj
).

For now we go back to the study of obstructions for directed tree width.
We have already seen that a k-linked set is an obstruction to small directed
tree-width. The next obstruction we study are known as havens. In the
sequel, for any set X and k ≥ 0, we denote the set of all subsets of X of order
less than k by [X]<k.

Definition 9.3.7 Let D be a digraph. A haven of D of order k is a function
h : [V (D)]<k → 2V (G) assigning to every set X of fewer than k vertices a
strong component of G − X such that if Y ⊆ X ⊆ V (D) with |X| < k, then
h(X) ⊆ h(Y ).

It is easily seen that any k-linked set W in a digraph D defines a haven
of order k: for every set X ⊆ V (D) of order at most k define h(X) as the
(unique) strong component of D−X containing more than half of the elements
of W . It is straightforward to verify that this satisfies the haven axioms.
Hence, we obtain the following theorem.

Theorem 9.3.8 ([54])

1. If G is a digraph of tree-width at most k, then G does not contain a haven
of order k.

2. Conversely, if G does not contain a haven of order k, then G has tree-width
at most 3k + 2.

We now define a sequence of other obstructions for directed tree-width,
originally defined in [84].

Definition 9.3.9 A bramble in a digraph D is a set B of strongly connected
subgraphs of D such that for any pair B,B′ ∈ B, either V (B) ∩ V (B′) �= ∅
or there are arcs e, e′ linking B and B′ in both directions. A bramble B is
strong if V (B) ∩ V (B′) �= ∅ for all B,B′ ∈ B.

A cover, or hitting set, of B is a set X ⊆ V (D) such that X ∩V (B) �= ∅
for all B ∈ B. The order of B is the minimum size of a cover of B.

The last type of obstruction we consider are well-linked sets.
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Definition 9.3.10 Let D be a digraph. A set W ⊆ V (D) is well-linked if
for any X,Y ⊆ W with |X| = |Y | there are |X| = |Y | pairwise vertex disjoint
paths from X to Y in G − (W \ (X ∪ Y )).

The next lemma, proved in [84], connects the various forms of obstructions
we have seen so far. See [70] for details.

Lemma 9.3.11 Let D be a digraph and let k ≥ 0.

1. If D contains a k-linked set, then it contains a strong bramble of order
k + 1.

2. If D contains a bramble B of order k, then D contains a well-linked set of
order k.

3. If D contains a well-linked set of order 4k+1, then D contains a k-linked
set.

Proof. To show Part (1), it is not hard to see that a k-linked set W in a
digraph D defines a bramble of order k + 1: for every set X ⊆ V (D) of at
most k vertices add to the bramble to the unique strong component of D−X
containing more than half of the vertices of W . It is readily verified that this
indeed yields a strong bramble.

For (2) one can show that every minimum size cover of a bramble must
be well-linked.

Part (3) is slightly more technical and we refer, e.g. to [70] for details. �

As explained at the beginning of this section, one of the most fundamental
theorems in Robertson and Seymour’s graph minor project is the excluded
grid theorem. In the mid-90s, Reed [85] and Johnson et al. [54] conjectured
an analogous theorem for directed graphs, i.e. that any digraph of sufficiently
high directed tree-width should contain a large cylindrical grid as a butterfly
minor.

Definition 9.3.12 (Butterfly minor) Let D be a digraph and let e =
(u, v) ∈ A(D). The digraph D/e obtained from D by contracting e is defined
as the digraph with vertex set V (D) \ {u, v} ∪ {xu,v}, where xu,v is a fresh
vertex. The edges of D/e are the same as the edges of D except for the edges
with u or v as endpoint. Any such edge (w,w′) or (w′, w), where w ∈ {u, v}
and w′ �∈ {u, v} is replaced by an edge (xu,v, w′) and (w′, xu,v) resp.

A butterfly contraction is the operation of contracting an edge e =
(u, v) where u has out-degree 1 or v has in-degree 1. A digraph H is said to
be a butterfly minor of a digraph D, written H �b D, if it can be obtained
from a subgraph of D by a series of butterfly contractions.

Definition 9.3.13 (cylindrical grid) A cylindrical grid of order k, for
some k ≥ 1, is a digraph Gk consisting of k directed cycles C1, . . . , Ck, pair-
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Figure 9.6 Cylindrical grid G4.

wise vertex disjoint, together with a set of 2k pairwise vertex disjoint paths
P1, . . . , P2k such that

• each path Pi has exactly one vertex in common with each cycle Cj,
• the paths P1, . . . , P2k appear on each Ci in this order
• for odd i the cycles C1, . . . , Ck occur on all Pi in this order and for even i

they occur in reverse order Ck, . . . , C1.

See Figure 9.6 for an illustration of G4. The conjecture by Reed, John-
son, Robertson, Seymour and Thomas was confirmed by Kawarabayashi and
Kreutzer in [61].

Theorem 9.3.14 (The directed grid theorem [61]) There is a function
f : N → N such that every digraph of directed tree-width at least f(k) contains
a cylindrical grid of order k as a butterfly minor.

9.4 Complexity of Directed Width Measures and
Algorithmic Applications

In this section we describe some of the algorithmic applications of directed
width measures. In particular, we will see that some NP-complete graph
problems can be solved efficiently on classes of digraphs of bounded width.
As these applications usually require the computation of the associated de-
compositions, we first consider the complexity of computing digraph decom-
positions in the next section. The main algorithmic applications are presented
in Section 9.5 below.

9.4.1 Complexity of Directed Width Measures

We first show that for essentially all width measures defined above, the asso-
ciated decision problem is NP-hard. This follows from the following obser-
vation.
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Theorem 9.4.1 Let G be an undirected graph and let D be the digraph ob-
tained from G by replacing each arc {u, v} by two arcs (u, v) and (v, u)3. Then
tw(G) + 1 = dtw(D) + 1 = dag-width(D) = Kelly-width(D) = D-width(D),
where tw(G) denotes the tree-width of G.

Furthermore, the tree-depth of G equals the DAG-depth of D and the
path-width of G equals the directed path-width of D minus 1.

The case for directed tree-width was proved in [54, (2.1)]. The equalities
for DAG-width and Kelly-width follow immediately from the corresponding
game characterizations. For directed path-width and D-width there are di-
rect translations of the corresponding decompositions and for DAG-depth it
follows immediately from the definition of DAG depth and tree-depth.

Deciding the tree-width, the tree-depth and the path-width of a graph G
is NP-complete (see e.g. [5]) and hence the decision problems for the directed
width measures is NP-hard. For all width measures except DAG-width, the
decomposition defining the width are of polynomial size in the size of the
input graph and hence the problems are even NP-complete. For DAG-width
this is not the case, as we shall see below.

Corollary 9.4.2 Deciding the DAG-depth, the directed tree-width, the di-
rected path-width, the D-width and the Kelly-width of a digraph is NP-
complete. Deciding the DAG-width of a digraph is NP-hard.

Right from the definition, the number of bags in a DAG decomposition of
a digraph D is not restricted to be polynomial in the size of the decomposed
digraph. And in fact, it was shown in [3], that there are classes of digraphs
where DAG decompositions of optimal width require super-polynomially
many bags, i.e. there is no fixed degree polynomial bounding the number
of bags of a DAG-decomposition in the number of vertices of the digraph. In
particular, this rules out that optimal DAG-decompositions can be computed
by an FPT algorithm parameterized by the DAG-width. To make matters
worse, it was also shown in [3], that there is no polynomial size approxi-
mation of an optimal DAG decomposition with an additive constant error in
the width. Furthermore, the problem of deciding the DAG-width of a digraph
turned out to be much harder than deciding any of the other width measures.

Theorem 9.4.3 ([3]) The problem, given a digraph G and a number k ≥ 0,
whether the DAG-width of G is at most k, is Pspace-complete.

9.4.2 Computing Directed Graph Decompositions

We have seen that deciding directed width measures is computationally hard.
However, a range of algorithms have appeared for computing decompositions

3 Thus D is the complete biorientation of G.
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which approximate the optimal width. Here we present some of these approx-
imation algorithms.

Directed Tree-Width. The first algorithm we present below is an FPT
approximation algorithm4 for directed tree-width that follows from [54]. See
Section 1.11 for details on parameterized algorithms. The proof of Theo-
rem 9.3.4 showing the duality between havens and directed tree-width can
easily be made algorithmic using the notion of weakly balanced separations.
Recall the definition of a nice directed tree decomposition (Definition 9.3.5).

Theorem 9.4.4 There is an algorithm with running time O(32k+2 ·k ·|A(D)|·
|V (D)|) which, on input D and k ≥ 1, either computes a nice directed tree-
decomposition of D of width at most 5k + 10 or a weakly k-linked set W .

Sketch. Essentially, the proof of Theorem 9.3.4 already yields an algorithm for
computing directed tree decompositions. The only problem is that balanced
separators cannot be computed efficiently. However, in the proof balanced
W -separators can be replaced by weakly balanced W -separations. Here, a
weakly balanced W -separation is a triple (X,S, Y ) of pairwise disjoint
sets X,Y ⊆ W of order 0 < |X|, |Y | ≤ 3

4 |W | and S ⊆ V (D) such that
W = X ∪ (S ∩ W ) ∪ Y and there is no directed path from X to Y in D − S.
The order of the separation is |S|.

Adapting the algorithm in [34, Corollary 11.22] to the directed setting
one can show that there is an algorithm running in time O(32k+2k|A(D)|)
which, given as input a digraph D, a number k ≥ 1 and a set W ⊆ V (D) of
size 2k + 2, computes a weakly balanced W -separation of order at most k if
such a separation exists.

Using weakly balanced separations instead of balanced separators in the
proof of Theorem 9.3.4 yields an algorithm with the running time as stated
in the theorem, at the expense of increasing the width of the constructed
directed tree decomposition to (4k + 1) + (k + 1) = 5k + 2. �

The previous algorithm yields a fixed-parameter approximation algorithm
for directed tree-width. Kintali, Kothari and Kumar designed a polynomial
time approximation algorithm of directed tree-width up to log n-factors.

Theorem 9.4.5 ([64]) There exists a polynomial time approximation algo-
rithm that, given a digraph D, computes a directed tree decomposition of D,
whose width is at most O(log

3
2 |V (D)| · dtw(D)).

DAG-Width and Kelly-Width. To date, directed tree-width is the only
tree-width inspired width measure which can be computed (approximately)

4 By an FPT approximation algorithm we mean an algorithm running in time
f(k) · nc, for some function f and a constant c, which given a number k and
a digraph D computes a directed tree decomposition of D of width O(k) or
determines that the directed tree-width of D is > k.

https://doi.org/10.1007/978-3-319-71840-8_1
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by FPT algorithms on general digraphs. For DAG-width an XP-algorithm is
known for computing an optimal width decomposition.

Theorem 9.4.6 ([12]) Given a digraph D of DAG-width at most k, a DAG
decomposition of D of width at most k can be computed in time |D|O(k).

For Kelly-width it is still open whether optimal decompositions can be
computed by an XP-algorithm. The reason is that DAG-width is defined by
a cops and robber game with a visible robber, i.e. a game of perfect informa-
tion. Kelly-width, on the other hand, is defined by an invisible robber game
and hence by a game with imperfect information, which are computationally
harder. Hence, the game characterization does not immediately yield an XP-
algorithm. However, there are explicit algorithms known for computing Kelly
decompositions.

Theorem 9.4.7 ([51]) The Kelly-width of a digraph with n vertices can be
determined in time O∗(2n) and space O∗(2n), or in time O∗(4n) and poly-
nomial space, where O∗(f(n)) means that polynomial factors are suppressed.

Furthermore, the Kelly-width of a digraph can be approximated up to a
log n factor.

Theorem 9.4.8 ([64]) There exists a polynomial time approximation algo-
rithm that, given a digraph D, computes a Kelly decomposition of D, whose
width is O(log

3
2 n · Kelly-width(D)).

Finally, for small values of k, efficient and explicit algorithms for deciding
the Kelly-width and computing corresponding decompositions were given,
e.g. in [73].

Directed Path-Width. The situation for directed path-width is similar to
the case of Kelly width.

Theorem 9.4.9 ([66, 97])

1. There is an algorithm which, given a digraph D and k ∈ N as input,
computes a directed path decomposition of D of width k, if it exists, in
time O(|D|k+1 · |A(D)|).

2. There is an algorithm computing a directed path-decomposition of a di-
graph D of optimal width in time O∗(1.89n), where O∗ means that poly-
nomial factors are suppressed.

It is still open whether computing optimal directed path decompositions is
fixed-parameter tractable. However, Fomin and Pilipczuk [37] exhibited FPT
algorithms for computing optimal width path decompositions on tournaments
and semi-complete digraphs.
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9.5 Applications of Tree-Width Inspired Directed
Width Measures

On classes of undirected graphs of bounded tree width NP-hard problems
from a very broad spectrum of areas and types of problems have been shown
to become efficiently solvable, often even in linear time for any fixed upper
bound on the tree-width. In particular, Courcelle [23] proved that every prob-
lem definable in monadic second-order logic (MSO2) can be solved in
linear time on bounded tree-width classes (of undirected graphs). Monadic
second-order logic(MSO2) is a logic extending plain first-order logic by
quantification over sets of edges and sets of vertices of a graph. It is very pow-
erful logical language in which many graph problems such as 3-Colourability,
Hamiltonian paths and -cycles, k-disjoint paths, perfect matchings and many
more can be expressed very naturally. See [24] for details on monadic second-
order logic and its variants MSO2 and MSO1 used below.

For directed graphs, Ganian et al. [43] showed that no such broad MSO2

based algorithm theory is possible for tree width inspired width measures.
Essentially, under some technical conditions, they showed that if one wants
tractability of all MSO definable problems on classes of bounded width with
respect to some width measure that translates undirected tree-width to di-
graphs (defined as having a graph searching game characterization similar to
tree-width), then the only width achieving this undirected tree width. This
establishes a general limit of tractability for digraph width measures based on
tree-width but allows for algorithmic applications more specific to directed
graphs.

Directed width measures, especially directed tree-width, have found vari-
ous applications in the design of algorithms: in database theory, Bagan et al.
[6] proved that simple regular path queries can be evaluated in polyno-
mial time on graph databases of bounded directed tree-width (whereas the
problem is intractable in general). In the area of Boolean networks, Tamaki
[96] conducted experiments on computing attractors in Boolean networks.
It turned out that for networks of small directed path-width he was able to
handle networks which were significantly larger than what can be handled by
standard tools. Another example motivated by practical applications is given
in [94], where Sheppard investigates digraphs obtained from DNA sequenc-
ing by hybridization. In this method a digraph is constructed where vertices
correspond to so-called k-mers. An important algorithmic problem in this
context is finding Hamiltonian paths. It was shown in [94] that the digraphs
occurring in this context usually have very small DAG-width so that polyno-
mial time algorithms for computing Hamiltonian paths on digraphs of small
DAG-width (see below) become applicable. In general, the most intensively
studied applications of directed width measures are for routing problems in
directed graphs. We present some of these applications in the following sec-
tions.
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9.5.1 Disjoint Paths and Linkage Problems in Digraphs of
Bounded Width

One of the main applications of directed width measures is to routing prob-
lems in digraphs. We will see various examples where directed tree-width
is used in algorithms for solving various forms of directed disjoint paths
problems. In particular, we will show that problems such as the directed
Hamiltonian path problem or the k-disjoint paths problem can be solved in
polynomial time on classes of digraphs of bounded directed tree-width.

k-Disjoint paths
Input: A digraph G and terminals s1, t1, s2, t2, . . . , sk, tk
Question: Does D have k pairwise internally vertex disjoint paths
P1, . . . , Pk such that Pi is from si to ti for i = 1, . . . , k?

The k-disjoint paths problem on directed and undirected graphs is well-
known to be NP-complete. But whereas on undirected graphs, the problem
is fixed-parameter tractable, it is NP-complete on directed graphs even for
k = 2, as shown by Fortune, Hopcroft and Wyllie [39]. See Section 1.6.

Theorem 9.5.1 ([39]) The k-Disjoint paths problem is NP-complete for
all k ≥ 2.

Furthermore, as shown by Slivkins [95], the k-Disjoint paths problem is
already W [1]-hard on DAGs. But Johnson, Robertson, Seymour and Thomas
[54] proved that it can be solved in polynomial time for every fixed value of
k on any fixed class C of digraphs of bounded directed tree-width.

Definition 9.5.2 A linkage in a digraph D is a set L of pairwise internally
vertex disjoint directed paths. The order |L| is the number of paths in L and
its size is |V (L)|, where V (L) := |

⋃
P∈L V (P )|.

Let σ := {(s1, t1), . . . , (sk, tk)} be a set of k pairs of vertices in D. A
σ-linkage is a linkage L := {P1, . . . , Pk} of order k such that Pi links si to
ti.

The first algorithmic result we establish is the following theorem.

Theorem 9.5.3 ([54])Let D be a digraph and (T, β, γ) be a directed tree de-
composition of D of width w. Let k, l ≥ 1 and let σ be a set of k pairs of
vertices in D. It can be decided in time |V (D)|O(k+w) whether D contains a
σ-linkage of size l.

Problem 9.5.4 Can the previous theorem be improved to fixed-parameter
tractability in the directed tree-width, for any fixed number k? I.e. does there
exist for every fixed k an algorithm running in time f(dtw(G)) · |V (G)|c, for
some constant c and function f , both depending on k, that decides whether
G has a σ-linkage for any set σ of at most k source/terminal pairs?

https://doi.org/10.1007/978-3-319-71840-8_1
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The theorem can also be extended to weighted digraphs, see e.g. [70] for
details. Combined with the algorithm for computing directed tree decom-
positions in Theorem 9.4.4, the theorem immediately implies the following
corollary.

Corollary 9.5.5 The Hamiltonian cycle, the Hamiltonian path and, for all k,
the k-Disjoint paths problem can be solved in polynomial time on any
class C of digraphs of bounded directed tree-width.

We sketch the proof of Theorem 9.5.3. Recall that for any digraph D and
S ⊆ V (D), D[S] := (S,A(D) ∩ S × S) denotes the subdigraph of D induced
by S. Similarly, if L is a linkage in D and S′ ⊆ V (D), we write L[S′] for
the projection of L onto D[S′], i.e. the linkage {P ∩ D[S′] : P ∈ L}. The
algorithm is based on the following observation. Let D be a digraph and let
S ⊆ V (D) be a set of vertices. For k ≥ 0 we say that S is k-protected if there
is a strong guard Z ⊆ V (D) of S of order |Z| ≤ k. Note that if (T, β, γ) is a
directed tree decomposition of a digraph D of width k−1 and t ∈ V (D), then
β(Tt) =

⋃
{β(t′) :: t′ is reachable from t in T } is k-protected. In particular,

if e = (s, t) is an arc in E(T ) then we can take Z := γ(e) as a witness for
β(Tt) being k-protected. The main observation is now the following.

Lemma 9.5.6 Let D be a digraph and let S ⊆ V (D). Let k,w ≥ 0 and let L
be a linkage of order k in D[S].

If S′ ⊆ S is w-protected, then L[S′] has order at most k + w.

Proof. Let P1, · · · , Pk be the paths in L and let Z ⊆ V (D) be such that
|Z| ≤ w and every directed path in D starting and ending in S′ which is not
entirely contained in D[S′] contains a vertex of Z. It follows that if Pi[S′]
is the union of j directed paths, then |V (Pi) ∩ Z| ≥ j − 1. Hence, L[S′] has
order at most k + w. �

The previous lemma is the basis for a dynamic programming algorithm
for solving the linkage problem in Theorem 9.5.3. Given a digraph D and a di-
rected tree decomposition (T, β, γ) of D of width w−1, the algorithm proceeds
as follows. For every t ∈ V (T ) and every tuple σ :=

(
(u1, v1), . . . , (us, vs)

)

of pairs of vertices in β(Tt), for some s ≤ k + w, it computes the set of all
l ≤ |V (D)| such that G[β(Tt)] contains a σ-linkage of size l. As shown in [54],
this can be done by dynamic programming. Clearly, once this information is
computed for the root of T , the linkage problem for D can be answered for
every tuple σ =

(
(u1, v1), . . . , (uk, vk)

)
of order k. This completes the sketch

of the proof of Theorem 9.5.3.

In the terminology of parameterized complexity, see Section 1.11, the
previous result shows that the k-disjoint paths problem is in XP with param-
eter k + w, where w is the directed tree-width of the input digraph. Unless
FPT=W [1], this cannot be improved to fixed-parameter tractability (FPT)
in the parameter k for every fixed width w, as Slivkins [95] showed that the

https://doi.org/10.1007/978-3-319-71840-8_1
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disjoint paths problem is W [1]-hard already on DAGs, which have directed
tree-width 0.

We close this section by mentioning an algorithmic meta theorem by
Oliveira Oliveira generalizing the previous linkage algorithm.

Theorem 9.5.7 ([29]) Let Ω be a finite commutative semigroup. Let ϕ be
an MSO2 sentence and let k,w ∈ N. There is a computable function f :
N

3 → N such that, given a weighted digraph D = (V,E, ω : E(D) → Ω) of
directed tree-width w, a positive integer l < |V | and an element α ∈ Ω, one
can count in time f(ϕ,w, k) · |D|O(k·(w+1)) the number of subgraphs H of D
simultaneously satisfying the following four properties:

1. H |= ϕ.
2. H is the union of k directed paths.
3. H has l vertices.
4. H has weight ω(H) = α.

In fact, one can even choose a semigroup of size polynomial in D.

9.5.2 Linkages in General Digraphs

The results in the previous section exhibit algorithms for linkage type prob-
lems on digraphs of small directed tree-width. However, the machinery of
directed tree decompositions and obstructions to low directed tree-width can
also be used to obtain results for general digraphs.

Given the NP-hardness of the k-Disjoint paths problem already for
k = 2, it is natural to consider relaxations of the problem in order to obtain
polynomial time algorithms. One relaxation that has been studied in the
literature is to allow congestions. Let σ :=

(
(s1, t1), . . . , (sk, tk)

)
be a k-tuple

of pairs of vertices in a digraph D and let c ≥ 1. A set P1, . . . , Pk of directed
paths in D is a σ-linkage with congestion c if, for all 1 ≤ i ≤ k, the path
Pi links si to ti and furthermore, every vertex of D is contained in at most
c paths. For c = 2 we call the linkage half-integral and for c = 4 it is a
quarter-integral linkage.

Problem 9.5.8 Does there exist, for every fixed integer k ≥ 1, a polynomial
algorithm which, given a digraph D and a tuple σ :=

(
(s1, t1), . . . , (sk, tk)

)
as

input, decides correctly whether D contains a half-integral σ-linkage.

However, partial results are known. In [60], Kawarabayashi, Kobayashi and
Kreutzer show the following result for quarter-integral linkages.

Theorem 9.5.9 ([60]) For every fixed k ≥ 1 there is a polynomial time
algorithm for deciding the following problem.
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Quarter-integral disjoint paths
Input: A digraph D and terminals s1, t1, s2, t2, . . . , sk, tk ∈ V (D).
Find: a quarter-integral linkage of (s1, t1), . . . , (sk, tk) or conclude that
D does not contain disjoint paths P1, . . . , Pk such that Pi is from si to ti,
for i ∈ [k].

The proof of the previous theorem in [60] precedes the proof of the directed
excluded grid theorem (Theorem 9.3.14). Using Theorem 9.3.14, the result
can be improved to third-integral linkages. The main idea of the proof is to
use the duality between directed tree width and cylindrical grids. Roughly,
the algorithm works as follows. If the directed tree-width is small then it
uses a simple adaptation of the algorithm in Theorem 9.5.3 to solve the
problem optimally. Otherwise, Theorem 9.3.14 implies that D contains a
large cylindrical grid C. If there is a linkage L1 from s1, . . . , sk to C and a
linkage L2 from C to t1, . . . , tk then L1, C and L2 can be used to construct
a third-integral linkage linking si to ti, for all 1 ≤ i ≤ k. Otherwise, by
Menger’s theorem, there must be a low order separation from, say, s1, . . . , sk.
The separation does not rule out the existence of a quarter-integral solution
but it can sometimes be used to rule out a fully integral solution (which would
then be the second outcome of the theorem). If a fully integral solution is
not ruled out by this construction, then the problem can be reduced to a
smaller instance. In this way, one either gets a third-integral solution or the
algorithm certifies that there are no fully disjoint paths linking the sources
to the targets.

As mentioned above, it is still an open problem whether the result can
be improved to half-integral solutions and, more importantly, whether it can
further be improved so that the negative answer also rules out the existence
of a half-integral solution.

As a first significant step in this direction, Edwards, Muzi and Wollan
proved a polynomial time algorithm for the half-integral linkage problem for
highly connected digraphs.

Theorem 9.5.10 ([31]) For all integers k ≥ 1, there exists a value L(k)
such that every strongly L(k)-connected graph is half-integrally k-linked.
Moreover, there exists an absolute constant c such that given an instance
(D, (s1, t1), . . . , (sk, tk)) of the half-integral disjoint path problem, where D is
L(k)-connected, we can find a solution in time O(|V (D)|c).

We close the section by mentioning further applications of these tech-
niques beyond classes of digraphs of small directed tree-width. Fomin and
Pilipczuk [37] showed that for tournaments the k-arc disjoint paths problem
fixed-parameter tractable. Their algorithm uses directed path-width. They
first show that on tournaments directed path-width can be decided by an
FPT algorithm. They then use a duality of directed path-width and an ob-
struction called jungles which was proved in [20, 40].
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Finally, the concepts of directed tree-width, or more specifically, its
dual notion of well-linked sets, have played a decisive role in the study of
approximation algorithms for symmetric routing on planar digraphs. See
Section 5.2.

9.5.3 The Erdős-Pósa Property for Directed Graphs

A classical result by Erdős and Pósa states that there is a function f : N → N

such that for every k, every graph G contains k pairwise vertex disjoint cycles
or a set T of at most f(k) vertices such that G − T is acyclic.

There is a natural generalization of this result to arbitrary graphs: a graph
H has the Erdős-Pósa property if there is a function f : N → N such that
every graph G either has k disjoint copies of H as a minor or contains a
set T of at most f(k) vertices such that H is not a minor of G − T . As an
application of the undirected excluded grid theorem, Robertson and Seymour
[89] proved that a graph H has the Erdős-Pósa-property in this sense if, and
only if, H is planar.

The Erdős-Pósa property can also be defined for digraphs. Younger [101]
conjectured that there is a function f : N → N such that for every k every
digraph either has k disjoint directed cycles or a set of at most f(k) vertices
intersecting every directed cycle. The conjecture was proved by Reed, Robert-
son, Seymour and Thomas in [86]. In fact, the concept of directed tree-width
originated in the work on Younger’s conjecture.

Again this can be generalised to arbitrary digraphs, based on directed
minors (see Section 9.6.1 for the definition of butterfly and topological mi-
nors): a digraph H has the Erdős-Pósa property for topological (butterfly)
minors if there is a function f : N → N such that for all k ≥ 0, every digraph
D either contains k disjoint subgraphs each containing H as a topological
(butterfly) minor or there is a set S ⊆ V (D) of at most f(k) vertices such
that D − S does not contain H as a topological (butterfly) minor. In [4],
Amiri, Kawayabashi, Kreutzer and Wollan used the directed excluded grid
theorem (Theorem 9.3.14) to show the following characterization of strongly
connected digraphs with the Erdős-Pósa property.

Theorem 9.5.11 Let H be a strongly connected digraph.

1. H has the Erdős-Pósa property for butterfly minors if, and only if, there
is a cylindrical grid Gc, for some constant c = c(H), such that H �b Gc.

2. H has the Erdős-Pósa property for topological minors if, and only if, there
is a cylindrical wall Gc, for some constant c = c(H), such that H �t Gc.

Furthermore, for every fixed strongly connected digraph H satisfying these
conditions and every k there is a polynomial time algorithm which, given
a digraph G as input, either computes k disjoint (butterfly or topological)
models of H in G or a set S of ≤ h(k) vertices such that G − S does not
contain a model of H.

https://doi.org/10.1007/978-3-319-71840-8_5


436 S. Kreutzer and O.-j. Kwon

The previous theorem settles the case for strongly connected digraphs.
It would be interesting to get a similar characterization also for general di-
graphs. This may be much harder to get as in this case the techniques based
on directed tree-width will no longer be as useful as for strongly connected
digraphs. An intermediate case could be vertex cyclic digraphs which are
digraphs in which every strong component is non-trivial, i.e. contains more
than a single vertex. In [4], some special cases of vertex-cyclic digraphs are
solved, but the general problem remains open.

Problem 9.5.12

1. Characterize the class of vertex-cyclic digraphs which have the Erdős-Pósa
property.

2. Characterize in general the class of digraphs which have the Erdős-Pósa
property.

3. What is the complexity of deciding, given a digraph H, whether it has the
Erdős-Pósa property?

9.6 Density Based Width Measures

In this section we introduce the second type of directed width measures cov-
ered in this chapter: width measures based on directed minors and density
arguments. For this, we first need to define the notions of directed minors
used in this section.

9.6.1 Directed Minors

On undirected graphs, one usually distinguishes between two types of minors:
topological minors, obtained by subdividing edges and deleting edges or
vertices, and general minors, obtained by a sequence of edge and vertex
deletion and arc contraction.

Topological minors have a straight forward generalization to directed
graphs.

Definition 9.6.1 A subdivision of a digraph D is obtained by replacing
some arcs of D by pairwise internally vertex disjoint directed paths respecting
the directions of the replaced arcs. For r ≥ 0, H is an r-subdivision of D if
we can replace some arcs of H by paths of length at most r + 1 to obtain D.

For digraphs D,H, we say that H is a directed topological minor of D,
denoted by H �t D, if D contains a subdivision of H as a subgraph. We write
H �t

r D and call H an r-shallow topological minor of D if D contains a
2r-subdivision of H as a subgraph.
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The reason we define r-shallow topological minors as 2r-subdivisions is
that this corresponds more closely to r-shallow directed minors defined below.

For general directed minors, several alternative and not necessarily equiv-
alent definitions have been considered in the literature. The most popular
among these are butterfly minors, defined in Definition 9.3.12 above.

For undirected graphs, the notion of minors that are obtained by a series of
vertex and edge deletions and edge contractions can equivalently be defined in
terms of minor models. In the directed setting these two notions are different
(every butterfly minor is also a directed minor but not vice versa) [72].

Definition 9.6.2 A digraph H has a directed model in a digraph D if there
is a function δ mapping vertices v ∈ V (H) of H to sub-graphs δ(v) ⊆ D and
arcs e ∈ E(H) to arcs δ(e) ∈ E(D) such that if v �= u then δ(v) ∩ δ(u) = ∅
and if e = (u, v) and δ(e) = (u′, v′) then u′ ∈ δ(u) and v′ ∈ δ(v).

For v ∈ V (H) let in(δ(v)) := V (δ(v)) ∩
⋃

e=(u,v)∈E(H) V (δ(e)) and
out(δ(v)) := V (δ(v)) ∩

⋃
e=(v,w)∈E(H) V (δ(e)).

Furthermore, we require that for every v ∈ V (H)

1. there is a directed path in δ(v) from any u ∈ in(δ(v)) to every u′ ∈
out(δ(v));

2. there is at least one source vertex sv ∈ δ(v) that reaches every element of
out(δ(v));

3. there is at least one sink vertex tv ∈ δ(v) that can be reached from every
element of in(δ(v)).

We write H �d D if H has a directed model in D and call H a directed
minor of D. We call the sets δ(v) for v ∈ V (H) the branch-sets of the
model.

Note that the conditions (2) and (3) in the previous definition are implies
by Condition (1) for vertices of in- and out-degree > 0. They serve the purpose
to ensure that sinks and sources in H are represented by a single vertex in
D together with paths connecting this vertex to its (in- or out-) neighbours.

Definition 9.6.3 For r ≥ 0, a digraph H is a directed depth-r minor of a
digraph D, denoted as H �d

r D, if there exists a directed model of H in D in
which the length of all the paths in the branch-sets of the model are bounded
by r.

We close the section by relating the different concepts of minors to each
other. It is not hard to see that for all digraphs H,D,

H �t D ⇒ H �b D ⇒ H �d D.

The same relation extends to shallow minors:

Lemma 9.6.4 For all digraphs H,D and r ≥ 0: H �t
r D implies H �d

r D.
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Bipartite digraphs will play a special role on the rest of this section.

Definition 9.6.5 A bipartite digraph is a digraph D = (A∪̇B,E) whose
vertex set is partitioned into two sets A and B and E ⊆ A × B.

For bipartite digraphs, the concepts of butterfly minors and directed mod-
els coincide. In the following lemma, an in-branching is a digraph obtained
from an undirected tree by orienting all edges towards a root node r. Anal-
ogously, in an out-branching all arcs are oriented away from the root, i.e.
and out-branching is a rooted directed tree. See Section 1.8.

Lemma 9.6.6 (see [72]) If H is a bipartite digraph with H �d D, we can
choose the branch-sets of the model of H in D to be in- or out-branchings.
In this case H �d D ⇔ H �b D.

9.6.2 Width Measures Defined by Shallow Directed Minors and
Bounded Edge Densities

Following [71, 72] (see [74, 75] for the undirected case), we define classes of
digraphs of bounded expansion, nowhere crownful classes and classes which
are nowhere dense. We first need some additional notation.

Definition 9.6.7 Let G be a digraph and let r ≥ 0. The greatest reduced
average degree of rank r (short grad) of G, denoted ∇r(G) is

∇r(G) := max
{

|E(H)|
|V (H)| : H �d

r G

}

and its topological greatest average degree of rank r (short top-grad)
is

∇̃r(G) := max
{

|E(H)|
|V (H)| : H �t

r G

}

.

A crown of order q is a digraph Sq with vertex set {vi : 1 ≤ i ≤
q} ∪ {vi,j : 1 ≤ i < j ≤ q} and arcs {(vi,j , vi), (vi,j , vj) : 1 ≤ i < j ≤ q}.

Definition 9.6.8 Let C be a class of digraphs.

1. C has bounded expansion if there is a function f : N → N such that
∇r(D) ≤ f(r) for all r ≥ 0 and D ∈ C.

2. C is nowhere crownful if for every r, there exists a q = q(r) so that
Sq ��d

r D for all all D ∈ C.
3. C is directed nowhere dense if for every r, there exists an n and an

acyclic tournament Tn so that Tn ��d
r D for all D ∈ C.

4. C is directed somewhere dense if there is an r ≥ 0 so that the set of
depth r minors of C contains arbitrarily large tournaments.

https://doi.org/10.1007/978-3-319-71840-8_1
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It can be shown that a class C of digraphs is directed somewhere dense
if, and only if, it is not directed nowhere dense. Furthermore, the property of
being directed nowhere dense is more general than being nowhere crownful
and also more general than bounded expansion.

On the other hand, classes of digraphs of bounded expansion and nowhere
crownful classes are incomparable. In particular, as shown in [72], nowhere
crownful classes and even crown-minor free classes can be very dense.

Theorem 9.6.9 For every ε, there exists a q = q(ε), such that for every n,
there exists an Sq-minor-free digraph on 2n vertices that has arc density at
least Ω(n

1
2−ε).

It follows that there are classes of digraphs which are Sq-crown-minor
free but do not have bounded expansion. Conversely, the class of crowns Sq,
q ≥ 0, has bounded expansion.

On the other hand, for the definition of bounded expansion, the precise
notion of directed minor we use is not important, as shown by the following
theorem proved in [71].

Theorem 9.6.10 A class C of digraphs has bounded expansion if and only if
there is a function f : N → N such that for all r ∈ N it holds that ∇̃r(D) ≤
f(r) for all D ∈ C.

9.7 Classes of Directed Bounded Expansion

Classes of digraphs of bounded expansion can be characterized in many dif-
ferent ways. The various characterizations yield a varied set of algorithmic
techniques that can be used in the design of algorithms on bounded expan-
sion classes of digraphs. In the following we will present some of the more
promising structural properties of bounded expansion classes.

9.7.1 Generalised Colouring Numbers

The colouring number col(G) of an undirected graph G is the smallest
integer k such that there is a linear order � on the vertex set of D for which
each vertex v has back-degree at most k − 1, i.e. at most k − 1 neighbours
u with u � v. It is well-known that for any graph G, the chromatic number
χ(G) satisfies χ(G) ≤ col(G).

Three natural generalization of the colouring number are the series admr,
colr and wcolr of generalised colouring numbers defining the admissi-
bility, colouring number and weak colouring numbers introduced by
Kierstead and Yang [62] (see Dvořák [30] for the general definition of admr)
in the context of colouring games and marking games on graphs. Note that
the colouring number is equivalent to the degeneracy of a graph. As proved
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by Zhu [102], these invariants can be used to characterize bounded expansion
classes of undirected graphs.

The directed versions of the above invariants have been defined in [71]
where it was shown that classes of directed bounded expansion can be char-
acterized by bounds on the generalised colouring numbers.

Let D be a digraph. By Π(D) we denote the set of all strict linear orders
on V (D). For �∈ Π(G), we write u � v if u � v or u = v. Let u, v ∈ V (D),
let �∈ Π(D) and let r ≥ 0.

The vertex u is weakly r-reachable from v with respect to �, if there
is a directed path P of length �, 0 ≤ � ≤ r, connecting u and v (in either
direction) such that u is the smallest among the vertices of P (with respect
to �). By WReachr[D,�, v] we denote the set of vertices that are weakly
r-reachable from v w.r.t. �.

The vertex u is strongly r-reachable from v with respect to �, if there
is a directed path P of length �, 0 ≤ � ≤ r, connecting u and v (in either
direction) such that u � v and v � w for all internal vertices w of P . Let
SReachr[D,�, v] be the set of vertices that are strongly r-reachable from v
w.r.t. �. Note that we have v ∈ SReachr[D,�, v] ⊆ WReachr[D,�, v].

We also need a third type of colouring number, the admissibility. For a
non-negative integer r, the r-admissibility admr[D,�, v] of v w.r.t. a linear
order �∈ Π(D) is the maximum size k of a family {P1, . . . , Pk} of directed
paths of length at most r with one end v and the other end at a vertex w
with w � v, and which satisfies V (Pi) ∩ V (Pj) = {v} for all 1 ≤ i < j ≤ k.
As for r > 0 we can always let the paths end in the first vertex smaller than
v, we can assume that the internal vertices of the paths are larger than v.

Definition 9.7.1 ([71]) Let D be a digraph. For a non-negative integer r, we
define the weak r-colouring number wcolr(D), the r-colouring number
colr(D) and the r-admissibility of D as

wcolr(D) := min
�∈Π(D)

max
v∈V (D)

∣
∣WReachr[D,�, v]

∣
∣,

colr(D) := min
�∈Π(D)

max
v∈V (D)

∣
∣SReachr[D,�, v]

∣
∣.

admr(D) := min
�∈Π(D)

max
v∈V (D)

admr[D,�, v].

The following theorem relates these measures to each other.

Theorem 9.7.2 ([71]) Let D be a digraph and let r ≥ 1. Then admr(D) ≤
colr(D) ≤ wcolr(D). Furthermore,

colr(D) ≤ 2 · (admr(D) − 1)r + 1 and wcolr(D) ≤ 2 · admr(D)r.

The generalised colouring numbers can also be used to characterize
bounded expansion classes of digraphs.



9. Digraphs of Bounded Width 441

Theorem 9.7.3 ([71]) For every digraph D and every r ∈ N it holds that
admr(D) < 6r3∇r(D)4. Conversely, for every digraph D and every r ∈ N it
holds that ∇̃r(D) ≤ 16(adm2r(D) + 1).

Corollary 9.7.4 ([71]) A class C of digraphs has bounded expansion if, and
only if, there is a function f : N → N such that wcolr(D) ≤ f(r) for all
D ∈ C and all r ≥ 1.

A useful property of admissibility is that for every graph D from a
bounded expansion class C an order � on V (D) witnessing that the r-
admissibility is small can be computed efficiently.

Theorem 9.7.5 ([71]) Let C be a class of digraphs of bounded expansion.
There is a function g such that for all r ≥ 0 and all D ∈ C we can compute
an optimal order for admr(D) in time g(r) · nO(1), where n := |V (D)|.

9.7.2 Neighbourhood Complexity

We continue the study of structural properties of bounded expansion classes
by defining a directed version of neighbourhood complexity, a measure that
has very successfully been used in the connection to classes of undirected
bounded expansion [87].

Definition 9.7.6 Let D be a digraph, let X ⊆ V (D) and let r ≥ 1.
The distance-r out-neighbourhood complexity of X in D, denoted
ν+(D,X), is defined by

ν+(D,X) = max
H⊆D,X⊆V (H)

∣
∣{N+

r (v) ∩ X : v ∈ V (H)}
∣
∣ .

Analogously, one can define the distance-r in-neighbourhood com-
plexity when using N−

r (v) and the distance-r mixed neighbourhood
complexity when using (N+

r (v) ∪ N−
r (v)) in the above definition.

Closure under subgraphs in the above definition is required to characterize
sparse graph classes. Classically, this closure is not part of the definition, when
it is e.g. used to define classes of bounded VC-dimension [91, 93, 99].

Bounded neighbourhood complexity is not equivalent to directed bounded
expansion but at least classes of directed bounded expansion have bounded
neighbourhood complexity.

Theorem 9.7.7 ([71]) Let C be a class of digraphs of bounded expansion.
Then for all r ≥ 1 there exists k ≥ 1 such that for all D ∈ C and X ⊆ V (D)
we have ν+

r (D,X) ≤ |X|k. The same statement holds for in-neighbourhood
complexity and mixed neighbourhood complexity.
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9.7.3 A Splitter Game for Classes of Digraphs of Bounded
Expansion

In this section we establish a very useful property of bounded expansion
classes of digraphs based on a directed version of a game, known as the
splitter game, originally introduced as a characterization of nowhere dense
classes of undirected graphs in [46].

We first need the following definition. The r-strong-neighbourhood of
v, denoted by ÑG,r(v), or just Ñr(v) if G is understood, is defined as the set
of vertices u in G such that G contains a closed walk of length at most 2r
containing u and v.

Let G be a digraph and let �,m, r ≥ 0. The (�,m, r)-strong directed
splitter game on G is played by two players, Connector and Splitter,
as follows. Let G0 := G. In round i + 1 of the game, Connector picks
a vertex vi+1 ∈ V (Gi). Then Splitter chooses a subset Wi+1 ⊆ V (Gi)
with |Wi+1| ≤ m. Define Gi+1 as the induced subgraph of Gi with V (Gi+1) =
ÑGi,r(vi+1)\Wi+1. Splitter wins if V (Gi+1) = ∅. Otherwise the game contin-
ues to the next round. If Splitter has not won after � rounds, then Connector
wins.

A strategy for Splitter is a function f associating to every partial
play (v1,W1, . . . , vs,Ws) with associated sequence G0, . . . , Gs and every
move vs+1 ∈ V (Gs) by Connector a move Ws+1 ⊆ V (Gs) with |Ws+1| ≤ m
for Splitter. A strategy f is a winning strategy for Splitter if she wins every
play in which she follows the strategy f . If such a winning strategy exists, we
say that Splitter wins the (�,m, r)-directed splitter game on G.

The splitter game cannot be used as a characterization of bounded ex-
pansion as Splitter wins the (1, 1, 1)-strong splitter game on every acyclic
digraph, but the class of acyclic digraphs does not have bounded expansion.
But on every class of bounded expansion Splitter always has constant length
winning strategies. This, together with neighbourhood covers introduced in
the following section, can be used to define a bounded depth decomposition
of graph from bounded expansion classes.

Theorem 9.7.8 ([71]) Let D be a graph, let r ∈ N and let � = wcol4r(G).
Then splitter wins the (�, 1, r)-strong splitter game.

9.7.4 Neighbourhood Covers

Neighbourhood covers of small radius and small size play a key role in the
design of many data structures for distributed systems. There is also a deep
connection between sparse neighbourhood covers of small radius and sparse
graph spanners of low stretch. In this section we will see that classes of
digraphs of bounded expansion admit sparse strong neighbourhood covers
which can be computed by a fixed-parameter algorithm.
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Let r ∈ N. A strong r-neighbourhood cover X of a digraph D is a
mapping X : V (D) → 2V (D) such that D[X (v)] is strongly connected and
Ñr(v) ⊆ X (v). We call each D[X (v)] a cluster of X .

The radius of a cluster C := D[X (v)] is defined as the minimal r ∈ N

for which there is a vertex w ∈ V (C) and for every w ∈ V (C), the cluster
C contains a directed path of length at most r from w to v and a directed
path of length at most r from v to w. The radius rad(X ) of a cover X is the
maximum radius of any of its clusters.

The degree dX (v) of v in X is the number of clusters that contain v. The
maximum degree Δ(X ) of X is Δ(X ) = maxv∈V (G) dX (v).

Theorem 9.7.9 ([71]) Let C be a class of digraphs of bounded expansion.
There are functions f, h : N → N such that for all r ∈ N and all graphs D ∈ C,
there exists a strong r-neighbourhood cover of radius at most 4r and maximum
degree at most f(r) and this cover can be computed in time h(r) · nO(1).

9.7.5 Constant-Factor Approximation Algorithms for Strong
Dominating Sets

In this section we give an algorithmic application of the bounded expansion
classes in proving that strong dominating sets can be approximated up to a
constant factor on any class C of directed bounded expansion.

Definition 9.7.10 (Strong r-Dominating Sets)

1. Let r ≥ 1 and let D be a digraph. A vertex v ∈ V (D) strongly-r-
dominates a vertex u ∈ V (D) if there is a closed walk of length at most
2r in D containing u and v.

2. A strong-r-dominating set is a set X ⊆ V (D) such that every vertex
in D is strongly dominated by a vertex in X.

3. The strong r-domination number of D, denoted sdomr(D), is the min-
imum size of a strong r-dominating set of D.

Note that if D is a digraph obtained from an undirected graph G by
replacing every edge e in G by two arcs with the same endpoints but opposite
orientation, then any strong-r-dominating set in D is an r-dominating set in
G and vice versa. This explains the choice of the length 2r in Part (1) of the
previous definition. It follows that deciding the strong-r-domination number
of a digraph D is NP-complete.

Theorem 9.7.11 Let C be a class of digraphs of directed bounded expansion.
Let r ≥ 1. There is a polynomial time constant factor approximation algo-
rithm for strong r-dominating sets. More precisely, for every value of r, there
is an algorithm running in time g(r) · nO(1) for some function g which, on
input D ∈ C computes a strong-r-dominating set X ⊆ V (G) of order at most
wcol4r(D)2 · sdomr(D).
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The proof is based on computing a linear order witnessing that the 4r-
weak colouring number of the input digraph D is bounded. Following this or-
der, a suitable greedy strategy can be shown to produce a strong r-dominating
set of order wcol4r(D)2 · k and an obstruction witnessing that there is
no strong r-dominating set of order k. Hence, the approximation factor is
wcol4r(D)2, which is a constant on bounded expansion classes. Here, an r-
obstruction set is a set X ⊆ V (D) such that for any distinct x, y ∈ X,
there are no two closed directed walks W1,W2 ⊆ V (D), each of length at
most 2r, such that W1 ∩ W2 �= ∅ and x ∈ W1 and y ∈ W2.

As no two distinct vertices of an obstruction set lie on a closed walk of
length at most 2r, no two vertices from the set can be strongly r-dominated
by a single vertex. Hence, if D contains an obstruction set of order k then D
does not contain a strong r-dominating set of order < |X|.

A similar strategy was used by Dvořák in [30] to design a constant factor
approximation algorithm for dominating sets on classes of undirected graphs
of bounded expansion.

9.8 Nowhere Crownful Classes of Digraphs

We close our exposition of density and minor based width measures by giv-
ing another algorithmic application for dominating sets, this time on nowhere
crownful classes. Towards this aim, we introduce the notion of directed uni-
formly quasi-wide classes and show that this concept yields an equivalent
characterization of nowhere crownful classes of digraphs.

Definition 9.8.1 Let D be a digraph and d ∈ N ∪ {0}. A set U ⊆ V (D)
is d-scattered if there is no v ∈ V (D) and u1 �= u2 ∈ U such that v has
distance at most d to both u and u′.

Note that any subset of V (D) is 0-scattered since v is the only vertex of
distance zero from itself.

Definition 9.8.2 A class C of digraphs is uniformly quasi-wide if there
are functions s : N → N and N : N × N → N such that for every D ∈ C and
all d,m ∈ N and W ⊆ V (D) with |W | > N(d,m) there is a set S ⊆ V (D)
with |S| ≤ s(d) and U ⊆ W with |U | = m such that U is d-scattered in G−S.
s,N are called the margin of C.

If s and N are computable then we call C effectively uniformly quasi-
wide.

The next theorem was shown in [72].

Theorem 9.8.3 A class C of digraphs is nowhere crownful if, and only if, it
is directed uniformly quasi-wide.
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We demonstrate one algorithmic application of uniformly quasi-wideness
by sketching the following theorem. A directed dominating set in a di-
graph D is a set X ⊆ V (D) such that N+

D (X) ∪ X = V (D).

Theorem 9.8.4 ([72])Let C be a class of digraphs which is nowhere crownful.
Then the directed dominating set problem is fixed-parameter tractable on C.

Let C be nowhere crownful. Given a digraph D ∈ C and a number k, we
compute a directed dominating set X of order k, if it exists, as follows. We
let W = V (D) be the set of vertices still to be dominated. As C is uniformly
quasi-wide, if W is large enough, we can compute a constant-size set S of
vertices and a 1-scattered set A ⊆ W of order k + 1 in D − S. As no vertex
not in S can dominate two vertices in A, it follows that any set X of vertices
dominating every vertex in W needs to contain a vertex in S. As S has
constant size we can try each choice of a vertex v ∈ S for the set X. For any
such choice we recurse with the parameter k−1 and the set W ′ := W \N+(v)
of vertices we still need to dominate. This yields a natural recursion where
in each recursion step the parameter is decreased. If at some point the set W
is too small to contain a large 1-scattered set, then we can use brute force to
compute a set of order k dominating W .

Similarly, one can show that on nowhere crownful classes of digraphs, the
directed independent dominating set problem, the dominating out-branching
problem and the independent set problem as well as their distance-d-versions
are fixed-parameter tractable.

9.9 Rank-Width Inspired Width Measures

In this section, we introduce directed versions of clique-width and rank-width.
The motivation of clique-width comes from the observation that many al-
gorithmic problems are tractable on classes of graphs that can be recursively
decomposable along vertex partitions (A,B) where the number of neighbour-
hood types between A and B is small. Different from tree-width based width
measures, acyclic digraphs have arbitrary large directed clique-width, and
clique-width separates the class of acyclic digraphs into easy and hard in-
stances for some algorithmic problems.

When clique-width was first introduced, no FPT approximation algorithm
for generating a clique-width expression was known. Oum and Seymour [82]
first devised an FPT approximation algorithm for undirected clique-width,
using an equivalent width parameter called rank-width. While clique-width
expressions describe how to generate a graph using certain graph operations,
rank-width decompositions generalize decomposition scheme called branch-
decompositions [88]. Courcelle and Engelfriet [24] argued that directed clique-
width can be approximated using undirected rank-width.
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Bi-rank-width and F4-rank-width are two natural generalizations of
rank-width for directed graphs, introduced by Kanté [56] and Kanté and
Rao [59]. They can also be used to approximate directed clique-width. The
other motivation of these parameters is on related graph containment rela-
tions vertex-minor and pivot-minor. Because clique-width and rank-width
may increase by removing edges or contracting edges, these parameters are
not well fit to minor structure theory. Instead, vertex-minor and pivot-minor
relations have been studied together with rank-width [80, 81], and provide
some structural results, sometimes generalising results on tree-width. Kanté
and Rao [59] explained how to generalize these concepts to directed graphs,
and generalised known results to directed graphs.

We present FPT approximation algorithms in Subsection 9.9.3. In Sub-
section 9.9.4, we present algorithmic applications of directed clique-width
and bi-rank-width. We discuss structural results on these graph containment
relations in Subsection 9.9.5.

9.9.1 Directed Clique-Width

Courcelle, Engelfriet and Rozenberg [25] introduced clique-width for both
undirected graphs and directed graphs. For a digraph D = (V,A) and a
function lab : V → {1, 2, . . . , k}, the triple (V,A, lab) is called a k-labeled
digraph. The function lab is called a labeling of D, and for each v ∈ V ,
lab(v) is called its label.

Definition 9.9.1 (Directed clique-width) For a positive integer k, the
class dcwk of k-labeled digraphs is recursively defined as follows.

1. The digraph on a single vertex v with label i in {1, 2, . . . , k} is in dcwk.
We denote by •i,v the operation creating such a vertex.

2. Let D1 = (V1, A1, lab1) ∈ dcwk and D2 = (V2, A2, lab2) ∈ dcwk be two
k-labeled digraphs on disjoint vertex sets. Let D1⊕D2 := (V,A, lab) where
V := V1 ∪ V2, A := A1 ∪ A2 and

lab(v) :=
{

lab1(v) if v ∈ V1,
lab2(v) if v ∈ V2,

for every v ∈ V . We have D1 ⊕ D2 ∈ dcwk.
3. Let D = (V,A, lab) ∈ dcwk be a k-labeled digraph, and i, j ∈ {1, 2, . . . , k}

be two distinct integers. Let ρi→j(D) := (V,A, lab′) where

lab′(v) :=
{

lab(v) if lab(v) �= i,
j if lab(v) = i,

for every v ∈ V . We have ρi→j(D) ∈ dcwk.
4. Let D = (V,A, lab) ∈ dcwk be a k-labeled digraph, and i, j ∈ {1, 2, . . . , k}

be two distinct integers. Let αi,j(D) be the digraph obtained from D by
adding all arcs (a, b) where lab(a) = i and lab(b) = j. We have αi,j(D) ∈
dcwk.
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The directed clique-width of a digraph D = (V,A), denoted by dcw(D),
is the minimum integer k such that there is a k-labeling lab of D where
(V,A, lab) ∈ dcwk. Directed clique-width k-expressions are expressions
which recursively construct a graph with the four graph operations in 1-4.

The difference between directed clique-width and undirected clique-width
is on the function αi,j ; for undirected clique-width, this function adds undi-
rected edges between all pairs (v, w) where lab(v) = i and lab(w) = j. We can
naturally represent a directed clique-width k-expression as a tree-structure;
an example is depicted in Figure 9.7. We call this tree a directed clique-
width k-expression tree.

a

b c

d e

f

•1,b •2,c

⊕

α1,2

•1,d •2,e

⊕

α1,2

⊕ •3,a

⊕

α3,1

ρ3→1

⊕

•3,f

α2,3

Figure 9.7 An example of a directed clique-width 3-expression tree, which ex-
presses α2,3((ρ3→1(α3,1((α1,2(•1,b ⊕ •2,c) ⊕ α1,2(•1,d ⊕ •2,e)) ⊕ •3,a))) ⊕ •3,f ).

Wanke [100] introduced a similar width parameter NLC-width. In NLC-
width expressions, we add edges between two labeled graphs at once after
taking disjoint union, while we add edges one by one between two vertex
subsets with single labels in clique-width expressions. Gurski, Wanke and
Yilmaz [47] generalised this parameter to directed graphs.

Definition 9.9.2 (Directed NLC-width) For a positive integer k, the
class dNLCk of k-labeled digraphs is recursively defined as follows.

1. The digraph on a single vertex v with label i in {1, 2, . . . , k} is in dNLCk.
We denote by •i,v the operation creating such a vertex.

2. Let D1 = (V1, A1, lab1) ∈ dNLCk and D2 = (V2, A2, lab2) ∈ dNLCk be
two k-labeled digraphs on disjoint vertex sets, and

−→
S ,

←−
S ⊆ {1, 2, . . . , k} ×



448 S. Kreutzer and O.-j. Kwon

{1, 2, . . . , k} be two relations. Let D1 ×−→
S ,

←−
S

D2 := (V,A, lab) be the labeled

graph where V := V1 ∪ V2, A := A1 ∪ A2 ∪ −→
A ∪ ←−

A with
−→
A = {(v, w)|v ∈ V1, w ∈ V2, (lab1(v), lab2(w)) ∈ −→

S },
←−
A = {(w, v)|v ∈ V1, w ∈ V2, (lab1(v), lab2(w)) ∈ ←−

S },

and

lab(v) :=
{

lab1(v) if v ∈ V1,
lab2(v) if v ∈ V2,

for every v ∈ V . We have D1 ×−→
S ,

←−
S

D2 ∈ dNLCk.
3. Let D = (V,A, lab) ∈ dNLCk and R : {1, 2, . . . , k} → {1, 2, . . . , k} be a

function. Let ◦R(D) = (V,A, lab′) be the labeled graph where lab′(v) =
R(lab(v)) for every v ∈ V . We have ◦R(D) ∈ dNLCk.

The directed NLC-width of a digraph D = (V,A), denoted by dnlcw(D),
is the minimum integer k such that there is a k-labeling lab of D where
(V,A, lab) ∈ dNLCk. Directed NLC-width k-expressions are expressions
which recursively construct a graph with the three graph operations in 1-3.

Gurski, Wanke and Yilmaz [47] derived a relationship between directed
clique-width and directed NLC-width.

Theorem 9.9.3 ([47]) For every digraph D, the parameters dcw(D) and
dnlcw(D) are related as follows: dnlcw(D) ≤ dcw(D) ≤ 2dnlcw(D).

One example of digraph classes having bounded directed clique-width is
the class of directed cographs. This class is a directed variant of the class
of undirected cographs. The term cograph stands for complement reducible
graph [22], representing the property that the complement of a cograph is
again a cograph. Directed cographs are graphs that can be recursively defined
as follows:

1. Every single vertex is a directed cograph.
2. If D1, . . . , Dk are directed cographs, then the disjoint union of D1, . . . , Dk

is a directed cograph.
3. If D1 = (V1, A1), . . . , Dk = (Vk, Ak) are directed cographs, then the di-

graph obtained from the disjoint union of D1, . . . , Dk by adding all arcs
(v, w) where v ∈ Vi, w ∈ Vj , and 1 ≤ i < j ≤ k, is a directed cograph.

4. If D1, . . . , Dk are directed cographs, then the digraph obtained from the
disjoint union of D1, . . . , Dk by adding all arcs (v, w) where v ∈ Vi, w ∈ Vj ,
and i, j ∈ {1, . . . , k}, is a directed cograph.

We observe that the complement of a directed cograph is again a directed
cograph.

Theorem 9.9.4 ([47]) A digraph is a directed cograph if and only if it has
directed NLC-width at most 1.
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Theorem 9.9.4 implies that every directed cograph has directed clique-
width at most 2. However, as far as we know, no complete characteriza-
tion of digraphs of directed clique-width at most 2 is known. We refer to
Section 11.6 for more information about directed cographs.

Directed clique-width is incomparable with directed tree-width. In par-
ticular, acyclic digraphs have unbounded directed clique-width. A discussion
about it is presented in the next subsection. The complete biorientations
of undirected complete graphs are directed cographs, but have unbounded
directed tree-width.

Lemma 9.9.5

1. There are classes of digraphs of bounded directed tree-width and unbounded
directed clique-width.

2. There are classes of digraphs of bounded directed clique-width and un-
bounded directed tree-width.

For fixed k ≥ 2, it is open whether one can recognize graphs of directed
clique-width at most k in polynomial time. This is also an open problem
for undirected clique-width with k ≥ 4, and when k = 3, it was solved by
Corneil, Habib, Lanlignel, Reed and Rotics [21].

Problem 9.9.6 For an integer k ≥ 2, can we recognize digraphs of directed
clique-width at most k in polynomial time?

9.9.2 Bi-Rank-Width and F4-Rank-Width

Rank-width of undirected graphs is a parameter equivalent to clique-width,
in a sense that one is bounded if and only if the other is bounded. The rank
of a matrix has a role in counting the number of neighborhood types between
two vertex sets. To see this, we consider two disjoint vertex sets A and B in
an undirected graph G = (V,E), and an A × B-matrix M where for a ∈ A
and b ∈ B, M [a, b] = 1 if a is adjacent to b, and M [a, b] = 0 otherwise. If
the rank of M over the binary field is k, then there are at most 2k sets in
{NG(v) ∩ B|v ∈ A}. Rank-width measures the decomposability along vertex
partitions with small rank values of such matrices.

Kanté and Rao [59] introduced two directed versions of rank-width, called
bi-rank-width and F4-rank-width. Kanté and Rao further generalized
these notions to F-edge-colored graphs; that is, graphs whose edges are la-
beled by elements of a fixed finite field F. Since these generalizations are out
of scope of this book, we concentrate on specializations for digraphs. A differ-
ence of two notions is that when (A,B) is a vertex partition, bi-rank-width
is based on a function summing up ranks of two binary matrices, one for arcs
from A to B and the other for arcs from B to A, while F4-rank-width is based
on a function measuring all arcs together, using the field F4.

https://doi.org/10.1007/978-3-319-71840-8_11
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For a field F and a matrix M , F-rank(M) is the rank of the matrix M
over the field F. We denote by F4 the field on 4 elements {0, 1, a, a2} where
a3 = 1 and a2 + a + 1 = 0. We denote by F2 the binary field.

Let D = (V,A) be a digraph. The out-neighborhood matrix M+
D is the

V × V -matrix such that for v, w ∈ V , M+
D [v, w] = 1 if and only if (v, w) ∈ A.

The F4-adjacency matrix of D is the V ×V -matrix M4
D where for v, w ∈ V ,

M4
D[v, w] :=

⎧
⎪⎪⎨

⎪⎪⎩

a if (v, w) ∈ A and (w, v) /∈ A,
a2 if (v, w) /∈ A and (w, v) ∈ A,
1 if (v, w) ∈ A and (w, v) ∈ A,
0 otherwise.

We define functions bicutrkD, cutrk4
D : 2V → Z such that for every S ⊆ V ,

• bicutrkD(S) = F2-rank(M+
D [S, V \ S]) + F2-rank(M+

D [V \ S, S]),
• cutrk4

D(S) = F4-rank(M4
D[S, V \ S]).

We define branch-decomposition and f -width for symmetric submodular
functions f . A function f : X → Y is symmetric if for S ⊆ X, f(S) =
f(X \ S). A function f : X → Y is submodular if it satisfies that for
A,B ⊆ X, f(A ∩ B) + f(A ∪ B) ≤ f(A) + f(B). A tree is subcubic if it has
at least two vertices and every internal node has degree 3.

Definition 9.9.7 (Branch-decomposition) Let V be a finite set and let
f : 2V → Z be a symmetric submodular function. A branch-decomposition of
V is a pair (T,L), where T is a subcubic tree and L is a bijection from V to
the set of leaves of T . For an edge e in T , T −e induces a partition (Xe, Ye) of
the leaves of T . The f-width of e is defined as f(L−1(Xe)), and the f-width
of a branch-decomposition (T,L) is the maximum f-width over all edges of T .
The f-width of V is the minimum f-width over all branch-decompositions
of V . If |V | ≤ 1, then V admits no branch-decomposition and the f-width of
V is defined to be 0.

Definition 9.9.8 (Bi-rank-width and F4-rank-width) Let D = (V,A) be
a digraph. The bi-rank-width of D, denoted by birw(D), is the bicutrkD-
width of V , and the F4-rank-width of D, denoted by rw4(D), is the cutrk4

D-
width of V .

Note that the functions bicutrkD and cutrk4
D are submodular. This can be

shown using a property of the rank function of a matrix in Proposition 9.9.9.
There are several proofs of it; for instance see Truemper [98].

Proposition 9.9.9 Let M be an X × Y -matrix over a field F. Then for all
X1,X2 ⊆ X and Y1, Y2 ⊆ Y , we have

F-rank(M [X1 ∪ X2, Y1 ∩ Y2]) + F-rank(M [X1 ∩ X2, Y1 ∪ Y2])
≤ F-rank(M [X1, Y1]) + F-rank(M [X2, Y2]).
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Kanté [56] proved that bi-rank-width and F4-rank-width are equivalent
up to a constant factor.

Lemma 9.9.10 ([56]) For a digraph D = (V,A), rw4(D) ≤ birw(D) ≤
4rw4(D).

Digraphs of bi-rank-width at most 2 are digraphs that are completely
decomposable with respect to split decomposition introduced by Cunning-
ham [28]. As a similar concept, Kanté and Rao [58] introduced displit decom-
positions and showed that digraphs of F4-rank-width at most 1 are digraphs
that are completely decomposable with respect to displit decomposition. Both
results provide polynomial-time algorithms for recognizing digraphs of bi-
rank-width at most 2 or digraphs of F4-rank-width at most 1.

Acyclic digraphs and tournaments have unbounded bi-rank-width. The
grid-like example in Figure 9.8 is acyclic and its underlying undirected graph
has large rank-width; Jelínek [53] proved that the undirected n × n-grid has
rank-width exactly n − 1. A branch-decomposition of a directed graph with
small bicutrk-width is also a branch-decomposition of small undirected rank-
width and it means that acyclic digraphs have unbounded bi-rank-width.
To see that tournaments have unbounded bi-rank-width, we can modify the
example in Figure 9.8 into a tournament, such that

• for every two non-adjacent vertices in a column, we add an arc from the
higher one to the lower one,

• for every two non-adjacent vertices contained in distinct columns, we add
an arc from the right one to the left one.

One can verify that in every its branch-decomposition, there is a vertex par-
tition with high bicutrk value.

Lemma 9.9.11 The family of acyclic graphs and the family of tournaments
have unbounded bi-rank-width. Thus, these families have unbounded directed
clique-width and unbounded F4-rank-width.

Figure 9.8 Acyclic graphs that have large bi-rank-width.
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9.9.3 Computing Rank-Decompositions

We provide FPT approximation algorithms for bi-rank-width and F4-rank-
width. These can be used to obtain an approximated clique-width expres-
sion when a graph has small directed clique-width. Oum and Seymour [82]
provided a general FPT approximation algorithm on symmetric submodular
functions. By adapting the idea of the result of Oum and Seymour, we present
FPT approximation algorithms for bi-rank-width and F4-rank-width.

Let V be a finite set and let f : 2V → Z be a symmetric submodu-
lar function. A vertex subset W ⊆ V is called an f-well-linked set if for
every partition (X,Y ) of W and every Z with X ⊆ Z ⊆ V \ Y , we have
f(Z) ≥ min(|X|, |Y |). Oum and Seymour showed that f -well-linked sets are
obstructions for graphs of bounded f -width.

Proposition 9.9.12 1. There exists an algorithm that, given a digraph D =
(V,A) and an integer k, runs in time O(8k · poly(|V |)) either constructs
a branch-decomposition of cutrk4

D-width at most 3k+1, or concludes that
rw4(D) > k.

2. There exists an algorithm that, given a digraph D = (V,A) and an integer
k, runs in time O(8k ·poly(|V |)) either constructs a branch-decomposition
of bicutrkD-width at most 12k + 4, or concludes that birw(D) > k.

Proof. We claim that if there is a cutrk4
D-well-linked set of size 3k+1, then D

has F4-rank-width at least k+1. Suppose there is a cutrk4
D-well-linked set W

of size 3k + 1 with respect to cutrk4
D, and D admits a branch-decomposition

(T,L) of cutrk4
D-width at most k. We proceed to find a vertex partition

(A1, A2) induced by some edge in T where |W |
3 < |W ∩ A1| ≤ 2|W |

3 . We
subdivide an edge of T , and regard the new vertex as a root node. For each
node t ∈ V (T ), let μ(t) be the number of leaves of T that are descendants of t
and mapped to a vertex of W by L. We choose a node t that is farthest from
the root node such that μ(t) > |W |

3 . By the choice of t, for each child t′ of t,
μ(t′) ≤ |W |

3 . Therefore, |W |
3 < μ(t) ≤ 2|W |

3 . Let e be the edge connecting t and
its parent. Clearly, the vertex partition (A1, A2) of D induced by e satisfies
that for each i ∈ {1, 2}, |W |

3 < |Ai ∩ W | ≤ 2|W |
3 . Since W is a cutrk4

D-well-
linked set, we have cutrk4

D(A1) ≥ max(|W ∩ A1|, |W ∩ A2|) > |W |
3 > k. This

contradicts our assumption.
We describe an algorithm that either finds a cutrk4

D-well-linked set of size
3k+1 or constructs a branch-decomposition of cutrk4

D-width at most 3k+1.
In the first case, by the above claim, we conclude that D has F4-rank-width
at least k + 1.

When we have a mapping g from V (D) to a tree, we say that g−1(w) for
w ∈ V (D) is assigned to the node w. Choose a vertex v of D and start with a
tree with two nodes where one contains v and the other contains all vertices
of V \{v}. Recursively choose a node t containing more than one vertex, and
let A be the vertex set assigned to t. If cutrk4

D(A) < 3k + 1, then we choose
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any vertex a ∈ A, and construct a new tree obtained by adding two nodes t1
and t2 and edges t1t, t2t to T , and assigning a to t1 and all vertices in A\{a}
to t2. Clearly, we have cutrk4

D(A \ {a}) ≤ 3k + 1.
Now we assume cutrk4

D(A) = 3k + 1. In this case, we find a vertex set
B ⊆ V \ A such that |B| = 3k + 1 and F4-rank(M4

D[A,B]) = 3k + 1. We can
find such a set by enumerating a column basis of the matrix M4

D[A, V \ A].
We check whether B is a cutrk4

D-well-linked set or not. For this, we take
all vertex partitions (B1, B2) of B, and check for every Z with B1 ⊆ Z ⊆
V \B2, cutrk4

D(Z) ≥ min(|B1|, |B2|). We can check this using the submodular
function minimization algorithm [52]. If Z is a cutrk4

D-well-linked set of size
3k + 1, then we output that D has F4-rank-width at least k + 1. Otherwise,
the procedure outputs a vertex partition (B1, B2) of B and a vertex subset
Z with B1 ⊆ Z ⊆ V \ B2 where cutrk4

D(Z) < min(|B1|, |B2|).
We observe that A ∩ Z and A \ Z are non-empty. If A ∩ Z = ∅, then

cutrk4
D(Z) = cutrk4

D(Z \ A). On the other hand, we have

cutrk4
D(Z \ A) = F4-rank(M4

D[Z \ A,A ∪ (V \ Z)])
≥ F4-rank(M4

D[B1, A \ Z])
= |B1| > cutrk4

D(Z),

which is a contradiction. Therefore, A ∩ Z �= ∅ and for a similar reason,
A \ Z �= ∅. We construct a tree obtained by adding two nodes t1 and t2 and
adding edges t1t, t2t to T , and assigning A ∩ Z to t1 and A \ Z to t2. We
observe

cutrk4
D(A) + |B2| > cutrk4

D(A) + cutrk4
D(Z)

≥ cutrk4
D(A ∩ Z) + cutrk4

D(A ∪ Z)
= cutrk4

D(A ∩ Z) + cutrk4
D(V \ (A ∪ Z))

≥ cutrk4
D(A ∩ Z) + F4-rank(M4

D[B2, A])
= cutrk4

D(A ∩ Z) + |B2|.

This implies that cutrk4
D(A∩Z) ≤ cutrk4

D(A) ≤ 3k+1. For a similar reason,
we also have cutrk4

D(A \ Z) ≤ 3k + 1.
Doing this procedure recursively, we obtain either a branch-decomposition

of cutrk4
D-width at most 3k+1, or conclude that D has F4-rank-width at least

k+1. For bi-rank-width, we first run the above algorithm for F4-rank-width.
If it returns that D has F4-rank-width at least k + 1, then we can return
that it has bi-rank-width at least k + 1, by Lemma 9.9.10. If the algorithm
outputs a branch-decomposition of cutrk4

D-width at most 3k+1, then this is
also a branch-decomposition of bicutrkD-width at most 4(3k + 1) = 12k + 4,
by Lemma 9.9.10. �

Later, Oum [78] investigated an FPT approximation algorithm for undi-
rected rank-width that runs in time O(8k · n4), by replacing the submodular
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function minimization algorithm with an elementary algorithm that fits to
rank-width. Oum [79] raised an open problem whether it can be further
reduced to O(ck · n3) for some constant c. We ask the same questions for bi-
rank-width and F4-rank-width on digraphs. Note that when allowing ck2

in
the parameter part, one can obtain O(n3) running time due to Hliněný [48].

Problem 9.9.13 Is there a constant-factor FPT approximation algorithm
for bi-rank-width or F4-rank-width that runs in time O(ckn3) for some con-
stant c?

Kanté and Rao [59] observed that as an application of the result of Hliněný
and Oum [49], there are also exact FPT algorithms for both parameters.
Briefly, Hliněný and Oum developed an exact FPT algorithm for partitioned
matroids with respect to matroid branch-width, and then applied to rank-
width. This application is also possible for bi-rank-width or F4-rank-width.
Note that the function g(k) in Theorem 9.9.14 is triple exponential.

Theorem 9.9.14 ([59])

1. There exists an algorithm that, given a digraph D = (V,A) and an inte-
ger k, runs in time g(k)|V |3 for some function g and either constructs
a branch-decomposition of cutrk4

D-width at most k, or concludes that
rw4(D) > k.

2. There exists an algorithm that, given a digraph D = (V,A) and an in-
teger k, runs in time g(k)|V |3 for some function g and either constructs
a branch-decomposition of bicutrkD-width at most k, or concludes that
birw(D) > k.

We observe that a branch-decomposition of bounded bicutrkD-width can
be efficiently translated to directed clique-width expression. A similar ob-
servation for undirected rank-width and clique-width was discussed by Oum
and Seymour [82]. We remark that Courcelle and Engelfriet [24, Proposition
6.8] proved that one can approximate directed clique-width using undirected
rank-width.

Lemma 9.9.15 For a digraph D = (V,A), birw(D)
2 ≤ dcw(D) ≤ 2birw(D)+1−

1. Moreover, given a digraph D and its branch-decomposition of bicutrkD-
width k, one can construct a directed clique-width (2k+1 − 1)-expression in
time O(4k|V |3).

Proof. We prove that birw(D) ≤ 2dcw(D). If |V | = 1, then birw(D) = 0
and dcw(D) = 1, and the statement holds. We may assume |V | ≥ 2. Let
k = dcw(D) and let T be a directed clique-width k-expression tree of D.
Note that this tree is a tree with maximum degree 3, and each leaf node is a
node introducing a vertex of D. We choose an edge e = uv of T where u is
a child of v. The constructed graph Du at node u is a k-labeled graph, and
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each vertex set in Du having the same label has the same out-neighborhood
and in-neighborhood to V \V (Du). This means that bicutrkD(V (Du)) ≤ 2k,
and it shows that birw(D) ≤ 2k.

Now, we prove that given a branch-decomposition of D of bi-rank-width
k, one can construct a directed clique-width (2k+1 − 1)-expression in time
O(4k|V |3). This also proves the inequality dcw(D) ≤ 2birw(D)+1−1. Let (T,L)
be a given branch-decomposition of D of bicutrkD-width k. We choose an edge
of T and subdivide this edge with adding a new node r, and we consider T
as a tree with the root node r. For each node t of T , let Dt = (Vt, At) be the
digraph induced by the set of vertices of D that are mapped to a descendant
of t. Let ∼t be the equivalent class on Vt such that v ∼t w if and only if
N+

D (v)∩(V \Vt) = N+
D (w)∩(V \Vt) and N−

D (v)∩(V \Vt) = N−
D (w)∩(V \Vt).

We denote by Vt/ ∼t be the set of equivalent classes. We note that since D
has bicutrkD-width k, there are at most 2k equivalent classes in Vt/ ∼t for
each node t.

We prove by induction on the number of descendants of T that Dt =
(Vt, At) has a labeling labt satisfying that

1. (Vt, At, labt) can be constructed by a directed clique-width (2k+1 − 1)-
expression,

2. labt is a 2k-labeling of Dt,
3. for v, w ∈ Vt, if v and w are contained in distinct classes of Vt/ ∼t, then

labt(v) �= labt(w), and
4. {v ∈ Vt : labt(v) = 1} is exactly the set of vertices in Vt having no

in-neighborhood and no out-neighborhood in V \ Vt.

If t is a leaf node, then it is clear. Assume that t is not a leaf, and let t1 and
t2 be the two children of t. By induction hypothesis, for each i ∈ {1, 2}, Dti

has a labeling labi satisfying the conditions. For j > 1, we change each label j
of Vt1 to j+(2k−1), and then take the disjoint union of Dt1 and Dt2 . Then we
add arcs between Dt1 and Dt2 according to the adjacency relation between
Dt1 and Dt2 . Note that when we add an arc from v1 ∈ Vt1 to v2 ∈ Vt2 , we
add all arcs from the vertices in the class of Vt1/ ∼t1 containing v1 and to
the vertices in the class of Vt2/ ∼t2 containing v2.

For each i ∈ {1, 2}, we relabel Vti according to the class Vt/ ∼t. This
is possible as Vti/ ∼ti is a refinement of Vt/ ∼t on Vti . Then we relabel
Vt1 according to the labeling of Vt2 so that the resulting labeling labt on Vt

satisfies that

• for v, w ∈ Vt, if v and w are contained in distinct classes of Vt/ ∼t, then
labt(v) �= labt(w), and

• {v ∈ Vt : labt(v) = 1} is exactly the set of vertices in Vt having no in-
neighborhood and no out-neighborhood in V \ Vt.

This concludes the proof. �
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9.9.4 Algorithmic Applications

We present algorithms based on directed clique-width or bi-rank-width. Cour-
celle, Makowsky and Rotics [26] showed that every problem expressible in
MSO1 logic can be solved in polynomial time on graphs of bounded directed
clique-width.

Theorem 9.9.16 ([26]) Every problem expressible in MSO1 logic is fixed
parameter tractable with respect to the parameter directed clique-width.

For many problems, we can design a dynamic-programming algorithm
with running time much better than one guaranteed by Theorem 9.9.16. For
instance, the problem of finding a minimum dominating set can be solved in
time 2O(k)nO(1) when a directed clique-width k-expression is given.

Theorem 9.9.17 Given a digraph D = (V,A) and its directed clique-width
k-expression, one can compute a minimum directed dominating set of D in
time 2O(k)nO(1).

We briefly present how to formulate table indices. Let φ be the given k-
expression defining D, and let T be the labeled rooted tree induced by φ.
For every node t of T , let Dt be the subgraph of D defined at node t, and
for each i ∈ {1, . . . , k}, let Dt[i] be the subgraph of Dt induced on the set of
vertices with label i.

The property of the constructed graph Dt at some node t is that two
vertices in a same label class have same in-neighbors and out-neighbors in
V \ V (Dt). In the table of dynamic programming, we store the information
that label classes that are completely dominated by some vertices of Dt, and
label classes containing a vertex taken as a dominating set. We can recursively
check whether a proper dominating set exists with given these information
and a fixed size. This is similar to one developed for undirected case by Kobler
and Rotics [67].

For many problems whose solutions can be locally checked, we can sim-
ilarly design dynamic programming algorithms for problems on digraphs of
bounded clique-width, which runs in FPT time. However, it becomes dif-
ferent when a solution requires some global property such as connectivity.
For instance, Fomin, Golovach, Lokshtanov and Saurabh [36] proved that the
problem of testing whether there is a hamiltonian cycle is W [1]-hard parame-
terized by clique-width, and later the same authors proved that this problem
does not admit an algorithm with running time no(k) under the ETH assump-
tion [35]. On the other hand, it can be solved in time nO(k2), similar to the
undirected case [32].

Theorem 9.9.18 Given a digraph D = (V,A) and its directed clique-width
k-expression, one can test whether D contains a hamiltonian cycle in time
nO(k2).
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We briefly explain the idea of Theorem 9.9.18. If D contains a hamiltonian
cycle, then its restriction on Dt forms a partition of Dt into vertex-disjoint
paths unless Dt �= D. Thus, if we have all possible partitions of Dt into
vertex-disjoint paths for each node t, then at the last node, we can test
whether there is a hamiltonian cycle. One could observe that if there are two
partitions into paths where for every pair (i, j) of integers in {1, 2, . . . , k},
the number of paths from Dt[i] to Dt[j] is equal, then they have the same
role in generating a hamiltonian cycle. Thus, in the indices of tables, we are
given some integer for every pair of integers, and we check whether there is a
partition into paths meeting this condition. Using this table scheme, we can
solve it in time nO(k2). Bergounoux, Kanté and Kwon [10] announced that
the running time can be further improved to nO(k).

There are more interesting problems that can be solved in FPT or XP time
parameterized by clique-width. For instance, Parity Game can be solved in
polynomial time on digraphs of constant directed clique-width [76]. We refer
to [41] for more examples.

One issue of using directed clique-width is that if we approximate directed
clique-width using Lemma 9.9.15 from obtained rank-decomposition, it is
unavoidable single-exponential blow-up on the parameter. Thus, designing an
algorithm directly using branch-decompositions of small bi-rank-width is an
interesting problem. Ganian, Hliněný and Obdržálek [44] used parsing trees
for rank-width to design XP algorithms for several problems such as Graph
Coloring, Chromatic Polynomial, and Hamiltonian Path problems.
More examples can be found in [42, 45].

9.9.5 Vertex-Minors and Pivot-Minors

We introduce pivot-minor and vertex-minor relations in digraphs. These
containment relations are defined using graph operations pivoting and local
complementation, respectively. In undirected graphs, local complementa-
tion at a vertex v is an operation to replace the neighborhood of v with its
complement. Local complementation was introduced in the study of circle
graphs [19], 2-regular Eulerian digraphs and isotropic systems [17, 18] by
Bouchet. Pivoting also came up in the study of graphic representations of
isotropic systems [17], and it is represented as three successive local comple-
mentations at v, w, v on two adjacent vertices v and w. Bouchet [16] observed
that the cut-rank function does not change when applying local complemen-
tation [17], and based on this property, Oum [80, 81] investigated several
structural results related to rank-width. Later, Kanté and Rao [59] extended
the notion of local complementation and pivoting to digraphs.

We introduce here the pivoting operation in a digraph. Let M be a V ×V -
matrix on F4, and let x, y be distinct elements in V such that M [x, y] �= 0.
The matrix M ∗ (x, y) is a V × V -matrix such that (M ∗ (x, y))[z, z] := 0 for
all z ∈ V , and for all s, t ∈ V \ {x, y} with s �= t,
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• (M ∗ (x, y))[s, t] := M [s, t] − M [s,x]·M [y,t]
M [y,x] − M [s,y]·M [x,t]

M [x,y] ,

• (M ∗ (x, y))[x, t] := M [y,t]
M [y,x] , (M ∗ (x, y))[y, t] := − M [x,t]

M [x,y] ,

• (M ∗ (x, y))[s, x] := − M [s,y]
M [x,y] , (M ∗ (x, y))[s, y] := M [s,x]

M [y,x] ,

• (M ∗ (x, y))[x, y] := − 1
M [y,x] , (M ∗ (x, y))[y, x] := − 1

M [x,y] ,

where all equations are computed over F4. For an arc (v, w) of a digraph
D, a digraph obtained by pivoting vw is defined as the digraph whose F4-
adjacency matrix is M4

D ∗ (v, w), and it is denoted by D ∧ vw. A digraph H
is a pivot-minor of a digraph D if H can be obtained from D by a sequence
of pivotings and vertex deletions. We observe that pivot operations do not
change the function cutrk4

D.

Lemma 9.9.19 ([59]) Let D = (V,A) be a digraph. Every pivot operation
does not change the function cutrk4

D, and thus, if a digraph H is a pivot-
minor of D, then rw4(H) ≤ rw4(D).

Proof. Let (x, y) be an arc of D, and let X ⊆ V and Y = V \X. It is enough
to prove that cutrk4

D(X) = cutrk4
D∧xy(X). Without loss of generality, we

may assume x ∈ X. We divide cases depending on whether y ∈ X or not.
First assume that y ∈ X, and let X ′ := X \ {x, y}. In this case, we have

F4-rank(M4
D∧xy[X,Y ])

= F4-rank

⎛

⎜
⎝

1
M4

D[y,x]
· M4

D[y, Y ]
−1

M4
D[x,y]

· M4
D[x, Y ]

M4
D[X ′, Y ] − M4

D[X′,x]·M4
D[y,Y ]

M4
D[y,x]

− M4
D[X′,y]·M4

D[x,Y ]

M4
D[x,y]

⎞

⎟
⎠

= F4-rank

⎛

⎜
⎝

1
M4

D[y,x]
· M4

D[y, Y ]
−1

M4
D[x,y]

· M4
D[x, Y ]

M4
D[X ′, Y ]

⎞

⎟
⎠ = F4-rank(M4

D[X,Y ]).

Now, we assume that y /∈ X, and let X ′ := X \ {x} and Y ′ := Y \ {y}.
Then we have
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F4-rank(M4
D∧xy[X,Y ])

= F4-rank

(− 1
M4

D[y,x]
−1

M4
D[y,Y ′] · M4

D[y, x]
M4

D[X′,x]
M4

D[y,x]
M4

D[X ′, Y ′] − M4
D[X′,x]·M4

D[y,Y ′]
M4

D[y,x]
− M4

D[X′,y]·M4
D[x,Y ′]

M4
D[x,y]

)

= F4-rank

(− 1
M4

D[y,x]
−1

M4
D[y,Y ′] · M4

D[y, x]

0 M4
D[X ′, Y ′] − M4

D[X′,y]·M4
D[x,Y ′]

M4
D[x,y]

)

= F4-rank

(− 1
M4

D[y,x]
0

0 M4
D[X ′, Y ′] − M4

D[X′,y]·M4
D[x,Y ′]

M4
D[x,y]

)

= F4-rank

(
M4

D[x, y] 0
M4

D[X ′, y] M4
D[X ′, Y ′] − M4

D[X′,y]·M4
D[x,Y ′]

M4
D[x,y]

)

= F4-rank
(

M4
D[x, y] M4

D[x, Y ′]
M4

D[X ′, y] M4
D[X ′, Y ′]

)

= F4-rank(M4
D[X,Y ]).

�

Kanté [57] showed that digraphs of bounded F4-rank-width are well-quasi-
ordered under the pivot-minor operation. Note that the class of digraphs of
bounded F4-rank-width is not well-quasi-ordered under the induced subdi-
graph operation. The set of all directed cycles is such an example.

Theorem 9.9.20 ([57]) Every pivot-minor closed class of digraphs of F4-
rank-width at most k is well-quasi-ordered under the pivot-minor relation.

In undirected case, it is an open problem whether graphs are well-quasi-
ordered under the undirected version of pivot-minor relation. If this holds,
then it would imply the graph minor theorem which say that graphs are
well-quasi-ordered under the minor relation. We ask the same question for
directed graphs.

Problem 9.9.21 Is the set of digraphs well-quasi-ordered under the pivot-
minor relation?

It is open whether we can check whether a fixed graph H is a pivot-
minor of a graph G for undirected graphs. Courcelle and Oum [27] proved
that this problem is solvable in polynomial time when underlying graphs
have bounded rank-width. Results from [57] imply that the same question
for directed graphs is solvable in polynomial time when underlying digraphs
have bounded F4-rank-width. We ask a question for general digraphs, as for
undirected graphs.

Problem 9.9.22 For every fixed digraph H, is there a polynomial time algo-
rithm testing whether a digraph G contains H as a pivot-minor?
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For a vertex v in a digraph D = (V,A), the F4-local complementation
at v, denote by D ∗ v, is the operation to take the digraph with the F4-
adjacency matrix M ′ where

• for x, y ∈ V with x �= y, M ′[x, y] = M4
D[x, y] + M4

D[x, z]M4
D[z, y],

• for x ∈ V , M ′[x, x] = 0.

A digraph H is an F4-vertex-minor of D if H can be obtained from D by
a sequence of local complementations and vertex deletions. Note that as in
the undirected case, it is satisfied that D ∧ vw = D ∗ v ∗ w ∗ v [59].

Lemma 9.9.23 ([59]) Let D = (V,A) be a digraph. Every F4-local comple-
mentation does not change the function cutrk4

D, and thus if H is an F4-
vertex-minor of a digraph D, then rw4(H) ≤ rw4(D).

Proof. Let D = (V,A) be a digraph and x be a vertex of D. Let X ⊆ V . We
may assume that x ∈ X as cutrk4

D(X) = cutrk4
D(V \X). For each y ∈ X, the

F4-local complementation at x results in adding a multiple of the row indexed
by x to the row indexed by y. Therefore, we have cutrk4

D∗x(X) = cutrk4
D(X).

�

Kanté and Rao [59] proved that the size of a minimal vertex-minor or
pivot-minor obstruction for digraphs of F4-rank-width at most k is bounded
by a function of k.

Theorem 9.9.24 ([59])

1. For each positive integer k, there is a set Cv
k of directed graphs each having

at most (6k+1 − 1)/5 vertices, such that a digraph has F4-rank-width at
most k if and only if it has no F4-vertex-minor isomorphic to digraphs
in Cv

k .
2. For each positive integer k, there is a set Cp

k of directed graphs each having
at most (6k+1 − 1)/5 vertices, such that a digraph has F4-rank-width at
most k if and only if it has no pivot-minor isomorphic to digraphs in Cp

k .

A similar variant of local complementation can be defined in a way that
it preserves the bi-rank-width of a digraph. For a vertex v in a digraph
D = (V,A), the F2-local complementation at v, denote by D ∗2 v, is the
operation to take the digraph with the out-neighborhood matrix M ′ where

• for x, y ∈ V with x �= y, M ′[x, y] = M+
D [x, y] + M+

D [x, z]M+
D [z, y],

• for x ∈ V , M ′[x, x] = 0.

A digraph H is an F2-vertex-minor of D if H can be obtained from D by
a sequence of local complementations and vertex deletions.

Lemma 9.9.25 ([59]) Let D = (V,A) be a digraph. Every F2-local comple-
mentation does not change the function bicutrkD, and thus if H is an F2-
vertex-minor of a digraph D, then birw(H) ≤ birw(D).
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Proof. Let D = (V,A) be a digraph and x be a vertex of D. Let X ⊆ V . We
may assume that x ∈ X. In the matrix M+

D [X,V \ X], for each y ∈ X \ {x},
the F2-local complementation at x results in adding a multiple of the row
indexed by x to the row indexed by y. Therefore, we have bicutrkD∗x(X) =
bicutrkD(X). �

Kanté and Rao [59] discussed that their generalization of pivot operation
for edge-colored graphs does not fit to bi-rank-width. Also, they observed
that digraphs of bounded bi-rank-width are not well-quasi-ordered under the
F2-vertex-minor relation. The set of digraphs whose underlying graphs are
even cycles such that each vertex has either in-degree 2 or out-degree 2 has
bounded bi-rank-width and is not well-quasi-ordered by the F2-vertex-minor
relation. Any F2-local complementation at a vertex of such cycle does not cre-
ate any new arc, and thus, it is implied by the observation that such cycles
are not well-quasi-ordered under the induced subdigraph relation. Further-
more, we can observe that all of such cycles are F2-vertex-minor obstructions
for digraphs of bi-rank-width at most 1. Thus, we could not expect an upper
bound on the size of F2-vertex-minor obstructions for digraphs of bounded
bi-rank-width as in Theorem 9.9.24.
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10. Digraphs Products

Richard H. Hammack

For our purposes, a digraph product is a binary operation D ∗ D′ on di-
graphs, for which V (D ∗ D′) is the Cartesian product V (D) × V (D′) of the
vertex sets of the factors. There are many ways to define such products.
But if we insist on the algebraic property of associativity, and demand that
the projections to factors respect adjacency, then we are left with just four
products, known as the standard products. One of these is the Cartesian
product, introduced in Chapter 1. We review it now, and introduce the three
other products.

10.1 The Four Standard Associative Products

The four standard digraph products are the Cartesian product D �D′, the
direct product D×D′, the strong product D � D′, and the lexicographic
product D ◦ D′. Each has vertex set V (D) × V (D′). Their arcs are

A(D �D′) = {(x, x′)(y, y′) | xy ∈ A(D), x′ = y′, or x = y, x′y′ ∈ A(D′)},
A(D × D′) = {(x, x′)(y, y′) | xy ∈ A(D) and x′y′ ∈ A(D′)},
A(D � D′) = A(D �D′) ∪ A(D × D′),
A(D ◦ D′) = {(x, x′)(y, y′) | xy ∈ A(D), or x = y and x′y′ ∈ A(D′)}.

In each case D and D′ are called factors of the product. In drawing
products, we often align the factors roughly horizontally and vertically (like
x- and y-coordinate axes) below and to the left of the vertex set V (D)×V (D′),
so that (x, x′) projects vertically to x ∈ V (D) and horizontally to x′ ∈ V (D′).
This is illustrated in Figure 10.1, showing examples of the Cartesian, direct
and strong products. The lexicographic product is illustrated in Figure 10.2.

The definitions reveal immediately that the Cartesian, direct and strong
products are commutative in the sense that the map (x, x′) �→ (x′, x) yields
isomorphisms D �D′ → D′ �D, D × D′ → D′ × D, and D � D′ → D′ �D.
However, Figure 10.2 shows that the lexicographic product is not commuta-
tive.
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Figure 10.1 The three standard associative, commutative products

D ◦ D D ◦ DD D

D D

Figure 10.2 The lexicographic product. Note D ◦ D′ �∼= D′ ◦ D.

It is also easy to check that all four standard products are associative in
the sense that the identification (x, (y, z)) = ((x, y), z) yields equalities

D1 � (D2 �D3) = (D1 �D2)�D3,
D1 × (D2 × D3) = (D1 × D2) × D3,
D1 � (D2 � D3) = (D1 � D2) � D3,
D1 ◦ (D2 ◦ D3) = (D1 ◦ D2) ◦ D3.

Thus we may unambiguously define products of more than two factors with-
out regard to grouping. The product definitions extend as follows.

The vertex set of the Cartesian product D1 � · · · �Dn is the Cartesian
product of sets V (D1) × · · · × V (Dn). The arcs of the product are all pairs
(x1, . . . , xn)(y1, . . . , yn), where xiyi ∈ A(Di) for some index i ∈ [n], and
xj = yj for all j �= i.

The direct product D1 × · · · × Dn has vertices V (D1)× · · · × V (Dn) and
arcs (x1, . . . , xn)(y1, . . . , yn), where xiyi ∈ A(Di) for all i ∈ [n].

The strong product D1 � · · · �Dn has vertices V (D1)×· · ·×V (Dn), and
(x1, . . . , xn)(y1, . . . , yn) is an arc provided xi = yi or xiyi ∈ A(Di) for all
i ∈ [n], and xiyi ∈ A(Di) for at least one i ∈ [n]. Note the containment

A(D1 � · · · �Dn) ∪ A(D1 × · · · × Dn) ⊆ A(D1 � · · · �Dn),

which is only guaranteed to be an equality when n = 2. (As in the definition
on page 467.)



10. Digraphs Products 469

Extending the lexicographic product to more than two factors, we see that
D1 ◦ · · · ◦ Dn has vertices V (D1) × · · · × V (Dn) and (x1, . . . , xn)(y1, . . . , yn)
is an arc of the product provided that there is an index i ∈ [n] for which
xiyi ∈ A(Di), while xj = yj for any 1 ≤ j < i.

We define the nth powers with respect to the four products as

D � n = D �D � · · · �D, D×n = D × D × · · · × D,
D� n = D �D � · · · � D, D◦n = D ◦ D ◦ · · · ◦ D,

where there are n factors in each case.
A digraph homomorphism ϕ : D → D′ is a map ϕ : V (D) → V (D′)

for which xy ∈ A(D) implies ϕ(x)ϕ(y) ∈ A(D′). We call ϕ a weak ho-
momorphism if xy ∈ A(D) implies ϕ(x)ϕ(y) ∈ A(D′) or ϕ(x) = ϕ(y).
A homomorphism is a weak homomorphism, but not conversely. For each
k ∈ [n], define the projection πk : V (D1) × · · · × V (Dn) → V (Dk) as
πk(x1, . . . , xn) = xk. It is straightforward to verify that each projection
πk : D1 × · · · × Dn → Dk is a homomorphism, and πk : D1 � · · · �Dn → Dk

and πk : D1 � · · · � Dn → Dk are weak homomorphisms. In general, only
the first projection π1 : D1 ◦ · · · ◦ Dn → D1 of a lexicographic product is a
weak homomorphism. Although we will not undertake such a demonstration
here, it can be shown that � , ×, � and ◦ are the only associative products
for which at least one projection is a weak homomorphism (or homomor-
phism) and each arc of each factor is a projection of an arc in the product.
See [18] for details in the class of graphs. (The arguments apply equally well
to digraphs.)

For products written as D �H, we write the projections as πD and πH .
We continue with some algebraic properties of the four products. Denote

the disjoint union of digraphs D and H as D+H. The following distributive
laws are immediate:

(D + H)�K = D �K + H �K, (D + H) × K = D × K + H × K,
(D + H)� K = D �K + H � K, (D + H) ◦ K = D ◦ K + H ◦ K.

The corresponding left-distributive laws also hold, except in the case of the
lexicographic product, where generally D◦(H+K) �= D◦H+D◦K. Regarding
this, the next proposition tells the whole story.

Proposition 10.1.1 We have D ◦ (H + K) ∼= D ◦ H + D ◦ K if and only if
D has no arcs.

Proof: If D has no arcs, then the definition of the lexicographic product
shows that both D ◦ (H +K) and D ◦H +D ◦K are |V (D)| copies of H +K.

Conversely, suppose D ◦ (H +K) ∼= D ◦H +D ◦K, so both digraphs have
the same number of arcs. Note that in general

|A(D ◦ H)| = |A(D)| · |V (H)|2 + |V (D)| · |A(H)|, (10.1)
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where the first term counts arcs (x, x′)(y, y′) with xy ∈ A(D), and the second
term counts such arcs with x = y. Using this to count the arcs of D◦(H+K),
and again to count those of D ◦ H + D ◦ K, we see that |A(D)| = 0. �

The trivial digraph K1 is a unit for � , � and ◦, that is, K1 × D = D,
K1 � D = D, and K1 ◦ D = D = D ◦ K1 (by identifying (1, x) = x = (x, 1)
for all x ∈ V (D)). However, this does not work for the direct product because
K1 × D has no arcs, even if D does. But if we admit loops and let K∗

1 be a
loop on one vertex, then K∗

1 is the unique digraph for which K∗
1 × D = D.

For this reason we often regard the direct product as a product on the class
of digraphs with loops allowed, especially when dealing with issues of unique
prime factorization, where the existence of a unit is crucial.

As mentioned above, the lexicographic product is the only one of the
four standard products that is not commutative. However, if D = H ◦n and
D′ = H ◦m are lexicographic powers of the same digraph H, then we do of
course get D ◦ D′ = D′ ◦ D. Another way that D and D′ can commute is if
they are both transitive tournaments, in which case we have

TTn ◦ TTm = TTmn = TTm ◦ TTn. (10.2)

To verify this, order the vertices of TTn as v1, v2, . . . , vn with vivj ∈ A(TTn)
provided i < j. Order those of TTm as w1, w2, . . . , wm with wkw� ∈ A(TTm)
provided k < �. Order the set V (TTn) × V (TTm) lexicographically, that is,
(vi, wk) < (vj , w�) if i < j, or i = j and k < �. The definition of ◦ reveals that
TTn ◦ TTm has an arc (vi, wk)(vj , w�) if and only if (i, k) < (j, �). Therefore
TTn ◦ TTm = TTmn.

Certainly also
↔
Kn ◦ ↔

Km =
↔
Kmn =

↔
Km ◦ ↔

Kn where
↔
Kn is the complete

biorientation of Kn. And if Dn is its complement (i.e., the arcless digraph
on n vertices) then Dn ◦ Dm = Dmn = Dm ◦ Dn. In fact, these are the only
situations in which the lexicographic product commutes, as discovered by
Dörfler and Imrich [8].

Theorem 10.1.2 Two digraphs commute with respect to the lexicographic
product if and only if they are both lexicographic powers of the same digraph,
or both transitive tournaments, or both complete symmetric digraphs, or both
arcless digraphs.

We close this section with another property of the lexicographic product.
Denote by D the complement of the digraph D, that is, the digraph on V (D)
with xy ∈ A(D) if and only if xy /∈ A(D). The equation

D ◦ H = D ◦ H (10.3)

is easily confirmed. No other standard product has this property.
The remainder of the chapter is organized as follows. Sections 10.2

and 10.3 treat distance and connectedness for the four products. Sections 10.4,
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10.5 and 10.6 deal with kings and kernels, Hamiltonian issues, and invariants.
The final five sections consider algebraic questions of cancellation and unique
prime factorization. Section 10.7 covers some preliminary material on homo-
morphisms and quotients that is used in the following section on cancellation.
Section 10.9 covers prime factorization for � and ◦. The cases × and � are
treated in Sections 10.10 and 10.11.

10.2 Distance

Recall that the distance distD(x, y) between two vertices x, y ∈ V (D) is the
length of the shortest directed path from x to y, or ∞ if no such path exists.
This is not a metric in the usual sense, as generally distD(x, y) �= distD(y, x).
Let dist′D(x, y) be the length of the shortest (x, y)-path in D (not necessarily
directed). This is a metric.

We begin by recording the distance formulas for each of the four products.
These formulas are nearly identical to the corresponding formulas for graphs;
here we adapt the proofs of Chapter 5 of Hammack, Imrich and Klavžar [18]
to digraphs. Our proofs will use the fact that if p : D → H is a weak
homomorphism, then distD(x, y) ≥ distH

(
p(x), p(y)

)
, and similarly for dist′.

This holds because if P is an (x, y)-dipath (or path) in D, then the projection
of any arc of P is either an arc of H or a single vertex of H. The projections
that are arcs constitute a (p(x), p(y))-diwalk (or walk) in H of length not
greater than the length of P . (In fact, its length is the length of P minus the
number of its arcs that are mapped to single vertices.)

Proposition 10.2.1 In a Cartesian product D = D1 � · · · �Dn, the dis-
tance between vertices (x1, . . . , xn) and (y1, . . . , yn) is

distD
(
(x1, . . . , xn), (y1, . . . , yn)

)
=

∑

1≤i≤n

distDi
(xi, yi).

For the strong product D = D1 � · · · �Dn, the distance is

distD
(
(x1, . . . , xn), (y1, . . . , yn)

)
= max

1≤i≤n
{distDi

(xi, yi)} .

The same formulas hold when dist is replaced with dist′.

Proof: By associativity, it suffices to prove the statements for the case n = 2.
First consider the Cartesian product D = D1 �D2. To begin, suppose

distD((x1, x2), (y1, y2)) is finite. Take a ((x1, x2), (y1, y2))-dipath P of length
distD((x1, x2), (y1, y2)). By definition of the Cartesian product, any arc of P is
mapped to an arc in D1 or D2 by one of the two projections π1 and π2, and to
a single vertex by the other. It follows that π1 maps P to an (x1, y1)-diwalk in
D1 of length (say) d1, and π2 maps P to an (x2, y2)-diwalk in D2 of length d2,
with distD((x1, x2), (y1, y2)) = d1 + d2 ≥ distD1(x1, y1) + distD2(x2, y2).
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In particular this means the proposition holds if distD1(x1, y1) = ∞ or
distD2(x2, y2) = ∞. If they are both finite, take a shortest (x1, y1)-dipath P1

in D1 and a shortest (x2, y2)-dipath P2 in D2. Then D1 �D2 has a dipath

(P1 × {x2}) + ({y1} × P2)

from (x1, x2) to (y1, y2), of length distD1(x1, y1) + distD2(x2, y2). Therefore
distD((x1, x2), (y1, y2)) ≤ distD1(x1, y1) + distD2(x2, y2). Equality holds by
the previous paragraph.

Now consider the strong product D1 � D2. As each πi : D1 � D2 → Di is a
weak homomorphism, it follows that distD((x1, x2), (y1, y2)) ≥ distDi

(xi, yi)
for i = 1, 2, so distD((x1, x2), (y1, y2)) ≥ max1≤i≤2{distDi

(xi, yi)}.
Thus, if at least one distDi

(xi, yi) is infinite, then distD((x1, x2), (y1, y2)) =
∞, and the proposition follows. Otherwise, take a shortest (x1, y1)-dipath
x1a1a2a3 . . . apy1 in D1 and a shortest (x2, y2)-dipath x2b1b2b3 . . . bqy2 in D2.
Say p ≥ q. We get the following ((x1, x2), (y1, y2))-dipath in D1 �D2:

(x1, x2)(a1, b1)(a2, b2)(a3, b3) . . . (aq, bq)(aq+1, y2)(aq+2, y2) . . . (ap, y2)(y1, y2).

Its length is distD1(x1, y1) = max{distDi
(xi, yi)} ≥ distD((x1, x2), (y1, y2)).

The reverse inequality was established in the previous paragraph.
The arguments for dist′ are identical, but replacing each occurrence of

the word “diwalk” with “walk,” and “dipath” with “path.” �
The situation for the direct product is quite different. It requires the

following useful result concerning directed walks in a direct product.

Proposition 10.2.2 A direct product D = D1 × · · · × Dn has a diwalk of
length k from (x1, . . . , xn) to (y1, . . . , yn) if and only if each Di has a diwalk
of length k from xi to yi.

Proof: Suppose D has a diwalk W from (x1, x2, . . . , xn) to (y1, y2, . . . , yn),
of length k. As each projection πi : G → Gi is a homomorphism, W projects
to an (xi, yi)-diwalk of length k in each Di.

Conversely, if each factor Di has a diwalk xix
1
i x

2
i x

3
i . . . xk−1

i yi of length
k, then by the definition of the direct product, D has a diwalk

(x1, . . . , xn)(x1
1, . . . , x

1
n)(x

2
1, . . . , x

2
n) . . . (xk−1

1 , . . . , xk−1
n )(y1, . . . , yn)

of length k. �
Proposition 10.2.3 In a direct product D = D1 × · · · × Dn, the distance
between two vertices (x1, . . . , xn) and (y1, . . . , yn) is

distD
(
(x1, . . . , xn), (y1, . . . , yn)

)
= min

⎧
⎨

⎩
k ∈ Z

∣
∣
∣
∣
∣
∣

each Di has an
(xi, yi) − diwalk

of length k

⎫
⎬

⎭
,

or ∞ if no such k exists.
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Proof: Let distD
(
(x1, . . . , xn), (y1, . . . , yn)

)
= d. Let d′ equal the smallest k

for which each Di has an (xi, yi)-diwalk of length k, or ∞ if no such k exists.
We must show d = d′.

If d = ∞, then d ≥ d′. But also d ≥ d′ when d < ∞, by Proposition 10.2.2.
On the other hand, if d′ = ∞, then d ≤ d′. And again d ≤ d′ when

d′ < ∞, by Proposition 10.2.2. Thus d = d′. �
Distance in the lexicographic product requires a new definition. Given

a vertex x of a digraph D, let ξD(x) be the length of a shortest non-trivial
dicycle containing x, or ∞ if no such dicycle exists. Let ξ′

D(x) be the length of
the shortest non-trivial cycle containing x. We first state the distance formula
for lexicographic products D1 ◦ D2 having just two factors (a consequence of
Theorem 4 of Szumny, Włoch and Włoch [54]).

Proposition 10.2.4 The distance formula for the lexicographic product is

distD1◦D2

(
(x1, x2), (y1, y2)

)
=

{
distD1(x1, y1) if x1 �= y1
min

{
ξD1(x1), distD2(x2, y2)

}
if x1 = y1.

The formula also holds with dist and ξ replaced with dist′ and ξ′.

Proof: Suppose x1 �= y1. Then, as the projection π1 is a weak homo-
morphism, we have distD1◦D2

(
(x1, x2), (y1, y2)

) ≥ distD1(x1, y1). On the
other hand, given a shortest (x1, y1)-dipath x1a1a2 . . . apy1 in D1, we con-
struct a dipath (x1, y1)(a1, y2)(a2, y2)(a3, y2) . . . (y1, y2) in D1 ◦ D2 of length
distD1(x1, y1), so distD1◦D2

(
(x1, x2), (y1, y2)

)
= distD1(x1, y1).

Now suppose x1 = y1. Take a shortest ((x1, x2), (y1, y2))-dipath P in
D1◦D2. Because π1 is a weak homomorphism, π1(P ) is either a closed diwalk
in D1 beginning and ending at x1 that is no longer than P , or it is the single
vertex x1. In the first case, dist((x1, x2), (y1, y2)) ≥ ξD1(x1). In the second, P
lies in the fiber {x1} ◦ D2

∼= D2, and its length is no less than distD2(x2, y2).
Thus distD1◦D2

(
(x1, x2), (y1, y2)

) ≥ min
{

ξD1(x1), distD2(x2, y2)
}
.

Conversely, if D1 has a closed dicycle x1a1a2 . . . apx1, then D1 ◦ D2 has
a dipath (x1, y1)(a1, y2)(a2, y2)(a3, y2) . . . (x1, y2) of the same length. And if
D2 has an (x2, y2)-dipath P , then {x1} ◦ P is a ((x1, x2), (y1, y2))-dipath in
D1 ◦ D2. Thus distD1◦D2

(
(x1, x2), (y1, y2)

) ≤ min
{

ξD1(x1), distD2(x2, y2)
}
.

The proof is the same for dist′. �
Corollary 10.2.5 Suppose (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are distinct
vertices of D = D1 ◦ D2 ◦ · · · ◦ Dn, and let k ∈ [n] be the smallest index for
which xk �= yk. Then

distD
(
(x1, x2, . . . , xn), (y1, y2, . . . , yn)

)
=

min
{
ξD1(x1), ξD2(x2), . . . , ξDk−1(xk−1), distDk

(xk, yk)
}

.

(For k = 1 this is distD
(
(x1, x2, . . . , xn), (y1, y2, . . . , yn)

)
= distD1(x1, y1). In

any case, the distance does not depend on any factor Di with k < i ≤ n.)
The formula also holds with dist and ξ replaced with dist′ and ξ′.
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Proof: If n = 2, this is just a restatement of Proposition 10.2.4. If n > 2,
then applying Proposition 10.2.4 to D1 ◦ (D2 ◦ · · · ◦ Dn) yields

distD
(
(x1, x2, . . . , xn), (y1, y2, . . . , yn)

)
=

min
{
ξD1(x1),distD2◦···◦Dn

(
(x2, . . . xn), (y2 . . . yn)

)}
,

and we proceed inductively. �

10.3 Connectivity

We now apply the results of the previous section to connectivity of the four
products. Our first result characterizes connectivity and strong connectivity
of three of our four products. The proofs are straightforward, with appeals
to the distance formulas of Section 10.2 as needed. The parenthetical words
(strongly) and (strong) in the proposition can be deleted to obtain parallel
results on connectedness. (Recall that a digraph is connected if any two of
its vertices can be joined by a [not necessarily directed] path.)

Theorem 10.3.1 Suppose D1, . . . , Dn are digraphs. Then:

1. The Cartesian product D1 � · · · �Dn is (strongly) connected if and only
if each factor Di is (strongly) connected. More generally, the (strong) com-
ponents of a product D1 � · · · �Dn are the subgraphs X1 � · · · �Xn for
which each Xi is a (strong) component of Di.

2. The strong product D1 � · · · �Dn is (strongly) connected if and only if
each factor Di is (strongly) connected. More generally, the (strong) com-
ponents of a product D1 � · · · � Dn are the subgraphs X1 � · · · � Xn for
which each Xi is a (strong) component of Di.

3. The lexicographic product D1 ◦· · ·◦Dn of non-trivial digraphs is (strongly)
connected if and only if the first factor D1 is (strongly) connected. More
generally, the (strong) components of a product D1 ◦ · · · ◦ Dn are the sub-
graphs X1 ◦ D2 ◦ · · · ◦ Dn, where X1 is a non-trivial strong component of
D1, as well as

X1 ◦ X2 ◦ · · · ◦ Xk ◦ Dk+1 ◦ · · · ◦ Dn,

where Xi is a trivial (strong) component of Di for 1 ≤ i < k, and Xk is
a non-trivial strong component of Dk (unless k = n, in which case Xk is
allowed to be trivial).

Theorem 10.3.1 is a key to understanding the interconnections between
the strong components of products. Recall that the strong component
digraph of a digraph D is the acyclic digraph SC(D) whose vertices are
the strong components of D, with an arc directed from X to Y precisely
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→
C 4 × −→

C 6

Figure 10.3 The direct product of strongly connected graphs is not necessarily
strongly connected.

when D has an arc from X to Y . Thus SC(D) carries information on the
interconnections between the various strong components. The SC operator
respects the Cartesian and strong products in the sense that SC(D �H) =
SC(D)�SC(H) and SC(D � H) = SC(D) � SC(H). Indeed, the pairwise
projection map X �→ (πD(X), πH(X)) sending strong components X in the
product to pairs of strong components in the factors is an isomorphism in
both cases � and � (as is easily checked).

Also, if every strong component of D is non-trivial, then SC(D ◦ H) =
SC(D). This is so because Theorem 10.3.1 says the strong components of
D ◦ H have form X ◦ H, where X is a strong component of G. From the
definition of ◦, the projection X ◦ H �→ X is an isomorphism SC(D ◦ H) →
SC(D). (But this breaks down if D has a trivial strong component X = {x0}
and H has at least two strong components Y and Z, because then the distinct
strong components X ◦ Y and X ◦ Z are both mapped to X.)

There is no result analogous to Theorem 10.3.1 for the direct product.
Indeed, Figure 10.3 shows a direct product of two strong digraphs that is not
even connected: Here

−→
C 4 × −→

C 6 = 2
−→
C 12, where the coefficient 2 means the

product is 2 disjoint copies of
−→
C 12. In fact, it is easy to verify the formula

−→
C m × −→

C n = gcd(m,n)
−→
C lcm(m,n) (10.4)

(which is an instance of Theorem 10.3.2 below).
Despite the fact that a direct product of strongly connected digraphs need

not be strongly connected, the converse is true: if D1 × · · · × Dn is strongly
connected, then each Di must be strongly connected. This is a consequence
of the fact that the projection maps are homomorphisms. Given two vertices
xi, yi of Di, take (x1, . . . , xn), (y1, . . . , yn) ∈ V (D1 × · · · × Dn). Any diwalk
joining these two vertices projects to a diwalk joining xi to yi.

Additional conditions on the factors that guarantee the product is strongly
connected were first spelled out by McAndrew [37]. For a digraph D, let d(D)
be the greatest common divisor of the lengths of all closed diwalks in D.
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Theorem 10.3.2 If D1,D2, . . . , Dn are strongly connected digraphs, then the
number of strong components of the direct product D1 × D2 × · · · × Dn is

d(D1) · d(D2) · · · d(Dn)
lcm

(
d(D1), d(D2), . . . , d(Dn)

) .

Consequently, D1 ×D2 ×· · ·×Dn is strongly connected if and only if each Di

is strongly connected and the numbers d(D1), . . . , d(Dn) are relatively prime.

Notice how this theorem agrees with Equation (10.4) and Figure 10.3. The
proof is constructive and gives a neat description of the strong components.

Proof: We need only prove the first statement. Assume each factor Di is
strongly connected, and let D = D1 × · · · × Dn.

For each index i ∈ [n], put di = d(Di), and fix a vertex ai ∈ V (Di).
Define functions fi : V (Di) → {0, 1, 2, . . . , d(Di) − 1} so that fi(v) is the
length (mod di) of an (ai, v)-diwalk W . To see that this does not depend on
W , let W ′ be any other (ai, v)-diwalk. Let Z be a (v, ai)-diwalk. Then the
concatenations W +Z and W ′ +Z are closed (ai, ai)-diwalks, and di divides
both of their lengths |W + Z| and |W ′ + Z|. Thus di divides the difference
|W |−|W ′| of their lengths, so |W | and |W ′| have the same length, modulo di.
Hence f is well defined.

Regard fi(v) as a coloring of vertex v, so Di is di-colored. Now, to each
vertex x = (x1, . . . , xn) of D, assign the n-tuple f(x) = (f1(x1), . . . , fn(xn)).
Regard the distinct n-tuples as colors, so D is colored with d1d2 · · · dn colors.

Take a vertex b = (b1, . . . , bn) of D, and let Xb be the strong component
of D that contains b. If x = (x1, . . . , xn) is in Xb, then D has a (b, x)-diwalk
of length (say) k. By Proposition 10.2.2, each Di has a (bi, xi)-diwalk of
length k. As bi is colored fi(bi), it follows from the definition of fi that xi is
colored fi(xi) = fi(bi) + k (mod di). Thus every vertex x of Xb has a color
of form f(x) = (f1(b1) + k, . . . , fn(bn) + k) for some non-negative integer k.
(Where the arithmetic in the ith coordinate is done modulo di.)

Suppose for the moment that the converse is true: If x ∈ V (D) and f(x) =
(f1(b1)+k, . . . , fn(bn)+k) for some non-negative k, then x belongs to Xb. (We
will prove this shortly.) Combined with the previous paragraph, this means
V (Xb) consists precisely of those vertices colored (f1(b1)+ k, . . . , fn(bn)+ k)
for some non-negative integer k. There are precisely lcm

(
d1, . . . , dn

)
such

colors. In summary, D has d1d2 · · · dn = d(D1) · d(D2) · · · · · d(Dn) color
classes, and any strong component of D is the union of lcm

(
d(D1), . . . , d(Dn)

)

of them. Thus D has

d(D1) · d(D2) · · · d(Dn)
lcm

(
d(D1), d(D2), . . . , d(Dn)

)

strong components, and the theorem follows.
It remains to prove the assertion made above, namely that if the vertex

b = (b1, . . . , bn) belongs to a strong component Xb, then any vertex colored
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(f1(b1)+k, . . . , fn(bn)+k) belongs to Xb. Thus let x = (x1, . . . , xn) be colored
f(x) = (f1(b1)+k, . . . , fn(bn)+k). That is, each xi has color fi(xi) = fi(bi)+k
(mod di). We need to prove that D has both a (b, x)-diwalk and an (x, b)-
diwalk. By Proposition 10.2.2, it suffices to show that there is a positive
integer K for which each Di has a (bi, xi)-diwalk of length K. (And also a
K ′ for which each Di has a (xi, bi)-diwalk of length K ′.) The following claim
assures that this is possible.
Claim. Suppose vertices bi, xi ∈ V (Di) have colors fi(bi) and fi(bi) + k,
respectively. Then there is an integer Mi such that for all mi ≥ Mi there is
a (bi, xi)-diwalk of length midi + k. Also there is an integer M ′

i such that for
all mi ≥ M ′

i there is an (xi, bi)-diwalk of length midi − k.
Once the claim is established, we can put mi = Ld1d2 · · · dn/di, where L is

large enough that each mi exceeds the maximum of all the Mi and M ′
i . Then

midi = Ld1d2 · · · dn for each i ∈ [n], and the claim then gives the required
diwalks of lengths K = Ld1d2 · · · dn + k and K ′ = Ld1d2 · · · dn − k.

To prove the claim, let vertices bi and xi of Di have colors fi(bi) and
fi(bi) + k, respectively. Because Di is strongly connected, Di has a (bi, xi)-
diwalk W . Moreover, we may assume |W | ≥ k, by concatenating with W
(if necessary) arbitrarily many closed (xi, xi)-diwalks. Because bi has color
fi(bi) and xi has color fi(bi) + k, it follows that W has length �di + k for
some non-negative integer �.

By definition of di, there are dicycles C1, C2, . . . , Cs in Di for which di =
gcd(|C1|, |C2|, . . . , |Cs|). Select a vertex ci of each Cj . Let P0 be a (bi, c1)-
diwalk, let Ps be a (cs, xi)-diwalk, and for each j ∈ [s − 1] let Pj be a
(cj , cj+1)-diwalk. See Figure 10.4. By the same reasoning used for W , the
diwalk W ′ = P0 +P1 + · · ·+Ps has length �′di + k for some non-negative �′.

By choice of the Ci, there are integers uj for which
∑s

j=1 uj |Cj | = di.
Let u = max{|u1|, . . . , |us|}. Put w =

∑s
j=1

|Cj |
di

, which is a positive integer
because di divides each |Cj |. We will show that Mi = �′ + w + w2u satisfies
the requirements of the claim: Let mi ≥ Mi. By the division algorithm

C1 C2 C3 Cs· · ·

· · ·

bi xi

color fi(bi) color fi(bi) + k

P0

P1 P2 P3

Ps

c1 c2 c3 cs

i + k
W

Figure 10.4 The diwalk W has length �di+k, and the diwalk W ′ = P0+P1+· · ·+Ps

has length �′di + k.
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mi − �′ = qw + r with 0 ≤ r < w. (10.5)

For each j ∈ [s], put vj = q + ruj . Note that each vj is positive because

vj =
(

qw + r

w
− r

w

)
+ rui

>

(
mi − �′

w
− 1

)
− wu (by (10.5) and u ≥ ui)

≥ Mi − �′

w
− 1 − wu (because mi ≥ Mi)

= 0 (by definition of Mi).

Thus we may construct a diwalk

W ′′ = P0 + v1C1 + P1 + v2C2 + P2 + v3C3 + P3 + · · · + vsCs + Ps,

where vjCj is Cj concatenated with itself vj times. The length of W ′′ is

|W ′′| =
s∑

j=0

|Pj | +
s∑

j=1

vj |Cj |

= |W ′| +
s∑

j=1

(q + ruj)|Cj | (def. of W ′, and vj)

= �′di + k + q
s∑

j=1

|Cj | + r
s∑

j=1

uj |Cj | (recall |W ′| = �′di + k)

= �′di + k + qdiw + rdi (def. of w and choice of uj)
= �′di + k + (qw + r)di

= �′di + k + (mi − �′)di (Equation (10.5))
= midi + k.

Thus for any mi ≥ Mi we have constructed a (bi, xi)-diwalk W ′′ in Di of
length midi + k, and this completes the first part of the claim. By a like
construction (reversing the walks in Figure 10.4, which is possible because
Di is strong) there is also a (xi, bi)-diwalk W ′′′ in Di of length midi −k. This
completes the proof of the claim, and also the proof of the Theorem. �

The issue of connectedness of direct products is even more subtle than
that of strong connectedness. Despite the contributions [3], [21] and [22], more
than 50 years elapsed between McAndrew’s result on strong connectedness
(Theorem 10.3.2) and the eventual characterization of connectedness by Chen
and Chen [5], which we now examine. To begin the discussion, note that
because all projections of D = D1 × · · · × Dn to factors are homomorphisms,
if D is connected, then each factor Di is connected too. The converse is



10. Digraphs Products 479

generally false, as demonstrated by
−→
P 2×−→

P 2. Laying out the exact additional
conditions on the factors that ensure that the product is connected requires
several definitions.

A matrix A is chainable if its entries are non-negative, and it has no
rows or columns of zeros, and there are no permutation matrices M and N
for which MAN has block form

MAN =
[

A1 0
0 A2

]
.

For a positive integer �, we say A is �-chainable if A� is chainable. A digraph
is �-chainable if its adjacency matrix is �-chainable.

Given a walk W from x to y in a digraph D, its weight w(W ) is the
integer m − n, where in traversing W from x to y, we encounter m arcs in
forward orientation and n arcs in reverse orientation. The weight w(D) of
the digraph D is the greatest common divisor of the weights of all closed
walks in D, or 0 if all closed walks have weight 0.

Space limitations prevent inclusion of the proof of the following theorem.
It can be found in [5].

Theorem 10.3.3 Suppose D1, . . . , Dn are connected digraphs. Then:

1. If no w(Di) is zero, then D1 × · · · × Dn is connected if and only if both
of the following conditions hold:

• gcd
(
w(D1), . . . , w(Dn)

)
= 1,

• If some Di has a vertex of in-degree 0 (respectively out-degree 0) then
no Dj (j �= i) has a vertex of out-degree 0 (respectively in-degree 0).

2. If some w(Di) is zero, then D1 × · · · × Dn is connected if and only if the
other Dj (j �= i) are �-chainable, where � = diam(Di).

We conclude this section with characterizations of unilateral connected-
ness of the four products. Recall that a digraph is unilaterally connected
if for any two of its vertices x, y there exists an (x, y)-diwalk or a (y, x)-
diwalk. (Because this relation on vertices is not symmetric, and thus not an
equivalence relation, there is no notion of unilateral components.) Note that
strongly connected digraphs are unilaterally connected, but not conversely.

Theorem 10.3.4 A Cartesian product of digraphs is unilaterally connected
if and only if one factor is unilaterally connected and the others are strongly
connected. This is also true for the strong product.

For a proof, see the solution of Exercise 32.4 of Hammack, Imrich and
Klavžar [18]. See the solution of Exercise 32.5 for a proof of the next result.

Theorem 10.3.5 A lexicographic product of digraphs is unilaterally con-
nected but not strongly connected if and only if each factor is unilaterally
connected, and the first factor is not strongly connected.
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Finally, we have a characterization of unilaterally connected direct prod-
ucts due to Harary and Trauth [21].

Theorem 10.3.6 A direct product D1 × · · · × Dn is unilaterally connected if
and only if each of the following holds:

• At most one factor Di is unilaterally connected but not strongly con-
nected.

• D1 × · · · × Di−1 × Di+1 × · · · × Dn is strongly connected.
• D1 ×· · · Di−1 ×C ×Di+1 ×· · ·×Dn is strongly connected for each strong

component C of Di.

10.4 Neighborhoods, Kings and Kernels

The structures of vertex neighborhoods in digraph products are clear from the
definitions. For instance, N+

D � D′(x, y) =
(
N+

D (x) × {y}) ∪ ({x} × N+
D′(y)

)
,

etc. For future reference we record two particularly useful formulas, namely

N+
D×D′(x, y) = N+

D (x) × N+
D′(y), (10.6)

N+
D�D′ [(x, y)] = N+

D [x] × N+
D′ [y]. (10.7)

These also hold with the out-neighborhoods N+ replaced by in-neighborhoods
N−, and extend to arbitrarily many factors.

Recall that a k-king in a digraph is a vertex x for which there is an
(x, y)-dipath of length no greater than k for all vertices y of the digraph. The
next proposition follows from the distance properties in Section 10.2.

Proposition 10.4.1 Let D1 and D2 be digraphs. Then:

1. (x1, x2) is a k-king in D1 � D2 if and only if each xi is a k-king in Di.
2. (x1, x2) is a k-king in D1 �D2 if and only if each xi is a ki-king in Di,

where k1 + k2 = k.
3. (x1, x2) is a k-king in D1 ◦ D2 if and only if x1 is a k-king in D1, and x2

is a k-king in D2 or ξD1(x1) ≤ k (where ξ is as defined on page 473).
4. If (x1, x2) is a k-king in D1 × D2, then each xi is a k-king in Di.

This proposition is due to students P. LaBarr, M. Norge and I. Sanders,
directed by D. Taylor [40]. Concerning statement 4, no characterization of
kings in direct products is known.

Recall that a (k, l)-kernel of a digraph D is a subset J ⊆ V (D) for which
distD(x, y) ≥ k for all distinct x, y ∈ J , and to any x /∈ J there is a y ∈ J with
distD(x, y) ≤ l. Szumny, Włoch and Włoch [54] explored (k, l)-kernels in so-
called D-joins. Their Theorem 8 implies the following characterization for the
lexicographic product. (They also enumerate all (k, l)-kernels in D1 ◦ D2.)

Proposition 10.4.2 Let l ≥ k ≥ 2. Then J∗ ⊆ V (D1 ◦ D2) is a (k, l)-kernel
if and only if D1 has a (k, l)-kernel J with J∗ =

⋃
x∈J{x} × Jx, where
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• Jx is a (k, l)-kernel of D2 if ξD1(x) > l and distD2(y, x) > l for y �= x, or
• Jx is a single vertex of D2 if ξD1(x) < k, or
• distD2(x, y) ≥ k for all distinct x, y ∈ Jx otherwise.

The case k > l is open. No characterizations are known for the other
products, though Kwaśnik [33] proved the following.

Proposition 10.4.3 Let D1 and D2 be digraphs, and let Ji be a (ki, li)-kernel
of Di for each i = 1, 2.

1. J1 × J2 is a
(
min{k1, k2}, l1 + l2

)
-kernel of D1 �D2 (for k1, k2 ≥ 2).

2. J1 × J2 is a
(
min{k1, k2},max{l1, l2}

)
-kernel of D1 �D2.

See [59] for corresponding results for generalized products. Finally, we
remark that Lakshmi and Vidhyapriya [34] characterize kernels in Cartesian
products of tournaments with directed paths and cycles.

10.5 Hamiltonian Properties

Hamiltonian properties of digraphs have been studied extensively. The fol-
lowing four theorems are among the results proved in the book [44] by Schaar,
Sonntag and Teichert.

Theorem 10.5.1 If D1 and D2 are Hamiltonian digraphs, then D1�D2 and
D1 ◦ D2 are Hamiltonian. If, in addition, D1 is Hamiltonian connected, and
|D1| ≥ 3 and |D2| ≥ 4, then D1 �D2 is Hamiltonian.

The above additional conditions on the factors of a Cartesian product are
necessary, as evidenced by the next theorem of Erdős and Trotter [57].

Theorem 10.5.2 The Cartesian product
−→
C p �−→

C q is Hamiltonian if and
only if there are non-negative integers d1, d2 for which d1+d2 = gcd(p, q) ≥ 2
and gcd(p, d1) = gcd(q, d2) = 1.

Recall that a digraph is traceable if it has a Hamiltonian path. It is
homogeneously traceable if each of its vertices is the initial point of some
Hamiltonian path.

Theorem 10.5.3 If digraphs D1 and D2 are homogeneously traceable, then
so are D1 �D2, D1 � D2 and D1 ◦ D2.

Theorem 10.5.4 If D1 is homogeneously traceable and D2 is traceable, then
D1 �D2 and D1 � D2 are traceable. If D1 and D2 are traceable, then so is
D1 ◦ D2.

A digraph is Hamiltonian decomposable if it has a family of Hamil-
tonian dicycles such that every arc of the digraph belongs to exactly one of
the dicycles. Ng [39] gives the most complete result among digraph products.
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Theorem 10.5.5 If D1 and D2 are Hamiltonian decomposable digraphs, and
|V (D1)| is odd, then D1 ◦ D2 is Hamiltonian decomposable.

At present it is not known if the assumption of odd order can be removed.

Conjecture 10.5.6 If D1 and D2 are Hamiltonian decomposable digraphs,
then D1 ◦ D2 is Hamiltonian decomposable.

By Theorem 10.5.2, a Cartesian product of Hamiltonian decomposable
digraphs is not necessarily Hamiltonian decomposable. This is also the case
for the strong product, as is illustrated by

←→
K2 � ←→

K2 =
←→
K4.

Problem 10.5.7 Determine conditions under which a Cartesian or strong
product of digraphs is Hamiltonian decomposable.

A solution to this problem may shed light on the longstanding conjecture
that a Cartesian product of Hamiltonian decomposable graphs is Hamiltonian
decomposable. See Section 30.2 of [18] and the references therein.

Despite these difficulties, there has been progress on Cartesian products
of biorientations of graphs. Stong [52] proved that complete biorientations of
odd-dimensional hypercubes decompose into 2m+1 Hamiltonian cycles, and
the same is true for

←→
C n1 � · · · �←→

C nm
�←→

K 2 provided ni ≥ 3 and m > 2.
Hamiltonian results for direct products of digraphs are scarce. Keating

[28] proves that if D1 and D2 × −→
C |D1| are Hamiltonian decomposable, then

so is D1×D2. Paulraja and Sivasankar [41] establish hamilton decompositions
in direct products of biorientations of special classes of graphs.

10.6 Invariants

Here we collect various results on invariants of digraph products, beginning
with the chromatic number and proceeding to domination and independence.

The chromatic number χ(D) of a digraph D is the chromatic number of
the underlying graph of D. For the Cartesian and lexicographic products, the
underlying graph of the product is the product of the underlying graph of
the factors. Thus for � and ◦, the chromatic number of products of digraphs
coincides with that of products of graphs. This has been well-studied. See
Chapter 26 of [18] for a survey.

The situation for the direct and strong products is different. For example,
χ(G × H) ≤ min{χ(G), χ(H)} is straightforward, whether G and H are
graphs or digraphs. The celebrated Hedetniemi conjecture asserts that
χ(G × H) = min{χ(G), χ(H)} for all graphs G and H. But if G and H are
digraphs, then it is quite possible that χ(G×H) < min{χ(G), χ(H)}, as was
first noted by Poljak and Röld [43]. More recently, Bessy and Thomassé [2]
exhibit a 5-chromatic digraph D for which χ(D × TT5) = 3, and Tardif [55]
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gives digraphs Gn and Hn for which χ(Gn) = n, χ(Hn) = 4 and χ(Gn×Hn) =
3. Poljak and Röld introduced the functions

f(n) = min{χ(G × H) | G and H are n-chromatic digraphs },

g(n) = min{χ(G × H) | G and H are n-chromatic graphs},

and showed that if g is bounded above, then the bound is at most 16. This
bound was improved to 3 in [42].

Notice that f(n) ≤ g(n) ≤ n, and Hedetniemi’s conjecture is equivalent to
the assertion g(n) = n. Certainly if g is bounded, then so is f . Interestingly,
the converse is true. Tardif [56] proved that f and g are either both bounded
or both unbounded. Thus Hedetniemi’s conjecture is false if f is bounded.

There is an oriented version of the chromatic number, defined on oriented
graphs, that is, digraphs with no 2-cycles. A oriented k-coloring of such
a digraph D is a map c : V (D) → [k] with the property that c(x) �= c(y)
whenever xy ∈ A(D), and, in addition, the existence of an arc from one
color class X1 to another color class X2 implies that there are no arcs from
X2 to X1. The smallest such k is called the oriented chromatic number
of D, denoted χo(D). Equivalently, this is the smallest k for which there
is a homomorphism from D to an oriented graph of order k. The oriented
chromatic number χo(G) of a graph G is the maximum oriented chromatic
number of all orientations of G. For a survey, see Sopena [51]. Tight bounds on
this invariant are rare, even for simple classes of graphs. Aravind, Narayanan
and Subramanian [1] show χo(G�Pn) ≤ (2n − 1)χo(G), and χo(G�Cn) ≤
2nχo(G), as well as 8 ≤ χo(P2 �Pn) ≤ 11 and 10 ≤ χo(P3 �Pn) ≤ 67. There
appears to have been no other work with this invariant on products other
than some progress on grids [10, 53].

A dominating set in a digraph D is a subset S ⊆ V (D) with the property
that for any y ∈ V (D) − S there exists some x ∈ S for which xy ∈ A(D).
The domination number γ(D) is the size of a smallest dominating set.
Domination in digraphs has not been studied as extensively as in graphs.
As computing the domination number of a graph is NP-hard [13], the same
is true for digraphs. (Consider the complete biorientation of an arbitrary
graph.) Thus we can expect exact formulas only for products of special classes
of digraphs. Liu et al. [35] and Shaheen [45–47] consider the case of Cartesian
products of directed paths and cycles. For example, Shaheen proves

γ
(−→
P m �−→

P n

)
=m+

⌈
m − 1

3

⌉⌈
n − 2
3

⌉ ⌈m
3

⌉
+

⌈m
3

⌉⌈
n − 3
3

⌉
+

⌈
m + 1

3

⌉⌈
n − 4
3

⌉
,

provided m,n > 3, and separate formulas are given for m ≤ 3. Similar results
for the strong product of grid graphs are considered in [48].

Concerning independence, note that (as for the chromatic number) ques-
tions of independence in Cartesian and lexicographic products of digraphs
coincide with the same questions for graphs. So only the direct and strong
product of digraphs are not covered by the theory of graph products. Despite
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this, there appears to have been little work done with them. But one interest-
ing application deserves mention. The Gallai–Milgram theorem [12] says that
the vertices of any digraph with independence number n can be partitioned
into n parts, each of which is the vertex set of a directed path (see also The-
orem 1.8.4). Hahn and Jackson [14] conjectured that this theorem is the best
possible in the sense that for each positive n there is a digraph with indepen-
dence number n, and such that removing the vertices of any n − 1 directed
paths still leaves a digraph with independence number n. Bondy, Buchwalder
and Mercier [4] used lexicographic products to construct such digraphs for
n = 2a3b. (The general conjecture was proved by Fox and Sudakov [11].)

Finally, we briefly visit the notion of the exponent exp(D) of a digraph
D, which is the least positive integer k for which any two vertices of D
are joined by a diwalk of length k (or ∞ if no such k exists). We say D is
primitive if its exponent is finite. Wielandt [58] proved that the exponent of a
primitive digraph on n vertices is bounded above by n2−n+1, and established
a family Wn of digraphs for which this bound is attained. Kim, Song and
Hwang [32] showed that if D1 and D2 have order n1 and n2, respectively,
then exp(D1 �D2) ≤ n1n2 − 1, and this upper bound can be attained only if
gcd(n1, n2) = 1. Moreover, if n1 = n2 = n, then exp(D1 �D2) ≤ n2 − n + 1,
and the bound is attained only for D1 =

−→
C n and D2 = Wn. In [30] they

compute the exponents of Cartesian products of cycles, and also show that
if D1 is a primitive graph and D2 is a strong digraph, then

exp(D1 �D2) = exp(D1) + diam(D2).

This work continues in [29], which proves exp(D1 �D2) ≤ n1 + n2 − 2, with
equality for dicycles. Concerning the direct product, the same authors [31]
show that for a primitive digraph D there is an integer m for which

diam(D) < diam(D×2) < diam(D×3) < · · ·
< diam(D×m)
= diam(D×m+1) = · · · = exp(D).

10.7 Quotients and Homomorphisms

Here we set up the notions needed in the subsequent sections on cancellation
and prime factorization of digraphs. Some of that material is most naturally
phrased within the class of digraphs in which loops are allowed. With this
in mind, let D denote the set of (isomorphism classes of) digraphs without
loops, and let D0 be the set of digraphs in which loops are allowed. Thus
D ⊂ D0. We admit as an element of D the empty digraph O with V (O) = ∅.
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This section’s main theme is that a digraph is completely determined,
up to isomorphism, by the number of homomorphisms into it. Recall that
a homomorphism f : D → D′ between digraphs D,D′ ∈ D0 is a map
f : V (D) → V (D′) for which xy ∈ A(D) implies f(x)f(y) ∈ A(D′). Also
f is a weak homomorphism if xy ∈ A(D) implies f(x)f(y) ∈ A(D′) or
f(x) = f(y).

The set of all homomorphisms D → D′ is denoted Hom(D,D′), and the
set of weak homomorphisms D → D′ is Homw(D,D′). A homomorphism
is injective if it is injective as a map from V (D) to V (D′). We denote
the set of all injective homomorphisms D → D′ as Inj(D,D′). (Necessarily
Inj(D,D′) is also the set of injective weak homomorphisms D → D′.) Let
hom(D,D′) = |Hom(D,D′)| be the number of homomorphisms D → D′.
Similarly, homw(D,D′) = |Homw(D,D′)|, and inj(D,D′) = |Inj(D,D′)|.

We will need several notions of digraph quotients. For a digraph D in D
and a partition Ω of V (D), the quotient D/Ω in D is the digraph in D
whose vertices are the partition parts U ∈ Ω, and with an arc from U to V if
U �= V and D has an arc uv with u ∈ U and v ∈ V . Notice the map D → D/Ω
sending u to the element U ∈ Ω with u ∈ U is a weak homomorphism.

On the other hand, if D ∈ D0, then the quotient D/Ω in D0 is as above,
but with a loop UU ∈ A(D/Ω) whenever D has an arc with both endpoints
in U . The map D → D/Ω sending u to the element U ∈ Ω that contains u
is a homomorphism. See Figure 10.5.

The remaining results in this section (at least in the class D0) are from
Lovász [36]. See also Hell and Nešetřil [23] for a very readable account. The
statements concerning weak homomorphisms were developed by Culp in [7].

Lemma 10.7.1 For a digraph D, let P be the set of all partitions of V (D).

1. If D,G ∈ D0, then hom(D,G) =
∑

Ω∈P

inj(D/Ω,G) (quotients in D0).

2. If D,G ∈ D , then homw(D,G) =
∑

Ω∈P

inj(D/Ω,G) (quotients in D).

Proof: For the first part, put Υ = {(Ω, f) | Ω ∈ P, f ∈ Inj(D/Ω,G)}, so
|Υ | = ∑

Ω∈P inj(D/Ω,G). It suffices to show a bijection θ : Hom(D,G) →
Υ . Define θ to be θ(f) = (Ω, f∗), where Ω = {f−1(x) | x ∈ V (G)} ∈ P, and
f∗ : D/Ω → G is defined as f∗(U) = f(u), for u ∈ U . By construction θ is
an injective map to Υ . For surjectivity, take any (Ω, f) ∈ Υ , and note that θ

sends the composition D → D/Ω
f→ G to (Ω, f∗).

The proof of part 2 is the same, except that Hom(D,G) and hom(D,G)
are replaced by Homw(D,G) and homw(D,G), and quotients are in D . �

Proposition 10.7.2 The isomorphism class of a digraph is determined by
the number of homomorphisms into it, in the following senses.
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D/Ω D/Ω

D

Figure 10.5 Left: a digraph D and a partition Ω of V (D). Center: the quotient
D/Ω in D . Right: the quotient D/Ω in D0.

1. If G,H ∈ D0 and hom(X,G) = hom(X,H) for all X ∈ D0, then G ∼= H.
2. If G,H ∈ D and homw(X,G)=homw(X,H) for all X ∈ D , then G ∼= H.
3. If G,H ∈ D and hom(X,G) = hom(X,H) for all X ∈ D , then G ∼= H.

Proof: For the first statement, say hom(X,G) = hom(X,H) for all X ∈ D0.
Our strategy is to show that this implies inj(X,G) = inj(X,H) for every X.
Then the theorem will follow because we get inj(H,G) = inj(H,H) > 0 and
inj(G,H) = inj(G,G) > 0, so there are injective homomorphisms G → H
and H → G, whence G ∼= H.

We use induction on |X| to show inj(X,G) = inj(X,H). If |X| = 1, then

inj(X,G) = hom(X,G) = hom(X,B) = inj(X,H).

If |X| > 1, Lemma 10.7.1 (1) applied to hom(X,G) = hom(X,H) yields
∑

Ω∈P

inj(X/Ω,G) =
∑

Ω∈P

inj(X/Ω,H).

Let T be the trivial partition of V (X) consisting of |X| singleton sets. Then
X/T = X and the above equation becomes

inj(X,G) +
∑

Ω∈P−T

inj(X/Ω,G) = inj(X,H) +
∑

Ω∈P−T

inj(X/Ω,H).

By the induction hypothesis, inj(X/Ω,G) = inj(X/Ω,H) for all non-trivial
partitions Ω. Consequently inj(X,G) = inj(X,H), completing the proof.

The second statement is proved in exactly the same way, but using homw

instead of hom, and part 2 of Lemma 10.7.1 instead part 1.
Finally, part 3 follows immediately from part 1, because if G,H ∈ D

and X ∈ D0 − D , then X has a loop, but neither G nor H has one, so
hom(X,G) = 0 = hom(X,H). �

Observe that hom and homw factor neatly over the direct and strong
products:

Proposition 10.7.3 Suppose X,D and G are digraphs.

1. If X,D,G ∈ D0, then hom(X, D × G) = hom(X,D) · hom(X,G).
2. If X,D,G ∈ D , then homw(X,D � G) = homw(X,D) · homw(X,G).
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Proof: The map Hom(X,D × G) → Hom(X,D) × Hom(X,G) given by
f �→ (πDf, πGf) is injective. And it is surjective because any (fD, fG) in the
codomain is the image of x �→ (fD(x), fG(x)), which is a homomorphism by
definition of the direct product. This establishes the first statement, and the
second follows analogously. �

As an application, we get a quick result for direct and strong powers.

Corollary 10.7.4 If D,G ∈ D0, then D×n ∼= G×n if and only if D ∼= G.
Also, if D,G ∈ D , then D�n ∼= G�n if and only if D ∼= G.

Proof: If D ∼= G, then clearly D×n ∼= G×n. Conversely, if D×n ∼= G×n,
then Proposition 10.7.3 gives hom(X,D)n = hom(X,G)n, so hom(X,D) =
hom(X,G) for any X ∈ D0. Thus D ∼= G, by Proposition 10.7.2. Apply a
parallel argument to the strong product. �

10.8 Cancellation

Given a product ∗ ∈ {� , � ,×, ◦} the cancellation problem seeks the
conditions under which D ∗ G ∼= D ∗ H implies G ∼= H for digraphs D,G
and H. If this is the case, we say that cancellation holds; otherwise it fails.
Obviously cancellation fails if D is the empty digraph, for then D ∗ G = O =
D ∗ H for any G and H. We will see that cancellation holds for each of the
products � , � and ◦ provided D �= O. The situation for the direct product
is much more subtle; it is reserved for the end of the section.

As in the previous section, D is the class of digraphs (without loops) and
D0 is the class of digraphs that may have loops. Our first result concerns the
strong product. The proof approach is from Culp [7].

Theorem 10.8.1 Let D,G and H be digraphs (without loops), with D �= O.
If D �G ∼= D � H, then G ∼= H.

Proof: Let D �G ∼= D � H. Proposition 10.7.3 says that for any digraph X,

homw(X,D) · homw(X,G) = homw(X,D) · homw(X,H).

If D �= O, then homw(X,D) > 0 (constant maps are weak homomorphisms),
so homw(X,G) = homw(X,H). Proposition 10.7.2 (2) yields G ∼= H. �

Theorem 10.8.1 applies only to D . Indeed, cancellation over � fails in
D0. Consider the case where D is a single vertex with a loop, and H = K1.
Then D �D = D = D � H, but D �∼= H.

Echoing Theorem 10.8.1, we get a partial cancellation result for the direct
product [36]. The proof is the same but uses part (1) of Proposition 10.7.2
instead of part (2), plus the fact that any constant map from X to a vertex
with a loop is a homomorphism. The result is due to Lovász [36].
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X

Xd/Xb

D

Xb/XdG D G

Figure 10.6 Each homomorphism X → D � G is encoded as an arc 2-coloring of X
with colors dashed and bold, and homomorphisms Xd/Xb → D and Xb/Xd → G.

Theorem 10.8.2 Suppose D,G,H ∈ D0, and D has a loop. If D × G ∼=
D × H, then G ∼= H.

Proposition 10.7.3 has no analogue for the Cartesian product, so to deduce
cancellation for it we must count our homomorphisms indirectly. The proof of
the next theorem is new. A different approach uses unique prime factorization;
see the remarks in Chapter 23 of [18].

Theorem 10.8.3 Let D,G and H be digraphs (without loops), with D �= O.
If D �G ∼= D �H, then G ∼= H.

Proof: The proof has two parts. First we derive a formula for hom(X,D �G).
Then we use it to show D �G ∼= D �H implies hom(X,G) = hom(X,H) for
all X ∈ D , whence Proposition 10.7.2 yields G ∼= H.

Our counting formula uses an arc 2-coloring scheme, shown in Figure 10.6.
Given a 2-coloring of A(X) by the colors dashed and bold, let Xd be the
spanning subdigraph of X whose arcs are the dashed arcs, and let Xb be the
spanning subdigraph whose arcs are bold. Let Xb/Xd be the contraction in
D0 of Xb in which each connected component of Xd is collapsed to a vertex.
Specifically, V (Xb/Xd) is the set of connected components of Xd, and

A(Xb/Xd) = {UV | X has a bold arc from U to V }.

Define Xd/Xb analogously, as the contraction of Xd by the connected com-
ponents of Xb. Note that Xb/Xd (resp. Xd/Xb) has a loop at U if and only
if the subdigraph of X induced on U has a bold (resp. dashed) arc.

Let C be the set of all arc 2-colorings of X by colors dashed and bold.
We claim that there is a disjoint union

Hom(X,D �G) =
⋃

C

Hom(Xd/Xb,D) × Hom(Xb/Xd, G).
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Indeed, any f ∈ Hom(X,D �G) corresponds to a 2-coloring in C and
a pair (πDf, πGf) ∈ Hom(Xd/Xb,D) × Hom(Xb/Xd, G), as follows. For
any xy ∈ A(X), either πDf(x) = πDf(y) and πGf(x)πGf(y) ∈ A(G), or
πDf(x)πDf(y) ∈ A(D) and πGf(x) = πGf(y). Color xy bold in the first case
and dashed in the second. One verifies that πDf is a well-defined homomor-
phism Xd/Xb → D, and similarly for πGf : Xb/Xd → D, and it is easy to
check that f �→ (πDf, πGf) is injective. For surjectivity, note that for any
arc 2-coloring of X and pair (fD, fG) ∈ Hom(Xd/Xb,D) × Hom(Xb/Xd, G),
there is an associated f ∈ Hom(X,D �G) defined as f(x) = (fD(U), fG(V )),
where x ∈ U, V .

It follows that we can count the homomorphisms from X to D �G as

hom(X,D �G) =
∑

C

hom(Xd/Xb,D) · hom(Xb/Xd, G). (10.8)

This completes the first part of the proof.
For the second step, suppose D �G ∼= D �H and X is arbitrary. We

will show hom(X,G) = hom(X,H) by induction on |X|. If |X| = 1, then
hom(X,G) = |G| = |H| = hom(X,H). Otherwise, by Equation (10.8),
∑

C

hom(Xd/Xb,D)·hom(Xb/Xd, G) =
∑

C

hom(Xd/Xb,D)·hom(Xb/Xd,H).

By induction, hom(Xb/Xd, G) = hom(Xb/Xd,H) for all colorings with at
least one dashed edge. Thus, for the coloring where all edges are bold, we get

hom(Xd/Xb,D) · hom(Xb/Xd, G) = hom(Xd/Xb,D) · hom(Xb/Xd,H).

But then Xd/Xb has no arcs, so hom(Xd/Xb,D) > 0. Also, Xb/Xd = X, so
we get hom(X,G) = hom(X,H). Finally, Proposition 10.7.2 says G ∼= H. �

Next we aim our homomorphism-counting program at the lexicographic
product and bag a particularly strong cancellation law. We use a coloring
scheme like that in Figure 10.6. For a homomorphism X → D ◦ G, arcs
mapping to fibers over vertices of D are colored bold, and all other arcs are
colored dashed. Equation (10.8) adapts as

hom(X,D ◦ G) =
∑

C

hom(Xd/Xb,D) · hom(Xb, G). (10.9)

Verification is left as an exercise. Using this, we can prove right- and left-
cancellation for the lexicographic product.

Lemma 10.8.4 Suppose D,G and H are digraphs (without loops) and D �=
O. If G ◦ D ∼= H ◦ D, then G ∼= H. If D ◦ G ∼= D ◦ H, then G ∼= H.

Proof: Say G ◦ D ∼= H ◦ D. We will get G ∼= H by showing hom(X,G) =
hom(X,H) for any X. If |X| = 1, then hom(X,G) = |G| = |H| = hom(X,H).
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Let |X| > 1 and assume hom(X ′, G) = hom(X ′,H) whenever |X ′| < |X|. As
hom(X,G ◦ D) = hom(X,H ◦ D), Equation 10.9 gives

∑

C

hom(Xd/Xb, G) · hom(Xb,D) =
∑

C

hom(Xd/Xb,H) · hom(Xb,D).

Now, hom(Xd/Xb, G) = hom(Xd/Xb,H) unless all arcs of X are dashed, in
which case Xd/Xb = X and Xb is the arcless digraph on V (X). From this,
the above equation reduces to hom(X,G) · |D||G| = hom(X,H) · |D||G|, and
then G ∼= H by Proposition 10.7.2. For the second statement, Equation 10.9
gives

∑

C

hom(Xd/Xb,D) · hom(Xb, G) =
∑

C

hom(Xd/Xb,D) · hom(Xb,H),

and we reason as in the first case. �

We now discuss a notion that leads to a much stronger cancellation law.
A subdigraph X of D is said to be externally related if for each b ∈
V (D) − V (X) the following holds: if there is an arc from b to a vertex of X,
then there are arcs from b to every vertex in X; and if there is an arc from
a vertex of X to b, then there are arcs from every vertex of X to b. (In the
context of graphs, see Section 10.2 of [18], and the references therein.)

Given a vertex a = (x1, x2) ∈ V (G ◦ D), let Da denote the subdigraph of
G ◦ D induced on the vertices {(x1, x) | x ∈ V (D)}. We call Da the D-layer
through a. The definition of the lexicographic product implies Da ∼= D, and
that each Da is externally related in G ◦ D. Note that each Da is also an
induced subdigraph of G ◦ D. All of these ideas are used in the proof of the
next theorem, which was first proved by Dörfler and Imrich [8].

Theorem 10.8.5 Let D,G,H and K be non-empty digraphs (without loops).
If G ◦ D ∼= H ◦ K and |D| = |K|, then G ∼= H and D ∼= K.

Proof: We prove this under the assumption that either D is disconnected, or
that both D and its complement D are connected. Once proved, this implies
the general result, because if D is connected and D is disconnected, then we
can use Equation 10.3 to get G ◦ D ∼= H ◦ K. Then G ∼= H and D ∼= K, and
the theorem follows.

Take an isomorphism ϕ : G ◦ D → H ◦ K.
We first claim that for any D-layer Da, the image πHϕ(Da) is either an

arcless subdigraph of H (i.e., one or more vertices of H), or it is a single
arc of H. Indeed, suppose it has an arc. Then ϕ(Da) has an arc cd with
πH(c) �= πH(d). We will show that if ϕ(Da) has a vertex x with πH(x) /∈
{πH(c), πH(d)}, then all arcs x′′y, yx′′ are present in ϕ(Da), for any vertex
y ∈ ϕ(Da) ∩ (Kc ∪ Kd) and x′′ ∈ Kx. This will contradict our assumption
about D, because it implies that ϕ(Da) (hence also D) is connected, but
its complement is disconnected, for in ϕ(Da) it is impossible to find a path
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from x to c or d. Thus let x be as stated above. Select vertices c′, d′, x′ in
H ◦ K − ϕ(Da) with πH(c′) = πH(c), πH(d′) = πH(d) and πH(x′) = πH(x).
(Possible because |ϕ(Da)| = |K|, and the existence of the arc cd means
that no K-layer is contained in ϕ(Da).) The definition of ◦ implies cd′, c′d ∈
A(H◦K). In turn, c′x, xd′ ∈ A(H◦K) because ϕ(Da) is externally related. By
definition of ◦ we get cx′, x′d ∈ A(H ◦ K), and then also x′c, dx′ ∈ A(H ◦ K)
because ϕ(Da) is externally related. From this, the definition of ◦ implies
that for any vertex x′′ of Kx and y of Kc ∪Kd we have yx′′, x′′y ∈ A(H ◦K).
The claim is proved. Now we break into cases.
Case 1. Suppose D is disconnected. Then πHϕ(Da) is never an arc because
then every vertex of ϕ(Da) in the fiber over the tail of the arc would be
adjacent to every vertex in the fiber over the tip, making ϕ(Da) connected.
It follows that ϕ maps components of D-layers into components of K-layers.
Further, ϕ maps each component of a D-layer onto a component of a K-layer:
Suppose to the contrary that C is a component of Da and ϕ(C) is a proper
subgraph of a component of Kϕ(a). Take a vertex x of Kϕ(a) − ϕ(C) that
is adjacent to or from ϕ(C). Then ϕ−1(x) is adjacent to or from C ⊆ Da,
which is externally related, so ϕ−1(x) is adjacent to or from every vertex
of Da. Consequently x is adjacent to or from every vertex of ϕ(Da). But
then any vertex of y of ϕ(Da) must be contained in Kϕ(a), for otherwise
it is adjacent to or from x ∈ V (Kϕ(a)), and hence also to or from ϕ(C),
which is impossible. Thus Kϕ(a) contains ϕ(Da) as well as x, contradicting
|Kϕ(a)| = |ϕ(Da)|.

Thus each component of a D-layer is isomorphic to a component of a
K-layer, and conversely, as ϕ is bijective. As there are |G| D-layers (all iso-
morphic to D), and just as many K-layers (isomorphic to K), we conclude
D ∼= K. Thus G ◦ D ∼= H ◦ D, and Lemma 10.8.4 implies G ∼= H.
Case 2. Suppose D is connected and its complement is connected. If ϕ maps
a D-layer to a K-layer, then D ∼= K and Lemma 10.8.4 implies G ∼= H.
Otherwise πHϕ(Da) is an arc for every layer Da. Thus we can define a map
f : G → H by declaring f(x) to be the tail of the arc πHϕ(π−1

G (x)). We
will finish the proof by showing f is an isomorphism. (For then G ∼= H, and
D ∼= K, by Lemma 10.8.4.) We will show that f is injective; once this is
done the isomorphism properties are simple consequences of the definitions.
Suppose to the contrary that f is not injective, which means that for some
a �= b we have πHϕ(Da) = wy and πHϕ(Db) = wz. Say the vertex set of
ϕ(Da) is Aw ∪ Ay with πH(Aw) = w and πH(Ay) = y. Likewise the vertex
set of ϕ(Db) is Bw ∪ Bz with πH(Bw) = w and πH(Bz) = z. Then there
are arcs from each vertex of ϕ(Bw) to each vertex of ϕ(Bz), and then by
definition of ◦ there are arcs from each vertex of ϕ(Aw) to each vertex of
ϕ(Bz). For the same reasons there are arcs from ϕ(Aw) to ϕ(Ay), and thus
from ϕ(Bw) to ϕ(Ay). From this we conclude that in G ◦ D there are arcs
from every vertex of Ga to every vertex of Gb, and arcs from every vertex
of Gb to every vertex of Ga. Hence there are arcs from ϕ(Bz) to ϕ(Aw), so
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there is an arc from ϕ(Bz) to ϕ(Bw). Thus πHϕ(Gb) contains two arcs wz
and zw, contradicting the fact that this projection is a single arc. �

We get a quick corollary concerning lexicographic powers.

Corollary 10.8.6 If G,H ∈ D , then G◦n ∼= H◦n if and only if G ∼= H.

Having cancellation laws for the strong, Cartesian and lexicographic prod-
ucts, we devote the remainder of this section to the direct product. The next
result due to Lovász [36] is useful in this context.

Proposition 10.8.7 Let D,C,G and H be digraphs in D0. If C×G ∼= C×H
and there is a homomorphism D → C, then D × G ∼= D × H.

Proof: As C×G ∼= C×H, Proposition 10.7.3 says hom(X,C) ·hom(X,G) =
hom(X,C) · hom(X,H) for any X. The homomorphism D → C guarantees
hom(X,D) = 0 whenever hom(X,C) = 0. Thus hom(X,D) · hom(X,G) =
hom(X,D) · hom(X,H), so hom(X,D × G) = hom(X,D × H) by Proposi-
tion 10.7.3, and then Proposition 10.7.2 gives D × G ∼= D × H. �

Now observe that cancellation can fail over the direct product. Figure 10.7
shows digraphs D,G,H ∈ D0 for which D × G ∼= 3

−→
C3

∼= D × H, but G �∼= H.
Cancellation can also fail in the class of loopless digraphs. For example, note
that for graphs we have K2 ×2C3 = 2C6 = K2 ×C6, so

←→
K2 ×2

←→
C3

∼= ←→
K2 ×←→

C6.
A digraph D is called a zero divisor if there are digraphs G �∼= H for

which D × H ∼= D × G. For example, Figure 10.7 shows that D =
−→
C3 is a

zero divisor, and the equation above shows
←→
K2 is a zero divisor. The following

characterization of zero divisors is due to Lovász [36].

Theorem 10.8.8 A digraph D is a zero divisor if and only if there exists a
homomorphism D → −→

C p1 +
−→
C p2 + · · ·+−→

C pk
into a disjoint union of directed

cycles of distinct prime lengths p1, p2, . . . , pk.

Proof: We will prove only one (the easier) direction. See [36] for the other.
Suppose there is a homomorphism D → C =

−→
C p1+

−→
C p2+· · ·+−→

C pk
, where

the pi are distinct primes. Our plan is to produce non-isomorphic digraphs
G and H for which C × G = C × H, for then Proposition 10.8.7 will insure
D × G ∼= D × H, showing D is a zero divisor.

Put n = p1p2 · · · pk. Let G be the set of positive divisors of n that are
products of an even number of the pi’s, whereas H is the set of divisors
that are products of an odd number of the pi’s. Let G and H be the disjoint
unions

G =
∑

d∈G

d
−→
C n

d
and H =

∑

d∈H

d
−→
C n

d
.

Clearly G �∼= H. As the direct product distributes over disjoint unions, C ×
G = C ×H will follow provided

−→
C pi

×G =
−→
C pi

×H for each pi. We establish
this with the aid of Equation (10.4), as follows:
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D D

G HD × G D × H

Figure 10.7 Failure of cancellation over the direct product.

−→
C pi

× G =
∑

d∈G

−→
C pi

× d
−→
C n

d
=

∑

d∈G
pi|d

−→
C pi

× d
−→
C n

d
+

∑

d∈G
pi � d

−→
C pi

× d
−→
C n

d

=
∑

d∈G
pi|d

d
−→
C pin

d
+

∑

d∈G
pi � d

pid
−→
C pin

pid

=
∑

d∈H
pi�d

dpi
−→
C pin

d
+

∑

d∈H
pi | d

d
−→
C pin

d

=
∑

d∈H
pi�d

−→
C pi

× d
−→
C n

d
+

∑

d∈H
pi | d

−→
C pi

× d
−→
C n

d

=
∑

d∈H

−→
C pi

× d
−→
C n

d
=

−→
C pi

× H.

From this, C × G = C × H, and hence D × G = D × H, as noted above. �

For example,
−→
C n is a zero divisor when n > 1, as there is a homomorphism−→

C n → −→
C p for any prime divisor p of n. Also, each

−→
P n is a zero divisor, as

there are homomorphisms
−→
P n → −→

C p.
Paraphrasing Theorem 10.8.8, if there are no homomorphisms from D

into a union of directed cycles, then D × G ∼= D × H necessarily implies
G ∼= H. But if there is such a homomorphism then D is a zero divisor and
there exist non-isomorphic digraphs G and H for which D × G ∼= D × H, as
constructed in the proof of Theorem 10.8.8.

Given a digraph G and a zero divisor D, a natural problem is to determine
all digraphs H for which G × D ∼= H × D. If there is only one such H, then
necessarily H ∼= G, and cancellation holds. Thus it is meaningful to ask if
there are conditions on G and D that force cancellation to hold, even if D
is a zero divisor. For example, if G = K∗

1 , then G × D ∼= H × D implies
G ∼= H, regardless of whether D is a zero divisor. What other graphs have
this property? We now turn our attention to this type of question, adopting
the approach of [15, 19, 20].



494 R. H. Hammack

For a digraph G, let SV (G) denote the symmetric group on V (G), that is,
the set of bijections from V (G) to itself. For σ ∈ SV (G), define the permuted
digraph Gσ to be V (Gσ) = V (G) and A(Gσ) = {xσ(y) | xy ∈ A(G)}. Thus
xy ∈ A(G) if and only if xσ(y) ∈ A(Gσ), and xy ∈ A(Gσ) if and only
if xσ−1(y) ∈ E(G). Figure 10.8 shows several examples. The upper part
shows a digraph G and two of its permuted digraphs. In the lower part, the
cyclic permutation (0245) of the vertices of

−→
C6 yields a permuted digraph−→

C6
(0245) = 2

−→
C3. The permuted digraph

−→
C6

(01) is also shown. For another
example, note that Gid = G for any digraph G. It may be possible that
Gσ ∼= G for some non-identity permutation σ. For instance,

−→
C6

(024) ∼= −→
C6.

The significance of permuted digraphs is given by the next proposition.
asserting that D × G ∼= D × H implies that H is a permuted digraph of G.

Proposition 10.8.9 Let G,H and D be digraphs, where D has at least one
arc. If D × G ∼= D × H, then H ∼= Gσ for some permutation σ ∈ SV (G). As
a partial converse, D × G ∼= D × Gσ for all σ ∈ SV (A), provided there is a
homomorphism D → −→

P 2.

Proof: Suppose D × G ∼= D × H, and D has at least one arc. Then there
is a homomorphism

−→
P 2 → D, and Proposition 10.8.7 yields an isomorphism

ϕ :
−→
P2 × G → −→

P2 × H. We may assume ϕ has the form (ε, x) �→ (ε, ϕε(x)),
where ε ∈ {0, 1} = V (

−→
P2), and each ϕε is a bijection V (G) → V (H). (That

a ϕ of such form exists is a consequence of Theorem 3 of [36]. However, it is
also easily verified in the present setting, when the common factor is

−→
P 2.)

Hence ϕ−1
0 ϕ1 : V (G) → V (G) is a permutation of V (G). We now show that

the map ϕ0 : Gϕ−1
0 ϕ1 → H is an isomorphism. Simply observe that

1

2 3

G

1

2 3

G(23)

1

2 3

G(13)

0

1

3

4 5

−→
C6

0

1

3

4 5

−→
C6

(0245)

0

1

3

4 5

−→
C6

(01)
2 2 2

Figure 10.8 Upper: A digraph G and permuted digraphs Gσ for transpositions
σ = (23) and σ = (13). Lower: two permutations of a directed cycle.
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xy ∈ A(Gϕ−1
0 ϕ1) ⇐⇒ x (ϕ−1

0 ϕ1)−1(y) ∈ A(G)
⇐⇒ x ϕ−1

1 ϕ0(y) ∈ A(G)
⇐⇒ (0, x) (1, ϕ−1

1 ϕ0(y)) ∈ A(
−→
P2 × G)

⇐⇒ (0, ϕ0(x)) (1, ϕ1ϕ
−1
1 ϕ0(y)) ∈ A(

−→
P2 × H) (applyϕ)

⇐⇒ (0, ϕ0(x)) (1, ϕ0(y)) ∈ A(
−→
P2 × H)

⇐⇒ ϕ0(x)ϕ0(y) ∈ A(H).

Conversely, let σ ∈ SV (G). Note that the map ϕ defined as ϕ(0, x) = (0, x)
and ϕ(1, x) = (1, σ(x)) is an isomorphism

−→
P 2 × G → −→

P 2 × Gσ because
(0, x)(1, y) ∈ A(

−→
P 2 × G) if and only if (0, x)(1, σ(y)) ∈ A(

−→
P 2 × Gσ). If there

is a homomorphism D → −→
P 2, Proposition 10.8.7 gives D × G ∼= D × Gσ. �

In general, the full converse of Proposition 10.8.9 is (as we shall see) false.
If there is no homomorphism D → −→

P 2, then not every σ will yield a digraph
H = Gσ for which D × G ∼= D × H. In addition, it is possible that σ �= τ
but Gσ ∼= Gτ . Towards clarifying these issues, we next introduce a group
action on SV (G) whose orbits correspond to isomorphism classes of permuted
digraphs.

The factorial of a digraph G is a digraph G!, defined as V (G!) = SV (G),
and αβ ∈ A(G!) provided that xy ∈ A(G) ⇐⇒ α(x)β(y) ∈ A(G) for all
pairs x, y ∈ V (G). To avoid confusion with composition, we will denote arcs
αβ of G! as [α, β]. Note that A(G!) has a group structure as a subgroup of
SV (G) × SV (G), that is, we can multiply arcs as [α, β][γ, δ] = [αγ, βδ].

Observe that the definition implies that there is a loop [α, α] at α ∈ V (G!)
if and only if α is an automorphism of G. In particular, any G! has a loop at
the identity id.

Our first example explains the origins of our term “factorial.” Let K∗
n be

the complete symmetric digraph with a loop at each vertex, and note that

K∗
n! ∼= K∗

n!
∼= K∗

n × K∗
n−1 × K∗

n−2 × · · · × K∗
3 × K∗

2 × K∗
1 .

For less obvious computations, it is helpful to keep in mind the following
interpretation of A(G!). Any arc [α, β] ∈ A(G!) is a permutation of the arcs
of G, where [α, β](xy) = α(x)β(y). This permutation preserves in-incidences
and out-incidences in the following sense: Given two arcs xy, xz of G that
have a common tail, [α, β] carries them to the two arcs α(x)β(y), α(x)β(z)
of G with a common tail. Given two arcs xy, zy with a common tip, [α, β]
carries them to the two arcs α(x)β(y), α(z)β(y) of G with a common tip.

Bear in mind, however, that even if the head of xy meets the tail of yz,
then the arcs [α, β](xy) and [α, β](yz) need not meet; they can be quite far
apart in G. To illustrate these ideas, Figure 10.9 shows the effect of a typical
[α, β] on the arcs incident with a typical vertex z of G.
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u

v

w
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y

z

α(v)

α(w)

α(x)

β(z)

β(u)

β(w)

β(y)

α(z)

G G

Figure 10.9 Action of an arc [α, β] of G! on the neighborhood of a vertex z ∈ V (G).

Let’s use these ideas to compute the factorial of the transitive tourna-
ment TTn, which has distinct out- and in-degrees 0, 1, . . . , n − 1. The above
discussion implies if [α, β] ∈ A(TTn!), the out-degree of any x ∈ V (TTn)
equals the out-degree of α(x). Hence α = id. The same argument involving
in-degrees gives β = id. Therefore TTn! has n! vertices but only one arc
[id, id]. Figure 10.10 shows T3!, plus two other examples.

0 1 2
TT3

id (02) (01) (12) (012) (021)
TT3!

0 1 2
D

id (02) (01) (12) (012) (021)
D!

0 1 2 −→
C3

id (02) (01) (12) (012) (021) −→
C3!

Figure 10.10 Some digraphs (left) and their factorials (right).

The group A(G!) acts on SV (G) as [α, β] ·σ = ασβ−1, and this determines
the situation in which Gσ = Gτ .

Proposition 10.8.10 If σ, τ are permutations of the vertices of a digraph
G, then Gσ = Gτ if and only if σ and τ are in the same A(G!)-orbit.

Proof: If there is an isomorphism ϕ : Gσ → Gτ , then for any x, y ∈ V (G),

xy ∈ A(G) ⇐⇒ xσ(y) ∈ A(Gσ) ⇐⇒ ϕ(x)ϕσ(y) ∈ A(Gτ )

⇐⇒ ϕ(x)τ−1ϕσ(y) ∈ A(G).

This means [ϕ, τ−1ϕσ] ∈ A(G!). Then [ϕ, τ−1ϕσ] · σ = τ , so σ and τ are
indeed in the same orbit.

Conversely, suppose σ and τ are in the same orbit. Take [α, β] ∈ A(G!)
with τ = [α, β]·σ = ασβ−1. Then α : Gσ → Gασβ−1

= Gτ is an isomorphism:
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xy ∈ A(Gσ) ⇐⇒ xσ−1(y) ∈ A(G) ⇐⇒ α(x)βσ−1(y) ∈ A(G)

⇐⇒ α(x)ασβ−1βσ−1(y) ∈ A(Gασβ−1
)

⇐⇒ α(x)α(y) ∈ A(Gασβ−1
). �

Given an arc [α, β] ∈ A(G!), we have [α, β] · β = α. The previous propo-
sition then assures Gα ∼= Gβ , and therefore yields the following corollary.

Corollary 10.8.11 If two permutations σ, τ are in the same component of
G!, then Gσ ∼= Gτ .

For a given digraph G, the next theorem and corollary characterize the
complete set of digraphs H for which D × G ∼= D × H, provided D is a
zero divisor that admits a homomorphism into a directed path. Space limi-
tations prohibit inclusion of a proof of the theorem, as well as inclusion of
the characterization for general zero divisors D. For a full treatment, see
Hammack [15].

Theorem 10.8.12 Suppose G and H are digraphs, and D is a zero divisor
that admits a homomorphism D → −→

P n. Assume n ≥ 2 is the smallest such
integer. Then D × G ∼= D × H if and only if H ∼= Gσ, where σ is a vertex of
a diwalk of length n − 2 in G!.

Given a digraph G and a zero divisor D that admits a homomorphism
D → −→

P n, Theorem 10.8.12 describes a complete collection of digraphs H for
which D × G ∼= D × H. Of course it is possible that some (possibly all) of
these H are isomorphic. We next describe a means of constructing the exact
set of isomorphism classes of such H. Combining the previous theorem with
Proposition 10.8.10 yields the following.

Corollary 10.8.13 Suppose G and D are digraphs, and D is a zero divisor
that admits a homomorphism D → −→

P n. Assume n ≥ 2 is the smallest such
integer. Then the set of distinct (up to isomorphism) digraphs H for which
D × G ∼= D × H can be obtained as follows: Let Υn−2 denote the set of
vertices of G! that lie on a directed walk of length n − 2. Select a maximal
set of elements σ1, σ2, . . . , σk ∈ Υn−1 that are in distinct orbits of the A(G!)-
action on SV (G). Then the digraphs H for which D×G ∼= D×H are precisely
H ∼= Gσ1 , Gσ2 , . . . , Gσk .

Cancellation holds (D ×G ∼= D ×H implies G ∼= H) if and only if k = 1.

According to Theorem 10.8.12, if D admits a homomorphism into
−→
P 2,

then D × G ∼= D × H if and only if H ∼= Gσ, where σ is a vertex of G! on
a diwalk of length 0. In this case there are no restrictions whatsoever on σ;
it can be any permutation of V (G). Consequently, there can be potentially
|V (G)|! different H ∼= Gσ.
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We close with an application of these results that illustrates an extreme
failure of cancellation involving the transitive tournament TTn. We remarked
earlier that TTn! has n! vertices and a single arc [id, id]. Therefore each
A(TTn!)-orbit of SV (TTn) consists of a single permutation. Also Υ0 = SV (TTn).
Thus, if D is a zero divisor that admits a homomorphism to

−→
P 2, then there

are exactly n! distinct digraphs TT σ
n for which D × TTn

∼= D × TT σ
n . By

Proposition 10.8.9, this is the maximum number possible.
But notice that if we merely replace D with a zero divisor that admits a

homomorphism to
−→
P n, with n > 2, then Υn−2 = {id} and cancellation holds!

10.9 Prime Factorization

We mentioned in Section 10.1 that the trivial digraph K1 is a unit for � ,
� and ◦ in the sense that K1 �D = D, K1 � D = D and K1 ◦ D = D for
any digraph D. If ∗ ∈ {� , � , ◦}, we say a digraph D is prime over ∗ if D is
non-trivial, and for any factoring D = D1 ∗ D2, one factor Di is isomorphic
to D and the other is K1.

Certainly any non-trivial digraph D has a factoring D = D1∗D2∗· · ·∗Dn,
where each Di is prime (possibly n = 1). We call any such factoring a prime
factoring over ∗. (Note that n ≤ log2 |V (D)| because a product Di ∗ Dj

always has at least twice as many vertices as either of its factors.)
It is natural to ask whether any prime factoring of a given digraph D is

unique up to order and isomorphism of the factors. In general this is false.
For � and � , the standard counterexamples arise from the equation

(1 + x + x2)(1 + x3) = (1 + x2 + x4)(1 + x), (10.10)

giving two distinct prime factorings of the polynomial 1+x+x2+x3+x4+x5

in the semiring Z
+[x]. Let

←→
Q n be the complete biorientation of the n-cube

Qn. For typographical efficiency, let us denote
←→
Q n simply as Qn. Then Qn =←→

K � n
2 (the nth Cartesian power of

←→
K 2), and Q0 = K1. Substituting Q1 for

x in Equation (10.10) yields two factorings

(Q0 + Q1 + Q2)� (Q0 + Q3) = (Q0 + Q2 + Q4)� (Q0 + Q1),

of the digraph Q0 +Q1 +Q2 +Q3 +Q4 +Q5. It is routine to check that the
above factors are prime.

The same idea applies to the strong product. Denote the complete biori-
entation

←→
K n of Kn simply as Kn (a convention we will adhere to for the rest

of this section). Note that Km � Kn = Kmn. Then, as above,

(K1 + K2 + K4)� (K1 + K8) = (K1 + K4 + K16)� (K1 + K2)

are two distinct prime factorings of K1 + K2 + K4 + K8 + K16 + K32.



10. Digraphs Products 499

Despite these failures of unique prime factorization, connected digraphs
do factor uniquely over the Cartesian and strong products. For the Cartesian
product, this was first proved by Feigenbaum [9], who also gives a polyno-
mial algorithm for finding the prime factors. (More recently, Crespelle and
Thierry [6] give a linear algorithm.) Our approach adapts that of Imrich,
Klavžar and Rall [25]. Their proof is for graphs; we adapt it here to digraphs.

Convexity is the central ingredient of the proof. A subdigraph H of D is
convex if any shortest path (not necessarily directed) in D that joins two
vertices of H is itself a path in H. (There are other notions of convexity. For
example, it could be phrased in terms of directed paths; however the one given
here is best suited for our present purposes.) The next lemma makes use of
dist′D(x, y), the length of a shortest (x, y)-path in D. (See Proposition 10.2.1.)

Lemma 10.9.1 A subdigraph H of D = D1 � · · · �Dk is convex if and only
if H = H1 � · · · �Hk, where each Hi is a convex subdigraph of Di.

Proof: Suppose H = H1 � · · · �Hk, with each Hi a convex subdigraph of
Di. We claim that any shortest path P joining two vertices a = (a1, . . . , ak)
and b = (b1, . . . , bk) in H lies entirely in H. By Proposition 10.2.1, the length
of P is the sum of the lengths of the shortest (ai, bi)-paths Pi in Di for i ∈ [k].
Because each arc of P projects to an arc in only one factor (and to single
vertices in all the others) it follows that each projection πi(P ) is a shortest
(ai, bi) path in Di, and therefore lies entirely in Hi, by convexity. Thus P lies
entirely in H = H1 � · · · �Hk, so H is convex.

Conversely, suppose H is convex in D. Note H ⊆ π1(H)� · · · �πk(H).
We complete the proof by showing that the inclusion is equality, and each
πi(H) is convex in Di.

To see that πi(H) is convex in Di, take vertices ai, bi ∈ πi(H). Let xi

be on a shortest (ai, bi)-path in Di. We must show xi ∈ πi(H). Choose
vertices a = (a1, . . . , ak) and b = (b1, . . . , bk) of H with πi(a) = ai and
πi(b) = bi. Define x = (x1, . . . , xk) as follows. For each index j �= i, let xj

be on a shortest (aj , bj)-path in Dj . Thus dist′Ds
(as, bs) = dist′Ds

(as, xs) +
dist′Ds

(xs, bs) for each s ∈ [k], and Proposition 10.2.1 gives dist′D(a, b) =
dist′D(a, x) + dist′D(x, b). It follows that x is on a shortest (a, b)-path in D,
so x ∈ H by convexity of H. Hence xi = πi(x) ∈ πi(H).

Finally, we prove H ⊆ π1(H)� · · · �πk(H) is equality. Since both sides
are connected, it sufficies to show that any vertex v of π1(H)� · · · �πk(H)
at distance 1 from a vertex x ∈ V (H) is also in H. Let v = (v1, . . . , vi, . . . , vk)
and x = (v1, . . . , vi−1, xi, vi+1, . . . , vk) be such vertices. As v is in the product
of the projections of H, there is a u = (x1, . . . , xi−1, vi, xi+1, . . . xk) ∈ V (H).
Proposition 10.2.1 says dist′(x, v) + dist′(v, u) = dist′(x, u), meaning v is on
a shortest path joining x, u ∈ V (H), so v ∈ V (H) by convexity of H. �

Given a vertex a = (a1, . . . , ak) of D1 � · · · �Dk, and an i ∈ [k],
we define Da

i to be the subgraph of the product induced on the vertices
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(a1, . . . , ai−1, x, ai+1, . . . , ak), where x ∈ V (Di). That is,

Da
i = a1 � · · · � ai−1 �Di � ai+1 � · · · � ak.

Thus Da
i

∼= Di, and it is a convex subdigraph of the product, by Lemma 10.9.1.
We call Da

i the Di-layer through a. We are ready for our main results on
prime factorization of digraphs over the Cartesian product.

Theorem 10.9.2 Connected digraphs factor uniquely into primes over the
Cartesian product, up to order and isomorphism of the factors. Specifically,
if a digraph D factors into primes as

D = D1 � · · · �Dk and D = G1 � · · · �G�,

then k = �, and Di
∼= Gσ(i) for some permutation σ of [k].

Proof: As remarked earlier, D has a prime factorization D = D1 � · · · �Dk.
Now suppose D has two prime factorings D = D1 � · · · �Dk and D =
G1 � · · · �G�. We may assume k ≥ �. Take an isomorphism

ϕ : D1 � · · · �Dk → G1 � · · · �G�.

Fix a = (a1, . . . , ak), and say ϕ(a) = b = (b1, . . . , b�). It suffices to show k = �,
and there is a permutation σ of [k] for which ϕ(Da

i ) = Gb
σ(i) for 1 ≤ i ≤ k.

(Recall Da
i

∼= Di and Gb
σ(i)

∼= Gσ(a).)
To this end, fix i ∈ [k]. As mentioned above, any Da

i is convex in
D1 � · · · �D�, so ϕ(Da

i ) is convex in G1 � · · · �G�. Using Lemma 10.9.1,

(b1, . . . , b�) ∈ ϕ(Da
i ) = H1 � · · · �H�,

where each Hj is a convex subgraph of Gj . But Di
∼= Da

i
∼= ϕ(Da

i ) is prime, so
Hi = {bi} for all but one index, call it σ(i). This means ϕ(Da

i ) ⊆ Gb
σ(i). But

then Da
i ⊆ ϕ−1

(
Gb

σ(i)

)
. Now, Gb

σ(i) is prime, and convex in G1 � · · · �G�, so
also ϕ−1

(
Gb

σ(i)

)
is prime, and convex in D1 � · · · �Dk. Lemma 10.9.1 gives

Da
i ⊆ ϕ−1

(
Gb

σ(i)

)
= H ′

1 � · · · �H ′
k, (10.11)

where each H ′
j is a subdigraph of Di, containing aj . Primeness assures all but

one H ′
j is trivial, and necessarily it is Hi that is nontrivial. Therefore (10.11)

implies Da
i ⊆ ϕ−1

(
Gb

σ(i)

) ⊆ Da
i , whence ϕ(Da

i ) = Gb
σ(i).

We claim that the map σ : [k] → [�] is injective. If σ(i) = σ(j), then

ϕ(Da
i ) = Gb

σ(i) = ϕ(Da
j ).

Because Gb
σ(i) is nontrivial (it is prime), it follows that Da

i and Da
j have a

nontrivial intersection. This means i = j, so σ is injective. Thus k ≤ �. We
have assumed k ≥ �, so k = �, so σ is a permutation. �

Theorem 10.9.2 implies our next result, which describes the structure of
isomorphisms between digraphs. The proof uses the notation from the proof
of Theorem 10.9.2.
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Theorem 10.9.3 Let D and G be isomorphic connected digraphs with prime
factorizations D = D1 � · · · �Dk and G = G1 � · · · �Gk. Then for any
isomorphism ϕ : D → G, there is a permutation σ of [k] and isomorphisms
ϕi : Dσ(i) → Gi for which

ϕ(x1, x2, . . . , xk) =
(
ϕ1(xσ(1)), ϕ2(xσ(2)), . . . , ϕk(xπ(k))

)
. (10.12)

Proof: By Theorem 10.9.2, there is a permutation σ of [k] for which ϕ re-
stricts to an isomorphism Da

i → Gb
σ(i) for each index i. Replacing σ with

σ−1, we can say that, for each i, ϕ restricts to an isomorphism Da
σ(i) → Hb

i .
To finish the proof, we show that πiϕ(x1, . . . , xk) depends only on xσ(i).

Then we can put ϕi(xσ(i)) = πiϕ(x1, . . . , xk), which yields Equation (10.12),
and it is immediate that the ϕi are isomorphisms.

For any xσ(i) ∈ V (Dσ(i)), define the “hyperplane” subdigraph

B[xσ(i)] := D1 �D2 � · · · �xσ(i) � · · · �Dk ⊆ D1 � · · · �Dk,

whose σ(i)th factor is the single vertex xσ(i). This subdigraph is convex, so
Lemma 10.9.1 says ϕ(B[xσ(i)]) = U1 � · · · �Uk, with each Uj convex in Gj .

Now, B[xσ(i)] ∩ Da
σ(i) = {(a1, a2, . . . , xσ(i), . . . , ak)}. Thus ϕ(B[xπ(i)]) =

U1 � · · · �Uk meets ϕ(Da
σ(i)) = Gb

i = b1 � · · · �Gi � · · · � bk at the single
vertex ϕ(a1, a2, . . . , xσ(i), . . . , ak). This means all vertices in ϕ(B[xσ(i)]) have
the same ith coordinate πiϕ(a1, a2, . . . , xσ(i), . . . , ak), so

πi

(
ϕ(B[xσ(i)])

)
= πiϕ(a1, a2, . . . , xσ(i), . . . , ak).

Now, any (x1, . . . , xσ(i), . . . , xk) ∈ V (G) belongs to B[xσ(i)]. Consequently
πiϕ(x1, . . . , xσ(i), . . . , xk) = πiϕ(a1, . . . , xσ(i), . . . , ak), which depends only on
xσ(i). �

In Theorem 10.9.3, we may relabel each vertex x of Gi with its preimage
under the isomorphism Di → Gσ(i) to make this isomorphism an identity
map. We record this observation as a useful corollary.

Corollary 10.9.4 For an isomorphism ϕ : D1 � · · · �Dk → G1 � · · · �Gk

where each Di and Gi is prime, the vertices of the Gi can be relabeled so that
ϕ(x1, x2, . . . , xk) = (xσ(1), xσ(2), . . . , xσ(k)) for some permutation σ of [k].

We turn now to the lexicographic product. It is not commutative, so we
should not expect a prime factorization to be unique up to order of the
factors. Indeed this is not so, but there is a fascinating relationship between
different prime factorings. Explaining it requires the idea of the join D ⊕ G
of two digraphs with disjoint vertex sets, which is the digraph obtained from
D + G by adding arcs from each vertex of D to every vertex of G, and from
each vertex of G to every vertex of D.
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Recall that the right-distributive law holds for ◦, but there is no general
left-distributive law. However, if Kn is the biorientation of the complete graph
on n vertices, and Dn (the arcless digraph) is its complement, we do have

Dn ◦ (G + H) = Dn ◦ G + Dn ◦ H,

Kn ◦ (G ⊕ H) = Kn ◦ G ⊕ Kn ◦ H.

The first equation follows from Proposition 10.1.1. The second follows from
the first, with the observation that G ⊕ H = G + H and D ◦ D′ = D ◦ D′
(Equation (10.3)), where the bar denotes the complement.

We see now that unique prime factorization over the lexicographic product
can fail in at least two ways: If q is prime and if Dq ◦ G+Dm is prime, then

(Dq ◦ G + Dm) ◦ Dq = Dq ◦ (G ◦ Dq + Dm)

are two different prime factorizations of the same graph. We say they are
related by a transposition of a totally disconnected graph. Analogously, if
Kq ◦ G ⊕ Km is prime, then

(Kq ◦ G ⊕ Km) ◦ Kq = Kq ◦ (G ◦ Kq ⊕ Km)

are two different prime factorizations of the same graph, and we say they are
related by a transposition of a complete graph. Also, we call the transition
from TTm ◦ TTn to TTn ◦ TTm a transposition of transitive tournaments.
(Recall that transitive tournaments commute, by Equation (10.2).)

Our final theorem of the section is due to Dörfler and Imrich [8].

Theorem 10.9.5 Any prime factorization of a digraph over the lexicographic
product can be transformed into any other prime factorization by transposi-
tions of totally disconnected graphs, transpositions of complete graphs, and
transpositions of transitive tournaments.

10.10 Cartesian Skeletons

The previous section developed prime factorization results for the Cartesian
and Lexicographic products. In order to get analogous results for the direct
and strong products, we first need to define what is called the Cartesian
skeleton of a digraph. This is an operator S that transforms a digraph D into
a symmetric digraph S(D), and, under suitable conditions, obeys S(D×G) =
S(D)�S(G). In the subsequent section we will use it to transform questions
about factorizations over × to the more manageable product � (which was
treated in the previous section).

Our exposition is a generalization to digraphs of Hammack and Im-
rich [16], which developed S in the setting of graphs. We also draw inspi-
ration from Hellmuth and Marc [24], who devised a similar skeleton operator
for which S(D � G) = S(D)�S(G). The present development is from [17].
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We need several definitions. An antiwalk in a digraph is a walk in which
the orientations of the arcs alternate as the walk is traversed. An out-
antiwalk is an antiwalk for which the first and last arcs are directed away
from the end-vertices of the walk. An in-antiwalk is one for which the first
and last arcs are directed towards the end-vertices. See Figure 10.11. Notice
that in- and out-antiwalks necessarily have even length.

For a digraph D, let D+ be the symmetric digraph on V (D) for which
xy, yx ∈ A(D+) whenever D has an out-antiwalk of length 2 from x to y,
that is, if N+

D (x) ∩ N+
D (y) �= ∅. See Figure 10.12 (left), where a dotted line

between x and y represents two arcs xy and yx in D+. It is immediate from
the definitions that (D × G)+ = D+ × G+. Note that D+ has a loop at each
vertex of positive out-degree. We define D− similarly, where xy, yx ∈ A(D−)
provided N−

D (x) ∩ N−
D �= ∅. Again, (D × G)− = D− × G−. Because they are

symmetric digraphs, D+ and D− can be regarded as graphs. (In a different
context [49, 50], D+ is also called the competition graph of D.)

Observe that D+ is connected if and only if any two vertices of D are
joined by an out-antiwalk in D, and D− is connected if and only if any two
vertices of D are joined by an in-antiwalk in D.

We now explain how to construct Cartesian skeletons S+(D) and
S−(D) of a digraph D by removing strategic edges from D+ and D−. Given a
factoring D = H × K, we say an arc (h, k)(h′, k′) of D+ is diagonal relative
to the factoring if it is a loop, or h �= h′ and k �= k′; otherwise it is Cartesian.
For example, in Figure 10.12, arcs xz and zy of D+ are Cartesian, and arcs
xy and yy of D+ are diagonal. We note two intrinsic criteria that tell us if a
non-loop arc of D+ is diagonal relative to some factoring of D.

1. In Figure 10.12, arc xy of D+ is not Cartesian, and there is a z ∈ V (D)
with
N+

D (x)∩N+
D (y) ⊂ N+

D (x)∩N+
D (z) and N+

D (x)∩N+
D (y) ⊂ N+

D (y)∩N+
D (z).

2. In Figure 10.12, arc x′y′ of D+ is not Cartesian, and there is a z′ ∈ V (G)
with N+

D (x′) ⊂ N+
D (z′) ⊂ N+

D (y′).

We will get S+(D) by removing from D+ all loops, and arcs that meet one of
these criteria. Now, these criteria are somewhat dependent on one another.
Note N+

D (x) ⊂ N+
D (z) ⊂ N+

D (y) implies N+
D (y) ∩ N+

D (x) ⊂ N+
D (y) ∩ N+

D (z).
Also, N+

D (y) ⊂ N+
D (z) ⊂ N+

D (x) implies N+
D (x) ∩ N+

D (y) ⊂ N+
D (x) ∩ N+

D (z).
This allows us to pack the above criteria into the following definition.

Definition 10.10.1 An arc xy of D+ is dispensable in D+ if it is a loop,
or if there is some z ∈ V (D) for which both of the following statements hold:

Figure 10.11 An out-antiwalk (top) and an in-antiwalk (bottom).
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x

z y

x

y
z

H H

K KD = H × K D = H × K

Figure 10.12 Left: Digraphs H, K, H×K (bold), and H+, K+, (H×K)+ (dotted).
Right: Digraphs H, K, H × K (bold), and S+(H), S+(K), S+(H × K) (dotted).
Note that (H × K)+ = H+ × K+, and S+(H × K) = S+(H)� S+(K).

1. N+
D (x) ∩ N+

D (y) ⊂ N+
D (x) ∩ N+

D (z) or N+
D (x) ⊂ N+

D (z)⊂ N+
D (y),

2. N+
D (y) ∩ N+

D (x) ⊂ N+
D (y) ∩ N+

D (z) or N+
D (y) ⊂ N+

D (z)⊂ N+
D (x).

Similarly, an arc xy of D− is dispensable in D− if the above conditions
hold with N−

D used in the place of N+
D .

Note that the above statements (1) and (2) are symmetric in x and y.
The next remark follows from the paragraph preceding the definition. It will
be used often.

Remark 10.10.2 An arc xy of D+ is dispensable in D+ if and only if there is
a z ∈ V (D) with N+

D (x) ⊂ N+
D (z)⊂ N+

D (y), or N+
D (y) ⊂ N+

D (z)⊂ N+
D (x), or

N+
D (x) ∩ N+

D (y) ⊂ N+
D (x) ∩ N+

D (z) and N+
D (y) ∩ N+

D (x) ⊂ N+
D (y) ∩ N+

D (z).
The same remark holds for dispensability in D− (replacing N+ with N−).

Now we come to the main definition of this section.

Definition 10.10.3 The Cartesian out-skeleton S+(D) of a digraph D is
the spanning subgraph of D+ obtained by deleting all arcs that are dispensable
in D+. The Cartesian in-skeleton S−(D) of D is the spanning subgraph of
D− obtained by deleting all arcs that are dispensable in D−. The Cartesian
skeleton S(D) of D is the graph with vertices V (D) and arcs A(S(D)) =
A(S+(D)) ∪ A(S−(D)).

Note that each of D+, D−, S+(D), S−(D) and S(D) is a symmetric di-
graph. We thus tend to refer to them as graphs, and call their arcs edges.

As an example, the right side of Figure 10.12 is the same as the left,
except that all dispensable edges of H+, K+, and (H×K)+ are deleted. Thus
the remaining dashed edges are S+(H), S+(K), and S+(H × K). Note that
although S+(D) was defined without regard to the factoring D = H ×K, we
nonetheless have S+(H×K) = S+(H)�S+(K). In fact, we will shortly prove
that this equation holds for each of S+, S− and S, under mild restrictions.
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These restrictions involve certain equivalence relations on the vertex set
of a digraph. Define an equivalence relation R+ on V (D) by declaring xR+y
whenever N+

D (x) = N+
D (y). A digraph is called R+-thin if N+

D (x) = N+
D (y)

implies x = y for all x, y ∈ V (D), that is, if each R+-class contains exactly
one vertex. Similarly, we define R− and R−-thinness as above, but replacing
N+

D with N−
D . Finally, we say D is R-thin if it is both R+ thin and R−-thin.

We will need the following.

Lemma 10.10.4 Let H and K be digraphs for which all vertices have positive
in- and out-degrees. Then H and K are R+-thin (respectively R−-thin) if and
only if H × K is R+-thin (respectively R−-thin). Consequently H and K are
R-thin if and only if H × K is R-thin.

Proof: Immediate from N+
H×K(x, y) = N+

H (x)×N+
K(y) (Equation 10.6) and

its companion N−
H×K(x, y) = N−

H (x) × N−
K(y), combined with the fact that

no neighborhoods are empty. �

The next lemma and proposition show S+(H × K) = S+(H)�S+(K)
and S−(H×K) = S−(H)�S−(K) for R+- and R−-thin digraphs. The proofs
frequently use the fact that for D = H × K,

N+
D (h, k) ∩ N+

D (h′, k′) =
(
N+

H (h) ∩ N+
H (h′)

) × (
N+

K(k) ∩ NK(k′)
)
,

which follows from N+
D (h, k) = N+

H (h) × N+
K(k) and simple set theory.

Lemma 10.10.5 Suppose D is a digraph with a factorization D = H × K.
If D is R+-thin, then every arc of S+(D) is Cartesian with respect to the fac-
torization. Similarly, if D is R−-thin, then every arc of S−(D) is Cartesian
with respect to the factorization.

Proof: We prove only the first statement. The proof of the second is identical,
but replaces N+ with N−, and the notion of R+-thinness with R−-thinness.

Let (h, k)(h′, k′) be a non-Cartesian edge of D+. We need only show that
it is dispensable. It is certainly dispensable if it is a loop. Otherwise h �= h′

and k �= k′ Observe:

N+
D (h, k) ∩ N+

D (h′, k′) =
(
N+

H (h) ∩ N+
H (h′)

) × (
N+

K(k) ∩ NK(k′)
)

⊆ N+
H (h) × (

N+
H (k) ∩ N+

H (k′)
)

= N+
D (h, k) ∩ N+

D (h, k′) ,

N+
D (h′, k′) ∩ N+

D (h, k) =
(
N+

H (h′) ∩ N+
H (h)

) × (
N+

K(k′) ∩ N+
K(k)

)

⊆ (
N+

H (h′) ∩ N+
H (h)

) × N+
K(k′)

= N+
D (h′, k′) ∩ N+

D (h, k′) .

If both of these inclusions are proper, then (h, k)(h′, k′) is dispensable. If
one inclusion is equality, then N+

H (h) ∩ N+
H (h′) = N+

H (h) in the first case or
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N+
K(k′) ∩ N+

K(k) = N+
K(k′) in the second. From this, N+

H (h) ⊆ N+
H (h′) or

N+
K(k′) ⊆ N+

K(k). By R+-thinness,

N+
H (h) ⊂ N+

H (h′) or N+
K(k′) ⊂ N+

K(k). (10.13)

Repeating this argument but interchanging h with h′, and k with k′,

N+
H (h′) ⊂ N+

H (h) or N+
K(k) ⊂ N+

K(k′). (10.14)

Inclusions (10.13) and (10.14) show N+
H (h) ⊂ N+

H (h′) and N+
K(k) ⊂ N+

K(k′),
or N+

K(k′) ⊂ N+
K(k) and N+

H (h′) ⊂ N+
H (h). The first case gives

N+
H (h) × N+

K(k) ⊂ N+
H (h) × N+

K(k′) ⊂ N+
H (h′) × N+

K(k′),

that is, N+
D (h, k) ⊂ N+

D (h, k′) ⊂ N+
D (h′, k′), so (h, k)(h′, k′) is dispensable.

The second case yields N+
D (h′, k′) ⊂ N+

D (h, k′) ⊂ N+
D (h, k), with the same

conclusion. �

Proposition 10.10.6 If H,K are R+-thin digraphs with no vertices of zero
out-degree, then S+(H × K) = S+(H)�S+(K). If H,K are R−-thin, with
no vertices of zero in-degree, then S−(H × K) = S−(H)�S−(K).

Proof: Again, we prove only the first statement; the proof of the second is
entirely analogous.

First we show S+(H ×K) ⊆ S+(H)�S+(K). By Lemma 10.10.5, all arcs
of S+(H ×K) are Cartesian, so we need only show (h, k)(h′, k) ∈ S+(H ×K)
implies hh′ ∈ S+(H). (The same argument will work for arcs (h, k)(h, k′).)
Thus suppose hh′ /∈ S+(H). Then hh′ is dispensable in H+, so there is a z′

in V (H) for which both of the following conditions hold:

N+
H (h) ∩ N+

H (h′) ⊂ N+
H (h) ∩ N+

H (z′) or N+
H (h) ⊂ N+

H (z′)⊂ N+
H (h′)

N+
H (h′) ∩ N+

H (h) ⊂ N+
H (h′) ∩ N+

H (z′) or N+
H (h′) ⊂ N+

H (z′)⊂ N+
H (h).

Because there are no vertices of zero out-degree, N+
K(k) �= ∅. Thus we can

multiply each neighborhood N+
H (u) above by N+

K(k) on the right and still
preserve the proper inclusions. Then the fact N+

H (u)×N+
K(k) = N+

H×K(u, k)
yields the dispensability conditions (1) and (2), where x = (h, k), y = (h′, k)
and z = (z′, k). Thus (h, k)(h′, k) /∈ S+(H × K).

Now we show S+(H)�S+(K) ⊆ S+(H×K). Take an arc in S(H)�S(K),
say (h, k)(h′, k) with hh′ ∈ S+(H). We must show that (h, k)(h′, k) is not
dispensable in (H × K)+. Suppose it was. Then there would be a vertex
z = (z′, z′′) in H ×K such that the dispensability conditions (1) and (2) hold
for x = (h, k), y = (h′, k), and z = (z′, z′′). The various cases are considered
below. Each leads to a contradiction.

Suppose N+
D (x) ⊂ N+

D (z) ⊂ N+
D (y). This means

N+
H (h) × N+

K(k) ⊂ N+
H (z′) × N+

K(z′′) ⊂ N+
H (h′) × N+

K(k),
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so N+
K(z′′) = N+

K(k). Then the fact that N+
K(k) �= ∅ permits cancellation

of the common factor N+
K(k), so N+

H (h) ⊂ N+
H (z′) ⊂ N+

H (h′), and hh′ is
dispensable. We reach the same contradiction if N+

D (y) ⊂ N+
D (z)⊂ N+

D (x).
Finally, suppose there is a z = (z′, z′′) for which both N+

D (x) ∩ N+
D (y) ⊂

N+
D (x) ∩ N+

D (z) and N+
D (y) ∩ N+

D (x) ⊂ N+
D (y) ∩ N+

D (z). Rewrite this as

N+
D (h, k) ∩ N+

D (h′, k) ⊂ N+
D (h, k) ∩ N+

D (z′, z′′)
N+

D (h′, k) ∩ N+
D (h, k) ⊂ N+

D (h′, k) ∩ N+
D (z′, z′′),

which is the same as
(
N+

H (h) ∩ N+
H (h′)

) × N+
K(k) ⊂ (

N+
H (h) ∩ N+

H (z′)
) × (

NK(k) ∩ NK(z′′)
)

(
N+

H (h′) ∩ N+
H (h)

) × N+
K(k) ⊂ (

N+
H (h′) ∩ N+

H (z′)
) × (

N+
K(k) ∩ N+

K(z′′)
)
.

Thus N+
K(k) ⊆ N+

K(k) ∩ N+
K(z′′), so N+

K(k) = N+
K(k) ∩ N+

K(z′′), whence

N+
H (h) ∩ N+

H (h′) ⊂ N+
H (h) ∩ N+

H (z′)
N+

H (h′) ∩ N+
H (h) ⊂ N+

H (h′) ∩ N+
H (z′) .

Thus hh′ is dispensable, a contradiction. �

The next corollary follows from Proposition 10.10.6, Definition 10.10.3,
as well as the definition of the Cartesian product. (Recall that a digraph is
R-thin if it is both R+-thin and R−-thin.)

Corollary 10.10.7 Suppose K and H are R-thin digraphs, no vertices of
which have zero in- or out-degree. Then S(K × H) = S(K)�S(H).

Because the various skeletons are defined entirely in terms of adjacency
structure, we have the following immediate consequence of Definition 10.10.3.

Proposition 10.10.8 Any isomorphism ϕ : D → D′ between digraphs, as a
map V (D) → V (D′), is also an isomorphism ϕ : S(D) → S(D′).

We next consider connectivity of S(G). The following lemma is needed.

Lemma 10.10.9 Suppose a digraph D has no vertex of zero out-degree, and
x, y ∈ V (D). If N+

D (x) ⊂ N+
D (y), then D+ has an (x, y)-path consisting of

edges that are non-dispensable in D+. Similarly, if no vertex of D has zero
in-degree and and N−

D (x) ⊂ N−
D (y), then D− has an (x, y)-path consisting of

edges that are non-dispensable in D−.

Proof: We prove the first statement; the second follows analogously.
Consider the following maximal chain of neighborhoods between N+

D (x)
and N+

D (y), ordered by proper inclusion. (It is possible that y1 = y.)

N+
D (x) ⊂ N+

D (y1) ⊂ N+
D (y2) ⊂ N+

D (y3) ⊂ · · · ⊂ N+
D (yk) ⊂ N+

D (y).
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We claim that xy1 is non-dispensable in D+. Certainly N+
D (x) ⊂ N+

D (y1)
implies xy1 is an edge of D+, because N+

D (x) �= ∅. Also, there is no z for which
N+

D (x)∩N+
D (y1) ⊂ N+

D (x)∩N+
D (z); otherwise the condition N+

D (x) ⊂ N+
D (y1)

would yield N+
D (x) ⊂ N+

D (x) ∩ N+
D (z), which is impossible. As the chain

is maximal, there is no z for which N+
D (x) ⊂ N+

D (z) ⊂ N+
D (y1). Further,

N+
D (y1) ⊂ N+

D (z) ⊂ N+
D (x) is impossible, so xy1 is non-dispensable in D+.

The same argument shows that each yiyi+1 is a non-dispensable edge of
D+, as is yky. Thus we have the required path xy1y2 . . . yky. �

Let us define a digraph to be anti-connected if any two of its vertices are
joined by an antiwalk of even length. It should be clear that a direct product
of digraphs is anti-connected if and only if all of its factors are anti-connected.

Proposition 10.10.10 If D is anti-connected, then S(D) is connected.

Proof: Take x1, x2 ∈ V (S(D)) = V (D). Suppose first that they are joined
by an (even) out-antiwalk W in D. As E(S(D)) = E(S+(D)) ∪ E(S−(D)),
and because D+ has an (x1, x2)-path P on alternate vertices of W , it suffices
to show that for any dispensable edge xy of P , there is an (x, y)-path in D+

consisting of non-dispensable edges. In fact, we will prove this for any edge
xy of D+. Given such an edge xy, define the integer

kxy = max{ |N+
D (u) ∩ N+

D (v)| − |N+
D (x) ∩ N+

D (y)| | u, v ∈ V (D), u �= v}.

Notice kxy ≥ 0. (Put u = x and v = y.) If kxy = 0, then the definition of
kxy implies that there is no z for which N+

D (x)∩N+
D (y) ⊂ N+

D (x)∩N+
D (z) or

N+
D (y) ∩ N+

D (x) ⊂ N+
D (y) ∩ N+

D (z). Then N+
D (x) ⊂ N+

D (z) ⊂ N+
D (y) is also

impossible, as it implies N+
D (y) ∩ N+

D (x) ⊂ N+
D (y) ∩ N+

D (z). Therefore xy is
not dispensable if kxy = 0.

Take N > 0, and assume that whenever D+ has an edge xy with kxy < N ,
there is a (x, y)-path in D+ composed of non-dispensable edges. Now suppose
xy is dispensable and kxy = N . If N+

D (x) ⊂ N+
D (y) or N+

D (y) ⊂ N+
D (x), then

we are done, by Lemma 10.10.9, so assume N+
D (x) �⊂ N+

D (y) and N+
D (y) �⊂

N+
D (x). As xy is dispensable, there is a vertex z with

N+
D (x) ∩ N+

D (y) ⊂ N+
D (x) ∩ N+

D (z) and N+
D (y) ∩ N+

D (x) ⊂ N+
D (y) ∩ N+

D (z).

This implies N+
D (x)∩ N+

D (z) �= ∅ �= N+
D (y)∩ N+

D (z), so xz, yz ∈ E(D+). But
it also means

|N+
D (u)∩N+

D (v)|− |N+
D (x)∩N+

D (z)| < |N+
D (u)∩N+

D (v)|− |N+
D (x)∩N+

D (y)|
for all u, v, so kxz < kxy. Similarly, kzy < kxy. The induction hypothesis
guarantees (x, z)- and (z, y)-paths of non-dispensable edges in D+, so we
have an (x, y)-path of non-dispensable edges in D+.

To finish the proof, we must treat the case where x1 and x2 are joined by
an in-antiwalk. Just repeat the above argument with N− and D−. �
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10.11 Prime Factorings of Direct and Strong Products

Now we turn to prime factorings over the direct product. Recall that the
one-vertex digraph K∗

1 with a loop is the unit for the direct product, that is,
K∗

1 × D = D for every digraph D, and K∗
1 is the unique digraph with this

property. Thus we say a digraph D is prime over the direct product if
it has more than one vertex, and in any factoring D = G × H, one factor is
K∗

1 and the other is isomorphic to D. For this reason, the entire discussion
of prime factorization over the direct product takes place in the class D0 of
digraphs that may have loops.

This section adopts the approach of Hammack and Imrich [17]. The next
lemma uses the Cartesian skeleton and unique prime factorization over �
to deliver a key ingredient to the proof of our unique prime factorization
theorem for the direct product (Theorem 10.11.2).

Lemma 10.11.1 Suppose ϕ : D1 × · · · × Dk → G1 × · · · × G� is an isomor-
phism, where all the factors are anti-connected and R-thin, and that we have
ϕ(x1, . . . , xk) =

(
ϕ1(x1, . . . , xk), ϕ2(x1, . . . , xk), . . . , ϕ�(x1, . . . , xk)

)
. If a fac-

tor Di is prime, then exactly one of the functions ϕ1, ϕ2, . . . , ϕ� depends on
xi.

Proof: By commutativity and associativity, it suffices to prove the lemma
for the case k = � = 2, and with D1 prime. Thus take an isomorphism
ϕ : D1 × D2 → G1 × G2, where ϕ(x1, x2) =

(
ϕ1(x1, x2), ϕ2(x1, x2)

)
. We will

prove the lemma by showing that if it is not the case that exactly one of ϕ1

and ϕ2 depends on x1, then D1 is not prime.
Certainly if neither ϕ1 nor ϕ2 depends on x1, then the fact that ϕ is

bijective means that |V (D1)| = 1, so D1 is not prime. Thus assume that
both ϕ1 and ϕ2 depend on x1. This means each of D1, G1, and G2 has more
than one vertex. If D2 had only one vertex, then D1

∼= G1 × G2, and D1

would not be prime. Thus each factor D1,D2, G1, and G2 has more than one
vertex. Taking skeletons, and applying Proposition 10.10.8, we see that ϕ is
also an isomorphism ϕ : S(D1 �D2) → S(G1 �G2). Because all factors are
R-thin (and anti-connectedness implies that all vertices have positive in- and
out-degrees), Corollary 10.10.7 applies, and we have an isomorphism

ϕ : S(D1)�S(D2) → S(G1)�S(G2). (10.15)

Note that ϕ is simultaneously an isomorphism ϕ : D1 × D2 → G1 × G2

and an isomorphism ϕ : S(D1)�S(D2) → S(G1)�S(G2). Because each of
D1,D2, G1, and G2 is anti-connected, each factor S(D1), S(D2), S(G1), and
S(G2) is connected, by Proposition 10.10.10. Consider prime factorizations

S(D1) = H1 �H2 � · · · �Hk, S(G1) = L1 � L2 � · · · � L�,
S(D2) = K1 �K2 � · · · �Km, S(G2) = M1 �M2 � · · · �Mn,

where each factor is prime over �. Our isomorphism (10.15) becomes
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ϕ : (H1 � · · · �Hk)� (K1 � · · · �Km) →
(L1 � · · · �L�)� (M1 � · · · �Mn). (10.16)

Corollary 10.9.4 applies here. In fact, in using it, we may order the factors Hi

and Ki and relabel the vertices of the Li and Mi so that, for some 0 < s < k
and 0 ≤ t ≤ m, the isomorphism (10.16) has form

ϕ :(H1 � · · · �Hk)� (K1 � · · · �Km) →
(
H1 � · · · �Hs �K1 � · · · �Kt

)
�

(
Hs+1 � · · · �Hk �Kt+1 � · · · �Km

)

and where

ϕ((h1, . . . , hk),(k1, . . . , km)) =
((h1, . . . , hs, k1, . . . , kt), (hs+1, . . . , hk, kt+1, . . . , km)).

Our assumption that both ϕ1 and ϕ2 depend on x1 ∈ V (G1) forces 0 < s < k.
We have now labeled the vertices of D1 with V (H1 � · · · �Hk), and

those of D2 with V (K1 � · · · �Km). We have labeled vertices of G1 with
V (H1 � · · · �Hs �K1 � · · · �Kt), and we have labeled the vertices of G2

with V (Hs+1 � · · · �Hk � Kt+1 � · · · �Km). To tame the notation, we
denote a vertex (h1, . . . , hs, hs+1, . . . , hk) ∈ V (D1) as (x, y), where x =
(h1, . . . , hs) and y = (hs+1, . . . , hk). Similarly, any (k1, . . . , kt, kt+1, . . . , km) ∈
V (D2) is denoted (u, v), where u = (k1, . . . , kt) and v = (kt+1, . . . , km). With
this convention we regard vertices of G1 and G2 as (x, u) and (y, v), respec-
tively, and we have

ϕ((x, y), (u, v)) = ((x, u), (y, v)).

Remember that this is the same isomorphism ϕ : D1 × D2 → G1 × G2 that
we began the proof with; all we have done is relabel the vertices of the factors
to put ϕ into a more convenient form.

Now we display a nontrivial factorization D1 = S × S′. Define digraphs
S and S′ as follows:

V (S) = {x | (
(x, y), (u, v)

) ∈ V (D1 × D2)} ,

A(S) = {xx′ | (
(x, y), (u, v)

)(
(x′, y′), (u′, v′)

) ∈ A(D1 × D2)} ,

V (S′) = {y | (
(x, y), (u, v)

) ∈ V (D1 × D2)} ,

A(S′) = {yy′ | (
(x, y), (u, v)

)(
(x′, y′), (u′, v′)

) ∈ A(D1 × D2)} .

We claim D1 = S × S′, that is, (x, y)(x′, y′) ∈ A(D1) if and only if
(x, y)(x′, y′) ∈ A(S × S′). Certainly if (x, y)(x′, y′) ∈ A(D1), there is an arc

(
(x, y), (u, v)

)(
(x′, y′), (u′, v′)

) ∈ A(D1 × D2).
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The definitions of S and S′ then imply (x, y)(x′, y′) ∈ A(S × S′).
Conversely, suppose (x, y)(x′, y′) ∈ A(S × S′). Then xx′ ∈ A(S) and

yy′ ∈ A(S′). By definition of S and S′, this means D1 × D2 has arcs
(
(x, y′′), (u, v)

)(
(x′, y′′′), (u′, v′)

)
and

(
(x′′, y), (u′′, v′′)

)(
(x′′′, y′), (u′′′, v′′′)

)
.

Applying the isomorphism ϕ, we see that G1 × G2 has arcs
(
(x, u), (y′′, v)

)(
(x′, u′), (y′′′, v′)

)
and

(
(x′′, u′′), (y, v′′)

)(
(x′′′, u′′′), (y′, v′′′)

)
.

Then (x, u)(x′, u′) ∈ A(G1) and (y, v′′)(y′, v′′′) ∈ A(G2). Thus G1 × G2 has
an arc

(
(x, u), (y, v′′)

)(
(x′, u′), (y′, v′′′)

)
. Applying ϕ−1 to this, we get

(
(x, y), (u, v′′)

)(
(x′, y′), (u′, v′′′)

) ∈ A(D1 × D2),

hence (x, y)(x′, y′) ∈ A(D1). Thus D1 = S × S′, and the lemma is proved. �

We now can easily prove that anti-connected R-thin digraphs factor
uniquely into primes over the direct product, up to order and isomorphism
of the factors.

Theorem 10.11.2 Take any isomorphism ϕ : D1×· · ·×Dk → G1×· · ·×G�,
where all factors Di and Gi are anti-connected, R-thin, and prime. Then
k = �, and there is a permutation σ of [k] and isomorphisms ϕi : Dσ(i) → Gi

for which ϕ(x1, x2, . . . , xk) =
(
ϕ1(xσ(1)), ϕ2(xσ(2)), . . . , ϕk(xσ(k))

)
.

Proof: Assume the hypothesis. Note that Lemma 10.11.1 implies that for
each i ∈ [k], exactly one ϕj depends on xi. But no ϕj is constant, because ϕ
is surjective and each Gi has more than one vertex (it is prime). Thus k ≥ �.
The same argument applied to ϕ−1 gives � ≥ k, therefore k = �.

Thus each ϕj depends on only one xi, call it xσ(j). The result follows. �

To see that prime factorization may fail if the hypotheses of this theorem
are not met, let D be a closed antiwalk on six vertices, which is not anti-
connected. Indeed, we have the non-unique prime factorization

D ∼= −→
P 2 × K3

∼= −→
P 2 × H,

where H is the symmetric path
←→
P3 of length two with loops at each end.

A careful examination of its proof shows that Theorem 10.11.2 still
holds if R-thinness is replaced by R+-thinness (respectively, R−-thinness)
and the assumption of anti-connectivity is replaced with the condition that
any two vertices are joined by an out-antiwalk (respectively, an in-antiwalk),
in which case we say the graph is out-anti-connected (respectively in-
anti-connected). Imrich and Klöckl [26] present a polynomial algorithm that
computes the prime factorization of any out-anti-connected R+-thin digraph.
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In [27] they weaken (but do not entirely eliminate) the R+-thinness condition.
We can remove the condition of R-thinness in Theorem 10.11.2 if we

strengthen the connectivity condition. The fundamental work of McKen-
zie [38] on relational structures yields the following corollary.

Theorem 10.11.3 Suppose each pair of vertices of a digraph is joined by
both an in-antiwalk and an out-antiwalk. Then it has a unique prime fac-
torization over the direct product, up to isomorphism and order of the factors.

It is not known whether the hypotheses of this theorem can be relaxed
to anti-connectivity, nor is there currently an algorithm that finds the prime
factors. Any progress would be a welcome contribution.

Problem 10.11.4 Find an efficient algorithm that computes the prime fac-
tors of a digraph meeting the conditions of Theorem 10.11.3.

Note that Hellmuth and Marc [24] develop such an algorithm for con-
nected strong products.

Theorem 10.11.3 yields a parallel theorem for the strong product. For a
digraph D, let L (D) be the digraph obtained from D by adding a loop to
each vertex. If D1, . . . , Dk are digraphs without loops, then

L (D1 � · · · � Dk) = L (D1) × · · · × L (Dk), (10.17)

which follows immediately from the definitions. Notice that if D is connected,
then L (D) is automatically anti-connected. In fact, any two of its vertices
can be joined by an in-antiwalk and an out-antiwalk, so Theorem 10.11.3
applies to it. And clearly if D and G are digraphs without loops, then D ∼= G
if and only if L (D) ∼= L (G).

Theorem 10.11.5 Every connected digraph (without loops) has a unique
prime factorization over � , up to isomorphism and order of the factors.

Proof: Let D be a connected digraph without loops. Then, as noted above,
Theorem 10.11.3 applies to L (D), so it has a unique prime factorization over
the direct product. Because L (D) has a loop at each vertex, each of its prime
factors also have loops at all of their vertices. Thus each prime factor has the
form L (Di) for some Di (without loops). Write the prime factorization as

L (D) = L (D1) × L (D2) × · · · × L (Dn) , (10.18)

where the L (Di) (and hence also each Di) are uniquely determined by D.
Now consider any prime factorization

D = G1 � G2 � · · · � Gk (10.19)

over the strong product. From this, Equation (10.17) yields
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L (D) = L (G1) × L (G2) × · · · × L (Gk). (10.20)

Observe that each L (Gi) is prime over ×. Indeed, any factoring of it must
have the form L (Gi) = L (H)×L (H ′) for digraphs H,H ′ (without loops),
and Equation (10.17) gives L (Gi) = L (H � H ′). Hence Gi

∼= H � H ′ and
primeness of Gi implies one of H or H ′ is K1, and therefore one of the factors
L (H) or L (H ′) is L (K1). Thus L (Gi) is prime.

Comparing prime factorizations (10.18) and (10.20), and applying The-
orem 10.11.3, we get n = k, and we may assume the ordering is such that
L (Di) ∼= L (Gi) for each 1 ≤ i ≤ n. Consequently, Di

∼= Gi for each i ∈ [k].
But, as was noted above, the Gi are uniquely determined by D, so the fac-
torization (10.19) is unique. �

A different approach is taken by Hellmuth and Marc [24], who design and
apply a skeleton operator S satisfying S(D � D′) = S(D)�S(D′).
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11. Miscellaneous Digraph Classes

Yubao Guo and Michel Surmacs

11.1 Introduction

Obviously, there are countless digraph classes, so that any attempt to give
a complete overview is doomed to failure. One has to restrict oneself to a
selection. Some will be presented in their own chapter or section, some will
only be mentioned for some specific results throughout the book and some
won’t be mentioned at all. As tournaments (tou) are arguably the best stud-
ied class of digraphs with a rich library of strong results (see Chapter 2), their
prominent place in any selection is a given. Unsurprisingly, several authors
have tried to generalize the class in different directions in order to obtain
larger classes of digraphs while retaining enough structure that most cen-
tral results on tournaments still hold. Those classes include semicomplete
digraphs (scd) (see Chapter 2), multipartite tournaments (mut) (see Chapter
7) and local tournaments (lct) (see Chapter 6). Results on hypertournaments
(hyt), an extension of tournaments to directed hypergraphs that is not fea-
tured in this book, have been obtained by Q. Guo, Y. Guo, Gutin, Kayibi,
Khan, Koh, H. Li, R. Li, S. Li, Lu, Ning, Petrović, Pirzada, Ree, Surmacs,
Thomassen, Wang, Yang, Yao, Yeo, K.M. Zhang, X. Zhang and Zhou (see,
e.g., [77–79, 100–102, 104, 109–111, 126, 145, 154, 166, 173]).

Several of those tournament generalizations have since been generalized
themselves, resulting in an array of tournament-related digraph classes. Lo-
cally semicomplete digraphs (lsd), round digraphs (rod), in/out-round di-
graphs (ird), locally in/out-tournaments (lit), locally in/out-semicomplete
digraphs (lis) and path-mergeable digraphs (pmd) are considered in Chap-
ter 6. Chapter 7 is dedicated to semicomplete multipartite digraphs (smd).
Results on transitive digraphs (trd), k-transitive digraphs (ktd), quasi-
transitive digraphs (qtd) and k-quasi-transitive digraphs (kqt) can be found
in Chapter 8.

In Section 11.8 of this chapter, we will consider another generaliza-
tion of both semicomplete and semicomplete bipartite digraphs: Arc-locally
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semicomplete digraphs (als). They are themselves generalized by H1-free di-
graphs (h1f) and H2-free digraphs (h2f) in Section 11.9. The related classes
of H3-free digraphs (h3f) and H4-free digraphs (h4f) are also briefly consid-
ered.

Of course, there are also digraph classes (fairly) unrelated to tournaments
such as acyclic digraphs (acd), investigated in Chapter 3. Kernel-perfect di-
graphs (kpd) are mentioned in several results throughout the book, for ex-
ample in Section 11.7, which is mainly dedicated to perfect digraphs (ped),
game-perfect digraphs (gpd) and weakly game-perfect digraphs (wgp).

Many digraph classes appear naturally in applications to other fields such
as mathematical logic or computer science. One such class is that of circulant
digraphs (cid), which have been considered by such authors as Alspach,
Burkard, Çela, Parsons, Van Doorn, Woeginger and Yang (see, e.g., [2, 151,
167]). They include regular round digraphs (rrd) and are themselves included
in the class of Cayley digraphs (cad), whose properties have been investigated,
for example, by Curran, Gallian, Hamidoune, Parhami, Rankin, Witte, Xiao
and Xu (see, e.g., [44, 81, 132, 160–162, 164]).

Two classes which also have applications in the construction of intercon-
nection networks (see [27] for a survey by Bermond, Homobono and Peyrat)
are de Bruijn digraphs (dbd) and Kautz digraphs (kad), which we will con-
sider in Sections 11.4 and 11.5, respectively. Both classes can be defined using
the line digraph operator, which will be investigated more closely in Section
11.2 on line digraphs (lnd) and Section 11.3 on iterated line digraphs (ild).

The closely related minimal series-parallel digraphs (msp), series-parallel
digraphs (spd) and series-parallel partial order digraphs (spo), appear in flow
diagrams and dependency charts and have an application to the problem of
scheduling under constraints. We will consider them briefly in Section 11.6
on directed cographs (dco), a generalization of series-parallel partial order
digraphs.

Figure 11.1 gives a first overview of how the previously mentioned classes
relate to one another. For more structure, we also include the subclasses of
loopless line digraphs (lld) and loopless iterated line digraphs (lil). Class
x is included in class y if the depicted digraph contains an (x, y)-path. Obvi-
ously, neither the list of considered digraph classes nor the relations depicted
are necessarily exhaustive.
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Figure 11.1 Digraph depicting relations between digraph classes.

Note that we omitted certain digraph classes, such as Euler digraphs (see
Chapter 4), planar digraphs (see Chapter 5), digraphs with bounded width
(see Chapter 9), digraph products (see Chapter 10) and underlying graphs
of digraphs (see Chapter 12), mostly because they intersect many others but
are not contained in / do not contain other classes. Intersection digraphs on
the other hand include all digraphs, as Beineke and Zamfirescu [23] and Sen,
Das, Roy and West [139] proved, which makes their inclusion in the figure
redundant. For further results on intersection digraphs and their subclass of
interval digraphs, however, we also refer to work by Brown, Busch, Dasgupta,
Feder, Francis, Hell, Huang, Lundgren, Müller, Rafiey, Sanyal and Talukdar
(see, e.g., [35, 45–47, 62, 120, 138, 140, 141, 159, 168]).

11.2 Line Digraphs

Krausz [105] defined the line graph L(G) of a graph G = (V,E) to be the
graph with vertex set E and an edge between e, f ∈ E, if and only if e and
f are incident in G. Since then, differing generalizations of the concept for
directed pseudographs have been introduced. The most common definition for
the line digraph L(D) of a directed pseudograph D = (V,A) – and the only
one we will consider here – is due to Harary and Norman [82]. Corresponding
to the undirected version, the vertex set of L(D) is the arc set A of D. Due
to the orientation of arcs, there is the additional choice of when and how
to connect two vertices a, b ∈ A of L(D), which distinguishes the competing
concepts of line digraphs. Here, (a, b) is an arc of L(D) if and only if the head
of a coincides with the tail of b. In other words, ab is a directed walk of length
2 in D. Note that the line digraph L(D) does not contain multiple arcs, but
contains a loop, if and only if D contains a loop. Therefore, technically, the
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line digraph of a directed pseudograph containing a loop is not a digraph,
but again a directed pseudograph.

A directed pseudograph D is called a line digraph if D = L(D′) for some
directed pseudograph D′.

The first easy observation Harary and Norman [82] then made is the
following.

Theorem 11.2.1 ([82]) Let D be a directed pseudograph. Then,

|V (L(D))| = |A(D)| and |A(L(D))| =
∑

v∈V (D)

d−
D(v)d+D(v).

Another nice property that directly follows from the definition is the in-
variance of the minimum and maximum semi-degree under the line digraph
operator.

Proposition 11.2.2 Let D = (V,A) be a directed pseudograph. Then,

d+L(D)(xy) = d+D(y) and d−
L(D)(xy) = d−

D(x) for all xy ∈ A.

Particularly,

δ0(L(D)) = δ0(D) and Δ0(L(D)) = Δ0(D).

x1 x2

x3

x4

x5

(a) digraph D

x1x2

x2x3 x3x4

x4x5

x5x4x2x5

(b) line digraph L(D)

Figure 11.2 A digraph and its line digraph.

In the following theorem we collect a number of characterizations of line
digraphs. Characterization (ii) is among the first results on line digraphs
and due to Harary and Norman [82]. Later, Heuchenne [90] found the local
criterion (iii) and Richards [137], in (iv) and (v), considered adjacency ma-
trices to determine line digraphs, for which we recall the following definition.
For a matrix M = [mik] ∈ {0, 1}n×n, a row i is orthogonal to a row j if∑n

k=1 mikmjk = 0. One can give a similar definition of orthogonal columns.
Conditions (ii) and (iii) have each been rediscovered by several authors, as
Hemminger and Beineke [88] found in their survey on line graphs and line
digraphs. The proof presented here is also adapted from that survey.
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Theorem 11.2.3 Let D = (V,A) be a directed pseudograph with vertex set
V = {1, 2, . . . , n} and with no multiple arcs and let M = [mij ] be its adjacency
matrix (i.e., the n × n-matrix such that mij = 1, if ij ∈ A(D), and mij = 0,
otherwise). Then the following assertions are equivalent:

(i) D is a line digraph;
(ii) there exist two partitions {Ai}i∈I and {Bi}i∈I of V (D) such that

A(D) =
⋃

i∈I

Ai × Bi;

(iii) if vw, uw and ux are arcs of D, then so is vx;
(iv) any two rows of M are either identical or orthogonal;
(v) any two columns of M are either identical or orthogonal.

Proof: We prove the following implications and equivalences: (i) ⇔ (ii), (ii)
⇒ (iii), (iii) ⇒ (iv), (iv) ⇔ (v), (iv) ⇒ (ii).

(i) ⇒ (ii). Let D = L(H). For each vi ∈ V (H), let Ai and Bi be the sets
of in-coming and out-going arcs at vi, respectively. Then the arc set of the
subdigraph of D induced by Ai ∪Bi equals Ai ×Bi. If ab ∈ A(D), then there
is an i such that a = vjvi and b = vivk. Hence, ab ∈ Ai × Bi. The result
follows.

(ii) ⇒ (i). Let Q be the directed pseudograph with ordered pairs (Ai, Bi)
as vertices, and with |Aj ∩ Bi| arcs from (Ai, Bi) to (Aj , Bj) for each i and
j (including i = j). Let σij be a bijection from Aj ∩ Bi to this set of arcs
(from (Ai, Bi) to (Aj , Bj)) of Q. Then the function σ defined on V (D) by
taking σ to be σij on Aj ∩Bi is a well-defined function of V (D) into V (L(Q)),
since {Aj ∩ Bi}i,j∈I is a partition of V (D). Moreover, σ is a bijection since
every σij is a bijection. Furthermore, it is not difficult to see that σ is an
isomorphism from D to L(Q).

(ii) ⇒ (iii). If vw, uw and ux are arcs of D, then there exist i, j such that
{u, v} ⊆ Ai and {w, x} ⊆ Bj . Hence, (v, x) ∈ Ai × Bj and vx ∈ D.

(iii) ⇒ (iv). Assume that (iv) does not hold. This means that some rows,
say i and j, are neither identical nor orthogonal. Then there exist k, h such
that mik = mjk = 1 and mih = 1,mjh = 0 (or vice versa). Hence, ik, jk, ih
are in A(D) but jh is not. This contradicts (iii).

(iv) ⇔ (v). Both (iv) and (v) are equivalent to the statement:

for all i, j, h, k, if mih = mik = mjk = 1, then mjh = 1.

(iv) ⇒ (ii). For each i and j with mij = 1, let Aij = {h : mhj = 1} and
Bij = {k : mik = 1}. Then, by (iv), Aij is the set of vertices in D whose
row vectors in M are identical to the ith row vector, whereas Bij is the set
of vertices in D whose column vectors in M are identical to the jth column
vector (we use the previously proved fact that (iv) and (v) are equivalent).
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Thus, Aij × Bij ⊆ A(D), and moreover A(D) =
⋃{Aij × Bij : mij = 1}.

By the orthogonality condition, Aij and Ahk are either equal or disjoint, as
are Bij and Bhk. For a zero row vector i in M , let Aij be the set of vertices
whose row vector in M is the zero vector, and let Bij = ∅. Doing the same
with the zero column vectors of M completes the partition as in (ii). 	


The characterizations (ii)–(v) all imply polynomial algorithms to verify
whether a given directed pseudograph is a line digraph. For an example of an
effective polynomial algorithm using (ii) to recognize acyclic line digraphs,
see [16, Page 42]. Criterion (iii) can also be reformulated to obtain a charac-
terization of line digraphs in terms of forbidden induced subdigraphs.

Corollary 11.2.4 ([16]) A directed pseudograph D is a line digraph if and
only if D does not contain, as an induced subdigraph, any directed pseudo-
graph that can be obtained from one of the directed pseudographs in Figure
11.3 (dashed arcs are missing) by adding zero or more arcs (other than the
dashed ones).

Figure 11.3 Forbidden directed pseudographs of line digraphs.

Observe that the digraph of order 4 in Figure 11.3 corresponds to the
case of distinct vertices in Part (iii) of Theorem 11.2.3, and the two directed
pseudographs of order 2 correspond to the cases x = u �= v = w and u = w �=
v = x, respectively.

From Corollary 11.2.4 a simpler characterization of the line digraphs of
digraphs (i.e. without loops and multiple arcs) is easily obtained by omitting
those forbidden induced subdigraphs that imply said loops or parallel arcs.
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More details and further characterizations of special classes of line digraphs
can be found in the surveys by Hemminger and Beineke [88] and Prisner
[131].

As, for every line digraph Q, under ‘(ii) ⇒ (i)’ in Theorem 11.2.3 a directed
pseudograph D such that Q = L(D) is constructed, it is natural to ask
whether D is unique with said property. Harary and Norman [82] answered
the question in the negative, but recognized that two directed pseudographs
with the same line digraph cannot differ too much, as the following theorem
shows.

Theorem 11.2.5 ([82]) Let D and D′ be directed pseudographs such that
L(D) = L(D′). Then the directed pseudographs obtained from D and D′, by
deleting all vertices with in-degree 0 and all vertices with out-degree 0, are
isomorphic.

Prisner [130] found that under certain circumstances, even the considera-
tion of the underlying graph may be enough to determine quasi-uniqueness,
a generalization of results due to Villar [152].

Theorem 11.2.6 ([130]) Let D and D′ be directed pseudographs without par-
allel arcs and both of minimum semi-degree at least 2. Then UG(L(D)) ∼=
UG(L(D′)) implies that D is isomorphic to D′ or its converse.

Harary and Norman [82] also gave a partial answer to the related question
of which directed pseudographs are isomorphic to their line digraph.

Theorem 11.2.7 ([82]) Let D be a unilateral (i.e., any two vertices are con-
nected by a directed path in at least one direction) directed pseudograph with-
out multiple arcs. Then D is isomorphic to L(D) if and only if each of its
vertices has in-degree 1 or each of its vertices has out-degree 1.

Aigner [1] then gave a generalization of this result.

Theorem 11.2.8 ([1]) Let D be a directed pseudograph without isolated ver-
tices. Then D is isomorphic to L(D), if and only if D ∼= D1 ∪ . . .∪Dk, where
the Dis are mutually vertex-disjoint and either Di consists of a directed cycle
and a number (possibly zero) of out-trees, each rooted at a vertex of this cycle
or Di is the converse of such a digraph.

Harary and Norman [82] provided corresponding examples which show
that these characterizations do not hold for general directed pseudographs.
Therefore, finding a general characterization is still an open problem.

11.2.1 Connectivity

In most applications, connectivity plays a vital role. Thus, Aigner’s [1] re-
sult that strong connectivity is preserved under the line digraph operator is
particularly useful.
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Theorem 11.2.9 ([1]) Let D be a directed pseudograph without isolated ver-
tices. Then D is strongly connected if and only if L(D)is strongly connected.
Furthermore, L(D) being unilateral implies D is unilateral.

Several authors then noted the following (see, e.g., [171]).

Proposition 11.2.10 Let D be a directed pseudograph without parallel arcs.
Then,

κ(L(D)) = λ(D).

Therefore, by the well-known fact that κ(D) ≤ λ(D) ≤ δ0(D) for any
directed pseudograph D without parallel arcs and Proposition 11.2.2, we
have

κ(D) ≤ λ(D) = κ(L(D)) ≤ λ(L(D)) ≤ δ0(L(D)) = δ0(D).

In other words, application of the line digraph operator can only increase the
connectivity, which is one of the reasons it has been used in the construction
of interconnection networks (see also the following section on iterated line
digraphs). In this context, more refined connectivity concepts, as a measure
of reliability, such as super connectivity, introduced by Bauer, Boesch, Suffel
and Tindell [21], have been considered. A separator (cut) of a directed pseu-
dograph is called trivial if its removal yields a strong component of order 1.
In other words, all in-neighbours or all out-neighbours (or the corresponding
arcs, respectively) of a vertex are contained in the separator (cut). A directed
pseudograph D has super (vertex-)connectivity k if κ(D) = k and every
minimum separator is trivial. Analogously, a D has super arc-connectivity
k if λ(D) = k and every minimum cut is trivial. Obviously, super connectivity
implies maximum fault tolerance, in some sense.

Although not every cut of D is a separator of L(D), we still get the
following natural-feeling result, due to Cheng, Du, Min, Ngo, Ruan, Sun and
Wu [38], which was rediscovered by Zhang, Liu and Meng [171] with a more
precise proof.

Proposition 11.2.11 ([38]) Let D be a strongly connected directed pseudo-
graph without parallel arcs. Then, D has super arc-connectivity k if and only
if L(D) has super connectivity k.

Furthermore, Cheng, et al. [38] claimed that super arc-connectivity is
preserved by the line digraph operator. Their proof is incorrect and the
claim false, as, for example, the complete digraph on 3 vertices is super arc-
connected, but its line digraph is not. However, Zhang, et al. [171] obtained
a weaker version of the claim as a corollary of the following theorem.

Theorem 11.2.12 ([171]) Let D be a strongly connected directed pseudo-
graph without parallel arcs with δ0(D) ≥ 3. Then, if L(D) has super connec-
tivity k, it also has super arc-connectivity k.

Now, we simply combine Proposition 11.2.11 and Theorem 11.2.12.
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Corollary 11.2.13 ([171]) Let D be a strongly connected directed pseudo-
graph without parallel arcs with δ0(D) ≥ 3. If D has super arc-connectivity
k, then L(D) has super arc-connectivity k.

Lü and Xu [115] and Zhang and Zhu [172] published results on even more
refined connectivity measures for line digraphs.

11.2.2 Diameter

In the previous subsection we have seen that strong connectivity is preserved
under the line digraph operator. As a consequence, it is natural to ask whether
the distances between vertices increase drastically, since the number of ver-
tices of the line digraph may possibly be up to almost the square of the order
of the corresponding digraph. In spite of this fact, Aigner [1] was able to prove
that the diameter increases by at most 1 under the line digraph operator.

Theorem 11.2.14 ([1]) Let D be a strongly connected directed pseudograph.
Then,

diam(L(D)) = diam(D) + 1,

unless D ∼= L(D) (i.e., D is a directed cycle).

As we already know that the maximum semi-degree is also invariant,
iterated application of the line digraph operator to the right digraphs is pre-
destined to obtain digraphs of high order and comparatively small degree
and diameter (cf. Sections 11.4 and 11.5 on de Bruijn and Kautz digraphs,
respectively).

11.2.3 Kernels, Solutions and Generalizations

Another popular distance related concept are kernels of digraphs. Introduced
in the context of game theory by von Neumann and Morgenstern [153], they
have since found a wide array of applications in other fields.

A set N of vertices of a digraph D is called a kernel of D if N is inde-
pendent in D and for every vertex u ∈ V (D) \ N , there is a vertex v ∈ N
such that uv ∈ A(D). A solution of D is a kernel of the converse of D.

Since the introduction of the concept, several generalizations of kernels
have been considered, many of which can be described as (k, l)-kernels. A
set N of vertices of a digraph D is called a (k, l)-kernel of D if there is no
oriented path of length shorter than k between any two distinct vertices of
N in D and for every vertex u ∈ V (D) \N , there is a directed path of length
at most l from u to a vertex in N in D. Now, obviously, a (2, 1)-kernel is a
common kernel. Furthermore, a (k, k − 1)-kernel is also called a k-kernel,
a (2, 2)-kernel is called a quasi-kernel and a (k, 2(k − 1))-kernel is called a
k-quasi-kernel.
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A (k, l)-semikernel is defined slightly differently. A set N of vertices of a
digraph D is called a (k, l)-semikernel of D if there is no oriented path of
length shorter than k between any two distinct vertices of N in D and for
every vertex u ∈ V (D) \ N , if there is a directed path of length at most l
from a vertex in N to u in D, then there is such a path from u to a vertex
in N . A (k, k − 1)-kernel is also called a k-semikernel and a 2-semikernel is
also called a semikernel.

For all these generalized concepts of kernels, again, a corresponding ver-
sion of a solution can be defined by considering the converse digraph.

Harminc [83] considered the correlation between solutions of a digraph
and its line digraph and found the following.

Theorem 11.2.15 ([83]) The cardinality of the system of all solutions of a
digraph is equal to the cardinality of the system of all solutions of its line
digraph.

More precisely, for a digraph D = (V,A), he proved that f : K → K′, S �→
{xy ∈ A | x ∈ S, y ∈ V }, where K and K′ are the systems of all solutions
of D and its line digraph, respectively, is an injective function. Conversely,
g : K′ → K, H �→ X(H)∪ Y (H), where X(H) is the set of all tails of arcs in
H and Y (H) consists of those vertices of D with out-degree 0 that are not
adjacent to any vertices in X(H), is also shown to be injective. Thus, we can
easily obtain the kernels of L(D) from the kernels of D and vice versa.

Proof: f is well-defined: Let R be a solution of D = (V,A). Suppose that
ab ∈ A(L(D)) for a, b ∈ f(r). Then, by the definition of f , the tails of both
a and b are contained in R and they are connected by the arc a ∈ A, a
contradiction to the choice of R. Now, let b ∈ A \ f(R). By the definition of
f , the tail of b is not in R and is therefore dominated by some vertex of R in
D via some arc a ∈ f(R). Hence, b is dominated by a and, all in all, f(R) is
a solution of L(D).

f is injective: Let R and S be distinct solutions of D. Without loss of
generality, we may assume that there is a vertex y ∈ R\S. Since S is a solution
of D, there is a vertex x ∈ S such that xy ∈ A and therefore, xy ∈ f(S). The
independence of R implies that xy /∈ f(R). Hence, f(R) �= f(S).

g is well-defined: Let R be a solution of D = (V,A). Suppose that there
are vertices x, y ∈ g(R) such that xy ∈ A. If x ∈ Y (R) or y ∈ Y (R), the
definition of Y (R) immediately implies a contradiction. Thus, we may assume
that x, y ∈ X(R). Consequently, x is the tail of some arc a ∈ R and y is the
tail of some arc b ∈ R. The independence of R implies xy /∈ R, as xy and b are
connected in L(D). Hence, there exists a c ∈ R that dominates xy in L(D)
and, by definition of the line digraph, also dominates a ∈ R, a contradiction
to the choice of R. Now, let y ∈ V \ g(R). If y is the head of some arc b ∈ A,
then, by the definition of g(R), b /∈ R. Therefore, b is dominated by some
a = xy ∈ R and hence, y is dominated by x ∈ X(R) ⊆ g(R). If y has out
degree 0, by the definition of g(R), y is dominated by some x ∈ X(R) ⊆ g(R).
All in all, g(R) is a solution of D.
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g is injective: Let R and S be distinct solutions of L(D). Without loss
of generality, we may assume that there is an arc b = yz ∈ R \ S. Therefore,
y ∈ X(R) ⊆ g(R). Since b /∈ S, there is some arc a = xy ∈ S that dominates
b. As x ∈ X(S) ⊆ g(S), the independence of g(S) implies y /∈ g(S). Hence,
g(R) �= g(S). 	


As an obvious corollary, we have the following.

Corollary 11.2.16 ([83]) A digraph has a solution if and only if its line
digraph has a solution.

The easily seen fact that the converse of L(D) is the line digraph of the
converse of the digraph D immediately implies the corresponding results on
kernels.

Corollary 11.2.17 ([83]) The cardinality of the system of all kernels of
a digraph is equal to the cardinality of the system of all kernels of its line
digraph.

Corollary 11.2.18 ([83]) A digraph has a kernel if and only if its line di-
graph has a kernel.

Since then, utilizing Harminc’s functions, several authors have found
similar results for the various generalizations of kernels. Galeana-Sánchez,
Ramírez and Rincón-Mejía [71] compared the number of semikernels and
quasi-kernels of digraphs D with δ−(D) ≥ 1 with the respective numbers
of their line digraphs. Galeana-Sánchez and Li [70] proved that Corollary
11.2.18 also holds for semikernels, if δ−(D) ≥ 1, which is a necessary con-
dition, and studied the relationship between the number of (k, l)-kernels of
certain digraphs and their line digraphs.

Galeana-Sánchez and Gómez [69] provided, amongst other results, a
weaker version of 11.2.17 for (k, l)-semikernels of certain digraphs, with the
use of state splittings.

Theorem 11.2.19 ([69]) Let k ≥ 2, l ≥ 2 and let D be a digraph with
g(D) ≥ k and δ−(D) ≥ 1. Then, the cardinality of the system of all (k, l)-
semikernels of D is less than or equal to the cardinality of the system of all
(k, l)-semikernels of its line digraphs.

Shan, Kang and Lu [142], found a generalization of Corollary 11.2.18 for
k-semikernels of certain digraphs.

Theorem 11.2.20 ([142]) Let D be a digraph with g(D) ≥ k ≥ 2 and
δ−(D) ≥ 1. Then, D has a k-semikernel if and only if its line digraph has a
k-semikernel.
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Lu, Shan and Zhao [116] proved that Harminc’s functions are also well-
defined and injective on the respective sets of (k, l)-kernels of certain digraphs
and thereby obtained the following generalizations of Corollaries 11.2.17 and
11.2.18.

Theorem 11.2.21 ([116]) Let k > l ≥ 2 and let D be a digraph with g(D) ≥
k and δ−(D) ≥ 1. Then, the cardinality of the system of all (k, l)-kernels
of D is equal to the cardinality of the system of all (k, l)-kernels of its line
digraphs.

Theorem 11.2.22 ([116]) Let k > l ≥ 2 and let D be a digraph with g(D) ≥
k and δ−(D) ≥ 1. Then, D has a (k, l)-kernel if and only if its line digraph
has a (k, l)-kernel.

Some additional results on kernels and related concepts in generalized
line digraphs have been found by Balbuena and Guevara [12] and Guevara,
Balbuena and Galeana-Sánchez [76].

11.2.4 Branchings

Recall that an in-branching (also called a rooted spanning tree or an arbores-
cence in the literature) is an oriented spanning tree with exactly one vertex
(the root) of out-degree 0. For a vertex x of a directed pseudograph D, let
IBx(D) be the number of in-branchings of D rooted at x.

Knuth [103] proved the following correlation (in a different form) be-
tween in-branchings of a directed pseudograph and those of its line digraph
algebraically, using Tutte’s Matrix Tree Theorem [147]. Orlin [125] gave a
combinatorial proof of the theorem in its present form.

Theorem 11.2.23 ([103]) Let D = (V,A) be a directed pseudograph without
isolated vertices. Then,

IBxy(L(D)) =

{
IBy(D) · F, if d+(y) = 0 or d−(y) = 1
d+(y)−1 IBx(D) · F, otherwise,

where F =
∏

v∈V d+(v)d
−(v)−1.

Among other results, Levine [108] found a generating function identity
for digraphs with minimum in-degree 1, which implies the following formula
for the total number of in-branchings of a line digraph.

Corollary 11.2.24 ([108]) Let D = (V,A) be a directed pseudograph with
δ−(D) ≥ 1. Then, the number of in-branchings of L(D) is

b ·
∏

v∈V

d+(v)d
−(v)−1,

where b is the number of in-branchings of D.
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Bidkhori and Kishore [30] found another proof of the result by construct-
ing an explicit bijection. Furthermore, it can be extended to iterated line
digraphs (see Corollary 11.3.9). The following identity due to Orlin [125] im-
plies that Corollary 11.2.24 is also a corollary of Theorem 11.2.23 and also
holds for directed pseudographs without isolated vertices.

Proposition 11.2.25 ([125]) Let D = (V,A) be a directed pseudograph with-
out isolated vertices. Then, for each y ∈ V ,

d+(y) IBy(D) =
∑

x∈V

axy IBx(D),

where axy is the number of arcs from x to y in D.

Branchings are not only interesting from a theoretical point of view, but,
particularly in line digraphs, as a model of interconnection networks, for their
practical use in broadcasting algorithms, that is to say, sending a message
from one vertex to all others in an efficient manner. In this context, the sheer
number of branchings in a digraph is less important than the number of
arc-disjoint or independent branchings (for fault-tolerance) and their depth,
which is to say the length of a longest directed path between the root and
a leaf (for efficiency). Two out-branchings of a directed pseudograph with
root r are called independent if, for any vertex x, the unique paths from
r to x are internally disjoint. Hasunuma and Nagamochi [85] studied both
the number of independent out-branchings and their depths in line digraphs.
Applying the following theorem, they were able to prove the well-known In-
dependent Spanning Tree Conjecture (disproved in general by Huck [91]) for
line digraphs.

Theorem 11.2.26 ([85]) Let D be a directed pseudograph without parallel
arcs and let r be a vertex of L(D). Suppose that for any vertex v �= r of L(D),
there are k internally disjoint paths from r to v in L(D). Then there are k
independent out-branchings rooted at r of L(D).

Corollary 11.2.27 (Independent Spanning Tree Conjecture [85]) Let
D be a directed pseudograph without parallel arcs. If L(D) is k-strong, then
there are k independent out-branchings rooted at any vertex of L(D).

For considerations of the depth of independent out-branchings, see The-
orems 11.3.10 and 11.3.11 in the section on iterated line digraphs.

Du, Lyuu and Hsu [51, 55, 56] introduced the related concept of spreads,
prescribing a number of vertex-disjoint paths of certain maximum length
between sets of vertices, to combine fault-tolerance and transmission delay
considerations in interconnection networks and gave results on (iterated) line
digraphs as an example of such networks.

Bermond, Munos and Marchetti-Spaccamela [28] proposed broadcasting
algorithms for the (iterated) line digraph of a regular digraph D based on a
broadcasting protocol for D.
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11.2.5 Cycles and Trails

Aigner [1] was the first to notice the natural relation between Euler trails in
a digraph and Hamiltonian cycles in its line digraph.

Theorem 11.2.28 ([1]) Let D be a directed pseudograph without isolated ver-
tices. Then, L(D) is Hamiltonian if and only if D is Eulerian.

The well-known characterization of Eulerian directed pseudographs and
the definition of line digraphs lead to the following characterization of Eule-
rian line digraphs.

Theorem 11.2.29 Let D be a strongly connected directed pseudograph. Then
L(D) is Eulerian if and only if d−

D(u) = d+D(v) for each arc uv of D.

For line graphs of strongly connected regular directed pseudographs,
Aardenne-Ehrenfest and de Bruijn [150] determined the number of Euler
trails contained, a result that can also be derived from Corollary 11.2.24.

Theorem 11.2.30 ([150]) Let D be a strongly connected d-regular directed
pseudograph of order n. Then, the number of Euler trails of L(D) is

d−1(d!)n(d−1) · t,

where t is the number of Euler trails of D.

Hasunuma and Otani [86] noted the following lower bound on the number
of arc-disjoint Hamiltonian cycles in a regular line digraph.

Theorem 11.2.31 ([86]) Let D be a strongly connected d-regular directed
pseudograph without parallel arcs. Then there are �d/2� arc-disjoint Hamil-
tonian cycles in L(D).

As a generalization of pancyclicity (i.e. containing a cycle of every possible
length), Imori, Matsumoto and Yamada [96] introduced the similar property
of pancircularity. A directed pseudograph D = (V,A) is called pancircular
if it contains closed trails of length � for all 3 ≤ � ≤ |A|. As a first obvious
result, they noted the following consequence of the fact that a cycle in L(D)
corresponds to a trail in D.

Proposition 11.2.32 ([96]) A directed pseudograph is pancircular if and only
if its line digraph is pancyclic.

For regular directed pseudographs, they gave a stronger result.

Theorem 11.2.33 ([96]) If a regular directed pseudograph is pancircular,
then its line digraph is pancircular.

Note that pancyclicity is not a sufficient condition in Theorem 11.2.33.
Furthermore, it can be iterated (see Corollary 11.3.15).
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11.2.6 NP-Complete Problems for Line-Digraphs

The following results on NP-completeness were published by Gavril [72]. He
proved that several graph problems that are known to be NP-complete on
general (di)graphs (see, e.g., [98]), are still NP-complete when restricted to
line digraphs. The considered problems are the following.

Simple max cut Parameter: k
Input: An undirected graph G = (V,E) and a positive integer k.
Question: Does there exist a set of vertices S ⊆ V such that there are
at least k edges between S and V \ S in G?

Independent set Parameter: k
Input: A digraph D = (V,A) and a positive integer k.
Question: Is there a set of vertices S ⊆ V of size k such that no vertex
in S dominates any other vertex in S?

vertex cover Parameter: k
Input: A digraph D = (V,A) and a positive integer k.
Question: Is there a set of vertices S ⊆ V of size at most k such that
every vertex not in S either dominates or is dominated by a vertex in S?

Feedback vertex set Parameter: k
Input: A digraph D = (V,A) and a positive integer k.
Question: Is there a set of vertices S ⊆ V of size at most k such that
D − S is acyclic?

Feedback arc set Parameter: k
Input: A digraph D = (V,A) and a positive integer k.
Question: Is there a set of arcs F ⊆ A of size at most k such that D−F
is acyclic?

The reductions used below are partially based on private communication
between Gavril and Knuth.

Lemma 11.2.34 ([72]) Simple Max Cut is reducible to Independent Set

for line digraphs.

Proof: Given an undirected graph G = (V,E) and a positive integer k, we
consider the complete biorientation D =

↔
G of G obtained by replacing each

edge {x, y} of G with the pair xy, yx of arcs. Now, for a cut (S, V \S) of size
at least k of G, the arc set {(x, y) | x ∈ S, y ∈ V \S} is an independent vertex
set of size at least k in L(D). Conversely, for an independent vertex set F
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of order k of L(D), let S = {x ∈ V | (x, y) ∈ F}. Since F is independent in
L(D), y ∈ V \ S for all (x, y) ∈ F and thus, (S, V \ S) is a cut of size at least
k of G. 	


Lemma 11.2.35 ([72]) Independent Set for line digraphs is reducible to
Vertex Cover for line digraphs.

Proof: A set of vertices is independent if and only if its complement is a
vertex cover. 	


Lemma 11.2.36 ([72]) Feedback Vertex Set (FVS) for line digraphs is
reducible to Feedback Arc Set (FAS) for line digraphs.

Proof: Let D = (V,A) be a line digraph. By Theorem 11.2.3, there exist two
partitions {Ai}i∈I and {Bi}i∈I of V such that A = ∪i∈IAi×Bi. We define the
digraph D′ = (V ×{0, 1}, A′) through the partitions {A′

i}i∈I′ and {B′
i}i∈I′ of

V ′, where I ′ = I ∪ V , A′
i = {(x, 1) | x ∈ Ai}, Bi = {(y, 0) | y ∈ Bi} for i ∈ I

and A′
i = {(i, 0)}, B′

i = {(i, 1)} for i ∈ V , and the arc set A′ = ∪i∈I′A′
i × B′

i.
Obviously, D′ is also a line digraph. Furthermore, a feedback vertex set S of D
implies that {((x, 0), (x, 1)) | x ∈ S} is a feedback arc set of D′. Conversely,
a feedback arc set S of D′ implies that {y ∈ V | ((x, i), (y, j)) ∈ S} is a
feedback vertex set of D. 	


Lemma 11.2.37 ([72]) Feedback Arc Set (FAS) is reducible to Feed-

back Vertex Set (FVS) for line digraphs.

Proof: It is easy to see that an arc set of a digraph is a feedback arc set if
and only if it is a feedback vertex set of its line digraph. 	


Summarizing the discussion above, we have shown the following.

Theorem 11.2.38 ([72]) Independent Set, Vertex Cover, Feedback
Vertex Set, Feedback Arc Set are NP-complete for line digraphs.

Syslo [146] showed that the Travelling Salesman Problem (TSP) –
the problem of finding a minimum weight Hamiltonian cycle in a weighted
digraph – notorious for being NP-complete in the general case, is solvable
in polynomial time in terms of the size of the digraph, for line digraphs with
constant arc weights.

By Theorem 11.2.3, we know that line digraphs can be recognized in
polynomial time. In contrast, the problem of recognizing underlying graphs of
line digraphs is NP-complete, as Chvátal and Ebenegger [41] proved. Prisner
[130] qualified the result by giving a polynomial-time algorithm to recognize
underlying graphs of line digraphs with minimum semi-degree at least 2.

Poljak and Rödl [129] found that the problem of determining the chro-
matic number of a line digraph is NP-complete.
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11.2.7 Independence Number

Since the determination of the independence number of line digraphs is NP-
complete by Theorem 11.2.38, Lichiardopol [112] searched for and found an
upper bound for the independence number of regular line digraphs.

Proposition 11.2.39 ([112]) Let D be a d-regular directed pseudograph with-
out parallel arcs, d ≥ 2. Then,

α(L(D)) ≤ |V (L(D))|
2

.

He then went on to prove that the ratio can be obtained asymptotically for
any regular line digraph, by iterated application of the line digraph operator
(see Theorem 11.3.16).

11.2.8 Chromatic Number

As we have seen in Subsection 11.2.6, the exact determination of the chro-
matic number of a line digraph is NP-complete. However, Harner and En-
tringer [84] gave bounds on the chromatic number of the line digraph of a
digraph D in terms of the chromatic number χ(D) of D.

Theorem 11.2.40 ([84]) Let D be a digraph. Then,

min{t | χ(D) ≤ 2t} ≤ χ(L(D)) ≤ min{t | χ(D) ≤
(

t

� t
2�

)
},

where the lower bound is sharp.

Iterated application of the line digraph operator eventually leads to a 3-
colourable digraph (see Corollary 11.3.18). For more on the chromatic number
of certain line digraphs, see the work of Ochem, Pinlou and Sopena [123, 124,
127, 128].

11.3 Iterated Line Digraphs

Since the 1980s, interconnection networks have attracted more and more at-
tention. In their design, for varying technical reasons, it is interesting to find
digraphs with certain attributes such as bounded maximum degree, small
diameter and good connectivity. Early on, iterated line digraphs were recog-
nized as a potential source to obtain digraphs of large order but fixed degree
and diameter that also allow for easy routing, as Fiol, Yebra and Alegre [63]
proved.

Iterated line digraphs are, as their name suggests, defined recursively.
For some directed pseudograph D, the first-order line digraph L1(D) of
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D is the line digraph of D. For an integer k ≥ 1, the (k + 1)th-order line
digraph Lk+1(D) of D is defined as the line digraph of Lk(D). A directed
pseudograph is called a kth-order line digraph if it is the kth-order line
digraph of some directed pseudograph and it is called an iterated line digraph
if it is a kth-order line digraph for some integer k ≥ 1.

It is not difficult to prove by induction that Lk(D) is isomorphic to the
digraph Q whose vertex set consists of directed walks of D of length k and
a vertex v0v1 . . . vk (which is a directed walk in D) dominates the vertex
v1v2 . . . vkvk+1 for every vk+1 ∈ V (D) such that vkvk+1 ∈ A(D). This fact
allows for a new perspective that can be useful in proofs and is, for example,
the basis for Fiol, Yebra and Alegre’s [63] routing algorithm.

While Theorem 11.2.3 provides several concise characterizations of (first-
order) line digraphs, the problem is more complicated for higher order iter-
ated line digraphs. Hemminger [87] generalized condition (iii) from Theorem
11.2.3, which he called the (first) Heuchenne condition, in the following
way. For a positive integer k, a directed pseudograph D satisfies the kth
Heuchenne condition if, for any vertices x, y, u, v ∈ V (D) such that there
is a directed walk of length k from x to u, from y to u and from y to v,
there is also a directed walk of length k from x to v. He then proposed that
a directed pseudograph without multiple arcs is a kth-order line digraph if
and only if it satisfies the first k Heuchenne conditions. He did not prove
his statement, as, at first glance, it seemed to be obvious. Like several other
such results on line digraphs, it turned out to be false. While it is true that
it is a necessary condition, it is not sufficient, as Beineke and Zamfirescu [23]
proved by constructing counterexamples.

They then set out to find further conditions to add to the kth Heuchenne
condition to obtain a characterization of iterated line digraphs. With this ap-
proach, they were able to characterize the line digraphs that also are second-
order line digraphs. Sadly, even for k = 2, the necessary conditions are much
more complicated than for first-order line digraphs, which is why we will
not consider them here in detail and why it seems unlikely that a charac-
terization of kth-order line digraphs for k > 2 can be derived in a similar
manner. This assumption is furthermore backed by an attempt by Beineke
and Zamfirescu [23] to find a characterization of second-order line digraphs
via forbidden subgraphs comparable to Corollary 11.2.4, which, again, needed
rather complicated additional conditions that could not be stated in the form
of forbidden subgraphs. Still, the problem of characterizing higher order it-
erated line digraphs, probably by different means, remains open.

To be able to give any sort of general characterization of higher order
iterated line digraphs, in the following theorem, Beineke and Zamfirescu [23]
considered only a restricted set of directed pseudographs. Their proof of the
result given below is a nice example of the natural idea of using induction on
the order of the iterated line digraph.
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Theorem 11.3.1 ([23]) Let D be a directed pseudograph without multiple
arcs and vertices of in-degree or out-degree 0. Then D is a kth-order line
digraph if and only if, for i = 1, . . . , k, the following conditions are satisfied.

(1) For any pair of vertices x, y ∈ V (D), there is at most one directed walk
of length i from x to y.

(2) D satisfies the ith Heuchenne condition.

Proof: We establish the sufficiency of these conditions using induction on k.
The result holds for k = 1, and we assume it holds for k = p. Assume that D
satisfies the hypotheses for k = p + 1. Then, by induction hypothesis, D is a
line digraph. Let Q be a directed pseudograph such that D = L(Q). Since the
removal of isolated vertices in Q does not affect L(Q), we may assume that Q
contains no isolated vertices. Suppose that there is a vertex x of in-degree 0
in Q. Since x is not isolated, there is an arc a ∈ A(Q) with x as its tail. Now
a, as a vertex of D = L(Q), has in-degree 0, a contradiction. Analogously, Q
does not contain vertices of out-degree 0.

Suppose now that, for some i ≤ p and a pair of vertices x, y ∈ V (Q), there
are two distinct directed walks P1 and P2 of length i from x to y. As there is
at least one arc a ∈ A(Q) whose head coincides with x and one arc b ∈ A(Q)
whose tail coincides with y, P1 and P2 can be extended to distinct directed
walks P ′

1 and P ′
2, respectively, of length i + 2, by appending both a and b.

Consequently, P ′
1 and P ′

2 imply distinct directed walks of length i+1 ≤ p+1
from a to b in D = L(Q), a contradiction to the choice of D.

Finally, let x, y, u, v ∈ V (Q) be vertices such that there are directed walks
of length i from x to u, from y to u and from y to v. Again, we find arcs
a, b, c, d ∈ A(Q) such that the head a coincides with x, the head of b coincides
with y, the tail of c coincides with u and the tail of d coincides with v. By
appending these arcs to the appropriate directed walks of length i in Q, we
find directed walks of length i + 1 ≤ p + 1 from a to c, from b to c and from
b to d in D = L(Q). Since D satisfies the (p + 1)th Heuchenne condition, we
also obtain a directed walk of length i + 1 from a to d in D = L(Q). By the
definition of the line digraph operator, a and d, said walk implies a directed
walk of length i from x to v in Q and hence, Q satisfies the ith Heuchenne
condition.

All in all, by induction hypothesis, Q is a pth-order line digraph and thus,
D = L(Q) is a (p + 1)th-order line digraph.

The proof of necessity can be derived from Beineke and Zamfirescu’s proof
[23] of their general characterization of second-order line digraphs. 	


Using what they called coreflexive vertex sets, whose definition is tightly
linked to the (iterated) Heuchenne condition, Liu and West [113] gave similar
characterizations of (iterated) line digraphs, viewed from a new perspective.

Harary and Norman [82] considered the characteristics of high order iter-
ated line digraphs.
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Theorem 11.3.2 ([82]) Let D be a directed pseudograph.

(i) Lk(D) = ∅ for sufficiently large k if and only if D contains no directed
cycles.

(ii) The order of Lk(D) becomes arbitrarily large for sufficiently large k, if
and only if D contains two directed cycles that are connected by a directed
path.

(iii) If D contains two cycles, which are not connected by a directed path,
then Lk(D) is disconnected for sufficiently large k.

As a corollary, Hemminger and Beineke [88] noted the following.

Corollary 11.3.3 ([88]) If D is a directed pseudograph such that D ∼= Lk(D)
for some integer k, then D is a directed cycle and particularly D ∼= L(D).

11.3.1 Connectivity

As mentioned in the previous section, refined connectivity concepts, as a
measure of reliability, are of particular importance for interconnection net-
works and have therefore been studied for line digraphs, in particular. The
well-known fact that κ(D) ≤ λ(D) ≤ δ0(D) for any digraph D, for exam-
ple, motivated the following definition. A strongly connected digraph D is
maximally connected if κ(D) = λ(D) = δ0(D). We have already seen in
the last section that the line digraph operator does not decrease connectivity
and therefore, line digraphs of maximally connected digraphs are again max-
imally connected. Fàbrega and Fiol [60] proved a stronger result for iterated
line digraphs, using the following graph invariant. For a given digraph D, let
l(D) be the largest integer such that, for any two (not necessarily distinct)
vertices x, y ∈ V (D), (a) if d(x, y) < l(D), the shortest path from x to y is
unique and there is no such path of length d(x, y) + 1; (b) if d(x, y) = l(D),
there is only one shortest path from x to y. As a corollary of a more general
result, they found that the kth-order line graph of any digraph with minimum
semi-degree at least 2 is maximally connected, for k sufficiently large.

Theorem 11.3.4 ([60]) Let D be a digraph with δ0(D) > 1. Then,

(a) λ(Lk(D)) = δ0(D) if k ≥ diam(D) − 2l(D);
(b) κ(Lk(D)) = δ0(D) if k ≥ diam(D) − 2l(D) + 1.

Fàbrega and Fiol [60] also proved a similar result on super connectivity.

Theorem 11.3.5 ([60]) Let D be a digraph with δ0(D) ≥ 3. Then,

(a) Lk(D) is super arc-connected if k ≥ diam(D) − 2l(D) + 1;
(b) Lk(D) is super connected if k ≥ diam(D) − 2l(D) + 2.

As a corollary of Theorem 11.2.12 and Corollary 11.2.13, Zhang, Liu and
Meng [171] obtained a related result.
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Corollary 11.3.6 ([171]) Let D be a strongly connected directed pseudograph
without parallel arcs with δ0(D) ≥ 3. If D is super arc-connected, then Lk(D)
is super connected and super arc-connected for any positive integer k.

11.3.2 Diameter

As previously indicated, Theorem 11.2.14 directly implies an iterated version
of the result.

Corollary 11.3.7 Let D be a strongly connected directed pseudograph that is
not a cycle. Then, for any positive integer k,

diam(Lk(D)) = diam(D) + k.

11.3.3 Branchings

For the number IB(D) of in-branchings of a regular directed pseudograph D,
Zhang, Zhang and Huang [170] gave the following formula.

Theorem 11.3.8 ([170]) Let D be a d-regular digraph of order n. Then

IB(Lk(D)) = d(d
k−1)n · IB(D).

Since line digraphs of d-regular directed pseudographs of order n are d-
regular directed pseudographs of order dkn, Theorem 11.3.8 is also an easy
corollary of Corollary 11.2.24. Levine [108] was able to extend Corollary
11.2.24 to iterated line digraphs.

Corollary 11.3.9 ([108]) Let D = (V,A) be a directed pseudograph with
δ−(D) ≥ 1. Then,

IB(Lk(D)) = IB(D) ·
∏

v∈V

d+(v)p(k,v)−1,

where p(k, v) is the number of directed walks of length k that end in v.

Xu, Zhang, Ning and Li [163] extended Levine’s results to directed pseu-
dographs without isolated vertices.

As in the previous section, Hasunuma and Nagamochi [85] studied in-
dependent out-branchings of iterated line digraphs. Their proof of Corollary
11.2.27 can be applied iteratively to obtain a corresponding result on iterated
line digraphs. But they were able to prove more.
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Theorem 11.3.10 ([85]) Let D be an l-strong directed pseudograph without
parallel arcs such that l < δ0(D). Let c be an upper bound on the depths
of l arc-disjoint out-branchings rooted at any vertex of D. Then there are l
independent out-branchings rooted at any vertex of depths at most k+log2 k+
c+1 of Lk(D) such that any vertex except for the root is contained in at most
one tree as an internal vertex.

Theorem 11.3.11 ([85]) Let D be an l-strong directed pseudograph without
parallel arcs such that l = δ0(D) ≥ 3. Let c be an upper bound on the depths of
l arc-disjoint out-branchings rooted at any vertex of D. Then there are l inde-
pendent out-branchings rooted at any vertex of depths at most k+log√

3 k+c+1
of Lk(D).

11.3.4 (h, p)-Domination Number

Another concept used in fault-tolerance analysis of interconnection networks
is (h, p)-domination. Let D = (V,A) be a directed pseudograph and S ⊂ V .
Then S is called an (h, p)-domination set if D[S] is h-strong and |({x} ∪
N−(x)) ∩ S| ≥ p and |({x} ∪ N+(x)) ∩ S| ≥ p for every vertex x ∈ V . The
(h, p)-domination number γh,p(D) of D is the minimum cardinality of an
(h, p)-domination set of D. (h, p)-domination has been studied for iterated
line digraphs by Hasunuma and Otani [86]. Particularly interesting are their
results on regular iterated line digraphs, which generalized several results for
popular interconnection networks.

Theorem 11.3.12 ([86]) Let D be a strong d-regular directed pseudograph
without parallel arcs and 1 ≤ p < d. Then,

γh,p(Lk(D)) = pdk−1|V (D)|

for all k ≥ 2 and 0 ≤ h ≤ min{p, �d/2�}.

11.3.5 Cycles and Trails

Using Theorem 11.3.8, Zhang, Zhang and Huang [170] were able to calculate
the number of Euler trails of regular iterated line digraphs.

Theorem 11.3.13 ([170]) Let D be a strongly connected d-regular digraph
of order n. Then, the number of Euler trails of Lk(D) is

(d!)ndk

ndk+n
· b,

where b is the number of in-branchings of D.
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By iteratively applying Theorem 11.2.30, we obtain the following corollary
of it.

Corollary 11.3.14 Let D be a strongly connected d-regular directed pseudo-
graph of order n. Then, the number of Euler trails of Lk(D) is

d−k(d!)(d
k−1)n · t,

where t is the number of Euler trails of D.

Analogous iteration of Proposition 11.2.32 and Theorem 11.2.33 produces
the following corollary.

Corollary 11.3.15 ([96]) If a regular directed pseudograph D is pancircular,
then Lk(D) is pancyclic and pancircular for any positive integer k.

11.3.6 Independence Number

In addition to the upper bound in Proposition 11.2.39, Lichiardopol [112] also
gave a (far more complicated) lower bound for the independence number of
regular iterated line digraphs, which implies that approximately half of the
vertices of a regular kth-order line digraph are contained in an independent
set for k large enough.

Theorem 11.3.16 ([112]) Let D be a d-regular directed pseudograph without
parallel arcs, d ≥ 2. Then,

lim
k→∞

α(Lk(D))
|V (Lk(D))| =

1
2
.

11.3.7 Chromatic Number

Duffus, Lefmann and Rödl [58] noted that the second-order line digraph of
a 4-colourable digraph is 3-colourable, a result that can be generalized as
follows.

Proposition 11.3.17 Let D be a digraph with χ(D) ≥ 4. Then,

χ(L2(D)) < χ(D).

Proof: Let c : V (D) → {1, . . . , χ(D)} be a proper colouring of D. We
then define a colouring c′ : V (L2(D)) → {1, . . . , χ(D) − 1} of L2(D). For
((u, v)(v, w)) ∈ V (L2(D)), let c′(((u, v)(v, w))) = c(v), if c(v) �= χ(D), and
c′(((u, v)(v, w))) = i for an arbitrary i ∈ {1, . . . , χ(D)} \ {c(u), c(v), c(w)},
otherwise. Suppose two adjacent vertices ((u, v)(v, w)) and ((v, w)(w, x))
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of L2(D) receive the same colour. Since v and w are adjacent in D, we
have c(v) �= c(w). Therefore, without loss of generality, we may assume
that c(v) �= χ(D) = c(w). Consequently, c′(((u, v)(v, w))) = c(v) and
c′(((v, w)(w, x))) ∈ {1, . . . , χ(D)} \ {c(v), c(w), c(x)}, a contradiction. Hence,
c′ is a proper colouring of L2(D). 	


Proposition 11.3.17 implies that iterated lined digraphs of any digraph
eventually become 3-colourable, a fact recognized by Prisner [131].

Corollary 11.3.18 ([131]) Let D be a digraph. Then χ(Lk(D)) ≤ 3, for k
sufficiently large.

For a digraph with large chromatic number, by Theorem 11.2.40, the
chromatic number of its iterated line digraphs decrease much faster than
suggested by Proposition 11.3.17.

11.4 de Bruijn Digraphs

As previously mentioned, the line digraph operator has been found very use-
ful in the design of interconnection networks because of its specific properties,
which are particularly suitable for the following problem: Given positive in-
tegers n and d, construct a digraph D of order n and maximum out-degree
at most d such that the diameter diam(D) is as small as possible, while the
vertex-strong connectivity κ(D) is as large as possible. In general, such 2-
objective optimization problems do not necessarily have admissible solutions.
In this case, however, solutions which (almost) maximize/minimize both ob-
jective functions exist and can be constructed via the line digraph operator.
They are presented in this and the following section.

For positive integers d and t, the de Bruijn digraph [48] DB(d, t) can
be defined as the directed pseudograph whose vertices are all words of length
t from an alphabet of d letters. There is an arc from a vertex x to a vertex y
if and only if the last t− 1 letters of x coincide with the first t− 1 letters of y
(see Figure 11.4). This definition bears a striking similarity to the alternative
definition of iterated line digraphs we gave in the previous section. In fact, if
K◦

d is the complete digraph on d vertices with a loop at each vertex, then

DB(d, t) ∼= Lt−1(K◦
d).

Therefore, all results on iterated line digraphs can be applied to de Bruijn
digraphs and many of them have been proven for exactly that purpose. The
following proposition is a collection of obvious consequences.

Proposition 11.4.1 Let d and t be positive integers. Then the de Bruijn
digraph DB(d, t):

(a) has dt vertices;
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(b) has in- and out-degree d for every vertex (counting loops);
(c) has diameter t;
(d) has no parallel arcs;
(e) has a loop at exactly those vertices represented by repetitions of a single

letter;
(f) has κ(DB(d, t)) = λ(DB(d, t)) = d − 1.

0

1

(a) DB(2, 1) = K◦
2

00

01

11

10

(b) DB(2, 2) = L(K◦
2 )

000

001

011

111

110

100010

101

(c) DB(2, 3) = L2(K◦
2 )

Figure 11.4 Construction of de Bruijn digraphs via the line digraph operator.

11.4.1 Connectivity

As, in Proposition 11.4.1, we have seen that κ(DB(d, t)) = λ(DB(d, t)) =
d − 1, de Bruijn digraphs are almost maximally connected. The connectivity
is obviously best possible for d-regular digraphs containing a loop.

Furthermore, Soneoka [143] proved that de Bruijn digraphs are super arc-
connected by relating the order, degrees and diameter of a de Bruijn digraph.

Theorem 11.4.2 ([143]) DB(d, t) is super arc-connected for all integers
d ≥ 2 and t ≥ 1.
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Zhang, Liu and Meng [171] obtained the same from a result on iterated
line digraphs (see Corollary 11.3.6). In the same manner, they were able to
prove the super connectivity of de Bruijn digraphs.

Corollary 11.4.3 ([171]) DB(d, t) is super connected for all integers d ≥ 2
and t ≥ 1.

Lü and Xu [115] and Cheng, Du, Min, Ngo, Ruan, Sun and Wu [38]
obtained the result as a corollary of their own results on iterated line digraphs.

11.4.2 Diameter

By Proposition 11.4.1, we know that diam(DB(d, t)) = t. The well-known
Moore-bound states for any strongly connected digraph on n vertices with
maximum out-degree d and diameter t that

n ≤ 1 + d + d2 + . . . + dt,

where Bridges and Toueg [34] proved that equality is not attained unless
t = 1 or d = 1. The corresponding values for de Bruijn digraphs given in
Proposition 11.4.1 now imply the following.

Proposition 11.4.4 For all positive integers d and t, the de Bruijn digraph
DB(d, t) achieves the minimum value t of diameter for directed pseudographs
of order dt and maximum out-degree at most d.

Furthermore, Imase, Soneoka and Okada [94] noted that the diameter of
de Bruijn digraphs is fairly robust against deletion of vertices and/or arcs.
They proved that, in DB(d, t), the diameter increases by at most one if fewer
than d − 1 vertices or arcs are deleted. To prove this result we will use the
following lemma.

Lemma 11.4.5 ([16]) Let d and t be positive integers and let x and y be
distinct vertices of DB(d, t) such that x → y. Then, there are d−2 internally
disjoint (x, y)-paths different from xy, each of length at most t + 1.

Proof: Let x = (x1, x2, . . . , xt) and y = (x2, . . . , xt, yt). Consider the
walk Wk given by Wk = (x1, x2, . . . , xt), (x2, . . . , xt, k), (x3, . . . , xt, k, x2),. . .,
(k, x2, . . . , xt), (x2, . . . , xt, yt), where k �= x1, yt. For each k, every internal ver-
tex of Wk has coordinates forming the same multiset Mk = {x2, . . . , xt, k}.
Since for different k, the multisets Mk are different, the walks Wk are in-
ternally disjoint. Each of these walks is of length t + 1. Therefore, DB(d, t)
contains d − 2 internally disjoint (x, y)-paths Pk with A(Pk) ⊆ A(Wk). Since
k �= x1, yt, we may form the paths Pk such that none of them coincides with
xy. 	


The result, due to Imase, Soneoka and Okada [94], now states the
following.
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Theorem 11.4.6 [94] For all positive integers d and t, from any vertex to
any other in DB(d, t), there are at least d − 1 internally-disjoint paths, one
of which has length at most t, and d − 2 have length at most t + 1.

Proof: By induction on t ≥ 1. Clearly, the claim holds for t = 1 since
DB(d, 1) contains, as spanning subdigraph,

↔
Kd. For t ≥ 2, we know that

DB(d, t) = L(DB(d, t − 1)). (11.1)

Let x, y be a pair of distinct vertices in DB(d, t) and let ex, ey be the arcs
of DB(d, t−1) corresponding to vertices x, y due to (11.1). Let u be the head
of ex and let v be the tail of ey.

If u �= v, by the induction hypothesis, DB(d, t − 1) has d − 1 internally
disjoint (u, v)-paths, one of length at most t − 1 and the others of length at
most t. The arcs of these paths together with arcs ex and ey correspond to
d − 1 internally disjoint (x, y)-paths in DB(d, t), one of length at most t and
the others of length at most t + 1.

If u = v, we have x → y in DB(d, t−1). It suffices to apply Lemma 11.4.5
to see that there are d − 1 internally disjoint (x, y)-paths in DB(d, t), one of
length one and the others of length at most t + 1. 	


11.4.3 Branchings

Zhang and Lin [169] calculated the total number of in-branchings of de Bruijn
digraphs.

Theorem 11.4.7 [169] For all positive integers d and t, the number of in-
branchings of DB(d, t) is

ddt−1.

Bermond and Fraigniaud [26] and Ge and Hakimi [73] both found d − 1
independent out-branchings rooted at any vertex of DB(d, t), while the latter
group gave the better estimation of their depths.

Theorem 11.4.8 [73] For all positive integers d and t, in DB(d, t), there
are d − 1 independent out-branchings rooted at any vertex of depths at most
�3t/2�.

As a corollary of Theorem 11.3.10, Hasunuma and Nagamochi [85] ob-
tained the following result.

Corollary 11.4.9 [85] For all positive integers d and t ≥ 2, in DB(d, t),
there are d − 1 independent out-branchings rooted at any vertex of depths at
most t + log2(t − 1) + 1 such that any vertex except for the root is contained
in at most one tree as an internal vertex.
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11.4.4 (h, p)-Domination Number

As an application of Theorem 11.3.12, Hasunuma and Otani [86] calculated
the (h, p)-domination number for certain de Bruijn digraphs.

Theorem 11.4.10 [86] Let d and p be integers such that d ≥ 2 and
1 ≤ p < d. Then,

γh,p(DB(d, t)) = pdt−1

for all t ≥ 3 and 0 ≤ h ≤ min{p, �d/2�}.

11.4.5 Cycles and Trails

Imori, Matsumoto and Yamada [96] obtained the pancyclicity and pancir-
cularity of de Bruijn digraphs as a corollary of their work on iterated line
digraphs (see Corollary 11.3.15).

Corollary 11.4.11 [96] For all positive integers d and t, DB(d, t) is pan-
cyclic and pancircular.

Due to Zhang and Lin [169] and, via different method, Zhang, Zhang and
Huang [170], we know the exact number of Euler trails contained in de Bruijn
digraphs.

Theorem 11.4.12 [169] For all positive integers d and t, the number of Euler
trails of DB(d, t) is

(d!)d
t

d−t−1.

Generalizations of de Bruijn digraphs such as generalized de Bruijn
digraphs, introduced independently by Imase and Itoh [93] and Reddy,
Pradhan and Kuhl [134], and consecutive-d digraphs suggested by Du,
Hsu and Hwang [50] share many of their desirable properties (see, e.g.,
[36, 49, 53, 54, 95]).

11.5 Kautz Digraphs

For positive integers d and t, the Kautz digraph [99] DK(d, t) can be ob-
tained from the de Bruijn digraph DB(d+1, t) by deleting all vertices repre-
senting words containing two consecutive identical letters (see Figure 11.5).
In particular, Kautz digraphs do not contain loops and are therefore actual
digraphs. Fiol, Yebra and Alegre [63] noted that Kautz digraphs, just as de
Bruijn digraphs, can be described as iterated line digraphs,

DK(d, t) ∼= Lt−1(
↔
Kd+1),
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where
↔
Kd+1 is the complete digraph on d + 1 vertices. And just as with de

Bruijn digraphs, this fact is a widely-used tool in proofs on Kautz digraphs.
For example, the following proposition is easily deduced.

Proposition 11.5.1 Let d and t be positive integers. Then the Kautz digraph
DK(d, t):

(a) has dt + dt−1 vertices;
(b) has in- and out-degree d for every vertex;
(c) has diameter t.
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(a) DK(2, 1) =
↔
K3
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(b) DK(2, 2) = L1(
↔
K3)
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(c) DB(3, 2) = L1(
↔
K◦

3 )

Figure 11.5 Construction of a Kautz digraph via the line digraph operator or from
a de Bruijn digraph.

11.5.1 Connectivity

Reddy, Kuhl, Hosseini and Lee [133], as well as Fàbrega, Fiol and Yebra
[61] and Imase, Soneoka and Okada [95] independently noted that Kautz
digraphs are maximally connected, which is implied by corresponding results
on iterated line digraphs.
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Theorem 11.5.2 ([133]) DK(d, t) is maximally connected, i.e. κ(DK(d, t)) =
d.

In a sense, this result suggests that Kautz digraphs are better than de
Bruijn digraphs.

Fàbrega and Fiol [60] obtained the super connectivity and super arc-
connectivity of Kautz digraphs as a corollary of their more general results on
iterated line digraphs (see Theorem 11.3.5).

Corollary 11.5.3 ([60]) DK(d, t) is super connected and super arc-connected
for all integers d ≥ 3 and t ≥ 2.

Soneoka [143] independently proved the super arc-connectivity of Kautz
digraphs by relating the order, degrees and diameter of a Kautz digraph.
Furthermore, Zhang, Liu and Meng [171] and Lü and Xu [115] realized that
super connectivity and super arc-connectivity of Kautz digraphs follows from
their respective results on iterated line digraphs.

11.5.2 Diameter

By the same reasoning as for Proposition 11.4.4, Reddy, Kuhl, Hosseini and
Lee [133] noted that the diameter of Kautz digraphs is minimum for digraphs
of their order and degree, making them a solution of the optimization problem
mentioned at the beginning of the previous section.

Proposition 11.5.4 For all positive integers d and t, the Kautz digraph
DK(d, t) achieves the minimum value t of diameter for directed pseudographs
of order dt + dt−1 and maximum out-degree at most d.

Du, Hsu and Lyuu [52] improved the results on diameter vulnerabilities
due to Reddy, Kuhl, Hosseini and Lee [133] and Imase, Soneoka and Okada
[94].

Theorem 11.5.5 ([52]) For all positive integers d and t, from any vertex to
any other in DK(d, t), there are at least d internally-disjoint paths, one of
which has length at most t, d−2 have length at most t+1 and one has length
at most t + 2.

Furthermore, they determined that, in the worst case, the diameter of
DK(d, t) increases by 1, if fewer than d − 1 vertices are deleted, and by 2, if
d − 1 vertices are deleted, thereby proving their result to be best possible.

11.5.3 Branchings

As an application of Theorem 11.3.13, Zhang, Zhang and Huang [170] gave
the number of in-branchings of a Kautz digraph.
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Corollary 11.5.6 ([170]) For all positive integers d and t, the number of
in-branchings of DK(d, t) is

d(d+1)dt−1−d−1(d + 1)d.

Just as for de Bruijn digraphs, Ge and Hakimi [73] found the maximum
possible number, d, of independent out-branchings rooted at any vertex of
DK(d, t).

Theorem 11.5.7 ([73]) For all positive integers d and t, in DK(d, t), there
are d independent out-branchings rooted at any vertex of depths at most
�3t/2� + 1.

As a corollary of Theorem 11.3.11, Hasunuma and Nagamochi [85] ob-
tained the following result.

Corollary 11.5.8 ([85]) For all positive integers d and t ≥ 2, in DK(d, t),
there are d independent out-branchings rooted at any vertex of depths at most
t + logb t + 1, where b = (1 +

√
5)/2, if d = 2, and b =

√
3, if d ≥ 3.

11.5.4 (h, p)-Domination Number

Hasunuma and Otani [86] used Theorem 11.3.12 to give the (h, p)-domination
number for certain Kautz digraphs.

Corollary 11.5.9 ([86]) Let d and p be integers such that d ≥ 2 and 1 ≤ p <
d. Then,

γh,p(DK(d, t)) = p(dt−1 + dt−2)

for all t ≥ 3 and 0 ≤ h ≤ min{p, �d/2�}.

11.5.5 Cycles and Trails

As a consequence of their work on iterated line digraphs, Imori, Matsumoto
and Yamada [96] obtained the pancyclicity and pancircularity of Kautz di-
graphs.

Corollary 11.5.10 ([96]) For all positive integers d and t, DK(d, t) is pan-
cyclic and pancircular.

Zhang, Zhang and Huang [170] calculated the number of Euler trails of
Kautz digraphs.

Theorem 11.5.11 ([170]) For all positive integers d and t, the number of
Euler trails of DK(d, t) is

(d!)(d+1)dt−1
d−d−t(d + 1)d−1.
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Generalizations of Kautz digraphs such as Imase–Itoh digraphs, intro-
duced by Imase and Itoh [92], and consecutive-d digraphs suggested by
Du, Hsu and Hwang [50] share many of their desirable properties (see, e.g.,
[36, 49, 53, 54]).

11.6 Directed Cographs

A series-parallel partial order is a partially ordered set (X,≤) that can
be constructed from a single element using the series composition and
the parallel composition operation. For two disjoint series-parallel partial
orders (X1,≤) and (X2,≤), distinct elements x, y ∈ X1 ∪ X2 of the series
composition have the same order they have in X1 or X2, respectively, if they
are both from the same set, and x ≤ y, if x ∈ X1 and y ∈ X2. Elements
x, y ∈ X1 ∪ X2 of the parallel composition are comparable if and only if they
are both in X1 or both in X2, and then retain their corresponding order.

A series-parallel partial order digraph is a digraph whose vertex
set is a series-parallel partial order (V,≤) and x → y if and only if x �= y
and x ≤ y. More commonly, series-parallel partial orders are represented
by (vertex) series-parallel digraphs, which can be defined as exactly
those digraphs whose transitive closure is a series-parallel partial order di-
graph, i.e. x ≤ y, if and only if there is an (x, y)-path in the corresponding
series-parallel digraph. For some applications it might be desirable to use a
particularly sparse representation. A minimal series-parallel digraph is a
series-parallel digraph for which the removal of any arc alters its transitive clo-
sure. Valdes, Tarjan and Lawler [149] defined minimal series-parallel digraphs
recursively: The trivial digraph is minimal series-parallel. For two vertex-
disjoint minimal series-parallel digraphs D1 = (V1, A1) and D2 = (V2, A2),
P = (V1 ∪ V1, A1 ∪ A2) is a minimal series-parallel digraph. Furthermore, if
O1 ⊆ V1 is the set of vertices of out-degree zero in D1 and I2 ⊆ V2 is the set
of vertices of in-degree zero in D2, then S = (V1 ∪V1, A1 ∪A2 ∪ (O1 ×I2)) is a
minimal series-parallel digraph. Based on this definition, they defined series-
parallel digraphs as exactly those digraphs whose transitive closure equals
the transitive closure of a minimal series-parallel digraph.

Among other results, Valdes, Tarjan and Lawler [149] gave a forbidden
subdigraph characterization of series-parallel digraphs using the following
definition. A digraph is called N -free if it does not contain an induced sub-
digraph on four vertices {u, v, w, x} with the arc set {vw, uw, ux}.

Theorem 11.6.1 ([148, 149]) An acyclic digraph is series-parallel, if and
only if its transitive closure is N -free.

Note that the N -free property is fairly reminiscent of the Heuchenne con-
dition in the characterization of line digraphs (cf. Theorem 11.2.3 (iii)). In
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particular, Theorem 11.6.1 implies that transitive acyclic line digraphs are
series-parallel partial order digraphs.

Valdes, Tarjan and Lawler [149] also found a connection in the opposite
direction.

Theorem 11.6.2 ([149]) Every minimal series-parallel digraph is a line di-
graph.

In fact, they were able to characterize those directed pseudographs whose
line digraphs are minimal series-parallel digraphs, which they used in a linear-
time recognition algorithm for series-parallel digraphs.

For further results and applications, see, e.g., the work of Monma and
Sidney [119], Lawler [107], Baffi and Petreschi [11], Bertolazzi, Cohen, Di
Battista, Tamassia and Tollis [29], Rendl [135], Steiner [144] and Möhring
[117].

A cograph, short for complement-reducible graph, is an undirected
graph that, like series-parallel partial order digraphs, can be defined recur-
sively: The trivial graph is a cograph. The complement of a cograph is a
cograph. And finally, if G1 = (V1, E1) and G2 = (V2, E2) are vertex-disjoint
cographs, so is their disjoint union (V1∪V2, E1∪E2). There are several further
equivalent characterizations of cographs. Particularly, Jung [97] showed that
cographs are comparability graphs of series-parallel partial orders (X,≤), i.e.
the graph that contains an edge xy between distinct vertices x, y ∈ X if
and only if x ≤ y or y ≤ x. In other words, if we consider a graph to be a
symmetric digraph (i.e. each edge is represented by a directed 2-cycle), then
cographs can be defined as the family of digraphs that contains the trivial
digraph and is closed under the operations of disjoint union and series,
where, for h disjoint digraphs D1, . . . , Dh, the disjoint union of D1, . . . , Dh is
the digraph on the vertex set

⋃
1≤i≤h V (Di) and the arc set

⋃
1≤i≤h A(Di),

while the series composition of D1, . . . , Dh is obtained from the disjoint union
by adding all possible arcs between vertices of distinct Di.

Like series-parallel digraphs, cographs can be recognized in linear-time.
Corresponding algorithms have been found, e.g., by Corneil, Perl and Stewart
[42] and Bretscher, Corneil, Habib and Paul [33].

Finally, we arrive at the eponym of this section. Directed cographs
generalize both series parallel partial order digraphs and cographs, which is
obvious by their recursive definition: The trivial digraph is a directed co-
graph. Both the disjoint union and the series composition of disjoint di-
rected cographs are directed cographs. Additionally, the order composi-
tion of h disjoint digraphs D1, . . . , Dh, which is obtained from the disjoint
union by adding the arcs from vertices in Di to vertices in Dj if and only if
1 ≤ i < j ≤ h.

Consistent with the definition of symmetric digraphs, we call an arc
xy ∈ A(D) symmetric if yx ∈ A(D). Otherwise, we call it asymmetric.
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The symmetric part sym(D) of a digraph D is the spanning subdigraph
containing exactly the symmetric arcs of D. The asymmetric part asym(D)
is defined analogously.

Then, a result due to Bechet, de Groote and Retoré [22] implies that
the asymmetric part of a directed cograph is a series-parallel partial order
digraph and the symmetric part is a cograph. Furthermore, Crespelle and
Paul [43] noted that a forbidden subdigraph characterization can be derived
from a result due to Ehrenfeucht and Rozenberg [59].

Theorem 11.6.3 ([43]) A digraph is a directed cograph if and only if it does
not contain any of the (connected) digraphs depicted in Figure 11.6 as an
induced subdigraph.

Figure 11.6 Forbidden subdigraphs for directed cographs.

Consequently, the class of directed cographs is hereditary (that is, an in-
duced subdigraph of a directed cograph is a directed cograph) and closed
under complementation. Furthermore, by results due to Möhring and Rader-
macher [118], directed cographs have a unique representation as a modular
decomposition tree, also called a cotree. The leaves of the cotree are labelled
with the vertices of the directed cograph, while the inner nodes are labelled
with the respective operation (disjoint union, series, order) connecting its
children (see Figure 11.7).

Using the cotree representation, Crespelle and Paul [43] obtained an op-
timal algorithm for the Dynamic Recognition and Representation

Problem for directed cographs. The input of the problem is a directed co-
graph with its cotree representation and a series of modifications of the fol-
lowing form: adding/deleting a vertex and its incident arcs or adding/deleting
an arc or two symmetric arcs, where all modifications must be valid, i.e., a
vertex/arc to be deleted must exist, one to be added must not. If the resulting
digraph is again a directed cograph, the algorithm provides its representation,
if not, it provides a certificate of that fact, i.e. a forbidden subdigraph.
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Figure 11.7 Cotree representation of a directed cograph.

Theorem 11.6.4 ([43]) The Dynamic Recognition and Represen-

tation Problem for directed cographs is solvable in O(d) worst-case time
per update, where d is the number of arcs involved in the updating operation.
Moreover, if needed, a certificate that the modified digraph is not a directed
cograph is provided within the same time complexity.

For another problem that is solvable in polynomial time, we turn to Bang-
Jensen and Maddaloni [19], who considered the Weak k-linkage Problem

for directed cographs.

weak k-linkage
Input: A digraph D = (V,A) and not necessarily distinct vertices
s1, . . . , sk, t1, . . . , tk.
Question: Does D contain a weak-k-linkage from (s1, . . . , sk) to
(t1, . . . , tk)?

In fact, they proved that the weak k-linkage problem is solvable in
polynomial time for fixed k for totally Φ-decomposable digraphs, for certain
digraph classes Φ.

A digraph D is totally Φ-decomposable if either D ∈ Φ or D =
P [T1, . . . , Th] is composed of a digraph P ∈ Φ and pairwise vertex-disjoint
totally Φ-decomposable digraphs T1, . . . , Th. The recursive definition of to-
tally Φ-decomposable digraphs is valuable in the construction of polynomial
algorithms. Of course, the choice of the underlying digraph class Φ is im-
portant. It should be chosen large enough as to assure a rich class of totally
Φ-decomposable digraphs, while restricted enough to still allow for polyno-
mial algorithms for important problems in Φ itself.

One promising class, Φ1, was introduced by Bang-Jensen and Gutin [17],
who, among other results, proved that totally Φ1-decomposable digraphs are
recognizable in polynomial time, another desirable property.

Φ1 is the union of all semicomplete bipartite digraphs, all connected ex-
tended locally semicomplete digraphs and all acyclic digraphs.

The following result is a special case of a broader one due to Bang-Jensen
and Maddaloni [19].
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Theorem 11.6.5 ([19]) For every fixed k there exists a polynomial algorithm
for the weak k-linkage Problem for the totally Φ1-decomposable digraphs.

All that remains is to realize that directed cographs are in fact totally Φ1-
decomposable digraphs, which is fairly obvious by their recursive definition.
The trivial digraph (the initial directed cograph), arcless digraphs (realizing
disjoint unions) and transitive tournaments (realizing the order composition)
are all acyclic, while complete digraphs (realizing the series composition) are
particularly connected locally semicomplete digraphs. Thus, we obtain the
following corollary.

Corollary 11.6.6 ([19]) For every fixed k there exists a polynomial algorithm
for the Weak k-linkage Problem for directed cographs.

For more results on totally Φ-decomposable digraphs, see Chapter 8 and
for an application of directed cographs in mathematical logic, we refer to the
work of Retoré [136].

11.7 Perfect Digraphs

First, recall that an undirected graph is called perfect if the chromatic number
of every induced subgraph equals its clique number. This property is partic-
ularly interesting for its impact on complexity results, as several well-known
NP-complete problems, such as the determination of the chromatic number,
the clique number or the independence number of a graph, are solvable in
polynomial time for perfect graphs (cf. Grötschel, Lovász and Schrijver [75]).
Furthermore, the results are actually applicable in practice, since several
common graph classes, such as bipartite graphs, chordal graphs, triangulated
graphs, interval graphs and comparability graphs, are perfect.

The long-standing Strong Perfect Graph Conjecture, due to Berge [24], af-
ter inspiring generations to an array of related research, was finally proven af-
ter more than four decades by Chudnovsky, Robertson, Seymour and Thomas
[40] and is now known as the Strong Perfect Graph Theorem. It states that a
graph is perfect if and only if it contains neither odd holes nor odd antiholes
as induced subgraphs, where an odd hole is an induced cycle of odd length
at least 5 and an odd antihole is the complement of such a graph. Combined
with the corresponding result of Chudnovsky, Cornuéjols, Liu, Seymour and
Vušković [39] for graphs without odd holes and odd antiholes, the Strong
Perfect Graph Theorem furthermore implies that perfect graphs can be rec-
ognized in polynomial time.

Motivated by this breakthrough for undirected perfect graphs, Andres
and Hochstättler [9] introduced the class of perfect digraphs and, among
other results, gave a Strong Perfect Digraph Theorem. The following addi-
tional notation is needed. Particularly, in the context of this book, it has to
be pointed out that, in their definition of perfect digraphs, instead of the
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chromatic number for digraphs, as introduced in the first chapter, Andres
and Hochstättler used the dichromatic number, as introduced by Neumann-
Lara [122]: A k-dicolouring of a digraph is vertex-colouring with k colours
such that no directed cycle is monochromatic. The dichromatic number→
χ(D) of a digraph D is the smallest positive integer k such that D admits
a k-dicolouring. The clique number ω(D) of a digraph D is the order of a
largest complete subdigraph of D. Now, a digraph is called perfect if, for
any induced subdigraph, the dichromatic number equals its clique number.
Note that a graph is perfect if and only if its complete biorientation (where
every edge is replaced by a pair of opposing arcs) is perfect. Therefore, the
given concept is a natural extension of perfectness to digraphs.

Recall that the symmetric part sym(D) of a digraph D is the spanning
subdigraph containing exactly the symmetric arcs of D (see Figure 11.8(b)).
The asymmetric part asym(D) is defined analogously (see 11.8(c)). Now we
can state the Strong Perfect Digraph Theorem due to Andres and Hochstät-
tler [9] and give their proof.

Theorem 11.7.1 (Strong Perfect Digraph Theorem [9]) A digraph D
is perfect if and only if sym(D) (identified with the corresponding undirected
graph) is perfect and D does not contain any directed cycle of length at least
3 as an induced subdigraph.

Proof: Assume that sym(D) is not perfect. Then there is an induced sub-
graph G = (V,E) of sym(D) (identified with the corresponding undirected
graph) with ω(G) < χ(G). Since ω(D〈V 〉) = ω(sym(D〈V 〉)) and sym(D〈V 〉)
is the complete biorientation of G, we conclude that

ω(D〈V 〉) = ω(sym(D〈V 〉)) = ω(G) < χ(G) = χ(sym(D〈V 〉)) ≤ χ(D〈V 〉).

Therefore, D is not perfect.
If D contains a directed cycle C of length at least 3 as an induced subdi-

graph, then D is obviously not perfect, since ω(D) = 1 < 2 = χ(C).
Now, assume that sym(D) is perfect, but D is not. It suffices to show that

D contains a directed cycle of length at least 3 as an induced subdigraph.
Let D′ = (V ′, A′) be an induced subdigraph of D such that ω(D′) < χ(D′).
As sym(D) is perfect, there is a k-dicolouring of sym(D′) = sym(D)〈V ′〉
with k = ω(sym(D′)) = ω(D′) colours. By choice of D′, this cannot be a k-
dicolouring of D′. Hence, there is a (not necessarily induced) monochromatic
directed cycle C of minimal length in asym(D′), which automatically implies
its length to be at least 3. C cannot have a symmetric chord, since its head
and tail would receive the same colour, in contradiction to the definition of a
k-dicolouring of sym(D′). By minimality, C cannot have an asymmetric arc.
Therefore, C is an induced directed cycle of length at least 3 in D′, and thus
in D. 	
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Applying the Strong Perfect Graph Theorem, Theorem 11.7.1 can be re-
stated without undirected perfectness, using the following terminology. A
filled odd hole is a digraph D such that sym(D) is the complete biorienta-
tion of an odd hole. A filled odd antihole is defined analogously.

Corollary 11.7.2 ([9]) A digraph D is perfect if and only if it does not con-
tain filled odd holes, filled odd antiholes, or any directed cycle of length at
least 3 as induced subdigraphs.

Furthermore, Theorem 11.7.1 implies that, for perfect digraphs, the sym-
metric part determines the validity of a k-dicolouring.

Corollary 11.7.3 ([9]) If D is a perfect digraph, then every k-dicolouring of
sym(D) is a k-dicolouring of D.

Since the maximum order of an induced acyclic subdigraph of a digraph
D also depends solely on sym(D), as another corollary of Theorem 11.7.1
combined with the respective results on perfect graphs due to Grötschel,
Lovász and Schrijver [75], Andres and Hochstättler [9] obtained the following
complexity results.

Corollary 11.7.4 ([9]) For a perfect digraph D, the problems of determin-
ing the chromatic number, the clique number and the maximum order of an
induced acyclic subdigraph are solvable in polynomial time.

As a natural follow-up question, Andres and Hochstättler [9] asked
whether there are more interesting instances of such problems.

Problem 11.7.5 ([9]) Are there any other problems that are NP-complete
for general digraphs but solvable in polynomial time for perfect digraphs?

While the results we have considered so far all indicate that the properties
of perfect digraphs are as favourable as those of their undirected counterparts,
Andres and Hochstättler [9] had to concede that perfect digraphs lack one
central virtue: In contrast to the results of Chudnovsky, Cornuéjols, Liu,
Seymour and Vušković [39] on perfect graphs, perfect digraphs cannot be
recognized in polynomial time (unless P = NP).

Theorem 11.7.6 ([9]) Deciding whether a digraph is perfect is a co-NP-
complete problem.

Their proof is mainly based on a result of Bang-Jensen, Havet and
Trotignon [18] stating the co-NP-completeness of determining whether a
given digraph does not contain any directed cycle of length at least 3 as an
induced subdigraph (cf. Theorem 11.7.1).
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(a) D (b) sym(D) (c) asym(D) (d) D̄

Figure 11.8 A perfect digraph D with imperfect complement D̄.

The loss of another nice property of perfectness in the translation from
graphs to digraphs is implied by the following results on kernels due to Andres
and Hochstättler [9].

Theorem 11.7.7 ([9]) It is NP-complete to decide whether a perfect digraph
has a kernel.

On the other hand, a result due to Boros and Gurvich [31] can be
rephrased as follows.

Corollary 11.7.8 ([9]) The complement of a perfect digraph is kernel-perfect,
i.e. every induced subdigraph has a kernel.

Therefore, Theorem 11.7.7 and Corollary 11.7.8 imply that complements
of perfect digraphs are not necessarily perfect (see, e.g., Figures 11.8(a) and
11.8(d), respectively), in contrast to the result that, for undirected graphs, is
well-known as the Weak Perfect Graph Theorem due to Lovász [114].

Still, Andres and Hochstättler [9] were able to prove a similar result.

Theorem 11.7.9 ([9]) A digraph D is perfect if and only if its complement
D̄ is a biorientation of a perfect graph G such that no vertex set of a cycle
in asym(D̄) induces a clique in G.

Note that, if we identify an undirected graph G with its complete biorien-
tation D, then D̄ is the complete biorientation of Ḡ. Furthermore, asym(D̄)
is empty and, in particular, does not contain any cycle. Therefore, Theorem
11.7.9 is a generalization of the Weak Perfect Graph Theorem.

Before we close this section with a variation of perfectness in digraphs,
we give another problem posed by Andres and Hochstättler [9].

Problem 11.7.10 ([9]) Are there any other problems that are NP-
complete (co-NP-complete, respectively) for general digraphs that remain so
for perfect digraphs?

For several decades, game-variants of certain graph invariants have be-
come increasingly popular. Colouring games and corresponding game chro-
matic numbers are certainly among the most prominent. For an undirected
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graph, we define a maker-breaker game, where both players (starting with
maker) take turns assigning a colour to a previously uncoloured vertex from
a given finite set of colours such that no two adjacent vertices receive the
same colour. The game stops, if either the whole graph is coloured properly,
in which case maker wins, or none of the remaining uncoloured vertices can
be coloured properly, in which case breaker wins. The game chromatic
number χg(G) of a graph G is the smallest number of colours for maker to
have a winning strategy for the colouring game on G, which is well-defined,
as |V (G)| colours are obviously sufficient.

Andres [6] extended the concept to digraphs in the following way. The
colouring game is now played on a digraph and on each turn a player must
choose a vertex to assign a colour to, distinct from the colours of all its in-
neighbours. The game chromatic number χg(D) of a digraph D is then
defined as in the undirected case. Since, for a graph G and its complete
biorientation

↔
G, we have

χg(G) = χg(
↔
G),

this definition is natural and well-defined.
Yang and Zhu [165] gave another variant of the game chromatic number

for digraphs. In their colouring game, on each turn a player must colour a
vertex without creating a monochromatic directed cycle. As their colouring
rule is weaker than Andres’, they called the smallest number of colours for
maker to have a winning strategy for their colouring game on a digraph D the
weak game chromatic number. For the obvious similarity to the dichro-
matic number, we prefer the name game dichromatic number, which we
will denote by

→
χg(D). Obviously, the game chromatic number of a graph also

equals the game dichromatic number of its complete biorientation.
As with many problems, the directed versions have so far received less

attention than the undirected game chromatic number, but in addition to the
introductory paper [6], there are some results due to Andres [3, 4, 8], Yang
and Zhu [165] and Chan, Shiu, Sun and Zhu [37]. Note that the oriented
game chromatic number introduced by Nešetril and Sopena [121], while also
based on a digraph colouring game, differs greatly from the game dichromatic
number considered here. Particularly, it is only defined for orientations of
graphs.

Finally, we can give the definitions that motivated our brief excursion.
A digraph D is called game-perfect if, for any induced subdigraph, the
game chromatic number equals its clique number. Analogously, D is weakly
game-perfect if, for any induced subdigraph, the game dichromatic number
equals its clique number. Note that since

ω(D) ≤ →
χ(D) ≤ →

χg(D) ≤ χg(D)

for every digraph D, game-perfect digraphs are also weakly game-perfect and
weakly game-perfect digraphs are perfect.
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The following result due to Andres [8], in combination with Theorem
11.7.7, implies that game-perfect digraphs are a proper subclass of perfect
digraphs.

Theorem 11.7.11 ([8]) Game-perfect digraphs are kernel-perfect.

As a natural consequence of their fairly recent introduction by Andres
[5], except for Theorem 11.7.11, there are mostly only basic results on game-
perfect digraphs so far and a lot of open questions, the most interesting one
arguably being the following.

Problem 11.7.12 ([9]) Give a characterization of game-perfect digraphs by a
set of forbidden induced subdigraphs (analogue to Theorem 11.7.1 and Corol-
lary 11.7.2, respectively).

For weakly game-perfect digraphs, this problem has been solved by Andres
[8].

Theorem 11.7.13 ([8]) A digraph D is weakly game-perfect if and only if
sym(D) (identified with the corresponding undirected graph) is game-perfect
and D does not contain any directed cycle of length at least 3 as an induced
subdigraph.

Since game-perfect graphs have previously been characterized by a set
of forbidden induced graphs [7], we obtain the following characterization of
weakly game-perfect digraphs.

Corollary 11.7.14 ([8]) A digraph D is weakly game-perfect if and only if
D does not contain a directed cycle of length at least 3 or a C4, P4, a triangle
star, a Ξ-graph, two double fans, two split 3-stars, or one of each (see Figure
11.9, where an edge corresponds to a directed 2-cycle) as an induced subgraph.

(a) C4 (b) P4 (c) triangle star (d) Ξ-graph

(e) two double fans (f) two split 3-stars (g) mixed graph

Figure 11.9 Forbidden subgraphs for weak game-perfectness.
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The research on perfect and (weakly) game perfect digraphs is very much
a young and active field and further results are to be expected.

11.8 Arc-Locally Semicomplete Digraphs

Arc-locally semicomplete digraphs were initially introduced as arc-local tour-
nament digraphs by Bang-Jensen [13] as a natural analogue of locally semi-
complete digraphs (cf. Chapter 6) and a generalization of both semicomplete
and semicomplete bipartite digraphs. A digraph is called arc-locally semi-
complete if, for any pair of adjacent vertices x and y, every in-neighbour
(out-neighbour, respectively) of x is adjacent to every distinct in-neighbour
(out-neighbour, respectively) of y.

Although arc-locally semicomplete digraphs can be quite sparse, directed
cycles being among the simplest examples, the first result on the class, given
by Bang-Jensen [13], suggests that arc-locally semicomplete digraphs, in gen-
eral, are fairly dense in some sense.

Lemma 11.8.1 ([13]) Let D be a connected arc-locally semicomplete digraph
and let D′ be any non-trivial strong subdigraph of D. Every vertex x ∈ V (D)\
V (D′) is adjacent to D′.

Proof: Suppose some vertex x ∈ V (D) \ V (D′) is not adjacent to D′. Let
x = x1x2 . . . xn, n ≥ 3, xn ∈ V (D′), be a shortest path between x and D′

in UG(D). Let u ∈ V (D′) (w ∈ V (D′)) be some vertex which dominates
(is dominated by) xn in D′. Now, depending on the orientation of the edge
xn−2xn−1 in D, we conclude that xn−2 is adjacent to u or w, contradicting
the minimality of the path above. 	


A common method of proof relating to arc-locally semicomplete digraphs
is to show that the considered arc-locally semicomplete digraph either has
some desired property, or it is semicomplete or semicomplete bipartite, re-
spectively. The following lemma, which Bang-Jensen [13] derived from Lemma
11.8.1, is particularly useful.

Lemma 11.8.2 ([13]) Let D be a connected, non-strong arc-locally semicom-
plete digraph. If every vertex is on some cycle, then D is semicomplete or
semicomplete bipartite.

Combining Lemma 11.8.2 with the following one, Bang-Jensen [13] pro-
vided a characterization of Hamiltonian arc-locally semicomplete digraphs.

Lemma 11.8.3 ([13]) Every strong arc-locally semicomplete digraph D hav-
ing two disjoint cycles covering V (D) is Hamiltonian.

Theorem 11.8.4 ([13]) A strong arc-locally semicomplete digraph D has a
Hamiltonian cycle if and only if it has a directed cycle factor.
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Proof: One direction is clear, so suppose D is a strong arc-local tournament
which has a directed cycle factor. We prove by induction on its order n that
D is Hamiltonian. The cases n = 3, 4, 5 are trivial, so we proceed to the
induction step assuming n ≥ 6. Let C1, . . . , Ck, k ≥ 1, be a directed cycle
factor of D chosen such that k is minimum. We claim that k = 1, in which
case we are done. So suppose that k ≥ 2. By Lemma 11.8.3 we must have
k ≥ 3. Now it follows, from the induction hypothesis and the minimality of
k, that no proper subset of C1, . . . , Ck can induce a strong digraph. Thus if
we delete the vertices of Ci for any 1 ≤ i ≤ k, the remaining digraph D − Ci

is a non-strong arc-locally semicomplete digraph in which each vertex lies
on a cycle and hence, by Lemma 11.8.2, it is semicomplete or semicomplete
bipartite. From this and the fact that no proper subset of C1, . . . , Ck can
induce a strong digraph, we conclude that k = 3, and that there is no arc
from Ci+1 to Ci for i = 1, 2, 3, indices modulo 3. Now it is easy to see that
D has a Hamiltonian cycle, contradicting the choice of C1, . . . , Ck. 	


Moreover, Bang-Jensen [13] proved that the problem of deciding the exis-
tence of (and finding) a Hamiltonian cycle can be solved in polynomial time.
Corresponding complexity results, based on the following theorem, also hold
for Hamiltonian paths.

Theorem 11.8.5 ([13]) A connected arc-locally semicomplete digraph D has
a Hamiltonian path if and only if it has a path P (where we allow V (P ) = ∅
or V (P ) = V (D)) such that D − V (P ) has a directed cycle factor.

For a characterization of strong arc-locally semicomplete digraphs, we
need the following additional definitions. Let E1, . . . , Ek be k disjoint sets of
independent vertices, then �Ck[E1, . . . , Ek] is the digraph obtained by substi-
tuting the vertex xi for the vertex set Ei in a k-cycle �Ck = x1 . . . xkx1. In
other words, V (�Ck[E1, . . . , Ek]) = E1 ∪ . . . ∪ Ek and

xy ∈ A(�Ck[E1, . . . , Ek]) ⇔ x ∈ Ei and y ∈ Ei+1(modulo k)

for some i ∈ {1, . . . k} (see Figure 11.10(a)). We call �Ck[E1, . . . , Ek] an ex-
tended cycle. Furthermore, for an integer n ≥ 4, let Fn be the digraph on
the vertex set {u, v, x1, . . . , xn−2} and the arc set {uv, vu} ∪ {xiu, vxi | 1 ≤
i ≤ n − 2} (see Figure 11.10(b)).
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(a) Extended C4.

x1

x2

x3

u v

(b) F5

Figure 11.10 Example of an extended cycle and an Fn digraph.

Galeana-Sánchez and Goldfeder [65, 74] and, independently, Wang and
Wang [158] completed a previously deficient characterization of strong arc-
locally semicomplete digraphs due to Bang-Jensen [15].

Theorem 11.8.6 ([65, 74, 158]) Let D be a strong arc-locally semicomplete
digraph, then D is either semicomplete, semicomplete bipartite, an extended
cycle or isomorphic to Fn for some n ≥ 4.

For the following complete characterization of arc-locally semicomplete
digraphs due to Galeana-Sánchez and Goldfeder [66] we note that the concept
of extended cycles is easily transferable to paths Pk = x1 . . . xk and transitive
tournaments TTk on k vertices x1, . . . , xk such that xi → xj if and only if
1 ≤ i < j ≤ k. Furthermore, we may want to substitute a vertex xi by a
digraph Di instead of a set of independent vertices Ei. �Ck[D1, . . . , Dk], for
example, is obtained from the digraph �Ck[V (D1) ∪ . . . ∪ V (Dk)] by adding
all arcs of A(D1) ∪ . . . ∪ A(Dk).

Theorem 11.8.7 ([66]) Let D be a connected digraph. Then D is arc-locally
semicomplete if and only if it is one of the following:

(1) a subdigraph of an extended P2,
(2) P3[E1,D

′, E1], where D′ is a semicomplete digraph,
(3) TT3[E1, En, E1], for some positive integer n,
(4) Fn for some n ≥ 4,
(5) an extended path or an extended cycle,
(6) a semicomplete digraph, or
(7) semicomplete bipartite digraph.

Using Theorem 11.8.7, Arroyo and Galeana-Sánchez [10] verified the Di-
rected Path Partition Conjecture for arc-locally semicomplete digraphs.

Theorem 11.8.8 ([10]) Let D be an arc-locally semicomplete digraph. If
D contains no path with more than λ vertices, then, for every pair a, b of
positive integers with λ = a+ b, there exists a partition (A,B) of V (D) such
that no path in D〈A〉 (D〈B〉, respectively) has more than a (b, respectively)
vertices.
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One particular instance of the Directed Path Partition Conjecture due
to Laborde, Payan and Xuong [106] states that every digraph contains
a maximal independent set that intersects every longest path. Galeana-
Sánchez and Gómez [68] proved a stronger result for arc-locally semicom-
plete digraphs concerned with a generalization of longest paths. A path
P = x1 . . . xk is non-augmentable if P cannot be expanded to a path
Q = x1 . . . xiy1 . . . y�xi+1 . . . xk, 0 ≤ i ≤ k.

Theorem 11.8.9 ([68]) Let D be an arc-locally semicomplete digraph. If
δ+(D) > 0, then every maximal independent set intersects every non-
augmentable path in D.

Furthermore, Galeana-Sánchez and Gómez [68] constructed an infinite
family of arc-locally semicomplete digraphs containing a maximal indepen-
dent set that does not intersect at least one non-augmentable path. Thus,
the degree condition is necessary. For the general case, they found that there
is at least one maximal independent set that intersects a particular subset
of non-augmentable paths, a result that was extended by Wang and Wang
[157].

Theorem 11.8.10 ([157]) Let D be an arc-locally semicomplete digraph. Then
there exists a maximal independent set intersecting every non-augmentable
path in D.

Bang-Jensen and Manoussakis [20] considered a somewhat complemen-
tary problem. Instead of a set of vertices intersecting a prescribed set of
paths, they were interested in a cycle intersecting a prescribed set of vertices.
Combining their result, which is for semicomplete bipartite digraphs, and
Theorem 11.8.7 one obtains the following.

Theorem 11.8.11 ([20]) Every k-strong arc-locally semicomplete digraph
has a cycle through any set of k given vertices.

In [80], Häggkvist and Manoussakis gave examples of (k − 1)-connected
bipartite tournaments with no cycle through some set of k vertices, proving
Theorem 11.8.11 best possible.

In contrast to locally semicomplete digraphs (cf. Proposition 6.2.4), arc-
locally semicomplete digraphs are not necessarily path-mergeable. However,
Bang-Jensen [14] gave a sufficient condition for an arc-locally semicomplete
digraph to be path-mergeable. A digraph is 2-path-mergeable, if, for every
pair of vertices x and y and every pair of internally disjoint (x, y)-paths P
and P ′ of length at most 2, there is an (x, y)-path P ∗ such that V (P ∗) =
V (P ) ∪ V (P ′).

Proposition 11.8.12 ([14]) Every 2-path-mergeable arc-locally semicomplete
digraph is path-mergeable.
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A conjecture proposed by Berge and Duchet [25] stating that a graph is
perfect, if and only if any normal biorientation is kernel-perfect (where the
“only if” part has since been proven by Boros and Gurvich [31] and the “if”
part is implied by the Strong Perfect Graph Theorem [32]), inspired Galeana-
Sánchez [64] to investigate kernel-perfectness of arc-locally semicomplete di-
graphs and the relation to perfectness of their underlying graphs.

Adapted from the definition of perfect graphs, a digraph D is called
kernel-perfect if every induced subdigraph D′ contains a kernel, i.e. an
independent vertex set N ⊆ V (D′) such that, for every u ∈ V (D′) \ N , there
is a v ∈ N such that uv ∈ A(D′). A digraph is critical kernel-imperfect if
it is not kernel-perfect, but every induced subdigraph is.

Using the following additional notation, Galeana-Sánchez [64] character-
ized kernel-perfect arc-locally semicomplete digraphs. A pseudodiagonal of
a cycle C is an arc whose initial and terminal vertices belong to V (C), but
itself is not contained in A(C). A digraph is called odd-chorded if every
cycle of odd length has at least one pseudodiagonal. Furthermore, we call a
digraph normal if every semicomplete subdigraph contains a vertex that is
a kernel.

Theorem 11.8.13 ([64]) Let D be an arc-locally semicomplete digraph. Then,
D is a kernel-perfect digraph if and only if D is a normal odd-chorded digraph.

Note that the proof of Theorem 11.8.13 is based on an incomplete charac-
terization of arc-locally semicomplete digraphs, but the missing case is easily
added and thus, the result and those based on it still hold. As a corollary,
Galeana-Sánchez [64] verified a conjecture due to Meyniel [57], although dis-
proven for general digraphs, for arc-locally semicomplete digraphs.

Corollary 11.8.14 ([64]) Let D be an arc-locally semicomplete digraph. If
each odd cycle has at least two pseudodiagonals, then D is a kernel-perfect
digraph.

Furthermore, Galeana-Sánchez [64] found that critical kernel-imperfect
arc-locally semicomplete digraphs have a very specific structure.

Theorem 11.8.15 ([64]) Let D be an arc-locally semicomplete digraph. Then,
D is critical kernel-imperfect if and only if D ∼= C2n+1, n ≥ 1 or D ∼=
Cn[1,±2,±3, . . . ,±�n/2�], n ≥ 4, where Cn[j1, . . . , jk] is the digraph on the
vertex set {0, . . . , n − 1} and the arc set {u, v | u − v = js mod n for s =
1, . . . , k}.

The following result of Galeana-Sánchez [64], as a corollary, implies a
strong relation between kernel-perfectness of arc-locally semicomplete di-
graphs and perfectness of their underlying graphs. In fact, kernel-perfectness
even implies strong perfectness, that is to say, every induced subgraph G′

contains an independent vertex set which meets every maximal clique of G′.
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Theorem 11.8.16 ([64]) Let D be an arc-locally semicomplete digraph. If N
is a kernel of D, then N is an independent set of UG(D) which meets every
maximal clique of UG(D).

Corollary 11.8.17 ([64]) Let D be an arc-locally semicomplete digraph. If
D is a kernel-perfect digraph, then UG(D) is strongly perfect.

Galeana-Sánchez [64] was able to extend the result to the following char-
acterization.

Theorem 11.8.18 ([64]) Let D be an arc-locally semicomplete digraph.

(i) D is a kernel-perfect digraph if and only if UG(D) is a strongly perfect
graph.

(ii) D is a critical kernel-imperfect digraph if and only if UG(D) is a critically
imperfect graph.

Building on this result, for underlying graphs of normal arc-locally semi-
complete digraphs, Galeana-Sánchez [64] proved a variation of the Strong
Perfect Graph Theorem (cf. Section 11.7).

Theorem 11.8.19 ([64]) Let D be a normal arc-locally semicomplete di-
graph. Then UG(D) is a strongly perfect graph if and only if it contains
no induced subgraph to C2n+1, for n ≥ 2.

Unlike underlying graphs of line digraphs (cf. Section 11.2.6), those of
arc-locally semicomplete digraphs can be recognized in polynomial time, as
Bang-Jensen [13] showed by reducing the problem to 2-SAT.

11.9 Hi-Free Digraphs

Just as locally semicomplete and quasi-transitive digraphs can be charac-
terized by forbidden induced subdigraphs, so can arc-locally semicomplete
digraphs, as Bang-Jensen [15] noted. Let H denote the digraphs on 4 vertices
whose underlying graphs contain two non-adjacent vertices x and y that are
connected by a path P = xuvy of length 3. We then distinguish four subsets
based on the possible orientations of the path P . Let H1 be those digraphs
where P is oriented x → u ← v ← y. H2 are the digraphs where P is oriented
x ← u → v → y. The subset H3 contains exactly those digraphs where P
is oriented x → u → v → y. And finally, let H4 be the digraphs where P is
oriented x → u ← v → y.
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(a) H1 (b) H2 (c) H3 (d) H4

Figure 11.11 Substructures defining Hi digraphs. The dotted arc with a cross
indicates that the two vertices are not adjacent.

Now arc-locally semicomplete digraphs are exactly the {H1,H2}-free di-
graphs, i.e. those which do not contain any induced subdigraph from H1

or H2. H1-free (H2-free, respectively) digraphs were dubbed arc-locally
in-semicomplete (arc-locally out-semicomplete, respectively) digraphs
by Wang and Wang [158]. H3-free digraphs are also known as 3-quasi-
transitive (see, e.g., [89] or Chapter 8) or quasi-arc-transitive (see, e.g.,
[158]) digraphs and H4-free digraphs are sometimes called quasi-antiarc-
transitive (see, e.g., [158]).

In the introductory paper [15], Bang-Jensen conjectured that Theorem
11.8.4 also holds for Hi-free digraphs, i = 1, . . . , 4, a conjecture that was the
main motivator for further work on Hi-free digraphs and that has since been
verified, as we will see in the remainder of this section.

Since an H2-free digraph is the converse of an H1-free digraph, we will
limit our considerations to H1-free digraphs and only remark that analogous
results obviously hold for H2-free digraphs. Wang and Wang [158] extended
several structural results on arc-locally semicomplete digraphs to H1-free
digraphs aiming at a generalization of Theorem 11.8.6. For their characteri-
zation of strong H1-free digraphs, we need to define another class of digraphs.

A T-digraph is a strong digraph D = (V,A) whose vertex set has a
partition (called a T-partition) (V1, V2, V3, V4) such that

(i) |V2| = 1 and one of V3 or V4 is permitted to be empty,
(ii) D4 := D〈V4〉 is semicomplete,
(iii) Amin := A(D4) ∪ V1 × V2 ∪ V2 × V3 ∪ (V3 ∪ V4) × V1 ∪ V4 × V3 ⊆ A,
(iv) A ⊂ Amin ∪ V4 × V2 ∪ V2 × (V1 ∪ V4), and
(v) every vertex of V2 is adjacent to every vertex of V1 ∪ V4.

Note that Fn, n ≥ 4 (cf. Theorem 11.8.6), is a T-digraph with T-partition
({u}, {v}, {x1, . . . , xn−2}, ∅) and the converse of a T-digraph. Now we may
give the characterization.

Theorem 11.9.1 ([158]) Let D be a strong H1-free digraph. Then D is either
semicomplete, semicomplete bipartite, an extended cycle or a T-digraph.

So, by Theorem 11.8.6, except for T-digraphs, strong H1-free digraphs
are arc-locally semicomplete digraphs, which implies the following corollary.
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Corollary 11.9.2 ([158]) Let D be a 2-strong H1-free digraph. Then D is an
arc-locally semicomplete digraph.

Furthermore, Wang and Wang [158] used Theorem 11.9.1 to verify Bang-
Jensen’s [15] conjecture stating that Theorem 11.8.4 also holds for H1-free
digraphs.

Theorem 11.9.3 ([158]) A strong H1-free digraph has a Hamiltonian cycle
if and only if it has a directed cycle factor.

Theorem 11.9.1 also implies that the Directed Path Partition Conjecture
is true for strong H1-free digraphs, as Arroyo and Galeana-Sánchez [10] noted.

Theorem 11.9.4 ([10]) Let D be a strong H1-free digraph. If D contains no
path with more than λ vertices, then, for every pair a, b of positive integers
with λ = a + b, there exists a partition (A,B) of V (D) such that no path in
D〈A〉 (D〈B〉, respectively) has more than a (b, respectively) vertices.

Finally, Wang and Wang [158] proved Theorem 11.8.10 actually not only
for arc-locally semicomplete digraphs, but for the larger class of H1-free di-
graphs.

Theorem 11.9.5 ([157]) Let D be an H1-free digraph. Then there exists a
maximal independent set intersecting every non-augmentable path in D.

For their results (and others) on H3-free digraphs, also known as 3-quasi-
transitive digraphs, we refer to Chapter 8 and therefore turn directly to H4-
free digraphs, whose structure seems much more elaborate than those of H1-,
H2- and H3-free digraphs.

Galeana-Sánchez and Goldfeder [67] and, independently, Wang [155]
proved Bang-Jensen’s [15] conjecture for H4-free digraphs.

Theorem 11.9.6 ([67, 155]) A strong H4-free digraph has a Hamiltonian
cycle if and only if it has a directed cycle factor.

For strong Hi-free digraphs, i = 1, 2, 3, the corresponding theorems were
derived from structural results implying a close relation to semicomplete
and semicomplete bipartite digraphs. The lack of such results for H4-free
digraphs, particularly of a characterization similar to Theorem 11.9.1, made
Galeana-Sánchez and Goldfeder [67] prove Theorem 11.9.6 directly via alge-
braic methods. Wang [155] on the other hand proved the necessary structure
combinatorially.

As a consequence of Theorem 11.9.6, Galeana-Sánchez and Goldfeder [67]
obtained that Theorem 11.8.5 also holds for H4-free digraphs.

Theorem 11.9.7 ([67]) A connected H4-free digraph D has a Hamiltonian
path if and only if it has a path P (where we allow V (P ) = ∅ or V (P ) =
V (D)) such that D − V (P ) has a directed cycle factor.
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While the Directed Path Partition Conjecture remains open for H4-free
digraphs, Galeana-Sánchez and Gómez [68] proved that, in H4-free digraphs,
not only does a maximal independent set of vertices intersecting every non-
augmentable path exist (cf. Theorem 11.8.10), but every maximal indepen-
dent set has this property.

Theorem 11.9.8 ([68]) Let D be an H4-free digraph. Then every maximal
independent set intersects every non-augmentable path in D.

As Galeana-Sánchez and Gómez [68] noted, the Heuchenne condition (cf.
Theorem 11.2.3 (iii)) implies x → y for every oriented path x → u ← v → y.
Thus, H4-free digraphs are a generalization of line digraphs (without loops).

Corollary 11.9.9 ([68]) Let D be a line digraph. Then every maximal inde-
pendent set intersects every non-augmentable path in D.

Wang [156] considered a cycle analogue of Theorem 11.9.8. To account
for the missing structure of H4-free digraphs, Wang restricted his studies to
a subclass mirroring line digraphs. An H4-free digraph is called an H∗

4-free
digraph if every oriented path x → u ← v → y implies y → x. Wang then
proceeded to show that these digraphs, under certain conditions, again, are
closely related to semicomplete and semicomplete bipartite digraphs.

Theorem 11.9.10 ([156]) Let D be a strong H∗
4-free digraph. If D has a

directed cycle factor C1, . . . , Ct, t ≥ 2, then D is either semicomplete, semi-
complete bipartite or isomorphic to D∗ (see Figure 11.12).

Figure 11.12 Special H∗
4-free digraph D∗.

Finally, Wang’s [156] variation of Theorem 11.9.8 reads as follows.

Theorem 11.9.11 ([156]) Let D be a strong H∗
4-free digraph. Then there

exists a maximal independent set intersecting every longest cycle in D.



11. Miscellaneous Digraph Classes 567

References

1. M. Aigner. On the linegraph of a directed graph. Mathematische Zeitschrift,
102(1):56–61, 1967.

2. B. Alspach and T.D. Parsons. Isomorphism of circulant graphs and digraphs.
Discrete Mathematics, 25(2):97–108, 1979.

3. S.D. Andres. Asymmetric directed graph coloring games. Discrete Math.,
309(18):5799–5802, 2009.

4. S.D. Andres. Directed defective asymmetric graph coloring games. Discrete
Appl. Math., 158(4):251–260, 2010.

5. S.D. Andres. Game-perfect digraphs. Math. Methods Oper. Res., 76(3):321–
341, 2012.

6. S.D. Andres. Lightness of digraphs in surfaces and directed game chromatic
number. Discrete Math., 309(11):3564–3579, 2009.

7. S.D. Andres. On characterizing game-perfect graphs by forbidden induced
subgraphs. Contributions to Discrete Mathematics, 7(1), 2012.

8. S.D. Andres. On kernels in game-perfect digraphs and a characterization of
weakly game-perfect digraphs. Technical report feU-dmo043.17, Fakultät für
Mathematik und Informatik, Fernuniversität Hagen, Germany, 2017.

9. S.D. Andres and W. Hochstättler. Perfect digraphs. J. Graph Theory,
79(1):21–29, 2015.

10. A. Arroyo and H. Galeana-Sánchez. The path partition conjecture is true for
some generalizations of tournaments. Discrete Math., 313(3):293–300, 2013.

11. L. Baffi and R. Petreschi. Parallel maximal matching on minimal vertex series
parallel digraphs. In Algorithms, concurrency and knowledge (Pathumthani,
1995), pages 34–47. Springer-Verlag, 1995.

12. C. Balbuena and M. Guevara. Kernels and partial line digraphs. Appl. Math.
Lett., 23(10):1218–1220, 2010.

13. J. Bang-Jensen. Arc-local tournament digraphs: a generalization of tourna-
ments and bipartite tournaments. Technical report 2, Department of Mathe-
matics and Computer Science, Odense University, Denmark, 1993.

14. J. Bang-Jensen. Digraphs with the path-merging property. J. Graph Theory,
20(2):255–265, 1995.

15. J. Bang-Jensen. The structure of strong arc-locally semicomplete digraphs.
Discrete Math., 283(1-3):1–6, 2004.

16. J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications.
Springer-Verlag, London, 2nd edition, 2009.

17. J. Bang-Jensen and G. Gutin. Paths and cycles in extended and decomposable
digraphs. Discrete Math., 164(1-3):5–19, 1997.

18. J. Bang-Jensen, F. Havet, and N. Trotignon. Finding an induced subdivision
of a digraph. Theor. Comput. Sci., 443:10–24, 2012.

19. J. Bang-Jensen and A. Maddaloni. Arc-disjoint paths in decomposable di-
graphs. J. Graph Theory, 77(2):89–110, 2014.

20. J. Bang-Jensen and Y. Manoussakis. Cycles through k vertices in bipartite
tournaments. Combinatorica, 14(2):243–246, 1994.

21. D. Bauer, F. Boesch, C. Suffel, and R. Tindell. Connectivity extremal problems
and the design of reliable probabilistic networks. Theory and Application of
Graphs, pages 89–98, 1981.

22. D. Bechet, P. De Groote, and C. Retoré. A complete axiomatisation for the in-
clusion of series-parallel partial orders. In International Conference on Rewrit-
ing Techniques and Applications, pages 230–240. Springer, 1997.

23. L.W. Beineke and C.M. Zamfirescu. Connection digraphs and second-order
line digraphs. Discrete Math., 39:237–254, 1982.



568 Y. Guo and M. Surmacs

24. C. Berge. Färbung von Graphen, deren sämtliche bzw. deren ungerade
Kreise starr sind. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-
Natur. Reihe, 10(114):88, 1961.

25. C. Berge and P. Duchet. Recent problems and results about kernels in directed
graphs. Discrete Math., 86(1-3):27–31, 1990.

26. J.-C. Bermond and P. Fraigniaud. Broadcasting and gossiping in de Bruijn
networks. SIAM J. Comput., 23(1):212–225, 1994.

27. J.-C. Bermond, N. Homobono, and C. Peyrat. Large fault-tolerant intercon-
nection networks. Graphs Combin., 5(1):107–123, 1989.

28. J.-C. Bermond, X. Munos, and A. Marchetti-Spaccamela. A Broadcasting
Protocol in Line Digraphs. J. Parallel Distributed Comput., 61(8):1013–1032,
2001.

29. P. Bertolazzi, R.F. Cohen, G. Di Battista, R. Tamassia, and I.G. Tollis. How
to draw a series-parallel digraph. Int. J. Comput. Geom. Appl., 4(4):385–402,
1994.

30. H. Bidkhori and S. Kishore. A bijective proof of a theorem of Knuth. Combin.
Prob. Comput., 20(1):11–25, 2011.

31. E. Boros and V. Gurvich. Perfect graphs are kernel-solvable. Discrete Math.,
159:35–55, 1996.

32. E. Boros and V. Gurvich. Perfect graphs, kernels, and cores of cooperative
games. Discrete Math., 306(19):2336–2354, 2006.

33. A. Bretscher, D.G. Corneil, M. Habib, and C. Paul. A simple linear time
lexbfs cograph recognition algorithm. SIAM Journal on Discrete Mathematics,
22(4):1277–1296, 2008.

34. W.G. Bridges and S. Toueg. On the impossibility of directed Moore graphs.
J. Combin. Theory Ser. B, 29:339–341, 1980.

35. D.E. Brown, A.H. Busch, and J.R. Lundgren. Interval tournaments. J. Graph
Theory, 56:72–81, 2007.

36. F. Cao, D.-Z. Du, D.F. Hsu, L. Hwang, and W. Wu. Super line-connectivity
of consecutive-d digraphs. Discrete Math., 183(1):27–38, 1998.

37. W.H. Chan, W.C. Shiu, P.K. Sun, and X. Zhu. The strong game colouring
number of directed graphs. Discrete Math., 313(10):1070–1077, 2013.

38. X. Cheng, X. Du, M. Min, H.Q. Ngo, L. Ruan, J. Sun, and W. Wu. Super link-
connectivity of iterated line digraphs. Theor. Comput. Sci., 304(1):461–469,
2003.

39. M. Chudnovsky, G. Cornuéjols, X. Liu, P.D. Seymour, and K. Vušković. Rec-
ognizing Berge graphs. Combinatorica, 25(2):143–186, 2005.

40. M. Chudnovsky, N. Robertson, P.D. Seymour, and R. Thomas. The strong
perfect graph theorem. Annals Math., pages 51–229, 2006.

41. V. Chvátal and C. Ebenegger. A note on line digraphs and the directed max-
cut problem. Discrete Appl. Math., 29(2):165–170, 1990.

42. D.G. Corneil, Y. Perl, and L.K. Stewart. A linear recognition algorithm for
cographs. SIAM J. Comput., 14(4):926–934, 1985.

43. C. Crespelle and C. Paul. Fully dynamic recognition algorithm and certificate
for directed cographs. Discrete Appl. Math., 154(12):1722–1741, 2006.

44. S.J. Curran and J.A. Gallian. Hamiltonian cycles and paths in Cayley graphs
and digraphs – a survey. Discrete Mathematics, 156(1-3):1–18, 1996.

45. S. Das, M. Francis, P. Hell, and J. Huang. Recognition and characteriza-
tion of chronological interval digraphs. the electronic journal of combinatorics,
20(3):P5, 2013.

46. S. Das and M. Sen. An interval digraph in relation to its associated bipartite
graph. Discrete Math., 122(1-3):113–136, 1993.



11. Miscellaneous Digraph Classes 569

47. S. Dasgupta. On characterizations and structure of interval digraphs and unit
probe interval graphs. PhD thesis, University of Colorado, 2012.

48. N.G. de Bruijn. A combinatorial problem. Ned. Akad. Wet. Proc., 49:758–764,
1946.

49. D.-Z. Du, F. Cao, and D.F. Hsu. De Bruijn digraphs, and Kautz digraphs,
and their generalizations. In D.-Z. Du and D.F. Hsu, editors, Combinatorial
network theory, pages 65–105. Kluwer, Dordrecht, 1996.

50. D.-Z. Du, D.F. Hsu, and F.K. Hwang. Hamiltonian property of d-consecutive
digraphs. Math. Comput. Modeling, 17:61–63, 1993.

51. D.-Z. Du, D.F. Hsu, and Y.-D. Lyuu. Corrigendum to ’Line digraph itera-
tions and connectivity analysis of de Bruijn and Kautz Graphs’. IEEE Trans.
Computers, 45(7):863, 1996.

52. D.-Z. Du, D.F. Hsu, and Y.-D. Lyuu. On the diameter vulnerability of Kautz
digraphs. Discrete Math., 151(1):81–85, 1996.

53. D.-Z. Du, D.F. Hsu, H.Q. Ngo, and G.W. Peck. On connectivity of consecutive-
d digraphs. Discrete Math., 257(2):371–384, 2002.

54. D.-Z. Du, D.F. Hsu, and G.W. Peck. Connectivity of consecutive-d digraphs.
Discrete Appl. Math., 37:169–177, 1992.

55. D.-Z. Du, Y.-D. Lyuu, and D.F. Hsu. Line digraph iterations and connectivity
analysis of de Bruijn and Kautz graphs. IEEE Trans. Computers, 42(5):612–
616, 1993.

56. D.Z. Du, Y.-D. Lyuu, and D.F. Hsu. Line digraph iterations and the spread
concept—with application to graph theory, fault tolerance, and routing. In
WG 1991: Graph-theoretic concepts in computer science, volume 570 of Lect.
Notes Comput. Sci., pages 169–179. Springer, 1992.

57. P. Duchet and H. Meyniel. A note on kernel-critical graphs. Discrete Math.,
33(1):103–105, 1981.

58. D. Duffus, H. Lefmann, and V. Rödl. Shift graphs and lower bounds on Ram-
sey numbers rk(l; r). Discrete Math., 137(1):177–187, 1995.

59. A. Ehrenfeucht and G. Rozenberg. Primitivity is hereditary for 2-structures.
Theor. Comput. Sci., 70(3):343–358, 1990.

60. J. Fàbrega and M.A. Fiol. Maximally connected digraphs. J. Graph Theory,
13(6):657–668, 1989.

61. J. Fabrega, M.A. Fiol, J.L.A. Yebra, and I. Alegre. Connectivity and reliable
routing algorithms in line digraphs. In 3rd Int. Symp. Applied Informatics,
pages 45–50, 1985.

62. T. Feder, P. Hell, J. Huang, and A. Rafiey. Adjusted interval digraphs. Elec.
Notes Discrete Math., 32:83–91, 2009.

63. M.A. Fiol, J.L.A. Yebra, and I. Alegre. Line digraph iteration and the (d, k)
digraph problem. IEEE Trans. Comput., C-33:400–403, 1984.

64. H. Galeana-Sánchez. Kernels and perfectness in arc-local tournament di-
graphs. Discrete Math., 306(19-20):2473–2480, 2006.

65. H. Galeana-Sánchez and I.A. Goldfeder. A classification of arc-locally semi-
complete digraphs. Elec. Notes Discrete Math., 34:59–61, 2009.

66. H. Galeana-Sánchez and I.A. Goldfeder. A classification of all arc-locally semi-
complete digraphs. Discrete Math., 312(11):1883–1891, 2012.

67. H. Galeana-Sánchez and I.A. Goldfeder. Hamiltonian cycles in a generalization
of bipartite tournaments with a cycle factor. Discrete Math., 315:135–143,
2014.

68. H. Galeana-Sánchez and R. Gómez. Independent sets and non-augmentable
paths in generalizations of tournaments. Discrete Math., 308(12):2460–2472,
2008.



570 Y. Guo and M. Surmacs

69. H. Galeana-Sánchez and R. Gómez. (k,l)-kernels,(k,l)-semikernels, k-Grundy
functions and duality for state splittings. Discuss. Math. Graph Theory,
27(2):359–371, 2007.

70. H. Galeana-Sánchez and X. Li. Semikernels and (k, l)-kernels in digraphs.
SIAM J. Discrete Math., 11(2):340–346, 1998.

71. H. Galeana-Sánchez, L.P. Ramírez, and H.A. Rincón-Mejía. Semikernels, quasi
kernels, and Grundy functions in the line digraph. SIAM J. Discrete Math.,
4(1):80–83, 1991.

72. F. Gavril. Some NP-complete problems on graphs. In 11th Conf. on Informa-
tion Sciences and Systems, pages 91–95, 1977.

73. Z. Ge and S.L. Hakimi. Disjoint rooted spanning trees with small depths in
deBruijn and Kautz graphs. SIAM J. Comput., 26(1):79–92, 1997.

74. I.A. Goldfeder. Una clasificación de las digráficas localmente semicompletas
en flechas. Undergraduate Thesis, Facultad de Ciencias, Universidad Nacional
Autónoma de México, 2008.

75. M. Grötschel, L. Lovász, and A. Schrijver. Polynomial algorithms for perfect
graphs. North-Holland Mathematics Studies, 88:325–356, 1984.

76. M. Guevara, C. Balbuena, and H. Galeana-Sánchez. Relation between number
of kernels (and generalizations) of a digraph and its partial line digraphs. Elec.
Notes Discrete Math., 54:265–269, 2016.

77. Y. Guo and M. Surmacs. Pancyclic arcs in Hamiltonian cycles of hypertour-
naments. J. Korean Math. Soc, 51(6):1141–1154, 2014.

78. Y. Guo and M. Surmacs. Pancyclic out-arcs of a vertex in a hypertournament.
Australas. J. Combinatorics, 61(3):227–250, 2015.

79. G. Gutin and A. Yeo. Hamiltonian paths and cycles in hypertournaments. J.
Graph Theory, 25(4):277–286, 1997.

80. R. Häggkvist and Y. Manoussakis. Cycles and paths in bipartite tournaments
with spanning configurations. Combinatorica, 9(1):33–38, 1989.

81. Y.O. Hamidoune. On the connectivity of Cayley digraphs. European Journal
of Combinatorics, 5(4):309–312, 1984.

82. F. Harary and R.Z. Norman. Some properties of line digraphs. Rend. Circ.
Mat. Palermo, 9(2):161–168, 1960.

83. M. Harminc. Solutions and kernels of a directed graph. Mathematica Slovaca,
32(3):263–267, 1982.

84. C.C. Harner and R.C. Entringer. Arc colorings of digraphs. J. Combin.Theory
Ser. B, 13(3):219–225, 1972.

85. T. Hasunuma and H. Nagamochi. Independent spanning trees with small
depths in iterated line digraphs. Discrete Appl. Math., 110(2):189–211, 2001.

86. T. Hasunuma and M. Otani. On the (h, k)-domination numbers of iterated
line digraphs. Discrete Appl. Math., 160(12):1859–1863, 2012.

87. R.L. Hemminger. Line digraphs. In Graph Theory and Applications, pages
149–163. Springer, 1972.

88. R.L. Hemminger and L.W. Beineke. Line graphs and line digraphs. In L.W.
Beineke and R.J. Wilson, editors, Selected Topics in Graph Theory, pages
271–305. Academic Press, London, 1978.

89. C. Hernández-Cruz and H. Galeana-Sánchez. k-kernels in k-transitive and k-
quasi-transitive digraphs. Discrete Math., 312(16):2522–2530, 2012.

90. C. Heuchenne. Sur une certaine correspondance entre graphs. Bull. Soc. R.
Sci. Liége, 33:743–753, 1964.

91. A. Huck. Disproof of a conjecture about independent branchings in k-
connected directed graphs. J. Graph Theory, 20(2):235–239, 1995.

92. M. Imase and M. Itoh. Design for directed graphs with minimum diameter.
IEEE Trans. Comput., C-32:782–784, 1983.



11. Miscellaneous Digraph Classes 571

93. M. Imase and M. Itoh. Design to minimize a diameter on building block net-
works. IEEE Trans. Comput., C-30:439–443, 1981.

94. M. Imase, I. Soneoka, and K. Okada. A fault tolerant processor interconnection
network. Syst. Comput. Japan, 17:21–30, 1986.

95. M. Imase, I. Soneoka, and K. Okada. Connectivity of regular directed graphs
with small diameter. IEEE Trans. Comput., C-34:267–273, 1985.

96. M. Imori, M. Matsumoto, and H. Yamada. The line digraph of a regular and
pancircular digraph is also regular and pancircular. Graphs Combin., 4:235–
239, 1988.

97. H.A. Jung. On a class of posets and the corresponding comparability graphs.
Journal of Combinatorial Theory, Series B, 24(2):125–133, 1978.

98. R.M. Karp. Reducibility among combinatorial problems. In Complexity of
computer computations (Proc. Symp., IBM Thomas J. Watson Res. Center,
Yorktown Heights, N.Y., 1972), pages 85–103. Plenum, 1972.

99. W.H. Kautz. Bounds on directed (d,k) graphs. Theory of cellular logic net-
works and machines. AFCRL-68-0668 Final report, pages 20–28, 1968.

100. K.K. Kayibi, M.A. Khan, and S. Pirzada. Scores, inequalities and regular
hypertournaments. J. Math. Ineq. Appl., 15(2):343–351, 2012.

101. K.K. Kayibi, M.A. Khan, and S. Pirzada. Uniform sampling of k-
hypertournaments. Linear and Multilinear Algebra, 61(1):123–138, 2013.

102. K.K. Kayibi, M.A. Khan, S. Pirzada, and G. Zhou. On scores, losing scores and
total scores in hypertournaments. Elec. J. Graph Theory and Appl., 3(1):8–21,
2015.

103. D.E. Knuth. Oriented subtrees of an arc digraph. J. Combin. Theory, 3(4):309–
314, 1967.

104. Y. Koh and S. Ree. On k-hypertournament matrices. Linear algebra and its
applications, 373:183–195, 2003.

105. J. Krausz. Démonstration nouvelle d’une théorème de Whitney sur les réseaux.
Mat. Fiz. Lapok, 50(1):75–85, 1943.

106. J.M. Laborde, C. Payan, and N.H. Xuong. Independent sets and longest di-
rected paths in digraphs. Graphs and other combinatorial topics (Prague,
1982), 59:173–177, 1983.

107. E.L. Lawler. Sequencing jobs to minimize total weighted completion time sub-
ject to precedence constraints. Ann. Discrete Math., 2:75–90, 1978. Algorith-
mic aspects of combinatorics (Conf., Vancouver Island, B.C., 1976).

108. L. Levine. Sandpile groups and spanning trees of directed line graphs. J. Com-
bin. Theory Ser. A, 118(2):350–364, 2011.

109. H. Li, S. Li, Y. Guo, and M. Surmacs. On the vertex-pancyclicity of hyper-
tournaments. Discrete Appl. Math., 161(16):2749–2752, 2013.

110. H. Li, W. Ning, Y. Guo, and M. Lu. On pancyclic arcs in hypertournaments.
Discrete Appl. Math., 215:164–170, 2016.

111. R. Li, X. Zhang, S. Li, Q. Guo, and Y. Guo. The h-force set of a hypertour-
nament. Discrete Appl. Math., 169:168–175, 2014.

112. N. Lichiardopol. Independence number of iterated line digraphs. Discrete
Math., 293(1):185–193, 2005.

113. X. Liu and D.B. West. Line digraphs and coreflexive vertex sets. Discrete
Math., 188(1-3):269–277, 1998.

114. L. Lovász. A characterization of perfect graphs. J. Combin. Theory Ser. B,
13(2):95–98, 1972.

115. M. Lü and J.-M. Xu. Super connectivity of line graphs and digraphs. Acta
Mathematicae Applicatae Sinica, 22(1):43–48, 2006.

116. Q. Lu, E. Shan, and M. Zhao. (k,l)-kernels in line digraphs. J. Shanghai Uni-
versity (English Edition), 10(6):484–486, 2006.



572 Y. Guo and M. Surmacs

117. R.H. Möhring. Computationally tractable classes of ordered sets. In Algo-
rithms and order, pages 105–193. Springer, 1989.

118. R.H. Möhring and F.J. Radermacher. Substitution decomposition for discrete
structures and connections with combinatorial optimization. North-Holland
mathematics studies, 95:257–355, 1984.

119. C.L. Monma and J.B. Sidney. A general algorithm for optimal job sequencing
with series-parallel constraints. Math. Oper. Res., 4:215–224, 1977.

120. H. Müller. Recognizing interval digraphs and interval bigraphs in polynomial
time. Discrete Appl. Math., 78:189–205, 1997.

121. J. Nešetril and E. Sopena. On the oriented game chromatic number. Elec. J.
Combin., 8(2), 2001.

122. V. Neumann-Lara. The dichromatic number of a digraph. J. Combin. Theory
Ser. B., 33:265–270, 1982.

123. P. Ochem and A. Pinlou. Oriented vertex and arc colorings of partial 2-trees.
Elec. Notes Discrete Math., 29:195–199, 2007.

124. P. Ochem, A. Pinlou, and E. Sopena. On the oriented chromatic index of
oriented graphs. J. Graph Theory, 57(4):313–332, 2008.

125. J.B. Orlin. Line-digraphs, arborescences, and theorems of Tutte and Knuth.
J. Combin. Theory Ser. B, 25(2):187–198, 1978.

126. V. Petrovic and C. Thomassen. Edge-disjoint Hamiltonian cycles in hyper-
tournaments. J. Graph Theory, 51(1):49–52, 2006.

127. A. Pinlou. On oriented arc-coloring of subcubic graphs. Elec. J. Combina-
torics, 13(3):R69, 2006.

128. A. Pinlou and E. Sopena. Oriented vertex and arc colorings of outerplanar
graphs. Inform. Process. Lett., 100(3):97–104, 2006.

129. S. Poljak and V. Rödl. On the arc-chromatic number of a digraph. J. Combin.
Theory Ser. B, 31(2):190–198, 1981.

130. E. Prisner. Bicliques in graphs. II. Recognizing k-path graphs and underlying
graphs of line digraphs. In WG 1996: Graph-theoretic concepts in computer
science, volume 1335 of Lect. Notes Comput. Sci., pages 273–287. Springer,
1997.

131. E. Prisner. Line graphs and generalizations—a survey. Congr. Numer.,
116:193–229, 1996. Surveys in graph theory (San Francisco, 1995).

132. R.A. Rankin. A campanological problem in group theory. Math. Proc. Cam-
bridge Philosophical Soc., 44:17–25, 1948.

133. S.M. Reddy, J.G. Kuhl, S.H. Hosseini, and H. Lee. On digraphs with minimum
diameter and maximum connectivity. In 20th Annual Allerton Conference,
pages 1018–1026, 1982.

134. S. M. Reddy, D.K. Pradhan, and J. G. Kuhl. Directed graphs with minimal di-
ameter and maximal connectivity. Tech. Rep., School of Engineering, Oakland
University, 1980.

135. F. Rendl. Quadratic assignment problems on series-parallel digraphs. Z. Oper.
Res. Ser. A-B, 30(3):A161–A173, 1986.

136. C. Retoré. Pomset logic as a calculus of directed cographs. Technical Report
n3714, Unité de recherche INRIA Rennes, France, 1999.

137. P.I. Richards. Precedence constraints and arrow diagrams. SIAM Rev., 9:548–
553, 1967.

138. B.K. Sanyal and M.K. Sen. New characterization of digraphs represented by
intervals. J. Graph Theory, 22:297–303, 1996.

139. M. Sen, S. Das, A.B. Roy, and D.B. West. Interval digraphs: an analogue of
interval graphs. J. Graph Theory, 13(2):189–202, 1989.

140. M. Sen, P. Talukdar, and S. Das. Chronological orderings of interval digraphs.
Discrete Math., 306(14):1601–1609, 2006.



11. Miscellaneous Digraph Classes 573

141. M.K. Sen, B.K. Sanyal, and D.B. West. Representing digraphs using intervals
or circular arcs. Discrete Math., 147(1-3):235–245, 1995.

142. E. Shan, L. Kang, and Q. Lu. k-semikernels, k-quasikernels, k-kernels in di-
graphs and their line digraphs. Utilitas Math., 72:267–277, 2007.

143. T. Soneoka. Super edge-connectivity of dense digraphs and graphs. Discrete
Appl. Math., 37:511–523, 1992.

144. G. Steiner. A compact labeling scheme for series-parallel graphs. Discrete
Appl. Math., 11(3):281–297, 1985.

145. M. Surmacs. Regular hypertournaments and arc-pancyclicity. J. Graph The-
ory, 84:176–190, 2017.

146. M.M. Syslo. A new solvable case of the traveling salesman problem. Math.
Program., 4(1):347–348, 1973.

147. W.T. Tutte. The dissection of equilateral triangles into equilateral triangles.
Proc. Cambridge Philos. Soc., 44:463–482, 1948.

148. J. Valdes. Parsing flowcharts and series-parallel graphs. Technical Report
STAN-CS-78-682, Computer Science Department, Stanford University, Stan-
ford, Ca., 1978.

149. J. Valdes, R.E. Tarjan, and E.L. Lawler. The recognition of series parallel
digraphs. SIAM J. Comput., 11(2):298–313, 1982.

150. T. van Aardenne-Ehrenfest and N.G. de Bruijn. Circuits and trees in oriented
linear graphs. Simon Stevin, 28:203–217, 1951.

151. E.A. van Doorn. Connectivity of circulant digraphs. J. Graph Theory, 10(1):9–
14, 1986.

152. J.L. Villar. The underlying graph of a line digraph. Discrete Appl. Math.,
37:525–538, 1992.

153. J. von Neumann and O. Morgenstern. Theory of Games and Economic Be-
havior. Princeton University Press, Princeton, NJ, 1944.

154. C. Wang and G. Zhou. Note on the degree sequences of k-hypertournaments.
Discrete Math., 308(11):2292–2296, 2008.

155. R. Wang. A conjecture on 3-anti-quasi-transitive digraphs. Discrete Math.,
322:48–52, 2014.

156. R. Wang. Cycles in 3-anti-circulant digraphs. Australasian Journal of Combi-
natorics, 60(2):158–168, 2014.

157. S. Wang and R. Wang. Independent sets and non-augmentable paths in arc-
locally in-semicomplete digraphs and quasi-arc-transitive digraphs. Discrete
Math., 311(4):282–288, 2011.

158. S. Wang and R. Wang. The structure of strong arc-locally in-semicomplete
digraphs. Discrete Math., 309(23):6555–6562, 2009.

159. D.B. West. Short proofs for interval digraphs. Discrete Math., 178(1-3):287–
292, 1998.

160. D.S. Witte. On Hamiltonian circuits in Cayley diagrams. Discrete Mathemat-
ics, 38(1):99–108, 1982.

161. D. Witte and J.A. Gallian. A survey: Hamiltonian cycles in Cayley graphs.
Discrete Mathematics, 51(3):293–304, 1984.

162. W. Xiao and B. Parhami. Some mathematical properties of Cayley digraphs
with applications to interconnection network design. Intern. J. Comput.
Math., 82(5):521–528, 2005.

163. C. Xu, S. Zhang, B. Ning, and B. Li. A note on the number of spanning trees
of line digraphs. Discrete Math., 338(5):688–694, 2015.

164. M.-Y. Xu. Automorphism groups and isomorphisms of Cayley digraphs. Dis-
crete Mathematics, 182(1-3):309–319, 1998.

165. D. Yang and X. Zhu. Game colouring directed graphs. Elec. J. Combinatorics,
17(R11):1, 2010.



574 Y. Guo and M. Surmacs

166. J. Yang. Vertex-pancyclicity of hypertournaments. J. Graph Theory,
63(4):338–348, 2010.

167. Q.F. Yang, R.E. Burkard, E. Cela, and G.J. Woeginger. Hamiltonian cycles
in circulant digraphs with two stripes. Discrete Math., 176:233–254, 1997.

168. C.M.D. Zamfirescu. Transformations of digraphs viewed as intersection di-
graphs. In Convexity and Discrete Geometry Including Graph Theory, pages
27–35. Springer, 2016.

169. F. Zhang and G. Lin. On the de Bruijn-Good graphs. Acta Math. Sinica,
30(2):195–205, 1987.

170. H. Zhang, F. Zhang, and Q. Huang. On the number of spanning trees and
Eulerian tours in iterated line digraphs. Discrete Appl. Math., 73(1):59–67,
1997.

171. Z. Zhang, F. Liu, and J. Meng. Super-connected n-th iterated line digraphs.
Oper. Res. Transactions, 9(2005):35–39, 2005.

172. Z. Zhang and Y. Zhu. Restricted connectivity of line digraphs. J. Mathematical
Study, 43:107–113, 2010.

173. G. Zhou, T. Yao, and K. Zhang. On score sequences of k-hypertournaments.
European J. Combin., 21(8):993–1000, 2000.



12. Lexicographic Orientation Algorithms

Jing Huang

12.1 Introduction

Graph orientation, which provides a link between graphs and digraphs, is an
actively studied area in the theory of graphs and digraphs. One of the funda-
mental problems asks whether a given graph admits an orientation that sat-
isfies a prescribed property and to find such an orientation if it exists. A cele-
brated theorem of Robbins [34] which answers a question of this type states
that a graph has a strong orientation if and only if it is 2-edge-connected
(i.e., has no bridge). It is easy to check whether a graph is 2-edge-connected
and to obtain, using the depth-first search algorithm, a strong orientation of
a 2-edge-connected graph, cf. [35].

Which graphs have orientations in which the longest directed path has at
most k vertices? Answering this question, Gallai, Roy and Vitaver [13, 37, 47]
proved that a graph has such an orientation if and only if it is k-colourable.
The theorem nicely links orientations and colourings of graphs but it provides
little help in finding such orientations. This is due to the fact that the k-
colouring problem is NP-complete for each k ≥ 3, cf. [15].

Given a graph G, an orientation of G is a digraph D obtained from G by
replacing every edge uv of G with an arc (i.e., a directed edge that is either
u → v or v → u). Since graphs considered in this chapter are all simple (i.e.,
having no loops or multiple edges), the digraphs resulting from orientations
are oriented graphs. Let Π be a property of oriented graphs. We say that
a graph G is Π-orientable if it admits an orientation that has the property
Π. For a fixed property Π the Π-orientation problem is as follows.

Π-orientation problem
Input: A graph G.
Find: A Π-orientation of G or certify that G is not Π-orientable.
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For instance, an oriented graph D is transitive if for any three vertices
u, v, w, u → v and v → w imply u → w in D. Thus a graph is transitively
orientable if it admits an orientation that is a transitive oriented graph.
The transitive orientation problem asks whether a graph is transitively
orientable and to find a transitive orientation of the graph if it exists.

Transitively orientable graphs are also known as comparability graphs,
cf. [18]. Naturally connected to partially ordered sets, comparability graphs
are perfect (in Berge’s sense) and have been extensively studied, cf. [14, 16–
19, 33]. A classical result of Gallai [14] characterizes comparability graphs
by forbidden subgraphs (cf. [30] for the English translation). Gallai’s charac-
terization however does not immediately imply a polynomial time algorithm
for recognizing comparability graphs or finding transitive orientations. But
he proved that a graph is a comparability graph if and only if its knotting
graph (cf. [14]) is bipartite, and he also gave a procedure for constructing
knotting graphs which runs in polynomial time. It follows that comparability
graphs can be recognized in polynomial time. Polynomial time algorithms
for finding transitive orientations of comparability graphs have been given by
Ghouila-Houri [16], Habib, McConnel Paul and Viennot [21], McConnell and
Spinrad [32], and Pnueli, Lempel and Even [33].

In [22] Hell and Huang devised a very simple algorithm for determining
whether a graph G is a comparability graph and, if it is, finding a transitive
orientation of it. The algorithm first constructs the auxiliary graph G+ of
the input graph G. The auxiliary graph G+ is used to test whether G is a
comparability graph and to find, whenever possible, a transitive orientation
of G. To test whether G is a comparability graph, the algorithm proceeds
to find a 2-colouring of G+ using a lexicographic scheme. If the 2-colouring
scheme fails, G is not a comparability graph. Otherwise a 2-colouring of G+ is
obtained and the algorithm transforms the 2-colouring of G+ into a transitive
orientation of G. The 2-colourability of G+ alone is sufficient for G to be a
comparability graph. Using the lexicographic scheme to find a 2-colouring of
G+ is to guarantee that the orientation of G transformed from the 2-colouring
is transitive. The time complexity of this algorithm is O(mΔ) where m and
Δ are the number of edges and the maximum degree of the input graph.

The technique described above for recognizing comparability graphs and
obtaining transitive orientations is called the lexicographic orientation
method. The lexicographic orientation method has also been applied for
recognizing several other classes of graphs and finding desired orientations,
cf. [22]. An oriented graph D is called a local tournament (respectively,
locally transitive local tournament) if for every vertex v, the
in-neighbourhood and the out-neighbourhood of v each induces a tourna-
ment (respectively, transitive tournament) in D, cf. [26]. Local tournaments
and locally transitive local tournaments naturally generalize tournaments and
transitive tournaments, respectively, cf. [1]. Despite the fact that the class of
local tournaments properly contains the class of locally transitive local tour-
naments, it is proved by Hell and Huang [22] that they share the same class
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of underlying graphs, that is, a graph is local tournament orientable if and
only if it is local transitive tournament orientable (see Corollary 12.2.7).

A graph G is called a circular arc graph if it is the intersection graph
of a family of circular arcs Iv, v ∈ V (G), on a circle (i.e., two vertices u, v
are adjacent in G if and only if Iu, Iv intersect). The family Iv, v ∈ V (G), is
called a circular arc representation of G. Circular arc graphs have also
been extensively studied by McConnell [31], Spinrad [39], Trotter and Moore
[42], and Tucker [43–46].

Circular arc graphs generalize interval graphs which are the intersec-
tion graphs of intervals on the real line. A circular arc graph (respectively,
an interval graph) is called proper if the family of circular arcs (respec-
tively, intervals) can be chosen so that none of them is contained in another.
Proper circular arc graphs and proper interval graphs are closely related to
local tournaments. In fact, as proved by Skrien [38], a connected graph is
local tournament orientable if and only if it is a proper circular arc graph
(see Corollary 12.2.7). It is proved in [22, 26] that a graph is acyclic lo-
cal tournament orientable if and only if it is a proper interval graph (see
Corollary 12.2.11). Locally transitive local tournament (respectively, acyclic
local tournament) orientations are useful in constructing proper circular arc
(respectively, proper interval) representations of their underlying graphs, cf.
[9]. Thus the lexicographic orientation method simultaneously solves the
recognition and the representation problems for proper circular arc graphs
and for proper interval graphs.

Let G be a bipartite graph with bipartition (X,Y ). Then G is called an
interval containment bigraph if there is a family of intervals Iv, v ∈ X∪Y
such that for all x ∈ X and y ∈ Y , xy is an edge of G if and only if Ix ⊃ Iy.
The family of intervals will be referred to as an interval containment rep-
resentation of G. Various characterizations of interval containment bigraphs
have been obtained by Feder, Hell and Huang [10], Hell and Huang [23],
Huang [25], and Spinrad [39], and Trotter and Moore [42]. Interval contain-
ment bigraphs are closely related to circular arc graphs. In fact, the comple-
ments of interval containment bigraphs are precisely the circular arc graphs
of clique covering number two. The lexicographic orientation method can
also be used for recognizing interval containment bigraphs and constructing
interval containment representations whenever possible.

The lexicographic orientation method has also been applied by Bang-
Jensen, Huang and Zhu in [4] to solve some orientation completion problems.
A partially oriented graph is a mixed graph which may contain both edges
and arcs. We use Q = (V,E∪A) to denote a partially oriented graph where E
consists of edges and A consists of arcs. An orientation completion of Q is
an oriented graph obtained from Q by replacing every edge in E with an arc.
For a fixed property Π of oriented graphs, the Π-orientation completion
problem is as follows.
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Π-orientation completion problem
Input: A partially oriented graph Q = (V,E ∪ A).
Find: An orientation of the edges in E to a set of arcs A′ so that
Q = (V,A ∪ A′) has property Π or certify that no such orientation is
possible.

Clearly, the Π-orientation completion problem generalizes the Π-
orientation problem. Robbins’ theorem as stated at the beginning of this
chapter provides a polynomial time solution to the strong orientation
problem. A result of Boesch and Tindell [5] implies that a partially oriented
graph can be completed to a strong oriented graph if and only if it has no
bridge and no directed cut. Either a bridge or a directed cut in a partially
oriented graph (if any exists) can be detected in polynomial time. Hence the
strong orientation completion problem is also polynomial time solv-
able. The orientation completion problem for local tournaments is polynomial
time solvable (see Theorem 12.3.4). By slightly modifying the lexicographic
orientation method for the orientation problem for acyclic local tournaments,
Bang-Jensen, Huang and Zhu [4] proved that the corresponding orientation
completion problem is polynomial time solvable (see Theorem 12.3.5). In
contrast they [4] showed that the orientation completion problem for locally
transitive local tournaments is NP-complete (see Theorem 12.3.14).

Orientation completion problems generalize certain representation exten-
sion problems. For example, the representation extension problem for
proper interval graphs asks whether it is possible to obtain a proper interval
representation of a graph G that includes a proper interval representation of
an induced subgraph of G. This problem has been studied by Klavik, Kra-
tochvil, Otachi, Rutter, Saitoh, Saumell and Vystocil in [28]. As mentioned
above, a proper interval representation of a proper interval graph corresponds
to an acyclic local tournament orientation of the graph. Thus the represen-
tation extension problem for proper interval graphs is just the orientation
completion problem for acyclic local tournaments where a partial orienta-
tion corresponds to an interval representation of an induced subgraph. The
representation extension problem for proper interval graphs was shown to be
polynomial time solvable, cf. [28]. The lexicographic orientation method can
be applied to show that the orientation completion problem for acyclic local
tournaments is polynomial time solvable.

The key notion used in the lexicographic method is the concept of lexico-
graphic order. Suppose (s1, s2, . . . , sk), (t1, t2, . . . , tk) are two ordered k-tuples
over the set {1, 2, . . . , n}. We say that (s1, s2, . . . , sk) is lexicographically
smaller than (t1, t2, . . . , tk), provided s1 < t1 or there exists an f with
1 < f ≤ k such that sf < tf and si = ti for all i < f . If S and T are two
sets of k elements, we say that S is lexicographically smaller than T pro-
vided (s1, s2, . . . , sk) is lexicographically smaller than (t1, t2, . . . , tk), where
s1, s2, . . . , sk and t1, t2, . . . , tk are the elements of S and T listed in increasing
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order. Suppose S′ is a subset of S and T ′ is lexicographically smaller than
S′. Then it is easy to see that T = (S − S′) ∪ T ′ is lexicographically smaller
than S. Note that lexicographic orders are linear, and hence any subset of a
lexicographically ordered set has a smallest element.

12.2 Algorithms for Π-Orientations

We begin by formalizing the generic idea of the lexicographic orientation
algorithm for deciding whether a graph is Π-orientable and finding (if one
exists) such a Π-orientation of G. Let G be the input graph. Define the
auxiliary graph G+ of G as follows: The vertex set of G+ consists of all
ordered pairs (u, v) such that uv is an edge of G. Note that each each edge uv
of G gives rise to two vertices (u, v), (v, u) and these two vertices are always
adjacent in G+. Depending on the property Π, G+ may contain additional
edges, which will be defined for each problemin question.

Algorithm 1 Generic lexicographic orientation
Input: A graph G with vertices 1, 2, . . . , n.
Output: A Π-orientation of G if one exists.

Construct the auxiliary graph G+.
While there exist uncoloured vertices do

Colour by A the lexicographically smallest uncoloured vertex (u, v)
Use breadth first search to 2-colour (if possible) the connected
component of G+ which contains (u, v).

If some component could not be 2-coloured then report that G is not
Π-orientable.

For every edge uv ∈ E orient it as u→v if (u, v) obtained colour A and otherwise
orient it as v→u.

The purpose of Algorithm 1 is two-fold. First, it determines whether the
input graph G is Π-orientable by verifying the 2-colourability of the auxil-
iary graph G+. Second, it constructs a Π-orientation of G in the case when
G+ is 2-colourable. The correctness of Algorithm 1 is validated by the two
statements described in the following proposition.

Proposition 12.2.1 Algorithm 1 is correct if and only if the following two
statements hold:

• If G is Π-orientable, then G+ is bipartite.
• If G+ is bipartite, then the orientation of G obtained by Algorithm 1 has
the property Π. �	

As a simple example suppose that Π is the property of being acyclic and
that G+ is the auxiliary graph of G as defined above, which contains no
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other edges except those between (u, v) and (v, u) for edges uv of G. Since
every graph is acyclically orientable and G+ is bipartite for every graph G,
the first statement holds vacuously. According to Step 2, vertex (u, v) of G+

is coloured by A if and only if u < v. It follows that the orientation of G
obtained by the algorithm is acyclic and hence the second statement holds.

We will show that the above generic lexicographic orientation algorithm
can be modified to solve the Π-orientation problem when Π is the property of
being a transitive digraph, respectively being a locally transitive local tourna-
ment, respectively being an acyclic local tournament. The only modifications
involved are on the definition of the auxiliary graph G+. We will also show
that it can be applied to recognize interval containment bigraphs and obtain
the desired orientations of their complements.

12.2.1 Comparability Graphs

For the input graph G, we modify the definition of the auxiliary graph G+ as
follows: The vertex set of G+ is the same as above (i.e., consisting of ordered
pairs (u, v), (v, u) for edges uv of G). In G+, every vertex (u, v) is adjacent
to (v, u), to any (w, u) such that v and w are not adjacent in G, and to any
(v, w) such that u and w are not adjacent in G. Figure 12.1 shows an example
of a graph G and its auxiliary graph G+.

25

G+G
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2

34
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12

32

34

54
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21
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45
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Figure 12.1 A graph G and its auxiliary graph G+.

Suppose that G+ is bipartite. Colour G+ with two colours A,B and orient
each edge uv of G as u→v whenever (u, v) is coloured A. Then for any edges
uv, vw with uw being a non-edge of G, (u, v) and (v, w) are adjacent and
(w, v) and (v, u) are adjacent in G+. Thus (u, v) and (v, w) are coloured by
opposite colours and (w, v) and (v, u) are coloured by opposite colours in
any 2-colouring of G+. Consequently, we have either u → v and w → v or
v → u and v → w. Therefore we obtain an orientation of G which satisfies
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the property that u→v and v→w imply that there is an arc between u and
w. An oriented graph which has this property is called quasi-transitive, cf.
[3] and Chapter 8. On the other hand, any quasi-transitive orientation of G
corresponds to a colour class of a 2-colouring of G+.

Every transitive oriented graph is quasi-transitive and thus every transi-
tively orientable graph is also quasi-transitively orientable. It was first ob-
served by Ghouila-Houri [16] that every quasi-transitively orientable graph
is also transitively orientable. Hence comparability graphs are exactly the
quasi-transitively orientable graphs. In particular, if G+ is not bipartite then
G is not a comparability graph and hence not transitively orientable. The
result of Ghouila-Houri will follow as a byproduct from the lexicographic
orientation algorithm, as stated below.

Theorem 12.2.2 ([22]) Suppose that G is a comparability graph and that D
is an orientation of G obtained by the lexicographic orientation algorithm.
Then D is a transitive orientation of G.

Proof: Since G is a comparability graph, G+ is bipartite. For each vertex
(u, v) of G+, let C(u, v) be the set of all vertices whose distance from (u, v) in
G+ is even. It follows from the definition of G+ that if (x, y), (x′, y′) ∈ C(u, v)
then there exist

(x0, y0), (x1, y0), (x1, y1), (x2, y1), . . . , (xk, yk) ∈ C(u, v)

such that (x0, y0) = (x, y) and (xk, yk) = (x′, y′) and for each i = 0, 1, . . . , k−
1, xixi+1 /∈ E(G) and yiyi+1 /∈ E(G). The following claim, known as “The
Triangle Lemma, can be found in the book [18] by Golumbic.

Claim. Let uvwu be a 3-cycle in G. Suppose that C(u, v) 
= C(w, v) and
C(u, v) 
= C(u,w). Then for any (u′, v′) ∈ C(u, v), we must have (w, v′) ∈
C(w, v) and (u′, w) ∈ C(u,w).

Proof of Claim. Since (u′, v′) ∈ C(u, v), there exist

(u0, v0), (u1, v0), (u1, v1), (u2, v1), . . . , (u�, v�) ∈ C(u, v)

such that (u0, v0) = (u, v) and (u�, v�) = (u′, v′) and for each = 0, 1, . . . , �−1,
uiui+1 /∈ E(G) and vivi+1 /∈ E(G). We prove by induction on � that
(w, v�) ∈ C(w, v) and (u�, w) ∈ C(u,w). Assume that (w, v�−1) ∈ C(w, v)
and (u�−1, w) ∈ C(u,w). Since C(u, v) 
= C(w, v) = C(w, v�−1), wu� ∈ E(G).
Since u�−1u� /∈ E(G), (u�, w) ∈ C(u�−1, w) = C(u,w). Similarly, since
C(u�, v�) 
= C(u�, w), wv ∈ E(G) and since v�−1v� /∈ E(G), (w, v�) ∈
C(w, v�−1) = C(w, v). �	

Suppose to the contrary that D is not transitive. Then there is a triangle
uvwu such that u → v, v → w and w → u in D. Assume that {u, v, w}
is the lexicographically smallest amongst all such triangles. Without loss of
generality assume that u > v and therefore (u, v) was not the first vertex
coloured A in its component of G+. It follows that there exists (u′, v′) ∈
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C(u, v) such that {u′, v′} is lexicographically smaller than {u, v}. Since u → v,
v → w and w → u, C(u, v) 
= C((w, v) and C(u, v) 
= C(u,w). Hence by the
claim above, (w, v′) ∈ C(w, v) and (u′, w) ∈ C(u,w). Since u → v, v → w
and w → u in D, we must also have u′ → v′, v′ → w and w → u′ in D. But
{u′, v′, w} is lexicographically smaller than {u, v, w}, which contradicts the
choice of {u, v, w}. �	

For k ≥ 1, a (2k +1)-asteroid in a graph is a sequence of 2k +1 vertices

u0, u1, . . . , u2k

together with 2k + 1 paths

P0, P2, . . . , P2k

where Pi is a (ui, ui+1)-path such that ui has no neighbours in Pi+k (sub-
scripts are modulo 2k+1) for each i = 0, 1, . . . , 2k. A 3-asteroid is also known
as an asteroidal triple, which is an important concept for characterizing in-
terval graphs, cf. [29]. It is easy to verify that an odd cycle in G+ corresponds
to a (2k + 1)-asteroid for some k in G.

Corollary 12.2.3 The following statements are equivalent for a graph G.

1. G is a comparability graph;
2. G is transitively orientable;
3. G is quasi-transitively orientable;
4. G+ is bipartite;
5. G contains no asteroid. �	

12.2.2 Proper Circular Arc Graphs

A round ordering of a digraph D is a cyclic ordering O = v1, v2, . . . , vn, v1
of the vertices of D such that for each vertex vi we have N+(vi) =
{vi+1, . . . , vd+(vi)+i} and N−(vi) = {vi−d−(vi), . . . , vi−1} where indices are
modulo n. A digraph which has a round ordering is called round. Round
digraphs were characterized by Huang in [27]. It is easy to see that if an ori-
ented graph has a round ordering then it is locally transitive. The following
theorem, due to Bang-Jensen, asserts that the converse is also true when D
is connected.

Theorem 12.2.4 ([1]) A connected oriented graph D has a round ordering
O = v1, v2, . . . , vn, v1 of its vertices if and only if D is a locally transitive
local tournament. Furthermore, there is a polynomial algorithm for deciding
whether a given oriented graph is round and finding a round ordering if one
exists. �	
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Suppose that G is a proper circular arc graph and that Iv, v ∈ V (G), is
a proper circular arc representation of G. We may assume without loss of
generality that if two circular arcs Iu, Iv intersect then either Iu contains the
counterclockwise endpoint of Iv or Iv contains the counterclockwise endpoint
of Iu (but not both). Orient G in such a way that each edge uv of G is
oriented as u→v if Iu contains the counterclockwise endpoint of Iv. It is
easy to see that this is a locally transitive local tournament orientation of
G. A round ordering of the orientation of G corresponds to the clockwise
ordering of clockwise endpoints of the circular arcs in the proper circular
arc representation of G. Conversely, suppose that D is a connected locally
transitive local tournament. Then D has a round ordering by Theorem 12.2.4
and a family of inclusion-free circular arcs Iv, v ∈ V (D), can be obtained such
that u→v in D if and only if Iu contains the counterclockwise endpoint of Iv,
cf. [22, 26]. Thus the underlying graph of D is a proper circular arc graph.

Theorem 12.2.5 ([22, 26]) A connected graph is a proper circular arc graph
if and only if it is orientable as a locally transitive local tournament. �	

Every locally transitive local tournament is a local tournament. Skrien [38]
proved that a connected graph is a proper circular arc graph if and only if it
is local tournament orientable. Clearly, a graph (not necessarily connected) is
local tournament (respectively, locally transitive local tournament) orientable
if and only if so is every connected component of the graph. Therefore a graph
G is orientable as a locally transitive local tournament if and only if it is
orientable as a local tournament. With this in mind we define the edge set of
the auxiliary graph G+ of G as follows: each vertex (u, v) is adjacent to (v, u),
to any vertex (u,w) such that v and w are not adjacent in G, and to any vertex
(w, v) such that u and w are not adjacent in G. As in the previous subsection,
we see that any local tournament orientation of G gives rise to a 2-colouring
of G+ and in case when G+ is 2-colourable the vertices of one colour in any
2-colouring of G+ induce a local tournament orientation of G. Not every 2-
colouring of G+ induces a locally transitive local tournament orientation of
G. However, the 2-colouring of G+ produced by the lexicographic orientation
algorithm gives a locally transitive local tournament orientation of G.

Theorem 12.2.6 ([22]) Suppose that G is a proper circular arc graph and
that D is an orientation of G obtained by the lexicographic orientation algo-
rithm. Then D is a local transitive tournament orientation of G.

Proof: Since G is a proper circular arc graph, G+ is bipartite and hence D is
a local tournament. Suppose to the contrary that D is not a locally transitive
local tournament. Then there exists a set {u, v, w, z} of vertices of D such
that u, v, w induce a directed 3-cycle u → v → w → u, which either domi-
nates z or is dominated by z. Assume that {u, v, w, z} is the lexicographically
smallest set with this property. Assume further that z dominates {u, v, w}.
(The situation is symmetric when z is dominated by {u, v, w}.) Without loss
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of generality assume that u > v and therefore (u, v) was not the first vertex
coloured A in its component of G+.

Let C(u, v) (respectively, C(v, u)) be the set of all vertices in G+ whose
distance from (u, v) in G+ is even (respectively, odd), and let (u′, v′) ∈ C(u, v)
be the first vertex coloured A in the component of (u, v). Then {u′, v′} is
lexicographically smaller than {u, v} and hence {u′, v′, w, z} is lexicograph-
ically smaller than {u, v, w, z}. We show that the subdigraph of D induced
by {u′, v′, w, z} also contains a directed 3-cycle which either dominates the
fourth vertex or is dominated by the fourth vertex. This contradicts the choice
of {u, v, w, z} and therefore D is a locally transitive local tournament.

Since (u′, v′) ∈ C(u, v), there exist

(u0, v0), (u1, v1), . . . , (u�, v�)

such that

• (u0, v0) = (u, v);
• (ui, vi) ∈ C(u, v) when i is even and (ui, vi) ∈ C(v, u) when i is odd;
• (u�, v�) = (u′, v′) when � is even and (u�, v�) = (v′, u′) when � is odd;
• for each i = 0, 1, . . . , �−1, either ui = ui+1 and vivi+1 /∈ E(G) or vi = vi+1

and uiui+1 /∈ E(G).

Let Ui = {u0, u1, . . . , ui} and Vi = {v0, v1, . . . , vi}. Note that not all
elements in Ui (respectively, Vi) are distinct. We use ||Ui|| (respectively ||Vi||)
to denote the number of distinct elements in Ui (respectively, Vi). Observe
that i and ||Ui|| + ||Vi|| have the same parity for each i. We claim that in D
the following property holds:

• when ||Ui|| is odd, {w, z} → ui → v;
• when ||Ui|| is even, v → ui → {w, z};
• when ||Vi|| is odd, {u, z} → vi → w;
• when ||Vi|| is even, w → vi → {u, z}.

When i = 0, we have ||U0|| = ||V0|| = 1 and the property holds. Assume
that i ≥ 1 and the property holds for i − 1. We consider only the case when
ui−1 = ui and vi−1vi /∈ E(G). (The other case, vi−1 = vi and ui−1ui /∈ E(G),
is symmetric.)

Suppose that i is odd. Then vi → ui = ui−1 → vi−1. Since i is odd,
||Ui|| and ||Vi|| have different parity. Suppose first that ||Ui|| is odd. Then
||Vi−1|| is also odd. By the inductive hypothesis, {w, z} → ui−1 = ui → v
and {u, z} → vi−1 → w. Hence vi, w, z are in-neighbours of ui. Since D is a
local tournament, vi is adjacent to both w and z. Since z → vi−1 → w, we
must have w → vi → z. Hence u, vi are both out-neighbours of w and must
be adjacent. Since u → vi−1 and vi−1vi /∈ E(G), we have vi → u. Therefore
w → vi → {u, z}. Suppose that ||Ui|| is even. Then ||Vi−1|| is also even. By the
inductive hypothesis, v → ui−1 = ui → {w, z} and w → vi−1 → {u, z}. Since
v, vi are both in-neighbours of ui, v, vi are adjacent. Either v → vi or vi → v
in D. Assume that v → vi. (The case when vi → v is again symmetric.).
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Then w, vi are out-neighbours of v and hence are adjacent. Since w → vi−1

and vi−1vi /∈ E(G), vi → w; thus both vi and z are in-neighbours of w. Since
vi−1 → z and vi−1vi /∈ E(G), z → vi. Hence u, vi are both out-neighbours of
z and must be adjacent. Since vi−1 → u and vi−1vi /∈ E(G), we have u → vi.
Therefore {u, z} → vi → w.

Suppose that i is even. Then vi−1 → ui−1 = ui → vi. Since i is even, ||Ui||
and ||Vi|| have the same parity. Suppose first that ||Ui|| is odd. Then ||Vi−1||
is even. By the induction hypothesis, {w, z} → ui−1 = ui → v and w →
vi−1 → {u, z}. Since v, vi are both out-neighbours of ui, v, vi are adjacent.
Either v → vi or vi → v in D. Assume that v → vi. (The case when vi → v is
again symmetric.) Then w, vi are out-neighbours of v and hence are adjacent.
Since w → vi−1 and vi−1vi /∈ E(G), vi → w; thus both vi and z are in-
neighbours of w. Since vi−1 → z and vi−1vi /∈ E(G), we have z → vi. Hence
u, vi are both out-neighbours of z and must be adjacent. Since vi−1 → u
and vi−1vi /∈ E(G), we have u → vi. Therefore {u, z} → vi → w. Suppose
now that ||Ui|| is even. Then ||Vi−1|| is odd. By the inductive hypothesis,
v → ui−1 = ui → {w, z} and {u, z} → vi−1 → w. Thus vi, w, z are out-
neighbours of ui. So vi is adjacent to both w and z. Since z → vi−1 → w and
vi−1vi /∈ E(G), w → vi → z. Now u and vi are both out-neighbours of w and
must be adjacent. Since u → vi−1 and vi−1vi /∈ E(G), we must have vi → u.
Therefore w → vi → {u, z}.

If � is even, then (u�, v�) = (u′, v′), and ||U�|| and ||V�|| have the same
parity. When ||U�|| and ||V�|| are both odd, {u′, v′, w} induces a directed cycle
and is dominated by z; when ||U�|| and ||V�|| are both even, {w, v′, z} induces
a directed cycle and is dominated by u′. If � is odd, then (u�, v�) = (v′, u′),
and ||U�|| and ||V�|| have different parity. When ||U�|| is odd and ||V�|| is even,
{w, v′, z} induces a directed cycle and dominates u′; when ||U�|| is even and
||V�|| is odd, {u′, v′, z} induces a directed cycle and dominates w. �	

Combining Theorems 12.2.5 and 12.2.6 and the remarks made between
the two theorems we have the following:

Corollary 12.2.7 The following statements are equivalent for a connected
graph G.

1. G is a proper circular arc graph;
2. G is local tournament orientable;
3. G is locally transitive local tournament orientable;
4. G+ is bipartite. �	

Through a careful analysis of the structure of proper circular arc graphs,
a full description of all local tournament orientations of a proper circular
arc graph was obtained in [24]. Let G be a graph and uv, u′v′ be two edges
of G. We say that uv, u′v′ are implicated if (u, v) and (u′, v′) are in the
same connected component of G+. The implication relation is an equivalence
relation on the set of edges of G and each equivalence class is called an
implication class of G. Call an edge uv in G balanced if N [u] = N [v]
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and unbalanced otherwise. It follows from the definition that an edge is
balanced if and only if it forms an implication class by itself. In general, two
edges of G are implicated with each other if and only if the orientation of
one uniquely determines the orientation of the other in any local tournament
orientation of G.

Theorem 12.2.8 ([24]) Let G be a connected proper circular arc graph.
Suppose that C1, C2, . . . , Ck are the connected components of G. Then all
unbalanced edges of G within a fixed Ci form an implication class and all
unbalanced edges between two fixed Ci and Cj (i 
= j) form an implication
class. Moreover, if G is not bipartite, then k = 1 and all unbalanced edges of
G form an implication class. �	

12.2.3 Proper Interval Graphs

Proper interval graphs are proper circular arc graphs and hence are locally
transitive local tournament orientable. In fact they admit locally transitive
local tournament orientations that contain no directed cycles (or equivalently,
acyclic local tournament orientations). Indeed, suppose that G is a proper
interval graph and that Iv, v ∈ V (G), is a proper interval representation
of G. Orient G in such a way that u→v if and only if Iu contains the left
endpoint of Iv. This is an acyclic local tournament orientation of G. On the
other hand, an acyclic local tournament orientation of G can be efficiently
transformed into a proper interval representation of G, cf. [26] and [22]. So
acyclic local tournament orientations of proper interval graphs are in a sense
an orientation formulation of their proper interval representations.

When the input graph G is a proper interval graph (and hence a proper
circular arc graph), the lexicographic orientation algorithm using the same
auxiliary graph G+ as defined in Subsection 12.2.2 will produce a locally
transitive local tournament orientation D of G according to Theorem 12.2.6.
But this D may not be acyclic. To make sure that D is also acyclic, we use
a perfect elimination ordering of G (that is, a vertex ordering 1, 2, . . . , n
such that for each i the set of neighbours j of i with j > i induce a com-
plete subgraph of G). It is well-known that G, which is a chordal graph, must
have such an ordering, which can be obtained in time O(m + n) using the
algorithm called Lexicographic Breadth First Search (LBFS) devised
by Rose, Tarjan and Lueker in [36]. We summarize the lexicographic orienta-
tion algorithm for finding an acyclic local tournament orientation of a proper
intervalgraph.

The proof of correctness of the algorithm makes use of a full description
of implication classes of a proper interval graph obtained in [24]. A vertex in
a graph G is called universal if it is adjacent to every other vertex in G.



12. Lexicographic Orientation Algorithms 587

Algorithm 2 Lexicographic acyclic local-tournament-orientation
Input: A graph G.
Output: An acyclic local tournament orientation of G.

Find a perfect elimination ordering 1, 2, . . . , n of G.
If G does not have a perfect elimination ordering then report
that G is not a proper interval graph.

Construct the auxiliary graph G+.
While there exist uncoloured vertices do

Colour by A the lexicographically smallest uncoloured vertex (u, v)
Use breadth first search to 2-colour (if possible) the connected
component of G+ which contains (u, v).
If some component could not be 2-coloured then report that
G is not a proper interval graph.

Orient each edge uv of G as u→v if (u, v) obtained colour A and otherwise
orient it as v→u.
Check whether the resulting oriented graph contains a directed cycle.
If it has a directed cycle then report that G is not a proper interval graph.

Theorem 12.2.9 ([24]) Let G be a connected proper interval graph. Then
one of the following statements holds:

• if G has no universal vertex, then all unbalanced edges of G form an impli-
cation class;

• if G has universal vertices, then all unbalanced edges incident with universal
vertices form an implication class and all other unbalanced edges form an
implication class. �	

Theorem 12.2.10 ([22]) Suppose that G is a proper interval graph. Then the
orientation of G obtained by Corollary 12.2.3 is an acyclic local tournament.

Proof: Assume without loss of generality that G is connected. Suppose first
that G has no universal vertex. Then by Theorem 12.2.9, the vertices of G
can be partitioned into complete subgraphs V1, V2, . . . , Vp and G+ has the
following components: For each pair of vertices u, v in the same Vi, there is a
separate component consisting of adjacent vertices (u, v), (v, u). In addition,
there is one component containing all remaining vertices (u, v) (i.e., u ∈ Vi

and v ∈ Vj with i 
= j). Moreover, in this last component, one colour class
contains all vertices (u, v) with u ∈ Vi, v ∈ Vj and i < j. In this case, the
lexicographic orientation algorithm orients each Vi as a transitive tournament
and the remaining edges uv as u → v either for all u ∈ Vi, v ∈ Vj , i < j or
for all u ∈ Vi, v ∈ Vj , i > j. It is clear that the orientation does not contain
a directed cycle and hence is an acyclic local tournament.

Suppose now that G has universal vertices and that 1, 2, . . . , n is a perfect
elimination ordering of G. Then again by Theorem 12.2.9 the vertices of G
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can be partitioned into complete subgraphs V1, V2, . . . , Vp where Vm with
1 < m < p consists of all universal vertices that are in Vm and V1 ∪ Vp

consists of all simplicial vertices. The components of G+ are as follows: For
each u, v in the same Vi, there is a separate component consisting of adjacent
vertices (u, v), (v, u). There is again one component consisting of all vertices
(u, v) with u ∈ Vi, v ∈ Vj , i 
= j, i 
= m, and j 
= m. One colour class in this
component consists of all (u, v) with u ∈ Vi, v ∈ Vj , i < j. Finally, there is,
for each vertex w ∈ Vm, a component consisting of all vertices (v, w), (w, v)
for all v ∈ Vi with i 
= m. One colour class of this component consists of
(u,w), (w, v) for all u ∈ Vi and v ∈ Vj with 1 ≤ i < m and m < j ≤ p. The
simplicial vertex 1 is in V1 or Vp. The lexicographic orientation algorithm
orients each Vi as a transitive tournament and the remaining edges uv as
u → v either for all u ∈ Vi, v ∈ Vj , i < j or for all u ∈ Vi, v ∈ Vj , i > j. The
orientation is an acyclic local tournament. �	

Corollary 12.2.11 The following statements are equivalent for a graph G.

1. G is a proper interval graph;
2. G is acyclic local tournament orientable. �	

12.2.4 Interval Containment Bigraphs

Let G be a bipartite graph with bipartition (X,Y ). Recall that G is an interval
containment bigraph if there is a family of intervals Iv, v ∈ X ∪ Y , such that
for all x ∈ X and y ∈ Y , xy is an edge of G if and only if Ix ⊃ Iy. The family
of intervals will be refered to as an interval containment representation of G.
See Figure 12.2 for an example of an interval containment bigraph and its
interval containment representation.
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Figure 12.2 An interval containment bigraph and an interval containment repre-
sentation.

Suppose that G is an interval containment bigraph and that the collection
of intervals Iv = [�v, rv], v ∈ X ∪Y , form an interval containment representa-
tion of G. Assume without loss of generality that the ends of the intervals are
all distinct. We orient G as follows: each edge uv of G is oriented as u→v if
�u < �v. Clearly, the orientation is acyclic. We claim that it does not contain
the digraph in Figure 12.3 as an induced subdigraph.
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Figure 12.3 White vertices are in X and black vertices are in Y or the other way
around. The orientation between white vertices or between black vertices is not
specified and may be in either direction.

Indeed, suppose that u→u′ and v→v′ are oriented edges where the four
vertices u, v, v′, u′ induce a 4-cycle vv′u′u in G. By the way of orientation we
must have �u < �u′ and �v < �v′ . If u, v ∈ X and u′, v′ ∈ Y , then ru < r′

u and
rv < rv′ as uu′, vv′ /∈ E(G). Since uv′, vv′ ∈ E(G), we have

�u < �v′ < rv′ < ru and �v < �u′ < ru′ < rv.

Hence we have �v < �v′ < rv′ < ru < ru′ < rv and so Iv ⊃ Iv′ , a contradiction
to the assumption that vv′ /∈ E(G). If u, v ∈ Y and u′, v′ ∈ X, then

�u′ < �v < rv < �u′ and �v′ < �u < ru < rv′ .

Thus we have �v′ < �u < �u′ < �v < �v′ , a contradiction.
Acyclic orientations of the complements of bipartite graphs which do not

contain an induced subdigraph in Figure 12.3 may again be viewed as an
orientation formulation of interval containment representations of interval
containment bigraphs. Thus the recognition and representation problems for
interval containment bigraphs become the following:

Problem 12.2.12 Given a bipartite graph G, does G have an acyclic ori-
entation which does not contain one of the digraphs in Figure 12.3 as an
induced subdigraph?

Define the auxiliary graph G+ of G with bipartition (X,Y ) as follows:
The vertices of G+ are ordered pairs (v, v′), (v′, v) with v ∈ X, v′ ∈ Y and
vv′ /∈ E(G). In G+, each (v, v′) is adjacent to (v′, v) and for each induced 4-
cycle vv′u′u in G, (v, v′) is adjacent to (u, u′) and (v′, v) is adjacent to (u′, u).
The above observation simply asserts that if G is an interval containment
bigraph then G+ is bipartite.

Suppose that the auxiliary graph G+ of G is bipartite. Colour the vertices
of G+ with colours A,B and orient an edge vv′ of G as v′→v if (v, v′) is
coloured A and as v→v′ if (v′, v) is coloured A. This is a partial orientation
of G; all edges between X and Y are oriented but none of edges in X or in Y
is oriented. The definition of G+ implies that any completion of this partial
orientation to an orientation of G will not contain the digraph in Figure 12.3
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as an induced subdigraph. However, there may be no acyclic completion. In
order for the partial orientation of G to have an acyclic completion, particular
2-colourings of G+ are needed.

We will fix a bipartition (X,Y ) of G and use letters without primes for
vertices in X and letters with primes for vertices in Y .

Algorithm 3 Lexicographic restricted acyclic orientation
Input: A bipartite graph G with bipartition (X, Y ) and vertices 1, 2, . . . , n where
vertices of X preceede the vertices of Y .
Output: An acyclic orientation of G that does not contain one of the digraphs in
Figure 12.3 as an induced subdigraph.

Construct the auxiliary graph G+ with respect to (X, Y ).
While there exist uncoloured vertices do

Colour by A the lexicographically smallest uncoloured vertex (α, β)
Use breadth first search to 2-colour (if possible) the component
of G+ which contains (α, β).
If some component could not be 2-coloured then report that

G is not an interval containment bigraph.
Orient the edge vv′ of G as v′→v if (v, v′) is coloured A and as v→v′ otherwise.
Complete the partial orientation obtained in Step 3 to an orientation of G as
follows: orient each edge uv as u→v if N−(u) ∩ Y ⊆ N−(v) ∩ Y and orient each
edge u′v′ as u′→v′ if N+(u′) ∩ X ⊇ N+(v′) ∩ X.

The correctness of the algorithm above is ensured by the following refor-
mulation of a theorem of Hell and Huang [22].

Theorem 12.2.13 Suppose that G is an interval containment bigraph and
that D is an orientation of G obtained by Theorem 12.2.4. Then D is acyclic
and does not contain the digraph in Figure 12.3 as an induced subdigraph.

Proof: We first prove that for any u, v ∈ X, the following properties hold:

• either N−(u) ∩ Y ⊆ N−(v) ∩ Y or N−(u) ∩ Y ⊇ N−(v) ∩ Y ;
• either N+(u) ∩ Y ⊆ N+(v) ∩ Y or N+(u) ∩ Y ⊇ N+(v) ∩ Y .

We prove it by contradiction. So suppose that one of the properties does not
hold for some u, v ∈ X. Let u, v be such vertices with the minimum u + v.
Assume by symmetry that the first property does not hold for u, v, that is,
there are vertices u′, v′ ∈ Y such that

• u′→u and v′→v,
• vu′ is not an edge of G or v→u′, and
• uv′ is not an edge of G or u→v′.

Observe that at least one of vu′, uv′ must be an edge of G; otherwise (u, u′)
and (v, v′) are adjacent vertices of G+ of the same colour A, a contradiction.
Assume without loss of generality that uv′ is an edge of G. Since u→v′, the



12. Lexicographic Orientation Algorithms 591

vertex (u, v′) was coloured B. Hence there exists a vertex (w,w′) of colour
A such that wuv′w′ is an induced 4-cycle of G. Since u→v′, w′→w. Now we
have w→w, u′→u and uw′ is not an edge of G. This implies that wu′ is an
edge of G. If w→u′, then the four vertices w, u,w′, u′ can be used in the place
of u, v, u′, v′. On the other hand, if u′→w, then w, v, u′, v′ can be used in the
place of u, v, u′, v′. Therefore we may assume without loss of generality that
for the four vertices u, v, u′, v′, vu′ is not an edge of G. We show that there
exist z, z′ with z < u such that z→u′ and v→z′. This implies that y, z are
two vertices for which one of the above two properties does not hold. This
contradicts the choice of u, v because u + v > z + v.

Since u→v′, (u, v′) was coloured B, which implies that (u, v′) is not the
lexicographically smallest vertex of its component. Let (z, z′) be the lexico-
graphically smallest vertex in the component of (u, v′). Then there are ver-
tices (ui, v

′
i), i = 1, 2, . . . , k, with (u1, v

′
1) = (u, v′), (uk, v′

k) = (z, z′) and each
uiv

′
iv

′
i+1ui+1 is an induced 4-cycle in G. Note that ui→v′

i when i is odd and
v′

i→ui when i is even. In particular, k must be even. We prove by induction
on k that z = uk < u1 = u, z = uk→u′ and v→v′

k = z′. Note that to show
uk < u1 = u it suffices to prove uk 
= u1 = u. When k = 2, clearly u2 
= u1.
As v′

2→u2, v′
1 = v′→v and u2v

′
1 is not an edge of G, vz′ is an edge of G.

Since u′→u1 and neither u1v
′
2 nor vu′ is an edge of G, v→v′

2 = z. Similarly,
as v′

2→u2, u′→u1 and u1v
′
2 is not an edge of G, u2u

′ is an edge of G. Since
v′
1→v and neither u2v

′
1 nor vu′ is an edge of G, u2→u′.

Assume that k > 2 and that, by the induction hypothesis, uk−2→u′ and
v→v′

k−2. If we can show that v′
k−1→v and u′→uk−1, then we can argue

exactly as in the case of k = 2, to conclude that both v→v′
k and uk→u′ and

uk 
= u. Thus we can again let z = uk, z′ = v′
k to complete the proof. Since

both uk−2→u′ and uk−1→v′
k−1 and uk−2v

′
k−1 is not an edge of G, uk−1u

′

is an edge of G. We must have u′→uk−1 as v→v′
k−2 and uk−1vv′

k−2u
′ is an

induced 4-cycle in G. Similarly, since v→v′
k−2, uk−1→v′

k−1 and uk−1v
′
k−2 is

not an edge of G, vv′
k−1 is an edge of G. We must have v′

k−1→v as uk−2→u′

and uk−2u
′v′

k−1v is an induced 4-cycle in G.
This justifies that the execution of Step 4 of Theorem 12.2.4 is possible.

It is easy to verify now that the orientation of G obtained by Theorem 12.2.4
is acyclic and does not contain the digraph in Figure 12.3 as an induced
subdigraph. �	

Corollary 12.2.14 The following statements are equivalent for a bipartite
graph G.

1. G is an interval containment bigraph;
2. G is a circular arc graph of clique covering number two;
3. G has an acyclic orientation that does not contain as an induced subdi-

graph the digraph in Figure 12.3;
4. G+ is bipartite. �	
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12.3 Orientation Completion Problems

It is easy to see that a partially oriented graph can be completed to an acyclic
oriented graph if and only if it does not contain a directed cycle. Algorithm
1 can be adapted to obtain an acyclic orientation completion of the input
partially oriented graph that contains no directed cycle.

We have seen in Section 12.2 that the orientation problem is polynomial
time solvable for each of the five classes: quasi-transitive oriented graphs,
transitive oriented graphs, local tournaments, locally transitive local tour-
naments, and acyclic local tournaments. The situation changes for the ori-
entation completion problem. We will show that the orientation completion
problem is NP-complete for locally transitive local tournaments, while it re-
mains polynomial time solvable for the other classes.

12.3.1 Quasi-transitive and Transitive Orientation Completions

Let Q = (V,E ∪ A) be a partially oriented graph. We use G = UG(Q) to
denote the underlying graph of Q and G+ to denote the auxiliary graph of G
as defined in Subsection 12.2.1. That is, the vertex set of G+ consists of all
ordered pairs (u, v), (v, u) for edges uv ∈ E(G) and in G+ each vertex (u, v)
is adjacent to (v, u), to any vertex (v, w) such that u and w are not adjacent
in G, and to any vertex (w, u) such that v and w are not adjacent in G. Thus
the arc set A of Q corresponds to a subset S of the vertex set of G+. An
orientation completion of Q to a quasi-transitive oriented graph corresponds
to a colour class of a 2-colouring of G+ that contains S. It follows that Q can
be completed to a quasi-transitive oriented graph if and only if the following
properties hold:

• G+ is bipartite, and
• no two vertices of S are at an odd distance in G+.

If G+ has these two properties, then it can be 2-coloured such that all
vertices of S are of the same colour and the colour class that contains S
gives rise to a quasi-transitive orientation completion of Q. Finding such a
2-colouring of G+ (if it exists) can be done in linear time. Therefore we have
the following:

Theorem 12.3.1 ([4]) The orientation completion problem is polynomial
time solvable for the class of quasi-transitive oriented graphs. �	

A partially oriented graph that can be completed to a transitive oriented
graph cannot contain directed cycles. So the additional assumption of being
acyclic is necessary for a partially oriented graph to admit a completion to a
transitive oriented graph. But this additional assumption is not sufficient as
there are acyclic partially oriented graphs which can be completed to quasi-
transitive oriented graphs but not to transitive oriented graphs. Nevertheless,
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we show that deciding whether a partially oriented graph can be completed
to a transitive oriented graph can be done in polynomial time.

A partially oriented graph Q = (V,E ∪ A) is called consentaneous if
the following properties hold: Let G+ be the auxiliary graph of UG(Q) and
S correspond to the arc set A.

• G+ is bipartite,
• no two vertices of S are at an odd distance in G+, and
• for any two vertices at an even distance in G+, either both are in S or

neither.

Theorem 12.3.2 Let Q = (V,E ∪ A) be a partially oriented graph. Suppose
that UG(Q) is a comparability graph and Q is consentaneous. Then Q can be
completed to a transitive oriented graph if and only if Q does not contain a
directed cycle.

Proof: Let σ be a vertex ordering of UG(Q) such that all arcs in A are
forward (i.e., (u, v) ∈ A implies σ−1(u) < σ−1(v)). Obtain an orientation
completion of Q using the lexicographic orientation algorithm in Subsection
12.2.1 with respect to σ. By Theorem 12.2.2 the orientation completion of Q
is a transitive oriented graph. �	
Corollary 12.3.3 The orientation completion problem for the class of tran-
sitive oriented graphs is solvable in polynomial time.

Proof: Suppose that a partially oriented graph Q = (V,A ∪ E) is given. Let
G = UG(Q). If G+ is not bipartite, then the answer is ‘no’. Assume that G+

is bipartite. Obtain the minimal consentaneous partial oriented graph Q′ =
(V,A′ ∪ E′) from Q by orienting (if needed) some edges in E. If Q′ contains
a directed cycle, then the answer is again ‘no’ by Theorem 12.3.2. Otherwise,
Q′ contains no directed cycle and we can complete Q′ to a transitive oriented
graph according to Theorem 12.3.2. This transitive oriented graph is also an
orientation completion of Q. �	

12.3.2 Local and Acyclic Local Tournament Orientation
Completions

The orientation completion problem for local tournaments can be solved in a
similar way as above for the quasi-transitive orientation completion problem.

Theorem 12.3.4 ([4]) The orientation completion problem is polynomial
time solvable for the class of local tournaments. �	

We consider next the orientation completion problem for the class of
acyclic local tournaments. For a partially oriented graph Q = (V,E ∪ A),
we use G+ to denote the auxiliary graph of UG(Q) as defined in Subsection
12.2.2 and use S to denote the set of vertices of G+ corresponding to the arc
set A. Again, we call Q consentaneous if the following conditions hold:
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• G+ is bipartite,
• no two vertices of S are at an odd distance in G+, and
• for any two vertices at an even distance in G+, either both are in S or

neither.

Theorem 12.3.5 ([4]) Let Q = (V,E ∪ A) be a partially oriented graph.
Suppose that UG(Q) is a proper interval graph and Q is consentaneous. Then
Q can be completed to an acyclic local tournament if and only if Q does not
contain a directed cycle.

Proof: If Q contains a directed cycle then it cannot be completed to an
acyclic oriented graph and hence not to an acyclic local tournament. For the
other direction, we first show that Q admits a perfect elimination ordering
v1, v2, . . . , vn such that all arcs are forward, that is, if (vi, vj) is an arc then
i < j. To obtain such an ordering we apply a modified LBFS beginning with
a vertex of out-degree 0, with preferences (in the case of ties) given to vertices
having no out-neighbours among unlabeled vertices.

Let v1, v2, . . . , vn be an ordering obtained by the modified LBFS. Ac-
cording to Rose, Tarjan and Lueker [36], it is a perfect elimination ordering.
Suppose that the ordering contains a backward arc. Let (vi, vj) ∈ A be a
backward arc having the largest subscript i. Since (vi, vj) is backward, we
have i > j. The choice of vn implies n > i. Since i > j, at the time of labeling
vi the vertex vj is an unlabeled out-neighbour of vi. The LBFS rule ensures
that vi is a vertex having the lexicographically largest neighbourhood among
the vertices vn, . . . , vi+1. If the neighbourhood of vi (among the labeled ver-
tices) is lexicographically larger than the neighbourhood of vj , some vertex
v� with � > i is adjacent to vi but not to vj in Q. The assumption that Q
is consentaneous implies (v�, vi) is an arc which is backward with respect to
the ordering. This contradicts the choice of (vi, vj). Hence vi and vj must
have the same neighbourhood among the labeled vertices. But then the rule
prefers vj to vi for the next labeled vertex, unless vj has an out-neighbour
vk among unlabeled vertices. A similar proof above (when applied to vj , vk)
implies vj and vk must have the same neighbourhood among the labeled ver-
tices. Continuing in this way, we obtain a directed cycle, which contradicts
the assumption. Hence v1, v2, . . . , vn is a perfect elimination ordering of Q
that contains no backward arcs.

Now we apply the lexicographic orientation algorithm using the perfect
elimination ordering to obtain an orientation D of UG(Q). By Theorem
12.2.10 D is an acyclic local tournament. Since the perfect elimination order-
ing has no backward arc from A, the arc set of D contains A. Hence D is an
orientation completion of Q. �	

Corollary 12.3.6 The orientation completion problem for the class of acyclic
local tournaments is solvable in polynomial time.
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Proof: Suppose that a partially oriented graph Q = (V,A ∪ E) is given. Let
G = UG(Q). If G+ is not bipartite, then the answer is ‘no’. Assume that
G+ is bipartite. Obtain the minimal consentaneous partial oriented graph
Q′ = (V,A′ ∪ E′) from Q by orienting (if needed) some edges in E. If Q′

contains a directed cycle, then the answer is again ‘no’ by Theorem 12.3.5.
Otherwise, Q′ contains no directed cycle and we can complete Q′ to an acyclic
local tournament orientation according to Theorem 12.3.5. This acyclic local
tournament is also an orientation completion of Q. �	

Corollary 12.3.7 ([28]) The problem of extending partial proper interval
representations of proper interval graphs is solvable in polynomial time.

Proof: We show how to reduce the problem of extending partial proper in-
terval representations of proper interval graphs to the orientation completion
problem for the class of acyclic local tournaments which is polynomial time
solvable according to Corollary 12.3.6. Suppose that G is a proper interval
graph and H is an induced subgraph of G. Given a proper interval represen-
tation Iv, v ∈ V (H), of H (i.e., a partial proper interval representation of G),
we obtain an orientation of H in such a way that (u, v) is an arc if and only
if Iu contains the left endpoint of Iv. The oriented edges together with the
remaining edges in G yield a partial orientation of G. This partial orientation
of G can be completed to an acyclic local tournament if and only if the partial
representation of H can be extended to a proper interval representation of
G. �	

12.3.3 Locally Transitive Local Tournament Orientation
Completions

A cyclic ordering O = v1, v2, . . . , vn, v1 of the vertices of a partially oriented
graph Q = (V,E ∪ A) is called excellent if Q has no pair of arcs vi → vj

and vs → vt (with a possibility that i = t or s = j) such that the vertices
occur as vi, vt, vs, vj in the cyclic ordering, cf. [4]. Since a round ordering of
an oriented graph is excellent, by Theorem 12.2.4, every connected locally
transitive local tournament has an excellent cyclic ordering, cf. [24]. Thus, a
necessary condition for completing Q to a locally transitive local tournament
is that it has an excellent ordering. It turns out, as we will show, that the
problem of determining whether a partially oriented graph has an excellent
ordering is polynomially equivalent to the orientation completion problem
for locally transitive local tournaments and both problems are NP-complete
(Theorem 12.3.14). The presentation below follows the paper [4] by Bang-
Jensen, Huang and Zhu.

Let O = v1, v2, . . . , vn, v1 be a cyclic ordering of the vertices of a partially
oriented graph P = (V,E ∪ A). An arc (vi, vj) ∈ A dominates an arc
(vs, vt) ∈ A with respect to O if the vertices of the two arcs appear in the
order vi, vs, vt, vj in O, where we can have i = s or j = t. An arc (vi, vj) ∈ A
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dominates an edge vpvq if both of the vertices vp, vq occur in the interval
[vi, vj ] from vi to vj according to O. An arc is maximal with respect to O
if it is not dominated by any other arc.

Lemma 12.3.8 ([4]) Suppose P = (V,E ∪ A) is a partially oriented graph
for which the digraph D = (V,A) induced by its arcs has an excellent cyclic
ordering O = v1, . . . , vn, v1 of its vertices. Then P can be completed to an
oriented graph D′ for which the same cyclic ordering O is excellent.

Proof: Let P = (V,E ∪ A) be a partially oriented graph and let O =
v1, v2, . . . , vn, v1 be an excellent cyclic ordering of D. Let a1 = (vi1 , vj1), a2 =
(vi2 , vj2), . . . , ak = (vik , vjk) be the maximal arcs of D with respect to O.
By the assumption of the lemma, for each arc ar every arc (vp, vq) for which
both vertices vp, vq occur after in the interval [vi, vj ] satisfy that the vertices
occur in the order vir , vp, vq, vjr . For each r ∈ [k] in increasing order and
all indices p, q with vir , vp, vq, vjr occurring in that order such that vpvq is
an edge of P , we orient this edge as the arc (vp, vq). Let D∗ = (V,A ∪ A∗)
be the oriented graph consisting of the original arcs and those edges which
we have oriented so far. By construction of D∗, O is an excellent ordering
of D∗. Hence if no edge of E is still unoriented we are done. It suffices to
show that we may orient one of the remaining edges, since then the claim
follows by induction on the number of unoriented edges. Let vpvq be an edge
which was not oriented and orient this as (vp, vq). We claim that O is an
excellent ordering of D∗ ∪ {(vp, vq)}. If not then there is an arc (va, vb) of
D∗ such that the vertices occur in the order vp, vb, va, vq but then the edge
vpvq is dominated by the arc (va, vb) and hence by one of the arcs a1, . . . , ak,
contradicting that it was not oriented above. �	

Lemma 12.3.9 ([4]) An oriented graph D has an excellent cyclic ordering
O if and only if it can be extended to a round local tournament D∗ by adding
new arcs. In particular, every excellent ordering of D is a round ordering of
D∗ and conversely.

Proof: Suppose first that D can be extended to a round local tournament D∗.
According to Theorem 12.2.4 there is a round ordering O = v1, v2, . . . , vn, v1
of V (D∗) = V (D). We claim that this ordering is also excellent. If not, then
there are arcs (vi, vj) and (vs, vt) so that the vertices occur in the order
vi, vt, vs, vj according to O. Since O is a round ordering, we have that (vi, vt)
and (vt, vj) are arcs of D∗ but then the neighbours of vt do not occur correctly
according to O, contradiction. So O is an excellent ordering of D∗ and hence
also of the subdigraph D. To prove the only if part let O = v1, v2, . . . , vn, v1 be
an excellent cyclic ordering of the oriented graph D. It suffices to observe that
for every maximal arc (vi, vj) with respect to O and any pair of non-adjacent
vertices va, vb in the interval [vi, vj ] with va before vb we may add the arc
(va, vb) and still have an excellent ordering of the resulting oriented graph.
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Now the claim follows by induction on the number of such non-adjacent
pairs. �	

For a given oriented graph D we denote by Dc the partially oriented
complete graph obtained from D by adding an edge between each pair of
non-adjacent vertices.

Lemma 12.3.10 ([4]) If D is a round oriented graph, then Dc can be com-
pleted to a locally transitive tournament.

Proof: We prove the statement by induction on the number of vertices in
D which are not adjacent to all other vertices. By Theorem 12.2.4, the base
case where there is no such vertex is true. So assume that all round oriented
graphs on n vertices with at most k vertices as above can be completed to
a locally transitive tournament and let D be a round digraph with k + 1
vertices, each of which has a non-neighbour. Let O = v1, v2, . . . , vn, v1 be
a round ordering of D. W.l.o.g. the vertex v1 has a non-neighbour, so we
have that vd+(v1)+2 
= vn−d−(v1). We claim that there is no arc (vp, vq) with
1 ≤ q < p < n − d−(v1). Suppose such an arc does exist. Then we have
p > d+(v1)+1 by the choice of O and we have q > 1 since vp is not adjacent to
v1. But this contradicts the fact that the vertex vp sees its out-neighbourhood
as an interval just after itself according to O because v1 is not-adjacent to vp.
Thus if we add all the arcs (v1, vd+(v1)+2), . . . , (v1, vn−d−(v1)−1) to D the order
O is an excellent ordering of the resulting digraph D′. By Lemmas 12.3.8 and
12.3.9 this implies that D′ can be extended to a round local tournament D′′

by adding new arcs. Now the claim follows by induction since D′ has fewer
vertices with non-neighbours than D does. �	

Combining Lemmas 12.3.8, 12.3.9, and 12.3.10 we have the following:

Lemma 12.3.11 ([4]) An oriented graph D has an excellent ordering if and
only if the partially oriented graph Dc has a completion to a tournament T
which is locally transitive. Furthermore, given an excellent ordering of D we
can construct T in polynomial time and conversely, given T , we can obtain
an excellent ordering of D in polynomial time. �	

The following is easy to check.

Proposition 12.3.12 Each of the two labellings X, X̄ of the same partially
oriented complete graph in Figure 12.4 have exactly two completions to a
locally transitive tournament. For X these are obtained by orienting the two
edges ab, αβ as either (b, a), (β, α) or (a, b), (α, β). For X̄ they are obtained
by orienting the two edges uv, αβ as either (v, u), (α, β) or (u, v), (β, α). �	

Lemma 12.3.13 ([4]) Consider the partially oriented 6-wheel W in Figure
12.5. Let D be an orientation completion of W . Then D does not have an ex-
cellent ordering if and only if the three edges c11c12, c21c22, c31c32 are oriented
as (c11, c12), (c21, c22), (c31, c32).
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Figure 12.4 Two different labellings of the same partially oriented complete graph
on 4 vertices. For later convenience we name these X, X̄.

c

c11 c12

c21

c22c31

c32

Figure 12.5 A partially oriented wheel W .

Proof: If the three edges c11c12, c21c22, c31c32 are oriented as (c11, c12),
(c21, c22), (c31, c32) then the vertex c has a directed 6-cycle in its out-
neighbourhood and hence Dc has no completion to a locally transitive tour-
nament. By Lemma 12.3.9, D has no excellent ordering. On the other hand,
if D contains at least one of the arcs (c12, c11), (c22, c21), (c32, c31), then D is
acyclic. Clearly Dc can be completed to a transitive tournament and hence
by Lemma 12.3.11, D has an excellent ordering. �	

Theorem 12.3.14 ([4]) The following polynomially equivalent problems are
NP-complete.

• Deciding whether an oriented graph has an excellent ordering.
• Deciding whether a given partially oriented complete graph can be completed
to a locally transitive tournament.

Proof: We describe polynomial reductions from 3-SAT to these problems.
Let F be an instance of 3-SAT with variables x1, x2, . . . , xn and clauses

C1, C2, . . . , Cm, where each clause is of the form (�1 ∨ �2 ∨ �3) and each �i is
either one of the variables xj or the negation x̄j of such a variable.

Let pi (qi) be the number of times variable xi (x̄i) occurs as a literal in
F . The enumeration of the clauses C1, . . . , Cm induces an ordering on the
occurrences of the same literal in the formula. Guided by this ordering we
now construct a partially oriented graph H ′ = H ′(F) as follows:
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Let X, X̄ be as in Figure 12.4. For each variable xi we form the partially
oriented graph Xi from pi copies of X and qi copies of X̄ (these pi+qi graphs
are vertex disjoint) by identifying all the α vertices and all the β vertices
and denote these identified vertices by α(xi), β(xi), respectively. Denote the
pi copies of a, b by ai,1, . . . , ai,pi

, bi,1, . . . , bi,pi
and the qi copies of u, v by

ui,1, . . . , ui,qi , vi,1, . . . , vi,qi .
Take m disjoint copies W1,W2, . . . , Wm of the partially oriented 6-wheel

from Figure 12.5 where we use ci, c
i
11, c

i
12, c

i
21, c

i
22, c

i
31, c

i
32 to denote the ver-

tices of Wi. Make the following association between the literals of F and the
Wi’s: If Ci = (�i,1∨�i,2∨�i,3) we associate the vertices ci

j1, c
i
j2 with the literal

�i,j of Ci, j ∈ [3].
Now we make the following vertex identifications. For each clause Ci =

(�i,1 ∨ �i,2 ∨ �i,3) we identify the vertices ci
11, c

i
12, c

i
21, c

i
22, c

i
31, c

i
32 with vertices

from the union of the graphs X1, . . . , Xn as follows: If �i,j = xr and this
is the h’th occurrence of variable xr according to the induced ordering of
that literal, then identify ci

j1 with ar,h and ci
j2 with br,h. If �i,j = x̄r and

this is the t’th occurrence of x̄r according to the induced ordering of that
literal, then identify ci

j1 with ur,t and ci
j2 with vr,t. Note that even after these

identifications each of the subdigraphs W1, . . . , Wm are still vertex disjoint.
Clearly we can construct H ′ in polynomial time from F . Denote by H

the oriented graph obtained from H ′ by deleting all (unoriented) edges. It
is easy to check that the in- and out-neighbourhoods of each vertex in H is
acyclic.

By Lemma 12.3.11 it suffices to show that H has an excellent ordering if
and only if F is satisfiable.

First suppose that H has an excellent ordering. By Lemma 12.3.11 this
means that the partially oriented complete graph Hc has a completion T as
a locally transitive tournament. We claim that the following is a satisfying
truth assignment: If the edge α(xi)β(xi) is oriented in T as (α(xi), β(xi))
then let xi be false and if it is oriented as (β(xi), α(xi)) then let xi be true.
First observe that, by Proposition 12.3.12, this implies that for each i ∈ [n]
the variable xi is false if and only if each of the edges ai,jbi,j , j ∈ [pi], are
oriented as (ai,j , bi,j) and each of the edges ui,rvi,r, r ∈ [qi], are oriented as
(vi,r, ui,r).

We now use this to show that each of the clauses of F are satisfied by our
truth assignment. As T is locally transitive, for each of the induced subdi-
graphs T [Wj ], j ∈ [m], the out-neighbourhood of cj is acyclic which implies
that at least one of three arcs of H which correspond to the literals of F
is oriented as (cj2, cj1). If this arc corresponds to the literal xs then, by the
identification rule above, this is an arc of the form (bs,t, as,t), so the variable
xs is true and Cj is satisfied. If the arc corresponds to the literal x̄s then
the identification rule implies that this is an arc of the form (vs,t, us,t), im-
plying that x̄s is true so again Cj is satisfied. Thus we have shown that F
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α(x1)

β(x1)
α(x2)

β(x2)

α(x3)β(x3)

x1

x1

x̄1 x2

x̄2

x̄2

x3x̄3x̄3

Figure 12.6 Part of the digraph H ′(F) when F = (x1 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x̄2 ∨ x3)∧
(x1 ∨ x̄2 ∨ x̄3). For better readability the vertices c1, c2, c3 are not shown.

is satisfiable if Hc has a locally transitive completion (H has an excellent
ordering).

Now suppose that t : {x1, . . . , xn} → {true, false} is a satisfying truth
assignment for F . We shall use this truth assignment to construct an excellent
ordering of the partially oriented graph H ′. Recall that this is also an excellent
ordering of the directed part H of H ′.

We first orient the edges α(x1)β(x1), . . . α(xn)β(xn) as follows: Orient
α(xi)β(xi) as (β(xi), α(xi)) if xi = true and as (α(xi), β(xi)) otherwise. De-
note by Ĥ the resulting partially oriented graph. It follows from Proposition
12.3.12, the way we made identifications between vertices of the Wj ’s and
variable vertices and the fact that t is a satisfying truth assignment that we
can now orient all the remaining edges of Ĥ (recall that those correspond to
the literals) uniquely so that the resulting full orientation

→
H of H ′ satisfies

that the in- and out-neighbourhood of each vertex is still acyclic.
We now construct an excellent ordering for

→
H. Denote by A(xi) (B(xi)),

i ∈ [n] the set of out-neighbours (in-neighbours) of α(xi) in
→
H. Note that

if t(xi) = false, then A(xi) = {bi,1, . . . , bi,pi
, ui,1, . . . , ui,qi , β(xi)}, B(xi) =

{ai,1, . . . , ai,pi
, vi,1, . . . , vi,qi} and there is no oriented arc from A(xi) to B(xi).
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Similarly, if t(xi) = true, then A(xi) = {bi,1, . . . , bi,pi
, ui,1, . . . , ui,qi}, B(xi) =

{ai,1, . . . , ai,pi
, vi,1, . . . , vi,qi , β(xi)} and there is no oriented arc from B(xi)

to A(xi).
Furthermore, observe that β(xi) has no out-neighbour when t(xi) = false

and precisely one out-neighbour, namely α(xi) when t(xi) = true. Let 1 ≤
i1 < i2 < . . . < ik ≤ n and 1 < j1 < j2 < . . . < jg ≤ n denote the
indices of the true, respectively the false variables. Consider the following
cyclic ordering O of V (

→
H):

α(xi1), α(xi2), . . . , α(xik), c1, c2, . . . , cm, A(xi1), . . . , A(xik), B(xj1), . . . ,
B(xjg ), α(xj1), . . . , α(xjg ), A(xj1), . . . , A(xjg ), B(xi1), . . . , B(xik), α(xi1),

where the ordering inside each A(xi), B(xi) is as according to the way we
listed those sets above.

We shall prove that the ordering O is excellent. Suppose for contradiction
that there is a pair of arcs (vi, vj) and (vs, vt) with the vertices occurring in
the order vi, vt, vs, vj according to O.

• We cannot have vi = α(xif ) for some f ∈ [k] because there is no backward
arc in the interval of O from α(xif ) to (the end of) A(xf ) (α(xif ) is only
adjacent to vertices in A(xif )). Similarly, we cannot have vi in the interval
[α(xj1), α(xjg )].

• We cannot have vi = cp for some p ∈ [m] because the only arcs incident to
cp are from cp to the six vertices which correspond to its three literals and
we ordered the A and B sets and α(xj1), . . . , α(xjg ) in such a way that any
arc between them goes forward in the ordering. In particular, there are no
backwards arcs with respect to the ordering in the interval
A(xi1), . . . , A(xik), B(xj1), . . . , B(xjg ), α(xj1), . . . , α(xjg ), A(xj1), . . . ,
A(xjg ), B(xi1), . . . , B(xik).

• We cannot have vi in the interval A(xi1), . . . , A(xik) since all out-neighbours
of those vertices are in the interval B(xi1), . . . , B(xik) and then the re-
mark above implies the claim. Similarly, we cannot have vi in the interval
A(xj1), . . . , A(xjg ).

• We cannot have vi in the interval B(xj1), . . . , B(xjg ) because there are no
backward arcs in the interval B(xj1), . . . , B(xjg ), α(xj1), . . . , α(xjg ),
A(xj1), . . . , A(xjg ) and this contains all out-neighbours of such a vi.

• Finally we cannot have vi in the interval B(xi1), . . . , B(xik) because all
arcs out of a vertex in this interval remain inside the interval
B(xi1), . . . , B(xik), α(xi1), α(xi2), . . . , α(xik) and there is no backward arc
here.

Thus we have shown that O is excellent and hence, by Lemma 12.3.11, the
partially oriented complete graph Hc has a completion to a locally transitive
tournament. �	
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12.4 Orientation Sandwich Completion Problems

For a fixed property Π of partially oriented graphs, the Π-sandwich prob-
lem is defined as follows:

Π-sandwich problem
Input: A pair of partially oriented graphs Q1 = (V,E1 ∪ A1) and
Q2 = (V,E2 ∪ A2).
Question: Is there a partially oriented graph Q = (V,E ∪ A) with
E1 ⊆ E ⊆ E2 and A1 ⊆ A ⊆ A2 which satisfies Π?

Sandwich problems for partially oriented graphs simultaneously general-
ize graph sandwich problems and digraph sandwich problems, which have
been studied by Golumbic, Kaplan and Shamir in [20]. Graph sandwich
problems restrict Q1, Q2 and Q in the above definition to be graphs, while
digraph sandwich problems restrict them to be digraphs.

Graph sandwich problems are polynomial time solvable for several graph
properties, including being bipartite graphs, threshold graphs, split graphs,
cographs and Eulerian graphs, and are NP-complete for properties such as be-
ing chordal graphs, interval graphs, circle graphs, circular arc graphs, proper
circular arc graphs, comparability graphs, co-comparability graphs, and per-
mutation graphs, cf. [20]. Little is known about digraph sandwich problems
but for Eulerian digraphs it is proved to be polynomial time solvable by Ford
and Fulkerson in [11].

A partially oriented graph Q = (V,E ∪ A) is called mixed Eulerian
if both (V,E) and (V,A) are Eulerian, that is, in (V,E) every vertex has
an even degree and in (V,A) every vertex has its in-degree equal to its out-
degree. Although both sandwich problems for Eulerian graphs and digraphs
are polynomial time solvable, the sandwich problem for mixed Eulerian par-
tially oriented graphs remains open.

Problem 12.4.1 Determine the complexity of the sandwich problem for
mixed Eulerian partially oriented graphs.

For a fixed property Π of oriented graphs, we define the Π-orientation
sandwich completion problem as follows:

Π-Orientation Sandwich Completion Problem
Input: A pair of partially oriented graphs Q1 = (V,E1 ∪ A1) and
Q2 = (V,E2 ∪ A2).
Question: Is there a partially oriented graph Q = (V,E ∪ A) with
E1 ⊆ E ⊆ E2 and A1 ⊆ A ⊆ A2 which can be completed to an oriented
graph that satisfies Π?

Orientation sandwich completion problems generalize orientation comple-
tion problems and hence orientation problems. Orientation sandwich comple-
tion problems and sandwich problems for partially oriented graphs are closely
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related. Let Π be a property of oriented graphs. A partially oriented graph
is said to have property Π∗ if it can be completed to an oriented graph that
has the property Π. Then the Π-orientation sandwich completion problem
is just the Π∗-sandwich problem. For instance, suppose that Π is the prop-
erty of being an Eulerian oriented graph, then a partially oriented graph has
property Π∗ if and only if it is mixed Eulerian and thus the Π-orientation
sandwich completion problem is just Problem 12.4.1. As mentioned above,
the Π-orientation completion problem is polynomial time solvable but the
Π-orientation sandwich completion problem is open. Special cases of the Π-
orientation sandwich completion problem have been studied by de Gevigney,
Klein, Nguyen and Szigeti [8].

A property Π of oriented graphs is called sup-preservable if Q1 =
(V,A1) has the property Π and A1 ⊆ A2 imply that Q2 = (V,A2) also has the
property Π. As an example, being k-arc-strong is a sup-preservable property
for each k ≥ 1. Let Π be a sup-preservable property of oriented graphs. Then
the Π-orientation sandwich completion problem can be reduced to the Π-
orientation completion problem. Indeed, suppose that Q1 = (V,E1 ∪A1) and
Q2 = (V,E2∪A2) form an instance of the Π-orientation sandwich completion
problem. In order to have a partially oriented graph Q = (V,E∪A) satisfying
E1 ⊆ E ⊆ E2 and A1 ⊆ A ⊆ A2, we must have E1 ⊆ E2 and A1 ⊆ A2. For
any such Q, Q can be completed to an oriented graph that has the property Π
if and only if Q2 can. Hence the Π-orientation sandwich completion problem
reduces to the Π-orientation completion problem. In particular, the k-arc-
strong orientation sandwich completion problem reduces to the k-arc-strong
orientation completion problem for each k ≥ 1. Each k-arc-strong-orientation
completion problem can be formulated as a feasible submodular flow prob-
lem which is polynomial time solvable (cf. [4]). Consequently, we have the
following:

Theorem 12.4.2 For each k ≥ 1, the k-arc-strong orientation sandwich
completion problem is polynomial time solvable. �	

In contrast, the k-strong orientation sandwich completion problem is NP-
complete for each k ≥ 3 as this is shown to be the case for the k-strong
orientation problem by de Gevigney [7]. Thomassen [41] proved that a graph
G has a 2-strong orientation if and only if G is 4-edge-connected and G−v is
2-edge-connected for every vertex v. This implies that the 2-strong orientation
problem is polynomial time solvable.

Theorem 12.4.3 ([7, 41]) The k-strong orientation problem is polynomial
time solvable when k ≤ 2 and NP-complete when k ≥ 3. �	

Thus to complete a dichotomy of k-strong orientation completion prob-
lems and k-strong orientation sandwich completion problems the only case
left open is k = 2.
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Problem 12.4.4 Determine the complexity of the 2-strong orientation sand-
wich completion problem and of the 2-strong orientation completion problem.

A directed cycle factor in a digraph is a spanning subdigraph that is a
vertex-disjoint union of directed cycles. The orientation completion problem
for the property of having a directed cycle factor is shown to be NP-complete
in [4].

Theorem 12.4.5 ([4]) It is NP-complete to decide whether a partially ori-
ented graph Q has a completion D with a directed cycle factor.

Proof: It was shown by Bang-Jensen and Casselgren [2] that it is NP-
complete to decide whether a bipartite digraph B has a directed cycle-factor
consisting of cycles C1, C2, . . . , Ck so that no Ci has length 2. Let B be given
and form the partially oriented graph Q from B by replacing the two arcs of
each directed 2-cycle by an edge. It is easy to see that Q has a completion
with a directed cycle factor if and only if B has a cycle factor with no directed
2-cycle, implying the theorem. �	

The complexity of the orientation sandwich completion problem for hav-
ing directed cycle factors is open.

Problem 12.4.6 Determine the complexity of the orientation sandwich com-
pletion problem for having directed cycle factors.

Let π = {(s1, t1), . . . , (sk, tk)} be a set of k pairs of distinct vertices in a
(di)graph H. A π-linkage in H is a collection of k disjoint paths R1, . . . , Rk

such that Ri starts in si and ends in ti. For a given class C of digraphs, the
C-π-linkage completion problem is defined as follows: given a partially
oriented graph Q = (V,E ∪ A) and a set π of k terminal pairs in V , is it
possible to complete the orientation of Q so that the resulting oriented graph
is in C and has a π-linkage?

For general digraphs the π-linkage problem, and hence also the comple-
tion version, is NP-complete already when k = 2 and even if the digraph is
highly connected [12, 40]. Chudnovsky, Scott and Seymour [6] proved that the
π-linkage problem is polynomial for semicomplete digraphs (that is, digraphs
whose underlying graph is complete). This implies that the tournament-
π-linkage completion problem is polynomial because such a completion
is possible if and only if the digraph that we obtain from the partially ori-
ented graph Q by replacing each undirected edge by a directed 2-cycle is
semicomplete and has a π-linkage (no two paths in a linkage intersect).

Problem 12.4.7 What is the complexity of the local-tournament-π-linkage
completion problem when k ≥ 2 is fixed?

An oriented graph is called an in-tournament if the in-neighbourhood of
every vertex induces a tournament. The orientation completion problem for
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in-tournaments is polynomial time solvable, cf. [4]. The orientation sandwich
completion problem for in-tournaments is open.

Problem 12.4.8 Determine the complexity of the orientation sandwich com-
pletion problem for in-tournaments.

The orientation problem for the class of acyclic in-tournaments is polyno-
mial time solvable. This follows from the fact that chordal graphs are exactly
the graphs which admit acyclic in-tournament orientations. However, the ori-
entation completion problem as well as the orientation sandwich completion
problem for acyclic in-tournaments remain open.

Problem 12.4.9 Determine the complexity of the orientation sandwich com-
pletion problem for acyclic in-tournaments.
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Symbol Index

To shorten and unify the notation, in this index we use the following conven-
tions:
B denotes a bipartite (di)graph.
C,Ci denote cycles (directed, undirected, edge-coloured, oriented).
D,Di denote digraphs, directed multigraphs and directed pseudographs.
G,Gi denote undirected graphs and undirected multigraphs.
H denotes a hypergraph.
M denotes a mixed graph or a matroid.
P, P i denote path (directed, undirected, edge-coloured, oriented).
S denotes a matrix or a multiset.
X,Xi denote abstract sets or sets of vertices.
Y, Y i denote sets of arcs.

(D1, D2)D: set of arcs with tails in
V (D1) and heads in V (D2), 6

(X1, X2)D: set of arcs with tail in
X1 and head in X2, 3

A(D): arc set of D, 3
B = (X1, X2;E): specification of a

bipartite graph with bipartition
X1, X2, 21

BG(D): bipartite representation of
D, 21

C[xi, xj ]: subpath of C from xi to
xj , 9

D − X: deleting the vertices of
X ⊆ V (D) from D, 12

D−Y : deleting the arcs of Y ⊆ A(D)
from D, 12

D//P : path-contraction, 13
D/D1: contracting the subgraph D1

in D, 12
D = (V, A): specification of D, 3
D = (V, A, c): specification of

weighted D, 6
D[D1, D2, . . . , Dn]: composing D

with D1, D2, . . . , Dn, 14

D[X], = D〈X〉: subgraph of D
induced by X, 6

D � D′: strong product of D and D′,
467

D ◦ D′: lexicographic product of D
and D′, 467

D \ X: deleting the vertices of
X ⊆ V (D) from D, 12

D \Y : deleting the arcs of Y ⊆ A(D)
from D, 12

D × D′: direct product of D and D′,
467

D � D′: Cartesian product of D and
D′, 467

D� n: nth strong power of D, 469
D◦n: nth lexicographic power of D,

469
D � n: nth Cartesian power of D, 469
D×n: nth direct power of D, 469
D1�D2� . . . �Dn, �n

i=1Di: Carte-
sian product of digraphs,
15
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D1 �→ D2: V (D1) dominates V (D2)
and no arc from V (D2) to V (D1),
6

D1 ⇒ D2: no arc from V (D2) to
V (D1), 6

D1
∼= D2: D1 is isomorphic to D2,

D1 ∪ D2: union of D1 and D2, 16 12
D1 → D2: V (D1) dominates V (D2),

6
DB(d, t): de Bruijn digraph, 540
DK(d, t): Kautz digraph, 544
E(G): edge set of the graph G, 20
H = (V, E): specification of the

hypergraph H, 2
H �b D: butterfly minor of D, 425
Kn: complete graph of order n, 21
K◦

d : complete digraph on d vertices
with a loop at each vertex, 540

Kn1,n2,...,np : complete multipartite
graph, 21

L(D): line digraph of a digraph D,
519

Lk(D): kth-order line digraph of D,
534

M+
D : out-neighborhood matrix, 450

M4
D : F4-adjacency matrix, 450

N++
D (v): second out-neighbourhood
of v in D, 40

N−−
D (v): second in-neighbourhood of
v in D, 40

ND(v): neighbourhood of v, 4
N+

D (X), N−
D (X): out-neighbourhood,

in-neighbourhood of X, 4
N+

D (v), N−
D (v): out-neighbourhood

and in-neighbourhood of v, 4
N+

D [X], N−
D [X]: closed out-

neighbourhood, closed in-
neighbourhood of X, 5

N+p
D (X), N−p

D (X): pth out-
neighbourhood, pth in-
neighbourhood of X, 5

N+p
D [X], N−p

D [X]: pth closed
out-neighbourhood, pth closed
in-neighbourhood of X, 5

NG(x): neighbourhood of x in G, 22
O: the empty digraph, 484
P [xi, xj ]: subpath of P from xi to

xj , i ≤ j, 9
S(D): the Cartesian skeleton of D,

504
S = [sij ]: matrix, 2
SC(D): strong component digraph

of D, 18

S+(D): the Cartesian out-skeleton
of D, 504

S+(X): out-section of X, 71
S−(D): the Cartesian in-skeleton of

D, 504
S−(X): in-section of X, 71
ST : transpose of matrix S, 2
TC(D): transitive closure of D, 128
TTk: the transitive tournament on k

vertices., 36
Tn: the random tournament on n

vertices, 36
UG(D): underlying graph of D, 22
UMG(D): underlying multigraph of

D, 22
V (D): vertex set of D, 3
V (G): vertex set of the graph G, 20
X �→ Y : X → Y and no arc from Y

to X, 3
X → Y : x → y for all x ∈ X, y ∈ Y ,

3
X1 × X2 × . . . × Xp: Cartesian

product of sets, 2
[n]: the set {1, 2, . . . , n}, 1
#fvs(n): maximum number of

minimal feedback vertex sets over
all n-tournaments, 90

Δ(G): maximum degree of G, 22
Δ+(D),Δ−(D): maximum out- and

in-degree of D, 6
Δ0(D): maximum semi-degree of D,

6
Φ1: union of semicomplete bipartite,

connected extended locally semi-
complete and acyclic digraphs,
551

α(D): independence number of D,
23

χg(D): game chromatic number of
D, 556

χ(D): chromatic number of D, 23
δ(G): minimum degree of G, 22
δ+(D), δ−(D): minimum out- and

in-degree of D, 5
δ0(D): minimum semi-degree of D, 5
fas(D): minimum size of a feedback

arc set of D, 88
fvs(D): minimum size of a feedback

vertex set of D, 88
γh,p(D): (h, p)-domination number

of D, 538
κ(D): vertex-strong connectivity of

D, 17
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λ(D): arc-strong connectivity of D,
18

lu(n): maximum number of arcs of
an unavoidable n-tournament, 76

Ñr(v):r-strong neighbourhood of v,
442

F(M) : rank of the matrix M over
the field F, 449, 450

Pq: The Paley tournament on q
vertices, 37

CONV(D): the family of convex sets
in D, 151

↔
Kn: complete digraph, 17
→
χ (D): dichromatic number of D,

146→
χg (D): game dichromatic number

of D, 556
→
χg (G): game chromatic number of

G, 556
D : set of all isomorphism classes of

digraphs, 484
do(D): detour order of D, 344, 392
D0: set of all isomorphism classes of

digraphs, with loops allowed, 484
μD(x, y): number of arcs with tail x

and head y, 4
μG(u, v): number of edges between u

and v in G, 20
ω(D): clique number of D, 553
IBx(D): number of in-branchings of

D rooted at x, 528
asym(D): asymmetric part of D,

550, 553
sym(D): symmetric part of D, 550,

553
⊕: digraph join, 501
πk: kth projection of a product, 469
�t, 436
�t

r, 436
hom(D, D′): number of homo-

morphisms from D to D′,
485

homw(D, D′): number of weak
homomorphisms from D to D′,
485

D-width(D): D-width, 414
Kelly-width(D): Kelly-width, 414
birw(D) : bi-rank-width of a digraph

D, 450
dag-depth(D): DAG-depth, 415
dag-width(D): DAG-width, 414

dcw(D) : directed clique-width of D,
446

dnlcw(D) : directed NLC-width of
D, 447

dpw(D): directed path-width, 414
dtw(D): directed tree-width, 414
rw4(D) : F4-rank-width of a digraph

D, 450
ξ′
D(x): length of the shortest
nontrivial cycle containing x in D,
473

ξD(x): length of the shortest
nontrivial dicycle containing x in
D, 473

bD(v): the balance number of v, i.e.,
d+
D(v) − d−

D(v), 176
bi(P ): length of the ith block of the

oriented path P , 71
c(Y ): sum of costs/weights of arcs in

Y , 7
c(a): cost/weight of the arc a, 7
cw(D): cutwidth of D, 52
d(x): degree of x, 22
dD(X): degree of X, 5
d+
D(X), d−

D(X): out- and in-degree of
X, 5

deorarck (D): the minimum number
of arcs to deorient in D to get a
digraph with λ ≥ k, 101, 102

deordegk (D): the minimum number
of arcs to deorient in D to get
digraph D′ with δ0(D′) ≥ k, 101

deordegk (D): the minimum number
of arcs to deorient in D to get
minimum degree at least k, 102

g(D): girth of D, 8
gv(D): length of a shortest cycle

through v in D, 264
pc(D) : path covering number of D,

299
pcc(D) : path cycle covering number

of D, 300
rarck (D): minimum number of arcs

one needs to reverse in D in order
to obtain a k-arc-strong directed
multigraph, 101

rdegk (D): minimum number of arcs
one needs to reverse in D in order
to obtain a directed multigraph
D′ with δ0(D′) ≥ k, 101

s+(X): cardinality of the out-section
of X, 71
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s−(X): cardinality of the in-section
of X, 71

x → y: x dominates y, 3
D6, D8: classes of non-arc-pancyclic

arc-3-cyclic tournaments, 112
F = P1 ∪ . . . ∪ Pq ∪ C1 ∪ . . . ∪ Ct:

q-path-cycle subgraph, 10
T ∗: set of second powers of even

cycles of length at least 4, 260
T4, T6: classes of semicomplete

digraphs, 260
Q+: set of positive rational numbers,

1
Q0: set of non-negative rational

numbers, 1
Q: set of rational numbers, 1
R+: set of positive reals, 1
R0: set of non-negative reals, 1
R: set of reals, 1
Z+: set of positive integers, 1
Z0: set of non-negative integers, 1
Z: set of integers, 1
Hom(D, D′): set of all homo-

morphisms from D to D′,
485

Homw(D, D′): set of all weak
homomorphisms from D to D′,
485

cc(D): the number of connected
convex subgraphs in D, 150

conv(D): number of convex sets in
D, 148

diammin(D): minimum diameter of
an orientation of D, 327

dist′D(x, y): length of the shortest
(x, y)-path in UG(D), 471

inj(D, D′): number of injective
homomorphisms from D to D′,
485

pcc(D): path-cycle covering number
D, 11

pc(D): path covering number of D,
11

|D|: the order of the digraph D, 3
|S|: cardinality of the multiset S, 2

G
G: complement of G, 20
↔
G: complete biorientation of G, 22

U
unvd(D): minimum k such that D is

k-unavoidable, 69
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– walk, 7
cograph, 549
Cohomology feasibility, 221
colour classes, 297
colouring, 23
colouring number, 440
– r-colouring number, 440
comparability graph, 576, 580–582
competition graph, 503
complement of an undirected graph,

20
complement-reducible graph, 549
complementary cycles, 79, 267
– in semicomplete digraphs, 80
– in semicomplete multipartite

digraphs, 333
– in tournaments, 80
complete
– biorientation, 22, 175
– digraph, 17
– graph, 21
– multipartite graph, 21
– p-partite graph, 21
composition
– of digraphs, 14
– of graphs, 23
Conjecture, 5, 44, 45, 50, 58, 60,

64–66, 69, 70, 74, 76, 78, 79, 82,
97, 100, 101, 104–106, 109, 110,
114, 115, 146, 178, 189, 262, 263,
269, 273, 274, 276, 278, 285, 291,
307, 321, 328, 332, 333, 335–337,
390, 392, 393, 482, 561

connected
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– component, 22
– digraph, 22
– graph, 22
– – k-connected graph, 22
connectivity, 536
– of Cartesian products, 474
– of direct products, 476, 479
– of lexicographic products, 474
– of strong products, 474
consecutive-d digraph, 544, 548
contraction, 12, 425
– butterfly, 425
– of a subgraph, 12
converse
– of a digraph, 249
– of a directed multigraph, 12
convex set, 148–154
convex subgraph, 499
cops and robbers game, 407
cost
– of a flow, 27
– of a vertex, 7
– of an arc, 7
cotree, 550
Courcelle’s theorem, 179
cover, 424
– of a family of sets, 2
critical
– activities, 162
– kernel-imperfect digraph, 562
– path, 162
– vertices, 162
crown, 438
curve
– face-edge, 234
– general position, 233
cut, 18
– maximum, 141
cut-matching game, 234
cutset, 18
cutwidth, 52, 379
– of a semicomplete digraph, 52
– of a tournament, 52
– undirected cutwidth, 180
cycle, see also Hamiltonian cycle, 8
– avoiding/containing prescribed

arcs, 69
– extendable, 289
– ordinary, 253
– through a vertex, 8
cycle complementary, 333
cycle extendable digraph, 289
cycle factor, 364–366

– q-cycle factor, 344
-cycle factor, see complementary

cycles
– in k-strong locally semicomplete

digraph, 268
cycle subdigraph, see also cycle

factor
– k-path-q-cycle subdigraph, 344
– q-cycle subdigraph, 344
cylindrical grid, 230

D
DAG, see acyclic digraph
k-DAG, 417
DAG partitioning, 163
DAG-depth, 415
data dependency graph (DDG), 149
de Bruijn digraph, 540–544
decomposable digraph see also

quasi-transitive digraph, 344, 380
– D-external path, 377
– D-internal path, 377
– Φ-decomposable digraph, 344
decomposition
– Φ-decomposition, 344, 359
– abstract, 410
– D-decomposition, 412
– directed path, 414
– directed tree, 411
– Kelly, 413
– node guarded, 410
– of the arc set of regular tourna-

ments, 105
– total Φ-decomposition, 359
– width, 410
degeneracy, 439
degree of a vertex
– in a digraph, 5
– in a graph, 22
deletion
– of a subgraph, 12
– of arcs from a digraph, 12
– of multiple arcs, 12
– of vertices from a digraph, 12
deorienting an arc, 101
depth-r minor, 437
detour see also longest path, 344,

392
detour order, 344, 392
diameter, 8, 525, 537, 540, 545, 546
dichromatic number, 86, 146, 345,

553
dicolouring, 86
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– k-dicolouring, 553
dicut
– maximum, 141
dicycle
– even, 8
– length, 8
– odd, 8
digon, 343
digraph, 3
– k-linked, 373
– acyclic, 125
– orientation, 23, 398, 592–605
– quasi-transitive, 343
– transitive, 345
– vertex cyclic, 436
digraph sandwich problem, 602
Dilworth’s theorem, 160
dipath
– (x, y)-path, 8
– [x, y]-path, 8
– even, 8
– length, 8
– longest, 8
– odd, 8
– shortest, 8
direct product, 467
directed
– cut, see dicut
– graph, see also digraph, 3
– multigraph, 4
– pseudograph, 4
directed cactus, 400
directed clique-width, 445, 446
– k-expression, 446
– k-expression tree, 447
directed cograph, 448, 548–552
– application in logic, 552
directed cycle factor, 11, 604
directed cycle subgraph, 11
– directed t-cycle subgraph, 11
directed dominating set, 456
directed elimination ordering, 416
Directed Grid Theorem, 229, 426
directed minor, 437
– branch-sets, 437
directed model, 437
directed NLC-width, 447
– k-expression, 447
directed nowhere dense class, 438
directed path decomposition, 414
directed path factor, 11
directed q-path subgraph, 11
directed q-path-cycle factor, 11

directed pathwidth, 180
Directed rural postman

problem, 30
directed somewhere dense class, 438
Directed Steiner problem, 291
directed topological minor, 436
directed tree decomposition
– nice, 423
directed treewidth, 181, 230
directed walk, 7
disjoint cycles, 58–60
k-Disjoint paths, see also k-

linkage, 53, 271, 218, 373
431

disjoint paths, 53, 543, 546
disjoint sets, 2
disjoint union operation, 549
distance
– in Cartesian products, 471
– in direct products, 472
– in lexicographic products, 473
– in strong products, 471
distances
– acyclic digraphs, 127
distribution
– losing distribution, 46
– probability distribution, 46
diwalk, 8
dominated, 3
dominates, 3, 343
dominating set, 483
k-dominating vertex, 384
Domination number, 483
domination number
– (h, p)-domination number, 538,

544, 547
domination set
– (h, p)-domination set, 538
Dynamic Recognition and Represen-

tation Problem, 550

E
edge expansion, 234
– directed, 234
edge of an undirected graph, 20
edge-coloured graph, 165–167
k-edge-connected, 22
Edmonds’ branching theorem, 25
element of a directed pseudograph, 7
embedding on a surface, 207
end-vertex
– of a walk, 8
– of an arc, 3
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entering arc, 3
enumeration, 137–140
Erd0.5ős-Pósa property, 241
Euler trail see also Eulerian trail,

530, 538, 544, 547
Euler two-vertex extension, 176
Euler’s theorem, 22
Eulerian
– directed multigraph, 22
– trail, 9
Eulerian digraph, 233
even dicycle, 8
even pancyclic, 307
evil locally semicomplete digraph,

259
excellent ordering, 595
Excluded Grid Theorem, 230
exponent of a digraph, 484
Exponential Time Hypothesis, 30
extended cycle, 559
extended locally in-semicomplete

digraph, 269, 270
extended semicomplete digraph, 323,

324
extended tournament, 14
extension, 344
– of a digraph, 14, 375
– of a graph, 23
extension of a digraph, 14
externally related sets, 490

F
face, 207
factor, 467
– of a product, 467
factor of a digraph, 6
Factorial of a digraph, 495
family
– of sets, 2
feasibility theorem
– for circulations, 28
Feedback arc set, 88, 143, 182,

279, 531, 532
feedback arc set, 88
– minimal, 88
– minimum, 88
Feedback vertex set, 88, 182,

279, 531, 532
feedback vertex set, 88
– minimal, 88
– minimum, 88
filled odd antihole, 554
filled odd hole, 554

fixed-parameter tractable, 30, 144,
218, 227, 229, 407, 428, 431, 445

flow, 26
– application, 97, 102
– balance vector, 27
– circulation, 27
– finding a feasible flow, 101
– integer, 27
– value of an (s, t)-flow, 27
(s, t)-flow
– reducing general flows to, 28
FPT see also fixed-parameter

tractable, 30
Free multiflow, 198

G
Gallai–Milgram theorem, 26, 160,

484
Gallai–Roy–Vitaver Theorem, 392
game chromatic number, 556
game dichromatic number, 556
game theory, 277
game-perfect digraph, 556
generalized de Bruijn digraph, 544
girth, 8, 264
global irregularity, 315
grad, 438
graph sandwich problem, 602
greatest reduced average degree, 438
guard
– strong, 409
– weak, 409

H
H-colouring, 344
– H-retraction problem, 345
H-colouring problem, 345
H∗

4-free digraph, 566
Hi-free digraph, 563–566
Hamilton cycle, see Hamiltonian

cycle
Hamilton path, see Hamiltonian

path
Hamilton walk, see Hamiltonian

walk
Hamiltonian
– quasi-transitive digraph, 363
Hamiltonian (x, y)-path, 63, 262
Hamiltonian [x, y]-path, 62, 261, 324
Hamiltonian connected, 263
Hamiltonian cycle, 9, 68, 112, 113,

251–253, 290, 397, 530
– arc-disjoint Hamiltonian cycles,

530
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– avoiding prescribed arcs, 67–69
– containing prescribed arcs, 65–67
– in a product, 481
– in almost semicomplete digraph,

65
– multipartite tournament, 68
– power of a Hamiltonian cycle, 106
– quasi-transitive digraph, 363–364
Hamiltonian decomposable, 481
Hamiltonian digraph, 9
Hamiltonian path, 9, 250, 251, 264,

309–311
– (x, y)-Hamiltonian path, 63
– [x, y]-Hamiltonian path, 62, 324
– in a product, 481
– in a tournament, 10
– Rédei’s theorem, 10
Hamiltonian walk, 9
Hamiltonian-connected, 63
haven, 424
– order, 424
k-HCA problem, 65, 66
head
– of an arc, 3
Hedetniemi’s conjecture, 483
hereditary set, 360
hero, 87
Heuchenne condition, 534
Hoffman’s circulation theorem, 28
homogeneously traceable, 481
homomorphism, 344, 469, 485
hypergraph, 2
-colourable, 2
-colouring of, 2
– edge of, 2
– order of, 2
– rank of, 2
– uniform, 2
– vertex of, 2

I
Imase–Itoh digraph, 548
in-antiwalk, 503
in-branching, see also out-branching,

129, 134, 528, 529, 537, 538, 543,
547

in-degree of a vertex, 5
in-dominating set, 55
in-generator, 71
in-neighbour, 4
in-neighbourhood, 4
– second in-neighbourhood, 40
in-path, 71

in-path-mergeable digraph, 248
in-pseudodegree of a vertex, 5
in-tournament, 604
incident to an arc, 3
increasing arc-strong connectivity
– by adding arcs, 101–103
– by reversing arcs, 101–103
increasing vertex-strong connectivity
– by adding arcs, 101
– by reversing arcs, 101
independence number, 23, 26, , 483,

533, 539
independent arcs (edges), 23
independent in-branchings, 538
independent out-branchings, 529,

543, 547
Independent set, 90, 531, 532
independent set, 23, 483
k-independent set, 387
independent vertices, 23
induced subgraph, 6
initial strong component, 18
initial vertex of a diwalk, 8
interconnection network, 533, 540
– fault tolerance, 524
intermediate strong component, 18
internally disjoint paths, 9
intersection
– of digraphs, 128
interval containment bigraph, 577,

588
interval graph, 577
irrelevant vertex, 229
isomorphic
– directed pseudographs, 12
– graphs, 22
isomorphism, 12
iterated line digraph, 533–540
iterative compression, 90, 94, 185

J
Join of digraphs, 501

K
k-arc-strong, 18
Kautz digraph, 544–548
Kelly conjecture, 105
Kelly-decomposition, 413
Kernel, 277
kernel see also k-kernel, 31, 480, 525,

527, 528
– (k, l)-kernel, 387, 525, 527, 528
– 3-transitive digraph, 390
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– k-coloured kernel, 332
– k-kernel, 387, 525
– – k-kernel problem, 387
– quasi-transitive digraph, 388
3-kernel
– 3-quasi-transitive digraph, 389
kernel-perfect digraph, 555, 557, 562,

563
king see also k-king, 480
– 3-king
– – quasi-transitive digraph, 384
– k-king, 384
– – strict, 386
– r-king, 329
– of a locally semicomplete digraph,

288

L
labelled digraph, 12
– k-labelled digraph, 446
Laborde–Payan–Xuong Conjecture,

392, 393
leaf, 26, 130–132
leaving arc, 3
length
– of a dicycle, 8
– of a dipath, 8
– of a walk, 8
– of an oriented path, 71
Lexicographic Breadth First Search,

586
lexicographic orientation method,

576
Lexicographic product, 467
line digraph, 519–533, 549, 566
– kth-order line digraph, 534
– recognition, 522
line graph, 519
link-cut trees, 212
k-linkage k--Disjoint paths, 19,

53, 135, 173, 271
linkage, 19, 235, 372
– Π-linkage, 377
– k-linkage, 372
– – quasi-transitive digraph, 378
– k-linkage problem, 373
-linkage problem
– – acyclic digraph, 135
– linkage ejector, 377
k-linkage, 372
– k-linkage problem, 135, 373, 376
– k-Disjoint paths problem, 377
– in locally semicomplete digraph,

273

– quasi-transitive digraph, 374
k-linkage problem, 53–58
– semicomplete digraph, 53
k-linked digraph, 372
k-linked set, 422
local in-tournament, see locally

intournament digraph
local irregularity, 315
local tournament, see locally

tournament digraph
– pseudo-girth, 290
locally in-semicomplete digraph

see also locally outsemicomplete
digraph, 17

– out-round, 286
locally in-tournament digraph, 266
– pancyclicity, 266
locally out-semicomplete digraph

see also locally insemicomplete
digraph, 17

locally semicomplete digraph,
245–267

– classification theorem, 258
– complementary cycles, 267
– cycle factor, 268
– decompose into strong spanning

subdigraphs, 275
– evil, 259
– Hamiltonian (x, y)-path, 262
– Hamiltonian [x, y]-path, 261
– Hamiltonian connected, 263
– king, 288
– non-round decomposable, 257
– round decomposable, 254
– semicomplete decomposition, 250
– weak-k-linkage problem, 269
– weakly Hamiltonian-connected,

262
locally tournament digraph see also

locally semicomplete digraph, 263,
264, 266

– round, 254
locally transitive local tournament,

576
longest
– (x, y)-path problem, 64
– [x, y]-path problem, 64
– path problem
– – acyclic digraph, 127
longest path, 127
loop, 4
lower bound
– on arcs in a network, 27
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Lucchesi–Younger theorem, 102

M
matching, 22
– perfect, 23
matrix multiplication, 128
Max cut, 141
maximal connectivity, 536, 546
maximal with respect to property P,

2
maximum
– in-degree of a digraph, 6
– out-degree of a digraph, 6
– semi-degree of a digraph, 6
– with respect to property P, 2
Maximum acyclic subdigraph,

143
median order, 39, 48–50
member
– of a family of digraphs, 12
Menger’s theorem, 18, 25, 63, 270
merging paths in a digraph, see

pathmergeable digraph
minimal series-parallel digraph, 548
minimum
– in-degree of a digraph, 5
– out-degree of a digraph, 5
– semi-degree of a digraph, 5
minimum cost
– cycle, 291
– strong subdigraph, 291
Minimum cost cycle, 291
Minimum cost strong subdi-

graph, 291
minimum equivalent subdigraph, see

MSSS problem
Minimum spanning strong

subdigraph, 291, 400
minor, 110, 230
– r-shallow topological minor, 436
– butterfly, 425
– shallow minor, 110
– topological minor, 436
Moon’s theorem, 17, 38, 263, 313,

397
multi-commodity flow, 191
Multicut, 147
Multicut Problem, 147
multigraph, 20
multipartite tournament see also

semicomplete multipartite
digraph, 11, 68, 299

multiple arcs, 4

multiset, 2

N
Nash-Williams’ orientation theorem,

101
neighbour, 4
neighbourhood, 4, 22
– in a product, 480
– strong r−, 442
network, 26
nice directed tree-decomposition,

423
nowhere crownful class, 438
NP-complete problem, 29, 30, 51,

53, 64, 65, 68, 80, 81, 86, 89–91,
108, 148, 167, 182, 277, 330, 342,
346, 348, 372, 373, 375, 377, 378,
388, 398, 400, 426, 427, 431, 443,
531, 532, 554, 555, 575, 578, 592,
595, 598, 602–604

NP-hard problem, 20, 26, 29, 30,
33, 52, 60, 86, 89, 91, 96, 130,
137, 143, 163, 174, 179, 183, 191,
195–197, 199, 218, 291, 331, 367,
427, 430, 432, 433, 445, 456, 457,
483

O
odd
– chain, 260
– dicycle, 8
odd-chorded digraph, 562
open problem, 30, 32, 44, 54, 67, 68,

70, 84, 99, 103–105, 113, 142, 145,
147, 175, 184, 186, 189, 190, 198,
251, 259, 267, 278, 279, 288, 336,
337, 348, 361–363, 389, 391, 400,
419, 431, 433, 436, 449, 454, 459,
481, 482, 512, 523 534, 554, 555,
557, 589, 602–605

opposite vertices, 260
order
– of a digraph, 3
order composition, 549
ordering
– associated to a feedback set, 89
– excellent, 595
ordinary
– arc, 253
– cycle, 253
– path, 253
orientation, 326
– of a digraph, 23
– of a graph, 22
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– strong, 22
orientation of a graph see also

orientation, 68
Π-orientation completion

problem, 577
Π-orientation problem, 575
Π-orientation sandwich

completion problem, 602
oriented
– cycle, 73
– forest, 24
– graph, 10
– path, 71
– tree, 24, 74
oriented chromatic number, 483
origin
– of an oriented path, 71
orthogonal rows in a matrix, 520
out-antiwalk, 503
out-branching see also in-branching,

26, 129–135, 249, 529
– in locally in-semicomplete digraph,

249
out-degree of a vertex, 5
out-dominating set, 55
out-forest, 155
out-generator, 71
out-neighborhood matrix, 450
out-neighbour, 4
out-neighbourhood, 4
– second out-neighbourhood, 40
out-pancyclic vertex, 113
out-path, 71, 329
out-path-mergeable digraph, 248
out-pseudodegree of a vertex, 5
out-round digraph, 286
out-section, 71
out-star, 74
out-tree, 25, 155

P
p-partite graph, 21
Paley tournament, 37, 85
pancircular, 530, 539, 544, 547
pancyclic, 8, 313, 326, 539, 544, 547
– arc even pancyclic, 307
pancyclicity
– of a locally in-tournament digraph,

266
parallel
– arcs, 4
parameterized problem, 30
partial

– greedy in-dominating sequence, 56
– greedy out-dominating sequence,

56
partial k-DAG, 417
partially oriented graph, 577
partite sets, 21, 297
partition, 2
partner, 301
path, 8
– (X, Y )-path, 8
– [x, y]-path, 8, 324
– xy-path, 22
– longest, 127
– ordinary, 253
– oriented, 71
– shortest, 127
path covering number, 11, 299, 366
– quasi-transitive digraph, 365
path cycle covering number, 300
d-path dominant digraph, 53
path factor, 155
– k-path factor, 344
Path Partition Conjecture, 393
– quasi-transitive digraph, 394
path-contraction, 13
– versus set-contraction, 14
path-cycle covering number, 11
path-cycle factor
– q-path-cycle factor, 299
path-cycle subdigraph
– k-path-q-cycle factor, 344
– k-path-cycle subdigraph, 344
– k-path-cycle subgraph, 10
path-factor
– q-path factor, 300
path-mergeable digraph, 247–252
k-path-subdigraph, 344
pathwidth, 180
perfect digraph, 552–558
perfect elimination ordering, 586
perfect matching, 23
performance ratio, 32
PERT/CPM , 161–162
pivot-minor, 445, 457
pivoting, 457
planar digraph, 198, 207–242, 388,

435
planar embedding, 207
power
– of a cycle, 260, 267
– of a Hamiltonian cycle, 106
– of a path, 260
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predecessor of a vertex on a
path/cycle, 9

problem kernel, 31, 144, 145
product
– Cartesian, 467
– direct, 467
– lexicographic, 467
– strong, 467
projection, 469
proof technique
– colour coding, 95
– de-randomization, 92
– decomposition, 263, 363–366,

373–383
– First Moment Method, 70
– inclusion-exclusion, 61, 138
– iterative compression, 90, 94, 185
– lexicographic method, 578–592
– linear algebra, 85, 138–140
– median orders, 48
– network flows, 97, 101, 133, 160,

367
– probabilistic method, 93, 144
– probability distributions, 45
– splitting off arcs, 185, 194, 199
– Szemeredi’s Regularity Lemma, 75
– using Dilworth’s theorem, 160
– using Gallai–Milgram theorem,

160
– using recursive formulas, 543
– using submodularity, 200
– using the bipartite representation

of a directed multigraph, 21
– using the Irreducible Cycle

Subgraph Theorem, 306, 310, 316,
323

proper
– colouring, 23
– subset, 2
proper circular arc graph, 577,

582–586
proper interval graph, 586–588, 595
properly coloured
– cycle, 165
– trail, 165
– walk, 165
pseudo-diagonal, 562
pseudo-girth, 290
pseudograph, 20

Q
Quarter-integral disjoint

paths, 433

quasi-antiarc-transitive digraph, 564
quasi-arc-transitive digraph, 564
quasi-Hamiltonian path, 330
quasi-kernel, 391, 525, 527
– k-quasi-kernel, 525
quasi-transitive, 581
quasi-transitive digraph, see also

k-quasi-transitive digraph, 376
– 3-king, 384
– k-Disjoint paths problem, 374,

378
– weak k-linkage, 383
– acyclic spanning subgraph, 398
– arc-disjoint in- and out-branchings,

400
– canonical decomposition, 350, 351
– disjoint quasi-kernels, 392
– Hamiltonian, 363
– Hamiltonian cycle, 363–364
– Hamiltonian cycle algorithm, 364
– kernel, 388
– longest path, 371
– path covering number, 365
– path partition conjecture, 394
– traceable, 364
– vertex-heaviest paths and cycles,

366–372
– vertex-pancyclic, 398
3-quasi-transitive digraph, 564
– 3-kernel, 389
– Hamiltonian, 362
– structural characterization, 355
k-king
– k-quasi-transitive digraph, 385,

387
k-quasi-transitive digraph, 343
– k-king, 385, 387
– traceability, 362
quotient digraph, 380
quotient of a digraph, 484

R
Rédei’s theorem, 38, 60
random tournament, 36, 93
rank-width, 449
– F4-rank-width, 445, 449, 450
– bi-rank-width, 445
reachable from a vertex, 16
recognition
– line digraph, 522
– path-mergeable digraph, 247
– round decomposable locally

semicomplete digraph, 255
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Redei’s theorem, 10
redundant arc of a digraph, 128
regular digraph, 6, 315
regular graph, 22
regular tournament, 36
replication of a vertex, 345
representation extension problem,

578
reversing an arc, 12
reversing arcs, see arc reversal
Robbins’ theorem, 22
rooted directed tree, 410
rooted spanning tree, 528
round
– decomposition, 254
– digraph, 253–254
– labelling, 253
round decomposable locally

semicomplete digraph, 254–256

S
Π-sandwich problem, 602
semi-degree of a vertex, 5
semi-partitioncomplete digraph, 318
semicomplete p-partite digraph,

see semicomplete multipartite
digraph, 305–309

semicomplete bipartite digraph,
305–309

semicomplete decomposition of a
locally semicomplete digraph, 250,
257

semicomplete digraph, see also
tournament, 55, 63–65, 68, 69, 99,
100, 260, 266, 376

– k-linkage problem, 53
– algorithm for weak k-linkage, 51
– complementary cycles
– – algorithm, 80
– cutwidth, 52
– Hamiltonian (x, y)-path, 63
– Hamiltonian-connected, 63, 64
– increasing connectivity by

arc-reversals, 99
– spanning k-strong tournament, 44
– sufficient condition for being

k-linked, 54
– vertex-heaviest paths and cycles,

366–372
semicomplete multipartite digraph,

11, 68, 297
semikernel, 526, 527
– (k, l)-semikernel, 526, 527

– k-semikernel, 526, 527
separation, 232
separator, 17
– (s, t)-separator, 17
– balanced W -, 422
– trivial, 64
series operation, 549
series-parallel digraph, 548
series-parallel partial order, 548
series-parallel partial order digraph,

548
set
– k-linked, 422
– well-linked, 425
set-contraction, see contraction
k-set, 2
Seymour’s Second Neighbourhood

Conjecture, 5, 45
r-shallow topological minor, 436
shortest path, 127
shortest cycle, see also girth
similar vertices, 14, 269
Simple max cut, 531
simple splitting pair, 176
sink, 126
size of a digraph, 3
Skew multicut, 147
solution, 525–527
sorting as a Hamiltonian path

problem, 247
source, 126, 127, 130
spanning out-forest, 155
spanning subdigraph
– k-strong, 399
spanning subgraph, 6
spherical embedding, 207
splitter game, 442
splitting a vertex, 15
splitting-off operation, 176
spread, 529
strong
– k-strong, 17
– k-strong connectivity
– – certificate, 399
– k-strong spanning subdigraph, 399
– components of a digraph, 18
– digraph, 17
– orientation, 22
– strong component digraph, 18
strong r-neighbourhood, 442
strong component digraph, 18, 474
strong decomposition of a digraph,

18
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strong guard, 409
Strong Perfect Digraph Theorem,

553
Strong product, 467
strong reachability game, 415
strongly r-reachable, 440
strongly connected, see strong
strongly perfect graph, 562
subdigraph, 6
– spanning, see also factor of a

digraph
subdivision, 436
– r-subdivision, 436
– of a digraph, 15
– of an arc, 15
subgraph, 6
– acyclic spanning, 398
– induced, 6
– spanning, see also factor of a

digraph, 6
submodular flows, 99, 101, 603
submodular function, 450
subpartition, 2
subpath, 9
successor of a vertex on a path/cycle,

9
sup-preservable, 603
super arc-connectivity, 524, 525, 536,

537, 541, 546
super connectivity, 524, 536, 537,

542, 546
super vertex-connectivity, 524, 536,

537, 542, 546
supergraph, 6
symmetric
– digraph, 22
– random variable, 143
symmetric arc, 549
symmetric function, 450
symmetric part, 550, 553

T
T-digraph, 564
T-partition, 564
tail
– of an arc, 3
terminal strong component, 18
terminal vertex of a diwalk, 8
terminus
– of an oriented path, 71
top-grad, 438
topological greatest average degree,

438

topological minor, 176, 436
topological sorting, see acyclic

ordering
total Φ-decomposition, 344
totally Φ-decomposable digraph,

344, 551
– Hamiltonian cycle, 366
– Hamiltonian path, 366
– totally Φ0-decomposable digraph
– – path covering number, 366
– – polynomial recognition, 360
– totally Φ1-decomposable digraph
– – polynomial recognition, 360
– totally Φ2-decomposable digraph
– – path covering number, 366
– – polynomial recognition, 360
tournament, see also semicomplete

digraph, 10, 66–68, 101, 105, 109,
112, 289, 374

– almost transitive, 36
– arc-3-cyclic, 112
– arc-disjoint Hamiltonian cycles,

104
– circulant, 36
– complementary cycles, 80
– critically k-strong, 114
– cutwidth, 52
– decomposing into strong spanning

subdigraphs, 106
– degree constrained 2-partition, 82
– king, 40
– Landau’s theorem, 42
– minimally k-strong, 115
– out-pancyclic vertex, 114
– Paley tournament, 37
– path-factor with prescribed end

vertices, 66
– product of a, 470
– Rédei’s theorem, 60
– random, 36, 93
– regular, 36
– score sequence, 42
– subdivision in tournament, 115
– sufficient condition for being

k-linked, 54
– transitive, 36
– vertex pancyclic, 38
– weakly Hamiltonian-connected, 62
traceable, 481
– quasi-transitive digraph, see also

Hamiltonian path, 364
traceable digraph, 9
trail, 8



Subject Index 635

transitive, 576
– closure, 128
– – versus transitive reduction, 129
– reduction, 128
transitive digraph, see also

k-transitive digraph, 127, 345
– characterization, 346
– homomorphism, 346, 348
3-transitive digraph
– Hamiltonian, 361
– kernel, 390
– structural characterization, 356
4-transitive digraph
– Hamiltonian, 361
– structural characterization, 358
k-transitive digraph, 343
transitive tournament, 36
Travelling salesman problem,

33, 532
tree
– rooted directed, 410
treewidth, 230
triangular digraph, 397
trivial (s, t)-separator, 64
trivial cut, 524
trivial separator, 524
k-tuple, 135
Two-commodity flow, 195

U
unavoidable, 69
underlying graph
– of a digraph, see also underlying

graph, 22
– of a line digraph, 523
underlying graph of a digraph, 252
underlying multigraph of a digraph,

22
undirected graph, 20
unilateral, 523, 524
unilateral connectedness
– of a product, 480
union
– of digraphs, 16, 128
unique prime factorization
– failure of, 498
– over Cartesian products, 500
– over direct products, 511
– over lexicographic products, 502
– over strong products, 512
universal, 77
upper bound
– on arcs in a network, 27

V
value
– of an (s, t)-flow, 27
vertex, 3
– cost, 7
– weight, 7
Vertex cover, 90, 531, 532
vertex cyclic, 436
vertex-k-cyclic, 313
vertex-cheapest
– k-path subdigraph, 367
– cycle, 367
Vertex-disjoint cycles, 182
vertex-even-pancyclic, 307
vertex-minor, 406, 445
vertex-pancyclic, 8, 313, 326
vertex-pancyclic digraph, 264, 266,

397
– quasi-transitive digraph, 398
vertex-strong connectivity, 17
vertex-weighted directed pseudo-

graph, 6

W
W [1]-hard, 32, 179, 183, 431, 456
W [t], 30
walk, 7–9
– (x, y)-diwalk, 7
weak k-linkage, 20, 51, 191,

137, 173, 269, 378, 383, 551
weak r-colouring number, 440
weak game chromatic number, 556
weak guard, 409
weak homomorphism, 469, 485
weak linkage, 19, 372
weak reachability game, 415
weakly k-degenerate, 146
weakly k-linked
– directed multigraph, 372
weakly r-reachable, 440
weakly game-perfect digraph, 556
weakly Hamiltonian-connected, 262,

324
– tournament, 62
weakly-dominates, 300
Vi-weakly-dominates, 300
weight
– of a subdigraph, 367
– of a subgraph, 7
– of a vertex, 7
– of an arc, 7
weighted directed pseudograph, 6
well-linked set, 232, 425
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– edge, 232
– node, 232

X
XP (parameterized complexity

class), 31

Y
Yeo’s irreducible cycle subdigraph

theorem, 68
Yeo’s theorem, 166

Z
zero divisor, 492
zigzag digraph, 326
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