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Abstract. Cross entropy, a measurement of the complexity/predictability of a
series of observations given a probabilistic model, has been used in a variety of
domains in music scholarship for decades. This paper presents a novel appli-
cation of this metric to musical corpus analysis. Given a series of divisions to a
larger corpus, a sub-corpus is relatively “unique” if a probabilistic model
derived from its pieces better predicts its constituent pieces than do models
derived from other sub-corpora. A sub-corpus is relatively “coherent” if its own
model describes its pieces better than a model derived from the entire corpus.
The Yale-Classical-Archives corpus was used to illustrate several strategies for
sub-corpus division, each of which are tested for uniqueness and coherence.
Some broader interpretive applications are also described.
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1 Introduction

Music researchers have been experimenting with concept of entropy almost since the
field of informatics began in the mid 20th century [1, 2]. Since the 1950s, scholars have
connected entropy, or the relative complexity of some signal, to musical style, com-
munication, normativity, meaning, and compositional modeling [3–7]. As shown in
Eq. 1, the entropy H of an observed series O measures the complexity of a signal by
calculating the log-probability of an event o to occur within some observed series
O (here, logP(oi)), weighting that value by the relative frequency with which that
observation occurs in O (here, P(oi), and summing all such values. The negative sign
turns the negative value resulting from the logarithm into a positive value, such that the
higher the value, the more randomness – or more entropy – as series has. A very
redundant signal – one in which a particular event happens most of the time – will have
low entropy since those events are highly predictable given the rest of the signal, while
a series of wildly unpredictable events would have a high entropy. (Here, the loga-
rithm’s base can be chosen as appropriate for the situation: this study uses base 2 in
order to report entropy in bits.)

H Oð Þ¼ �
Xn

i¼1
P oið ÞlogPðoiÞ ð1Þ
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In the past several years, work by David Temperley [8] has introduced a particular
modification of this technology to music: cross entropy. In this framing of the general
concept, the probability of each event is judged by some other model rather than by
some probabilistic distribution drawn from the observation itself. As shown in Eq. 2,
this formula takes the negative log-probability of an event o given some probabilistic
model m, again weighting each value by its probability mass within the observation
series O, and then summing for all n events. This essentially captures how well some
probability distribution m accounts for the series of observations O.

H O;mð Þ¼ �
Xn

i¼1
P oið Þ logmðoiÞ ð2Þ

This paper proposes several novel ways of applying this modeling technique to the
analysis of musical data. I will show how cross entropy can capture the coherence and
the uniqueness of musical corpora. Because, in one sense, using a composer’s identity
to build a corpus creates an unassailably coherent and unique dataset: using this
framework, the composer’s identity provides the desideratum as to whether a piece is
included in some corpus. But, one might also wonder whether a composer writes pieces
that are distinct from their contemporary colleagues, or if a composer’s style is basi-
cally interchangeable with that of their contemporaries. If the former were true, the
composer’s pieces would exhibit notably divergent statistical properties from those of
their colleagues; but, if two composers have made virtually identical decisions sur-
rounding some musical parameter, then the same statistical model could represent both
corpora.

This paper agues that cross entropy can shed light onto these sorts of questions by
manipulating which models are used to assess the corpus. Given some corpus with
potential smaller divisions (or, sub-corpora), if the individual pieces within some
sub-corpus are predicted by the overall corpus better than any other sub-corpus, that
sub-corpus is unique as compared to other sub-corpora. If that sub-corpus contains
pieces that are more statistically similar to one another than to the overall corpus, that
sub-corpus is coherent. Below, I show a computational model that exploits these
properties to test the coherences and uniqueness of several different divisions of a large
corpus of Western-European common-practice MIDI files. I end by discussing the
interpretive potentials that this modeling provides.

2 The Corpus, the Sub-corpora

This experiment relied on data from the Yale-Classical-Archives Corpus [9]. This
corpus collects MIDI files from classicalarchives.com (a website of user-sourced MIDI
files), each associated with metadata that specifies the file’s opening key, meter, com-
poser, date of composition, instrumentation, composer’s nationality, genre, and so on.
Given that this study was interested in dividing corpora by composer, the 19 composers
listed as “The Greats” on the website were used: Bach, Beethoven, Brahms, Byrd,
Chopin, Debussy, Handel, Haydn, Liszt, Mendelssohn, Mozart, Saint-Saens, Scarlatti,
Schubert, Schumann, Tchaikovsky, Telemann, Vivaldi, and Wagner. The overall corpus
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was more than 5,000 pieces, and the average composer’s dataset contained 231 pieces,
with the smallest corpus –Wagner’s – containing only 33, and the largest – Scarlatti’s –
containing 554. The corpus is divided into “salami slices” – every verticality where the
pitch-class content changes. The average composer’s sub-corpus had 339,185 such
slices, with Wagner’s again being by far the smallest (67,538), and Mozart’s being the
largest (1,322,716). The corpus also contains tonal annotations, which were used to
convert the corpus’s pitch material of each slice into scale degrees.

These scale-degree sets were used to create Markov (n-gram) chains designed to
probabilistically model how surface harmonies progressed to one another. Different
sizes of n-grams within these tonal passages were then tallied, and after initial
experimentation it was determined that trigrams (i.e., n = 2) seemed to balance
between precise and sparse data. (An n-gram model involves contiguous sequences of
n items from a sequence of observations. When n = 2, the observation at the current
timepoint is conditioned on the two previous observations. The model is therefore
concerned with three-chord trigrams – the current and previous two chords – at every
observed timepoint.) In order to remain as theory-neutral as possible, the meter
metadata was used to gather trigrams at three metric levels; these three levels were then
combined. Repeating data collection at several levels and agglomerating the resulting
trigrams allows for patterns that recur at several durational or metric levels to become
more dominant in a distribution while remaining agnostic as to the relative importance
of different surface divisions. The three metric levels were (1) the salami slices
themselves, (2) the contents of each beat as defined by the corpus’s metric data (i.e., the
quarter-note in 4/4), and (3) the contents of the beat’s primary division (i.e., the eighth
note in 4/4; this division is also recorded by the corpus). NB: this process recognizes
not only traditional chords (like triads and seventh chords) but also less traditional
chords (like passing chords and dissonances): this study therefore assumes that any
surface structure is a legitimate “chord,” following [10–12]. The tallying and organi-
zation of the YCAC’s trigrams was implemented with Python version 2.6 using the
music21 software package [13].

In order to compare the uniqueness and coherence of various different divisions of
the larger dataset, several different divisions of the larger corpus were undertaken. Most
basically, each individual composer’s output will first be considered a sub-corpus.
Next, chronological divisions were used, grouping pieces in the corpus by their date of
publication, first arranged by the half-century beginning in 1650 and ending in 1900,
and then by 30-year epochs (now beginning in 1680 because of the sparse data between
1650 and 1679). Finally, to introduce machine-learned groupings into the corpus, the
groupings found in [14] were used. Here, the identical dataset and modeling as
described above were used, and composers’ trigram frequencies were submitted to a
k-means cluster analysis to group composers whose surface harmonic progressions
were statistically similar. The study used values k = [0…10]; peaks in silhouette widths
were used to identify optimal k values; and, such peaks values were identified for 7 and
10 clusters. The groupings – used here as sub-corpora are reproduced in Table 1.
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3 Modeling Coherence and Uniqueness

The coherence and uniqueness of each division was corpus quantified by determining
the cross entropy of each piece given every other piece (exclusive of the piece under
question) in some sub-corpus. In terms of Eq. 2, for each piece, the observations
O would be those trigrams within an individual piece within the sub-corpus, and the
model m would be the probability distribution of all trigrams within the remaining
pieces in that corpus. As a baseline, each piece within the sub-corpus was judged in
relation to the entire corpus (here, the entire YCAC becomes the model m). The
average and standard error of these cross entropies across the sub-corpora is tallied, as
well as the pieces in each sub-corpus as judged by the entire corpus. A sub-corpus is
unique if its standard error is sufficiently low to not overlap with the window of any
other corpus’s standard error (“does this sub-corpus predict its own pieces better than
any other sub-corpora above chance?”). A sub-corpus is coherent if the standard error
of its self-assessments is outside the standard error of the overall corpus (“does this
sub-corpus predict itself better than it would be predicted by the entire corpus?”).

NB: As cross entropy is itself a relative measurement, so too are uniqueness and
coherence. Each of these numbers must only be judged in relation to other numbers: a
piece is only unique in relation to other sub-corpora or only more coherent than the
overall corpus.

Importantly, both these ideas have conceptual overlaps with the central idea of
“entropy.” When applied to a single dataset (i.e., using the format of Eq. 1), entropy
rises when each event is more random in terms of the other events, and falls when each
event it is more predictable. Uniqueness and Coherence manipulate these relationships
by comparing a dataset’s randomness not simply to the dataset itself, but to other
potential datasets with which the original dataset has some relationship. In other words,
these ideas capitalize on the original informatic structure of entropy to draw out
additional relationships between datasets. Note also that the difference between

Table 1. k-means clusters drawn from White (2014)

K-means clusters
k = 7 k = 10

Bach Bach
Byrd Byrd
Beethoven, Mozart, Haydn, Schumann, Mendelssohn,
Brahms, Schubert, Wagner

Beethoven, Mozart, Haydn,
Mendelssohn, Schubert

Tchaikovsky, Liszt, Chopin, Saint-Saens Tchaikovsky, Liszt, Chopin,
Saint-Saens

Telemann, Vivaldi, Handel Telemann, Vivaldi
Debussy Debussy
Scarlatti Scarlatti

Wagner
Brahms, Schumann
Handel
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uniqueness and coherence is not mathematical in nature (indeed, they are mathemati-
cally identical), but in the relationships between the models used, with uniqueness
quantifying relationships between sub-corpora and coherence quantifying relationships
between a corpus and its sub-corpora.

4 Sub-corpora

4.1 Dividing by Composer

By dividing the corpora by composer, 74% composer-by-composer comparisons were
significantly unique. The median proportion of unique comparisons was 83%. 88% of
these sub-corpora predicted themselves better than the overall corpus. Only two
composers – Byrd and Handel – registered perfect results: the trials produced signif-
icantly lower cross entropy when comparing these composers’ own pieces to their own
corpora than when comparing them to any other composer’s corpus. In other words,
these results show the models to be “sure” these composers’ pieces were significantly
more likely on average to be composed by themselves than by someone else. Example
1a shows Handel’s sub-corpus compared to that of each other composer. The cross
entropy of the composer’s pieces when compared to the other composers’ sub-corpora
are shown as the clear bar, other composers are shown by solid bars, the self-wise
comparison is shown by the white bar, and the dashed bar shows Handel’s average
cross entropy judged by the entire corpus. Handel’s own pieces are judged statistically
significantly better than they are judged by other corpora– the corpus is therefore
unique. The corpus also judges itself better than it is judged by the overall corpus– it is
therefore coherent (Fig. 1).

However, more than a quarter of the time, these trials judged other corpora to
predict a composer’s pieces with either a lower or insignificantly different level of cross
entropy when compared to the composer’s own corpus. Mendelssohn’s corpus, for
instance, performed around the average with two non-unique comparisons: the cross
entropies of the Brahms, Handel, and Schubert sub-corpora were not significantly

Fig. 1. Comparative cross entropies using Handel’s sub-corpus model
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different from the cross entropy resulting from a self comparison. However, the corpus
does predict itself significantly better than the agglomerated corpus predicts its pieces.
This result indicates that the Mendelssohn model is coherent insomuch as it predicts its
own pieces well; however, it also shows that the model is not sufficiently unique, as
other models predict Mendelssohn’s corpus virtually identically to Mendelssohn’s own
model.

On the whole, it seems that these results suggest that grouping corpora by composer
tends to create coherent corpus models, although these models are often not sufficiently
unique from one another.

4.2 Dividing by Chronological Epochs

Here, pieces were divided into sub-corpora based on their date of composition, first into
fifty-year epochs, and then in thirty-year epochs. The fifty-year model performed worse
than that using composer-defined trials, the former returning a 68% uniqueness rate.
However, the median success rate was higher, registering an 80% uniqueness rate. This
rate stems from the fact that one time period, 1751–1800, did not have a single
successful trial; this epoch also did not predict itself better than did the overall corpus.
Example 2a shows the offending epoch’s results. Not only can the late 18th-century
corpus not be significantly distinguished from the late 17th-century corpus, but the
other three corpora produce significantly lower cross entropies, indicating that these
corpora predict the trigrams within the late 18th-century corpus better than they predict
the trigrams of their own time periods. The fact that the overall corpus predicted its
pieces better than did this sub-corpus also indicates this sub-corpus to not be coherent.

Example 2b shows the case of the 1801–1850 corpus, a relatively successful
example representing this test’s median. While a self-comparison yields the lowest
average cross entropy, the average cross entropy when compared with the 1851–1900
corpus is not significantly different than the self-wise average. (Interestingly, 75% of the
unsuccessful judgments throughout the 50-year-epoch test (i.e., incorrect/insignificant
comparisons) involved time periods adjacent to one another; if one removes the late
18th-century results from the percentage, this number rises to a complete 100%. In other
words, with the exception of the problematic late 18th-century, the models generally
become “confused” as to a piece’s time period only when comparing that piece to a
chronologically adjacent corpus.)

Fig. 2. Comparative cross entropies of (a) the 1751–1800 sub-corpus, and (b) the 1801–1850
sub-corpus
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Dividing the corpora into 30-year segments produced similar results. The overall
average success rate was 68.75%, and the median success rate was 75%. Half of the
unsuccessful returns involved adjacent time periods, and 80% were within two time
periods (i.e., within 60 years). As with the 50-year segments, the remaining 20% were
not evenly distributed throughout the results, but centered in two particularly unsuc-
cessful epochs. Two trials were not relatively coherent: the 1801–1830 and 1891–1920
trial. Example 8 shows a median example, the 1741–1770 corpus, while Example 9
shows the largely unsuccessful 1801–1830 results. (While it may be satisfying that the
only significant positive results involve corpora that are maximally chronologically
distant from the 1801–1830 corpus, note that the two adjacent corpora register a
significant but lower cross entropy.)

These results suggest that dividing a corpus by chronological epochs may be
successful in some respects – it creates a high median success rate – but it also
generates several corpora that are incoherent. From a modeling perspective, this
incoherence could be explained by the presence of multiple and distinct
chord-progression practices within a single corpus. For instance, the 1801–1830 corpus
seems to have properties that are better modeled by the corpora surrounding it, perhaps
indicating that this era contains practices that overlap those of its two surrounding
epochs. If dividing corpora by composers seemed to create too many divisions,
dividing by chronology is too broad, creating incoherent corpus models. Also, these
tests seem to indicate a connection between chronological proximity and models’
similarities.

4.3 Machine-Learned Sub-corpora

Using the k-means clusters produced markedly better results, although somewhat
unsurprising as it used the same metric – chord-progression probabilities – both to
divide the corpora and to judge the success of those divisions. (However, the results of
this test do confirm the power of harmonic transition probabilities to classify groups of
composers into unique and coherent corpora.) The seven clusters provide nearly perfect

Fig. 3. Comparative cross entropies of (a) the 1741–1770 sub-corpus, and (b) the 1801–1830
sub-corpus

330 C. W. White



results, with only Debussy’s corpus providing insignificant/non-unique comparisons,
likely due to its small membership (n = 60). Figure 4a shows a typical perfect 7-cluster
trial, using the “Romantic” (Tchaikovsky, Chopin, Liszt, Saint-Saens) sub-corpus. The
ten clusters performed slightly worse, with an 88% success rate. If, however, one
discounts the insignificant results of the two smallest corpora – now adding Wagner’s
corpus (n = 32) to Debussy’s – the results rise to a 97.22% success rate. Figure 4b
shows one of the two remaining insignificant results, the other being the average cross
entropy of Vivaldi/Telemann’s pieces given Handel’s corpus.

5 Applications

This type of modeling has various applications in how we think about and interpret
musical corpora and the works contained therein. In what follows, I outline four
potential applications of this kind of modeling, showing ways it can be used to interpret
stylistic trends and compositional schools, how it can be used to identify points of
innovation, how it can be used to broach the (admittedly thorny) topic of authorship,
and how it might be used to formalize models of historical styles.

5.1 Describing Stylistic Trends and Compositional Schools

When the model identifies several composers whose sub-corpora and not unique, but –
when grouped together – create a unique and coherent sub-corpora, this potentially
identifies a compositional cohort operating within a similar compositional school. Here,
we imagine that the compositional trends and norms used by these composers are
sufficiently similar that the variation within their outputs makes them statistically
indistinguishable (at least within the tested parameters). Furthermore, non-unique
comparisons can show other potential avenues of influence. For instance, in Fig. 4,
Brahms and Schumann’s sub-corpus is coherent and unique in all but the comparison to
the Tchaikovsky–Liszt–Saint-Saens–Chopin sub-corpus. This suggests that the output

Fig. 4. Comparative cross entropies of (a) the Tchaikovsky, Chopin, Liszt, and Saint-Saens
sub-corpus, and (b) the Brahms and Schumann sub-corpus
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of these two composers comprise a distinct style that influences the output of these later
Romantic composers. The fact that chronological adjacencies within the epoch-based
models frequently accounted for non-unique comparisons also suggests stylistic trends.
Here, this non-uniqueness captures the chronological developments of historical styles:
historically proximate sub-corpora share statistical tendencies.

5.2 Moments of Innovations

Non-unique and incoherent findings also provide an opportunity for interpretation. At
these junctures, the lack of similarity within the pieces constituting the sub-corpus begs
for some kind of explanation: why would pieces written within such chronological
proximity be so different?

Consider the case of the 1751–1800 sub-corpus: its constituent pieces are better
predicted by the statistics of neighboring historical epochs than the pieces in its own
time period. Looking inside that dataset, one finds groups of composers who would
seem to be drawn from divergent compositional practices. It is not only a time period
that saw the late works of Telemann and Scarlatti, but also the complete works of
Mozart and Haydn, and ended with the mature works of Beethoven. One could sim-
ilarly describe the 1801–1830 corpus: such a division groups middle-period Beethoven
not only with Schubert, but with Schumann’s early works. The incoherence of these
sub-corpora, then, supports the idea that these moment host more of a stylistic shift
than their surrounding eras. As indicated in Figs. 2a and 3b, it seems that significant
portions of these groupings are better predicted by the surrounding epochs than con-
temporary compositions, further suggesting that these eras feature dramatic shifts
between the previous and following styles.

5.3 Authorship

This modeling technique also allows for potential evaluations of reproductions, com-
pletions, or potentially spurious compositions. In each of these instances, one could
take the piece(s) in question and treat them like their own sub-corpus, comparing its
coherence and uniqueness with other sub-corpora in the piece(s) historical orbit. For
instance, Fig. 5 compares a famous example of forgery to the 10-cluster sub-corpora.
The forgeries here are those of Nicolas Chedeville publishing Vivaldi’s fictitious “Opus
13” in 1737. The “X” above each of the bars shows the corpus’ self-wise cross entropy,
each constituent bar shows the forgeries’ cross entropy compared to other sub-corpora,
and the final bar again shows the agglomerated corpus’s assessment of the forgeries.
The sub-corpus is coherent, but it is not unique. Many other sub-corpora fall within the
standard deviation of the average assessment: as before, these are shown as lined bars.
Bars outside of the average standard deviation are shown as solid. There are two below
the average: the Handel and Telemann-Vivaldi clusters. This means that these repro-
ductions do indeed adequately imitate Vivaldi, but do so in a way that they could
potentially also be passed off as composed by Handel!
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5.4 Generative Modeling

Using these metrics to identify relatively unique and coherent statistical systems can
potentially create well-formed generative models of some style. For instance, if one
used the chord-progression (i.e., Markov-chain) probabilities embedded in the, say,
Brahms-Schumann sub-corpus to generate sucessions of harmonies, one could rea-
sonably argue that this models aspects of that style’s compositional norms. The same
cannot be said of, say, a model drawn from the 1751–1800 sub-corpus: because of its
incoherence, it is not clear what such a generative model would capture outside of
manifesting the era’s stylistic heterogeneity. These metrics, then, can be imagined as
ways to isolate statistical systems that can express some historically, culturally, or
compositionally independent style.

6 Future Work

Of course, this work is incomplete. It relies entirely on simple Markov chains drawn
from the very surface of a musical corpus. It is possible, for instance, that judging the
similarity of two systems using something like a Context Free Grammar or at least
some hierarchical system would better represent similarities and differences in chord
progression usage. Additionally, other surface events rather than chord progressions
may capture salient differences between sub-corpora: melodic figuration, recurrent bass
lines, orchestration, or ornamentation may all contribute to stylistic differences better
than (or in addition to) surface chord progressions. However, regardless of these
potential avenues for future investigation, this study has identified a general method of
using cross entropy to identify the uniqueness and coherence of various datasets,
quantifying overlaps and consistencies within musical corpora.

Fig. 5. Comparative cross entropies of Nicolas Chédeville’s Vivaldi forgeries compared to the
10-cluster sub-corpora
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