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Abstract. This paper presents a generalization of the well-known neo-
Riemannian group PLR to the classical five types of seventh chord (dom-
inant, minor, half-diminished, major, diminished) considered as tetra-
chords with a marked root and proving that it is isomorphic to the
abstract group S5 � Z

4
12. This group includes as subgroups the PLR

group and several other groups already appeared in the literature.
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1 Introduction

Since the pioneering works by David Lewin [8,9] and Guerino Mazzola [10,11],
the main idea of transformational theory is to model musical transformations
using algebraic structures. The most famous example is probably the neo-
Riemannian group PLR, that acts on the set of all 24 minor and major triads
of twelve-tone equal temperament and is abstractly isomorphic to the dihedral
group of order 24. It is generated by the P,L and R operations that transform
major triads in minor triads (and vice versa) shifting a single note by a semitone
or a whole tone. They were introduced by 19th-century music theorist Hugo Rie-
mann [12] for pure intervals. Lewin rediscovered the PLR operations, defined
them considering the equal temperament, and gave birth to a branch of the
transformational theory called neo-Riemannian theory.

Neo-Riemannian transformations can be modelled with several geometric
structures, of which the most important is the Tonnetz, first introduced by Euler
[4] and later studied by the several musicologists of the 19th century, such as
Wilhelm Moritz Drobisch, Carl Ernst Naumann, Arthur von Oettingen and the
same Hugo Riemann. From a mathematical point of view the Tonnetz is an
infinite two-dimensional simplicial complex which tiles the plane with triangles
where 0-simplices represent pitch classes, and 2-simplices identify major and
minor triads: the relative position of 2-simplices makes it also a natural tool in
the theory of parsimonious voice leading.
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In addition to triads, seventh chords are often used in the music literature.
A natural question arises: can we define a group similar to the neo-Riemannian
group PLR acting on the set of seventh chords (of the twelve-tone equal tem-
perament)? More precisely: can we define a group of transformations between
seventh chords to describe parsimonious voice leading, so that the generators fix
three notes and move a single note by a semitone or a whole tone? Problems on
relationships between seventh chords were studied by Childs [2], Gollin [6], by
Fiore and Satyendra [5], by Arnett and Barth [1] and by Kerkez [7] for some of
the types of seventh chords. In this paper we will extend their studies consider-
ing all five “classical” types of seventh chords: dominant, minor, half-diminished,
major, diminished.

In Sect. 2 we provide some preliminaries about the neo-Riemannian group.
Section 3 presents briefly the known results about the generalization of the PLR-
group to seventh chords, and a classification of all transformations between sev-
enth chords shifting a single note by a semitone or a whole tone. In the fourth
and final section we will define the PLRQ group, generalizing the PLR group,
and we identify its abstract algebraic structure.

2 The neo-Riemannian Group PLR

The neo-Riemannian group PLR is generated by the following P,L and R
operations.

– P (“Parallel”): if the triad is major, P moves the third down a semitone,
while if the triad is minor P moves the third up a semitone.

– L (“Leading-Tone”): if the triad is major L moves the root down a semitone,
while if the triad is minor L moves the fifth up a semitone.

– R (“Relative”): if the triad is major, R moves the fifth up a whole tone, while
if the triad is minor R moves the root down a whole tone.

There exist many ways to represent algebraically or geometrically such trans-
formations. We will denote pitch classes by elements of the cyclic group of 12
elements Z/12Z (or, more briefly, Z12) and n-chords by n-ples of pitch classes in
brackets, ordered in the ascending direction (as induced by the linear order of
pitches) and starting from some pitch class of reference.

In this notation, Crans, Fiore and Satyendra [3] use twelve equally-spaced
points on a circle to represent pitch classes and relate the above operations to an
inversion operation Ik+h as follows. Let S be the set of all 24 minor and major
triads {[x1, x2, x3] |x1, x2, x3 ∈ Z12, x2 = x1 + 3 or x2 = x1 + 4, x3 = x1 + 7};
then

P ([x1, x2, x3]) = Ix1+x3([x1, x2, x3]) (1)
R([x1, x2, x3]) = Ix1+x2([x1, x2, x3]) (2)
L([x1, x2, x3]) = Ix2+x3([x1, x2, x3]) (3)
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Fig. 1. P (C) = c Fig. 2. R(C) = a Fig. 3. L(C) = e

where Ik+h is the reflection of the circle across the axis of the line passing through
k and h. As depicted in Figs. 1, 2 and 3, when applied to the triad of C major
P gives c (C-minor), R gives a (A-minor) and L gives e (E-minor).

Another way to define the P,L and R operations is proposed by Arnett and
Barth [1]:

P : M ↔ m P : [x, x + 4, x + 7] ↔ [x, x + 3, x + 7] (4)
R : M ↔ m − 3 R : [x, x + 4, x + 7] ↔ [x, x + 4, x + 9] (5)
L : M ↔ m + 4 L : [x, x + 4, x + 7] ↔ [x − 1, x + 4, x + 7] (6)

where M represents a major triad, m a minor one, −3 and 4 are the numbers of
semitones to be added to each component of the parallel triad (where here, as
in the whole paper, the sum is made mod 12, i.e. in the group Z12).

It is an easy calculation to verify that P is obtained as RLRLRLR, therefore
the PLR group is in fact generated by R and L. The isomorphism to the dihe-
dral group of order 24 becomes apparent noting that the element RPLP is a
translation up a semitone and therefore has order 12. We can visualize these oper-
ations in the neo-Riemannian Tonnetz (see Fig. 4), a simplicial complex where

Fig. 4. Reflections preserving a triangle’s edge in the Tonnetz represent the P, L and
R operations
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the vertices represent pitch classes and in which notes connected by a horizontal
segment have intervals of a perfect fifth, while the other two directions represent
major and minor thirds. Triangles sharing an edge represent triads that share
two notes, while the third one differs only by a semitone or a whole tone. We
can observe that reflections preserving a triangle’s edge represent P,L and R
operations (and realize a parsimonious voice leading).

3 Transformations Between Seventh Chords

Childs investigated transformational parsimonious voice leading between domi-
nant and half-diminished sevenths in [2]. In particular he studied transformations
that fix two notes and move the other two notes by a semitone or a whole tone.

Gollin also studied the relationships between the same types of sevenths
chords [6]. He introduced a possible three-dimensional expansion of the Tonnetz
in which horizontal planes contain copies of the traditional Tonnetz, while seg-
ments in a chosen direction outside the plane represent intervals of minor seventh.
While the Tonnetz tiles the plane with triangles, its three-dimensional expan-
sion tiles the three-dimensional Euclidean space with tetrahedra, representing
dominant and half-diminished seventh chords, and triangular prisms (not rep-
resenting chords). There are six transformations between tetrahedra sharing a
common edge: they are represented spatially as a “flip” of the two tetrahedra
about their common edge. Each “edge-flip” maintains at least the two notes
represented by the two vertices of the common edge, and in one case the two
tetrahedra share three notes (see Fig. 5).

Fig. 5. The six edge-flips between tetrahedra. In the upper right the only flip in which
the tetrahedra represent seventh chords sharing three common notes
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Arnett and Barth [1] start from the three-dimensional expansion of the
Tonnetz introduced by Gollin and observe that Gollin’s study does not include
the minor seventh chords, very common in the music literature. Therefore they
propose to consider a set of 36 chords consisting of all dominant, half-diminished
and minor seventh chords and to find the transformations between them that
maintain three common notes. They define the following five operations:

P1: D ↔ m P1: [x, x + 4, x + 7, x + 10] ↔ [x, x + 3, x + 7, x + 10]
P2: m ↔ hd P1: [x, x + 3, x + 7, x + 10] ↔ [x, x + 3, x + 6, x + 10]

R1: D ↔ m − 3 P1: [x, x + 4, x + 7, x + 10] ↔ [x, x + 4, x + 7, x + 9]
R2: m ↔ hd − 3 R2: [x, x + 3, x + 7, x + 10] ↔ [x, x + 3, x + 7, x + 9]
L : D ↔ hd + 4 P1: [x, x + 4, x + 7, x + 10] ↔ [x + 2, x + 4, x + 7, x + 10]

The first four transformations move a single note by a semitone, whereas L
shifts a note by a whole tone. In fact, L is the algebraic formalization of the
edge-flip between tetrahedra representing seventh chords with three common
notes described in Gollin’s three-dimensional Tonnetz.

Although this study includes more types of seventh chords than Childs’ and
Gollin’s ones, other important types of seventh chords are not considered and
the algebraic structure of these transformations is not analyzed.

Kerkez gives an idea to extend the PLR group to seventh chords in [7].
Let H be the set of major and minor seventh chords, that is,

H ={[x1, x2, x3, x4]|x1, x2, x3, x4 ∈ Z12, x2=x1 + 4, x3=x1 + 7, x4 = x1 + 11}∪
{[x1, x2, x3, x4] |x1, x2, x3, x4 ∈ Z12, x2 = x1 + 3, x3 = x1 + 7, x4 = x1 + 10}

Kerkez defines the following two maps P, S : H → H:

P [a, b, c, d] = [(type[a, b, c, d]) · 2 + d, a, b, c]
S[a, b, c, d] = [b, c, d, (−1) · (type[a, b, c, d]) · 2 + a]

where

type(t) =
{

1 if t is a minor seventh
−1 if t is a major seventh

P maps each major seventh to its relative minor seventh moving the seventh
down a whole tone. Vice versa, it maps each minor seventh to its relative major
seventh moving the root up a whole tone.

S maps each major seventh to the minor seventh having root 4 semitones up,
moving its root up a whole tone. Vice versa, it maps each minor seventh to the
major seventh having root 4 semitones down, moving its seventh down a whole
tone.

Kerkez proves that transformations P and S act on H generating a group
again isomorphic to the dihedral group D12 of order 24.

In his work, Kerkez considers only major and minor seventh chord. But, as
he noted in his conclusions, these transformations are just two of the possible
operations between seventh chords.
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3.1 Transformations Between Seventh Chords

We want to find all transformations between seventh chords describing parsimo-
nious voice leading, i.e. those that fix three notes and move only one note by
a semitone or a whole tone. We consider the following types of seventh chords:
dominant (D), minor (m), half-diminished (hd), major (M) and diminished (d),
and let H̃ be the set of all seventh chords of these 5 types. We first analyze
transformations moving just one note by one semitone: if it exists, let us call
Qi+ the map that sends each type of seventh chord to another type moving
the i-th member up a semitone, where i = R, T, F, S depending on whether the
member is considered to be the root (R), the third (T), fifth (F) or seventh (S),
respectively. Likewise, let Qi− be the map that moves the i-th member down a
semitone. We have the following:

QR+(D) = d QR+(m) = D QR+(hd) = m QR+(M) = hd QR+(d) = hd

����QR−(D) ����QR−(m) QR−(hd) = M �����QR−(M) QR−(d) = D

����QT+(D) QT+(m) = D �����QT+(hd) �����QT+(M) QT+(d) = hd

QT−(D) = m ����QT−(m) �����QT−(hd) �����QT−(M) QT−(d) = D

����QF+(D) ����QF+(m) QF+(hd) = m �����QF+(M) QF+(d) = hd

����QF−(D) QF−(m) = hd �����QF−(hd) �����QF−(M) QF−(d) = D

QS+(D) = M ����QS+(m) �����QS+(hd) �����QS+(M) QS+(d) = hd

QS−(D) = m QS−(m) = hd QS−(hd) = d QS−(M) = D QS−(d) = D

The maps that do not produce any of the classical types of seventh chords have
been overstruck. We observe that some transformations are inverse to each other:

QR+(M) = hd QR−(hd) = M ⇒ QR : M ↔ hd

QR+(m) = D QS−(D) = m ⇒ QR, QS : D ↔ m

QR+(hd) = m QS−(m) = hd ⇒ QR, QS : hd ↔ m

QS+(D) = M QS−(M) = D ⇒ QS : D ↔ M

QT+(m) = D QT−(D) = m ⇒ QT : m ↔ D

QF+(hd) = m QF−(m) = hd ⇒ QF : hd ↔ m

It remains to consider the following operations:

QR+(D) = d QR−(d) = D QT−(d) = D QF−(d) = D QS−(d) = D

QS−(hd) = d QS+(d) = hd QR+(d) = hd QT+(d) = hd QF+(d) = sd

QR+(D) = d is the inverse of QR−(d) = D,QT−(d) = D,QF−(d) = D and
QS−(d) = D. This is due to the particular symmetry of the interval structure of
diminished sevenths, in which the members of the chord play an identical role: for
example the diminished seventh C�o7 = [C�,E,G,Bb] acoustically coincides to
the diminished seventh E�o7 = [E,G,B�,D�] because they are enharmonically
equivalent. Unlike the other four types, the diminished sevenths would be only
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three (and not twelve), e.g. C,C�,D, because the other nine chords are three by
three enharmonic to them. This explains why we have four transformations that
have the same inverse. To obtain a set of well-defined musical transformations,
we will consider the diminished seventh as 12 distinct chords, using the marked
root to distinguish them. Hence we have 4 transformations between diminished
and half-diminished seventh chords and 4 transformations between diminished
and dominant seventh chords

QS−(hd) = d QR−(d) = hd ⇒ QR, QS : hd ↔ d

QS−(hd) = d QT−(d) = hd ⇒ QT , QS : hd ↔ d

QS−(hd) = d QF−(d) = hd ⇒ QF , QS : hd ↔ d

QS−(hd) = d QS−(d) = hd ⇒ QS : hd ↔ d

QR+(D) = d QR−(d) = D ⇒ QR : D ↔ d

QR+(D) = d QT−(d) = D ⇒ QR, QT : D ↔ d

QR+(D) = d QF−(d) = D ⇒ QR, QF : D ↔ d

QR+(D) = d QS−(d) = D ⇒ QR, QS : D ↔ d

Now we consider the transformations that move a single note by a whole
tone. Analogously to what was done above, if they exist let us call Qi++ the
map which sends each type of seventh chord in another type moving the i-th
member up a whole tone, and Qi− the map which moves the i-th member down
a whole tone. We obtain another classical type of seventh chords only moving
the root up a whole tone and the seventh down a whole tone:

QR++(D)=hd QR++(m)=M �����
QR++(hd) QR++(M) = m �����QR++(d)

�����QS−−(D) QS−−(m)=M QS−−(hd) = D QS−−(M)=m �����QS−−(d)

Again, we find some transformations that are the inverse one another:

QR++(D) = hd QS−−(hd) = D ⇒ QR, QS : D ↔ hd

QR++(m) = M QS−−(M) = m ⇒ QR, QS : m ↔ M

QR++(M) = m QS−−(m) = M ⇒ QR, QS : M ↔ m

Overall we have 17 transformations corresponding to a parsimonious voice lead-
ing among our 5 types of seventh chords.

We want to define these transformations in a similar way to the neo-
Riemannian operations. We will use the Arnett and Barth’s notation, but we
want to formalize it more precisely.

Definition 1. We define a cyclic marked chord [x1, x2, . . . , xn] as a chord
constituted by the n musical notes x1, x2, . . . , xn, so that acoustically
[x1, x2, . . . , xn] = [x2, . . . , xn, x1] = · · · = [xn, x1, . . . , x2], where xi ∈ Z12 and
the note corresponding to the root of the chord is underlined.

As above, in cyclic marked chords all notes will be expressed in terms of a single
note by adding or subtracting the appropriate number of semitones.
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We start defining a parallel operation P for seventh chords. Let Pij : H̃ → H̃
be the maps which send a i-th type of seventh chord to a j-th type of seventh
chord, 1 ≤ i, j ≤ 5 and i �= j, and vice versa, and that fix the other types. 4 of
the 17 transformations are parallel operations:

QT : D ↔ m ⇔ P12 : [x, x + 4, x + 7, x + 10] ↔ [x, x + 3, x + 7, x + 10]
QS : D ↔ M ⇔ P14 : [x, x + 4, x + 7, x + 10] ↔ [x, x + 4, x + 7, x + 11]
QF : m ↔ hd ⇔ P23 : [x, x + 3, x + 7, x + 10] ↔ [x, x + 3, x + 6, x + 10]
QS : hd ↔ d ⇔ P35 : [x, x + 3, x + 6, x + 10] ↔ [x, x + 3, x + 6, x + 9]

Remark 1. P12 and P23 coincide with P1 and P2 defined by Arnett and Barth.

Now we consider a relative operation R. We observe that if the triad is major
R = P ◦T−3 = T−3 ◦P , if it is minor R = P ◦T3 = T3 ◦P . Then let Rij : H̃ → H̃
be the maps which send a i-th type of seventh chord to a j-th type of seventh
chord transposed three semitones down, a j-th type of seventh to a i-th type of
seventh transposed three semitones up, and fix the other types. Then:

Rij = T±3 ◦ Pij = Pij ◦ T±3 ∀i, j ∈ {1, 2, 3, 4, 5} (7)

Now, 5 of the 17 transformations are relative operations:

QR, QS : D ↔ m − 3 ⇔ R12 : [x, x + 4, x + 7, x + 10] ↔ [x, x + 4, x + 7, x + 9]
QR, QS : m ↔ hd − 3 ⇔ R23 : [x, x + 3, x + 7, x + 10] ↔ [x, x + 3, x + 7, x + 9]
QR, QS : M ↔ m − 3 ⇔ R42 : [x, x + 4, x + 7, x + 11] ↔ [x, x + 4, x + 7, x + 9]
QR, QS : hd ↔ d − 3 ⇔ R35 : [x, x + 3, x + 6, x + 10] ↔ [x, x + 3, x + 6, x + 9]
QF , QS : d ↔ hd − 3 ⇔ R53 : [x, x + 3, x + 6, x + 9] ↔ [x, x + 3, x + 7, x + 9]

Remark 2. R12 and R23 coincide with R1 and R2 defined by Arnett and Barth.
Moreover R42 coincide with the map P defined by Kerkez.

For the operation L we observe that if the triad is major L = P ◦ T4 = T4 ◦ P ,
if it is minor L = P ◦ T−4 = T−4 ◦ P . Then let Lij : H → H be the maps which
send a i-th type of seventh chord to a j-th type of seventh chord transposed four
semitones up, a j-th type of seventh to a i-th type of seventh transposed four
semitones down, and fix the other types. Then:

Lij = T±4 ◦ Pij = Pij ◦ T±4 ∀i, j ∈ {1, 2, 3, 4, 5} (8)

This time, 3 of the 17 transformations are Lij operation:

QR++ : D ↔ hd + 4 ⇔ L13 : [x, x + 4, x + 7, x + 10] ↔ [x + 2, x + 4, x + 7, x + 10]

QR : D ↔ d + 4 ⇔ L15 : [x, x + 4, x + 7, x + 10] ↔ [x + 1, x + 4, x + 7, x + 10]

QR++ : M ↔ m + 4 ⇔ L42 : [x, x + 4, x + 7, x + 11] ↔ [x + 2, x + 4, x + 7, x + 11]
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Remark 3. L13 coincides with L defined by Arnett and Barth end the “edge-flip”
described by Gollin in his three-dimensional Tonnetz.
L42 coincides with S defined by Kerkez.

We have identified 12 of the 17 transformations between seventh chords as oper-
ations similar to P,L and R. We now see that the other transformations corre-
spond to new operations obtained by the composition of a parallel transformation
and a transposition (with a number of semitones different from 3 and 4).
We denote by:

– Qij the maps which send a i-th type of seventh chord to a j-th type of seventh
chord transposed one semitone up, a j-th type of seventh to a i-th type of
seventh transposed one semitone down, and fix the other types;

– RRij the maps which send a i-th type of seventh chord to a j-th type of
seventh chord transposed six semitones, and fix the other types;

– QQij the maps which send a i-th type of seventh chord to a j-th type of
seventh chord transposed two semitones up, a j-th type of seventh to a i-th
type of seventh transposed two semitones down, and fix the other types;

– Nij the maps which send a i-th type of seventh chord to a j-th type of seventh
chord transposed five semitones up, a j-th type of seventh to a i-th type of
seventh transposed five semitones down, and fix the other types.

With these transformations we can define the missing operations in the following
way:

QR, QS : M ↔hd + 1 ⇔ Q43 : [x, x + 4, x + 7, x + 11]↔ [x + 1, x + 4, x + 7, x + 11]

QR : D ↔ d + 1 ⇔ Q15 : [x, x + 4, x + 7, x + 10]↔ [x + 1, x + 4, x + 7, x + 10]

QT , QS : hd ↔ d − 6 ⇔ RR35 : [x, x + 3, x + 6, x + 10] ↔ [x, x + 3, x + 6, x + 9]

QR, QT : d ↔ D + 2 ⇔ QQ51 : [x, x + 3, x + 6, x + 9] ↔ [x, x + 2, x + 6, x + 9]

QR, QF : d ↔ D + 5 ⇔ N51 : [x, x + 3, x + 6, x + 9] ↔ [x, x + 3, x + 5, x + 9]

Remark 4. Crans, Fiore and Satyendra define P,L and R as inversions In; since
inversions are isometries, they leave unchanged lengths and angles, and minor
and major triads geometrically are represented by triangles which the edge
lengths correspond to 3, 4 and 5 semitones. This idea could in principle also
be used to define transformations between seventh chords, but it can not be
applied to all types since the lengths of the edges and the angles of the quadri-
laterals that compose them are not equal. We have only 2 quadrilaterals that
are isometric: the one representing the dominant sevenths and the one repre-
senting half-diminished sevenths. There exists a unique transformation between
this types of seventh chords, L13.

To visualize the 17 transformations just defined we can represent them in a
graph whose vertices represent the types of seventh chord, and the edges rep-
resent the transformations between them. Therefore we have 5 vertices and 17
edges Fig. 6.
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Fig. 6. The graph representing the 17 transformations between seventh chords.

4 The PLRQ Group

Let PLRQ be the group generated by the 17 transformations among seventh
chords. Each transformation t ∈ PLRQ exchanges two types of sevenths and
fixes the others, thus we can associate to it a permutation of S5 (more precisely,
a transposition). This information is not sufficient to identify the transforma-
tion: to identify it, we add a vector v ∈ Z

5
12, in which the i-th component,

i ∈ {1, . . . , 5}, is the number of semitones of which the root of the chord of type
i has to be shifted to become the root of the chord of type j. It is easy to see
that in this way no ambiguity is possible.

We write the 17 transformations between seventh chords as pairs of elements
(σ, v) ∈ S5 × Z

5
12 explicitly:

P12 : [x, x + 4, x + 7, x + 10] ↔ [x, x + 3, x + 7, x + 10] (σ, v) = ((12), (0, 0, 0, 0, 0))

P14 : [x, x + 4, x + 7, x + 10] ↔ [x, x + 4, x + 7, x + 11] (σ, v) = ((14), (0, 0, 0, 0, 0))

P23 : [x, x + 3, x + 7, x + 10] ↔ [x, x + 3, x + 6, x + 10] (σ, v) = ((23), (0, 0, 0, 0, 0))

P35 : [x, x + 3, x + 6, x + 10] ↔ [x, x + 3, x + 6, x + 9] (σ, v) = ((35), (0, 0, 0, 0, 0))

R12 : [x, x + 4, x + 7, x + 10] ↔ [x, x + 4, x + 7, x + 9] (σ, v) = ((12), (−3, 3, 0, 0, 0))

R23 : [x, x + 3, x + 7, x + 10] ↔ [x, x + 3, x + 7, x + 9] (σ, v) = ((23), (0, −3, 3, 0, 0))

R42 : [x, x + 4, x + 7, x + 11] ↔ [x, x + 4, x + 7, x + 9] (σ, v) = ((42), (0, 3, 0, −3, 0))

R35 : [x, x + 3, x + 6, x + 10] ↔ [x, x + 3, x + 6, x + 9] (σ, v) = ((35), (0, 0, −3, 0, 3))

R53 : [x, x + 3, x + 6, x + 9] ↔ [x, x + 3, x + 7, x + 9] (σ, v) = ((53), (0, 0, 3, 0, −3))
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L13 : [x, x + 4, x + 7, x + 10] ↔ [x + 2, x + 4, x + 7, x + 10] (σ, v) = ((13), (4, 0, −4, 0, 0))

L15 : [x, x + 4, x + 7, x + 10] ↔ [x + 1, x + 4, x + 7, x + 10] (σ, v) = ((15), (4, 0, 0, 0, −4))

L42 : [x, x + 4, x + 7, x + 11] ↔ [x + 2, x + 4, x + 7, x + 11] (σ, v) = ((42), (0, −4, 0, 4, 0))

Q43 : [x, x + 4, x + 7, x + 11] ↔ [x + 1, x + 4, x + 7, x + 11] (σ, v) = ((43), (0, 0, −1, 1, 0))

Q15 : [x, x + 4, x + 7, x + 10] ↔ [x + 1, x + 4, x + 7, x + 10] (σ, v) = ((15), (1, 0, 0, 0, −1))

RR35 : [x, x + 3, x + 6, x + 10] ↔ [x, x + 3, x + 6, x + 9] (σ, v) = ((35), (0, 0, −6, 0, 6))

QQ51 : [x, x + 3, x + 6, x + 9] ↔ [x, x + 2, x + 6, x + 9] (σ, v) = ((51), (−2, 0, 0, 0, 2))

N51 : [x, x + 3, x + 6, x + 9] ↔ [x, x + 3, x + 5, x + 9] (σ, v) = ((51), (−5, 0, 0, 0, 5))

More precisely, we can represent each transformation t ∈ PQRL as an element of

S5 × Z where Z = {v ∈ Z
5
12|

5∑
i=1

vi = 0},

since this is clearly true for all the 17 generators. The mapping thus defined
becomes a group homomorphism if we define on this set the following operation:

(σk, vk) ◦ · · · ◦ (σ1, v1)

=
(
σk · · · σ1, v1 + σ−1

1 (v2) + (σ2σ1)−1(v3) + · · · + (σk−1 · · · σ1)−1(vk)
)

(9)

=
(
σk · · · σ1, v1 + σ−1

1 (v2) + σ−1
1 σ−1

2 (v3) + · · · + σ−1
1 · · · σ−1

k−1(vk)
)

We want to prove that PLRQ is isomorphic to S5 �Z. We remind the definition
of semidirect product of two subgroups.
Let G be a group. If G contains two subgroups H and K such that

(i) G = HK;
(ii) K � G;
(iii) H ∩ K = 1;

G is the semidirect product of H and K. Conversely, given two groups H and
K and a group homomorphism φ : H → Aut(K), we can construct a new group
H � K defining in the cartesian product H × K the following operation:

(h1, k1)(h2, k2) = (h1h2, φh2(k1) · k2)

Theorem 1. The group PLRQ is isomorphic to S5 � Z
4
12.

Proof. First of all we prove that PLRQ is isomorphic to S5 � Z.
We observe that the subgroup formed by the elements (Id, v) is normal. In

fact, for all (σ, v) ∈ S5 × Z, (Id, v′) ∈ {Id} × Z, we have

(σ, v)(Id, v′)(σ, v)−1 = (σσ−1,−v + σ(v′) + σ(v)) = (Id, v′′) ∈ {Id} × Z

On the other hand, since S5 is generated by transpositions, it is easy to see
that, calling O the origin in Z

5
12, S5 × {O} < PLRQ, since we already have in

it (P12, O), (P14, O), (P23, O), (P35, O).
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To prove our thesis we are only left to see that there is a subgroup isomorphic
to Z in PLRQ having trivial intersection with S5 × {O}. But this is exactly the
subgroup of the elements of type (Id, v). In fact we compute the permutations
and vectors associated to R42L42, P14L42P14R12, P12L13P12R23:

R42L42 = (σ′, v′)
σ′ =σ2σ1 = (42)(42) = Id

v′ =v1 + σ−1
1 (v2)

=(0,−4, 0, 4, 0) + (0,−3, 0, 3, 0)
=(0,−7, 0, 7, 0)

P14L42P14R12 = (σ′′, v′′)
σ′′ =σ4σ3σ2σ1 = (14)(42)(14)(12) = Id

v′′ =v1 + σ−1
1 (v2) + σ−1

1 σ−1
2 (v3) + σ−1

1 σ−1
2 σ−1

3 (v4)
=(−3, 3, 0, 0, 0) + (0, 0, 0, 0, 0) + (−4, 4, 0, 0, 0) + (0, 0, 0, 0, 0)
=(7,−7, 0, 0, 0)

P12L13P12R23 = (σ′′′, v′′′)
σ′′′ =σ4σ3σ2σ1 = (12)(13)(12)(23) = Id

v′′′ =v1 + σ−1
1 (v2) + σ−1

1 σ−1
2 (v3) + σ−1

1 σ−1
2 σ−1

3 (v4)
=(0,−3, 3, 0, 0) + (0, 0, 0, 0, 0) + (0,−4, 4, 0, 0) + (0, 0, 0, 0, 0)
=(0, 7,−7, 0, 0)

With the following elements just computed

R42L42 = (Id, (0,−7, 0, 7, 0)) (10)
P14L42P14R12 = (Id, (7,−7, 0, 0, 0))
P12L13P12R23 = (Id, (0, 7,−7, 0, 0))

we can generate each element (Id, (v1, v2, v3, v4, 0)), with (v1, v2, v3, v4, 0) ∈ Z
5
12

such that
∑4

1 vi = 0. To see this, taken a, b, c ∈ Z, we have to solve

a(0, −7, 0, 7, 0) + b(7, −7, 0, 0, 0) + c(0, 7, −7, 0, 0) ≡ (v1, v2, v3, v4, 0) (mod 12)

(−7b, −7a + 7b − 7c, 7c, 7a) ≡ (v1, v2, v3, v4, 0) (mod 12)

⎧⎪⎪⎨
⎪⎪⎩

−7b ≡ v1
−7a + 7b − 7c ≡ v2
7c ≡ v3
7a ≡ v4

⇒

⎧⎪⎪⎨
⎪⎪⎩

−7b ≡ v1
7b − 7c ≡ v2 + 7a
7c ≡ −v3
7a ≡ v4

⇒

⎧⎪⎪⎨
⎪⎪⎩

7b ≡ −v1
−v1 − v3 ≡ v2 + v4
7c ≡ −v3
7a ≡ v4

which is solvable because 7 is coprime with 12.
To obtain all elements (Id, (v1, v2, v3, v4, v5)), with (v1, v2, v3, v4, v5) ∈ Z

5
12

such that
∑5

1 vi = 0, it is sufficient add to the 3 generators listed in 10 the
generator P1235R23P12L15L13 = (Id, (7, 0, 0, 0,−7)).

But it is evident that Z � Z
4
12, hence PLRQ � S5 � Z

4
12. ��
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