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Abstract. We present the notion of abstract gestures and show how
it encompasses Mazzola’s notions of gestures on topological spaces and
topological categories, the notion of diagrams in categories, and our
notion of gestures on locales. A relation to formulas is also discussed.

1 Introduction

Soon after the accomplishment of the first version of his The Topos of Music [9],
an enterprise that achieved a topos-theoretic based framework for musicology
(a theory of performance included), and that gave a very complete account of
the mathematical structures present in music, Mazzola became aware of that
his own activity as a free jazz pianist had little to do with the structures and
procedures described in his monograph. Gestures, rather than formulas, were
the essence of his performance. Certainly, improvisation in free jazz is mainly
determined by the movements of the body’s limbs, that is, by a dancing of the
body, the classical structures of western music being secondary and auxiliary.
Then a rigorous reflection on gestures is necessary, and not only in the case of
musical improvisation, but in music in general, since all its power and intensity
relies on its realization in bodily terms, even in the western classical tradition.

The point of departure towards a formal definition of gesture is the one given by
Hugues de Saint-Victor in the chapter XII of his De Institutione Novitiorum [12]:

Gestus est motus et figuratio membrorum corporis, ad omnen agendi
et habendi modum.
[Gesture is the movement and configuration of the body’s limbs, towards
all an action and having a modality.]1

Based on this definition, Mazzola gives the first mathematical definition of a
gesture as a diagram of curves in a topological space (see the Sect. 3 for the
precise definition); here the diagram corresponds to the configuration of the
body’s limbs and the topological space corresponds to the space-time where the
movement occurs. Further, this definition is generalized to topological categories
in [11] to include both algebraic and topological information in gestures, and then

1 Our translation.
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to locales in [1] as a first step to define gestures on generalized notions of space.
These different instances of defining gestures belong, though not so strictly, to
the topological branch of the theory of gestures.

On the other hand, there is an algebraic counterpart of this. In [10, p. 39],
Mazzola defines a formula in a spectroid2 as a suitable diagram in this particular
kind of linear category, which is the starting point to develop a mathematical
framework for both the theory of nets and Lewin’s transformational theory.

It is important to stress that all these different definitions rely on the notion
of digraph: both gestures and formulas are morphisms of digraphs with domain
a given skeleton. Moreover, following Mazzola’s ideas, these instances can be
regarded as attempts of reanimation of the implicit movement that the draw-
ing of a digraph by means of arrows and nodes suggest. In Mazzola’s own
words [10, p. 25]:

The gesture is a morphism, where the linkage is a real movement and not
only a symbolic arrow without bridging substance.

Regarding these two branches, there are two main problems. The first one
deals with the search for a common universe: that is, the diamond conjecture.
The second one corresponds to a gestural representation of categories in which
composition of arrows can be manipulated at the level of gestural intuitions,
in much the same way as the Yoneda embedding allows the representation of
categories in topoi of presheaves. To a great extent, topological categories were
introduced in gesture theory so as to construct a bicategory of gestures proposed
by Mazzola as a first step to solve these two problems.

It is remarkable that gestures and formulas are at the core of the relation
between mathematics and music. Mazzola has proposed a fundamental concep-
tual adjunction

formulas
music �� gestures

mathematics
�� ,

where the arrows correspond to the activities of the disciplines: mathematicians
take gestures (intuitions, mental movements, analogies with reality,...) to produce
formulas, musicians take formulas (scores, diagrams, musical notations,...) to
produce gestures. The term adjunction refers to a relation that is more profound
than a mere inversion or isomorphism, it corresponds to a true dialectic that is
grasped formidably by the categorical concept of adjunction between functors.
Certainly the diamond conjecture is the search for such an adjunction in precise
mathematical terms.

This article is an overview of a general framework for gesture theory that
could unify the definitions of gestures on several notions of space (more related to
the topological branch of mathematical music theory) and the notions of formulas
in spectroids and of diagrams in categories (more related to the algebraic branch

2 See Sect. 7 or [4, p.29] for the definition of spectroid. Spectroids were introduced by
Pierre Gabriel in representation theory of quivers or digraphs; details can be found
in [4].
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of mathematical music theory). In addition, this framework is flexible enough
to introduce gestural ideas in other fields of mathematics given its category-
theoretic nature.

The structure of this article is that of a theme with variations. We first present
the notion of abstract gestures and then proceed to unfold different realizations
thereof. Justifications for all statements that are not proved in this article will
be found in [2].

2 Abstract Gestures

Before giving the definition of gestures we need some basic definitions and fix
the notation.

Directed graphs and internal digraphs

Let G1 be the category with two parallel arrows between two vertices [0], [1] plus
the identities; it can be depicted as follows:

[0]id
�� ε1 ��

ε0
�� [1] id

��

.

A directed graph (or digraph, for short) is a tuple Γ = (A, V, t, h), where
A, V are sets and t, h : A −→ V are functions. Digraphs correspond bijec-
tively to presheaves on the category G1 so from now on we identify a digraph
Γ = (A, V, t, h) with its associated presheaf Γ : Gop

1 −→ Set defined by
Γ ([1]) = A,Γ ([0]) = V, Γ (ε0) = t, Γ (ε1) = h. In this way, there is a topos of
digraphs, namely the Grothendieck topos3

Digraph := SetGop
1 .

Thus, a morphism from Γ1 = (A1, V1, t1, h1) to Γ2 = (A2, V2, t2, h2) (that is, a
natural transformation) corresponds to a pair of functions (u, v), with u : A1 −→
A2 and v : V1 −→ V2, satisfying the identities

vt1 = t2u, vh1 = h2u.

Similarly, if C is an arbitrary category, a functor S : Gop
1 −→ C can be

identified with a tuple (S1, S2, e0, e1), that is, with the diagram

S1

e1 ��

e0
�� S0

of morphism of C by putting S1 = S([1]), S0 = S([0]), e0 = S(ε0), e1 = S(ε1). A
tuple (S1, S2, e0, e1), where e0, e1 : S1 −→ S0 are morphisms of C is called an
internal digraph in C . In this way, functors S : Gop

1 −→ C can be identified with
internal digraphs in C .
3 Any category of presheaves on a small category is a Grothendieck topos. In fact,

given a category of presheaves on a small category C , it is a category of sheaves if
we consider on C the trivial topology, whose unique covering sieve for each object of
C is the maximal sieve.
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The category of elements

Given a presheaf P : C op −→ Set on a category C , the category of elements of
Γ , denoted by

∫
Γ is defined as follows. Its objects are pairs (C, p) where C is an

object of C and p ∈ P (C), and a morphism from (C ′, p′) to (C, p) is a morphism
u : C ′ −→ C of C such that P (u)(p) = p′. Also, there is a projection functor
πP :

∫
P −→ C sending u : (C ′, p′) −→ (C, p) to its underlying morphism

u : C ′ −→ C.
In the case when C = G1, note that the category

∫
Γ of elements of a

digraph Γ = (A, V, t, h) can be identified with the category whose set of objects
is A�V and whose morphisms are the identities and the pairs of the form (t(a), a)
or (h(a), a) where a ∈ A, domains and codomains being the first and second
projections respectively. With this identification the projection

∫
Γ

πΓ−−→ G1 sends
the vertices in V to [0], the arrows in A to [1], (t(a), a) to ε0, and (h(a), a) to ε1.

2.1 Realizations

As we will see through this article, the concept of realization of a digraph is
closely related to that of gestures. In fact, realization and gestures are dual
concepts of each other! (Subsect. 2.2). For simplicity, we start with realization.

Let C be a category with small hom-sets, Γ : Gop
1 −→ Set a digraph, and

T : G1 −→ C a functor. We define the realization of Γ respect to T , denoted by
|Γ |T , as the colimit in C of the functor

∫
Γ

πΓ−−→ G1
T−→ C ,

whenever it exists.
Since Γ corresponds to a tuple (A, V, t, h) and T can be identified with a

pair of morphisms i0, i1 : T0 −→ T1 of C , the realization |Γ |T is the limit of the
following diagram in C : take a copy of T1 for each a ∈ A, a copy of T0 for each
x ∈ V , a copy of i0 whenever t(a) = x, and a copy of i1 whenever h(a) = x.

If the realization |Γ |T exist for each digraph Γ , then there is a functor

| |T : Digraph −→ C ,

which is left adjoint4 to the functor C (T, ) that sends each object C of C to
the digraph C (T ( ), C). This means that for each digraph Γ and each object of
C there is a bijection

C (|Γ |T , C) ∼= Digraph(Γ,C (T ( ), C)),

natural in both arguments Γ and C. As we will see, this adjunction is very useful
in the theory of gestures.
4 See the theorem at [8, p. 47], which holds for cocomplete categories. This theorem

remains valid if we only assume the existence of the colimits involved in the definition
of L.
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2.2 Definition

Let C be a category with small hom-sets. Given a digraph Γ : Gop
1 −→ Set and

a functor S : Gop
1 −→ C , we define the object of C of gestures with skeleton Γ

respect to S, denoted by Γ@S, as the limit of the functor
(∫

Γ

)op
πop

Γ−−→ Gop
1

S−→ C ,

whenever it exists.
Following this definition, since Γ corresponds to a tuple (A, V, t, h) and S can

be identified with an internal digraph (S1, S0, e0, e1) in C , the object of gestures
with skeleton Γ respect to S is the limit of the following diagram in C : take a
copy of S1 for each a ∈ A, a copy of S0 for each x ∈ V , a copy of e0 : S1 −→ S0

whenever t(a) = x, and a copy of e1 : S1 −→ S0 whenever h(a) = x.
On the other hand, note that this definition is the dual of that of realization.

To see this, change C for C op in the definition of the realization of Γ respect
to T (Subsect. 2.1). In this way, we obtain that the realization of a digraph
respect to a functor T : G1 −→ C op (which corresponds uniquely to a functor
S : Gop

1 −→ C , by applying ( )op) is to be

Colim

(∫
Γ

πΓ−−→ G1
T−→ C op

)

= Lim

((∫
Γ

)op
πop

Γ−−→ Gop
1

S−→ C

)

= Γ@S.

So we have the following delicate and fundamental fact:

The concept of gestures is the dual of that of realization.

By dualizing the case of the realization functor, if the object of gestures Γ@S
exists for each digraph Γ , then there is a functor

@S : Digraphop −→ C ,

which is right adjoint to the functor C ( , S) that sends each object C of C to
the digraph C (C,S( )). This means that for each digraph Γ and each object C
of C there is a bijection

Digraph(Γ,C (C,S( ))) ∼= C (C,Γ@S),

natural in both arguments Γ and C.
In particular, if the category C has a terminal object 1, then we obtain a

bijection between the set C (1, Γ@S) of points of Γ@S and

Digraph(Γ,C (1, S( ))).

The digraph C (1, S( )) is called the underlying digraph of the internal
digraph S.
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2.3 Hypergestures

Let C be an object of C and T : G1 −→ C a functor whose images T0, T1 are
exponentiable in C . We define the internal digraph SC of C respect to T as the
composite

G1
T−→ C

C( )

−−−→ C ,

which is, of course, a contravariant functor. In this case, given a digraph Γ ,
we write Γ@C instead of Γ@SC , and call it the object of gestures with skeleton
Γ and body in C, whenever the limit exists. This construction implies that of
hypergestures: if Γ ′ is another skeleton, we can construct the object Γ ′@Γ@C,
and so on, depending on the existence of suitable limits in C .

This construction of hypergestures is the main reason for which we have
defined the object of gestures Γ@S with skeleton Γ respect to an internal
digraph S. In particular, when the internal digraph is SC we have defined the
object of gestures with skeleton Γ and body in C rather than an individual ges-
ture. Certainly, the key point of the construction of hypergetures is that Γ@C
is an object of C again so that can be regarded as a new body for gestures and
we can iterate the construction.

2.4 Gestures from External Digraphs

The preceding construction of hypergestures relies on the existence of suitable
exponentials. However, the construction of exponentials is not always available so
we introduce the following notion of external digraph of an object. Besides, this
construction allows to give the notion of a gesture in contrast to our preceding
definition of the object of gestures.

Let C be a category with small hom-sets, and T : G1 −→ C a functor such
that the realization functor | |T exists. Then given an object C of C , we define
the external digraph sC of C as the composite

G
T−→ C

C ( ,C)−−−−−→ Set,

which coincides with its underlying digraph (Subsect. 2.2) since it is a functor to
Set. Therefore, according to Subsect. 2.2, we have a bijection between the points
of Γ@sC (that is, its elements) and the set

Digraph(Γ,C (T ( ), C)).

Consequently, in this case, we can define a gesture with skeleton Γ and body in
C respect to the cosimplicial object T as a morphism

δ : Γ −→ sC

of digraphs. In this way, the set of gestures Γ@sC is completely determined by
all the individual gestures δ, in contrast to the case of the locales of gestures,
which need not be characterized by their points (see Sect. 4).
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Note that, in turn, sC coincides with the value at C of the left adjoint to the
realization functor (Subsect. 2.1) and hence there is a bijection

C (|Γ |T , C) ∼= Digraph(Γ,C (T ( ), C)).

Thus, individual gestures with skeleton Γ and body in C correspond bijectively
to morphisms from the realization |Γ |T to C.

2.5 An Orientation

Now we proceed to the study of the particular examples. The Fig. 1 offers an
orientation for the different variations to be considered. It shows the different
incarnations of the functors T and S used in the definition of gestures as well
as the respective bodies of the gestures. Note that the gestures related to the
columns 2–5 (left to right) come from internal digraphs of objects of the respec-
tive categories and hence yield hypergestures. This is not the case for the gestures
of the column 6, where S is an external digraph sM . Despite this, as we have
observed, it makes sense to construct individual gestures and to say that M
is the body, but in this case, the object of gestures is not enriched as in the
preceding ones. The examples from the columns 2–6 correspond to the sections
3–7 of this article, in order-preserving correspondence.

Fig. 1. Ingredients for defining gestures in different categories.

3 Gestures on Topological Spaces

Let Γ be a digraph, X a topological space, and I = [0, 1] the unit interval in
R. In the sequel, we will denote the set of opens of the topological space X
by O(X).

First, we construct the space XI of paths in X. In fact, the space I is an
exponentiable object in Top by Theorem [3, 5.3]: it is a locally compact space5,
5 A topological space X is said to be locally compact if for each point x ∈ X and each

open neighborhood U of it, there is a compact neighborhood of x contained in U .
In the case when X is a Hausdorff space, this definition is equivalent to saying that
each point in X has a compact neighborhood. In this way, every compact Hausdorff
space is locally compact.
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so O(I) is a continuous lattice6 by Lemma [6, VII.4.2]. Furthermore, the expo-
nential XI is the set Top(I,X) of continuous maps from I to X endowed with
the compact-open topology.

The internal digraph in Top to be considered in this instance is the spatial
digraph

−→
X of the space X. It is the tuple (XI ,X, e0, e1), where e0 and e1 are

obtained by applying the functor X( ) to the inclusions i0, i1 : {∗} −→ I of the
endpoints. Note that

−→
X corresponds to the functor SX defined in Subsect. 2.3.

In this way, since the category Top of all topological spaces has all small
limits, following the definition in Subsect. 2.3, we have the space Γ@X of gestures
with skeleton Γ and body in X. However, in [10], Mazzola first defines a gesture
as a diagram of curves in the topological space X, that is, a morphism of digraphs

δ : Γ −→ −→
X,

where
−→
X is regarded as a digraph by forgetting the topological structure. This

means that the spatial digraph
−→
X can be identified with its underlying digraph

(Subsect. 2.2) since topological spaces are determined by their points. In this
way, the elements of Γ@X correspond bijectively to these individual gestures δ
according to our discussion of points of objects of gestures in Subsect. 2.2.

Example 1. Consider the case when X = R
2. In this case, the spatial digraph−→

R
2 of R2 is the tuple

(Top(I,R2),R2, e0, e1),

where e0 (respectively e1) sends a continuous curve c : I −→ R
2 to c(0) (respec-

tively c(1)). In this way, the digraph
−→
R

2 has as arrows all continuous curves in
R

2 and as vertices all points in R
2.

Now suppose that Γ is the digraph of the Fig. 2, that is, Γ =
({a, b}, {x, y}, t, h), where t(a) = h(a) = t(b) = x and h(b) = y. Then a ges-

ture δ : Γ −→ −→
R

2, which can be illustrated with the Fig. 2, is a pair (u, v), where
u : {a, b} −→ Top(I,R2) and v : {x, y} −→ R

2 are functions satisfying the
conditions u(a)(0) = u(a)(1) = u(b)(0) = v(x) and u(b)(1) = v(y). In words, it
is simply a diagram of curves that match according to the configuration of Γ .

Fig. 2. A topological gesture δ.

On the other hand, the space Γ@R
2 is the limit in Top of the diagram

Top(I,R2)
e1 ��

e0
�� R

2 Top(I,R2)
e0��

e1 ��
R

2 .

6 Or core-compact, according to the terminology in [3].
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According to the construction of limits (by means of products and equalizers) in
Top, the space Γ@R

2 is the subspace of the cartesian product (equipped with
the Tychonoff topology)

Top(I,R2) × Top(I,R2) × R
2 × R

2

consisting of all tuples (ca, cb, px, py) satisfying the conditions ca(0) = ca(1) =
cb(0) = px and cb(1) = py. Note that such a tuple is essentially the same as a
gesture δ. ��

Gestures and geometric realization

In the case when the functor T : G1 −→ Top corresponds to the pair of inclusions
i0, i1 : {∗} −→ I of the endpoints, the realization |Γ | of a digraph Γ respect to
T always exists since Top is small cocomplete and is often called the geometric
realization7 of Γ .

Example 2. Consider the digraph Γ of the Example 1. The geometric realization
|Γ | is the colimit in Top of the diagram

I {∗}
i1

��
i0�� i0 �� I {∗}i1�� .

According to the construction of colimits (via coproducts and coequalizers) in
Top, the geometric realization |Γ | is the quotient of the disjoint union

(I × {a}) ∪ (I × {b}) ∪ {x} ∪ {y}

by the relation ∼ defined by (0, a) ∼ (1, a) ∼ (0, b) ∼ x and (1, b) ∼ y. The
resulting object is illustrated in Fig. 3. In this way, an open of the quotient
topology on |Γ | corresponds to a tuple

(Ua, Ub, Vx, Vy),

where Ua, Ub ∈ O(I), Vx ⊆ {x}, and Vy ⊆ {y} satisfying the conditions (i)
0 ∈ Ua iff 1 ∈ U1 iff 0 ∈ Ub iff x ∈ Vx and (ii) 1 ∈ Ub iff y ∈ Vy. ��

Fig. 3. The way of identifying the points of the disjoint union (left-hand) and the
realization of the digraph from Fig. 2 (right-hand)

7 This name is due to Milnor, who first studied the geometric realization in the context
of algebraic topology, though for simplicial sets instead of digraphs. However, in [10],
this object is called spatialization.
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By the associated adjunction to the geometric realization (Subsect. 2.1), we
have an isomorphism

Top(|Γ |,X) ∼= Digraph(Γ,
−→
X ),

natural in both arguments Γ,X. Thus, a gesture with skeleton Γ and body in X
is essentially a continuous map from |Γ | to X; for instance, note that the gesture
at Fig. 2 can be interpreted as a continuos map from the geometric realization
at Fig. 3 to R

2. Moreover one may ask whether there is a homeomorphism

X |Γ | ∼= Γ@X.

The answer is affirmative iff Γ is a locally finite digraph8, that is, iff |Γ | is
exponentiable in Top; we omit the proof here. The important point is that this
result illustrates a basic problem in gesture theory: the reduction of objects of
gestures defined by the procedure in Subsect. 2.3 to exponentials. It is important to
stress that isomorphisms of the above type are not always possible; for example, if
the digraph has infinitely many arrows with the same tail, the above isomorphism
makes no sense. And in some respect, this is what makes topological gestures
so interesting from a strictly mathematical viewpoint; if they were reducible to
exponentials nothing new is to be studied.

4 Gestures on Locales

The category of frames, denoted by Frm has as objects the complete Heyting
algebras, that is, complete lattices L satisfying the infinite distributive law a ∧∨

s∈S s =
∨

s∈S a ∧ s, for all a ∈ L and S ⊆ L. The morphisms of frames are
the functions that preserve finite meets including 1 and arbitrary joins including
0. In particular these functions preserve the order. The category Loc of locales
is the opposite of Frm. The category Loc is small complete and cocomplete
(see [13, II.3]), the terminal object 2 = {∅, {∗}} being the locale of opens of the
singleton.

Let Γ = (A, V, t, h) be a digraph and L a locale. As we have already noted,
the locale O(I) is a continuous lattice. Therefore O(I) is exponentiable in Loc
(Theorem [6, VII 4.11]) and we have the locale LO(I) of paths in L.

The localic digraph
−→
L of L is the tuple (LO(I), L, e0, e1) where e0, e1 are

obtained by applying the functor L( ) to the endpoint inclusions O(i0),O(i1) :
2 −→ O(I) induced by their analogues in Top. Once again,

−→
L corresponds

to the functor SL defined in Subsect. 2.3. In this way, since Loc has all small
limits, we have the locale Γ@L of gestures with skeleton Γ and body in L. This
definition coincides with that given in [1].

As in the case of topological spaces, there is a realization induced by the
inclusions O(i0),O(i1) : 2 −→ O(I), and the realization of a digraph coincides
with the locale of opens of the geometric realization in Top.
8 A digraph is locally finite if each vertex is the tail or head of only finitely many

arrows.
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Example 3. Let Γ the digraph of the Example 1. The realization |Γ | in Loc
corresponds to the locale O(|Γ |), whose elements were already described in the
Example 2. ��

Also, we have a reduction to exponentials, namely an isomorphism of locales

LO(|Γ |) ∼= Γ@L,

natural in L, for each locally finite digraph Γ .
Locales are the objects of study of the pointless topology, an approach to

a great extent derived from the vision of Grothendieck of the notion of topos
as a generalization of that of topological space. Locales are in some respect
residues of topoi, but they exemplify transparently the spatial aspect of topoi.
In first instance, locales need not be characterized by their points, and there are
examples (complete boolean algebras without atoms) of locales that are non-
trivial and without points at all! As a collateral effect, the objects of gestures on
these complete boolean algebras are also non-trivial and with no points.

Example 4. Let O(R)¬¬ be the sublocale of O(R) induced by the double negation
nucleus. The elements of O(R)¬¬ are the opens U ∈ O(R) for which Int(U) = U .
The locale O(R)¬¬ is a boolean algebra without atoms and hence has no points.
In the same way, if Γ is any non-initial digraph, according to [1, Proposition 4],
the space of points of Γ@O(R)¬¬ is homeomorphic to the space of gestures with
skeleton Γ and body in the space of points of O(R)¬¬, but the latter is the empty
space, and hence the space of points of Γ@O(R)¬¬ is empty. However, it can
be shown that O(R)¬¬ is a retract of Γ@O(R)¬¬, and hence Γ@O(R)¬¬ is not
a trivial locale. In particular, if Γ is the digraph • → •, the locale O(R)O(I)

¬¬ =
Γ@O(R)¬¬ of paths has no points. ��

This is a fundamental example for abstract gesture theory since it shows
that the notion of an individual gesture is insufficient if a theory of gestures on
generalized spaces is desired. Besides, if we want to define a correct generalization
of gestures on locales, then it is impossible to give a satisfactory definition of
a gesture with skeleton Γ and body in O(R)¬¬ as a morphism of digraphs δ :
Γ −→ −−−−−→

O(R)¬¬ since both the locale of paths O(R)O(I)
¬¬ and O(R)¬¬ have no

points—the object
−−−−−→
O(R)¬¬ is not a digraph, but an internal digraph in Loc

whose underlying digraph (Subsect. 2.2) has no vertices and no arrows!
This generalized notion of space (locales) that is concerned with notions of

neighborhoods and coverings rather than points should be taken into account to
model the space-time in different ways than usual. It is absolutely legitimate to ask
whether the euclidean models Rn and their derivatives (as the interval object I),
and even topological spaces, which are essentially characterized by their points,
are suitable to describe processes that have to do with wraps and indecomposable
movements that occur through non-atomic neighborhoods of space-time, as in the
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case of the human body (absolutely indecomposable in terms of points!) or the
pianist’s hand9. Probably, it is time for a new topology, closer to Grothendieck’s
ideas of a tame (moderate) topology and a geometry of shapes.

5 Gestures on Topological Categories

Topological categories are internal categories (see [8, V.7] or [5, B2.3.1] for the
definition) in Top. Roughly speaking, this means that a topological category K

is a tuple (C1, C0, e, d, c,m) with C1, C0 topological spaces of arrows and objects
respectively and e, d, c,m continuous operations of unity, domain, codomain,
and composition respectively. Topological categories and internal functors in
Top (which we call topological functors) form a category denoted by Cat(Top)
according to the notation in [5, B2.3.1].

Before explaining the construction of gestures, we mention two basic results
on limits and exponentials of internal categories that we will need and whose
justification can be found in [1].

Theorem 1. Let C be a cartesian category. If E = (E1, E0, e
′, d′, c′,m′) is an

internal category in C such that E0, E1, and the object of composable arrows
E2 = E1 ×E0 E1 are exponentiable in C , then E is exponentiable in the category
Cat(C ) of internal categories in C .

Theorem 2. If C is a small complete category, then Cat(C ) is small complete.

Let I be the unit interval in R and I = (E1, E0, e
′, d′, c′,m′) the topological

category of the poset (I,≤), that is,

(i) (E1, E0) = ({(x, y)| x ≤ y in I}, I);
(ii) e′ : E0 −→ E1 is the diagonal, that is, e′(x) = (x, x);
(iii) d′, c′ : E1 −→ E0 are the first and second projection respectively;
(iv) E2 = E1 ×E0 E1 = {((w, z), (x, y)) ∈ I2 × I2| x ≤ y = w ≤ z}, and

m′ : E2 −→ E1 is defined by m′((y, z), (x, y)) = (x, z); and
(v) the set E0 = I has the usual topology on I, E1 is a subspace of I × I (prod-

uct topology), and E2 is a subspace of I4; so that e′ (diagonal), d′, c′,m′

(projections) are continuous.

To show that I is exponentiable in Cat(Top) we check the conditions of
Theorem 1: in fact, E0, E1, E2 are exponentiable in Top, that is locally compact,
since they are closed subsets of some finite power of I, the latter being locally
compact since finite products of locally compact spaces are locally compact.

Also, we have two endpoint inclusions into I. In fact, note that the terminal
category 1 = ({∗}, {∗}, id, id, id, !) is the terminal object in Cat(Top). The
internal functors α, β : 1 −→ I are defined by α0(∗) = 0, β0(∗) = 1, α1(∗) =
(0, 0), and β1(∗) = (1, 1).

9 I borrowed this idea from Octavio Agust́ın-Aquino.
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Given a topological category K, the corresponding internal digraph
−→
K of K in

Cat(Top) is the tuple (KI,K, e0, e1), where K
I is the category of all topological

functors from I to K with its set of objects P0 (that is, of topological functors)
topologized as a subspace of CE1

1 × CI
0 and its set of morphisms P1 (that is, of

natural transformations) topologized as a subspace of P0 × P0 × CE0
1 , and

K
I

ei ��
K

F
τ

��

� �� F (i)
τi

��

G
� �� G(i),

for i = 0, 1. This internal digraph
−→
K corresponds to the functor SK defined in

Subsect. 2.3, so since Cat(Top) is small complete by Theorem 2, for each digraph
Γ , we have the topological category of gestures Γ@K with skeleton Γ and body
in K. This definition is essentially the same given in [11], where applications of
gestures on topological categories in mathematical music theory are discussed.

Example 5. Let Γ be a loop digraph as in the picture

•xa
��

.

Let us make an explicit computation of the topological category Γ@K for any
topological category K = (C1, C0, e, d, c,m). First, note that according to the
definition of Γ@K, it is the equalizer of the diagram

K
I

e1 ��

e0
�� K .

Thus, Γ@K can be described as follows:

(i) Its objects are topological functors F : I −→ K, that is, pairs (F1, F0) ∈
CE1

1 × CI
0 (correspondence on morphisms and on objects) satisfying the

functor conditions and F0(0) = F0(1). In this way, the set of objects of
Γ@K is equipped with the subspace topology of the Tychonoff topology on
the product CE1

1 × CI
0 . Here, CE1

1 and CI
0 are function spaces, which are

endowed with the compact-open topology.
(ii) A morphism from F to G, where F and G are topological functors as in

(i), is a triple (F,G, τ), where τ : F −→ G is a natural transformation
such that τ0 : F0(0) −→ G0(0) and τ1 : F0(1) −→ G0(1) are the same
morphism. Here we regard τ as a continuous map from I to C1 satisfying the
usual natural transformation conditions. In this way, the set of morphisms
of Γ@K is endowed with the subspace topology of the Tychonoff topology
on the product

CE1
1 × CI

0 × CE1
1 × CI

0 × CI
1 . ��
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6 Diagrams: Gestures on Categories

Let Cat be the category of all small categories, which coincides with Cat(Set).
Consider the functor T : G1 −→ Cat identified with the pair of functors F0, F1

from the terminal category 1 (just an object and an arrow) to the category of
the poset {0 < 1}, where F0(∗) = 0 and F1(∗) = 1 (see Fig. 1). Since Cat is
small cocomplete (Exercise 5 in [7, p. 112]), we know that the realization | |T
exists according to Subsect. 2.1, but we require a more explicit presentation.
Recall (Subsect. 2.1) that | |T is left adjoint to the functor Cat(T, ) : Cat −→
Digraph which is essentially the forgetful functor! But we know that it has a
left adjoint (unique up to isomorphism), namely the free category functor Path
(see [7, II.7]), so we can assume that | |T = Path.

Now Cat is cartesian closed by Theorem 1, the categories of functors being
the exponentials, so given a category C , we have the internal digraph SC from
Subsect. 2.3. In this way, we have the category Γ@C of gestures with skeleton Γ
and body in C . The interesting fact here is that the reduction to exponentials
always holds, that is, we have an isomorphism of categories

Γ@C ∼= C |Γ |T = C Path(Γ )

for any digraph Γ . Therefore, the category Γ@C of gestures with skeleton Γ
and body in C can be identified with the category of all functors from the free
category Path(Γ ) to C . So diagrams are gestures!

Example 6. Let Γ be the digraph •x
a−→ •y. Its realization in Cat is its free

category, which is the category with just an arrow plus identities and can be
depicted as

xidx

�� a �� y idy

		
.

Note that this category is isomorphic to the category of the poset {0 < 1}.
Moreover, given a small category C , the category (•x

a−→ •y)@C is precisely the
category of functors from the category of the poset {0 < 1} to C . Thus, the
objects of (•x

a−→ •y)@C are essentially morphisms of C and a morphisms of
(•x

a−→ •y)@C from f : A −→ B to g : C −→ D is just a pair of morphisms
(h : A −→ C, k : B −→ D) such that kf = gh. That is, our category of gestures is
the category of morphisms of C . Note that this also exemplifies the exponential
reduction. ��

7 Gestures on Linear Categories

Let R be a commutative ring. We define an R-linear category to be a category
M with small hom-sets such that for each pair A,B of objects of M the set
of morphisms M (A,B) is an R-module and such that for each triple A,B,C
of objects of M the composition ◦ : M (B,C) × M (A,B) −→ M (A,C) is R-
bilinear. Given two R-linear categories M ,N , an R-linear functor from M to
N is a functor F : M −→ N such that for each pair A,B of objects of M the
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function F : M (A,B) −→ N (F (A), F (B)) is an R-homomorphism of modules.
In this way, we have the category CatR of all small R-linear categories and
R-linear functors between them. On the other hand, an ideal I of an R-linear
category consists of a family of subgroups I (A,B) � M (A,B) indexed by all
pairs of objects of M such that f ∈ M (A,B) implies gfe ∈ M (D,C) for all
e ∈ M (D,A) and g ∈ M (B,C).

Now let k be a commutative field. We say that a small k-linear category M
is a spectroid if the non-invertible morphisms of M form an ideal Rad(M ) of
M and if distinct objects of M are not isomorphic. It can be shown that the
first requirement is equivalent to saying that the k-algebras M (A,A) are local10

for all A ∈ Ob(M ).
A construction of free R-linear categories is possible in much the same way

that in the case of free modules in ModR. In fact, there is a functor R( ) :
Cat −→ CatR which is left adjoint to the forgetful functor from CatR to Cat.
Given a small category C , the R-linear category RC has as objects the objects
of C , for each pair of objects A,B the set RC (A,B) is defined to be the free
module RC (A,B) on C (A,B), and the composition is the linear extension of the
composition in C . We thus have the functor

RT : G1
T−→ Cat

R( )−−−→ CatR,

where T is the functor in Sect. 6; see Fig. 1 for a picture. Further, the realization
| |RT coincides with R( ) ◦Path since | |T = Path and R( ), as a left adjoint,
preserves colimits.

Given an R-linear category M , so as to construct gestures, we consider the
external digraph of M (contravariant functor, Subsect. 2.4)

sM : G1
RT−−→ CatR

CatR( ,M )−−−−−−−−→ Set,

rather than an internal digraph in CatR. So since the functor CatR( ,M )
transforms colimits to limits and the functor R( ) ◦ Path is left adjoint to the
forgetful functor U : CatR −→ Cat −→ Digraph, we have the bijections

Γ@sM ∼= CatR(|Γ |RT ,M ) = CatR(RPath(Γ ),M ) ∼= Digraph(Γ,U(M )).

Note that since right adjoint are unique up to natural isomorphism, the set

Digraph(Γ,U(M ))

is essentially the set of gestures defined in Subsect. 2.4. Moreover, this set of ges-
tures is strongly related to formulas. The difference is that formulas are defined
for spectroids M and that the arrows of the codomain of a formula are only
allowed to be non-invertible morphisms of M . A similar result should express
formulas as gestures. The better situation would be when the functor Rad (see
[10, p. 39]) from spectroids to digraphs has a left adjoint11; in such a case, using
10 That is, local rings: all non-invertible elements form a two-sided ideal.
11 The author ignores whether or not such a left adjoint exists.
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the same reasoning from above, this left adjoint could be regarded as a real-
ization such that the associated set of gestures with skeleton Γ and body in a
spectroid M would be isomorphic (as in the above isomorphism) to

Digraph(Γ,Rad(M )),

that is, to the set of formulas! Now the functor R( ) ◦Path is a naive candidate
for such adjoint, but the images of the functor R( ) ◦ Path are not spectroids
in general as discussed in the following example and hence we discard it.

Example 7. If Γ is a loop (see the Example 5), then the realization RPath(Γ )
is isomorphic to the polynomial ring R[x] which is never local since 1 − x and x
are non-invertible with 1 = 1 − x + x invertible. This shows that RPath(Γ ) is
not a spectroid.

However, if R is a field k, the quotient algebra k[x]/〈x2〉, which can be iden-
tified with the algebra of dual numbers, is local with ideal of non-invertible
elements generated by the equivalence class of x. Thus, k[x]/〈x2〉, regarded as
the set of morphisms of a category with just an object, is an spectroid.

In this way, a gesture with skeleton a loop and body in the linear category
k[x]/〈x2〉 is just the choice of an equivalence class [a+bx] in k[x]/〈x2〉. In contrast,
a formula in the spectroid k[x]/〈x2〉 is the choice of a class of the form [bx]. For
instance, the element [x] is a formula, which can be interpreted as the element
x subject to the condition x2 = 0; hence the relation with the intuitive idea of
a formula. Finally, note that the class of the unit of k is a gesture that is not a
formula. ��

8 Final Comments

Further generalization

The formal definition of gestures in Subsect. 2.2 was deliberately chosen in this
form to illustrate the several possibilities of generalizing it. The category G1

can be replaced by the semi-simplicial category so that we can define gestures
whose skeleta are semi-simplicial sets Γ respect to semi-simplicial objects. In
that case we can regard digraphs as particular examples of semi-simplicial sets
and hence the resultant theory generalizes that for digraphs. This is not only
a mathematical fantasy; these generalization have relevant consequences in the
theory of gestures for digraphs. For example, in the case of topological spaces,
the space of hypergestures Γ ′@Γ@X, where Γ ′, Γ are locally finite digraphs and
X is a space, satisfies

Γ ′@Γ@X ∼= X |Γ ′|×|Γ | ∼= X |Γ ′×gΓ |,

where Γ ′ ×g Γ is the geometric product of the digraphs Γ ′ and Γ , which is
usually a semi-simplicial set rather than a digraph. This fact also exemplifies
the combinatorial nature of topological hypergestures with locally finite skeleta:
they basically depend on the digraphs, not on the particular space! Furthermore,
the above formula is also valid for gestures on locales.
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Gestures and Kan Extensions

The formulas defining objects of gestures and realizations show that the realiza-
tion functor | |T and the gesture functor @S are left and right Kan extensions
respectively. In fact, note first that the category of elements

∫
Γ is isomorphic

to the comma category Y ↓ Γ and that (
∫

Γ )op is isomorphic to Γ ↓ Y op, where
Y : G1 −→ SetGop

1 is the Yoneda embedding. Thus, from the definitions of
realization and gestures in Subsects. 2.1 and 2.2, we obtain the formulas

|Γ |T = Colim (Y ↓ Γ
P−→ G1

T−→ C ) = LanY (T )(Γ )

and
Γ@S = Lim (Γ ↓ Y op Q−→ Gop

1
S−→ C ) = RanY op(S)(Γ ).

This means, according to Theorem 1 in [7, X.3], that

the realization functor | |T is the left Kan extension of T along the Yoneda
embedding and, dually, the contravariant gesture functor @S is the right
Kan extension of S along the opposite of the Yoneda embedding.

This fact helps to locate gesture theory as a particular case of the theory of
Kan extensions. Then we have a notion of preservation of gestural structures as
shown, for example, by the formula

pt(Γ@L) ∼= Γ@pt(L),

which says that the space of points of the locale of gestures with skeleton Γ and
body in a locale L is homeomorphic to the space of gestures with skeleton Γ
and body in the space of points pt(L). Moreover, this viewpoint helps to give a
definition of gestures, based exclusively on Kan extensions, that need not deal
with limits, that is, there may be objects of gestures that are not pointwise Kan
extensions12.

From the diamond to a category

It is important to make clear that we are not claiming a solution for the so-
called ‘diamond conjecture’, instead we consider that it has not been formulated
in a correct way yet. In this way, we hope that the piece of theory presented in
this article is useful for giving a more theoretical shape to the diamond diagram
[10, p. 43]. In the initial diamond13, the two vertices related to the category of
gestures and the category of formulas should correspond to two particular realiza-
tions of the category of digraphs (or semi-simplicial objects, if we are more risky).

12 Though probably the more interesting objects to study are the pointwise Kan exten-
sions and hence the realizations and gesture objects defined by means of (co)limits
as above.

13 Which was not precisely a diamond since it is noticed there that there is a possible
framework for formulas for each field k.
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For gestures it is done, but not for formulas though we are close. Moreover the
particular notions of gestures can be compared since we have a notion of preser-
vation of gestural structures, taken from the theory of Kan extensions. Thus we
have a category of gestural structures which could be useful to find a precise
adjunction between gestures and formulas, allowing us to recover the gestures
behind formulas and the formulas behind gestures.
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