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Abstract. Several ways to appreciate the diatonicity of a pc-set can
be proposed: Anatol Vierù enumerates connected fifths (or semitones, as
an indicator of chromaticity), Aline Honing similarly measures ‘interval
categories’ against prototype pc-sets [8]; numerous generalizations of the
diatonic scales have been advanced, for instance John Clough and Jack
Douthett ‘hyperdiatonic’ [5] which supersedes Ethan Agmon’s model [1]
and the tetrachordal structure of the usual diatonic, and many others.
The present paper purports to show that magnitudes of Fourier coef-
ficients, or ‘saliency’ as introduced by Ian Quinn in [9], provide better
measurements of diatonicity, chromaticity, octatonicity. . . The latter case
may help solve the controversies about the octatonic character of slavic
music in the beginning of the XXth century, and generally disambiguate
appreciation of hitherto mostly subjective musical characteristics.
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1 Introduction

Tautologically, the most diatonic seven-note scale is the diatonic scale, i.e. any
collection/pc-set translated from {0, 2, 4, 5, 7, 9, 11} in Z12. Slightly less obvi-
ously, the most diatonic collection in five notes is certainly the pentatonic scale
{0, 2, 4, 7, 9}. But how is one to compare, say, {0, 2, 3, 5, 7, 8, 11}, {0, 2, 4, 5, 7, 9}
or {0, 2, 4, 6, 7, 11}? The question asked here is “how can one measure (with
some precise, computable definition) the diatonic character of a pc-set?” While
we are at it, it costs nothing to ask this question while replacing ‘diatonic’ with
‘chromatic’ or ‘octatonic’ (other adjectives will appear subsequently). Indeed it
is a vexed issue (see [11]) whether Stravinsky’s music is octatonic; alternatively,
it would be nice to appreciate objectively the evolution of chromaticity through-
out Wagner’s Tetralogy (with Tristan in between) and what remains of it in
Parsifal – similar questions abound.

Of course several answers have been advanced. We will present some of them
through a few examples, and move on to argue why the most recent one, Ian
Quinn’s “saliency”, is the best so far.

Some knowledge of pitch classes and pitch-class sets theory is assumed,
alongside with basic music theory – common scales and chords, alongside with
familiarity with Western Music. More elaborate machinery will be developed in
Sect. 1.2 and later.
c© Springer International Publishing AG 2017
O. A. Agust́ın-Aquino et al. (Eds.): MCM 2017, LNAI 10527, pp. 151–166, 2017.
https://doi.org/10.1007/978-3-319-71827-9_12



152 E. Amiot

1.1 Some Examples

Let us focus on four pc-sets occurring at the beginning of Stravinsky’s Rite of
Spring. The first two descending motives articulate C B G E B A i.e. the pc-set
X = {0, 4, 7, 9, 11}. Then D and C� are added, making up Y = {0, 1, 2, 4, 7, 9, 11};
it turns into something messier with chromatic quarts in the bass, that cover
the chromatic aggregate. I will complete the sample with the black-keyed motif
in measures 9–12, playing C� F� D� with a G� thrown in at the end, i.e.
Z = {1, 3, 6, 8}, and the new descending motif in measures 15–17 playing
T = {0, 1, 3, 6, 7, 8, 9}.

Undoubtedly X can be considered diatonic. After all, it is a subset of a major
scale – better, two major scales. There is, or was, a large current in XXth century
Music Theory that focuses on inclusion relationships – so-called set-complex
theory in American Set Theory, but also the lesser known notion of ‘poor’ and
‘rich’ modes by Anatol Vierù [12]1, an independent and fairly well contrived
alternative to the previous theory. However, numerous ambiguities arise:

1. How much, exactly, is X diatonic? Can we grade it?
2. In particular, is it more or less diatonic than other 5-note pc-sets, like

{0, 2, 4, 7, 9} or {0, 2, 4, 5, 7} which are also subsets of diatonic scales?
3. What of sets which are not exactly included in a diatonic mode (like Y,Z)

but almost?

Possible answers, clinging to the set relationships of inclusion and intersection,
take into account the (maximum) number of common notes between a pc-set and
each and every diatonic collection; or the percentage of such common notes aver-
aged over some common basis (the cardinality of the mode, or 7, for instance).
In the chosen examples, Y shares six notes {0, 2, 4, 7, 9, 11} with C and G major,
and six others {1, 2, 4, 7, 9, 11} with D major. On the other hand, Z is included
in no less than four diatonic scales, (albeit far from the ones that ‘neighbored’
X or Y ), so Z should be rated diatonic – but how much so, when we have so
many diatonic contexts to choose from?2 Meanwhile, T intersects three diatonic
collections in five notes, five others in four notes and the remaining ones in no
less than three notes. How diatonic is that? Is it actually more chromatic? Or
octatonic?

I will not waste time advocating against the set-theoretical approach, which
fails because set-theory is too poor to take into account complex musical
notions3, but rather let the more elaborate models speak for themselves.

1 In short, in his theory a poor mode is a subset of several rich modes.
2 Going to extreme cases: is a single note diatonic? What about a minor third?
3 Among other things, it does not integrate the group structure of intervals modulo

octave, not to mention subtler features. As G. Mazzolla wryly observes in the preface
of [10], it is hopeless to try and apprehend the huge complexity of music with only
the simplest mathematical tools – though this complexity can be reconstructed from
all its simplifications, if one construes ‘simplification’ as ‘forgetful functor’.



Interval Content vs. DFT 153

The notion of interval vector (iv) is more precise, and provides several illu-
minating informations on a pc-set.4 Simply put (following one of the latest of D.
Lewin’s illuminating comments), it is the probability5 of hearing a given interval
if two pcs are chosen at random in a given pc-set. Then

ivX(k) = #{(a, b) ∈ X2 | b − a = k} = #
(
X ∩ (X + k)

)

i.e. the number of occurrences of interval k between elements of X.6

Since a diatonic collection has maximal value for iv(5) = iv(7) = 6 (among
7-note scales), it is natural and (important in practice) fairly elementary7 to
compute ivX(5) for any pc-set X and compare it against that value.

Fig. 1. iv for the diatonic D, X, Y, Z and T

Already iv provides some satisfying information (see Fig. 1):

– For X, iv(5) = 3 is indeed the maximal coefficient; but it is far below the
value for the diatonic scale, which might express the contextual ambiguity
(too many different diatonic scales include X). On the other hand, iv(1) = 1,
the chromatic value, is quite small with only one semitone.

– For Y , iv(5) = 5 is almost as large as in the case of a diatonic collection.
Notice however that iv(2) is just as large (many whole tones) and iv(1) is
greater than it would be for a diatonic collection.

– For Z, iv(5) = 3 is the largest coefficient and also the maximal possible value
for a 4-note scale, confirming the diatonic character despite the contextual
indetermination of its many diatonic neighbors.

4 The machinery involved, as we will develop below, is actually an algebra structure
(with a convolution product) on the vector space of distributions, i.e. vectors describ-
ing how much of C, C�, D and so on, are featured in a much generalized pc-set.

5 Up to a constant.
6 For technical reasons that will be made clear below, we do not take into account the

symmetries, e.g. iv(n − k) = iv(k) and consider ivX as a vector in Rn.
7 Just check the number of common tones between X and X + 5, using the second

formula in the definition above.
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– Lastly, T is much more contrasted, with iv(6) a clear maximum8 and other
coefficients between 3 and 4.

This looks fairly close to musical perception, at least as far as diatonicity and
chromaticity are concerned. However, let us take a closer look at two hexachords
which share the same value for iv(5) (see Fig. 2): H = {0, 2, 4, 5, 7, 11} and
H ′ = {0, 1, 5, 6, 7, 8}. The first one, H, is a subset of C major, the second H ′ has
only five pcs in common with C� and G� major and appears substantially more
chromatic and less diatonic.9

Fig. 2. iv for two hexachords

This provides evidence that, at least in some cases, the iv is not good enough
to discriminate between different degrees of diatonicity. This requires both elu-
cidation and improvement.

Anatol Vierù went deeper still in his analysis of diatonicity (or chromatic-
ity), and understood the importance of connectivity of fifths. In a diatonic (or
pentatonic) collection, we face an uninterrupted sequence of fifths, e.g. F C G D
A E B. In H,H ′, there are two broken fifth sequences, respectively (5, 0, 7, 2),
(4, 11) and (5, 0, 7), (6, 1, 8): the first collection H adheres more closely to the
generating structure of the diatonic scale than H ′. Hence Vierù’s definition of
diatonicity and chromaticity:10

Definition 1. The diatonicity (resp. chromaticity) of a pc-set is the maximal
number of consecutive fifths (resp. semitones) between elements of the pc-set.

In the above example, H gets 3 and H ′ only 2, though the values of iv(5) are
the same (4). Will the reader agree that the first is roughly 50% more diatonic
than the second? Notice that this value is less obvious to compute than the
iv, unless one skillfully multiplies11 the pc-set by 5 and reads the sorted result
8 Actually overrated since every tritone is tallied twice.
9 Many other examples can be devised if this one does not sound convincing to you.

A more blatant one would be {0, 2, 7, 9} vs. {0, 1, 7, 8}, both with iv(5) = 2.
10 “J’ai élaboré un procédé pour mesurer le degré de diatonisme et de chromatisme

d’un mode, basé sur la comparaison de la suite des quintes parfaites connexes avec
la suite des demi-tons connexes à l’intérieur du même mode.” [12]; Definition 1 is
more or less a translation of this.

11 Vierù had discerned that the two notions are interchanged by multiplication by 5
(or 7) modulo 12, the classical M5 (or M7) operator; and offered thoughtful insights
on this dichotomy as expressed by the affine group on Z12.
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for chromaticity, which is a way of reading visually the value on the chain of
fifths (cf. right half of Fig. 3): the first pc-set turns into {10, 11, 0, 1, 7, 8} and the
second into {11, 0, 1, 4, 5, 6}.

Fig. 3. Vierù’s chromaticity is lesser in H than H ′ (left) but diatonicity stronger for
H, as read on 5H and 5H ′ (right)

Let us cut this even finer. We would like to express that H = {0, 2, 4, 5, 7, 11}
is more diatonic than H ′′ = {0, 2, 4, 5, 7, 8} (and T = {0, 1, 5, 6} less than T ′ =
{0, 3, 5, 8}) though the “Vierù indexes” are identical.

One possible, dual argument, would be that the covering chain of fifths is
shorter in one case than the other: 5 0 7 2 (9) 4 11 vs 5 0 7 2 (9) 4 (11 6) 1
8 (Fig. 4). This compounds neatly the inclusion criterion, the first scale being a
subset of a diatonic and not the second, but at the price of mixing two criterions
and enhancing the computational complexity: should we then look up, first the
lengths of connected by fifth-components, and then, in case of ex-aequo, the span
of the including chain of fifths? This is getting excessively complicated.

Fig. 4. Covering chain of fifths for {0, 2, 4, 5, 7, 11}, {0, 2, 4, 5, 7, 8}, {0, 1, 5, 6} and
{0, 3, 5, 8}

In [7,8], Aline Honingh endeavors to compare any pc-set with the appropriate
‘prototype’: for instance a hexachord will be measured against the Guidonian
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hexachord, a pentachord against the pentatonic, etc. For neatness, the pc-sets
are first reduced to so-called ‘basic-form’.12 For instance, the two tetrachords
in the last example would be compared with the prototype C D F G (numeric
results depend on the choice of similarity measure), which may or may not favor
0 1 5 6 over 0 3 5 8. I will leave the reader to peruse further details in her
papers, not because this measure lacks interest, but quite contrariwise (indeed
it allows for instance to discriminate between Beethoven’s compositions early,
middle, and late periods): it gets extremely close to the last, simplest, and overall
best candidate.

I present here without any technicity the values of saliency as defined in [9]
and used in numerous analyses henceforth. Saliency is defined as the magnitude
of one easily computed complex number, here (in the case of diatonicity) the fifth
Fourier coefficient of a pc-set (formulas, references and properties will follow in
the next section). For now, let us appreciate the values of this evaluation of
diatonicity for all the above examples and some more. On Fig. 5, we can picture
the magnitudes of all Fourier coefficients of the aforementioned heptachords, with
the diatonic scale first. We focus on the fifth magnitude (equal to the seventh),
highlighted by a dotted horizontal line, and notice that the ranking is: diatonic,
Z, Y, X and T with little difference between Y and X, and a larger discrepancy
with T.

Fig. 5. Saliency for the diatonic, Z, Y, X, and T

A similarly satisfying result also arises with the hexachords on Fig. 6,
with an unambiguous ordering of diatonicities: {0, 2, 4, 5, 7, 11} followed by
{0, 1, 5, 6, 7, 10}, and last {0, 1, 5, 6, 7, 8}.

Fig. 6. Saliency for the hexachords H, H ′, H ′′ (horizontal line)

Others examples support unequivocaly this experimental evidence: that the
fifth saliency corresponds very closely with the intuitive perception of diatonicity.
12 In some cases this may not the best for coincidence measurements: the more compact

form of a pc-set adresses its chromaticity, not its diatonicity – consider the preceding
discussion where the pc-set is first transformed by M5.
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We must look into the mathematics to understand why this should be, and above
all how this falls in with the competing measurements of diatonicity listed above.

1.2 Some Technical Definitions

I provide only a cursory outline; the reader of the present paper will only need to
bear in mind that some easily computed13 quantities, called Fourier coefficients,
feature interesting characterizations of those pc-sets which divide the octave as
evenly as possible.14 For a very pedagogical introduction to Discrete Fourier
Transform (DFT) of pc-sets, see [4]. For thorough discussion and details, see the
recent reference [3] which purports to give the state of the art.

To each pc-set A considered as a subset of Z12, is associated firstly its char-
acteristic function

1A : x �→
{

1 if x ∈ A

0 if x /∈ A
and second the Discrete Fourier Transform FA = 1̂A of

this function, the DFT of the set:

FA : t �→
∑

x∈A

e−2iπxt/12.

This function is a sum of complex numbers of the form eiθ which can all be
construed as vectors (cos θ, sin θ) of length 1, whose direction is given by the
phase θ. The value FA(k) is called the kth Fourier coefficient. We will mainly
be concerned with its magnitude, i.e. the length of the sum of these vectors.15

Here is a list of elementary though useful results without proofs:

– The set A can be reconstructed from the knowledge of the Fourier coefficients
FA(k).

– FA(12 − k) = FA(k) (conjugate complex number).
– FA(t) = −FA(t) for t �= 0 (A is the complement of A).
– FA(0) = #A.
–

∑ |FA(k)|2 = 12 × #A.
– The Fourier transform of the (12-dimensional) interval vector ivA is the

square of the magnitude of FA:

∀k ∈ Z12 îvA(k) = |FA(k)|2. (�)

Slightly more technical is the Huddling Lemma in [2]: in laymen’s terms it
states that, the closer the angles θk, the larger the sum

∑
k eiθk (the vectors pull

roughly in the same direction, coordinating their efforts). We will only need a
simple case:

13 One can compute them online at http://canonsrythmiques.free.fr/MaRecherche/
styled/.

14 Originally discovered by Quinn [9] and formally proved in excruciating detail in [2].
15 The length of a complex number x + iy is ‖(x, y)‖ = |x + iy| =

√
x2 + y2.

http://canonsrythmiques.free.fr/MaRecherche/styled/
http://canonsrythmiques.free.fr/MaRecherche/styled/
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Proposition 1. When the cardinality of A is fixed, |FA(1)| reaches maximal
value when the elements of A are consecutive [i.e. when A is a chromatic chunk].

For us the most important result is

Corollary 1. When the cardinality of A is fixed, |FA(5)| reaches maximal value
when the elements of A are consecutive in the chain of fifths.

Proof. This follows from the relation FA(5) = F5A(1), which results from 5×5 =
1 mod 12: hence the elements of 5A must be consecutive, which is equivalent
to the condition stated.

This is but a special case of Quinn’s result:

Among all pc-sets with same cardinality d, the maximum magni-
tude for FA(d) is obtained when A is a Maximally Even Set (ME
set).

ME sets admit many equivalent definitions [2,5]. We will need only to remember
the most important ME sets in Z12:

1. The octatonic scale for d = 8.
2. The diatonic scale for d = 7.
3. The whole-tone scale for d = 6.
4. The pentatonic scale for d = 5.

Quinn aimed at a landscape of chords (starting from experimental knowledge)
and sketched first the highest peaks. From some kind of continuity principle, it
was natural to infer that the height of a chord close to a summit would still
be high. Hence the definition of saliency, as a quality of proximity to a ME-set
(that Quinn called ‘prototype’):

Definition 2. The d-saliency of a chord A is |FA(d)|.

1. Among d-chords, saliency is maximal for d-ME sets.
2. Remember if convenient that |FA(d)| = |FA(12 − d)| = |FA(t)|, hence both

diatonic and (non hemitonic) pentatonic scales have maximum saliency for
index 5 (namely 2 +

√
3 ≈ 3.73).

3. For any (reasonable) distance on the set of pc-sets, a pc-set close to a ME set
has saliency close to maximal.

4. Any pc-set (with given cardinality) distributes its saliencies according to its
geometry: the sum of the squares of all saliencies is a constant. This echoes
the idea in [8] that the distribution of [IC] categories throughout a piece tells
of its local character.

All this provides fairly good mathematical justification, corroborated by
empirical knowledge, for defining

Definition 3. – The chromaticity of a pc-set A is |FA(1)| (remembering
Proposition 1).
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– The diatonicity of a pc-set A is |FA(5)|.
– The octatonicity of a pc-set A is |FA(4)|.
Some other values have actually been used for musical analysis: J. Yust calls
‘quartal quality’16 the magnitude |FA(2)| which is, for instance, maximal among
octachords for Tristan’s motif pc-set {2, 3, 4, 5, 8, 9, 10, 11}; while the ‘major-
thirdishness’ |FA(3)|, for want of a better term (‘augmentedness’?) is maximal
for an augmented triad, or for Schönberg’s Napoleon hexachord {0, 1, 4, 5, 8, 9}.

Remembering the equation
∑ |FA(k)|2 = 12#A, it could be argued that

the proper measure should be the squared magnitude – perhaps averaged by
the cardinality – since the sum of all these values is a constant. Also, it is the
squared value that appears in the DFT of the intervallic function. I will keep to
the original definition for the present paper, but would not be surprised if the
squared value were to supersede it in the future (following [17]).

2 DFT vs. iv

2.1 Theoretical Advantage

DFT is a change of (orthogonal) basis among many (polynomials, wavelets. . . ).
The major advantage17 of expressing a (musical: pc-set, rhythm. . . ) phenomenon
in a basis of exponential functions is in the following:

Proposition 2. The DFT exchanges convolution product ∗ and termwise prod-
uct ×. Namely, if f, g are two maps from Z12 to C and f̂ , ĝ their DFTs, then

̂f ∗ g(k) = f̂(k) × ĝ(k).

This is crucial because iv is a convolution product:

ivA(k) =
∑

1A(t)1A(t − k) =
∑

1A(t)1−A(k − t) = (1A ∗ 1−A)(k)

and more generally, any coincidence measure or correlation (say, the number
of elements of A that lie in any diatonic scale i.e. any transposition D + k of
D = {0, 2, 4, 5, 7, 9, 11}) can also be read on a convolution product:18

∑
1A(t)1D+k(t) =

∑
1A(t)1D(t − k) = (1A ∗ 1−D)(k).

Now the convolution product is a. . . convoluted operation19 while termwise prod-
uct is straightforward. Cognitively speaking, this means that complicated oper-
ations become obvious in Fourier space (i.e. computing on Fourier coefficients)
and perhaps suggests that the human mind processes some equivalent of Fourier
coefficients.
16 In a convincing study of Ruth Crawford Seeger’s White Moon [17].
17 This is characteristic of DFT up to permutations: see [3], Theorem 1.11.
18 Yust observed that conversely – by inverse DFT – the number of common tones

between two pc-sets can be expressed as a sum of products of magnitudes of Fourier
coefficients, pondered by cosines of the differences of phases.

19 It has quadratic complexity, while termwise product is linear.
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2.2 Multiplying Saliencies

For the sake of simplicity I present computations for diatonicity only20, i.e. com-
paring a pc-set A with various transpositions of the Diatonic D and considering
the fifth saliency. This is the core of the present article, making sense in a unified
way of all previous diatonicity measures. We analyse first the link between coinci-
dence and saliency. Coincidence with a prototype is a variant of Honingh’s mea-
sure: 1A ∗ 1B(k) is a high value when A + k shares many common values with B.
We are especially interested in the case when B is a diatonic scale, B = D or −D
or k − D etc.

Applying Proposition 2 yields immediately

FA(5) × F−D(5) = ̂1A ∗ 1−D(5) : (�)

the product of the (diatonic) saliencies of A and −D is a Fourier coefficient of
the coincidence function of A and the diatonic scale. Low values of the latter
mean that bad correlation will limit the magnitude of FA(5), i.e. the diatonicity
of A. Conversely, when does this coincidence function 1A ∗ 1−D (replaced below
by 1A ∗ 1D for simplicity’s sake) exhibit a high diatonicity? On the left-hand
side of equation (�), it means simply that A is highly diatonic (large value of
|FA(5)|). On the right-hand side, it means that the coincidence function 1A ∗1D

1. has at least some large values
2. and is ‘diatonic’ (large fifth Fourier coefficient).

In order to understand how the simple computation of saliency supersedes all
previous notions, let us analyse this last feature, which means (in the case of
diatonicity) being strongly 5-periodic: the prototype, the diatonic scale D, is a
chain of fifths, meaning that D + 5 has 7 − 1 = 6 common elements with D.21

From this follows an automatic quasi-periodicity of 1A ∗ 1D (see Fig. 7):

Fig. 7. Coincidence between D and A or A + 5 changes at most by 1

Proposition 3.

The difference between the correlations |(1A ∗ 1D)(k + 5) − (1A ∗ 1D)(k)|
is either 0 or 1.

20 It would be even simpler for chromaticity (as suggested by a reviewer) but of less
interest for actual analysis.

21 One can use either 5 or 7 as generator of a chain of fifths.
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Proof. These two convolution products expressed as sums share 6 common ele-
ments, plus another one than can be either 0 or 1. More precisely, setting
D = {5m,m = 0 . . . 6} for simplicity, we get

(1A ∗ 1D)(k) =
6∑

m=0

1A(k − 5m) = 1A(k − 30) +
5∑

m=0

1A(k − 5m)

(1A ∗ 1D)(k + 5) =
6∑

m=0

1A(k + 5 − 5m) =
6∑

m=0

1A(k − 5(m − 1))

= 1A(k + 5) +
5∑

m=0

1A(k − 5m),

hence the two values coincide when 1A(k + 5) = 1A(k − 30)(= 1A(k + 6)
modulo 12), and differ by one if not.

How then can ̂1A ∗ 1D(5) be as large as possible? On the one hand, the geometry
of the diatonic itself partly ensures some periodicity of 1A ∗ 1D (Proposition 3),
which boosts its diatonicity. How can we further increase this periodicity?

Let for example k = 0 in the condition 1A(k + 5) = 1A(k + 6) just derived:
we will have 1A(5) = 1A(6) when neither F nor F� are elements of A (or both),
for instance when A = {0, 2, 4, 7, 9, 11} (appropriately chiming the first notes
of ‘Do you know what if means’). But in order to enlarge the remaining sum∑5

m=0 1A(0−5m), we will need as many elements of A as possible in the partial
chain of fifths C D E G A B (each adds 1 to the value of the convolution product).
This will certainly be satisfied when A features a long connected subsequence
of the chain of fifths.22 We have just understood, not only how the saliency
notion includes Vierù’s definition, but also why it is superior: Vierù’s measure
is identical for H and H ′′ but in the latter case the elements of H are better
huddled in the chain of fifths, providing a larger tally of large correlation values of
the convolution product 1H ∗1D (coincidence of H with the prototypical diatonic
scale). Let us check this by computing some numerical values. Listing the values
of the convolution products from 0 to 11 yields

1H ∗ 1D = [6, 2, 4, 3, 3,5, 2,5, 2, 4, 4, 2] and 1H′′ ∗ 1D = [3, 3, 3, 3,5, 3, 4, 3, 3, 4, 3,5].

For tetrachords T = {0, 1, 5, 6} and T ′ = {0, 3, 5, 8}, it is perhaps even clearer:

1T ∗1D = [2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 4] and 1T ′∗1D = [2, 2, 3, 1,4, 1, 3, 2, 2,4, 0,4].

Notice in the latter case how the value 4 occurs thrice in a row (in fifth order:
at positions 11, 4, 9), in agreement with the geometric constraint found above.
Indeed the 5-saliency of T ′ is greater than T ’s. Similarly, H is more diatonic
than H ′′ because of the sequence of high values (in fifth order) . . . 4, 5, 6, 5, 4 . . .

Of course, computing these correlation vectors with the diatonic would pro-
vide an effective and convincing measurement of diatonicity23; but as we have
22 But also almost connected chains, like F C G A E B.
23 As a shrewd reviewer noticed, it would also be feasible to correlate interval profiles,

but our aim is to find a recipe at once simple, general and efficient.
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demonstrated, the lone and straightforward value of saliency neatly subsumes
the whole vector.

2.3 Inclusion and iv

It is redundant but perhaps useful to synthesize briefly the case of the crude
inclusion as compared to saliency in the light of the above calculations. Inclusion
of a pc-set inside (say) a diatonic scale is indeed a coincidence measure that can
be pinpointed as one large coefficient in 1A ∗1−D (at least one value equal to the
cardinality of A, some other large values according to Proposition 3). This is but
a special case of the preceding discussion, wherein it was shown that significant
diatonicity depends not only on the number of coincidences but also on their
grouping, or ‘huddling’. The same goes for large values of ivA(5) (many fifths),
which are only indicative of diatonicity when most of the fifths are neighbors
in the chain.24 The extremities of the smallest chain of fifths containing a given
pc-set are of course directly related to the number of overlapping diatonic scales
– i.e. tally of maximum values of the convolution product –, as foretold in Vierù’s
notion of ‘rich modes’.

2.4 Musical Examples

To gain perspective, let us vie away from diatonicity. D. Tymoczko’s thoughtful
analysis of Stravinsky in [11] draws interpretation of pc-sets towards specific
classes of scales. To his credit, he acknowledges the numerous ambiguities, crit-
icizes fuzziness in previous analyses and avoids dogmatic pronouncements. Still,
dataless statistical sentences like ‘. . . [this] scale accounts for virtually all of the
pitches present’ leave room for contestation (I highlighted the adjective). On the
other hand, exact measurements of diatonicity as magnitude of FA(5) – and all
other saliencies – can be compared both within Stravinsky’s own music, as it
varies within a single piece, and from one piece to another; furthermore, this
objective indicator can be applied to other composers (notably Slavic) and pro-
vide objective comparisons of their relative degrees of diatonicity, chromaticity,
or octatonicity.

The interest of such comparisons warrants general and systematic research
that cannot be included in this short paper. Here is but a small sample.

(1) To assess the general appreciation allowed by measurement of saliencies, I
have compared all six saliencies (from chromaticity to whole-toneness) on several
pieces of The Rite of Spring and, as an external reference, the Dance of the
Firebird. The pieces are imported as MIDI files and a time-window of fixed
width moves over it for computation of the saliencies of its pc-sets. Figure 8
simply exhibits the mean values of these saliencies.25

24 The converse is not true: consider CDE which is undoubtedly diatonic though
iv(5) = 0!

25 It appears that there is little difference when the time-span of the window is expanded
from 1 to 2 or even 3 s.
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Fig. 8. Mean values of saliencies on some Stravinsky pieces

The figures show ambiguity in many pieces, which satisfyingly reflects the
diversity of experts’ interpretations! However, some clear-cut features do emerge:

1. Whole-tone character dominates The Dance of the Firebird.
2. The very first piece of The Rite of Spring is fairly diatonic.
3. The Dance of Spring is more clearly diatonic.
4. The Dance of Earth is mostly whole-tonish.
5. In other pieces, the balance (interplay?) between octatonic and diatonic is

apparent – in line with Van der Toorn or Taruskin’s analyses (as quoted
in [11]).

(2) To give a feeling of the variety of these characters in the flow of the pieces,
I provide some excerpts of saliencies as functions of time. On Fig. 9, following
the first minute or so of the first movement of The Rite of Spring, the saliencies
are squared (so that their sum is a constant26), and thus it is easily seen which
character predominates in a given passage.
26 Up to the cardinality of pc-sets. On these pictures, the dotted line shows the mean

value of a saliency and the solid line a reference value – for a5, say, it is the mean
value found for a Mozart Sonata.
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It best to look at Fig. 9 while listening to the The Rite’s beginning. One can
practically see the indecisive first bars (motif X) flash a spurt of chromaticism
(when the C� interferes ca. 6′′) before settling for diatonicism (when the D is
added to make up Y = {0, 1, 2, 4, 7, 9, 11}). Then the chromatic fourths around
15′′ boost a1; Z = {1, 3, 6, 8} occurs between 36′′ and 40′′, flirting with a penta-
tonic i.e. largely diatonic character; finally, the last ambivalent motif T is played
after 1′, a short surge of chromaticism in a ‘quartal’ episode (large a2).

Fig. 9. Variations of saliencies in first minute of The Rite of Spring

This last moment exemplifies that other segmentations could, and should,
be applied to music as it is perceived (as opposed to the music read on the
score), for here T is clearly perceptible against the bass, though the numerical
computation mixed everything together. Indeed, analyzing separate instruments,
or voices, or groups, if justified on perceptual grounds, can lead to finer analyses,
see examples in [11,15], and would undoubtedly constitute an easy improvement
of saliency analysis.27

2.5 Phase and Tonality

The (random) colors on these pictures could be adjusted to reflect the phase
(direction of vectors) of the Fourier coefficient, which reflects a generalization
of tonality (for a5 it can be checked against the values for 12 major scales or
triads, for a6 it would be against the two whole-tone scales, etc. . . ). Detection of
the character of a passage (diatonic, octatonal etc.) can be compounded by pin-
pointing which (say) diatonic paradigm is involved, by computation of the phase.

27 Hopefully more exhaustive analyses of saliency of Slavic music of early XXth century
will soon appear, and settle once and for all the question of their octatonicity.
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This is a simple way to detect tonality, and its generalizations (which whole-tone,
or octatonic, scale is prevalent, etc.). More about this in [3], Chap. 6.

2.6 Possible Applications to Dodecaphonic Music

A hasty reasoning might conclude that the calculations above are meaningless in
dodecaphonic music, since the Fourier coefficients of the chromatic aggregate are
nil. It is not so. It is certainly true of Nicolai Obouhow’s “harmonie totale”28,
but usually false in classical serial music when an appropriate time-span is used
for the window of analysis, because the tone-row is often stated horizontally,
not vertically; furthermore, at least in the second Viennese school, composition
using the two halves (tropes) of the row are frequent. Of course a trope can be
any hexachord, with distinctive saliencies, however (essentially this is Babbitt’s
theorem) the saliencies of both tropes of a row are identical. For instance, ana-
lyzing both tropes in Alban Berg’s Lyrische Suite op. 28 and Violin Concerto
op. 34 shows very strong diatonic components, see [3], p. 122. I fancy that this
is a general feature of Berg’s serial music (as opposed to Webern or Schönberg,
say) but my ongoing computations have been impeded by the lack of available
Midi files for XXth century music.

3 Conclusion

From the perspective developed here, one gets a feeling that many worthy
researchers have groped for years more or less in the same direction, feeling
for the right definition of diatonicity without knowing exactly where it lay. Then
came Ian Quinn, and lo! the Holy Grail was there for everyone to grasp.

Not only does saliency pinpoint the character (or lack thereof) of a piece of
music, the other component of the Fourier coefficients (the phase) also points its
precise direction (the tonality, in the diatonic case).

Precise measurements can, at long last, supersede empirical (at best, with
bevies of bored and fallible test subjects) or completely subjective (at worst, and
all the more virulent for it) evaluations.

Moreover, this kind of analysis is valid for a huge repertoire, since all that
was said here mostly for the diatonic character stands just as well for the 5
other characters. It is hoped that saliency diagrams, pictures and movies will
be developed for many pieces of music in the very near future. Indeed, it is
only a slight exaggeration to fancy deaf people enabled at last to appreciate
music, simply by looking at ‘Fourier clocks’ ticking as the Fourier coefficients
vary throughout a piece!29 It is an urgent task to develop some appropriate
software for this kind of streaming analysis, picturing the Fourier flow of music
on the fly.

28 His chords systematically include all twelve pcs.
29 Technically this is true since the music can be retrieved from the data of all Fourier

coefficients.
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