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Strategies in Spinocerebellar Ataxia Type 7
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Abstract Spinocerebellar Ataxia type 7 (SCA7, OMIM # 164500) is an autosomal
dominant neurodegenerative disorder characterized by adult onset of progressive
cerebellar ataxia and blindness. SCA7 is part of the large family of autosomal
dominant cerebellar ataxias (ADCAs), and was estimated to account for 1–11.7% of
ADCAs in diverse populations. The frequency of SCA7 is higher where local
founder effects were observed as in Scandinavia, Korea, South Africa and Mexico.
SCA7 is pathomechanistically related to the group of CAG/polyglutamine (polyQ)
expansion disorders, which includes other SCAs (1–3, 6 and 17), Huntington’s
disease, spinal bulbar muscular atrophy and dentatorubro pallidoluysian atrophy.
Two distinctive characteristics of SCA7 are the strong anticipation by which earlier
onset and more severe symptoms are observed in successive generations of affected
families, and the loss of visual acuity due to cone-rod dystrophy of the retina. The
pathology is caused by an unstable CAG repeat expansion coding for a polyQ
stretch in Ataxin-7 (ATXN7). PolyQ expansion in ATXN7 confers toxic properties
and leads to selective neuronal degeneration in the cerebellum, the brain stem and
the retina. Herein, we summarize the genetic, clinical and pathological features of
SCA7 and review our current knowledge of pathomechanisms and preclinical
studies.
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9.1 Genetic, Clinical and Pathological Description

The causative mutation of SCA7 was identified in 1995 [1] and the ATXN7 gene was
isolated in 1998 [2] and was shown to contain a polymorphic CAG repeat. The
wild-type alleles of ATXN7 have between 4 and 36 CAG repeats, while SCA7 alleles
have typically beyond 36 CAGs and can even reach >460 repeats [3]. Among CAG/
polyQ disorders, SCA7 CAG repeats show the highest tendency to expand upon
transmission, explaining the strong anticipation observed in families (mean
19 ± 13 years) [2, 4, 5]. The length of mutant CAG repeats is inversely correlated
with the age of onset and the disease duration. The majority of SCA7 alleles ranges
between 36 and 55 CAG repeats and are responsible for the classical adult-onset
form, which progresses over several decades until death [4]. Repeats >70 CAG
typically result in juvenile-onset forms with accelerated disease course. The repeat
length also influences the symptoms at onset: large repeat expansions are typically
associated with early onset and cause visual loss before cerebellar ataxia, while
shorter expansions with later onset cause ataxia symptoms before visual loss [2, 6, 7].
Intriguingly, extremely large CAG expansions (>100 CAG) cause infantile forms
with multisystem disorders such as failure to thrive, hypotonia, myoclonic seizures
and noncentral nervous systems dysfunctions like congestive heart failure, patent
ductus arteriosus, renal failure, and muscle atrophy, and lead to death within few
years or months [3, 6, 8–12].

SCA7 progressive cerebellar ataxia is manifested by the inability to coordinate
balance, gait, and speech. Additional neurological deficits include slow eye
movement, opthalmoplegia, dysphagia, as well as pyramidal signs [2, 6]. Variable
levels of cerebellar and pontine atrophy are observed by magnetic resonance
imaging [2, 4, 13–16]. Neuropathologically, the neuronal loss is substantial in the
Purkinje cell layer, in the dentate nuclei, in the inferior olivary nuclei and in basis
pontis, which is associated with the atrophy of spinocerebellar and pyramidal tracts
[4, 15, 17, 18]. Atrophy or loss of myelin is observed in the cerebellar white matter
and extra cerebellar associated structures [16, 18]. Visual impairment in SCA7 first
affects cone photoreceptors and then progresses toward a cone-rod dystrophy and
complete blindness [10, 19–21]. Fundoscopy examination shows atrophic macula
with granular pigmentation, pale areas with pigmentary atrophy and poor vascu-
lature [4, 20]. Post-mortem retinal sections reveal almost complete loss of pho-
toreceptors and substantial loss of the bipolar and ganglion neurons, associated with
a severe thinning of the nuclear and plexiform layers especially in the foveal and
parafoveal regions [4, 17, 22]. In addition, damages in the Bruch’s membrane,
retinal pigmentary epithelium and hypomyelinisation of the optic nerve were also
reported [10, 15, 17, 20].
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9.2 ATXN7 Protein

The ATXN7 gene encodes two protein isoforms, ATXN7a and ATXN7b, that
harbor a polymorphic polyQ stretch in the amino-terminus, three nuclear local-
ization signals (NLS) and one nuclear export signal (NES) (Fig. 9.1a). Besides
the NLS and NES, the different C-termini of ATXN7a and ATXN7b are likely to
control their subcellular localization, as ATXN7a appears predominantly in the
nucleus and ATXN7b in the cytoplasm [23]. However, the extent to which the
two isoforms contribute to SCA7 pathogenesis remains unclear, as most studies
have been done so far with ATXN7a, which was identified first. ATXN7a and
ATXN7b have three conserved domains that are shared with three paralogs,
ATXN7L1, L2 and L3: a typical C2H2 zinc-finger (ZnF) motif, an atypical
Cys-X9–10–Cys-X5–Cys-X2-His motif, now known as SCA7 domain, and a
third domain absent in ATXN7L3 (Fig. 9.1a) [24]. ATXN7 is also regulated by

(a)

(b)

Fig. 9.1 Structural composition of ATXN7 and functional interactions with SAGA compo-
nents. a Are depicted the sequences of ATXN7a and ATXN7b isoforms with 892 and 945 amino
acids, respectively, corresponding to a wild-type allele with 10 CAG-encoding glutamine units.
Wild-type alleles contain from 4 to 36 glutamine repeats, whereas mutant pathogenic alleles have
beyond 36 glutamines and can even reach >460 residues. The conserved domains are indicated as
yellow boxes: a typical C2H2 zinc-finger (ZnF) motif, an atypical Cys-X9–10–Cys-X5–Cys-X2-His
motif known as ATXN7 domain and a third conserved domain. ATXN7 isoforms have three
nuclear localization signals (NLS), one nuclear export signal (NES) and one site (lysine 257) for
post-translational modifications including acetylation and SUMOylation, but differ at their
carboxy-terminal end. b ATXN7 appears to be a molecular scaffold of SAGA. ATXN7 belongs to
the deubiquitination module (DUBm), together with the ubiquitin protease USP22, ATXN7L3, and
ENY2, and mediates the interaction with GCN5 and the SAGA core complex (SPT-ADA; other
subuits are not indicated). ATXN7 can also interact with transcriptional factors such as CRX.
SAGA complex harbors both histone acetylation (dependent of GCN5) and deubiquitination
(dependent of USP22) activities on histones H3 and H2B, respectively
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SUMOylation and acetylation [25, 26]. ATXN7 mRNA and protein are widely
expressed in neural and non-neural tissues [27–33]. There is no apparent corre-
lation between cellular or subcellular localization and the vulnerability of neurons
to degeneration in SCA7.

ATXN7 and its yeast ortholog sgf73 are core components of SAGA com-
plexes (Spt-Ada-Gcn5 Acetyltransferase) involved in chromatin remodeling (also
known in human as the TBP-free TAF-containing complex (TFTC) and the
SPT3-TAF9–GCN5 complex (STAGA) [24, 34–36]. SAGA complexes harbor
both histone acetylation (dependent of GCN5) and deubiquitination (dependent of
USP22) activities, located in distinct functional modules (Fig. 9.1b). ATXN7
belongs to the deubiquitination module (DUBm) together with the human
ubiquitin protease USP22, ATXN7L3, and ENY2. Histone acetylation is known
to increase decompaction of chromatin and the accessibility of gene promoters to
transcription factors, while deubiquitination of monoubiquitinated H2B (H2Bub)
is required for optimal transcriptional initiation/elongation [37]. Bonnet et al. [38]
recently unveiled a role of SAGA in general RNA polymerase II recruitment and
transcription. SAGA is recruited to all active genes to acetylate H3K9 on pro-
moters and to deubiquitinate H2Bub on gene bodies in yeast and human cells.
On the contrary to the ATXN7 nuclear function, the role of ATXN7 in the
cytoplasm is yet unclear. When overexpressed, ATXN7 associates with and
stabilizes microtubules [39]. Yeast two-hybrid screen showed that ATXN7
interacts with several cytoplasmic proteins associated with the vesicular system
and centrosomes [40]. In fly and zebrafish, inactivation of ATXN7 causes defect
in retina and brain development [41, 42]. In zebrafish, ATXN7 seems to be
required for full differentiation of photoreceptors and Purkinje neurons, sug-
gesting that partial loss of function of wild type ATXN7 may account for the
selective degeneration in SCA7. The physiological role of ATXN7 in tissue
development and homeostasis thus deserves further investigation.

9.3 Pathomechanisms Underlying SCA7
Neurodegeneration

9.3.1 Commonalities and Differences Between PolyQ
Disorders

SCA7 and other polyQ disorders share a number of common features. They are
adult-onset and progressive neurodegenerative diseases. The dominant inheritance
and genetic experimentations indicate that polyQ expansion confers toxic properties
to mutant proteins. The toxicity increases with the expanded polyQ length and the
age of disease onset and the severity of symptoms are function of the polyQ length.
There is an apparent polyQ length threshold above which the disease becomes fully
penetrant. Finally, a hallmark of polyQ diseases is the intracellular accumulation of
amyloid-like aggregates containing protein fragments bearing the polyQ expansion
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[43]. However, polyQ disorders differ on many aspects. While the mutant proteins
bear a similar polyQ tract, they do not share any other domain and have different
cellular functions. The polyQ proteins are ubiquitously expressed, however, neu-
ronal degeneration affects specific and different brain regions, leading to disease
specific symptoms. Therefore, particularities of each disease must come from the
protein context into which the polyQ expansion is embedded.

Our current understanding of SCA7 pathogenesis relies on biochemical,
molecular and cellular studies and on the characterization of model systems
developed in yeast, fly and mouse. Hereafter, we discuss the major characteristics of
mutant ATXN7 (mATXN7) toxicity, which might underlie the unique features of
SCA7 pathogenesis.

9.3.2 mATXN7 Misfolding, Accumulation and Toxicity

One major consequence of the polyQ expansion mutation is the intensive intra-
cellular accumulation of mATXN7 in disease tissues. Studies in SCA7 mouse
models showed the time-dependent accumulation of mutant, but not wild type
ATXN7 in neuronal nuclei [44, 45]. mATXN7 accumulation is faster in neurons
targeted by the disease than in spared neurons. Ultimately, protein accumulation
leads to the formation of mATXN7 aggregates, observed as nuclear inclusions
(NIs) by immunohistochemistry. In post-mortem brains, NIs are widely distributed
in degenerated and non-degenerated tissues [18]. However, in SCA7 mice, NIs
form faster in vulnerable tissues such as retina and cerebellum, although their
detection occurs after the onset of functional defects [44]. The role of NIs in the
pathogenesis of polyQ disorders is actively debated. It is now thought that small
oligomeric or multimeric forms of the misfolded mutant protein, not visible by
immunohistochemistry, are the most toxic species. These species are indeed readily
detected at very early stages in SCA7 mice using biochemical approach [44]. PolyQ
expansion appears to stabilize mATXN7, which could happen because of a slower
turnover, by a propensity to stably oligomerise or both (Fig. 9.2).

One important step in mATXN7 accumulation and toxicity is the proteolysis.
Indeed, an amino-terminal fragment of about 55 kDa containing the polyQ
expansion is detected in protein samples from SCA7 mice and from SCA7 patients
[46], and appears to be the major component of NIs in SCA7 mouse [47]. A similar
fragment can be released by caspase-7 cleavage in vitro and in vivo and was shown
to be more cytotoxic than the full-length mATXN7 [48]. Interestingly, transgenic
mice expressing a mATXN7 form that contain a mutation at the caspase-7 cleavage
site show reduced neurodegeneration, improved visual and motor performance and
prolonged lifespan [49]. These results suggest that the caspase-7 cleavage is a major
step in the pathogenesis. The presumed size of the mATXN7 fragment is short
enough for passive diffusion through nuclear pore complexes, but is retained in the
nucleus [48]. It harbors the polyQ expansion and the ZnF domain, but not the
ATXN7 domain. With this composition, the mATXN7 fragment may alter the
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function of SAGA complex, either by replacing the full-length protein in the
complex or by aggregation and sequestration of SAGA components.

Further analysis indicated that the accumulation of the mATXN7 fragment is
associated with an increased acetylation at lysine-257 (K257) located close to the
caspase-7 cleavage site [50]. In the absence of lysine acetylation, the fragment is

Fig. 9.2 Pathogenic events underlying SCA7 pathogenesis and potential therapeutic targets.
Mutant ATXN7 (mATXN7) accumulates and is cleaved by caspase-7 to release amino-terminal
fragments (Nter). Acetylation of Nter-mATXN7 at K257 prevents its degradation by autophagy in
the cytoplasm. In the nucleus, proteosomal activity of clastosomes, which normally degrades
mATXN7, is overwhelmed, leading to mATXN7 accumulation. Aggregation of SUMoylated
mATXN7 leads to the formation of «round» aggregates, while the non-SUMOylated mATXN7
forms «star-like» aggregate, which sequestered the activated caspase-3, 19 s proteasome subunit,
and HSP70. Components of SAGA (GCN5, ATXN7L3 and USP22) are also sequestered in
aggregates. Transcriptional alterations resulting from SAGA dysfunction and perturbation of
transcription regulators such as CBP, p53, RORalpha1, lead to down-regulation of cell
type-specific genes (such as photoreceptor- and oligodendrocyte-specific genes) and of
Pri-miR-124. The low level of miR-124 causes the accumulation of ATXN7 mRNA, which in
turn leads to increased level mATXN7. The involvement of non-coding RNA lnc-SCA7 in the
regulation of ATXN7 mRNA level is not depicted here. Therapeutic opportunities include:
(i) blocking proteolysis with caspase inhibitors; (ii) preventing acetylation by overexpressing
deacetylase; (iii) preventing nuclear accumulation by inducing clastosome formation with
interferon beta; (iv) inhibiting the formation of toxic aggregates; (v) upregulating transcription by
inhibiting histone deacetylation or ubiquitination or by treatment with neurotrophy factors such as
HGF and with the antibiotic Ceftriaxone; (vi) preventing ATXN7 mRNA accumulation or
translation using RNA inhibition; (vii) preventing mATXN7 binding to microtubules
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degraded by autophagy. These results suggest that aberrant K257 acetylation pre-
vents the clearance of the fragment by autophagy, and thereby slows down its
turnover. Interestingly, the same K257 residue was shown to be a specific site for
SUMOylation [26]. SUMO modification not only decreases the propensity of
mATXN7 to aggregate, but also influences the shape and the protein composition of
aggregates. With SUMO, aggregates are homogenous, round and strongly stained
with SUMO antibodies, while in the absence of SUMO, aggregates are heteroge-
neous, have a star-like shape and are immunostained for chaperones, proteasomes
and activated caspase-3, suggesting that this type of aggregates are associated with
cells that undergo cytotoxic. In conclusion, proteolysis and post-translational
modifications are involved in the accumulation of ATXN7. Whether acetylation and
SUMOylation are in competition to modify K257 in order to trigger specific
mATXN7 fate or whether they act successively on K257 through rounds of
deacetylation/deSUMOylation remain to be determined.

In the brain of SCA7 patients, mATXN7 aggregates often colocalize with nuclear
bodies formed by the promyelocytic leukemia (PML) protein [51, 52]. A subset of
PML bodies formed by PML IV isoform and known as clastosomes, contain com-
ponents of ubiquitin-proteasome system and chaperones and were suggested to be a
site for protein degradation in the nucleus. Interestingly, PML IV-positive clasto-
somes actively recruit soluble mATXN7, but not the wild type form, for degradation
through the proteasome [53]. Moreover, interferon beta, which induces PML IV
expression and clastosome formation, enhances the clearance of the mATXN7 and
increases the survival of rat primary Purkinje neurons [53, 54]. In patients,
endogenous clastosomes might prevent the accumulation of mATXN7 for several
decades before onset of aggregation. Over time, the degradative activity of clasto-
somes might be overwhelmed by the aggregation process.

9.3.3 Transcriptional Alterations

Studies performed on cellular and mouse models of SCA7 have identified tran-
scriptional alterations as an early pathogenic event associated with neuronal dys-
function [44, 55–58]. Transcriptome analysis of SCA7 mouse retina revealed an
early and progressive down-regulation of most photoreceptor-specific genes [55],
while expression profile of SCA7 mouse cerebellum showed down-regulation of
genes involved in the maintenance and function of neuronal dendrites and CNS
myelin sheath [56].

The possibility that transcriptional alterations in SCA7 could result from dys-
function of SAGA acetylation and deubiquitination has been explored in several
studies, specially because mATXN7 had been shown to properly incorporate in
SAGA [24, 34, 59]. The outcome of these studies differs given the model system
investigated. In yeast and HEK2937 kidney cells, mATXN7-containing SAGA
lacks critical subunits and leads to the reduction of GCN5 acetylation activity and
gene transcription [34, 59]. In agreement with GCN5 dysfunction, promoters of

9 Molecular Mechanisms and Therapeutic Strategies … 203



photoreceptor-specific genes were shown to have histone H3 hypoacetylation,
which would explain their decreased expression in SCA7 mouse retina [34].
However, at variance with the above studies, mATXN7-containing SAGA purified
from SCA7 mouse retina was correctly assembled and had normal acetylation
activities [57]. In this study, promoters of photoreceptor-specific genes were found
hyperacetylated, but the presence of RNA Pol II on promoters was strongly
reduced, which would explain the low level of photoreceptor-specific mRNA
transcripts [57]. The discrepancy between these studies is yet unclear and might
dependent on the use of two different SCA7 mouse models [Prp SCA7-c92Q and
R7E (see Table 9.1)] or on the analysis of different stages of retinal degeneration.

Table 9.1 Mouse models of SCA7 retinal degeneration

Models Designa Retina pathologyb References

R7E
(R7N)

Human
rhodopsin
(rods)
ATXN7a
cDNA
90Q
(10Q)

(i) Reduction of rod then cone ERG activity
(ii) Thinning of retina layer, loss of photoreceptor

OS and polarity, enlargement of nucleus, dark
degeneretion, apoptosis, proliferation, gliosis

(iii) Expression profiles showed repression of
photoreceptor-specific genes and re-activation
of developmental gene; chromatin
decondensation and H3 hyperacetylation;
activation of cellular stress response signaling

(iv) Onset at 3–5 weeks

[24, 47, 55,
57, 68, 72,
73]

Prp
SCA7-c92Q
(Prp
SCA7-c24Q)

Murine
prion
(brain
except for
PC)
ATXN7a
cDNA
92Q
(24Q)

(i) Reduction of cone then rod ERG activity
(ii) Thinning of retina layer, apoptosis, gliosis
(iii) Repression of photoreceptor-specific genes;

H3 hypocetylation
(iv) Onset at 11 weeks

[34, 58]

SCA7266Q/5Q

(WT mice)
Mouse
ATXN7
mouse
ATXN7
266Q(5Q)

(i) Reduction of cone then rod ERG activity
(ii) Thinning of retina layer, loss of photoreceptor

OS, enlargement of nucleus, apoptosis, gliosis
(iii) Repression of photoreceptor-specific genes;

chromatin decondensation
(iv) Onset at 5 weeks

[44, 57]

SCA7100Q/
100Q

(WT mice)

Mouse
ATXN7
mouse
ATXN7
100Q(5Q)

(i) Reduction of rod ERG activity
(ii) Thinning of retina layer, loss of photoreceptor

OS, dark degeneration
(iii) Reduced expression of photoreceptor-specific

genes
(iv) Onset at 6 weeks(transcription anomalies)

[61]c

BAC bacterial artificial chromosome; PC Purkinje cells; OS outer segments
apromoter/targeted cells/cDNA or gene/repeat length
b(i) dysfunction; (ii) neuropathology; (iii) molecular altertions; (iv) onset
cYT personal observations
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Interestingly, histone hyperacetylation in R7E mouse retina correlates massive
chromatin decondensation of photoreceptor nuclei, which are enlarged compared to
wild type [57]. It is thus possible that the overall perturbation of chromatin orga-
nization accounts for major changes in the expression of photoreceptor-specific
genes. Besides hyperacetylation, chromatin decondensation in R7E retina might
also result from an abnormal low expression of histone H1, which is involved in
chromatin compaction [60]. The importance of GCN5 in SCA7 pathogenesis was
recently addressed using a mouse genetic approach [61]. One allele inactivation of
GCN5 accelerates retina degeneration in SCA7 mice, but does not worsen the
transcriptional repression of photoreceptor-specific genes, suggesting that GCN5
might have non-transcriptional function in the retina. Furthermore, total loss of
GCN5 in Purkinje cells leads to milder ataxia than SCA7 mouse ataxia. This
suggests that GCN5 could participate to some degree to SCA7 cerebellar ataxia.
Potential dysfunction of DUBm activity of SAGA has also been investigated in
SCA7 cellular and mouse models. Monoubiquitination of H2B is globally increased
in cultured cells expressing mATXN7 and in the cerebellum of SCA7 mice, but in
the latter correlation with transcriptional alterations has not been established [62–
64]. Two components of DUBm, ATXN7L3 and USP22, are sequestered in
mATXN7 aggregates, which might lead to DUBm dysfunction and hence an
increased H2Bub [63, 64]. Although the current data would support that SAGA
dysfunction accounts for SCA7 transcriptional dysregulations, it remains to deter-
mine how the dysfunction of a general co-activator complex like SAGA, which is
involved in the expression of all RNA Pol II-regulated genes, would only affect
specific subsets of genes in SCA7 affected tissues.

Interestingly, a recent study suggests that the increased expression of mATXN7
would be an indirect consequence of mATXN7-containing SAGA dysfunction [65].
In fact, SAGA regulates the microRNA miR-124, which in turn controls the
abundance of ATXN7 transcripts and of a non-coding RNA lnc-SCA7. The level of
lnc-SCA7 also seems to control the level of ATXN7 transcripts by a mechanism yet
unclear. Dysfunction of SAGA in SCA7 leads to post-transcriptional derepression
of ATXN7 transcripts, due to the reduced level of miR-124 and the increased level
of lnc-SCA7. Given that miR-124 is highly expressed in the cerebellum and retina
and that the levels of lnc-SCA7 and ATXN7 are tightly correlated, the cross-talk
between these two noncoding RNAs in the post-transcriptional regulation of
ATXN7 transcripts is thought to account for the tissue specificity of SCA7.

Besides SAGA dysfunction, other mechanisms are proposed to contribute to
chromatin modifications and transcriptional alterations in SCA7. mATXN7 ag-
gregates sequester CBP [45], a histone acetyltransferase, and impair CBP-mediated
and RORalpha1-mediated transcription in cultured neurons [66]. Most interesting, a
study in PC12 cells made a link between metabolic defect in SCA7 and tran-
scriptional alterations [67]. Abnormal mitochondria were observed in SCA7 mouse
retina, [68] and reduced electron transport chain activity and metabolic acidosis
were reported in muscle biopsy of patients [69]. In PC12 cells expressing
mATXN7, p53 is sequestered in aggregates and its transcriptional activity is
reduced, leading to dysregulation of metabolic proteins, such as TIGAR, AIF and
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NOX1 [67]. These alterations result in a reduced respiratory capacity, associated
with an increased reliance on glycolysis for energy production and a subsequent
reduction of ATP in SCA7 cells. Investigation of these transcriptional and meta-
bolic pathways in SCA7 mice is thus warranted, in particular because loss of AIF in
mice results in primarily neurodegeneration of cerebellar and retinal neurons.

9.4 Insights from Pathophysiological Studies of SCA7
Mouse Models

Different transgenic and knock-in mouse models have been generated during the
past years and have provided important insights into the nature of SCA7 neu-
rodegeneration (Tables 9.1 and 9.2).

9.4.1 Retinopathy

In SCA7 models, the retina develops normally before showing a progressive
reduction of electroretinograph activity, thinning of the retina and repression of
photoreceptor-specific genes [44, 47, 58]. Early on, these transcriptional alterations
were attributed to the dysfunction of CRX (cone-rod homeobox protein), a key
transcription factor of photoreceptor genes. This is because CRX was previously
shown to require interaction with ATXN7 and SAGA for its transactivation activity
on photoreceptor gene promoters, and because mATXN7 was shown to suppress the
transactivation activity in SCA7 retina [58, 70]. Later on, analysis of SCA7266Q/5Q

KI and R7E mouse retina showed that transcriptional alterations were not restricted
to CRX target genes [44, 55]. In particular, the expression profile of R7E retina
unveiled the dysregulation of transcriptional programs controlling the maintenance
of mature photoreceptors, thus showing on the one hand the down-regulation of the
photoreceptors specific transcription factors CRX, NRL (neural retina leucine zipper
protein), and Nr2E3 (Nuclear Receptor Subfamily 2, Group E, Member 3) as well as
most of their target genes, and on the other hand the re-activation of OPTX2, STAT3
and HES5 that normally inhibit the differentiation of precursor neurons into mature
photoreceptors during development [55]. And indeed, SCA7 photoreceptors pro-
gressively lose their outer segments and cell polarity, and relapse to round cell shape
[68]. Thus, SCA7 retinopathy primarily results from the progressive regression of
mature photoreceptor to an ill-defined state, which occurs long before cell demise
(Fig. 9.3a). This atypical scheme of slow degeneration contrasts with most pho-
toreceptor degenerative processes reported in mice, where alterations of outer seg-
ment integrity rapidly leads to cell death [71]. Yet the initial trigger leading to SCA7
photoreceptor degeneration remains to be determined.
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Table 9.2 Mouse models of SCA7 cerebellar degeneration

Models Designa Cerebellar pathologyb References

P7E
(P7N)

Pcp-2
(Purkinje)
hATXN7a
cDNA
90Q (10Q)

(i) Reduction of rotarod function
(ii) Purkinje reduced dentritic
(iii) Sequestration of chaperones and
proteasome subunits in aggregates
(iv) Onset at 11 months

[45, 47]

B7E2
(B7N)

PDGF-ß
(ubiquitous)
ATXN7a
cDNA
128Q (10Q)

(i) Ataxic phenotypes
(ii) Purkinje reduced dentritic
arborization
(iii) Sequestration of transcription
factors and co-regulators in
aggregates
(iv) Onset at 3–5 months

[45]

Prp SCA7-c92Q
(Prp SCA7-c24Q)

Murine prion
(brain except
PC)
ATXN7a
cDNA
92Q (24Q)

(i) Reduction of rotarod function
(ii) Purkinje neuron shrinkage,
reduced dentritic arborization and
dark degeneration (no cell loss);
thickened Bergmann glia radial
processes, reduced glutamate uptake
(iii) Reduced GLAST expression and
-dependent glutamate uptake
(iv) Onset at 13–15 weeks

[46, 74]

Gfa2-SCA7-92Q
(Gfa2-SCA7-10Q)

Human Gfa2
(Bergmann
glia)
ATXN7a
cDNA
92Q (10Q)

(i) Reduction of rotarod function
(ii) Purkinje neuron shrinkage,
reduced dentritic arborization and
dark degeneration; thickened
Bergmann glia radial processes,
reduced glutamate uptake
(iii) Reduced GLAST expression and
GLAST-dependent glutamate uptake
(normal GLT1 expression)
(iv) Onset at 9–12 months

[74]

PrP-floxed-SCA7-92Q
BAC

BAC murin
prion
(whole brain)
floxed
ATXN7a
cDNA
92Q

(i) Reduction of rotarod function;
reduced stride length on footprint
(ii) Purkinje reduced dentritic
arborization; reduced molecular
layer thickness; late thickened
Bergmann glia radial processes
(iii) Reduced EAAT4 glutamate
transporter expression (normal
GLAST expression)
(iv) Onset at 21 weeks

[76, 84,
85]

Ataxin-7-Q52
(WT mice)

PDGF-ß
ATXN7 cDNA
52Q

(i) Reduction of rotarod function;
decreased locomoter activity; ataxic
wobbling gait
(ii) Purkinje neuron shrinkage and
reduced dentritic arborization (no
cell loss); loss of inferior olive
neurons

[56]

(continued)
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Degenerating photoreceptors in SCA7 retina ultimately die through a mechanism
reminiscent of dark neuronal cell death [68]. Dark degeneration also occurs in
SCA7 mouse cerebellum and was reported in several mouse models of polyQ
disorders. Interestingly, apoptosis was also observed in R7E mouse retina, but only
occurs for a short time window during early disease stages. Concomitant with the
apoptotic wave, stealthy cells expressing proliferation markers were observed,
which afterwards express photoreceptor specific genes, suggesting that new pho-
toreceptors might be produced to replace the dead ones at early disease stages. From
these observations, it appears that R7E photoreceptors go through different cell
fates as a response to mATXN7 toxicity (e.g. apoptosis, cell reshaping, dark
degeneration, proliferation, etc.) [68]. Different cellular responses may be triggered
by different mATXN7 toxic species, since the relative amount of full-length
mATXN7, proteolytic fragments, soluble and insoluble aggregates varies consid-
erably from early to late disease stages and might influence the way individual
photoreceptors respond to these different proteotoxic products [68]. The overall
proteotoxic stress in R7E retina induces a stress response involving the Jnk/c-Jun
signaling pathway, which in turn accounts for Nrl repression [72, 73]. It was shown
that inhibition of c-Jun activation delays retinal degeneration in R7E mice.

Table 9.2 (continued)

Models Designa Cerebellar pathologyb References

(iii) Expression profiles showed
reduced expression of
oligodendrocyte myelin specific
genes and deregulation of many
other pathways; p53 activation of
Bax and Puma
(iv) Onset at 9 months

SCA7266Q/5Q

(WT mice)
Mouse ATXN7
mouse ATXN7
266Q (5Q)

(i) Reduction of performance on
rotarod, beam walking test balance
and fine paw coordinatio)n and
locotronic test (motor coordination);
reduced survival
(ii) Purkinje neuron shrinkage (no
reduced dentritic arborization and no
cell loss); gliosis
(iii) Reduced GLAST and GLT1
expression; increased Interferon beta
(iv) Onset at 5 weeks

[44, 54,
75]

SCA7100Q/100Q

(WT mice)
Mouse ATXN7
mouse ATXN7
100Q (5Q)

(i) Reduction of performance on
rotarod, footprint anomalies, reduced
survival (11 months)
(ii) Purkinje neuron shrinkage (no
cell loss); gliosis

[61]

BAC bacterial artificial chromosome; PC Purkinje cells; OS outer segments
apromoter/targeted cells/cDNA or gene/repeat length
b(i) dysfunction; (ii) neuropathology; (iii) molecular alterations; (iv) onset
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(a) (b)

Fig. 9.3 Schematic of the major degenerative pathways of photoreceptors (a) and Purkinje
neurons (b) in SCA7 mice. ONL, outer nuclear layer; IS, inner segment; OS, outer segment; RPE,
retinal pigmented epithelium; PC, Purkinje cell; BG, Bergmann glia; IO, inferior olive; GC,
granular cell; DCN, deep cerebellar nuclei; CF, climbing fiber; PF, parallel fiber; GL, granular
layer; ML, molecular layer; PCL, Purkinje cell layer; WM, white matter. Other cerebellar cell
types are not depicted

9.4.2 Cerebellar Pathology

Analyses of the PrP-SCA7-c92Q mouse model have highlighted the importance of
cell–cell interactions in the cerebellar pathology [46]. These mice develop motor
defects and show dark degenerating Purkinje neurons. Interestingly, Purkinje cell
pathology occurs despite the fact the MoPrP promoter drives the expression of
mATXN7 in all cerebellar neurons, except for Purkinje cells, suggesting that they
are affected via a non cell-autonomous mechanism. In this model, Bergmann glia
cells, which also express mATXN7, display pathological signs as well [74]. Given
that Bergmann glia are regulators of glutamate levels in the surrounding environ-
ment of Purkinje cells and that dark degeneration often results from excitotoxicity,
new transgenic mice were generated to express mATXN7 only in Bergmann glia
cells to assess whether the pathology would affect Purkinje cells as well. Indeed,
Gfa2-SCA7-92Q mice also show Purkinje cell degeneration and motor dysfunc-
tions. Moreover, in this model, like in PrP-SCA7-c92Q mice, Bergmann glia cells
express low levels of the glia-specific glutamate transporter GLAST, and hence
have a decreased glutamate uptake function, supporting the hypothesis that gluta-
mate accumulation leads to excitotoxicity and Purkinje dark degeneration [74].
However, compared to PrP-SCA7-c92Q mice, Gfa2-SCA7-92Q mice develop a late
onset and milder ataxia, suggesting that other dysfunctional neurons may account
for PC degeneration in PrP-SCA7-c92Q mice. Several pathological features of
PrP-SCA7-c92Q were replicated in SCA7266Q/5Q KI mice, including decreased
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motor functions, shrunken Purkinje cells and reduced expression of GLAST as well
as GLT-1 (also named EAAT2 or SLC1A2), another glia-specific glutamate
transporter [75].

The contribution of different cell types and their interaction to the cerebellar
pathology was further addressed using a new set of engineered mice in which
mATXN7 cDNAwas flanked by loxP sites at the start site of translation in the murine
PrP gene in a bacterial artificial chromosome (PrP-floxed-SCA7-92Q BAC) [76].
When crossed with mice expressing Cre recombinase under Bergmann glia promoter
(Gfa2) or under promoter specific to Purkinje and inferior olive neurons (Pcp2),
mATXN7 was deleted specifically in these cell types. Deletion of mATXN7 from
Bergmann glia has mild beneficial effects and does not prevent Bergmann glia
pathology. In contrast, deletion of mATXN7 from Purkinje and inferior olive neurons
improves motor performance and histopathology as well as prevents Bergmann glia
pathology. Finally, deletion of mATXN7 in the three cell types is more effective to
prevent the pathology. These observations led to two conclusions. First, Bergmann
glia pathology is in large part non-cell autonomous in SCA7. Second, it is likely that
the dysfunction of inferior olive neurons accounts for the SCA7 motor dysfunction.
This is because it was observed that the cerebellar pathology in P7E mice, which
express mATXN7 only in Purkinje cells, is less severe than in PrP-SCA7-c92Qmice,
which express mATXN7 in all cerebellar neurons, except for Purkinje cells.
Together, these results further highlight a complex cell–cell interaction between
Bergmann glia, Purkinje and inferior olive neurons in the development of SCA7
cerebellar dysfunction (Fig. 9.3b).

The expression profile of the cerebellum of Ataxin-7-Q52 transgenic mice,
which also display motor dysfunction and Purkinje cell pathology, revealed gene
deregulations affecting different pathways including synaptic transmission, axonal
transport, glial functions and neuronal differentiation [56]. Perhaps the most
interesting finding is the down regulation of a set of myelin-associated proteins
(CNP, MAG, MBP, MOG, MOBP and PLP1) and of their regulators, the tran-
scription factor Olig1 and transferrin [56]. This is consistent with the loose and
poorly compacted myelin sheaths observed in the cerebellar white matter of these
mice, and with the myelin pallor and loss of myelinated fibers reported in the
cerebellar white matter of SCA7 patients [18]. Defect in white matter in SCA7
might also result from excitotoxic mechanisms, as relation between excitotoxicity
and structural and functional damage to the white matter was observed in injury
models [77]. Reminiscent to the loss of photoreceptor maturation in SCA7 mouse
retina, mATXN7 toxicity might compromise genetic programs controlling oligo-
dendrocyte maturation and myelin sheath integrity and function.

9.5 Opportunities for Therapeutic Development

Cellular and mouse models have provided several directions for therapeutical
strategies (Fig. 9.2). Given the vulnerability of Purkinje cells to excitotoxicity-
mediated dark degeneration and the reduced expression of GLAST and GLT-1, any
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strategy to diminish glutamate levels in the cerebellum deserves consideration for
preclinical assays with SCA7 mice. One of them is the b-lactamic antibiotic cef-
triaxone, which induces GLT-1 expression via NF-kappaB and hence promotes
glutamate clearance [78]. Interestingly, administration of ceftriaxone in the SCA28
murine model (Afg3l2+/−) protects Purkinje cells from excitotoxicity-mediated dark
degeneration [79]. The ceftriaxone-induced GLT-1 expression was long lasting and
effective enough to prevent the onset of ataxia in pre-symptomatic and to stop the
progression in post-symptomatic mice. In addition to its protective effect on
Purkinje cells, the reduction of glutamate levels in the cerebellum might as well be
beneficial for the function and maintenance of oligodendrocytes [77]. Ceftriaxone is
a promising compound for SCA7 as well as for other SCAs showing
excitotoxic-mediated Purkinje cell degeneration.

Another potential therapeutic strategy would be to provide factors with neu-
rotrophic effects in the cerebellum and retina. In particular, the genetic programs of
mature photoreceptors and oligodendrocytes are altered and represent specific tar-
gets for therapeutic intervention. Although a variety of strategies exist to enhance
the protection of these cells [80, 81], the identification of initial triggers that
compromise the genetic maturation programs deserves further attention to orientate
the therapeutic development. Interestingly, hepatocyte growth factor (HGF) plays a
neurotrophic role in the cerebellum during development and in adults [82].
Overexpression of HGF was shown to provide beneficial effect in ALS mice by
maintaining GLT-1 levels [83]. Overexpression of HGF in SCA7266Q/5Q KI mice
restores GLT-1 and GLAST levels, protects Purkinje cells from shrinkage and
reduces motor dysfunction [75]. HGF is currently under consideration for thera-
peutic development of a number of human pathologies including brain injury,
which will contribute to evaluate its efficacy and safety.

One of the most significant therapeutic target is the intracellular accumulation of
mATXN7, which strongly correlates with the initiation and progression of SCA7.
This has encouraged the implementation of several strategies to prevent mATXN7
accumulation and aggregation, to increase clearance or to interfere with protein
synthesis. For instance, the strategy consisting in caspase-7 cleavage inhibition
through pharmacological approach or genetic intervention is promising, as prote-
olysis is an early step in protein accumulation [49]. Interferon beta, which fosters
the clearance of mATXN7 over the wild type form through the induction of
PML-clastosomes, protects cultured rat primary Purkinje neurons [53, 54].
Interferon beta has been investigated in preclinical assay in SCA7266Q/5Q KI mice
and treatment of asymptomatic mice significantly decreases mATXN7 aggregation
and improves motor functions [54]. The treatment was not efficient enough to
protect against weight loss and premature death, likely because this mouse model
has a very severe disease course. Nevertheless, since interferon beta has been used
for many years in the treatment of multiple sclerosis, it may hold promise as a
potential treatment to delay motor symptoms in SCA7 patients.

One emerging strategy to prevent the expression of toxic polyQ proteins makes
use of RNA interference (RNAi), a natural process of gene silencing mediated by
small RNAs. RNAi is widely used for biological applications and is now being

9 Molecular Mechanisms and Therapeutic Strategies … 211



harnessed to silence mRNAs encoding pathogenic proteins for therapy. As with any
therapeutics, the clinical usefulness of RNAi will depend on its efficacy and safety.
To this end, several issues were addressed in preclinical assays using mouse
models. Furrer et al. [84] asked to which level mATXN7 must be suppressed in
PrP-floxed-SCA7-92Q BAC mice to rescue the phenotype. The results indicate that
a reduction of 50% even after the onset of motor phenotype, can prevent disease
progression and achieve important amelioration of motor function, cerebellar
neuropathology and mATXN7 aggregation. Another important issue concerns
potential deleterious effects that could result from concomitant wild-type mRNA
suppression. Lessons from zebrafish and fly indicated that partial inhibition of
wild-type ATXN7 could affect the differentiation of photoreceptor and Purkinje
neurons [41, 42]. Ramachandran et al. [85] utilized adeno-associated viral vectors
to introduce miRNA in the deep cerebellar nucleus of Prp SCA7-92Q BAC mice
and to test non allele specific silencing where both wild type mouse and mutated
human ATXN7 were reduced by about 35–50%. The authors found a significant
improvement of motor functions and cerebellar neuropathology, and reexpression
of genes abnormally reduced in untreated mice. The non allele specific silencing
appeared well tolerated and can be added to the list of similar strategies successfully
developed in other polyQ disease models. Nevertheless, selective inhibition of the
mutant transcript that would leave the wild-type one intact would be safer and is in
theory feasible by exploiting differences between transcripts down to a single base
pair; the RNAi sequence would have a complete homology to the mutant transcript
and a single nucleotide mismatch with the wild type. In populations with strong
founder effect such as South African, a common SNP linked to the SCA7 mutation
was identified in 50% of SCA7 patients [86]. Using short-hairpin RNA targeting
this polymorphism, allele-specific mATXN7 suppression was achieved in patients’
cells [87]. Together, these studies provide the first proofs of efficacy of RNAi
strategy to prevent mATXN7 expression. However, those are the initial stages of
development and other challenges such as the clinical relevance of off-targets and
inflammatory responses, the longevity of RNAi effect in the treatment of chronic
neurodegenerative pathology, the brain or retina delivery approach, etc., need to be
met. The substantial progress in using gene silencing for treating skin and retinal
diseases, for instance, holds promise to bring RNAi technologies in clinic for SCA7
and other polyQ disorders.

9.6 Final Remarks

While biochemical approaches and the characterization of cellular and animal
models of SCA7 have greatly advanced our understanding of disease pathogenesis
in SCA7, much more needs to be learned before we get a solid comprehension of
the pathogenic mechanisms underlying neuronal specific dysfunction and neuronal
cell loss. While some of the therapeutic strategies against SCA7 are promising, as
they can take first steps into clinical trials, further fundamental investigations are
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required to propose new molecular targets for SCA7. Since SCA7 shares many
common pathological features with other degenerative disorders affecting the
cerebellum and the retina, identification of therapeutics in SCA7 or in one of these
diseases is likely to be cross-beneficial.
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