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Abstract. Regression testing is a software verification activity carried out when
the software is modified during maintenance phase. To ensure the correctness of
the updated software it is suggested to execute the entire test suite again but this
would demand large amount of resources. Hence, there is a need to prioritize
and execute the test cases in such a way that changed software is tested with
maximum coverage of code in minimum time. In this work, Particle Swarm
Optimization (PSO) algorithm is used to prioritize test cases based on three
benchmark functions Sphere, Rastrigin and Griewank. The result suggests that
the test suites are prioritized in least time when Griewank is used as benchmark
function to calculate the fitness. This approach approximately saves 80% of the
testing efforts in terms of time and manpower since only 1/5 of the prioritized
test cases from the entire test suite need to be executed.
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1 Introduction

Software testing is the one of the most crucial phase in Software Development Life Cycle
(SDLC). For the success of any software it is very important that the software is tested
thoroughly with intent of finding maximum number of defects while testing. Software
testing consumes approximately 50% of the software development efforts [1]. Changing
business requirements and market trends urge the need for the software to undergo changes
even after the software is delivered and becomes operational. Regression testing ensures to
verify the correctness of the changed software and its corresponding affected parts after it
becomes operational. Testing the whole software again demands a huge set of resources
which is a big constraint in terms of time and money.

Test case prioritization (TCP) ensures that the test cases are arranged using priority
value so that the test cases with highest priority are executed first. The test cases can be
prioritized either randomly or based on the branch or statement coverage [2] of the
software. Prioritizing test cases ensures that the time required to reach a performance
goal is optimized [3]. The potential benefit of prioritizing test cases is that it ensures to
rank the test cases rather than reducing or discarding the test cases from the test suite [4].
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Particle Swarm Optimization (PSO) is a stochastic population based optimization
technique given by Kennedy and Eberhart in 1995 [5] that is motivated by social
behavior of fish schooling and bird flocking. The population in PSO called as particles
that fly through the problem domain or the search space to reach an optimum solution.
PSO is widely used because of its implementation simplicity, dimensions scalability
and performance in terms of empirical solutions for global search problems [6]. It is
used to solve a number of complex problems like permutation-flop shop sequencing
problem [5], real-time embedded systems [7], capacitor-problem [8], soft-sensor [9]
and generating test data in the basis of data flow coverage [10].

In this paper, we have implemented PSO with three different Benchmark Functions
(BFs) for calculating the fitness value of the test cases. BFs are used to find optimal
solutions for optimization problems and to compare and analyze the effectiveness of
different optimization algorithms. In this work, we have used three single-objective BFs
that are Sphere [5, 11], Rastrigin [5] and Griewank [5, 11, 12]. In current work, for a set
of fifteen JAVA programs we first calculate the number of independent paths by
drawing control-flow graph (CFG) and decision to decision (DD) graph. For every
independent path a set of fifty test cases are generated that are further prioritized using
PSO. The test results are driven based on the time taken and the global best value
obtained while prioritizing test cases with each BF. The results proof Griewank works
best with PSO as it takes approximately 8.90% of the average time taken by Sphere
function to prioritize the test cases. It is also proved that Griewank takes approximately
64.17% of the average time taken by Rastrigin function for prioritization.

The paper proposes a way to minimize the testing efforts invariably by substituting
different fitness function for calculating fitness of the test cases based on their position.
This work suggests of using Griewank as BF with PSO to prioritize test cases as it
would help in saving a lot of time, effort and cost during critical project deliveries when
resources availability is a crunch. In this work, the test cases are prioritized and not
reduced or removed from the test suite.

The rest of the paper is organized as follow: in Sect. 2 literature reviews is dis-
cussed. Section 3 covers the concept of test suite prioritization using branch and
statement coverage. Section 4 explains PSO algorithm and BFs in detail. Section 5
covers a case study on TCP. In Sect. 6 results are derived based on the case study. In
Sect. 7 different threats to validity are discussed. In the last section paper concludes and
suggests future work.

2 Related Work

An extensive research work is carried out on test suite prioritization, selection and
minimization using different nature inspired meta-heuristic algorithms [13]. An
extensive work has been done in the field of test case prioritization, selection and test
data generation using PSO. In 2014, Mor [4] has evaluated the effectiveness of different
test suite prioritization techniques using Average Percentage of Fault Detected (APFD)
metrics. Walcott in year 2006 [14], has given an algorithm for time constraint aware
prioritization. Sharma [15] has modified the algorithm for prioritizing the test cases
based on timing and APFD metrics in 2014. Hassan et al. worked on Genetic
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Algorithm (GA) and PSO and proved that PSO works best amongst the two in year
2006 [12]. Elbeltagia et al. [6] worked on GA, Memetic Algorithm (MA), Ant Colony
Optimization (ACO) and PSO and proved that PSO works the best amongst the four
algorithms. Nayak [16] has used PSO for automatic test data generation for data flow
testing in year 2010. In 2014; Chawla [17] has given a hybrid algorithm for test data
using soft-computing technique with PSO and GA.

Harman [18] has done a survey work in his paper in the area of regression testing
minimization, prioritization and selection and suggested potential areas and scope for
future work in them. In 2011, Kaur [19] has blended PSO with cross-over operator to
avoid convergence of population to local best. In May, 2011 Arora [20] has given
Hybrid Particle Swarm Optimization (HPSO) that is based on combination of PSO and
GA to increase the search space. Routing problems, job-scheduling, task-scheduling
problem [21] have been solved using PSO by many researchers in a distributed
environment to solve tasks in efficient and cost-effective manner. El-Sherbiny [5] has
given an algorithm for particle swarm optimization without using velocity for calcu-
lating position of particle. In 2004, Yang [22] has been used PSO to solve NP-hard
problems like knapsack. In 2017, Kumar [23] has used PSO to solve NP-complete
problem like test suite generation. In year 2007, Hendtlass [24] has worked on PSO
algorithm with focus on counting total number of evaluations for calculating fitness.

As far as the literature survey is concerned El-Sherbiny [5] in his work has given an
algorithm inspired by PSO for optimization problems that work without calculating
velocity at which particle moves in the search space. He has efficiently reduced the
number of iterations for calculating the best solutions for an optimization problem. In
2014, Mor [4] has used APFD metrics for measuring the rate of fault detection while
prioritizing the test cases based on the coverage criteria provided by different priori-
tization techniques. He has concluded that higher values of APFD metric provide a
better rate of fault detection. In 2006, Walcott [14] has given an algorithm for priori-
tizing test cases using GA in a time constraint environment for systems like PlanetLab
and MonetDB that uses the concept of nightly builds and unit testing of the software. In
2010, Nayak [16] has simulated GA and PSO to generate automatic test data for data
flow testing. His work proofs that PSO outperforms GA by 100% in def-use coverage.
In 2014, Chawla [17] has proposed a hybrid algorithm based on PSO and GA to
automate test data generation and the effectiveness of the algorithm is confirmed using
percentage of fault coverage against unit of time and percentage of fault detected by
generated test cases.

In 2011, Kaur [19] has given a Hybrid Particle Swarm Optimization Algorithm
(HPSO) that combines the techniques for PSO and GA for widening the search space.
In HPSO the initial population of PSO is mutated before performing rest of the steps of
PSO algorithm to improve average percentage of fault detected. In 2010, Harman has
performed both detailed analysis and survey in the field of regression test prioritization,
selection and minimization. And his work suggested how the three terms are related to
each other in terms of implementation. In 2012, Ming [25] et al. has combined mutative
scale chaos and PSO to mitigate the problem of slow convergence and local optimum
points of PSO algorithm. In 2007, Hendtlass [24] has used three fitness functions
Sphere, Rastrigin and Schwefel’s function in different number of dimensions. He has
proved that best fitness evaluation is found using Schwefel’s function. In the paper, we
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have referred the research work done after the year 2000 on test data generation,
prioritization and optimization during software testing.

3 Test Case Prioritization

To make regression testing cost-effective we need to prioritize the test cases in such a
manner that after executing the prioritized test cases it’s ensured that the changed part
of the software is tested effectively. Test case coverage is a way to describe how well
the code is covered by a given test suite. Therefore, while testing the software it
becomes very essential to design an effective test suite that uncovers maximum number
of defects in the software. To save the testing effort there is a need of ranking the test
cases based on criteria that fulfills the prerequisite of uncovering maximum defects in
the updated software. Different prioritization techniques are used for prioritizing test
suite but in this work we focus on two aspects of test case coverage [7] as described
below.

3.1 Prioritizing Based on Statement Coverage

Software coverage (SC) is based on the concept of executing all the statements in the
code at least once for a given set of requirement. SC can be achieved with a basic
knowledge of code structure and by using flowchart for the software workflow. SC is
represented by a metrics that defines the number of statements covered by the test case
in a code block. In any program SC is calculated using the formula specified in Eq. (1).
For a given procedure P as shown in Fig. 1a the number of statements covered by a set
of three test cases is represented using statement coverage metrics in Fig. 1b.

Statement Coverage =
Number of executed statement
Total number of statements

� 100 ð1Þ

Fig. 1 For a program P shown in a that consists of two branch nodes the corresponding matrix
for calculating the statement and branch coverage of the program is depicted in b and
c respectively
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3.2 Prioritizing Based on Branch Coverage

Branch coverage (BC) is also known as all-edges coverage or decision coverage. BC
focuses on the aspect of covering all the branches or simply all the true and false
conditions in the code. Prioritizing test cases on the basis of BC focuses on ranking the
test cases on the basis of total number of decision or branch nodes covered by the test
case. In this study we have designed the test cases in such a manner that all the branch
conditions in a program are covered by the test cases. A test suite that covers all the
decision nodes in the software would automatically give 100% of SC. The BC for any
given software can be calculated using the formula specified in Eq. (2). For the pro-
cedure P in Fig. 1a the BC is represented by listing all the branches and the corre-
sponding test cases that cover these branched is shown in Fig. 1c.

BranchCoverage =
Number of decisions outcome exercised
Total number of decision outcomes

� 100 ð2Þ

4 Particle Swarm Optimization

PSO is an evolutionary process derived on the basis of social behavior of birds
migrating to a destination that is currently unknown [1]. Each bird in the swarm is
called a particle and for each particle we need to optimize its position in the swarm.
In PSO every particle in the swarm has a position and velocity associated with it in an
n-dimensional space. Every particle in the swarm strives for two best values, the first
one called as pBest that is the best fitness value retrieved by particle so far and another
is called gBest that is the best fitness value achieved so far amongst all the particles.

In PSO the size of the swarm population is denoted as S, S 2 R (S belongs to set of
real number) and the position and velocity vectors are defined as follow: Xi = (xi1, xi2,
xi3 … xik) and Vi = (vi1, vi2, vi3 … vik). On the basis of position of the particle in the
swarm the fitness is calculated using fitness function and is denoted as Fi = (fi1, fi2, fi3
…. fik). The fittest particle found at a given point of time is denoted as Fg = (fg1, fg2, fg3
…. fgk).
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The typical scenario in PSO is represented in Fig. 2 for two particles i and j that fly
in the search space to reach a gBest. To understand the movement of a particle in
swarm towards gBest lets understand how particle i move in search space. The particle
i have an initial position and velocity denoted by Xn and Vn. It is moving towards the
gBest by updating its position to Xn+1 and the resultant velocity to Vn+1. The best
position of the particle i attained so far is maintained in variable pBest.

A pseudo code for a generic PSO algorithm is depicted as follow. The algorithm
begins by initializing the swarm population with velocity, position and fitness value.
After the population is initialized the particle’s velocity and position is updated for a
number of iterations. The algorithm checks and updates the pBest of particle if it is
greater than its current fitness value. Similarly if pBest is less than gBest the algorithm
updates gBest value with pBest value of current particle.

Fig. 2 The typical movement of two particles Xn
(i) and Xn

(j) particles in a swarm is depicted that
changes its position and velocity to reach the global best value
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4.1 Mapping PSO to Test Suite Prioritization

In this work, we have used PSO for prioritizing the test cases to save testing efforts
during regression testing. To understand how PSO fits in Test Suite Prioritization
(TSP) problem; in this section mapping of PSO to TSP is explained. In the test suite the
test cases are equivalent to particles in the swarm. For every test case we calculate
initial velocity and position using formula’s defined in Eqs. (3) and (4) respectively and
the initial velocity of the test case also incorporates the average value of the test data.
The aim is to reduce the cost associated with the test case that is equivalent to the
fitness value in generic PSO algorithm specified in pseudo code Generic PSO Algo-
rithm. The initial fitness value for the test case is calculated using formula specified in
Eq. (5) that takes position of the test case and dimension as an input.

vik ¼ maxX�minXð Þ � randþminXþ meanð Þ ð3Þ

xik ¼ maxX�minXð Þ � randþminXþ meanð Þþ vik ð4Þ

fik ¼ CostFunction xik; dimensionð Þ ð5Þ

Generic PSO Algorithm:
Input : A swarm of particles that fly in search space to reach a position that is 
currently unknown.
Output : The global best position in the swarm is found.
Begin
1. For i = Total number of particles
2. For j=1 to Total dimensions
3. Initialize the velocity, position and fitness of the particle.
4. Initialize the particles personal best cost and personal best position 

same as initial position and velocity.
5. End, End
6. Iteration = 0
7.  While (iteration < Maximum Number of Iterations)
8.   For i = 1 to Total number of particles
9. For j=1 to total dimensions
10. Update particle’s position and velocity.
11. Calculate particle’s fitness value
12. If (Fitness (particle ) < Fitness (pBest))
13. Update pBest wit h current position of particle.
14. If (Fitness (pBest) < Fitness (gBest))
15.                        Update global best position i.e., gBest with pBest value.
16.   End, End, End, End
17. Until iteration= Maximum Number of Iterations 
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The process to find candidate solution is repeated for a set of iterations and during
each iteration particle updates its velocity and position on the basis of formula given in
Eqs. (6) and (7) [7] respectively.

Vik þ 1 ¼ w:Vik þ c1:rand: fik � xikð Þþ c2:rand: fgk � xik
� �þ meanð Þ ð6Þ

where

Vik velocity of particle i at iteration
w weighing function
c1, c2 weighing factors
fik particles current best position
xik particles current position
fgk global best
rand random number in range [0, 1]

Xikþ 1 ¼ xik þ vikþ 1 ð7Þ

The value of weighing function, w is calculated using formula given in Eq. (8). The
weighing factor suggest how well the particle is moving towards the best solution.

w ¼ minX� t=MaxGenerationð Þ � maxX�minXð Þ ð8Þ

where
minx Initial weight
maxX Final weight
MaxGeneration Total number of iterations
t represents current iteration.

The parameters and variables that are used in implementing PSO for test suite
prioritization are listed in Table 1.

4.2 Fitness Calculation in PSO

The fitness or the cost value of a particle in PSO can be calculated using different single
or multi-objective functions. The objective function is also known as benchmark

Table 1 PSO parameters

Weighing factors c1 = 2.0, c2 = 2.0 Dimension 1

Initial weight (minX) 0.0 No of particles/test cases 50
Final weight (maxX) 2.0 Number of Iterations 20
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function and is used for evaluating the effectiveness of optimization problems based on
factors such as performance, convergence rate, precision and robustness.

In this work, the BFs are used to calculate the cost value associated with the test
case based on the position and velocity of test case in the test suite. In this paper, we
have used three single-objective functions as shown in Table 2 [11, 24] to calculate the
fitness of the test cases using formula specified in Eq. (5). The performance of the three
functions is compared with each other in terms of time to identify which work best with
PSO for prioritizing the test cases.

In this work, the BFs are used to calculate the cost value associated with the test
case based on the position and velocity of test case in the test suite. In this paper, we
have used three single-objective functions as shown in Table 2 [11, 24] to calculate the
fitness of the test cases using formula specified in Eq. (6). The performance of the three
functions is compared with each other in terms of time to identify which work best with
PSO for prioritizing the test cases.

4.3 Proposed Algorithm

The proposed algorithm for prioritizing test cases using PSO is given in pseudo code as
follow [25, 26]. The process of prioritizing test cases begins by identifying independent
paths in program by drawing CFG and DD-graph. For the identified paths the test
cases are generated based on decision nodes in the code that guarantees 100% BC and
SC [7].

Table 2 Benchmark functions

Function Characteristics Dim Range

Sphere
f ðxÞ ¼ Pd

i¼1 x
2
i

Continuous, convex,
unimodal

1 [−100,
100]D

Rastrigin
f ðxÞ ¼ 10dþ Pd

i¼1 x2i � 10 cosð2pxiÞ
� � Local minima, highly

multimodal
1 [−5.12,

5.12]D

Griewank

f ðxÞ ¼ Pd
i¼1

x2i
4000 �

Qd
i¼1 cos

xiffi
i

p
� �

þ 1

Continuous, differentiable,
non-separable, scalable,
multimodal, regularly
distributed local minima’s

1 [−600,
600]D

Optimal Value for all functions is 0
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The algorithm begins by initializing velocity, position and fitness using formula 3,
4, and 5 for each test case on the path. The initial value for pBest position and pBest
cost of the test case is same as that of the test case position and cost. At step 11, the
counter iterates for a pre-defined number of iteration. For every iteration the velocity
and position of the test cases are updated using formula 6 and 7. The algorithm verifies
if pBest fitness value of the test case is greater than current fitness value of test case; the
pBest is updated with current fitness of test case. Similarly, the algorithm validates for
fitness value of gBest and pBest; and updates gBest with pBest fitness of the test case.
The algorithm also incorporates the dimension variable while iterating the test cases.

Proposed PSO Algorithm:
Input: A number of test suites based on number of independent paths in the program.
Output: Test cases prioritized on the basis of cost or fitness value.
Begin

1. Identify independent paths of the program under test.
2. For every independent path generate test data based on branch condition in 

the program.
3. For paths= Number of independent paths
4. For i = Total number of test cases
5. For j=1 to Total dimensions
6. Initialize the velocity and position for each test case and 

calculate the cost associated with test case using a 
benchmark function specified in table 2.

7. Initialize the test case personal best cost and personal best 
position same as initial cost and position.

8. End
9.   End
10. Iteration = 0
11. While (iteration < Maximum Number of Iterations)
12. For i = Total number of test cases
13. For j=1 = Total dimensions
14. Pick random number in range [0,1] and update 

position and velocity of the test case.
15. Update cost value of the test case using updated 

particle’s position for the selected benchmark 
function at step 3.

16. If (Fitness (particle ) < Fitness (pBest))
17.               Update test case best known position i.e., 

pBest with current position of test case.
18. If (Fitness (pBest) <Fitness (gBest))
19.                     Update global best position i.e., gBest 

with pBest of current test case.
20. End
21. End
22. End
23. End
24. Until iteration= Maximum Number of Iterations
25. End //Repeat steps 4 -24 for every path in program.
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4.4 Flow Chart of Proposed Algorithm

The flow chart for the algorithm proposed in this work is shown in Fig. 3. The algo-
rithm begins by initializing the test cases or swarm population with random values. The
global best is assigned a maximum value and aim is to minimize the value for gBest
after performing a set of iterations. The result achieved at the end of the algorithm is a
set of prioritized test cases sorted on the basis of increasing order of pBest.

5 Analysis and Evaluation

This section includes the steps of data collection followed by implementing PSO for a
case study to derive results and showcase how the test cases are prioritized on the basis
of fitness value using different BFs.

Fig. 3 Flow chart for PSO prioritization
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5.1 Data Collection

In this work, we have implemented PSO for a set of fifteen JAVA programs using
Eclipse as an Integrated Development Environment (IDE). The test programs along
with their number of input and their independent paths are listed in Table 3. The PSO
algorithm is performed for twenty iterations for every test path and the dimension value
used is 1.

5.2 Case Study: Calculator

In this work, calculator program is used as a case study for understanding PSO
implementation and the code for which is shown in Fig. 4. The program has 32 Line of
Code (LOC) and expects three inputs from the user; input 1 specifies the operation and
input 2 and input 3 are integers on which operation needs to be performed. The
DD-graph is drawn as shown in Fig. 5 that serves the basis of generating the test cases
based on branch nodes.

Table 3 Test programs

Program no Program No of inputs No of paths

P1 A calculator program 3 6
P2 Program to find leap year or not 1 4
P3 Calculate area and circumference of circle 3 4
P4 To check number is a Armstrong no 1 3
P5 To calculate factorial of number 1 2
P6 To swap two numbers 2 2
P7 To generate Floyd triangle 1 2
P8 Student classification problem 3 6
P9 To compare two numbers 2 3
P10 To generate fibonacci series 1 2
P11 To generate inverted triangle 3 3
P12 To check whether a number is palindrome or not 1 3
P13 Roots of a quadratic equation 3 3
P14 Triangle classification problem 3 5
P15 Find square root of number 1 2
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In Table 4 the independent paths for the DD-graph drawn in Fig. 5 are shown. For
every identified path in Table 4 a set of 50 test cases are generated using decision nodes
as boundary criteria while generating test cases.

Fig. 4 Calculator program implemented in JAVA

Fig. 5 DD-graph for program calculator.java
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In Table 5 two test cases for each path based on the boundary condition is shown
along with the average value for the test data is given. The mean value is valued for
initializing the velocity of the test case using Eq. (3). The values for input 2 and input 3
are in range of [0, 100].

5.3 Empirical Results

The PSO algorithm specified in Fig. 4 is run on all the independent paths of Table 4.
The algorithm takes mean value of the test data generated for calculating the velocity,
position and fitness of the test cases. At the end of the algorithm we get test eighteen
prioritized test suite that includes three test suites for each path based on three BFs

Table 4 Independent paths for calculator.java

IP1 S 8 29 30 32 IP4 S 8 13 15 16 18 20 21 28 32
IP2 S 8 13 14 28 32 IP5 S 8 13 15 16 18 20 22 23 28 32
IP3 S 8 13 1516 18 19 28 32 IP6 S 8 13 15 16 18 20 22 24 25 26 28 32

Table 5 Test data for the independent paths

Path Boundary condition Test case Parameters Mean (Input
to PSO)Input 1 Input 2 Input 3

IP1 Input 1 <> {1, 2,
3,4}

1 5 7 8 6.66
2 8 8 9 8.33

IP2 Input 1 = {1, 2, 3,
4};
Input 2 > 100 || input
2 < 0; input 3 > 100
|| input 3 < 0

1 1 −25 25 −16.33
2 3 24 101 42.67

IP3 Input 1 = 1;
0 <= input
2 <= 100;
0 <= input 3 <= 100

1 1 1 2 1.33
2 1 3 4 2.67

IP4 Input 1 = 2;
0 <= input
2 < = 100;
0 <= input
3 < = 100

1 2 1 2 1.67
2 2 3 4 3

IP5 Input 1 = 3;
0 <= input
2 <= 100;
0 <= input 3 <= 100

1 3 2 1 2
2 3 4 3 3.33

IP6 Input 1 = 4;
0 <= input
2 <= 100;
0 <= input 3 <= 100

1 4 2 1 2.33
2 4 4 3 3.66
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applied on a test suite. The results drawn are not repeatable since calculations for PSO
variables uses random numbers. The time taken for prioritization may vary depending
on the test environment and machine configuration.

In Table 6 the prioritized test cases for six paths in the calculator program using
PSO for three BFs is shown. The results show top ten prioritized test cases amongst the
fifty test cases for each path. The gBest value achieved for all the paths using the BFs is
listed in the table and the gBest for each path matches the pBest value of the first
prioritized test case. The total time taken for prioritizing all the test paths using Sphere,
Rastrigin and Griewank is summarized in the last row of the Table.

Table 6 Test suite prioritized for calculator program using PSO

Path Sphere Rastrigin Griewank
Prioritized
test cases

gBest Prioritized
test cases

gBest Prioritized
test cases

gBest

IP1 1, 6, 5, 20,
16, 12, 0,
19, 10, 2

0.004726 1, 16, 0, 32,
30, 9, 2, 26,
5, 35

0.000465 43, 16, 1,
0, 27, 47,
20, 23, 22,
6

0.000991

IP2 45, 16, 44,
15, 3, 13,
18, 25, 1,
30

0.009869 0, 28, 43, 4,
29, 21, 20,
18, 19, 25

0.009865 48, 28, 27,
43, 3, 35,
33, 14,
1,24

0.009865

IP3 28, 49, 45,
4, 18, 43, 8,
41, 44, 38

0.000003 11, 5, 7, 4,
48, 34, 26,
49, 42, 44

0.000004 6, 38, 37,
39, 47, 7,
15, 11, 36,
0

0.001366

IP4 39, 38, 47,
3, 36, 23,
16, 34, 42,
7

0.000015 1, 5, 35, 8,
4, 27, 31,
42, 32, 3

0.001010 38, 13, 8,
25, 49, 18,
12, 6, 4, 23

0.009917

IP5 26, 49, 48,
9, 5, 47, 2,
25, 32, 23

0.001612 12, 26, 22,
40, 27, 34,
7, 14, 47, 1

0.002611 45, 40, 2,
5, 49, 31,
38, 1, 41,
21

0.001228

IP6 30, 18, 39,
21, 49, 14,
4, 2, 37, 27

0.000010 4, 45, 42,
36, 39, 43,
21, 31, 49,
33

0.000611 42, 43, 9,
46, 25, 37,
41, 35, 0, 5

0.001267

Time
(ms)

52 8 6
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6 Results and Interpretation

In order to prove the effectiveness of PSO with the specified BFs we ran PSO on fifteen
JAVA programs under same test environment to produce unbiased results. In Table 7
we have listed the results derived during this work in terms of the time taken by the
algorithm and the global best value reached for every independent path. For imple-
mentation simplicity we have shown the value for global best value up to five decimal
places for all the identified paths in the program. The last column of the table i.e., the
time taken for prioritization is calculated by addition of time taken for prioritizing each
independent path for the program. The least time taken by PSO amongst the three
functions is highlighted as bold in the table and where a path doesn’t exist the entry is
shown as X.

The time taken by Griewank is approximately 8.90% of the average time taken by
Sphere function and 64.17% of the average time taken by Rastrigin function. The
results prove that Griewank works best amongst the three functions with PSO by taking
into consideration the execution time and value of gBest achieved in comparison to the
optimal value of the benchmark functions as specified in Table 2.

Table 7 Results (Time taken by the algorithm) and the global best value for every independent
path

P BF Global best (gBest) Mean time
Path 1 Path 2 Path 3 Path 4 Path 5 Path 6

P1 Sphere 0.00231 0.00075 0.00000 0.00254 0.00115 0.00042 59
8
6

Rastrigin 0.00995 0.00986 0.00000 0.00077 0.00161 0.00034
Griewank 0.00988 0.00986 0.00000 0.00992 0.00063 0.00687

P2 Sphere 0.00236 409.565 9.69788 X X X 63
Rastrigin 0.00996 0.30067 0.00002 4
Griewank 0.00044 0.42755 0.41175 3

P3 Sphere 2.35024 0.07074 0.00686 0.03865 X X 55
Rastrigin 0.00314 0.01003 0.00085 0.00336 12
Griewank 0.05675 0.01127 0.00637 0.01421 9

P4 Sphere 0.00001 0.00061 0.00024 X X X 49
Rastrigin 0.00036 0.00060 0.00021 4
Griewank 0.00002 0.01452 0.00159 2

P5 Sphere 0.00001 0.02694 X X X X 47
Rastrigin 0.00036 0.00222 4
Griewank 0.00128 0.00055 2

P6 Sphere 0.68587 0.00076 X X X X 42
Rastrigin 0.03897 0.00740 5
Griewank 0.00987 0.00330 3

P7 Sphere 0.02826 0.00869 X X X X 43
Rastrigin 0.00099 0.00411 6
Griewank 0.08740 0.00019 4

(continued)
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The bar graph for the results driven in Table 7 is shown in Fig. 6. In the graph
x-axis represents the 15 programs that have been taken in this work and y-axis rep-
resent the mean time taken by PSO for prioritizing test cases for the selected programs
using three functions: Sphere, Rastrigin and Griewank. The results drawn are not
repeatable as time may vary based on system configuration and the programming
language on which the experiment is performed.

Table 7 (continued)

P BF Global best (gBest) Mean time
Path 1 Path 2 Path 3 Path 4 Path 5 Path 6

P8 Sphere 0.01021 0.09533 0.00620 0.00073 0.02167 0.00011 50
Rastrigin 0.02753 0.00848 0.00794 0.01016 0.00005 0.00019 8
Griewank 0.08981 0.16629 0.03268 0.00710 0.00053 0.00115 5

P9 Sphere 0.00018 0.01118 0.02522 X X X 38
Rastrigin 0.00612 0.01024 0.00026 8
Griewank 0.00990 0.01149 0.01509 7

P10 Sphere 0.09492 0.01024 X X X X 43
Rastrigin 0.02038 0.00714 5
Griewank 0.00604 0.01190 2

P11 Sphere 0.64828 0.02668 0.00068 X X X 44
Rastrigin 0.06147 0.00174 0.00982 4
Griewank 0.01014 0.00000 0.00001 4

P12 Sphere 0.00068 5632.89 159.076 X X X 49
Rastrigin 0.04709 7.91535 0.16338 5
Griewank 0.00077 14.2083 0.78569 3

P13 Sphere 0.00015 0.05450 0.00595 X X X 50
Rastrigin 0.00279 0.00298 0.01003 4
Griewank 0.00001 0.01432 0.01013 2

P14 Sphere 0.00204 0.10044 0.00246 0.08367 0.02341 58
Rastrigin 0.00036 0.01834 0.01393 0.01018 0.00992 7
Griewank 0.00378 0.00989 0.00042 0.00090 0.01061 4

P15 Sphere 0.03100 0.49967 X X X X 40
Rastrigin 0.00818 0.00747 3
Griewank 0.01020 0.00146 2
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7 Threats to Validity

This empirical investigation is carried out on Eclipse that may not be the correct
representative for all the software’s available in the market but we have tried to the best
of our ability to generalize our results for different scenarios. For making our results
unbiased and generalized we have followed the basic concepts of object-oriented
architecture while implementing fifteen program in JAVA. The results presented in this
empirical investigation would not be complete without the discussion of threats of
validity: External, Internal and Constraint.

External Validity means the degree of to which the results can be generalized and
includes the factor that impact our ability for generalizing the results. The main treat to
external validity in this work is that the test programs are small and medium with
similar fault patterns and that might not truly representing large scope of programs.

Internal Validity is defined as the degree to measure the consequences on change of
independent variables on our dependent variables. In this work, we have minimized
this effect by selecting the range of random number between [0–1] for calculation of
PSO variables.

Constraint Validity is the degree to which the results are appropriately captured
using independent and dependent variables. The way in which random numbers gen-
erated for calculating PSO variables may vary depending on the framework used for
JAVA programming. In this work, we have tried to minimize this threat using eclipse
for JAVA development that is widely used in many organizations for large and
complex program.

Fig. 6 Time taken by benchmark functions with PSO
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8 Conclusion and Future Work

In this work, we have used three BFs to calculate fitness of test cases and then sorted
test suite based on fitness value. We have verified the effectiveness of Griewank
function with PSO in terms of global best value achieved and time required for pri-
oritization of test cases. The results are derived by running fifteen java programs with
three BFs and it is proved Griewank works best with PSO in terms of average time
required for prioritizing test cases.

In future we plan to run the algorithm for programs with 1000 and more LOC and
verify the results under the same test environment. The effectiveness of the approach
suggested could we further improve using more BFs or either by combining one or
more BFs while calculating fitness of particles in PSO algorithm. The algorithm can
also be blended with other meta-heuristic algorithm like GA, MA and ACO. A hybrid
PSO can be designed that uses a combination of the three functions for test suite
prioritization.
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