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Preface

This textbook is intended for IT security professionals, engineers, and researchers
who need IT security recommendations for deploying SDN and NFV technologies.
The recommended security solutions should be taken as suggestions and must be
investigated beforehand before deploying those solutions in the real world. The
authors, editors, and publishers of this book will not take any responsibility if any
harm happens due to using the suggested security solutions.

Darmstadt, Germany Rahamatullah Khondoker
November 2017
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Chapter 1
Security Analysis of SDN Routing
Applications

Anagha Anilkumar Sagare and Rahamatullah Khondoker

Abstract With the steady increase in the information and high network resource
sharing, organizations require big data centers. To control the workload in the data
centers and minimize the response time, effective load-balancing systems are nec-
essary. The routing applications play an important role here. Some routing appli-
cations based on Software Defined Networking (SDN) like Plug-n-Serve, Hedera,
ElasticTree suggest an efficient way to handle such a traffic load in the data centers.
Centralised routing makes it possible to adjust the network elements like switches,
ports, links dynamically as per the traffic load. The routing application takes con-
trol of data flow management in the data center system, finds a non-conflicting way
for the flow and instructs the switches accordingly. Security of routing applications
is important. If an attacker takes control over the data flow routing or scheduling,
it can result in forwarding traffic to the servers/switches which are controlled by
the attackers. The attacker can even shut down the data center system as some data
centers may rely totally on routing application for data flow management. In this
paper, several SDN routing applications are compared and detail analysis of two
applications Plug-n-Serve and ElasticTree are performed. The architecture of these
applications is explained and the security analysis is done using a threat analysis
tool called STRIDE. We suggest some mitigation techniques for the well known
threats like spoofing, tampering, repudiation etc. and also check if the application
has an in-built countermeasure against these threats. In this paper, we describe how
ElasticTree application by design provides some mitigation techniques against the
threats and the mitigation techniques that the Plug-n-Serve application could use to
avoid the threats.

Keywords SDN routing applications · Plug-n-Serve · ElasticTree · STRIDE ·
Threat analysis methods · Plug-n-Serve DFD · Plug-n-Serve analysis · ElasticTree
DFD · ElasticTree analysis
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1.1 Introduction

Computing has been evolved greatly in the last years. Former communication net-
works (for example, 1G/2G/3Gmobile networks, industrial networks, enterprise net-
works) used specialized and thus costly equipmentswhichmake it expensive/difficult
to make an experiment at a large scale. In addition, traditionally the data and control
plane elements were bounded in one network element (switch/router) and vendor-
specific. Such a closed structure of the system enables the access only to the vendors,
to modify the network according to customer requirements. SDN overcomes all of
these hurdles and offers an approach where the control plane and the data plane
are separated providing a central control point (called controller) for centrally coor-
dinating and managing a network. The communication between the control plane
and the data plane is done using a south bound application programming interface
(API) protocol such as the OpenFlow protocol [1]. Forwarding of a data packet is
accomplished by a forwarding device (switch/router) located in the data plane and the
controller located in the control plane is responsible for taking a decision about how
the packet should be routed in the network and push this decision to the forwarding
device. Figure1.1 shows the components and interfaces of the SDN architecture. The
controller provides the topology information to applications from which they build
an abstract view of the network. Applications use APIs to communicate with the
controller. The architecture has several interfaces, a northbound interface is an API
between applications and the controller (NBI API), whereas a southbound interface
is an API between the controller and forwarding devices (SBI API).

An attacker could compromise the controller or could manipulate the control
messages between the forwarding device and the controller. For example, a Denial
of Service (DoS) attack is possible by flooding the controller-switch communication
or the flow tables of a switch. To be able to apply appropriate mitigationmechanisms,
a security analysis of SDN application, especially routing application is necessary.

Business Applications

Application Application Application Application 
Layer

Control
Layer

Data 
Layer

Network Operating System

Network Devices

API

OpenFlow

Fig. 1.1 SDN architecture
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Now-a-days, many organizations have their own data centers. These data centers
have high variability of workloadwhich is unknown at the initial stage. This results in
lower throughput or higher latency. To increase the throughput and decrease latency,
the workload should be handled dynamically which can be done using SDN. Routing
applications are used in the SDN-based data centers and enterprises. These applica-
tions obtain information about entire network topology, server statistics and (re)route
the data flow accordingly. Entire routing and scheduling management are done using
these routing applications which make those applications as crucial parts of the data
center system. If the attacker takes control over the routing applications, then he can
perform different attacks like DoS, Tampering, and Information Disclosure etc. If an
attacker successfully performs any of these attacks, then an entire data center may
crash. The security of several SDN routing applications is analyzed in this paper.

Some SDN-based routing applications are Plug-n-Serve, Hedera, ElasticTree,
Aster*x and HyderabadApp. Out of which Plug-n-Serve and ElasticTree are chosen
for security analysis using STRIDE. The paper is organised as follows: Sect. 1.2
describes the SDN routing applications and the reasons are given why two of them
are chosen here for the analysis. Section1.3 focuses on different security analysis
methods and the reason for choosing STRIDE as the security analysis method. The
detail security analysis of both applications using STRIDE is included in Sect. 1.4.
Section 1.5 briefs future work and concludes the paper.

1.2 SDN Routing Applications

The SDN routing applications help data centers in reducing energy consumption and
operating cost. Several SDN routing applications have been proposed, for example,
Plug-n-Serve [2], ElasticTree [3], Aster*x [4], Hedera [5] and HyderabadApp [6].
A summary of these applications can be found in Table1.1. The Plug-n-Serve and
ElasticTree application are chosen for the security analysis. Plug-n-Serve and Elas-
ticTree are claimed to be good for performance and energy saving. Aster*x is based
on Plug-n-Serve application. The only difference is, it uses different load balanc-
ing algorithms. As the architecture is similar, performing a security analysis of the
same architecture is not required. Hedera is a dynamic flow scheduling application.
Architecture wise, it is similar to the Plug-n-Serve application. The architecture of
HyderabadApp is based on ElasticTree architecture and also it makes the network
unstable sometimes as mentioned in [6]. Hence we do not consider HyderabadApp
for further analysis.

1.2.1 Plug-n-Serve

The Plug-n-Serve is an SDN-based load balancing application for data centers which
uses OpenFlow as a SBI API protocol. The operators are able to increase the
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Table 1.1 SDN based routing applications

Applications

Name Description Technologies used

Plug-n-Serve OpenFlow enabled load balancing
application

NOX Controller, OpenFlow 0.8,
Standford University Testbed

ElasticTree Handles dynamic workload changes in
the data center

NetFlow, SNMP, OpenFlow, own
Testbed

Aster*x Based on Plug-n-Serve and path
selection

NOX controller, OpenFlow 1.0

Hedera Dynamic flow scheduling system OpenFlow controller, PortLand
Testbed

HyderabadApp Architecture similar to ElasticTree,
differs in incrementally power on/off
element strategy

Floodlight controller, Mininet
Simulator

performance and capacity of applications (for example, web services) by simply
adding computing resources and switches. It detects the addition and removal of the
servers in the network and adjusts the behavior of the traffic accordingly. This tech-
nique is called a customized flow routing. The Plug-n-Serve application is based on
LOBUS (Load Balancing Over Unstructured Networks) algorithm for traffic man-
agement. The application reduces the response time of web services in unstructured
networks. Smart routing, the main part of the application, considers the server load
and path congestion to (re)direct traffic. Figure1.2 shows the architecture of Plug-
n-Serve application. There are three functional units that manage the traffic flow
when any web request arrives: flow manager, net manager and host manager. The
flow manager is a controller that manages and controls the flow based on the load
balancing algorithm used. The net manager collects the network topology and link
usage by querying the switches. The host manager keeps track of the load on each
server and its state. It also monitors the newly added servers in the network. By using
OpenFlow protocol, application collects the data about entire network, including the
CPU utilisation and server state. Based on this data, traffic redirection decisions are
made by the flow manager. The advantage of Plug-n-Serve is that it reduces the
response time for requests from clients by dynamic addition or removal of paths and
switches [2].

1.2.2 ElasticTree

The ElasticTree application handles the workload of a data center dynamically. It
operates at lower cost and saves the energy by switching off the elements which
are not required. It monitors the traffic load continuously and adjusts the active ele-
ments like switches, links, ports according to that. Figure1.3 shows the architecture of
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Fig. 1.2 Plug-n-Serve
architecture

Fig. 1.3 ElasticTree
architecture

ON/OFF 
elements

ElasticTree application. It is comprised of optimizer, routing and power control mod-
ules. The optimizer module gets the network state and topology information from
the network. It then decides which subset of the network can fulfill the current traffic
condition and sends this subset to the routing and power control modules for further
processing. The routing module then creates the flow routes based on the input data
and forwards them to OpenFlow switches. The power control module receives status
information from the elements like switches, ports, links to satisfy the current traffic
needs and switches off the elements which are not required. Experiments have shown
that it can scale the data centers and can save 50% of the energy consumption [3].

1.3 Threat Analysis Methods

Several threat modeling tools and methodologies are used for security analysis, such
as PASTA [7], Trike [8], Attack tree [9], UMLSec [10], OCTAVE [11], and Misuse
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Cases [12], CC (Common Criteria) [13], DREAD [14], CORAS [15], STRIDE [16].
STRIDE is chosen for the security analysis as this study focuses on the security
analysis of the applications from a whole system perspective. We do neither use the
source code nor the insider (e.g. designer or architect) view for the analysis. Below
are the reasons why the other threat modeling methodologies are not used.

PASTA (Process for Attack Simulation & Threat Analysis) is an attack simulation
methodology which is suitable for designers and developers in a organization. To
do the threat analysis using this method, the analyst needs to know the definition,
technical scope of the application and the implementation details of the system as
an insider.

The Trike is a threat modeling tool which is suitable in the design phase, because
it is a requirement centric method. The participation of stakeholders is necessary in
this method.

Another threatmodelingmethodology isAttackTree,which is available as anopen
source as well as commercial versions. Since it is a attacker centric method rather
than a system centric once, it is not a good choice for the entire system analysis.

UMLSec is a model-based approach, where each component of the system is
analyzed with various UML stereotypes. However, to be able to use this approach,
one must know the source code which is not the aim of this study.

OCTAVE is a risk assessment tool, where an analysis team consisting of experts
from various departments is required.

Misuse cases consist of various business process modeling tools where the threat
analysis is done based on the expert guidance of various fields like architecture,
design and testing which is not possible here while analyzing the system alone.

Common criteria is a framework for the security evaluation of information tech-
nology, which is intended for big organizations. It does not specify any standard rules
and does not directly provide a list of product security requirements or features.

DREAD is used for risk assessment which is subjective in nature while giving
ratings to the threats and moreover the model itself is out of service now.

Risk analysis methods like CORAS need regular customer interaction for the
security analysis, which is not feasible in this case.

Chosen Method—STRIDE

STRIDE is a threat modeling tool, proposed by Microsoft in 1999. By using this
methodology, a system can be analyzed without considering its implementation,
which makes it the most appropriate candidate for this security analysis. STRIDE is
an acronym for:

Spoofing: Impersonating a user by illegitimately accessing or using his/her authen-
tication information is spoofing. This is a threat against authentication.

Tampering: Tampering is the data modification for a malicious purpose which is a
threat against data integrity.

Repudiation: Repudiation means that users deny performing the action that was
done by them which violates the property of non-repudiation.
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Table 1.2 DFD components

Type Component Description

Process Circle Denotes computation or programs run by the computer

Data flows Arrow Shows data in motion

Interactors Rectangle Represents endpoints of the systems: people, web
services, servers etc.

Data store Two parallel Lines Represents files, registry, keys, databases etc.

Trust boundary Dotted Line Denotes trust boundary between trusted and untrusted
elements

Table 1.3 Threat matrix

DFD
component

Threat categories

S T R I D E

Process X X X X X X

Data flows X X X

Interactors X X

Data store X X X

Information Disclosure: Data becomes available to the user who is not supposed to
have. This is a threat to the confidentiality of the data.

Denial of Service: When legitimate users cannot access the data or a service, then
it is called a Denial of Service (DoS). This is a threat against service availability.

Elevation of Privilege: An unauthorized user gets the access rights, which violates
the authorization property of a system.

To analyze a system using STRIDE, it is decomposed using a Data Flow Diagram
(DFD). ADFD represents the components of a system architecture and its interaction
with the internal and external components. These components are briefly described
in the Table1.2. The components are analyzed to check whether they are susceptible
to one or more threat categories. STRIDE comes with a threat matrix as shown in
Table1.3, based on which the security analysis of the chosen applications is done in
this paper.

1.4 Security Analysis

The SDN routing applications offer dynamic trafficmanagement and control of a data
center network. When the entire data center performance and functioning depends
on the routing applications, their security becomes an important question. In order to
find out the potential threats or vulnerabilities that exist in the application, security
analysis is necessary.
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In this section, two separate DFDs have been constructed by scrutinizing Plug-n-
Serve and ElasticTree architectures respectively. The security of these architectures
has been analyzed based on these DFDs.

1.4.1 Plug-n-Serve DFD

In order to evaluate the security of Plug-n-Serve application, it is necessary to con-
struct a DFD which is shown in Fig. 1.4. The components of the DFD are discussed
in detail in the following section.

Three functional units of the architecture are located in the controller: flow man-
ager, host manager and net manager. The controller is a logically centralized process
which makes all the decisions which affect the behavior of a DC (Data Center)
network. So, these units are enclosed into a single process in the DFD.

The Plug-n-Serve architecture has a group of three major components which are
represented by the interactors in the DFD: (1) content requesting PCs that send
the content request to the network (2) web servers and (3) OpenFlow switches that
communicate with the controller.

Furthermore, the communications between the interactors are modeled in the
DFD by data flows. The data flows are between content requesting PCs and switches,
switches and web servers, controller and the switches, web servers and the controller.
The communication between the entities which are located in the controller, assumed
to be secured as they reside on the same machine. These entities are flow manager,
host manager and net manager.

Finally, the trust boundaries need to be considered among the group of interac-
tors. The controller and switches should neither trust web servers nor the content
requesting PCs. There should be a trust boundary between content requesting PCs
and OpenFlow switches, switches and web servers, web servers and the controller.
The process in the DFD resides in the different network which cannot be trusted by
switches and therefore, there is a trust boundary between the controller and switches.

Fig. 1.4 DFD of Plug-n-Serve
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All the above observations are considered while deriving the DFD. The security
of the components is evaluated based on this DFD.

1.4.2 Plug-n-Serve Analysis

For the security evaluation of the Plug-n-Serve application, the STRIDE tool is used
and the following components are evaluated against these threat categories. Table1.4
represents the threat matrix.

1.4.2.1 Process

Only one process in the DFD is NOX-based controller, which requires protection
from all the six STRIDE threat categories.

Spoofing: When an identity is compromised, then an attacker may be able to imper-
sonate as a controller and can take control of the entire routing or load balancing
which may redirect the traffic to the malicious servers which are controlled by the
attacker. Proper bidirectional authentication or authenticode [17] can be applied as
a mitigation technique.

Tampering: The threat of tampering corresponds to the change or replacement of
the process binaries. That means, an attacker might change and interpret entire rout-
ing process or CPU feedback information. Proper authorization and maintaining an
Access Control List (ACL) [18] are suggested to avoid tampering. Digital signature
can also be used to ensure authenticity [19].

Repudiation: Amalicious user might change the controller program and later denies
it. In addition, the user might also deny sending or receiving any data to and from

Table 1.4 Plug-n-Serve threat matrix. Legend: �: Denotes threat can be mitigated as architecture
provides countermeasure. ∗: Denotes threat can be mitigated by suggested method

Type Component Threat categories

S T R I D E

Process NOX-based controller * * * * * *

Data flows Client PC-switches * * *

Controller-switches * * *

Switches-web servers * * *

Web servers-controller * * *

Interactors PC-controller * *

Controller-switches * *

Switches-web servers * *
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the network. This may result in the improper balancing of the load. As a mitigation
technique, the usage of timestamp [18] andmaintaining audit trails are recommended.

Information Disclosure: The flow manager collects information about the network
topology, CPU utilization and server state. The host manager has the information
about the loads of each web server. Information disclosure is about extracting all of
these secret data. Encryption of the information is required to avoid this (considering
no spoofing or tampering of the data is done). Use of privacy-enhanced protocols
like Transport Layer Security (TLS) is able to mitigation from this threat.

Denial of Service: In the context of the process, a successful DoS attack can shut
down the process or can deny access to the process for the legitimate users. As a
result, OpenFlow switches will not get any routing information from the controller.
In such a scenario, controller replication technique can provide data to the switches
and can avoid the complete shutdown of the network. Also, packet filtering firewalls
or authorization using IP restrictions can be used as a mitigation technique. The
flooding attack can be detected using mechanism suggested in [20].

Elevation of Privilege: If an attacker gets privileged access, then the entire routing
process can be changed which can stop or destroy the entire system. This can be
avoided by running the processes with the least amount of privilege which can assure
user rights or resource access permission e.g. use of CPU, memory or network [21].

1.4.2.2 Data Flows

The data flows are prone to tampering, information disclosure and DoS attack.
Between content requesting PCs and the network of OpenFlow switches

Tampering and Information Disclosure: Malicious information can be injected
in the controller or information may be sniffed from the controller response. Use
of TLS would be sufficient to avoid these threats which offers confidentiality by
symmetric data encryption and authentication by handshake [2]. Hence, the use of
TLS is recommended to avoid these threats.

Denial of Service: The DoS attack can cause unavailability of network of switches
if the flooding is done. As a result content requests that are sent by PCs will not
be served. Filtering techniques like packet filtering firewalls is one of the solutions.
Other techniques like AVANT-GUARD [22], FLOW-GUARD [23] can be explored
to avoid flooding.
Between the controller and OpenFlow switches

Tampering: The attacker may modify routing information sent from the controller
to the switches while in transit and can force the switches to route the traffic to
the malicious server (if there exists any server which is controlled by the attacker).
Furthermore, if an attacker modifies the network statistics data sent by switches to
the controller then the controller may send improper routing information back to the
switches. As TLS option is available in the OpenFlow protocol, this option can be
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enabled to mitigate the threat. The technique like appropriate authorization or digital
signatures can also be used for mitigation.

Information Disclosure: If the information about network statistics and routing
feedback sent to the controller is disclosed, then an attacker may get knowledge
about the load balancing. An attacker can use this information to build their own
application. As discussed above, enabling TLS assures confidentiality by symmet-
ric data encryption and authentication by handshake which can avoid information
disclosure.

Denial of Service: As a result of DoS, switches may not get any routing information
from the controller. The application directs the data center for routing of requests
using this data flow andDoS canmake entire system stop functioning. Packet filtering
firewalls or ACL is suggested to avoid this. Furthermore, data flow and bandwidth
control methods can be used as mitigation techniques.

Between the switches and web servers
The OpenFlow switches assign the content requests to the web servers based on the
load on the server. The information flow between them needs to be analyzed.

Tampering: An attacker may change the routing information or may send malicious
data in the request. This can result in system crash. Digital signature or use of TLS
is suggested to avoid this.

Information Disclosure: Amongst others, this information flow contains data about
the server statistics. After observing several such information flows, an attacker can
find the pattern of request allocation or less loaded server. This can lead to further
attacks on a particular server. TLS option could be configured to mitigate this threat.

Denial of Service: If an attacker floods with the requests to the web server, the web
server may crash and will not serve any content request. Filtering techniques or IP
restrictions can avoid this threat. Also, data flow and bandwidth control methods are
recommended as mitigation techniques.

Between web servers and the controller

Tampering: The web servers send their CPU usage information to the controller,
based on which the controller decides how to route the requests. Tampering with this
information can result in improper load balancing. The IPSec protocol may be used
as a mitigation technique.

Information Disclosure: In order to mitigate this threat, ACL along with encryption
techniques could be used.

Denial of Service: If an attacker performs the DoS attack successfully, then the web
servers will not be available. Mitigation techniques like filtering or IP restriction is
suggested to avoid this.
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1.4.2.3 Interactors

The interactors are vulnerable to spoofing and repudiation. The Plug-n-Serve applica-
tion does not provide any mechanisms that can prevent from spoofing or repudiation.

Content requesting PCs

Spoofing: The threat of spoofing corresponds to the impersonation as a valid user. If
an attacker is able to impersonate, he can perform several attacks, e.g. DoS attack.
Use of bidirectional authentication or use of Kerberos is suggested as a mitigation
technique against this threat.

Repudiation: If an evil person acts as an inside attacker, he can deny sending any
malicious requests to the controller. Proper audit trails and timestamps should be
maintained at the controller and the web server to avoid this.

Web servers

Spoofing: If an attacker can spoof a web server, then he can send the wrong CPU
utilisation information to the controller. This can lead the controller to take wrong
decisions based on this wrong data. Also, a web server can send themalicious content
e.g. malware which can harm the controller or the content requesting PC. The mit-
igation technique is to use an appropriate authentication mechanism like Kerberos.
Also the use of firewall and deep packet inspection are suggested to mitigate this
threat.

Repudiation: A user may modify the functionality of the web server or can change
the data and later deny it. An attacker may send malicious data to the controller and
later deny it. Mitigation techniques like digital signature, timestamps are suggested
to avoid this.

OpenFlow switches

Spoofing: If an attacker can impersonate as an OpenFlow switch, he can change the
network statistics that are sent from OpenFlow switches to the controller which can
lead controller to take wrong decisions. An attacker can also read and interpret the
data exchanged between them. The use of certification and appropriate authentication
like IPSec is recommended to mitigate this.

Repudiation: Switches can deny receiving any data from the controller. Proper
logging of the data and timestamps are recommended for the mitigation of this
threat.

1.4.3 DFD of ElasticTree

As the first step of security analysis, DFD is derived from theElasticTree architecture.
The optimizer, routing and power control are the three modules in the application.
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Fig. 1.5 DFD of ElasticTree

These modules are part of a single system and contained in the same physical box.
This is represented as a single process in the DFD.

The data center network communicates with the application to get the routing and
switch ON/OFF information. This information flow is modelled in the DFD by the
data flow. Additionally, the optimizer, routing process and the power control unit
communicate with each other, but as the three processing modules are part of the
same system, communication between them are assumed to be trusted.

The trust boundary is placed between an application process and DC network,
both reside on the different network. Figure1.5 shows the DFD derived from all the
above observations.

1.4.4 Analysis of ElasticTree

Security analysis of ElasticTree application is done using STRIDE. The threats
according to the Table 1.3 are discussed here and mitigation techniques are sug-
gested. Table 1.5 shows the summary of the security analysis.

1.4.4.1 Process

The first component is the ElasticTree application process which is susceptible to all
the six threat categories.

Spoofing: As discussed earlier, spoofing in the case of a process can attack the
integrity of the process binary. If an attacker impersonates as an optimizer, he may
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be able to operate a DC network in a malicious way. If an attacker takes control
over power control module, he can toggle the power states of the active elements
wrongly or even can destroy/shut down the entire network. The application provides
an option to reduce or prevent this threat [3] i.e. routing and optimizer module should
be separated on different servers, so when the optimizer module is crashed, routing
can switchONall the active elements and application can still work.Other techniques
like bidirectional authentication or use of IPSec can mitigate this threat.

Tampering: An attacker can change the application program. The use of an appro-
priate authorization or a digital signature is recommended to mitigate this threat.

Repudiation: An insider may deny changing the programming of the modules. An
attacker might collect the data, including the traffic statistics and later deny receiving
it. The use of the timestamp and audit trails are suggested as mitigation techniques
for this.

Information Disclosure: If the information about optimizer, routing or power control
is disclosed, an attacker can get information about network topology, traffic matrix
and active elements. An attacker can use this information for a further attack on the
network or can build his own application. Encryption methods should be used to
avoid this type of threat (considering that there is no tampering or repudiation of
data). Also, proper authorization by ACL and use of TLS are suggested to mitigate
this.

Denial of Service: TheDoS attackwould cause an entire application to stopworking.
This threat can bemitigated by the deployment design of the application (for example,
several controllers). The primary controller may send periodic updates to the other
controllers. If a redundant controller doesn’t receive the update in time, it takes the
charge. As a result, a load balancing technique which is provided by ElasticTree
application will not be applied, but the DC network can still work by keeping all the
elements active [3].

Elevation of Privilege: This threat can be mitigated by running the processes with
the least privilege possible.

Table 1.5 ElasticTree threat matrix. Legend: �: Denotes threat can be mitigated as architecture
provides countermeasure. ∗: Denotes threat can be mitigated by suggested method

Type Component Threat categories

S T R I D E

Process NOX-based controller * * * * � *

Data flow PC-controller * * *

Interactor Controller-switches * *
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1.4.4.2 Data Flow

The data flow is between the application and DC network, which is critical for the
functionality of the application.

Tampering: The attacker can change the data in transit between DC network and
application. If an attacker is able to perform a change in network topology or traffic
matrix, it can force an optimizer to produce wrong results. This can further result into
routing the data through malicious servers or can toggle the active elements on/off
states wrongly. Use of digital signatures or message authentication is suggested to
avoid this threat.

Information Disclosure: The threat here is that the information exchange between
controller and application will be disclosed to the attacker. This threat can be miti-
gated using TLS. The OpenFlow protocol provides an option to configure the TLS,
using which a secure connection can be established.

Denial of Service: The data flow needs to be protected against DoS attacks because
it corresponds to the flooding of the process or DC network. In this case, DoS attack
would prevent an optimizer to get any data about network traffic and a DC network
to get any routing information. As a result, the toggle of the power states of active
elements will not happen. If the secondary controller takes over the system in the
absence of the primary controller, then it can still serve the requests and can run
the application. Other forms of DoS attacks could be avoided by using appropriate
authentication mechanisms.

1.4.4.3 Interactors

The interactors are prone to spoofing and repudiation. The DC network is the inter-
actor in this DFD which interacts with the application.

Spoofing: Spoofing of a DC network can change entire DC network programming.
This can result in providing wrong information to the optimizer or changing of entire
functioning of the network. This can be avoided by using appropriate authentication
techniques like IPSec’s authentication header.

Repudiation: An insider attacker can change the programming of a DC network and
can later deny changing it. Usage of audit trails and timestamps are recommended
when the controller sends data to the DC network and vice versa.

1.5 Conclusion

The applications based on SDNhave greater advantages, but at the same time security
of such an application is also an important discussion. In this paper, Plug-n-Serve and
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ElasticTree applications are analyzed using STRIDE. Both the applications support
data centers to reduce the operating cost by saving energies. In the paper, analysis
of these applications with STRIDE is illustrated and mitigation mechanisms are
suggested. Similar to the STRIDE, different other threat analysis tools/methods can
be used together for further analysis, e.g. a threat can be further analyzed by using
an attack tree. Applying security features which are suggested in this paper might be
time-consuming or would increase the operating cost, but mitigation of these threats
is necessary to avoid the attacks on the system. The analysis performed in this paper
shows that the ElasticTree application provides some goodmitigation techniques like
the use of multiple controllers but in the case of Plug-n-Serve application, security
measures like use of timestamps, privacy enhanced protocols are not the part of the
design.

Security requirements need to be considered during designing or building stage
of any application. The application designers, architects, testers may have different
views about the security of these applications, which can be considered to make
applications more secure. The intention of this work is not to analyze the security
vulnerabilities of the applications through static/dynamic code analysis or pen testing,
which are left for the future.
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Chapter 2
Security Analysis of SDN Cloud Applications

Ankush Chikhale and Rahamatullah Khondoker

Abstract Recently with the emergence of Software Defined Networking (SDN),
cloud environments have gone throughmodifications as traditional data centers adopt
SDN as a network management solution. As cloud networking platform provides
great power to configure networks in cloud, there is also a downside that intruders
and hackers may control the network functionality which may lead to more damage
than in legacy networks. Even though cloud networking providers implement the
most of the security standards, data storage and important files on external service
providers may lead to risk. The ease in procuring and accessing cloud services can
also give users the ability to scan, identify and exploit loopholes and vulnerabilities
within a system. For instance, in a multi-tenant cloud architecture where multiple
users are hosted on the same server, a hacker might try to break into the data of other
users hosted and stored on the same server. However, such exploits and loopholes are
not likely to surface and the likelihood of a compromise is not great. Understanding
traffic flows will extract issues out and methods can be suggested dealing with it.
Security concerns here are highly expanded attack that includes the control and data
plane. Security challenges are unique to clouds that differ from SDN. In this paper,
SDN cloud applications are compared and analysis of three applications such as
Meridian, CloudNaaS and HPE Virtual Cloud Network are performed. Main factor
for choosing the three applications are their market share and wide deployment. The
architecture of these applications are explained and security analysis is done using a
threat analysis tool called STRIDE. We suggest some mitigation techniques for the
well known threats like spoofing, tampering of data, repudiation and also check if
the application has in-built countermeasures against these threats.
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2.1 Introduction

The cloud should deliver a hosting environment that is immediate, flexible, scalable,
secure and available while saving corporations money, time and resources. Five
essential cloud characteristics are on demand self-service, broad network access,
resource pooling, rapid elasticity and measured service. The cloud itself is a set of
hardware, networks, storage, services and come together to deliver computing as a
service.

SDN decouples the network control and forwarding functions, enabling the net-
work control to become directly programmable [25] as shown in Fig. 2.1. Although
such decoupling is beneficial, SDN security issues such as unauthorized controller
access, controller-switch communication flood could be used in cloud environments
to harm client applications and network performance. There are lot of cloud com-
puting issues which are already known. These issues are categorized as security
standards, network, data, access control and cloud infrastructure [17]. As discussed
in [6], from a non-exhaustive survey for cloud issues distribution, author concludes
that 18 percent of the overall distribution of cloud issues are related to networking.
This motivates the analysis of SDN cloud applications from the security point of
view.

Software-Defined Networking (SDN) overcome the above mentioned disadvan-
tages and therefore has become one of the most important networking architectures
for the management of networks in cloud computing. SDN gives several benefits
over traditional networking such as directly programmable network control, cen-
tralised network intelligence in SDN controllers, programmatic configuration, open
standards-based and vendor-neutral architecture.

OpenFlow [24] is an open and widespread protocol used as communication inter-
face [33] between SDN control and data planes. OpenFlow allows SDN controllers
to access the data plane of network device. This enhanced level of access allows
administrators to dynamically change the way traffic flows through the network.
The OpenFlow protocol uses a standardized instruction set, which means that any

Fig. 2.1 SDN architecture
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OpenFlow-enabled controller can send a common set of instructions to any Open-
Flow enabled switch regardless of vendor.

Server and storage virtualization are important factors in cloud computing and
hence SDN security and cloud could be so easily bundled together. SDN falls
beyond virtualization aspect of network infrastructure. Understanding traffic flows
will extract issues out and various methods can be suggested dealing with it. Secu-
rity concerns here are highly expanded attack that includes the control and data
plane. Security challenges are unique to clouds that differ from SDN and should be
discussed.

The rest of the paper is structured as follows: In Sect. 2.2, threat analysis frame-
work is discussed and briefly explained. In Sect. 2.3 Meridian, CloudNaaS and VCN
SDN are explained and detailed security analysis of these applications are done
in Sect. 2.4. Followed by this, in Sect. 2.5 results of the analysis are discussed and
Sect. 2.6 concludes the paper.

2.2 Threat Analysis Frameworks

Threat modeling is a procedure for optimizing network, application and Internet
security by identifying objectives, vulnerabilities and then defining counter measures
to prevent or mitigate the effects of threats to the system. There are several methods
available to analyze security of a system, such as PASTA [26], Trike [7], Attack
Tree [28], UMLsec [16], OCTAVE [13], Misuse Cases [1], Common Criteria [20],
CORAS [31], DREAD [14] and STRIDE [30].

PASTA is an attack simulation methodology suitable for designers and developers
in the enterprises or organizations where user needs to know the definition, technical
scope of the application and system from inside to work on threat analysis. Trike is a
threat modeling tool which is suitable for design phase as it is requirements centric
methods and involves stakeholders. Attack Tree which is available as open source
and commercial software but it is attacker oriented than system oriented. UMLsec is
a model based approach where each component of a system is analyzed with various
stereotypes which requires the source code for the analysis.

OCTAVE is a risk assessment tool for organizations where an analysis team of
experts from various departments are required for the analysis whichmakes it unsuit-
able for our analysis. Misuse Cases is a business process modeling tool based on
expert guidance of various fields like architecture, design, and testing. Common
Criteria is a framework for security evaluation of information technology which is
intended for big organizations. It does not specify any standard rules and does not
directly provide a list of product security requirements or features for specific prod-
ucts. DREAD is also used for risk assessment, but it is subjective in nature when
giving ratings to the threats. In risk analysis methods, CORAS is used for organiza-
tional purpose as it needs customer interaction.
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In contrast to the above mentioned tools, by using the STRIDE method, it is
possible to categorize threats associated with an architecture even without the need
of an actual implementation.

STRIDE is an acronym for six categorizes of threats: Spoofing, Tampering, Repu-
diation, Information Disclosure, Denial of Service, and Elevation of privileges.

• Spoofing: Impersonation as someone else pretending to be something or someone.
• Tampering: Unauthorized change of data—modifying data on disk, on a network
or in memory.

• Repudiation: Associated with users who deny performing an action keeping no
traces.

• Information Disclosure: Exposure of information to unauthorized persons.
• Denial of Service:Absorbing resources needed to provide service, causing unavail-
ability of services.

• Elevation of privilege: An unprivileged user gains privileged access.

To analyze an application, it should be decomposed into components of a DFD
(Data FlowDiagram) and then each component is analyzed against the specific threats
for its type. The five types of components of a DFD can be found in Table2.1. Each of
the described elements of aDFD is only susceptible to a subset of the threat categories
of STRIDE [5]. For example, interactors are only prone to spoofing and repudiation
threats. The mapping of security property to STRIDE threats and threat matrix can
be found in Table2.2. As soon as the threats to the application are identified, a proper
mitigation methods can be defined. The mitigation methods proposed in this paper
are only suggestions for Meridian and CloudNaaS and some of them are already
used by HP VCN.

Table 2.1 Components of a DFD

Item Symbol

Process Circle

Data flow Arrow

Data store Two parallel horizontal line

Interactors Rectangle

Trust boundary Dotted line

Table 2.2 Threat matrix taken from [5] X denotes threat category for particular element

Security property Threat category Interactors Processes Data store Data flows

Authentication Spoofing X X

Integrity Tampering X X X

Non-repudiation Repudiation X X

Confidentiality Information disclosure X X X

Availability Denial of Service X X X

Authorization Elevation of privilege X



2 Security Analysis of SDN Cloud Applications 23

Table 2.3 Overview of SDN Cloud application

SDN Cloud
application

Functionality Developed by
in year

Deployed as Proprietary or
Opensource

HPE VCN SDN
[10]

Deployment of dynamic
policy of the network

HPE, 2014 Saas Proprietary

EOS [13] Extensible,event driven
operating system

Arista, 2011 Saas Proprietary

Openstack [24] OS providing compute,
storage and resources

OpenStack
community,
2010

Saas OpenSource

CloudNaaS [26] Extensible networking
platform

IBM, 2011 Naas NA

Microsoft
Azure [27]

Provides applications and
infrastructure

Microsoft, 2009 Iaas, Paas Proprietary

Zimory Cloud
suit [28]

Provides distributed, scalable,
decoupled infrastructure

Zimory, 2008 Iaas Proprietary

Vmware
vCloud suit [29]

Provides infrastructure and its
management

Vmware, 2013 Iaas Proprietary

2.3 SDN Cloud Applications

In the past couple of years, several SDN cloud applications have been developed. A
summary of the applications can be found in Table2.3. Each application is described
by its name, functionality, developed by (company/institute) /Year, deployed as and
proprietary/open source. All the applications in Table2.3 are based on the OpenFlow
protocol.

Two SDN cloud networking platforms Meridian and CloudNaaS and one cloud
application HPVCN SDN are chosen for security analysis in this paper. Main factors
for choosing these three applications are their market share, and wide deployment.
Meridian and CloudNaaS are chosen because they provide service-level cloud net-
workingmodel and are deployedwidely using network as a service to end users. Both
are developed by IBM T. J. Watson Research Center in 2011 and 2013 respectively.
Even though these applications are widely deployed but not much thorough research
and analysis has been done on these applications. In order to provide sufficient con-
text for the security analysis, concepts and architecture of all three applications are
briefly described, following description of data flows and processes with the help of
data flow diagrams. On the basis of this information, CloudNaaS, Meridian and HP
VCN SDN applications will be analyzed using the STRIDE framework.
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2.3.1 Meridian

Meridian is an extensible multi-threaded SDN platform for cloud networking appli-
cation. It supports service-level model and provides multiple options for configuring
virtual networks on the underlying physical network. Meridian consists of three
main logical layers: Application Programming Interfaces (APIs), network orches-
tration and underlying network devices. Network applications are at the top of the
stack, as consumers of the APIs.

The Meridian architecture diagram is shown in Fig. 2.2. The topmost layer of the
architecture consists of the abstract API to be able to interact with the network. The
API provides access to the higher layer cloud applications to request policy based
connectivity between logical groups of virtual servers i.e., details such as construction
of virtual networkwith virtualmachines, alongwith policies for controlling an access,
prioritizing traffic or traversing middle-boxes.

Network is represented in the form of graphs where the network elements are
represented as graph nodes and a relationship between elements are represented by
a graph edge. Network orchestration layer performs a logical-to-physical translation
of commands issued through the abstraction layer above and convert these API calls
into the appropriate series of commands on the underlying network. The lowest
layer consists of logical driver that interfaces to OpenFlow devices to create virtual
networks and accompanying services. Meridian accepts configuration rules from

Fig. 2.2 Meridian
Architecture(modified and
redrawn)
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network control applications for underlying network devices. Meridian provides
topological views of the dynamic set of underlying network resources to upper layer
with the employment of libvert [19].

Libvert is the virtualization API and provides consistent interface for querying
and controlling underlying network devices. Meridian also provides as a network
abstraction model service, an entity to describe the services on a connectivity path.
Users can define a customized routing policy, filter or middlebox traversal policies in
a service entity. The communication between different tiers often has different service
requirements, for example, restricted communication between tiers using firewalls.
Network orchestration layer contains two data stores namely Global Network View
(GNV) and Network Runtime State (NRS) which store underlying network view
and underlying network state details respectively. Meridian is built on open source
Floodlight [8] controller platform. Floodlight is a modular java based OpenFlow
controller. Further details about Meridian can be found in [3].

2.3.2 CloudNaaS

CloudNaaS, is an SDN based cloud networking platform for enterprise applications,
with the purpose of providing networking primitives for cloud applications. Cloud-
NaaS uses NOX controller and is based on OpenFlow protocol. With CloudNaaS,
customers are able to deploy their applications on the cloud to access virtual network
functions such as network isolation, custom addressing, and service differentiation.
CloudNaaS also provides an ability to deploy middle box appliances to provide
intrusion detection, caching or application acceleration.

The CloudNaaS architecture consists of two main components namely, the cloud
controller and the network controller. The cloud controller manages both the virtual
resources and the physical hosts and supports APIs for setting network policies. The
network controller is responsible for monitoring and managing the configuration
of network devices as well as for deciding placement of virtual machines within
the cloud. Network controller is a new component introduced by CloudNaaS in
CloudManagement Service (CMS) as compared to other typical clouds. CloudNaaS
network controller is implemented on top of the NOX controller using C++.

Cloud controller accepts network policy specifications and virtual machine
requests from users. It converts user requirements into a communication matrix.
Network controller compiles matrix entries into network level rules. It installs rules
on virtual and physical switches through SDN control channels and configures paths.
TheNetwork Provisioner (NP) inside a network controller collects information about
communication matrix from the cloud controller. The Cloud Monitor (CM) period-
ically polls status of switches and links, as shown in Fig. 2.3. Network provisioner
and cloud monitor act as data stores in network controller. Network controller also
supports network aware Virtual Machine (VM) placement, Quality of Service (QoS)
support, real time networkmonitoring, flexible diagnostics,management and security
functions. In network controller, details of placement optimizer and state optimizer
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Fig. 2.3 CloudNaaS
Architecture(modified and
redrawn)

and their interactions with other components are omitted for the ease of evaluation
purpose. CloudNaaS also employs pre-computation and caching of alternate paths
to reduce the impact of a device or a link failure in the underlying network. Further
details on CloudNaaS can be found in [4].

2.3.3 HPE VCN SDN

It is the enhanced networking module of HPE Helion OpenStack. HPE VCN enables
the enterprises to securely connect to the cloud and applies its own identity to its
cloud environment as shown in Fig. 2.4. Since the Virtual Cloud Network solution is
already integrated with OpenStack, public cloud providers can deliver an automated
self-service solution to their tenants and enterprises can securely connect their private
estate to public cloud environments.

1. HPE Helion OpenStack, builts upon OpenStack [4], is an open and extensible
scale-out cloud platform that make it easier to build, manage and consume work-
loads in a hybrid IT environment. It is open by providing the ability to move,
integrate and deliver applications across public, private and traditional IT envi-
ronments. It is secure by offering secure solutions to all Hybrid ITClouds with the
use of Cryptography. It is agile by enabling speedy deployment of either private
or public cloud within less span of time [29].
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Fig. 2.4 HP VCN SDN
Architecture

2. HPE VAN SDN Controller HPEs Virtual Application Networks (VAN) SDN
Controller is a building block of HPEs virtualized data center solution. The HPE
SDN Controller manages policy and forwarding decisions which are communi-
cated to the OpenFlow-enabled switches in the data center [12].

3. Network devices The HPE FlexFabric 7900 Switch Series is the next generation
compact modular data center core switch designed to support virtualized data
centers and evolutionary needs of private and public clouds deployments.

2.4 Security Evaluation of the Cloud Applications

2.4.1 Security Evaluation of Meridian

To evaluate Meridian with STRIDE, a DFD is constructed as shown in Fig. 2.5. The
following assumption is made for the evaluation purpose: The three layers of Merid-
ian are contained in the same physical box and assumed as a singleMeridian process.
STRIDE can be applied on Meridian process as a single process and thus it is not
necessary to evaluate data flow between the Meridian process layers. The network
control application, Meridian architecture, and network devices are distributed in
cloud and the data flow between them cannot be trusted, hence there is a trust bound-
ary between the network control application and the Meridian process and between
the Meridian process and the network devices. The two data stores global network
view (GNV) and network run time state (NRS) in network orchestration layer are
assumed on the same physical device inside themeridian architecture. The two actors
in the DFD are the network control applications who interact with API provided by
cloud controller and network devices who enable interaction via API provided by
drivers.

For the evaluation using the STRIDEmethodology, the following components and
corresponding threats and mitigation methods are discussed below. Table2.2 shows
a summary of the security evaluation of Meridian.

Meridian architecture as a single process:
Spoofing: Amalicious user may impersonate an authenticated network control appli-
cation and can make changes to Meridian process binary. Only admin should be able
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Fig. 2.5 Meridian DFD

to change the process binary. This can bemitigated by applying proper authentication
mechanism such as Authenticode [2] to validate code that has been signed by the
admin user.
Tampering with data: A malicious user an impersonate an authenticated network
control application and can modify, replace and view Meridian process binary. For
mitigation, access control list (ACL) [9] to specify the access rights could be preferred
over digital signature and message authentication codes, resulting in less messaging
overhead each time Meridian process is run.
Repudiation: A user can change the binary of Meridian without keeping any proof,
which may be difficult to track later in time. User activity can be tracked by time
stamps, audit trails. Digital signatures [9] are not preferred as they may lead to
overhead for each action in Meridian process.
Information Disclosure: An attacker may extract Meridian process binary and view
the Meridian process working details. Encryption techniques such as block ciphers
can be used as a mitigation plan. Block cipher [9] processes a block of input data
and produces a cipher text block of the same size resulting in less memory overhead.
Denial of Service (DoS): A malicious user may consume network resources by
excessive use of the underlying network. For example, a user can write overlap-
ping or unnecessary network configuration rules thereby occupying all the network
switches/bandwidth resulting in shutting downofMeridian process or denying access
to underlying resources. For mitigation in such cases, disk quotas [9] can be used to
prevent excess disk consumption. Suitable authentication mechanism such as digest
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authentication can be applied for administrative entities for shutting down Meridian
process or locking resources.
Elevation of Privileges: A user can access/alter/destroy Meridian process binary.
Input validation [9] for the administrators or users running with least privileges
could also be used as a mitigation plan.

Data flow between theNetworkController Application to theMeridian Process:
Tampering with data: Data sent to the Meridian process from an authorized net-
work controller application can be changed by an attacker when in transit. Digital
signatures can be used as a mitigation plan to check the integrity of data.
Information Disclosure: Network configuration commands while in transit can be
read by an attacker, thereby gaining access to underlying virtual network topology
requested by an user. TLS [9] can be used to mitigate the risk which will protect
network configuration commands confidentiality by using symmetric data encryption
and TLS handshake for data authentication.
Denial of Service (DoS): Data flow is represented by network traffic and an attacker
can use filtering or throttling to control and modify the network traffic. For example,
an attacker can send packets with network configuration details with high frequency
to Meridian resulting in bandwidth bottleneck. For the mitigation, bandwidth and
data flow control can be applied to limit packet flows.

Data flow between Meridian Process and Network Devices:
Tampering with data: Meridian process discovers underlying topology view bymon-
itoring advertisements sent by the libvert virtualization daemon. Libvert provides
remotemanagement usingTLS encryption and x.509 certificates [15] and thus threats
could be mitigated.
Information Disclosure: Underlying network topology is discovered using libvert.
Information disclosure could be mitigated since libvert provides Kerberos [32] and
SASL [19] for data authentication.
Denial of Service (DoS): An attacker may not able to send network topology packets
on behalf of the Meridian process to network devices for the configuration of the
underlying network asKerberos [19] andSASLprovided by libvertwill ensure secure
authenticated communication between theMeridian process and underlying network
devices.

Interactors Network Control Application and Network Devices:
Spoofing: An attacker may act as the Meridian process and may receive policy based
connectivity between logical groups of virtual servers on behalf of the authenticated
Meridianprovider. Theuserwill assume the underlyingnetwork is configured accord-
ing to specification and can expect desired performance, underlyingMeridian process
being unaware of it. Proper authentication mechanism such as Kerberos can be used
to authenticate the identity of Meridian process as well as users. An attacker may
not be able to send requests to get the topological view from the network devices on
behalf of the Meridian service and gain view of underlying topology since Kerberos
and SASL [19] provided by libvert will ensure safe authenticated communication
between the Meridian process and underlying network devices.
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Repudiation: As network control applications are the initiators of request, theMerid-
ian process might not request any changes to network control applications. TLS
as incorporated in libvert [19] will ensure non-repudiation for the communication
between the Meridian and the network devices.

Data Store Global Network View (GNV) and Network Runtime State (NRS):
Tampering with data: Data stores global network view (GNV) and network runtime
state (NRS) might be altered or deleted by an attacker. ACL can be used to specify
access rights for each user or role based access control (RBAC) can be used for
mitigation.
Information Disclosure: Data stored in global network view and network runtime
state could be read by an attacker, thereby gaining access to underlying virtual net-
work topology. Data encryption can be used as a mitigation plan for data stored in
databases.
Denial of Service (DoS): Data stored in global network view and network runtime
state could be modified/deleted by an attacker, resulting in DoS to authorized users.
Message authentication codes might be used over digital signatures (inefficient with
message overhead) for filtering the authorized users (Table2.4).

2.4.2 Security Evaluation of CloudNaaS

To evaluate CloudNaaS using the STRIDE method, a DFD is built accordingly as
shown in Fig. 2.6. For the evaluation purpose, the following assumption is made:
the two layers of CloudNaaS are contained in the same physical box. Therefore, it
is not necessary to evaluate the data flow inside the CloudNaaS process. STRIDE
can be applied on CloudNaaS process as a single process. The two actors in the
DFD are the user who interact with API provided by cloud controller and network

Table 2.4 Security analysis ofmeridian components, * denotes threat can bemitigated by suggested
methods, � denotes threat can be mitigated as architecture provides countermeasures to mitigate,
- denotes out of scope

Type Component Threat

S T R I D E

Process Meridian * * * * * *

Data flows Network Control applications and
Meridian

* * *

Data flows Meridian and Network Devices � � �
Interactors Network & Control Applications * -

Interactors Network Devices � �
Data Store Global Network View * * *

Data Store Network runtime systems * � *
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Fig. 2.6 CloudNaaS DFD

devices who enable interaction via API provided by the network controller. The
user, CloudNaaS architecture, and network devices are distributed in cloud and data
flows between them cannot be trusted, therefore, there is trust boundary between
the user and the CloudNaaS process and between the CloudNaaS process and the
network devices, therefore, data flowmust be checked for security threats across trust
boundary. Network Provisioner (NP) and Cloud Monitor (CM) act as data stores in
CloudNaaS architecture. The evaluation of CloudNaaS is performed below in the
same way as for Meridian.

For the evaluation using the STRIDE methodology, the following components
and corresponding threats and mitigation methods are discussed. Table2.5 shows
the summary of the security evaluation of CloudNaaS.

CloudNaaS architecture as a single process:
Spoofing:An attackermaymake changes toCloudNaaSprocess binary.Asmentioned
before, only the administrator should be able to change the process binary. This can
be mitigated by applying proper security mechanism ensuring the integrity of binary
such as message authentication codes.
Tampering with data: A malicious user may impersonate an authenticated user and
may modify, replace and view CloudNaaS process binary. As mentioned before,
access control list (ACL) can be used for mitigation.
Repudiation: A user might change the binary of CloudNaaS without keeping any
proof, which may be difficult to track later in time. User activity could be tracked by
time stamps, and audit trails.
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Table 2.5 Summary of the security analysis for the CloudNaaS, * denotes threat can be mitigated
by suggested methods,� denotes threat can be mitigated as architecture provided countermeasures,
- denotes out of scope

Type Component Threat

S T R I D E

Process CloudNaaS * * * * * �
Data flows User and CloudNaaS * � *

Data flows CloudNaaS and Network Devices * * *

Interactors User � -

Interactors Network devices � �
Data store Cloud Monitor (CM) * * *

Data store Network runtime systems * * �

Information Disclosure: An user might extract CloudNaaS process binary and secret
data can be extracted from it. Encryption techniques can be used to encrypt the binary
and prohibiting access by unauthorized entities.
Denial of Service (DoS): A DoS attack may result in shutting down of CloudNaaS
process or denying access to underlying resources. For mitigation in such cases,
suitable authentication mechanisms can be applied for administrative entities for
shutting down CloudNaaS process or locking resources.
Elevation of Privileges: A user with restricted privileges can access/alter/destroy
CloudNaaS process binary. This can be mitigated by running process with minimum
privileges.

Data flow between the User to the CloudNaaS Process:
Tampering with data: User policies sent to the cloud controller could be modified by
an attacker when they are in transit. Digital signatures and message authentication
codes can be used as a mitigation plan.
Information Disclosure: An attacker can trap and expose user policies thereby gain-
ing access to underlying network topology view or user specifications for requested
topology. TLS incorporated in OpenFlow can be used as mitigation plan.
Denial of Service (DoS): An attacker may send user policy packets with high fre-
quencies to the cloud controller, resulting in bandwidth bottleneck. This may lead
to DoS to other users. For the mitigation, bandwidth and data flow control methods
could be used.

Data flow between CloudNaaS Process and Network Devices:
Tampering: An insider attacker may change the device state while in transit from
network devices to network controller. Network state can be tracked and viewed,
while sent from network controller to network devices. Cloud controller messages to
setup virtual switch on host can also be modified in transit. IPSec‘s Authentication
Header (AH) could be used as a mitigation plan.
Information Disclosure: An unauthorized user might extract the details of the under-
lying network topology by sniffing the data packets sent to the cloud monitor.
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Encryption mechanisms could be used as mitigation plan.
Denial of Service (DoS): The user can occupy all the underlying network resources
by flooding the networks with corrupted packets, resulting in DoS to other users. For
mitigation, data flow and bandwidth control mechanisms could be applied.

Interactors—User and Network Devices:
Spoofing: A malicious attacker can act as a CloudNaaS process and may receive
network policy specifications and virtual machine requests on behalf of the authen-
ticated CloudNaaS provider. The user will assume the underlying network is config-
ured according to the specification and may expect desired performance, underlying
CloudNaaS being unaware of it. Proper authentication mechanism such as Kerberos
could be used to authenticate the identity of CloudNaaS process as well as users.
An attacker may hijack the network devices and may change the topology view sent
by network devices to the network controller. Authentication mechanisms such as
Kerberos, IPSec can be used as mitigation plan.
Repudiation: Users are the initiators of request andCloudNaaS is the receiver. Device
status information sent from the network devices to the network controller can be
denied later in time if no logs are present to verify. A proper logging mechanism
could be implemented to mitigate the threat.

Data Stores—Cloud Monitor (CM) and Network Provisioner (NP):
Tampering: Data stored in the network provisioner (communication matrix) and
cloud monitor (switches and link status) could be modified/deleted by an attacker,
resulting in malfunctioning of the underlying network. ACL can be used to provide
access to authorized user.
Information Disclosure: Data stored in the network provisioner and the cloud mon-
itor might be accessed by an attacker, thereby gaining access to underlying virtual
network topology. Data encryption mechanisms could be used to mitigate the risk.
Denial of Service (DoS): Data stored in network provisioner and cloud monitor may
be modified/deleted by an attacker, occupying all the underlying resources or band-
width. An authorized user may experience DoS due to insufficient resources and
limited bandwidth. Digest authentication and packet filtering firewalls can be used
to check authenticity of user policy packets andverificationof communicationmatrix.

2.4.3 Security Evaluation of HPE VCN SDN

To evaluate HPE VCN SDN application with STRIDE, it is first necessary to build
the Data Flow Diagram. The DFD of the application is shown in Fig. 2.7. It is drawn
with the help of the VCN SDN application architecture diagram which is shown
in Fig. 2.4. Being the key element, the VCN SDN application comes as a part of
HPE Helion Openstack distribution. We consider here the Helion OpenStack and
the VCN SDN app as one process and VAN controller as another. The two actors in
the DFD are network devices which send and receive the data and the administrator
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Fig. 2.7 VCN application
DFD

who uses VCN application. Communication flow between administrator and Helion,
Helion and VAN Controller, VAN controller and network device should be taken
into consideration for the security analysis. There is a trust boundary between the
hardware and the VAN controller on one side and between VCN application and the
administrator on the other side.

For evaluation using the STRIDE methodology, the following components and
corresponding threats and mitigation methods are discussed below. Table2.2 shows
a summary of security evaluation of the HPE VCN SDN application.

Process
At first, the HPE Helion OpenStack with VCN SDN process is taken into consid-
eration. All HPE Helion OpenStack version 2.1 example cloud models ship with
Transport layer Security (TLS) [5] enabled on the public API endpoints. TLS proto-
col can be enabled on initial deployment whichmitigates tampering, and information
disclosure threats. Encryption mechanisms are also used for passwords and sensi-
tive data, e.g. for secret keys generated by configuration manager, it uses preCrypto
libraries and Ansible vaults and openSSL for user supplied passwords. HPE refines
access control with AppArmor which is a mandatory access control (MAC) system.
Integration with HPE ArcSight provides the ability to monitor, analyze and corre-
late OpenStack logs to ArcSight logger and supports continuous security monitoring
[27].

VAN Controller process—HPE recommends for Fortinet FortiGate firewall for
SDN controller security.

Data Flows All incoming traffic (whether it is from the administrator or from the
VAN controller) to OpenStack services on the public endpoints are secured using
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Table 2.6 Summary of the security analysis for the components of hp vcn sdn, * denotes threat
can be mitigated by suggested methods, � denotes threat can be mitigated as architecture provides
countermeasures to mitigate, - denotes out of scope

Type Component Threat

S T R I D E

Process VCN SDN(V) � � � � � *

Data flows (O) ↔ (V) � � �
Data flows (V)↔(N) � � �
Interactors Administrator(O) * �
Interactors Network Devices(N) * *

Data Store Openstack db � � �

TLS connections. Use of mandatory access control system (AppArmor) mitigates
information disclosure and DoS threats.

Data Stores HPE helion openstack has its own database. As a part of openstack, use
of TLS and AppArmor ensure integrity, confidentiality and availability.

Interactors
Network devices—HPE network devices also provide security. HPE uses access
control list for filtering traffic to prevent unauthorized access. With authentication
and encryption, use of secure shell (SSHv2) protects against IP spoofing and plain
text password interception. If network devices are not from HPE, they should also
use appropriate authentication mechanism with encryption and digital signatures.
Administrator—To prevent spoofing and repudiation attacks, TLS protocol with
MAC system and encryption methods are implemented in the system. Integration
with HPE ArcSight reduces the time taken to respond to security breaches, if any
and provides faster analysis of logs and events (Table2.6).

2.5 Discussion and Related Work

Some broadly perceived advantages of using SDN for cloud networking come from
the possibility to implement IDS, IPS, firewall, load balancers and much more net-
work functions as software modules in the SDN controller. By doing so, emerging
threats can be addressed quickly by the programming of additional softwaremodules.

Meridian and CloudNaaS both provide interposition of middlebox in cloud net-
work such as Deep Packet Inspection (DPI). Although it is worth noting that interpo-
sition of middlebox is prone to security threats. Meridian uses Libvert virtualization
API and provides consistent interface for querying and controlling underlying net-
work devices. WithMeridians network abstraction model service, users can describe
services such as filter or middlebox traversal policy on a connectivity path. From
the above analysis, Meridian as a cloud controller platform can be proposed over
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CloudNaaS, as security issues are well addressed inMeridian as compared to Cloud-
NaaS by incorporating Libvert virtualization API and network abstraction model
service.

The STRIDE method has been used to accomplish the security analysis of other
SDNprotocols includingOpenFlow,OF-Config, andOSVDB [5], SDNarchitectures
such as PCE, 4D and SANE [18], SDN applications for monitoring andmeasurement
such as sFlow and BigTap [22], SDN cellular applications including OpenRadio and
SoftRAN [21], and SDN security applications [23]. All these above related work also
provide security perspective for SDN concepts and well tested mitigation techniques
to tackle them.

Other than in-built security functions, HPVCN application provides several secu-
rity products which can be used in combination with existing applications to enhance
security. HPE has a portfolio of security products that can be applied to cloud system
and the underlying infrastructure components to enhance security of cloud deploy-
ments and service offering lifecycle [18]. These comprehensive security solutions
are Fortify Software Security Center (SSC), Software Code Analyzer (SCA),WebIn-
spect [10] for Application Security, TippingPoint Next-Generation Intrusion Preven-
tion System (NGIPS), Next-Generation Firewall (NGFW) [11] for Network Security,
ArcSight Logger [9] for Security Information and Event Management (SIEM) and
HPE Atalla Cloud Encryption [19] for Data / Information Security.

2.6 Conclusion

Two SDN cloud networking platforms, Meridian and CloudNaaS, and one cloud
application, HPE VCN SDN, are analyzed using the STRIDE method. This paper
analyzed threats to these applications and suggests security mechanisms to mitigate
the identified threats. Basic concept of each architecture is explained in brief. Data
flow diagrams (DFD) are used to analyze the system from the security perspective.
Each security perspective is analyzed in depth and securitymechanisms formitigation
are suggested.

New protection mechanisms must be analyzed in depth before their deployment,
alongwith other threatmodeling framework such asDREAD, Trike andmany others.
The security patterns observed can also be applied to other SDN applications, after
analyzing in terms of security strength before deployment.

Being in the top organization ranking for cloud providers, HPE has already taken
care of many security related issues. HPE Helion OpenStack has many built-in secu-
rity controls, but the customer must take responsibility for configuring the network
devices that integrate Helion services into an existing data center environment. This
includes defining firewall rules at the edge of the HPEHelionOpenStack deployment
(to protect against external abuse) as well as defining router rules within the HPE
Helion OpenStack deployment (to protect against insider abuse or administrative
errors).
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HP VCN SDN application has taken security measures into consideration but
still customer needs not only to configure network devices, operating system and
controller appropriately but also should use other security applications to enhance
the security. Here, deployment configuration plays an important role. The burden on
the customer can be reduced by providing and enabling some of the security features
(e.g. TLS) by default.
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Chapter 3
Security Analysis of SDN Applications
for Big Data

Parvez Ahmad, Sven Jacob and Rahamatullah Khondoker

Abstract Big Data is a term that describes structured and unstructured large data
sets. One of the frameworks to store, process and analyze this data is ApacheHadoop.
Software Defined Networking (SDN) enhances the performance aspects of Hadoop
by optimizing bandwidth utilization and improving network management. Security
attacks on the SDN controller and switches can compromise the whole Hadoop sys-
tem, that may cause loss or manipulation of valuable data.We selected the three most
advanced approaches that focus on accelerating the data transfer between the cluster
nodes. FlowComb, Pythia and Hadoop-Acceleration (Hadoop-A) focus mainly on
optimizing performance but do not consider any security aspect in their design. This
motivates us to analyze the security aspects of these SDN applications. This paper
focuses on the analysis of security features with STRIDE threat modeling technique.
All approaches need improvements to gain security. We find that Pythia is natively
themost secure approachwhile other approaches can be secured by deploying add-on
security mechanisms.

3.1 Introduction

SDN [13] is an approach aimed at making the network agile by separating the con-
ventional data plane from the control plane which allows network engineers and
administrators to manage data traffic from a centralized control point. In simple
terms, the fundamental idea behind SDN is that multiple ordinary switches are con-
nected to an intelligent controller. Although this separation provides flexibility to the
networking world, which enable a whole new level of security threats.
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The OpenFlow [15] protocol is an open standard protocol developed by Open
Networking Foundation (ONF) and is designed for SDN. ONF considers OpenFlow
as the first standard communication protocol that enables an SDN Controller to
interact with the forwarding plane of network devices. It provides a platform to
directly access and manipulate the forwarding plane of network devices such as
switches and routers, both physical and virtual (hypervisor-based).

Since the number of users has grown tremendously in recent past, platforms such
as social media, e-commerce, search engines, sensors etc. generate huge amount of
data which is coined as Big Data. The differences with traditional data environments
are: First, the way data is collected, aggregated and analyzed. Second, the infrastruc-
ture used to store and process Big Data. Third, the technologies applied to analyze
large data sets. Big Data can acquire insights for better decision making in critical
development areas such as health care, energy, economic productivity, natural dis-
aster prediction etc. Since this data is highly sensitive to business, it is important to
consider the security aspects while designing the architecture.

To analyseBigData sets quickly and efficientlyGoogle’sMapReduceParadigm[6]
has been well established. Hadoop [33] is an open source implementation of the
MapReduce Paradigm. Hadoop provides a distributed storage system called Hadoop
Distributed File System (HDFS) and an analysis system called MapReduce. In gen-
eral, Hadoop works by dividing the data processing into mainly three phases: map,
shuffle/merge and reduce phase. Input is taken from HDFS and divided into many
splits. For every split one MapTask runs and produces a list of <key, value> pairs.
Map Output Files (MOF) are written to local storage. Shuffle phase deals with the
transfer/sorting of MOFs to the nodes where reducer is scheduled to run. Before
handing over the output to ReduceTask, the MapReduce framework sorts and groups
the key-value pairs by key. Finally, each ReduceTask processes the segment and the
final output is written to HDFS.

The rest of this paper is organized as follows. Section3.2 provides themotivation to
use SDN with Hadoop. In Sect. 3.3, several SDN applications are briefly described.
After that, several security analysis techniques are mentioned in Sect. 3.4 and the
results of our security analysis are shown in Sect. 3.5. Suggestions for future works
are highlighted in Sect. 3.6 and an overall conclusion is drawn in Sect. 3.7.

3.2 Why to Use SDN for Handling Big Data?

Hadoop framework has several loopholes in terms of performance as shown by
Wang et al. in [32]. First of all, there is a serialization barrier between shuffle/merge
and reduce phases. ReduceTasks wait until all MapTasks are executed and the Map
Output Files (MOF) are available. At every ReduceTask, when the total data size is
greater than the memory threshold, smaller data sets are merged. Reduce function
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starts only when the merge/shuffle process is finished. Due to this serialization,
there will be a delay in the execution of the reduce phase. Second, repetitive merge
demands multiple disk access. The ReduceTask has to keep the data segments into
local disk when the number of segments or their total size goes over a threshold.
If more segments arrive in late, the ReduceTask has additional disk access which
degrades the performance. Since Hadoop is developed in Java, it has no Remote
Direct Memory Access (RDMA) support, which could lead to high speedup [32].

As SDN allows changing traffic patterns and provides access to bandwidth on
demand. Researchers used these concepts to build robust Hadoop system such as
FlowComb, Pythia and Hadoop-A. Since they allow the network controller to be
programmable, this opens the door for intruders to perform attacks. The centralized
controller is a single point of attack and failure. One possible attack is Denial of Ser-
vice (DoS) where an attacker injects the network with enormous amount of packets
that can exhaust system resources such as bandwidth, memory, computing power etc.
This attack is the most threatening because it can paralyze the entire system. Another
harmful attack is spoofing, attacker can gain access to the cluster andmanipulate sen-
sitive data by exploiting the forwarding plane. Attacker may even modify some of
the code to redirect control of the traffic in such a way that it could exfiltrate data
where attacker can sniff it. In this paper, several security issues in these Big Data
applications are analyzed thoroughly.

3.3 SDN Big Data Applications

An overview of the following SDN applications can be seen in Table3.1.

3.3.1 FlowComb

FlowComb [5] helps Hadoop to improve its job processing and eradicates clogging in
the network by predicting network transfers before the scheduling starts and redirects
the traffic to paths where sufficient bandwidth is available. Figure3.1 shows the main
components of FlowComb.

Table 3.1 Overview of the SDN applications for Big Data

SDN application Controller used Functionality

FlowComb [5] NOX Centralized decision engine finds alternative path

Pythia [20] OpenDaylight Uses a middleware to schedule flow

Hadoop-A [32] RDMA Schedules flow to improve performance
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Fig. 3.1 Architecture of
FlowComb

Predictor: FlowComb is equipped with software agents which are installed on each
server in the Hadoop cluster. They basically scan the Hadoop logs to find out which
MapTask has already finished and which transfers have been started. Then, it sends
this information periodically to the Flow Scheduling module.

Scheduler: FlowComb’s Scheduler detects if any of the current or pending transfer
is clogging the network on their default path and schedules them to a new path.

Controller: FlowComb’s Controller constructs the link to program the switches. It
maintains a map of the network with all switches and the paths along with their
current flow.

3.3.2 Pythia

Pythia [20] is a system that employs real-time communication intent prediction for
Hadoop and uses this predictive knowledge to optimize the data center network at
runtime, aiming at accelerating Hadoop’s MapReduce.
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Fig. 3.2 Architecture of Pythia

Figure3.2 shows the architecture of Pythia. It has two components:

(a) Hadoop instrumentation middleware which predicts future shuffle transfers at
the level of mapper/reducer server pair during MapReduce runtime and

(b) an orchestration entity that ingests—on a per job basis—future shuffle com-
munication intent events and optimizes the network during runtime, aiming at
reducing total job completion time. The Hadoop cluster is deployed on a set of
server racks (Rack-1, Rack-n in Fig. 3.2). Intra-rack data communication takes
place via ToR (Top of Rack) switches that all in-rack servers connect to and
inter-rack communication is provided by data communication network. It lever-
ages the programmability offered by SDN using OpenFlow protocol to achieve
a fine-grained, timely and efficient allocation of network resources to shuffle
transfers.

Initially, the instrumentation process is started at every server hostingTaskTracker.
The instrumentation middleware constantly monitors its local TaskTracker for job
progress activity and provides the mapping of Mapper and Reducer identification
from Hadoop namespace to the network location. Hadoop delays scheduling of
Reducers until few Mappers have completed mapping. After the intermediate out-
put is generated, the instrumentation process receives notification and decodes the
file containing intermediate output and calculates the size of <key, value> pair that
corresponds to each Reducer. Then it sends this predicted shuffle size in a message
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together with ID of respective MapTask to the Pythia server entity. A key-value pair
is a set of two linked data items: a key is a unique identifier representing an item of
data, and value is the content.

Pythia network scheduling module is implemented within OpenDaylight (ODL)
controller [16]. ODL obtains information about physical network topology, current
link-network utilization and the application communication intention. Upon receiv-
ing this information, it computes an optimized allocation of flows to network paths,
such that shuffle transfers are reduced. It then maps this logical flow to the physical
topology along with forwarding rules on the switches in the network.

3.3.3 Hadoop-A

There exist two approaches named Hadoop-A. Wang et al. showed an approach in
[32], which is based on the RDMA [24] protocol and the second approach from
Narayan et al. in [19] uses a Floodlight controller. For our security analysis, we are
taking the first architecture into consideration as it eliminates one of the loopholes
in Hadoop which was discussed in Sect. 3.2.

Hadoop-A achieves its speedup by utilizing RDMA-capable interconnects over
QuadData Rate (QDR) infiniBand and alternates datamerge algorithmswhile retain-
ing the existing Hadoop user interface. QDR infiniband is a computer-networking
communication standard used in high performance computing.

It consists of two plugin components, MOFSupplier and NetMerger which are
configurable and are depicted in Fig. 3.3. Both are multi-threaded C++ implementa-
tions which provide RDMA-capable interconnects and enable improved data merge
algorithm. The choice of C++ instead of Java is to provide flexibility of enabling
RDMA connection mechanism which Java does not support and to avoid overhead
of Java Virtual Machine (JVM). MOFSupplier is equipped with a RDMA Server
which takes care of the fetch requests coming from ReduceTasks. It also has a Data
Engine which does the indexing and deals with the data files for all MOFs that are
generated by local MapTasks.

Hadoop-A provides event channels between MOFSupplier/NetMerger and
Hadoop in order to synchronize Java components. They also help in coordinating
activities and monitor progress of both components. Run-time progress reports and
execution statistics are stored in the Hadoop log files which help in monitoring and
troubleshooting execution of Hadoop jobs.

The Hadoop-A shuffling protocol comprises of RDMA Server in MOFSupplier
andRDMAClient inNetMerger.Connections are established betweenRDMAServer
and Client using InfiniBand Reliable Connected services. Once connection is estab-
lished, data is transferred through pre-registered memory buffers. The Data Engine
in MOFSupplier module always prefetches data segments by retrieving data directly
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Fig. 3.3 Architecture of Hadoop-A

from the diskwhen they are not yet available inmemory. Such data transfer is realized
by a direct request and reply protocol. RDMA Client sends a request with informa-
tion of designated memory buffer, and then RDMA Server finds the data and writes
it to the client buffer using zero-copy RDMA write operation.

3.4 Security Analysis Methodologies

Several threat and vulnerability analysis tools andmethodologies are available which
can be used for security analysis such as PASTA [31], Trike [28], Attack tree [29],
UMLSec [10], OCTAVE [1], Misuse Case [2], CC (Common Criteria) [18], DREAD
[17], CORAS [14], and STRIDE [8].

Out of these tools andmethods, we found STRIDE themost appropriate candidate
for the security analysis. Some reasons against other methodologies are given in the
following.

PASTA is an attack simulation methodology where user needs to know the def-
inition and technical scope of the application and system from inside to work. The
scope is limited to designers and developers. Trike is a threat modeling tool which
works at the design phase as it is requirements centric and involves stakeholders.
On the other hand, Attack tree, available both open source and commercial software
versions, is more attacker oriented than system oriented so it does not fit when it
comes to entire system analysis. UMLSec is a model based approach where each
component of the system is analyzed using stereotypes which requires to know the
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source code. OCTAVE is a risk assessment tool which focuses on organizational
risk not the technical risks. Misuse Case is a business process modeling tool based
on expert guidance of various fields like architecture, design, and testing. CC is a
framework for evaluating information security products which is intended for larger
organizations. CC neither specifies standardization rules nor directly provides a list
of product security requirements or features for specific products. DREAD is also
used for risk assessment, but it was found that the ratings given to the threats are
inconsistent. When it comes to risk analysis methods, CORAS is used for organiza-
tional purpose as it needs customer interaction. STRIDE deals with application level
threats and categorizes them by decomposing the application into individual com-
ponents, then identifies threats and suggests mitigation techniques. It can be used to
perform security analysis of the application even without having any implementation
of it. So it fits perfect for our analysis.

STRIDE stands for six threat categories: Spoofing, Tampering, Repudiation,
Information Disclosure,Denial of Service and Elevation of Privilege. This is a threat
modeling technique proposed by Microsoft.

Spoofing is impersonating an user. Proper authentication should be the security goal.

Tamperingmeans modification of data without proper authorization. Integrity is the
related security property.

Repudiation is performing malicious action without leaving a trace of it. Non-
repudiation should be the target property.

Information Disclosure is the exposure of information to unauthorized users. The
corresponding security property is confidentiality.

Denial of Service (DoS) is an attack to cause unavailability of services. The related
property is availability.

Elevation of Privilege is the extension of user access rights. For example, if an user
has ‘read’ access, somehow extends this to ‘read-write’ permission. This corresponds
to the security property authorization.

In order to analyze security threats considering the aforementioned threat cate-
gories, a visualization is used which is called Data Flow Diagram (DFD) for repre-
senting different components of the system and their interactions. Table3.2 shows
the different subjects of a DFD along with their graphical representation.

Initially, we will merge different processes that are logical in the same system into
one process. Each component of a system might be prone to a subset of threats. For
example, data flows and data stores are prone to Tampering, Information disclosure
and DoS attacks. Processes are prone to any kind of attacks. And interactors are
prone to Spoofing and Repudiation.
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Table 3.2 Components of DFD
Component Symbol Threats

Data Flow Tampering, information disclosure, DoS

Data Store Tampering, information disclosure, DoS

Process All
S.T.R.I.D.E.

Interactor Spoofing, Repudiation

Trust Boundary

3.5 Security Analysis of FlowComb, Pythia and Hadoop-A

The security analysis of FlowComb, Pythia and Hadoop-A is discussed in the fol-
lowing sections.

3.5.1 Security Analysis of FlowComb Using STRIDE

The Data Flow Diagram (DFD) of FlowComb is shown in Fig. 3.4. We merged
the three parts of FlowComb into one process. We model the Hadoop instances as
interactors. The FC-Agent reads the logs from Hadoop and communicates with the
Flow Predictor which was merged into the FlowComb process. The Flow Controller
inside FlowComb communicates with the Switches and vice versa. As theAgents run
on remote machine, we put a trust boundary between the Agent and the FlowComb
process.

The NOX SDN [7] controller is an open-source platform that simplifies the
creation of software for controlling and monitoring networks. It supports Admis-
sion/Access control policy, Directory integration, Network monitoring and logging.
The default security features of the NEC PF5240 OpenFlow switches are filter
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Fig. 3.4 DFD of FlowComb

Table 3.3 STRIDE Threat Matrix for FlowComb. A * indicates mitigation mechanism suggested.
No threat has been mitigated natively

Type Component S T R I D E

Interactor Hadoop * *

Switch * *

Data Flow Hadoop → FC-Agent * * *

FC-Agent → FlowComb * * *

FlowComb ↔ Switch * * *

Process FC-Agent * * * * * *

FlowComb * * * * * *

(L2/IPv4/L4) and interruption of relays between ports. The security analysis of Flow-
Comb using STRIDE is shown in Table3.3.

Spoofing The FC-Agent is vulnerable to spoofing, because the Flow Predictor com-
municates with the FC-Agents and schedules the traffic accordingly. If Hadoop is
spoofed, the adversary can access the Hadoop logs and even HDFS. As HDFS prox-
ies are validated using IP based authentication, if somebody impersonates the user,
he can manipulate valuable information or may even run malicious programs on
the cluster. As FlowComb modules do not come with a prevention mechanism for
such attacks, we propose the use of Kerberos authentication as in [21]. The Switches
can be spoofed which can be mitigated by using a SDN Controller with Authentica-
tion, Authorization and Accounting (AAA) Services as OpenDaylight does. Similar
countermeasures can be used to prevent that someone can impersonate as the FC-
Controller and administrates the switches.

Tampering The centralized NOX controller is one of the main point of attack. If
the controller is compromised, the attacker can disrupt the data path and the whole
network gets compromised as it maintains a map of the network. The attacker may
get access to a node and manipulate the data. The attacker can even get access to
the Master Node, retrieve the information and location of all the clusters in the net-
work and tamper them. This can be prevented if the access to the controller is tightly
controlled. There are various Public Key Infrastructure (PKI)-based authentication
protocols that can be used to mitigate this threat. A PKI is a system that can cre-
ate, distribute and verify digital certificates. FlowComb uses OpenFlow protocol to
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communicate and the data passes through the NOX controller. OpenFlow comes
with an security feature that allows the use of Transport Layer Security (TLS). TLS
protects data from tampering and information disclosure by encrypting the data and
uses public key cryptography, which ensures a private communication between the
entities.

Repudiation A compromised process or interactor can alter the network flow and
possibly deny his actions. If spoofing is taken care, then the threat of repudiation can
be ignored as Agent lies inside the Hadoop cluster and we have already suggested
authentication mechanisms for the Hadoop cluster. The AAA-module provides a
logging mechanism. Thus, the logged actions of authenticated actors are retraceable.

Information Disclosure An attacker may gain information on the network topology
and settings (FlowComb↔ Switch), Hadoop’s actions and logs (Hadoop, FC-Agent,
FC-Agent ↔ Flowcomb) and all these information if FlowComb is affected by
information disclosure. To protect the data in transit, we suggest the use of TLS.
Hadoop, FC-Agent and FlowComb should be secured by the underlying operating
system, which prohibits unauthorized data access.

Denial of Service In case the controller or data nodes get offline, the performance
of the Hadoop cluster will also suffer from this. This can be prevented by separating
the MapReduce process from the Authentication process. Authentication can be an
independent process. DoS may affect the controller, scheduling of flows and gener-
ation of a new path but the normal Hadoop operation will carry on as it is. Another
mitigation strategy suggested by Rajat et al. [11] is to limit the number of packets
sent to the controller. If the controller detects that it is receiving more messages than
it can handle, it could install a rule on one or more switches instructing them to send
messages at a lower rate. OpenFlow is vulnerable to DoS which according to [12]
can be mitigated by bounding the number of requests by using access control also
called as throttling.

Elevation of Privilege A compromised FC-Agent might install malicious software
on the host. This can be mitigated by executing the process with least possible rights.

Without a secure network, an attacker can easily identify the targets, gain control
over the network, access and attack server, modify contents in the clusters and also
modify the metadata of the name node, insert malware and monitor traffic. It is
extremely important to take the security measures mentioned above to avoid such
damages.

3.5.2 Security Analysis of Pythia Using STRIDE

The basic concept of Pythia is similar to the idea of FlowComb, thus the DFD seems
to be very similar. As the orchestration entity and the OpenDaylight Controller are
closely connected, we merged them into one process as seen in Fig. 3.5. The middle-
ware which resides on the Hadoop machines is a process beyond our trust boundary
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Fig. 3.5 DFD of Pythia

Table 3.4 STRIDE Threat Matrix for Pythia.A * indicates mitigation mechanism suggested and a
� indicates threat has been mitigated

Type Component S T R I D E

Interactor Hadoop * *

Switch � �
Data Flow Hadoop→ Collector * � �

Collector ↔ Pythia � � �
Pythia ↔ Switch � � �

Process Runtime Collector � * � * � �
Pythia � * � � � �

like the FC-Agent in the previous model. The switches used are TOR switches which
are OpenFlow enabled and hence use the OpenFlow protocol. Any compromise in
the controller can lead to devastating consequences because the attacker is able to
control the entire network. The ODL controller is one step further and established
a security team to address the security issues [26]. Some of the security issues and
their fixed version of ODL can be found in [3].We have constructed a STRIDE threat
matrix for Pythia as shown in Table3.4.

Spoofing Itmaynot bepossible to spoof theOpenDaylight controller or the connected
switches because the AAA service is already embedded in the controller platform
[3]. AAA is implemented as a token(-claim) based authentication. User applications
need this token to access controller resources, which prohibits data access by an
unauthorized user. Every activity of the user is logged by an accounting feature so
any malicious attempt made by the user can be easily traced. To secure the run-
time Collector and the Hadoop against spoofing, we suggest a mutual authentication
beween the communication parties.

Tampering Sungmin Hong et al. show how to manipulate the network topology
information of ODL in [9]. They suggest using TopGuard, which is a security exten-
sion to the SDN controllers that provides automatic real time detection of Network
Topology Poisoning Attacks. The data between the controller and the switches is
secure as OpenFlow could be enabled with the TLS feature.

Repudiation The accounting feature of the AAAmodule records all access requests
made by an user or an application [30]. This mitigates repudiation in ODL. In case
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of Hadoop, a malicious action can alter network paths. These actions will be logged
as actions from the respective middleware.

Information Disclosure Vulnerabilities concerning the MD-SAL API [25] or the
NETCONF protocol [4] had been closed in recent OpenDaylight releases [23]. The
runtime collector has potentially sensitive data on the hadoop computations. To mit-
igate the risk of the runtime Collector, we advise to set the least possible permissions
to the tasks and its data.

Denial of Service In ODL, the DoS threat is tackled by the application Defense4All
which detects attacks against its NBI, SBI, processes, and data store as shown by
Arbettu et al. in [3]. The authentication of the AAA module ensures that in case of
an attack only high privileged user has access to the network resources.

Elevation of Privilege This threat could be mitigated by the AAA module.

3.5.3 Security Analysis of Hadoop-A Using STRIDE

Hadoop-A implements the RDMA protocol in order to accelerate data transfers and
improves data merging. RDMA allows data transfers between the main memories of
different machines without involving the processors, caches or operating systems.
This leads to high-throughput and low-latency. Figure3.6 represents the DFD of
Hadoop-A. The trust boundary lies between the Hadoop cluster and RDMA clients:
MOF Supplier and NetMerger. The RDMA clients lie outside of the trust boundary
because they contain RDMA components which are connected to untrusted users.
The results of our security analysis using STRIDE is shown in Table3.5.

Spoofing Impersonating a legal RDMA peer is possible by spoofing a valid IP
address.Anetwork-based attacker can do this by blind attack [27] or simply establish-

Fig. 3.6 DFD of Hadoop-A
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Table 3.5 STRIDE Threat Matrix for Hadoop-A.A * indicates mitigation mechanism suggested
and a � indicates threat has been mitigated

Type Component S T R I D E

Interactor Map Task * *

Reducer Task * *

Data Flow Map ↔ MOF � * *

MOF ↔ NetMerger * * *

NetMerger ↔
ReducerTask

� * *

Process MOF Supplier * * * * * *

NetMerger * * * * * *

ing an RDMA stream with the user [24]. This enables the attacker to write data into
the victims memory and execute malicious code. End-to-end authentication mecha-
nisms such as IPSec AH extension or ULP authentication prevent these attacks. In
case of the interactors Map Task and Reducer Task, this threat would mean to gain
write access for the corresponding areas in the main memory. This should be tackled
by the operating system.

Tampering A peer can write to non-allowed memory locations using a buffer over-
flow. This can be used to execute malicious code. The RDMA Network Interface
Card (RNIC) has to check the corresponding bounds to prevent this attack. In case of
the data flow between the interactors and the RDMA clients, this should be protected
by the operating system as no other process should have access to these memory
regions.

Repudiation An attacker may insert malicious data into the memory of an RDMA
peer. If an authentication mechanism is used, then the traffic can be logged and
malicious behavior can be traced back to an RDMA client with corresponding
Map/Reduce-Task.

Information Disclosure Information of the actual Hadoop computations might be
accessed if this threat is not mitigated. The memory areas that are used for the
DRMA service should be zeroed before advertised to mitigate the risk of information
disclosure. The connection between the RDMA clients should be encrypted with
IPSec ESP extension. It is possible to access buffers that were previously advertised
but revoked meanwhile. The RNIC has to tackle this flaw by ensuring that only
actual shared memory can be accessed. The connection between the RDMA clients
and interactors resides in the same machine assumed to be sufficiently secure.

Denial of Service The RDMA protocol is susceptible to DoS attacks as a TCP SYN
attack. This can stop Hadoop from working. To mitigate this threat, the allocation of
resources must be done by a Privileged Resource Manager. This prevents peers from
accessing more than the allocated resources.
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3.6 Discussion and Future Work

Using the results of the security analysis, we are able to identify various threats and
their mitigation strategies. By performing the attacks on the experimental setup, we
can get concrete results and enhance the security features. The SDN applications
for Big Data are still an emerging topic and require security considerations before
making them commercially deployable. Although FlowComb, Pythia and Hadoop-A
are similar in their application functioning but they have differences as well. Flow-
Comb utilizes application domain knowledge for flow scheduling. Pythia leverages
application intelligence, taking flow criticality into consideration and incorporates
flow priority as a criterion in network optimization. Use of software switches in
FlowComb is likely to exhibit high latency as it uses single network over subscrip-
tion ratio (1:10 for 1Gbps server NICs). Whereas Hadoop-A is purely dependent on
RDMA protocol over QDR infiniBand which in fact provides high-throughput and
low-latency in contrast with traditional copy operation used in Hadoop. Future work
will be to evaluate the performance of the suggested implementations.

3.7 Conclusion

Wehave analyzed FlowComb, Pythia andHadoop-ABigData architectures using the
STRIDEmethod. Their commonality is that they provide performance optimizations,
but security is not part of their design.

With our suggestions in Sect. 3.5, the design holes could be covered to gain secu-
rity. FlowComb and Hadoop-A natively do not provide as much security services
as Pythia does. Pythia uses an OpenDaylight Controller [22] which implements an
Authentication, Authorization and Accounting (AAA) service, thus Pythia natively
provides some security mechanisms. Since FlowComb achieves similar performance
improvements as Pythia by providing less security mechanisms, we suggest to use
Pythia or Hadoop-A. Pythia can speedup Hadoop by 46% while Hadoop-A doubles
the data processing throughput. Implementing Pythia together with our security sug-
gestions could be less expensive in comparison to implementing Hadoop-A with our
suggestions.
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Chapter 4
Security Analysis of SDN WiFi Applications

David Artmann and Rahamatullah Khondoker

Abstract Mobile devices like smartphones, tablets and laptops demand highly-
available and ubiquitous wireless networks, also named as Wireless Fidelity (WiFi)
or Wireless Local Area Network (WLAN). The steadily rising amount of mobile
devices implies new requirements claimed by administrators of enterprise wireless
networks and owners of guest WiFi spots, such as the secure management of client
authentication or the ability of load balancing. This work analyzes Odin, which
solves the client association problem of wireless clients and OpenWiFi, a proto-
typical approach that separates authentication, access and accounting to raise the
efficiency and lower the administrative effort for guest WiFi owners. Both technolo-
gies utilize SDN to regulate their objectives. This does not only bring benefits, but
also implies new security aspects. Especially because SDN in WiFi is a young sec-
tor, developers need to make sure that their software ensures a proper security level.
Subsequently, both technologies are evaluated by applying the threat modeling tech-
nique STRIDE. The decision on this framework is elucidated by comparing it against
other possible alternatives. Our analysis reveals that both projects do not consider
security at the beginning called security by design. Fortunately, Odin and OpenWiFi
can be extended by suitable countermeasures to mitigate relevant threats. These are
proposed in the respective subsection of their security analysis. Conclusively, opti-
mization suggestions pertaining to both technologies are made.
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4.1 Introduction

With faster connection capabilities of multi-user-multiple-input and multiple-output
(MU-MIMO), stronger performing hardware and steadily upcoming amount of
communicating devices, wireless network infrastructures have become increasingly
complex. Especially, the growth in mobile devices and upgrades of wireless con-
nection standards like IEEE 802.11ac imply challenging requirements, such as the
proper management of the association state of clients or offering comprehensible
accounting and authentication of clients, which need to be accomplished by a new
approach in networking.

Software Defined Networking (SDN) offers logically centralized control capa-
bilities, an application programming interface (API) for network administrators to
dynamically initialize, control, change and manage network behavior and a flow-
based paradigm that is predestined for highly scalable wireless networks [10]. In
detail, SDN decouples the data plane from the control plane, as visualized by control-
and infrastructure layer in Fig. 4.1. OpenFlow, as utilized communication protocol
between these layers exploits the fact that most Ethernet switches share a common
set of functions. OpenFlow offers an interface to program the flow table in differ-
ent switches and routers to dynamically add, edit and remove entries in the flow
table [15]. The application layer residing on top of the architecture, consists of soft-
ware that uses SDN communication services and utilizes an interface to the control
layer via the northbound API. For example, the Odin Master, which will be intro-
duced and explained as a central instance of the Odin Framework in Sect. 4.3, is such
an application. The control plane is responsible for configuring the switch and routes,
while the data plane forwards packets according to the decision of the control plane.
Centralized instances, hosting the control layer logic, are called SDN controllers
and take care of network route computation, configuration of network devices and

Fig. 4.1 Architecture of
software defined networking
(based on [14])
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management of access control. Network elements (such as switches, routers) capable
of packet switching and forwarding reside in the infrastructure layer.

Although the usage of this technology enables innovative ways in networking,
it also implicates security considerations which should be taken into account. If an
attacker is able to get control of a SDN controller, he or she is also able to reconfigure
thewhole network, respectively all components that rely on the accurate functionality
of the controller instance.

This paper analyses the security capabilities of two selected technologies that
utilize SDN in their architecture to determine if they implement a proper security
level. For this purpose, different threat modeling frameworks are introduced in the
next section and compared. This validates the most qualified approach which is
subsequently used for the security analysis of Odin and OpenWiFi.

The remainder of thiswork is organized as follows. To justify our decision of using
STRIDE, several possible security analysis frameworks are presented and compared
in Sect. 4.2. Afterwards, Odins technology is introduced in Sect. 4.3.1 followed by
its security analysis in Sect. 4.3.2. Similarly for the second technology, OpenWiFi,
at first its architecture is introduced in Sect. 4.4.1 followed by the security analysis
of its architecture in Sect. 4.4.2. Conclusively, the results of both security analyses
are used while comparing Odin and OpenWiFi in Sect. 4.5. Lastly, the suggestion
of possible optimization steps which exploit existing synergies of both technologies
concludes this work.

4.2 Methodology

This section introduces STRIDE [12] which is used to analyze the security of Odin
and OpenWiFi and gives reasons on its decision.

STRIDE is a threat modeling method developed by Microsoft and is a part of
its Secure Development Lifecycle. By classifying threats in categories, STRIDE
enables to identify vulnerabilities and threats in analyzed systems and their software.
There are several other threat modeling techniques like OCTAVE [5], PASTA [1] or
TRIKE [25].While thefirst one is a complex andheavyweight solutionwhich focuses
on organizational risk but not on technical risk, the second is an attack simulation
methodology where users need to be aware of the definition and technical scope of
the respective application. This requires knowledge of the source code and therefore
limits this approach to developers. Lastly, the third technique focuses on the design
phase because it is a requirements-centric approach and involves stakeholders. We
decided to use STRIDE because it is lightweight and focuses on technical risk anal-
ysis. It is used to analyze and evaluate the security of Odin and OpenWiFi. STRIDE
is predestined for this task because it does not assume any implementation details of
the software to be evaluated. Additionally, it does not depend on a risk model which
would in turn hinge on aspects like operational condition, usage environment and
customers needs. Thus, it fits for evaluating the security of software in a prototypical
state like Odin and OpenWiFi. STRIDE is based on a threat modeling methodology
and Data Flow Diagrams (DFD). STRIDE is an acronym for the listed threats in
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Table 4.1 Threats and security properties [12, Fig. 3]

Threat Security property

Spoofing Authentication

Tampering Integrity

Repudiation Non-repudiation

Information disclosure Confidentiality

Denial of Service (DoS) Availability

Elevation of privilege Authorization

Table 4.2 Symbols used in DFDs and their threats [12, Fig. 4]

Name Symbol Susceptible to

Data Flow

Tampering,

Information disclosure,

DoS

Data Store

Tampering,

Information disclosure,

DoS

Process

Spoofing, Tampering,

Repudiation, Information disclosure,

DoS, Elevationofprivilege

Multi-process

Spoofing, Tampering,

Repudiation, Information disclosure,

DoS, Elevation of privilege

Interactor
Spoofing,

Repudiation

Trust Boundary

the following Table 4.1. Each of them is mapped by a security property which is
necessary to be available to guard against these threats.

The basic procedure of STRIDE is to decompose a system in its components
and show that each of the components is not susceptible to relevant threats. DFDs
are used to visualize the interaction of components in the decomposed system. The
diagram consists of standardized symbols which are shown in Table 4.2.

The one way arrow of a Data Flow represents data in motion e.g., over a network
connection. A Data Store which is visualized by two parallel lines describes data
at rest like files on the hard disk or databases. Processes as well as Multi-processes
describe programs currently being executed. An Interactor, expressed by a rectangle,
is used for endpoints in the system like web services, servers or people. Borders
between untrusted and trusted elements are represented by Trust Boundaries.
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Table 4.2 and the DFDs constitute a framework for investigating how the evalu-
ated systems might fail. The following sections describe both, Odin and OpenWiFi.
Afterwards, the respective security analysis is accomplished by analyzing the DFDs
and the threat model.

4.3 Odin

This section introduces Odin as a technology which solves the client association
problem (is explained in the following section) by usingSDNand analyses its security
with the already envisaged threat modeling technique STRIDE.

4.3.1 Technology

Odin [24] was introduced as a Hot Topic of SDN workshops in August 2012 on the
Special Interest Group onData Communication (SIGCOMM). Suresh et al. designed
this technology to overcome specific problems of wireless networks. In detail, the
IEEE 802.11 standard allows the client to decide which access points (AP) it wants
to be associated with [26, P.29], hence the infrastructure is not aware of this. Fur-
thermore, the dynamic, broadcast and time-varying nature of the wireless medium
in combination with the association state machine at the AP requires to keep track
of state information changes constantly. Lastly, not only associated, but also inter-
fering IEEE 802.11 devices need to be managed. As a fundamental element and to
gain simplicity for programmers, Odin entails Light Virtual Access Points (LVAP).
A LVAP constitutes an abstraction layer to separate the association state from the
physical AP by virtualising it. This moves the association decision on the side of the
infrastructure, enables programmers to handle several clients connected to one AP
as logically isolated and gives the illusion of possessing its own AP to every client
by assigning an unique Basic Service Set Identification (BSSID).

Figure 4.2 visualizes the architecture ofOdin and is explained as follows. To target
fully centralized deployments with a SDN controller, Odin sets one Master as an

Fig. 4.2 The Master as OpenFlow application and the Odin Agents running on APs build the
architecture of the Odin framework (based on [24, P.2])
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OpenFlow application on top of a Floodlight SDN controller [21], communicating to
Switches and APs. TheMaster has a global view of the network including connected
clients andupdates the forwarding tables onAPs andSwitches byusing theOpenFlow
protocol. Odin Agents, together with the Master implement a WiFi Split-Media
Access Control (MAC) [4, P.7] which divides MAC functionalities between both
parties. The Agents additionally contain the logic for LVAP handling. A Master
controls Agents over a dedicated control channel via Transmission Control Protocol
(TCP), which is established at boot time and allows it to add or remove LVAPs
and query for statistics. Apps reside on top of the Odin Master which are allowed
to inquire and examine those statistics. Each application is operated in a separate
thread scheduled by the Master.

In the following, two figures and their respective explanation will contribute to a
better comprehensibility of how Odin works. Given numerations in the figures will
guide the reader through the process.

In Fig. 4.3, two clients are shown, Alice and Bob, connected to their exclusive
LVAP. Those Light Virtual Access Points are hosted on Odin Agent 1 which runs on
physical AP 1. This specific Agent as well as Agent 2, hosted on AP 2, are connected
to the Odin Master via separate control channels. The use case of Figs. 4.3 and 4.4
implies a physical movement of Bobs client so that he has a stronger signal to AP
2. Going along from number 1 to 2 brings the mentioned signal strength variances
on the APs. Going further along from number 2 to 3 the Odin Agent on the AP is
queried for the signal strength of Bobs client by the Master. After the changed state
is recognized, the Master decides to move Bobs LVAP in the custody of Agent 2.

Fig. 4.3 LVAP migration because of client movement, part I

Fig. 4.4 LVAP migration because of client movement, part II
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After the Master is informed as described before and is depicted in Fig. 4.3, it
removes Bobs LVAP from AP 1 and adds it to AP 2, shown by number 4 of Fig. 4.4.
If Bobs client has not been associated with the network before, a new LVAP on the
APwhich received the probe request would have been spawned, instead of moving it.
Because Odin is fully transparent to the client, it does not witness this whole process.

While Sect. 4.3.1 introduced the technology of Odin the following section will
document its security analysis by applying STRIDE.

4.3.2 Security Analysis

Asmentioned inSect. 4.2, aDFD is needed as for the security analysis usingSTRIDE.
In the following, the DFD for the architecture of Odin is introduced. Afterwards, this
DFD is used as a part of the threat modeling for the security analysis, targeting Odin.

Because the focus of this analysis lies on the purely Odin framework, the diagram
in Fig. 4.5 entails the core of participating components: the Odin Master and an
arbitrary number of Agents. Both are visualized as interactors because they are seen
as end points in thismodel. Thus, the underlyingOpenFlow controller, Access Points,
and Switches as well as the Apps on top of the Master are omitted. In this figure the
cardinality, as an originally foreign notation in DFDs, is introduced to point out that
a Master can handle more than one Agent. Lastly, a Trust Boundary between Master
and Agent reflects the inherently suspiciousness which is given by the fact that the
Master has no opportunity to make sure an Agent has not been tampered with.

The adaption of STRIDE will be done from left to right with regard to Fig. 4.5,
starting with the Odin Agent by stating the threats it is vulnerable to, appended with
proper mitigation techniques.

Spoofing: In its present form, the implementation of the Odin Agent is not aware
of a spoofed Master. This could be optimized by the use of mutual authentication,
hence provide both sides with a spoofing protection like Kerberos [16].

Repudiation: In the scope of an Agent, repudiation means the inability of an Agent
to proof that a specific Master has send the commands over its dedicated control
channel. To avoid this lack of verifiability, both Master and Agent, should use digital
signatures for signing all communicated data. As a result, an Odin Master as well

Fig. 4.5 The Data flow diagram related to Odin
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as its Agents are able to validate the correctness of their counterpart. Administrators
must be aware, that the introduction of digital signatures will cause a slight overhead
due to the creation of signatures and their verification.

Further, the Data Flow between an Agent and its Master is analyzed.

Tampering: An attacker may manipulate the data in transit between Agent and
Master. This means that the adversary is able to change a single bit in the mes-
sage or add a whole payload to execute malicious code. A hindrance of this issue
would be to secure the boot time established TCP/IP control channel via IPSec [13]
Authentication Header on network layer or via Transport Layer Security (TLS) [7]
on transport layer. Both techniques provide integrity checks, which would disclose
modified packets.

Information disclosure: The data exchange between Agent and Master is not
encrypted, thus an attacker is able to examine the traffic easily, because everything is
sent as plaintext. An optimization regarding this lack of confidentiality is offered by
IPSec. Utilizing its Encapsulating Security Payload mode, the whole traffic between
Master andAgent can be encrypted. This enables to conceal the communication from
any unauthorized individual and thus avoid the threat of information disclosure.

Denial of Service: This attack signifies that either aMaster can not contact theAgents
or vice versa. While analyzing this threat, the focus lies on the Master because it is a
single point of failure and an inoperative Master would hinder the whole system to
function. Whereas the unavailability of an Agent at worst causes some clients to be
offline.Mitigating this attack could be done by using rate limiting or a load balancing
system with high availability.

As a second interactor in the DFD of Fig. 4.5, STRIDE is also adapted on the
Odin Master.

Spoofing: Although a spoofed client is prevented by the support of Wi-Fi Protected
Access 2 [24, P.4], in the current implementation of Odin, aMaster can not make sure
that the Agent it is currently talking to is not spoofed. This could be circumvented
by using a proper authentication mechanism between a Master and its Agents like
the network authentication scheme RADIUS [22].

Repudiation: This threat implies that a Master can not proof, a specific Agent has
communicated to it. One could claim that repudiation could be prevented by the
fact, that the framework works on data link layer, i.e. with MAC addresses and
thus the entity behind it can be identified. But unfortunately, MAC addresses can be
spoofed. A solution would be processing each Address Resolution Protocol (ARP)-
request and permitting only valid ones. Additionally, an Intrusion Detection System
like Snort [23] could be used to support the validation process by monitoring for
ARP-spoofing.

On a final note the following table 4.3 summarizes the antecedent analysis of
the Odin framework. A X denotes that a threat could be mitigated by the suggested
techniques, mentioned in the respective analysis of each threat.
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Table 4.3 STRIDE threat matrix of Odin Framework

Type Component Threats

S T R I D E

Interactors Odin Agent X X

Odin Master X X

Data flows Agent ↔ Master X X X

A X denotes that a threat could bemitigated by the suggested techniques,mentioned in the respective
analysis of each threat

4.4 OpenWiFi

After presenting the technology and the security analysis of Odin, the second part of
this work introduces the architecture of OpenWiFi. Afterwards, the threat modeling
technique STRIDE is applied on this prototypical technology as well.

4.4.1 Technology

Common guest WiFi systems such as CoovaChilli [6] typically are implemented as
triple-A services and therefore unite access, authentication and accounting. Yap et al.
introduced OpenWiFi as a prototype of separating a triple-A service into its single
participating components, to reduce complexity and costs for guest WiFi owners.
Additionally, the user gets relieved from the burden of remembering many different
credentials for the various guest WiFi spots.

In detail, the inventors of this architecture suggest to delegate the authentication
to third party service providers like Google or Facebook [27, P.4]. Those are able
to handle the authentication by using techniques like OAuth2 [11] or OpenID [17].
The reason of choosing such well known authentication providers lies in their user
amount, hence the probability is high that a guest WiFi user already has an account
for the specific provider. Furthermore, access is provided by one or more APs which
optimally support multiple SSIDs. This allows the guest WiFi provider to present
several distinct WiFi networks to the user or host a private one in parallel. Addi-
tionally, if desired, the same SSID can be provided to the client across all networks.
Lastly, a separate accounting service is suggested to enable responsibility delegation
and billing.

The following example architecture represents the idea of OpenWiFi and is based
on a given example of the inventors [27, P.5]. As in Sect. 4.3.1, a numeration is
provided within Fig. 4.6 which will support the explanation.

Before going along the numeration and illuminate the given use case, each partic-
ipating component deserves an introduction: going bottom up, two wireless clients,
Home and Guest Device, can be seen whereby the focus lies on the latter. Sur-
rounded by a rectangle, the guest WiFi owners OpenFlow enabled AP, a TP-Link
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Fig. 4.6 Exemplary OpenWiFi architecture

TL-WR1043ND, hosts two SSIDs, OwnerWiFi and GuestWiFi, to which the clients
are connected. This AP runs on OpenWrt [18], revision backfire, which in turn runs
the OpenFlow port Pantou [19] and is responsible for providing information used for
access-control, redirection and accounting by the OpenFlow controller. It is enabled
to offer these services, because the controller has been supplied with logic to make
use of the given controls and statistics provided by the OpenFlow software switch,
thus can be used as accounting service. Because Pantou seems to be a deprecated
software, an exemplary technology in this case would be Open vSwitch [20]. Addi-
tionally, the OpenFlow controller logs authentication and flows to a SQLite database.
Lastly, Facebook Connect is used as external authentication service provider (ASP).

After presenting the components and their roles in the OpenWiFi system, which
builds on the cooperation of those, the given use case is described by going along the
numeration of Fig. 4.6. Number 1 represents the initial login of a guest device to the
WLAN network Guest WiFi. It is supplied with an IP address assigned via DHCP
and marked as unauthenticated. While the client is labeled with this status, only its
ARP, DNS and DHCP traffic is permitted [27, P.4]. Number 2, as the next step, states
the redirection of a user after opening the web browser to the landing page of the
accounting service. This is realized by hijacking the HTTP traffic and performing an
HTTP redirect with client error code 403 [8, P.59]. In this case the user has only one
choice with the mentioned authentication service (AS) of Facebook showing up on
the appeared landing page. Number 3 represents clicking on the button for Facebook
Connect. Subsequently, the users traffic gets forwarded to the authentication site of
Facebook for entering credentials. While this happens, OpenWiFi marks the user
with a new status, pending authentication. After credentials are submitted, identity
is established and a valid authentication is assured, the user is asked for permission
to reveal information to OpenWiFi. Confirming this dialog, the AS returns an access
token to OpenWiFi and the user gets forwarded to an approval page. At this point, the
user is labeled as authenticated. Lastly number 4 implies the usage of the returned
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access token. It enables to retrieve the users identity to associate corresponding traffic
for accounting purpose.

After introducing the technology of OpenWiFi, the next Sect. 4.4.2 utilizes
STRIDE to document its security analysis.

4.4.2 Security Analysis

As seen in the exemplary OpenWiFi architecture, the core components of this tech-
nology are anOpenFlow controller, a central Access Point and the external third party
ASP, like Facebook Connect. Because each of the components is seen as end point
in the model, these elements are visualized as interactors in Fig. 4.7. The WLAN
clients as well as the network clouds are omitted since the focus lies on the core of
OpenWiFi. Because each component lives on its own and does not directly belong
to another, they are separated by Trust Boundaries.

With regard to Fig. 4.7, the analysis will go along the elements from left to right
starting with the OpenFlow controller.

Spoofing: If an attacker is able to spoof an AP to the controller, he or she is also able
to fake provided information about access control or redirection. OpenWiFi does not
mitigate this threat by default. Prevention is constituted by ensuring authentication,
e.g. by using certificates to sign the communicated data between Access Point and
OpenFlow controller.

Repudiation: To assure non-repudiation to the controller, OpenWiFi has to imple-
ment digital signatures or the usage of timestamps to prevent deniability. If spoofing
is already prevented by the usage of certificates, one can exploit this by utilizing
existing certificates, assuming that they can be used for digital signatures.

Continuingwith the next component, theData Flow betweenOpenFlow controller
and Access Point is analyzed.

Tampering: The possibility of an attacker to modify sent data between the controller
andAP among others enables the attacker to tamper with accounting information and
thus bypass upcoming payments. Because the OpenFlow protocol is used, which lies
on top of the transport layer and uses TLS [15], the Data Flow is protected against
tampering.

Fig. 4.7 The Data flow diagram related to OpenWiFi
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Information disclosure: If TLS is used for encapsulating the traffic, any unautho-
rized person or program is unable to get access to the plain text behind encrypted
traffic.

Denial of Service: In this context, the unavailability of a link between both par-
ties, OpenFlow controller and Access Point, means no access control, redirection
or accounting. As a consequence, the OpenWiFi architecture would be inoperative
because the system can not survive without the OpenFlow controller or the Access
Point. A possible mitigation, likewise described in Sect. 4.3.2, is high availability by
using more than one device per side or the usage of Quality of Service by favoring
the traffic between participating entities and throttling the remaining.

In the following, theAccess Point as second interactor of the diagram is examined.

Spoofing: An AP is vulnerable to faked opposites in two ways. First, by a spoofed
OpenFlow controller which could lead to false access controls or other unauthorized
decisions. And second, in form of a spoofed authentication service, which could
lead to faked identities. Both scenarios can be mitigated by the usage of mutual
authentication techniques like provided by the authentication scheme Kerberos.

Repudiation: If certificates are already in use, then the administrator of OpenWiFi
is able to take advantage of this by also using them for digital signatures to assure
non-repudiation. If not, than additionally to certificates, the usage of timestamps
would be a countermeasure for deniability.

As a fourth component, STRIDE is also adapted on the Data Flow between an
Access Point and the Authentication Service Provider.

Tampering: If an adversary is able to modify the data in transit between the AP
and ASP, he is also able to fake or manipulate the authentication by using another
identity. This can be mitigated by the usage of HTTP over TLS (HTTPS) which uses
keyed message authentication code to verify the integrity of data [7, P.13].

Information disclosure: When the connection between AP and ASP is based on
HTTPS, their link is secured against exposure of any data which is transported over
the channel, as long as the underlying TLS is configured with a proper cipher suite
that securely encrypts the traffic.

Denial of Service: This threat needs to be split up in two parts. The first one consists
of outsourcing the ASP. So in the majority of cases, the OpenWiFi architecture is
unable to affect it in any way which implies its configuration and protection against
DoS of any kind. Hence, OpenWiFi depends on the proper security mechanisms of
the ASP and has no influence on it. It is only able to control the AP-side by offering
several devices and backups for failover.

To wrap up the security analysis of OpenWiFi, we apply STRIDE on the ASPs
interactor side.

Spoofing: As mentioned earlier, most probably, OpenWiFi does not influence the
ASP. Thus, the latter must be protected from a spoofed AP on its side of the relation.
Although the provider is not part of the native OpenWiFi system, a proper security
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Table 4.4 STRIDE threat matrix of OpenWiFi

Type Component Threats

S T R I D E

Interactors OF controller X X

AP X X

ASP X X

Data flows OF controller ↔ AP � � X

AP ↔ ASP X X X

A X denotes the suggestion of countermeasures and a � states that OpenWiFi mitigates the threat
by default. OF stands for OpenFlow

of this external part also contributes to a better one of OpenWiFi. A solution for both
sides is the usage of a common certification authority which both sides trust. Hence,
they can use the distributed certificates for the protection against spoofing.

Repudiation: If the AP and ASP are already using certificates, then they can rely on
this to protect against deniability.

The following Table4.4 closes up the security analysis of the prototypical
approach OpenWiFi and gives an overview of the components and the respective
threats they are susceptible for. A X denotes the suggestion of mitigation mecha-
nisms and a � states that OpenWiFi mitigates the threat by default.

4.5 Comparison and Conclusion

The vigorous surge of mobile devices, similar to mobiles predecessor, the telephone,
has revolutionized communication. Their demand for a flexible and manageable
network administrating approach has led to software like Odin and OpenWiFi.

Whereas the former is a framework which uses SDN to establish the central
maintainability ofwireless clients and their AP association, OpenWiFi is an approach
to separate authentication, access and accounting to simplify the process of providing
guest WiFi systems.

To facilitate a proper security analysis, we validated the most fitting technique in
Sect. 4.2 and applied the elected candidate, STRIDE, to Odin and OpenWiFi.

Although both technologies have been invented for different purposes, they could
be used to complement each other. To go into detail: with Odin already in use as a
base of the wireless network, OpenWiFi can be built on top of it. This is possible
because both technologies rely on an OpenFlow controller which could be used as
synergy, assuming compatible hardware is used. As a result, it would be even more
efficient and comfortable for the guestWiFi owner to offer different SSIDs ormanage
load balancing. Keeping this idea in mind, the administrator could also benefit of the
merged security features which have to be realized when building up such a system.
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Because of their prototypical state both technologies do not essentially involve
security in their design yet. But as presented in Sects. 4.3.2 and 4.4.2, they fortunately
entail opportunities to add security.
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Chapter 5
Security Analysis for the Middleware
Assurance Substrate

Timm Lippert and Rahamatullah Khondoker

Abstract Middleware assurance substrate (MIDAS) is a state-of-the-art approach
for Distributed Real-Time and Embedded (DRE) systems, which enables a Data
Distribution Service (DDS) with Quality of Service (QoS) properties to provide
performance guarantees in the system. MIDAS is based on the OpenFlow protocol
for Software-defined Networking (SDN) by McKeown (INFOCOM Keynote Talk
17(2):30–32, 2009 [1]). This novel approach is designed for high performance and
reliability of the system and has a low level and easy to use developer API to develop
applications for the system. MIDAS is so far the first approach for DDS and QoS
in SDN, which also uses OpenFlow. This approach can be used in security critical
areas like the Internet of things (IoT) which lets multiple devices communicate with
each other, like in smart homes where every electronic device (e.g. the fridge, TV)
is connected with each other. This system that is responsible for a fast and secured
communication needs to be reliable, trustworthy and secure. Since MIDAS is the
first approach of DDS and QoS and is designed for performance, a security analysis
is necessary for the architecture. With the STRIDE threat modeling approach used
on MIDAS, the analysis will result in an overview of all possible threats for this
approach to see its vulnerabilities and the techniques to mitigate the threats.

Keywords OpenFlow · STRIDE ·MIDAS · Security Analysis

5.1 Introduction

The networks today often use components that are no longer state-of-the-art, because
at the time theywere deployed the componentswere the-state-of-the-art but over time
the network increases and got extended by newer componentswhich lead the network

T. Lippert (B)
Department of Computer Science, TU Darmstadt, Darmstadt, Germany
e-mail: timm.lippert@gmail.com

R. Khondoker
Fraunhofer SIT, Darmstadt, Germany
e-mail: rahamatullah.khondoker@sit.fraunhofer.de ; r.khondoker@yahoo.com

© Springer International Publishing AG 2018
R. Khondoker (ed.), SDN and NFV Security, Lecture Notes in Networks
and Systems 30, https://doi.org/10.1007/978-3-319-71761-6_5

73



74 T. Lippert and R. Khondoker
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Client A
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Client BGRM

B

Fig. 5.1 Exemplary topology for MIDAS network

to bemore andmore complex. Therefore, Software-defined networking (SDN) by [1]
is a novel solution by separating the network management into two different planes,
the control plane and the data plane. The data plane is used for simply forwarding the
data, while the control plane is responsible for defining the routes and configuration
of the data plane to forward the data correctly. However, the control plane provides
the applications with an abstract view on the network and enables the network control
to be directly programmable.

In this case, MIDAS uses OpenFlow [2] which is the first south bound interface
protocol in an SDN architecture. Through the OpenFlow protocol, MIDAS is given
a remote controller to gain control over the switches in the network. In case of
MIDAS, as shown in Fig. 5.1, the Global Resource Manager (GRM) which controls
theOpenFlow switches allows the published data of a client to be forwarded correctly
to its subscriber.

A security analysis for this approach is important because DDS is playing an
important role in SDN, because of the upcoming Internet of things (IoT), which is
used to connect all kind of devices with each other to exchange data [3]. For example,
smart homes enable the communication of the fridge with the smart-phone to display
what it contains or to allow the owner to remotely control the climate control system,
or to open the garage door when the home is about to be reached. IoT is also used
in health care and the automotive industry. A car for example could be connected
with the phone and can show the status and location of the car. In the upcoming
industrial automation called Industry 4.0 where robotic devices complete tasks with
the minimum possible human interaction, in which these devices get controlled and
work together over IoT. Thus IoT is expected to have a huge usage in smart home and
business sector [4]. Since homeandproduction factories are two security critical areas
where security and privacy have the highest priorities and no security weaknesses are
allowed (e.g. nobody would want a smart home to malfunction, or an intruder who
is able to open the garage door or the main door), therefore it is necessary to have a
trusted base to develop on. Hence a security analysis on MIDAS is indispensable.

The global resource manager (GRM) in MIDAS is the middleware that controls
thewhole traffic in the network and is responsible for the network towork as intended
(e.g., who is allowed to publish data and who subscribed to which data and who can
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receive the data). Research for other systems that enable DDS and QoS to software-
defined networks has shown thatMIDAS is by now the first approach.MIDAS is also
in comparison to previous approaches like real time CORBA [5] a dynamic DRE
system, which allows users to simply add or subtract network components without
re-configuring the system. In this paper, the architecture of the middleware assurance
substrate (MIDAS) will be analyzed according toMicrosoft’s STRIDE threat model.

STRIDE has been chosen for the threat analysis since it focuses on application
level threat modeling while other modeling frameworks like OCTAVE and Trike
focus on quantifying and evaluating the identified threats [6].

An overview of the STRIDE threat modeling tool will be given in Sect. 5.2. A
mandatory component in MIDAS is the OpenFlow switch, which is essential for
the security analysis and the important parts for the security analysis are briefly
summarized in Sect. 5.3. An example topology for MIDAS to show its functions will
be described in Sect. 5.4. In Sect. 5.5, a security analysis will be conducted by using
the STRIDE threat modeling on the Data Flow Diagram (DFD), which is based on
the architecture of MIDAS. At last, the results from Sect. 5.5.3 will be discussed and
summarized in Sect. 5.6.

5.2 STRIDE Threat Model

Microsoft’s STRIDE threat modeling methodology is an effective and well used
approach to find security flaws in network designs and therefore it fits perfectly on
MIDAS which uses SDN [6–8]. STRIDE is an acronym and covers the following
threat categories:

• Spoofing identity:

– Using someones identity in order to let the system think the data comes from
someone else

• Tampering with data:

– The data can be edited without permission and without the system noticing it

• Repudiation:

– Doing something without leaving a proof that it has been done

• Information disclosure:

– Accessing and publishing information illegitimately

• Denial of service:

– Exhausting the resources of a system/service which causes the system/service
to be unavailable
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Table 5.1 STRIDE threat matrix shows the elements and its symbols as well as the possible threats
for the elements marked with an X in the table

Threat class Element type

Data flow Process Inter-actor Data store

Spoofing X X

Tampering X X X

Repudiation X X

Information
disclosure

X X X

Denial of service X X X

Elevation of
privilege

X

DFD notation

• Elevation of privilege:

– Gainingmore access rights than actually given by the system/administrator (e.g.
an ordinary user becomes an administrator).

These threat categories are then considered for a system by transforming the
system’s architecture into a Data Flow Diagram (DFD). The MIDAS architecture
is decomposed into its elements as shown in Table5.1. This table also shows each
elementwith its possible threats that help tomake sure no element remains unnoticed.
Once the DFD is created, every element in the system needs to be examined in terms
of the suspected threats which are marked with an X in the table.

5.3 OpenFlow

Since OpenFlow switches are important components of MIDAS and have an impor-
tant role in the security analysis, a quick introduction is given in this section.
Figure5.2 shows an ideal OpenFlow switch with its connected clients and the remote
controller. The controller, which can be for example a server as it is inMIDAS, is con-
nected to the switch over the OpenFlow protocol. The OpenFlow protocol encrypts
the data using transport layer security protocol (TLS) to provide a secure communi-
cation between the remote controller and the OpenFlow switch [9]. This is important
because the flow table that controls and forwards the traffic is managed and config-
ured by the remote controller. This ismandatory for the security analysis in Sect. 5.5.3
because the whole system communicates over the OpenFlow switches and plays an
important role for the security between the clients and the remote controller.
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Fig. 5.2 Idealized OpenFlow switch [2]

5.4 Example Setup

The challenge described in the main security analysis in Sect. 5.5 for MIDAS is
based on the exemplary topology shown in Fig. 5.1. The example topology consists
of twoOpenFlow switches, three clients, and a controller for the OpenFlow switches,
which is the Global ResourceManager (GRM). Clients A, B and C are simple clients
in the network that publish and subscribe data. For example, a publisher publishes
data with the topic “IMPORTANT TOPIC”, so every subscriber which is registered
and has subscribed for that topic “IMPORTANT TOPIC” receives the data in that
topic. The OpenFlow switches that are connected to the clients and the GRM exist
to forward requests of the clients in the network. The routing is done in the GRM
as soon as a switch receives a request (e.g. a publish request) from its client. The
OpenFlow switch forwards the data to the GRM which then returns a valid network
configuration where the data needs to be forwarded to. If the client is not allowed to
publish the data, then the switch simply drops the request. The GRM stores all the
information about the network such as who is allowed to publish, who did subscribe
to which topic. It has an overview of the whole network including different switch
specifications and determines according to the clients request, which also contains
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the quality of service (QoS) properties, who should receive the data and who is able
to receive the data within the guaranteed time (which is submitted by the publisher)
and configures the switch accordingly.

5.5 MIDAS

MIDAS [10] enables quality of service (QoS) properties for a data distribution service
in distributed real-time and embedded systems [11] and allows high-performance
data distribution with a publish and subscribe API for clients to publish and subscribe
for data using software-defined networking. These interfaces allow the client to
exchange data over the network by setting a topic to specific data or subscribe to a
specific topic. A publisher also has to set the QoS properties for the publish request.
Then the data, either a subscribe or publish request, is sent over the connected switch.
The OpenFlow switch, which is controlled by the GRM, sends the topic, client, and
QoS properties to the GRM. The GRM then checks if the request is a subscribe
request and subscribes the client to the given topic or if it is a publish request the
GRM checks if the client is allowed to publish data (if not the request gets dropped)
and calculates all clients that subscribed to it andmatches the timingguaranteeswhich
had been set in the QoS properties and configures the underlying switch properly. All
clients that matched the QoS properties and subscribed to that topic then receive the
data. The QoS parameters are reduced to three parameters which are the maximum
latency between end-to-end user and minimum and maximum separation between
updates for the topic to ensure timing guarantees in the network. According to these
parameters the GRM calculates whether a subscriber is able to receive the data in a
guaranteed time.

5.5.1 Challenge

Assuming that the client A wants to publish data to its subscribers client B and client
C in Fig. 5.1 within a guaranteed delivery time. Client A has no information about
its subscriber and simply publishes the data with a given topic which its subscribers
subscribed to.

5.5.2 Solution

MIDAS solves this problem by adding QoS properties to the published data and
adding aGRMas the controller to theOpenFlow switches. TheGRMhas an overhead
over the whole network and about all subscriber and their addresses, as well as
the clients that are permitted to publish data to a certain topic. Client A, which is
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registered to the topic in the GRM, sends its data to the OpenFlow switch with the
QoS properties to ensure the timing guarantees. The OpenFlow switch sends the
relevant data to the GRM which then returns the configuration for the OpenFlow
switch to correctly route the data to the subscribers that match the above described
QoS properties. So the OpenFlow switch simply forwards the data to the addresses
chosen by the GRM.

5.5.3 Security Analysis

Figure5.3 shows the Data FlowDiagram (DFD) of theMIDAS architecture. MIDAS
is based on the OpenFlow protocol and uses OpenFlow switches with a GRM as a
controller.

In the following, the elements of the DFD will be systematically analyzed and
discussed for their possible threats which are listed in Table5.1.

5.5.3.1 Data Flows

Data flow (1) needs to be protected from tampering, information disclosure and denial
of service threats. An attacker with access to this data flow may be able to read and
manipulate the data if it is not protected. By gaining information about the data, an
attacker could gain knowledge about the data as well as the topics. Moreover, the
attacker would then be able to reproduce the data tomanipulate or send own fake data
which would cause tampering and information disclosure. Simple countermeasures
would be to encrypt the data to protect from information disclosure and integrate
a message authentication code (MAC) against tampering to verify the data. One

Table 5.2 MIDAS component threat matrix. M indicates that a threat can be mitigated. T indicates
that the component is susceptible to a threat

Threat class Element type

Data Flow Process Inter-actor Data
store

1 2, 13 3–11 1 2–5 1 2 1

Spoofing M M M M

Tampering M M M M M M

Repudiation M M M M

Information disclosure M M M M M M

Denial of service M M M T M M

Elevation of privileges M M
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Fig. 5.3 DFD of the MIDAS approach
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possible way to denial the service of data flow (1) would be to cut or congest the link
that the data flow (1) uses which could be mitigated through redundant links.

Data flows (2, 13) can be considered safe against tampering and information dis-
closure, since the communication between the OpenFlow switch and the OpenFlow
controller could be enabled using the transport layer security (TLS) as described
in Sect. 5.3. Denial of service could also be mitigated by adding redundant links
to data flows (2, 13) to ensure the connection, because due to structural conditions
(e.g. Controller and switch can be in different buildings) the physical integrity of the
links can be ensured. Additionally, since the controller which is in this case the server
based GRM should be placed in a secured place (e.g. in a university, the GRM could
be placed inside a server room), this physical integrity between the network com-
ponents can not always be ensured because the location of the network components
can be in different locations (e.g. in a campus wide network) the links established
by the data flows 2 and 3 need to be redundant to mitigate the threat.

Data flow (3–12) are all located inside the GRM and have no outbound connec-
tions. Hence, they can be considered as safe. An outside attacker has no possibility
to access the data for tampering or information disclosure. An outside attacker also
would need physical access for a denial of service attack by cutting or intercept the
links which can also be mitigated.

5.5.3.2 Processes

Processes (II–V) are all internal processes and have no connection outside the GRM
and are the only processes responsible for their respective tasks and can not deny their
actions nor can they come from another process. Processes (I–V) requiremechanisms
to protect from theDoS attack. If a single process fails, then it forces thewhole system
to deny its service, since all processes depend on each other. This could be mitigated
by adding a process that checks all other processes and in case of a crash restarts
them. Since the processes are all internal, there is no way for an attacker to gain or
manipulate the information inside a process, therefore, tampering and information
disclosure are unlikely.

Process (I) is the interface between the GRM and the switches. Spoofing and rep-
utation could be mitigated by logging and digital signatures. Information disclosure
and tampering can also be mitigated since the communication outside is protected by
TLS. Denial of service can be mitigated by a throttling mechanism, but an attacker
may be able to start a distributed denial of service attack on the GRM since an
OpenFlow switch would simply forward the data to the GRM and could overload
the process, which causes a real threat to the system. Throttling would in case of a
DDoS attack useless, because throttling would then still cause the system to denial
its service partially.
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5.5.3.3 Interactors

The identity of the interactor (2) can be considered as obvious, because the switch
is a main part in the system and would need to register to the GRM. Spoofing and
repudiation could be mitigated since they have a static identity and their actions can
be logged by the system.

The interactor (1) needs to be secured by logging its actions to prevent the repudia-
tion threat. Spoofing could be mitigated since the interactor (1) needs to be registered
to the GRM.

5.5.3.4 Data Store

Data store (i) has to be protected from tampering and information disclosure threats
otherwise it could cause the flow scheduler to elect and validate the wrong routes for
the configuration. The data is saved as an XML file with the information about the
switches, which could easily be read andmodified by an attacker. Data store (i) could
be protected with a digital signature to allow only the flow scheduler to read the data,
which would mitigate tampering and information disclosure. Denial of service can
be mitigated, as long as the physical integrity of the GRM can be ensured, else it
could be mitigated by throttling and slow down the requests.

5.6 Conclusion

The security analysis of MIDAS shows that there are several vulnerabilities in the
system which can be mitigated as discussed in Sect. 5.5.3. The summary of the
analysis shown in Table5.2 shows that almost all threats can be easily mitigated with
simple countermeasures. The only real threat to the system would be the distributed
denial of service (DDoS) attack in which an attacker would need to compromise
enough devices to manage to overload the GRM. If the GRMwould be unreachable,
then the whole system would be out of service. But for such an attack, an attacker
would need, according to the capacity of the controller, enough compromised devices
to be able to overload theGRM to be successful. ADDoS attack usingQoS properties
in MIDAS may not be possible since it only has properties to set a guaranteed time
for delivery and no priority properties which would make the system vulnerable.
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Chapter 6
Security Analysis of FloodLight, ZeroSDN,
Beacon and POX SDN Controllers

Qamar Ilyas and Rahamatullah Khondoker

Abstract Software-defined network (SDN) is an emerging approach to replace lega-
cy network’s (coupled software and hardware) control and management by decou-
pling the control plane (software) from the data plane (hardware). SDNprovides flex-
ibility to the developers by making the central control plane directly programmable.
Some new challenges, such as single point of failure, might be encountered due to
the central control plane. SDN focused on flexibility where as the security of the
network was primarily not considered. Decoupling of control plane (software) from
data plane (hardware) is a great step for innovation and research. Centralized con-
trol plane may cause the single point of failure and compromising the controller
means the whole network is compromised. Many organizations and data centers are
moving towards SDN. Now, security is their primary concern. Security issues of
the four controllers including FloodLight, ZeroSDN, Beacon and POX are analyzed
with STRIDE threat modeling technique. We found that SE-FloodLight is the most
secure controller because it is the most resilient controller as compared to the other
controllers.

Keywords Software Defined Networking (SDN) · South Bound API (SBI)
North Bound API (NBI) · STRIDE · Publish/Subscribe (pub/sub)

6.1 Introduction

SDN is a promising and emerging architectural paradigm for making the network
programmable and virtualizable by decoupling control plane (software) from the
data plane (hardware) [40]. In SDN, switches work as forwarding entities while the
forwarding decisions are taken by the controller. These forwarding decisions are
then moved to switches for the execution. It gives the programmer a control over the
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Fig. 6.1 SDN architecture
[39]

network by having the whole network image that helps in network automation and
better utilization of server/network resources.

The SDN architecture can be decomposed into three layers as shown in Fig. 6.1.
Data plane is also known as forwarding plane. Data plane forwards the traffic to the
next hop along the path [17]. The data plane consists of network devices such as
switches etc., and takes the decision of packet forwarding according to the logic of
control plane. It may send packets to a particular port or push it to the controller.

The control plane may have one or more SDN controllers. OpenFlow [26] is
an open source protocol that enables the interaction between the network devices,
such as switches etc., with the SDN controller. The first version of the OpenFlow
protocol 1.0 was released in December 2009 and then v1.1, v1.2, v1.3, v1.4 and
1.5 were released till 2014. Packet-In, Packet-Out, Modify-State, Flow-Removed
etc., are the messages that are used by OpenFlow. It has become the standard for
SDN that supports many protocols [43], such as TCP/IP and UDP/IP. The SDN
controller sends instructions to the switches for routing, traffic engineering etc. The
SDN controller acts like the brain of the OpenFlow based network that orchestrates
the traffic flow and makes all the decision about packet forwarding whereas switches
are only forwarding devices [21]. The controller has the topology knowledge and
it is responsible to configure the data plane. This is the most important layer of the
SDN architecture and this layer will be focused in this paper.

Applications that communicate with the SDN controllers via application pro-
gramming interface (API) is the third layer of the SDN architecture. North Bound
API (NBI) e.g., REST interfaces are used to communicate between the controller
and the above layer. Applications can get the abstraction of the network state by
having the image of whole network and instruct the controller for specific tasks. The
communication between the controllers and applications is carried by the North-
bound API (NBI). The communication between the controller and its lower layer is
carried by Southbound API (SBI). The controller sends the directives (Packet-Out,
Modify-State etc.) to the switches and receives requests (Packet-In etc.) from them
[10]. OpenFlow is the most commonly used protocol in South Bound Interface.
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The original design of the network did not take the security into the consideration
because they aimed only at the service delivery [48]. Consequently, many protocols
(HTTP, ARP etc.) were not resilient against the attacks (HTTP Flood [8], ARP
spoofing [46] etc.) and there existed vulnerabilities that can be exploited by the
attackers. ThoughSDNhasmade the networkmorevisible (having thewhole network
image) and flexible (making the central control plane directly programmable) but at
the same time it encounters several new security challenges (single point of failure
etc.) [16]. One primary goal of SDN is to manage the data plane from a central
entity that is a network controller. This feature makes SDN a client server model. By
making the network as a client-server model and opening multiple interfaces to the
external applications open up new challenges, such as the whole functionality can be
disrupted by launching Denial of Service (DoS) and Distributed Denial of Service
(DDoS) attacks [48]. The SDN controller defines the policies to prevent from such
attacks.

In this paper, four controllers (FloodLight, ZeroSDN,Beacon and POX) have been
analyzed on the basis of their processes and communication with the other layers.
These four controllers are used in industry and research area. They have different
architectures and behave differently if they are attacked. A STRIDE threat matrix is
created for each of the controller to analyze the security of the controllers considering
the six threat categories.

The rest of the paper is organized as follows. Section6.2 briefly describes the
STRIDE and some other threat modeling techniques. Section6.3 sheds the light
on four selected controllers. Section6.4 covers the security analysis of each of the
controllers using the STRIDE threat matrix. Section6.5 summarizes and concludes
the paper.

6.2 STRIDE

STRIDE is a threat modeling technique that was developed by Microsoft. It enables
us to find the security flaws of a system. STRIDE stands for Spoofing, Tampering,
Repudiation, Information Disclosure, Denial of Services (DoS) and Elevation of
Privileges.

Spoofing: Impersonating as some genuine user. It can be handled by proper authen-
tication [31].
Tampering: Modification of the data without having rights. Data integrity [7] is the
related security property.
Repudiation: Doing something without leaving a proof. Non-repudiation [27] is the
related security property.
Information Disclosure: Disclosure of information to an unauthorized user. Confi-
dentiality [7] is the related property.
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Denial of Services: Stopping the service availability to the genuine user. Availability
[7] is the related property.
Elevation of privileges: Having more rights than the originally given. It can be
handled by authorization [3].

Data Flow Diagram (DFD) is used for the graphical representation of any system.
First, a system is decomposed into various components, then threats are analyzed
based on the internal structure and interaction with other components. There are four
standard set of symbols for DFD: data flows, data stores, processes and interactors.
Modeling the DFD is the most critical point in STRIDE evaluation as all the further
steps are dependent on it. If there is a problem or mistake in DFD, then all further
evaluation will be incorrect. Once the components and their interaction and commu-
nication model are extracted, then the STRIDE threat categories model is applied on
it.

Multiple techniques can be used for modeling the threats. It includes P.A.S.T.A
(Process for Attack Simulation and Threat Analysis) [45], which is introduced by
Macro Morana. Mostly, PASTA is used in application development methodologies.
To be able to use PASTA, users should have a good grip on internal technical details
of the system and the application. Another threat modeling technique is Flexible
Modeling Framework (FMF) [14] which is used for the network design safety. Users
need to know source code of application to use thismethod. SecureUML [24] is based
on the model derived from the source code of the application. Knowledge about the
source code of application is required to use it. TRIKE [36] enables communication
between security team members and other stakeholders by providing a consistent
framework [36]. TRIKE [36] is used to ensure that risk system implies to each
asset is acceptable for all the stakeholders. User should have knowledge about the
requirements and all stakeholders should be involved to use TRIKE. On the other
hand DREAD [23] is an assessment tool for analyzing the risks where the subjective
and inconsistent ratings could lead to inapplicable results.

Since themotivation of this paper is to analyze the components of SDN controllers
and interaction between them while ignoring the internal implementation details,
therefore STRIDE is the best choice for this purpose (Table 6.1).

Table 6.1 Components and
symbols detail in DFD

Components Symbols

Data flow Arrrow

Process Circle

Interactor Rectangle

Trust boundary Dotted line
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6.3 SDN Controllers

A brief summary of several SDN controllers is given in the following. These con-
trollers are FloodLight, ZeroSDN, Beacon, and POX.

6.3.1 FloodLight

FloodLight [13] is a Java-based open source controller and it is licensed by Apache.
It was released in Dec, 2014 and it supports OpenFlow 1.0 and OpenFlow 1.3, a-
long with experimental support for OpenFlow 1.1, 1.2, and 1.4 [12]. It supports both
OpenFlow and non-OpenFlow protocols (ExtensibleMessaging and Presence Proto-
col (XMPP) and Border Gateway Protocol (BGP) etc.) with a broad range of virtual
and physical OpenFlow switches. FloodLight supports the modular programming
environment that gives the developer flexibility to add new modules on top of the
existing modules.

Floodlight is considered for the analysis because many organizations, such as
Canonical, SRI International, Caltech/Cern, Radware, Firemon and 6Wind, use it.
TheOpenDayLight (ODL) controller which is widely used is based on this controller.
Therefore, any security vulnerabilities of this controller could be inherited in the
ODL controller. It offers developer the ability to easily develop applications because
it supports modular programming. REST APIs are included to simplify application
interfaces that make it suitable to use for future enhancements.

6.3.2 ZeroSDN

SDN treats switches as “dumb” forwarding entities that is controlled by a central con-
trol logic [10]. ZeroSDN [10] brings back control onto the switch as well as benefits
from the central control logic. ZeroSDN architecture splits control logic into light-
weight control modules, called controllets, based on a micro-kernel approach [10].
Each controllet is implemented in a separate process and communication with other
controllets and switches is carried out with messages [10]. Micro-kernel provides
basic functions for messages including: pub/sub messages (routing and parsing) and
discovery of other controllets etc. [10]. The micro-kernel is used for passing Open-
Flow messages. These controllets are connected by a message bus that supports
pub/sub communication.

It is based on communication middleware ZeroMQ [49]. ZeroSDN is an open
source modular controller. It was released in 2015 [50] and supports OpenFlow 1.0
and 1.3. ZeroSDN supports different languages like python, Java, or C ++ that gives
the flexiblility to the developers. ZeroSDN is considered due to its unique micro-
kernel distributed architecture [10].
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6.3.3 Beacon

Beacon [11] is a fast, cross-platform, modular, Java-based OpenFlow controller that
supports both event-based and threaded operation [11]. Beacon was released in early
2010 [4] and it supports OpenFlow 1.0 [11]. Primarily it was built for linux but later
other operating systems such as,Windows andMAC are also supported. It provides a
framework to control network devices and the commonly needed plane functionality
is provided by using Open Services Gateway initiative (OSGi) specification [28] and
Equinox [11].

Beacon is considered because it was the first controller and most of the later
controllers followed it. Beacon supports the runtime modularity meaning that it not
only starts and stops applications while running but also it adds or removes those
applications without shutting down the beacon process.

6.3.4 POX

POX is based on python and it is developed by Nicira. It was released in 2011 [32]
and it supports OpenFlow 1.0 [33]. It is a successor of NOX that is a single threaded
controller [2]. POX has an easier development environment because reusable sample
components for topology discovery and path selection etc., are offered by POX. It
has large support of existing APIs (JSON-RPC etc.). A web based GUI written in
python is also provided by it which is helpful to shorten the development cycles.
POX is used for SDN debugging, controller design and programming models [19].
POX does not support multi-threading, so performance is not dependent on number
of switches [40]. POX is included in the study because it is widely used in research
and it can detect invalid values of ARP header fields [40].

6.4 Security Analysis of SDN Controllers

As shown in Fig. 6.2, data flow between the controller and other two layers (data
plane and applications) is carried out by an external channel because all of the three
layers are fully decoupled. This decoupling of functionalities broadens the attacker
surface. If the controller is not a monolithic controller, then there could be many
security issues for data flows between the controllers like inter-controller trust and
inter-domain trust when the controllers are not placed in same domains [44]. In this
paper, only single controller security analysis is considered. Multiple controllers are
not considered for analysis in this paper.

All three layers work independently and communication between the layers is
carried out by an external medium. Some known attacks such as DoS etc. can be
carried out because all layers are decoupled and the communication channels of con-



6 Security Analysis of FloodLight, ZeroSDN, Beacon and POX SDN Controllers 91

Fig. 6.2 Data Flow Diagram
(DFD) of SDN controllers

troller and other layers (Data plane and applications) may not be properly protected.
Therefore, data flows will be considered to verify the confidentiality and integrity of
data (information exchange). Availability of the controller will also be reasoned in
the analysis.

The STRIDE matrix has been created for each controller during the analysis. In
the matrix, a capital x (“X”) is used when no mitigation mechanism exists for an
attack. Tickmark (“�”) is used when mitigation techniques exist for an attack. In
case no information is available in the research papers a minus sign (“-”) is used. If
a component is not affected by a threat, according to the STRIDE method, a blank
space (“ ”) is used to denote that.

6.4.1 Floodlight

If there is no authentication service, anyone can use the network. By using password
and client certificates etc., authentication is possible. Floodlight supports client cer-
tificates that is disabled by default. In NBI, Floodlight controller can be protected
from spoofing attack by enabling the client certificates [22].

After receiving a request (initial connection, security assertion request, etc.) from
theFloodLight controller using theRESTAPI, aflow rule is decided in the application
logic and is sent to the controller using the REST API. The communication between
an application and the FloodLight controllermust be protected from tampering threat.
By default, HTTP is used, therefore, the communication between the controller and
the application can be tampered since no integrity check mechanism is used in HTTP
protocol [25]. To protect the communication from tampering in NBI, the Transport
Layer Security (TLS)withHTTP (so calledHTTPS) should be used by default which
uses integrity check mechanisms such as SHA-256 algorithm.

The communication between the switches and FloodLight controller was not
protected because FloodLight does not support TLS in SBI [37], therefore, TLS
protocol should be embedded between the switches and Floodlight controller to
protect the channel from tampering.

All access to REST NBI can be logged by the FloodLight controller. By default,
this is disabled. To deal with repudiation in interactors (switches and applications)
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and processes (controller core), Floodlight can log access time, REST function and
IP information. “logback.xml” file is altered to enable logging [22].

FloodLight’s northbound HTTP API has no encryption and no authentication [1]
that might give an intruder direct control of the FloodLight network. This makes the
FloodLight controller vulnerable for InformationDisclosure through the interception
of the topology [41]. For NBI, disclosure of information to an unauthorized user can
be protected with the TLS protocol while in SBI disclosure of information is possible
because TLS is not supported in SBI.

Denial of Service (DoS) attack in NBI can be handled by introducing Rate Limit-
ing, Event Filtering, Packet Dropping, Rule Timeout Adjustment etc. [20]. Enabling
the client certificates also help to mitigate the DoS attack.

Solomon et al., [9] have conducted a distributed denial of service (DDoS) attack
against Open FloodLight with user machines on themanaged network, cleverly stim-
ulating the switches to send OpenFlow “packet-in” messages to the Open FloodLight
controller that consume its resources. This can be handled by restricting the PACKET
OUT messages.

An already connected host may move to a new location and the controller should
send the traffic to this location, this is called host tracking [51]. An intruder can im-
personate as a genuine user if the HostTracker service keeps records of all connected
host with MAC address. A genuine user may experience DoS or bad performance
because the host migration is tracked by PACKET-IN messages and no authentica-
tion is used. This issue is addressed by FloodLight controller as MAC, IP, VLAN ID
and Location is used as an index in Host Profile [15].

Authorization restricts user to use only allowed functionality. By default, Flood-
light does not support authorization [22]. To deal with Elevation of privilege, Scott-
Hayward introduced a system that permits the application to execute only allowed
methods [38]. The newer version of the FloodLight controller called SE-FloodLight
[30] has emphasized more on the security by embedding rule based authorization.
This is the improvement and it has features like FortNOX [29] security that sup-
ports role based authentication using digital signatures. In case of rule conflict, the
requester of high security authorization is prioritized and principle of least privilege
is enforced to ensure the integrity of data. Security of Floodlight has been improved
after the extended version of the FloodLight due to Authentication, Authorization
and Accounting (AAA) service.

Table6.2 has been created from the above information.

6.4.2 ZeroSDN

ZeroSDN splits the control logic into the light-weight control modules called “con-
trollets” [10]. Latency and communication overhead can be reduced by pushing
control logic to switches. Controllets are interconnected through a message bus sup-
porting the pub/sub paradigm. Single point of failure is handled in this architec-
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Table 6.2 Stride threat matrix for floodlight controller. “�” indicates that mitigation mechanism
exist for that attack, “X” indicates the possible existance of a threat but no mitigation mechanism
exist, “-” indicates no information is provided for that threat, blank space indicates component can
not be affected by threat

Type Component S T R I D E

Data flow North bound interface � � �
Data flow South bound interface X X �
Process Controller core - - � - � �
Data store Internal data structures - - -

Interactors Switches and NBI
applications

� �

ture [10]. Switches are decoupled from SDN controllers using middleware approach
which is used successfully for communication between the services [6].

OpenFlow enabled switch is wrapped by the switch adapter (SA) to connect to
message bus. Switch is connected with the SA with OpenFlow. From the switch
perspective, switch adapter is its controller. SA can subscribe the OF messages (TO)
that are transmitted from control applications to the switch as Packet-out etc. SA
forwards only the matching messages to the switch. SA publishes (FROM) events to
the bus, these are the OF messages (Packet-in etc.), that are sent from the switch to
control applications [10].

There is no authentication mechanism (certificates etc.) introduced in ZeroSDN
to communicate with the bus and controllets can receive all packets by applying wild
card. So, spoofing is possible for any controllet in NBI.

In NBI, the channel between the controllets and bus is not secure because no
encryption (SHA-256 algorithm etc.) is applied on this channel. In SBI, the channel
is not secure (no encryption algorithm is applied) between the SA and bus that makes
tampering and information disclosure realizable.

DoS is tackled from NBI because the controllet can only publish or subscribe
the interested events and controllet has no control on the bus. DoS may not be
possible from the SBI because of its architecture. In case of flooding the PACKET-
IN messages, the SA disseminates such events in roundrobin [42] fashion. The bus
can follow the “at most once” delivery semantic to deal with the packet flooding [10].

Repudiation might not be possible from NBI and controller core, because publish
and subscription records are saved on the bus. Elevation of privilege may be possible
because the user can subscribe to anymessages. There is no authorizationmechanism,
such as Access control list (ACL), in the ZeroSDN.

The STRIDE matrix has been created in Table6.3.
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Table 6.3 Stride threat matrix for“ZeroSDN” controller. “�” indicates that mitigation mechanism
exist for that attack, “X” indicates the possible existance of a threat but no mitigation mechanism
exist, “-” indicates no information is provided for that threat, blank space indicates component can
not be affected by threat

Type Component S T R I D E

Data flow North bound interface X X �
Data flow South bound interface X X �
Process Controller core - - � - � X

Data store Internal data structures - - -

Interactors Switches and NBI
applications

X �

6.4.3 Beacon

The Beacon OpenFlow controller [11] enables security by slicing the network con-
trol into independent virtual machines. OpenFlow applications govern the different
network domains and do not interfere with other domains. In this sense, security of
OpenFlow is considered as non-interference property [29].

Spoofing is very likely in Beacon in NBI. Applications are able to send any
message to the controller and there is no authentication (certificates etc.) formessages
between controller and applications [11].

Application Interface for Beacon is simple and impose no restrictions [11]. Appli-
cations register to receive the events. Tampering and information disclosure may be
possible from the NBI because there is no encryption (SHA-256 etc.) used between
applications and controller communications. In case of host tracking, tampering may
not be possible because MAC, IP, VLAN ID and Location are used as an index in
Host Profile [15]. The internal data structure might be vulnerable to tampering and
information disclosure because once the user has access to the controller, all internal
information is visible and alterable.

Confidentiality and Integrity can be achieved by using the TLS protocol in SBI
that makes the channel safe against tampering and information disclosure [5]. By
default, TLS is disabled in Beacon.

In NBI, conflicting flow rules from different applications can cause the DoS attack
[47] while DoS attack can be launched from SBI by setting up a number of new and
unknown flows [47].

There is no auditing service for applications that makes Beacon vulnerable to
repudiation in NBI and processes.

Elevation of privileges may not be possible due to its slicing architecture, every
application has its own domain and can not interfere with the domain of other appli-
cations. There is no access control mechanism in Beacon so elevation of privileges
might be possible once the user has access to the controller.

Table6.4 shows the STRIDE matrix for the Beacon controller.
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Table 6.4 Stride threat matrix for “Beacon” controller. “�” indicates that mitigation mechanism
exist for that attack, “X” indicates the possible existance of a threat but no mitigation mechanism
exist, “-” indicates no information is provided for that threat, blank space indicates component can
not be affected by threat

Type Component S T R I D E

Data flow North bound interface X X X

Data flow South bound interface � � X

Process Controller core - - X - - X

Data store Internal data structures X X -

Interactors Switches and NBI
applications

X X

6.4.4 POX

The POX [34] controller is inherited from the NOX controller. It is used to explore
SDN debugging, network virtualization, controller design and programming models
[19]. The STRIDE threat matrix for the POX controller is derived after integrating
AuthFlow [25].

AuthFlow [25] is a security enhancement of the POX controller. The mechanism
is based on RADIUS authentication server [35] and IEEE 802.1X [35]. In AuthFlow,
the POX controller redirects every request from the virtual routers to the authenti-
cation server. The authenticator checks the credential against RADIUS server. If the
authentication is successful, then the authenticator sends a confirmation message for
the POX controller via SSL and Public Key Infrastructure (PKI). AuthFlow uses the
authentication credentials for performing access control with respect to the privilege
level.

Spoofing is very unlikely after embedding the authentication mechanism from
AuthFlow. Interactors (switches and NBI applications) and controller core may not
be spoofed because unauthenticated access is not allowed. POX can detect invalid
values of ARP header fields [40].

Information disclosure is likely in POX. This is performed based on the TCP setup
timing. If the second connection request is faster than the first one, then a new rulewas
installed on connection request. This is achieved with the POXmodule forwarding.l3
aggregator simple [20]. The communication between the controller and switches can
be secured with TLS protocol while in NBI the communication is secured by using
HTTPS that secures the channel against tampering. The internal data structure is
secured from tampering and Information Disclosure by access control mechanisms.

Repudiation may be viable because POX controller does not maintain logs while
switches and NBI applications communicate with the POX controller.

DoS may be achieved by sending a large number of spoofed packets to the con-
troller that installs a new flow rule for each packet resulting the overflowing of flow
table. Attack can be instantiated by using forwarding.l2 learning module [20]. This
can exhaust the resources of the network controller. In NBI, authentication could
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Table 6.5 Stride threat matrix for pox controller. “�” indicates that mitigation mechanism exist
for that attack, “X” indicates the possible existance of a threat but no mitigation mechanism exist,
“-” indicates no information is provided for that threat, blank space indicates component can not be
affected by threat

Type Component S T R I D E

Data flow North bound interface � � �
Data flow South bound interface � � �
Process Controller core � � X - - �
Data store Internal data structures � � -

Interactors Switches and NBI
applications

� X

prevent from the DoS attack while in SBI, introducing the Rate Limiting and Packet
Dropping etc. can mitigate these threats.

Elevation of privilege threat is tackled by AuthFlow [25]. POX processes can only
access the control according to their privilege level.

Table6.5 shows the STRIDE matrix for the POX controller.

6.5 Conclusion

Controller is the most important part of an SDN architecture, therefore, it may en-
counter security challenges. The design of the controller evolved with the time to
deal with the flexibility, performance and security issues. Four controllers: Flood-
Light, ZeroSDN, Beacon and POX, are analyzed in this paper and the STRIDE threat
matrix is drawn for each of these controllers. FloodLight controller does not support
TLS in SBI that makes the controller vulnerable against tampering and informa-
tion disclosure. The ZeroSDN architecture did not focus on security aspects in their
architecture. ZeroSDN offers best performance as its maximum throughput is ap-
proximately 502k messages per second [18]. Beacon may be vulnerable to attacks
such as Tampering, Information Disclosure and DoS in NBI. POX is secure as com-
pared to the other mentioned controllers after integrating AuthFlow. SE-FloodLight
is also a secure controller due to its resilience against different types of attacks. Se-
curity comes at cost of performance. If strict policies are imposed, then there will
be more rejections from the controllers and performance is effected automatically.
Controllers that manage the balance between performance and security is considered
as the best option. SDN controllers should be updated regularly to deal with security.
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Chapter 7
Analysis of SDN Applications for Smart Grid
Infrastructures

Marco Bräuning and Rahamatullah Khondoker

Abstract Software-defined networking (SDN) has major advantages over tradi-
tional network setups. The SDN paradigm decreases management complexity of
computer networks by separating the control layer from network devices, thereby
centralizing management functionalities for easier administration of the network.
Due to the nature of being a massively decentralized network, it will be beneficial to
integrate smart grid infrastructures with SDN. Unfortunately, critical infrastructures
such as smart grids are a worthwhile target for state-sponsored cyber attacks as the
past has already shown. Therefore, this work will analyze the security impact of
enabling smart grids with SDN by exploring different SDN attack vectors, which
will have a negative impact on smart grid security. Furthermore, a security analysis
of the smart grid communication layer will be conducted, which shows Distributed
Denial-of-Service (DDoS) attacks to be a major security issue for smart grid. The
analysis is followed by a presentation of the SDN-enabled smart grid simulation
framework DSSnet, which allows to assess the impact of different attack scenarios
on smart grid environments, such as DDoS attacks. Although impact estimation may
help to mitigate financial loss related to DDoS attacks, such attacks will still have a
critical impact on smart grid operability.

7.1 Introduction

Software-defined networking (SDN) drastically reduces themanagement complexity
of classical network topologies by separating the control layer from the data layer.
This allows to abstract low-level functionalities from network devices, so that such
networks can be managed in a logically centralized way and configured program-
matically. Therefore, heavily decentralized networks benefit the most from SDN.
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Examples for such decentralized networks are cellular systems or connected power
networks, so-called smart grids.

Since its first official definition provided by the Energy Independence and Secu-
rity Act of 2007 (EISA-2007), the U.S. alone has spent over 2.5 billion USD in
transitioning from traditional power networks to a smart grid [17]. By introducing
a communication network layer on top of a power network layer, smart grids mas-
sively increase both reliability and efficiency as well as sustainability. Transitioning
from traditional networks to a smart grid is very time consuming and expensive,
since every microgrid component needs to be adapted accordingly, including elec-
tric meters at consumer households. Moreover, introducing a communication layer
on top of a power network layer will also open up new attack vectors, which need to
be studied and addressed before the network transition is completed.

This work analyses the applications of SDN to improve the security of smart grid
environments. Therefore, past and current security risks for smart grid infrastructures
will be explored and discussed. Moreover, the SDN-based smart grid simulation
framework DSSnet [5] will be explained and its capabilities to improve the security
of current smart grid infrastructures will be evaluated.

The rest of this work is structured as follows: Sect. 7.2 refreshes briefly the con-
cepts of software-defined networking, smart grids and threatmodelingwith STRIDE.
In Sect. 7.3, the current threat landscape and security challenges of SDN-enabled
smart grids will be analyzed. In Sect. 7.4, the SDN-based simulation framework
DSSnet will be explained. In Sect. 7.5, related and future work will be presented,
followed by a conclusion of this work in Sect. 7.6.

7.2 Background

The following subsections briefly describe the concepts of smart grid infrastructures,
software-defined networking and the threat modeling framework STRIDE.

7.2.1 Smart Grids

Power networks are very complex systems. In particular, they consist of power gen-
eration plants, transmission grids, distribution systems, storage units and power con-
sumers (Fig. 7.1).

Amajor disadvantage of traditional power networks is the static flow of electricity,
which cannot be modified according to consumer requirements. Traditional power
networks are designed so that their capacity is capable of handling the maximum
amount of power consumption at peak hours. During non-peak hours, the available
network capacity is not used to its full extend.
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Fig. 7.1 Traditional power
network architecture [8]
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Electricity: One-way flow

Fig. 7.2 Smart grid
architecture [8]
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Generation Transmission Distribution Consumption

In contrast to traditional power networks, smart grids are able to control the flowof
electricity, which allows to dynamically allocate power resources to consumers and
therewith make a more efficient usage of the available capacity (Fig. 7.2). Basically,
a smart grid is a traditional power network with an additional communication layer
on-top, which enables power network components to distribute available energy as
required.

Transitioning from a traditional power network to a smart grid is very cost- and
time-intensive, since every network component needs to be adapted accordingly,
including electrical meters at consumer households. But, once the smart grid is fully
deployed, it has major benefits in contrast to traditional power networks. Dynamic
allocation of electrical power will massively increase both reliability and efficiency
as well as sustainability, with a major influence on current energy markets. For
example, fees for power consumption could be adapted to the currently available
network capacity—during peak hours, the price per kW of power will be higher than
during non-peak hours.
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7.2.2 Software-Defined Networking

Software-defined networking (SDN) is an approach to decrease the complexity of
computer networks. After the release of Java in 1995, AT&T’s GeoPlex [21] was
the first major research project to apply the SDN paradigm to network management
systems. With the establishment of the Open Network Foundation (ONF) in 2011
to further promote and standardize SDN methodologies, SDN has finally got more
attention in research and industrial applications.

The idea of SDN is to completely separate the data layer from the control layer,
which enables network administrators to manage network services through abstrac-
tion of low-level functionalities. A SDN architecture consists of three layers known
as data layer, control layer and application layer (Fig. 7.3). The data layer contains
all network infrastructure devices, which are controlled by the now separated control
layer over a so-called control-data-plane-interface (C-DPI). The most famous CDPI
is called OpenFlow [12] protocol, which is also standardized by the ONF. The con-
trol layer itself consists of programmable network services, which are managed and
configured by dedicated applications running on the application layer.

The benefits of such an architecture are versatile. Decoupling the control layer
from the data layer allows network administrators to dynamically adjust traffic flows
according to the network clients’ requirements. Since SDN networks can be config-
ured programmatically, this dynamic adjustment can even be automatized.Moreover,
SDN allows for a logically centralized management of data layer components, even
if they are deployed completely decentralized across the globe. In such a scenario,
SDN also enables administrators to set up and run test configurations more easily
and less cost-intensively.

Application 
Layer Business Applications

Control Layer SDN Control
Software Network Services

Infrastructure 
Layer

Network 
Device

Network 
Device ...

A-CPI

C-DPI

Fig. 7.3 Software-defined networking (SDN) architecture [19]
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Fig. 7.4 Application of the
SDN paradigm to smart grid
architectures [5]
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A smart grid is a use case example for SDN. Due to the decentralized nature
of such power networks, SDN will decrease management complexity and therefore
operational costs by a great margin. Smart grids introduced a communication layer
on-top of traditional power networks, on which the SDN paradigm will be applied
(Fig. 7.4).

7.2.3 STRIDE

Microsoft’s STRIDE is a common technique for threat modeling. It can be used to
assess the security of a system regarding the following threats [20]:

• spoofing
• tampering
• repudiation
• information disclosure
• denial of service
• elevation of privilege

Knowledge of a system’s interfaces, data flows and communication protocols is
required to successfully conduct a security analysis with STRIDE. Each compo-
nent of the four attack surfaces data flows, processes, data storage and interactors is
checked for existing mitigation mechanisms against the above listed STRIDE threat
vectors. For example, if the communication protocol of a data flow does not support
encryption, this component must be considered as vulnerable to information disclo-
sure. The output of a STRIDE security analysis can be depicted as a matrix, which
is also known as STRIDE threat matrix.

7.3 Security Analysis

Due to its strong impact on civil security, critical infrastructures have already been
subject to cyber attacks in the past. A famous example is 2010’s STUXNET attack,
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Fig. 7.5 Attack vectors of
SDN networks [7]
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with the goal to destroy a major part of Iran’s nuclear centrifuges [10]. In 2015,
Kaspersky Lab revealed similarities of the STUXNET code with other malware
developed from a threat actor called Equation Group, which can be linked to the
U.S. National Security Agency (NSA) [4]. Since such attacks on critical infrastruc-
tures are most likely politically motivated, it is also likely that they are initiated and
sponsored by a opposing government. A more recent example is the cyber attack on
the Ukrainian power grid during the Crimea crisis in December 2015. The Russian
trojanBlackEnergy shut downmajor parts of the power grid, thereby leaving 700.000
households without electricity for several hours [16]. Due to its nature, it is likely that
future power grids, such as smart grids, will continue to suffer from similar attacks.

Enabling smart grid networks with SDN has a two-fold impact on smart grid
security: On the one hand, it can be used to assess the impact of security incidents
(see Sect. 7.4) and improve resilience of the communication layer, for example by
being able to dynamically adapt network configurations in case of an attack. On the
other hand, it also introduces different attack vectors to the system [7] which are
described below and depicted in Fig. 7.5.

7.3.1 Attacks at Data Layer

New attack vectors introduced by SDN are mainly focused on the southbound API
used by the control layer to communicate with network devices on the data layer.
Since many of those protocols are very new, it is likely that they may not have been
implemented properly or hardened sufficiently against cyber attacks. A successful
compromise on this layerwould allow an attacker tomodify network flows, for exam-
ple to bypass firewall systems or steer traffic across an attacker-controlled system to
perform a man-in-the-middle attack.
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Although it should also be considered that an adversary gains unauthorized phys-
ical or virtual access to one or more of the network devices, for example to run DoS
attacks against other network hosts, this is not an attack vector which results from
applying the SDN paradigm.

7.3.2 Attacks at Control Layer

The SDN controller is perhaps the most obvious target of a cyber attack. A success-
ful compromise on this layer would allow an adversary to spoof northbound and
southbound API messages, thereby modifying the network flows to his advantage.
Moreover, the SDN controller is the main subject of DoS attacks in an SDN environ-
ment, since its failure would have a disastrous impact on network management and
network monitoring. Lastly, by setting up a rogue controller and modifying the SDN
flow tables on the network devices, an attacker could initiate network flows which
would not be recognized by the original controller.

7.3.3 Attacks at Application Layer

Similar to southbound protocols, these attacks leverage security vulnerabilities of
the northbound API. The modus operandi of such attacks will vary depending on the
API in-place (Java, Python, XML, JSON, RESTful, ...). Using STRIDE, the security
of SDN-enabled smart grids can be assessed by analyzing the following data flows
(see Fig. 7.4):

i. Application Layer ⇐⇒ SDN Control Layer
ii. SDN Control Layer ⇐⇒ Communication Layer
iii. Communication Layer ⇐⇒ Power Network Layer

Data flow i and ii are directly inherited by applying the SDN paradigm to a smart
grid infrastructure. Both data flows have already been analyzed for different SDN
architectures and protocols in the past (see [1, 11]), with the result that DoS attacks
are a major concern for SDN environments.

For the security analysis of data flow iii it will be assumed that Open Smart Grid
Protocol (OSGP) is the protocol in use. OSGP is a communication protocol for
smart meters, which was published by the European Telecommunications Standards
Institute in 2012 [13]. With over 4 million OSGP-embedded smart meters deployed
[15], it is one of the most used smart grid protocols worldwide. The result of the
security analysis using STRIDE is depicted in Table7.1.

The security analysis has shown that data flow iii has a severe impact on the
security of SDN-enabled smart grids. Note that OSGP is known for its broken cus-
tom implementation of cryptography [15]. Although smart grid protocols relying on
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Table 7.1 STRIDE threat matrix for data flow (iii), assuming OSGP is used. X indicates possible
threat and blank indicates no applicability

Type Component S T R I D E

Data
Flow

Communication
Layer ↔ Power
Network Layer

X X X

well-known cryptography standards may not suffer from tampering or information
disclosure, there still would be no mitigation mechanism against DoS attacks.

7.4 DSSnet

A first approach on integrating SDN with smart grids is the SDN-based smart grid
simulation framework calledDistribution System Solver Network (DSSnet) presented
byHannon et al. in 2016. The framework integrates two core systems, the distribution
power system simulatorOpenDSS [14] and the network emulatorMininet [6] to offer
the following features [5]:

• Studies of power flows
• Modeling of SDN-based communication networks
• Control applications for smart grid
• Emulation of virtual-time-enabled networks

The system architecture of DSSnet is depicted in Fig. 7.6. Besides OpenDSS
and Mininet, DSSnet consists of three more crucial parts, in particular the network
coordinator, power coordinator and a virtual time system. The two coordinators act

OpenDSS Power 
Coordinator

Mininet Network 
Coordinator

Virtual Time 
System

Windows

Linux

Sync
Events

Fig. 7.6 System architecture of DSSnet [5]
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as a communication middle layer between OpenDSS and Mininet for time event
synchronization.

Proper synchronization was one of the key challenges forDSSnet. Simulators like
OpenDSS usually use their own virtual time clock, whereas emulators like Mininet
use the system clock as their reference point. The authors addressed this issue by
developing a dedicated virtual time system for the emulator component, which is
able to be synchronized with the virtual time system of the simulator component.
The synchronization itself is done by freezing and unfreezing the respective system
processes, which introduces further time delays known as emulation overhead. Fur-
ther investigation has shown that as the number of simulated network hosts increases,
the emulation overhead is also increasing (Fig. 7.7). Since smart grids are very time-
critical infrastructures, this behavior is undesirable. The authors are confident to
decrease the emulation overhead in a future work.

For assessing the capabilities ofDSSnet to evaluate the impact of security incidents
on smart grid infrastructures, the authors have analyzed a load shift scenario. Load
shifting is the problem of properly shifting energy loads during peak hours for cost
minimization. In the scenario depicted in Fig. 7.8, deploying a proper load shifting
algorithm will decrease total costs from $713.66 to $666.01.

A key benefit of DSSnet is the ability to analyze real attack scenarios using the
network emulation component. In the example of Fig. 7.8, a DoS attack was run
against the power application server by flooding the server with TCP requests for
90min. The simulation result shows that the impact of such a DoS attack would
increase the total costs by $22.56 to $688.57.

0 50 100 150 200 250 300 350 400 450 500

10

20

30

40

50

60

70

80

Number of Hosts

Em
ul

at
io

n 
O

ve
rh

ea
d 

(m
s)

Fig. 7.7 Emulation overhead in DSSnet [5]
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Fig. 7.8 Results of a load shifting simulation with DSSnet [5]. A simulated DoS attack starts at
19:30 and lasts for 90min

7.5 Related and Future Work

Cahn et al. [2] did a first approach on enabling smart grids with SDN by design-
ing and deploying a substation network architecture using a Ryu-based SDN con-
troller. In 2014, Fujitsu Network Communications Inc. published a tech report on
the challenges of SDN for the energy and utilities sector [19]. Dorsch et al. [3] also
analyzed applications of the SDN paradigm to smart grids, but not from a security
point-of-view. They presented a dynamic network control approach based on SDN
for smart grids and evaluated their work using multiple failure scenarios, such as
link congestion and corresponding recovery solutions. Dong et al. [22] discuss the
opportunities that SDN brings to smart grids for improving resilience and the corre-
sponding challenges that still remain. Kim et al. [9] investigated the state-of-the-art of
SDN-enabled smart grids and compared recent studies on the service functionalities
of SDN-enabled smart grids.

7.6 Conclusion

Smart grids have many benefits over traditional power networks and therefore it is
only a matter of time until the first smart grids will be fully deployed. Nevertheless,
adding a communication layer on-top of the power network has negative implications
on security, since it opens up new attack vectors for adversaries [18]. Due to being a
critical infrastructure, smart grids will continue to be a worthwhile target for cyber
attacks, as it is already the case for traditional power networks today.

Applying the SDN paradigm to a smart grid will have both positive and negative
impacts on its security. Due to the centralized management capabilities, monitoring
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and incident response are expected to be more efficient. In case of an incident, net-
work administrators can quickly disable, enable or change affected network flows to
mitigate the impact of the attack. Moreover, SDN’s traffic simulation capabilities can
be used to assess different attack scenarios on various network setups prior to their
deployment in production.

Apart from that, SDN also introduces several attack vectors to smart grids, which
need to be addressed. As this work has shown, a major issue for smart grid infrastruc-
tures are DoS attacks. Since this is also true for SDN infrastructures, SDN-enabled
smart grids will continue to suffer from this threat vector. The SDN-based simulation
frameworkDSSnet has shown that by being able to simulate the behavior of network
traffic under different network configurations in advance, the financial impact of DoS
attacks can be estimated. Although such simulations can be used to optimize net-
work configuration for cost minimization, DoS attacks will continue to have a major
financial impact. Therefore, addressing this attack vector is still an open research
question.
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Chapter 8
Security Analysis of SDN WAN
Applications—B4 and IWAN

Rajat Jain and Rahamatullah Khondoker

Abstract Software defined applications forWAN (Wide Area Network) are primar-
ily designed to manage and deploy enterprise WAN infrastructure. SDN controller
feature helps an organization to automate complex WAN configuration and route
data efficiently among its remote sites from a centralized point. Recently various
vendors have stepped in this market and claim their product to be the solution for
WAN management problems. However, automating the network through a central-
ized controller makes the network a handy target for attackers to exploit. Compro-
mising the controller or its application can pose serious threat to network devices
and traffic flow. This motivated us to study the vulnerabilities of two such SDN
WAN applications—Google’s B4 and Cisco’s IWAN. For the analysis, we used the
Microsoft’s threat analysis method called STRIDE. In the analysis, we found out
that both B4 and IWANmight suffer from security threats like Spoofing, Tampering,
Information Disclosure and Denial of Service (DoS) and each vulnerability found
in the application using STRIDE threat model, can be mitigated using available IT
security mechanisms.

Keywords WAN · Google’s B4 · IWAN ·Microsoft’s threat analysis · STRIDE
SDN WAN · Data Flow Diagram (DFD)

8.1 Introduction

Over the past few years, the rise in data volume of IP applications has been quite
unprecedented. According to the study in [1], data usage will surpass zettabyte (i.e.
1000 exabyte) in 2018. In addition to sharp data rise, service level agreement and
policies for mission critical application is making networkmanagement complex and
challenging for an organization [1].Many attempts have beenmade in the past to ease
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Fig. 8.1 Basic SDN Architecture and flow of data [5] (redrawn)

out this complexity but changing the underlying IP network has always been themajor
obstacle [2]. Whereas, SDN has proposed the idea of decoupling the control and the
data plane while orchestrating the whole network through a centralized controller.
With the overview of the whole topology at a single point makes the management
easy andwill cut downOPEX andCAPEX. Figure8.1 shows the basic architecture of
SDN. It can be viewed as three layers. For understanding the architecture in detail, the
numbers are marked on the figure in increasing order to represent the flow of data, (1)
The OpenFlow [3] protocol enables switches using southbound interfaces to send the
network update to the controller, (2) Controller collects the updates and prepares it for
the northbound applications, (3) Applications using northbound interface access the
data and process it using its business logic, (4) Application forwards the instruction
which updates the flow table at the controller, (5) Finally, controller using southbound
interface updates the switch flow table.
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Table 8.1 Various SDN solutions

SDN Vendor Description Area of use Security

IWAN [7] Cisco Virtual WAN,
Intelligently routes
based on priority, uses
DMPVN cell5

WAN Firewall (Based on
security rules) and
Cloud-based security
applications

ION [8] Cloud Genix SD-WAN, virtual
elements on existing
device acts as flow
forwarders

WAN OpenFlow (SSL, TLS)
and Cloud-based
security applications

SEN [9] Viptela Delivers secure
end-to-end
virtualization for
enterprise to build large
scale network

WAN Datagram TLS, IPSec

B4 [10] Google Connecting data centers
of Google worldwide

WAN OpenFlow (SSL, TLS)
based

SDX [11] Proto type Software defined IXP WAN OpenFlow (SSL, TLS)
based

The management of a WAN was always a big concern for organizations with
multiple branches. Over the past years, the organizations have invested a lot in their
WAN infrastructure, but still find it hard when it comes down to the management
of QoS for business critical applications. Hybrid WAN allows enterprises to reduce
cost by dynamically setting QoS and routing path for different classes of traffic
over private and public links, but it simultaneously increases the configuration and
management complexity for the network team [4].

Various SDN WAN applications have been developed by multiple vendors over
the past few years. Few of those applications are listed in Table8.1 along with their
built-in security features. For our study, we decided to analyze B4 and IWAN. We
have chosen B4 due to its implementation in large data center networks of Google,
and IWANbecause it includes features likeWideAreaApplicationServices (WAAS),
Application Visibility and Control (AVC) and zero touch deployment of Dynamic
Multi-point VPN (DMVPN) make it a complete WAN management suite. The rest
of the paper is structured as follows: Sect. 8.2 gives an introduction to STRIDE and
DFD. Sections8.3 and 8.4 present a summary of the B4 and IWAN applications
respectively and their security analysis and Sect. 8.5 presents the conclusion.

8.2 Threat Modeling Tools

Threatmodeling of applications have become the keypart of product development life
cycle in most organizations these days. It not only finds the potential vulnerabilities
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in a product but also helps the team members to understand the product in more
detail [12]. Moreover, threat modeling provides a structured display of causes that
could compromise the security of an application. General steps to follow for any
threat modeling includes the creation of a structural overview of the application,
splitting the application into its constituent components, identification of threats
in each part and documentation of threats prioritizing the threats, and selection of
mitigation techniques against those threats. Different schemes for identifying and
classifying threats have been developed over the years. Following are some of them
listed along with their alignment to the study conducted in this paper.

PASTA Initial letters stand for Process for Attack Simulation and Threat Analysis.
It is a simulation methodology suitable for designers and developers in the orga-
nization where the user needs to know the definition, technical scope and source
code of application [13].

Trike It is a threat modeling technique suitable for design phase as it is a require-
ment centric method and needs stakeholders involvement [14].

Attack Tree It is available as open source as well as commercial software but it is
an attacker oriented method rather than a system centric one, and therefore, may
not be suitable for an entire system analysis [15].

UMLSEC It is a model-based approach where each component of the system is
analyzed with various stereotypes which requires an analyzer to know the source
code of the product [16].

OCTAVE It is a risk assessment tool for organizations where an analysis team of
expertise from various departments is required for the analysis [17].

Misuse Cases It is a business process modeling tool based on the expert guidance
of various fields like architecture, design [18].

DREAD It is also used for risk assessment, but it is more subjective in nature when
one need to give ratings to the threats [19].

CORAS It is used for the organizational threats and it needs customer interaction
for the security analysis. Study in this paper does not involve any kind of customer
interaction thus make it a non suitable tool for our analysis [20].

STRIDE Comparing with above schemes STRIDE [21], a methodology from
Microsoft, is perfectly suitable for analyzing our software defined wide area net-
work applications B4 and IWAN because it does not require implementation
details for categorizing and finding potential threats.

8.2.1 The STRIDE Threat Modeling Tool

STRIDE is a methodology for the identification and categorization of various threats
in applications [21]. Initial letters define the security threats such as Spoofing, Tam-
pering, Repudiation, Information disclosure, Denial of Service (DoS), and Elevation
of Privileges. According to [21], individual security threat is defined as follows.
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Spoofing means pretending to be an authorize user for accessing a certain service or
application.

Tampering involves unsanctioned manipulation of data. Modification of data could
be done during transmission or when the data is in rest.

Repudiation means denial of action after its occurrence. For example, an user denies
the truth that the action was performed by him.

Information Disclosure involves the leak of information to anyone, who is not
authorized to access the information.

Denial of Service is the prevention of authorized user from accessing a service or
application by exhausting system or application resources.

Elevation of Privileges means that an ineligible user gets a privileged access to
applications or services.

8.2.2 Data Flow Diagram

For analyzing an application using the STRIDE method, the architecture of the
application needs to be represented by a Data Flow Diagram (DFD). In DFD, the
application is decomposed intomultiple components based on their functionality and
then analyze the security threats for each component. Table8.2 shows various DFD
components, their representations and description in accordance to [22].

Additionally, each component is vulnerable to a group of threats that needs to
be addressed. Data flows and data stores are vulnerable to tampering, information
disclosure and DoS. Whereas interactors are vulnerable to spoofing and repudiation,
Processes are vulnerable to all the threats.

Table 8.2 DFD components

Component Representation Description

Data flows Arrow represents Direction of flow of data

Data stores Parallel horizontal lines File database

Process Circle Application

Multi-process Concentric circle Compilation of various
sub-process

Interactors Rectangle It represents end-points which
provide as well as consume
data in the system

Trust boundary Straight line (Dotted) It is the boundary between
trusted and untrusted
components
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8.3 Security Analysis of B4 Application

GoogleWANnetwork is architecturally divided into twoWANs.One network is used
for directing users requests/responses and other named as B4, is used for synchroniz-
ing users data across geographically distributed data centers. The QoS requirements
for data for both of theseWANs are varied in nature, where the one which is directing
users requests/responses, requires high bandwidth for data while the other one (B4)
requires high availability for data. Furthermore, thousands of applications which run
across B4 require a range of QoS classes. Some applications over B4 are low in
volume and demand low latency while some are high in volume and demand high
bandwidth [11]. The cost of maintenance of these varied number of QoS classes and
an end-to-end application control motivated Google to implement the SDN technol-
ogy.

Figure8.2 shows the basic architecture of B4. It can be viewed as three logical
layers i.e., Hardware, Controller, and Global. The hardware layer consists of com-
modity OpenFlow switches. The controller layer consists of a cluster of Network
Control Systems (NCS) for fault tolerance, and an instance of Paxos. Paxos selects
one NCS as a master for the site. Each NCS contains an OpenFlow controller (OFC)
andQuagga.Quagga providesBorderGatewayProtocol (BGP) connectivity between
NCS server andGateway and also exchanges network and traffic engineering updates
between them.OFC hosts SDN application called RoutingApplication Proxy (RAP).
RAP is subscribed to Quagga’s traffic engineering updates and forward updates to
OFC. Finally, the global layer consists of gateway and topology server. Whereas the
gateway connects multiple data center sites, the topology server (TE) serves as the
brain for the whole network and defines policies to engineer traffic between these
sites.

8.3.1 Security Analysis

A general routing process of B4 is explained in Fig. 8.2. One way pointed lines
denote the interface status change information communicated from the switch to
the topology server and updated policies are sent back to the switch. (1) OpenFlow
enabled switch sends the status information to the OpenFlow controller hosted on
NCS, (2) The SDN application RAP forwards the information to Quagga, (3) Quagga
using BGP update forwards the information to the Gateway, (4) Gateway forwards
the information to the Traffic Engineering (TE) server, (5) TE having the full view
of the network, constructs a tunnel for application, assigns a flow group to it, and
forwards this information to Gateway, (6) Gateway uses the BGP updates to pass
the information to the Quagga, (7) RAP using RPC receives Quagga updates, and
forwards them to OFC. Using the receive updates, OFC updates its Network Infor-
mation Database (NIB), (8) Using the received updates, OFC constructs new policies
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Fig. 8.2 B4 Architecture and flow of data [10] (redrawn and modified)
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and forwards them to the OpenFlow switches. Finally, OpenFlow switches using new
policies update their forwarding table.

For analyzing the security features of B4, we followed the steps mentioned in
Sect. 8.2. For constructing a DFD considering the scenario depicted in Fig. 8.2, the
application is basically decomposed into four main components—Topology server,
NCS server, Gateway and OpenFlow hardware switches. Each NCS hosts the OFC,
Quagga and two databases—Routing Information Database (RIB) and NIB. RAP
application, Quagga and OFC are considered as DFD processes and two databases
as DFD data stores. The data flows are specified according to the interaction of data
with each DFD component in the graphical representation of DFD in Fig. 8.3.

A summary of the threat analysis is shown in Table8.3.

Data flows According to the STRIDEmethod, a data flow is vulnerable to tamper-
ing, information disclosure, and DoS threats which lead to violation of security
goals such as integrity, confidentiality, and availability of data. Switches lie out-
side the trusted zone but useOpenFlowprotocol for communicatingwith theOFC.
OpenFlow uses Transport Layer Security (TLS) for securing the communication
between the switches and controllers [4]. It protects the data flows from tamper-
ing of data and information disclosure by encrypting the data. It uses public key
cryptography that ensures a private communication between the entities. Though
controllers are kept in an isolated management network, to make the flows secure
from the DoS attacks, filtering of OpenFlow requests or QoS of requests can be
considered [22]. The data flow between the Gateway and NCS server and between
Gateway and Topology server are vulnerable to all the three threats. Tampering
and Information Disclosure can be mitigated by using encryption and message
integrity check mechanisms, whereas DoS can be prevented by throttling mech-
anism or QoS.

Data store Data stores are vulnerable to Tampering, Information Disclosure and
Denial of Service attacks. In B4, data is stored in RIB and NIB. Compromising
security of any of these data stores would result in vulnerability of the whole
system. However, both the data stores are considered to be present locally inside
the NCS Servers, so they can only be attacked if the NCS server is compromised.

Processes Processes are vulnerable to all six threats categories, though spoofing,
tampering and information disclosure could be neglected for them assuming that
they are hosted on the NCS server and securing the server inherently secures
them. To mitigate the repudiation threat, a log file can be maintained to store the
details of each communication made to the process. For mitigating Elevation of
Privileges attack, the process must be run with the minimum required privileges.
For protecting from DoS attack, users must be authenticated and authorized and
QoS or filtering of user request reaching to the process should be considered.

Interactors Interactors are prone to spoofing and repudiation. In ourDFD, switches,
NCSServer, Gateway and TE server are the interactors. Switches andNCS servers
may be considered to be safe from both of these attacks as they both use TLS
enabled communication between them. Gateways and TE server can be spoofed
if one is able to get access to the shell of an interactor. One can push certain
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Fig. 8.3 B4 DFD

commands which can bring the application to a halt. In order to protect from
such an attack, shell access must be authenticated and authorized. For example,
usage of an AAA (Authentication, Authorization, and Accounting) server in the
network could mitigate such attacks. AAA accounting feature will log each and
every activity of a user, and any malicious attempt made by the user can be easily
traced back, thus usage of AAA server mitigates repudiation attack as well.
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8.4 Security Analysis of IWAN Application

Cisco IntelligentWAN (IWAN), is one of the Cisco Application Policy Infrastructure
Controller Enterprise Module (APIC-EM), application was developed for managing
a hybrid WAN using SDN. It supplies all the capabilities of WANmanagement such
asWANoptimization, performance routing, deep packet inspection and VPN tunnel-
ing in one suite. IWAN helps an organization to build Dynamic Multi-point VPNs
(DMVPN) with zero touch deployment and intelligently route encrypted applica-
tion traffic, independent of WAN transport. Additionally, it optimizes the WAN link
using Cisco WAAS and secures communication using Cisco cloud security. It basi-
cally builds on four main components [23]: (1) Transport Independent Design, (2)
Intelligent Path Control, (3) Application Optimization, and (4) Secure Connectivity.

8.4.1 Security Analysis

The functions of IWAN is explained using a basic scenario in Fig. 8.4. In the nutshell,
headquarter (Hub) sends business critical traffic to private cloud usingMPLS private
link and during a certain time of the day the private link gets congested. Cisco IWAN
observes the congestion and dynamically picks the low priority data from private link
and re-route it to the other link such as Internet. For our study, we assume that the
initial performance based routing policies for the application are already configured
on the Border and Master router. The numbers in Fig. 8.4 represents the flow and it
is described as follows: (1) The headquarter sends the application stream, (2) Master
router uses the predefined policies to direct the traffic towards the Border router
1, (3) Border router 1 forwards the traffic to private Multi-protocol label switching
(MPLS) link and using Next Generation Network-Based Application Recognition
(NBAR2) starts deep inspection of the traffic, (4) Border router collects the metrics
(Link utilization and Throughput) of application over private WAN link and using
NetFlow V9 forwards them to the Master router, (5) IWAN receives metrics from
the Master router, (6) As the traffic metrics reach threshold value, IWAN instructs
new policies to the Master router and re-route the low priority applications running
on private WAN link to the other WAN link (Internet), (7) Master router redirects
the low priority data traffic to the Border router 2, 8) Finally, the Border router 2
forwards the traffic to the Internet link.

For the security analysis of IWAN, we followed the same steps as we did for
B4. We first define the DFD (Fig. 8.5) and then analyze it using STRIDE. Basically,
the architecture is decomposed into four main component groups—One or more
LAN switch, Cisco APIC-EM controller, Master router, and both Border routers are
considered as interactors for the DFD. The scenario in Fig. 8.4 reveals LAN and
Master router, Master router and Border router, Border router and cloud, and Master
router and IWAN communicate with each other. This communication is modeled
as data flows. Furthermore, AVC, Performance Routing (PFR), and WAAS running
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Fig. 8.4 IWAN architecture and flow of data [23] (redrawn)

on Border router and IWAN on APIC-EM controller are considered as processes.
Finally, there are two trust boundaries. Branch switches are kept outside the trust
boundary because users connected to the switches cannot be trusted, as they can
overhaul the link between the Master router and Border routers with false traffic,
which can hamper the IWAN performance. Second trust boundary is between edge
router of the organization and WAN link. Data and users from the WAN link cannot
be trusted either. There are no data stores considered for this application.

A summary of the IWAN security analysis is shown in Table8.4.

Data flow Data flow is vulnerable to Tampering, Information Disclosure, and
Denial of Service [22]. Information Disclosure attack on the data flows between
Master and Border routers can be performed by tapping the network between
them. To achieve confidentiality, IPsec [24] tunnel between the routers can be
implemented. Similarly, data can only be tampered if the attacker is able to tap
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Fig. 8.5 IWAN DFD

the network and modifies the packets. This can also be mitigated by using IPsec
tunnelwhich uses integrity checkingmechanisms such asMessageAuthentication
Codes (MAC). DoS attack on this flow could be performed if malicious users con-
nected to branch LAN send false traffic and overload the link between the routers.
To mitigate this threat, authentication and authorization of users connected to
LAN and QoS of routing protocol and data metrics packets to be used. Data flows
between APIC-EM controller and Master router are immune to both Tampering
and Information Disclosure attack. Both the interactors use TLS enabled Open-
Flow protocol between them [4] which makes the data flow immune to Tampering
and Information Disclosure threats. Bandwidth of the link can be exhausted by
sending large number of OpenFlow requests to the controller. To mitigate this,
QoS or filtering of the OpenFlow requests can be considered [22].
Data flows between the branch LAN and the Master router are prone to all three
attacks. Attacker with Tampering and Information Disclosure attack can manip-
ulate the traffic, and by spoofing himself/herself, he/she can send bogus traffic
on the WAN link, which can make IWAN to alter the performance routing con-
figuration. This can be mitigated by using the TLS protocol between LAN and
Master router and by authenticating and authorizing users on LAN. The flow of
data from the Branch routers to the Internet is immune to Tampering and Infor-
mation Disclosure attack because of IPSec IKE2 encryption [24]. Whereas, the
DoS attack on the flow can surely hamper the working of IWAN. Unavailability
to pass data through one link can cause IWAN to change the policies and routing
entries on Master router, which can make the possibility of sending business crit-
ical data on the less secure Internet link. To mitigate this attack, one could either
use dynamic IP onWAN ports of Branch routers or prioritize the business critical
data on private WAN link.

Interactors Interactors are prone to Spoofing and Repudiation attacks. In our
DFD, Master router, Border router Controller and LAN switches are interactors.
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Spoofing attack on the LAN switch can be performed if the attacker connected
to switch, congests the WAN link with large amount of false traffic. This can
make IWAN to alter the performance routing policies on the Master router. To
mitigate this attack, we may either configure LAN switch ports to static access
or disable Dynamic Trunking Protocol (DTP) auto-negotiation [25]. Repudiation
attack on the LAN switch can bemitigated by logging the communicationmade to
the switch using synchronized Syslog [26] and authenticating and authorizing the
user connected to switch using AAA [27]. IWAN controller andMaster router are
both immune to Tampering and Repudiation attack because of secure OpenFlow
TLS communication. On Border routers, Spoofing attack may be performed if
console or management passwords are compromised. Cisco OS access is gener-
ally protected through AAA server which authenticates, authorizes, and accounts
activity. Formitigating theRepudiation attacks, Border routers useDMVPN IPsec
to build tunnels among the end-points. These tunnels use RSA signatures as one
of the three options for the authentication of end points of the tunnel that provide
immunity to Repudiation attacks [28].

Processes As per STRIDE threat model, the process is vulnerable to all six threats.
In our scenario, there are four processes WAAS, AVC, PFR, and IWAN applica-
tion. Attacks will be easier to these processes if hardware hosting these processes
get compromised. For example, if Border routers are compromised, then only the
attacker will be able to execute attacks on AVC, PFR, WAAS. Spoofing and Tam-
pering of processes can be performed by modifying the Cisco OS’s (Cisco-Xe
for PFR, AVC and WAAS and APIC-EM for IWAN) binary image. OS binary
image can be modified by adding a malware to it. Cisco Image Verification can
be used as a mitigation technique to this attack. This technique is built on the
MD5 file validation and communicates any corruption in OS image to network
administrators. Security of OS binary image can be further improved by providing
authorization to commands like config-register and show memory only to certain
users [29]. Similarly, Information Disclosure attack is possible if the attacker is
able to access the binary image of OS (Cisco-Xe for routers and APIC-EM for
the controller) and using the image the attacker performs static and dynamic code
analysis. Code analysis can help an attacker to gain the knowledge of flow of data
in the application (AVC, PFR,WAAS and IWAN). Using this knowledge, attacker
can tamper the application data which can make an application to crash. Encrypt-
ing the binary file can be used as the mitigation technique to this type of attack. To
perform DoS attack, an attacker connected to the branch LAN switch, can send
large amount of data to router OS. These large amount of incoming request can
crash the Router control plane and eventually shut down all the processes (AVC,
PFR andWAAS). This attack can be mitigated by either using Cisco Copp [30] or
by filtering the unwanted/malicious traffic incoming to the router’s control plane.
Elevation of privileges on all processes can be mitigated by running each process
with the least privileges.
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8.5 Conclusion

This paper presents the security analysis of two SDN-based WANs called B4 and
IWAN. Both of these applications are widely deployed. The security analysis was
done by using the threat modeling framework called STRIDE. Both of these appli-
cations use OpenFlow protocol for the communication between the controller with
external hardware which is considered to be secure to Spoofing Tampering, Informa-
tion Disclosure, and DoS attacks because of the presence of TLS. Before deploying
these applications in the networks, the suggested security mechanisms can be con-
sidered.
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Glossary

Authentication The process by which an entity, also called a principal, verifies that
another entity is who or what it claims to be. A principal can be a user, some
executable code, or a computer.

Authorisation Once a principal’s identity is determined through authentication,
the principal will usually want to access resources, such as printers and files.
Authorization is determined by performing an access check to see whether the
authenticated principal has access to the resource being requested.

Availability Readiness for correct service.
Big data Big data is data sets that are so voluminous and complex that traditional

data processing application software are inadequate to deal with them. Big data
challenges include capturing data, data storage, data analysis, search, sharing,
transfer, visualization, querying, updating and information privacy.

Cloud networking Cloud networking (and Cloud based networking) is a term
sdescribing the access of networking resources from a centralized third-party
provider using Wide Area Networking (WAN) or Internet-based access technolo-
gies.

Confidentiality The absence of unauthorized disclosure of information.
Control plane The control plane is the part of a network that carries signaling traffic

and is responsible for routing.
Data plane The data plane (sometimes known as the user plane, forwarding plane,

carrier plane or bearer plane) is the part of a network that carries user traffic.
Date center A data center is a facility used to house computer systems and associ-

ated components, such as telecommunications and storage systems.
DoS A cyber-attack where the perpetrator seeks to make a machine or network

resource unavailable to its intended users by temporarily or indefinitely disrupting
services of a host connected to the Internet. In a distributed denial-of-service
attack (DDoS attack), the incoming traffic flooding the victim originates from
many different sources.

DPI Deep packet inspection (DPI, also called complete packet inspection and
information extraction or IX) is a form of computer network packet filtering that
examines the data part (and possibly also the header) of a packet as it passes an
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inspection point, searching for protocol non-compliance, viruses, spam, intru-
sions, or defined criteria to decide whether the packet may pass or if it needs to
be routed to a different destination, or, for the purpose of collecting statistical
information that functions at the Application layer of the OSI (Open Systems
Interconnection model).

Firewall A gateway that limits access between networks in accordance with local
security policy.

IDS Adevice or software that detects andnotifies a user or enterprise of unauthorized
or anomalous access to a network or computer system.

Internet of Things The Internet of things (IoT) is the network of physical de-
vices, vehicles, home appliances and other items embedded with electronics, soft-
ware, sensors, actuators, and network connectivity which enables these objects to
connect and exchange data.

IPS A device or software used to prevent intruders from accessing systems from
malicious or suspicious activity. This is contrast to an Intrusion Detection System
(IDS), which merely detects and notifies.

Load balancer Aloadbalancer is a device that acts as a reverse proxy anddistributes
network or application traffic across a number of servers.

Northbound API In a software-defined network (SDN) architecture, the north-
bound application program interfaces (APIs) are used to communicate between
the SDN Controller and the services and applications running over the network.
The northbound APIs can be used to facilitate innovation and enable efficient
orchestration and automation of the network to align with the needs of different
applications via SDN network programmability.

Repudiation Repudiation threats are associated with users who deny performing
an action without other parties having any way to prove otherwise.

SDN Controller SDN Controllers (aka SDN Controller Platforms) in a software-
defined network (SDN) are the “brains” of the network. It is the application that
acts as a strategic control point in the SDN network, manage flow control to the
switches/routers “below” (via southboundAPIs) and the applications and business
logic “above” (via northbound APIs) to deploy intelligent networks.

SDN The physical separation of the network control plane from the forwarding
plane, and where a control plane controls several devices.

Southbound API In a software-defined network (SDN) architecture, southbound
application program interfaces (APIs) (or SDN southbound APIs) are used to
communicate between the SDN Controller and the switches and routers of the
network. They can be open or proprietary.

Spoofing Spoofing threats allow an attacker to pose as another user or allow a rogue
server to pose as a valid server.

Tampering Data tampering involves malicious modification of data.
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