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Preface

AAMAS is the leading scientific conference for research in autonomous agents and
multiagent systems, which is annually organized by the non-profit organization, the
International Foundation for Autonomous Agents and Multiagent Systems (IFAA-
MAS). The AAMAS conference series was initiated in 2002 by merging three highly
respected meetings: the International Conference on Multi-Agent Systems (ICMAS);
the International Workshop on Agent Theories, Architectures, and Languages (ATAL);
and the International Conference on Autonomous Agents (AA).

Besides the main program, AAMAS hosts a number of workshops, which aim at
stimulating and facilitating discussion, interaction, and comparison of approaches,
methods, and ideas related to specific topics, both theoretical and applied, in the general
area of Autonomous Agents and Multiagent Systems. The AAMAS workshops provide
an informal setting where participants have the opportunity to discuss specific technical
topics in an atmosphere that fosters the active exchange of ideas.

This book compiles the best papers of the AAMAS 2017 workshops. In total,
AAMAS 2017 ran 18 workshops. To select the best papers, the organizers of each
workshop were asked to nominate up to two papers from their workshop and send
those papers, along with the reviews they received during their workshop’s review
process, to the AAMAS 2017 workshop co-chairs. The AAMAS 2017 workshop
co-chairs then studied each paper carefully, in order to assess its quality and whether it
was suitable to be selected for this book. Notice that not all workshops were able to
contribute to this volume. The result is a compilation of 17 papers selected from 13
workshops, which we list below.

– The 22nd International Workshop on Coordination, Organization, Institutions,
and Norms in Agent Systems (COIN 2017)

– The 18th International Workshop on Multi-Agent-Based Simulation (MABS 2017)
– The 8th International Workshop on Optimisation in Multiagent Systems (OptMAS

2017)
– The 10th International Workshop on Agents Applied in Health Care (A2HC 2017)
– The 19th International Workshop on Trust in Agent Societies (Trust 2017)
– The 17th International Workshop on Adaptive Learning Agents (ALA 2017)
– The 1st International Workshop on Teams in Multi-Agent Systems

(TEAMAS 2017)
– The 10th International Workshop on Agent-Based Complex Automated Negotia-

tions (ACAN 2017)
– The 1st International Workshop on Transfer in Reinforcement Learning

(TiRL 2017)
– The 5th International Workshop on Engineering Multi-Agent Systems

(EMAS 2017)
– The 4th International Workshop on Multiagent Interaction without Prior Coordi-

nation (MIPC 2017)



– The 8th International Workshop on Cooperative Games and Multiagent Systems
(CoopMAS 2017)

– The 2nd International Workshop on Agent-Based Modelling of Urban Systems
(ABMUS 2017).

We note that a similar process was carried out to select the most visionary papers
of the AAMAS 2017 workshops. While best papers follow the style of more traditional
papers, visionary papers are papers with novel ideas that propose a change in the way
research is currently carried out. The selected most visionary papers may be found in
the Springer book LNCS 10643.

The AAMAS 2017 workshops are the second AAMAS workshop series to publish
their (selected) papers in the form of a collective book. We hope that this book can
better disseminate the most notable results of these workshops and encourage authors
to submit top-quality research work to the AAMAS workshops.

August 2017 Gita Sukthankar
Juan A. Rodriguez-Aguilar

VI Preface
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Elastic & Load-Spike Proof One-to-Many
Negotiation to Improve the Service

Acceptability of an Open SaaS Provider

Amro Najjar(B), Olivier Boissier, and Gauthier Picard

Hubert Curien Laboratory, Saint-Etienne, France
{amro.najjar,olivier.boissier,gauthier.picard}@emse.fr

Abstract. Service acceptability rate and user satisfaction are becoming
key factors to avoid client churn and secure the success of any Software as
a Service (SaaS) provider. Nevertheless, the provider must also accommo-
date fluctuating workloads and minimize the cost it pays to rent resources
from the cloud. To address these contradicting concerns, most of existing
works carry out resource management unilaterally by the provider. Con-
sequently, end-user preferences and her subjective acceptability of the
service are mostly ignored. In order to assess user satisfaction and ser-
vice acceptability recent studies in the domain of Quality of Experience
(QoE) recommend providers to use quantiles and percentile to gauge
user service acceptability precisely. In this article we propose an elastic,
load-spike proof, and adaptive one-to-many negotiation mechanism to
improve the service acceptability of an open SaaS provider. Based on
quantile estimation of service acceptability rate and a learned model of
the user negotiation strategy, this mechanism adjusts the provider nego-
tiation process in order to guarantee the desired service acceptability
rate while meeting the budget limits of the provider and accommodating
workload fluctuations. The proposed mechanism is implemented and its
results are examined and analyzed.

Keywords: Adaptive one-to-many negotiations · Acceptability rate
SaaS · Cloud computing elasticity

1 Introduction

Client churn is one of the most negative indicators affecting any online SaaS
provider [1]. Yet, user satisfaction and client churn are not the only challenges
providers need to overcome in order to remain in the business. A recent Cisco
report predicted that busy-hour Internet traffic will grow twice more rapidly than
the average Internet traffic between 2015 and 2020 [10]. Therefore, tomorrow’s
market is shaped by intensive but fluctuating demand and high user expecta-
tions. In order to cope with this rapid evolution, Application Service Providers
(ASP) are increasingly migrating to the cloud to manage their resources in elastic
c© Springer International Publishing AG 2017
G. Sukthankar and J. A. Rodriguez-Aguilar (Eds.): AAMAS 2017 Best Papers,
LNAI 10642, pp. 1–20, 2017.
https://doi.org/10.1007/978-3-319-71682-4_1
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manner thereby accommodating the fluctuating workload as well as minimizing
their operational costs.

Thus, the ASP or the SaaS provider has to balance two concerns: minimizing
client churn while meeting its budget constraints. In the context of cloud com-
puting, this issue is known as elasticity management or auto-scaling [22] and it
has received considerable attention in the recent years. However, most of the
works tackling this issue adopt a centralized approach where the ASP takes the
resource decision unilaterally [22]. Consequently, the end-user preferences are
mostly overlooked and it is often presumed that their acceptability threshold
tolerates the best-effort service proposed by the provider.

Multi-agent systems have been outlined as a platform to distribute resource
allocation and coordination in the cloud computing ecosystem [35]. Furthermore,
recent works used mult-agent system to account for end-user expectations and
satisfaction [17,23]. One-to-many multi-agent negotiation provides a potential
platform to involve the end-user into the elasticity management process. Never-
theless, in contrast to the case of a SaaS provider where the goal is to maximize
the acceptability rate by reaching as much agreements as possible, the majority
of existing works in the literature addresses a scenario where the seller seeks
to find one atomic agreement reached with one of the concurrent buyers. Fur-
thermore, most of these works assume a closed set of participants in which the
users are assumed to be known in advance before the outset of the negotiation
process. This assumption does not hold in today’s online and cloud ecosystem
where thousands of users may enter the negotiation process every minute.

In this article we present AQUAMan, a novel adaptive, elastic and open
multi-issue negotiation and coordination mechanism1 allowing the provider to
achieve a targeted service acceptability rate while satisfying its budget con-
straints. Users can decide whether to accept or reject the proposed service
depending on their expectations and subjective estimation of the service qual-
ity [17]. Based on its measurements of the portion of users finding the service
unacceptable, the provider adjusts its negotiation strategy in order to restore
the acceptability rate to its predefined goals. Using the proposed mechanism,
the SaaS provider can (i) ensure a precise predefined service acceptability rate
while meeting its budget constraints. (ii) accommodate the dynamic and open
nature of the cloud ecosystem where the workload (i.e. the number of users enter-
ing the system) is variable and is subject to sudden load-spikes. The proposed
negotiation and coordination mechanisms are developed in the EMan architec-
ture [17,18,23].

The rest of this article is organized as follows: Sect. 2 argues how one-to-
many negotiation can provide a potential solution allowing the provider to sat-
isfy its business goals and integrate the user into the decision process. Section 3
reviews the EMan architecture, its agents, its negotiation and coordination pro-
tocols. Section 4 details AQUAMan, the adaptive negotiation mechanism, and
explains the underlying opponent learning and modeling approach. Section 5

1 The terms “AQUAMan” and “the adaptive mechanism” may be used interchange-
ably.
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details the evaluation process and discusses the results. Section 6, discusses the
related works. Finally, Sect. 7 concludes this paper and points out future research
perspectives.

2 Motivation

Elasticity and cloud resource management have received considerable attention
since the emergence of cloud computing. Several works in the literature have
formulated elasticity management as a constraint satisfaction problem whose
goal is to maximize a global utility function defined by the provider while meeting
the budget constraints [4]. However, these problems are inherently NP-hard.
Moreover, they presuppose that the user’s requests and the workload applied to
the system are known in advance. Consequently, several heuristic policies have
been proposed to overcome these limitations (c.f. [4] and the references therein).
Nevertheless, in most of these works the end-user preferences and their subjective
service acceptability are either overlooked or assumed to be known in advance
by the provider. Hence, the elasticity management process is done unilaterally
by the provider.

To understand end-users’ satisfaction and acceptability threshold, we will rely
on Quality of Experience (QoE). The latter is a metric that appeared in 2000’s to
assess the end-user satisfaction. QoE is defined as the service quality as perceived
subjectively by the user [16] and it is known to be a key determinant of the user’s
decision to accept or reject a service [8,16]. QoE is targeted to provide a practical
measure allowing to quantify user satisfaction and acceptance of the service [16].
In particular, QoE-management emerged as a process aiming at maximizing QoE
while optimizing the used resources [32]. However, QoE-management literature
largely relies on the Mean Opinion Score (MOS) to assess satisfaction and service
acceptability. Nevertheless, since it is an average of users’ opinions, MOS hides
important information about user diversity and their personal preferences [7].
For this reason, other measures have been proposed to allow the provider to
understand the end-user satisfaction and estimate client churn [8]. For instance,
percentiles have been proposed as a measurement tool allowing the provider to
ascertain that, say, 95% of its users find the service to be acceptable or better [8].

By definition, an agent is usually self-interested and is bound to an individual
perspective [36]. This makes agents potential candidates to represent the sub-
jectivity of users’ opinions and acceptance of a given service [23]. Furthermore,
the principles of negotiation behavior discussed in [26] provide a useful tool to
represent end-user expectations. The latter are key determinants of user satis-
faction and service acceptability [30,37] (for more about this discussion please
refer to [17]).

One-to-many negotiation is a sub-type of multi-agent negotiation [13] where
one agent (e.g. a seller) negotiates simultaneously with multiple agents (e.g.
potential buyers). In multi-agent negotiation literature, several approaches have
been proposed to tackle this type of negotiation. Even though they address
different applications, the majority of these solutions (e.g. [2,14,27]) share a
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common architectural blueprint. Yet, the negotiation and coordination strategies
used in each solution depends on its purpose [18].

One-to-many multi-agent negotiation is a potential solution to allow the
provider to negotiate simultaneously with several end-users and integrate their
subjective service acceptability into the elasticity management process. Never-
theless, in contrast to the case of a SaaS or online provider where the goal is to
maximize the acceptability rate by reaching as much agreements as possible, the
majority of existing works in the literature of one-to-many negotiations addresses
a scenario where the seller seeks to find one atomic agreement reached with one
of the concurrent buyers. Furthermore, most of these works assume a closed set
of participants in which the opponents of the single agent are known in advance
before the outset of the negotiation process. Moreover, in most of the existing
works, offers are sent and received in a synchronous manner. These assump-
tions do not hold in today’s open cloud ecosystem where thousands of users may
enter/leave the system every minute and where the negotiation sessions are not
synchronized. Section 6 provides further discussions about the related works in
one-to-many negotiations and their limitations.

3 The Elasticity Management Architecture (EMan)

In this article we present a novel one-to-many negotiation mechanism dubbed
as AQUAMan (Adaptive QUality of experience Aware elasticity Management).
AQUAMan is implemented in the EMan architecture [17,18]. The latter is multi-
agent architecture for SaaS elasticity management. EMan (Fig. 1) follows the
same architectural blueprint discussed in the previous section and shared by
most of existing one-to-many solutions in the literature. In the earlier version
of EMan [17,18], users are represented by autonomous agents whose goal is to
maximize the QoE of their respective users. However, these earlier versions do
not include the adaptive mechanism proposed in this article.

This section introduces the types of agents involved in the EMan architecture
(Sect. 3.1) and discusses the role assumed by the coordinator (Sect. 3.2).

3.1 Agents

The EMan architecture depicted in Fig. 1 models the negotiation taking place
between a SaaS provider and its end-users or Service Users (SU). The negotiation
between the SaaS providers and the cloud providers is considered beyond the
scope of this article. The EMan architecture contains three types of agents:
service user agents (denoted as sai), delegate agents (denoted as dai) and a
single coordinator (denoted ca). The latter two types represent the provider.

In the EMan architecture, dai and sai do not have access to the preferences
and negotiation strategies of other agents. Therefore, their negotiation behavior
follows the negotiation decision function [6] and it is determined by the util-
ity function and negotiation strategy. In order to accommodate the open and
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Fig. 1. The EMan architecture deployed in the cloud ecosystem.

dynamic nature of the cloud ecosystem, negotiation sessions in the EMan archi-
tecture are non-synchronous i.e. some sessions will be already terminated while
other sessions will be still active or have not started yet. For further informa-
tion about the negotiation protocol and the acceptance strategy please refer to
[17,18].

The following sections present the agents of the EMan architecture.

Service User Agents. A service user agent participates in the negotiation
process on behalf of a service user. A sai has a utility function Msai

that encodes
its preferences. Msai

is used at each cycle t to assess the utility of offers ot
dai

received from the corresponding delegate. The utility function of users depends
on the user’s personal expectations, its expertise and preferences. Formulating
user utility function is beyond the scope of this article. For further information
please refer to [17,18] where rely on evidence from the literature of QoE and
Psychophysics (i.e. the Weber-Fechner Law and the logarithmic hypothesis [28]).

In order to make an accept/reject decision, a sai relies on its utility function
and on its current Aspiration Rate (AR). ARt

sai
expresses how much utility sai

expects to obtain in this negotiation cycle t. ARt
i ∈ [0, 1]. When ARt

i = 1.0, this
means that ai expects obtaining an ideal service. On the other hand, ARt

i = 0.0
indicates that the agent is ready to accept the worst possible offer. In order to
reach agreements, sai makes concessions by reducing its AR. All the sai follow
a Time-Based Concession strategy (TBC) [6]. This assumption is quite common
in the literature notably in works whose goals is to construct a model of the
opponent behavior (c.f. [3] and the references therein). Therefore, ΔARt

sai
, the

concession made by sai for the cycle t, depends on the time left before reaching
the deadline. It is computed as follows [34]:
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ΔARt
sai

= ARt−1
sai

·
(

t

Tsai

)λsai

(1)

where Tsai
is the negotiation time deadline. λsai

is a parameter that controls
the convexity degree of sai’s concession curve. λsai

determines the behavior of
sai (conciliatory, linear or conservative) [34].

Delegate Agents. Once a new user agent sai enters the system, a new delegate
dai is created and it enters a bilateral negotiation session with sai.

Like sai, a dai has a utility function Mdai
. However, the utility of an offer

ot
sai

from a delegate dai standpoint is determined by the cost required to serve
the offer. In order to ensure meeting the budget constraints, the coordinator
imposes that the average cost spent on a user should not exceed a predefined
parameter denoted as RC (Reservation Cost).

In order to reach agreements with sai, dai may use two types of concession
strategies:

– Time-Based Concession (TBC) computed as follows:

ΔARt
dai

=
1

Tdai

(2)

Where Tdai
is the time deadline of the delegate. When dai reaches Tdai

, it
stops making more concessions.

– Behavioral-Based Concession (BBC) or tit-for-tat : Since dai does not have
access to sai’s real concession, it relies on its own utility function to assess
sai’s concession, which is defined as follows:

ΔARt
dai

= Mdai
(ot

sai
) − Mdai

(ot−1
sai

). (3)

Where (ot
sai

) and (ot−1
sai

) are the previous couple of offers received from sai.

Note that the results and conclusions drawn in this article are valid indepen-
dently of da′

is negotiation strategy. Therefore, comparing the different dai nego-
tiation strategies is beyond the scope of this article. For such a comparison please
refer to [21].

3.2 Coordination Strategies

The coordinator, denoted as ca, is defined by the following tuple:

ca = 〈Π,Cost, Ωinitial, AcceptRate,Surplus〉 (4)

Where Π and Cost are the performance model and the cost function. The for-
mer estimates the amount of resources needed from the cloud to satisfy the user’s
request whereas the latter calculates the cost needed to rent these resources. The
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provider builds them based on its business knowledge. Ωinitial is the delegate
initial negotiation strategy and it is used to initialize delegates when they are
spawned by the ca. AcceptRate is the acceptance rate i.e. the percentage of
users who accepted the service to all users who entered the system up till a
given moment. Surplus is a variable where the ASP accumulates all the surplus
obtained from successful sessions.

As long as the ASP business goals are not violated (a coordinator intervention
case detailed in Sect. 4), delegates assume the bilateral negotiation with the sai in
an autonomous manner. Yet, delegates solicit the coordinator when a negotiation
session is terminated either successfully or unsuccessfully. The following sections
list these cases.

Successful Negotiation Session. When a delegate dai reaches agreement
with the corresponding sai, it notifies the coordinator. In order to estimate the
acceptance rate, the coordinator keeps track of successful negotiation sessions.
Furthermore, when a session is declared successful, the coordinator updates its
Surplus variable as follows: Surplus = Surplus+ surplusi, where surplusi is the
surplus obtained from the successful negotiation session i. surplusi is computed
as follows:

surplusi = RC − Cost(Π(ôi)) (5)

Where RC is the reservation cost of the delegates. ôi is the accepted offer,
and Cost(Π(ôi)) is the cost to be paid by the ASP to satisfy this offer. Thus,
the difference between the actual cost and the reservation (maximum) cost is
considered as surplus.

Failed Negotiation Session. Whenever a delegate dai observes that the cor-
responding sai has left the negotiation session before reaching an agreement, dai

notifies the coordinator. The latter updates the AcceptRate variable in order to
ascertain that the targeted acceptance rate (e.g. 95% of users) is met. Otherwise,
the coordinator triggers the adaptation process. This process is detailed in the
next section where we detail the adaptive algorithm proposed in this current
work.

4 Adaptive Negotiation Strategy

This section details the adaptive algorithm. In order to estimate the current
acceptance rate at any given time t, the provider relies on a quantile estimation
algorithm presented in Sect. 4.1. If the targeted acceptance rate is violated, the
coordinator activates the adaptive mode. With this mode active, a delegate dai

has to analyze the behavior of its opponent sai, learn a model of its negotiation
strategy in order to estimate its negotiation time deadline ¯Tsai

, and send this
estimation to the coordinator (explained in Sect. 4.2). The latter chooses the
high-priority sessions (based on their time deadlines) and adjust their negotiation
strategies while respecting its budget constraints (Sect. 4.3).
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4.1 Triggering the Adaptation Mechanism

Quantiles and percentiles are values that partition a finite set of values into q
subsets of (nearly) equal sizes. As discussed in Sect. 2, the literature on QoE
and user satisfaction recommend providers to rely on quantiles and percentiles
as more accurate measures (compared with MOS) to gauge user acceptability of
the service [8].

Whenever session i is terminated, the coordinator is notified by dai about
the outcome of this session. Using these data, the coordinator runs a quantile
estimation algorithm to detect the current service acceptability rate.

Let Q the quantile/percantile estimation function. Let R be the dataset con-
taining the outcomes of the terminated sessions. R can contain either 0’s, for
failed sessions, or 1’s for successful sessions. If the coordinator seeks to ensure
that β percent of users who requested the service so far have had a successful
negotiation session (hereby accepting the proposed service quality), the coordi-
nator needs to verify that the (100 − β + 1)th percentile equals 1:

Q(R, 100 − β + 1) = 1 (6)

As long as this condition holds, the coordinator has no need to intervene into
the negotiation process. To calculate Q we rely on quantile/percentile estimation
algorithm.

Once the condition in Eq. 6 is violated, the coordinator triggers the adapta-
tion mechanism by commanding all working delegates to activate their adaptive
mode. Furthermore, if the coordinator has already activated the adaptive mode,
when it spawns new delegates they will have this mode active as well.

Note that the coordinator continues to evaluate Eq. 6 even after the activation
of the adaptive mode. Next section details the delegate’s role after the activation
of the adaptive mode.

4.2 Opponent Learning and Modeling Algorithm

Opponent Concession Estimation. Even when the adaptive mode is not
active, when a delegate dai receives an offer ot

sai
at cycle t from the corresponding

sai, it estimates the concession made by sai by comparing ot
sai

with ot−1
sai

the
previous offer made by sai. Since dai does not have access to sai preferences
or utility function Msai

, it cannot calculate the real concession made by sai.
Instead, it relies on its own utility function to estimate the concession made by
sai by assuming that a concession made by sai is synonymous with a utility
gain for dai. Thus, ct

sai
, the estimated concession made by sai at the negotiation

cycle t is defined as:

ct
sai

= Mdai
(ot

sai
) − Mdai

(ot−1
sai

) (7)

To learn sai concession behavior, dai keeps track of sai concessions during the
negotiation session. Figure 2a compares ΔARt

sai
the real concessions made by

sai (in blue) with ct
sai

, dai’s estimation of the same concession (in red).



Elastic & Load-Spike Proof One-to-Many Negotiation 9

In this example, Tsai
= 80 cycles and λsai

= 3.0. As can be seen from the
figure, although the red curve is noisy (because it is estimated using dai’s utility
function and then normalized), it seems to provide an adequate estimation of
sai concession since the main goal is to learn Tsai

, the negotiation time dead-
line of sai.

Fig. 2. Learning the user time-deadline Tsai (Color figure online)

Opponent Model Learning. If the adaptation mode is active, the concession
data collected in Sect. 4.2 should be used to establish a model of sai concession
behavior and infer Tsai

, its negotiation time deadline. This can be achieved, as
has been shown in the literature [3], using non-linear regression assuming that
all users follow a time-based concession defined by Eq. 1. Yet, unlike the pre-
dominantly one-to-one existing works in the literature [3] where learning the
negotiation model of the opponent is done and corrected each cycle once a
new concession is made (c.f. Sect. 6), in the one-to-many negotiation settings
addressed by this article such an approach is not practical for scalability rea-
sons since hundreds or thousands of users may be negotiating with the provider
simultaneously. Furthermore, if the provider runs delegates’ learning algorithms
on resources rented from the cloud, this may increase the costs considerably.

For this reason, in the proposed solution a delegate can run the non-linear
regression algorithm only once. The next decision is to determine when a delegate
should do so. On the one hand, if a delegate launches this process too early in
the negotiation session, the regression process will have only few input points.
On the other hand, if the delegate waits too long, the corresponding user risks
to reach its time deadline and quit the negotiation process.

All sai follow time-based concession strategy in which the rate of concession
sai slows down when sai has already made most of the concessions it was going
to make. Therefore, regardless of the type of sai (conservative or linear, c.f. Eq. 1)
and of its actual time deadline Tsai

, when the rate of change (or the derivative)
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of dai’s estimation of sai concession decays significantly into negative values, this
means that sai has made most of its concessions and that, for the rest of the
negotiation session before sai reaches its Tsai

, sai will stop making considerable
concessions. Thus, if dai launches its non-linear regression at this stage, it will
have the most of useful data points.

Figure 2b superimposes dai’s estimate of the concession made by sai (red
solid line) with its first derivative (red dashed line). The sai in this figure is
exactly the same of Fig. 2a, but we used a Savitzky-Golay filter [31] to smooth the
curve and filter out the noise. To calculate the rate of change of the concessions,
we calculate the derivative and we smooth the result using the a variant of the
same filter.

The non-linear regression algorithm takes the negotiation cycle (t) and the
estimated concession (ct

sai
) as input variables and outputs an estimated values

of the ¯Tsai
and ¯λsai

parameters. Then, based on ¯Tsai
, dai computes r̄i = ¯Tsai

− t
the estimated number of cycles remaining in session i. As long as the session
i is not terminated, dai updates r̄i every cycle and sends it repeatedly to the
coordinator.

4.3 Negotiation Adaptation

As was explained in the previous section, the coordinator receives r̄i from all
negotiation sessions i whose delegate dai considers that sai is approaching its
time deadline and deserves to be prioritized. These estimations r̄i are stored
in the priority list which is continuously sorted in ascending manner (a session
whose time deadline is estimated to be sooner will be in the top of the list).

Note that since negotiation sessions are non-synchronized, the coordinator
(ca) has to repeat the sorting whenever it receives a new estimation from a
delegate dai. Furthermore, whenever a session is terminated either successfully
or not, ca removes its record from the priority list.

Thus, in the priority list, sessions are sorted from highest to lowest prior-
ities. Now ca must decide how many of these priority sessions should receive
a preferential treatment. To do so, the coordinator undertakes this process as
follows:

1. Estimate the current acceptability rate (using the quantile estimation func-
tion as discussed in Sect. 4.1). Then compute the difference between the
desired acceptability rate and its actual current value.

2. Estimate p the number of successful sessions required to restore the desired
rate and choose the first p sessions from the priority list and adjust their
negotiation strategies to encourage them accept the service.

When the negotiation strategy of a delegate dai is adjusted, dai retains a time-
based concession strategy defined in Sect. 3.1. Yet, with the following modifica-
tions.

First, the negotiation time deadline of dai becomes r̄i instead of Tdai
. Second,

the reservation cost of dai is increased by value denoted as RcPrio. RcPrio is
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computed by dividing the surplus available in Surplus among all the prioritized
sessions. Note that delegates cannot get more than a RcPriomax considered
as the maximum value for prioritized sessions. Thus, the provider ensures the
satisfaction of its budget constraints. Third, the preferred cost of dai is changed
to the cost of the last offer it has made. ARt

dai
is restored to 1.

This section presented the opponent modeling and the negotiation adaptation
processes. Next section presents the experimental evaluation.

5 Evaluation

To evaluate AQUAMan, the adaptive mechanism, we implement it in the EMan
architecture ([17,18]). The latter is implemented using Repast Simphony [25],
a multi-agent simulation environment. The evaluation is organized into three
experiments. The first experiment (Sect. 5.2) aims at evaluating the adapta-
tion algorithm. The second experiment (Sect. 5.3) examines the impact of the
workload applied to the provider (i.e. the number of user entering the system
per minute) on the acceptability rate. The third experiment (Sect. 5.4), evalu-
ates the overhead of the negotiation/coordination mechanisms. Before discussing
these experiments, next section presents their parameters.

5.1 Experiments Parameters

The total number of users entering the system is denoted as |SU |. In the fol-
lowing experiments, |SU | = 10000 users. Users enter the simulation following
a Poisson random process whose mean value is A per minute. The service in
the experimental scenario involves two attributes: one is the service delivery
time while the other represents the service quality. The user profiles (reserva-
tion, preferred values and weights for each attributes) are generated randomly.
The negotiation time deadlines of sai are generated randomly Tsai

∈ [40 : 120],
and λsai

∈ [1 : 8] (i.e. users can be linear or conservative). The cost of ser-
vices acceptable by users ranges from 0.1$ to 0.9$. RC, delegate reservation
cost (the maximum cost allocated to a non-prioritized user) is set to 0.60$. This
parameter represents the provider’s budget constraints. Therefore, without the
adaptation mode, approximately a quarter of users will not accept the service
since RC cannot satisfy their least expected service. RcPriomax = RC/2. There-
fore, when a user sai is prioritized, the RC of the respective delegate (dai) is at
most increased by RC/2. Goal is the percentage of users that the provider seeks
to satisfy. Its impact is evaluated in the next subsection. Note that the results
discussed below remain valid even when the values of the parameters above (e.g.
RC, RcPriomax, etc.) are changed. Please refer to our previous work [21] for a
complete evaluation and analysis of the impact of these cost-related parameters.
Furthermore, we obtained similar results when user attribute utility function is
a logarithmic function derived from the logarithmic hypothesis [17,28]. However,
these results were not included due to space constraints.



12 A. Najjar et al.

5.2 Evaluating the Adaptation Mechanism

Figure 3 shows the results of this experiment. The blue curve draws the accep-
tance rate when the Goal = 95%. As can be seen from the figure, at the outset
of the simulation, the value of the acceptance rate oscillated before getting sta-
bilized on the goal value (Goal = 95%). The red and the brown curves, that plot
the acceptance rate when Goal = 90% and Goal = 85%, show similar results.
To compare the results of the adaptation mechanism, the black curve plots the
acceptance rate when the mechanism is deactivated. Note that the results of
Fig. 3 where obtained with A = 160 users per minute.

Fig. 3. Acceptance Rate with A = 160. (Color figure online)

As can be seen from the results, the adaptation mechanism managed to
restore the acceptance rate to the predefined goal in a precise manner. This is
explained by the fact that the prediction algorithm discussed in Sect. 4.2 man-
aged to predict the user negotiation deadline Tsai

with acceptable precision. The
average error rate between the prediction ¯Tsai

and the real value Tsai
is about 6.0

cycles which means a delegate dai overestimates/underestimates Tsai
by three

negotiation cycles on average.
Intuitively, the service acceptability rate achieved by the prediction algorithm

comes with more cost invested per user. However, this increase does not violate
the provider budget constraint: the average costs per user were 0.55$, 0.52$, 0.5$
and 0.44$ for Goal = 95%, Goal = 90%, Goal = 85% and non-adaptive respec-
tively. Thus, the budget constraint of the provider (i.e. average cost per user
does not exceed RC=0.6$) was satisfied because the provider relies on Surplus
to serve prioritized users. Note that studying the cost-efficiency of the adaptive
mechanism and its limits under given cost constraints is beyond the scope of this
article since these issues have been addressed in our previous work [21].
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5.3 The Impact of the Workload A

This experiment studies the impact of A, the workload applied to the system, on
the acceptance rate in order to evaluate the elasticity of the adaptation mecha-
nism. The aim of this experiment is twofold: First, we study the systems response
to high but constant workloads. Second, to evaluate the load-spike proofness of
the system, we will apply a sudden load-spike.

Table 1. The impact of the workload parameter A.

A = 20 40 80 160 320 640 1280 2500

Adaptation 95% 95% 95% 95% 95% 94.9% 94.7% 93.3%

No-Adaptation 77% 77% 77% 77% 77% 77% 77% 77%

Fig. 4. Acceptance rate (Goal=95% and A = 1280).

Intense Workload A. Table 1 shows the acceptance rate, at the end of the
simulation, when the Goal = 95% 2 and with A increasing from 20 to 2500 users
per minute. As can be seen from the table, the mechanism proved to be highly
elastic. When A ∈ [20 : 320] the acceptance rate does not change as A increases.
However, when A increases to higher values [640 : 2500] the acceptance rate
witnesses a slight decrease. However, even with very high A, the results achieved
by the adaptation mechanism remain very close to the goal. This decrease is
explained as follows: the adaptation algorithm is reactive and the coordinator
can only assess the acceptance rate each time a session terminates successfully
or unsuccessfully. Thus, when A is too high, a significant number of sessions may
fail in the same simulation tick and the adaptation algorithm executed by the
coordinator suffers from a slight delay and becomes a bit short from meeting

2 We conducted the same experiment with different values of Goal ∈ {92%, 90%, etc.}
and obtained similar results.
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the predefined goal (Goal = 95%) as can be seen from the table. Yet, this result
should be taken relatively for the following reason:

|SU | the total number of users in the simulation influence the elasticity
threshold of the adaptation mechanism. For instance, when |SU | = 10000 and
A = 2500, users enter the architecture in 4 massive waves each carrying roughly a
quarter of the total number of users. Thus, the coordinator does not have enough
time restore the acceptance rate to (Goal = 95%). Figure 4 shows how the adap-
tation mechanism reacts to a drop in acceptance rate when A = 1280. The
coordinator manages to restore the value of the predefined goal (Goal = 95%).
Yet, a new sudden drop occurs with the new wave of users. Note that in real
life scenario, when |SU | = ∞, the coordinator will be always able to restore the
acceptance rate into its goal value even with a significant A.

Load-Spike Proofness. To assess the impact of load-spikes, in this experiment
A, the arrival rate, will undergo a sudden increase (i.e. a load-spike). On average
80 users per minute will enter the system. Yet, for four minutes, a load-spike
occurs increasing A to 800 per minute. Thus, four waves of users will enter the
system each wave containing 800 users on average.

Figure 5a plots the acceptance rate achieved by the adaptive mechanism with
a workload of A = 80 users per minutes on average and a load-spike of A = 800
taking place around the 45th minute and lasting for four minutes3.

As can be seen from the figure, after a drop in the acceptability rate at the
beginning of the experiment (around the 10th minute), the adaptive mechanism
is activated and it manages to restore the acceptability rate defined by the
provider (Goal = 95% plotted by the blue dashed line on the figure). More
importantly, the load-spike does not have an impact on the achieved acceptance
rate. The Goal = 95% was attained before the load-spike and it remains satisfied
during and after the load-spike.

Figure 5b plots the value of the acceptance rate but this time a uniform
workload of A = 80 users per minute on average was applied. Comparing the
two figures shows that the main difference between the two is that the simula-
tion in Fig. 5a ended earlier (around the 90th minute) because of the load-spike
whereas in Fig. 5b the simulation lasted about 30 min longer. Despite this minor
difference, the load-spike did not have a significant impact on the acceptance
rate achieved by the adaptive mechanism and in both cases (with and without
load-spikes), the predefined Goal was achieved in a precise manner.

To understand this load-spike proofness, Fig. 5c shows the impact of this
load-spike on the surplus collected by the surplus redistribution mechanism (c.f.
Sect. 3.2). The red curve plots the content of the Surplus used to serve prioritized
sessions. As can be seen from the figure, the amount available in the Surplus rises
significantly during the load-spike and then drops down to its average values after
the end of the load-spike. This is explained as follows: the load-spike raises the
number of users entering the systems. In less than four minutes about 2400 users
enter the system in four massive waves. Some of users arriving in the load-spike
3 In this experiment a minute is equivalent to 30 simulation ticks.
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Fig. 5. The gray vertical lines plot the number of users entering the system per minute.
The blue and the red curves respectively plot The acceptance rate and the content of
the Surplus with a load-spike (left side) and without a load-spike (right side). (Color
figure online)

can be satisfied quickly and easily due to their relatively less costly expectations.
Therefore, the number of successful sessions will increase thereby raising the total
amount of surplus collected by the coordinator. This surplus will be then used
by surplus redistribution mechanism to be spent on intransigent users in order
to retain the Goal value. This is why the content of the Surplus will drop down
to its pre-spike levels when the load-spike is over.

Finally, Fig. 5d plots the content of the Surplus when no load-spike is applied.
As can be seen from the figure, after an initial increase of the surplus, the
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adaptive mechanism is activated and the Surplus is used to serve prioritized
sessions. Yet, since no load-spike is applied, unlike Fig. 5c, Surplus in Fig. 5d
does not witness any significant increase.

Discussion. This experiment evaluated the impact of workload on the accep-
tance rate achieved by the adaptive mechanism. In the first part of this exper-
iment (Table 1 and Fig. 4) we showed that the acceptance rate achieved by
the adaptive mechanism remained unchanged with relatively intense workloads
(up to A = 1280 users per minute). However, intense but uniform workload is not
often the case. Instead, in today’s cloud computing market, SaaS providers are
often exposed to load-spikes or heavy workloads in rush hours, week-ends, or hol-
iday seasons. For this reason, in the second part of this experiment, we applied
a load-spike which increased the workload tenfold in less than five minutes.
The results of this experiment (Fig. 5) proved that the adaptive mechanism is
load-spike proof. This makes it capable to handle the dynamic nature of the
cloud ecosystem where thousands of users may rush into the service portal in
few minutes. In addition, we explained how this load-spike proofness feature
is realized by the surplus redistribution mechanism. In particular, the surplus
redistribution mechanism absorbs the surplus obtained from successful negotia-
tion sessions and use it to serve intransigent users. Thus, the Surplus acts like
a buffer allowing to stabilize the acceptability rate (c.f. Figure 5a) despite the
load-spike.

5.4 Coordination and Negotiation Overhead

To assess the overhead introduced by the coordination and the negotiation mech-
anisms we count the number of the messages exchanged to undertake interven-
tions of the coordinator and the number of messages exchanged in bilateral
negotiation sessions respectively.

Without the adaptive mechanism, the coordinator is solicited only once per
session to get the result of the session (success/failure). With the adaptive mech-
anism, the number of messages exchanged between delegates and the coordinator
increases about 50%. We consider this increase to be not significant for the fol-
lowing couple of reasons. First, even with the adaptive mechanism, the tasks
assumed by the coordinator are lightweight as has been discussed in Sects. 3.2,
4.1 and 4.3. Second, since it is likely that the SaaS runs both the delegates
and the coordinator on the same cloud data-center, the cost of communication
between them is negligible.

As for the number of negotiation messages, the result show that they witness
a slight decrease (≈ 7%) when the adaptive mechanism is active since the latter
helps reaching agreements faster.
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6 Related Works

This section discusses related works addressing adaptation and learning in multi-
agent negotiation (Sect. 6.1) as well as related works in the domain of one-to-
many negotiation (Sect. 6.2).

6.1 Learning Opponent Negotiation Model

Learning and modeling negotiation behavior of the opponent is a mature body
of research [3]. The model of the opponent typically used to help an agent adapt
to its opponent behavior, reach win-win settlements, or minimize the negotiation
cost. Various learning techniques are used in the literature. Some works learn
the acceptance strategy of the opponent or its preference profile. More impor-
tantly, learning the opponent’s time deadline has received considerable attention.
In particular, some of these works use Bayesian learning techniques [12], while
others use non-linear regression [9] or use both. Nevertheless, all these works
address bilateral negotiation, a choice not applicable for elasticity management
where the SaaS provider seeks to maximize the service acceptability rate.

6.2 One-to-many Negotiation

Despite the relatively rich literature of one-to-many negotiations, the goal of
most of these works, typically modeling negotiations place between a buyer and
numerous competing sellers, is to find a single (i.e. atomic) agreement that
maximizes the buyer’s utility whereas other, less beneficial, sessions are aborted
(e.g. [14,27]). Furthermore, existing negotiation and coordination mechanisms
(e.g. [14,24,27]) are predominantly (i) closed: participants are identified before
the outset of the negotiation process, and (ii) synchronous: the coordinator needs
to receive all the offers from buyers before making its analysis and commanding
delegates to send new offers. Therefore, these solutions cannot accommodate
the agile nature of the cloud ecosystem where thousands of SUs may surge the
service portal.

Recent works in the domain of service composition use one-to-many negoti-
ation to reach composite agreements with more than one (maybe all) sellers of
atomic services (e.g. [29] and [15]) for the sake of bundling a composite service.
In [29], the authors propose a one-to-many negotiation mechanism that redis-
tributes the surplus obtained from successful negotiation sessions to ongoing
negotiation sessions to increase their chances of success. In [15] Mansour et al.
develop a more sophisticated approach that adapts delegates reservation values
for attributes shared among multiple sessions. Nevertheless, these works assume
closed set of atomic sellers all known before the outset of the negotiation.

One-to-many negotiation has been used in the domain of cloud computing.
The authors in [2] develop a negotiation-based approach to handle resource allo-
cation in cloud computing. However, a provider accepts an offer if and only
if it can gain some immediate payoff by accepting the offer. For this reason,
user acceptability rate is not taken into account and no adaptive mechanism is
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proposed. Siebenhaar et al. [33] develop a mechanism for concurrent SLA nego-
tiation in cloud-based systems. This work supports composite negotiation. Yet,
the work’s main contribution seems to be focused on the protocol. Therefore, it
does not provide a mechanism to represent user acceptability nor it offers a solu-
tion to adjust the delegate negotiation behaviors to account for the objectives
of the provider.

In our earlier works [19,20] we presented an initial version of the adaptive
mechanism. In this initial version, workload and load-spike proofness aspects
were not studied. Furthermore, these works contained only partial experimental
evaluation.

7 Conclusions and Future Works

This paper presented an adaptive one-to-many negotiation mechanism designed
to improve the acceptability rate of a SaaS provider while accommodating load-
spikes and meeting its budget constraints. The proposed approach endows the
provider with a fine-grained control of the desired acceptability rate. Further-
more, as has been shown in Sect. 5.3 the results, with the proposed solution the
SaaS provider is capable to cope with the dynamic & open nature of the cloud
ecosystem and to respond to load spikes in an adequate manner.

Our future research work will be directed towards giving the provider a finer-
grained control over the level of user satisfaction it seeks to attain. In particular,
the provider should be able to ensure that a predefined percentage of users
consider the service to be Good or Better [8]. Several reports of the ITU [11]
and the ETSI [5] recommend moving in this direction (c.f. [8]). However, most
of the existing works adopt a provider-centric approach based on the MOS [8].
Our future research works will address this issue. This requires upgrades in the
user modeling algorithm and the resulting adaptation mechanism. Another work
in progress is allowing service user agents sai to use negotiation strategies other
than time-based concessions (TBC).
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Abstract. Opponent modeling is an important technique in automated
negotiations. Many of the existing opponent modeling methods are focus-
ing on predicting the opponent’s private information to improve the
agent’s benefits. However, these modeling methods overlook an ability
to improve the negotiation outcomes by adapting to different types of
private information about the opponent when they are available before-
hand. This availability may be provided by some prediction algorithms,
or be prior knowledge of the agent. In this paper, we name the above abil-
ity as Information Adaptation, and propose a novel Opponent Modeling
method with Information Adaptation (OMIA). Specifically, the future
concessions of the opponent will firstly be learned based on the oppo-
nent’s historical offers. Then, an expected utility calculation function is
introduced to adaptively guide the agent’s negotiation strategy by con-
sidering the availability and value of the opponent’s private information.
The experimental results show that OMIA can adapt to different types
of information, helping the agent reach agreements with the opponent
and achieve higher utility values comparing to those which lack the infor-
mation adaptation ability.

Keywords: Automated negotiations · Opponent modeling
Information adaptation

1 Introduction

Negotiation is an important activity between people or parties who discuss
issues intending to reach agreement. Negotiation often involves significant cost
in human resources and time. As a result of this, automated negotiation tech-
niques have attracted increasing attentions during the last two decades [10].
The benefits include resource-saving in manpower and time [4], avoiding social
confrontation [3] and automatic bargains in e-markets [15].

One key challenge in automated negotiations is to reach beneficial negotia-
tion results when private information about the opponent is unknown. The pri-
vate information is in contrast to public information known by all negotiators.
c© Springer International Publishing AG 2017
G. Sukthankar and J. A. Rodriguez-Aguilar (Eds.): AAMAS 2017 Best Papers,
LNAI 10642, pp. 21–35, 2017.
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For instance, the public information includes the maximum negotiation time,
the historical offers exchanged by negotiators, etc., while the private informa-
tion contains a negotiator’s personal reservation value, deadline, etc. Obviously,
sharing this private information between negotiators is not applicable. To tackle
this problem, researchers have put effort into opponent modeling techniques [2].
These techniques mostly give agents an ability of exploring the opponent’s pri-
vate information and adapting to the opponent’s negotiation behavior in order
to achieve satisfactory negotiation outcomes.

In current literature, a number of opponent modeling methods have been
developed by employing different learning methods, such as Bayesian learn-
ing [18], Non-linear regression [14], Kernel density estimation [5], and Artificial
neural networks [12]. Among these methods, four types of opponent’s private
information are commonly selected as their learning goals, which are reservation
value [17], negotiation deadline [9], bidding strategy [16] and offer acceptance
possibility [13]. However, these approaches lack an ability of information adap-
tation.

The information adaptation indicates an ability to make better negotiation
decisions when some types of the opponent’s private information are available.
This availability may be provided by some prediction algorithms, or be prior
knowledge of the agent. For example, when the opponent’s reservation value
is available, the agent should adapt its negotiation strategy and try to make
agreements close to this reservation value. Lacking the ability of information
adaptation means losing a potential behavior guidance toward different types
of available information, thus the negotiation outcomes would be negatively
affected.

In order to give agents such an information adaptation ability, in this paper,
we propose a novel opponent modeling method called Opponent Modeling with
Information Adaptation (OMIA). Traditionally, an opponent modeling method
could guide the agent’s negotiation strategy adapting to the historical offers
of the opponent. In this paper, OMIA should not only adapt to the historical
offers, but also adapt to different types of private information both when they
are available and unavailable. The types of private information considered in this
paper are reservation value, deadline, bidding strategy and acceptance possibility
due to their importance in automated negotiations [1].

To establish OMIA, the major challenge is how to create one opponent model
that can simultaneously adapt to the five types of information based on their
availability (historical offers are always available) and values. Our idea is to
establish OMIA from a probability point of view. In particular, these probabil-
ity distributions are going to be estimated: (i) the probability distributions of
the opponent offers’ utility in future time; (ii) the probability that the oppo-
nent accepts a particular offer; (iii) the probability that the opponent quits in
particular future time. The process of OMIA is as follows. First, OMIA pre-
dicts the future concessions (i) of the opponent using the historical offers. Then,
an expected utility calculation function is introduced to estimate (ii) and (iii).
Then, based on (i), (ii) and (iii), this function calculates the expected utility
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the agent will gain when it takes different concession strategies. The maximum
expected utility determines the best concession strategy that the agent should
take. The availability and values of the private information will influence the
results of all probability distributions, affecting the value of the expected utility,
and thus guiding the concession strategy of the agent.

The merits of OMIA are: (a) OMIA could adapt to the behavior of the
opponent only using the historical offers. (b) OMIA could adapt to different types
of private information based on their availability and values, and the agent can
choose the types of information to adapt to. (c) OMIA makes little assumptions
about the opponent (e.g. bidding strategy, utility function, etc.), making itself a
highly robust model.

The remainder of this paper is organized as follows. Section 2 describes the
general negotiation setting. Section 3 introduces the proposed OMIA. Section 4
describes how OMIA adapts to various types of information. Section 5 demon-
strates the experimental results. Related work is presented in Sect. 6, and Sect. 7
makes a conclusion.

2 Negotiation Setting

In this paper, we study the bilateral single-issue automated negotiation, which
consists of two agents negotiating over a single issue. The alternating offers pro-
tocol [11] is employed in this paper where two agents exchange offers in turns
until one agent accepts an offer or reaches its deadline. The time can either be
a continuous or discrete variable. In this paper, we use the discrete time set-
ting as we are focusing on adapting to various types of input information and
currently do not take computational cost into account. A monotonic concession
process is assumed where there are no decommitment behaviors during the nego-
tiation, i.e., the agent will not regret its compromise and ask for more benefits
from the opponent in newly generated offers. In bilateral single-issue automated
negotiation, the utility of the opponent’s offers is monotonically increasing.

The bidding strategy of the opponent denotes how it provides its offers during
a negotiation. A common one is called the time-dependent strategy where the
offer is given based on time [7]. The utility function is given by:

ut = umin + (umax − umin)(
tc

tmax
)β , (1)

where umin and umax denote the minimum and maximum utility of the oppo-
nent’s offers respectively. tc and tmax mean the current and the maximum nego-
tiation time respectively. β is the concession parameter. 0 < β < 1, β = 1
and β > 1 represent three types of concession strategies, which are called Con-
ceder, Linear and Boulware respectively. The Conceder concedes dramatically
toward umax at the early stage of a negotiation, while the Boulware only makes
significant concession when the time is close to tmax.
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3 Opponent Modeling with Information Adaptation

3.1 Basic Notation

Before introducing OMIA, we first establish the notation for future use. We use
t to denote the time of a negotiation, with different subscripts indicating specific
time. For example, t1 is the first time when the agent exchanges an offer with
the opponent, tc the current time, and tmax the maximum negotiation time. We
use a discrete time setting so that the time is measured based on the negotiation
rounds elapsed.

The offers received from the opponent are measured as utility values, which
represent the agent’s preferences over them. Higher utility values are preferred
than lower ones. These utility values are the only information that the agent
could obtain and make use of to build its opponent model when no other infor-
mation is available. Also, the agent does not know the opponent’s utility function.
Thus, all offers exchanged by both sides will be measured in the agent’s utility
space. The utility that the agent receives from and offers to the opponent at
time t could be respectively written as:

uoppo
t , umy

t ∈ [0, 1] (2)

The utility is quantified between 0 and 1. Here we do not specify the types
of utility function that maps offers to utility values because this is dependent on
particular negotiation scenarios and should be determined accordingly.

As this paper is focusing on modeling the opponent, to make the formu-
las neater, we simplify the notation of utility received from the opponent by
removing the superscript:

ut ⇔ uoppo
t (3)

At time tc, the agent will have received c offers from the opponent. These
are called the historical offers and we use Utc to indicate it:

Utc = {uti |i = 1, ..., c} (4)

These historical offers are the only information that the agent has at the
current time when no other sources of information are available.

All the notations used in this paper are listed in Table 1.

3.2 Predicting Future Concessions

The process of OMIA is first to construct the probability distributions P (utf )
of utility utf for every future time tf based on the historical offers. We will
introduce this step in this Subsect. (3.2). Then, an expected utility calculation
function is introduced to incorporate P (utf ), the probability that the opponent
accepts or rejects the agent’s offer P (at = {1, 0}), and the probability that the
opponent quits or does not quit the negotiation at time t P (qt = {1, 0}). This
step will be described in the next Subsect. (3.3).
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Table 1. Notation

Notation Meaning

ti Negotiation timea

tc Current time

tf Future time

ut Received offer’s utility at time t

umy
t Utility of the agent’s counter-offer at time t

Utc Historical offers at current time

Learn(·) Learning algorithm

GP (·) Gaussian process

P (ut) Probability distribution for ut

fn(ut; μt, σt, 0, 1) Normalized and truncated probability density function for
ut

Fn(ut; μt, σt, 0, 1) Normalized and truncated cumulative distribution function
for ut

Etf Expected utility the agent will gain when trying to reach
agreement at time tf

tm Time between tc and tf

umy
tm

(tf ) Counter-offer corresponding to Etf provided at time tm

Etf (umy
tm

(tf )) Expected utility from the agent’s offers umy
tm

accepted by
the opponent between time tc and tf

Etf (utf ) Expected utility from accepting the opponent’s offer utf

E∗ Maximum expected utility among Etf

t∗ Time corresponding to E∗

P (at = {1, 0}) Probability that the opponent accepts or rejects the
agent’s offer umy

t − 1

P (qt = {1, 0}) Probability that the opponent quits or does not quit the
negotiation at time t

aWe use a positive integer subscript i to denote the negotiation time in accordance
with the discrete time setting

First, we are going to predict the probability distributions P (utf ) using the
historical offers. These distributions can be regarded as an estimation of the
opponent’s future concessions. Thus, the agent can exploit the concessions of
the opponent by adaptively providing counter-offers. Predicting P (utf ) natu-
rally requests a learning algorithm to analyze the historical offers and provide
predictions for any future time:

Learn(Utc) ⇒< P (utc+1), ..., P (utmax
) >, (5)

where Learn(·) is a learning function that can satisfy this requirement. Any
applicable learning approaches can be applied here. This allows the users of
OMIA to flexibly choose the learning approaches.
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In this paper, we choose the Gaussian process technique based on three con-
siderations: (1) Gaussian process is a powerful non-linear interpolation tool and
has been applied to address various learning tasks [6,8]. (2) Gaussian process
provides both an estimation and its uncertainty (essentially a Gaussian distrib-
ution) for an unseen utility at any time, which is highly in accordance with our
aims. (3) Gaussian process can work with variables with a continuous domain,
which gives potential to expand OMIA to real-time negotiation. For the parame-
ters, we use Matérn covariance function and linear mean function due to their
robustness [16].

The Gaussian process will predict new probability distributions P (utf ) using
the historical offers Utc at time tc:

GP (Utc) ⇒< P (utc+1), ..., P (utmax
) > (6)

The output of the Gaussian process for any time t is a Gaussian distribution
given by:

P (ut) = f(ut;μt, σt) =
1

σt

√
2π

exp(
−(ut − μt)2

2σ2
t

), (7)

where μt is the mean, i.e. the most likely value of ut, and σt is the standard
deviation.

The utility space is bounded in the range of [0, 1], and the expected mean
μt may exceed this bound. Thus, a normalization is needed to make the mean
between 0 and 1:

fn(ut;μt, σt) = normalize(f(ut;μt, σt)) (8)

Furthermore, a truncated normal distribution should also be used to make
the distribution in the range of [0, 1]. Its probability density function is given by:

P (ut) = fn(ut;μt, σt, 0, 1)

=
fn(ut;μt, σt)

Fn(1;μt, σt) − Fn(0;μt, σt)
(9)

where fn(ut;μt, σt) is the normalized probability density function of opponent’s
utility at time t and Fn(ut;μt, σt) is its cumulative distribution function.

When a negotiation goes to time tc, Eqs. (6), (7), (8) and (9) will be performed
to get probability distributions P (utc+1), ..., P (utmax

).

3.3 Making Concessions by Calculating Expected Utility

We assume that the opponent provides its offer first, so at time tc, the opponent’s
latest offer is utc and the agent’s latest offer is umy

tc − 1
. After constructing the

probability distributions for every future time after tc, the agent needs to make
a decision about whether to accept utc or provide a counter-offer umy

tc .
Our idea is to exploit the future concessions of the opponent by calculating

the expected utility Etf when the agent tries to reach agreement with the oppo-
nent at particular future time tf . Here we regard reaching agreement at future
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time tf as conceding toward μtf and accepting the opponent’s offer utf if the
agent’s offers before time tf are not accepted by the opponent. The μtf is the
estimated mean value of utf . Let umy

tc (tf ) be the agent’s counter-offer at time
tc when conceding toward μtf . Let E∗ be the maximum expected utility among
all Etf , and the corresponding time is t∗. The umy

tc (t∗) will be set as the agent’s
final counter-offer umy

tc ready to be provided to the opponent.
We choose μtf as concession targets because of these two considerations:

(1) The μtf is a moderate value which is not too high. As the agent does not
know how the opponent will react to its concessions, avoiding being extreme
is a reasonable way. Also, it is not too low so the agent would gain sufficient
utility when conceding toward it.

(2) The μtf indicates the most possible value that the opponent will offer at
time tf . Thus, conceding toward it would have a high chance of reaching
agreement with the opponent.

In terms of determining how the agent concedes toward μtf . Again, avoiding
being extreme is a reasonable way. To be more exact, the agent should not keep
its offers unchanged until time tf nor concede immediately to μtf . So we choose
to concede linearly toward every μtf .

When trying to reach agreement at future time tf , the expected utility Etf

consists of following two parts.
First, the opponent has a chance to accept one of the counter-offers umy

tm (tf )
provided by the agent from time tc to tf − 1. We use Etf (umy

tm (tf )) to represent
this part of expected utility. The umy

tm (tf ) is calculated by performing linear
interpolation:

umy
tm (tf ) = umy

tc − 1
+ (μtf − umy

tc − 1
)
tm − tc − 1

tf − tc − 1
(10)

Each umy
tm (tf ) is accepted when the opponent rejects all previous offers, does

not quit, and accepts this one. The Etf (umy
tm (tf )) is defined as:

Etf (umy
tm (tf )) = (

m∏

n= c+1

P (atn = 0)P (qtn = 0))

× P (atm+1 = 1)umy
tm (tf ) (11)

When no extra private information is available, the P (qtn = 0) could be
specified by some prior assumptions, e.g. the opponent will not quit.

Second, the opponent has a chance to reject all offers from time tc to tf − 1,
does not quit, and gives utf at time tf . Then the agent will accept utf , which
constitutes the second part of the expected utility. We use Etf (utf ) to denote
this part and it can be calculated as:

Etf (utf ) = (
f∏

n= c+1

P (atn = 0)P (qtn = 0))

×
∫ umy

tf − 1
(tf )

0

utf P (utf )dutf , (12)
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where
∫ umy

tf − 1
(tf )

0 utf P (utf )dutf is the expected utility that the opponent will
give when it rejects offer umy

tf − 1
(tf ).

In terms of determining the acceptance possibility P (at = 1) when no extra
private information is available, a common assumption for the opponent to
accept an offer is that the offer will give extra benefit to the opponent, i.e.,
the agent provides less utility than what the opponent is going to give:

P (at = 1) = P (umy
t − 1 ≤ ut)

= 1 − P (ut < umy
t − 1)

= 1 − Fn(umy
t − 1;μt, σt, 0, 1), (13)

where Fn(umy
t ;μt, σt, 0, 1) is the normalized and truncated cumulative probabil-

ity distribution of the opponent offers’ utility.
The final expected utility Etf , which the agent is expected to reach at time

tf , is given by:

Etf =
f − 1∑

m= c

Etf (umy
tm ) + Etf (utf )

=
f − 1∑

m= c

(
m∏

n= c+1

P (atn = 0)P (qtn = 0))P (atm+1 = 1)umy
tm

+ (
f∏

n= c+1

P (atn = 0)P (qtn = 0))
∫ umy

tf − 1

0

utf P (utf )dutf (14)

For each future time tf , we follow the same process to calculate the expected
utility. The maximum expected utility E∗ and the corresponding time t∗ can be
obtained by:

E∗ = max(Etf ) tf ∈ [tc+1, tmax] (15)

t∗ = argmaxtf∈[tc+1,tmax] Etf (16)

Finally, we compare E∗ with utc . As ut is monotonically increasing, utc is
the maximum utility that the agent has received at current time. If E∗ > utc ,
it means that conceding toward μtf may be more valuable so that the agent
will reject utc and choose to concede toward μt∗ by setting umy

tc as umy
tc (t∗).

Otherwise, if E∗ ≤ utc , the agent will accept utc . This decision procedure at
time tc can be formed as:

Decision(tc) =

{
accept utc , E∗ ≤ utc

reject utc and provide umy
tc (t∗), E∗ > utc

(17)

4 Adaptation to Four Types of Private Information

In this section, we demonstrate how to use the proposed OMIA to adapt to
four types of private information, which are (1) reservation value, (2) deadline,
(3) bidding strategy and (4) acceptance probability.
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Reservation value. The opponent will never provide an offer exceeding its
reservation value. To adapt to a given reservation value ur, the P (qtn = 0)
in Eq. 14 will be influenced by the opponent offers’ utility. Given an ur, the
probability of not quitting P (qt = 0) could be specified by:

P (qt = 0) =

{
0, ut > ur

1, ut ≤ ur
(18)

Deadline. Similar to the reservation value, we also adapt to the deadline by
specifying the P (qt = 0). Given an deadline td, P (qt = 0) is set by:

P (qt = 0) =

{
0, t > td

1, t ≤ td
(19)

Bidding strategy. Knowing the information of the opponent’s bidding strategy
means the agent knows what the opponent will offer at specific time. That is,
pairs of time and utility (ti, uti) are given beforehand. OMIA utilizes (ti, uti)
together with the historical offers Utc to train the Gaussian process models and
predict utf .

GP (Utc , (ti, uti)) ⇒< P (utc+1), ..., P (utmax
) > (20)

Acceptance possibility. OMIA models the acceptance possibility P (at = 1)
from a probability point of view only with historical offers of the opponent. If
there are other kinds of methods giving more precise estimations, OMIA can
directly use them in Eq. 14 so that the expected utility is computed with adap-
tation to these acceptance possibility calculation methods.

5 Experimental Results

5.1 Experimental Setting

In this experiment, an agent and an opponent negotiate over a single issue. The
utility of the opponent’s offers follows a time-dependent strategy, i.e. Conceder,
Linear or Boulware. The concession parameter is denoted as β. The utility of
both sides is quantified in the agent’s utility space in [0, 1]. The negotiation time
is set from 1 to 50.

We design a series of experiments to show the information adaptation abil-
ity of OMIA. Table 2 shows the detailed experimental setting, including the
experiment type, the information adapting to, opponent strategy, assumed esti-
mated private information of the opponent, and assumptions for the opponent’s
decision for quit. The estimations of these types of private information may be
provided by some prediction algorithms, or be prior knowledge of the agent. In
this experiment, these estimations are set as prior knowledge and are assumed
to be true.

We conduct 2 types of experiments. One is a case study in which the agent
negotiates with a Boulware opponent with β being 4. A non-adaptive behavior is
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Table 2. Experimental setting

Experiment type Adapting to Opponent
strategy

Assumed
estimated
private
information

Quit of
opponent

Case study No adaptation Boulware,
β = 4

/ Assume not
quitHistorical offers /

Historical offers
and bidding
strategy

An offer worth
utility 0.1296
will be given
by the
opponent at
time 30

Historical offers
and acceptance
possibility

The
acceptance
possibility will
become 0%
after time 30

Empirical analysis Historical offers
and reservation
value

Conceder,
Linear and
Boulware

Three
experiments
with
reservation
value being
0.6, 0.7 and
0.8

Quit after its
offer’s utility >
the estimated
reservation
value

Historical offers
and deadline

Uniformly
select 20 β for
each strategy
type in the
range of
[0.3, 0.8],
[0.9, 1.1], and
[2, 4]
respectively

Three
experiments
with deadline
being 30, 35
and 40

Quit after time
> the estimated
deadline

firstly studied. Then, we study three types of information to adapt to, which are
the historical offers, bidding strategy and acceptance possibility. The historical
offers are public information and can be used directly. For bidding strategy, we
select a pair of time and utility (40, 0.4096) on the curve of opponent’s offers as
its assumed estimated value, and use it along with the historical offers as the
input of Gaussian process. This means that the agent knows the opponent will
offer 0.4096 at time 40. Thus, we can compare the behavior of the agent with
and without this estimated pair of time and utility. For acceptance possibility,
we assume that the acceptance possibility will become 0 after time 30. We can
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then compare how will the agent behave with and without the estimation for
acceptance possibility.

The other type of experiment is empirical analysis for the private information
of reservation value and deadline. For each one, we have three experiments using
three assumed estimated values, which are 0.6, 0.7 and 0.8 for reservation values,
and 30, 35 and 40 for deadlines. In every experiment, different numbers of β are
selected to cover three types of opponent (Conceder, Linear and Boulware) in
order to get average results. We uniformly select 20 β for each strategy type in
the range of [0.3, 0.8], [0.9, 1.1], and [2, 4], respectively. Totally, we get 60 results
for an experiment with particular assumed estimated value.

5.2 Results Analysis

The experimental results for the case studies are presented in Figs. 1 and 2. The
results for the empirical analysis are showed in Tables 3 and 4.

(a) Non-adaptive behavior (b) Adapting to historical
offers only

(c) Adapting to both histor-
ical offers and bidding strat-
egy

Fig. 1. Negotiation process of the agent with non-adaptive behavior, adaptation to
historical offers, and adaptation to both historical offers and bidding strategy

Figure 1(a) shows the negotiation process of the agent with a non-adaptive
Conceder negotiation strategy. Figure 1(b) shows the process when the agent
applies OMIA, adapting to the opponent’s historical offers Utc . Figure 1(c) shows
the process when the agent adapts to both Utc and the bidding strategy of the
opponent. It can be seen that the agent with non-adaptive strategy achieves
a low utility value, while the agent with adaptation to Utc achieves a higher
utility value than the non-adaptive agent. When the opponent’s bidding strategy
(represented by the assumed estimated time-utility pair (40, 0.4096)) is given,
we can see that the agent has more confidence about the future concessions of
the opponent, makes fewer concessions during the early stage of the negotiation
process, and finally achieves a higher utility value than the agent with adaptation
only to Utc .
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Figure 2(a) and (b) illustrate the negotiation process without and with adap-
tation to the assumed estimated acceptance possibility. The acceptance possi-
bility will become 0 after time 30. The agent, receiving this information but
not adapting to it, fails to reach agreement with the opponent. By contrast, the
agent, adapting to this information, makes more concessions and finally reaches
agreement at time 30. This is because the given acceptance possibility makes
the expected utility when conceding toward time 30 maximum.

(a) Adapting to historical of-
fers only

(b) Adapting to both his-
torical offers and acceptance
possibility

Fig. 2. Negotiation process of the agent without and with adaptation to the assumed
estimated acceptance possibility

Table 3. Average utility achieved without and with adaptation to estimated reserva-
tion value

Estimated
reservation value ur

Average utility based
on historical offers only

Average utility based on
historical offers and
estimated reservation value

0.6 0.22 (±0.008) 0.54 (±0.002)

0.7 0.36 (±0.006) 0.63 (±0.005)

0.8 0.54 (±0.009) 0.72 (±0.006)

Table 3 shows the average utility achieved without and with adaptation to
estimated reservation value ur. 95% confidence intervals are listed in the paren-
theses. We can see that the agent without adaptation to ur achieves a lower
average utility value than that with adaptation. This is caused by a high chance
of failing to reach agreement with the opponent for the agent with a Boulware
strategy and without adaptation to ur. In addition, for the agent with adaption
to ur, the average utility achieved is always slightly lower than ur. This shows
that the agent makes agreement when the opponent offers’ utility is close to ur

in order to gain as much utility as possible.
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Table 4 shows the average utility achieved without and with adaptation to
estimated deadline td. Similar to the result of the reservation value, the agent
without adaptation to td achieves significantly lower average utility than that
with adaptation. As there is a high chance of failing to reach agreement when
the opponent approaches its deadline, but the agent does not adapt to it.

Table 4. Average utility achieved without and with adaptation to estimated deadline

Estimated
deadline td

Average utility based
on historical offers only

Average utility based
on historical offers and
estimated deadline

30 0.11 (±0.012) 0.51 (±0.014)

35 0.19 (±0.008) 0.60 (±0.004)

40 0.32 (±0.009) 0.70 (±0.009)

In summary, the experimental results show that OMIA could adapt to the his-
torical offers by exploiting the future concessions of the opponent. Also, OMIA
can adaptively guide the agent’s negotiation behaviors by utilizing the avail-
ability and values of the opponent’s private information in an expected utility
measurement. As a result, The agent is able to successfully reach agreement with
the opponent and achieve higher utility values comparing to those which lack
the information adaptation ability.

6 Related Work

A lot of opponent modeling methods with different learning goals have been
developed. Yu et al. [17] apply non-linear regression and Bayesian learning to
estimate the opponent’s reservation value and deadline. They introduce a con-
cept named detecting region to estimated the lower and upper boundary of the
reservation value and deadline. Historical offers are used to make the prediction
more accurate during the process of the negotiation. Williams et al. [16] use the
Gaussian process to estimate the future behavior of the opponent. The conces-
sion rate of the agent is then adaptively set based on the predictions during a
single negotiation session. Time-based discounts and a risk function are applied
in their model to handle the uncertainty. Oshrat et al. [13] create a negotiator
called KBAgent. It can use the past negotiation results as a knowledge base
to compute the acceptance probability for unseen offers. This approach allows
agents to negotiate with people and can gain more utility than humans.

However, these opponent modeling methods are focusing on the use of the
information they have. These methods overlook the fact that there may exist
potentially available information. Having the ability of utilizing the potential
information will help negotiation agents to reach agreement with the opponent
and gain more utility values.
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7 Conclusion

In this paper, we proposed a novel opponent modeling method called OMIA.
The proposed method can not only adapt to the historical offers of the opponent,
but also simultaneously adapt to four types of commonly used information in
automated negotiations. Agents using OMIA can flexibly choose which types
of information to adapt to. Also, OMIA makes little assumptions about the
opponent, making itself a highly robust model. The experimental results showed
that OMIA could exploit the future concessions of the opponent only based on
the historical offers. When extra estimated information is given, OMIA could
adaptively give guidance to the agent’s behaviors, and the agent is able to gain
as much utility from the opponent as possible under the estimated information.
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Abstract. This paper presents an overview of uncertainty assessment
in agent-based simulations, mainly related to land use and cover change.
Almost every multiagent-based simulation review has expressed the need
for statistical methods to evaluate the certainty of the results. Yet these
problems continue to be underestimated and often neglected. This work
aims to review how uncertainty is being portrayed in agent-based simu-
lation and to perform an exploratory study to use statistical methods to
estimate uncertainty. MASE, a Multi-Agent System for Environmental
simulation, is the system under study. We first identified the most sen-
sitive parameters using Morris One-at-a-Time sensitivity analysis. The
efforts to assess agent-based simulation through statistical methods are
paramount to corroborate and improve the level of confidence of the
research that has been made in land use simulation.

1 Introduction

Land use and cover change (LUCC) investigation are of importance to promote
insightful management of Earth’s land use to refrain environmental damage.
Moreover, LUCC is a complex process that relates the interaction between envi-
ronmental, economic and social systems at different temporal and spatial scales.
Computational frameworks are the most used technique to simulate LUCC mod-
els for its ability to cope with its complexity.

Agent-based model (ABM) has been incorporated into LUCC models, and
many other real-world problems, to explicitly simulate the effects of human deci-
sions in complex situations. They are based on the multi-agent system paradigm
that features autonomous entities that interact and communicate in a shared
environment. These entities perceive the environment, reason about it and act
on it to achieve an internal objective. Therefore, ABM can capture emergent
phenomena and provide an original description of the modeled system.

The Multi-Agent System for Environmental simulation (MASE) is a freeware
software developed at the University of Brasilia. MASE is a tool for exploring
potential impacts of land use policies that implement a land use agent-based
model [28]. Considering the purpose and reliance upon external data, MASE may
be characterized as a predictor-type agent-based simulation (ABS) model [12]:

c© Springer International Publishing AG 2017
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LNAI 10642, pp. 36–50, 2017.
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a data-driven model with the overall goal of performing medium to long term
predictions. MASE simulations were calibrated to match available GIS data [4].
Simulation results were validated according to a standard methodology for spa-
tially explicit simulations [27] and then compared to similar frameworks [29].
MASE performance was found to be higher than other 13 LUCC modeling appli-
cations with nine different traditional peer-reviewed LUCC models according to
[27]. Despite this fact, the lack of uncertainty assessment and sound experimenta-
tion is the main reason for criticism and questioning about the real contribution
of frameworks to decision support for LUCC.

According to [3], any ABS has levels of uncertainty and errors associated
with it. ABS continues to harbor subjectivity and hence degrees of freedom in
the structure and intensity of agent’s interactions, learning, and adaptation [18].
There are significant chances of finding results which may be the consequence of
biases. Furthermore, almost every ABS review have expressed the need for sta-
tistical methods to validate models and evaluate the results to improve the trans-
parency, replicability and general confidence in results derived from ABS. These
problems continue to be underestimated and often neglected. Some authors [12],
likewise, argued that validation is one of the most important aspects of a model
building because it is the only means that provides some evidence that a model
can be used for a particular purpose. However, at least 65% of the models in
their survey were incompletely validated. Of the models validated in some way,
surprisingly less than 5% used statistical validation techniques. Traditionally,
ABS types of systems are difficult to analyze given their non-linear behavior
and size [6].

Treatment of uncertainty is particularly important and usually difficult to
deal with in the case of ABM’s stochastic models. While acknowledging the dif-
ferences in data sources and the causes of inconsistencies, there is still need to
develop methods to optimally extract information from the data, to document
the uncertainties and to assess common methodological challenges. To look away
could reinforce inconsistent results and damage the integrity and quality of sim-
ulation results.

This work aims to briefly discuss how uncertainty is being portrayed in ABS
and to perform an exploratory study to use statistical methods to estimate uncer-
tainty in a LUCC agent-based prediction simulation tool. The MASE system will
be the simulator under study. The Cerrado case study simulations [29] will be the
basis for the analysis. As a first investigation step, we assessed the uncertainty
within the inputs and configuration parameters of the simulation. Our final goal
would be to document, quantification and to foresee its propagation impacts
in the results. A particular challenge in performing measurements is coming
up with appropriate metrics. The thorough experimentation and repeatability
would, therefore, improve our understanding of the uncertainty and relations
among the variables that characterize a simulation. The remainder of the paper
is structured as follows. In Sect. 2, we present some background on uncertainty
and in Sect. 3 some related work. In Sect. 4, we summarize the MASE character-
istics and case study. We also present the methodology for the exploratory study.
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In Sect. 5 we show results together with discussions. In Sect. 6 we conclude with
a summary.

2 Overview of Uncertainty in ABS

The relevance of the treatment of uncertainty is dependent of the modeling
objective. Requirements regarding model uncertainty may be less critical for
social learning models, where communication and interaction among stakehold-
ers would be of more significance. Conversely, parameters, measurements, and
conditions used for model runs influence much more data-based predictions of
future states. Projection, forecasting and prediction models are usually very
affected by the variation of a system output from observed models.

Also, there are different sources of uncertainty that can influence the predic-
tion of a simulation model. It can arise from simulation variability in stochastic
simulation models or from structural uncertainty within assumptions of a model.
We will emphasize input uncertainty, what McKay [24] defined as incomplete
knowledge of ‘correct’ values of model inputs, including model parameters. If the
inputs of a model are uncertain, there is an inherent variability associated with
the output of that model. Therefore it is crucial to communicate it effectively to
stakeholders and technical audiences when outputting model predictions.

Uncertainty in environmental prediction simulations may limit the reliabil-
ity of predicted changes. This issue is one of the recurrent conclusions of the
Intergovernmental Panel on Climate Change (IPCC). Back at 1995, IPCC stated
that “uncertainties in the simulation of changes in the physical properties have a
major impact on confidence in projections of future regional climate change”[13]
and that was necessary to reduce uncertainties to increase future model capa-
bilities and improve climate change estimates. Since 2010, IPCC dedicates an
integral feature of its reports to the communication of the degree of certainty
within IPCC assessment findings [23]. In the most recent report, IPCC assesses
a substantially larger knowledge base of scientific, technical and socio-economic
literature to reduce uncertainty and uses a large number of methods and for-
malization [7]. Especially for future predictions, validating a model’s predictive
accuracy is not straightforward due to a lack of appropriate data and meth-
ods for ‘validation’ [15]. That is another reason why applications, frameworks,
and methods of formalization in this research area are relevant and should be
promoted.

Regarding the type of modeling, there are approaches such as Bayesian net-
works, able to explicitly deal with uncertainty in the interpretation of data,
measurements or conditions. In contrast, other approaches such as ABMs require
the development of comprehensive or compelling analysis of output data and a
lot of resource-intensive attention [18]. The level of testing required to develop
this understanding is rarely carried out, mainly due to time and other resource
constraints [15].

Indeed, uncertainty assessment in ABM can be a hard task for even rela-
tively small models. Due to their inherent complexity, ABS are often seen as
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black boxes, where there is no purpose in explaining why the agents acted as
they did, as long as the modeler presents some form of validation (i.e., shows a
good fit). According to Marks [22], ABMs simulations can prove existence, but
not in general necessity. Despite that, there is a research effort to make ABS more
transparent and to demonstrate that the simulations behave as intended through
efforts in standardization in simulation model analysis and result sharing [21].
Besides from verification, uncertainty assessment aims to increase understand-
ing, to improve the reliability of the predicted changes and to inform the degree
of certainty of key findings. To achieve this effort, some techniques and meth-
ods such as uncertainty and sensitivity analysis should be part of the modeling
process.

Uncertainty Quantification is defined as the identification, characterization,
propagation, analysis and reduction of uncertainties. Sensitivity analysis (SA)
is defined as the study of how uncertainty in the output of a model can be
apportioned to different sources of uncertainty in the model input [30] and is
a method to assess propagation of uncertainties. SA responds the question of
which inputs are responsible for the variability of outputs. Local SA explores
the output changes by varying one parameter at a time, keeping all the others
constant. Although it is a useful and straightforward approach, it may be loca-
tion dependent. Global SA gives a better estimate of uncertainty by varying all
parameters at the same time by using probability density functions to express
the uncertainty of model parameters. Uncertainty analysis is a related broader
uncertainty propagation practice to SA. It focuses rather on quantifying uncer-
tainty in model output, addressing the variability of results. Ideally, uncertainty
and SA should be run in tandem.

3 Related Work

There are a growing number of attempts to assess uncertainty in ABS. However,
there is a lack of specific guidance on effective presentation and analysis of the
simulation output data. There is a variety of approaches to quantifying or reduce
uncertainty. The work of [18] offers an overview of the state-of-the-art methods
on the social simulation area, in particular examining the issues around vari-
ance stability, SA and spatiotemporal analysis. Because of our interest in LUCC
simulations, we choose to review how those approaches are being applied and
communicated on spatially-explicit simulations.

In [1], the authors propose an algorithm as an alternative to goodness-of-
fit traditional validation to answer if the agents in a simulation are behaving
as expected. To them, the key for effective interaction in multi-agent applica-
tions is to reason explicitly about the behavior of other agents, in the form of
a hypothesized behavior. This approach would allow an agent to contemplate
the correctness of a hypothesis. In the form of a frequentist hypothesis test, the
algorithm allows for multiple metrics in the construction of the test statistic
and learns its distribution during the interaction process. It is an interesting
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approach to addressing the uncertainties within the model and agents behav-
ior. We believe it would be even more effective if coupled with an uncertainty
quantification technique.

The work of [26] assesses uncertainty that is characteristic of spatially explicit
models and simulations. The authors propose a benchmarking scheme of LUCC
modeling tools by various validation techniques and error analysis. The authors
investigate LUCC tools that are based on map comparisons to analyze the accu-
racy of LUCC models in terms of quantity, pixel by pixel correctness and LUCC
components such as persistence and change. Also, they investigated the map
outputs of these simulations to test the fidelity of spatial patterns and the con-
gruency of the simulation maps from different modeling tools. Although the
variability of LUCC models does not allow strict comparisons, there is still room
for improvements in methodologies, validation and uncertainty quantification.

The work of [8] assesses model output analysis through a global SA, a com-
monly used approach for identifying critical parameters that dominate model
behaviors. They use the Problem Solving environment for Uncertainty Analy-
sis and Design Exploration (PSUADE) software, to evaluate the effectiveness
and efficiency of widely used qualitative and quantitative SA methods. Each
method is tested using a variety of sampling techniques to screen out the most
relevant parameters from the insensitive ones. The Sacramento Soil Moisture
Accounting (SAC-SMA) model, which has thirteen tunable parameters, is used
for illustration. The South Branch Potomac River basin near Springfield, West
Virginia in the U.S. is chosen as the study area. The authors show how dif-
ferent sampling methods and SA measurements can indicate different sensitive
and insensitive parameters and that a comprehensive SA is paramount to avoid
misleading results.

The work of [20] also performed a global SA to show which model parameters
are critical to the performance of land surface models. The authors considered
40 adjustable parameters in The Common Land Model and therefore compare
different SA methods and sampling. The size of each sample would vary as well.
The sampling techniques and SA measures that were considered optimal were
distinct from the results found by [8], meaning that not all LUCC ABS propagate
uncertainty the same way.

Another approach was performed by [17], also in a LUCC model. They use
the method of independent replication. In the case study, the authors replicated
the simulation 12 times for each mechanism and computed the mean values of
the impact indicators and their confidence intervals (CI) at a reliability of 95%.
They used uncertainty quantification to define a minimum certainty threshold
in the simulation outputs.

All these authors used several indicators to measure the variability of model
results based on changing input parameters. Table 1 illustrates a brief comparison
among those works. MASE exploratory uncertainty assessment will be described
in the next sections. A large panel of statistical tools exist to help with the
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accuracy of the predictions such as Dakota1, PSUADE [32], UQ-PyL2, MEME
Suite3 and MC2MABS [2]. There are initiatives to apply the potential of classic
Design of Experiments (DOE) for ABS [16,21]. ABS field of research would
benefit from a systematic empirical research with standardized procedures, but
ABS idiosyncrasies in model output turn the task even harder. Researchers so
far failed to reach consensus and to determine sound methodological guidelines.
Hence the studies are still mostly investigative and exploratory.

Table 1. Overview of the general characteristics of each related work

Reference Model Uncertainty Methods

[1] Generic ABS Correctness Hypothesis test and
runtime statistical verification in
the agent’s behavior

[26] Land use models Image statistical comparison of
pixel/maps and error analysis to
find uncertainty drivers

[8] SAC-SMA hydrological model Global SA with 15 sampling
techniques, 9 different sample sizes
and 12 SA methods

[20] Land surface model Local SA and 4 Global SA
methods with 3 sampling
techniques, and 6 sample sizes

[17] LUDAS: land use ABS Independent Replications and
Confidence Intervals to assess
output variation

MASE MASE: land use ABS Global SA with different sample
configurations, independent
replications, and Confidence
Intervals

4 MASE Exploratory Study

The MASE Project4 objective is to define and implement a multi-agent tool for
simulating environmental change. MASE enables modeling and simulations of
LUCC dynamics using a configurable user model. The multi-agent architecture is
composed of three hierarchical layers (from top to bottom) [29]: a User Interface
(UI), a Pre-processing and an Agent layer. In the agent layer, there are cell agents
representing land units hosting natural processes, such as crop/forest grow, and

1 https://dakota.sandia.gov/.
2 http://www.uq-pyl.com/.
3 http://meme-suite.org/.
4 Software Availability: http://mase.cic.unb.br/.

https://dakota.sandia.gov/
http://www.uq-pyl.com/
http://meme-suite.org/
http://mase.cic.unb.br/
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there are transformation agents, representing human agents and their behavior
as farmers or cattle rancher.

The Cerrado-LUCC model of MASE is used as a test problem. The simu-
lations depict the land use and cover changes of the most endangered biome
in Brazil. The Cerrado is the second largest biome in South America and har-
bors significant endemism and biodiversity. The landscape has been undergoing
severe transformation due to the advance of cattle ranching and soy produc-
tion. To promote transparency and replicability, the Cerrado-LUCC simulation
model was documented and described employing the standard ODD-protocol
(Overview, Design concepts, and Details) [10,11]. We also applied empirically
grounding ABM mechanisms for the characterization of agent behaviors and
attributes in socio-ecological systems [31]. In this article, we provide some core
information of MASE and the Cerrado-LUCC Model, mainly about the para-
meters and outputs. Readers who are interested in the details of this model and
the implementation of MASE multi-agent system should refer to [29] and [28],
respectively.

The input of the simulation is a couple of grid raster maps consisting of
the land cover of the region, from two different time periods (an initial and a
final map). Also, each simulation carries a set of maps to describe the physical
characteristics of the environment, such as water courses, water bodies, slope,
buildings, highways, environmental protected areas, and territorial zoning maps.

The simulations are calibrated from the two time-steps and project the land
use and cover change for future steps. The result of a MASE simulation is a cou-
ple of predicted maps (Fig. 1), with the allocation of change and a set of metrics
calculated during runtime. The resulting image is submitted to a goodness-of-fit
measurement and the quality and errors of the quantity of change and allocation
of land use change are calculated.

Fig. 1. A land cover predicted map of the Cerrado in Federal District, Brazil
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Methodology

The objective is to perform an exploratory analysis, based on classical statis-
tics, to reduce uncertainty and to understand how the model behave. MASE
LUCC model is under input uncertainty investigation, to calculate their influ-
ence in the simulation output. For exploratory purposes, we want insight on the
parameters that affects the multi-agent system implementation, so we selected
a subset of Cerrado-LUCC model inputs for this demonstration. The subset of
input parameters of the multi-agent system are displayed in Table 2: TA-Number
of Transformation Agents, TG- Number of Group Transformation Agents, IE-
Potential of Individual Exploration and GE- Potential of Group Exploration.
These parameters characterize the instantiation of MASE agents and therefore,
should be analyzed regarding uncertainty.

Table 2. MASE multi-agent input configuration parameters

ID Parameter Description Range

I1 TA Number of Transformation Agents [1, 100]

I2 TG Number of Group Transformation Agents [10, 100]

I3 IE Potential of Individual Exploration [1, 500]

I4 GE Potential of Group Exploration [1, 1500]

The number of transformation agents is a parameter that reflects the number
of computational agents (in the multi-agent system paradigm) instantiated in
a simulation run. In this study case, one agent does not represent one single
individual. The Cerrado-LUCC model was formulated based on an empirical
characterisation of agent behaviors, proposed by [31], with two basic steps: the
development of behavioral categories and the scaling to the whole population
of agents. TA was derived from the Brazilian Agricultural Census of 2006 and
comprises a set of Producer legal status. The range of 1 to 100 is an abstraction to
the 3407 register producers in the region that may be active or inactive in a given
period. The details of this agent characterization are thoroughly illustrated in
[29]. Likewise, a particular type of agent is GT, which represent not an individual
but an organization, cooperative, business or so. The range is an abstraction of
the 548 group producers, 10 of which have permanent exploration licenses.

The potential of exploration, individual or of a group, represent the impact
an agent can produce in the natural vegetation cover of a cell during a step. In
the Cerrado LUCC Model, considering the deforestation process, the potential
of exploration is again an abstraction for the amount of m3 of wood that can
be obtained from a particular grid cell, until a nominal limit that represents
resource depletion.

In addition to the final LUCC maps, the simulation generates a set of metrics
as results, mainly spatial analysis measurements, which includes pixel by pixel
comparison, a quantitative and an allocation agreement. Those measurements
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are certain statistical LUCC indices to determine the produced map accuracy,
proposed by [27]. It includes an objective function called the figure of merit
(FoM), a ratio between correct predicted changes and the sum of observed and
predicted changes. To evaluate the response of the model to the different para-
meters, the experiments considered the outputs described in Table 3 and tried
to identify and quantify the influence of the simulation input configurations on
the model outputs. The identification (ID) of each of the outputs follows the
numbering of its generation in the file .csv produced by MASE at the end of
each simulation.

Table 3. MASE output parameters

ID Output Description

O1 TM Total time of the simulation

O4 FoM Figure of Merit

O5 PA Image Producer’s Accuracy

O6 UA Image User’s Accuracy

O7 WC Pixel’s Wrong Change: observed change predicted as persistence

O8 RC Pixel’s Right Change: observed change predicted as change

O9 WP Pixel’s Wrong Persistence: observed change predicted as persistence

To identify and analyze these uncertainties we performed a method of elemen-
tary effects (EE) of global SA on the MASE LUCC model. For this calculation,
we used the software package developed by Tong [32] called PSUADE, contain-
ing various methods for parameter study, numerical optimization, uncertainty
analysis and SA.

Screening methods are based on a discretization of the inputs in levels, allow-
ing a fast exploration of the system behavior [14]. The aim of this type of method
is to identify the non-influential inputs with a small number of model calls. The
most used screening method is based on the one-parameter-at-a-time (OAT)
design, where each input is varied while fixing the others. The simplicity is one
of OAT’s advantages, but there are drawbacks when applying to ABM. For one,
it does not consider parameter interactions and may cover a slight fraction of
the input space.

The EE method we chose to apply is the Morris method (MOAT) proposed
by [25] and refined by [5], an expansion of the OAT approach that forsakes the
strict OAT baseline. It means that a change in one input is maintained when
examing a switch to the next input and the parameter set is multiply repeated
while randomly selecting the initial parameters settings. EE is suited for spatially
explicit simulations, usually computationally expensive models with large input
sets.

MOAT allows classifying the inputs into three groups: inputs having a neg-
ligible effect, inputs having large linear effects without interactions and inputs
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having significant non-linear and interaction effects. In overall effect and interac-
tion effect of each parameter can be approximated by the mean μ and standard
deviation σ of the gradients of each parameter sampled from r.

The MOAT sampling technique was designed for the particular MOAT
method. The work of [8] details how the MOAT sampling works: the range
of each parameter is partitioned into p − 1 equal intervals. Thus the parameter
space is an n-dimension p-level orthogonal grid, where each parameter can take
on values from these p determined values.

First, r points are randomly generated from the orthogonal grid; and then,
for each of the r points, other sample points are generated by perturbing one
dimension at a time. Therefore, sample size will be (n + 1) · r. For the sampling
size, [19] report that one needs at least 10 · n samples to identify key factors
among the parameters.

To avoid the effect size on the sample, we determining a minimum sample size
of 800(= 20 · 4), for four inputs. For MOAT sampling we used 160 replications,
resulting in sample size of 800 (= (4 + 1) · 160).

Moreover, as in other stochastic models, it is not advisable to draw conclu-
sions from a single MASE simulation run. For an initial uncertainty assessment,
we applied the method of independent replications proposed by [9]. We run the
model approximately eighty-five thousand times (an arbitrary choice to explore
all the input parameter space) and randomly clustered the results into five inde-
pendent replication groups. We computed the mean values of the outputs and
their confidence intervals (CI) at a reliability of 95%. Another approach to esti-
mating the uncertainty of the model output is to study the variance in the
model outputs by using the Coefficient of Variation (CV) (the ratio of the stan-
dard deviation σ of a sample to its mean μ), to compare the variance of different
frequency distributions.

5 Results

In the current work, we analyzed four input parameters, displayed in Table 2,
regarding the multi-agent configuration of MASE LUCC model. First, we present
the results of the SA. Figure 2 presents the EE of CERRADO-LUCC model para-
meters. Figure 2 (left) illustrates the modified means of MOAT gradients and also
their spreads based on bootstrapping. The results show that GE and TA are the
most sensitive parameters in term of having the largest average median (26.466
and 25.205, respectively). The other two parameters have median sensitivities
close to zero, denoting the impact of these parameters on the simulation output
is minimal.

Figure 2 (right) is a MOAT diagram that shows a consensus view among mean
μ and standard deviation σ of the gradients of each parameter sampled from r.
The more sensitive the parameter, the closer it is to the upper right corner of
the graph. These results show a positive correlation between input and output
uncertainties. Since GE and TA describe the amount of land transformation in
a simulation, high values of these parameters will increase the model output.
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Fig. 2. Parameter sensitivity rankings of MOAT method

GE is the most sensitive parameter, followed by TA. To understand and to
reduce uncertainty within this two variables will, therefore, reduce the uncer-
tainty of the simulation as a whole.

GE represents the amount of land cover that is transformed by a group of
human agents in a cell of the map. GE is a sensitive value for it indicates the
voracity and velocity of the current land exploitation, what will directly affect
the result of the simulation. GE is probably sensitive because the socio-economic
groups responsible for large-scale cattle ranching and permanent agriculture are
the principal driver of deforestation in Cerrado. Their rates of land change are
more significance than the number of groups, what explain TG as an insensi-
tive parameter to the output. As for TA, the more agents one instantiates in a
simulation, more land cover will be affected, higher will be the land use trans-
formation rates. Conversely, the potential of exploration of a single individual is
less determinant than the number of single individuals acting on the land, with
SA indicating TA a sensitive and IE as an insensitive parameter.

To investigate MOAT sensitivity results, we used different replications times
r and different levels p to know for sure the relevance of the parameters as
displayed in Fig. 3. It is possible to see that even within the same method, results
may vary. The results for four replications are not very consistent with the other
replication results, mainly with the mean. The results with r = 56, r = 108 and
r = 160 present minor variations. We can infer that four replications are not
enough to identify the parameters sensitivity in the MASE model successfully
and therefore the number of replications should be higher to be effective.

Table 4 is a summary of the Basic Output Statistics of the MASE LUCC
model. Each replication is assigned by i = [1..5], the sample mean from the
coefficient variation by CVi, and the mean of all replications by Z̄. We performed
independent replications to verify the variation of the indicators, and for an
initial analysis, we consider this variation as noise (uncertainty). Any impact
conclusions in predictions can only be drawn if the changes in standards are
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Fig. 3. Sensitivity of parameters at different replication times r

greater than the uncertainty rate. Therefore, we have a first threshold to define
if some result is valid, compared to the simulations behavior.

We also estimated the expected average FoM for simulations, using the five
replication grouped results (b = 5). Considering the Z̄FoM = 43.87 and the
estimated Variance V̂R = 100.99, we have an approximately 100(1 − α)% two-
sided CI for θ, according to the formalization proposed by [9]. For level α = 0.05,
we have t0.025,4 = 2.78, and gives [31.39, 56.34] as a 95% CI for the expected FoM
for MASE simulations.

Table 4. Coefficient of variation for MASE outputs

Output CV1 CV2 CV3 CV4 CV5 Z̄

Time 0.300 0.130 0.250 0.260 0.200 0.230

Figure of Merit 0.015 0.011 0.008 0.007 0.090 0.100

Producer’s Accuracy 0.015 0.011 0.008 0.007 0.009 0.010

User’s Accuracy 0.006 0.005 0.004 0.004 0.003 0.004

Wrong Change 0.030 0.030 0.030 0.030 0.020 0.030

Wrong Persistance 0.007 0.007 0.008 0.008 0.013 0.009

Right Change 0.015 0.011 0.008 0.008 0.009 0.010

6 Conclusions

In this study, we first identified the most sensitive parameters for the MASE
LUCC model using MOAT SA. We investigated some proper sampling design
and sample size needed for MOAT screening the parameters effectively. Although
these conclusions are model-specific, it corroborates possible variation among
sampling techniques and SA methods.
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This paper is the first exploratory study towards quantifying uncertainty
within MASE simulations. Following experiments must be done to promote more
standardization to this effort through the application of Design of Experiments.
We look forward to investigating further on the model parameters, analyzing the
remaining inputs besides the agent’s quantities and their impacts.

This paper is the first exploratory study towards quantifying uncertainty
within MASE simulations. The presented results allow us to understand the
uncertainty when defining the parameters of the simulation of the LUCC model
under study. Our feeling is that the uncertainty is very high which means that
either model need to dramatically improve or LUCC policy need to be reevalu-
ated. Most simulation tools fail to validate models and to state the uncertainty
in simulation results. Consequently, policymakers and the general public develop
opinions based on misleading research that fails to give them the appropriate
interpretations required to make informed decisions. The efforts to assess ABMs
through statistical methods are paramount to corroborate and improve the level
of confidence of the research that has been made in LUCC simulation.
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Abstract. Multi-agent modeling is a computational approach to model
behavior of complex systems in terms of simple micro level agent rules
that result in macro level patterns and regularities. It has been argued
that complex systems approaches provide distinct advantages over tradi-
tional equation-based mathematical modeling approaches in the process
of scientific inquiry. We present a case study on how multi-agent model-
ing can be used to develop thought experiments in order to push theory
forward. We develop a model of the evolution of gamete dimorphism
(anisogamy), for which there are several competing theories in the evo-
lutionary biology literature. We share the outcomes of our model and
discuss how the model findings compare with, and contribute to pre-
vious work in the literature. The model clarifies mechanisms that can
result in the evolution of anisogamy and offers a much simpler structure
that is easier to understand, test, modify and extend.

1 Introduction

The most commonly used approach to model behavior of biological systems
involves equational modeling with a focus on describing population-level changes
based on population level descriptor variables [9]. Unfortunately, this modeling
approach is limited when it comes to adding new variables or incorporating
new assumptions because entirely new equations might be needed to capture
even small changes [24]. In contrast, multi-agent-based modeling is a powerful
approach to model complex natural and social phenomena in terms of simple
micro-level agent rules that result in the emergence of macro-level patterns and
regularities [21]. In this paper, we draw on Wilensky and Papert’s Restructura-
tion Theory and argue that multi-agent-based modeling can be used to develop
thought experiments on complex scientific questions for novices to learn scien-
tific domain knowledge easily, as well as domain experts to verify, modify, and
even extend these models [24].

We present a multi-agent-based model about the evolution of gamete dimor-
phism (anisogamy) to make a case for our argument. Anisogamy is the phenom-
enon of males producing large numbers of small sperm cells and females produc-
ing small numbers of large egg cells for reproduction [4]. We believe this topic is a
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good fit for developing a multi-agent-based thought experiment for two primary
reasons: (1) there is no universally accepted theory or model in the literature
[4,6,16], (2) the bulk of research in this area has been done through equation-
based modeling (e.g., [5,12–14]). We begin by reviewing Restructuration Theory
in detail. Then, we describe anisogamy and review the literature related to the
evolution of anisogamy, as our multi-agent-based thought experiment incorpo-
rates and builds on the ideas from the existing evolutionary biology literature.
We describe our model’s assumptions and agent rules in detail and then present
our findings. We demonstrate that our model achieves similar results to those
achieved in the literature while increasing access to underlying ideas.

2 Restructuration of Scientific Domain Knowledge
Through Multi-agent-based Modeling

Restructuration Theory, as proposed by Wilensky and Papert, describes how dis-
ciplinary knowledge can be re-encoded using new representational technologies
in a way that can have powerful implications for science, culture and learning
[24]. Many such historical restructurations are presented including the restruc-
turation of Roman numerals to Hindu-Arabic numerals. Wilensky and Papert
argue that computation offers many new opportunities for powerful restructura-
tions and that multi-agent-based modeling can be used to create many such
restructurations [24].

A good example is Wilensky and Reisman’s restructuration of models of
predation [22]. Traditionally, predator-prey relationships are modeled through
differential equations. An example of such models is the Lotka-Volterra models
that offer two equations that describe the rate of change in the densities of the
predator and prey populations over time [11,19]:

dN1

dt
= b1N1 − k1N1N2 (1)

dN2

dt
= k2N1N2 − d2N2 (2)

In these equations, N1 is the density of the prey population, N2 is the density of
the predator population, b1 is the birth rate of the prey, d2 is the death rate of the
predators, and k1 and k2 are constants. These equations specify the dependence
of the density of each population to one another. When plotted, the model
shows cyclical fluctuations between the two populations: increases in the prey
population will result in rising predator birth rates and increases in the predator
population will result in rising prey death rates. Wilensky and Reisman’s attempt
to restructurate this problem through multi-agent-based modeling focuses on
considering prey and predator as agents and describing the agent rules that
emerge as population level patterns:

Rule set for wolves (at each clock-tick):
1. move randomly to an adjacent patch which contains no wolves.
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2. decrease energy by E1

3. if on the same patch as a sheep, then eat the sheep and increase energy
by E2

4. if energy < 0 then die
5. with probability R1 reproduce

Rule set for sheep (at each clock-tick):
1. move randomly to an adjacent patch and decrease energy by E3

2. if on grassy patch, then eat grass and increase energy by E4

3. if energy < 0 then die
4. with probability R1 reproduce

Rule set for grass (at each clock-tick):
1. if green, then do nothing
2. if brown, then wait E4 clock-ticks and turn green

Wilensky and Papert theorize that multi-agent-based restructurations of such
natural phenomena offer three powerful advantages over equation-based model-
ing in terms of learnability: (1) rules for agents are closer to our intuitive notions
of these “objects” as distinct individuals rather than aggregate populations, (2)

Fig. 1. Two models of predation compared to real world observations: (a) the Lokta-
Volterra equational models [11,19], (b) the Wilensky-Reisman multi-agent-based model
(middle) [22], and (c) real world data from a lynx-hare population in Northern Canada
[15].
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equational models often require bigger changes or completely new equations even
for small adjustments, (3) visualization of individual agents and their dynamics
afford greater realism compared to graphs of populations [24]. These advantages
make it possible for even high school students to easily learn topics that used to
be hard for college graduates in related fields [22].

As Fig. 1 shows, a comparison between the real data, the equation-based
model, and the multi-agent-based model shows that real world phenomena pro-
duce patterns that are more similar to the outcome of the multi-agent-based
model. The outcome of the multi-agent-based model is similar to the equation-
based model but with more noisy fluctuations, which the equation-based model
shows less, because it is a discrete model. In this paper, we attempt a very sim-
ilar restructuration of an evolutionary biology topic, which is historically stud-
ied through equational models, and re-examine it through multi-agent-based
modeling.

3 Developing a Multi-agent-based Thought Experiment
on the Evolution of Gamete Dimorphism

There are two main types of reproductive strategies employed by organisms: sex-
ual reproduction and asexual reproduction [6]. The most prevalent sexual repro-
duction strategy is called gamete dimorphism or anisogamy. Many animal and
plant species, including humans, are anisogamous: one mating type (males) pro-
vides half the chromosomes by producing small cells in large quantities (sperm)
and the other mating type (females) provides half the chromosomes by produc-
ing much larger cells in much smaller numbers (egg). When two such cells, called
gametes, belonging to opposite sexes fuse, a zygote is formed and this zygote
gradually grows into an adult [3,14].

The evolution of anisogamy is a yet to be resolved topic in evolutionary biol-
ogy and is the foundation of theories on gender differences and relations [4]. This
starts with the very question of “why do sexes exist?” [4,16]. Given that asex-
ual production (parthenogenesis) actually has some distinct advantages in terms
of numerical advantage in progeny, many have wondered why sexual reproduc-
tion evolved in the first place [6]. It is also not known why anisogamy prevailed
over other sexual reproduction strategies. For instance, there are some fungal
species which reproduce through more than two mating types [10] or by pro-
ducing gametes of equal size (isogamy) [14], but they are exceptions. In this
paper, we attempt to address the latter question because the discussion on the
evolution of anisogamy mostly revolves around the validity of the assumptions
of theoretical models [16]. The equation-based methods used in these models
make it harder for beginners to join the conversation and domain experts to
manipulate the models for further analysis. We argue that a multi-agent-based
thought experiment of anisogamy can afford domain experts the ability to easily
plug new assumptions into an existing model while making it significantly easier
for non-experts to learn about anisogamy [22]. In this section, we describe the
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process of developing one such thought experiment through reviewing the liter-
ature on anisogamy, determining model assumptions, defining agent rules and
designing the user interface.

3.1 Literature Review

Evolutionary theories in general try to show how it is that a trait might be
selected when there are many competing treats. In the case of reproductive
strategies, there is no clear answer on why anisogamy is a more successful strat-
egy over isogamy or multiple mating types. The most accepted theory on the evo-
lution of gamete dimorphism is called “the Parker-Baker-Smith (PBS) model”. It
lays out mathematical formulations to determine the conditions for the evolution
of anisogamy through a zygotic fitness function and a gametic fitness function.
The PBS model makes three simple but powerful assumptions [5,14]:

1. individuals of a marine ancestor population produce a range of gametes and
the fusion between pairs of gametes is at random at sea

2. each adult has only a fixed biomass available for gamete production
3. there is some sort of relationship between zygote fitness and zygote size

It is important to caution that we are far from having a model that offers a
universal explanation yet. Many of these theories, including the PBS model, are
actively debated [16] and there are still many questions that remain unanswered
[4]. The PBS theory of evolution is generally viewed as a foundational model but
not the ultimate answer [6]. Both the assumptions and the formulations of the
model are challenged by other theorists [4,16]. There are also many theories that
build on the PBS model and attempt to offer more explanatory value (e.g., [7]).

3.2 The NetLogo Model of Gamete Dimorphism

We develop our multi-agent-based thought experiment of anisogamy in the Net-
Logo agent-based modeling environment [20] as it provides powerful tools to
model emergent phenomena through a beginner friendly programming environ-
ment that allows writing open, easily readable code and a rich set of visualization
options [17,21]. In the model 1 [1], adults of two mating types begin with produc-
ing middle-sized gametes at approximately the same rate (isogamy). Every time
an adult produces new gametes, there is a chance of a small, random mutation in
the gamete size strategy. These mutations introduce a competition among multi-
ple reproductive strategies. In this section, we describe the model’s assumptions,
agent rules and interface in detail.

1 Source code of the NetLogo model of anisogamy is openly available through
http://modelingcommons.org/browse/one model/5007.

http://modelingcommons.org/browse/one_model/5007
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The Assumptions and the Agent Rules. Similar to the existing theories in
the literature, our model builds on the following set of basic assumptions that
we appropriated from the PBS model and its derivatives [3–5,12–14,16,18]:

1. Adults have limited lifetimes.
2. Gamete production budget is fixed and the same for all adults.
3. Gametes have limited lifetimes, too, but much shorter than adults.
4. A zygote has to achieve a minimum mass to survive.
5. There are initially two isogamous mating types in the population.
6. The gamete size and the mating type traits are inherited as a bundle.
7. The chance of a zygote inheriting these traits from either gamete is equal.

Assumptions 2 and 4 directly correspond to the 2nd and 3rd assumptions
of the PBS model (Sect. 3.1). We implement the 1st assumption of the PBS
model by implementing a random walk algorithm in the model’s code. We also
implement a lifetime mechanism to simulate successive generations, although
there is no mention of this in the PBS model or other equational models. Based
on these assumptions, we define three agent types as adults, gametes and zygotes
and define simple rules for each agent type.

Rule set for adults (at each clock-tick):
1. turn around randomly and move one step forward.
2. with probability P produce gametes:
– randomly pick the new gametes’ size (mt) through a normal distribution

with mean = my gamete size strategy (m) and standard deviation = σ.
– hatch own mass (M)/mt gametes of my mating-type and of the size mt

3. decrease the remaining lifetime by 1, die if no lifetime left.
Rule set for gametes (at each clock-tick):

1. turn around randomly and move one step forward.
2. fuse (form a zygote) if touching a gamete of the opposite sex:
– inherit the total mass of myself and my mating partner.
– randomly inherit the mating type and gamete size strategy as a package
3. decrease the remaining lifetime by 1, die if no lifetime left.

Rule set for zygotes (at each clock-tick):
1. decrease the remaining incubation time by 1. if incubation time is 0:
– if own mass (M) mass is greater than the survival threshold (M ≥ δ),

turn into an adult.
– if own mass (M) is less than the survival threshold (M < δ), die.

Interface and Parameters. NetLogo’s interface affords easy manipulation of
the parameters of the model, and we can observe the changes in the system
visually through the model’s world and plots. The world is a graphical window
which is not a mere visualization but an actual space where the agents follow
the rules and interact with each other [21], seen as the central window shown in
Fig. 2. The adults are represented by circles with black dots in them. An adult’s
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color (blue or red) represents its mating type. The tiny arrow shaped agents
are the gametes produced by adults. They, too, are either blue or red but vary
in size depending on their parents’ gamete size strategy. Lastly, the egg-shaped
agents with lighter shades of red and blue are the zygotes formed by the fusion
of two gametes.

Fig. 2. The interface of the NetLogo Anisogamy model (Color figure online)

The first two plots on the right allow us to see the change in the overall
population and the number of gametes of each mating type over time. The
histogram on the bottom right shows the distribution of the gamete sizes at
the observed clock-tick. The two integer outputs on the top right (blue adults
and red adults) allow us to observe if the mating type balance is disrupted or
not. The controls on the left allow us to change the parameters of the model
so that we can test implicit and explicit assumptions. Each of these controls
corresponds to bigger questions that we want to ask through this model. For
example, one of the questions we want to ask is “what, if any, thresholds of
zygote critical mass effect the potential evolution of anisogamy”, so we implement
a ZYGOTE-CRITICAL-MASS slider that determines the threshold of mass that a
zygote needs to achieve to survive. Similarly, we want to investigate whether the
assumption of differentiation in mating types is viable, so we place the SAME-

TYPE-MATING-ALLOWED? switch.

4 Findings and Discussion

A comparison of our multi-agent-based model and equation-based models of
anisogamy highlights the advantages of multi-agent-based thought experiments.
In this section, we first share the outcomes of our model with the default
parameter-set, which corresponds to our basic set of assumptions (see Sect. 3.2).
In this condition, we run the model with approximately 100 adults in a confined
space. The average lifetime is 500 clock-ticks for adults and 50 clock-ticks for
gametes. Because the model’s space is 256 square unit-lengths and computing
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power is limited, we implement a carrying capacity mechanism. Whenever the
model’s adult population exceeds 100 members, some adults are randomly taken
out of the population. This does not apply to gametes or zygotes. All adults
are of 1 unit-length, mass of 1 unit-mass, and they move around randomly with
the speed of 1 unit-length per clock-tick. Adults can use half of their mass for
producing gametes. Initially, all adults have the same reproductive strategy of
producing two middle sized gametes. Gametes move around randomly with the
same speed, too, and they are only allowed to fuse with gametes of the oppo-
site mating type. Lastly, the critical threshold for a zygote to survive is 0.45
unit-mass.

Fig. 3. The emergence of gamete dimorphism over time in the multi-agent model (Color
figure online)

Figure 3 shows the outcome of a typical run with the default parameters.
Each subfigure consists of two plots: a plot showing the change in the number
of red versus blue gametes over time and a plot showing the distribution of
gamete sizes at the presented clock-tick. Gametes of the two mating-types are
represented with red and blue colored lines and bars in the graphs. As our model
assumes that the reproduction budget is fixed for all the adults, a large gamete
number means smaller gamete size, and vice versa. Figure 3a is a snapshot of the
model after 100 clock-ticks and the subsequent subfigures are after 500, 1000,
5000, 10000 and 15000 clock-ticks. In our model, 15000 clock-ticks correspond
to approximately 300 generations. This might be extremely small for such an
evolutionary process in real life but in the small world of our thought experiment,
it is enough to observe meaningful and consistent results.
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As the first four subfigures show, the model starts with oscillations between
two similar strategies. In this specific run, a stochastic disruptive event happens
at about 7000 clock-ticks (Fig. 3e) resulting in one mating type getting com-
mitted to producing big gametes and the other to producing small gametes. In
other words, anisogamy evolves and is sustained. Figure 4 presents the results
of 300 runs with this default parameter-set over 20000 clock-ticks . Each data
point presents the average number of red or blue gametes in the last 5000 clock-
ticks, which provides more reliable data because the number of gametes in the
model oscillates continuously. We clearly observe evolution of two distinct gamete
size strategies at the end of each simulation run (Fig. 4). Statistical analysis
of this data shows that there was a significant difference between the number
of large gametes (m = 1.735, sd = 0.184) and the number of small gametes
(m = 437.675, sd = 19.505); t(299) = −384.221, p < 0.0005. These findings
provide a theoretical explanation of not only why but also how anisogamy might
have evolved, as well as supporting previous theory on the instability of isogamy
in the long run [18].

Fig. 4. Testing the model with default parameters (n = 300, ticks = 20000).

The affordances of multi-agent-based thought experiments become even more
noticeable when it comes to testing assumptions of a model to answer “what
if?” questions. In the following sections, we test an explicit and an implicit
assumption of the PBS model, as well as another non-PBS assumption that is
common in the literature. We not only show the ease of doing this through our
model but also demonstrate how powerful the outcomes of such assumption tests
can be.

4.1 Zygote Survival as a Function of Zygote Mass

We begin testing assumptions with one of the main assumptions of the PBS
model concerning the relationship between viability of a zygote to its size
[3,5,14]. We call this the ZYGOTE-CRITICAL-MASS assumption, which can be
turned on and off easily with a switch on the models interface (see Fig. 2). With
the default parameter-set of the model, we observe the emergence of anisogamy
after 10000 ticks. We keep all the other parameters the same, but allow zygotes
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to survive regardless of their mass and run the model again. As seen in Fig. 5b,
the gamete sizes and gamete population for both sexes fluctuate over time with
the overall direction of reduction in the size. Anisogamy does not evolve when
each zygote survives regardless of its mass.

Fig. 5. The comparison of the model outcomes with ENFORCE-CRITICAL-MASS?
switch turned on and off. (Color figure online)

We also conducted an experiment running the model starting with 0.0 as the
value of the ZYGOTE-CRITICAL-MASS variable and then incrementing it by
0.01 until 0.5 over 20000 ticks. For each value, we ran the model 3 times, so we
ended up with a total of 150 experiments. Figure 6a shows the results of this
experiment. Once again, each data point corresponds to the running average
of the number of gametes in the last 5000 ticks of each run. The most impor-
tant outcome of this test is the fact that anisogamy did not evolve and isogamy
was sustained when the value of the ZYGOTE-CRITICAL-MASS parameter was
below 0.1, which is consistent with the assumptions of the PBS model [5,14]. Sur-
prisingly, we also noticed some runs which did not result in anisogamy between
the range of 0.3 and 0.45. We hypothesized that anisogamy would still evolve
in this parameter space in a longer experiment. Accordingly, we conducted the
same experiment but this time over 200000 clock-ticks and the results confirmed
our hypothesis (Fig. 6). Once again, these findings align with the PBS model’s
assumption that for anisogamy to evolve, some sort of a relationship between the
zygote size and zygote survival is necessary [6,14].

4.2 Mating Types

Another affordance of multi-agent-based thought experiments is the possibil-
ity of testing implicit assumptions. For instance, the existence of two mating
types is a common assumption in many models of anisogamy, but it is rarely
discussed explicitly (e.g., [5]). Our model assumes two mating types, too, but
it is actually possible to test this assumption indirectly by allowing gametes of
the same mating type to fuse. When we run the model with this alternative
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Fig. 6. Testing the model with a range of ZYGOTE-CRITICAL-MASS values between
0 and 0.5 (n= 150).

assumption, we observe that anisogamy does not evolve. Instead, there are two
possible outcomes. In most of the runs, genetic drift [8] happens and one mating
type prevails over the other (Figs. 7a and c). However, in some rare occasions, we
observe almost no quantitative change in the population composition (Fig. 7b)
because, by random chance, it takes more time for genetic drift to emerge in some
runs (as in Sect. 4.1). These results provide support for the implicit assumption
that mating types are required for anisogamy to evolve. On the other hand, our
model currently does not allow testing the possibility of more than two mating
types. This could be an interesting follow up on our test, and it is possible to do
it with a few changes in the model’s code.

Fig. 7. The outcome of the model when fusion between two gametes of the same mating
type is allowed (ticks = 50000) (Color figure online)

4.3 Adult and Gamete Motility

Another debated topic in models of anisogamy is the role of gamete and/or adult
motility in the marine environment [4,16]. Some of the models assume that the
speed of a gamete is inversely related to its mass according to Stokes Law [7],
while others challenge the validity of this assumption [16]. As the actual physics
of locomotion in water is somewhat complex, our point is to test whether a
relationship of this sort is needed for the evolution of anisogamy.

Our model allows us to (1) make all the gametes move with the same speed
or with a variable speed that is inversely related to a gamete’s size, and (2) make
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Fig. 8. The outcomes of the model when gamete-speed size relation (GSS) and adult
motility (AM) assumptions are tested (ticks = 15000) (Color figure online)

adults move around randomly with the same speed or remain stationary (see
Sect. 3.2). In our runs with the default parameter-set, the adults were moving
and gamete size had no relationship with gamete speed. We tested the model by
varying these parameters but to our surprise, we did not observe any significant
differences in the model’s outcome (Fig. 8). This finding directly contradicts some
studies in the literature that claim that gamete motility is a critical factor in
the evolution of anisogamy (e.g., [7,13]).

4.4 A Qualitative Comparison Between the Two Models
of Anisogamy

In this section, we present a “relational alignment” [2,23] between our multi-
agent-based model and the equational PBS model developed by Bulmer and
Parker by qualitatively comparing the relationships between critical parameters
of these two models and the evolution of anisogamy as a continuously stable
strategy (ESS [12]). These critical parameters are gamete size (m), zygote size
(S), and parameters that determine viability of gametes (α) and zygotes (β).
Figure 9 shows two plots from Bulmer and Parker’s mathematical formulation
of the PBS model. Figure 9a is concerned with the conditions that result with
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anisogamy as ESS and Fig. 9b is concerned with a critical threshold for zygote
survival in an anisogamous ESS [5].

Fig. 9. Plots from Bulmer and Parker’s equational PBS model of anisogamy: (a)
anisogamy as ESS for given m and β values and (b) the critical value of β above
which anisogamy evolves as a function of δ [5].

Bulmer and Parker use the PBS model to explore the parameter space for
the parameters β and δ to find a parameter range over which anisogamy would
evolve as an evolutionary stable strategy (Fig. 9b). β is a parameter that deter-
mines the shape of the response strategy function and δ is a parameter related to
the gamete critical mass. In our multi-agent model of evolution of anisogamy, we
demonstrate that anisogamy evolves as an ESS as reliably over the default para-
meter range (Fig. 4). We have also demonstrated that our multi-agent-modeling
approach to evolution of anisogamy using NetLogo as a modeling environment
allows as such comparison where we have investigated the parameter range for
zygote-critical-mass (Fig. 6). Hence, these two models are qualitatively similar,
or relationally aligned, in terms of inputs (conditions) and outputs (evolution of
anisogamy as an ESS).

5 Conclusions

We argued that multi-agent-based models can be used to express scientific
domain knowledge in the form of thought experiments. As a case study, we devel-
oped a multi-agent-based thought experiment on the evolution of anisogamy,
which is the phenomenon of male species producing numerous small sperm cells
and female species producing only a handful of large egg cells for reproduc-
tive purposes. We noted that anisogamy is a topic in evolutionary biology with
direct implications on the evolution of animal and plant species, but it is yet
to be resolved. We reviewed the evolutionary biology literature and developed
a model in the NetLogo agent-based modeling environment building on a set of
assumptions that we adopted from previously research.

Our model provided similar results to the equation-based models of
anisogamy but allowed us to easily test explicit and implicit assumptions sug-
gested by previously offered theories. For example, we were able to confirm that
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the existence of two mating types is a necessary prerequisite for anisogamy to
emerge, and we showed why anisogamy does not evolve when any two gametes
can fuse with each other [5,14]. On the other hand, we found no evidence of
a possible relationship between adult or gamete speeds with the evolution of
anisogamy [7,13].

Our study demonstrates that multi-agent-based thought experiments can
allow scientists and theorists to explore a wide range of subtle and difficult “what
if” questions. One can think of a new question and almost immediately manip-
ulate the model to answer it. Even a strong mathematician may not be com-
fortable changing the equation-based models of anisogamy, but making changes
in our multi-agent-based model of anisogamy is almost mind-to-fingers. More
importantly, our model provides such opportunities not only to scientists but
also to informed citizens and younger students without having to master all
the formal mathematics. We argue that such multi-agent-based restructurations
would make scientific domain knowledge more accessible for a wider population
and speed up the progress in currently unresolved topics like the evolution of
anisogamy.

5.1 Limitations

It is important to note that the outcomes of our model are by no means defin-
itive as it is the case for all the other theoretical and equational models in the
literature [4,6]. Because our goal was to primarily demonstrate the advantages of
multi-agent-based thought experiments, we left out some theoretical considera-
tions in this paper such as the possibility of more than two mating types existing
in the population or a more comprehensive comparison between our model and
the PBS model [5,14]. In future studies, we hope to focus, in greater depth, on
the theoretical implications of our model for the field of evolutionary biology. We
also hope to conduct research which explores the use of this multi-agent-based
thought experiment and similar approaches in educational settings.
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Abstract. This work considers the problem of learning cooperative poli-
cies in complex, partially observable domains without explicit communi-
cation. We extend three classes of single-agent deep reinforcement learn-
ing algorithms based on policy gradient, temporal-difference error, and
actor-critic methods to cooperative multi-agent systems. To effectively
scale these algorithms beyond a trivial number of agents, we combine
them with a multi-agent variant of curriculum learning. The algorithms
are benchmarked on a suite of cooperative control tasks, including tasks
with discrete and continuous actions, as well as tasks with dozens of
cooperating agents. We report the performance of the algorithms using
different neural architectures, training procedures, and reward struc-
tures. We show that policy gradient methods tend to outperform both
temporal-difference and actor-critic methods and that curriculum learn-
ing is vital to scaling reinforcement learning algorithms in complex multi-
agent domains.

1 Introduction

Cooperation between several interacting agents has been well studied [1–3].
While the problem of cooperation can be formulated as a decentralized par-
tially observable Markov decision process (Dec-POMDP), exact solutions are
intractable [4,5]. A number of approximation methods for solving Dec-POMDPs
have been developed recently that adapt techniques ranging from reinforcement
learning [6] to stochastic search [7]. However, applying these methods to real-
world problems is challenging because they are typically limited to discrete action
spaces and require carefully designed features.

On the other hand, recent work in single agent reinforcement learning has
enabled learning in domains that were previously thought to be too challenging
due to their large and complex observation spaces. This line of work combines
ideas from deep learning with earlier work on function approximation [8,9], giv-
ing rise to the field of deep reinforcement learning. Deep reinforcement learning
has been successfully applied to complex real-world tasks that range from play-
ing Atari games [10] to robotic locomotion [11]. The recent success of the field
leads to a natural question—how well can ideas from deep reinforcement learning
be applied to cooperative multi-agent systems?

c© Springer International Publishing AG 2017
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LNAI 10642, pp. 66–83, 2017.
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In this work, we focus on problems that can be modeled as Dec-POMDPs.
We extend three classes of deep reinforcement learning algorithms: temporal-
difference learning using Deep Q Networks (DQN) [10], policy gradient using
Trust Region Policy Optimization (TRPO) [12], and actor-critic using Deep
Deterministic Policy Gradients (DDPG) [13] and A3C [14]. We consider three
training schemes for multi-agent systems based on centralized training and exe-
cution, concurrent training with decentralized execution, and parameter sharing
during training with decentralized execution. We incorporate curriculum learn-
ing [15] into cooperative domains by first learning policies that require a small
number of cooperating agents and then gradually increasing the number of agents
that need to cooperate. The algorithms and training schemes are benchmarked
on four multi-agent tasks requiring cooperative behavior. The benchmark tasks
were chosen to represent a diverse variety of complex environments with discrete
and continuous actions and observations.

Our empirical evaluations show that multi-agent policies trained with para-
meter sharing and an appropriate choice of reward function exhibit coopera-
tive behavior without explicit communication between agents. We show that
the multi-agent extension of TRPO outperforms all other algorithms on bench-
mark problems with continuous action spaces, while A3C has the best perfor-
mance on the discrete action space benchmark. By combing curriculum learning
and TRPO, we demonstrate scalability of deep reinforcement learning in large,
continuous action domains with dozens of cooperating agents and hundreds of
agents present in the environment. To our knowledge, this work presents the first
cooperative reinforcement learning algorithm that can successfully scale in large
continuous action spaces. The benchmark problems and the implementations of
multi-agent algorithms can be found at https://github.com/sisl/MADRL.

2 Related Work

Multi-agent reinforcement learning has a rich literature [2,16]. A number of algo-
rithms involve value function based cooperative learning. Tan compared the per-
formance of cooperative agents to independent agents in reinforcement learning
settings [1]. Ono and Fukumoto identified modularity as a useful prior to sim-
plify the application of reinforcement learning methods to multiple agents [17].
Guestrin et al. later extended this idea and factored the joint value function into
a linear combination of local value functions and used message passing to find
the joint optimal actions [18]. Lauer and Riedmiller tried distributing the value
function into learning multiple tables but failed to scale to stochastic environ-
ments [19].

Policy search methods have found better success in partially observable envi-
ronments [20]. Peshkin et al. studied gradient based distributed policy search
methods [21]. Our solution approach can be considered a direct descendant of
the techniques introduced in their work. However, instead of using finite state
machines, our model uses deep neural networks to control the agents. This app-
roach allows us to extend neural network controllers to tasks with continuous

https://github.com/sisl/MADRL
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actions, use deep reinforcement learning optimization techniques, and consider
more complex observation spaces.

Relatively little work on multi-agent reinforcement learning has focused on
continuous action domains. A few notable approaches include those of Fernández
and Parker who focus on discretization and Tamakoshi and Ishii who used a
normalized Gaussian Network as a function approximator to learn continuous
action policies [22,23]. Many of these approaches only work in fairly restricted
settings and fail to scale to high-dimensional raw observations or continuous
actions. Moreover, their computational complexity grows exponentially with the
number of agents.

Multi-agent control has also been studied in extensive detail from the dynam-
ical systems perspective in problems like formation control [24], coverage con-
trol [25], and consensus [26]. The limitations of the dynamical systems approach
lie in its requirement for hand-engineered control laws and problem specific fea-
tures. While the approach allows for development of provable characteristics
about the controller, it requires extensive domain knowledge and hand engineer-
ing. Overall, deep reinforcement learning provides a more general way to solve
multi-agent problems without the need for hand-crafted features and heuristics
by allowing the neural network to learn those properties of the controller directly
from raw observations and reward signals.

Recent research has applied deep reinforcement learning to multi-agent prob-
lems. Tampuu et al. extended the DQN framework to independently train mul-
tiple agents [27]. Specifically, they demonstrate how collaborative and compet-
itive behavior can arise with the appropriate choice of reward structure in a
two-player Pong game. More recently, Foerster et al. and Sukhbaatar et al. train
multiple agents to learn a communication protocol to solve tasks with shared
utility [28,29]. They demonstrate end-to-end differentiable training using novel
neural architectures. However, these examples work with either relatively few
agents or simple observations and do not share our focus on decentralized con-
trol problems with high-dimensional observations and continuous action spaces.

3 Background

In this work, we consider multi-agent domains that are fully cooperative and par-
tially observable. All agents are attempting to maximize the discounted sum of
joint rewards. No single agent can observe the state of the environment. Instead,
each agent receives a private observation that is correlated with that state. We
assume the agents cannot explicitly communicate and must learn cooperative
behavior only from their observations.

Formally, the problems considered in this work can be modeled as Dec-
POMDPs defined by the tuple (I,S, {Ai}, {Zi} , T,R,O), where I is a finite
set of agents, S is a set of states, {Ai} is a set of actions for each agent i, {Zi}
is a set of observations for each agent i, and T , R, O are the joint transition,
reward, and observation models, respectively. In this work, we consider problems
where S, A, and Z can be infinite to account for continuous domains. In the
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reinforcement learning setting, we do not know T , R, or O, but instead have
access to a generative model. It is natural to also consider a centralized model
known as a multi-agent POMDP (MPOMDP), with joint action and observa-
tion models. The centralized nature of MPOMDPs makes them less effective at
scaling to systems with many agents.

In the reminder of the section, we briefly describe four single-agent deep rein-
forcement learning algorithms, including temporal-difference, actor-critic, and
policy gradient approaches. We also discuss the roles of reward shaping and
curriculum learning in multi-agent settings.

3.1 Deep Q-Network

The DQN algorithm [10] is a temporal-difference method that uses a neural
network to approximate the state-action value function. DQN relies on an expe-
rience replay dataset Dt = {e1, . . . , et}, which stores the agent’s experiences
et = (st, at, rt, st+1) to reduce correlations between observations. The experi-
ence consists of the current state st, the action the agent took at, the reward it
received rt, and the state it transitioned to st+1. The learning update at each
iteration i uses a loss function based on the temporal-difference update:

Li(θi) = E(s,a,r,s′)∼D
[
(r + γmax

a′
Q(s′, a′; θ−

i ) − Q(s, a; θi))2
]

where θi and θ−
i are the parameters of the Q-networks and a target network

respectively at iteration i, and the experience samples (s, a, r, s′) are sampled
uniformly from D. In partially observable domains where only observations ot

are available at time t instead of the entire state st, the experience takes the
form et = (ot, at, rt, ot+1). One of the limitations of DQN is that it cannot easily
handle continuous action spaces.

3.2 Deep Deterministic Policy Gradient

DDPG combines the actor-critic and DQN approaches to learn policies in
domains with continuous actions. DDPG maintains a parameterized actor func-
tion μ(s | θμ), which deterministically maps states to actions while learning a
critic Q(s, a) that estimates the value of state-action pairs. The actor can be
updated with the following optimization step:

∇θμJ ≈ Est∼ρπ
[∇aQ(s, a | θQ)|s=st,a=μ(st)∇θμ

μ(s | θμ)|s=st
]

where ρπ are transitions generated from a stochastic behavior policy π, typically
represented with a Gaussian distribution centered at μ(s | θμ).

3.3 Asynchronous Advantage Actor Critic

Asynchronous Advantage Actor Critic (A3C) [14] consists of global shared net-
works for policy π(a | s, θp) and value V (s, θv) functions. Multiple copies running
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independently accumulate gradients in parallel to asynchronously update this
network. The policy gradients are given by:

∇θp
log π(at | st; θp)A(st, at; θv)

where the advantage function A(st, at; θv) is computed from difference between
returns from n-step rollout and value function output.

The value network loss function is to minimize squared error of value function
outputs from environment returns.

3.4 Trust Region Policy Optimization

TRPO [12] is a policy gradient method that allows precise control of the expected
policy improvement during the optimization step. At each iteration k, TRPO
aims to solve the following constrained optimization problem by optimizing the
stochastic policy πθ:

Maximize
θ

Es∼ρθk
,a∼πθk

[
πθ(a|s)
πθk

(a|s)Aθk
(s, a)

]

subject to Es∼ρθk
[DKL(πθk

(·|s)‖πθ(·|s))] ≤ ΔKL

where ρθ = ρπθ
are the discounted state-visitation frequencies induced by πθ.

Aθk
(s, a) is the advantage function, which can be estimated by the difference

between the empirical returns and the baseline. We use a linear value function
baseline in our experiments. DKL is the KL divergence between the two policy
distributions, and ΔKL is a step size parameter that controls the maximum
change in policy per optimization step. The expectations in the expression can
be evaluated using sample averages, and the policy can be represented by non-
linear function approximators such as neural networks. The stochastic policy πθ

can be represented by a categorical distribution when the actions of the agent
are discrete and by a Gaussian distribution when the actions are continuous.

3.5 Reward Structure

The concept of reward shaping [30] involves modifying rewards to accelerate
learning without changing the optimal policy. When modeling a multi-agent
system as a Dec-POMDP, rewards are shared jointly by all agents. In a cen-
tralized representation, the reward signal cannot be decomposed into separate
components, and is equivalent to the joint reward in a Dec-POMDP. However,
decentralized representations allow us an alternative local reward representation.
Local rewards can restrict the reward signal to only those agents that are involved
in the success or failure at a task. Bagnell and Ng have shown that such local
information can help reduce the number of samples required for learning [31].
As we will note later, this decomposition can drastically improve training time.
The performance of the policy is still evaluated using the global reward.
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3.6 Curriculum Learning

Curriculum learning leverages the idea of learning policies for simple tasks first,
and then building on that knowledge to solve more difficult tasks [15]. Formally,
a curriculum T is an ordered set of tasks organized by increasing difficulty. In
cooperative settings, the tasks in the curriculum become more difficult as the
number of cooperating agents required to complete the task increases.

4 Cooperative Reinforcement Learning

This section outlines three training schemes for multi-agent reinforcement learn-
ing in cooperative settings as well as their advantages and disadvantages.

4.1 Centralized

A centralized policy maps the joint observation of all agents to a joint action,
and is equivalent to a MPOMDP policy. A major drawback of this approach is
that it is centralized in both training and execution, and leads to an exponential
growth in the observation and actions spaces with the number of agents. We
address this intractability in part by factoring the action space of centralized
multi-agent systems.

We first assume that the joint action can be factored into individual compo-
nents for each agent. The factored centralized controller can then be represented
as a set of sub-policies that map the joint observation to an action for a single
agent. In the policy gradient approach this reduces to factoring the joint action
probability as P (a) =

∏
i P (ai) where ai are the individual actions of an agent.

In practice, this means that the policy of a given agent is represented by a subset
of the output nodes in the neural network. In systems with discrete actions, this
reduces the size of the action space from |A|n to n|A|, where n is the number
of agents and A is the action space for a single agent (we assume homogeneous
agents for simplicity). While this is a significant reduction in the size of the
action space, the exponential growth in the observation spaces ultimately makes
centralized controllers impractical for complex cooperative tasks.

4.2 Concurrent

In concurrent learning, each agent learns its own individual policy. Concurrent
policies map an agent’s private observation to an action for that agent. Each
agent’s policy is independent. In the policy gradient approach, this means opti-
mizing multiple policies simultaneously from the joint reward signal. One of the
advantages of this approach is that it makes learning of heterogeneous policies
easier. This can be beneficial in domains where agents may need to take on
specific roles in order to coordinate and receive reward.

The major drawback of concurrent training is that it does not scale well to
large numbers of agents. Because the agents do not share experience with one
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Algorithm 1. PS-TRPO
Input: Initial policy parameters Θ0, trust region size Δ
for i ← 0, 1, . . . do

Rollout trajectories for all agents τ ∼ πθi

Compute advantage values Aπθi
(om, m, am) for each agent m’s trajectory element.

Find πθi+1 maximizing Eq. (1)

subject to DKL(πθi‖πθi+1) ≤ Δ

another, this approach adds additional sample complexity to the reinforcement
learning task. Another drawback of the approach is that the agents are learning
and adjusting their policies individually making the environment dynamics non-
stationary, which can lead to instability.

4.3 Parameter Sharing

The policies of homogeneous agents may be trained more efficiently using para-
meter sharing. This approach allows the policy to be trained with the expe-
riences of all agents simultaneously. However, it still allows different behavior
between agents because each agent receives unique observations, which includes
their respective index. In parameter sharing, the control is decentralized but the
learning is not. In the remainder of the paper, all training schemes use parameter
sharing unless stated otherwise.

So long as the agents can execute decentralized policies with shared parame-
ters, single agent algorithms like DDPG, DQN, TRPO and A3C can be extended
to multi-agent systems. As an example, Algorithm 1 describes a policy gradient
approach that combines parameter sharing and TRPO. We refer to it as PS-
TRPO. We first initialize the policy network and set the step size parameter.
At each iteration of the algorithm, the policy with shared parameters is used by
each agent to generate trajectories. The batch of trajectories from all the agents
is used to compute the advantage value and maximize the following objective:

L(θ) = Eo∼ρθk
,a∼πθk

[
πθ(a | o,m)
πθk

(a | o,m)
Aθk

(o,m, a)
]

(1)

where m is the agent index. The results of the optimization are used to compute
the parameter update for the policy.

5 Tasks

The four multi-agent benchmark tasks are described in this section. All tasks
are partially observable. For more details we refer the reader to the source code.
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Fig. 1. Examples of the four cooperative domains. (Color figure online)

5.1 Discrete

Pursuit. Pursuit is a standard task for benchmarking multi-agent algo-
rithms [32]. The pursuit-evasion domain consists of two sets of agents: evaders
and pursuers. The evaders are trying to avoid pursuers, while the pursuers are
trying to catch the evaders. The action and observation spaces in this problem
are discrete. Each pursuer receives a range-limited observation of its surround-
ings, and must choose between five actions Stay, Go East, Go West, Go South,
Go North. The observations contain information about the agent’s surroundings,
including the location of nearby pursuers, evaders, and obstacles. The example
in Fig. 1a shows a 32×32 grid world with randomly generated obstacles, 20 pur-
suers (denoted by red stars), and 20 evaders (denoted by blue stars). The square
box surrounding the pursuers indicates their observation range. The pursuers
receive a reward of 5.0 when they surround and catch an evader, and a reward
of 0.01 when they occupy the same space as an evader.

5.2 Continuous

Waterworld. Waterworld can be seen as an extension of the above mentioned
pursuit problem to a continuous domain. The extension is based on the single
agent waterworld domain used by [33]. In this task, agents need to cooperate to
capture moving food targets while avoiding poison targets. Both the observation
and action spaces are continuous, and the agents move around by applying a
two-dimensional force. The agents receive a reward of 10.0 for capturing a food
target, a reward of −1.0 for capturing a poison target, and an exertion penalty
of −0.01 · ‖ai‖2.

Multi-Walker. Multi-Walker is a more difficult continuous control locomo-
tion task based on the BipedalWalker environment from OpenAI gym [34]. The
domain consists of multiple bipedal walkers that can actuate the joints in each of
their legs. At the start of each simulation, a large package that stretches across
all walkers is placed on top of the walkers. The walkers must learn how to move
forward and to coordinate with other agents in order to keep the package bal-
anced while navigating a complex terrain. Each agent receives a reward of 1.0
for moving the package forward 1 meter, a reward of −100.0 for falling, and a
reward of −100.0 for dropping the package. An example environment with five
walkers is shown in Fig. 1c.
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Table 1. Summary of network architectures for each algorithm

TRPO DDPG/DQN A3C

Feature Net 100-50-25 400-300 128

Recurrent GRU-32 NA LSTM-128

Activation tanh ReLU tanh

Fig. 2. Normalized average returns for multi-agent policies trained using TRPO. Miss-
ing entries indicate the training was unsuccessful. A random policy has zero normalized
average return. Error bars represent standard error. The Wilcoxon test suggests the
differences are significant (p < 0.05) except for the difference between centralized GRU
and shared parameter GRU for the waterworld domain.

Multi-Ant. The multi-ant domain is a 3D locomotion task based on the
quadrupedal robot used in [35]. The goal of the robot is to move forward as
quickly as possible. In this domain, each leg of the ant is treated as a separate
agent that is able to sense its own position and velocity as well as those of its
two neighbors. Each leg is controlled by applying torque to its two joints. An
example multi-ant with ten legs is shown in Fig. 1d.

6 Experiments

This section presents empirical results that compare the performance of multi-
agent extensions of TRPO, DDPG, A3C, and DQN. In continuous action
domains we compare TRPO, A3C, and DDPG, while in discrete action domains
we compare TRPO, A3C, and DQN. We examine both feed-forward and recur-
rent policies in this work. We also examine the effects of centralized, concurrent,
and shared parameters training schemes as well as two reward mechanisms that
are relevant to multi-agent domains. The results are compared against each other
and against a heuristic hand-crafted baseline for each task. Lastly, we demon-
strate the benefits of curriculum learning to scalability in cooperative domains.

The neural network architectures used in this work are summarized
in Table 1. The feature net represents the number of neurons in each layer and is
used as the feedforward multi-layer perceptron (MLP) policy in each algorithm.
The type of the hidden cell, either GRU or LSTM, and their number is indicated
for recurrent policies. The feature net serves as the observation embedding for
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Fig. 3. Training curves comparing PS-TRPO and PS-DQN in Pursuit and PS-DDPG
in Multi-Walker Domains.

recurrent policies. DQN/DDPG do not use recurrent policies, and A3C uses a
single hidden layer as a feature network.

In all experiments, we use the discount factor γ = 0.99. For PS-TRPO, we set
the step size to Δ = 0.01, and constrain the size of each batch to a maximum of
24000 time-steps. For DDPG and DQN, we used batch sizes of 32, learning rate
of 1×10−3 for the state-action value function and 1×10−4 for the policy network.
For A3C, we used RMSProp [36] with an annealed learning rate starting from
5 × 10−5 with decay of 0.99.

6.1 Discrete Control Task

We first compared performances of the three training schemes on the pur-
suit problem using TRPO. The emergent behavior observed in TRPO policies
included pursuers breaking up into teams to maximize the number of evaders
that were captured. The results are summarized in Fig. 2a for a 16 × 16 grid,
8 pursuers with an observation range of 7, and 30 evaders. The figure shows
that parameter sharing tends to outperform both the concurrent and centralized
training schemes. Because the observation is image-like with spatial correlations
present in each observation dimension, we also used a convolutional neural net-
works (CNN) to represent the policy in this task. The results show that with
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Table 2. Average returns for parameter sharing multi-agent policies with global and
local rewards

Global Local

Pursuit 8.1 12.1

Waterworld −1.4 14.3

Multi-Walker −23.3 29.9

Multi-Ant 475.2 488.1

parameter sharing, CNN policies outperform MLP policies, while GRU policies
have the best overall performance.

We then compared the training behavior of global and local rewards. We
found that using local rewards consistently improved convergence during train-
ing. An example of this difference for the pursuit evasion problem is shown
in Table 2.

We compared the performance of PS-DQN against PS-TRPO and PS-A3C.
As can be seen from Fig. 3 and Table 4, PS-A3C outperforms both PT-TRPO
and PS-DQN, with PS-DQN having the worst performance. We hypothesize
that PS-DQN is unable to learn a good controller due to the changing policies of
other agents in the environment. This makes the dynamics of the problem non-
stationary which causes experience replay to inaccurately describe the current
state of the environment.

We also tested the ability of PS-TRPO to scale with very large observation
spaces. The pursuit domain was set up on a 128 × 128 grid with 200 pursuers
and 200 evaders with at least 16 pursuers required to capture an evader. While
hundreds of agents are present in the environment, only 16 of them need to
cooperate to achieve the capture task. Each observation is a four channel 21×21
image, making the observation space 1764 dimensional. The training curves for
this task are shown in Fig. 4, and show that the MLP policy fails to learn a
policy that can outperform the heuristic. However, by leveraging CNNs, we are
able to outperform the heuristic in this complex domain.

Comparison to Traditional Method. Traditional reinforcement learning and
Dec-POMDP approaches have difficulty solving problems with continuous action
spaces and scale to problems with large numbers of agents. We also confirmed
that PS-TRPO performs as well as a traditional approach for solving PS-TRPO
on a small 5 × 5 grid pursuit problem. The approach we use as comparison
resembles Joint Equilibrium search for policies (JESP) [37] in that it finds a
policy that maximizes the joint expected reward for one agent at a time, while
keeping the policies of all the other agents fixed. The process is repeated until an
equilibrium is reached. In our approach, we use the fast informed bound (FIB)
algorithm [38] to perform the policy optimization of a single agent.

The pursuit problem is set on a 5 × 5 grid with a square obstruction in the
middle. There is a single evader and two pursuers. Both of the pursuers must
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Fig. 4. Performance as a function of the number of iteration for different neural archi-
tectures in the pursuit domain with 200 agents. At least 16 agents need to occupy the
same cell to capture an evader.

Table 3. Average returns on small-scale pursuit problem

PS-TRPO FIB

Average Returns 9.36 ± 0.52 9.29 ± 0.65

occupy the same location as the evader in order to catch it and obtain a reward.
This problem has a total of 15625 states and 729 observations. The results com-
paring the average performance and their standard errors of PS-TRPO and FIB
policies averaged over 100 simulations are shown in Table 3. The results demon-
strate that PS-TRPO performs as well as the traditional approaches on the small
problem, and has the ability to scale to large and continuous spaces.

6.2 Continuous Control Tasks

We next compared the performance of our algorithms on continuous control
tasks. We compared the proposed training schemes with TRPO and found that
parameter sharing and concurrent approaches tend to outperform centralized
training for continuous tasks (Figs. 2b, c and d). GRU policies outperform MLP
policies in the multi-walker and multi-ant domains. However, MLP policies per-
form significantly better in the waterworld domain. We believe this is caused
by the difficulty of training recurrent networks compared to simpler feedforward
ones with high-dimensional observations, especially when the task is relatively
simple and does not require a history of observations. Visualizing the best per-
forming policies showed consistent intelligent behavior in coordination between
agents. In the waterworld domain, the pursuers learn to herd the evaders. In the
multi-walker domain, the walkers learn to push the box forward without letting
it fall down. In the multi-ant domain, the legs learn to avoid collision with each
other.
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Table 4. Average returns (over 50 runs) for policies trained with parameter sharing.
DQN for discrete environment, DDPG for continuous

Task PS-DQN/DDPG PS-A3C PS-TRPO

Pursuit 10.1 ± 6.3 25.5 ± 5.4 17.4 ± 4.9

Waterworld NA 10.1 ± 5.7 49.1 ± 5.7

Multiwalker −8.3 ± 3.2 12.4 ± 6.1 58.0 ± 4.2

Multi-ant 307.2 ± 13.8 483.4 ± 3.4 488.1 ± 1.3

Fig. 5. Image like representation of an observation in the pursuit evasion domain. The
locations of each entity (pursuers, evaders, and obstacles) are represented as bitmaps
in their respective channels.

We also compared local and global reward schemes in the continuous domain
(see Table 2). Overall, local reward shaping leads to better performance, and
is critical to learning intelligent behavior in the waterworld and multi-walker
domains (Table 2).

Finally, we compared the performance of PS-TRPO, PS-A3C, and PS-DDPG
in continuous multi-agent domains. Training curves comparing PS-DDPG and
PS-TRPO are shown in Fig. 3 for the multi-walker task, while the performance
of all the algorithms and tasks are compared in Table 4. The results show the
PS-TRPO significantly outperforms both PS-A3C and PS-DDPG in the water-
world and multi-walker domains. The performance of PS-TRPO and PS-A3C is
comparable in the multi-ant domain.

6.3 Scaling

We next studied how well the parameter sharing method scales to larger obser-
vation spaces and many agents.

Curriculum training: Figure 6 shows the degrading performance of all policies
with increasing number of agents in the multi-walker domain, and the perfor-
mance improvements when curriculum learning is used. The policies were all
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Fig. 6. Performance of multi-walker policies as a function of the number of agents
during training. Each data point in the shared parameters, centralized, and concurrent
curves was generated by training and evaluating a policy with a fixed number of agents.
The curriculum curve was generated by evaluating a single policy with varying number
of agents.

trained with TRPO. The decrease in performance is in part due to the increas-
ing difficulty of the reinforcement learning task as the number of cooperating
agents grows. As the number of agents required to complete a task increases, it
becomes more difficult to reach the parts of the state space with positive rewards
using naive exploration policies.

We investigated how a curriculum learning scheme can help scale the multi-
walker problem in the number of agents. An intuitive curriculum for this problem
is over the number of agents, and so we define a curriculum with the number of
agents in the environment ranging from 2 to 10. Because the policies are decen-
tralized even though the parameters are shared, they can be evaluated on tasks
with any number of cooperating agents regardless of the number of cooperating
agents present during training. Unfortunately, we found that these decentralized
shared parameter policies trained on a few agents often fail to generalize to larger
numbers of agents. We therefore define a Dirichlet distribution for this range of
tasks with higher probability assigned to the simplest task (with 2 agents for
Multi-Walker domain). We then sample an environment from this distribution
over the tasks in the curriculum and optimize the policy with PS-TRPO for a
few iterations. Once the expected reward for the most likely environment reaches
a threshold, we change the distribution such that the next environment is most
likely. We continue this curriculum until the expected reward in all environments
reaches the defined threshold. Algorithm 2 describes this process. As shown ear-
lier, the resulting policy outperforms policies trained without the curriculum.
We believe this improvement in performance is due to two reasons: 1. The dis-
tribution over environments provides a regularization effect, helping avoid local
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Algorithm 2. Curriculum Training
Input: Curriculum T , Iteration n, Policy πΘ, rthreshold
αT ← [length(T ), 1, 1, . . .]
while rmin < rthreshold do

{Sample task from the task distribution.}
w ∼ Dirichlet(αT )
i ∼ Categorical(w)
{Apply optimization step for a few iterations.}
PS-TRPO (Ti, πθ, n)
{ecurr is the task with the highest weight αT .}
recurr ← Evaluate(πθ, ecurr)
if recurr > rthreshold then

Circular shift αT weights to the next task
{Find the minimum average reward across tasks.}
rmin ← minT ErT

minima during optimization, and 2. It partially addresses the exploration prob-
lem by smoothly increasing the difficulty of the policy to be learned.

One potential issue with this experiment is that the curriculum scheme
observed more episodes than the ones without curriculum. However, we tried
training several policies with a fixed number of agents without a curriculum for
an equivalent number of episodes. These policies converged before reaching the
performance seen with curriculum training.

7 Conclusion

Despite the advances in decentralized control and reinforcement learning over
recent years, learning cooperative policies in multi-agent systems remains a chal-
lenge. The difficulties lie in scalability to high-dimensional observation spaces
and to large numbers of agents, accommodating partial observability, and han-
dling continuous action spaces. In this work, we extended three deep reinforce-
ment learning algorithms to the cooperative multi-agent context, and applied
them to four high-dimensional, partially observable domains with many agents.

Our empirical evaluations show that PS-TRPO policies have substantially
better performance than PS-DDPG and PS-A3C in continuous action collabo-
rative multi-agent domains while PS-A3C is able to outperform PS-TRPO in the
discrete domain. We suspect that DQN and DDPG perform poorly in systems
with multiple learners due to the non-stationarity of the system dynamics caused
by the changing policies of the agents. The non-stationary nature of the sys-
tem makes experience replay samples obsolete and negatively impacts training.
As evidence, we found that by disabling experience replay and instead relying
on asynchronous training [14] we were able to improve on the performance of
DQN and DDPG. However, we believe more hyperparameter tuning might be
required to reduce the gap in overall performance in continuous domains with
respect to TRPO. Finally, we presented how cooperative domains can form a
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natural curriculum over the number of agents required to collaborate on a task
and discovered how this not only allows us to scale PS-TRPO to environments
with large number of cooperating agents, but owing to the regularization effect
offered, allows us to reach better local optima in general.

There are several areas for future work. To improve scalability of the pro-
posed approach for larger numbers of cooperating agents further future work is
needed. Two major challenges in multi-agent systems are accommodating reward
sparsity through intelligent domain exploration and incorporating high-level task
abstractions and hierarchy [39]. These are acute forms of similar challenges in
the single agent learning. Recently, curiosity based information gain maximiz-
ing exploration strategy was explored by [40] . Similar ideas could be adapted
to maximize information gain not only about the environment’s dynamics, but
the dynamics of an agent’s behavior as well. Correspondingly, hierarchical value
functions were integrated with deep reinforcement learning [41]. Incorporating
task hierarchies in a multi-agent system would allow us to tackle learning spe-
cialization and heterogeneous behavior.
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Abstract. Assessing trust and reputation is essential in multi-agent sys-
tems where agents must decide who to interact with. Assessment typ-
ically relies on the direct experience of a trustor with a trustee agent,
or on information from witnesses. Where direct or witness information
is unavailable, such as when agent turnover is high, stereotypes learned
from common traits and behaviour can provide this information. Such
traits may be only partially or subjectively observed, with witnesses
not observing traits of some trustees or interpreting their observations
differently. Existing stereotype-based techniques are unable to account
for such partial observability and subjectivity. In this paper we pro-
pose a method for extracting information from witness observations that
enables stereotypes to be applied in partially and subjectively observable
dynamic environments. Specifically, we present a mechanism for learn-
ing translations between observations made by trustor and witness agents
with subjective interpretations of traits. We show through simulations
that such translation is necessary for reliable reputation assessments in
dynamic environments with partial and subjective observability.

1 Introduction

In multi-agent systems (MAS) agents must decide whether or not to interact
with others, and can use trust and reputation to inform this decision [6,20,23].
Trust is the degree of belief, from the perspective of a trustor agent, that a
trustee agent will act as they say they will in a given context [1,2,10]. A trustor
with a high level of trust in a trustee is confident of a successful interaction with
a good outcome. Likewise, a low level of trust in a trustee implies that the trustor
agent expects a bad outcome. Whereas trust is assessed using experiences of the
trustor, reputation is based on the opinions of several agents in a network.

In domains where agents join and leave with high frequencies, it can be
difficult to reliably assess trust and reputation due to limited relevant experi-
ence. A trustor agent who recently joined a MAS, for instance, will have limited
experience with trustees and be unable to reliably assess trust. In this case,
opinions of witness agents can be used to produce a reputation assessment [9].
c© Springer International Publishing AG 2017
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LNAI 10642, pp. 84–102, 2017.
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When a trustee agent is new to a MAS, however, no agent will have direct
experience with them, preventing reliable assessments of trust and reputation.

In many domains, trustee agents exhibit traits that provide insight into
their behaviour during, but can be observed prior to entering into, an inter-
action [2,12,16]. Such traits are referred to as stereotypes, and can be used
to bootstrap trust and reputation assessments when experience is limited. If a
trustor has observed a stereotype it can be used to assess stereotype-trust in a
trustee, otherwise stereotype-reputation can be assessed using witnesses. A wit-
ness may be unable themselves to observe the trustee traits, however, and must
assess those observed and reported by the trustor. When these trait observa-
tions are subjective and agents have different interpretations or observe differ-
ent traits, communication of observations and assessing stereotype-reputation is
problematic. In this paper we propose the Partially Observable and Subjective
Stereotype Trust and Reputation (POSSTR) system, which enables agents in
partially observable environments to translate observations from different subjec-
tive perspectives, and enables witnesses to provide reliable stereotype-reputation
assessments. POSSTR does not replace existing reputation systems, but rather it
should be used alongside them to provide a way to deal with partial observability
and subjectivity. We make the following contributions:

– We propose a mechanism for learning a translation between traits observed
by a trustor and a witness, and

– Using simulations, we show that our translation mechanism improves trust
and reputation assessments in environments with partially and subjectively
observable traits.

The remainder of this paper is structured as follows. Related work is discussed
in Sect. 2. Section 3 describes our use case and outlines the problem with partial
observability and subjective observations of traits. The POSSTR system, which
overcomes challenges in such partially observable and subjective domains, is
proposed in Sect. 4. The simulation environment used for evaluating POSSTR
is outlined, and results from our investigation are discussed in Sect. 5. Finally,
Sect. 6 concludes the paper.

2 Related Work

In many domains, trustor agents use trust and reputation to select interaction
partners from sets of trustees [6]. Trust can be assessed using direct experience
gathered by a trustor interacting with trustee agents. Where direct experience
is lacking, reputation assessments are gathered from witness agents [1,6,23]. In
highly dynamic environments, where agents leave or depart regularly, relevant
experience with trustees is often insufficient to produce reliable assessments. In
these cases, stereotypes can be used to bootstrap trust and reputation [2,12,16].

Trustees often exhibit traits that are observable to trustors prior to an inter-
action. When these traits are related to the behaviour of trustees during interac-
tions, the trustor can form stereotypes that can be used as a surrogate for other
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more relevant experience in assessing trust and reputation [2,12,16]. If several
trustee agents exhibit the same trait and are similarly reputable, for instance, a
new trustee also exhibiting the trait may be assumed to have similar reputation.
To build a stereotype-trust model, a trustor must interact with several trustees
and analyse the correlations between their observable traits and reputations. If
the trustor is unable to assess stereotype-trust because they lack relevant experi-
ence of the observed traits, stereotype-reputation assessments can be requested
from witnesses [2,12].

To assess reputation of a trustee, the trustor combines the following:

– Direct-trust based on direct experience the trustor has with the trustee;
– Witness-reputation based on witness reports summarising their experiences

with the trustee;
– Stereotype-trust based on common trustee traits observed by the trustor; and
– Stereotype-reputation based on experience and common trustee traits

observed by witnesses.

Direct-trust requires the trustor to have previously interacted with the trustee
being evaluated. The same is true when witnesses compute opinions about a
specific trustee, to be sent to the trustor. In combination, direct-trust and
witness-reputation, make up the Beta Reputation System (BRS), as proposed by
Jøsang et al. [9]. Other reputation systems that combine direct-trust and witness-
reputation include FIRE [7], TRAVOS [18], BLADE [15], and HABIT [17].
TRAVOS extends BRS to cope with dishonest witnesses by discounting informa-
tion provided by unreliable sources, and BLADE and HABIT both use Bayesian
networks to transform opinions from witnesses that are unreliable in a consistent
way.

As well as direct-trust and witness-reputation, FIRE [7] also combines two
other sources of information, namely certified and role-based trust. Certified
trust is based on testimonials gathered by the trustee and given to the trustor,
and as a result is often optimistic of their performance in an interaction. Role-
based trust can be viewed as a kind of stereotype, but the roles are defined
statically by trustors and as a result it is limited compared to the observa-
tion based approach used in this paper. Stereotype-trust enables assessments
of trustees with whom the trustor has not previously interacted, by assum-
ing trustees with similar observable traits behave similarly. As with witness-
reputation, stereotype-reputation is gathered from witnesses who provide their
opinions.

Liu et al. [12] proposed that characteristics of trustee agents, correlated with
their trustworthiness, be used to separate them into groups defined by their
common characteristics. When evaluating a new trustee, its observable charac-
teristics are compared to those that define each group and the mean trustwor-
thiness of their members is used as the stereotype and overall trust score. When
a trustor is unable to determine stereotype-trust, because they lack experience
with the particular characteristics, stereotype-reputation is gathered from wit-
nesses. Similarly, Teacy et al. [17] suggest building a separate HABIT model for
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overlapping groups of agents defined by stereotypes, but they do not describe
how such groups should be formed.

The bootstrapping model proposed by Burnett et al. [2] combines all four
sources of trust and reputation. Instead of the clustering approach employed by
Liu et al. [12], the trustor learns a regression model that maps observed traits to
trustworthiness. Observed characteristics of trustees are then input into the model
with the output used as a base reputation value in a probabilistic trust model.
In this way, the base trust value has less of an impact on the overall reputation
score as more direct evidence is gathered about the trustee. STAGE, proposed by
Şensoy et al. [16], combines direct-trust, sterotype-trust, and witness-reputation
in a similar way to Burnett et al. [2]. In STAGE, reports provided by witnesses for
both witness- and stereotype-reputation are discounted based on their perceived
reliability. As well as using stereotype-trust to bootstrap assessments of trustees,
STAGE also learns stereotypes for witnesses to bootstrap this reliability assess-
ment of opinions. To avoid the need for opinions, Fang et al. [3], build a stereotype-
trust model that enables observations to generalise to others when experience for
a particular stereotype is limited.

In these existing reputation models, witness-reputation requires that the
trustee is known to the witness. This means that the trustor must be willing
to identify the trustee to the witness, and the witness must have interacted with
them previously. Likewise, stereotype-reputation as proposed by Burnett et al. [2]
requires:

– The trustee is identified and the witness can observe its traits (i.e. trustees
are fully observable), and

– All agents observe trustee traits in the same way (i.e. trustee traits are objec-
tive).

In real-world environments, however, trustees may be partially observable and
such observations may often be subjective. If the trustees are only partially
observable and the witness is unable to observe the traits, the trustor must
disclose their observations of traits for the witness to provide their opinion. For
example, if a new trustee is unknown to a witness, the trustor must describe
their observations when requesting a stereotype-reputation assessment. If trait
observations are also subjective, those observed by a trustor may be meaningless
to a witness. In this paper, we propose the POSSTR system to overcome this
issue by translating traits observed by the trustor.

3 Problem Setting

To formalise these issues of partial observability and subjectivity, we define the
full set of traits in an environment that agents can exhibit or observe as Θ. For
example, taxi services can exhibit numerous traits, including ‘airport transfer’
and ‘suitcase storage’. Each individual trustee agent, te, exhibits a subset of
these traits, θte ⊆ Θ, and each trustor agent, tr has an observation function,
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Otr : P(Θ) → P(Θ). When presented with a trustee, this observation function
determines how the traits of a trustee are interpreted, θte

tr = Otr(θte).
In a fully observable setting, it is valid for all agents to observe the traits of all

trustees themselves. When assessing stereotype-reputation with full observabil-
ity, witness agents can apply their observation function, θte

w = Ow(te), and cor-
rectly interpret any associated stereotype. With partial observability the traits of
some trustees may be unavailable, such as when there is a cost to making obser-
vations or if the trustees are in different locations. In such partially observable
environments, traits may only be accessible when considering whether to inter-
act with a trustee, i.e. when assessing direct-trust or stereotype-trust. An agent
that has neither visited a city nor considered using a taxi there, for example,
cannot use their observation function when acting as a witness for stereotype-
reputation. In such cases the traits observed by the trustor must be assessed by
witnesses instead.

If traits are observed objectively by agents, then observations made by a
trustor are the same as those that a witness would make, i.e. Otr(te) = Ow(te).
With objective observations, therefore, there is no issue with partial observabil-
ity and a witness can directly assess observations made by the trustor. With
subjectivity, however, agents may have no interest in a particular trait or inter-
pret traits differently. A customer considering a taxi service for airport transfer
who is carrying hand luggage only, for example, may not notice if the taxi service
is able to accommodate suitcases or not. An observation of suitcase storage may
then be meaningless to this customer, resulting in a poor a stereotype-reputation
assessment. In another situation, two customers may have different interpreta-
tions of suitable storage for suitcases. Such subjective observations can lead to
misunderstandings of stereotype-reputation assessments, and so a translation
between the two subjective observations is required.

To overcome these potential misunderstandings, we propose that the trustor
or witness learns to translate observations made by the trustor agent to what
the witness would have observed. After the translation is made, the witness can
assess the stereotype in a meaningful way and respond with their opinion. To
learn such a translation function, either the trustor or witness must provide their
observations of several trustees to the other. These observations do not have to
be linked to a reputation assessment for the trustee, but can have been observed
during other reputation assessments. Traits of trustee agents in both sets of
observations can then be analysed for correlations and a translation learned.
If the trustor observes ‘suitcase storage’ for several taxi services for which the
witness has observed ‘airport transfer’, for example, a translation between the
two observations can be learned. If the trustor observes ‘suitcase storage’ for
an entirely new trustee, this can be translated into the witness’s stereotype for
‘airport transfer’ when assessing stereotype-reputation.

4 The POSSTR Model

In assessing trust and reputation it is typical to aggregate ratings of previ-
ous interactions. An interaction between tr and te is recorded in the tuple
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〈tr, te, θte
tr , r

te
tr〉, where θte

tr are the traits of te that were observed by tr prior
to the interaction, and rte

tr is the rating given by tr. Without loss of generality,
we assume that ratings are binary, with 1 indicating success and 0 indicating oth-
erwise. A real-valued rating can be converted to binary by choosing a threshold,
above which the interaction is deemed successful and otherwise it is unsuccess-
ful. The aim of the reputation assessment is then to determine the likelihood of
a future interaction with a trustee being successful.

4.1 Direct-Trust

In evaluating the direct-trust of a trustee, te, a trustor, tr, aggregates their
relevant interaction records, Ite

tr, with te. There are many possible aggregations,
but as in existing work on stereotypes [2,16], and BRS [9], we use one based
on Subjective Logic (SL) [8]. SL is a belief calculus that can represent opinions
as degrees of belief, b, disbelief, d, and uncertainty, u, in BDU triples, (b, d, u),
where b, d, u ∈ [0, 1], and b + d + u = 1. In SL, a completely uncertain opinion is
represented as (0,0,1), and total belief is represented as (1,0,0). As evidence is
accrued and the opinion changes, the degrees of belief, disbelief, and uncertainty
change also.

In BRS [2,9], the trustor computes a BDU triple by counting the number
of successful interactions they have had with the trustee, pte

tr = |Ite
tr : rte

tr = 1|,
and the number of unsuccessful interactions, nte

tr = |Ite
tr : rte

tr = 0|. A mapping
from interaction records and ratings to the belief, disbelief, and uncertainty is
provided by,

bte
tr =

pte
tr

pte
tr + nte

tr + 2
, dte

tr =
nte

tr

pte
tr + nte

tr + 2
, ute

tr =
2

pte
tr + nte

tr + 2
. (1)

If there are two ratings of 1 and one rating of 0, for example, the resulting BDU
triple is (0.4, 0.2, 0.4). This mapping ensures that uncertainty decreases monoton-
ically as the evidence is accumulated. Other mappings from ratings to SL are
possible, such as that proposed by Wang and Singh [21,22] where uncertainty is
affected by disagreement in ratings as well as the amount of evidence.

The likelihood that a future interaction with te will be successful, is then
calculated as,

P (r̂te
tr = 1) = bte

tr + ate
tr × ute

tr, (2)

where r̂te
tr is the future rating being predicted and ate

tr is the Bayesian prior.
The prior in BRS [9] is ate

tr = 0.5, which represents that an interaction with an
unknown agent for which there is no information is equally likely to be successful
or unsuccessful. A prior of greater than 0.5 means that uncertain opinions lean
more to belief in success, whereas priors less than 0.5 make P (r̂te

tr = 1) closer to
0. As evidence is gathered, the uncertainty reduces toward 0 and the prior has
less of an effect on the likelihood of success. Stereotypes, as discussed in Sects. 4.3
and 4.4, can be used to inform this prior based on observations of trustee traits.
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4.2 Witness-Reputation

When the trustor has insufficient ratings of a trustee, witnesses, w ∈ W , are
asked to provide theirs. The witness ratings are then combined with those of the
trustor using SL as described above,

pte = pte
tr +

∑

w∈W

pte
w , nte = nte

tr +
∑

w∈W

nte
w , (3)

where pte
w and nte

w are respectively the number of positive and negative interac-
tions reported by witness, w, about te. Witness-reputation is then computed as,

P (r̂te
tr = 1) = bte + ate

tr × ute, (4)

where the Bayesian prior is again ate
tr = 0.5, and

bte =
pte

pte + nte + 2
, ute =

2
pte + nte + 2

. (5)

4.3 Stereotype-Trust

Stereotypes can be used to inform the Bayesian prior in environments where
trustees that exhibit similar observable traits have performed similarly in inter-
actions. For instance, the ratings given to interactions with known agents can be
used as the prior for an unknown agent with similar traits. A stereotype model,

ftr : P(Θ) → R, (6)

is learned by tr, which maps traits of a trustee agent observed by tr to a
stereotype-trust value,

ate
tr = ftr(θte

tr), (7)

that is used as the Bayesian prior in Eqs. 2 and 4 when computing direct-trust
or witness-reputation.

The stereotype model is learned by generating a training sample for each
agent the trustor has previously interacted with. In each of these samples, the
te traits observed by tr are the input features, θte

tr . The target, or class value, is
the direct-trust that tr has in te, as outlined in Sect. 4.1, with a Bayesian prior
of 0.5. The training data is therefore a set of samples that express observed
trustee traits and their direct-trust values. A regression model is then learned to
map traits observed by tr to the trust in agents that express those traits, which
can be used as the Bayesian prior in Eq. 2. As before, if the trustor has high
uncertainty about a trustee and the stereotype model outputs a prior close to
0, the direct-trust will be low. As the trustor gains experience with trustee, the
prior will have less effect on the trust value.

As in Burnett et al. [2] and Şensoy et al. [16], we learn the mapping from
features of a trustee to the likelihood of a successful interaction using the M5
model tree algorithm [13]. The M5 model tree recursively splits training samples
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using the values of the features that best discriminate the class labels. Whereas
in typical decision trees the leaves are target values, the leaves of the M5 tree are
piecewise linear regression models that output the target value. The regression
models are learned using samples that were not divided in learning the tree and
therefore use features not specified by the ancestors of the leaf. If all features
are specified, the linear regression model defaults to outputting the mean target
value of the samples in the relevant split. The splitting process stops at the level
where the leaf model would have the highest accuracy on the training data. If
there are many traits observed by a trustor then it may be necessary to perform
feature selection to reduce their number [4].

4.4 Stereotype-Reputation

When the trustor is not confident in their stereotype-trust assessment, witnesses
can be asked for their stereotype based assessment of the trustee. As with the
trustor, each witness, w ∈ W , has their own stereotype model,

fw : P(Θ) → R, (8)

learned using their own experience of trustee agents. The witness in some cases
may have observed the trustee previously, in which case they are able both to
provide a witness-reputation assessment as well as use the features they observed,
θte

w , in their stereotype model. In other cases the witness may have not observed
the trustee previously and must rely on the stereotype features observed by
the trustor, who may have observed different features in different ways. This
necessitates a translation function between the two observation capabilities,

ftr→w : P(Θ) → P(Θ). (9)

This function converts observed features of a trustee from the subjective per-
spective of the trustor, tr, to that of the witness, w. It is a multi-target learning
problem with an input of stereotype features the trustor, tr, has observed, θte

tr ,
and an output vector of features that the witness, w, would observe, θ̂te

w .
To learn the translation function, training data is generated from common

observations that both the witness and the trustor have made. When request-
ing a stereotype assessment from a witness, either the trustor provides their
observations of other trustee agents to the witness or vice versa. These obser-
vations, consist of the observed traits along with the trustee identifier. As an
example, consider that the trustor has observed the traits of three trustees,
{θte1

tr , θte2
tr , θte3

tr }, and a witness has observed those of two, {θte1
w , θte2

w }. Train-
ing data can then be generated by matching up the common observations, as
{θte1

tr : θte1
w , θte2

tr : θte2
w }, where ‘:’ separates the inputs and outputs. These obser-

vations may have been made without having interacted with the trustees, such
as a potential customer observing traits of taxis during an assessment but with-
out using their service. These common observations samples form the training
data that can be input into a multi-target learning algorithm [14].
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Multi-target learning algorithms learn mappings from input features to
multiple targets. One simple yet powerful approach is the binary relevance
method [19], where a separate model is built for each target. In this paper,
a model is learned that maps traits observed by the trustor to each trait that
would be observed by the witness. The traits observed by the trustor are then
input into each of the learned models and their outputs are combined to be the
traits the witness would have observed. As the base learning algorithm for each
of the output traits we use Näıve Bayes, although any classification algorithm
may be used in its place [4,14].

If a witness has not observed the trustee, the trustor’s observations are input
into the learned translation,

θ̂te
w = ftr→w(θte

tr), (10)

to estimate the traits that they would have observed. This output is then used
in the witness stereotype model,

ate
w = fw(θte

w |θ̂te
w ) =

{
fw(θte

w ) if witness observed trustee,
fw(θ̂te

w ) if trustor provided observations,
(11)

which outputs the prior from the witness perspective to be returned to the
trustor. A new Bayesian prior is then computed as the mean stereotype assess-
ment of the trustor and witnesses,

ate =
1

|W | + 1

(
ate

tr +
∑

w∈W

ate
w

)
. (12)

Finally, the overall reputation score is computed as,

P (r̂te
tr = 1) = bte + ate × ute. (13)

4.5 Subjective Opinions

In many domains, witnesses cannot be assumed to rate interactions objectively
or report ratings benevolently. This is the same for witness-reputation as it is
for stereotype-reputation, where witnesses may be dishonest or otherwise have
different opinions about a trustee or its traits. While this issue is out of the
scope of this paper, there are two broad approaches to dealing with this prob-
lem. First, information provided by unreliable witnesses can be discounted, or
weighted lower than more reliable information [16,17]. In this method, opin-
ions of a witness are compared to those of the trustor for the same trustees or
traits. If there is a significant difference in opinions then the witness is deemed
unreliable and their reports are discounted before being combined with others.
Zhang et al. [24] evaluate the reliability of witnesses by comparing their reports
to trustor ratings as well as those of other witnesses. Second, if witnesses are
unreliable in a consistent way, their opinions can be reinterpreted to be from the
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perspective of the trustor [11,15,17]. It is worth noting that these translations
are different to the observation translations proposed in Sect. 4.4, as they aim
to translate a single variable (ratings) with potentially different ranges, whereas
our translation is more general and aims to translate multiple observed traits.
As with discounting, opinions of the witnesses and trustor are compared to learn
a mapping from one to the other, but investigating either approach to subjective
ratings alongside partially observable trustees and subjective stereotypes is out
of the scope of this paper.

5 Evaluation and Results

To evaluate POSSTR we use a simulated marketplace based on that used by
Burnett et al. [2] and Şensoy et al. [16]. The simulation consists of trustor and
trustee agents that interact over 250 rounds. Each trustee agent is randomly
assigned one of five profiles at the beginning of the simulation, defining a mean,
standard deviation (STD), and observable traits, θte, as outlined in Table 1. The
mean and STD define the Gaussian distribution from which interaction outcomes
are drawn. As in Burnett et al. [2] and Şensoy et al. [16], an interaction with an
outcome greater than a success threshold of 0.5 is deemed successful and given
a rating of 1 by the trustor, otherwise it is rated as 0. The observable traits
distinguish each of the profiles, to be used in stereotype assessments of trustees.
Each element in these feature vectors can be interpreted as the trustee exhibiting
a trait or not, e.g. the first trait may represent ‘airport transfer’.

Table 1. Objective trustee profiles. The observations of an example observation vector,
Otr, are also shown.

Profile Description Mean STD θte Otr = 001122

1 Usually good 0.9 0.05 100001 100010
2 Often good 0.6 0.15 010100 010011
3 Often poor 0.4 0.15 001100 000011
4 Usually poor 0.3 0.05 011010 010001
5 Random 0.5 1.00 011001 010010

Each trustor and trustee agent leaves the simulation with a probability of
0.05 in each round, to be replaced by another. New trustees are assigned a profile
selected uniformly at random from those in Table 1. The number of agents in
the simulation is static, therefore, and in all of our simulations there were 100
trustee agents and 20 trustor agents. In each round, each trustor agent is given
a random 10 available trustees from which they select the one with highest rep-
utation as an interaction partner. Similarly, in each reputation assessment, each
trustor requests witness-reputation and stereotype-reputation from 10 random
witnesses.
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Table 2. Reputation assessment strategies investigated listing their information
sources and definitions.

Strategy Description Definition

Random No information NA

T Direct-trust Eq 2, where ate
tr = 0.5

TR Direct-trust + Eq 4, where ate
tr = 0.5

witness-reputation

T+ST Direct-trust + Eq 2, where ate
tr = ftr(θ

te
tr)

stereotype-trust

TR+ST Direct-trust + Eq 4, where ate
tr = ftr(θ

te
tr)

witness-reputation +
stereotype-trust

TR+STR Direct-trust + Eq 13, where ate
w = fw(θte

w |θte
tr), ∀w ∈ W ,

stereotype-trust + and ate
tr = ftr(θ

te
tr)

witness-reputation +
stereotype-reputation

POSSTR Direct-trust + Eq 13, where ate
w = fw(θte

w |θ̂te
tr), ∀w ∈ W ,

stereotype-trust + and ate
tr = ftr(θ

te
tr)

witness-reputation +
stereotype-reputation (with translation)

Trustee traits are observed subjectively through trustor observation functions,
Otr(θte), defined by an observation vector, Otr, assigned to each new trustor. The
observation vector is the same length as the number of traits in the network and
each value corresponds to an observable trait. A value of 0 means that the trait is
observed with the correct value if it is expressed by a trustee, and 1 means that
the trait is never observed (or always observed as 0). A value of 2 in the vector
means that the trustor always changes the value of the trait, i.e. a trustee trait of
value 0 is observed as a 1 and vice versa. An example observation vector, along
with the traits observed by such a trustor, is shown in the final column of Table 1.
Observation vectors are sampled from a distribution defined by subjectivity para-
meters, s and o, which determine the likelihoods of 0, 1, or 2. A value is 1 with a
probability of o, and given that its value is not 1 it has a value of 2 with probability
of s. A higher o means that more traits are ignored, and a higher s increases the
likelihood that a trait is interpreted incorrectly.

In our experiments we compare each of the strategies outlined in Table 2. For
example, the T+ST strategy combines direct-trust and stereotype-trust informa-
tion in the assessment of trustee agents, as defined by Eq. 2. Similarly, TR+STR
uses all four information sources in each reputation assessment, regardless of
any confidence that may be derived from the number of experiences. At the end
of each round, the mean overall utility gained by all agents is computed and
recorded as the simulation utility. All results presented in this paper are aver-
aged over 50 iterations of our simulation. In all settings and for all strategies
the standard deviation of simulation utilities was less than 5% of the mean, and
the standard error was less than 1% of the mean. Also, all significance results
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discussed are from an ANOVA followed by an all-pairs t-test, with multiple
comparisons normalised using the Bonferroni correction.

5.1 Full Observability and Objective Traits

Table 3 shows the mean utilities after 250 rounds over the 50 iterations, with
fully observable trustees and objectively observable traits (s = o = 0). The
differences between each pair of strategies, excluding TR+STR and POSSTR,
was significant with p < 0.01. The strategy that gained the lowest utility in
all cases was Random, followed by using direct-trust only (T). Using witness
opinions alongside direct-trust (TR), trustor agents were able to choose better
interaction partners. This extra information gathered from witnesses is clearly
advantageous, given that trustor exploration of the trustee population was lim-
ited and agent turnover was high.

Table 3. Fully observable trustees with objective traits. Utilities significantly smaller
(p < 0.01) than that of POSSTR are prepended with a ‘*’.

Strategy Mean utility STD utility

Random *126.73 5.36
T *142.31 5.17
TR *194.80 4.78
T+ST *186.56 4.78
TR+ST *217.07 3.98
TR+STR 226.48 3.36
POSSTR 227.60 2.14

Trustor agents were better able to search the trustees and gain good util-
ities when they combined witness-reputation with either stereotype-trust or
stereotype-reputation. Combining direct-trust with stereotype-trust (T+ST) was
also beneficial when compared to using only direct-trust (T) although the utility
gained was significantly lower than using witness-reputation (TR). The high-
est utilities were gained when all four kinds of trust and reputation were used
(TR+STR and POSSTR). With full observability and no subjectivity the trans-
lation was not required and there was no advantage to using POSSTR over using
the observed traits directly, as in TR+STR.

5.2 Partially Observable Trustees

To model partial observability we first restricted observations of trustee traits
to those made during previous assessments. If a witness had not previously
assessed direct-trust of a trustee, they were unable to observe the traits them-
selves and used those observed by the trustor. This restriction on observations
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Table 4. Utilities for strategies with different levels of subjectivity. STD shown in
braces after each result and results significantly smaller (p < 0.01) from POSSTR are
prepended with ‘*’.

o = 0 o = 0.25 o = 0.5 o = 0.75

Random *126.73 (5.36) *125.69 (4.14) *123.67 (4.78) *125.40 (5.31)
T *142.31 (5.17) *140.49 (4.76) *141.13 (5.71) *141.58 (4.59)
TR *194.80 (4.78) *195.42 (5.16) *195.57 (5.38) *194.22 (4.97)
T+ST *186.56 (4.78) *181.89 (4.56) *177.39 (5.79) *156.78 (6.33)
TR+ST *217.07 (3.98) *214.91 (3.81) *213.26 (3.66) *205.89 (5.07)
TR+STR 226.51 (3.27) 223.65 (2.88) 221.49 (3.57) 214.75 (4.58)
POSSTR 226.68 (3.74) 223.65 (3.98) 223.76 (3.93) 215.54 (4.52)

(a) Observed traits are not changed (s = 0)

s = 0 s = 0.25 s = 0.5 s = 0.75 s = 1

Random *126.73 (5.36) *125.04 (5.79) *126.29 (5.53) *125.40 (5.52) *126.28 (4.55)
T *142.31 (5.17) *142.00 (5.74) *141.77 (4.34) *141.33 (5.00) *141.05 (4.61)
TR *194.80 (4.78) *195.29 (6.15) *194.71 (5.16) *195.34 (6.06) *195.38 (4.85)
T+ST *186.56 (4.78) *185.73 (4.78) *186.25 (5.12) *186.78 (5.03) *186.76 (5.47)
TR+ST *217.07 (3.98) *217.08 (3.58) *216.57 (3.53) *216.46 (3.28) *216.49 (3.65)
TR+STR 226.51 (3.27) *223.01 (3.68) *220.11 (3.42) *222.46 (4.00) 226.47 (3.57)
POSSTR 226.68 (3.74) 226.94 (3.19) 226.22 (3.04) 226.44 (2.83) 226.08 (3.14)

(b) All traits are observed (o = 0)

was also applied when generating training data for the translation function in
POSSTR. Tables 4(a) and (b) show the utilities gained for strategies in this
assessment-restricted partially observable setting, for different levels of subjec-
tivity. The results in Table 4(a) are for different values of o with s = 0 (agents
observed traits with different likelihoods) and the results in Table 4(b) are for
different values of s with o = 0 (agents flipped values of traits with differ-
ent likelihoods). As with full observability, a significant difference was observed
between each pair of strategies, other than TR+STR and POSSTR, within each
subjectivity and observability condition. For all levels of subjectivity, the utilities
gained by strategies that do not use stereotypes, namely Random, T, and TR,
were the same as with fully observability. Similarly, with objective traits, i.e.
o = s = 0, the utilities for TR+STR and POSSTR, which both use stereotype-
reputation, were not significantly different (p > 0.05) from with full observability.
This is because observations made by a trustor were the same as those that a
witness would have made in this setting.

For all strategies that use stereotypes, higher values of o led to lower utilities,
with performance being substantially lower when o = 0.75. This is likely due
to there being fewer traits observed by the trustor agents, meaning there is
less distinction between the trustee profiles. The value of s had no significant
effect (p > 0.05) on the performance of strategies that did not use stereotype-
reputation, including T+ST and TR+ST. When trustors had to communicate
their observed traits to witnesses subjectively, i.e. when 0 < s < 1, the TR+STR,
which does employ stereotype-reputation, was negatively affected. POSSTR did
not suffer any significant loss (p > 0.05) in utility gain over all values of s, as a
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result of it successfully translating observed traits before computing stereotype-
reputation. When 0 < s < 1, therefore, POSSTR significantly outperformed
TR+STR (p < 0.01), again after pairwise t-tests with the Bonferroni correction.
This means that POSSTR reliably assessed reputation with partially observable
trustees and subjectively interpreted traits, while TR+STR did not.
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(a) Assessment restricted observations
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(b) Interaction restricted observations

Fig. 1. Utilities for different levels of subjectivity with o = 0.5, with partially observ-
ability and observations are restricted to previous (a) assessments and (b) interactions.
The error bars show the STD.

Figure 1(a) shows the utilities gained by strategies for o = 0.5 and s = 0,
0.25, and 0.5. The results are similar to those found in Table 4(b), where o = 0,
and show that POSSTR had significantly the highest performance in all cases.
The results for s = 0.75 and s = 1 are omitted from this plot for clarity, as
the utilities under these conditions were mirrored by those when s = 0.25 and
s = 0 respectively.

To restrict observability further we limited observations to interactions,
meaning that a witness must have interacted with a trustee for their traits to be
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available when assessing stereotype-reputation. These results, for different val-
ues of s and o = 0.5, are presented in Fig. 1(b), where again the strategies that
do not use witness-stereotypes were unaffected by the observability of trustee
traits. The TR+STR and POSSTR strategies both gained lower utilities when
traits were subjectively observed in this setting than when observability was
restricted to assessments. With o = 0.5 and s = 0.5, POSSTR again signif-
icantly (p < 0.01) outperformed all other strategies but was outperformed by
TR+STR (p < 0.05) when s = 0 and traits were objective. No significant dif-
ference between TR+ST, TR+STR, and POSSTR was found (p > 0.05) when
s = 0.25. These results indicate that the translation function is outputting traits
as they would be observed by the witness incorrectly, possibly due to the lack of
training data gathered from traits observed during interactions.

5.3 Private Trustees

In this case, the identifier of the trustee agent being assessed was not disclosed
to the witnesses when asking for reputation assessments. While this is extreme,
a trustor may wish to keep their interest in particular trustee agents private for
several reasons, including competition, embarrassment, or affects to reputation.
For example, a trustor’s interest in a particular doctor may reveal private health
information or their interest in a particular subprovider may negatively affect
their own reputation. This case is also representative of when trustees are regu-
larly unknown to witnesses, such as when they are in a different locations. When
unable to use witness-reputation, TR and TR+ST are equivalent to the T and
T+ST strategies respectively, and therefore gained the same utilities. Utilities
gained over simulation rounds for the five remaining strategies are presented in
Fig. 2, which includes utilities for POSSTR with training data for the transla-
tion function limited to (a) assessments, and (b) interactions. In all simulations,
subjectivity parameters of s = o = 0.5 were used, and a significant difference in
overall utility was observed between all pairs of strategies presented (p < 0.01).
The TR+STR model is equivalent to using direct-trust and witness-stereotypes,
or T+STR, causing its performance to drop significantly over this simulation
compared to those in Sects. 5.1 and 5.2.

After an initial learning phase lasting fewer than 10 rounds POSSTR (a),
which learned the translation function using observations made in previous
assessments, gained by far the highest utilities in each round. With less train-
ing data, POSSTR (b) gained lower utility, but still outperformed all the other
strategies that either did not translate traits or did not use stereotypes. After
around 50 rounds the utilities gained per round for all of the strategies stabilised.
Interestingly, in this setting there was still a benefit to using witness-stereotypes
(TR+STR) over just direct-trust (T), even though witnesses may have misinter-
preted the observations made by the trustor. Without the translation function
the best strategy was to use only direct evidence in the form of direct-trust and
stereotype-trust (T+ST).
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Fig. 2. Utilities for strategies with private trustee identifiers, where o = s = 0.5.

5.4 Fewer Available Advisors

The results in Fig. 3(a) show the utilities gained when the number of witnesses
available was reduced to two. In these results observations were limited to assess-
ments, the subjectivity parameters were o = 0.5 and s = 0, 0.25, or 0.5. As a
result, all strategies that use witness information gained less utility than with
ten advisors. In these results using only direct-trust and witness-reputation (TR)
was outperformed by the combination of direct-trust and stereotype-trust, with
p < 0.01. The extra utility gained by POSSTR compared to TR+STR when
either s = 0.25 or s = 0.5, was also significantly (p < 0.01) more than with ten
witnesses.

5.5 Increased Dynamism

Fig. 3(b) shows results for simulations with increased dynamism, where agents
departed with an increased probability of 0.2. Again, in these results observabil-
ity was restricted to assessments, o = 0.5, and s = 0, 0.25, or 0.5. All strategies
other than Random performed less well in this setting, and gained lower utilities
than in the less dynamic scenario where agents left with a probability of 0.05.
Also in this highly dynamic setting POSSTR gained much more utility than the
other strategies with subjectivities of s = 0.25 or 0.75 (p < 0.01).

5.6 Summary

In summary, we found POSSTR gained significantly more utility than all other
strategies, including TR+STR, in environments where partial observability was
combined with subjectivity. The difference was greatest when witnesses were
unable to observe traits themselves due to the trustor withholding their identi-
ties, where the performance of POSSTR was affected much less than the other
strategies. In simple environments, with either full observability or objective
traits, the performance of POSSTR was not significantly different to that of
TR+STR, and both gained more utility than the other strategies.
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(b) Agents depart with probability of 0.2

Fig. 3. Utilities for strategies with different levels of subjectivity with o = 0.5, assess-
ment partial observability, for (a) fewer advisors and (b) increased dynamism. The
error bars show the STD.

6 Conclusion

In this paper we have presented the POSSTR reputation system, which combines
direct-trust, witness-reputation, stereotype-trust, and stereotype-reputation,
and is robust to various levels of partial and subjective observability. Using
simulations we have shown that a translation function is necessary when com-
municating observed traits to witnesses in partially observable and subjective
environments. We found that POSSTR provided significantly more reliable rep-
utation assessments compared to other strategies in such settings.

In settings without partial observability, where witnesses were able to observe
all trustee traits themselves, the utilities gained by POSSTR and TR+STR,
which both use direct-trust, witness-reputation, direct-stereotypes, and witness-
stereotypes, were not significantly different. This was because the translation
function employed in POSSTR has no effect when agents can observe the traits
of all trustee agents. With no observability, where trustors concealed the identi-
ties of trustees they were assessing, using witness stereotypes without translation
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provided lower utilities than using only direct evidence. With translations, how-
ever, POSSTR was able to retain much of the performance observed in much
less restricted settings with full observability.

Investigating subjectivity and dishonesty in interaction ratings is left as
future work, but could be solved using a strategy such as TRAVOS [18] or
HABIT [17]. Either of these strategies can be applied directly to witness-
reputation described in this paper, but applying them to subjective-reputation
may require some alterations. Another approach is to learn a mapping, akin to
the translation function for observed traits, to translate reputation-assessments
from one perspective to the other.

Another limitation is that concept drift, where the profile parameters or
traits change over time, is not considered. To overcome such drift a learning
window is often sufficient, but determining an appropriate window size is non-
trivial. Another approach may be to apply techniques from the concept drift
literature [5], to both detect when a change has occurred in the underlying
profiles and adapt the model accordingly.
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Abstract. We introduce a voting rule for committee selection that cap-
tures positive correlation (synergy) between candidates. We argue that
positive correlation can naturally happen in common scenarios that are
related to committee selection. For example, in the movies selection prob-
lem, where prospective travelers are requested to choose the movies that
will be available on their flight, it is reasonable to assume that they will
tend to prefer voting for a movie in a series, only if they can watch also
the former movies in that series. In elections to the parliament, it can be
that two candidates are working extremely well together, so voters will
benefit from being represented by both of them together.

In our model, the preferences of the candidates are represented by set
functions, and we would like to maximize the total satisfaction of the
voters. We show that although computing the best solution is NP-hard,
there exists an approximation algorithm with approximation guarantees
that deteriorate gracefully with the amount of synergy between the can-
didates. This amount of synergy is measured by a natural extension of
the supermodular degree [Feige and Izsak, ITCS 2013] that we introduce
– the joint supermodular degree. To the best of our knowledge, our results
represent the first voting rule that capture synergy between specific can-
didates.

1 Introduction

Consider the following scenario (see, e.g., [9,21]). An airline wishes to increase the
satisfaction of the travelers by letting them choose the set of movies that will be
available on their flight. It is decided to store on the airplane some fixed number
k of movies. The airline surveys the preferences of the prospective passengers
of the flight, and aims to make the best decision given their preferences. Two
questions arise. First, how should the preferences of the prospective travelers be
modeled? Second, given the preferences of the travelers, how should the set of
movies be chosen? This problem of choosing some fixed number of candidates
to the satisfaction of the voters is a fundamental problem. Generally speaking,
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in the k-committee selection problem, we have a set V of n voters and a set
C of m candidates, and we would like to select k candidates out of the m, such
that the voters will be most satisfied. The answers to the two questions above
vary in the literature. For example, by the Chamberlin-Courant rule we have a
value for each of the candidates, by each of the voters, and the satisfaction of a
voter is measured by the highest value she has for any elected candidate. The
overall satisfaction is either the sum of the values of the voters or the value of
the least satisfied voter (utilitarian [5] or egalitarian [2] variant, respectively).
Other possibilities are to aggregate for every voter her value for every elected
candidate or to give higher weight for candidates ranked higher by her (e.g.
Borda rule). In a recent work, Skowron, Faliszewski and Lang [21] introduce an
elegant model that captures the latter examples as well as others. They model
the preferences of each voter by an intrinsic value for each of the candidates.
Then, they calculate the value of a possible set of k candidates by a voter, by
ordering her k intrinsic values for the k candidates, and multiplying them by
some weight that corresponds to their rank in the order. This vector of weights
is called “OWA operator” (Ordered Weighted Average). Skowron, Faliszewski
and Lang [21] study their model for different restrictions on the OWA vector.
Among their results, they show a (1−1/e)-approximation algorithm for the case
of non-increasing weights OWA vectors, by showing it is captured by submodular
set functions.1

However, none of the models above capture positive correlation (i.e. synergy)
between specific candidates (see Sect. 2.2 for further discussion). Positive corre-
lation can happen in various cases: from two candidates to the parliament that
are working great together (see Woolley et al. [22] for a research about collective
intelligence), to a series of movies that people tend to prefer watching the latter
parts only after watching the former parts. In this paper we suggest a voting
rule that captures positive correlation between specific candidates. Specifically,
our answers to the two questions above are:

– The preferences of each of the candidates are modeled by a non-decreasing
monotone set function from subsets of candidates to non-negative real num-
bers.

– A set of k candidates that maximizes the sum of values of the voters is elected.

We formally present our model in Sect. 4. In order to measure the amount of
synergy between different candidates, we extend the supermodular degree [10],
by introducing the joint supermodular degree (Sect. 4.1).

We also study applications for the model. In Sect. 5, we justify the naturalness
of the joint supermodular degree from an applicative view point. In Sect. 6, we
demonstrate how preference elicitation can be practically done.

1 A submodular set function is a function f : 2M → R
+, such that for every S′ ⊆ S ⊆

M , and every j ∈ M , f(j | S′) ≥ f(j | S), where f(j | S) = f({j} ∪ S) − f(S) is the
marginal value of j with respect to S. That is, the marginal values are monotone
non-increasing.
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Finally, in Sect. 7, we study the computability of our voting rule. On the
bright side, we show that although computing the optimum is, generally, NP-
hard, one can approximate the optimum with a guarantee that depends on the
amount of synergy between different candidates, as measured by the joint super-
modular degree. On the flip side, we show that the same results cannot be
achieved for the supermodular degree.

2 Preliminaries

The definitions below are taken from the works [10,11]. Let C be a set of items
(e.g. candidates in election, movies to watch on an airplane) and let f : 2C → R

+

be a set function (e.g. of preferences of one of the voters). The following definition
is standard.

Definition 1. Let c ∈ C. The marginal set function fc : 2C\{c} → R
+ is a

function mapping each subset S ⊆ C \ {c} to the marginal value of c given S:

fc(S) def= f(S ∪ {c}) − f(S) .

We denote the marginal value fc(S) by f(c | S). For S′ = {c1, . . . , c|S′|} ⊆ C
and S ⊆ C \S′ we also use either of the notations f(c1, . . . , c|S′| | S) or f(S′ | S)
to indicate f(S ∪ S′) − f(S).

The following definitions were introduced by Feige and Izsak [10].

Definition 2. Let c ∈ C. The supermodular dependency set of c by f is the
set of all items c′ ∈ C such that there exists S ⊆ C \ {c, c′} such that f(c |
S ∪{c′}) > f(c | S). We denote the supermodular dependency set of c by D+

f (c).
We sometimes omit f , when it is clear from the context.

Definition 3. The supermodular degree of f is defined as D+
f

def= max
c∈C

|D+
f (c)|.

2.1 Representation of Set Functions

Let f : 2C → R
+ be a set function. Then, f associates values to 2|C| possible

subsets. If we want our algorithms to run in time polynomial in |C|, they, of
course, cannot read an input that is exponential in C. Therefore, it is crucial to
consider the representation of set functions. One common way to represent set
functions is by queries. Another is by an explicit representation. In this section,
we mention both.

Queries. The arguably simplest queries are the following.

Definition 4. Value queries for f are defined as follows:
Input: A subset S ⊆ C.
Output: f(S).
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That is, if we assume our algorithm has access to value queries for a given set
function, we merely assume it can ask for the value of a subset by the function.
Another type of queries that we use (see [10]) is the following.

Definition 5. Supermodular queries for f are defined as follows:
Input: An item (i.e. a candidate) c ⊆ C.
Output: D+

f (c).

That is, given a candidate we can ask with whom she has a positive correlation
as defined by the supermodular dependencies. In the context of movies, we can
ask for a movie that is part of a series, what are the other movies in that series.
See Sect. 5 for further discussion.

An Explicit Representation. Another way to represent set functions is by
an explicit representation. For example, any set function can be represented
in a unique way by a hypergraph with weighted edges (see [1,6,8]). In this
representation, a vertex is introduced for each of the items in the ground set of
f . The weights in the sub-hypergraph induced by a set of vertices sum up exactly
to the value of the subset with the respective items, by f . To see how weights can
be allocated, consider the following iterative process. To hyperedges of size 1,
we allocate weights that are the values of the respective singleton subsets. Note
that this allocation of weights to hyperedges is unique. Then, for hyperedges
of size 2, we allocate weights that are the difference between the value of the
respective subset and the sum of the weights of their two singleton subsets. Note
that this allocation is unique, as well. Also note that after iteration �, the values
by the hypergraph representation are correct for subsets of size up to �. We
proceed iteratively till we arrive to the unique edge of size |C|, and then we have
a representation of the set function for any size of subset.

A succinct representation. We say that a representation of a set function is
succinct if its size is polynomially bounded by the size of the ground set of the
function. Note that in the hypergraph representation, we can list only the edges
of value different from 0. So, sometimes this representation can be succinct. In
particular, for additive set functions we clearly allocate non-zero values only for
the hyperedges of size 1.

2.2 Related Work

We list here some of the voting rules from the literature, mostly based on
Masthoff [16], and also on the works [7,9,15–17,21].

– Plurality: When electing a single candidate, plurality means selecting the can-
didate who is ranked first among the candidates, for the highest number of
voters. When “ranked first” can mean that by the voting rule, preferences are
ranks of candidates, or alternatively, that there are values for the candidates
by the different voters that are used in order to get the candidates’ ranks.
In order to use this rule for choosing k candidates, one can just repeat it k
times, while removing the winner at each iteration.
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– Utilitarian: Each voter has a value for each of the candidates, and these values
are summed up. The k candidates with the largest sums win.

– Borda [4]: This voting rule assumes the preferences of the candidates are
modeled as a list of ranks, and it converts this list to values, with higher
values for higher ranks: m − 1,m − 2, . . . , 0 for ranks 1, . . . ,m, respectively
(m is the number of candidates). These values are summed up and highest
scores win, similarly to the utilitarian rule above.

– Copeland: The score of a candidate is the number of pairwise elections she
wins (by plurality) minus the number of pairwise elections she loses (ties do
not count). Values are again, summed up, and higher scores win.

– Maximin: The score of a candidate c with respect to a candidate c′ is the
number of voters that prefer c over c′ (we denote it by scorec(c′). The score
of a candidate c is the minimum score of c with respect to a candidate (i.e.
argminc′ scorec(c′)). For example, if for a candidate c, there exists a candidate
that is preferred by all of the voters, then c will get a value of 0. If for a
candidate c, all the voters prefer it over all the candidates, then (and only
then) she will get the maximal score of n (i.e. the number of voters).

– Approval voting: Each voter either approves or disapproves every candidate.
The k candidates with largest number of approvals win.

Positional scoring. Positional scoring is a bunch of voting rules, where the prefer-
ences of the voters are just an ordering of the candidates and the rule is defined
by a vector of size m of values corresponding to positions by the voters. The
total value of a candidate is the sum of these values of the voters. Note that
plurality is a positional scoring rule with the vector (1, 0, . . . , 0) and Borda is a
positional scoring rule with the vector (m − 1,m − 2, . . . , 0). There is also a rule
called “Veto” where the vector is (1, . . . , 1, 0), so a voter actually chooses one
candidate she prefers not to include in the selected committee.

Weighted aggregation of preferences of a voter. Skowron et al. [21] introduced
the following family of voting rules for choosing k out of m candidates. The
preferences of the voters are intrinsic values for the different candidates, and
additionally, there is a vector of size k that is called OWA (ordered weighted
average). When calculating the value for a set of k candidates by the preferences
of a single voter, we do the following. We order the k candidates by their values
according to the voter, in an increasing order of values, and then we sum up
the values multiplied by the OWA vector (inner product). That is, every value
is multiplied by a weight appearing in the OWA vector that corresponds to the
rank of the candidate by the voter. To calculate the overall value of a subset of k
candidates, we sum up the values of this set of candidates by the voters (utilitar-
ian model). Skowron, Faliszewski and Lang [21] show that when the OWA vector
is non-increasing (that is higher ranked candidates by a voter are multiplied by
higher (or equal) weights), then the preferences of the voters can be represented
by a submodular set function, and therefore a (1−1/e)-approximation guarantee
can be achieved in polynomial time, by using the classical algorithm of Fisher,
Nemhauser and Wolsey [14]. When the OWA vector is not non-increasing, some
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positive correlation between the candidates can happen, but not between spe-
cific candidates. For example, in the min OWA vector (0, . . . , 0, 1), only the worst
candidate in the selected committee counts. This means, roughly speaking, that
all the candidates should be adequate by a voter in order to have an adequate
score by her. In terms of set functions, it means as follows. The marginal value of
a candidate is 0 with respect to any committee that contains a worse (or equal)
candidate. The marginal value of a candidate with respect to a committee that
contains only better candidates is the difference between the intrinsic values of
the new candidate and of the worst candidate in the committee. For example,
adding a candidate with an intrinsic value of 1 to a committee, when the worse
candidate in it has an intrinsic value of 10 means a marginal value of (−9). On
the other hand, if there is also a candidate with an intrinsic value of 2 in the com-
mittee, then the marginal value of the new one will be (−1). That is, the marginal
value of the new candidate increased because of the inclusion of the candidate
with a value of 2. However, it is clear that this does not model synergy between
these two candidates. Moreover, positive correlation between specific candidates
cannot be modeled using OWA vectors, as described above, since they cannot
relate to specific candidates differently. This means that in scenarios like the
movies example described earlier, a positive correlation within a series of movies
cannot be modeled. In this sense, our model adds new possibilities with respect
to the model of Skowron, Faliszewski and Lang [21].

Another relevant model was studied by Fishburn and Pekec [13]. Fishburn
and Pekec [13] studied an approval voting model, where each of the voters can
approve a few candidates, and a committee is approved by a voter if it contains
a sufficient number of candidates that are approved by the voter.

3 Our Contribution

This paper introduces a new model for voting rules, based on set functions,
together with the required conceptual framework. Our model can be used to
model both synergy between candidates (i.e. compliments) and substitutes (e.g.,
two candidates that each of them is worth 1 and both of them together are
worth 1, as well). Since general set functions might be highly complex, we intro-
duce the joint supermodular degree, which we see as a natural extension of the
supermodular degree [10]. We demonstrate applications for our model in Sect. 5.
In particular, we suggest practical preference elicitation that is tailored for the
joint supermodular degree in Sect. 6.

Finally, in Sect. 7, we show how the joint supermodular degree enables one to
easily use existing algorithms for function maximization that are tailored for the
supermodular degree to achieve approximations for our voting rule. Since there
exist such algorithms both for offline and online settings, one can use either and
immediately get approximation guarantees for our voting rule in the correspond-
ing setting. Moreover, future algorithms for the supermodular degree can also be
easily used by our framework, to get computational results for committee selec-
tion. Conceptually speaking, the result of the approximation algorithms can also
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be seen as the voting rule itself (see Skowron, Faliszewski and Lang [21]). We
complement our algorithmic result with a proof of computational hardness.

To the best of our knowledge, our results represent the first voting rules that
capture synergy between specific candidates.

4 The Model

We formally define our model. Let V = {v1, . . . , vn} be a set of n voters, let
C be a set of m candidates and let k be an integer. Let f1, . . . , fn : 2C → R

+

be preference (set) functions, associated with the voters v1, . . . , vn, respectively.
We assume that the preferences functions are normalized (i.e., ∀ifi(∅) = 0) and
non-decreasing monotone (i.e., ∀i,S′⊆S⊆Mfi(S′) ≤ fi(S)). Our aim is to choose
a set Cmax ⊆ C of size k that maximizes the satisfaction of the voters by their
personal preferences:

Cmax = argmax
S⊆C||S|=k

n∑

i=1

fi(S).

We refer to this problem as (the) k-committee selection problem and to the
selected subset as the selected committee. Note that this problem can be seen as
a voting rule. Alternatively, an approximation algorithm to this problem can be
seen as the voting rule (see also Skowron, Faliszewski and Lang [21]).

4.1 The Joint Supermodular Degree

We introduce the following natural extensions of the definitions of Feige and
Izsak [10] to a collection of set functions.

Definition 6. Let f1, . . . , ft be set functions for some t ∈ N and let c ∈ C. The
joint supermodular dependency set of c by f1, . . . , ft is

⋃t
i=1 D+

fi
(c).

Definition 7. The joint supermodular degree of f1, . . . , ft is the maximum cardi-
nality among the cardinalities of joint dependency sets of items of C by f1, . . . , ft.

The main property of the joint supermodular degree that we use is that
the sum function of functions with joint supermodular degree of at most d has
supermodular degree of at most d.

We think this definition is natural for voting rules, since it means that positive
correlation between the candidates can be modeled, when it is inherent to the
candidates themselves, and not to the perspective of the voters about them.

For example, if a candidate is working well together with 2 other candidates,
then each of the voters has the possibility to give these 3 candidates or any
subset of them a score that is higher than the sum of their individual scores.
However, if a candidate does not work well with some other candidate, then none
of the voters has the possibility to give them together a score that is higher than
the sum of their individual scores. That is, the set of other candidates that the
candidate has synergy with depends on her. The decision of whether to take this



110 R. Izsak

into account depends on each of the voters. So, the supermodular dependency
set of a candidate c, by any of the preference functions of the voters, will contain
only other candidates that have synergy (i.e. are working well together) with c.

We discuss applications of our model with respect to the joint supermodular
degree in Sect. 5. In particular, we suggest preference elicitation in Sect. 6.

5 Applications

We discuss in this section applications of our model, together with the joint
supermodular degree. Specifically, we demonstrate its merits for two real world
examples (see [9]).

– Parliamentary elections: In voting to the parliament, it is possible that can-
didates complement each other, and work better together. It was actually
shown by Woolley et al. [22] that there is a measure for the collective intelli-
gence of a group of people that is different from the intelligence quantities of
different people in the group. So, it seems reasonable to allow the voters to
give extra value for choosing together a pair of candidates that are known to
work well together on, e.g., suggesting complex laws in the parliament. Note
that the fact that two candidates are working well together is related to the
candidates and not to the voters, and indeed, the joint supermodular degree
of the voters will reflect the synergies between the candidates.

– Movie selection: Consider the problem of choosing k movies to be available
on an airplane (passengers can watch on their flight movies from the selected
set). It seems reasonable that people would prefer to watch latter parts of
a series only after the former. Moreover, it might be unreasonable to con-
sider a series of movies as one movie, if, e.g., physical storage is a limitation.
Then, it is plausible to give the prospective passengers the possibility to give
higher values for movies in the series, given that all the former are selected,
as well. Additionally, movie selection can admit submodular behaviour (i.e.
substitutes). For example, since the time of the flight is bounded, the number
of movies one can watch out of the k selected movies is bounded, as well.
This means that, if for example, k = 100 and the time of the flight allows
one passenger to watch up to 5 movies, then any movie out of the k that is
not among the 5 best for that passenger is redundant for her. So her value
will not increase given that we add to the selected set other great movies.
On the other hand, we do want to allow k to be large enough to allow differ-
ent passengers to enjoy different movies. The latter behaviour is submodular.
Synergy between selected movies is supermodular. Our model enables one
to express such preferences. Furthermore, submodularity does not hurt the
approximation guarantees, since it does not increase the joint supermodular
degree of the preference functions (see Sect. 7).

6 Preference Elicitation

Consider the movies selection example. When a prospective passenger is asked to
express her preferences about possible movies, it seems unreasonable to require
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her to specify her values for all the exponentially many possibilities. We briefly
demonstrate a simple user interface to elicit users’ preferences in that case, while
enabling them to benefit from the possibility of expressing positive correlations.

The user interface will be as follows. Each of the prospective passengers will
be able to give a value for each of the possible movies (these are the values of the
singleton subsets). In addition, the prospective passengers will be able to add for
each of the movies other values – the marginal values of a movie, with respect to
a subset of its joint supermodular dependency set (i.e., other movies in the same
series). In order to select such a subset of the movies, a list of the movies in the
joint supermodular dependency set will be presented, and a passenger will be
able to select the relevant movies (e.g. by checking them by a ‘V’). In order to
enforce the preference functions of the prospective passengers to be well defined
(i.e. a single value for each of the subsets), we will let the prospective passengers
check by a ‘V’ only the movies that were former to a movie in a series.

Note that the supermodular dependency is symmetric (see [10] for a proof).
So, in a series of movies, also the former movies are dependent on the latter
movies. As an example, one can think of two movies, where each of them is
worth 1, but the second one is worth 10 with respect to the first. Then, both
movies together are worth 11, and the marginal contribution of each of them
with respect to the other is 10, instead of 1 (as it is with respect to the empty
set).

Generally speaking, this example interface can be extended in any way that
enforces the preference functions to be well defined (e.g. by ordering the items
and letting the prospective passengers to check a dependency by ‘V’ only if it is
before the current item in that ordering).

To see the power of combining supermodular dependencies with submodular
behaviour, note that we can also ask each passenger how many movies she would
like to watch in her flight (with a maximum that depends on the duration of the
flight), and then calculate as her preference, the best subset of that number of
movies, from any input subset of movies.

Note that it is easy to emulate both value and supermodular queries using
such a representation, and then to use the algorithms of Feldman and Izsak [11],
as described in Sect. 7.

7 Computational Results

7.1 General Results Using the Joint Supermodular Degree

The following theorem shows that there exists an approximation algorithm with
approximation guarantee that is linear in the amount of synergy between the
candidates, as measured by the joint supermodular degree of the preference
functions of the voters. For submodular set functions, the result described by
the theorem coincides with the optimal result for submodular set functions of
Fisher, Nemhauser and Wolsey [14] that is used by Skowron, Faliszewski and
Lang [21].
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Theorem 1. When the joint supermodular degree of the preferences functions
of the voters is d, the k-committee selection problem admits an approximation
algorithm with guarantee (1 − e−1/(d+1)) ≥ 1/(d + 2). The algorithm gets access
to the preference functions by value queries and supermodular queries, and its
running time is Poly(n,m, 2d).

Note that the above result captures the example of movies selection from the
introduction (see Sect. 5 for further discussion). Note also that the proof of the
above result applies to the case of committee selection subject to a general
matroid constraint (cardinality constraint is a special case of a matroid con-
straint), but with an approximation guarantee of 1/(d+2), by using the respec-
tive algorithm of Feldman and Izsak [11].

Moreover, one can use the algorithms of Feldman and Izsak [12] in order to
get an online (secretary like) version of Theorem 1, when the candidates arrive
one by one in an online fashion, and we need to decide on the spot, irrevocably,
whether to elect a candidate or not, based on the preferences of the voters (for
exact details of the model, see [12]). As an example, consider hiring a team to
a project, where each of the candidates meets with a few interviewers. Then, an
optimal team of candidates should be hired, according to the preferences of the
interviewers.

By using the algorithm of Feldman and Izsak [12] for a cardinality con-
straint, one gets an approximation guarantee polynomial in the joint super-
modular degree. Any approximation guarantee that depends only on the joint
supermodular degree gives a constant approximation guarantee, if the candidates
admit synergy only with a constant number of other candidates (e.g. if there is
a positive correlation only within series of movies, and all the series suggested
are of length up to 3). See also Oren and Lucier [18] for a different secretary like
model.

Additionally, we show a hardness result for the case of non-bounded joint
supermodular degree, even when the supermodular degree of all the set functions
is bounded by 1. For this, we use a reduction from the k-dense subgraph problem
(see e.g. Bhaskara et al. [3]).

Definition 8. The k-dense subgraph problem is the following. We are given as
input a graph G = (V,E) and an integer k ∈ N, and our aim is to select k
vertices such that the number of edges in their induced subgraph is maximized.

This problem is NP -hard and it is highly believed it is hard to approximate
it within any constant guarantee. Actually, no efficient algorithm is currently
known that approximates it within a guarantee better than nc, for some constant
c (see e.g. [3,19,20]).

Theorem 2. The k-committee selection problem is at least as hard as the k-
dense subgraph problem, even if the supermodular degree of the set functions is 1,
and even if an explicit representation of the preference functions is given. This
means, in particular, that it is NP-hard2 and SSE-hard (see [19] and also [20]).
2 NP -hardness is actually true also for submodular set functions, i.e. supermodular

degree of 0.
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Proof (Proof of Theorem 1). Let V be the set of n voters, let C be the set
of m candidates, let k be the requested number of elected candidates and let
f1, . . . , fn : 2C → R

+ be the preference functions of the voters. We prove that
since the joint supermodular degree of f1, . . . , fn is upper bounded by d, then the
supermodular degree of their summation function fΣ(S) def=

∑n
i=1 fi(S) is upper

bounded by d, as well. Note that this would not be necessarily true if only the
supermodular degree of f1, . . . , fn was bounded by d (or even by 1). Actually,
Theorem 2 serves as a counter example to the latter for d = 1.

To prove the bound on the supermodular degree of the summation func-
tion fΣ , we show that every supermodular dependency by fΣ induces the same
supermodular dependency by one of the fis in the sum. Let c, c′ ∈ C and S ⊆ C
be such that fΣ(c | S ∪ {c′}) > fΣ(c | S). Then, by the definition of fΣ ,∑n

i=1 fi(c | S ∪{c′}) >
∑n

i=1 fi(c | S). So, ∃1≤i≤n s.t. fi(c | S ∪{c′}) > fi(c | S),
as claimed.

Now, we can just use the algorithm of [11] for monotone function maximiza-
tion subject to uniform matroid constraint (i.e. cardinality constraint) on the
function fΣ with a constraint k. Note that the latter algorithm gives an optimal
approximation guarantee for submodular set functions, and generally its guar-
antee deteriorates linearly with the supermodular degree. Moreover, its running
time is as required by the Theorem. This concludes the proof of Theorem 1.

Proof (Proof of Theorem 2). The proof is somewhat similar to the proof of SSE-
hardness for maximizing set function subject to cardinality constraint, given by
[11]. Given an algorithm for solving the k-committee selection problem within
approximation guarantee α, we show how to solve any input instance of the
k-dense subgraph problem within approximation guarantee α. Let G = (S,E)
be an instance of the k-dense graph problem. Then, our set of candidates C
will be S (the set of vertices of G). We also introduce a voter ve for every edge
e = {ve1, ve2} ∈ E and let V =

⋃
e∈E{ve}. For every voter ve, her preference set

function is:

fe =

{
1 if ve1 and ve2 are both elected.

0 otherwise

That is, in this instance of the k-committee selection problem, our aim is to
find a subset of k candidates (where the set of candidates corresponds exactly
to the set S of vertices of G), such that the number of pairs of candidates, that
correspond to the preference functions of the voters, is maximized (where these
pairs of candidates are exactly the edges E of G). This is exactly the k-dense
subgraph problem. That is, given a solution to this instance of k-committee
selection problem, we just output the subset of vertices of S that corresponds
to the candidates in C that were selected, as a solution to the input instance of
the k-dense subgraph problem. This gives us a feasible solution with the same
value, and thus with the same approximation guarantee α. This concludes the
proof of Theorem 2.
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7.2 Important Special Cases

Subsequently to this work, we designed tailored algorithms for instances that
are the result of the preference elicitation presented in Sect. 6. In particular,
we designed an exact algorithm for instances of the k-committee selection
problem with disjoint subsets of dependent items of some fixed size d (this cor-
responds to a joint supermodular degree of d − 1).

We also designed a (1 − 1/e)-approximation algorithm for the more general
case, where each player can also express a budget for the maximum number
of items (candidates) that can be useful for her (e.g. the maximum number of
movies that she might watch during her flight).

Note that both of the latter algorithms have (constant) approximation guar-
antees that do not deteriorate with the joint supermodular degree. Only the
running time is dependent on the parameter d.

8 Conclusions

We suggest a new voting rule for committee selection that enables the voters
to express positive correlation between the candidates. We also introduce the
joint supermodular degree that enables us to use existing computational results
for the supermodular degree, and get efficient approximation algorithms for our
voting rule. We see our work as a proof of concept, and hope that it will lead
to further study of committee selection with positive correlation between the
candidates.
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Abstract. Using belief-propagation based algorithms like Max-Sum to
solve distributed constraint optimization problems (DCOPs) requires
deploying the factor graph elements on which the distributed solution
operates. In some utility-based multi-agent settings, this deployment
is straightforward. However, when the problem gains in complexity by
adding other interaction constraints (like n-ary costs or dependencies),
the question of deploying these shared factors arises. Here, we address
this problem in the particular case of smart environment configuration
(SECP), where several devices (e.g. smart light bulbs) have to coordinate
as to reach an optimal configuration (e.g. find the most energy preserving
configuration), under some n-ary constraints (e.g. physical models and
user preferences). This factor graph deployment problem (FGDP) can
be mapped to an optimization problem, then solvable in a centralized
manner. But, when dealing with the dynamics of the environment (e.g.
new sensed data which activates some rules, adding new devices, etc.)
we cannot afford restarting the system or relying on a centralized solver.
Thus, the system has to achieve on-line and local deployment adapta-
tions. In this paper, we present some solutions and experiment them on
a simulated smart home environment.

1 Introduction

A common problem when using distributed belief-propagation techniques as
Max-Sum [7] is to decide where to host computations related to variable and
factor message assessments. Indeed, Max-Sum operates on a factor graph which
represents the problem to solve, by sending messages from variables to factors,
and vice versa. Assessing messages to send requires computations to be hosted
by some agents. In some settings, this mapping is straightforward; this is the case
in purely utility-based problems, where each agent owns a variable and a utility
factor connected to some other variables owned by other agents [6]. However,
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in more complex settings such as interaction-based problems, where some fac-
tors and variables are shared by several agents, the question of deploying these
elements arises.

An example of such settings is the smart environment configuration (SECP)
we addressed in [11]. In SECP, several devices have to self-configure as to satisfy
user requirements and to minimize energy consumption. SECP is modeled as a
DCOP composed of n-ary factors corresponding to user rules (e.g. “setting the
light level at 60 when someone is in the room”), physical models (e.g. “the effect
of the light bulbs and the shutter on the light level in the room”) and shared vari-
ables corresponding to physical properties (e.g. “the light level in the room”). Due
to the dynamicity of the environment (e.g. devices appearing/disappearing, user
adding/changing rules, sensed data updates, etc.), and the constrained commu-
nication and computation capabilities of our devices, deploying the factor graph
is a key issue that cannot be solely solved off-line in a centralized manner. On-line
repair approaches based on local techniques are needed.

The paper is structured along our contributions, as follows. Section 2 briefly
exposes the SECP framework and its DCOP formulation. Section 3 introduces
the factor graph deployment problem (FGDP) and presents an ILP to solve
FGDP optimally in a centralized manner. The next sections discuss different
cases of dynamics impacting the deployment: infrastructure changes (Sect. 4),
problem and sensed environment changes (Sect. 5). Some preliminary experi-
ments and related analysis are provided in Sect. 6. Finally, Sect. 7 concludes the
paper.

2 Smart Environment Configuration

In this section, we expose the smart environment configuration problem we
address in this paper, and some useful notations, as defined in [11].

Scenario. We consider the following Ambient Intelligence scenario. Our system
is made of several smart devices (light bulbs, roller shutters, a TV set, etc.)
and sensors (luminosity, presence, etc.). Each device is defined by (i) a unique
identifier, (ii) its location (e.g. living room), (iii) a list of capabilities (e.g. emit-
ting light or playing videos), (iv) a list of actions, (v) a consumption law that
associates an energy cost to each action. The user can use an application on a
dedicated device (a powerful computing device with an user interface e.g. home
computer, tablet, etc.) to configure simple behaviors (or scenes), using the value
of the sensors or the state of actuators as triggers for implementing smart home
actions. For example, one could configure the system such that a luminosity level
of 60 is reached in the living room whenever somebody is in this room. Once
this behavior is configured, the dedicated device can be removed (shutdown or
disconnected) from the system, which then autonomously decides the best way
to achieve this target. Devices may be added or removed and are automatically
integrated into the system. We want our system to choose the most energy-saving
configuration for a given scene.
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Problem Definition and Notations. In [11], this configuration problem can
be seen as an optimization problem with values to assign to actuators (e.g. a
light bulb is assigned a power) and user’s target values (e.g. the light level in
living room is 60 lumens), while maximizing the adequacy to user-defined scenes
and minimizing the overall energy consumption.

Problem 1 (SECP). Given a set of actuators A (and their related costs ci ∈ C),
a set of sensors S, a set of scene rules R (and their related utility functions in
uk ∈ U), and a set of physical dependency models Φ, the Smart Environment
Configuration Problem (or SECP) 〈A,C,S,R,U, Φ〉 amounts to finding the con-
figuration of actuators that maximizes the utility of the user-defined rules, whilst
minimizing the global energy consumption and fulfilling the physical dependen-
cies.

Let A the set of available actuators. We note ν(A) the set of variables that
represent the states of actuators i ∈ A (e.g. the power assigned to a bulb). We
use xi to refer to a possible state of xi ∈ ν(A), that is xi ∈ Dxi

(domain of xi).
Activating an actuator i incurs a cost, noted ci : Dxi

→ R, derived from the
consumption law of each device. We note C = {ci|i ∈ A}.

Let S be the set of available sensors, and ν(S) the set of variables encapsu-
lating their states. We note s� ∈ Ds�

the current state of sensor � ∈ S. Sensor
values are not controllable by the system: they are read-only values.

Let R the set of user-defined scene rules. Each scene k is specified as a
condition-action rule expressed using the set devices. The condition part is spec-
ified as a conjunction of boolean expressions using state of actuators or sensors.
The action part defines target values for either (i) some direct actions on actuators
or (ii) indirect actions on abstract concepts (e.g. light level in living room) – both
called scene action variables.

These scene action variables are therefore either (i) some xi ∈ ν(A) or (ii)
other values constrained by values assigned to some actuators. We note yj ∈ ν(Φ)
the state of such an indirect scene action j (e.g. the current level of light in a
room), and yj a possible state of yj , that is yj ∈ Dyj

. We note xk
i (resp. yk

j ) the
target value defined by the user for the scene action variable xi (resp. yj) in the
rule k. Obviously, xk

i ∈ Dxi
and yk

j ∈ Dyj
for all i, j and k. Note that a scene

action variable can be used in several rules, but that a rule can only specify a
unique target value for the scene action variable.

A scene rule can be either active or inactive depending on the state of devices
appearing in the condition part of the rule. Each active scene has also a utility to
be implemented, noted uk :

∏
s∈σ(uk)

Ds → R, with σ(uk) ⊆ ν(A) ∪ ν(Φ) being
the scope of the rule (the subset of variables used in the rule). The more the
states of the scene action variables (from ν(A) and ν(Φ)) are close to the user’s
target values for this scene, the higher the utility. Moreover, if the condition to
activate the rule (from ν(A) and ν(S)) are not met, the utility should be neutral,
i.e. equals to 0. We can therefore consider uk’s to be functions of the distance
between the states of the scene action variables xi’s (resp. yj ’s) and the target
values xk

i (resp. yk
j ). We note U = {uk|k ∈ R}.
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Each scene action variable yj depends physically on the values of several
actuators. We note the model of this dependency φj :

∏
ς∈σ(φj)

Dς → Dyj
, where

σ(φj) ⊆ ν(A) is the scope of the model, i.e. the set of variables influencing yj .
Let Φ = {φj} be the set of all physical models between actuators and user-
defined values. In a more general form, a physical dependency model links a set
of devices –with a given capability (e.g. emitting light, like a bulb or a TV set),
in a given location (e.g. living room)– to a physical value (e.g. light level) that
can be measured by some sensor (e.g. light sensor).

Formulation of SECP as a DCOP. SECP can be formulated as a DCOP
〈A,X ,D, C, μ〉 where: A is a set of smart devices; X = ν(A)∪ν(Φ); D = {Dxi

|xi ∈
ν(A)}∪{Dyj

|yj ∈ ν(Φ)}; C = U∪C∪Φ; μ is a function that maps variables and
constraints to smart devices; with the following objective, where ωu, ωc > 0 are
weights used to normalize the range of uk’s and ci’s:

maximize
xi∈ν(A)

yj∈ν(Φ)

ωu

∑

k∈R

uk − ωc

∑

i∈A

ci +
∑

ϕj∈Φ

ϕj (1)

Here, we note Φ the corresponding set of ϕj ’s.

ϕj(x1
j , . . . , x

|σ(φj)|
j , yj) =

{
0 if φj(x1

j , . . . , x
|σ(φj)|
j ) = yj

−∞ otherwise
(2)

SECP Factor Graph. Such a DCOP can be represented as a bipartite factor
graph, noted G = 〈Vx, Vf , E〉, which is a generalization of classical constraint
graphs [7]. For SECP, variable nodes are taken from Vx = ν(A)∪ν(Φ), connected
through factors in Vf = U∪C∪Φ by applying the following rules: each xi ∈ ν(A)
is a variable node, each xi ∈ ν(A) is connected to a unary factor ci specifying its
cost, each yj ∈ ν(Φ) is a variable node, each yj and all xi ∈ ν(A) in the scope
of a physical dependency model φj are connected to a factor ϕj , each scene rule
k ∈ R is represented by a utility factor uk connected to all the xi ∈ σ(uk) and
yj ∈ σ(uk).

Example 1 (Factor graph). Figure 1a represents a factor graph where x1, x2, x3

are the state of light bulbs; c1, c2, c3 are their activation costs; u1 is the factor
representing the scene rule and defining the utility depending on a target value
y1
1 for variable y1; y1 represents the theoretical light level in lumen; ϕ1 is the

physical dependency model between the light level and the state of actuators;
s1 and s2 are read-only variable nodes, corresponding to sensor measurements,
represented as dotted diamonds.

Variables and factors imply some computations on the hosting agents,
depending on the size of the domains of the variables, the arity of the fac-
tors, and more generally on the complexity of the factors. Moreover, each link
between two elements which are not hosted on the same agent implies some
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Fig. 1. Factor graph (1a) and a possible deployment (1b) on 3 nodes (a1, a2 and a3)

communication cost, depending on the size of the variable. Therefore, defining
the mapping function μ which assigns each factor graph element to an agent is
a key issue, called here the deployment problem.

Our devices are assumed to be resource constrained and the communica-
tion link between them is implemented with a low power network with limited
throughput (typically 250 kps). Sensing-only devices run as sleepy nodes, mean-
ing that they only turn their communication interface on when they want to
emit a new value. These nodes cannot be reached most of the time and are not
good candidates to host the computations needed for the variable and factor
computations. On the other hand, actuators, and especially light sources, are
usually connected to the main power line and always reachable. As a result our
FG is only hosted on actuator devices, as illustrated in Fig. 1b. In the reminder,
we use the terms “agents” and “nodes” interchangeably to denote these devices.

3 Optimal Deployment of Factor Graph Elements

As discussed in [11], the problem of deploying the factor graph elements on a
set of nodes is equivalent to graph partitioning, which typically falls under the
category of NP-hard problems [2,5]. Typically, such problem can be modeled as
a mathematical optimization problem. To scale up, we propose here an integer
linear program for general purpose, inspired by graph partitioning techniques
from [3,5], and introduce some constraints which are specific to SECP.

Problem 2 (FGDP). Given a factor graph FG = 〈Vx, Vf , E〉 and a set of
agents A the Factor Graph Element Deployment Problem (FGDP) amounts to
assign each element of FG to an agent, while minimizing overall communications
between agents.

First, we introduce some notations. As previously stated, μ is a function that
maps elements of the FG (variables or factors) to nodes. We note μ−1

x (ak) (resp.
μ−1

f (ak)) the set of variables (resp. factors) hosted by agent ak.
In the SECP model it is usual that each actuator node has a computation

capability. We consider variables xi ∈ ν(A) and constraints fj ∈ C related to
each actuator to be owned by their actuator’s node, meaning they will always
be deployed on this specific node. We note ρ(e) ∈ A ∪ {∅} the owner of element
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e ∈ Vx ∪ Vf , with φ(e) = ∅ iff e does not belong to actuator node in A (i.e.
e /∈ C∪ν(A)). We note ρ−1

x (ak) (resp. ρ−1
f (ak)) the set of variables (resp. factors)

owned by agent ak. Remark that an owned element is always hosted on its owner,
i.e. if ρ(e) = ak then μ(e) = ak.

We note com(xi, fj) the communication load induced by the interaction
between xi and fj . For instance, com(xi, fj) is the size of the messages
exchanged between the variable and the factor:

∀xi ∈ Vx, fj ∈ Vf , com(xi, fj) =
{

a · |Dxi
| + b, if (xi, fj) ∈ E

0, otherwise (3)

where a is the number of bytes to represent a value from the domain of variable
xi and b is the size of the message header. Let mem(e), e ∈ Vx ∪ Vf be the
memory footprint for the computation of factor graph element e. For instance,
this is the size in bytes of the hypercube representing the costs in a factor. We
also note cap(ak) the memory capacity in bytes of node ak ∈ A.

Let’s introduce the variables that map factor graph elements to agents, i.e.
xk

i (resp. fk
j ) denotes whether variable xi (resp. factor fj) is deployed in node

ak:

∀xi ∈ Vx, xk
i =

{
1, if μ(xi) = ak

0, otherwise (4)

∀fj ∈ Vf , fk
j =

{
1, if μ(fj) = ak

0, otherwise (5)

Moreover, for linearization purpose we introduce another set of variables (the
αijk’s) which link variables to factors:

∀xi ∈ Vx, fj ∈ Vf , ak ∈ A, αijk = xk
i · fk

j (6)

Now, we are ready to model the factor graph element deployment problem
(FGDP) as a linear program:

minimize
xk

i ,fk
j

∑

(xi,fj)∈E

∑

ak∈A
com(xi, fj) · (1 − αijk) (7)

subject to

∀xi ∈ Vx,
∑

ak∈A
xk

i = 1 (8)

∀fj ∈ Vf ,
∑

ak∈A
fk

j = 1 (9)

∀ak ∈ A,
∑

xi∈Vx

xk
i +

∑

fj∈Vf

fk
j ≥ 1 (10)

∀(xi, fj) ∈ E, αijk ≤ xk
i (11)

∀(xi, fj) ∈ E, αijk ≤ fk
j (12)

∀(xi, fj) ∈ E, αijk ≥ xk
i + fk

j − 1 (13)
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Objective (7) minimizes communications between factor graph elements which
are not deployed on the same node. Constraints (8) and (9) force each factor
graph element to be deployed on exactly one node. Constraint (10) enforces the
use of all the available nodes. Finally, inspired by the linearization proposed in
[1,3], constraints (11) to (13) link xk

i ’s and fk
j ’s to αijk in a linear way.

Problem 3 (ILP-FGDP). We term ILP-FGDP the 0/1 integer linear program
consisting of objective (7) and constraints (8) to (13) which encodes the FGDP
Problem 2.

While Problem 3 is an ILP, and thus it is NP-hard, it can be solved in
reasonable time in a centralized manner with branch-and-cut algorithm [10],
especially when the coefficient matrix is sparse (which is our case here).

To take into account SECP specificities, we add the following constraints
that will reduce the search space by ensuring that each owned element is hosted
by its owner:

∀ak ∈ A,∀xi ∈ ρ−1
x (ak), xk

i = 1 (14)

∀ak ∈ A,∀fj ∈ ρ−1
f (ak), fk

j = 1 (15)

Finally, as SECP deals with devices with limited memory, we add a constraint
to avoid memory capacity overflow:

∀ak ∈ A,
∑

xi∈Vx

mem(xi) · xk
i +

∑

fj∈Vf

mem(fj) · fk
j ≤ cap(ak) (16)

Problem 4 (ILP-SECP-FGDP). The integer linear program consisting of objec-
tive (7) and constraints (8) to (16) is an encoding of Problem 2 for SECP prob-
lems.

Problem 4 adds more constraints but also reduces the number of variables and
thus strongly prunes the search space. Thus, as proposed in [11], each time the
user modify the factor graph by adding/removing/updating a rule, the optimal
deployment is computed. This can also be done in a fully distributed way by using
a distributed simplex, as in [4]. However, computing the solution of this ILP in
a computationally limited node is not realistic. Therefore, we will discuss in the
next section some techniques to repair deployments following some changes.

3.1 Heuristic-Based Deployment for SECP

A simple heuristic is used in [11] for this deployment problem. However, no formal
definition, nor evaluation, of the quality of this heuristic is given. We include here
a brief description of the heuristic,with the notation previously introduced.

As previously, owned actuator variables xi ∈ ν(A) (resp. constraints fj ∈ C)
are naturally hosted their owner agent ρ(xi) (resp. ρ(fj)). Variables and factors
that do not belong to an actuator node must be distributed on existing agents.
Physical models are distributed first, then rules.
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Each pair 〈yj , ϕj〉 representing a physical model is hosted on the agent ak for
which the set {xi|μ(xi) = ak and xi ∈ σ(ϕj)} has the highest cardinality, which
is simply the agent hosting, at this point, the highest number of variables from
the scope of ϕj .

Once all physical models have been distributed, rules factors ul are hosted,
using the same principle, on the agent ak selected such that {xi|μ(xi) =
ak and xi ∈ σ(ul)} has the highest cardinality, i.e. on the agent already hosting
the highest number of variables from their scope.

Notice that this heuristic does not explicitly take into account the memory
constraints of the devices when deploying the FG and attempts to minimize com-
munication simply by grouping related elements, without any formal definition
of the communication load induced by the interaction between two elements of
the factor graph.

3.2 Dynamic SECP

SECP has not been defined as a dynamic problem, but our implementation
aims at optimizing an SECP instance each time a change occurs in the problem
definition (e.g. the value of a sensor changes, which triggers a rule). While not
strictly anytime, Max-Sum maintains a continuously updated estimate of the
best assignment, which is very convenient for this setting ; each time a change
occurs the involved variables and factors will send new messages. However, in
the ambient dynamic and open environment we consider here, some issues due to
dynamicity may arise, especially concerning the deployment of the factor graph
on which Max-Sum operates.

4 Dynamics in the Infrastructure

We want to cope with changes in the infrastructure – i.e. the set of available
agents/devices. Indeed, some questions arise: (i) how to manage factors and
variables hosted by a device which disappeared? (ii) how to re-deploy factors
and variables when a new device appears?

As stated in Sect. 2, the only powerful device in the system is the user-
interface device, which is only available be the user interacts directly with the
system to configure it. As a consequence one major constraint is that when such
appearance and disappearance occur, the devices have to self-adapt without help
of a central computer.

4.1 Notion of Neighborhood

Solving the whole ILP-SECP-FGDP problem for each device appearance and
disappearance cannot be performed on one of the constrained devices the SECP
is made of. Instead we consider adapting the deployment of the factor graph
locally, by only considering a reduced set of agents (termed neighborhood) and
a portion of the factor graph (set of elements hosted by the neighbors). Still, the
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solution to this problem may not be the global optimum w.r.t. ILP-SECP-FGDP,
but potentially requires far less computation than solving the ILP-SECP-FGDP
over the whole FG.

Let’s define the notion of neighborhood as follows:

Definition 1. Given the current assignment μ, the neighborhood of an agent
ak is defined as follows: A[ak] = {a� | ∃(xi, fj) ∈ E,μ(xi) = ak, μ(fj) = a�} ∪
{a� | ∃(xi, fj) ∈ E,μ(fj) = ak, μ(xi) = a�} ∪ {ak}, if the agent ak hosts at least
one FG element, and A[ak] = A otherwise.

Similarly we define the set of edges connected to the neighborhood as E[ak] =
{(xi, fj) | μ(xi), μ(fj) ∈ A[ak]} and the set of neighborhood variables (resp.
factors) as Vx[ak] = {xi | (xi, fj) ∈ E[ak]} (resp. Vf [ak] = {fj | (xi, fj) ∈
E[ak]}).

Example 2 (Neighborhood). Figure 2 represents a SECP with four light bulbs
(with associated variables x1 to x4 and cost factors c1 to c4), two physical models
(〈φ1, y1〉 and 〈φ2, y2〉) and two rules (u1 and u2). The resulting factor graph is
deployed on four devices a1 to a4. The neighborhood A[a2] is composed of the
agents a1, a2 and a4 and is represented in red in Fig. 2. Associated sets E[a2],
Vx[a2] and Vf [a2] are also represented in red.

c1 x1 u1

a1

c2 x2 ϕ1 y1

a2

c3 x3 ϕ2

a3

c4 x4 y2 u2

a4

Fig. 2. The neighborhood for agent a2, noted A[a2], is represented in red (Color figure
online)

4.2 Adaptation to Device Arrival

Here the initial deployment should be revised as to benefit from new computation
and memory capacities. However, we cannot afford solving again Problem 4 on
our constrained devices. Thus we propose here to restrict the revision of the
factor graph to the neighborhood of the newcomer. There are two situations to
consider:
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(i) The device is an actuator owning, and thus already hosting, variables and
factors (e.g. adding a light bulb with its decision variable and cost fac-
tor). The new device, depending on its capabilities (e.g. emitting light in
room #1) has to connect to corresponding physical factors (e.g. light model
for room #1) and/or rule factors (e.g. a rule switching on all light bulb
in room #1)1. If we simply add the newcomer to the system, the result-
ing factor graph deployment will not be optimal in the sense of Problem 4
and could generally be improved by migrating some elements as to reduce
communication costs.

(ii) The device is a non-actuator which only provides computation and memory,
without already hosting variables nor factors. In order to benefit from these
capabilities, existing elements must be relocated to the newcomer. In this
case, the re-deployment process amounts to selecting the elements to migrate
as to optimize communication costs.

We analyse here two mechanisms, that can be used for both cases.

Restricted ILP-SECP-FGDP. The idea here is to encode the deployment
revision problem as a cut version of Problem 4, restricted to the neighborhood
of the newcomer. For each device in this neighborhood, the problem consists
in choosing the elements to host, with respect to communication and memory
capacities.

Problem 5 (ILP-SECP-FGDP[ak]+). ILP-SECP-FGDP[ak]+ consists in ILP-
SECP-FGDP (4) restricted to the set of agents A[ak] and to factor graph
〈Vx[ak], Vf [ak], E[ak]〉.

This problem can be solved either by one agent (if the size of the problem
is not too large) or by the agents composing the neighborhood. In both case it
only requires local and limited knowledge on the global DCOP, which makes it
ideal for large and complex systems. Prior to solving this problem, agents have
to share their elements and costs with other agents involved in the revision.
The worst case, when a newcomer is connected to all other agents, is equivalent
to solve ILP-SECP-FGDP on the whole FG, which may not be reasonable in
terms of response time and communication load. In this case one could devise a
method to select another subset of agents as a neighborhood to solve ILP-SECP-
FGDP[ak]+ on.

In the distributed solving case, several distributed optimization techniques
could meet the requirements like the distributed simplex method designed for
multi-agent assignments [4], keeping exactly the same encoding as ILP-SECP-
FGDP, or dual decomposition methods like the efficient AD3 method [9], that
requires ILP-SECP-FGDP to be encoded using tractable high order potentials
[12], and then implement a distributed decoding of the LP relaxation to assign
integer values to decision variables. However, while providing good optimality,

1 This discovery phase is not discussed in this paper.
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both distributed simplex and AD3 may require several rounds (thus message
exchanges) to reach good quality solutions. For instance, from a conjecture in
[4], the average time complexity of this technique is linear in the diameter of the
graph (O(diam(FG))), with polynomial communication load. In SECP case,
the diameter of the FG is not bounded but mainly depends on the number of
rules and models, and their interdependencies. In the case of real smart home
settings, models and rules will mostly influence local areas (rooms, floor, etc.)
and interdependencies, thus diameters, will be limited.

Newcomer Decision Problem. As to avoid high communication load induced
by the previous techniques, we can consider a more newcomer-centric approach:
the newcomer calls for proposals to move some computations. Based on the costs
of the proposed computations and its own memory capacity, the newcomer has
to choose a set of factor graph elements to host. Let’s formulate this newcomer
decision problem.

Problem 6 (SECP-NDP). Given a newcoming agent and a set of proposed com-
putations to migrate coming from its neighborhood, the Newcomer Decision
Problem (SECP-NDP) amounts to choose computations amongst proposed com-
putations, so that communication load is minimized and memory constraints are
fulfilled.

Each neighbor a� ∈ A[ak] sends its proposal in message 〈V �→k, E�→k, com〉,
where: V �→k ⊂ Vx ∪Vf is the set of elements (factors and variables) it proposes;
E�→k = {(ei, ej) | (ei, ej) ∈ E, ei ∈ V �→k or ej ∈ V �→k} is the set of edges
connected to elements in V �→k; and com is the communication cost function
(potentially restricted to elements in E�→k). We note V k =

⋃
� V �→k and Ek =⋃

� E�→k. We assume the communication cost com(ei, ej) can be assessed only
using information sent by proposers. Let ek

i be a binary variable stating whether
the newcomer ak chooses to host computation ei. The cost of selecting a set of
computations can be formulated as follows:

∑

(ei,ej)∈Ek

com(ei, ej)(ek
i + ek

j − 2 · ek
i · ek

j ) (17)

−
∑

(ei,ej)∈Ek

com(ei, ej) · ek
i · ek

j (18)

which is composed of the sum of the communication costs for the set of edges
which are cut in the new distribution (17), i.e. those for which ek

i XOR ek
j holds

true; minored by the communication costs for the set of edges whose both ends
are now hosted on the same agent (18), i.e. those for which xk

i AND ek
j holds

true. This sum can be simplified and used as the optimization objective for the
newcomer ak, as follows:
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minimize
ek

i ,ek
j

∑

(ei,ej)∈Ek

com(ei, ej)(ek
i + ek

j − 3 · ek
i · ek

j ) (19)

subject to
∑

ei∈V k

mem(ei) · ek
i ≤ cap(ak) (20)

Problem 7 (IQP-SECP-NDP). We term IQP-SECP-NDP the 0/1 integer
quadratic program consisting of quadratic objective (19) and linear constraints
(20) which encodes SECP-NDP.

This problem falls into the quadratic knapsack problem (QKP) framework.
Indeed, Eq. (19) can be reformulated as follows:

minimize
ek

i ,ek
j

∑

ei∈V k

ek
i · p(ei) +

∑

ei∈V k

ej∈V k

ei · ej · P(ei, ej) (21)

with

p(ei) =
∑

ej∈V k+

com(ei, ej), ∀ei ∈ V k (22)

P(ei, ej) =
{−3 · com(ei, ej), if (ei, ej) ∈ Ek

0, otherwise (23)

and V k+ = {ei | (ei, ej) ∈ Ek or (ej , ei) ∈ Ek} is the set of elements connected to
at least one edge in Ek, even the ones that are not movable (thus, not necessarily
proposed for migration).

QKP can be linearized [1] and then solved using a centralized branch-and-
cut method or a distributed optimization method, as discussed earlier. Alter-
natively, QKP is solvable by dynamic programming, but without optimality
guarantees. Only requiring O(cap(ak).|V k|) space, and O(cap(ak).|V k|2) time,
such a dynamic programming approach seems realistic in our case [8].

Besides, instead of using its whole memory capacity cap(ak), device ak may
also set a limit capacity below its maximum one (e.g. the average memory used
by its neighbors) as not to host more computation than others, in general. As
to respect constraint (10) in Problem 4, we can add the following constraints to
ak’s decision to enforce hosting at least one element:

|ρ−1(ak)| +
∑

ei∈V k

ek
i ≥ 1 (24)

∀a� ∈ A[ak] \ ak, |μ−1(a�)| −
∑

ei∈V �→k

ek
i ≥ 1 (25)

Constraint (24) ensures that the newcomer hosts at least one computation. Con-
straint (25) avoids migrating all elements from one of the proposing agents and
requires the newcomer to know the number of elements hosted by a�.
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From the proposer side, the decision of choosing which elements to propose
is also an issue, that may impact the newcomer’s decision. In this paper, we only
consider proposing all the “movable” elements, i.e. those that are hosted but not
owned by the agent (physical factors and variables, and rules utility factors).

4.3 Device Removal

Another common problem in ambient environments is that some devices may fail
or get unreachable for some reason. In this case, for belief-propagation algorithms
to operate properly, we need to fix the deployment: factor and variables owned
by the departed agent simply disappear from the factor graph while elements
hosted on it must be relocated to an available agent. We can identify two cases:
safe removal (the device leaves the system voluntarily and can migrate elements
before leaving), and unsafe removal (when the device fails without migrating its
hosted elements).

Safe removal is equivalent to the device arrival, but the element allocation
is made over the neighborhood of the removed agents (excluded). Here, solving
IQP-SECP-NDP, is not relevant, because no agent is at the center of the decision.
We will not elaborate on this case.

Unsafe removal is more complex, and implies some technicalities. Here, we
assume that devices are aware of disappearance of any device from their neigh-
borhood (using keepalive signals). In such case, one could solve ILP-SECP-FGDP
for the entire new set of devices, which we cannot afford within a single device.
Therefore, we opt here for a more local and heuristic approach. The idea is to
solve ILP-SECP-FGDP restricted to agents that were directly connected to the
dead device.

We note Vx[ak]− = Vx[ak] � ρ−1
x (ak), Vf [ak]− = Vf [ak] � ρ−1

f (ak) and
E[ak]− = E[ak] ∩ (Vx[ak]− × Vf [ak]−) the sets of elements and edges involved
in the redistribution. We note cap−(ak) = cap(ak) − ∑

ei∈ρ−1(ak)
mem(ei) the

memory capacity of any ak, obtained by subtracting from cap(ak) the memory
footprint of computations hosted on ak and not involved in the redistribution.

Problem 8 (ILP-SECP-FGDP[ak]−). ILP-SECP-FGDP[ak]− consists in ILP-
SECP-FGDP restricted to the set of agents A[ak] � {ak}, the graph
〈Vx[ak]−, Vf [ak]−, E[ak]−〉, and where cap is replaced by cap−.

To solve ILP-SECP-FGDP[ak]− some requirements are to be fulfilled: (a)
devices have to know how to compute elements which share an edge with an
element they host and the corresponding communication costs; (b) devices have
to know to which devices they send messages; (c) devices need to have enough
memory to host new elements.

Requirement (a) imply giving such information during initial deployment and
revision phases. Requirement (b) depends upon the discovery mechanism when
an agent hosts new elements, for example when new devices are added. Finally,
requirement (c) may not be reached if the neighboring agents of a disappearing
one don’t have enough memory all together. In this case, the neighborhood can
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be extended by neighbors of neighbors until memory is sufficient. Once these
requirements met, agents can solve ILP-SECP-FGDP[ak]− on the limited set of
elements and the neighboring devices, as it is the case for a newcoming device
(see Sect. 4.2).

5 Discussion on Other Dynamics

Up to now, we have discussed dynamics involved by adding or removing devices.
However, even for a same set of devices, other dynamics may occur, since our
socio-technical system is both connected to users and a sensed environment.

5.1 Changing SECP Elements

One reason to alter the deployed FG, is for a user to add or remove a rule to
the system. However, in this case, since the user is interacting with the system
through a generally powerful dedicated device (e.g. home computer, tablet) we
can rely on this device to perform a full deployment of the FG, as in Sect. 3. The
second reason to alter the FG is to add/remove actuator variables and costs,
which only occurs when adding/removing devices, as in Sects. 4.2 and 4.3. The
third reason to alter the FG, is to add new physical models. This is the most
difficult part. Indeed, here we assume these physical models are provided (e.g.
a calibration phase). Adding a new physical model only makes sense when the
user specifies a new rule with a new physical model (related to a new sensor) he
has obtained. For instance, a user installs a sound level sensor and add a new
rule which exploits the sound level somehow. Such a situation, once again, only
occurs when the user interacts through his dedicated device with the system.
Thus, deploying the FG can be done in a centralized way, as in Sect. 3.

5.2 Changing Factors Following an Environmental Change

Our system is deployed in a dynamic environment, where newly sensed data may
imply that some rules activates or not. Up to now, we discussed the deployment
of the whole FG, but practically, all rules are not necessarily active all the
time. Rules, and therefore some factors and variables are only active when some
sensed state is reached. Such activation/deactivation may greatly impact the
performance of the system, by adding/removing computations and loops in the
factor graph. Our deployment model does not take this into account. In fact, it
considers the worst case when all the elements are active.

6 Experiments

As to evaluate the performances of the proposed repair techniques, we simulate
a smart home where devices perform Max-Sum as to find a good configuration
considering user preferences and energy consumption. Note that the approaches
discussed here for the FGDP aims as deploying the FG on which Max-Sum
operates to solve the SECP proposed in [11].
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6.1 Simulated Smart Home Scenario

In our simulations, two types of events may occur: device arrival (in) and
unsafe device removal (out). In case of device arrival, we use either ILP-SECP-
FGDP[ak]+, which is solved using a classical ILP solver within one node (using
GLPK in our simulator), or IQP-SECP-NDP, which is solved using a dedi-
cated dynamic program (embedded in our simulator, in Python)2, both defined
in Sect. 4.2. In case of device removal, as discussed in Sect. 4.3, ILP-SECP-
FGDP[ak]− is solved using GLPK. Whatever the type of event, the best ILP-
SECP-FGDP solution (computed with GLPK), and the solution provided by
centralized deployment heuristic from [11] are computed to benchmark afore-
mentioned methods.

Desk

Living
Room

TV

Kitchen

Entrance

Stairs

ld1

ld2
llv3

llv2

llv1ltv1

ltv2 ltv3

lk1 lk2

lk3

le1

ls1

Fig. 3. Map of a simulated smart home, and corresponding initial physical models,
actuators and costs.

In a first series of experiments, we simulate the first floor of a smart home,
as represented in Fig. 3, which is initially composed of 13 actuators (light bulbs
and their respective costs), 6 physical models (one for each space), and 5 user
rules (not represented in Fig. 3, for clarity). For communication costs, a = 5,
b = 100, and the default agent memory capacity (cap) is set to 200 memory
units (one unit represents the space to store one value, e.g. 32 bits). Figure 4
traces performances of repair solutions on a scripted scenario where devices are

2 Such discrepancies in terms of solution method implementation are the reason not
to plot computation times.
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added and removed at runtime. Each of these 40 events is followed by a repair
phase using the proposed methods.

Fig. 4. Optimality (4a), and memory usage (4b) of the deployment during the simula-
tion (standard deviation, min and max).

Figure 4a shows the optimality of the repaired deployments, computed as
the ratio between the repaired cost and the best cost (real ILP-SECP-FGDP
optimum). The centralized deployment heuristic used in [11], labeled “Rust
et al. 2016” on the figure, is also plotted for comparison.

Clearly, with both approaches, out events tends to degrade the optimality of
the deployment, while still maintaining it at a very competitive level, compared
to a full deployment of the whole factor graph. Interestingly, in events improve
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optimality, meaning that in real systems where on average out are approximately
balanced by in, the deployment should keep a very good quality level.

Figure 4b presents the standard deviation (and min and max) of memory
usage over all the devices, after each event. For comparison, it also includes
the values obtained with and optimal distribution (with ILP-SECP-FGDP) and
the heuristic from [11]. While our approaches are not specifically designed to
ensure a fair memory load share among devices, both distributed methods do
not lead to an excessive accumulation of computations on a single device and
perform at least as well as the two centralized approaches. Solving ILP-SECP-
FGDP[ak]+ is a better choice in this regard, which can be explained by the fact
that it allows relocation of computation on the full neighborhood, while solving
IQP-SECP-NDP only allows migration of computations to the newcomer.

Fig. 5. Influence of the pin probability on the optimality (5a) and memory usage (5b)
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In a second series of experiments, we simulate the whole house with 23 actu-
ators, 9 physical models and 9 rules. Here we evaluate the robustness of each
repair techniques with more and more device removal. Figure 5 shows the aver-
age performances over 10 simulations after 20 events, in terms of optimality
(computed as previously) with a varying event type probability. At each event
generation, its type is determined using pin, i.e. the probability for en event to be
in. The higher pin, the easier the adaptation is, since more devices are probably
added. ILP-SECP-FGDP[ak]+ combined with ILP-SECP-FGDP[ak]− presents
very good resilience, since it offers more than 80% optimality with pin ≥ 0.35
(approx. 2 removals for 1 arrival). IQP-SECP-NDP combined with ILP-SECP-
FGDP[ak]− is always 5 to 15% lower. It is remarkable that these local repair
techniques yield better distributions, from a communication point of view, than
the heuristic from [11], even though it is a centralized approach and has access
to information about the whole factor graph.

Figure 5b represents the standard deviation (and min and max) of memory
usage over all devices, at the last event of the scenario for each value of pin. No
notable difference can be observed among the various techniques, both local and
centralized.

Finally, ILP-SECP-FGDP[ak]+ presents better optimality, but requires much
more information to be computed, whilst IQP-SECP-NDP is in average 10%
worse in communication cost, and equivalent in average memory usage.

6.2 Randomly Generated SECPs

In a third series of experiments, we evaluate the influence of the number of rules
in the SECP on the performance of the distribution techniques. Here we generate
10 pairs of SECP and scenarios (containing 20 events) for each combination of
pin and nr where 0.3 ≤ pin ≤ 0.7 and 10 ≤ nr ≤ 50 is the number of rules (with
a step of 10). All SECP are generated randomly with 30 lights and 7 models
and map to connected factor graphs, meaning that an increase on the number
of rules also results in an increase on the factor graph density.

Figure 6 shows the average performance in term of communication optimality.
We can see that the good resilience of the local distribution repair approaches is
not really impacted by the number of rules in the system; results are very simi-
lar to those of the second experiment for both ILP-SECP-FGDP[ak]+ combined
with ILP-SECP-FGDP[ak]− and IQP-SECP-NDP combined with ILP-SECP-
FGDP[ak]−. However, we notice that the heuristic from [11] performs much
better than on the second experiment and consistently returns better distribu-
tion that IQP-SECP-NDP combined with ILP-SECP-FGDP[ak]−. This can be
explained by the fact that the SECP used here are generated randomly while
the SECP used for previous experiments were modeling actual real smart homes.
Real SECP, even when their factor graph is connected, tends to have some locally
semi-independent subgraphs, which roughly maps the various rooms and zones
of a house. This structure is not present is random SECP, which tends to be
much more uniform. This exhibits the high impact of the topology of the factor
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Fig. 6. Influence of the pin probability on the optimality for SECP with an increasing
number of rules
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Fig. 7. Influence of the pin probability on the memory usage (standard deviation, min
and max) for SECP with an increasing number of rules
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graph on the efficiency of the distribution approach. It is remarkable that the
two local approaches presented in this paper are not much impacted by this
change in topology.

Figure 7 shows the standard deviation (and min and max) of memory usage
over all devices. As for communication, the number of rules does not impacts
significantly the fair distribution of memory load among devices. Here again,
the factor graph topology seems to impact the results: all approaches tends to
produce more well-balanced distribution than they did with SECP modeling real
houses.

7 Conclusions

In this paper we discussed and analyzed the problem of deploying factor graph
elements within an open infrastructure composed of constrained devices. We
model the deployment problem as a graph partitioning problem, encoded as a
binary integer linear problem, to be solved each time the user pushes new rules
in the system. We also discussed several repair techniques to cope with device
arrival and removal occurring at runtime, by solving the original deployment
problem on a restricted set of devices and factor graph elements, or implement-
ing a newcomer-centric approach. Experiments we made on a simulated envi-
ronment show that the proposed local and heuristic techniques have competitive
optimality levels in comparison to restarting the deployment from scratch. Addi-
tionally, these techniques only use limited and local knowledge and thus could be
used in arbitrarily large systems. As mentioned when dealing with newcoming
agents, the decision of choosing which elements to propose is also an issue we did
not investigate. Here, we might consider basing agents’ decisions on preferences
or history of past computations and messages exchange, as to assess elements
to send. Besides, we didn’t discuss the update of physical models following the
appearance/disappearance of devices. We let this problem, related to machine
learning, to future research.
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Abstract. Collaboration among human agents with different expertise
and capabilities is becoming increasingly pervasive and important for
developing new products, providing patient-centered health care, pro-
pelling scientific advance, and solving social issues. When the roles of the
agents in such collaborative teamwork are highly interdependent, the per-
formance of the team will rely not only on each team member’s individual
capabilities but also on their shared understanding and mutual support.
Without any understanding in other team members’ area of expertise,
the team members may not be able to work together efficiently due to the
high cost of communication and the individual decisions made by differ-
ent team members may even lead to undesirable results for the team. To
improve collaboration and the overall performance of the team, the team
members can teach each other and learn from each other, and such peer-
teaching practice has shown to have great benefit in various domains such
as interdisciplinary research collaboration and collaborative health care.
However, the amount of time and effort the team members can spend on
peer-teaching is often limited. In this paper, we focus on finding the best
peer teaching plan to optimize the performance of the team, given the
limited teaching and learning capacity. We (i) provide a formal model
of the Peer Teaching problem; (ii) present hardness results for the prob-
lem in the general setting, and the subclasses of problems with additive
utility functions and submodular utility functions; (iii) propose a poly-
nomial time exact algorithm for problems with additive utility function,
as well as a polynomial time approximation algorithm for problems with
submodular utility functions.

Keywords: Peer teaching · Teamwork · Optimization

1 Introduction

As we welcome a new age of knowledge segmentation, teamwork is not only
escalating in its importance but also shifting in its nature. Its traditional focus
on distributing and sharing workload is quickly replaced by the focus on sharing
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the knowledge and expertise needed for the relevant goal. Such transition is evi-
denced by, for example, researchers from different domains collaborating on an
interdisciplinary research project, or nurse-physician interprofessional collabora-
tion in health care. However, forming a team with diverse skill sets is far from
the end of the story. Richter et al. [16] show that putting students into interdis-
ciplinary teams and even teaching teamwork skills are not sufficient for effective
interdisciplinary collaboration. It is often more desirable for agents to learn some
of their teammates’ knowledge, than having each agent solely responsible for her
own expertise. Bridges et al. [4] find that understanding others’ professions in
the healthcare team is important in interprofessional collaboration and helps
team member better understand her own duties. To have shared knowledge and
further enhance the team performance, an efficient and effective way is to have
the team members learn from each other. In health and social care, such peer-
teaching is viewed as part of the interprofessional education [6,21], which enables
effective collaborative practice [2]. However, the amount of time and effort the
team members can spend on peer-teaching is often limited, and it is impossible
to ask the team members to gain all of their teammates’ knowledge. As such,
determining an optimal peer teaching plan is crucial in boosting team perfor-
mance.

The growing attention to teamwork in the society gives rise to the rapid
development of research on team collaboration. Team formation, for instance,
addresses the problem of selecting the best team member under limited resources
[9,10,18]. Various models for team coordination have been proposed, especially
when team members can hardly communicate with each other [1,19]. Works
have also been done in the performance measures for teams [13], human-agent
teams [22], and communication models [5]. However, few works explicitly con-
sider leveraging the team’s diversity and enhancing team performance by having
team members teach each other.

Although existing literature on team collaboration does not emphasize peer
teaching, the process of, possibly informal, learning from teammates does happen
in many teamwork scenarios. Team members often help each other to enhance
knowledge in certain topics, to build certain skills, to improve certain ability, or
to develop certain capabilities.1 However, there lacks a formal model to study
and optimize this process. Our first contribution is the formalization of the peer
teaching problem. We characterize a group based on its members and relevant
expertise. By quantifying the choices and limits of teaching and learning inside
the group, we model the peer teaching problem as a constrained optimization
problem.

After formalizing the model, it is natural and important to find the best
plan for peer teaching, and we focus on this problem in the rest of the paper. We
show that the peer teaching problem in its most general form is hard. However,
we analyze two key settings with additive and submodular utility functions and
propose two algorithms to find the optimal peer teaching plan. In the first case,

1 In the rest of the paper, we collectively refer to these abstract concepts as skills
which can be taught and learned.
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we present an exact polynomial time algorithm, and in the second case, we
present a polynomial time approximation algorithm.

2 Related Work

Peer teaching relates to yet differentiates itself from several topics in teamwork
which have been studied. Liemhetcharat and Veloso [11] introduce teams with
learning agents, where agents have access to external training resources rather
than learning from their teammates. Jumadinova et al. [7] treat the peer teaching
process as part of a decision problem. However, their work does not explicitly
consider the teaching and learning constraints, which are essential to the struc-
ture of the peer teaching problem. Compared to the study of cross-training,
which refers to agents being trained the expertise of their teammates and is
shown to improve the team’s performance [14], peer teaching emphasizes the
notion of agents autonomously learning from teammates and is thus bounded by
various capacity constraints. Several pieces of work on team formation consider
the diversity of skills and the synergy among team members [10,12,18]. Peer
teaching problem differs from these works in treating a team as given and stud-
ies the teaching plan to optimize team performance. Other works focus on the
scenario where team members from diverse communities can hardly coordinate
prior to collaboration and only loosely coordinate during the collaboration [1,19].
The peer teaching problem applies to this setting and provides the learning and
teaching dynamics which the above-mentioned works do not consider.

Much work has been done on multiagent MDP to study the coordination
among individual agents on a team [3]. One specific line of research is informa-
tion sharing, which studies how agents decide when and what observations to
share in a partially observable multiagent MDP framework [17,23]. Peer teach-
ing differs from this area of research in the special nature of knowledge and puts
less emphasis on the duration of the process.

We also observe the recent attention on cross-domain collaboration. While
this is a place where the process of peer teaching arises frequently, works in
this area [20,24] usually focus on partner recommendation, which is in nature
different from our problem.

3 Peer Teaching Problem

In a peer teaching problem, we have a set of agents with the same goal but with
different areas of expertise. Before they start working as a team, they can help
other team members gain expertise through teaching, and such peer teaching
can lead to an improvement in the team performance. However, often there is a
limit on how much time and effort an agent can spend on teaching and learning.
Therefore, we need to find the best feasible peer teaching plan which can lead
to the highest improvement in team performance.

We model the peer teaching problem as a constrained optimization problem
defined over a group profile.
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Definition 1. The group profile G = (A,S,M, f) contains the following

– A = {a1, . . . , an} denotes the set of agents.
– S = {s1, . . . , sm} denotes the set of areas of expertise, where the area of

expertise can be a skill or a type of knowledge.
– M ⊆ A × S denotes the initial agent-expertise mapping of the group. (a, s) ∈

M means agent a has expertise in s before any peer teaching takes place. We
denote by Ma(ai) = {sj |(ai, sj) ∈ M} the set of areas of expertise that agent
i has and Ms(sj) = {ai|(ai, sj) ∈ M} the set of agents that has expertise in
sj. We denote by M̄ = A × S \ M the complement of M .

– f : 2M̄ → R is the utility function. A learning profile M ′ ⊆ M̄ is a set
of learning events, and a learning event (a, s) ∈ M ′ means agent a gains
some expertise in s from some other agent during peer teaching. The utility
function indicates how much improvement a learning profile can bring to the
team performance.

Next, we introduce several definitions towards the definition of the collection
of all feasible learning profiles. T = {T1, . . . , Tn} denotes the teaching capabilities
of the agents. Ti ⊆ Ma(ai) and sj ∈ Ti means agent ai is capable of helping other
agents to gain expertise in sj through teaching. Differentiating Ti from Ma(ai)
provides a way to quantify the level of expertise of each agent, as one might
expect that the ability to teach others implies a high level of proficiency. A peer
teaching plan is defined as a set of triplets of (teacher, expertise, learner), i.e.,
Θ = {(ai1 , sj , ai2)|(ai1 , sj) ∈ Ti1 , (ai2 , sj) ∈ M̄}. A peer teaching plan is feasible
if it satisfies teaching and learning capacity constraints defined by ct

i, ct, and cl
i.

ct
i represents the maximum number of expertise agent i can teach, ct represents

the maximum number of agents that any agent can teach simultaneously for
one expertise and cl

i represents the maximum number of expertise one can gain
through peer teaching. A learning profile M ′ is feasible if there exists a feasible
peer teaching plan ΘM ′ which realizes all learning events in M ′. Given a group
profile G and the collection of all feasible learning profiles L, the peer teaching
problem is to find a learning profile M∗ ∈ L to optimize the utility function.

Figure 1 provides an example of the peer teaching problem. For illustration
purpose, it has three agents and three areas of expertise. The right side of the
graph is a bipartite graph which represents each agent’s teaching capability.
In this example, we assume Ti = Ma(ai), i.e., an agent is capable of teaching
anything that he currently has expertise in. The bipartite graph on the left shows
all possible learning events.

4 Optimizing Peer Teaching

The definition of the peer teaching problem leaves much freedom for deciding
the dynamics of the peer teaching process. As we show below, without further
structures in the problem, the peer teaching problem is hard.
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Fig. 1. The knowledge graph and the graph of all possible learning events

Theorem 1. The peer teaching problem in its general form is NP-hard.

Proof. We prove the hardness of the peer teaching problem by reducing from
the maximum cut problem. For an arbitrary weighted undirected graph G =
(V,E,W ) with |V | = n nodes, we consider a corresponding peer teaching prob-
lem G = (A,S,M, f), where |A| = |S| = n, Ti = Ma(ai) = {sj |j �= i}, and
Ms(sj) = {ai|i �= j}. Thus, we have M̄ = {(ai, si)|i = 1, . . . , n}. For any subset
MI = {(ai, si)|i ∈ I} of M̄ , we assign the weight of the cut VI = {vi|i ∈ I}
in graph G to be the utility value f(MI). The value f(MI) can be computed
in polynomial time. In addition, we ignore teaching and learning capacity con-
straints by setting ct

i, c
t, cl

i > 1. Therefore, a subset of nodes VI in G yields the
maximum cut if and only if the corresponding learning profile MI maximizes the
utility function f in the peer teaching problem G. �

4.1 Additive Utility Function

The hardness result for the general peer teaching problem calls for more structure
in the problem setup. In this subsection, we study a particular type of peer
teaching problem characterized by additive utility functions, and present an
exact polynomial time algorithm for finding the optimal peer teaching plan.

Consider a group profile G = (A,S,M, f), where f is such that for all P,Q ⊆
M̄ , f(P ∪ Q) + f(P ∩ Q) = f(P ) + f(Q). Equivalently, we assign a utility vij to
each learning event (ai, sj) ∈ M̄ , and define f(P ) =

∑
(ai,sj)∈P vij for a learning

profile P ⊆ M̄ . This model is natural, for example, when a team is assessed based
on the ability of its members individually. As defined in Sect. 3, each agent ai has
teaching capacity ct

i and learning capacity cl
i. For this subsection, we assume all

teaching happens in a one-on-one fashion, i.e., ct = 1. We define lij = 1 if agent
ai learns skill sj , and tij = 1 if agent ai teaches skill sj , and zero otherwise. The
problem can then be formulated as the following integer linear program (ILP).

minimize −
∑

i

∑

j

vij lij

subject to
∑

j

lij ≤ cl
i, ∀i = 1, . . . , n (X)

∑

j

tij ≤ ct
i, ∀i = 1, . . . , n (Y )
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∑

i

lij =
∑

i

tij , ∀j = 1, . . . , m (Z)

lij , tij ∈ {0, 1}, ∀i = 1, . . . , n,∀j = 1, . . . ,m

While solving ILP is hard in general, this problem has the structure of network
flow and thus solving the linear program relaxation of the ILP can directly lead
to an optimal integer solution [15].

Theorem 2. The peer teaching problem with additive utility function and ct = 1
can be solved in polynomial time.

Proof. Recall that a square, integer matrix B is unimodular if det(B) = ±1. An
integer matrix A is totally unimodular if every square, nonsingular submatrix
of A is unimodular. As a sufficient condition, an integer matrix A whose only
nonzero entries are ±1 is totally unimodular if no column of A contains more
than two nonzero elements and we may partition the rows of A into I1 and I2
such that

– if a column has two entries of the same sign, their rows are in different sets;
– if a column has two entries of different signs, their rows are in the same set.

If A is totally unimodular, and b, u, l are integer vectors, then all the vertices of
the polyhedron P = {x |Ax = b, u ≤ x ≤ l} are integer points.

Consider the linear program (LP) relaxation of the ILP above. The feasible
polyhedron of the relaxed LP can be written as P = {x |Ax = b, 0 ≤ x ≤ 1},
where we collect all the constraints in X,Y,Z into the equation Ax = b by
adding the necessary slack variables. Observe that each column of A has at most
two nonzero entries, which are 1 or −1. Furthermore, we may partition the rows
of A into two sets, one containing all constraints in X, the other containing all
constraints in Y and Z. Such a partition satisfies the conditions for a totally
unimodular matrix as mentioned above. Therefore, it follows that solving the
relaxed LP will guarantee us an integer optimal solution. Applying ellipsoid
method for the relaxed LP leads to an algorithm that finds the optimal solution
in polynomial time. 
�

Below we show the running time of the LP compared to two baseline algo-
rithms: the brute force algorithm and the greedy algorithm. The brute force
algorithm examines the utility value of all possible learning profiles. The greedy
algorithm starts with the learning event with highest utility, and adds the most
beneficial learning event as long as the learning profile remains feasible. The
utility values vij are generated independently from a uniform distribution on
integers between 0 and 1000. The teaching and learning capacities cl

i, c
t
i are gen-

erated independently uniformly on integers between 1 and m = |S|. We use
the linprog function in MATLAB R2016a and run on a PC with Intel Core
i7-4700MQ processor and 4 GB RAM.

In the experiments we fix the number of agents |A| = n and vary the number
of skills |S| = m. As shown in Fig. 2a, the brute force algorithm quickly blows
up, making it infeasible to test its running time beyond n = 3, while the running
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Fig. 2. The running time of the three algorithms. For (a), |A| = n is fixed at 3; for
(b), n is fixed at 20; for (c), n is fixed at 200. The standard deviation across five runs
is also shown. For (a) and (b), the data are averages over 1000 runs; for (c), the data
are averages over 30 runs.

time of the greedy algorithm is negligible compared to others. In Fig. 2b, where
the problem size is relatively small, the greedy algorithm outperforms the LP in
running time. However, as shown in Fig. 2c, the LP becomes the better one as
the problem grows larger.

We also measure the accuracy of the greedy algorithm by the ratio between
its output and the LP optimal utility, as shown in Fig. 3. In general, it gives a
relatively good approximation, and its accuracy improves as the problem size
grows.

4.2 Submodular Utility Function

Under many circumstances, more teaching may not benefit the team as much if
the agents are already learning a lot from each other. For instance, given the lim-
ited time in a hackathon, students should not bother learning their teammates’

Fig. 3. The accuracy of the greedy algorithm. For (a), |A| = n is fixed at 3; for (b),
n is fixed at 20; for (c), n is fixed at 200. For (a) and (b), the data are averages over
1000 runs; for (c), the data are averages over 30 runs.
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programming languages if for each potentially useful language there are already
two or three members who can use it. We may use submodular utility functions
to model this diminishing return. To proceed, recall the following definitions.

Definition 2. A function f : 2X → R is submodular if for any A,B ⊆ X,
f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B). X is referred to as the ground set of f .

Definition 3. Let I ⊆ 2X . If a pair N = (X, I) satisfies

– Downwards closure: If P ∈ I,Q ⊆ P , then Q ∈ I.
– Exchange property: If P,Q ∈ I, |P | > |Q|, then there exists p ∈ P\Q such

that Q ∪ {p} ∈ I.

then N is a matroid. I is called the collection of independent sets.

In this subsection, we assume that each learning profile P ⊆ M̄ , feasible or
not, is assigned a utility f(P ), where f is a submodular function. The solution to
the peer teaching problem is a feasible learning profile P ∗ ∈ L which maximizes
the utility among all feasible learning profiles. To add more structures to the
problem, we make the following rules (R1, R2) and assumptions (A1, A2).

– (R1) An agent can teach at most one expertise, but to multiple agents possi-
bly. Equivalently, we set ct

i = 1 for all ai ∈ A, and set ct = n.
– (R2) An agent can learn at most one expertise. Equivalently, we set cl

i = 1
for all ai ∈ A.

– (A1) An agent may have multiple expertise but is only able to teach one or
two. Equivalently, we assume |Ti| = 1 or 2 for all ai ∈ A.

– (A2) For each expertise, at least two agents can teach it. Equivalently, we
assume for all sk ∈ S, there exist i �= j such that sk ∈ Ti ∩ Tj .

The two assumptions might not seem very realistic, but we will relax them later.
Recall that we refer to n = |A| as the number of agents, and m = |S| as the
number of skills. Consider the knowledge graph in Fig. 1. By A1, the number
of outgoing edges from agent nodes is less than or equal to 2n. By A2, the
number of incoming edges to skill nodes is greater than or equal to 2m. Thus,
we have |A| ≥ |S|. These two assumptions allow us to exploit the structure in
the feasible learning profiles. More specifically, assuming all the given conditions
in this subsection, we have the following theorem.

Theorem 3. For a given group profile G = (A,S,M, f), N = (M̄, L) is a
matroid.

Proof. Downwards closure is obvious, we prove the exchange property. Let
P,Q ∈ L be two feasible learning profiles, and |P | > |Q|. By R2 and |P | > |Q|,
there exists an agent ai who is taught in P but not in Q. Suppose in a peer
teaching plan ΘP corresponding to P , agent aj teaches ai the expertise sk. Let
ΘQ be a peer teaching plan corresponding to Q. We discuss the following possible
cases:
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Case 1: In ΘQ, someone is teaching the expertise sk. According to R1, we
can add the learning event (ai, sk) to Q, and will maintain feasibility.

Case 2: In ΘQ, no one is teaching the expertise sk, but aj is not teaching
anything. We can let aj teach this expertise sk to ai, and add the learning event
(ai, sk) to Q, and will maintain feasibility.

Case 3: In ΘQ, no one is teaching the expertise sk, and aj is teaching some-
thing else. By A2, suppose aj and al know expertise sk and are both teaching
something else, say sj and sl. Let aj′ be another person who knows sj , and al′ be
another person who knows sl. Note that aj′ and al′ can be the same agent, but
they must be different from aj and al by A1. If aj′ (or al′) is teaching something
else, we repeat the same argument. As this argument propagates, we must be
able to find an agent a∗ who is not teaching anything, because n ≥ m and sk

is not being taught, there must be an agent who is not teaching. Furthermore,
by A1, this agent a∗ knows some expertise. Then, we can propagate back, and
eventually find one of aj and al to teach sk, without impacting the group’s other
teaching ability. Once an agent is teaching sk, we can add the learning event
(ai, sk) to Q, and will maintain feasibility. �

With this theorem, the peer teaching problem reduces to maximizing a sub-
modular function subject to a matroid constraint. Unlike minimization, max-
imizing a submodular function is NP-hard, however. To find the best peer
teaching strategy, we may use the algorithm, which we refer to as MAX, pro-
posed by Lee et al. [8]. This is a polynomial time algorithm which achieves a
1/(4 + ε)-approximation, assuming a value oracle model, i.e. given a learning
profile P ⊆ M̄ , the algorithm can access the utility value f(P ).

Algorithm 1. FEASIBLE
Input: Learning profile P ⊆ M̄

if any agent learns more than 1 expertise then
Output: false

end if
Get the set of expertise S′ that are being learned. Find a maximum matching R on
the knowledge graph (Fig. 1) restricted to A and S′.
if |R| = |S′| then

Output: true
else

Output: false
end if

The main routine is MAX. LOCAL-SEARCH is a greedy algorithm which
improves the current learning profile by adding, deleting, or substituting one
learning event at a time. At each step, it checks whether the proposed better
learning profile is feasible. Lee et al. [8] do not explicitly provide an algorithm for
checking whether a set is independent. However, in our setting the feasibility of
a learning profile is not trivial to verify. In FEASIBLE, we consider the bipartite
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Algorithm 2. LOCAL-SEARCH
Input: Ground set V , value oracle access to submodular utility f

Set P = {e0}, where e0 is the single learning event with highest utility
while we can do one of the following operations do

Delete: If ∃e ∈ P such that f(P\{e}) ≥ (1 + ε/|V |4)f(P ), then set P = P\{e}.
Exchange: If ∃e /∈ P, e′ ∈ P ∪ {φ} such that f(P\{e′} ∪ {e}) ≥ (1 + ε/|V |4)f(P )
and P\{e′} ∪ {e} is feasible, then set P = P\{e′} ∪ {e}.

end while
Output: learning profile P

Algorithm 3. MAX
Set V1 = M̄ .
Do LOCAL-SEARCH with ground set V1, get solution P1.
Set V2 = M̄\P1.
Do LOCAL-SEARCH with ground set V2, get solution P2.
Output: RETURN the learning profile Pi whose f(Pi) is greater

graph representing the current knowledge of the agents (Fig. 1). If all learned
expertise are being matched in a maximum matching between agents and the
expertise being learned in the learning profile, the learning profile is feasible
because by R1 each agent can teach at most one expertise. Finally, by doing
LOCAL-SEARCH twice, the algorithm MAX achieves the approximation bound
of 1

4+ε .
While MAX is guaranteed to run in polynomial time and achieves a good

approximation bound, we wish to relax the Assumptions A1 and A2. First, we
consider A2, that for each expertise, there are at least two agents who can
teach it.

Theorem 4. Given A1, we may replace A2 with the assumption that |A| =
n ≥ m = |S|. If we treat n as fixed, we may remove A2, while still having a
polynomial time algorithm with the same approximation bound.

Proof. It is an uninteresting case where no agent knows some skill si. Suppose
only one agent aj can teach some expertise si, i.e., si /∈ Tk if k �= j. If aj can
only teach this expertise si, then this particular violation of A2 does not fail
N = (M̄, L) from being a matroid. Consider the proof of Theorem 3: if aj is
the teaching agent aj that we picked in P , then we would not even get to Case
3. Otherwise, the pair (aj , si) can be viewed as isolated, and the argument for
Case 3 still holds.

If in addition to expertise si, agent aj can also teach expertise sk, i.e. Tj =
{si, sk}. If sk also violates A2 such that nobody besides aj can teach sk, we may
run the algorithm MAX twice and take the better output, where in each run aj

can only teach one of si and sk. If at least one other agent al can teach sk, then
we can consider the expertise al has, and trim and rearrange their expertise in
a way where the only violations of A2 are isolated agent-expertise pairs and the
collection of feasible learning profiles L remain unchanged. This is achievable
because we instead assume n ≥ m.
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In fact, once we replace A2 with the assumption that n ≥ m, we may also
relax this condition. Suppose we have more expertise than agents, i.e. m > n.
Let {Sn

i } be the collection of all subsets of S where |Sn
i | = n. We apply the

algorithm MAX to the each of the induced group profiles Gi = (A,Sn
i ,Mi, fi).

Since we assume each agent teaches at most one expertise, this modified algo-
rithm achieves the same approximation bound as if we had only one problem
to solve. It is worth noting, however, that naively restricting the problem may
violate A1 by having some agents not able to teach any expertise in the subprob-
lem. This can be fixed by assigning all agents who cannot teach any expertise
in the subproblem to an imaginary expertise. Meanwhile, we add an imaginary
agent who can also teach this imaginary expertise to maintain m = n. Then, we
extend fi by assigning the same utility to learning profiles which contain events
involving imaginary knowledge or agent as without those events. This preserves
the submodularity, and we can continue with the above-proposed procedure. �

We may also consider relaxing assumption A1. Assuming A2 holds, if agent
ap can teach p expertise where p ≥ 3, we can initially split the problem into p
subproblems, and in each subproblem ap can only teach one expertise. We may
trim and rearrange the knowledge graph so that in each subproblem the matroid
is maintained, and collectively all feasible learning profiles can be reached. How-
ever, we may have a combinatorial number of subproblems because to preserve
the matroid other agents might require us to divide their outgoing edges in the
knowledge graph as well.

5 Conclusion and Future Work

Team collaboration is gaining more attention in the society, and the research
community as the segmentation of knowledge continues to grow. It is likely that
a team’s performance might improve if members are learning from each other
and hence have a better sense of the work. In this paper, we focused on the
problem of how teammates should teach and learn from their peers with limited
resources to boost group performance. We formalized this process as the peer
teaching problem. This problem in its most general case is hard, yet we provided
good algorithmic solutions for some two specific setups of the problem, which are
still general enough to model many real-world scenarios. We showed that with
additive utility functions, we could solve the peer teaching problem with a linear
program. In the case of submodular utility, a polynomial time approximation
algorithm for maximizing submodular functions can be leveraged to find the
optimal peer teaching plan.

There are many future directions to consider. One possible extension of the
current peer teaching model is to explicitly quantify to what extent an agent has
learned a skill instead of only considering whether or not she has learned the skill.
One piece of knowledge often builds on another. Thus, studying planning with
precedence graph could better characterize the peer teaching dynamics. Another
direction is to consider multi-round collaboration, where at each round agents
have different teaching and learning capacity and utility function. Some learning
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profiles might not be optimal considering the extended duration of collabora-
tion, even if it achieves the best utility at a certain round. The learning aspect
of the peer-teaching problem also needs further investigation. In this paper, we
assumed agents could access the utility value through a value oracle. It is inter-
esting to study the problem where such access comes with noise, and agents can
learn the utility function across time or through available data. Such scenarios
appear when, for example, researchers collaborate on interdisciplinary projects.
Furthermore, in this paper we only model the member-skill relationship, while
one may also consider the familiarity between team members, for example, if the
members (or some of the members) have previously worked together on similar
projects. In addition, knowing the optimal peer teaching strategy could offer
insights into the team formation problem. When selecting group members, can-
didates’ current expertise matter as well as the potential learning outcome they
as a group could achieve. Last but not least, in real world problems, it is also
useful to study how peer teaching interacts with learning from other resources.
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Abstract. Connected and autonomous vehicle technology has advanced
rapidly in recent years. These technologies create possibilities for highly
efficient, AI-based, transportation systems. One such system is the
Autonomous Intersection Management (AIM), an intersection man-
agement protocol designed for the time when all vehicles are fully
autonomous and connected. Experts, however, anticipate a long tran-
sition period during which human and autonomously operated vehicles
will coexist. Unfortunately, AIM has been shown to provide little or no
improvement over today’s traffic signals when less than 90% of the vehi-
cles are autonomous, making AIM ineffective for a large portion of the
transition period. This paper introduces a new protocol denoted Hybrid
Autonomous Intersection Management (H-AIM), that is applicable as
long as AIM is applicable and the infrastructure is able to sense approach-
ing vehicles. Our experiments show that this protocol can decrease traffic
delay for autonomous vehicles even at 1% technology penetration rate.

Keywords: Autonomous Intersection Management
Autonomous vehicles · Multiagent systems

1 Introduction

Autonomous driving capabilities are becoming increasingly common on vehi-
cles. Such capabilities present opportunities for developing safer, cleaner and
more efficient road networks. Looking towards a future when most vehicles are
autonomous and connected, Dresner and Stone proposed a novel intersection
control protocol denoted Autonomous Intersection Management (AIM) [5]. AIM
was shown to lead to significant traffic delay reductions when compared to tra-
ditional traffic signals.

Connected and autonomous vehicles (CAVs), with the help of advanced sens-
ing devices, are more accurate and predictable compared to human operated
vehicles (HVs). By relying on the fine and accurate control of CAVs along with
communication capabilities, the AIM protocol coordinates multiple vehicles to
cross an intersection simultaneously.
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The AIM protocol defines two types of autonomous agents: intersection man-
agers, one per intersection, and driver agents, one per vehicle. Intersection man-
agers are responsible for directing the vehicles through the intersections, while
the driver agents are responsible for controlling the CAV to which they are
assigned.

To improve the throughput and efficiency of the system, the driver agents
“call ahead” to the intersection manager and request a path reservation (space-
time sequence) within the intersection. The intersection manager then deter-
mines whether or not this request can be met by checking whether it conflicts
with any previously approved reservation or a potential HV. HVs are assumed to
occupy all trajectories that are allowed by the traffic signal i.e., are given a green
light. If the intersection manager approves a driver agent’s request, the driver
agent must follow the assigned path through the intersection. On the other hand,
if the intersection manager rejects a driver agent’s request, the driver agent may
not pass through the intersection but may attempt to request a new reservation.

AIM, assuming 100% of the vehicles are CAVs, was shown to reduce the
delay imposed on vehicles by orders of magnitude compared to traffic signals [6].
On the other hand, AIM was shown to be not better than traffic signals when
more than 10% of the vehicles are HVs [5].

Given that experts speculate that 90% CAV penetration will not occur any-
time before 2045 [3], this paper suggests a new protocol denoted Hybrid AIM
(H-AIM) that is suitable for the transition period. Unlike AIM, H-AIM assumes
sensing of approaching vehicles which allows it to identify approaching HVs. This
assumption is reasonable given technological advances allowing vehicle detec-
tion using video cameras [4], radar [9], and inductive loop detectors [8]. If no
HV is observed on a given lane, then trajectories originating from that lane are
assumed to not be occupied by HVs, allowing AVs more flexibility in obtaining
reservations.

A single lane entering a four-way intersection can allow three different turning
possibilities (turn left, continue straight, turn right) or any combination of the
three. The performance of H-AIM is sensitive to the assignment of allowed turns.
This paper studies the effect of assigning different turning options to different
lanes and different vehicle types (HVs, CAVs).

The main contributions of this paper are:

1. Defining the H-AIM protocol.
2. Presenting a comprehensive empirical study showing that H-AIM improves

over traditional traffic signals even for as low as 1% CAV penetration. To the
best of our knowledge H-AIM is the first protocol that is shown to be beneficial
for low CAV penetration rates. This attribute makes H-AIM relevant for the
long transition period expected to take place.

3. Presenting guidelines, potentially useful for practitioners, for assigning
allowed turning options from each incoming lane to both autonomous and
human operated vehicles such that different traffic measurements are opti-
mized.
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2 Background

The work presented in this paper builds on top of the FCFS+Signals policy which
is part of the Autonomous Intersection Management (AIM) protocol [5]. This
section provides a short overview of both AIM and the FCFS+Signals policy.

2.1 Autonomous Intersection Management

AIM is a reservation-based protocol in which vehicles request to reserve tra-
jectories crossing an intersection. The AIM protocol assumes that computer-
controlled vehicles attempt to obtain a right of passage through the intersection
by sending a reservation request message to the intersection manager (IM).
When using a “First Come, First Served” (FCFS) policy, the IM approves reser-
vation requests that do not conflict with any previously approved reservation or
potential HVs. In brief, the protocol proceeds as follows.

1. An approaching CAV, cav, sends a message to the IM requesting a reserva-
tion. The request-reservation message contains data such as the vehicle’s size,
predicted arrival time, velocity, acceleration, and arrival and departure lanes.

2. The IM processes the request message by simulating the trajectory of cav
through the intersection, the simulated trajectory is denoted by path(cav).

3. If path(cav) does not conflict with any previously approved reservations or
potential HVs then the IM issues a new reservation based on path(cav) and
sends an approve message containing the new reservation back to cav.

4. If path(cav) does conflict with a previously approved reservations or potential
HVs then the IM sends a reject message to cav which, after a predefined time
period, may request a new reservation.

5. After receiving an approve message, it is the responsibility of cav to arrive at,
and travel through, the intersection as specified in path(cav) (within a range
of error tolerance).

6. A CAV may not enter the intersection unless it successfully obtained a reser-
vation.

7. Upon leaving the intersection, the CAV informs the IM that its passage
through the intersection was successful.

The AIM protocol does not rely on communication capabilities between vehi-
cles (V2V) only between vehicles and the IM (V2I). The protocol is robust to
communication failures: if a message is lost, either by the IM or by the CAV, the
system’s efficiency might be reduced, but safety is not compromised. Safety is
guaranteed also when considering a mixed scenario where both HVs and CAVs
are present. For such cases Dresner and Stone [5] introduced the FCFS+Signals
policy.

2.2 FCFS+Signals

The FCFS+Signal policy [5] is a combination between AIM and traditional traffic
signals. Whenever the traffic signal is green for a given lane, all vehicles arriving
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at that lane have the right of passage (excluding unprotected left turns). How-
ever, when the traffic signal shows a red light, only CAVs which were granted a
reservation may drive through the intersection.

Since the protocol is not assumed to know the location and trajectory of
HVs, such vehicles are assumed to occupy all trajectories that are approved by
the traffic signal i.e., have a green light. In this paper we define such trajectories
as green trajectories. Figure 1 shows an example of green trajectories across an
intersection (both the solid and dashed lines represent green trajectories). Note
that green trajectories are dynamically changing; once the signal changes, the
green trajectories will also change. The signal’s timing is assumed to be known
so the protocol is able to predict green trajectories in advance.

FCFS+Signals prohibits CAVs from obtaining reservations that conflict with
green trajectories. In our example from Fig. 1 all reservation requests will be
automatically denied except those made by CAVs arriving from the south and
those arriving from the North or East and request to turn right.1

Fig. 1. Four-way intersection. Green light for all lanes originating from the South while
all other lanes have a red light. Green trajectories marked with a solid or dashed green
lines across the intersection. Active green trajectories marked only by dashed green
lines. (Color figure online)

1 This paper assumes driving on the right side of the road. However, the ideas can
trivially be generalized to a left side driving policy.
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2.3 Experimental Results

Dresner and Stone [5] reported average delay for a mixture of CAVs and HVs
obtained from the AIM simulator running the FCFS+Signals policy. Delay is
defined as the increase in travel time for a vehicle caused by red traffic signals or
other vehicles. For CAV penetration of 90% and below, FCFS+Signals yielded
a mild improvement. The improvement is attributed to CAVs that make right
turns on red lights. If HVs are assumed to be able to turn right on red lights (as
in the USA) or turning right has a designated lane bypassing the intersection,
then there may be no improvement at all.

For AV penetration greater than 90% the one-lane signal policy was suggested
which yielded a significant reduction in average delay. In the one-lane signal
policy, right of passage for HVs (i.e., green light) is given to a single lane at a
time instead of an entire road (all lanes arriving from the same direction). The
one-lane signal policy results in a significant reduction in green trajectories at
the cost of increased delay for HVs. As a result, the one-lane signal policy proved
to be inefficient when considering high HV percentage (more than 10%).

3 Intersection Management Protocol for Mixed Traffic

CAVs are expected to penetrate the automobile market gradually over many
years. Reaching 90% AV penetration rates will probably not happen in the near
future [3]. Hence, a new intersection management protocol is required for man-
aging traffic that is comprised mostly of HVs.

3.1 Assumptions and Desiderata

The new intersection management protocol should provide the following:

– Reduce the average delay suffered by vehicles crossing the intersection.
Reduced delay translates into increased social welfare of the passengers.

– Reduce queue length on incoming lanes. Once the vehicle queue is longer
than the length of the incoming link, a phenomenon known as queue spillback
occurs [1]. Queue spillbacks have a negative cascading effect and should be
avoided as much as possible [10].

– Increase throughput. Higher intersection throughput helps reduce congestion
accumulated on links leading to the intersection.

– Provide a relative advantage to CAVs over HVs so as to incentivize drivers to
transition to CAVs which are assumed to be safer [7] and more efficient [11].

In contrast to FCFS+Signals we make the following assumptions:

– Humans may turn right on red light if the path is clear. This is a common case
in the USA. An alternative assumption is that a right turning lane follows a
trajectory outside of the intersection (right turn that bypasses the intersection
yields an effect similar to turning right on red).

– A sensor (loop detector, camera or radar) is able to detect approaching vehi-
cles on each lane (sensing speed and heading is not assumed).
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3.2 Hybrid AIM

We now present the Hybrid-AIM (H-AIM) protocol for mixed traffic intersection
management. Similar to FCFS+Signals, H-AIM grants reservation in a FCFS
order. However, while FCFS+Signals automatically rejects reservation requests
that conflict with green trajectories, H-AIM rejects reservation requests that
conflict with active green trajectories. Define an active green trajectory as a green
trajectory with a HV present on it or on its incoming lane. Figure 1 illustrates
active green trajectories shown as dashed green lines across the intersection
(notice vehicle #1 on the incoming lane).

Active green trajectories are a subset of the green trajectories making H-AIM
at least as efficient as FCFS+Signals; there can be no reservation that is approved
by FCFS+Signals and denied by H-AIM. The other way around, on the other
hand, is possible. As an example consider the setting depicted in Fig. 1. Assume
vehicle #2 is a CAV and is heading North. Under the FCFS+Signals policy
vehicle #2 would be automatically denied a reservation as it crosses a green
trajectory. H-AIM on the other hand, would consider such a reservation as it
doesn’t cross an active green trajectory.

Note that the existence of a CAV on an incoming lane does not incur an
active green trajectory. This requires the system to be able to identify whether
an approaching vehicle is of type CAV or HV. For doing so we suggest the
following procedure:

1. v = the number of vehicles detected on a given lane, l.
2. r = the number of reservation requests from unique vehicles seeking to enter

the intersection from lane l. Reservations are considered only if the specified
exit time is greater than the current time.

3. If v > r then assume a human vehicle on lane l.

Note that the above procedure is safe in the sense that it will never misidentify
a HV as a CAV. In the case of faulty communication this procedure might
misidentify a CAV as a HV but this does not pose a safety issue. It might,
however, hurt efficiency since a green trajectory might, mistakenly, be considered
active.

Safety can be compromised if HVs are allowed to change lanes in close prox-
imity to the intersection. For this reason HVs must be prohibited from changing
lanes within detection range.

4 Reducing the Number of Green Trajectories

Green trajectories can limit CAVs from obtaining reservations. As such, CAVs
benefit from reducing the number of green trajectories to a minimum. On the
other hand, HVs cannot cross the intersection unless traveling on a green trajec-
tory. Thus, HVs generally benefit from an increased number of green trajectories.

Dresner and Stone [5] presented the one-lane signal policy (see Sect. 2.3).
This policy results in green trajectories that originate from a single lane at a
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time, which, in turn, leads to a significant reduction in the number of green
trajectories. On the other hand, the one-lane signal policy was shown to have a
dramatic negative effect on HVs.

We suggest a more conservative approach for reducing the number of green
trajectories, which restricts turning options for HVs. Revisiting Fig. 1, assume
vehicle #3 is autonomous and is heading west. When applying H-AIM Vehicle
#3 is automatically denied a reservation since the requested reservation crosses
an active green trajectory. Currently, the lane on which Vehicle #1 approaches
the intersection allows crossing the intersection by continuing straight or turning
right. If the turning policy on that lane is changed to “right only”, the dashed
straight green trajectory will no longer exist allowing vehicle #3 to obtain a
reservation.

4.1 Turning Assignment Policy

As was shown in the previous section, the effectiveness of a managed intersection
is affected by the allowed turning options in each lane. When considering a
three-lane, four-way intersection, each incoming lane has between one and three
turning options from the set {left, straight, right}. The turning assignment policy
assigns each incoming lane with allowed turns.

For this study we consider four representative turn assignment policies that
are depicted in Fig. 2. The policies are ordered and labeled according to degrees
of freedom. Define degree of freedom for a lane as the number of turning options
minus one. Define degree of freedom for a policy as the summation of degrees of
freedom of all lanes.

A restrictive turning policy is one that has a low degree of freedom which,
in turn, translates to fewer green trajectories. Policy 0 is an extreme case rep-
resenting the most restrictive turning policy (0 degrees of freedom). Policy 4 is
an extreme case of a liberal turning policy.

Define safe turning policy as one in which trajectories originated from the
same road never cross each other. Turning policy 4 is not safe while 0, 2a and 2b
are. Define safe turning policy combination as two policies in which no trajectory
from one policy crosses any trajectory from the other when both originate from
the same road. {0, 4} is a safe turning policy combination (even though 4 is not
a safe policy on it’s own). {2a, 4} is not a safe turning policy combination. A
turning policy combination is considered when assigning one turning policy for
HVs and a different one to CAVs.

For safety reasons we don’t consider assigning HVs an unsafe policy. During
our empirical study, we observed that assigning unsafe policy combinations for
CAVs and HVs is counterproductive and should be avoided. Figure 3 demon-
strates the inefficiency that stems from an unsafe turning policy combination.
The figure presents a single road approaching a four-way intersection. CAVs
are assigned the turning policy shown on the top level (checkerboard texture)
while HVs are assigned the bottom turning policy (plain texture). Vehicle #1
is autonomous, it is located in the middle lane and would like to turn right.
Assuming a green light for this incoming road and that HVs are arriving on the
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rightmost lane, vehicle #1 will not be able to obtain a reservation as it crosses
an active green trajectory. Vehicle #1 will thus be stuck and will jam all vehicles
behind it despite having a green light.

Fig. 2. 4 different turning assignment policies for a 3 lane road approaching a four way
intersection.

5 Empirical Study

This section presents results from a comprehensive empirical study. The goals of
these experiments are two-fold:

– Study the effectiveness of H-AIM for mixed traffic with an emphasis on low
CAV ratios.

– Indicate which turning policy should be assigned to HVs and CAVs in different
CAV penetration and traffic levels.

Unless stated otherwise, our experiments used settings identical to those
presented by Dresner and Stone [5]:

– Speed limit set to 25 m/s
– CAV may communicate with the IM starting at a distance of 200 m, which

at 25 m/s (approximately 56 miles/h) is 8 s before reaching the intersection.
– One simulated hour per instance. Results present the average over 20

instances per setting.

In line with our desiderata (presented in Sect. 3.1), we present average results
for the following measurements:

– Average delay - see definition in Sect. 2.3.
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Fig. 3. An unsafe policy combination. Top policy (checkerboard texture) for AVs, bot-
tom policy (plain texture) for HVs. (Color figure online)

– Maximal queue length - the maximal number of vehicles that simulta-
neously accommodate a single incoming lane. Note that 32 vehicles is the
maximal queue length for any lane in the simulator, no new vehicles will be
generated on a lane as long as this limit is reached. When high traffic vol-
umes are considered, the maximal queue length is often reached and queue
spillbacks occur. In such cases it is hard to compare different policies as they
all return similar results making the maximal queue length measurement less
valuable. Hence, we report maximal queue length only for low traffic levels.

– Throughput - the number of vehicles that passed the intersection in one
hour. When low traffic volumes are considered the maximal throughput is
often reached since all approaching vehicles eventually cross the intersection.
At high traffic volumes, when queue spillbacks occur, throughput can give evi-
dence on the severity of spillbacks i.e., the magnitude in which the spillbacks
block new vehicles from entering the system. Hence, we report throughput
only for high traffic levels.

The experiments presented in this section were obtained using the AIM4
simulator (http://www.cs.utexas.edu/∼aim/). Several adaptations were required
in order to run these experiments.

5.1 Modifications to the AIM Simulator

Below is a list of changes introduced to the AIM simulator (on top of the original
specifications [5]) for running our experiments.

– vehicles are spawned with equal probability on all roads, and are generated
via a Poisson process which is controlled by the probability that a vehicle will
be generated at each time step. Each vehicle is randomly assigned a type (HV
or CAV) and destination. Given the assigned destination a vehicle is placed on

http://www.cs.utexas.edu/~aim/
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an incoming lane from which it can continue to its destination (the incoming
lane must allow turning to the vehicle’s destination). If several such lanes
exist it will be placed on the lane with the least number of vehicles currently
on it. For instance, consider Fig. 1, a vehicle arriving at the intersection from
the South that is heading North would be assigned the middle lane since the
left lane does not allow continuing North and the right lane already has one
vehicle.

– CAVs are not granted reservations entering the intersection more than 3.5 s in
the future. We add this constraint in order to allow the approaching vehicle
detector enough time to detect all approaching HVs.

– A reservation is not necessarily denied if it conflicts with a green trajectory.
– A reservation is necessarily denied if it conflicts with an active green trajec-

tory.

Table 1. Six-phase traffic signal timing. Green and yellow duration are given in sec-
onds. Asterisk next to a phase number means that left turns are allowed during that
phase.

Phase Origin Green Yellow

1 East-West 30 0

2* East 15 3

3* North 15 0

4 North-South 30 0

5* South 15 3

6* West 15 0

5.2 Four-Way Intersection

Following Dresner and Stone [5] we start by presenting results from simulating
a four way intersection with three lanes in each of the incoming roads (similar
to the intersection presented in Fig. 1). 0.2 of the vehicles turn right at the
intersection, 0.2 turn left and 0.6 continue straight regardless of the incoming
road and vehicle type.2 A six-phase traffic signal timing was used (the signal
timing is presented in Table 1).

Recall that under our assumption that HVs can turn right on red, the
FCFS+Signals protocol has no advantage over traditional traffic signals (unless
using the one-lane signal policy, see Sect. 2.3). Since FCFS+Signals using the
one-lane signal policy was stated to be helpful when considering 90% HVs and
more, it is not relevant to our current study which focuses on early CAV adoption

2 Dresner and Stone [5] do not report the turning ratios for their mixed traffic exper-
iment. Our turning ratio was chosen since it results in a good balance between the
incoming queues when 100% of the vehicles are HV.
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Fig. 4. Average delays for different traffic levels, CAV percentages, vehicle types, and
intersection types. Each graph plots the average delay with 95% error intervals as a
function of traffic level for three different turning policy combinations as well as the
baseline (AIM).

stages. As a result the baseline for our experiments is the case where all vehicles
yield to traffic signals while using turning policy 0 (similar to the turning policy
used in [5]).

Figure 4 presents eight graphs for the four-way intersection case (left two
columns). Each graph presents average delay in seconds (y-axis) versus traffic
level in number of vehicles per hour per lane (x-axis). The data is presented
for both HVs (first column) and CAVs (second column) and for different CAV
penetration levels (with an emphasis on low CAV penetration levels - 1%, 5%,
10%, 50%).

Each graph compares three different safe turning policy combinations based
on the policies presented in Fig. 2. Note that results for turning policy 2b are
not presented. Using the specified experimental settings, policy 2b was inferior
to the other policies across all measurements hence it is omitted.

When examining HVs’ delay, the results teach us that for low traffic levels
(≤ 300) and very high traffic levels (> 700) policy {HV-2a, CAV-2a} is inferior,
while for traffic levels in the range (400–700) it is superior. For medium and high
traffic levels (> 400) policy {HV-0, CAV-4} is inferior. In 50% CAV penetration
levels, policy {HV-0, CAV-4} is particularly inferior. When examining CAVs’
delay, we see a clear benefit for policy {HV-0, CAV-4} across all traffic levels and
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CAV penetration levels except 50% penetration with high traffic levels (> 450).
The advantage of this policy is due to its reduction of green trajectories as
explained in Sect. 4.1. Looking at delays of both HV and CAV we see that H-AIM
with the base policy {HV-0, CAV-0} was superior to the baseline (FCFS+Signals
with policy {HV-0, CAV-0}).

Table 2 presents maximal queue length and throughput for the four-way inter-
section scenario. At low traffic levels (150, 300) we report maximal queue length.
On the other hand, at high traffic levels (450, 600, 750) we report throughput
(see Sect. 5 for reasoning). Similar to Fig. 4, results are presented for different
traffic levels and different CAV penetration levels. We observe that avoiding con-
gestion (minimizing queue length or maximizing throughput) is best achieved
using policy {HV-2a, CAV-2a} regardless of the CAV penetration and traffic
levels.

5.3 Three-Way Intersection

Next we present results from simulating a three way intersection with two lanes
in each of the incoming roads (similar to the intersection presented in Fig. 5).
0.6 of the vehicles originating from the East or West continue straight while
the rest (0.4) turn (either right or left depending on the incoming road). 0.5 of
vehicles originating from the south turn right and the rest (0.5) left. We used a
three-phase traffic signal timing presented in Table 3.

Figure 5 depicts three representative turning policies (Strict, Flexible, Lib-
eral). Since a three-way intersection is not symmetrical, each turning policy is
broken into three policies (one per origin road: West/East/South). We chose
these three policies as they resemble the ones used in the four-way intersection
experiment. “Strict” is the most restrictive policy, similar to policy 0 in the four-
way case. “Flexible” has the highest degree of freedom among the safe policies,
similar to policies 2a and 2b. “Liberal” has the maximal degrees of freedom over-
all, resembling policy 4. The baseline for our experiments is the case where 100%
of the vehicles are HVs (i.e., all vehicles yield to traffic signals) using turning
policy “Strict”.

Figure 4 presents eight graphs for the three-way intersection case (right two
columns). Each graph compares three different safe turning policies combinations
based on the policies shown in Fig. 5. The results show a picture which is some-
what similar to the one drawn from the four-way intersection scenario. When
considering HVs’ delay, policy {HV-“Flexible”, CAV-“Flexible”} is superior for
intermediate traffic levels (600) with the exception of 50% CAV penetration levels
where {HV-“Strict”, CAV-“Strict”} proved most beneficial. Unlike the four-way
intersection scenario, policy {HV-“Strict”, CAV-“Liberal”} is never significantly
inferior to other policies with the exception of 50% CAV penetration levels with
traffic level of 750.

Similar to the four-way intersection scenario, when examining CAVs delay,
we see a clear benefit for policy {HV-“Strict”, CAV-“Liberal”} across all traffic
levels and CAV penetration levels except 50% penetration with very high traffic
levels (750). Similar to the four-way intersection scenario, H-AIM with base policy
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Table 2. Results for a four-way intersection using different turning assignment poli-
cies for each vehicle type (HV, CAV) and different CAV penetration levels (CAV).
Reporting maximal queue length for low traffic volumes and throughput for high traf-
fic volumes.

CAV HV-0, CAV-0 HV-2a, CAV-2a HV-0, CAV-4

Maximal queue

150 Vehicles/Hour/Lane

Base 13.2 8.4 12.8

1% 13.6 8.5 13.2

5% 13.3 8.4 12.6

10% 13.6 8.7 12.1

50% 12.4 7.9 8.4

300 Vehicles/Hour/Lane

Base 21.8 16.5 21.5

1% 22.1 16.3 20.8

5% 21.7 15.3 21.6

10% 21.2 16.0 20.1

50% 20.8 14.2 14.7

CAV Throughput

450 Vehicles/Hour/Lane

Base 4,621 5,034 4,630

1% 4,625 5,039 4,617

5% 4,639 5,039 4,647

10% 4,672 5,057 4,702

50% 4,865 5,155 5,118

600 Vehicles/Hour/Lane

Base 4,989 6,242 4,983

1% 5,013 6,239 4,993

5% 5,029 6,269 5,027

10% 5,065 6,309 5,075

50% 5,367 6,514 5,804

750 Vehicles/Hour/Lane

Base 5,314 6,417 5,328

1% 5,315 6,429 5,327

5% 5,361 6,471 5,414

10% 5,378 6,520 5,500

50% 5,718 7,004 5,972
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Table 3. Three-phase traffic signal timing. Green and yellow duration are given in
seconds. Asterisk next to a phase number means that left turns are allowed during
that phase.

Phase Origin Green Yellow

1 East-West 30 0

2* East 15 3

3* South 15 3

Fig. 5. 3 different turning assignment policies for a 2 lane road approaching a three
way intersection.

{HV-“Strict”, CAV-“Strict”} was superior to the baseline (FCFS+Signals with
policy {HV-“Strict”, CAV-“Strict”}) when examining delays over both HVs and
CAVs. One exception is when considering HVs’ delay at 1% CAV penetration,
where H-AIM and the baseline performed similarly. Similar to Table 2, Table 4
presents maximal queue length and throughput but for the three-way intersec-
tion scenario. Again, we report maximal queue length for scenarios where queue
spill back does not occur (traffic levels = {150, 300, 450}) else (traffic levels =
{600, 750}) we report throughput. Similar to the four-way intersection scenario,
we observe that avoiding congestion (minimizing queue length or maximizing
throughput) is best achieved using policy {HV-“Flexible”, CAV-“Flexible’}’ with
one exception at 50% CAV penetration level where {HV-“Strict”, CAV-“Liberal”}
was superior.
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Table 4. Results for a three-way intersection using different turning assignment policies
(“Strict” - S, “Flexible” - F, “Liberal” - L) for each vehicle type (HV, CAV) and
different CAV penetration levels (CAV). Reporting maximal queue length for low traffic
volumes and throughput for high traffic volumes.

CAV HV-S, CAV-S HV-F, CAV-F HV-S, CAV-L

Maximal queue

150 Vehicles/Hour/Lane

Base 7.5 6.7 7.2

1% 7.5 6.5 7.6

5% 7.3 7.0 7.3

10% 7.2 6.7 6.9

50% 7.1 6.1 5.1

300 Vehicles/Hour/Lane

Base 11.6 10.9 11.5

1% 11.3 10.6 11.6

5% 11.0 10.8 11.2

10% 11.0 11.0 11.3

50% 11.1 10.2 8.5

450 Vehicles/Hour/Lane

Base 16.7 15.2 18.5

1% 17.1 15.5 16.9

5% 17.3 14.6 16.1

10% 17.0 16.0 16.3

50% 15.3 14.8 11.4

CAV Throughput

600 Vehicles/Hour/Lane

Base 3,239 3,377 3,253

1% 3,273 3,388 3,259

5% 3,275 3,390 3,301

10% 3,275 3,391 3,354

50% 3,355 3,407 3,446

750 Vehicles/Hour/Lane

Base 3,754 3,909 3,774

1% 3,755 3,907 3,770

5% 3,793 3,933 3,862

10% 3,792 3,941 3,907

50% 3,942 4,118 3,975
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5.4 Conclusions

Concluding the empirical study we provide the following guidelines:

– H-AIM is superior to FCFS+Signals (baseline) when considering average
delay.

– When considering congestion reduction, H-AIM is not superior to
FCFS+Signals until more than a 10% CAV technology penetration level is
reached.

– If seeking to encourage CAV adoption at early stages (0%–10% CAV penetra-
tion levels), one should set turning policies that restrict HVs to the maximum
(such as policy 0 and policy “Strict”) while allowing maximal flexibility to
CAVs (such as policy 4 and policy “Liberal”).

– Our experiments showed that setting an unsafe turning policy combination
is never worthwhile. These results are not presented in this paper.

– When seeking to reduce congestion, non-restrictive safe turning policies (such
as policy 2a and policy “Flexible”) should be set for both HVs and CAVs.
Note that setting a non-restrictive policy for HVs gives little or no advantage
to CAVs and thus, does not encourage CAV adoption.

6 Summary

Though the Autonomous Intersection Management (AIM) protocol was shown
to be extremely efficient in coordinating Connected and Autonomous Vehicles
(CAVs) traversing an intersection, it provides no improvement until 90% of the
processed vehicles are CAV. This paper aims to enable efficient intersection man-
agement for early CAV penetration stages. To this end, we propose a modified
AIM protocol denoted Hybrid-AIM (H-AIM). H-AIM is applicable under the
assumption that vehicles approaching the intersection can be sensed (along with
the assumptions required for AIM).

A comprehensive empirical study shows H-AIM to be superior to AIM when
average delay imposed on vehicles is considered. Our study also gives guidelines
as to how to assign turning options for each lane and vehicle type. Future work
will study the effects of H-AIM when semi-autonomous vehicles [2] are consid-
ered and are assigned different turning policies. Future work will also examine
restricting entire lanes to one vehicle type.
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Abstract. Ad hoc teamwork has been introduced as a general chal-
lenge for AI and especially multiagent systems [16]. The goal is to enable
autonomous agents to band together with previously unknown team-
mates towards a common goal: collaboration without pre-coordination.
A long-term vision for ad hoc teamwork is to enable robots or other
autonomous agents to exhibit the sort of flexibility and adaptability on
complex tasks that people do, for example when they play games of “pick-
up” basketball or soccer. As a testbed for ad hoc teamwork, autonomous
robots have played in pick-up soccer games, called “drop-in player chal-
lenges”, at the international RoboCup competition. An open question is
how best to evaluate ad hoc teamwork performance—how well agents are
able to coordinate and collaborate with unknown teammates—of agents
with different skill levels and abilities competing in drop-in player chal-
lenges. This paper presents new metrics for assessing ad hoc teamwork
performance, specifically attempting to isolate an agent’s coordination
and teamwork from its skill level, during drop-in player challenges. Addi-
tionally, the paper considers how to account for only a relatively small
number of pick-up games being played when evaluating drop-in player
challenge participants.

Keywords: Ad hoc teams · Multiagent systems · Teamwork
Robotics

1 Introduction

The increasing capabilities of robots and their decreasing costs is leading to
increased numbers of robots acting in the world. As the number of robots grows,
so will their need to cooperate with each other to accomplish shared tasks. There-
fore, a significant amount of research has focused on multiagent teams. However,
most existing techniques are inapplicable when the robots do not share a coor-
dination protocol, a case that becomes more likely as the number of companies
and research labs producing these robots grows. To deal with this variety of
previously unseen teammates, robots can reason about ad hoc teamwork [16].
When participating as part of an ad hoc team, agents need to cooperate with

c© Springer International Publishing AG 2017
G. Sukthankar and J. A. Rodriguez-Aguilar (Eds.): AAMAS 2017 Best Papers,
LNAI 10642, pp. 168–186, 2017.
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previously unknown teammates in order to accomplish a shared goal. Reason-
ing about these settings allows robots to be robust to the teammates they may
encounter.

In [16], Stone et al. argue that ad hoc teamwork is “ultimately an empiri-
cal challenge.” Therefore, a series of “drop-in player challenges” [5,6,14] have
been held at the RoboCup competition,1 a well established multi-robot competi-
tion. These challenges bring together real and simulated robots from teams from
around the world to investigate the current ability of robots to cooperate with
a variety of unknown teammates.

In each game of the challenges, robots are drawn from the participating
teams and combined to form a new team. These robots are not informed of the
identities of any of their teammates, but they are able to share a small amount of
information using a limited standard communication protocol that is published
in advance. These robots then have to quickly adapt to their teammates over
the course of a single game and discover how to intelligently share the ball and
select which roles to play.

Currently in drop-in player challenges, a metric used to evaluate participants
is the average goal difference received by an agent across all games that an agent
plays in. An agent’s average goal difference is strongly correlated with how skilled
an agent is, however, and is not necessarily a good way of evaluating an agent’s
ad hoc teamwork performance—how well agents are able to coordinate and col-
laborate with unknown teammates. Additionally, who an agent’s teammates and
opponents are during a particular drop-in player game strongly affects the game’s
result, and it may not be feasible to play enough games containing all possible
combinations of agents on different ad hoc teams, thus the agent assignments to
the ad hoc teams of the games that are played may bias an agent’s average goal
difference.

This paper presents new metrics for assessing ad hoc teamwork performance,
specifically attempting to isolate an agent’s coordination and teamwork from its
skill level, during drop-in player challenges. Additionally, the paper considers
how to account for only a relatively small number of games being played when
evaluating drop-in player challenge participants.

The rest of the paper is structured as follows. A description of the the
RoboCup 3D simulation domain used for this research is provided in Sect. 2.
Section 3 explains the drop-in player challenge. Section 4 details our metric for
evaluating ad hoc teamwork performance, and analysis of this metric is provided
in Sect. 5. Section 6 discusses an extension to this metric when one can add agents
with different skill levels, but the same level of teamwork, to a drop-in player
challenge. How to account for a limited number of drop-in player games being
played when evaluating ad hoc teamwork performance is presented in Sect. 7. A
case study of the 2015 RoboCup 3D simulation drop-in player challenge demon-
strating our work is analyzed in Sect. 8. Section 9 situates this work in literature,
and Sect. 10 concludes.

1 http://www.robocup.org/.

http://www.robocup.org/
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2 RoboCup Domain Description

Robot soccer has served as an excellent research domain for autonomous agents
and multiagent systems over the past decade and a half. In this domain, teams of
autonomous robots compete with each other in a complex, real-time, noisy and
dynamic environment, in a setting that is both collaborative and adversarial.
RoboCup includes several different leagues, each emphasizing different research
challenges. For example, the humanoid robot league emphasizes hardware devel-
opment and low-level skills, while the 2D simulation league emphasizes more
high-level team strategy. In all cases, the agents are all fully autonomous.

The RoboCup 3D simulation environment—the setting for our work—is
based on SimSpark,2 a generic physical multiagent systems simulator. SimSpark
uses the Open Dynamics Engine3 (ODE) library for its realistic simulation of
rigid body dynamics with collision detection and friction. ODE also provides sup-
port for the modeling of advanced motorized hinge joints used in the humanoid
agents.

The robot agents in the simulation are homogeneous and are modeled after
the Aldebaran Nao robot. The agents interact with the simulator by sending
torque commands and receiving perceptual information. Each robot has 22◦

of freedom, each equipped with a perceptor and an effector. Joint perceptors
provide the agent with noise-free angular measurements every simulation cycle
(20 ms), while joint effectors allow the agent to specify the torque and direction
in which to move a joint. Although there is no intentional noise in actuation,
there is slight actuation noise that results from approximations in the physics
engine and the need to constrain computations to be performed in real-time.
Abstract visual information about the environment is given to an agent every
third simulation cycle (60 ms) through noisy measurements of the distance and
angle to objects within a restricted vision cone (120◦). Agents are also outfitted
with noisy accelerometer and gyroscope perceptors, as well as force resistance
perceptors on the sole of each foot. Additionally, agents can communicate with
each other every other simulation cycle (40 ms) by sending 20 byte messages.

Games consist of two 5 min halves of 11 versus 11 agents on a field size of
20 m in width by 30 m in length. Figure 1 shows a visualization of the simulated
robot and the soccer field during a game.

3 Drop-In Player Challenge

For RoboCup 3D drop-in player challenges4 each participating team contributes
two drop-in field players to a game. Each drop-in player competes in full 10 min
games (two 5 min halves) with both teammates and opponents consisting of

2 http://simspark.sourceforge.net/.
3 http://www.ode.org/.
4 Full rules of the challenges can be found at http://www.cs.utexas.edu/∼AustinVilla/

sim/3dsimulation/2015 dropin challenge/.

http://simspark.sourceforge.net/
http://www.ode.org/
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/2015_dropin_challenge/
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/2015_dropin_challenge/
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Fig. 1. A screenshot of the Nao-based humanoid robot (left), and a view of the soccer
field during a 11 versus 11 game (right).

other drop-in field players. No goalies are used during the challenge to increase
the probability of goals being scored.

Ad hoc teams are chosen by a greedy algorithm given in Algorithm 1 that
attempts to even out the number of times agents from different participants
in a challenge play with and against each other. In lines 6 and 7 of the algo-
rithm agents are iteratively added to teams by getNextAgent() which uses the
following ordered preferences to select agents that have:

1. Played fewer games.
2. Played against fewer of the opponents.
3. Played with fewer of the teammates.
4. Played a lower maximum number of games against any one opponent or with

any one teammate.
5. Played a lower maximum number of games against any one opponent.
6. Played a lower maximum number of games with any one teammate.
7. Random.

Algorithm 1 terminates when all agents have played at least one game with and
against all other agents.

Each drop-in player can communicate with its teammates using a simple
protocol, —the use of the protocol is purely optional. The protocol communicates
the following information:

– player’s team
– player’s uniform number
– player’s current (x, y) position on the field
– (x, y) position of the ball
– time ball was last seen
– if player is currently fallen over

A C++ implementation of the protocol is provided to all participants.
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Algorithm 1. Drop-In Team Agent Selection
Input: Agents

1: games = ∅

2: while not allAgentsHavePlayedWithAndAgainstEachOther() do
3: team1 := ∅

4: team2 := ∅

5: for i := 1 to AGENTS PER TEAM do
6: team1 ← getNextAgent(Agents \ {team1 ∪ team2})
7: team2 ← getNextAgent(Agents \ {team1 ∪ team2})
8: games ← {team1, team2}
9: return games

All normal game rules apply in this challenge. Each player is randomly
assigned a uniform number from 2–11 at the start of a game. The challenge
is scored by the average goal difference received by an agent across all games
that an agent plays in.

4 Ad Hoc Teamwork Performance Metric

Since 2013 drop-in player challenges have been held at RoboCup in multiple
robot soccer leagues including 3D simulation, 2D simulation, and the physical
Nao robot Standard Platform League (SPL) [5,6,13–15]. Across these challenges
there has been a high correlation between how well a team does in the challenge
and how well a team performs in the main soccer competition. This correlation
suggests it may be the case that better individual skills and ability—as opposed
to teamwork—is a dominating factor when using average goal difference to rank
challenge participants.

As drop-in player challenges are designed as a test bed for ad hoc teamwork,
and the ability of an agent to interact with teammates without pre-coordination,
ideally we would like to evaluate ad hoc teamwork performance—how well agents
are able to coordinate and collaborate with unknown teammates. To measure
this performance we need a way of isolating agents’ ad hoc teamwork from their
skill levels.

One way to infer an agent’s skill level, relative to another agent, is to evaluate
how agents perform in a drop-in player challenge when playing games with teams
consisting entirely of their own agent. By playing two different agent teams
against each other, and with each teams’ members being of the same agent, we
are able to directly measure the relative performance difference between the two
agents. Although agents’ skill levels may not be the only factor in the difference in
performance between two teams—factors such as team coordination dynamics
may affect performance as well—the teams’ relative performance is used as a
proxy for individual skills of its members. For agent team a playing agent team
b we denote their skill difference, measured as the expected number of goals
scored by agent team a minus the expected number of goals scored by agent
team b, to be relSkill(a, b).
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Given the relSkill value for all agent pairs, which can be measured by
having all agents play each other in a round robin style tournament, we can
estimate the expected goal difference of any mixed agent team drop-in player
game by summing and then averaging the relSkill values of all agent pairs on
opposing teams. Equation 1 shows the estimated score between two mixed agent
teams A and B.

score(A,B) =
1

|A||B|
∑

a∈A,b∈B

relSkill(a, b) (1)

Next, to determine the overall skill of an agent relative to all other agents, we
compute the average goal difference across all possible

((
N
K

) ∗ (
N−K
K

))
/2 drop-in

player mixed team game permutations for an agent, where N is the total number
of agents and K is the number of agents per team, using the estimated goal
difference of each game from Eq. 1. We denote this value measuring the average
goal difference (AGD) across all games for agent a as skillAGD(a). Instead
of explicitly computing the score for all game permutations, we can simplify
computation as shown in the following example to compute skillAGD(a) for a
drop-in player challenge with agents {a, b, c, d} and two agents on each team.

First determine the score of all drop-in game permutations involving agent
a (rS used as shorthand for relSkill):

score ({a, b}, {c, d}) =
rS(a, c) + rS(a, d) + rS(b, c) + rS(b, d)

4

score ({a, c}, {b, d}) =
rS(a, b) + rS(a, d) + rS(c, b) + rS(c, d)

4

score ({a, d}, {b, c}) =
rS(a, b) + rS(a, c) + rS(d, b) + rS(d, c)

4
Averaging all scores to get skillAGD(a), and as

rS(a, b) = −rS(b, a),

this simplifies to

skillAGD(a) =
rS(a, b) + rS(a, c) + rS(a, d)

6
.

Based on relSkill values canceling each other out when averaging over all
drop-in game permutations, as shown in the above example, Eq. 2 provides a
simplified form for estimating an agent’s skill.

skillAGD(a) =
1

K(N − 1)

∑

b∈Agents\a
relSkill(a, b) (2)

To evaluate agents’ ad hoc teamwork we also need a measure of how well they
do when playing in mixed team drop-in player games. Let dropinAGD(a) be the
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actual, measured average goal difference for agent a across all mixed team per-
mutations of drop-in player games. Given an agent’s skillAGD—estimated indi-
rectly from relSkill values—and dropinAGD—measured directly—values, we
compute a metric teamworkAGD for measuring an agent’s teamwork. An agent’s
teamworkAGD value is computed by subtracting an agent’s skill from it’s mea-
sured performance in drop-in player games as shown in Eq. 3.

teamworkAGD(a) = dropinAGD(a) − skillAGD(a) (3)

The teamworkAGD value serves to help remove the bias of an agent’s skill
from its measured averaged goal difference during drop-in player challenges, and
in doing so provides a metric to isolate ad hoc teamwork performance.

5 Ad Hoc Teamwork Performance Metric Evaluation

To evaluate the teamworkAGD ad hoc teamwork performance metric presented in
Sect. 4, we need to be able to create agents with different known skill levels and
teamwork such that an agent’s skill level is independent of its teamwork. Once we
have agents with known differences in skill level and teamwork relative to each
other, it is possible to check if the teamworkAGD metric is able to isolate agents’
ad hoc teamwork from their skill levels during a drop-in player challenge. For
our analysis, we designed a RoboCup 3D simulation drop-in player challenge
with ten agents each having one of five skill levels and either poor or non-
poor teamwork—there is a single agent for every combination of skill level and
teamwork type—as follows.

We first created five drop-in player agents with different skill levels deter-
mined by how fast an agent is allowed to walk—the maximum walking speed is
the only difference between the agents. While walking speed is only one factor
for determining an agent’s skill level—other factors such as how far an agent
can kick the ball and how fast it can get up after falling are important too—by
varying their maximum walking speed we ensure agents’ overall skill levels differ
significantly. The five agents, from highest to lowest skill level, were allowed to
walk up to the following maximum walking speeds: 100%, 90%, 80%, 70%, 60%.
We then played a round robin tournament with each of the five agents playing
100 games against each other. During these games members of each team con-
sisted of all the same agent. Results from these games of the relSkill values of
agents with different skill levels are shown in Table 1.

From the values in Table 1 we then compute the agents’ skills relative to
each other (skillAGD) using Eq. 2. When doing so we model the drop-in player
challenge as being between ten participants consisting of two agents from each
of the five skill levels. We also assume that the average goal difference between
two agents of the same skill level is 0.5 Agents’ skill values are shown in Table 2.

5 Empirically we have found that the average goal difference when one team plays
itself approaches 0 across many games.
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Table 1. Average goal difference of agents with different skill levels when playing
100 games against each other. A positive goal difference means that the row agent is
winning. The number at the end of the agents’ names refers to their maximum walk
speed percentages.

Agent60 Agent70 Agent80 Agent90

Agent100 1.73 1.36 0.78 0.24

Agent90 1.32 0.94 0.45

Agent80 0.71 0.52

Agent70 0.16

Table 2. Skill values (skillAGD) for agents with different skill levels. The number at
the end of the agents’ names refers to their maximum walk speed percentages.

Agent skillAGD

Agent100 0.183

Agent90 0.110

Agent80 0.000

Agent70 −0.118

Agent60 −0.174

The default strategy for each of our drop-in player agents is for an agent to
go to the ball if it is the closest member of its team to the ball. Once at the ball,
an agent then attempts to kick or dribble the ball toward the opponent’s goal. If
the agent is not the closest to the ball, it waits at a position two meters behind
the ball in a supporting position.

To create agents with poor teamwork, we made modified versions of each of
the five different skill level agents such that the modified versions will still go to
the ball if an unknown teammate—an agent that is not the exact same type—is
closer or even already at the ball. These modified agents, which we refer to as
“PT agents” for poor teamwork, can interfere with their unknown teammates
and impede progress of the team as a whole. The only teammates they will not
interfere with are known agent teammates—agents of the same type with the
same maximum walking speed and poor teamwork attribute.

We played a drop-in player challenge with all ten agent types. The total
number of possible drop-in team combinations is (

(
10
5

)∗(
5
5

)
)/2 = 126. Each com-

bination was played ten times, resulting in a total of 1260 games. Data from
these games showing each agent’s dropinAGD, as well as the agents’ skillAGD
and computed teamworkAGD, are shown in Table 3. Note that a poor teamwork
agent has the same skillAGD as the non-poor teamwork agents with the same
walking speed—both agents behave identically when playing on a team consist-
ing of all their own agents.
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Table 3. Skill value, drop-in player tournament average goal difference, and ad hoc
teamwork performance metric for different agents sorted by teamworkAGD.

Agent skillAGD dropinAGD teamworkAGD

Agent70 −0.118 0.017 0.135

Agent60 −0.174 −0.055 0.119

Agent80 0.000 0.087 0.087

Agent100 0.183 0.204 0.021

Agent90 0.110 0.123 0.013

PTAgent60 −0.174 −0.196 −0.022

PTAgent70 −0.118 −0.169 −0.051

PTAgent100 0.183 0.109 −0.074

PTAgent80 0.000 −0.101 −0.101

PTAgent90 0.110 −0.018 −0.128

While the data in Table 3 shows a direct correlation of agents with higher skill
levels having higher dropinAGD values, the teamworkAGD values rank all normal
agents above poor teamwork agents. As teamworkAGD is able to discern between
agents with different levels of teamwork, despite the agents having different levels
of skill, teamworkAGD is a viable metric for analyzing ad hoc teamwork perfor-
mance. However, there is a trend for agents with lower skillAGD values to have
higher teamworkAGD values. We discuss and account for this trend in the next
section.

6 Normalized Ad Hoc Teamwork Performance Metric

Part of the reason teamworkAGD in Table 3 is able to separate the agents with
poor teamwork independent of an agent’s skill level is due to agents with the same
teamwork having similar values of teamworkAGD. Empirically we have noticed
that is not always the case that teams with the same teamwork have similar
teamworkAGD values. When skill levels between agents are more spread out, there
is a trend for agents with lower skill levels to have higher values for teamworkAGD.
This trend can be seen in Table 4 containing data from a drop-in player challenge
with agents having maximum walking speeds between 100% and 40% of the
possible maximum walking speed.

With the trend of agents with lower skillAGD having higher values for
teamworkAGD, the poor teamwork PTAgent50 agent in Table 4 has a higher
teamworkAGD than several of the non-poor teamwork agents.

To account for agents with the same teamwork, but different skill levels,
we can normalize these agents’ teamworkAGD values to 0. We define the value
added to each of these agents’ teamworkAGD values to set them to 0 as the agents’
normOffset values. Thus for a set of multiple agents A with the same teamwork,
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Table 4. Skill value, drop-in player tournament average goal difference, and ad hoc
teamwork performance metric for different agents sorted by teamworkAGD.

Agent skillAGD dropinAGD teamworkAGD

Agent40 −0.710 −0.270 0.440

Agent50 −0.226 −0.129 0.097

Agent55 −0.142 −0.081 0.061

Agent100 0.412 0.416 0.004

PTAgent50 −0.226 −0.230 −0.004

Agent90 0.296 0.259 −0.037

Agent70 0.028 −0.005 −0.033

Agent85 0.245 0.176 −0.069

PTAgent70 0.028 −0.179 −0.207

PTAgent90 0.296 0.043 −0.253

and for every agent a ∈ A, we let normOffset(a) = −teamworkAGD(a). This
normalization produces a normTeamworkAGD value as shown in Eq. 4.

normTeamworkAGD(a) = teamworkAGD(a) + normOffset(a) (4)

While normTeamworkAGD will give the same value of 0 for agents that we
know to have the same teamwork, we want to estimate normOffset, and then
compute normTeamworkAGD, for agents that we do not necessarily know about
their teamwork. To estimate normOffset values we first plot the normOffset
values relative to teamworkAGD values for the agents with the same teamwork,
and then fit a curve through these points. To intersect each point, we do a least
squares fit to a n− 1 degree polynomial, where n is the number of points we are
fitting the curve to. Then, to estimate any agent’s normOffset value, we choose
the point on this curve corresponding to the agent’s skillAGD. A curve generated
by the normOffset values normalizing teamworkAGD to 0 for Agent100, Agent85,
Agent70, Agent55, and Agent40 from Table 4 is shown in Fig. 2.

Table 5 shows normOffset and normTeamworkAGD values for the agents in
Table 4. The normOffset values for agents with 50% and 90% speeds are esti-
mated. Considering that normTeamworkAGD is able to discern between agents
with different levels of teamwork, it is a useful metric for analyzing ad hoc team-
work performance when agents with the same teamwork have larger differences
in their teamworkAGD values. To compute normTeamworkAGD, however, a set of
agents with the same teamwork, but different skill levels, must be included in a
drop-in player challenge.

7 Drop-In Player Game Prediction

Computing dropinAGD requires results from all possible agent to team assign-
ment permutations of drop-in player games. The number of games grows
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Fig. 2. Curve of normOffset vs. skillAGD based on normOffset values normalizing
teamworkAGD to 0 for Agent100, Agent85, Agent70, Agent55, and Agent40 from Table 4.
Both data points used to generate the curve (blue dots) and points used to estimate
normOffset for agents walking at 50% and 90% speeds (red diamonds) are shown.
(Color figure online)

Table 5. teamworkAGD, normOffset, and normTeamworkAGD values for the agents in
Table 4 sorted by normTeamworkAGD.

Agent teamworkAGD normOffset normTeamworkAGD

Agent90 −0.037 0.057 0.020

Agent55 0.061 −0.061 0.000

Agent40 0.440 −0.440 0.000

Agent100 0.004 −0.004 0.000

Agent70 −0.033 0.033 0.000

Agent85 −0.069 0.069 0.000

Agent50 0.097 −0.121 −0.024

PTAgent50 −0.004 −0.121 −0.125

PTAgent70 −0.207 0.033 −0.174

PTAgent90 −0.253 0.057 −0.196



Evaluating Ad Hoc Teamwork Performance in Drop-In Player Challenges 179

factorially as this is
((

N
K

) ∗ (
N−K
K

))
/2 drop-in player games, where N is the

total number of agents and K is the number of agents per team. Playing all per-
mutations of drop-in player games may not be tractable or feasible, especially
when drop-in player competitions involve physical robots [5,6].

To account for fewer numbers of drop-in player games being played, a pre-
diction model can be built, based on data from previously played drop-in player
games, to predict the scores of games that have not been played. Combining
data from both the scores of games played and predicted games then allows for
dropinAGD to be estimated.

One way to predict the scores of drop-in player games is to model them
as a linear system of equations. More specifically, we can represent a drop-in
player game as a linear equation with strength coefficients for individual agents,
cooperative teammate coefficients for pairs of agents on the same team, and
adversarial opponent coefficients for pairs of agents on opposing teams.

Given two drop-in player teams A and B, score(A,B) is modeled as the
sum of strength coefficients S,

∑

a∈Agents

Sa ∗
⎧
⎨

⎩

1 if a ∈ A
−1 if a ∈ B
0 otherwise

teammate coefficients T ,

∑

a∈Agents,b∈Agents,a<b

Ta,b ∗
⎧
⎨

⎩

1 if a ∈ A and b ∈ A
−1 if a ∈ B and b ∈ B
0 otherwise

and opponent coefficients O,

∑

a∈Agents,b∈Agents,a<b

Oa,b ∗
⎧
⎨

⎩

1 if a ∈ A and b ∈ B
−1 if a ∈ B and b ∈ A.
0 otherwise

There are N strength coefficients, and
(
N
2

)
of both teammate and opponent

coefficients, for a total of N + 2
(
N
2

)
coefficients.

To solve for the coefficients in the system of linear equations least squares
regression is used. There needs to be enough data from games such that every
agent has played with and against every other agent, however, so that there is
at least one instance of every coefficient being multiplied by a non-zero number.
Using Algorithm 1, with 10 agents total and 5 agents per team, having every
coefficient multiplied by a non-zero number requires only 5 games. Figure 3 shows
how the number of games required to create a prediction model increases as the
number of agents increase when using Algorithm 1. Although it is possible to
create a prediction model with a minimum number of games, such a system will
be very underdetermined and more games will result in better predictions.
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Fig. 3. The number of games required to play all agents with and against every other
agent using Algorithm 1 as the number of agents increase. This data assumes there are
five agents on each team.

As an example of our prediction model, Tables 6 and 7 show predicted values
of dropinADG created from game scores generated by prediction models built
from half the game data—data from 630 games—used to compute dropinADG
values in Tables 3 and 4 respectively. More specifically, data from games encom-
passing half of all possible agent to team assignment permutations of drop-in
player games—the first 63 out of 126 possible unique team permutations gen-
erated by letting Algorithm 1 continue to run even after all teams have played
with and against each other—was used to build the prediction models.

The majority of the predicted dropinAGD values in Tables 6 and 7 are closer
to the true dropinAGD values than that of their counterpart 1

2 dropinAGD values
computed directly from the games used to build the prediction models. Further-
more, the predicted dropinAGD values reduce the mean squared error relative to
the 1

2 dropinAGD values: from 6.405×10−4 to 3.212×10−4 and from 3.076×10−3

to 9.068 × 10−4 for Tables 6 and 7 respectively.
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Table 6. The dropinAGD values from Table 3 (computed from all 1260 games) compared
to both dropinAGD values from half the games played used to compute the data in
Table 3 ( 1

2
dropinAGD with 630 games), and predicted dropinAGD values generated

from a prediction model built from the game data used to compute 1
2
dropinAGD (Pred.

dropinAGD with 630 games). The difference (error) from the true dropinAGD values for
both half the games played and predicted dropinAGD are shown in parentheses.

Agent dropinAGD 1260
games

1
2
dropinAGD

630 games
Pred. dropinAGD
630 games

Agent100 0.204 0.194 (0.010) 0.223 (0.019)

Agent90 0.123 0.133 (0.010) 0.122 (0.001)

PTAgent100 0.109 0.114 (0.005) 0.117 (0.008)

Agent80 0.087 0.121 (0.034) 0.095 (0.008)

Agent70 0.017 0.006 (0.011) 0.021 (0.004)

PTAgent90 −0.018 −0.022 (0.004) −0.019 (0.001)

Agent60 −0.055 −0.105 (0.050) −0.094 (0.039)

PTAgent80 −0.101 −0.060 (0.041) −0.073 (0.028)

PTAgent70 −0.169 −0.194 (0.025) −0.181 (0.012)

PTAgent60 −0.196 −0.187 (0.009) −0.212 (0.016)

Table 7. The dropinAGD values from Table 4 (computed from all 1260 games) compared
to both dropinAGD values from half the games played used to compute the data in
Table 4 ( 1

2
dropinAGD with 630 games), and predicted dropinAGD values generated

from a prediction model built from the game data used to compute 1
2
dropinAGD (Pred.

dropinAGD with 630 games). The difference (error) from the true dropinAGD values for
both half the games played and predicted dropinAGD are shown in parentheses.

Agent dropinAGD 1260
games

1
2
dropinAGD

630 games
Pred. dropinAGD
630 games

Agent100 0.416 0.454 (0.038) 0.436 (0.020)

Agent90 0.259 0.356 (0.097) 0.296 (0.037)

Agent85 0.176 0.203 (0.027) 0.201 (0.025)

PTAgent90 0.043 0.105 (0.062) 0.048 (0.005)

Agent70 −0.005 −0.019 (0.014) −0.016 (0.011)

Agent55 −0.081 −0.168 (0.087) −0.132 (0.051)

Agent50 −0.129 −0.121 (0.008) −0.098 (0.031)

PTAgent70 −0.179 −0.241 (0.062) −0.173 (0.006)

PTAgent50 −0.230 −0.238 (0.008) −0.241 (0.011)

Agent40 −0.270 −0.330 (0.060) −0.323 (0.053)
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8 Case Study: RoboCup 2015 Drop-In Player Challenge

Table 8 shows the results of computing normTeamworkAGD values for the ten
released binaries of the 2015 RoboCup 3D simulation drop-in player chal-
lenge [15] participants. In doing so we added five agents with different skill
levels but the same teamwork to the challenge: Agent100, Agent80, Agent65,
Agent50, and Agent30. These agents, chosen specifically to have skillAGD val-
ues that span across the range of the 2015 RoboCup 3D simulation drop-in
player challenge participants, are the same as the drop-in player agents used
in our previous experiments—with the number at the end of the agents’ names
referring to their maximum walk speed percentages—except now the agents are
made slightly more competitive by having them communicate to their known

Table 8. Computed values from released binaries of the 2015 RoboCup 3D simula-
tion drop-in player challenge sorted by normTeamworkAGD. Values for skillAGD were
computed from every agent playing 100 games against each of the other agents with
teams consisting of all the same agent. Predicted dropinAGD (Pred. dropinAGD) values
were computed using a prediction model built from the results of playing 1000 drop-in
player games—only a very small partial amount of all 378,378 possible agent assign-
ments for drop-in player games. These predicted dropinAGD values were then used in
the computation of teamworkAGD, normOffset, and normTeamworkAGD values.

Agent skillAGD dropinAGD

1000 games
Pred.
dropinAGD

1000 games

teamwork

AGD

norm

Offset

norm

TeamworkAGD

UTAustin
Villa

0.932 1.184 1.178 0.246 0.129 0.375

FCPortugal 0.384 0.228 0.262 −0.122 0.267 0.145

magma
Offenburg

0.038 −0.069 −0.047 −0.085 0.139 0.054

Agent100 1.095 1.004 1.031 −0.064 0.064 0

Agent80 0.772 0.586 0.577 −0.195 0.195 0

Agent65 0.355 0.085 0.091 −0.264 0.264 0

Agent50 −0.278 −0.151 −0.129 0.149 −0.149 0

Agent30 −1.456 −0.432 −0.437 1.019 −1.019 0

BahiaRT 0.328 0.044 −0.029 −0.357 0.260 −0.097

RoboCanes 0.178 −0.207 −0.199 −0.377 0.216 −0.161

FUT-K 0.520 −0.027 0.029 −0.491 0.263 −0.228

Apollo3D −0.533 −0.486 −0.506 0.027 −0.465 −0.438

HfutEngine
3D

−1.124 −0.468 −0.470 0.654 −1.100 −0.446

CIT3D −0.574 −0.581 −0.589 −0.015 −0.519 −0.534

Nexus3D −0.676 −0.713 −0.763 −0.087 −0.653 −0.740
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teammates (those of the exact same agent type) where they are kicking the ball.
Once an agent hears from a teammate the location its teammate is kicking the
ball to, the agent then runs toward that location in anticipation of the ball being
kicked there.

As there are 15 agents in the challenge, which would require
((

15
5

) ∗ (
10
5

))
/2 =

378,378 possible agent assignments for drop-in player games, we only played
1000 games—the first 1000 team permutations generated by letting Algorithm 1
continue to run even after all teams have played with and against each other—
and then built a prediction model from the results of these games to compute
predicted dropinAGD values for all agents. Using a prediction model is the only
way for us to compute dropinAGD, and in turn normTeamworkAGD, given the large
increase in the number of games needed to compute dropinAGD when adding five
extra agents. The curve used to estimate normOffset values, and generated by
the normOffset values normalizing teamworkAGD to 0 for Agent100, Agent80,
Agent65, Agent50, and Agent30 from Table 8, is shown in Fig. 4.

Fig. 4. Curve of normOffset vs skillAGD based on normOffset values normalizing
teamworkAGD to 0 for Agent100, Agent80, Agent65, Agent50, and Agent30 from Table 8.
Both data points used to generate the curve (blue dots) and points used to estimate
normOffset (red diamonds) are shown. (Color figure online)
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When analyzing the data in Table 8 we empirically find that most of the
agents with lower teamworkAGD values interfere with their teammates when going
to the ball. On the other hand, UTAustinVilla—the agent with the highest
teamworkAGD value—purposely avoids running into teammates, and also checks
to ensure it will not collide with other agents before attempting to kick the ball
on its team’s kickoffs [14].

9 Related Work

Multiagent teamwork is a well studied topic, with most work tackling the prob-
lem of creating standards for coordinating and communicating. One such algo-
rithm is STEAM [17], in which team members build up a partial hierarchy of joint
actions and monitor the progress of their plans. STEAM is designed to commu-
nicate selectively, reducing the amount of communication required to coordinate
the team. In [7], Grosz and Kraus present a reformulation of the SharedPlans, in
which agents communicate their intents and beliefs and use this information to
reason about how to coordinate joint actions. In addition, SharedPlans provides
a process for revising agents’ intents and beliefs to adapt to changing conditions.
In the TAEMS framework [9], the focus is on how the task environment affects
agents and their interactions with one another. Specifically, agents reason about
what information is available for updating their mental state. While these algo-
rithms have been shown to be effective, they require that the teammates share
their coordination framework.

On the other hand, ad hoc teamwork focuses on the case where the agents
do not share a coordination algorithm. In [12], Liemhetcharat and Veloso rea-
son about selecting agents to form ad hoc teams. Barrett et al. [2] empirically
evaluate an MCTS-based ad hoc team agent in the pursuit domain, and Barrett
and Stone [1] analyze existing research on ad hoc teams and propose one way to
categorize ad hoc teamwork problems. Other approaches include Jones et al.’s
work [10] on ad hoc teams in a treasure hunt domain. A more theoretical app-
roach is Wu et al.’s work [18] into ad hoc teams using stage games and biased
adaptive play.

In the domain of robot soccer, Bowling and McCracken [3] measure the per-
formance of a few ad hoc agents, where each ad hoc agent is given a playbook
that differs from that of its teammates. In this domain, the teammates implicitly
assign the ad hoc agent a role, and then react to it as they would any teammate.
The ad hoc agent analyzes which plays work best over hundreds of games and
predicts the roles that its teammates will play.

A popular way of ranking players based on relative skill is the Elo [4] rating
system originally designed to rank chess players. While Elo only works in two
player games, the TrueSkill [8] rating system allows for ranking players in games
with multiple player teams. These ranking systems do not attempt to decou-
ple a player’s skill from its teamwork performance, and we are unaware of any
such previously existing metrics that decouple skill and teamwork in an ad hoc
teamwork setting.
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An alternative and potentially promising way of estimating scores of drop-in
player games is Liemhetcharat and Luo’s adversarial synergy graph model [11]
which has been used to estimate the scores of basketball games based on player
lineups.

10 Conclusions

Drop-in player challenges serve as an exciting testbed for ad hoc teamwork,
in which agents must adapt to a variety of new teammates without pre-
coordination. These challenges provided an opportunity to evaluate agents’ abil-
ities to cooperate with new teammates to accomplish goals in complex tasks.
They also served to encourage the participants in the challenges to reason about
teamwork and what is actually necessary to coordinate a team.

This paper presents new metrics for assessing ad hoc teamwork performance,
specifically attempting to isolate an agent’s coordination and teamwork from
its skill level, during drop-in player challenges. Additionally, the paper offers a
prediction model for the scores of drop-in player games. This prediction model
allows for smaller numbers of drop-in games being played when evaluating drop-
in player challenge participants. When combined these contributions make it
easier to study and perform research on ad hoc teamwork.

Acknowledgments. This work has taken place in the Learning Agents Research
Group (LARG) at UT Austin. LARG research is supported in part by NSF
(CNS-1330072, CNS-1305287, IIS-1637736, IIS-1651089), ONR (21C184-01), AFOSR
(FA9550-14-1-0087), Raytheon, Toyota, AT&T, and Lockheed Martin. Peter Stone
serves on the Board of Directors of, Cogitai, Inc. The terms of this arrangement have
been reviewed and approved by the University of Texas at Austin in accordance with
its policy on objectivity in research.

References

1. Barrett, S., Stone, P.: An analysis framework for ad hoc teamwork tasks. In:
AAMAS 2012, June 2012

2. Barrett, S., Stone, P., Kraus, S.: Empirical evaluation of ad hoc teamwork in the
pursuit domain. In: AAMAS 2011, May 2011

3. Bowling, M., McCracken, P.: Coordination and adaptation in impromptu teams.
In: AAAI (2005)

4. Elo, A.: The Rating of Chess Players, Past and Present. Arco Publishing, New
York (1978)

5. Genter, K., Laue, T., Stone, P.: Benchmarking robot cooperation without pre-
coordination in the robocup standard platform league drop-in player competition.
In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2015), September 2015

6. Genter, K., Laue, T., Stone, P.: Three years of the robocup standard platform
league drop-in player competition: creating and maintaining a large scale ad
hoc teamwork robotics competition. Auton. Agents Multi-Agent Syst. (JAAMAS)
31(4), 790–820 (2017). Springer



186 P. MacAlpine and P. Stone

7. Grosz, B., Kraus, S.: Collaborative plans for complex group actions. Artif. Intell.
86, 269–368 (1996)

8. Herbrich, R., Minka, T., Graepel, T.: TrueskillTM: a bayesian skill rating system. In:
Proceedings of the 19th International Conference on Neural Information Processing
Systems, pp. 569–576. MIT Press (2006)

9. Horling, B., Lesser, V., Vincent, R., Wagner, T., Raja, A., Zhang, S., Decker, K.,
Garvey, A.: The TAEMS White Paper, January 1999

10. Jones, E., Browning, B., Dias, M.B., Argall, B., Veloso, M.M., Stentz, A.T.:
Dynamically formed heterogeneous robot teams performing tightly-coordinated
tasks. In: ICRA, pp. 570–575, May 2006

11. Liemhetcharat, S., Luo, Y.: Applying the synergy graph model to human basket-
ball. In: Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems, pp. 1695–1696 (2015)

12. Liemhetcharat, S., Veloso, M.: Modeling mutual capabilities in heterogeneous
teams for role assignment. In: IROS 2011, pp. 3638–3644 (2011)

13. MacAlpine, P., Depinet, M., Liang, J., Stone, P.: UT Austin Villa: RoboCup 2014
3D simulation league competition and technical challenge champions. In: Bianchi,
R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS
(LNAI), vol. 8992, pp. 33–46. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18615-3 3

14. MacAlpine, P., Genter, K., Barrett, S., Stone, P.: The RoboCup 2013 drop-in player
challenges: experiments in ad hoc teamwork. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), September
2014

15. MacAlpine, P., Hanna, J., Liang, J., Stone, P.: UT Austin Villa: RoboCup 2015 3D
simulation league competition and technical challenges champions. In: Almeida, L.,
Ji, J., Steinbauer, G., Luke, S. (eds.) RoboCup 2015. LNCS (LNAI), vol. 9513, pp.
118–131. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-29339-4 10

16. Stone, P., Kaminka, G.A., Kraus, S., Rosenschein, J.S.: Ad hoc autonomous agent
teams: collaboration without pre-coordination. In: AAAI 2010, July 2010

17. Tambe, M.: Towards flexible teamwork. J. Artif. Intell. Res. 7, 81–124 (1997)
18. Wu, F., Zilberstein, S., Chen, X.: Online planning for ad hoc autonomous agent

teams. In: IJCAI (2011)

https://doi.org/10.1007/978-3-319-18615-3_3
https://doi.org/10.1007/978-3-319-18615-3_3
https://doi.org/10.1007/978-3-319-29339-4_10


Convention Emergence in Partially
Observable Topologies

James Marchant(B) and Nathan Griffiths

Department of Computer Science, University of Warwick, Coventry, UK
{james,nathan}@dcs.warwick.ac.uk

Abstract. In multi-agent systems it is often desirable for agents to
adhere to standards of behaviour that minimise clashes and wasting of
(limited) resources. In situations where it is not possible or desirable
to dictate these standards globally or via centralised control, conven-
tion emergence offers a lightweight and rapid alternative. Placing fixed
strategy agents within a population, whose interactions are constrained
by an underlying network, has been shown to facilitate faster conven-
tion emergence with some degree of control. Placing these fixed strategy
agents at topologically influential locations (such as high-degree nodes)
increases their effectiveness. However, finding such influential locations
often assumes that the whole network is visible or that it is feasible to
inspect the whole network in a computationally practical time, a fact
not guaranteed in many real-world scenarios. We present an algorithm,
PO-Place, that finds influential nodes given a finite number of network
observations. We show that PO-Place finds sets of nodes with similar
reach and influence to the set of high-degree nodes and we then com-
pare the performance of PO-Place to degree placement for convention
emergence in several real-world topologies.

Keywords: Convention emergence · Partial observability
Local information

1 Introduction

Coordinating the actions of independent agents within a multi-agent system
(MAS) increases efficiency within the system. Incompatible action choices made
during interactions can cause clashes, which may incur resource costs and limit
the overall effectiveness of the system. Establishing protocols of interaction, such
as which action to choose in a given situation, minimises such clashes and helps
to maximise the potential of the system.

However, it is not always possible to dictate such rules and protocols in a top-
down manner. In multi-agent systems, with agents controlled by multiple parties
or systems which lack a centralised control mechanism, it is often infeasible to
establish this level of a priori coordination. Additionally, for systems where the
c© Springer International Publishing AG 2017
G. Sukthankar and J. A. Rodriguez-Aguilar (Eds.): AAMAS 2017 Best Papers,
LNAI 10642, pp. 187–202, 2017.
https://doi.org/10.1007/978-3-319-71682-4_12
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range of choices available to agents is large or has no evident optimal selection,
it may be undesirable to enforce rules of this nature.

Convention emergence allows a system to deal with these problems in
a decentralised, online manner. A convention represents a socially-adopted
expected behaviour amongst agents, for instance the correct course of action in
a given scenario. Convention emergence has been shown to be possible in both
static and dynamic networks with minimal requirements, needing only rational
agents that are able to learn [6,13,22].

Fixed strategy (FS) agents are those that continue to choose the same action
regardless of the behaviour of others around them or the results of their actions.
Placing such agents within a system has been shown to affect the direction and
speed of convention emergence, with small numbers of FS agents eliciting change
in much larger populations [19]. In systems constrained by an underlying network
topology, placing such agents by heuristics based on network features such as
degree magnifies this effect [8,9].

Previous work on convention emergence often assumes that the topology con-
straining agent interactions is fully observable, allowing highly influential loca-
tions to be found easily [11,17,19,21]. However, in many real-world applications
such information is not always readily available. This can be due to factors such
as the problem size or external limitations such as restricted access to network
information or a network’s API as is the case with Twitter or Facebook.

In this paper we explore the effect of the restrictions placed on FS agent
placement in partially observable topologies. We propose an algorithm, PO-
Place, to find influential locations within such topologies given a highly limited
number of network queries. We show the effectiveness of PO-Place at finding
approximations of the highest degree locations for several real-world topologies
under a number of restrictions on available information. We then apply PO-
Place to select FS agents within these networks and examine the effect on
convention emergence compared to placing with full topological knowledge. This
approach allows an interested third party, with limited access to the system, to
find the appropriate locations to target their influence efforts.

The remainder of this paper is arranged as follows. In Sect. 2 we explore
related work on convention emergence and local information strategies for finding
influential nodes. Section 3 describes the algorithm and its design, whilst Sect. 4
describes the network datasets and experimental setup. Section 5 contains the
analysis and discussion of the results and Sect. 6 concludes the paper.

2 Related Work

Ensuring coordination in MAS allows increased system efficiency and conven-
tions are a lightweight method of doing so. Conventions place ‘soft constraints’
on agent choices by encouraging mutually beneficial behaviour by adherence to
the convention. Unlike norms there is no explicit punishment for going against
the convention but doing so is likely to incur a cost to the agent due to increased
clashes often represented as a negative interaction payoff [10,18]. Conventions
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can thus be described as “an equilibrium everyone expects in interactions that
have more than one equilibrium” [24]. Agents adhering to the convention expect
others to behave in a certain way and, because of this, can act efficiently when
this expectation is met. Conventions have been shown to emerge unaided from
local agent interactions in systems [6,11,20,22] and require no additional or
assumed agent capabilities to enable punishment (as is the case for norms). The
only assumptions necessary for conventions to emerge are that agents are rational
and have the capability to learn from their interactions. Numerous works have
shown that rapid and robust convention emergence occurs with these minimal
assumptions [9,19,22].

‘Social learning’ has been proposed as a way for agents to converge on a
convention where agents monitor payoffs they receive from their choices when
interacting with others and use a simplified Q-Learning algorithm to inform
future decisions [19]. The payoffs directly quantify the notion of an action clash
costing resources and convention emergence can occur without explicit memory
of the interaction. However, the work does not consider a connecting topology
that limits agent interactions. In many application domains such a topology is
likely, whether it be a social network or a more explicit communication network
and can have a large effect on the nature of convention emergence [5,21].

Despite lacking a connecting topology, Sen and Airiau’s work introduces the
concept of fixed strategy (FS) agents, those agents which always choose the same
action regardless of the current situation or convention, as a way to influence
convention emergence. They show that a small number of such agents is able to
manipulate the convention emergence within a much larger population. Griffiths
and Anand [9] expand on this by considering FS agents in a network topology. In
their model, all agents are situated as nodes within the network and interactions
are limited to neighbours. They showed that where FS agents are placed is a key
factor in their effectiveness. Placing the FS agents at influential locations such as
nodes of high degree or betweenness centrality offers substantially better perfor-
mance than random placement. This was explored further by Franks et al. [7,8]
who included more advanced placement metrics such as eigencentrality.

This previous work assumes full visibility of the network topology to inform
FS placement. Indeed, little work on partial observability for convention emer-
gence has been done. This paper expands the state of the art by considering the
effect of restricted observations on the ability to robustly and efficiently place
FS agents in static, real-world topologies. Convention destabilisation [14] and
dynamic topologies [13] will be investigated in future work.

Related work exists in the fields of graph algorithms and influence spread, the
latter sharing many qualities with convention emergence. For instance, Brautbar
and Kearns present a novel model [2], Jump and Crawl, motivated by operations
commonly available in networks such as Facebook. Their model consists of two
aspects: Jump which moves to a randomly selected node in the network and
Crawl which searches all neighbours of the selected node for high-degree nodes.
They provide bounds for many different types of network but, for an arbitrary
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network, finding the highest degree node approaches O(n log n), a large factor
for even medium-sized networks.

The influence maximisation problem [3,4] attempts to find a selection of
nodes such that the spread of influence (often modelled as single chance ‘cas-
cades’) from them is maximised. As in this paper, Mihara et al. [15] assume the
network is initially unknown and show that influence maximisation effectiveness
of 60–90% with 1–10% network observation is achievable. This work also uses a
‘growing fringe’ approach with priority based on degree estimation. As influence
maximisation and convention emergence are similar in aim, this indicates that
results are achievable under partial observability constraints.

Whilst many of these approaches are similar in application they differ in
that our investigation focuses on the often encountered scenario of limited, finite
observations. Making optimal use of these is paramount and so necessitates a
different set of considerations.

3 Placement Strategy

In this paper, the partial observability problem for networks can be described
as any scenario where a network’s topology is initially unknown and is revealed
incrementally within a local neighbourhood of nodes already explored [1]. As a
solution to the partial observability problem for FS agent selection we propose
a heuristic algorithm, PO-Place. This section describes the function of the
algorithm as well as the justification for the design choices.

3.1 Partial Observability Algorithm

The placement strategy is presented in Algorithms 1 and 2 and has the follow-
ing aim: Given a network, G = (V,E), a desired number of locations, n, and
a limited number of observations, o, find a selection of nodes {v1, ..., vn} ⊂ V
such that deg-sum = deg(v1) + ... + deg(vn) is maximised. We define an obser-
vation as a query that retrieves the list of neighbours, N(u) for a given node,
u. This functionality is frequently available in real-world network APIs (such as
Twitter or Facebook) and so we assume that such information is available. This
assumption is later relaxed to allow the algorithm to explore situations with only
limited neighbour information. We assume that the set of nodes, V , is known
but the set of edges, E, (and hence neighbours and degree of a node) is not.
Finding the highest degree nodes is desirable since fixed strategy agent place-
ment by degree consistently produces effective convention emergence [8,9,13,14]
but without requiring computationally expensive metrics such as betweenness
centrality. The degree of nodes can be entirely derived from local information
and, as such, is an applicable heuristic within partially observable networks.

The algorithm begins by creating an empty set, S, to monitor which nodes
have already been explored and an empty mapping, N , that maps a node v to
N(v), its set of neighbours. As we only consider static topologies in this paper,
by storing this information we can avoid using observations redundantly.
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Algorithm 1. Partial Observability Placement
1: procedure PO-Place(G, n, o, s, p, f)
2: Create empty node set, S
3: Create empty mapping, N
4: orem ← o

5: while orem > 0 ∧ |S| < |V | do
6: Select v u.a.r from {V \ S}
7: if orem mod s �= 0 then
8: olocal ← min(�o/s�, orem)
9: else
10: olocal ← min(�o/s	, orem)
11: end if
12: orem ← orem − olocal

13: ounused ← Traverse(G, olocal, v, p, f , S, N)
14: orem ← orem + ounused

15: end while

16: return n highest-degree nodes in S
17: end procedure

Many of the other approaches [1,15] to finding high-degree nodes select a
random starting node and then ‘grow’ outwards, selecting the highest degree
nodes from the neighbourhood surrounding those already explored. However,
this is not desirable in FS agent placement since, with limited observations, it
is likely to produce a single cluster of well-explored nodes. Selecting from this
cluster will then mean that all FS agents are close together, making some of their
influence redundant. Instead, we build on the notion of Jump and Crawl [2]. We
explore a local area up to a defined amount and then ‘jump’ to another location
and explore around this new point. This helps to minimise the risk of overlap
between high-degree nodes, as well as ensuring that a bad initial random selection
does not hinder the final selection.

To facilitate this, we introduce a parameter, s, which dictates the minimum
number of separate local area explorations that will take place. The observations
are split, as evenly as possible, between each of these explorations with the earlier
ones receiving any spare observations (this is achieved between Lines 7 and 11
of Algorithm1). This subset of observations is then passed to the local area
traversal which is presented in Algorithm2. If any observations are unused by
the local area traversal (for instance if it finds a local maxima) they are returned
to the pool of available observations and used in later, additional local traversals.

Algorithm2, Traverse, describes the local area traversals. It is passed both
S and N , to avoid redundant exploration, as well as the initial start node of
the local area, v. It is also passed its own local limit of observations and two
parameters from outside, p and f , which are explained below. It maintains a
max-priority queue to determine which node(s) it should next explore by highest
degree and begins by adding v to this queue. Throughout Algorithm2, observa-
tion of a node’s neighbour list is stored in N to avoid additional queries. The
algorithm then performs the following, until either the queue is empty or all
assigned observations have been used up:
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Algorithm 2. Local area traversal algorithm
1: procedure Traverse(G, o, v, p, f , S, N)
2: Create max-priority queue, Q
3: count ← 0
4: if v not in N then
5: N [v] ← N(v)
6: Add v to S
7: count ← count + 1
8: end if
9: Add (v, |N [v]|) to Q

10: while |Q| > 0 ∧ count < o do
11: Fringe ← top min(f, |Q|) elements of Q
12: for all u in Fringe do
13: Avail ← {N [u] \ S}
14: num ← min(|Avail|,max(f, �p × |Avail|	))
15: Chosen ← u.a.r select num members of Avail
16: for all w in Chosen do
17: N [w] ← N(w)
18: Add w to S
19: count ← count + 1
20: if count = o then
21: return 0
22: end if
23: Add (w, |N [w]|) to Q
24: end for
25: end for
26: end while

27: return o − count
28: end procedure

1. Take the top f nodes from the queue (or all elements, if fewer).
2. For each of these nodes, find the set of unexplored nodes in its neighbours.
3. Choose a proportion, p, of these (or up to f if this proportion would be less

than f).
4. Add these nodes to the queue after finding their neighbours.

Parameter f is the ‘fringe size’, the number of nodes that are expanded
simultaneously before their neighbours are queued. This acts as a control over
how ‘breadth-first’ or ‘depth-first’ the local traversal approach will be. Parameter
p is the proportion of the node’s neighbours that should be queried. This allows
the algorithm to simulate situations where a node’s full neighbour list is either
not fully available (for instance, an API that only returns a subset) or where
doing so incurs additional cost. In the latter case we seek to explore the effect
that only querying p proportion of neighbours has on the performance of PO-
Place. Whilst it will reduce the effectiveness, establishing the extent of this
reduction, and whether the results are still close enough to degree placement,
allows PO-Place to be effective over a wider range of scenarios.

4 Experimental Setup

This section defines the real-world topologies and the experimental setup used
for analysis of PO-Place. We then describe the model of convention emergence
used to study the efficacy of PO-Place for FS placement selection.
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4.1 Networks

We make use of three real-world networks from the Stanford SNAP datasets [12].
These datasets represent a number of different methods of social interaction
and, as such, each have different features allowing a wide-ranging look at the
effectiveness of PO-Place. The three datasets chosen are: CA-CondMat, the
collaboration network of the arXiv COND-MAT (Condensed Matter Physics)
category; Email-Enron, the email communications between workers at Enron;
and Ego-Twitter, a crawl of Twitter follow relationships from public sources (for
our purposes we ignore the directed nature of the edges). These datasets are
used frequently in both convention emergence and influence spread research [3,
7,16,23] as performance benchmarks.

Table 1. Original and modified network sizes
Network Largest WCC
|V | |E| |V | |E|

CA-CondMat 23,133 93,497 21,363 91,286
Enron-Email 36,692 183,831 33,696 180,811
Twitter 81,306 1,768,149 81,306 1,342,296

For the purposes of moni-
toring convention emergence in
these networks, we only want
to examine a single, connected
component. As such, all 3 net-
works were reduced to their
largest weakly connected compo-
nent (WCC). Additionally, any self-loops (edges from a node to itself) were
removed as such edges artificially inflate a node’s degree whilst not increasing
its ability to influence others. Table 1 shows the number of nodes and edges in
each network and the number of nodes and edges (without self-loops) in their
largest WCC.

4.2 Experimental Setup

We performed simulations of PO-Place on the real-world networks described
above. We varied both the number of nodes (n = 5 to n = 30) being requested
as well as the number of observations provided (o = 500 to o = 5000 [o =
3500 for CondMat]). To establish an upper bound and allow comparison a full-
observability degree placement was also performed for each of the networks with
the same range of values. Each set of parameters was averaged over 30 runs.

For convention emergence, a population of agents is situated in the topologies.
Each timestep, each agent chooses one of its neighbours u.a.r to play the 10-
action coordination game [19] receiving positive or negative payoffs depending
on whether their choices match. Agents use a simplified Q-Learning algorithm
to learn the most beneficial choice. We utilise the 10-action game as used by [14]
to avoid the issues of small convention spaces raised in Sect. 2 and to allow
comparison to previous work. They have a chance to randomly choose their
action (pexplore = 0.25) or else choose the most beneficial one. FS agents replace
the agents at the chosen locations and always choose their predetermined action.

5 Results and Discussion

In this section we present the analysis of PO-Place and compare it to the upper
bound from degree placement. We explore the effects of the various parameters
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on PO-Place at different levels of observation. We then use these findings
as insight to compare the performance of PO-Place to degree for convention
emergence when used to place FS agents into the chosen networks.

Fig. 1. Pdeg-sum and deg-sum performance of PO-Place for varying n (# of locations)
and o (# of observations) in the real-world networks.

5.1 PO-Place Output

We begin by looking at the isolated algorithm output, comparing it to the out-
put generated by a degree placement scheme. As the aim of PO-Place is to
maximise deg-sum this is our primary metric by which to evaluate PO-Place.
The highest deg-sum possible in each network is that of the set of highest degree
nodes. Establishing this as an upper bound allows evaluating the performance
of PO-Place by comparing the deg-sum of its output as a proportion of that
of the pure degree network. We denote this as Pdeg-sum.

Whilst deg-sum describes the maximum reach of the nodes selected, another
useful metric is the size of the 1-hop neighbourhood of those nodes. This can be
defined as: 1-Hop(L,G) = {v ∈ {V \L}|∃(u, v) ∈ E∧u ∈ L} where L is the set of
nodes selected for placement and G = (V,E) is the network. That is, the 1-Hop
neighbourhood is the set of nodes that are connected to a member of S but are
not in S themselves. The 1-Hop neighbourhood offers a slightly different measure
of influence by discounting nodes that are connected to multiple members of S.
Whilst normally tied closely to deg-sum a noticeable disparity indicates that the
selected nodes are likely to be clustered close to one another, which is undesirable.
As with deg-sum we concern ourselves with the proportionate behaviour of 1-Hop
size, P|1-Hop|.
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The final metric we use to evaluate the performance is based on the Jaccard
Index which measures similarity between two sets. The Jaccard Index is defined
as J(A,B) = |A ∩ B|/|A ∪ B|. However, in our instance, one of the sets is static.
We are trying to approximate that set with the other (i.e. a one-way similarity),
whilst the Jaccard Index is looking at the two-way similarity between them.
Instead we want to measure how close the selection of PO-Place is to the
baseline, and so we define a distance measure, DBase, thus: DBase(L,Base) =
|L ∩ Base|/|Base|. That is, the fraction that elements of L make up of the
baseline set, Base. This metric enables evaluation of how close the actual node
selection of PO-Place is to that of degree placement, whilst the previous two
measure the selection’s features.

These metrics offer insight into the influence and reach of the nodes selected
by PO-Place as well as allowing a direct comparison to degree-based placement
with full observability. Thus they should be good predictors of the performance
of PO-Place in the convention emergence setting.

Varying Observations. We begin by considering the base case of the algorithm
where s = p = f = 1. This allows us to study the effect of varying the number
of observations and provides a lower bound on the expected performance of
PO-Place. With these settings, PO-Place closely resembles the algorithms
presented by Borgs et al. [1] and Mihara et al. [15].

We examine the effects of varying both the number of observations available
(o) as well as the number of locations requested (n) in all three networks. For all
networks, n was varied between 5 and 30 in increments of 5 and o was varied from
500 observations up to 3500 (for CondMat) or 5000 (for Enron and Twitter). The
results are presented in Fig. 1.

As can be seen in Fig. 1, all networks respond well, even with minimal num-
bers of observations. Even at o = 500, the degree sum of the nodes selected by
PO-Place is often a substantial proportion of the optimal one. The performance
varies across the three networks, with placement in CondMat doing best where
it varies from 90% (±5%) at n = 5 to 83% (±5%) at n = 30. The algorithm
similarly performs well in Enron, though to a lesser extent. The performance
in Twitter is noticeably worse, varying from 61% to 48% with larger standard
deviations for both. This is to be expected, as 500 observations represents a
substantially smaller proportion of the population in Twitter than it does in
CondMat or Enron (0.61%, 2.34% and 1.48% respectively). Even with this, the
percentage achieved in Twitter with such limitations substantially outperforms
the naïve solution of using all observations at random locations (16% (±6%) for
n = 5, o = 500, averaged over 100 runs).

Performance rapidly increases with the number of observations. For n = 30,
the worst performing value of n, in both CondMat and Twitter Pdeg-sum exceeds
90% at round 5% network observation (o = 1000 for CondMat and o = 5000
for Twitter) and Enron exceeds 90% at around 10% observation (o = 3500).
Figure 1 also shows that the relationship between Pdeg-sum and increasing o is one
of diminishing returns, with improvements in Pdeg-sum most noticeable at lower
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values of o. This is to be expected, the relative increase in o is smaller at higher
values, but dictates that increasing the effectiveness of PO-Place at low values
of o will have the most benefit. Additionally, in each network, the difference in
performance across the values of n becomes less noticeable at higher o. Thus,
any increased performance from PO-Place will be most noticeable early on.

The other metrics we use to evaluate PO-Place show similar behaviour
to Pdeg-sum, increasing rapidly with the number of observations. Figure 2 shows
a representative example of the three metrics’ variation with o for the Twitter
network when requesting 20 locations. The shaded regions represent the standard
deviations. As can be seen, both the deg-sum and 1-Hop proportions increase
rapidly up until o = 2000 and then any further gains occur over longer spans.
The standard deviations for each of these decrease as well, from approximately
15% at o = 500 down to around 5% at o = 5000. This indicates that, not only is
PO-Place finding sets of nodes with higher degree, it is doing so consistently
at higher numbers of observations, a finding that is repeated across all networks
and values of n. P|1-Hop| is consistently at the same level, if not better than,
Pdeg-sum. Whilst the two should be well-correlated, this shows that PO-Place
is not simply choosing nodes close to one another and, indeed, is often choosing
nodes that have a better neighbourhood size than the deg-sum would indicate.

The performance of PO-Place when evaluated by DBase is noticeably dif-
ferent than the other two metrics and offers an interesting insight. The same
pattern of diminishing returns is not present and DBase continues to increase
with additional observations. Note that, although both the degree sum and neigh-
bourhood size are comparable to that of pure degree placement, the low values
of DBase indicate that the nodes selected are not the same as the actual highest
degree nodes. Section 5.2 evaluates whether this difference has a noticeable effect
on convention emergence or if the reach and influence indicated by high deg-sum
and 1-Hop scores is the best indicator of success as hypothesised.

Fig. 2. Metric performances of PO-
Place for the Twitter network, n = 20.

Fig. 3. Effect of varying s on Pdeg-sum

and DBase. Enron network, n = 30.
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Varying Concurrent Searches. Having established a baseline for PO-Place
and explored the effects of limited observations we now explore the variants of
the algorithm. As noted in the prior section, at low values of o the deg-sum
performance of PO-Place is consistently lower, with performance in the Twitter
network as low as 48%. With very limited observations, making the best use
of them is paramount. In Sect. 3 we hypothesised that splitting the available
observations between multiple locations in the network and exploring them in
parallel may offer improvements over crawling from a singular location.

To test this hypothesis, we varied s from 1 to 9 to determine the effect
that these concurrent searches would have. Figure 3 shows a typical case in the
Enron network for n = 30. Shaded areas represent the errors of each plot. The
left-hand graph shows the effect on Pdeg-sum of varying the number of concur-
rent searches, splitting the observations between them. As can be seen, adding
concurrent starting points has an immediate and noticeable effect, especially at
low numbers of observations. At o = 500 the proportion achieved by deg-sum
is 10% higher when additional starting locations are introduced and this differ-
ence becomes even more noticeable as o increases. Indeed, for most values of o,
adding additional starting locations had significant benefits in both the Enron
and Twitter networks, with the benefits become less marked at high o where
Pdeg-sum approaches 1.0 unaided. Whilst there is a noticeable drop-off in effec-
tiveness after initial parallelisation (s = 5 and s = 7, not included in the results
to aid readability, offer little improvement over s = 3 for example) the effect at
low values of s is substantial as can be seen. Concurrent starting points enable
saturation of the algorithm’s effectiveness at much lower values of o and not
only increase Pdeg-sum and P|1-Hop| (not pictured) but, as shown in Fig. 3, cause
marked improvement in DBase as well, indicating that this change facilitates
much better approximation of the degree placement.

However, it should be noted that this pattern is not consistent. In the Cond-
Mat network, increasing s had little effect and in a few settings was actually
detrimental. This indicates that there is perhaps an underlying feature of the
CondMat topology that benefits from localised crawling and will be an area of
future study. The results of CondMat in Fig. 1a lend additional weight to this
hypothesis, with behaviour that is substantially different than the other two
topologies despite being of comparable size to Enron. Overall though, increasing
s by even a small amount is likely to benefit the performance of PO-Place.

Partial Neighbour Lists. In many settings, retrieving the whole of an agent’s
neighbour list may also be impossible. Whether this is due to a technical limita-
tion (only being able to retrieve a certain percentage of information) or because
such information is not publicly available and is instead reserved for ‘premium’
or ‘subscribed’ users of such a network, ensuring that PO-Place is robust to
such issues is a necessity to make it widely viable.

To simulate these restrictions, and measure their effect on the performance
of PO-Place, the parameter, p, controls the proportion of an agent’s neigh-
bours that may be explored. Results until this point have assumed that the full
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Fig. 4. Effect of varying p on
Pdeg-sum. Twitter network, n = 5.

Fig. 5. Effect of varying f on
Pdeg-sum. Enron network, n = 30.

neighbour list for any agent is available upon request (i.e. p = 1.0). p is varied
between 0.3 and 0.9 to determine the impact of this limitation. Representative
results are shown in Fig. 4 for the Twitter network and n = 5 but are applicable
across all networks and values of o and n.

The results in Fig. 4 show that different values of p have minimal effect on the
performance of PO-Place. For all values of p, Pdeg-sum is comparable. Perform-
ing a 95% confidence interval Welch’s t-test against the p = 1.0 results at each
point, only p = 0.3 (o = 1500, 2000, 3500) and p = 0.5 (o = 1500, 3500) are sig-
nificantly worse. This pattern of minimal difference is repeated in all networks,
with none seemingly more susceptible or affected by partial neighbour lists. We
conclude that PO-Place is robust to receiving only partial information of this
nature and is primarily unaffected by such limitations.

Breadth-First vs. Depth-First Expansion. Finally, we turn our attention
to the concept of breadth-first vs depth-first expansion in PO-Place. That
is, when crawling the local area, should additional current area expansion be
performed before considering new additions (breadth-first) or purely iteratively
(depth-first). Where there is locally a clearly defined degree gradient we expect
the latter to perform better. However, depth-first expansion also risks expending
all the observations whilst exploring a suboptimal, locally maximal path.

Parameter f allows study of this by controlling how many of the current
highest degree nodes that PO-Place is aware of are expanded concurrently.
Experiments up until now have had f = 1 (depth-first). We now vary f from
1 to 9. Figure 5 presents these findings in the Enron network for n = 30. As
with the previous results, it is our finding that the patterns here are replicated
throughout the different topologies and values of n.

Similar to the findings when varying p, varying f has little absolute impact on
the capabilities of PO-Place. However, using a 95% confidence interval Welch’s
t-test, all but f = 9 are statistically significantly worse at o = 500. This is likely
due to the limited observations being focused too locally. All are significantly
better between o = 2000 and o = 3000 but there is little gain in selecting values
of f beyond 3 as the performance of PO-Place is almost identical. Overall,
PO-Place seems to gain little from considering the local area more thoroughly
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before further expansion. Whether this is intrinsic in the design or a facet of the
topologies being explored is ongoing work.

5.2 Convention Emergence Under Partial Observability

Having explored the performance of PO-Place under different topologies and
types of partially observability, we now examine how PO-Place compares to
degree placement for FS agents in convention emergence in static networks. Hav-
ing established ranges of parameters that offer the best performance improve-
ments for each topology, these will be utilised to compare the algorithm to degree
placement. Additionally, basic settings (small numbers of observations, no con-
current placements) provide a baseline comparison of PO-Place.

Fig. 6. Comparison of PO-Place and Degree FS agent placement for convention emer-
gence in real-world topologies. The y-axis indicates the proportion of runs where the
desired strategy emerged as the convention.

A convention has emerged when the population has converged to have one
action as the dominant choice of agents in the network. Most work considers this
to be the case when the convention reaches 90% dominance [9,13,19]. However,
much of this work utilises synthetic networks rather than real-world topologies
and populations that are substantially smaller than those we consider. Prelimi-
nary experiments show that the topologies are relatively resistant to convention
emergence, requiring both high numbers of FS agents as well as substantial
time. As we are concerned with a comparison of the performance of PO-Place
against pure degree placement we wish to find settings that are guaranteed to
repeatably experience convention emergence. As such, we consider a convention
to have emerged when the 80% Kittock criteria is met, K80% [11]. That is, a
convention has emerged when 80% of the population, when not exploring, would
choose the same action. This indicates a high level of dominance of the desired
action and allows more robust comparisons. We find that such a threshold is
reliably reached, if it is likely to be reached at all, within 10000 iterations for
the CondMat and Twitter networks and within 15000 iterations for the Enron
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network. As such, we measure the proportion of runs that have converged to the
desired strategy within these time-frames across all networks.

The results are presented in Fig. 6. We utilise PO-Place and Degree Place-
ment to allocate FS agents across a range found to exhibits noticeable changes in
convention emergence rates with the parameters indicated. The values of o cho-
sen within each topology are such that the number of observations is, at most,
approximately 5% of the agent population. All runs are performed 50 times and
the proportion of runs that produce the desired convention (strategy chosen u.a.r
at time t = 0 and assigned to all FS agents) is measured.

Figure 6a shows the results for the CondMat topology. As was expected,
due to the behaviour of CondMat in the PO-Place experimentation, all of the
chosen parameters produce comparable results to the pure degree placement.
Even at the worst performing parameters (o = 500, s = 1) there is no discernible
difference between the performance of degree placement and PO-Place, whilst
at higher number of observations (where PO-Place was entirely approximating
the highest-degree nodes as seen in Fig. 1a) the performance is as expected. Of
note is the fact that, whilst it resulted in worse output of PO-Place in the
prior section, increasing s does not noticeably affect the performance here.

Within the other networks the difference in performance is more notice-
able but still indicates that PO-Place is generating close approximation of
the degree placement. In both Enron and Twitter (Figs. 6b and c) the minimal
observation situation performs substantially worse than degree placement, par-
ticularly in the Twitter network. However, when given observations of 5% of
the network, PO-Place performs noticeably better. Whilst it still falls behind
the performance of degree placement in both networks the difference is sub-
stantially smaller with PO-Place performing around 50–70% as effectively on
average as degree placement in both networks (0.52± 0.08 in Enron, 0.69± 0.18
in Twitter). However, when we increase s, as was found in Sect. 5.1, it improves
this substantially to 0.82± 0.15 average effectiveness compared to degree place-
ment in Enron and, less substantially, to 0.79 ± 0.3 in the Twitter network. We
quantify these values by comparing the emergence proportions of PO-Place
and degree at each value of n and calculating the ratio between them which we
then average. We discount values where either placement is achieving less than
a 0.1 emergence proportion to avoid noisy results influencing the measure. As
0.1 is the expected emergence proportion of our desired strategy in a convention
emergence we do not influence, we believe discounting values below this allows a
more accurate comparison between the two algorithms. In the Twitter network,
we also consider o = 2500 as the effect of increased s was more pronounced for
this value during Sect. 5.1. Whilst there is a noticeable improvement at higher n
the average compared effectiveness differs only marginally: 0.24± 0.06 for s = 1
and 0.3 ± 0.11 for s = 9. In the Twitter network, o is the dominant factor.

Overall, we have shown that even when only observing a small portion of
the underlying topology, and strategically using these observations to maximise
their effect, it is possible to achieve comparable performance to degree placement
with full network visibility using PO-Place.
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6 Conclusion

Finding influential positions within a network topology to maximise the effec-
tiveness of fixed strategy agents is an ongoing area of research in convention
emergence. The problem has many facets and variations that make it difficult to
find an optimal yet general approach. In many cases, placing the fixed strategy
agents at high degree nodes provides effective convention emergence with little
computational overhead. Finding high-degree nodes in a network is trivial when
the network is fully observable. In many domains, this may not always be possi-
ble. Technical limitations such as memory constraints or incomplete information
and usage limitations such as finite API calls mean that often a network topol-
ogy may only be partially observable. Finding effective placement for FS agents
with these restrictions adds another level of complexity.

In this paper we presented a placement algorithm, PO-Place, that is
designed for use in partially observable topologies. It uses finite observations
to find sets of high-degree nodes and approximates the set of nodes that would
be selected given full observability.

With small proportions of the network being observable, PO-Place can
locate nodes with similar reach and influence as degree placement. We evaluate
the performance in three real-world topologies and show that the addition of
concurrent searches and splitting of observations improves the performance of
the algorithm across all metrics. With 1–10% observation the algorithm is able
to find sets of nodes with >90% of the reach and influence of degree placement.

Finally, we showed that PO-Place performs comparably to degree place-
ment when used to facilitate convention emergence using fixed strategy agents
whilst only observing 5% of a network topology. We found that the additional
aspects of PO-Place benefit the placement mechanism and demonstrated that
convention emergence is easily facilitated in partially observable networks.
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Abstract. Opportunism is a behavior that takes advantage of knowl-
edge asymmetry and results in promoting agents’ own value and demot-
ing others’ value. We want to eliminate such selfish behavior in multi-
agent systems, as it has undesirable results for the participating agents.
In order for monitoring and eliminating mechanisms to be put in place,
it is needed to know in which context agents will or are likely to perform
opportunistic behavior. In this paper, we develop a framework to reason
about agents’ opportunistic propensity. Opportunistic propensity refers
to the potential for an agent to perform opportunistic behavior. In par-
ticular, agents in the system are assumed to have their own value systems
and knowledge. With value systems, we define agents’ state preferences.
Based on their value systems and incomplete knowledge about the state,
they choose one of their rational alternatives, which might be oppor-
tunistic behavior. We then characterize the situations where agents will
or will not perform opportunistic behavior and prove the computational
complexity of predicting opportunism.
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1 Introduction

Let us first consider an example scenario. A seller sells a cup to a buyer and it is
known by the seller beforehand that the cup is actually broken. The buyer buys
the cup without knowing it is broken. The seller exploits the knowledge asym-
metry about the transaction to achieve his own gain at the expense of the buyer.
Such behavior which is intentionally performed by the seller was named oppor-
tunistic behavior (or opportunism) by economist Williamson [19]. Opportunism
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is a selfish behavior that takes advantage of relevant knowledge asymmetry and
results in promoting one’s own value and demoting others’ value [9]. In the con-
text of multi-agent systems, it is normal that knowledge is distributed among
participating agents in the system, which creates the ability for the agents to
behave opportunistically. We want to eliminate such a selfish behavior, as it has
undesirable results for other agents in the system. Evidently, not every agent is
likely to be opportunistic. In social science, ever since the theory about oppor-
tunism was proposed by Williamson in economics, it has gained a large amount
of criticism due to over-assuming that all economic players are opportunistic.
[5] highlights the challenge on how to predict opportunism ex ante and intro-
duces a cultural perspective to better specify the assumptions of opportunism.
In multi-agent systems, we also need to investigate the interesting issues about
opportunistic propensity so that the appropriate amount of monitoring [10] and
eliminating mechanisms can be put in place.

Based on decision theory, an agent’s decision on what to do depends on the
agent’s ability and preferences. If we apply it to opportunistic behavior, an agent
will perform opportunistic behavior when he can do it and he prefers doing it.
Those are the two issues that we consider in this paper without discussing any
normative issues. Based on this assumption, we develop a model of transition
systems in which agents are assumed to have their own knowledge and value
systems, which are related to the ability and the desire of being opportunistic
respectively. Our framework can be used to predict and specify when an agent
will perform opportunistic behavior, such as which kinds of agents are likely to
perform opportunistic behavior and under what circumstances. A monitoring
mechanism for opportunism benefits from this result as monitoring devices may
be set up in the occasions where opportunism will potentially occur. We can also
design mechanisms for eliminating opportunism based on the understanding of
how agents decide to behave opportunistically. Besides, our framework can be
used by autonomous agents to decide whether to participate in the system, as
their actions might potentially be regarded as opportunistic behavior given their
knowledge and value systems.

In this paper, we introduce a framework to reason about agents’ opportunistic
propensity. Opportunistic propensity refers to the potential for an agent to per-
form opportunistic behavior. More precisely, agents in the system are assumed
to have their own value systems and knowledge. We specify an agent’s value
system as a strict total order over a set of values, which are encoded within
our logical language. Using value systems, we define agents’ state preferences.
Moreover, agents have partial knowledge about the true state where they are
residing. Based on their value systems and incomplete knowledge, they choose
one of their rational alternatives, which might be opportunistic. We thus provide
a natural bridge between logical reasoning and decision making, which is used
for reasoning about opportunistic propensity. We then characterize the situa-
tions where agents will or will not perform opportunistic behavior and prove the
computational complexity of predicting opportunism.
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2 Framework

We use Kripke structures as our basic semantic models of multi-agent systems.
A Kripke structure is a directed graph whose nodes represent the possible states
of the system and whose edges represent accessibility relations. Within those
edges, equivalence relation K(·) ⊆ S × S represents agents’ epistemic relation,
while relation R ⊆ S × Act × S captures the possible transitions of the system
that are caused by agents’ actions. We use s0 to denote the initial state of the
system. It is important to note that, because in this paper we only consider
opportunistic behavior as an action performed by a hypothetical agent, we do
not model concurrent actions labeled with agents so that every possible transition
of the system is caused by an action instead of joint actions (see e.g., [2,16] for
related models). For simplification, we assume that the actions in our model are
deterministic. We use Φ = {p, q, ...} of atomic propositional variables to express
the properties of states S. A valuation function π maps each state to a set of
properties that hold in the corresponding state. Formally,

Definition 2.1. Let Φ = {p, q, ...} be a finite set of atomic propositional vari-
ables. A Kripke structure over Φ is a tuple T = (Agt, S,Act, π,K,R, s0) where
e.g.

– Agt = {1, ..., n} is a finite set of agents;
– S is a finite set of states;
– Act is a finite set of actions;
– π : S → P(Φ) is a valuation function mapping a state to a set of propositions

that are considered to hold in that state;
– K : Agt → 2S×S is a function mapping an agent in Agt to a reflexive, transi-

tive and symmetric binary relation between states; that is, given an agent i,
for all s ∈ S we have sK(i)s; for all s, t, u ∈ S sK(i)t and tK(i)u imply that
sK(i)u; and for all s, t ∈ S sK(i)t implies tK(i)s; sK(i)s′ is interpreted as
state s′ is epistemically accessible from state s for agent i. For convenience,
we use K(i, s) = {s′ | sK(i)s′} to denote the set of epistemically accessible
states from state s;

– R ⊆ S×Act×S is a relation between states with actions, which we refer to as
the transition relation labeled with an action; we require that for all s ∈ S there
exists an action a ∈ Act and one state s′ ∈ S such that (s, a, s′) ∈ R, and
we ensure this by including a stuttering action sta that does not change the
state, that is, (s, sta, s) ∈ R; we restrict actions to be deterministic, that is, if
(s, a, s′) ∈ R and (s, a, s′′) ∈ R, then s′ = s′′; since actions are deterministic,
sometimes we denote state s′ as s〈a〉 for which it holds that (s, a, s〈a〉) ∈ R.
For convenience, we use Ac(s) = {a | ∃s′ ∈ S : (s, a, s′) ∈ R} to denote the
available actions in state s.

– s0 ∈ S denotes the initial state.

Now we define the language we use. The language LKA, propositional logic
extended with knowledge and action modalities, is generated by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | Kiϕ | 〈a〉ϕ (i ∈ Agt, a ∈ Act)
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The semantics of LKA are defined with respect to the satisfaction relation |=.
Given a Kripke structure T and a state s in T , a formula ϕ of the language can
be evaluated as follows:

– T , s |= p iff p ∈ π(s);
– T , s |= ¬ϕ iff T , s 	|= ϕ;
– T , s |= ϕ1 ∨ ϕ2 iff T , s |= ϕ1 or T , s � ϕ2;
– T , s |= Kiϕ iff for all t such that sK(i)t, T , t |= ϕ;
– T , s |= 〈a〉ϕ iff there exists s′ such that (s, a, s′) ∈ R and T , s′ |= ϕ;

Other classical logic connectives (e.g.,“∧”, “→”) are assumed to be defined as
abbreviations by using ¬ and ∨ in the conventional manner. As is standard,
we write T |= ϕ if T , s |= ϕ for all s ∈ S, and |= ϕ if T |= ϕ for all Kripke
structures T .

In this paper, in addition of the K-relation being S5, we also place restrictions
of no-forgetting and no-learning based on Moore’s work [11] for the simplification
of our framework. It is defined as follows: given a state s in S, if there exists s′

such that s〈a〉K(i)s′ holds, then there is a s′′ such that sK(i)s′′ and s′ = s′′〈a〉
hold; if there exists s′ and s′′ such that sK(i)s′ and s′′ = s′〈a〉 hold, then
s〈a〉K(i)s′′. Following this restriction, we have |= Ki(〈a〉ϕ) ↔ 〈a〉Kiϕ. The no-
forgetting principle says that if after performing action a agent i considers a state
s′ possible, then before performing action a agent i already considered possible
that action a would lead to this state. In other words, if an agent has knowledge
about the effect of an action, he will not forget about it after performing the
action. The no-learning principle says that all the possible states resulting from
the performance of action a in agent i’s possible states before action a are indeed
his possible states after action a. In other words, the agent will not gain extra
knowledge about the effect of an action after performing the action.

3 Value System and Rational Alternative

Agents in the system are assumed to have their own value systems and knowl-
edge. Based on their value systems and incomplete knowledge about the state,
agents choose their rational alternatives for the next action they will perform.

3.1 Value System

Given several (possibly opportunistic) actions available to an agent, it is up to
the agent’s decision to perform opportunistic behavior. Basic decision theory
applied to intelligent agents relies on three things: agents know what actions
they can carry out, the effects of each action and agents’ preference over the
effects [13]. In this paper, the effects of each action are expressed by our logical
language, and we will specify agents’ abilities and preferences in this section. It is
worth noting that we only study a single action being opportunistic in this paper,
so we will apply basic decision theory for one-shot (one-time) decision problems,
which concern the situations where a decision is experienced only once.
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One important feature of opportunism is that it promotes agents’ own value
but demotes others’ value. In this section, we define agents’ value systems, as it
is the standard of agents’ consideration about the performance of opportunis-
tic behavior. A value can be seen as an abstract standard according to which
agents have their preferences over states. For instance, if we have a value denot-
ing equality, we prefer the states where equal sharing or equal rewarding hold.
Related work about values can be found in [12,17].

Because of the abstract feature of a value, it is usually interpreted in more
detail as a state property, which is represented as a LKA formula. The most
basic value we can construct is simply a proposition p, which represents the
value of achieving p. More complex values can be interpreted such as of the form
〈a〉ϕ ∧ 〈a′〉¬ϕ, which represents the value that there is an option in the future
to either achieve ϕ or ¬ϕ. Such a value corresponds to freedom of choice. A
formula of a value can also be in the form of Kϕ, meaning that it is valuable to
achieve knowledge. In this paper we denote values with v, and it is important
to remember that v is an element from the language LKA. However, not every
formula from LKA can be intuitively classified as a value.

We argue that agents can always compare any two values, as we can consider
two equivalent values as one value. In other words, every element in the set of
values is comparable to each other and none of them is logically equivalent to
each other. Therefore, we define a value system as a strict total order over a set
of values, representing the degree of importance, which are inspired by the goal
structure and the preference in [1,4].

Definition 3.1 (Value System). A value system V = (Val,≺) is a tuple con-
sisting of a finite set Val = {v, ..., v′} ⊆ LKA of values together with a strict total
ordering ≺ over Val. When v ≺ v′, we say that value v′ is more important than
value v.

We also use a natural number indexing notation to extract the value of a value
system, so if V gives rise to the ordering v ≺ v′ ≺ . . . then V [0] = v, V [1] = v′,
and so on. Value promotion and demotion along a state transition can be defined
as follows:

Definition 3.2 (Value Promotion and Demotion). Given a value v and an
action a, we define the following shorthand formulas:

promoted(v, a) := ¬v ∧ 〈a〉v
demoted(v, a) := v ∧ 〈a〉¬v

We say that a value v is promoted along the state transition (s, a, s′) if and only
if s |= promoted(v, a), and we say that v is demoted along this transition if and
only if s |= demoted(v, a).

An agent’s value v gets promoted along the state transition (s, a, s′) if and only
if v doesn’t hold in state s and holds in state s′; an agent’s value v gets demoted
along the state transition (s, a, s′) if and only if v holds in state s and doesn’t
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hold in state s′. Note that in principle an agent is not always aware that his
or her value gets demoted or promoted, i.e. it might be the case where s |=
promoted(v, a) but agent i does not know this, i.e. s |= ¬(Ki promoted(v, a)).

Now we can define a multi-agent system as a Kripke structure together with
agents’ value systems, representing their basis of practical reasoning. We also
assume that value systems are common knowledge in the system to simplify the
model. Formally, a multi-agent system M is an (n+1)-tuple: M = (T , V1, ..., Vn),
where T is a Kripke structure, and for each agent i in T , Vi is a value system.

We now define agents’ preferences over two states in terms of values, which
will be used for modeling the effect of opportunism. We first define a function
highest(i, s, s′) that maps a value system and two different states to the most
preferred value that changes when going from state s to s′ from the perspective
of agent i. In other words, it returns the value that changes which the agent
most cares about, i.e. the most important change between these states for the
agent.

Definition 3.3 (Highest Value). Given a multi-agent system M, an agent i
and two states s and s′, function highest : Agt × S × S → Val is defined as
follows:

highest(i, s, s′)M := Vi[min{j | ∀k > j : M, s |= Vi[k] ⇔ M, s′ |= Vi[k]}]

We write highest(i, s, s′) for short if M is clear from context.

Note that if no values change between s and s′, we have that highest(i, s, s′) =
Vi[0], i.e. the function returns the agents least preferred value. Moreover, it is
not hard to see that highest(i, s, s′) = highest(i, s′, s), meaning that the function
is symmetric for the two state arguments.

With this function we can easily define agents’ preference over two states.
We use a binary relation “�” over states to represent agents’ preferences.

Definition 3.4 (State Preferences). Given a multi-agent system M, an
agent i and two states s and s′, agent i weakly prefers state s′ to state s, denoted
as s �M

i s′, iff

M, s |= highest(i, s, s′) ⇒ M, s′ |= highest(i, s, s′)

We write s �i s′ for short if M is clear from context. Moreover, we write S �i S′

for sets of states S and S′ whenever ∀s ∈ S,∀s′ ∈ S′ : s � s′.

As is standard, we also define s ∼i s′ to mean s �i s′ and s′ �i s, and s ≺i s′

to mean s �i s′ and s 	∼i s′. The intuitive meaning of the definition of s �i s′ is
that agent i weakly prefers state s′ to s if and only if the agent’s most important
value does not get demoted (either stays the same or gets promoted). In other
words, agent i weakly prefers state s′ to s: if highest(i, s, s′) holds in state s, then
it must also hold in state s′, and if highest(i, s, s′) does not hold in state s, then it
does matter whether it holds in state s′ or not. Clearly there is a correspondence
between state preferences and promotion or demotion of values, which we can
make formal with the following proposition.
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Proposition 3.1. Given a model M with agent i, state s and available action
a in s. Let v∗ = highest(i, s, s〈a〉). We have:

s ≺i s〈a〉 ⇔ M, s |= promoted(v∗, a)
s �i s〈a〉 ⇔ M, s |= demoted(v∗, a)
s ∼i s〈a〉 ⇔ M, s |= ¬(demoted(v∗, a) ∨ promoted(v∗, a))

Proof. Firstly we prove the third one. We define s ∼i s〈a〉 to mean s �i s〈a〉 and
s〈a〉 �i s. s �i s〈a〉 means that value v∗ doesn’t get demoted when going from s
to s〈a〉, and s〈a〉 �i s means that value v∗ doesn’t get demoted when going from
s〈a〉 to s. Hence, value v∗ doesn’t get promoted or demoted (stays the same) by
action a. Secondly we prove the first one. We define s ≺i s〈a〉 to mean s �i s〈a〉
and s 	∼i s〈a〉. s �i s〈a〉 means that value v∗ doesn’t get demoted when going
from s to s〈a〉, and s 	∼i s′ means that either value v∗ gets promoted or demoted
by action a. Hence, value v∗ gets promoted by action a. We can prove the second
one in a similar way.

Additionally, apart from the fact that s ≺i s〈a〉 implies that the highest changed
value gets promoted, we also have that no other value which is more preferred
gets demoted or promoted. We have the result that the �i relation obeys the
standard properties we expect from a preference relation.

Proposition 3.2 (Properties of State Preferences). Given an agent i, his
preferences over states “�i” are

– Reflexive: ∀s ∈ S : s �i s;
– Transitive: ∀s, s′, s′′ ∈ S : if s �i s′ and s′ �i s′′, then s �i s′′.

Proof. The proof follows Definition 3.4 directly. In order to prove �i is reflexive,
we have to prove that for any arbitrary state s we have s �i s. From Definitions
3.3 and 3.4 we know highest(i, s, s′) = Vi[0] when s = s′, and for any arbitrary
state s we always have M, s |= Vi[0] implies M, s |= Vi[0]. Therefore, s �i s and
we can conclude that �i is reflexive.

In order to prove transitivity, we have to prove M, s |= v∗ implies M, s′′ |=
v∗, where v∗ = highest(i, s, s′′). It can be the case where v∗ stays the same in
state s and s′′ or the case where M, s |= ¬v∗ and M, s′′ |= ¬v∗. For the first case,
when s ∼ s′ and s′ ∼ s′′, meaning that all the values stay the same when going
from s to s′ and from s′ to s′′, it is also the case when going from s to s′′. We
now consider the case where M, s |= ¬v∗ and M, s′′ |= ¬v∗. Firstly, we denote
highest(i, s, s′) as u∗ and highest(i, s′, s′′) as w∗. It can either be that u∗ ∼i w∗,
u∗ ≺i w∗ or u∗ �i w∗. If u∗ ∼i w∗, we can conclude that u∗ ∼i w∗ ∼i v∗, hence
the implication holds. We now distinguish between the cases where u∗ ≺i w∗ or
u∗ �i w∗.

– If u∗ ≺i w∗, we know that w∗ is the highest value that changes and gets
promoted when going from s′ to s′′, but stays the same between s and s′.
Hence, we can conclude that M, s |= ¬w∗ and M, s′′ |= w∗, and that w∗ = v∗

(i.e., w∗ is the highest value that changes between s and s′′). Hence we have
M, s |= v∗ implies M, s′′ |= v∗.
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– If u∗ �i w∗, we know that u∗ is the highest value that changes and gets
promoted when going from s to s′, but stays the same between s′ and s′′.
Hence, we can conclude that M, s |= ¬u∗ and M, s′′ |= u∗, and that u∗ = v∗

(i.e. v∗ is the highest value that changes between s and s′′). Hence we have
M, s |= v∗ implies M, s′′ |= v∗.

In our system, we only look at the value change that is most cared about to
deduce state preferences. Certainly, there are other ways of deriving these pref-
erences from a value system. Instead of only considering the value change that is
cared about in the state an rational alternative transition, it is also possible to
take into account all the value changes in the state transition. For opportunism,
what we want to stress is that opportunistic agents ignore (rather than consider
less) other agents’ interest, which has a lower index in the agent’s value system.
In order to align with this aspect, we use the highest value approach in this paper.

3.2 Rational Alternatives

Since we have already defined values and value systems as agents’ standards for
decision-making, we can start to apply decision theory to reason about agents’
decision-making. Given a state in the system, there are several actions available
to an agent, and he has to choose one in order to go to the next state. We can
see the consideration here as a one-shot decision making. In decision theory, if
agents only act for one step, a rational agent should choose an action with the
highest (expected) utility without reference to the utility of other agents [13].
Within our framework, this means that a rational agent will always choose an
rational alternative based on his value system.

Before choosing an action to perform, an agent must think about which
actions are available to him. We have already seen that for a given state s,
the set of available actions is Ac(s). However, since an agent only has partial
knowledge about the state, we argue that the actions that an agent knows to
be available is only part of the actions that are physically available to him in a
state. For example, an agent can call a person if he knows the person’s phone
number; without this knowledge, he is not able to do it, even though he is holding
a phone. Recall that the set of states that agent i considers as being the actual
state in state s is the set K(i, s). Given an agent’s partial knowledge about a
state as a precondition, he knows what actions he can perform in that state,
which is the intersection of the sets of actions physically available in the states
in this knowledge set.

Definition 3.5 (Subjectively Available Actions). Given an agent i and a
state s, agent i’s subjectively available actions are the set:

Ac(i, s) =
⋂

s′∈K(i,s)

Ac(s′).

Because a stuttering action sta is always included in Ac(s) for any state s, we
have that sta ∈ Ac(i, s) for any agent i. When only sta is in Ac(i, s), we say
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that the agent cannot do anything because of his limited knowledge. Obviously
an agent’s subjectively available actions is always part of his physically available
actions (Ac(i, s) ⊆ Ac(s)). Based on rationality assumptions, he will choose an
action based on his partial knowledge of the current state and the next state.
Given a state s and an action a, an agent considers the next possible states as
the set K(i, s〈a〉). For another action a′, the set of possible states is K(i, s〈a′〉).
The question now becomes: How do we compare these two possible set of states?
Clearly, when we have K(i, s〈a〉) �i K(i, s〈a′〉), meaning that all alternatives
of performing action a′ are at least as desirable as all alternatives of choosing
action a, it is always better to choose action a′. However, in some cases it might
be that some alternatives of action a are better than some alternatives of action
a′ and vice-versa. In this case, an agent cannot decisively conclude which of the
actions is optimal. This approach has natural ties to game theory in the context
of (non-)dominated strategies [7]. This leads us to the following definition:

Definition 3.6 (Rational Alternatives). Given a state s, an agent i and two
actions a, a′ ∈ Ac(i, s), we say that action a is dominated by action a′ for agent
i in state s iff K(i, s〈a〉) �i K(i, s〈a′〉). The set of rational alternatives for agent
i in state s is given by the function a∗

i : S → 2Act, which is defined as follows:

a∗
i (s) = {a ∈ Ac(i, s) | ¬∃a′ ∈ Ac(i, s) : a 	= a′ and

a′ dominates a for agent i in state s}.

The set a∗
i (s) are all the actions for agent i in state s which are available to

him and are not dominated by another action which is available to him. In other
words, it contains all the actions which are rational alternatives for agent i.
Since it is always the case that Ac(i, s) is non-empty because of the stuttering
action sta, and since it is always the case that there is one action which is non-
dominated by another action and Ac(i, s) is finite, we conclude that a∗

i (s) is
non-empty. We can see that the actions that are available to an agent not only
depend on the physical state, but also depend on his knowledge about the state.
The more he knows, the better he can judge what his rational alternative is.
In other words, agents try to make a best choice based on their value systems
and incomplete knowledge about the state. The following proposition shows how
agents remove actions with our approach.

Proposition 3.3. Given a state s, an agent i and two actions a, a′ ∈ Ac(i, s),
action a is dominated by action a′ iff

¬∃s′, s′′ ∈ K(i, s) : s′〈a〉 � s′′〈a′〉.

Proof. ∃s′, s′′ ∈ K(i, s) : s′〈a〉 � s′′〈a′〉 is equivalent to K(i, s〈a〉) 	� K(i, s〈a′〉),
because s′〈a〉 ∈ K(i, s〈a〉) and s′′〈a′〉 ∈ K(i, s〈a′〉). And K(i, s〈a〉) 	� K(i, s〈a′〉)
is equivalent to the fact that action a is non-dominated by action a′.

From this proposition we can see that agents remove all the options (actions)
that are always bad to do, and there is no possibility to be better off by choosing
a dominated action. The following proposition connects Definition 3.6 with state
preferences.
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Proposition 3.4. Given a multi-agent system M, a state s and an agent i,

sta 	∈ a∗(s) ⇒ ∀a ∈ a∗(s) : s �i s〈a〉.

Proof. We prove it by contradiction. If there exists an action a ∈ a∗(s) such that
agent i’s value will get demoted by performing it, it will be dominated by the
stuttering action sta, which can always keep agent i’s values neutral, and sta
might be in a∗(s). Contradiction!

If the stuttering action sta is not in the set of rational alternatives for agent i,
meaning that it is dominated by the actions in the set of rational alternatives,
agent i can always at least keep his value neutral by performing any action in his
rational alternatives. We will illustrate the above definitions and our approach
through the following example.

Example 1. Figure 1 shows a transition system M for agent i. State s and
s′ are agent i’s epistemic alternatives, that is, K(i, s) = {s, s′}. Now con-
sider the actions that are physically available and subjectively available to
agent i. Aci(s) = {a1, a2, a3, sta}, Aci(s′) = {a1, a2, sta}. Because Ac(i, s) =
Aci(s) ∩ Aci(s′), agent i knows that only sta, a1 and a2 are available to him in
state s.

Next we talk about agent i’s rational alternatives in state s. Given agent
i’s value system Vi = (u ≺ v ≺ w), and the following valuation: u, ¬v and
¬w hold in K(i, s), ¬u, ¬v and w hold in K(i, s〈a1〉), and u, v and ¬w hold in
K(i, s〈a2〉), we then have the following state preferences: K(i, s) ≺ K(i, s〈a1〉),
K(i, s) ≺ K(i, s〈a2〉) and K(i, s〈a2〉) ≺ K(i, s〈a1〉), meaning that action a2 and
the stuttering action sta are dominated by action a1. Thus, we have a∗

i (s) = {a1}.

Fig. 1. A transition system M for agent i
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4 Opportunism Propensity

Before reasoning about opportunistic propensity, we should first formally know
what opportunistic propensity actually is. Opportunism is a social behavior that
takes advantage of relevant knowledge asymmetry and results in promoting one’s
own value and demoting others’ value [9]. It means that it is performed with
the precondition of relevant knowledge asymmetry and the effect of promoting
agents’ own value and demoting others’ value. Firstly, knowledge asymmetry is
defined as follows.

Definition 4.1 (Knowledge Asymmetry). Given two agents i and j, and
a LKA formula φ, knowledge asymmetry about φ between agent i and j is the
abbreviation:

KnowAsym(i, j, φ) := Kiφ ∧ ¬Kjφ ∧ Ki(¬Kjφ)

It holds in a state where agent i knows φ while agent j does not know φ and
this is also known by agent i. It can be the other way around for agent i and
agent j. But we limit the definition to one case and omit the opposite case for
simplicity. Now we can define opportunism.

Definition 4.2 (Opportunism Propensity). Given a multi-agent system M,
a state s and two agents i and j, the assertion Opportunism(i, j, a) that action
a performed by agent i is opportunistic behavior is defined as:

Opportunism(i, j, a) := KnowAsym(i, j,promoted(v∗, a) ∧ demoted(w∗, a))

where v∗ = highest(i, s, s〈a〉) and w∗ = highest(j, s, s〈a〉).
This definition shows that if the precondition KnowAsym is satisfied in state s
then the performance of action a will be opportunistic behavior. The asymmet-
ric knowledge that agent i has is about the change of the truth value of v∗ and
w∗ along the transition by action a, where v∗ and w∗ are the values that agent
i and agent j most care about along the transition respectively. It follows that
agent j is partially or completely not aware of it. Compared to the definition of
opportunism in [9], Definition 4.2 focuses on the opportunistic propensity of an
agent in a state, in the sense that the precondition of performing opportunis-
tic behavior is modeled in an explicit way. As is stressed in [9], opportunistic
behavior is performed by intent rather than by accident. In this paper, instead of
explicitly modeling intention, we interpret it from agents’ rationality that they
always intentionally promote their own values. We can derive three propositions
from the definition, which are useful in our next section.

Proposition 4.1 (Value Promotion and Demotion). Given a multi-agent
system M and an opportunistic behavior a performed by agent i to agent j in
state s, action a will promote agent i’s value but demote agent j’s value, which
can be formalized as

M, s |= Opportunism(i, j, a) ⇒ s ≺i s〈a〉 and s �j s〈a〉
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Proof. From M, s |= Opportunism(i, j, a) we have: M, s |= Ki(promoted(v∗, a)∧
demoted(w∗, a)). And thus since all knowledge is true, we have that M, s |=
promoted(v∗, a) and M, s |= demoted(w∗, a). Using the correspondence found
in Proposition 3.1, we can conclude s ≺i s〈a〉 and s �j s〈a〉.

Proposition 4.2 (Different Value Systems). Given a multi-agent system M
and opportunistic behavior a performed by agent i to agent j in state s, agent i
and agent j have different value systems, which can be formalized as

M, s |= Opportunism(i, j, a) ⇒ Vi 	= Vj

Proof. We prove it by contradiction. We denote v∗ = highest(i, s, s〈a〉) and w∗ =
highest(j, s, s〈a〉), for which v∗ and w∗ are the property changes that agent i
and agent j most care about in the state transition. If Vi = Vj , then v∗ =
w∗. However, because M, s |= Ki(promoted(v∗, i) ∧ demoted(w∗, j)), and thus
M, s |= Ki(¬v∗ ∧w∗), and because knowledge is true, we have M, s |= ¬v∗ ∧w∗.
But, since v∗ = w∗, we have M, s |= ¬v∗ ∧ v∗. Contradiction!

From this proposition we can see that agent i and agent j care about different
things based on their value systems about the transition.

Proposition 4.3 (Inclusion). Given a multi-agent system M and opportunis-
tic behavior a performed by agent i to agent j in state s, agent j’s knowledge
set in state s is not a subset of agent i’s and action a is available in agent i’s
knowledge set:

M, s |= Opportunism(i, j, a) ⇒ K(j, s) 	⊆ K(i, s) and a ∈ Ac(i, s)

Proof. We can prove it by contradiction. Knowledge set is the set of states
that an agent considers as possible in a given actual state. ∀t ∈ K(i, s), agent i
considers state t as a possible state where he is residing. The same with K(j, s) for
agent j. If K(j, s) 	⊆ K(i, s) is false, we have K(j, s) ⊆ K(i, s) holds, which means
that agent j knows more than or exactly the same as agent i. However, Definition
4.2 tells that agent i knows more about the transition by action a than agent
j. So K(j, s) ⊆ K(i, s) is false, meaning that K(j, s) 	⊆ K(i, s) holds. Further,
because from M, s |= Opportunism(i, j, a) we have M, s |= Ki(〈a〉v∗ ∧ 〈a〉¬w∗),
by the semantics of 〈a〉v∗ and 〈a〉¬w∗, for all t ∈ K(i, s) there exists (t, a, s′) ∈ R.
Thus, we have a ∈ Ac(i, s).

These three propositions are three properties that we can derive based on
Definition 4.2. The first one shows that opportunistic behavior results in value
opposition for the agents involved; the second one tells that the two agents
involved in the relationship evaluate the transition based on different value sys-
tems; the third one indicates the asymmetric knowledge that agent i has for
behaving opportunistically. We will illustrate the above definitions through the
example mentioned at the beginning of the paper.



Reasoning About Opportunistic Propensity in Multi-agent Systems 215

Example 2. Figure 2 shows the example of selling a broken cup: The action sell-
ing a cup is denoted as sell and we use two value systems Vs and Vb for the
seller and the buyer respectively. State s1 is the seller’s epistemic alternative,
while state s1 and s2 are the buyer’s epistemic alternatives. We also use a
dash line circle to represent the buyer’s knowledge K(b, s1) (not the seller’s).
In this example, K(s, s1) ⊂ K(b, s1). Moreover, hm = highest(s, s1, s1〈sell〉),
¬hb = highest(b, s1, s1〈sell〉), meaning that the seller only cares about if he gets
money from the transition, while the buyer only cares about if he has a bro-
ken cup from the transition. We also have M, s1 |= Ks(promoted(hm, sell) ∧
demoted(¬hb, sell)), meaning that the seller knows the transition will promote
his own value while demote the buyer’s value in state s1. For the buyer, action
sell is available in both state s1 and s2. However, hb doesn’t hold in both s1
and s2, so he doesn’t know if he has a broken cup or not. Therefore, there is
knowledge asymmetry between the seller and the buyer about the value changes
from s1 to s1〈sell〉. Action sell is potentially opportunistic behavior in state s1.

Fig. 2. Selling a broken cup

5 Reasoning About Opportunistic Propensity

In this section, we will characterize the contexts where agents will perform oppor-
tunistic behavior and where opportunism is impossible to happen and prove the
computational complexity of predicting opportunism.

5.1 Having Opportunism

Agents will perform opportunistic behavior when they have the ability and the
desire of doing it. The ability of performing opportunistic behavior can be inter-
preted by its precondition: it can be performed whenever its precondition is
fulfilled. Agents have the desire to perform opportunistic behavior whenever it
is a rational alternative. There are also relations between agents’ ability and
desire of performing an action. As rational agents, firstly we think about what
actions we can perform given the limited knowledge we have about the state,
and secondly we choose the action that may maximize our utilities based on our
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partial knowledge. This practical reasoning in decision theory can also be applied
to reasoning about opportunistic propensity. Given the asymmetric knowledge
an agent has, there are several (possibly opportunistic) actions available to him,
and he may choose to perform the action which is a rational alternative to him,
regardless of the result for the other agents. Based on this understanding, we
have the following theorem, which implies agents’ opportunistic propensity:

Theorem 5.1. Given a multi-agent system M, a state s, two agents i and j and
an action a, agent i will perform action a to agent j as opportunistic behavior
in state s:

∃a ∈ a∗
i (s) : M, s |= Opportunism(i, j, a)

iff

1. ∀t ∈ K(i, s) : M, t |= promoted(v∗, a)∧demoted(w∗, a), ∃t ∈ K(j, s) : M, t |=
¬(promoted(v∗, a) ∧ demoted(w∗, a)), where v∗ = highest(i, s, s〈a〉) and w∗ =
highest(j, s, s〈a〉);

2. s ≺i s〈a〉 and s �j s〈a〉;
3. ¬∃a′ ∈ Ac(i, s) : a 	= a′ and a′ dominates a.

Proof. Forwards: If action a is opportunistic behavior, we can immediately
have statement 1 by the definition of Knowledge Set. Because action a is in
agent i’s rational alternatives in state s (a ∈ a∗

i (s)), by Definition 3.6, action
a is not dominated by any action in Ac(i, s). Also because action a is oppor-
tunistic, by Proposition 4.1 it results in promoting agent i’s value but demoting
agent j’s value (s ≺i s〈a〉 and s �j s〈a〉). Backwards: Statement 1 means that
there is knowledge asymmetry between agent i and agent j about the formula
promoted(v∗, a)∧demoted(w∗, a). From this we can see the knowledge asymme-
try is the precondition of action a. If this precondition is satisfied, agent i can
perform action a. Moreover, by statement 2, because action a promotes agent i’s
value but demotes agent j’s value, we can conclude that action a is opportunistic
behavior. By statement 3, because action a is not dominated by any action in
Ac(i, s), it is a rational alternative for agent i in state s to perform action a.

Given an opportunistic behavior a, in order to predict its performance, we
should first check the asymmetric knowledge that agent i has for enabling its
performance. Based on agent i’s and agent j’s value systems, we also check if
it is not dominated by any actions in Ac(i, s) and its performance can promote
agent i’s value but demote agent j’s value. It is important to stress that Theorem
5.1 never states that agents will for sure perform opportunistic behavior if the
three statements are satisfied. Instead, it shows opportunism is likely to happen
because it is in agents’ rational alternatives.

5.2 Not Having Opportunism

We need much information about the system as Theorem 5.1 states to predict
opportunism, and it might be difficult to achieve all of them. Fortunately, some-
times it is already enough to know that opportunism is impossible to occur.
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An example might be detecting opportunism: if we already know in which con-
text agents cannot perform opportunistic behavior, there is no need to set up
any monitoring mechanisms for opportunism in those contexts. The following
propositions characterize them:

Proposition 5.1. Given a multi-agent system M, a state s, two agents i and
j and an action a,

K(i, s) = K(j, s) ⇒ M, s |= ¬Opportunism(i, j, a).

Proof. When K(i, s) = K(j, s) holds, which means that both agent i and agent
j have the same knowledge. In this context, Statement 1 in Theorem 5.1 is not
satisfied, so action a is not opportunistic behavior.

Proposition 5.2. Given a multi-agent system M, a state s, two agents i and
j and an action a,

Vi = Vj ⇒ M, s |= ¬Opportunism(i, j, a).

Proof. If Vi = Vj holds, which means that both agent i and agent j have the same
value system, the values of both agents don’t go opposite, that is, Statement 2
in Theorem 5.1 is not satisfied. So action a is not opportunistic behavior.

In this section, we specified the situation where agents will perform oppor-
tunistic behavior and characterized the contexts where opportunism is impos-
sible to happen. This information is essential not only for the system designers
to identify opportunistic propensity, but also for an agent to decide whether to
participate in the system given his knowledge and value system, as his behav-
ior might be regarded as opportunistic. Moreover, our approach can be used in
practice. For instance, in the electronic market place, only the seller knows that
the product is not good for the buyer before he ships it, and he can earn more
money if he still claims that the product is good. In this context the seller can
and wants to perform opportunistic behavior, selling the product, to the buyer
according to Theorem 5.1. Monitoring and eliminating opportunism mechanism
should be put there in order to demotivated such a behavior. However, if we can
ensure that both the seller and the buyer are aware of the quality of the product
before the seller ships it, it is impossible for him to get benefits from the buyer.

5.3 Computational Complexity

Theorem 5.1 shows that whether a given action will be performed by an agent
as opportunistic behavior. More generally, we would like to know given a multi-
agent system we design, whether there exists opportunistic behavior between
agents and how difficult it is to check it. In this section, we will investigate this
issue through proposing an algorithm. The decision problem associated with
predicting opportunistic behavior is as follows:
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PREDICTING OPPORTUNISM
Given: Multi-agent system M.
Question: Does there exist opportunistic
behavior between agents for M?

Theorem 5.2. Given a multi-agent system M, the problem that whether there
exists opportunistic behavior between agents for M is in P.

Proof. In order to prove it is a P problem, we need to find an algorithm that
allows us to solve the decision problem in polynomial-time. We design Algorithm
1 for verifying opportunistic behavior in a multi-agent system M based on The-
orem 5.1. The algorithm loops through all the possible transitions in the system,
which has complexity O(n), where n = |R|. Notice that transitions are executed
by hypothetical agents, meaning that the value systems we consider for the tran-
sition is assumed to be known once the transition is given. For each transition, it
verifies the statements listed in Theorem 5.1 one by one. Line 21–24 is to verify
whether there is no action a′ that dominates action a. Based on the definition
of dominance between actions, the algorithm has to perform the comparison
K(i, s〈a〉) with K(i, s〈a′〉) for all a′ in Ac(i, s). If for all s′ ∈ K(i, s〈a〉) and for all
s′′ ∈ K(i, s〈a′〉) we have s′ ≺ s′′, then action a is dominated by action a′. Hence,
the complexity of executing line 21–24 is O(mk2), where m = |Ac(i, s)| and
k = |K(i, s)|. The computational complexity of the whole algorithm is O(nmk2),
which implies that Algorithm 1 can check whether there exists opportunistic
behavior between agents for a given multi-agent system in polynomial-time.
Therefore, we can conclude that given a multi-agent system M, the problem
that whether there exists opportunistic behavior between agents is in P.

6 Related Work

The technical framework we used in this paper is a transition system extended
with value systems. As standards for specifying preferences, people usually use
goals rather than value (e.g. [6,14]) in logic-based formalization and utilities
in decision theory and game theory (e.g. [15,18]) for the same purpose. Only
some work in the area of argumentation reasons about agents’ preferences and
decision making by values (e.g. [3,12,17]). Goals are concrete and should be
specified with time, place and objects, while value is relatively stable and not
limited to be applied in a specific situation. Since state transitions are caused
by the performance of actions, we can evaluate actions by whether our value is
promoted or demoted in the state transition. For representing agents’ evaluation
on states, Keeney and Raiffa proposed Multi-Attribute Utility Theory (MAUT)
in which states are described in terms of a set of attributes and the utilities
of the states are calculated by the sum of the scores on each attribute based
on agents’ value system [8]. Apparently, not everything can be evaluated with
numbers, which is one of the reasons why people consider using value systems as
an alternative. A value system is like a box that allows us to define its content
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Algorithm 1. Predicting Opportunism
1: procedure HasKnowAsym(S1, S2, π, ϕ) returns true or false
2: set g1 ← true
3: set g2 ← false
4: for each s ∈ S1 do
5: if ϕ �∈ π(s) then
6: set g1 ← false
7: break
8: for each s ∈ S2 do
9: if ¬ϕ ∈ π(s) then

10: set g2 ← true
11: break
12: return g1 ∧ g2

13:
14: procedure Predicting(M) returns true or false
15: set flag ← false
16: for each (s, a, s〈a〉) ∈ R do
17: set v∗ ← highest(i, s, s〈a〉)
18: set w∗ ← highest(j, s, s〈a〉)
19: if HasKnowAsym(K(i, s), K(j, s), π, promoted(v∗, a) ∧ demoted(w∗, a))

then
20: if promoted(v∗, a) ∧ demoted(w∗, a) ∈ π(s) then
21: set h ← 0
22: for each a′ ∈ Ac(i, s) do
23: if a �= a′ and K(i, s〈a〉) � K(i, s〈a′〉) then
24: h + +

25: if h == 0 then
26: set flag ← true
27: break
28: return flag

as we need. In this paper, a value is modeled as a formula in our language and
a value system is constructed as a total order over a set of values. Instead of
calculating the utility of states, agents specify their preferences over states by
evaluating the value change that they most care about.

We reason about agents’ opportunistic propensity based on decision theory
extended with knowledge and value systems, which correspond to some concepts
from game theory. In game theory, agents can be situated in a game which is not
fully observable, and the notion of information sets is introduced to represent
the states that the agent cannot distinguish [7]. In this paper, we use a similar
concept knowledge set to represent the set of states that the agent considers
as possible. Based on the representation of uncertainty, we use the notion of
dominance to compare two different actions: a dominated action is an action
that is always bad to perform regardless of the uncertainty about the system,
which is an approach bridging to (non-)dominated strategies in game theory. It
is thus already seen that we can apply techniques from game theory based on
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the concept similarities to enrich the existing decision theory and enhance the
reasoning capabilities on agents’ opportunistic propensity.

7 Conclusion and Future Work

The investigation about opportunism is still new in the area of multi-agents
systems. We ultimately aim at designing mechanisms to eliminate such self-
ish behavior in the system. In order to avoid over-assuming the performance
of opportunism so that monitoring and eliminating mechanism can be put in
place, we need to know in which context agents will or are likely to perform
opportunistic behavior. In this paper, we argue that agents will behave oppor-
tunistically when they have the ability and the desire of doing it. With this idea,
we developed a framework of multi-agent systems to reason about agents’ oppor-
tunistic propensity without considering normative issues. Agents in the system
were assumed to have their own value systems. Based on their value systems and
incomplete knowledge about the state, agents chose one of their rational alter-
natives, which might be opportunistic behavior. With our framework and our
definition of opportunism, we characterized the situations where agents will/will
not perform opportunistic behavior and proved the computational complexity of
predicting opportunism. Certainly there are multiple ways to extend our work.
One interesting way is to enrich our formalization of value systems over different
sets of values, and the enrichment might lead to the investigation about the com-
patibility of value systems and different results about opportunistic propensity.
Another way is to consider normative issues in our framework in addition to the
ability and the desire of being opportunistic.
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Örebro University, 70182 Örebro, Sweden
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Abstract. Over the last years, the affordance concept has attracted
more and more attention in agent-based simulation. Due to its ground-
ing in cognitive science, we assume that it may help a modeller to capture
possible interactions in the modelling phase as it can be used to clearly
state under which circumstances an agent might execute a particular
action with a particular environmental entity.

In this discussion paper we clarify the concept of affordance and intro-
duce a light-weight formalization of the notions in a way appropriate for
agent-based simulation modelling. We debate its suitability for capturing
interaction compared to other approaches.

1 Introduction

A critical part of building an agent-based model is related to interactions between
agents, as well as between agents and other objects in their environment. There
is an inherent gap between formulating agents, their properties, individual goals
and/or behaviour at the micro level and the overall intended outcome observ-
able at a macro level. When running the simulation, the simulated agents – put
together and into an environment –, eventually generate this aggregated out-
come. Interaction hereby forms the element of the model that connects micro-
and macro level. Yet, one cannot easily foresee who will actually interact with
whom in the running simulation. Diverse methodologies for developing agent-
based simulation models propose different solutions to produce some form of
predictability of interactions, defining a systematic approach to formulations in
the model.

In this contribution we aim at clarifying the concept of an affordance so
that it becomes a helpful notion for general agent-based simulation model devel-
opment. We suggest a formalization that – if embedded into an appropriate
development methodology – can support a more reliable model development by
explicitly representing potential interactions. Affordances have been seen as use-
ful in so diverse areas such as Human-Computer Interaction and Virtual Reality,
c© Springer International Publishing AG 2017
G. Sukthankar and J. A. Rodriguez-Aguilar (Eds.): AAMAS 2017 Best Papers,
LNAI 10642, pp. 222–238, 2017.
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Robotics or spatially explicit agent-based simulation. Our goal is to develop a
concept that supports a modeller in capturing interactions, not in a way to be
able to automatically reason about them before running a simulation, but in
a way to make the modeller aware of the circumstances in which interactions
happen or not. Interactions that occur during a simulation run need to be fully
explainable. Analysis of interactions that actually happened during the simula-
tion, shall supporting understanding and thus quality control of the simulation
model. We argue that affordances – due to their grounding in cognitive science
theory – form a natural basis for guiding a modeller.

In the following we first set the scene by discussing how interactions are
handled when developing agent-based simulation models, this is followed by a
discussion of related work on affordances in agent-based simulation. We then
introduce our particular interpretation of the original affordance notion, define
affordances for use during simulation runtime and affordance schemata to be
specified during model definition. We illustrate how those notions can be applied
in a small example. The contribution ends with a discussion of challenges not
yet addressed and our future planned work.

2 Formulating Interactions

There are different perspectives that a modeller may consider when developing
with an agent-based simulation model. Depending on the particular methodology
applied, the set of perspectives is different. Yet, there is a core set containing
first, a model of the agents, and second, a model of the simulated environment
in which the agents are embedded. The third perspective aims at capturing
the interactions between the those elements of the model. A fourth perspective
deals with the simulation infrastructure containing information about scheduling
updates, time model, et cetera.

The perspective of a single agent is well understood - using techniques and
meta-models elaborated in diverse agent architectures such as rule-based systems
or BDI agents. The environmental perspective received much attention over the
last years, sometimes mixed with the infrastructural elements especially when
handling the environments’ update from the actions of the agents that should
happen in parallel. Yet, the interaction perspective in a general sense appears to
be neglected.

The Merriam-Webster dictionary shortly characterizes “interaction” as
“mutual or reciprocal action or influence”. In addition it distinguishes between
two forms of interaction: (1) Interaction as communication and (2) interaction
as mutual effect. The first form is often adopted in Agent-Oriented Software
Development when specification of agent interaction is reduced to specification
of protocols for exchanges of structured messages. The second form is more cur-
rent. Considering interactions is basically a first step to connect the micro-level
behaviour of agents to observations at the system or macro-level.
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2.1 Interaction in AOSE

It is not surprising that formulating and dealing with interactions is at the heart
of developing and analysing multi-agent systems. Basically from the beginning,
researchers analysed conditions and circumstances for interaction of all kinds
of agents – simple reactive to intelligent agents. J. Ferber [8] systematically
analysed interaction situations.

Organization models were spotlighted as a mean to structure societies of
agents. Hereby, the number of potential interaction partners is restricted to
agents within the group or to agents having adopted particular roles. The
basic idea behind those endeavours is to make system-level behaviour more pre-
dictable. Organizational notions hereby allow determining with whom to inter-
act, while what actually happens during interaction is formulated in a protocols.
Many meta-models were proposed for organizational models (such as [9] or [14]).

AUML [4] became the de facto standard for representing agent communi-
cation protocols as it provided more flexibility and a higher abstraction level
than plain UML sequence diagrams at that time. Meanwhile, the corresponding
UML2 diagrams offer similar features [5]. At a higher abstraction level interac-
tions and relations between agents can also be represented using UML Use Case
diagrams [7].

2.2 Interaction in Agent-Based Simulation

When specifying a particular behaviour with which an agent interacts or inter-
feres with another entity, it essential to understand in which context the interac-
tion will actually happen during runtime. This reads strange as one may assume
that only what is given during modelling, is actually happening during simula-
tion. However, this is just the case in models in which interaction situations are
fully given - e.g. the above mentioned pre-defined organizations exactly provide
such fully determined place. Yet this is not the case in general. In a simulation
with a kind of stigmergic interaction, an agent modifies an environmental entity,
another agent perceives the result and reacts to it. Interaction here consists of
action and perception in a decoupled way. Who actually reacts to the modifica-
tion is unclear, when the modeller determines the agent behaviour and potential
interaction. Stigmergic interaction may be an extreme example, but similar sit-
uations happen in all cases in which the agent behaviour definition contains
elements that are determined during runtime – when the agent interacts in a
particular situations with the entities that are actually there. This makes it so
difficult to handle interaction in agent-based simulation modelling.

Definition and simulation of interactions consequently forms a major source
of errors eventually leading to extensive debugging and analysing. Thus, it is a
highly critical element of a modelling methodology to get the interactions right
as early as possible. Their proper specification, documentation and analysis is
essential.

Over the years, several approaches have been published that suggest ways
of explicitly handling interactions when creating a model. Like in the AOSE
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case, particular organization-level models have been proposed, such as using
an institutional perspective as in the MAIA methodology [12]. Also integrating
a model of social networks, such as discussed in [2] provides a structure who
interacts with whom.

As in AOSE, UML Sequence diagrams that enable to formulate an interaction
as a sequence of messages, can be used to specify interaction in agent-based
simulation models [6]. For a higher abstraction level UML Use Case diagrams
may be used. But, the flexible element may concern the interaction partner.

A basic framework for supporting the modelling of interaction is presented
with the IODA approach [25]. In their methodology they propose to define inter-
actions explicitly in a way separated for the actual agent models. This is also
done when using explicit models of organizations, yet IODA is special as it
directly couples interaction to agent action. The central element of IODA is a
table that label how agents of one family interact with others. The label con-
nected to a program or script as well as some form of condition. Hereby, Kubera
et al. [24] also argue that everything can be an agent; so basically all actions
can be phrased as interaction. IODA is particularly apt for reactive agents. It
does not cover selection of interaction partners – all agents of a particular type
within a specified distance may interact.

In this contribution, we want to explore if the concept of affordances helps
to capture possible interactions in the modelling phase. Affordances also could
be used to select interaction partners during a running simulation. Before we
elaborate on our thoughts, we give an overview on what affordances actually are
supposed to be as well as how they are currently used in agent-based simulation.

3 Notions and Usages of Affordances

3.1 The Concept of Affordance

The notion of affordance is at the core of ecological psychology, brought for-
ward by Gibson [13]. Gibson defined affordances as action potentials provided
by the environment: “The affordances of the environment are what it offers the
animal, what it provides or furnishes, whether for good or ill”. For example,
a bench affords sitting to a human. The potential action of ’sitting’ depends
on properties of the bench, properties of the human, and on the current activ-
ity the human is engaged in. Gibson put special emphasis on this reciprocity
between animal and environment, insisting that affordances are neither objec-
tive nor subjective. Thus, Stoffregen [32] defined affordances as “properties of
the animal-environment system [...] that do not inhere in either the environment
or the animal”.

In the context of cognitive engineering Norman [27] determines the usability
of environmental objects for a human carrying out a specific task by considering
not only the affordances but the “perceivable affordances” of objects and the ease
of perception for humans. Norman is dedicated the designing objects in such a
way that their affordances become immediately perceivable by a person engaged
in some task. Transferred to the context of modelling interactions a modeller
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needs to anticipate the affordances that will be needed within a specific action
context and that the agent should be able to perceive.

Affordances in robotics reasoning [3] are used for enabling robots to handle
unexpected situations. The moment an object is recognized as for example a
mug, the robot can retrieve what actions it affords from an object-affordance
database. Based on this the robot may adapt its plan to water plants using the
mug instead of another container which is not available. This approach requires
an extensive database which first needs to be assembled. Raubal and Moratz
[30] developed a functional model for affordance based agent, aiming at enabling
robots to perceive action-relevant properties of the environment. This research
clarifies the notions but stays at an abstract level of formalization. Although they
don’t name it “affordances” but services, [11] present an idea that is related to
both the robotics idea of affordances. They use an action planner to configure
a learning scenario an educational game. Appropriate objects providing the ser-
vices that are needed in the scenario are integrated into the scenario. This is not
a simulation application per se, but has some relation.

In Geographic Information Science the affordance concept has been used
extensively in order to model and understand human environmental perception
and cognition. Jordan et al. [20] created an affordance-based model of place,
discovering that the agent, the environment and the task of the agent need
to be modelled in order to be able to determine affordances of places. Raubal
[29] based his model of wayfinding in airports on an extended concept of affor-
dances, including social and emotional aspects, thus enabling agents to inter-
pret the meaning of environmental entities relevant to the task at hand. Jonietz
and Timpf [17,18] interpret affordances as a higher-order property of an agent-
environment system, which is determined by agent- and environment-related
properties termed capabilities and dispositions at a lower level. As in the previ-
ous modelling approaches, affordances are interpreted as properties that may be
modelled and not as something that emerges from the interaction between agent
and environment. However, the affordance concept emphasizes the central role of
action potentials and ties the afforded action and the respective environmental
entities in a pragmatic sense [15].

3.2 Affordances in Agent-Based Simulation Modelling

During the last years the concept of affordances has become popular in agent-
based simulation. Affordances were basically used to enable a modeller to for-
mulate some element in the simulated environment that the agents could use for
deciding about where to go next or what to do next.

There are a number of models that aim at reproducing how a human reasons
about its environment for achieving more realism. These models are highly moti-
vated by cognitive science. The basic assumption is that following hypotheses
how humans really think, the model can achieve a higher degree of structural
validity. Examples for those models are [28–30] or [17]. A formalisation focussing
on affordances as an emergent property based on a detailed model of spatially
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explicit environment as well as actions and relations in that environment can be
found in [1].

Other works interpret the notion of affordances more freely: Joo et al. [19]
propose affordance-based Finite State Automata. They use affordance-effect
pairs to structure the transitions between states of a simulated human. In an
evacuation scenario, an agent follows a given route to the exit, but checks every
step whether necessary affordances are fulfilled, using affordances to evaluate
different local options.

Kapadia et al. ([21]) use “affordance fields” for representing the suitability of
possible actions in a simulation of pedestrian steering and path-planning behav-
iour. An affordance is hereby a potential steering action. The affordance field is
calculated from a combination of multiple fields filled with different kinds of per-
ception data. The agent selects the action with the best value in the affordance
field. A particular interesting approach is suggested by Ksontini et al. ([23]).
They use affordances in traffic simulation denoting virtual lanes as an occupy-
able space. Agents reason about what behaviour is enabled by the environmental
situation. The affordances offered by the environment are explicitly represented
by those virtual objects that offer driving on them. [22] labelled environmen-
tal entities with “affordances” such as “provides medication” as counterparts
of agent needs enabling the agents to flexibly search for interaction partners or
destinations.

In these approaches, affordances are used as more as rules, for representing
constraints or for identifying options. They serve as a tool for flexibly connecting
an agent to interaction partners. There is no intention to advance the research
in cognitive science.

3.3 Our Concept of Affordances

Affordances capture an emerging potential for interaction between an agent in
a particular mind set intending to carry out a particular action and an envi-
ronmental entity or ensemble of entities that the intended action involves. The
entities need to have specific dispositions that can match up with the capabilities
of the agent.

We use “affordance” as a kind of technical term capturing something that
would be not be capturable otherwise. We do no claim to formalize the psycho-
logical, cognitive-science view on how humans actually reason about affordances.
Our focus is on helping the modeller understand and think about interactions
between agent and environment. Affordance shall make the potential for inter-
action between an agent and its environment explicit. So, we let the affordance
stand per se for a potential interaction independent of how an agent selects its
actions during simulation runtime. One can see it as a “shortcut” for represent-
ing what the agent perceives as relevant for selecting an entity as an interaction
partner, without explicitly listing relevant features. In Gibson’s original affor-
dance idea there is no space for explicit selection between different affordances -
the potential for action is directly linked to action in a Boolean fashion.
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4 From Affordances to Interaction

Our aim is to deal with interactions in an explicit and flexible way using affor-
dances. Therefore, we need to differentiate between an affordance emerging for
a simulated agent while it “moves” through its environment, and between a rep-
resentation that is defined by the modeller as some kind of declarative pattern
from which the perception is generated. In principle, we assume that there is
something like an explicit, declarative model that the modeller creates which is
then interpreted or compiled for actually executing it during simulation runtime
when the agent actually “lives”. We call the run-time representations “affor-
dance”, and the modelling-time representation “affordance schema”.

For running the actual Agent-Based Simulation, there must be some process
to generate affordances. Theoretically, there is no emergence involved when a
simulated agent perceives simulated affordances, as everything is defined by the
modeller. Yet, from the point of view of the agent, an affordances may be in
deed unexpected. For a modeller an affordance cannot “emerge” surprisingly.

4.1 Affordance and Affordance Schema

We define an affordance as a relation between a potential action and an environ-
mental configuration. So, theoretically, it is neither a part of teh environment,
nor a part of the agent, but connects both. The affordance becomes noticeable
by an agent a at a particular time point t during simulation. pAffa,t are all
affordances that the agent a can perceive at time t:

〈a, act, x〉 ∈ pAffa,t (1)

Such an affordance denotes the possibility of establishing a relation between
an agent a and an entity x with respect to action act. x may serve as an inter-
action partner, if the given action is executed. With the perception of the affor-
dance, the action becomes possible. Both, a and x are in a particular state at
the time point t. We apply an extended view on “state” that goes beyond pure
representation of kind-of metabolic values, but also contains activity, motiva-
tions and goals, beliefs, etc. We do not make assumptions on how this state
looks like in a particular model. We also need to assume that the agent a has an
explicit set of distinct, potential actions from which it selects one to perform in
its environment.

As given in the previous section, an affordance links a potential action to an
environmental constellation. Per se, such a constellation is not just a single entity
in a particular state, but contains context. For example, a bench affords sitting-
down just if the area to sit on is sufficiently stable (state of the bench entity).
Selection is influenced by the context of the entity - whether it is below a tree
casting shadow on it during sunny, too hot times or under a roof that protects it
from rain on a rainy day. We assume that all information that qualifies an entity
for offering a particular potential action is represented in its state; information
that makes it more or less qualified in comparison to other entities affording
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the same potential action is determined by its context. Preferences or degrees of
qualification are not considered in the classical affordance concept. In [16] this
classical view is extended by elaborating gradation of affordances. Nevertheless,
the selection of affordances depends on the particular way the agent reasons
about affordances which should be independent from the actual affordance. An
agent might follow the first affordance relation that it encounters or a random
one or might evaluate different options for determining which one to prefer.

This formalization is different from [31] who see an affordance as an acquired
relation between a combination of an environmental object with behaviour and
an effect of this behaviour. The idea of acquiring knowledge about an affordance
illustrates their robotics perspective.

Thus, we image an affordance as an explicit object (as a kind of data struc-
ture) during simulation runtime about which the agent reasons with respect to
carrying it out or not. Thus, there is a need for an higher-level data structure or
schema that enables to create such runtime affordance objects. Such a schema
must be more than a class in the object-oriented sense from which affordance
instances can be created. For being useful in modelling per se, the schema needs
to contain more contextually relevant information and conditions under which
the affordance actually “emerges”. We define such an affordance schema in the
following way:

〈AType, act, EType, hContext, sContext〉 (2)

Such an affordance schema can be seen as a “pattern” that can be used
to generate or determine affordances present in the agents environment1. An
affordance schema is specified during modelling, but does not necessarily exist as
an explicit data structure during simulation runtime. When a modeller specifies
such affordance schemata, she explicitly writes down under which circumstances
an interaction might happen between an agent of type AType performing action
act with an object of type EType. The action in the affordance can be a more
specific and parametrized version of the action given in the affordance schema.
The actual action representation may depend on the applied agent architecture.
The fourth and fifth elements hContext and sContext capture the circumstances
under which an affordance 〈a, act, x〉 can be really created for a being a kind
Of AType and x being a kind Of EType, offering the action. The difference
between hContext and sContext is that the former contains hard conditions
that enable the affordance - focussing on object and agent properties directly;
the latter contains weaker conditions or even just criteria that make a particular
constellation more favourable than others.

For example, in a park simulation (such as [33]), during a hot day, an
agent a enters a park that is equipped with a currently broken bench b1 in
the shadow, a clean bench b2 in the sun and a nice looking stone st1 under
shady trees. The agent a entering the park is tired and searches for a place
1 Our idea of an affordance schema is on a higher abstraction level than what W.

Kuhn called “Image Schema” in [26]. He describes an environmental constellation
using spatial categories and connects them to a process that they afford.
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to sit down (action sitDown). Thus, a scans the environment using the affor-
dance schema for sitDown and generates the following affordance objects:
〈a, sitDown, b2〉 and 〈a, sitDown, st1〉. It does not generate an affordance for
b1 because the bench is not apt for sitting on it due to the broken surface.
Depending on some form of ontology capturing environmental entities such
as benches or stones as entities with flat surfaces, the modeller has defined
the following affordance schema as a pattern to describe potential interac-
tions: 〈V isitor, sitDown,ObjectWithF latSurface, hConditions, sConditions〉.
Agent a is of type V isitor and requires for the action sitDown an entity of
type EntityWithF latSurface which is the superclass of benches, stones, etc.
However, not every one of those entities affords the action for a V isitor agent.
This is represented in hConditions which define under which circumstances
the environmental entity e affords the action sitDown: {stable(surface(e)),
height(surface(e)) < 110 cm), ...}. The set of soft conditions may contain for
example {inShadow(e)}. The conditions may also refer to other objects present
in the vicinity of e affecting whether and how well the entity e actually can afford
the given action.

It is important to stress that our definition of affordance and affordance
schema does not contain a description of the effect of the action it refers to. The
description as in the example just contained a label sitDown. What this means.
In simulation, we are dealing with an environment for the agents’ behaviour
that is part of the model - that means fully defined by the modeller. With the
environment the effect of actions is usually fully defined, even if a modeller follows
the conceptually cleaner distinction between agent action and environmental
reaction as described by [10].

Another essential aspect distinguishing the specification of affordances in
agent-based simulation versus robotics (and also agent-oriented software devel-
opment) is that actions in simulation may be defined at arbitrary levels of
abstraction – adapted to the abstraction level of the environment. For example
the action sitDown may not have a lower level correspondence when the agent
executes it. There might be no going towards, arching joints, lowering backs, or
whatever low-level commands are necessary to execute such an action. Abstrac-
tion levels might differ a lot between models describing the same phenomenon.
This is also the reason why we would not expect to be able to create a set of
“standard” affordances that can be used across many simulation applications.

Enabling a distinction between different environmental objects so that the
agent may prefer one to another is NOT part of the original affordance idea.
An affordance connects an environmental object to a potential action of the
agent. How the agent reasons is not part of the affordance. Thus, conditions are
intentionally only present on the affordance schema, i.e., the modelling level.
The runtime affordance depends on the simulated agents’ point of view within
the simulated environment. But somehow during simulation, there must be a
process generating the affordances that the agent then can select, etc. Thus, we
need to discuss processes of how the affordance schemata generate affordances
and determine the agents’ actual behaviour and interaction.
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4.2 Processes Around Affordances

In theory, an affordance emerges as a potential action for an actor with a par-
ticular motivation (goal, desire...). In a simulation, it needs to be determined
either by the simulated agent itself or by some higher level process which may
not be manifested as an actor in the simulation. In Fig. 1 an abstract view is
visualized of how different elements of such a process can be connected.

Fig. 1. Overview over processes related to affordance generation and usage.

Following Fig. 1 we need to elaborate partial processes relevant for creating
interactive agent behaviour from explicitly defined affordances:

– Mechanism that connects agent goals to actions that are apt to achieve the
agents’ goal or satisfy its motivation. This process element is responsible for
a pre-selection of actions from an action repertoire capturing what the agent
is able to do in general. The selected actions need to be connected to the
agents’ motivational concepts and perceptions/beliefs in a classical way: the
agent shall not select actions that it believes not to work in a particular
environment, etc.

– Potential actions are filtered based on the environment checking whether the
prerequisites for the actions are fulfilled or not. This is done by doing some
kind of “pattern matching” of affordance schemata to perceived environment.
This connects potential actions to environmental entities by generating (iden-
tifying) affordance relations.
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– Having established a set of realizable actions with potential interaction part-
ners, the agent can use the affordances connecting actions and entities to
evaluate which of the combinations are the preferable ones. Such a preference
relation between affordances (based on an evaluation of the context informa-
tion given on the modelling level) is then used to select the action that is
executed.

5 Illustrative Example: A Supermarket

Consider the following situation and process: The agent A has collected a number
of items in a supermarket and moves towards the cash points to pay. The agent
has sufficient money (in cash or on/with card). There exist two manned cash
points as well as one self-payment counter machine: {CashierRight, Cashier-
Middle, AutoCashier}. Of the two manned cash points, only CashierRight is
actually busy. CashierMiddle misses the cashier agent. Each of the working cash
points has a queue of agents waiting for their turn: In front of CashierRight
there are 4 persons queuing up, in front of AutoCashier only another person is
waiting for the current person to finish. So it is highly probably that A will be
served earlier when queueing up at the electronic cash point. A strongly prefers
to interact with humans, yet is under time pressure.

5.1 Description of Interaction with Affordances

When A approaches the cash point area with the intention of doing the action
Pay2Leave, A perceives the three cashiers and immediate sees that only two are
available for the intended action.

〈A,Pay2Leave, CashierRight, CondCashierRight,now〉
〈A,Pay2Leave,AutoCashier, CondAutoCashier,now〉

with CondCashierRight,now = {queue(CashierRight, 4), female(CashierRight),
young(CashierRight), friendly(CashierRight)} describing the configuration of
the particular cashpoint at time now. The configuration of AutoCashier is
CondAutoCashier,now = (queue(AutoCashier, 1)).

There is no affordance for CashierMiddle as it is actually not working due
to the missing cashier. Both affordances have particular properties that describe
the current configuration the agent evaluates for making a decision for one of the
interaction partner CashierRight or AutoCashier. The agent needs to evaluate
whether it prefers to wait for the interaction with a nice human cashier or wants
to go for the faster automated way. The Pay2Leave action may have a particular
implementation for each of the interaction partners specified as a communication
protocol as given below.

While this describes a simulation run-time situation, the modeller defines
affordances schemata to specify the interaction. In this example case, the relevant
affordance schema may look like that:

〈SHOPPER,Pay2Leave, CASHpOINT, Prereq, PrefCriteria〉
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The affordance schema contains the following elements: first, a combination of
agent type SHOPPER and a particular action/activity that the agent wants
to do: Pay2Leave. Hereby, Pay2Leave ∈ ActionRepertoire(SHOPPER), that
means the action must be part of the default – as defined on the class level –
action repertoire of any shopper agent. A as an instance of a SHOPPER has this
action in its action repertoire. CASHPOINT is an abstract class from which the
classes of MANNED−CASHPOINT AND AUTOMATED−CASHPOINT
are inheriting. Both types can afford the Pay2Leave action of the shopping agent.
Yet, additional conditions must be fulfilled. These conditions and criteria depend
on the concrete type of CASHPOINT (see Table 1).

Table 1. Prerequisites and Conditions in Cashier Scenario

AType Conditions Preference Criteria

MANNED −
CASHPOINT

manned(C) Queue, Friendliness...

AUTOMATED−
CASHPOINT

functioning(C),
available(A,card)

Queue

For achieving a fully functional model clearly a lot of elements are missing. We
just focus on a small number of potential interactions. Additional interactions
could be between A and diverse products that A wants to buy. Hereby each
product affords to be taken and put into the cart. Before we continue discussing
our approach, we have a look how the corresponding formulations would look
like when using ways of specification as introduced in Sect. 2.

5.2 Description of Interaction with IODA or MAIA

In the following we intend to give a general impression of two rather extreme
alternatives to formulate interactions: IODA [25] aiming more at simulation of
emergent phenomena and MAIA [12] following an explicit organization-oriented
approach. We do neither give full models, nor the does our description describe
exactly the same part of the model. Thus, a lot of context is missing which
would be necessary to precisely apply these two methodologies for developing
agent-based simulations.

The central element of designing this scenario with IODA [25] is to define
the interaction matrix as shown in Table 2.

The table specifies that elements of one agent “family” interact with an ele-
ment of another. For example, a Customer agent may initiate an interaction with
a Cashier agent, if the distance between them is lower than 3 units. “Pay&Pack”
is hereby a label for a sequence of actions describing the actions of the involved
entities during the interaction. The model specifies what happens during an
interaction, under which circumstances the interaction is triggered and what
type of agents are involved. What is actually done is represented as a sequence
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Table 2. Raw Interaction Matrix in the supermarket scenario following IODA [25].
In following the steps of the overall methodology, interactions would be detailed and
selection process is specified, etc.

Source Target

Shelf Customer Employee Cashier

Customer TakeGoods (d= 0) WaitBehind
(d= 2)

AskForHelp (d = 2) Pay& Pack
(d= 3)

Employee ReFill (d = 0)

Cashier RequestPayment
(d= 3)

of actions executed by the contributing agents. How the actual interaction is
selected is determined by the actual agent architecture. Initially, Kubera et al.
assumed reactive agents, that means agents that more or less directly connect
perception to action without reasoning about explicit representations of agent
goals.

As introduced above, MAIA [12] forms a framework for agent-based sim-
ulation based on the formalization of a particular organizational model. It is
especially apt for social models.

In a simulation reproducing how humans behave in a supermarket, one may
assume two types of agents: Customers as individual actors and the supermarket
as a composite actor, bringing together all its employees that temporally take
over a particular role, such as ReFiller or Cashier. Agents may have particular
attributes, such as contents of the shopping chart or entries on the shopping list.
The roles have an associated objective, such as acquire and pay all items on the
shopping list. There may be dependencies between roles based on dependencies
between objectives - captured also in institutional settings. When adopting a
role, an agent also gets capabilities that basically correspond to possible activi-
ties or actions that the agent with that role is able/permitted to perform. For the
specification of interactions the set of rules and conventions that govern agent
behaviour to be specified by institutional statements is particularly interesting.
There are different types of those statements for describing which behaviour can
be expected by an agent and what happens if the agent does not fulfil the expec-
tations: not following a rule results in sanctions, a norm is behaviour without
sanctions if not followed. The weakest notion of an institutional statement is
shared strategy. In Table 3 we give a few examples of institutional statements
of a customer actor in the supermarket scenario.

These elements set up the constitutional structure of the model. In addi-
tion, the modeller needs to specify the physical context (environmental model)
and the operational environment, which describes how an agent influences the
overall system state. A simulation has an action arena which contains so called
action situations. The latter basically describes some kind of plan structure
organizing atomic actions in an institutional context for an agent exhibiting a



Approaching Interactions in Agent-Based Modelling 235

Table 3. Institutional Statements defining the expectations on how customer agents
behave

Type of Statement Statement

Rule A customer always has to pay the goods before leaving

Norm A customer has to wait in line behind earlier customers

Shared Strategy Customers start to pack directly after the cashier
accounted for a good

. . . . . .

particular role. Interactions between different agents takes place within an entity
actions. So, actually what happens during interaction is hidden quite deeply in
the overall model specification.

In Sect. 2 we mentioned that UML can be used to formulate interactions.
How this could look like at a rather high abstraction level is shown in Fig. 2.

Fig. 2. Protocol-like definition of interactions between waiting customers and the
cashier handling one after the other.

One can see that the different frameworks and approaches actually focus
on different problems. Our affordance/affordance schema concepts actually con-
centrate on the selection of the interaction partner in a more flexible, yet less
predictable way as in more organization-oriented approaches. One may interpret
it as more specific and apt for agents that actually reason about their next action
than in the IODA methododology.
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6 Discussion and Conclusion

In this contribution we clarified the notion of affordances and introduced affor-
dance schemata showing that such a distinction is necessary when distinguishing
between what happens during simulation runtime and what a modeller explic-
itly formulates. We put those concepts into an interaction modelling context.
The questions remain whether these concepts can be really useful, what to do
such that they become useful and how to evaluate their usefulness? The current
stage of our research is quite preliminary, as we first wanted to clearly agree on
what we actually model when specifying affordances. The current contribution
thus cannot be more than a discussion paper. For creating a methodology we
would need to make assumptions on meta-models formulating a context such
that we can formalize every detail necessary to fully support the complete mod-
elling and simulation process. Based on such a meta-model we could then create
tools that directly support modelling - and as we explicitly approach interactions
hopefully support model analysis in an improved way. However, we are not sure
whether yet another methodology provides a good idea. What we actually want
to achieve is to propose a suitable language that supports a modeller when for-
mulating interactions. It should help the modeller to stay aware of when, if and
under which circumstances interactions happen and which agents with which
particular features participate in the interaction.
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Abstract. Multi-agent algorithms aim to find the best response in
strategic interactions. While many state-of-the-art algorithms assume
repeated interaction with a fixed set of opponents (or even self-play), a
learner in the real world is more likely to encounter the same strategic
situation with changing counter-parties. This article presents a formal
model of such sequential interactions, and a corresponding algorithm
that combines the two established frameworks Pepper and Bayesian pol-
icy reuse. For each interaction, the algorithm faces a repeated stochastic
game with an unknown (small) number of repetitions against a random
opponent from a population, without observing the opponent’s identity.
Our algorithm is composed of two main steps: first it draws inspira-
tion from multiagent algorithms to obtain acting policies in stochastic
games, and second it computes a belief over the possible opponents that is
updated as the interaction occurs. This allows the agent to quickly select
the appropriate policy against the opponent. Our results show fast detec-
tion of the opponent from its behavior, obtaining higher average rewards
than the state-of-the-art baseline Pepper in repeated stochastic games.

Keywords: Stochastic games · Reinforcement learning
Multi-agent learning · Policy reuse

1 Introduction

Learning to act in multiagent systems has received attention mainly from game
theory and reinforcement learning (RL). The former has proposed algorithms
that converge under different scenarios [14] and the latter has focused on acting
optimally in stochastic scenarios [12], typically with limited a priori information
about the interaction. Interactions among several agents are usually modelled
as a normal-form or stochastic game, and a wide variety of learning algorithms
targets this setting [7,9,13]. However, results are typically based on the assump-
tion of self-play (i.e., all participants use the same algorithm) and a long period
of repeated interactions. In contrast, we focus on sequential interactions, i.e.,
the agent is paired with stochastically drawn opponents, with whom the agent
c© Springer International Publishing AG 2017
G. Sukthankar and J. A. Rodriguez-Aguilar (Eds.): AAMAS 2017 Best Papers,
LNAI 10642, pp. 239–257, 2017.
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interacts in short periods while observing joint actions, but without observing
the opponent’s identity.

Recent works have proposed algorithms for learning in repeated stochastic
games [17,20], however, it is an open problem how to act quickly and optimally
when facing different opponents [20]. Recent work on Stochastic Bayesian Games
has compared several ways to incorporate observations into beliefs over oppo-
nent types when those types are re-drawn after every state transition [1]. In
contrast, we assume that opponents are redrawn for interactions over several
repeated stochastic games. The learning algorithm needs to optimally reuse pre-
viously learned information from distinct but similar interactions – a challenge
that has been largely studied by transfer learning (TL). TL has been applied
mostly in single-agent domains where information from learned source tasks can
be reused in a new target task [32]. Determining how two tasks are similar, what
information to be transferred and when it should be transferred are open prob-
lems in TL. Related to TL there are different areas that also share a connection
with the problem of how to efficiently reuse previously learned information, e.g.,
policy reuse [21], to avoid long learning times; ad-hoc coordination [4], to collab-
orate with unknown agents in multi-agent teams; and learning in non-stationary
environments [18] to adapt to changing conditions.

We contribute to the state of the art in two ways: First, by providing a more
natural formal model of sequential interactions and second with an algorithm
for quick detection of opponents in that setting. Our proposed algorithm Bayes-
Pepper builds on top of two previously successful frameworks:

– Pepper [15], a learning algorithm for repeated stochastic games, is used to
obtain policies on how to act against the possible opponents. Pepper uses the
paradigm of optimism in face uncertainty together with a joint action learner
to learn a policy in stochastic games.

– Bayesian Policy Reuse (BPR) [30] is used as a fast detection process to iden-
tify the opponent and select the appropriate acting policy. While previously
BPR has been evaluated in single-agent tasks [30] and repeated normal-form
games [25], this is the first time it is extended to stochastic games.

Our setting assumes a population of opponents that can be divided into
different groups. First, Bayes-Pepper needs to compute policies and models of
the opponents, which we assume happens at an offline phase. Second, in an
online phase a random process pairs the learning agent against the opponent
for a stochastic game.1 The learning agent has no control over this process and
does not observe the opponent identity. When the game finishes the learning
agent receives an observation (reward) and updates the belief accordingly. Sub-
sequently, the agent is paired with a new opponent. A formal definition of the
game is given in Sect. 3.3.

This paper is presented as follows: Sect. 2 presents the related work in transfer
learning, policy reuse and learning in non-stationary environments. Section 3
1 We present experiments with one opponent, however, our approach could be gener-

alized to more opponents taking the Cartesian product of all opponents as a single
one.
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describe the formal models of reinforcement learning and game theory. Section 4
presents the proposed Bayes-Pepper algorithm. Section 5 presents experimental
results in repeated stochastic games. Section 6 provides a discussion considering
the results and provides directions for future research. Finally, Sect. 7 summarizes
the conclusions of this work.

2 Related Work

This article tackles the problem of finding a best response when being repeatedly
paired with unknown opponents from an unknown population with known types.
We propose an algorithm that aims to identify opponents while best-responding
in face of residual uncertainty. Our setting and approach shares similarities to
transfer learning, policy reuse and ad-hoc coordination which we review in this
section.

Transfer learning was first used in machine learning to transfer between
learning tasks in a supervised learning scenario. Recently, TL has gained atten-
tion in the RL community in particular in single-agent scenarios. An ideal fully
autonomous RL transfer agent needs to complete three phases [32]:

– Given a target task, select an appropriate set of source tasks from which to
transfer.

– Learn how the source task(s) and target task are related.
– Transfer knowledge from the source task(s) to the target task.

There are different evaluation metrics for TL algorithms (e.g., jumpstart,
asymptotic performance, total rewards, among others) and even though these
three steps are usually connected, TL has focused on them independently. For
example, for the transfer step different ideas have been evaluated, e.g., models,
instances and policies.

One approach that transfers instances from similar tasks was proposed by
Lazaric et al. [29]. They proposed a measure to identify which source tasks are
more likely to have samples similar to those in the target task, namely task
compliance. Moreover, to select which instances to transfer from a task they
propose the relevance measure. However, the approach was proposed for single-
agent domains with continuous state and action spaces, and does not naturally
transfer to our setting. Closer to our approach, Boutsioukis et al. [8] proposed
TL by extending the Q-learning reuse algorithm [31] to multiagent scenarios.
In contrast to our ambition of transfer from interactions against different oppo-
nents, their goal is to transfer information learned from a task with n agents
to a different task with m �= n agents. In particular, they propose an inter-task
transfer approach (i.e., the state and action spaces are not the same in the tar-
get and source tasks) and the evaluation was performed on the predator-prey
domain transferring information tasks learned with different number of preda-
tors (agents). Policy reuse techniques are another area with a similar spirit since
these approaches assume to start with a set of policies to use, and the problem
is to select among them when facing a new task. Fernandez and Veloso [21] use
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policy reuse as a probabilistic bias when learning new, similar tasks in single
agent domains. Bayesian Policy Reuse (BPR) [30] assumes prior knowledge of
the performance of different policies over different tasks. BPR computes a belief
over the possible tasks which is updated at every interaction and is used to
select the policy that maximises the expected reward given the current belief.
Bayesian reasoning has also been used in RL to learn when there is a group of
related tasks with similar structure. Lazaric and Ghavamzadeh [28] proposed an
algorithm assuming tasks have common state and action spaces and their value
functions are sampled from a common prior. In contrast, our approach extends
the BPR algorithm (see Sect. 3.2) to identify opponents rather than tasks, and
combines it with a multiagent learning algorithm.

Ad-hoc coordination is another related problem where an agent needs to
coordinate with an unknown agent but when a set of previous models is known.
In this setting, Barrett et al. [4] proposed the PLASTIC algorithm that learns
how to cooperate with other teammates based on a collection of policies to
select from, which is similar to our approach. The algorithm selects at each
interaction the most likely teammate type and acts following the corresponding
policy. However, this approach does not consider changing agents over the course
of interactions as we do.

Learning in non-stationary environments is another related area since these
approaches explicitly model changes in the environment. Their goal is to learn an
optimal policy and at the same time detect when the environment has changed to
a different one, updating the acting policy accordingly. One algorithm designed
for single agent tasks with a changing environment is the Reinforcement Learning
with Context detection (RL-CD) [18]. RL-CD learns a model of the specific task
and assumes an environment that changes infrequently among different contexts.
To detect a new context RL-CD computes a quality measure of the learned
models. Hernandez-Leal et al. [23,26] addressed a similar problem in two-player
repeated normal-form games. In this case, the opponent has different stationary
strategies to select from and the learning agent needs to learn online how to
act optimally against each strategy while detecting when the opponent changes
to a different one. Since the opponent might reuse one previous strategy at a
later stage of the interaction the learning agent should keep previous models
and policies in order to quickly detect them [25]. While this might be the closest
state of the art, these approaches do not consider repeated stochastic games.

Experimental evidence suggests that people learn heuristics which later are
transferred across different games [5]. Based on these results there is another
category of algorithms that aims to learn in one game and to generalize how to
act in a different game (known as general game playing). Banerjee and Stone [3]
proposed a transfer approach in two-player, alternate move, complete informa-
tion games facing stationary opponents. The idea is to learn general features
that can be reused across games, for example, they learned from played games
on Tic-tac-toe and transferred information to a more complex game (Othello).

In contrast with previous approaches we focus on two-player repeated sto-
chastic games. An agent faces an opponent whose identity is unknown to the
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agent and where every few interactions a random process selects a new oppo-
nent from the population (the agent does not know when these changes happen).

3 Preliminaries

In this section, first we review the formal model of reinforcement learning. Then,
we describe the Bayesian policy reuse framework [30]. Later, we present our
sequential interactions model in the context of stochastic games. Finally, we
describe Pepper [15] which inspires our proposed Bayes-Pepper algorithm.

3.1 Reinforcement Learning

Reinforcement learning (RL) is one important area of machine learning that
formalizes the interaction of an agent with its environment, e.g., using a Markov
decision process (MDP). An MDP is defined by the tuple 〈S,A,R, T 〉 represents
the world divided up into a finite set of possible states. A represents a finite set
of available actions. The transition function T : S ×A → Δ(S) maps each state-
action pair to a probability distribution over the possible successor states, where
Δ(S) denotes the set of all probability distributions over S. Thus, for each s, s′ ∈
S and a ∈ A, the function T determines the probability of a transition from state
s to state s′ after executing action a. The reward function R : S × A × S → R

defines the immediate and possibly stochastic reward that an agent would receive
for being in state s, executing action a and transitioning to state s′.

MDPs are adequate models to obtain optimal decisions in single agent envi-
ronments. Solving an MDP will yield a policy π : S → A, which is a mapping
from states to actions. An optimal policy π∗ is the one that maximises the
expected discounted reward. There are different techniques for solving MDPs
assuming a complete description of all its elements. One of the most common
techniques is the value iteration algorithm [6] which is based on the Bellman
equation:

V π(s) =
∑

a∈A

π(s, a)
∑

s′∈S

T (s, a, s′)[R(s, a, s′) + γV π(s′)],

with γ ∈ [0, 1). This equation expresses the value of a state which can be used
to obtain the optimal policy π∗ = arg maxπ V π(s), i.e., the one that maximises
that value function, and the optimal value function V ∗(s).

V ∗(s) = max
π

V π(s) ∀s ∈ S.

Value iteration requires complete and accurate representation of states,
actions, rewards and transitions. However, this may be difficult to obtain in
many domains. For this reason, RL algorithms learn from experience without
having a complete description of the MDP a priori. In contrast, an RL agent
interacts with the environment in discrete time-steps. At each time, the agent
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chooses an action from the set of actions available, which is subsequently exe-
cuted in the environment. The environment moves to a new state and the reward
associated with the transition is emitted. The goal of a RL agent is to maximise
the expected reward. In this type of learning the learner is not told which actions
to take, but instead must discover which actions yield the best reward by trial
and error.

Q-learning [33] is one well known algorithm for RL. It has been devised for
stationary, single-agent, fully observable environments with discrete actions. In
its general form, a Q-learning agent can be in any state s ∈ S and can choose an
action a ∈ A. It keeps a data structure Q̂(s, a) that represents the estimate of
its expected payoff starting in state s, taking action a. Each entry Q̂(s, a) is an
estimate of the corresponding optimal Q∗ function that maps state-action pairs
to the discounted sum of future rewards when starting with the given action and
following the optimal policy thereafter. Each time the agent makes a transition
from a state s to a state s′ via action a receiving payoff r, the Q table is updated
as follows:

Q̂(s, a) = Q̂(s, a) + α[(r + γ max
b

Q̂(s′, b)) − Q̂(s, a)]

with the learning rate α and the discount factor γ ∈ [0, 1] being parameters of
the algorithm, with α typically decreasing over the course of many iterations.
Q-learning is proved to converge towards Q∗ if each state-action pair is visited
infinitely often under specific parameters [33].

3.2 Bayesian Policy Reuse

Bayesian policy reuse is a framework to quickly determine the best policy to
select when faced with an unknown task. Formally, a task is defined as an MDP.
A policy is a function π(s) that specifies an appropriate action a for each state
s. The return, or utility, generated from running the policy π in an interaction
of a task instance is the accumulated reward, Uπ =

∑k
i=0 ri, with k being the

length of the interaction and ri being the reward received at step i.
Let an agent be equipped with a policy library Π for tasks in a domain. The

agent is presented with an unknown task which must be solved within a limited
and small number of trials. At the beginning of each trial episode, the agent can
select one policy from π ∈ Π to execute. The goal of the agent is thus to select
policies to minimize the total regret incurred in the limited task duration with
respect to the performance of the best alternative from Π in hindsight.

BPR assumes knowledge of performance models describing how policies
behave on different tasks. A performance model, P (U |τ, π), is a probability dis-
tribution over the utility using π on a task τ . A signal σ is any information that
is correlated with the performance of a policy and that is provided to the agent
in an online execution of the policy on a task (e.g., immediate rewards). For
a set of tasks T and a new instance τ� the belief β is a probability distribu-
tion over T that measures to what extent τ� matches the known tasks in their
observation signals σ. The belief is initialized with a prior probability. After each
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execution on the unknown task the environment provides an observation signal
to the agent, which is used to update beliefs according to Bayes’ rule:

βk(τ) =
Pr(σk|τ, πk)βk−1(τ)∑

τ ′∈T Pr(σk|τ ′, πk)βk−1(τ ′).
(1)

Different mechanisms can be used to select a policy to execute. An always
greedy policy selection mechanism would fail to explore, resulting in not reaching
the global maximum. On the other hand a totally exploratory policy selection
mechanism would not make an effort to improve performance. We thus require a
balance, for which different policy selection heuristics have been proposed [30].
A policy selection heuristic V is a function that estimates a value for each policy
through the extent to which it balances exploration with a limited degree of
look-ahead for exploitation.

The probability of improvement heuristic for policy selection [30] considers
the probability with which a specific policy can achieve a hypothesized increase
in performance over the current best estimate. Assume that U+ ∈ R is some
utility which is larger than the best estimate under the current belief,

Û = max
π∈Π

∑

τ∈T
β(τ)E[U |τ, π].

The heuristic thus chooses the policy

arg max
π∈Π

∑

τ∈T
β(τ) Pr(U+|τ, π),

where U+ > Û .

3.3 Games

In contrast to classical RL, which considers one single agent in a stationary
environment, Game theory studies rational decision making when several agents
interact [22]. The core concept of a Game captures the strategic conflict of
interest in a mathematical model. Note that different areas provide different
terminology. Therefore, we will use the terms player and agent interchangeably;
similarly for reward and payoff. Finally, we will refer to other agents in the
environment as opponents irrespective of the domain’s or agent’s cooperative or
adversarial nature.

A stochastic game with two players i and −i consists of a set of stage games
S (also known as states). In each state s players choose an action from the set
a ∈ A(s). A game begins in a state sb ∈ S. A joint action a = (ai, a−i) is
played at state s and player i receives an immediate reward ri(s,a), the world
transitions into a new state s′ according to the transition model T (s, s′,a). When
a goal state sg ∈ S is encountered the game finishes, and the accumulated reward
during the game is called an episodic reward.
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We formalize Sequential Interactions (SI) as a specific variation of repeated
stochastic games, where at each episode k ∈ {1, 2, . . . ,K} a process draws a
set of players Pk ⊂ I from the population of individuals I to play a finite sto-
chastic game that yields a reward (accumulated over the game) to each player.
After the stochastic game terminates, the subsequent interaction commences.
We specifically discuss the setting where the selection process is stochastic (as
opposed to being a strategic choice by the agents), and the population comprises
an unknown distribution over types of strategies. While in the general case these
types may be unknown, our new algorithm assumes access to a priori interac-
tions with each (proto-) type. We consider Pk and opponent rewards within the
stochastic game to be unobservable, while the joint actions are observable.

3.4 Pepper

Pepper [15] (potential exploration with pseudo stationary restarts) was proposed
as a framework to extend algorithms for learning in repeated normal-form games
to repeated stochastic games. Pepper assumes it can observe its own immedi-
ate reward but not the opponents’, and also assumes the maximum possible
reward Rmax known for each episode. It uses the principle of optimism in face
of uncertainty [10] and combines it with a learning algorithm. Pepper computes
the expected future rewards for a joint action a being in state s as:

R(s,a) = r(s,a) +
∑

s′∈S

T (s, s′,a)V (s′) (2)

where V (s′) is the expected future rewards of being in state s′. Note that given
r(·), T (·) and V (·), value iteration can be used to compute Eq. 2, and r and T can
be learned from observations. Moreover, Pepper is initialized under the assump-
tion that all states result in maximal reward. However, there is still the problem
of updating V (s′) throughout the interaction. Pepper proposes a mechanism for
estimating future rewards combining off-policy (e.g., Q-learning) and on-policy
methods for estimating V (s), i.e., an on-policy estimation based on the observed
distribution of joint actions, using n(s), n(s,a) for the number of visits to state
s and the number of times joint action a was chosen in that state respectively:

V on(s) =
∑

a∈A(s)

n(s,a)
n(s)

R(s,a)

and a combined estimation

V (s) = λ(s)V̂ (s) + (1 − λ(s))V on(s).

Where V̂ (s) represents an optimistic approximation given by

V̂ (s) = max(V off(s), V on(s)),
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and where λ ∈ [0, 1] represents a stationarity measure initialized to one but
approaching zero when the agent gets more experience.2 Pepper uses the concept
of non-pseudo stationary restarts, i.e., when R(s) is observed to not be pseudo
stationary λ(s) resets to one. Let n′(s) be the number of visits to state s since
R(s) was last observed to not be pseudo-stationary, then:

λ(s) = max
(

0,
C − n′(s)

C

)

with C ∈ N
+.

Algorithm 1. Pepper algorithmic framework
Input: States S, maximum possible reward Rmax

1 Initialize V (·) with Rmax

2 Random initial policy π
3 for each episode of the stochastic game do
4 Update R(·); Eq. 2
5 Update policy π
6 Observe state
7 while state is not goal do
8 Select action a
9 Observe state

10 Receive observation r
11 if enough visits to (s,a) then
12 Update rewards, V (·), transitions
13 Update R(·); Eq. 2
14 Update policy π

The Pepper framework is described in Algorithm 1 where different policy
selection approaches can be plugged in to compute π. For example, using

π = (arg max
a

R(s,a))i

seems suitable for a friendly opponent, while

π = arg max
ai

min
a−i

R(s,a)

is a minimax approach that suits other types of opponents.
Next, we present our Bayes-Pepper approach which uses Pepper in an offline

phase to obtain policies. During the online phase it computes a belief over the
possible opponents to tackle the uncertainty over the opponent’s identity in a
sequential interaction.
2 Recall that R(s, a) is initialized to Rmax so it is likely to decrease in early episodes,

but eventually will become pseudo-stationary.
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4 Bayes-Pepper

Bayes-Pepper is composed mainly of two phases which are depicted in Fig. 1.

Fig. 1. Bayes-Pepper algorithm: (a) in an offline phase, Pepper is used to generate
policies against each opponent and (b) performance models and transition models are
generated from the learned policies. (c) In the online phase (i.e., sequential interactions)
we assume a population of agents and a random process that matches the Bayes-Pepper
agent and one opponent. Bayes-Pepper selects a policy π to act, in a stochastic game
(SG) the agent computes an intra-belief which might override the selected policy; when
the game finishes Bayes-Pepper receives an observation σ that is used to update its
belief.

– An offline phase where Bayes-Pepper generates policies, transition and perfor-
mance models (see Sect. 4.1). Here, the agent observes the opponent’s identity.

– An online phase where a belief based approach is used to detect the oppo-
nent’s identity and act with the corresponding policy. Here, the agent observes
states and actions at every step of the game but only observes the accumu-
lated reward when a stochastic game finishes. The belief is updated at every
stochastic game (see Sect. 4.2) and at every state in a stochastic game (see
Sect. 4.3).

Next, we describe these two phases in more detail.

4.1 Policy and Models Generation

Bayes-Pepper needs to generate policies and models for each opponent. Bayes-
Pepper assumes an offline learning phase (see Algorithm 2) in which Pepper
algorithm is used to obtain a policy for every opponent (lines 3–5). Then, per-
formance models are obtained by generating list of rewards for each opponent
and policy, and fitting the generated data into a distribution (in our experi-
ments we used Gaussian distribution). The generated set of performance models
can be seen as a matrix of probability distributions, see Fig. 1(b). Similarly, a
list of state-action pairs is generated and fitted to a multinomial distribution
to generate a transition model (lines 6–10), used in the intra-game belief, see
Fig. 1(c).
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Algorithm 2. Bayes-Pepper models and policy generation
1 Π = ∅
2 for every opponent τ ∈ T do
3 Opponent τ is announced
4 Bayes-Pepper learns a policy πnew facing τ
5 Π = Π ∪ πnew

6 for every opponent τ ∈ T do
7 for every π ∈ Π do
8 Get list of rewards r and [s,a] pairs using π against τ
9 Fit r to a distribution to obtain Pr(U |τ, π)

10 Fit [s,a] to a distribution to obtain Pr(M |τ, π)

Algorithm 3. Bayes-Pepper detection algorithm
Input: Policy library Π, prior probabilities Pr(T ), performance models

Pr(U |T , Π), transition models Pr(M |T , Π), episodes K, exploration
heuristic V

1 Initialize beliefs β0(T ) = Pr(T )
2 for episodes k = 1, . . . , K do

3 Compute vπ = V(π, βk−1) for all π ∈ Π

4 πk = argmaxπ∈Πvπ

5 Start game with policy πk and use intra-game belief (ζ) together with
Pr(M |T , Π) (see Sect. 4.3)

6 Obtain observation signal σk (e.g., episodic reward)

7 Update belief βk(τ) = Pr(σk|τ,πk)βk−1(τ)
∑

τ′∈T Pr(σk|τ ′,πk)βk−1(τ ′)

4.2 Opponent Detection Based on Rewards

Once Bayes-Pepper has a set of policies Π and its associated models it can
act in an online mode. The steps of Bayes-Pepper online detection phase are
described in Algorithm 3. Bayes-Pepper starts with a set of policies Π, prior
probabilities over the opponents Pr(T ), performance models Pr(U |T ,Π) and
transition models Pr(M |T ,Π). Bayes-Pepper initializes the belief with the prior
probabilities Pr(T ) (line 1). Then, for each episode of the sequential interaction
a loop performs the following steps:

– select a policy to execute (according to the belief β and exploration heuristic V)
(lines 3–4),

– use the selected policy on the stochastic game (line 5),
– receive an observation signal σ, this is, the accumulated reward of the played

game (line 6),
– update the belief with the observation using Eq. 1 (line 7).

Since we assume that only the accumulated reward for the game is observed
when the game finishes, a basic approach is to select a policy to play for the entire
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stochastic game. However, this might result in suboptimal results, for example
when the opponent changes in the next interaction (as experimentally shown
in Sect. 5.3). To overcome this issue, we propose to update the belief during a
stochastic game using the state-action pairs (which are always observable). This
information is also a signal of the opponent behavior and the process is similar
to the one described previously.

4.3 Intra-game Belief Detection

Let ζ�(τ) be the intra-game belief which is initialized with the belief β(τ). The
intra-game belief is updated in a similar way using Eq. 1 with two minor dif-
ferences, the observation σ is the observed frequency over state-action pairs (or
states) and the transition models P (M |T ,Π) are used to obtain the likelihood
of a given observation.

Since the observed frequency might change more in early stages of the game
we consider weighted approach, initially giving more weight to β and with each
experience giving more weight to ζ as follows:

ζ�(τ) = wβ(τ) + (1 − w)ζ�−1(τ) (3)

with w = 1 initially and w = w · ηt, with η = [0, 1) and t the number of
experienced steps in the current stochastic game. Computing this updated belief
might override the policy that was selected initially which is useful to avoid using
a suboptimal policy for a complete stochastic game.

5 Experiments

In this section we present results on a stochastic game represented as a grid
world. We performed experiments comparing our approach Bayes-Pepper with
Pepper [15] and an Omniscient agent that knows the opponent’s identities and
plays optimal policies against them. First, we define the setting, then we present
results of Bayes-Pepper against stochastic opponents, and finally, we present
results in sequential interactions against switching opponents.

5.1 Setting

Figure 2 depicts a graphical representation of the stochastic game used in the
experiments. There are two players, the learning agent (A) and the opponent (O).
The starting positions are marked with their initial. The learning agent receives
a reward when it reaches a goal state rA or RA, with ra < RA. The agents can
move upwards or horizontally, and the opponent has the possibility to stay in
the same state; the learning agent moves always to the right and the opponent
to the left; to avoid agents getting trapped the grid is a toroidal world. With
every step that does not transition to a goal state the learning agent receives a
penalty pmin. In case of collision the learning agent receives high penalty pmax

with pmin < pmax.
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Fig. 2. A stochastic game with two players, the learning agent (A) and one opponent
(O). The learning agent receives a reward when it reaches a goal state marked with rA

or RA with ra < RA. In case of collision the opponent has priority over the state.

Note that the opponent directly influences the possible reward the learning
agent can obtain. For example, since the opponent is closer to RA it can block
its way to the learning agent, in which case the best option would be to go for
rA.

For the experiments we set rA = 5, RA = 17, pmin = −1, pmax = −5. We
tested against two types of stochastic opponents:

– A defecting opponent, OppD, that aims to block the way to RA. It stays in
the blocking position with probability 0.8.

– A cooperative opponent, OppC , that ignores the learning agent’s actions and
moves upwards with probability 0.2, and left otherwise.

The optimal policy against OppD is to go directly to rA obtaining an accu-
mulated reward of 3. In contrast, when facing OppC the agent should go for RA

obtaining an accumulated reward of 14.

5.2 Opponent Detection

In this experiment we evaluated how quickly Bayes-Pepper responds without
knowing the opponent’s identity in comparison with the learning process of Pep-
per. In this case, Bayes-Pepper starts with the policies against OppC and OppD

and with a uniform prior over them.
Figure 3 depicts the average episodic rewards against the two types obtained

over 10 independent trials facing the same type during the interaction. From the
results we observe that Bayes-Pepper obtains higher rewards from the begin-
ning of the interaction due to its fast detection. In contrast, Pepper takes
more episodes to learn the appropriate policy. Table 1 shows average rewards
where it can be seen that Bayes-Pepper obtained similar rewards to those of the
Omniscient agent.

5.3 Switching Opponents

Now, we compare against switching opponents in sequential interactions, this
is, during a repeated interaction of 150 games where the opponent changes
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Fig. 3. Comparison of Bayes-Pepper and Pepper against two stochastic opponents in a
repeated SG for 150 episodes. Bayes-Pepper obtains rewards close to the best response
faster than Pepper.

Table 1. Comparison of average rewards with std. dev. (±) obtained in 10 trials.

Bayes-Pepper Pepper Omniscient

OppC 11.19 ± 5.30 8.26 ± 8.80 12.40 ± 2.30

OppD 2.87 ± 4.05 0.87 ± 8.87 3.02 ± 2.97

Switching 5.44 ± 6.74 2.33 ± 8.01 8.48 ± 5.21

frequently and the learning agent does not know when the switches happen.
To model switching opponents an opponent is selected randomly and is paired
with the learning agent for a random number of games (uniformly from 5 to 10
repetitions).

Figure 4 depicts the average (a) episodic and (b) cumulative rewards of the
compared approaches, and Table 1 shows the average episodic rewards for the
150 games. From the results we note that Bayes-Pepper obtained higher cumula-
tive rewards than Pepper. This happens because Bayes-Pepper knows how to act
optimally against every opponent, however, it needs to identify it. In contrast,
Pepper learns how to optimize against the mixed behaviour of the two types.
Note that in many cases when an opponent changed Bayes-Pepper was capa-
ble of obtaining competitive scores, this happens mainly due to the intra-game
detection, since it triggers a change to a different policy when the transitions
are not consistent with the learned model. In contrast, even when Pepper is
learning within stochastic games and is able to update its policy it obtains sub-
optimal results, because it fails to obtain the reward RA against the cooperative
opponent.
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Fig. 4. Bayes-Pepper, Pepper and the Omniscient agent against switching opponents
in a repeated interaction of 150 episodes. Average (a) episodic and (b) cumulative
rewards. (c) Cumulative rewards of Bayes-Pepper and policies learned with Pepper.
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Table 2. Average rewards with std. dev. (±) for the compared approaches against
switching opponents (average of 10 trials).

Bayes-Pepper πPepper
C πPepper

D πPepper
CD

5.44 ± 6.74 0.46 ± 18.01 2.38 ± 4.21 3.02 ± 2.75

We note that the comparison of Bayes-Pepper against Pepper might not be
fair since Bayes-Pepper has already policies to start. With this in mind, we
also evaluated three baselines using policies learned by Pepper against switching
opponents: the policies learned against a single types πPepper

C , πPepper
D and one

policy learned after facing the two opponents sequentially πPepper
CD , in this case

there is no learning during the interaction.
Table 2 shows average rewards over the 150 games and Fig. 4(c) depicts cumu-

lative rewards of the compared approaches against the same switching opponents.
Results show that Bayes-Pepper obtains better scores than the rest. On the one
side πPepper

D is a cautious policy which never takes advantage of a cooperative
opponent, on the other side πPepper

C quickly obtains the best scores against a
cooperative opponent but also gets highly penalized against a defecting oppo-
nent. πPepper

CD obtains better scores than the previous two but is not as good as
Bayes-Pepper.

6 Discussion

We presented experiments with Bayes-Pepper against switching opponents in
repeated stochastic games. The results suggest that our approach is capable
of detecting the opponent type and act with the corresponding policy. Bayes-
Pepper’s main advantage is its quick detection in the online phase. However,
its main limitation is the offline learning phase to obtain acting policies and
models. To overcome this limitation we foresee different directions in which this
work could be extended:

– State abstraction. CQ-learning has been used to reduce the state space rep-
resentation in multi-agent systems by allowing a minimal state space repre-
sentation and only expanding for conflicting states [19]. This same idea could
be extended to our setting by having general policies and only update partial
policies for some dangerous states.

– Lifelong learning [11] is another paradigm related to TL where information
obtained from other sources should increase the performance on the target
tasks and on the previous source tasks (reverse transfer). Currently, the offline
learning phase is independent from the online detection phase, however, it
would be interesting to use the information obtained in the online phase to
update the policies and models learned in the offline phase.

– Multi-armed bandits [2] are a common formalism for selecting among different
actions and this approach has been extended to select among experts [16].



Towards a Fast Detection of Opponents in Repeated Stochastic Games 255

Contextual multi-armed bandits are an extension in which the player also
observes context information which can be used to determine the selection
process [27]. How to incorporate contextual information in our setting is
another challenge to address in future work.

7 Conclusions

Many learning algorithms for multiagent systems assume self-play or stationary
opponents. We focus on the scenario of repeated stochastic games but with the
difference of assuming a population of opponents and a stochastic process that at
every game matches the learning agent with an opponent. Our first contribution
is to provide a formal model of this setting, namely, sequential interactions. Our
second contribution is an algorithm for quick detection of opponents in repeated
stochastic games. Our proposed Bayes-Pepper algorithm draws inspiration from
multiagent learning algorithms and policy reuse approaches to detect opponents.
One advantage is that Bayes-Pepper is capable of detecting the opponent and
responding with the appropriate policy faster than other learning algorithms
for repeated stochastic games. The main limitation is the need of an offline
learning phase where the policies and models can be obtained. As future work
we propose to not only reuse policies but also transfer information from models
and policies when facing unknown opponents, and eventually learning the set
of opponent strategies in the population online, as existing preliminary work in
this direction [24].
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Abstract. The increasing incidence of chronic diseases is a major chal-
lenge for the healthcare sector. Personal Health Systems (PHSs) address
the self-management of chronic diseases, by decentralizing the health mon-
itoring outside hospitalized environments. Rule based agents allow bring-
ing domain experts’ knowledge into PHSs. However, agents must meet
the requirements of real monitoring scenarios, characterized by massive
streams of events. Hence, with the aim to monitor the health status of dia-
betic patients, two logic-based agent minds for an agent-oriented PHS are
presented. One agent mind is based on the standard version of jREC, a
Prolog-based implementation of Cached Event Calculus, while the other
is a customization of the standard jREC mind that exploits an event-
indexing technique. Both of them are as well integrated into MAGPIE,
a Java agent platform. The paper then compares and analyzes the perfor-
mances of the proposed agent minds, by computing the time needed to trig-
ger different type of alerts, when the number of recorded events (e.g. val-
ues of physiological parameters) increases. The results show that the cus-
tomized jREC mind performs much better when an high number of events
need to be checked, making its use advisable in monitoring scenarios.

1 Introduction

The incidence of chronic diseases in the population is recognized as a major
challenge for the healthcare sector [2]. For instance, the number of people affected
by diabetes has doubled in the last 20 years [33]. Statistics from WHO report that
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more than 400 million individuals live with diabetes, and losses in the GDP for
diabetes-related costs from 2011 to 2030 are estimated at 1.7 trillion USD [32].

Personal Health Systems (PHSs) aim at supporting the self-management of
chronic diseases and reducing the healthcare costs, supporting medical doctors
in following the patients’ disease evolution [10]. PHSs implement the “healthcare
to anyone, anytime, and anywhere” paradigm, by increasing both the coverage
and the quality of healthcare [31]. In fact, PHSs bring the health technology to
domestic environments, by localizing healthcare services to the specific needs,
practices, and situations of people and their social contexts [24]. PHSs ensure
the continuity of care, focusing on a knowledge-based approach integrating past
and current data of each patient together with statistical evidence [29]. A PHS
is composed of three tiers [30]: Tier 1 is the Body Area Network (BAN), i.e. the
set of sensors on the patient’s body to monitor her health parameters; Tier 2 is
the personal server, usually a mobile device, which collects and aggregates the
parameters and events produced by the BAN; Tier 3 is the remote server which
processes and stores the data from the personal server and supports doctors in
following the treatment of patients at home.

Beyond the modeling capabilities of agent-based frameworks [28] and their
still opened challenges [12,13], Multi-Agent Systems have been proved useful in
the healthcare sector implementing modularity, distribution, and personalization
for data management, decision support systems, planning and resource alloca-
tion, and remote care [18], being ideal for PHSs. In [8], an agent-based platform
called MAGPIE implements a programmable expert PHS to monitor patients
suffering from diabetes. In particular, that agent platform adds scalability to the
PHS by shifting from Tier-3 to Tier-2 the computation needed for the patient
monitoring. To obtain such scalability, the agents, composed by an agent body
and an agent mind, run directly on the personal server. The agent body is the
part of the agent that collects the data acting as an interface between the BAN
in Tier-1 and the agent mind. The agent mind, based on an Event Calculus
(EC) engine, is the part of the agent that checks the data collected from the
body to perform the monitoring task and trigger alerts for the medical doctors
logging in Tier-3. The approach of MAGPIE allows improving the scalability of
the PHS when the number of patients increases, compared to a centralized PHS
where the computation is performed in Tier-3. However, another aspect has to
be taken into account: the scalability of the agent mind when the number of
events increases. In fact, the use of rule engines based on EC usually restricts
the number of events and rules to be applied in a real monitoring scenario, where
short time delays are needed to apply corrective actions. Thus, the next step to
apply the agent-based PHS in real scenarios requiring long-term monitoring is
to develop agent minds capable of caching and retrieving events efficiently.

This paper addresses such issue by proposing two agent minds for the MAG-
PIE agent platform presented in [8]. The agent minds have been implemented
using jREC, a Cached Event Calculus (CEC) reasoner based on Java and tuPro-
log [5], to move the computational complexity from query to update time by
caching the maximum validity intervals for fluents. Even if both based on jREC
and integrated into the MAGPIE agent platform, the proposed agent minds
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differ on the way in which they handle event streams. One is a straightforward
integration of the jREC engine, and the other is based on an indexing technique
that gives to jREC the ability to process event streams more efficiently.

In addition, as the main contribution of the paper, the performances of the
jREC-based agent minds are evaluated on the time required to trigger an alert,
when the number of events generated by the agent body increases. Diabetes has
been adopted as the use case for the monitoring rules to be checked.

The rest of the paper is organized as follows. Section 2 presents the paper
background on EC, CEC, jREC and red-black trees. Section 3 describes an
overview of the entire PHS in which the agent minds runs, shows the encoding of
the monitoring rules to check alerts based on glucose and blood pressure levels
in diabetic patients, as well as problems and solutions that arise when massive
streams of events have to be handled by reasoning engines. Section 4 presents
the experimental results to evaluate the two agent minds. Section 5 describes the
work related to the presented research. Section 6 draws the conclusions of the
paper and outlines the future work.

2 Background

This section introduces the concepts on which the proposed agent minds are
based on.

2.1 Event Calculus

EC is a logic formalism for reasoning about actions and their effects in time [20].
Therefore, it is a suitable tool for modeling expert systems representing the evo-
lution in time of an entity by means of the production of events. EC is based
on many-sorted first-order predicate calculus, known as domain-independent
axioms, which are represented as normal logic programs that are executable
in Prolog. The underlying time model of EC is linear. EC manipulates fluents,
where a fluent represents a property that can have different values over time.
The term F = V denotes that a fluent F has value V as a consequence of an
action that took place at some earlier time-point and not terminated by another
action in the meantime. Table 1 summarizes the main EC predicates. Predicates,
functions, symbols and constants start with lowercase letter, while variables start
with uppercase letter. Predicates in the text are referenced as predicate/N, where
predicate is the name of the predicate and N its arity (e.g. number of arguments).

The domain independent axioms of EC are the following:

holdsAt(F = V, 0) ← initially(F = V ). (1)

holdsAt(F = V, T ) ←
initiatesAt(F = V, Ts), Ts < T,

not broken(F = V, [Ts, T ]).
(2)

Predicate (1) states that a fluent F holds value V at time 0, if it has been
initially set to this value. For any other time T > 0, the Predicate (2) states
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Table 1. Main Event Calculus predicates

Predicate Meaning

initially(F = V) The value of fluent F is V
at time 0

holdsAt(F = V,T) The value of fluent F is V
at time T

holdsFor(F = V,[Tmin,Tmax]) The value of fluent F is V
between Tmin and Tmax

initiatesAt(F = V,T) At time T the fluent F is
initiated to have value V

terminatesAt(F = V,T) At time T the fluent F is
terminated from having
value V

broken(F = V,[Tmin,Tmax]) The value of fluent F is
either terminated at Tmax,
or initiated to a different
value than V between Tmin

and Tmax

happensAt(E,T) An event E takes place at
time T updating the state
of the fluents

that the fluent holds at time T if it has been initiated to value V at some earlier
time point Ts, and it has not been broken on the meanwhile.

broken(F = V, [Tmin, Tmax]) ←
terminatesAt(F = V, T ), Tmin < T, Tmax > T.

(3)

broken(F = V1, [Tmin, Tmax]) ←
initiatesAt(F = V2, Ti), V1 �= V2,

Tmin < Ti, Tmax > Ti.

(4)

Predicates (3) and (4) specify the conditions that break a fluent. Predicate
(3) states that a fluent is broken between two time points Tmin and Tmax
if within this interval it has been terminated to have value V. Alternatively,
Predicate (4) states that a fluent is broken within a time interval if it has been
initiated to hold a different value.

holdsFor(F = V, [Tmin, Tmax]) ←
initiatesAt(F = V, Tmin),
terminiatesAt(F = V, Tmax),
not broken(F = V, [Tmin, Tmax]).

(5)



262 N. Falcionelli et al.

holdsFor(F = V, [Tmin, infP lus]) ←
initiatesAt(F = V, Tmin),
not broken(F = V, [Tmin,+∞]).

(6)

holdsFor(F = V, [infMin, Tmax]) ←
terminatesAt(F = V, Tmax),
not broken(F = V, [−∞, Tmax]).

(7)

Predicates (5), (6) and (7) deal with the validity intervals of fluents. In par-
ticular, Predicate (5) specifies that a fluent F keeps value V for a time interval
going from Tmin to Tmax if nothing happens in the middle that breaks such
an interval. Predicates (6) and (7) behave in the same way, but deal with open
intervals.

The domain dependent predicates in EC are typically expressed in terms of
the initiatesAt/2 and terminatesAt/2 predicates. One example of a common rule
for initiatesAt/2 is

initatesAt(F = V, T ) ←
happensAt(Ev, T ),
Conditions[T ].

(8)

The above definition states that a fluent is initiated to value V at time T if an
event Ev happens at this time point, and some optional conditions depending on
the domain are satisfied. In relation with MAGPIE, the agent platform in which
the proposed agent mind has been integrated, these events that must happen
are physiological measurements from the patient.

2.2 Cached Event Calculus and jREC

Straightforward implementations of EC [20] have time and memory complexity
which are not practical for developing real applications. This is due to the fact
that every time the EC engine is queried, the computation starts from scratch,
and all fluents validity intervals are calculated again. Cached Event Calculus
(CEC), proposed by Chittaro and Montanari [14], tries instead to overcome this
inefficiency by giving EC a memory mechanism, and moving computation from
query time to update time.

CEC formalizes the concept of Maximal Validity Interval (MVI), that repre-
sents a time interval in which a particular fluent holds without being terminated
by any event. A fluent is also associated to a list of MVIs, in order to express all
the time intervals in which that fluent holds continuously.

Whenever the rule engine is updated (e.g. by inserting a new event occur-
rence), the fluents’ MVIs are calculated, and then stored for further use, allowing
incremental computation for following updates. Also, every time a new event is
added to the database, CEC manages to compute MVIs only for the fluents that
can vary with that event, and does not check the MVIs of those fluents that
cannot possibly change, thus avoiding unnecessary computation.
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jREC is a reasoning tool based on Java and tuProlog that implements a
lightweight version of CEC [5]. Since MAGPIE is also written in Java, it has
been chosen to implement the proposed agent minds, in order to ensure seamless
integration with the agent platform.

jREC consists of three main components:

– The Prolog theory, which represents the actual CEC axiomatization that is
loaded into tuProlog;

– The Java engine, which allows to query and update the database without
having to interact directly with tuProlog, as well as adding specific domain-
dependent theories;

– The Tester, which is a GUI based stand-alone tool for editing theories, visu-
alizing fluents’ MVIs and event occurrences, mainly used for prototyping and
developing domain-dependent theories.

2.3 Red-Black Trees

A red-black tree (RBT) is a well known data structure proposed by Rudolf Bayer
in 1972 [3]. It is a binary search tree which provides O(log(n)) Worst Case time
complexity for operations such as node searching, insertion and deletion, as well
as O(n) Worst Case space complexity [3]. This is made possible thanks to node
coloration: every node of the tree is augmented with an extra bit, and based on
the value of such bit, the node is considered to be red or black.

The aforementioned operations rely on such coloration feature to achieve
Worst Case logarithmic time complexity and linear space complexity. In fact,
every operation that modifies the RBT has to comply with very precise policies
which constrain how the nodes should be moved or re-painted. These policies
guarantees that the nodes in an RBT are always balanced after every opera-
tion, giving such data structure the epiteth of self-balancing. Even though the
obtained balance is not perfect, it is proven to be good enough to provide the
declared performances [3].

Red-black trees can be effectively exploited as indexing data structures. As
it will be also explained in Sect. 3, one of the agent minds that are proposed in
this work relies on such RBT-based indexing in order to efficiently process event
streams.

3 System Overview

The implemented agent minds run in Tier-2 of the MAGPIE agent-based PHS
for self monitoring of diabetes. The entire PHS is depicted in Fig. 1. Each patient
has its own agent composed by a body (Tier-1) and a mind (Tier-2) running on
the personal server: in Tier-1 data are collected from the patients through a
BAN; in Tier-2, the agent minds are responsible to trigger possible alerts based
on the patients’ physiological values, running domain dependent rules which
could be customized for each patient. The triggered alerts have to be sent as a
notification to medical doctors connected to Tier-3.
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Fig. 1. The agentified PHS. The agent mind runs in Tier-2, to monitor the patient’s
physiological values.

3.1 MAGPIE Agent Platform

MAGPIE is an agent platform integrated with the Android OS. It plays the
role of Tier-2 in a PHS by connecting the patient and the medical doctor, with
the aim of improving the management of chronic diseases. From the side of
the patient it collects physiological values, whereas from the medical side it
models the medical knowledge in terms of monitoring rules expressed as domain
dependent axioms of EC. Interested readers can find in [9] a description of the
MAGPIE architecture and its integration with Android. In relation to this work,
a monitoring rule is defined as a combination of events that trigger an alert to be
notified to a medical doctor, where an event is considered as the measurement
of a physiological parameter. Therefore, the following two types of monitoring
rules are specified:

– Complex rules: consist of the combination of two or more events in a specific
time window, where the order in which the events happen is not considered.

– Sequential rules: consist of the sequence of two or more events in a specific
time window, where the particular order in which the events occur matters.

3.2 Diabetes Monitoring Rules

In order to detect alert conditions related to diabetes, a sequential and a com-
plex rule patterns are proposed. These rule patterns are based on the literature
available for glucose and blood pressure monitoring [6,16] and checks physiologi-
cal values collected by the patient’s BAN. The patterns identify alert conditions
in the patient’s health status by modeling the sensor inputs as events that are
evaluated in the body of the rules. The two patterns are:

Pattern 1: Brittle diabetes, defined as a glucose rebound going from less than
3.8 mmol/l to more than 8.0 mmol/l in a period of six hours. This pattern can
be expressed with a sequential rule.
Pattern 2: Pre-hypertension, defined as two events of high blood pressure in a
period of one week. This pattern can be expressed with a complex rule.
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Pattern 1 is implemented as follows:

initiatesAt(F = A, T ) : −
happensAt(ev(2, A,W ), T ),
happensAt(ev(1, A, ), T1),
Ts is (T − W ),
T > T1,

T1 >= Ts,

no alert(A, Ts).

(9a)

terminatesAt(F = A, T ) : −
happensAt(ev(1, A, ), T ).

(9b)

happensAt(ev(1, ‘brittle diabetes’, E), T ) : −
hours to epoch(6, E),
happensAt(glucose(G), T ),
G =< 3.8.

(9c)

happensAt(ev(2, ‘brittle diabetes’, E), T ) : −
hours to epoch(6, E),
happensAt(glucose(G), T ),
G >= 8.

(9d)

Rules (9a) and (9b) represent a generic sequential rule template with two
events. In particular, the fluent F (i.e. the alert) is initiated with value A when:
(i) two temporal ordered events occur inside a certain time window and (ii) when
the fluent does not hold anywhere else inside the time window (no alert/2). The
fluent F is instead terminated when the first event of the ordering happens.

Rules (9c) and (9d) customize the template for the glucose monitoring use
case. They instantiate the variables of the ev/3 term, specifying the time window
width (W ), the alert name (A) and the threshold values for G.

Pattern 2 is expressed in the following way:

initiatesAt(F = A, T ) : −
happensAt(alertcheck(A,W,NMax1), T ),
Ts is (T − W ),
count events tw(N1, evc(1, A), Ts, T ),
N1 >= NMax1,

no alert(A, Ts).

(10a)

terminatesAt(F = A, T ) : −
happensAt(alertcheck(A,W, ), T ),
holdsAt(F = A, T ).

(10b)
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happensAt(evc(1, ‘pre-hypertension’), T ) : −
happensAt(blood pressure(S,D), T ),
S >= 130,
D >= 80.

(10c)

happensAt(alertcheck(‘pre-hypertension’, E, 2), T ) : −
weeks to epoch(1, E),
happensAt(evc(1, ‘pre-hypertension’), T ).

(10d)

Rules (10a) and (10b) represent a generic complex rule template with one
event type. In particular, the fluent F (i.e. the alert) is initiated with value A
when: (i) there are least NMax1 occurrences of the alertcheck/3 event inside
the time window and (ii) when the fluent does not hold anywhere else inside
the time window (no alert/2). Also, the count events tw/4 predicate is necessary
to handle different event temporal orderings without having to duplicate the
rule body for every permutation. Rules (10c) and (10d) customize the template
for the hypertension monitoring use case. They instantiate the variables of the
evc/2 and the alertcheck/3 terms specifying the time window width (W ), the
alert name (A) and the threshold values for S and D.

3.3 Event Handling with jREC

Efficient handling of massive event streams, while preserving the philosophy of
Event Calculus, and in broader terms, of Logic Programming, is a non-trivial
task. Techniques such as (i) event windowing/forgetting [1], (ii) theory pre-
compilation [1] and (iii) a priori assumptions on event temporal ordering, can
help to ease the burden of this process, but at the same time their adoption
will cause the reasoning approach to be less general and less flexible. Therefore,
since in real case monitoring scenarios these techniques and assumptions might
simply not be applicable, finding alternatives ways to tackle the problem in a
more general case becomes mandatory.

For example, jREC does not apply any simplifying assumption or technique
to the event streams: this forces the reasoner to spend a very high amount of
resources every time the engine’s knowledge base (KB) is updated with new
events. Whenever a list of new events has to be asserted into the KB, jREC
must perform the following steps:

– Sort the list of new events chronologically;
– Read all the events already present in the KB and put them in a list;
– Retract all the events from the KB;
– Sort the list of KB’s events chronologically;
– Merge the list of new events with the list of events read from the KB;
– Sort the newly obtained list chronologically and remove duplicates;
– Assert the events from the newly obtained list back into the KB;
– Calculate the effects on the fluents.
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This procedure indeed maintains the reasoning as general and flexible as
possible, but it is also the main source of jREC inefficiency, since every new
event(s) insertion causes the engine to sort the event lists multiple times.

To tackle such issue, this paper proposes the integration of jREC with an
indexing data structure, i.e. the previously mentioned red-black trees. RBTs will
take the duty of maintaining the events temporal ordering by avoiding unneces-
sary sorting operations, and ensuring fast execution times.

The introduction of event indexing with RBTs allows to more precisely define
the proposed agent minds:

– An agent mind based on the standard jREC implementation (standard
jREC);

– An agent mind based on a custom jREC implementation, which has been
augmented with RBT event indexing (RBT-index jREC).

It should be noticed that, since (i) an event normally contains multi-
dimensional data (i.e. timestamp and phyisiological values), (ii) an RBT only
allows single-dimensional indexing, and (iii) jREC needs the events to be ordered
chronologically, the only choice is to consider the events timestamp as the key
on which the indexing will be performed.

4 Test Setup and Results

The performances of the two jREC agent minds have been evaluated using the
sequential and complex rule patterns described above. To accomplish that, syn-
thetic datasets containing glucose and blood pressure measurements have been
created. Each measurement is a tuple containing the value(s) and its timestamp.

4.1 Testing Protocol

To see how the performances of the agent minds evolve when the number of
events increases, a series of random dataset has been created, each one containing
a different number of events.

The events of each dataset are fed into the agent minds one by one, and the
time needed by each agent to trigger the alert is recorded. Every experiment is
repeated one-hundred times to obtain the mean and standard deviation values.

The biggest assumption of the experiment is that real datasets do not add
any value to the performance evaluation. In fact, the use of synthetic datasets
allowed to stress the agent minds on very specific and critical tasks.

4.2 Results and Discussion

The tests have been executed on an i7-6700K@4.20 GHz CPU with 16 GB@2400
MHz DDR4 RAM, running Ubuntu/Linux 16.04 and Java Runtime Environment
8u121.
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It should be noticed that the main results of these tests are the execution
time trends, rather than the absolute values themselves (since they vary with
different machines).

From the plots in Fig. 2a and b, it is clear that the two agent minds show a
very different behaviour: the execution time of the standard jREC agent mind
grows in a polynomial fashion, and is considerably higher than the counterpart’s.
In fact, from the plots in Fig. 3a and b it can be observed that the execution
time of the RBT-index jREC agent mind follows a logarithmic-like curve.

The polynomial trend exhibited by the standard jREC agent mind can be
explained in terms of nested sortings: in fact, every time the engine knowledge
base is updated with one or more events, the logic machinery of the engine
launches multiple nested sorting clauses (see also Sect. 3.3).

Fig. 2. Milliseconds needed by the two jREC agent minds to compute an alert, for the
different rules.
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On the other hand, the logarithmic-like trend of the RBT-index jREC agent
mind highlight a direct correlation with the expected performances of the RBT-
based indexing. It also demonstrates that, as the number of event grows, the
execution time introduced by the reasoning on such events plays a minor role
on the overall execution time. This can be explained by considering that the
average number of events falling inside a rule timewindow is constant, since
(i) the average event inter-arrival time and (ii) rules time-windows duration are
fixed.

As a last remark on the performance gap, the logarithmic plots in Fig. 2c
and d clearly highlight that, after 1000 events, the improvement almost reaches
2 orders of magnitude.

Fig. 3. Detail of Fig. 2a and b, showing only RBT-index jREC agent mind’s trends.

The execution times of the two agent minds in a scenario with a small number
of events highlights some peculiar behaviours. As can be clearly seen from the
plots (Fig. 4a and b), when the number of events is smaller than 100, the standard
jREC agent mind shows better performances than the other. When the number
of events reaches 200, the situation is the opposite, with the RBT-index agent
mind being on top. This effect is due to the additional overhead in RBT-index
agent mind: to be more precise, with very few events, the event-handling time
gain obtained with the exploitation of the RBT-based indexing is not enough
to compensate the additional overhead introduced by such data structure. By
increasing the number of events, the event-handling time gain becomes increas-
ingly more predominant over the data structure overhead, allowing the RBT-
index jREC agent mind to perform better on massive event streams.

With the machine used for the tests, it is shown that the RBT-index jREC
agent mind exhibits a clear performance improvement over the standard jREC
agent mind. The execution time trends suggest that even scenarios with more



270 N. Falcionelli et al.

Fig. 4. Detail of Fig. 2a and b, with number of events going from 0 to 200.

than a thousand events are reasonably manageable by the RBT-index agent
mind. Thus, some possible real-case applications for the said agent mind, with
the proposed rule patterns, can be:

– Detecting Brittle Diabetes with Continuous Glucose Monitoring devices.
They can provide glucose measurements up to one minute [16], so referring
to the Rule Pattern 1, it would mean a worst case scenario of 360 events.

– Detecting Pre-Hypertension conditions with digital arm sphygmomanome-
ters. It is enough to have two blood pressure measurements per day [6], so
referring to Rule Pattern 2, it would mean a worst case scenario of 14 events.

Even though the standard jREC agent mind performs slightly better with a
low number of events, this is not enough to justify its usage only in such scenario.

5 Related Work

Multi-Agent Systems (MASs) meet the requirements of the healthcare sector:
context awareness, reliability, data abstraction and interoperability, unobtrusive-
ness [4]. From a requirements engineering perspective, goal-oriented and agent-
based design methodologies are useful to tailor pervasive systems to end-users
and stakeholders’ needs [11]. When appied to PHSs, agent-based modeling has
the potential to bring the decision making at the level of self-management of
chronic diseases [21]. In the implementation phase, MASs in PHSs pursue the
enhancement of home-based self-care by using networks of sensors and remote
assistance, to increase the satisfaction of the patient and make an efficient use
of resources [17].

Reasoning agents in PHSs allow to transfer part of the knowledge from
domain experts to the handheld devices used to perform the self-management
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of chronic diseases. Beyond PHSs, other applications include energy manage-
ment [25], to control energy demand and production, home automation [26], to
coordinate the available appliances, and ambient assisted living [23,27], with
monitoring purposes. In the context of PHSs, EC and MASs have been success-
fully applied to the self-management of diabetes [7,19]. However, such works do
not take into account the scalability of the PHS. In fact, a clear advantage of
reasoning agents in the Tier-2 of PHSs is the system scalability with increas-
ing number of patients, as showed in [8]. Nevertheless, in such research, the
scalability of the agent minds with high streams of events is not considered.
Thus, there is the need to find the suitable tools to implement agent minds,
which are supposed to run in portable devices, even with high numbers of events
and large datasets. This is especially true for EC given its complexity. Indeed,
non-logic based pattern recognition has been proved, overall, more efficient than
traditional EC when performing predictions. However, it lacks the potential of
coding domain experts’ knowledge into logic rules and needs to train on large
amounts of data. Hence, caching and windowing techniques to make EC efficient
and applicable with large scale dataset have been investigated [1,5]. There are
some already available tools that allow logic programming in terms of EC. One
of such is DECReasoner [22], a Discrete Event Calculus Reasoner: it implements
EC without any caching mechanism and, thus, it is not usable for this research,
due to its computation time with the datasets used for the performance tests. A
more efficient EC implementation is RTEC, which adds to EC support for han-
dling event streams [1]. However, RTEC techniques such as event windowing and
theory pre-compilation do not match the flexibility requirements of the proposed
PHS. In addition, it is not compatible with the platform, as the agent-oriented
PHS is based on tuProlog and Java [8]. Thus, jREC has been used to implement
a prototype for the proposed agent mind, since it implements Cached Event
Calculus [5] with tuProlog, a Java-based Prolog engine [15]. Moreover, being
Java-based, jREC and tuProlog can run on Android devices, allowing to run the
proposed agent mind on handheld devices.

6 Conclusions

In this work, two rule-based minds for monitoring agents running on Tier-2 of a
PHS have been presented and tested. Being both integrated into the MAGPIE
agent platform, one is based on the plain jREC reasoner and the other is a
customization of the standard jREC reasoner augmented with an RBT-based
indexing technique. In order to be used in real monitoring scenarios, the agent
minds have to be able to process massive event streams, represented by the
patient’s physiological values. Therefore, in addition to the customization of the
jREC reasoning engine, the main contribution of this paper is the performance
evaluation of proposed agent minds on the time needed to trigger alerts based
on glucose and blood pressure levels, in a diabetes monitoring scenario. Two
real application scenarios for the proposed agent minds are the detection of
brittle diabetes, with Continuous Glucose Monitoring, and the detection of Pre-
Hypertension conditions, with devices such as digital arm sphygmomanometers.
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As future work, since PHSs are intended for the self-management of diabetes
with handheld devices, the tests should be performed on mobile phones, to obtain
more realistic figures. In this direction, the performance of the RBT-index jREC
agent mind can be further enhanced by improving the sophistication of the
current indexing solution. Furthermore, in order to validate the usefulness of the
rules, the tests should run on real datasets. Lastly, the system can be applied to
other use cases, in order to model rules for other diseases.
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Abstract. Prediction-of-use (POU) games [14] address the mismatch
between energy supplier costs and the incentives imposed on consumers
by fixed-rate electricity tariffs. However, the framework does not address
how consumers should coordinate to maximize social welfare. To address
this, we develop multiple-profile prediction-of-use (MPOU) games, an
extension of POU games in which agents report multiple acceptable elec-
tricity use profiles. We show that MPOU games share many attractive
properties with POU games attractive (e.g., convexity). However, MPOU
games introduce new incentive issues that limit our ability to exploit
convexity effectively, a problem we analyze and resolve. We validate our
approach with experimental results using utility models learned from real
electricity use data.

1 Introduction

Prediction-of-use games were developed by Robu et al. [14], hereafter RVRJ, to
address the mismatch between the cost structure of energy suppliers and the
incentive structure induced by traditional fixed-rate tariffs faced by consumers.
In most countries, energy suppliers face a two-stage market, where they pur-
chase energy at lower rates in anticipation of future consumer demand and then
reconcile supply and demand exactly at a higher rate at the time of realization
through a balancing market [20]. The cost to energy suppliers is thus highly
dependent on their ability to predict future consumption. Since consumers typ-
ically have little incentive to consume predictably, suppliers generally use past
behavior to predict consumption. The uncertainty in these predictions incurs
some additional cost for suppliers.

One way to improve supplier predictions is to incentivize consumers to
report predictions of their own consumption, thus offering access to their pri-
vate information about the future. RVRJ analyze mechanisms where flat tariffs
are replaced with prediction-of-use (POU) tariffs, in which consumers make a
payment based on both their actual consumption and the accuracy of their pre-
diction. Similar tariffs have, in fact, been deployed in practice [3]. RVRJ analyze
the cooperative game induced by POU tariffs, in which consumers form buying
coalitions that reduce (aggregate) consumption uncertainty, and find that, under
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normally-distributed prediction error, the game is convex. Convexity is a power-
ful property that significantly reduces the complexity of important problems in
cooperative games, both analytically and computationally.

While attractive, the POU model has a significant shortcoming. Though the
POU model could be adapted to model how consumers change their consump-
tion in reaction to price changes, consumers cannot coordinate their consumption
choices. A consumer’s optimal consumption profile—a random variable repre-
senting the individual’s possible behaviors or patterns of energy consumption—
depends on the profiles others use. In POU games, the only consumer choice is
what coalition to join—a consumer’s demand is represented by a single predic-
tion, reflecting just one selected (or average) consumption profile for each indi-
vidual. In essence, consumers predict their behavior without knowing anything
about others in the game. While the POU model can offer social welfare gains
when the profiles are selected optimally, we show they can result in significant
welfare loss when profile selection is uncoordinated.

We introduce multiple-profile POU (MPOU) games, which extend POU
games to admit multiple consumer profiles. This allows consumers to coordi-
nate the behaviors that change their predictions, facilitating the full realization
of the benefits of the POU model. We show that MPOU games have many of
the same properties that make the POU model tractable, e.g., convexity, which
makes the stable distribution of the benefits of cooperation easy to compute.
In addition, we show that MPOU games are individually rational and that con-
sumer utility is monotone increasing as the number of truthfully-reported profiles
increases. However, MPOU games also present a new challenge in coalitional
allocation: since one can only observe an agent’s (stochastic) consumption—
not their underlying behavior—determining stabilizing payments for coalitional
coordination requires novel techniques. We introduce separating functions, which
incentivize agents to take a specific action in settings where actions are only
partially observable.

We experimentally validate our techniques, using household utility functions
that we learn (via structured prediction) from publicly-available electricity use
data. We find that the MPOU model provides a gain of 3–5% over a fixed-
rate tariff across several test scenarios, while a POU tariff without consumer
coordination can result in losses of up to 30%. These experiments represent the
first end-to-end study of the welfare consequences of POU tariffs.

The remainder of the paper is organized as follows. Section 2 reviews coop-
erative games, the POU model and related work. Section 3 introduces MPOU
games and Sect. 4 proves their convexity. Section 5 outlines the new class of
incentive problems that arises when the mechanism designer cannot (directly)
observe an agent’s selected profile, and develops a general solution to that prob-
lem. Section 6 briefly discusses manipulation. In Sect. 7, we describe an approach
for learning consumer utility models from real-world electricity usage data, and
experimentally validate the value of MPOU games using these learned models
in Sect. 8.
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2 Background

We begin with basic background on cooperative games, POU games, and their
related work.

2.1 Cooperative Games

A prediction-of-use game is an instance of a cooperative game with transferrable
utility [11], where agents can make arbitrary monetary payments to each other.
In a cooperative game, the set N of agents divides into a set of coalitions, i.e., a
disjoint partitioning of the agents. In a profit game, the characteristic function
v : 2N → R represents the value that any subset of agents can achieve by
cooperating. A profit game is a tuple 〈N, v〉.

The agents in a coalition C ⊆ N distribute the benefits of cooperation how-
ever they choose. An allocation is a payment function t : N → R that assigns
some payment (which may be negative) to each agent. An allocation is efficient if
it distributes the entire value, i.e.,

∑
i∈N t(i) = v(N). Agents receive no “individ-

ual” value under this model—all value is redistributed via coalitional payments.
In practice, the individual value accrued by an agent may be deducted from its
payment in order to reduce total transfers.

A major goal of cooperative game theory is to find allocations that prevent
agents from defecting from their coalition, thus achieving stability. An allocation
that stabilizes the grand coalition of all agents is in the core:

Definition 1. Allocation t is in the core of profit game 〈N, v〉 if it is efficient
and

∑
i∈S t(i) ≥ v(S) for all S ⊆ N .

The core is a strong stability concept, so much so that certain profit games
have an empty core (i.e., there are no core allocations). Another central solution
concept is the Shapley value sC(i) of an agent i in coalition C ⊆ N , which
emphasizes fairness and always exists. It values each agent according to the
marginal value they contribute to the coalition when averaged over all join orders
(i.e., the order in which agents are added to C):

sC(i) =
∑

S⊆C\{i}

|S|!(|C| − |S| − 1)!
|N |! (v(S ∪ {i}) − v(S)) (1)

A convex game is one where the value contributed by an agent to a coalition
never decreases as more agents are added to that coalition:

Definition 2. Profit game 〈N, v〉 is convex if v(T ∪{i})− v(T ) ≥ v(S ∪{i})−
v(S), for all i ∈ N , S ⊆ T ⊆ N \ {i}.
Convex games have several important properties [17]. First, the grand coalition
maximizes social welfare. Second, the Shapley value is in the core. Finally, a core
allocation must exist and is computable in polynomial time in the number of
agents.
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2.2 Prediction-of-Use Games

A prediction-of-use (POU) game is a tuple 〈N,Π, τ〉, where N is a set of agents,
Π is a set of consumption profiles, and τ is a POU tariff. Each i ∈ N uses elec-
tricity according to a consumption profile in Π, a normal random variable with
mean μi and standard deviation σi, say, in kilowatt-hours (kWh). Let xi denote
i’s realized consumption, xi ∼ N (μi, σi). Agents are assumed to truthfully report
their profiles to the coalition. We do not address elicitation or estimation of con-
sumption here, but see below.

A POU tariff has the form τ = 〈p, p, p̄〉, and is intended to better align
the incentives of the consumer and electricity supplier, whose costs are greatly
influenced by how predictable demands are. Each agent i is asked to predict a
baseline consumption bi, and is charged p for each unit of xi, plus a penalty that
depends on the accuracy of their prediction: p̄ for each unit their realized xi

exceeds the baseline, and p for each unit it falls short:

ψ(xi, bi, τ) =

{
pj · xi + p̄ · (xi − bi) if bi � xi

pj · xi + p · (bi − xi) if bi > xi

(2)

To ensure agents have no incentive to artificially inflate consumption, we
require 0 � p̄ and 0 � p � p [14]. An agent i should report a baseline that
minimizes her expected payment. RVRJ show that i does this by predicting
b∗ = μi + σiΦ

−1( p̄
p̄+p ), where Φ−1 is the inverse normal CDF. They also show

that i’s expected payment under the optimal baseline is μip + σiL(p, p̄) where

L(p, p̄) =
∫ p̄

p̄+p

0 Φ−1(y)dy.
To be more predictable in aggregate, agents may form a coalition C, where

C reports its aggregate demand and is charged as if it were a single agent. C’s
aggregate consumption is the sum of the normal random variables corresponding
to the members’ profiles, itself normal with mean μ(C) =

∑
i∈C μi and std. dev.

σ(C) =
√∑

i∈C σ2
i . This aggregate prediction generally has lower variance w.r.t.

the mean, thus reducing total penalty payments facing C under POU tariffs
(compared to members acting individually).

RVRJ analyze ex-ante POU games. In the ex-ante game, all agent decisions,
as well as any internal transfers, or payments, are based on expected consumption
(realized consumption plays no role). This approach is justified when agents
are risk-neutral, expected-utility maximizers and coalitions form at the time of
consumption prediction, not at the time of consumption. The characteristic value
of coalition C is

v(C) = −μ(C)p − σ(C)L(p, p̄) (3)

and they show that the ex-ante POU game is convex.1

1 Technically, they define the game as a cost game and show that the game is concave,
while we use a profit game, but results from the two perspectives translate directly.
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2.3 Related Work

POU games are closely related to newsvendor games [10], where a supplier must
purchase inventory in advance of demand and faces a penalty for oversupply
(storage costs) and undersupply (lost profit). Unlike POU games, the players
are the suppliers, the demand distribution is known, and the primary object of
study is the value that suppliers can gain by pooling their inventory.

In addition to POU games, others have proposed the formation of coop-
eratives or coalitions among electricity consumers. Rose et al. [15] develop a
similar mechanism for truthfully eliciting consumer demand. Kota et al. [7] and
Akasiadas and Chalkiadakis [2] propose using coalitions to improve reliability
and shift peak power loads. Perrault and Boutilier [12] focus on the formation
of groups of consumers with multiple profiles to reduce peak loads. None of this
work offers the theoretical guarantees of RVRJ.

Beyond electricity markets, several authors have studied the problem of group
purchasing in an AI context. Lu and Boutilier [8] study a restrictive class of
buyer preferences (unit demand, only the supplier affects utility) and seller
price functions (volume discounts), which has strong theoretical guarantees.
Similarly, optimally matching a group of cooperative buyers to sellers has been
studied [9,16].

3 Multiple-Profile POU Games

We extend POU games by allowing agents to report multiple profiles, each reflect-
ing different behaviors or consumption patterns, and each with an inherent util-
ity or value reflecting comfort, convenience, flexibility or other factors. These
profiles correspond to different discrete choices the consumer makes, e.g., what
temperature to set the air conditioner at or when to do laundry or dishes. This
will allow an agent, when joining or bargaining with a coalition, to trade off
cost—especially the cost of predictability—with her inherent utility. A multiple-
profile POU (MPOU) game is a tuple 〈N, {Πi}, V, τ〉. Given set of agents N ,
each agent i ∈ N has a non-empty set of demand profiles Πi, where each profile
πi,k = 〈μi,k, σi,k〉 ∈ Πi reflects a consumption pattern (as in a POU model).
Agent i’s valuation function Vi : Πi → R indicates her value or relative pref-
erence (in dollars) for her demand profiles.2 Admitting multiple profiles allows
us to reason about an agent’s response to the incentives that emerge with POU
tariffs and in coalitional bargaining. Finally, τ is a POU tariff. We use the same
definition of POU tariffs and agent baselines as in POU games above. Notice
that the optimal baseline report for an agent is now defined relative to the pro-
file they use.

As in POU games, agents are motivated to form coalitions to reduce the
relative variance in their predictions. However, for a coalition C to accurately
report its aggregate demand, its members must select and commit to a specific

2 Such profiles and values may be explicitly elicited or estimated using past consump-
tion data (see Sect. 6).
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usage profile. We denote an assignment of profiles to agents as A : N → ×i∈NΠi.
Under such an assignment, C’s consumption is normal, with mean μ(C,A) =∑

i∈C μ(A(i)) and std. dev. σ(C,A) =
√∑

i∈C σ2(A(i)). The aggregate value
accrued by the coalition (prior to supplier payments) is the sum of its members’
values: V (C,A) =

∑
i∈C Vi(A(i)).

As in RVRJ, we begin by analyzing ex-ante MPOU games, where agents make
decisions and payments before consumption is realized. The characteristic value
v of a coalition C is the maximum value that coalition can achieve in expecta-
tion under full cooperation, that is, assuming an optimal profile assignment and
baseline report. We thus define v(C) = maxA v(C,A), where

v(C,A) = V (C,A) − μ(C,A)p − σ(C,A)L(p, p̄) (4)

Notice that profile selection does not arise in the POU setting.
In the following sections, we present a mechanism for MPOU games with

which the grand coalition organizes the individual consumption behavior of its
members (all agents in N) and the payments that flow among them. The mech-
anism proceeds as follows:

1. Agents report their consumption profiles to the mechanism (we assume this
report is truthful).

2. The mechanism calculates an assignment A of agents to profiles that maxi-
mizes social welfare. We elaborate on this assignment optimization at the end
of this section.

3. The mechanism calculates an ex-ante core stable payment t(i) for each agent
i that is based on all agents using their assigned profiles. We address payment
computation in Sect. 4.

4. In Sect. 5, we find that some agents have an incentive to defect from the
assigned profile, and we design separating functions to prevent these defec-
tions. The mechanism calculates a separating function Di for each agent with
an incentive to defect from their assigned profile.

5. At realization time, each agent i receives t(i). Each agent i that has a sepa-
rating function receives Di(xi), where xi is his/her realized consumption.

In the MPOU model, calculating a social welfare-maximizing assignment of
agents to profiles requires solving a non-convex optimization problem. We do
this using a mixed integer program with objective function given by (4), a binary
assignment variable for each agent-profile pair, and a constraint that each agent
is assigned exactly one profile. The last term of the objective is non-convex:
σ(C,A) =

√∑
i∈C σ2(A(i)). We replace the negative square root with a piece-

wise linear upper bound, which requires two binary variables per segment. As in
other assignment problems, we can relax the assignment variables: in practice,
relaxed solutions that are very close to integral.

4 Properties of MPOU Games

It is natural to ask whether, like POU games, ex-ante MPOU games are convex,
since convexity simplifies the analysis of stability and fairness. We show that
this is, in fact, the case. We begin with a technical lemma.
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Lemma 1. Let 〈N,Π, τ, V 〉 be an MPOU game. Let i ∈ N and S ⊂ T ⊆ N \{i}
and j ∈ T \ S. Then we have:

v(S ∪ {i}) − v(S) � v(S ∪ {i, j}) − v(S ∪ {j}) (5)

Proof. We let A∗(S) denote the assignment of profiles that maximizes the social
welfare of S. In the case where there are multiple social welfare-maximizing
configurations of S, we use the one with highest aggregate variance. We observe
that v(T,A∗(S)) � v(T ) because A∗(S) imposes a constraint on the behavior of
S. For technical reasons, we break the proof into two cases based on whether it
is more beneficial for i) i to join coalition S when S is configured to maximize
v(S∪{i}) or ii) i to join coalition S∪{j} when S∪{j} is configured to maximize
v(S ∪ {j}).
Case 1. v(S ∪ {i}) − v(S,A∗(S ∪ {i})) > v(S ∪ {i, j}, A∗(S ∪ {j})) − v(S ∪ {j})
On both sides of the inequality, we are adding {i} to a set of agents without
changing the configuration of that set of agents. Thus, the inequality implies
that {i} contributes more value on the left side than on the right side. Since
the amount of value that {i} contributes depends only on the variance of the
coalition that it is joining, the inequality implies that σ(S ∪ {j}, A∗(S ∪ {j}) <
σ(S,A∗(S ∪ {i})).

Since j contributes a non-negative amount of variance, σ(S,A∗(S ∪ {j})) �
σ(S∪{j}, A∗(S∪{j})), and likewise, σ(S,A∗(S∪{i})) � σ(S∪{i}, A∗(S∪{i})).
Applying these inequalities yields σ(S,A∗(S ∪ {j})) < σ(S ∪ {i}, A∗(S ∪ {i})),
implying:

v(S ∪ {j}) − v(S,A∗(S ∪ {j})) < v(S ∪ {i, j}, A∗(S ∪ {i})) − v(S ∪ {i}) (6)

Then, applying the inequalities v(S,A∗(S∪{j})) � v(S) and v(S∪{i, j}, A∗(S∪
{i})) � v(S ∪ {i, j}), and rearranging terms:

v(S ∪ {i}) − v(S) < v(S ∪ {i, j}) − v(S ∪ {j}) (7)

which is a stronger version of the lemma.

Case 2. v(S ∪ {i}) − v(S,A∗(S ∪ {i})) � v(S ∪ {i, j}, A∗(S ∪ {j})) − v(S ∪ {j})
Applying the inequality v(S,A∗(S ∪ {i})) � v(S) on the left side yields:

v(S ∪ {i}) − v(S) � v(S ∪ {i, j}, A∗(S ∪ {j})) − v(S ∪ {j}) (8)

Applying on the right side v(S ∪ {i, j}, A∗(S ∪ {j})) � v(S ∪ {i, j}) yields the
lemma:

v(S ∪ {i}) − v(S) � v(S ∪ {i, j}) − v(S ∪ {j}) (9)

From Lemma 1, we immediately obtain:

Theorem 1. The ex-ante MPOU game is convex.
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Proof. If S = T , then v(S ∪ {i}) − v(S) = v(T ∪ {i}) − v(T ) since the welfare-
maximizing configurations of S and T are the same. If S ⊂ T , we repeatedly
apply Lemma 1 to “grow” S one agent a time, creating a series of inequalities,
until we relate S and T .

Since the ex-ante MPOU game is convex, the Shapley value is in the core,
hence we can compute a core allocation by averaging the payments from any
number of join orders. In our experiments, we approximate the Shapley value
by sampling [4].

It is important that agents are incentivized to participate in the mechanism.
We show that MPOU games are individually-rational—no agent receives less
utility than her best outside option, i.e., what she would receive if she chose not
to participate in the mechanism. To achieve this, we augment an instance of the
game by adding a dummy profile to each agent with value equal to that of their
(best) outside option.

Theorem 2. Let G be an MPOU game where each agent has a profile π
(i)
out with

V (π(i)
out) = θi, σ(π(i)

out) = μ(π(i)
out) = 0, where θi is the value of i’s outside option.

Then, G is ex-ante individually rational if core payments are used.

Proof. Core payments exist because G is an MPOU game, hence convex. Sup-
pose, by way of contradiction, agent i receives an expected payment less than θi.
The stability condition of core payments requires that t(i) ≥ v({i}). However,
this contradicts the fact that v({i}) ≥ θi.

5 Incentives in MPOU Games

MPOU games introduce a new coordination problem for coalitions that do not
arise in POU games. In a fully-cooperative MPOU game, a coalition C agrees on
a joint consumption profile prior to reporting its (aggregate) predicted demand.
Despite this agreement, an agent i ∈ C may have incentive to actually use a
profile that differs from the one agreed to. For instance, suppose agent i has
two profiles, π0 and π1, with Vi(π0) > Vi(π1), and that to maximize the social
welfare of C, i should use π1 (and receive coalitional payment t(i)). By deviating
from her agreed upon profile, i can increase her net utility (from t(i) to Vi(π0)−
Vi(π1) + t(i)).

Typically, a penalty should be imposed for such a deviation to ensure that
C’s welfare in maximized. Unfortunately, i’s profile cannot be directly observed.
Only her realized consumption xi is observable, and it is related only stochasti-
cally to her underlying behavior (adopted profile). As such, any such transfer or
penalty in the coalitional allocation must depend on xi, showing that an ex-ante
analysis is insufficient for MPOU games (in stark contrast to POU games). Fur-
thermore, since xi is stochastic, it could have arisen from i using either profile
(i.e., we have no direct signal of the i’s chosen profile), which makes the design of
such transfers even more difficult. Finally, the poor choice of a transfer function
may compromise the convexity of the ex-ante game, undermining our ability to
compute core payments.
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To address these challenges, we use a separating function Di(xi). For each
agent i, Di maps i’s realized consumption to an additional ex-post separating
payment.

Definition 3. Di is a separating function (SF) for i under assignment A if it
satisfies the incentive and zero-expectation conditions.

– Incentive: Exi∼A(i)[Di(xi)] > Exi∼π[Di(xi)] + Vi(π) − Vi(A(i)) for any π ∈
Πi such that π �= A(i).

– Zero-expectation: Exi∼A(i)[Di(xi)] = 0.

Intuitively, the incentive condition ensures that the agent is incentivized to use
the assigned profile, and the zero-expectation condition requires that the pay-
ments introduced by the incentive condition do not affect the agent’s expected
payment if she uses the assigned profile. Since agents are assumed to be risk
neutral, each agent’s payoffs are unaffected by addition of a SF as long as the
agent uses the profile assigned by the coalition. Thus, payments remain in the
core after the addition of an SF.3

The rest of this section describes how to find SFs. We begin by showing that
a weaker form of separating function can trivially be transformed into a SF.

Definition 4. Di is a weak separating function (WSF) for i under assignment
A if Exi∼A(i)[Di(xi)] > Exi∼π[Di(xi)] for any π ∈ Πi such that π �= A(i).

Remark 1. Let Di be a WSF for i under assignment A. Then, D′
i = w0Di +

w1 is an SF, where w0 = maxπ∈Πi,π �=A(i)
Vi(π)−Vi(A(i))

Exi∼A(i)[Di(xi)]−Exi∼π[Di(xi)]
and w1 =

−Exi∼A(i)[w0Di(xi)].

Thus, it is sufficient to find a WSF. When an agent has only two profiles,
this is straightforward: we let Di be the PDF of the assigned profile minus the
PDF of the unassigned profile. The proof for this statement is algebraic, using
the fact that N (x;μ0, σ0)N (x;μ1, σ1) has a closed form that is proportional to
a normal PDF in x.

Theorem 3. Let i be an agent with two profiles π0 and π1 and let A(i) = π0.
Then, w.l.o.g., Di(xi) = N (xi;μ0, σ0) −N (xi;μ1, σ1) is a WSF for i under A.

Proof. We show that the minimum of Ex∼N (μ0,σ0)[N (x;μ0, σ0)−N (x;μ1, σ1)]−
Ex∼N (μ1,σ1)[N (x;μ0, σ0)−N (x;μ1, σ1)] occurs when μ1 = μ0 and σ1 = σ0, and
that the value of the expression at that point is positive.

We make use of the fact that N (x;μ1, σ1)N (x;μ2, σ2) is a function propor-
tional to the PDF of a normal distribution. Specifically,

N (x;μ0, σ0)N (x;μ1, σ1)

= N
(

μ0;μ1,
√

σ2
0 + σ2

1

)

N
(

x;
σ−2
0 μ0 + σ−2

1 μ1

σ−2
0 + σ−2

1

,
σ2
0σ

2
1

σ2
0 + σ2

1

)

(10)

3 Our use of zero-expectation payments for risk-neutral agents is mechanically similar
to Cremer and McClean’s [5] revenue-optimal auction for bidders with correlated
valuations.
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Then, by expanding terms and applying (10):

Ex∼N (μ0,σ0)[N (x;μ0, σ0) −N (x;μ1, σ1)]
− Ex∼N (μ1,σ1)[N (x;μ0, σ0) −N (x;μ1, σ1)]

=
1

2σ0
√

π
− 2N

(

μ1;μ0,
√

σ2
0 + σ2

1

)

+
1

2σ1
√

π
(11)

We then minimize with respect to μ1 and σ1. Since the middle term is the only
one that contains μ1, we can minimize it separately:

− 2
√

2π(σ2
0 + σ2

1)
exp

(

− (μ0 − μ1)2

2(σ2
0 + σ2

1)

)

(12)

Since the argument of the exponent is always non-positive, it is maximized when
it is zero, i.e., μ1 = μ0. Making this substitution yields:

1
2σ0

√
π
− 2

√
2π(σ2

0 + σ2
1)

+
1

2σ1
√

π
(13)

Setting the derivative with respect to σ2
1 to zero yields two real roots of σ0 =

±σ1. The second derivative at these points is positive. Thus, it is a minimum.
The value of the original expression at this point is 0 and positive otherwise.

With more than two profiles, this approach does not always work. Instead,
we can use a linear program (LP) to find coefficients of a linear combination
of the profile PDFs. Formally, denote the PDFs of the profiles as N i(xi) =
〈N (xi;μ0, σ0), . . . ,N (xi;μ|Πi|−1, σ|Πi|−1)〉, their weights as yi, and search over
yi ∈ R

|Πi| for a separating function of the form Di(xi,yi) = yi · N i(xi). We
use an LP that minimizes the L1-norm of yi subject to Exi∼A(i)[Di(xi,yi)] >
Exi∼π[Di(xi,yi)] for all π ∈ Πi, π �= A(i). Ideally, we would also like to minimize
the variance of the separating payment, giving agents maximal certainty w.r.t.
this payment; however, this objective is not tractable in an LP (we leave this
question to future work). In our experiments below, we do, however, assess the
variance of the separating payment.

A feasible yi corresponds to a linear combination of vectors whose sum has
only positive entries. We call these the difference vectors of Di. While we cannot
prove that a feasible yi always exists, viewing the problem in terms of difference
vectors suggests why they exist in practice:

Definition 5. Let A(i) be π0 (w.l.o.g.). For each profile πk ∈ Πi the
difference vector dk = Ex∼πk

[N (x;π0, σ0] − 〈Ex∼πk
[N (x;μ1, σ1)], . . . ,Ex∼πk

[N (x;μ|Πi|−1, σ|Πi|−1)]〉.
Note that these vectors do not depend on yi. We can restate the LP constraints
using difference vectors:

Theorem 4. Let i have profiles Πi and let A assign a profile to i. There exists
yi ∈ R

|Πi| that makes Di(xi,yi) a WSF if and only if there is a linear combina-
tion of the difference vectors of Di(xi,yi) that has only positive entries.
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Proof. First, we prove the forward direction. Let c be the coefficients of the
linear combination of the difference vectors that has only positive entries, i.e.,∑

k∈|Πi| ckdk = b where b is element-wise positive. Then, Exi∼A(i)[Di(xi, c)] −
Exi∼π[Di(xi, c)] = cdk = bk−1. Since b is element-wise positive, letting yi = c
makes Di(xi,yi) a separating function.

The reverse direction is also straightforward. Suppose Di(xi,yi) is a separat-
ing function. Then, let bk−1 = Exi∼A(i)[Di(xi, c)] − Exi∼π[Di(xi, c)] = yi · dk.
Thus, taking yi as the coefficients of the linear combination of difference vectors
equals b, which has only positive entries.

Corollary 1. Let dk be the difference vectors for agent i. If the difference vec-
tors are linearly independent, a setting of yi exists that makes Di(xi,yi) a WSF.

Proof. If the difference vectors are linearly independent, there exists a coefficient
vector c that makes

∑
k∈|Πi| ckdk elementwise positive. We can take yi = c to

satisfy the corollary.

We generally expect a random set of vectors to be linearly independent as the
set of matrices drawn from the reals with non-independent rows has Lebesgue
measure zero. We have yet to encounter an instance where a separating func-
tion does not exist in our experiments. It is an open question as to whether a
separating function of this form always exists.

6 Manipulation in MPOU Games

While we defer a thorough discussion of manipulation of MPOU games to future
work, we briefly discuss a simple form of manipulation: adding profiles to, or
removing profiles from, an agent’s report. Formally, we say that an agent can
manipulate an MPOU game if they gain expected utility by misreporting their
true set of profiles. Here, we simplify the discussion by assuming that agents
have a true underlying set of profiles, and we rely on the results of the previous
section by assuming that each agent can be incentivized to use their assigned
profile without changing their expected payoff.

Agents are not incentivized to strategically withhold information if they oth-
erwise report truthfully. However, reporting additional untruthful profiles will
benefit the agent, as long as those profiles are not assigned by the mechanism.

Theorem 5. Let G be an MPOU game, let G′ be identical to G except agent
i reports an additional profile π

(i)
extra . Let all of i’s reported profiles be truthful

except π
(i)
extra and let at least one of these conditions hold: (i) π

(i)
extra is truthful

or (ii) π
(i)
extra is not the assigned profile. Then, agent i’s payoff in G′ is greater

than or equal to its payoff in G if payments are used that average marginal
contributions over the same join orders.

Proof. First, we establish that i’s Shapley value is greater with the additional
profile. Each time agent i is added to a coalition S in a join order, agent i’s



286 A. Perrault and C. Boutilier

marginal contribution to v(S ∪ {i}) with the extra profile is greater than or
equal to its contribution with its original profiles. Thus, tG′(i) ≥ tG(i).

This condition is not sufficient to ensure that i increases her payoff, which is
equal to her coalitional payment minus the reported value of the assigned profile
plus the true value of the assigned profile. In condition (i), the Shapley value
equals the payoff value and in condition (ii), the assigned profile is the same in
G and G′. Thus, i’s payoff is greater or equal in G′ in either case.

Note that the theorem applies both to the Shapley value, which can be expressed
as an average over marginal contributions over join orders, and to sampling-based
approximations, such as the ones used in our experiments.

We outline two ways of combatting manipulation by reporting additional
profiles. The first is to simply limit the number of reported profiles, either by
creating a cap or by charging agents per profile they report, limiting the amount
agents can gain by manipulating. This approach leads to a non-truthful equilib-
rium, and it penalizes agents who have more complicated utility functions.

The second approach emerges from an approximation to the Shapley value
that happens to remove the incentive to add additional profiles that are not
selected. Recall that i’s Shapley value in coalition C can be interpreted as the
average marginal value that i contributes over all orders that agents join C.
Computing this requires recalculating the optimal assignment of profiles before
and after i joins since the addition of i may cause change the optimal assignment
for the other agents. Because this is computationally expensive, we approximate
it by fixing agents to the profile they are assigned in the grand coalition. Formally,
we let i’s Shapley value with fixed profiles be

sC(i,N) =
∑

S⊆C\{i}

|S|!(|C| − |S| − 1)!
|N |! (v(S ∪ {i}, A∗(N)) − v(S,A∗(N))) (14)

Recall that v(S,A∗(N)) is the value of coalition S under the assignment that
maximizes the value of coalition N , i.e., the grand coalition. We find the approxi-
mation is quite close to the true Shapley value in our setting. The approximation
sacrifices exact convexity because it does not discriminate between agents based
on how attractive their unassigned profiles are, which has the additional conse-
quence that, as long as agents report their true profiles, they have no incentive
to add additional false ones.

Theorem 6. Let G be an MPOU game, let G′ be identical to G except agent
i reports an additional profile π

(i)
extra . Let all of i’s reported profiles be truthful

except π
(i)
extra . Then, agent i’s payoff in G′ is less than or equal to its payoff in

G, if payments are used that average marginal contributions over the same join
orders and fix i’s profile to its assigned profile.

Proof. Since we assume that i reports all of its profiles truthfully, the true value
of π

(i)
extra is 0. Then, either the mechanism selects π

(i)
extra or it does not. If it

does, i’s payoff will be negative since it receives 0 value from π
(i)
extra , and thus,
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its payoff decreased because the mechanism is individually rational according to
Theorem 2. If it does not, i’s payoff is unchanged because π

(i)
extra does not affect

its payoff.

7 Learning Utility Models

To empirically test the MPOU framework and our separating functions, we
require consumer utility functions. As we know of no data set with such utility
functions, we learn household (agent) utility models from real electricity usage
data from Pecan Street Inc. [13].4 We define our prediction period as 4–7 pm
each day, when electricity usage typically peaks in Austin, Texas, where the
data was collected. We decompose utility into two parts: V

(μ)
i (w, μ) describes

the value an agent i derives from her mean consumption given a vector w of
weather conditions; and V

(σ)
i (σ, μ) represents utility derived from variance in

consumption behavior. Agent i’s utility is Vi(w, μ, σ) = V
(μ)
i (w, μ)V (σ)

i (σ, μ).
Estimating V

(μ)
i is difficult, since we lack data for some aspects of the prob-

lem. Thus, we make some simplifying assumptions: (i) consuming 0 kWh yields
value $0; and (ii) V

(μ)
i (w, μ) is concave and increasing. We learn a model for

each of 25 households that have complete data from 2013–15 (about 1100 data
points per household), using select weather conditions w and mean consumption
between 4–7 pm as input, and outputting value (in dollars). We use this valua-
tion function to predict consumption by maximizing an agent’s net utility under
the observed price:

V
(μ)
i (w, μ) = z

(0)
i (w)

(
μ − z

(1)
i (w)

)z
(2)
i (w)

+ z
(3)
i (w) (15)

constraining z
(0)
i > 0, z

(1)
i > 0, 0 < z

(2)
i < 1, z

(3)
i (w) ≥ 0 (Fig. 1 depicts the

utility model). We use a homogenous function to represent utility [18]. The term
z
(3)
i (w) has no influence on predictions: it can be viewed as inherent value due

to weather, and accounts for the flexibility provided by the z
(1)
i term, which

may create valuations where consumption 0 yields negative value (violating our
assumptions). To prevent this, we set z

(3)
i (w) to ensure the tangent at the pre-

dicted consumption for $0.64 (the largest price in the data set) passes through
(0, 0) (see Fig. 2). When this tangent crosses the y-axis above 0, we set
z
(3)
i (w) = 0 and splice in an exponential axb that passes through (0, 0) and

matches the derivative at the splice point.
For training, we use the model to predict consumption by solving the net

utility maximization problem, maxμ(Vi(w, μ) − μp), yielding:

μ̂(w, p) =
p

z
(0)
i (w)z(2)i (w)

1

z
(2)
i

(w)−1 + z
(1)
i (w) (16)

4 Publicly available at pecanstreet.org.

http://www.pecanstreet.org
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Fig. 1. The learned valuation model.
NN(10) denotes a neural network with
10 hidden units.

Fig. 2. Translating the valuation func-
tion to pass through the origin

We represent z
(0)
i , z

(1)
i and z

(2)
i in fully-connected single-layer neural net-

works, each with 10 hidden units and ReLU activations, and train the model
with backpropagation. We implement the model in TensorFlow [1] using the
squared error loss function and the Adam optimizer [6]. We use Dropout [19]
with a probability of 0.7 on each hidden unit.

We split the data into 80% train and 20% test for each household. Table 1
compares the prediction accuracy of our model (“valuation”) to (i) an unstruc-
tured neural network, and (ii) the best constant prediction for each household.
The unstructured net learns a mapping from 〈w, p〉 to μ directly using 10 hidden
units, without an intervening utility model.5 The best constant prediction disre-
gards weather and price data, and simply predicts average consumption for that
household. Table 1 shows that the valuation model overfits somewhat, but that
predictive accuracy is on par with the unstructured model. This shows that our
constraints on the form of the valuation function are not unduly restrictive and
validates the value predictions produced by these learned models. However, we
believe these value functions significantly underestimate value because we lack
consumption observations when the price is higher is than $0.64.

Table 1. Comparison of model prediction accuracy by root-mean-square error (RMSE).
We divide each household’s consumption amounts by their largest observed consump-
tion.

Model Mean train
RMSE

Std. dev. train
RMSE

Mean test
RMSE

Std. dev.
test RMSE

Valuation 0.137 0.0168 0.148 0.0194

Unstructured 0.142 0.0226 0.144 0.0284

Constant 0.204 0.0345 0.205 0.0411

5 Our other implementation choices are the same as the valuation model, except we
use Dropout of 0.5.
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Fig. 3. Learned value models for the 25 households with consumption mean (kwh) on
the x-axis and value ($) on the y-axis. The red line represents the median weather
conditions. The dotted line represents the median day with 90th percentile or higher
temperature. The dashed and green lines are the same for sunshine and humidity,
respectively.

Figure 3 shows the learned valuation for the 25 households. Each line repre-
sents a household’s response to different weather conditions. While temperature
is the most significant predictor of power usage, different households appear to
exhibit sensitivity to different factors (e.g., the household on the right is highly
sensitive to humidity).

Modeling Unpredictable Consumption. Unfortunately, we do not have
access to electricity usage data where consumers are charged differently depend-
ing on the accuracy of their predictions. Our model of the value of unpredictable
consumption is thus speculative, but uses the Pecan Street data as a starting
point. We assume that each household chooses the σ that maximizes its utility
(since they are not being charged for σ), and that it has an optimal fraction βi

of σ/μ that does not depend on other conditions. We estimate βi from the data
by treating each data point as having an observed σ equal to the absolute error
in consumption prediction made by the learned valuation model. We assume no
value is gained by increasing σ above the optimal ratio, and use an exponential
to represent the loss in value when σ is reduced,

V
(σ)
i (σ, μ) = max

(
μ/σ

βi
, 1

)γi

, (17)
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where γi is a constant representing i’s cost for being predictable. A higher γi

means that consumer i values variance more highly. In our experiments, we
sample γi from the uniform distribution over the interval [0.1, 2].

8 Experiments

We experimentally evaluate our mechanism for MPOU games. The questions we
study experimentally are:

1. How important is consumer coordination under POU tariffs?
2. What is the social welfare gain from using an MPOU model vs. a flat tariff?
3. How important is an agent’s choice of reported profiles?
4. What are the variances of the payments introduced by the separating func-

tions?

8.1 Experimental Setup

We first describe the experimental setup: how we select agents, profiles and tar-
iffs. For each trial, we select weather conditions w uniformly at random from the
Pecan Street data. To generate agents, we sample from our 25 learned household
utility models, using w as input and adding a small amount of zero mean noise
to the model parameters. We sample γi from the uniform distribution [0.1, 2]
for each agent i. Each data point is an average of 100 trials with 5000 agents,
unless otherwise noted. One of the goals of our experiments is to study the con-
sequences of different choices of reported profile. To do this, we vary the way
profiles are generated. Each agent has four profiles: a base profile (predicted to
be optimal under a flat rate tariff with rate equal to the fixed-rate p of the POU
tariff), and three others reflecting reduced consumption mean or variance. The
first reduces the base profile mean by the amount required to reduce value by
u%, which we call the profile spacing. The second reduces variance to reduce
value by u%. The third reduces both. We vary u throughout the experiments.

To generate tariffs, we vary the amount of emphasis each puts on accurate
predictions vs. the amount consumed. We let the predictivity emphasis (PE) of
a tariff w.r.t. a group of agents be the fraction of the expected total cost paid
for prediction penalties when each uses her base profile. In practice, PE should
be set to match the properties of the reserve power generation capacity that is
available: a higher PE corresponds to more expensive reserves. A tariff is revenue-
equivalent to another with respect to a specific set of profiles if the revenue of
the two is the same for that set. All of our tariffs will be revenue-equivalent
with respect to the set of base profiles. To find a revenue-equivalent tariff with a
certain PE, we use a numerical solver to find a tariff of the form 〈p, r, r〉 with the
appropriate total cost. Intuitively, a higher PE should result in larger benefits
from POU tariffs, and we find that to be the case in our experiments.

To generate Shapley values, we ample a number of join orders equal to the
logarithm of the number of agents in the instance. Shapley values were very close
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to linear in the std. dev. of the assigned profile. The average Shapley payment
for prediction was $0.41 per kWh of uncertainty across trials with PE 10%, and
$0.82 per kWh with PE 20%.6 Within a single trial, the std. dev. of this ratio
was less than 0.01 on average, suggesting that it is not necessary to optimize
the choice of profiles every time an agent added in a join order—it is sufficient
to fix each agent’s profile to the assigned one. We exploit this fact to run larger
experiments.

8.2 Results

We first address the question of how important it is for agents to coordinate their
consumption under a POU tariff. We define the uncoordinated POU setting as
the scenario where agents are subject to a POU tariff, but do not coordinate
their consumption behavior, i.e., each agent uses the profile that individually
maximizes her net utility relative to that POU tariff. Then, as is standard in
that setting, the grand coalition forms and makes the optimal baseline predic-
tion. Figure 4 shows the social welfare derived by agents in the uncoordinated
POU setting as a percentage of their social welfare under a revenue-equivalent
fixed-rate tariff. We see that the average social welfare achieved in the unco-
ordinated POU setting is less than that of the fixed rate setting for all profile
spacings. Individual agents react to the POU tariff by increasing their predic-
tivity, and thus decreasing their realized value, but they do not account for the
predictivity discount that results from being part of a coalition. As profile spac-
ing increases, more agents shift away from their base profile and social welfare
decreases, reaching 70% when spacing is 25%. These results underscore the need
for a way for agents to coordinate their profile choices under POU tariffs and
highlight one of the main challenges of successfully implementing a POU tariff
in practice.

Next, we study the social welfare gain that can be achieved by a POU tariff
when agents coordinate optimally under the MPOU framework. Figure 5 shows
the effect of profile spacing (u) on the welfare gained by switching from a fixed-
rate tariff to a revenue-equivalent POU tariff.7 Overall welfare gains are mod-
erate, around 3.13% for PE of 10% and 4.4-4.9% for PE of 20%. A higher PE
results in a larger social welfare gain because agents only benefit from cooper-
ating when trading off predictivity for inherent utility. Profile spacing appears
to have limited impact on social welfare gain, suggesting that most of the gain
is achieved by the effective reduction in fixed-rate price under a POU tariff. We
note that these experiments are the first to study end-to-end social welfare gain
from a POU tariff.

Figure 5 appears to indicate that personalizing profile spacing based on each
agent’s value for predictivity would increase social welfare further. We can see
this because increasing profile spacing increases welfare up to a spacing of 15%
for both PE levels, but the number of agents that shift profiles decreases as

6 This and other tariffs in this section have 0.2 � p = p̄ � 1.5.
7 Each instance took around 3min on a single thread of 2.6 Ghz Intel i7, 8 GB RAM.
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Fig. 4. Profile spacing vs. % of social
welfare of fixed-rate tariff for uncoor-
dinated POU setting and % of agents
that change profile

Fig. 5. Profile spacing vs. social wel-
fare % gain from fixed-rate tariff and
% of agents that change profile

spacing is increased (shown on the right-side axis). Thus, we hypothesize that
welfare could be further increased if agents with higher γ spaced their profiles
farther apart than those with lower.

Next, we address the question of uncertainty introduced by separating pay-
ments. Recall that while separating payments have expectation zero, they intro-
duce additional uncertainty to agent payments. We find that the amount of
uncertainty introduced is, in fact, minimal, and decreases with instance size and
increased PE. Figure 6 shows the same of the standard deviation of the sepa-
rating payment to the Shapley payment for predictivity. The std. dev. of the
separating payment is on average 15–20% of predictivity payment for PE of 10%
and 7.5–10% for PE of 20%, and increases slightly as profile spacing increases.
Note that only agents that actually require a separating function are taken into
account, around 1–2% of all agents for PE of 10% and 5–10% for PE of 20%,
on average. More agents require separating payments as PE increases, but the
uncertainty introduced by each decreases. Note that these are uncertainties for a
single instance of the game, and if the game is played repeatedly (e.g., every day),
the aggregate uncertainty will decrease as the independent random variables are
added.

Figure 7 shows the same uncertainty ratio for a single large instance versus
the predictivity flexibility (γ) of each agent. This instance has PE of 20%, 100,000
agents, profile spacing of 15% and takes 90 min to solve. The ratio is shown for the
4876 agents that require separating functions. The magnitude of the introduced
uncertainty is smaller in this larger instance with an average of 2.07% (and not
exceeding 3% for any agent). In addition, predictivity flexibility has little affect
on the introduced uncertainty: the linear least-squares fit (red line) has slope of
less than 10−4.



Multiple-Profile Prediction-of-Use Games 293

Fig. 6. Comparison of the standard
deviation of the separating function
payment to the ex-ante payment for
prediction accuracy. Bars show one
standard deviation. 5000 agents, 100
trials

Fig. 7. Comparison of the standard
deviation of the separating function
payment to the ex-ante payment for
prediction accuracy

9 Conclusion

We have introduced multiple-profile POU (MPOU) games, a framework for coor-
dinating agent behavior under POU tariffs. MPOU games allow agents to express
their consumption utility functions, while maintaining convexity of the basic
POU model. MPOU games introduce a new class of incentive problems due to
agent actions being partially observable: we introduce separating payments to
restore proper incentives. Our experimental utility models are learned from his-
torical electricity usage data in a novel way. Our experiments show that, while
social welfare gained by introducing the MPOU model (w.r.t. a fixed-rate tariff)
appear moderate, the gains relative to a POU tariff are substantial. The gains
over a fixed-rate tariff may be worthwhile in a large system and may be further
enhanced by more sophisticated agent utility and behavior profile models. They
depend both on the predictivity emphasis (PE) of reserve generation and on
consumers’ value for consuming unpredictably, which are both areas where more
real-world data is needed. We find that the uncertainty introduced by separat-
ing payments decreases as instance size increases, and decreases in aggregate as
more iterations of the game are played. Increased PE increases the number of
agents that need separating functions, but the uncertainty introduced decreases.

Interesting future directions for POU/MPOU games remain. Following up on
our approach, we could more precisely test social welfare gain with better access
to household utility data, especially for variance of consumption, and data about
the PE of generation mixes. Other critical aspects of the system are the ability of
agents to manipulate, which we only briefly touch on, and how to elicit household
utility functions. Thinking more broadly, it would be desirable to allow agents to
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make predictions contingent on intermediate predictions (e.g., of weather) thus
reducing the need for agents to make accurate weather forecasts.

While our discussion of POU and MPOU games has focused on electricity
markets, we believe the approach may be more widely applicable in other cases
where agents are contending with a scarce resource, e.g., internal allocation of
computing resources across groups in a company or university.
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