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Abstract. The field of Distributed Constraint Optimization has gained
momentum in recent years thanks to its ability to address various appli-
cations related to multi-agent cooperation. While techniques for solving
Distributed Constraint Optimization Problems (DCOPs) are abundant
and have matured substantially since the field’s inception, the number
of DCOP realistic applications available to assess the performance of
DCOP algorithms is lagging behind. To contrast this background we (i)
introduce the Smart Home Device Scheduling (SHDS) problem, which
describes the problem of coordinating smart devices schedules across
multiple homes as a multi-agent system, (ii) detail the physical models
adopted to simulate smart sensors, smart actuators, and homes’ environ-
ments, and (iii) introduce a realistic benchmark for SHDS problems.

1 Introduction

Distributed Constraint Optimization Problems (DCOPs) [16,20,27] have
emerged as one of the prominent agent models to govern the agents’ autonomous
behavior, where both algorithms and communication models are driven by the
structure of the specific problem. Researchers have used DCOP algorithms to
solve various multi-agent coordination and resource allocation problems, includ-
ing meeting scheduling [13,29], power network management [12], and smart home
appliances coordination [22].

Since the research field’s inception, a wide variety of algorithms has been
proposed to solve DCOPs. DCOP algorithms are typically classified as either
complete or incomplete, based on whether they can guarantee to find an optimal
solution or they trade optimality for shorter execution times [6]. In addition,
each of these classes can be categorized into several groups, depending on the
degree of locality exploited by the algorithms (e.g., full decentralization or partial
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centralization) [11,14,21], the way local information is updated (e.g., synchro-
nous [14,19,20] or asynchronous [5,10,16]), and the type of exploration process
adopted (e.g., search-based [11,16,26,28], inference-based [5,20], or sampling-
based [7,17,18]).

While techniques to solve DCOPs are abundant and have matured substan-
tially since the field’s inception, the number of realistic DCOP applications
and benchmarks used to assess the performance of DCOP algorithms is lagging
behind [9]. Typical DCOP algorithms are evaluated on artificial random prob-
lems, or simplified problems that are adapted to the often unrealistic assumptions
made by DCOP algorithms (e.g., that each agent controls exactly one variable,
and that all problem constraints are binary). To evaluate the performance of
DCOP algorithms, it is necessary to introduce realistic benchmarks of deploy-
able applications.

Motivated by these issues, we recently introduced the Smart Home Device
Scheduling (SHDS) problem [8], which formalizes the problem of coordinating
the schedules of smart devices (e.g., smart thermostats, circulator heating, wash-
ing machines) across multiple smart homes as a multi-agent system (MAS). The
SHDS problem is suitable to be modeled as a DCOP due to the presence of both
complex individual agents’ goals, describing homes’ energy price consumption,
as well as a collective agents’ goal, capturing reduction in energy peaks.

In this paper, we introduce a realistic synthetic benchmark for the SHDS
problem for DCOPs. We report the details of the physical models adopted to
simulate smart home sensors and actuators, as well as home environments,
and describe how the actuator’s actions affect the environments of a home
(e.g., home’s temperature, cleanliness, humidity). The dataset, the models, and
the source code used to generate the SHDS dataset is available at https://github.
com/nandofioretto/SHDS dataset.

1.1 DCOP

A Distributed Constraint Optimization Problem (DCOP) [16,27] is described
by a tuple 〈X ,D,F ,A, α〉, where: X = {x1, . . . , xn} is a set of variables; D =
{D1, . . . , Dn} is a set of finite domains (i.e., xi ∈ Di); F = {f1, . . . , fe} is a set
of utility functions (also called constraints), where fi:�xj∈xfi Di → R+ ∪ {−∞}
and xfi ⊆ X is the set of the variables (also called the scope) relevant to fi;
A = {a1, . . . , ap} is a set of agents; and α : X → A is a function that maps
each variable to one agent. fi specifies the utility of each combination of values
assigned to the variables in xfi . A partial assignment σ is a value assignment
to a set of variables Xσ ⊆X that is consistent with the variables’ domains. The
utility F(σ)=

∑
f∈F,xf ⊆Xσ

f(σ) is the sum of the utilities of all the applicable
utility functions in σ. A solution is a partial assignment σ for all the variables
of the problem, i.e., with Xσ =X . We will denote with x a solution, while xi is
the value of xi in x. The goal is to find an optimal solution x∗ = argmaxx F(x).

https://github.com/nandofioretto/SHDS_dataset
https://github.com/nandofioretto/SHDS_dataset
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2 Scheduling Device in Smart Homes

A Smart Home Device Scheduling (SHDS) problem is defined by the tuple
〈H,Z,L,PH ,PZ ,H, θ〉, where: H = {h1, h2, . . .} is a neighborhood of smart
homes, capable of communicating with one another; Z = ∪hi∈HZi is a set of
smart devices, where Zi is the set of devices in the smart home hi (e.g., vacuum
cleaning robot, smart thermostat). L = ∪hi∈HLi is a set of locations, where Li

is the set of locations in the smart home hi (e.g., living room, kitchen); PH is the
set of state properties of the smart homes (e.g., cleanliness, temperature); PZ

is the set of devices state properties (e.g., battery charge for a vacuum robot);
H is the planning horizon of the problem. We denote with T = {1, . . . , H} the
set of time points; θ : T → R

+ represents the real-time pricing schema adopted
by the energy utility company, which expresses the cost per kWh of energy con-
sumed by consumers. Finally, we use Ωp to denote the set of all possible states
for state property p ∈ PH ∪PZ (e.g., all the different levels of cleanliness for the
cleanliness property). Figure 1(right) shows an illustration of a neighborhood of
smart homes with each home controlling a set of smart devices.

2.1 Smart Devices

For each home hi ∈ H, the set of smart devices Zi is partitioned into a set of
actuators Ai and a set of sensors Si. Actuators can affect the states of the home
(e.g., heaters and ovens can affect the temperature in the home) and possibly
their own states (e.g., vacuum cleaning robots drain their battery power when
running). On the other hand, sensors monitor the states of the home. Each
device z ∈ Zi of a home hi is defined by a tuple 〈�z, Az, γ

H
z , γZ

z 〉, where �z ∈ Li

denotes the relevant location in the home that it can act or sense, Az is the set
of actions that it can perform, γH

z : Az → 2PH maps the actions of the device to
the relevant state properties of the home, and γZ

z : Az → 2PZ maps the actions
of the device to its relevant state properties. We will use the following running
example throughout this paper.

Example 1. Consider a vacuum cleaning robot zv with location �zv
= living room.

The set of possible actions is Azv
= {run, charge, stop} and the mappings are:

γH
zv

: run→{cleanliness}; charge→∅; stop→∅
γZ

zv
: run→{battery charge}; charge→{battery charge}; stop→∅

where ∅ represents a null state property.

2.2 Device Schedules

To control the energy profile of a smart home, we need to describe the behavior
of the smart devices acting in the smart home during time. We formalize this
concept with the notion of device schedules.

We use ξt
z ∈ Az to denote the action of device z at time step t, and ξt

X =
{ξt

z | z ∈ X} to denote the set of actions of the devices in X ⊆ Z at time step t.
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Fig. 1. Illustration of a neighborhood of smart homes (Color figure online)

Definition 1 (Schedule). A schedule ξ
[ta→tb]
X = 〈ξta

X , . . . , ξtb

X〉 is a sequence of
actions for the devices in X ⊆ Z within the time interval from ta to tb.

Consider the illustration of Fig. 1(left). The top row of Fig. 1(left) shows a
possible schedule 〈R,R,C,C,R,R,C,R〉 for a vacuum cleaning robot starting
at time 1400 h, where each time step is 30 min. The robot’s actions at each time
step are shown in the colored boxes with letters in them: red with ‘S’ for stop,
green with ‘R’ for run, and blue with ‘C’ for charge.

At a high level, the goal of the SHDS problem is to find a schedule for each
of the devices in every smart home that achieve some user-defined objectives
(e.g., the home is at a particular temperature within a time window, the home
is at a certain cleanliness level by some deadline) that may be personalized for
each home. We refer to these objectives as scheduling rules.

2.3 Scheduling Rules

We define two types of scheduling rules: Active scheduling rules (ASRs) that
define user-defined objectives on a desired state of the home (e.g., the living
room is cleaned by 1800 h). Passive scheduling rules (PSRs) that define implicit
constraints on devices that must hold at all times (e.g., the battery charge on a
vacuum cleaning robot is always between 0% and 100%). We provide a formal
description for the grammar of scheduling rules in Sect. 3.4.

Example 2. The scheduling rule (1) describes an ASR defining a goal state where
the living room floor is at least 75% clean (i.e., at least 75% of the floor is cleaned
by a vacuum cleaning robot) by 1800 h:

living room cleanliness ≥ 75 before 1800 (1)
zv battery charge ≥ 0 always (2)
zv battery charge ≤ 100 always (3)

and scheduling rules (2) and (3) describe PSRs stating the battery charge of the
vacuum cleaning robot zv needs to be between 0% and 100% of its full charge
at all the times:
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We denote with R
[ta→tb]
p a scheduling rule over a state property p∈PH ∪PZ ,

and time interval [ta, tb]. Each scheduling rule indicates a goal state at a location
or on a device �Rp

∈Li ∪Zi of a particular state property p that must hold over
the time interval [ta, tb] ⊆ T. The scheduling rule goal state is either a desired
state of a home, if it is an ASR (e.g., the cleanliness level of the room floor) or
a required state of a device or a home, if it is a PSR (e.g., the battery charge of
the vacuum cleaning robot).

Each rule is associated with a set of actuators Φp ⊆ Ai that can be used to
reach the goal state. For instance, in our Example (2), Φp correspond to the vac-
uum cleaning robot zv, which can operate on the living room floor. Additionally,
a rule is associated with a sensor sp ∈Si capable of sensing the state property p.
Finally, in a PSRs the device can also sense its own internal states.

The ASR of Eq. (1) is illustrated in Fig. 1(left) by dotted red lines on the
graph. The PSRs are not shown as they must hold for all time steps.

2.4 Feasibility of Schedules

To ensure that a goal state can be achieved across the desired time window the
system uses a predictive model of the various state properties. This predictive
model captures the evolution of a state property over time and how such state
property is affected by a given joint action of the relevant actuators. We describe
the details of the physical predictive models used to generate our benchmark set
in Sect. 3.3.

Definition 2 (Predictive Model). A predictive model Γp for a state property
p (of either the home or a device) is a function Γp:Ωp × �z∈Φp

Az ∪ {⊥} →
Ωp ∪ {⊥}, where ⊥ denotes an infeasible state and ⊥ + (·) = ⊥.

In other words, the model describes the transition of state property p from
state ωp ∈ Ωp at time step t to time step t + 1 when it is affected by a set of
actuators Φp running joint actions ξt

Φp
:

Γ t+1
p (ωp, ξ

t
Φp

) = ωp + Δp(ωp, ξ
t
Φp

) (4)

where Δp(ωp, ξ
t
Φp

) is a function describing the effect of the actuators’ joint action
ξt
Φp

on state property p. We assume here, w.l.o.g., that the state of properties
are numeric—when this is not the case, a mapping to the possible states to a
numeric representation can be easily defined.

Notice that a recursive invocation of a predictive model allows us to predict
the trajectory of a state property p for future time steps, given a schedule of
actions of the relevant actuators Φp. Let us formally define this concept.

Definition 3 (Predicted State Trajectory). Given a state property p, its
current state ωp at time step ta, and a schedule ξ

[ta→tb]
Φp

of relevant actuators Φp,

the predicted state trajectory πp(ωp, ξ
[ta→tb]
Φp

) of that state property is defined as:

πp(ωp, ξ
[ta→tb]
Φp

) = Γ tb
p (Γ tb−1

p (. . . (Γ ta
p (ωp, ξ

ta

Φp
), . . .), ξtb−1

Φp
), ξtb

Φp
) (5)
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Consider the device scheduling example in Fig. 1(left). The predicted state
trajectories of the battery charge and cleanliness state properties are shown in
the second and third rows of Fig. 1(left). These trajectories are predicted given
that the vacuum cleaning robot will take on the schedule shown in the first row of
the figure. The predicted trajectories of these state properties are also illustrated
in the graph, where the dark grey line shows the states for the robot’s battery
charge and the black line shows the states for the cleanliness of the room.

Notice that to verify if a schedule satisfies a scheduling rule it is sufficient to
check that the predicted state trajectories are within the set of feasible state tra-
jectories of that rule. Additionally, notice that each active and passive scheduling
rule defines a set of feasible state trajectories. For example, the active schedul-
ing rule of Eq. (1) allows all possible state trajectories as long as the state at
time step 1800 is no smaller than 75. We use Rp[t] ⊆ Ωp to denote the set of
states that are feasible according to rule Rp of state property p at time step t.
More formally, a schedule ξ

[ta→tb]
Φp

satisfies a scheduling rule R
[ta→tb]
p (written as

ξ
[ta→tb]
Φp

|= R
[ta→tb]
p ) iff:

∀t ∈ [ta, tb]:πp(ωta
p , ξ

[ta→t]
Φp

) ∈ Rp[t] (6)

where ωta
p is the state of state property p at time step ta.

Definition 4 (Feasible Schedule). A schedule is feasible if it satisfies all the
passive and active scheduling rules of each home in the SHDS problem.

In the example of Fig. 1, the evaluated schedule is a feasible schedule since
the trajectories of both the battery charge and cleanliness states satisfy both the
active scheduling rule (1) and the passive scheduling rules (2) and (3).

2.5 Optimization Objective

In addition to finding feasible schedules, the goal in the SHDS problem is to
optimize for the aggregated total cost of energy consumed.

Each action a∈Az of device z ∈Zi in home hi ∈H has an associated energy
consumption ρz:Az →R

+, expressed in kWh. The aggregated energy Et
i (ξ

[0→H]
Zi

)

across all devices consumed by hi at time step t under trajectory ξ
[1→H]
Zi

is:

Et
i (ξ

[0→H]
Zi

) =
∑

z∈Zi

ρz(ξt
z) (7)

where ξt
z is the action of device z at time t in the schedule ξ

[0→H]
Zi

. The cost

ci(ξ
[0→H]
Zi

) associated to schedule ξ
[1→H]
Zi

in home hi is:

ci(ξ
[1→H]
Zi

) =
∑

t∈T

(
�t
i + Et

i (ξ
[0→H]
Zi

)) · θ(t) (8)
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where �t
i is the home background load produced at time t, which includes all

non-schedulable devices (e.g., TV, refrigerator), and sensor devices, which are
always active, and θ(t) is the real-time price of energy per kWh at time t.

The objective of an SHDS problem is that of minimizing the following
weighted bi-objective function:

min
ξ
[0→H]
Zi

αc ·Csum + αe ·Epeak (9)

subject to: ∀hi ∈ H, R[ta→tb]
p ∈ Ri: ξ

[ta→tb]
Φp

|= R[ta→tb]
p (10)

where αc, αe ∈R are weights, Csum =
∑

hi∈H ci(ξ
[0→H]
Zi

) is the aggregated mone-

tary cost across all homes hi; and Epeak =
∑

t∈T

∑
Hj∈H

∑
hi∈Hj

(
Et

i (ξ
[0→H]
Zi

)
)2

is a quadratic penalty function on the aggregated energy consumption across all
homes hi. Since the SHDS problem is designed for distributed multi-agent sys-
tems, in a cooperative approach, optimizing Epeak may require each home to
share its energy profile with every other home. To take into account data pri-
vacy concerns and possible high network loads, we decompose the set of homes
H into neighboring subsets of homes H, so that Epeak can be optimized indepen-
dently within each subset. One can use coalition formation algorithms [23–25]
to form such coalitions/subsets of neighboring homes. These coalitions can be
exploited by a distributed algorithm to (1) parallelize computations between
multiple groups and (2) avoid data exposure over long distances or sensitive
areas. Finally, Constraint (10) defines the valid trajectories for each scheduling
rule r ∈ Ri, where Ri is the set of all scheduling rules of home hi.

2.6 DCOP Mapping

One can map the SHDS problem to a DCOP as follows:

• Agents: Each agent ai ∈ A in the DCOP is mapped to a home hi ∈ H.
• Variables and Domains: Each agent ai controls the following set of vari-

ables:
• For each actuator z ∈ Ai and each time step t ∈ T, a variable xt

i,z whose
domain is the set of actions in Az. The sensors in Si are considered to be
always active, and thus not directly controlled by the agent.

• An auxiliary interface variable x̂t
j whose domain is the set

{0, . . . ,
∑

z∈Zi
ρ(argmaxa∈Az

ρz(a))}, which represents the aggregated
energy consumed by all the devices in the home at each time step t.

• Constraints: There are three types of constraints:
• Local soft constraints (i.e., constraints that involve only variables con-

trolled by the agent) whose costs correspond to the weighted summation
of monetary costs, as defined in Eq. (8).

• Local hard constraints that enforce Constraint (10). Feasible schedules
incur a cost of 0 while infeasible schedules incur a cost of ∞.

• Global soft constraints (i.e., constraints that involve variables controlled
by different agents) whose costs correspond to the peak energy consump-
tion, as defined in the second term in Eq. (9).
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3 Model Parameters and Realistic Data Set Generation

This section describes the parameters and models adopted in our SHDS dataset.
We first describe the structural parameters adopted to model the houses, which
are used in turn to calculate the predictive models. Next, we describe the smart
devices adopted in our dataset and we discuss their power consumptions and
their effects on the house environments. We then describe the predictive mod-
els adopted to capture changes in the houses’ environments and devices’ states.
Finally, we report the Backus-Naur Form (BNF) for the scheduling rules intro-
duced in Sect. 2.3 and the pricing scheme adopted in our experiments.

3.1 House Structural Parameters

We consider three house sizes (small, medium, and large). The floor plans for
the three house structures are shown in Fig. 2.

Fig. 2. Floor plans for a small (left), medium (center), and large (right) house

Our house structural model simplifies the floor plans shown in Fig. 2 by
ignoring internal walls. This abstraction is sufficient to capture the richness of
the predictive models introduced in Sect. 2.4. Table 1 reports the parameters of
the houses adopted in our SHDS dataset. The house sizes are expressed in meters
(L× W ). The wall’s height is assumed to be 2.4 m and the window area denotes
the area of the walls covered by windows. The overall heat transfer coefficient
(also referred to as U-value) describes how well a building element conducts heat.
It is defined as the rate of heat transfer (in watts) through one unit area (m2)
of a structure divided by the difference in temperature across the structure [15].

The material of the walls is constituded by a metal panel with R-11 insu-
lation, and a gypsum board with an F01 layer (outside surface), an F08 steel
siding layer with I04 insulation, and a G01 gypsum board layer. The walls’ heat-
transfer coefficient (Uwalls) is 0.48 W

m2· ◦C . We consider vertical double glazed
windows with 30−60 mm of separation between glasses and whose heat-transfer



A Realistic Dataset for the SHDS Problem for DCOPs 133

coefficient (Uwindows) is 2.8 W
m2 ◦C . Additionally, we consider a wood roof with

R-10 insulation board, wood deck, and suspended acoustical ceiling, and whose
heat-transfer coefficient (Uroof) is 0.39 W

m2· ◦C . Finally, we consider a 5.08 cm
wooden door, with heat-transfer coefficient of 2.6 W

m2 ◦C . These are commonly
adopted materials in the US house construction industry [15]. We assume a back-
ground load consumption which accounts of a medium-size refrigerator (120 W),
a wireless router (6 W), and a set of light bulbs (collectively 40 W) [15]. The
heat gain from the background house appliances is computed according to [15]
(Table 9.8). We consider the heat gain generated by two people and computed
as in [15] (Table 9.7), assuming the metabolic rate of light office work.

Table 1. House structural parameters

Structural
parameters

Small Medium Large Structural
parameters

Small Medium Large

House size (m) 6 × 8 8 × 12 12 × 15 Uroof (W/(m2

◦C))
1.1 1.1 1.1

Walls area
(m2)

67.2 96 129.6 Lights energy
density
(W/m3)

9.69 9.69 9.69

Window area
(m2)

7.2 10 16 Background
load (kW)

0.166 0.166 0.166

Uwalls (W/(m2

◦C))
3.9 3.9 3.9 Background

heat gain (W)
50 50 50

Uwindows

(W/(m2 ◦C))
2.8 2.8 2.8 People heat

gain (Btu/h)
400 400 400

3.2 Smart Devices

In this section, we report the complete list of smart devices (sensors and actua-
tors) adopted by the smart homes in our SHDS dataset.

Sensors. Table 2 reports the sensors adopted in our SHDS problem. For each
sensor, we report an identifier (ID), the state property (see Sect. 2.1) it senses,
and its location in the house. All sensors are considered to be constantly active,
sensing a single state property at a location (e.g., an air temperature sensor is
located in a room of the house, a charge sensor is located on a device).

Actuators. Table 3 reports the list of the actuators. It tabulates the type of
actuator and its model, its possible actions, the power consumption (in kWh),
the state properties affected by each of its action, and the effects (Δ) on the
associated predictive models in the small, medium, and large house sizes. The
latter represents the incremental quantity that affects the physical system, given
the action of the actuator, as defined in Eq. (4). We detail the calculation of the
house and devices physical models below.



134 W. Kluegel et al.

Table 2. List of sensors

ID State property Location ID State property Location

01 Air temperature House room 08 Dish cleanliness Appliance

02 Floor cleanliness (dust) House room 09 Air humidity House room

03 Temperature Appliance 10 Luminosity House room

04 Battery charge Appliance 11 Occupancy House room

05 Bake Appliance 12 Movement House room

06 Laundry wash Appliance 13 Smoke detector House room

07 Laundry dry Appliance

3.3 Physical Models

In this section we describe the physical models used to compute the effects Δ of
the actuators’ actions on a predictive model (see Table 3). These values, in turn,
are adopted within the SHDS predictive models as described in Eq. (4).

Battery (Dis)charge Model. The battery charge/discharge model adopted
in our work for the battery-powered devices is as follows. For a given battery b
with capacity Qb (expressed in kWh), voltage Vb, and electric charge Eb = Vb

Qb

(expressed in ampere-hour (Ah)), and assuming a 100% charging/discharging
efficiency, the battery charge time b+α and discharge time b−

α are computed,
respectively, as:

b+α =
Eb

C+
; b−

α =
Eb

C− , (11)

and expressed in hours. C+ and C− are, respectively, the charging amperage and
the in-use amperage. In Table 4, we report the battery model parameters associ-
ated to our electric vehicle and to our robotic vacuum cleaner. These parameters
are derived following the products’ manuals [1,3], respectively. The effects Δ of
the devices’ action associated to the charging time and discharging time are
computed by dividing the total charging time and discharging time by |T|.

Air Temperature Model. The air temperature predictive model is computed
following the standard principle of heating and ventilation [15], and described
as follows. Let G be the ventilation conductance: G = V̇ ρah̄, where V̇ is the air
volume flow rate, whose value is set to 100, ρa is the density of the air, set to
0.75, and h̄ is the specific heat of the air, set to 0.24, following [15]. The house
heat loss coefficient hloss is expressed as:

hloss = Uwalls · Awalls + Uroof · Aroof + Uwindows · Awindows + G (12)

where Uwalls, Uroof, and Uwindows describe the heat transfer coefficients for
the walls, roof, and windows of the house, respectively, and Awalls, Aroof, and
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Table 3. List of actuators

Actuator Model Actions Consumption
(kWh)

State
properties
(ID)

Effects small (Δ) Effects medium
(Δ)

Effects large (Δ)

Heater Dyson AM09 Off 0 {01} − L̇h
148.48·TA

− L̇h
296.86·TA

− L̇h
593.75·TA

Fan 0.008 {01} − L̇h
148.48·TA

− L̇h
296.86·TA

− L̇h
593.75·TA

Heat 0.025 {01} L̇h
148.48·|TZ−TA|

L̇h
296.86·|TZ−TA|

L̇h
593.75·|TZ−TA|

AC Bryant
697CN030B

Off 0 {01} L̇h
148.48·TA

L̇h
296.86·TA

L̇h
593.75·TA

Fan 0.012 {01} L̇h
148.48·TA

L̇h
296.86·TA

L̇h
593.75·TA

Cool 0.037 {01} L̇h
148.48·|TA−TZ |

L̇h
296.86·|TA−TZ |

L̇h
593.75·|TA−TZ |

Water
heater

Tempra 36 Off 0 {03} {0} {0} {0}
On 0.060 {03} {9.90◦C} {8.94◦C} {6.83◦C}

Vacuum
bot

iRobot
Roomba 880

Off 0 {02, 04} {0.0%, 0.0%} {0.0%, 0.0%} {0.0%, 0.0%}
Vacuum 0 {02, 04} {0.676%, -0.21%}{0.338%, -0.21%}{0.168%, -

0.21%}
Charge 0.004 {04} {0.33%} {0.33%} {0.33%}

Electric
vehicle

Tesla Model
S

Off 0 {04} {0} {0} {0}
48 amp wall
charger

0.192 {04} {0.226%} {0.226%} {0.226%}

72 amp wall
charger

0.283 {04} {0.333%} {0.333%} {0.333%}

Super
charger

120 {04} {2.326%} {2.326%} {2.326%}

Clothes
washer

GE
WSM2420
D3WW

Off 0 {06} {0} {0} {0}
Wash
(Regular)

0.007 {06} {1} {1} {1}

Spin
(Regular)

0.008 {06} {1} {1} {1}

Rinse
(Regular)

0.008 {06} {1} {1} {1}

Wash
(Perm-
Press)

0.007 {06} {1} {1} {1}

Spin (Perm-
Press)

0.007 {06} {1} {1} {1}

Rinse
(Perm-
Press)

0.008 {06} {1} {1} {1}

Wash
(Delicates)

0.007 {06} {1} {1} {1}

Spin
(Delicates)

0.007 {06} {1} {1} {1}

Rinse
(Delicates)

0.008 {06} {1} {1} {1}

Clothes
dryer

*GE
WSM2420
D3WW

Off 0 {07} {0} {0} {0}
On
(Regular)

0.027 {07} {1} {1} {1}

On (Perm-
Press)

0.024 {07} {1} {1} {1}

On (Timed) 0.028 {07} {1} {1} {1}
Oven Kenmore

790.91312013
Off 0 {05} {0} {0} {0}
Bake 0.037 {05, 01} {1, 0.017◦C} {1, 0.009◦C} {1, 0.004◦C}
Broil 0.042 {05, 01} {1.25, 0.02◦C} {1.25, 0.01◦C} {1.25, 0.005◦C}

DishwasherKenmore
665.13242
K900

Off 0 {08} {0} {0} {0}
Wash 0.006 {08} {1} {1} {1}
Rinse 0.009 {08} {1} {1} {1}
Dry 0.006 {08} {1} {1} {1}
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Table 4. Electric vehicle [3] and robotic vacuum cleaner [1] batteries’ physical model.

Tesla model S iRobot Roomba 880

Slow charge Regular charge Super charger

Vb 240 240 240 120

Eb 354 Ah 354Ah 354Ah 3 Ah

C+ 48 A 72A 500A 1.25 A

C− 60 A 60A 60A 0.75 A

b+α 7 hr 22 min 5 h 43min 2 h 24 min

b−
α 6 h 6 h 6 h 4 h

Awindows describe the areas of the walls, roof, and windows, respectively. Their
values are provided in Table 1. If TA is the current temperature and TZ is a
target temperature, then the heating load L̇h is given by

L̇h = hloss|TZ − TA| (13)

The heating load defines the quantity of heat per unit time (in BTU) that
must be supplied in a building to reach a target temperature TZ , from the given
temperature TA. Given the heating load L̇h and the heater capacity C of a
heater/cooler, the time required for a device to operate so to reach the desired
temperature is given by: Lh

C .
The heating/cooling load is also effected by the outdoor and indoor temper-

ature difference. Consider the example where TA = 12 ◦C, TZ = 22 ◦C, and the
outdoor temperature changes from TA to TN = 8 ◦C. We can calculate the new
load due to change in temperature using the following:

L̇n = L̇h · |TZ − TN |
|TZ − TA| . (14)

The above expression shows that an outdoor temperature drops of 4 ◦C,
causes the heating load to increase by a factor of 1.4. In our model, to compute
the change in temperature per time step (Δ) we use the heat-loss relationship:

Δ =
hloss

m · cp
, (15)

where m is the mass of the air and cp is the specific heat of air. In our model,
m depends on volume flow rate of an air in the house, and cp = 1 kJ/kg·K.

Water Temperature Model. The rise in the water temperature per unit of
time (Δ value) is dependent on the difference in the water temperature flowing
into the water heater and the amount of water flowing out of the water heater,
as well as water usage. We considered an on-demand electric water heater (tan-
kless). The water usage depends on household size and the activities of multiple



A Realistic Dataset for the SHDS Problem for DCOPs 137

users. In our model, to compute the rise and drop in water temperature, we
adopted the highest potential peak in households water usage following [2,4],
and corresponding to 26.50 l/min (small house), 29.34 l/min (medium house),
and 38:38 l/min (large house). The rise in temperature is 18.33 ◦C for 14.31 l/min
of water usage [2]. Thus the rise in temperature for our small, medium, and large
house, are, respectively, 9.90 ◦C, 8.94 ◦C, and 6.83 ◦C.

Cleanliness Model. Our floor cleanliness model is computed using the fol-
lowing equation: T = A

0.313 , where A represents the area of the room (in m2)
and T is the amount of time (in minutes) required by a robotic vacuum
cleaner to vacuum the entire room. A robotic vacuum cleaner iRobot Roomba
880 is estimated to cover a 17.84 m2 room in 57 min [1] (which is approxi-
mately 0.313 m2/min). In our proposed dataset we use three different areas:
Asmall = 48 m2, Amedium = 96 m2, and Alarge = 180 m2. Thus the estimated
times to cover a 100% floor for the small, medium, and large houses are, respec-
tively: T = 153.35, 306.71, and 575.08 min. The corresponding Δ value of Table 3,
represents the percentage of floor covered in the time unit, and is computed as:
Δ = 100

T .
All other predictive models (e.g., laundry wash, laundry dry, bake, dish clean-

liness, etc.) simply capture the time needed for a device to achieve the required
goal. The specifics for such values are provided in Sect. 4.

3.4 Scheduling Rules

We now report the complete Backus-Naur Form (BNF) describing the scheduling
rules for a smart home hi ∈ H, introduced in Sect. 2.2.

〈rules〉 ....= 〈simple rule〉 | 〈simple rule〉 ∧ 〈rules〉
〈simple rule〉 ....= 〈active rule〉 | 〈passive rule〉
〈active rule〉 ....= 〈location〉〈state property〉〈relation〉〈goal state〉〈time〉

〈passive rule〉 ....= 〈location〉〈state property〉〈relation〉〈goal state〉
〈location〉 ....= � ∈ Li

〈state property〉 ....= s ∈ PH | s ∈ PZ

〈relation〉 ....= ≤ | < | = | �= | > | ≥
〈goal state〉 ....= sensor state | actuator state

In our dataset, the device states are mapped to numeric values, i.e., Ωp =N, for
all p ∈ PH ∪ PZ .

3.5 Pricing Schema

For the evaluation of our SHDS dataset we adopted a pricing schema used by
the Pacific Gas & Electric Co. for its customers in parts of California,1 which
1 https://goo.gl/vOeNqj.

https://goo.gl/vOeNqj
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accounts for 7 tiers ranging from $0.198 per kWh to $0.849 per kWh, reported
in Table 5.

Table 5. Pacific gas & electric co. pricing schema

Time start 0:00 8:00 12:00 14:00 18:00 22:00

Time end 7:59 11:59 13:59 17:59 21:59 23:59

Price ($) 0.198 0.225 0.249 0.849 0.225 0.198

4 SHDS Dataset

We now introduce a dataset for the SHDS problem for DCOPs. We generate syn-
thetic microgrid instances sampling neighborhoods in three cities in the United
States (Des Moines, IA; Boston, MA; and San Francisco, CA) and estimate the
density of houses in each city. The average density (in houses per square kilome-
ters) is 718 in Des Moines, 1357 in Boston, and 3766 in San Francisco. For each
city, we created a 200 m × 200 m grid, where the distance between intersections
is 20 m, and randomly placed houses in this grid until the density is the same
as the sampled density. We then divided the city into k (=|H|) coalitions, where
each home can communicate with all homes in its coalition. Finally, we ensure
that there are no disjoint coalitions; this is analogous to the fact that microgrids
are all connected to each other via the main power grid.

We generate a total of 624 problem instances, where, for each city, we vary the
number of agents—up to 7532 for the largest instance, the number of coalitions
from 1 to 1024, and the number of devices controlled by each house agent (from
2 to 20). The SHDS datasets is available at https://github.com/nandofioretto/
SHDS dataset.

Each home device has an associated active scheduling rule that is randomly
generated and a number of passive rules that must always hold. The parameters
used to generate active rules and passive rules are reported, respectively, in
Tables 6 and 7. The time predicates associated with these rules are generated at
random within the given horizon. Additionally, the relations r and goals states gi

are randomly generated by sampling from the sets corresponding, respectively,
to the columns 〈relation〉 and 〈goal state〉 of Table 6.

Tables 9, report the results of the SHDS experiments for a subset of the Des
Moines, Boston, and San Francisco instances, respectively, where we vary the
number of agents (n)—up to 474 for the largest instances—and the number of
devices controlled by each home (m), while retaining the number of coalitions
k = 1. To solve these instances, we use an uncoordinated approach, where agents
solve their private scheduling subproblem without coordinating their actions
with those of other agents and, thus, disregarding the energy peak minimiza-
tion objective. Each agent reports the best schedule found with a local Con-
straint Programming solver2 as subroutine within a 10-s timeout. The row obj
2 We adopt the JaCoP solver (http://www.jacop.eu/).

https://github.com/nandofioretto/SHDS_dataset
https://github.com/nandofioretto/SHDS_dataset
http://www.jacop.eu/
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Table 6. Scheduling (active) rules

〈location〉 〈state property〉 〈relation〉 〈goal state〉 〈time〉
Room Air temperature r ∈ {>, ≥} g1 ∈ [17, 24] 〈time〉
Room Floor cleanliness r ∈ {>, ≥} g2 ∈ [50, 99] 〈time〉
Electric vehicle Charge r ∈ {>, ≥} g3 ∈ [50, 99] 〈time〉
Water heater Temperature r ∈ {>, ≥} g4 ∈ [15, 40] 〈time〉
Clothes washer Laundry wash r ∈ {≥} g5 ∈ {45, 60} 〈time〉
Clothes dryer Laundry dry r ∈ {≥} g6 ∈ {45, 60} 〈time〉
Oven Bake r ∈ {=} g7 ∈ {60, 75, 120, 150} 〈time〉
Dishwasher Dish cleanliness r ∈ {≥} g8 ∈ {45, 60} 〈time〉

Table 7. Scheduling (passive) rules

〈location〉 〈state property〉 〈relation〉 〈goal state〉 〈location〉 〈state property〉 〈relation〉 〈goal state〉
Room Air temperature ≥ 0 EV Charge ≤ 100

Room Air temperature ≤ 33 Water heater Temperature ≥ 10

Room Floor cleanliness ≥ 0 Water heater Temperature ≤ 55

Room Floor cleanliness ≤ 100 Clothes washer Laundry wash ≤ g5

Roomba Charge ≥ 0 Clothes dryer Laundry dry ≤ g6

Roomba Charge ≤ 100 Oven Bake ≤ g7

EV Charge ≥ 0 Dishwasher Dish cleanliness ≤ g8

Table 8. Physical models: values and assumptions

Physical model Parameter Value (small
house)

Value (medium
house)

Value (large
house)

Air temperature V̇ 100 200 400

m 148.48 296.86 593.75

cp 1.0 1.0 1.0

ρa 0.75 0.75 0.75

h̄ 0.24 0.24 0.24

h loss 352.24 544 764.75

TZ 22 22 22

TA 10 10 10

L̇n 4226.88 6528 9177

Floor cleanliness A 48m2 96m2 180 m2

T 153.35 min 306.71 min 575.08 min

Δ 0.652% 0.326% 0.174%

Water temperature Household
size

2 3 4

Liters/min
usage

26.50 29.34 38.38

Δ 27.9 ◦C 25.2 ◦C 19.2 ◦C
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Table 9. Des Moines, Boston, San Francisco

Instance n Obj Avg. price ($) Avg. energy (kWh) Largest peak (kWh)

dm 7 7 29227.05 3.31 16.04 299.3

dm 21 21 81841.35 3.31 15.77 885.8

dm 35 35 136696.19 3.28 15.76 1479.5

dm 71 71 287989.80 3.32 15.96 3015.8

dm 251 251 1006807.18 3.32 15.92 10622.5

bo 13 13 50493.74 3.33 15.89 534.6

bo 40 40 163246.01 3.34 16.15 1722.50

bo 67 67 272651.41 3.33 16.03 2844.1

bo 135 135 534692.07 3.31 15.90 5694.7

bo 474 474 1890711.09 3.31 15.92 19969.5

sf 37 37 149964.95 3.33 16.01 1563.4

sf 112 112 450723.92 3.32 15.97 4778.3

sf 188 188 750741.31 3.31 15.89 7904.1

sf 376 376 1486321.71 3.30 15.84 15669.0

of Tables 9 reports the upper bounds for the SHDS objective function, while the
rows avg price, avg power, and largest peak, report, respectively, the average cost
of the schedule (in US dollars), the average energy consumption (in kWh), and
the largest peak (in kWh) produced during the day. For our experiments, we
set H = 12, and report a summary of the parameters’ settings adopted in our
smart homes physical models, in Table 8. In these experiments, we notice that
a large portion of the houses power consumption is caused by charging electric
vehicles’ batteries.

5 Conclusions

With the proliferation of smart devices, the automation of smart home schedul-
ing can be a powerful tool for demand-side management within the smart grid
vision. In this paper, we described the Smart Home Device Scheduling (SHDS)
problem, which formalizes the device scheduling and coordination problem across
multiple smart homes as a multi-agent system, and its mapping to a Distributed
Constraint Optimization Problem (DCOP). Furthermore, we described in great
detail the physical models adopted to model the smart home’s sensors and actu-
ators, as well as the physical model regulating the effect of the devices actions
on the house environments properties (e.g., temperature, cleanliness). Finally,
we reported a realistic dataset for the SHDS problem for DCOPs which includes
624 instances of increasing difficulty. We hope that the MAS community will
find this dataset useful for their empirical evaluations.
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