
Max-sum Revisited: The Real Power of Damping

Liel Cohen(B) and Roie Zivan

Industrial Engineering and Management department, Ben Gurion University,
Beer-Sheva, Israel

{lielc,zivanr}@bgu.ac.il

Abstract. Max-sum is a version of Belief propagation, used for solving
DCOPs. On tree-structured problems, Max-sum converges to the optimal
solution in linear time. Unfortunately when the constraint graph repre-
senting the problem includes multiple cycles (as in many standard DCOP
benchmarks), Max-sum does not converge and explores low quality solu-
tions. Recent attempts to address this limitation proposed versions of
Max-sum that guarantee convergence, by changing the constraint graph
structure. Damping is a method that is often used for increasing the
chances that Belief propagation will converge, however, it was not men-
tioned in studies that proposed Max-sum for solving DCOPs.

In this paper we investigate the effect of damping on Max-sum. We
prove that, while it slows down the propagation of information among
agents, on tree-structured graphs, Max-sum with damping is guaran-
teed to converge to the optimal solution in weakly polynomial time. Our
empirical results demonstrate a drastic improvement in the performance
of Max-sum, when using damping. However, in contrast to the common
assumption, that it performs best when converging, we demonstrate that
non converging versions perform efficient exploration, and produce high
quality results, when implemented within an anytime framework. On
most benchmarks, the best results were achieved using a high damping
factor (A preliminary version of this paper was accepted as a two page
extended abstract to a coming up conference.)

1 Introduction

Distributed Constraint Optimization Problem (DCOP) is a general model for
distributed problem solving that has a wide range of applications in multi-
agent systems. Complete algorithms for solving DCOPs [7,11] are guaranteed to
find the optimal solution, but because DCOPs are NP-hard, solving optimally
requires exponential time in the worst case. Thus, there is growing interest in
incomplete algorithms, which may find suboptimal solutions but run quickly
enough to be applied to large problems [20,21].

Whether complete or incomplete, DCOP algorithms generally follow one of
two broad approaches: distributed search [7,20] or inference [2,11]. Max-sum [2]
is an incomplete inference algorithm that has drawn considerable attention
in recent years, including being proposed for multi-agent applications such as

c© Springer International Publishing AG 2017
G. Sukthankar and J. A. Rodriguez-Aguilar (Eds.): AAMAS 2017 Visionary Papers,
LNAI 10643, pp. 111–124, 2017.
https://doi.org/10.1007/978-3-319-71679-4_8

112 L. Cohen and R. Zivan

sensor systems [16]. Max-sum is actually a version of the well known Belief
propagation algorithm [19], used for solving DCOPs.

Belief propagation in general (and Max-sum specifically) is known to con-
verge to the optimal solution for problems whose constraint graph is acyclic.
Unfortunately, there is no such guarantee for problems with cycles [19]. Further-
more, when the agents’ beliefs fail to converge, the resulting assignments may
be of low quality. This occurs because cyclic information propagation leads to
inaccurate and inconsistent information being computed by the agents. Unfor-
tunately, many DCOPs that were investigated in previous studies are dense and
indeed include multiple cycles (e.g., [7]). Our experimental study revealed that
on various standard benchmark problem classes (uniform and structured), Max-
sum does not converge and explores low-quality solutions.

Damping is a method that was combined with Belief propagation in order to
decrease the effect of cyclic information propagation. By balancing the weight of
the new calculation performed in each iteration and the weight of calculations
performed in previous iterations, researchers have reported success in increas-
ing the chances for convergence of Belief propagation when applied in different
scenarios [5,12,17]. Nevertheless, Damping was not mentioned in the papers
that adopted Max-sum for solving DCOPs and proposed extended versions of
the algorithm [2,13,22]. To the best of our knowledge there are no published
indications of the effect of damping on Max-sum, when solving DCOPs.

In this paper we contribute to the development of incomplete inference algo-
rithms for solving DCOPs by investigating the effect of using damping within
Max-sum. It is important to emphasize that the contribution and novelty of this
work is not in proposing the use of damping, which is a well known method that
has been studied by researchers in the graphical models community (see details
in Sect. 2), but rather to investigate the unique properties of this method, when
applied to Max-sum in order to improve its performance when used for solving
DCOPs. More specifically we make the following contributions:

1. We prove that on tree-structured graphs, Damped Max-sum converges in
weakly polynomial time. This result applies to a graph with a single cycle
as well (under the restrictions specified in [18]). On a directed acyclic graph
structure (as used in Max-sum ADVP [22]) the convergence is also guaran-
teed in weakly polynomial time, but not necessarily to the optimal solution.
This result is extremely significant in distributed scenarios where agents are
not aware of the global topology, only of their own neighborhood, thus, they
cannot avoid the use of damping when the graph has a structure that guar-
antees convergence.

2. We investigate the relation between the damping factor used and the suc-
cess of the damping method in improving the solutions produced by Max-
sum when solving DCOPs. On most standard DCOP benchmarks, the best
results were achieved for high damping factor values. However, on graph col-
oring problems and other problems with similar constraint structure, a high
damping factor resulted in a higher convergence rate, but also in lower quality
solutions.

Max-sum Revisited: The Real Power of Damping 113

3. We demonstrate that, in contrast to the common assumption, the best per-
formance is achieved when Max-sum with damping does not converge, but
rather performs efficient exploration that can be captured when used within
an anytime framework [21]. The combination of Damped Max-sum using
a high damping factor and the anytime mechanism, outperforms all other
versions of Max-sum, as well as local search DCOP algorithms, on various
benchmarks.

2 Related Work

The graphical models literature includes many indications for the use of damping
within Belief propagation (BP). We specify a number of studies that have some
resemblance to our work and from which one can learn the common assumptions
regarding the effect of damping on BP.

An attempt to apply damping to BP when solving both synthetic and realis-
tic problems, represented by Bayesian networks, was presented in [8]. The results
(with a rather small damping factor, 0.1) indicated that damping reduced oscil-
lations and increased the chances of convergence. However, in many cases the
algorithm converged to inaccurate solutions (i.e., did not approximate the opti-
mal solution well). An investigation of the relation between the damping level
and the convergence rate of BP when solving K-SAT problems, was presented
in [12]. Results indicated that fastest convergence is achieved for damping factor
of approximately 0.5, while larger damping factors (0.9) are better for reducing
oscillations.

Lazic et al. report that damping increases the chances for convergence on
maximum-a-posteriori (MAP) inference problems [5]. They find that a damping
factor of 0.8 is enough to achieve convergence in most cases, although their
results indicate that a high damping factor may increase the number of iterations
required for convergence.

The most similar study to our own seems to be [10]. For bit error problems in
communication channels the effect of damping on both the convergence and the
quality of the result of BP was investigated. In contrast to the results we present,
they report that the method is successful in producing high quality solutions for
damping factors between 0.3 and 0.7 and that the best solutions were found
when using a damping factor of 0.45.

An investigation of the effect of damping on convergence of BP solving clus-
tering data problems was presented in [1]. The results indicate that when con-
verging, the algorithm produces similar high quality results (regardless of the
damping factor) and that only for very small damping factors the algorithm
does not converge (up to 0.3). Again, they report that high damping factors
slow convergence.

The conclusion from this short survey is that the effect of damping on BP
is highly dependent on the problem being solved. Thus, there is merit in inves-
tigating the effect of damping when solving DCOP benchmarks. Furthermore,
none of the papers mentioned (and any other we know of) reports the theoretical

114 L. Cohen and R. Zivan

bounds we prove or suggests the possibility that damping can be used to balance
exploration and exploitation of Max-sum, as we report in this paper.

Very few studies that use Max-sum for solving DCOP report the use of
damping. One such paper used a damping factor of 0.5 and found the algorithm
to be inferior to standard local search algorithms [9]. There was also an attempt
to use damping for local search algorithms, which is obviously less relevant to
our work [6].

3 Background

3.1 Distributed Constraint Optimization

Without loss of generality, in the rest of this paper we will assume that all
problems are minimization problems. Our description of a DCOP is consistent
with the definitions in many DCOP studies, e.g., [7,11].

A DCOP is a tuple 〈A,X ,D,R〉. A is a finite set of agents {A1, A2, ..., An}.
X is a finite set of variables {x1,x2,...,xm}. Each variable is held by a single agent.
D is a set of domains {D1, D2,...,Dm}. Each domain Di contains the finite set
of values that can be assigned to variable xi. An assignment of value d ∈ Di

to xi is denoted by an ordered pair 〈xi, d〉. R is a set of relations (constraints).
Each constraint C ∈ R defines a non-negative cost for every possible value
combination of a set of variables, and is of the form C : Di1 ×Di2 × . . .×Dik →
R

+ ∪ {0}. A binary constraint refers to exactly two variables and is of the form
Cij : Di ×Dj → R

+ ∪{0}.1 A binary DCOP is a DCOP in which all constraints
are binary. A partial assignment (PA) is a set of value assignments to variables, in
which each variable appears at most once. vars(PA) is the set of all variables that
appear in PA. A constraint C ∈ R of the form C : Di1×Di2×. . .×Dik → R

+∪{0}
is applicable to PA if xi1 , xi2 , . . . , xik ∈ vars(PA). The cost of a PA is the
sum of all applicable constraints to PA over the assignments in PA. A complete
assignment (or a solution) is a partial assignment that includes all the DCOP’s
variables (vars(PA) = X). An optimal solution is a complete assignment with
minimal cost.

For simplicity we make the standard assumptions that all DCOPs are binary
DCOPs in which each agent holds exactly one variable. These assumptions are
commonly made in DCOP studies, e.g., [7].

3.2 Max-Sum

2Max-sum operates on a factor-graph, which is a bipartite graph in which the
nodes represent variables and constraints [4]. Each variable-node representing a
variable of the original DCOP is connected to all function-nodes that represent

1 We say that a variable is involved in a constraint if it is one of the variables the
constraint refers to.

2 For lack of space we describe the algorithm and its extensions briefly and refer the
reader to more detailed descriptions in [2,13,22].

Max-sum Revisited: The Real Power of Damping 115

constraints, which it is involved in. Similarly, a function-node is connected to all
variable-nodes that represent variables in the original DCOP that are involved in
the constraint it represents. Variable-nodes and function-nodes are considered
“agents” in Max-sum, i.e., they can send and receive messages, and perform
computation.

A message sent to or from variable-node x (for simplicity, we use the same
notation for a variable and the variable-node representing it) is a vector of size
|Dx| including a cost for each value in Dx. In the first iteration all messages
include vectors of zeros. A message sent from a variable-node x to a function-
node f is formalized as follows: Qi

x→f =
∑

f ′∈Fx,f ′ �=f Ri−1
f ′→x −α, where Qi

x→f is
the message variable-node x intends to send to function-node f in iteration i, Fx

is the set of function-node neighbors of variable-node x and Ri−1
f ′→x is the message

sent to variable-node x by function-node f ′ in iteration i − 1. α is a constant
that is reduced from all costs included in the message (i.e., for each d ∈ Dx)
in order to prevent the costs carried by messages throughout the algorithm run
from growing arbitrarily.

A message sent from a function-node f to a variable-node x in iteration i
includes for each value d ∈ Dx: minPA−x

cost(〈x, d〉, PA−x), where PA−x is a
possible combination of value assignments to variables involved in f not including
x. The term cost(〈x, d〉, PA−x) represents the cost of a partial assignment a =
{〈x, d〉, PA−x}, which is: f(a) +

∑
x′∈Xf ,x′ �=x,〈x′,d′〉∈a Qi−1

x′→f .d′, where f(a) is
the original cost in the constraint represented by f for the partial assignment a,
Xf is the set of variable-node neighbors of f , and Qi−1

x′→f .d′ is the cost that was
received in the message sent from variable-node x′ in iteration i−1, for the value
d′ that is assigned to x′ in a. x selects its value assignment d̂ ∈ Dx following
iteration k as follows: d̂ = argmind∈Dx

∑
f∈Fx

Rk
f→x.d.

4 Introducing Damping into Max-Sum

A common assumption regarding Belief propagation was that it is successful
when it converges, and that its main drawback is that it fails to converge on
problems in which the graph used for representing them includes multiple cycles.
Thus, different methods were proposed in order to guarantee the convergence of
Belief propagation, e.g., by revising the optimization function, or by changing
the graph structure [13,15,22].

Damping is a less radical method that was proposed for increasing the
chances that Belief propagation will converge [12,14,17]. However, in contrast to
the methods mentioned above, introducing damping into Belief propagation is
empirically found to increase the probability of convergence, but, to best of our
knowledge, there is no theoretical guarantee or even an estimation or prediction
method that can identify when Belief propagation with damping will converge.

In order to add damping to Max-sum we introduce a parameter λ ∈ (0, 1].
Before sending a message in iteration k an agent performs calculations as in
standard Max-sum. Denote by ̂mk

i→j the result of the calculation made by agent
Ai of the content of a message intended to be sent from Ai to agent Aj in

116 L. Cohen and R. Zivan

iteration k. Denote by mk−1
i→j the message sent by Ai to Aj at iteration k − 1.

The message sent from Ai to Aj in iteration k is calculated as follows:

mk
i→j = λmk−1

i→j + (1 − λ)̂mk
i→j (1)

Thus, λ expresses the weight given to previously performed calculations with
respect to the most recent calculation performed. Moreover, when λ = 0 the
resulting algorithm is standard Max-sum. We demonstrate further in this paper
that a selection of a high value for λ (close to 1) increases the chances of the
algorithm to converge.

In all our implementations damping was performed only by variable-nodes.
This allowed us to analyze the level of damping with respect to n (the number
of variables/agents).

5 Convergence Runtime Bounds

Standard Max-sum guarantees convergence in linear time to the optimal solu-
tion, when the constraint graph (and the corresponding factor-graph) is tree-
structured. We first establish a weakly polynomial lower bound for this guar-
antee, i.e., that there exists a problem on which damping slows down the con-
vergence by a factor of log1/λ(C), where C is the cost of the optimal solution
plus ε and ε is the smallest difference between constraint costs (thus, C is the
smallest possible cost for a solution, which is larger than the cost of the optimal
solution). Next, we prove a (loose) upper bound on the time for convergence,
which is also weakly-polynomial.

Let n be the number of variables in a problem and C as defined above.

Lemma 1. There exists a scenario in which Max-sum with damping will con-
verge on a tree-structured graph in no less than 2(n − 2) + log1/λ(C).

Proof: Consider a factor-graph with four variable-nodes, X1, X2, X3 and X4

and three function-nodes F12, F23 and F34, as depicted in Fig. 1. Each variable
has two values in its domain, a and b. All functions include infinite costs for
any non equal combination of value assignments. Function F23 includes for both
equal combinations of both variables the cost 0. Function F12 includes a cost
of C > ε if both agents assign a and zero cost if they both assign b. Function
F34 includes a cost of C − ε if both agents assign b and zero cost if they both
assign a. Obviously the optimal solution is when all variables assign b. However,
in order for variable X4 to realize that it should assign b, X2, which receives cost
C for its value a from F12 in every iteration, must perform log1/λ(C) iterations
before it sends a message to F23 with a cost larger than C − ε for the assignment
of a. This information must path to X4 before it can learn that it is better to
assign b than a, which requires 4 sequential messages. Obviously, if we add more
variables to the chain (each with two values a and b), such that the two functions
adjacent to the first and last variable-nodes in the chain are identical in their
costs to F12 and F34, and all other functions are identical in costs to F23, the

Max-sum Revisited: The Real Power of Damping 117

Fig. 1. Lower bound example

number of sequential messages will increase by 2 for each additional variable.
Thus, a lower bound to this problem is log1/λ(C) + 2(n − 2). ��
Proposition 1. The guaranteed runtime for convergence for Max-sum with
damping is at least, weakly polynomial.

Proof: An immediate corollary from Lemma 1 ��
In order to produce an upper bound on the number of steps that Damped

Max-sum will perform before converging to the optimal solution, we note that
the convergence of standard Max-sum on tree-structured graphs is achieved in
linear time because each variable-node in the factor-graph can be considered as
a root of a tree to which all other agents accumulate costs (similar to a DPOP
running on a pseudo-tree with no back-edges, cf. [11]). Thus, each agent, after
at most a linear number of steps, knows for each of the values in its variable
domain, the costs of the best solution it is involved in (for simplicity and without
loss of generality, we will assume no ties).

Let n be the number of variables in a problem represented by a tree-
structured factor-graph G′ and Ĉ the maximal cost sent by an agent in standard
Max-sum, solving the same problem. We use η to represent the largest ignor-
able difference for a problem, i.e., the largest number such that for each cost
c sent in standard Max-sum by some agent when solving the same problem, if
the agent would send cost c′ = c − η, the receiving agent would perform exactly
the same actions as when receiving c in standard Max-sum, i.e., select the same
value assignments to calculate function costs, if the receiver is a function-node,
or make the same selection of value assignment, if the receiver is a variable-node.

Lemma 2. After at most 2(n−2)·log1/λ(Ĉ/η) steps of the algorithm, a variable-
node Xi in G′ can select its value assignment in the optimal solution.

Proof: Allow each of the variable-nodes, from the farthest from Xi in G′ to
the closest, to perform log1/λ(Ĉ/η) steps, taking into consideration only the last
message received from their neighbors, and allow each function-node receiving a
message to perform a single step immediately. Obviously, after these steps are
completed, Xi receives costs that allow it to select its assignment in the optimal
solution. ��
Proposition 2. Max-sum with Damping is guaranteed to converge to the opti-
mal solution, on tree-structured graphs in weakly polynomial time.

118 L. Cohen and R. Zivan

Proof: Immediate from Lemma 2. After 2(n−2) ·log1/λ(Ĉ/η) steps, all variable-
nodes can select their assignment in the optimal solution, thus, the convergence
rate is polynomial in n, and Ĉ/η, i.e., weakly polynomial. ��

We note that similar proofs can establish that Max-sum with damping pro-
duces the optimal solution on graphs with a single cycle in weakly polynomial
time (subject to some restrictions [18]) and that using damping in Max-sum AD
and Max-sum ADVP [22] slows down the convergence in each phase to, at most,
weakly polynomial time.

6 Experimental Evaluation

In order to investigate the advantages of the use of damping in Max-sum, we
present a set of experiments comparing different versions of the algorithm, using
different λ values with standard Max-sum and two versions that guarantee con-
vergence: Bounded Max-sum [13] and Max-sum ADVP [22]. We also include in
our experiments the results of the well known DSA algorithm (we use type C
with p = 0.7 [20]), in order to give an insight on the quality of the results, in
comparison with local search DCOP algorithms.

We evaluated the algorithms on random uniform DCOPs and on structured
and realistic problems, i.e., graph coloring, meeting scheduling and scale-free. At
each experiment we randomly generated 50 different problem instances and ran
the algorithms for 5,000 iterations on each of them. The results presented are an
average of those 50 runs. For each iteration we present the cost of the assignment
that would have been selected by each algorithm at that iteration. All algorithms
were implemented within the anytime framework proposed in [21], which allowed
us to report for each of them the best result it traverses within 5, 000 iterations.
Also, in all versions of Max-Sum, we used value preferences selected randomly
for the purpose of tie breaking, as was suggested in [2].

As mentioned above, the experiments were performed on four types of
DCOPs, commonly used for evaluating DCOP algorithms, all formulated as
minimization problems. Uniform random problems were generated by adding
a constraint for each pair of agents/variables with probability p1 and for each
constrained pair, a cost for each combination of value assignments, selected uni-
formly between 1 and 10. Each problem included 100 variables with 10 values
in each domain. Graph coloring problems included 50 agents and all constraints
Rij ∈ R were “not-equal” cost functions where an equal assignment of neigh-
bors in the graph incurs a cost of 1 and non equal value assignments incur 0
cost. Following the literature, we used p1 = 0.05 and three values (i.e., colors)
in each domain [2,20,21]. Scale-free network problems included 50 agents, each
holding a variable with 10 values in each domain, and were generated using the
Barabási–Albert (BA) model. An initial set of 7 agents was randomly selected
and connected. Additional agents were added sequentially and connected to 3
other agents with a probability proportional to the number of links per agent.
Costs were independently drawn between 0 to 99. Similar problems were pre-
viously used to evaluate DCOP algorithms in [3]. Meeting scheduling problems

Max-sum Revisited: The Real Power of Damping 119

included 90 agents, which scheduled 20 meetings into 20 time slots. When the
time slots of two meetings do not allow participation in both, a cost equal to
the number of agents assigned to both meetings was incurred. These realistic
problems are identical to those used in [21].

Our experiments included various λ values, however, in order to avoid redun-
dancy, we only present results with λ ∈ 0.5, 0.7, 0.9. This selection allows us to
avoid graph density while presenting the trend of improvement of the algorithm
when λ is closer to one.

Fig. 2. Solution cost for random uniform problems with relatively low density
(p1 = 0.1).

Figures 2 and 3 present the solution costs found by all algorithms when solv-
ing uniform random problems containing 100 agents with a relatively low den-
sity (p1 = 0.1) and with higher density of p1 = 0.7 respectively. The results
per iteration show that Damped Max-sum is inferior to DSA and the guaran-
teed convergence version Max-sum ADVP. That been said, the anytime results
of Damped Max-sum using high λ values (0.7 and 0.9) significantly outperform
DSA and Max-sum ADVP. This suggests that damping triggers efficient explo-
ration by Max-sum, i.e., that in contrast to the assumptions made in the Belief
propagation literature, the best results of Max-sum are not achieved when it
converges but rather (like in the case of local search) when there is a balance
between exploration and exploitation.

Figures 4, 5 and 6 present results on scale free nets, meeting scheduling and
graph coloring problems, respectively. On scale free nets the trends are sim-
ilar to the results obtained for uniform random problems. Damped Max-sum
improves as more iterations are performed and explores solutions of higher qual-
ity. Towards the end of the run, the results per iteration of the version with
λ = 0.9 produces in some iterations better solutions than DSA and similar to

120 L. Cohen and R. Zivan

Fig. 3. Solution cost for random uniform problems with relatively high density
(p1 = 0.7).

Fig. 4. Solution cost for scale free net problems.

Max-sum ADVP. The anytime results outperform the converging algorithm sig-
nificantly. On meeting scheduling and graph coloring problems, the results of the
Damped Max-sum versions do not exhibit such an improvement, and seem to
explore solutions of similar quality throughout the run. Interestingly, the λ = 0.9
version on graph coloring seems to perform limited exploration and traverse solu-
tions with similar quality, while the 0.5 and 0.7 versions perform a higher level
of exploration.3

3 t-tests established that the Damped Max-Sum anytime solutions of all values of the
parameter λ were better on average than the anytime solutions reported for standard
Max-Sum, with statistical significance of p = 0.01, and better on average than DSA’s
solutions for λ values of 0.7 and 0.9 (except for the 0.9 version on graph coloring
problems), with the same significance level.

Max-sum Revisited: The Real Power of Damping 121

Fig. 5. Solution cost for meeting scheduling problems.

Fig. 6. Solution cost for graph coloring problems.

A closer look at Fig. 6 reveals that the λ = 0.9 version, after a small number
of iterations, starts to perform limited oscillations that follow a strict pattern
repeatedly. In contrast, the λ = 0.5 and λ = 0.7 versions perform rapid oscilla-
tions, which do not follow a specific pattern. Throughout the run, the average
results per iteration of the λ = 0.9 version outperforms both the λ = 0.5 and
λ = 0.7 versions. On the other hand, the corresponding anytime results of the
λ = 0.9 version converge fast to a higher cost than the costs of the anytime solu-
tions reported for the λ = 0.5 and λ = 0.7 versions. This is another indication
of the relation between the level of exploration performed by Damped Max-sum
and the quality of its anytime results.

122 L. Cohen and R. Zivan

Table 1. Convergence and anytime performance, for random uniform problems,
p1 = 0.1.

Problem count Standard 0.5 0.7 0.9

Converged 0 2 7 20

% out of all 50 0% 4% 14% 40%

Anytime was better 50 48 44 33

% out of all 50 100% 96% 88% 66%

Table 2. Convergence and anytime performance, for graph coloring problems.

Problem count Standard 0.5 0.7 0.9

Converged 1 6 8 49

% out of all 50 2% 12% 16% 98%

Anytime was better 49 44 43 37

% out of all 50 98% 88% 86% 74%

The results of our experiments indicate that, in contrast to the common
assumption regarding the role of damping in improving Belief propagation, by
increasing its convergence rate, the success of damping is in generating use-
ful exploration of high quality solutions that can be captured by an anytime
framework and outperform versions of Max-sum that guarantee convergence, as
Max-sum ADVP. In order to straighten this statement we present the conver-
gence rate and anytime performance of the Max-sum versions for the uniform
random problem settings and for the graph coloring problems (the convergence
results of the meeting scheduling problems and the scale free nets showed simi-
lar trends to the uniform settings and were omitted for lack of space). Tables 1
and 2 present for standard Max-Sum and the Damped Max-Sum, the number
of problems out of the 50 problems solved, on which each of the versions of the
algorithm converged. In addition, the tables present the number of problems in
which the anytime solution was better than the solution produced in the final
iteration of the algorithm’s run.

For the random problems (Table 1) the results indicate that the closer λ is to
one, the higher are the chances of convergence of the Damped Max-Sum algo-
rithm. The results for problem with higher density preserved the same trend and
were omitted for lack of space. As for the anytime solutions reported, in prob-
lems for which the algorithm converged, it did not always converge to the best
solution visited during the algorithm’s run. The number of problems on which
the algorithm converged to the best solution reached during the algorithm’s run,
increases when a higher value of λ is selected. Nevertheless, for all versions, the
anytime results were better than the results in the last iteration of the algorithm
on a significant portion of the problem instances.

Max-sum Revisited: The Real Power of Damping 123

The results in Table 2 strengthen our analysis of Fig. 6. On graph coloring
problems, the λ = 0.9 has a much higher convergence rate than the λ = 0.5
and λ = 0.7 versions. However, its anytime results are better than the results
in the last iteration in a fewer number of runs of the algorithm. Thus, on these
problems a lower damping factor resulted in more effective exploration. In order
to check whether this phenomenon was unique for graph coloring problems,
we ran experiments in which we changed the constraint structure of all other
benchmarks (random uniform, scale free and meeting scheduling) such that it
was similar to the constraint structure in graph coloring, i.e., where for every
pair of constrained variables, for each value in each domain there was a single
value in the domain of the other variable with whom it was constrained. The
results across all benchmarks were that the version with λ = 0.9 had higher
convergence rate and produced results with higher costs than the version with
λ = 0.7, as in graph coloring.

7 Conclusion

We investigated the effect of using damping within the Max-sum algorithm, the
distributed version of Belief propagation, which was adopted for solving DCOPs.

In terms of computational bounds for convergence, we proved that on acyclic
problems, where Max-sum is guaranteed to converge to the optimal solution, in
the worst case damping slows the convergence to weakly polynomial time. Similar
proofs can be applied to other structures on which Max-sum is guaranteed to
converge, e.g., graphs with a single cycle and directed acyclic graphs (on which
it converges, but not necessary to the optimal solution).

Our empirical study revealed that while damping improved the results of the
algorithm drastically, in most cases it did not converge within 5000 iterations.
However, when combined with an anytime framework, Damped Max-sum signif-
icantly outperforms the best versions of Max-sum, and a standard local search
algorithm as well.

In future work we intend to deepen the investigation on the best selection of
the parameter λ in Damped Max-sum, with respect to the problem structure.

References

1. Dueck, D.: Affinity propagation: clustering data by passing messages. Ph.D. thesis,
University of Toronto (2009)

2. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralized coordination
of low-power embedded devices using the max-sum algorithm. In: AAMAS, pp.
639–646 (2008)

3. Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for
approximate distributed constraint optimization with quality bounds. In: AAMAS,
pp. 133–140 (2010)

4. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product
algorithm. IEEE Trans. Inf. Theor. 47(2), 181–208 (2001)

124 L. Cohen and R. Zivan

5. Lazic, N., Frey, B., Aarabi, P.: Solving the uncapacitated facility location prob-
lem using message passing algorithms. In: International Conference on Artificial
Intelligence and Statistics, pp. 429–436 (2010)

6. Verman, A.B.M., Stutz, P.: Solving distributed constraint optimization problems
using ranks. In: AAAI Workshop Statistical Relational Artificial Intelligence (2014)

7. Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: Adopt: asynchronous distributed
constraints optimizationwith quality guarantees. Artif. Intell. 161(1–2), 149–180
(2005)

8. Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate
inference: an empirical study. In: Proceedings of the Fifteenth Conference on Uncer-
tainty in Artificial Intelligence, UAI 1999, Stockholm, Sweden, 30 July–1 August
1999, pp. 467–475 (1999)

9. Okamoto, S., Zivan, R., Nahon, A.: Distributed breakout: beyond satisfaction.
In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, pp. 447–453 (2016)

10. Som, A.C.P.: Damped belief propagation based near-optimal equalization of
severely delay-spread UWB MIMO-ISI channels. In: 2010 IEEE International Con-
ference on Communications (ICC), pp. 1–5 (2010)

11. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization.
In: IJCAI, pp. 266–271 (2005)

12. Pretti, M.: A message-passing algorithm with damping. J. Stat. Mech. Theor. Exp.
11, P11008 (2005)

13. Rogers, A., Farinelli, A., Stranders, R., Jennings, N.R.: Bounded approximate
decentralized coordination via the max-sum algorithm. Artif. Intell. 175(2), 730–
759 (2011)

14. Som, P., Chockalingam, A.: Damped belief propagation based near-optimal equal-
ization of severely delay-spread UWB MIMO-ISI channels. In: 2010 IEEE Interna-
tional Conference on Communications (ICC), pp. 1–5. IEEE (2010)

15. Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T., Weiss, Y.: Tightening LP
relaxations for map using message passing. In: UAI, pp. 503–510 (2008)

16. Stranders, R., Farinelli, A., Rogers, A., Jennings, N.R.: Decentralised coordina-
tion of mobile sensors using the max-sum algorithm. In: Proceedings of the 21st
International Joint Conference on Artificial Intelligence, IJCAI 2009, Pasadena,
California, USA, 11–17 July 2009, pp. 299–304 (2009)

17. Tarlow, D., Givoni, I., Zemel, R., Frey, B.: Graph cuts is a max-product algorithm.
In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence
(2011)

18. Weiss, Y.: Correctness of local probability propagation in graphical models with
loops. Neural Comput. 12(1), 1–41 (2000)

19. Yanover, C., Meltzer, T., Weiss, Y.: Linear programming relaxations and belief
propagation - an empirical study. J. Mach. Learn. Res. 7, 1887–1907 (2006)

20. Zhang, W., Xing, Z., Wang, G., Wittenburg, L.: Distributed stochastic search
and distributed breakout: properties, comparishon and applications to constraints
optimization problems in sensor networks. Artif. Intell. 161(1–2), 55–88 (2005)

21. Zivan, R., Okamoto, S., Peled, H.: Explorative anytime local search for distributed
constraint optimization. Artif. Intell. 212, 1–26 (2014)

22. Zivan, R., Peled, H.: Max/min-sum distributed constraint optimization through
value propagation on an alternating DAG. In: AAMAS, pp. 265–272 (2012)

	Max-sum Revisited: The Real Power of Damping
	1 Introduction
	2 Related Work
	3 Background
	3.1 Distributed Constraint Optimization
	3.2 Max-Sum

	4 Introducing Damping into Max-Sum
	5 Convergence Runtime Bounds
	6 Experimental Evaluation
	7 Conclusion
	References

