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Abstract. Pandemic influenza has the epidemic potential to kill mil-
lions of people. While different preventive measures exist, it remains
challenging to implement them in an effective and efficient way. To
improve preventive strategies, it is necessary to thoroughly understand
their impact on the complex dynamics of influenza epidemics. To this
end, epidemiological models provide an essential tool to evaluate such
strategies in silico. Epidemiological models are frequently used to assist
the decision making concerning the mitigation of ongoing epidemics.
Therefore, rapidly identifying the most promising preventive strategies
is crucial to adequately inform public health officials. To this end, we
formulate the evaluation of prevention strategies as a multi-armed ban-
dit problem. Through experiments, we demonstrate that it is possible
to identify the optimal strategy using only a limited number of model
evaluations, even if there is a large number of preventive strategies to
consider.
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1 Introduction

The influenza virus is responsible for the deaths of half of a million people each
year [1]. Additionally, seasonal influenza epidemics cause a significant economic
burden [2]. While influenza is typically confined to local epidemics, it can cause
a pandemic when a novel strain emerges that has the ability to spread rapidly
among a susceptible human host population [3]. Pandemic influenza occurs less
frequently than seasonal influenza but the outcome with respect to morbidity
and mortality can be much more severe, potentially killing millions of people
worldwide [4]. Therefore, it is essential to study mitigation policies to control
pandemic influenza epidemics.
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For influenza, different preventive measures exist: i.a., vaccination, social
measures (e.g., school closures) and antiviral drugs. However, the efficiency of
these measures greatly depends on their availability, as well as on epidemiologi-
cal characteristics. Furthermore, governments typically have limited resources to
implement such measures. Therefore, it remains challenging to formulate preven-
tion strategies that make effective and efficient use of these preventive measures
while putting as little strain on the available resources as possible.

To improve the development of preventive strategies, it is necessary to thor-
oughly understand the complex dynamics of influenza epidemics. To this end,
epidemiological models are commonly used. Such models study the effects of
preventive measures in silico [5,6].

Epidemiological models are frequently used to assist the decision making
concerning the mitigation of ongoing epidemics (not only for influenza, e.g., the
H1N1/09 influenza pandemic [7], but also the 2014–2016 Ebola epidemic [8],
the 2016 yellow fever outbreak [9], etc.). Therefore, rapidly identifying the most
promising preventive strategies is crucial. This however, can be at odds with the
accuracy of the models.

There are two main types of epidemiological models that are frequently
applied: compartment models, which divide the population into discrete homo-
geneous states (i.e., compartments) and describe the transition rates from one
state to another, and individual-based models that explicitly represent all indi-
viduals and their connections, and simulate the spread of a pathogen among
these individuals. While individual-based models are usually associated with a
greater model complexity and computational cost than compartment models,
they allow for a more accurate evaluation of preventive strategies [10–12]. It is
therefore highly preferable to use individual-based models whenever computa-
tional resource constraints permit. In order to make it feasible to use individual-
based models, it is essential to use the available computational resources as
efficiently as possible.

The outcome of the simulation of a preventive strategy in a stochastic
individual-based model, is a sample of that strategy’s outcome distribution. In
the literature, a set of possible prevention strategies is typically evaluated by
simulating each of the strategies a predefined number of times (e.g., [13]). How-
ever, this can allocate a large proportion of computational resources to explore
the effects of highly sub-optimal strategies.

We therefore propose to apply reinforcement learning [14] with multi-armed
bandits [15]. Reinforcement learning is the study of how to balance exploitation
(i.e., further simulating the effects of what we believe to be the best preventive
strategy to obtain more accurate results) and exploration (i.e., simulating the
effects of other strategies to see whether they might actually be better than our
current best). By using this framework, we aim to reduce the number of required
model evaluations to determine the most promising preventive strategies. This
reduces the total time required to study a given set of prevention strategies,
making the use of individual-based models attainable in studies where it would
otherwise not be computationally feasible. Additionally, faster evaluation can



Efficient Evaluation of Influenza Mitigation Strategies 69

also free up computational resources in studies that already use individual-based
models, capacitating researchers to explore different model scenarios. Consider-
ing a wider range of scenarios increases the confidence about the overall utility
of prevention strategies.

In this paper, we formulate the evaluation of preventive strategies as a multi-
armed bandit learning problem in Sect. 3. The utility of this new method is
confirmed through experiments in the context of pandemic influenza in Sect. 4,
using the popular FluTE individual-based model [10]. Our results show that
we can quickly focus our computational resources on the optimal prevention
strategy. We thus conclude that our method has the potential to be used as a
decision support tool for mitigating influenza epidemics.

2 Background

This section provides background on the application domain (i.e., finding mitiga-
tion strategies for pandemic influenza using epidemiological models) and learning
methods (i.e., multi-armed bandits) approached in this study.

2.1 Pandemic Influenza

Influenza is an infectious disease caused by the influenza virus. The primary
prevention strategy to mitigate seasonal influenza is to produce vaccine prior
to the epidemic, anticipating the virus strains that are expected to circulate.
This vaccine pool is used to inoculate the population before the start of the
epidemic. As influenza viruses are constantly evolving, the stockpiling of vaccine
to prepare for a pandemic is not possible, as the vaccine should be specifically
tailored to the virus that is the source of the pandemic [16]. Therefore, before an
appropriate vaccine can be developed, the responsible virus needs to be identi-
fied [16]. Hence, vaccine will be available only in limited supply at the beginning
of the pandemic [16]. Additionally, vaccine shortage can be induced by problems
with vaccine production (e.g., the vaccine contamination in the United States in
2004–2005 [17]). While pandemic influenza has been studied and modeled exten-
sively, there are still many aspects with respect to mitigation strategies that
remain to be investigated [13,18]. Furthermore, awareness was raised recently
about certain parameters and assumptions used in epidemiological models to be
too conservative to explore the full epidemic potential of pandemic influenza,
and as a result evaluate mitigation strategies overly optimistic [19]. These con-
cerns indicate that the reevaluation of preventive strategies, taking into account
more realistic assumptions, is warranted.

The severity of pandemic influenza, the limited availability of vaccine and
an extensive set of open research questions render this field a primary target to
evaluate preventive strategies more efficiently.
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2.2 Epidemiological Models

Epidemiological models are an indispensable tool to investigate how pathogens
spread through a population and to evaluate mitigation strategies. Epidemi-
ological models are therefore crucial tools to assist policy makers with their
decisions [20,21]. Modeling epidemiological processes can be approached by
means of individual-based models or compartment models. Compartment models
divide the population into discrete homogeneous states (i.e., compartments) and
describe the transition rates from one state to another. Compartment models
can be formulated as differential equations and thus form a mathematical frame-
work to model epidemics. Individual-based models, on the other hand, explicitly
represent all individuals and their connections and simulate the spread of a
pathogen among this network of individuals. Individual attributes influence the
way the contact network evolves temporally and spatially. Additionally, the infec-
tion progress and the different stages associated with this progress is modeled per
individual. Individual-based models allow to evaluate therapeutic and preventive
interventions on the level of individuals. Compartment models generalize on pop-
ulation level and represent the expectation of epidemiological outcomes, while
individual-based models are able to represent individual heterogeneity. Model-
ing a greater level of heterogeneity is usually associated with a greater model
complexity and computational cost, but allows for a more accurate evaluation of
preventive strategies [10–12,22,23]. The result of a model evaluation is referred
to as the model outcome. The relevant model outcomes greatly depend on the
policy makers’ research questions (e.g., prevalence, proportion of symptomatic
individuals, morbidity, mortality, cost).

2.3 Modeling Influenza

There is a long tradition to use individual-based models to study influenza epi-
demics [5,6,13], since it allows for a more accurate evaluation of preventive
strategies. A main example is FluTE [10], an influenza individual-based model
that has been the driver for many high impact research efforts over the last
decade [5,6,24]. FluTE implements a contact model where the population is
divided into communities of households [10]. The population is thus organized
in a hierarchy of social mixing groups where the contact intensity is inversely
proportional with the size of the group (e.g., closer contact between members of
a household than between colleagues). FluTE also supports worker’s commute
and the travel of individuals, both model components that can be parameter-
ized from census data. FluTE’s contact network can be informed by popula-
tion census data, and geographical regions as large as the United States can
be modeled [10]. Next to the social mixing model, FluTE implements an indi-
vidual disease progression model, where different disease stages are associated
with different levels of infectiousness. To support the evaluation of prevention
strategies, FluTE allows the simulation of both therapeutic interventions (i.e.,
vaccines, antiviral compounds) and non-therapeutic interventions (i.e., school
closure, case isolation, household quarantine). FluTE is a highly customizable
simulator in which all model components can be configured in great detail.
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2.4 Multi-armed Bandit

The multi-armed bandit problem [25] concerns a k-armed bandit (i.e., a slot
machine with k levers) where each arm Ai returns a reward ri when it is pulled.
As each arm returns rewards according to a particular reward distribution, a
gambler wants to play a sequence of arms to maximize her/his reward. A strategy
to play such a sequence of arms is called a policy. Such policies need to carefully
balance between exploitation (i.e., choose the arms with the highest expected
reward) and exploration (i.e., explore the other arms to potentially identify even
more promising arms).

Multi-armed bandits have been proven useful to model many empirical
cases: i.a., the organization of clinical trials such that patient mortality is min-
imized [26], resource allocation among competing stakeholders [27], adaptive
routing [28], A/B testing [29] and automated auctioning [30].

One of the simplest bandit learning algorithms is the ε-greedy policy [14], this
policy selects the greedy arm (i.e., the arm with the highest expected reward)
with probability 1 − ε and explores the non-greedy arms with probability ε.
Another popular policy is UCB1 (i.e., Upper Confidence Bound) [15]. UCB1
considers the uncertainty of each arms’ value (i.e., the uncertainty of the expected
reward) by selecting the arm with the highest upper confidence bound. The upper

confidence bound for an arm Ai is computed as x̄i +
√

c ln(n)
ni

where x̄i is the
sample average of Ai, ni is the number of times Ai was played and n is the overall
number of plays [15]. The second term is an exploratory term, which decreases
when arm Ai is being pulled sufficiently. This promotes the exploration of arms
for which the estimated expected reward is uncertain.

3 Methods

To optimize the evaluation of prevention strategies, it is important to identify
the best strategy using a minimal amount of model evaluations. Therefore, we
propose to formulate the evaluation of prevention strategies as a multi-armed
bandit problem. The presented method is generic with respect to the kind of
epidemic that is modeled (i.e., pathogen, contact network, preventive strategies).
The method is evaluated in the context of pandemic influenza in the next section.

3.1 Preventive Bandits

Definition 1. A multi-armed bandit problem [15] consists of n = |{A0, ..., An}|
arms and a (time-independent) reward distribution P (r|Ai, θi) for each arm,
where θi are the parameters of the distribution. At each time step, t, an agent
(i.e., gambler) chooses and plays an arm Ai, and receives a reward, rt sam-
pled (independently) from P (r|Ai, θi). The reward distributions’ parameters are
unknown to the agent.
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The goal in a multi-armed bandit is to optimize the cumulative sum of
rewards. In order to do so, it must select arms that exploit its current knowl-
edge about θi, i.e., by picking the best arm it has seen so far. However, it must
also explore, in order to discover arms that are better. Because the rewards
are received stochastically, the agent must never exclude the possibility that its
current estimates are wrong.

In our setting, we want to find the optimal preventive strategy from a set of
strategies by evaluating the strategies in an epidemiological model.

Definition 2. A stochastic epidemiological model E is a function C × P → R

where: c ∈ C is a configuration, p ∈ P is a preventive strategy and the codomain
R represents the model outcome distribution.

Note that a model configuration c ∈ C describes the entire model environ-
ment. This means both aspects inherent to the model (e.g., FluTE’s mixing
model) and options that the modeler can provide (e.g., population statistics,
vaccine properties, basic reproduction number).

Our objective is to find the optimal preventive strategy from a set of alterna-
tive preventive strategies {p0, ..., pn} ⊂ P for a particular configuration c0 ∈ C
(corresponding to the studied epidemic) of a stochastic epidemiological model.
To this end, we define a preventive bandit.

Definition 3. A preventive bandit has n = |{p0, ..., pn}| arms. Playing arm pi
corresponds to evaluating E(c0, pi) by running a simulation of the epidemiological
model. Evaluating E(c0, pi) results in a sample of the model outcome distribution.
The reward of pi is a mapping of this model outcome (i.e., a sample of the model
outcome distribution) using a mapping function R → R.1

A preventive bandit is thus a multi-armed bandit, in which the arms are pre-
ventive strategies, and the reward distribution is implemented by an instance of
a stochastic epidemiological model E(c0, pi). We note that while the parameters
of the reward distribution are in fact known, it is intractable to determine the
optimal reward analytically from the stochastic epidemiological model.

Formulating the evaluation of preventive strategies in terms of a bandit prob-
lem provides us with a new framework to reason about this task. The goal is to
determine the best preventive strategy (i.e., the prevention strategy that miti-
gates the pandemic best on average) using as little model evaluations as possible.

3.2 Identifying the Optimal Strategy

Our goal is to identify the optimal strategy for a particular configuration c0 ∈ C
while thoroughly exploring all preventive strategies. For this purpose, we explore
the use of the popular ε-greedy and UCB1 algorithms.

1 The mapping function allows the model outcome to be represented more conveniently
for learning.



Efficient Evaluation of Influenza Mitigation Strategies 73

4 Experiments

Two experiments were composed and performed in the context of pandemic
influenza modeling. More specifically, in these experiments we analyze the miti-
gation strategy to vaccinate a population when only a limited number of vaccine
doses is available (details about this scenario in Sect. 2). The experiments are
inspired by the work of Medlock [31].

When the number of vaccine doses is limited, it is imperative to identify
an optimal vaccine allocation strategy [31]. In our experiments, we explore the
allocation of vaccines over five different age groups: pre-school children, school-
age children, young adults, older adults and the elderly.

The experiments share a base model configuration, but differ with respect
to a key epidemiological parameter: the basic reproduction number (i.e., R0).
The basic reproduction number represents the number of infections that is, by
average, generated by one single infection.

4.1 Influenza Model and Configuration

The epidemiological model used in the experiments is the FluTE stochastic
individual-based model (for details please refer to AppendixA). FluTE comes
with a set of sample populations, in this experiment we use the sample pop-
ulation that describes a single community consisting of 2000 individuals (for
details please refer to AppendixA). At the first day of the simulated epidemic,
10 random individuals are infected (i.e., 10 infections are seeded). The epidemic
is simulated for 180 days. During this time no more infections are seeded. Thus,
all new infections established during the run time of the simulation, result from
the mixing between infectious and susceptible individuals. We assume no pre-
existing immunity towards the circulating virus variant. We assume there are
100 vaccine doses to allocate (i.e., vaccine for 5% of the population).

In this experiment, we explore the efficacy of different vaccine allocation
strategies. We consider that only one vaccine variant is available in the simula-
tion environment. FluTE allows vaccine efficacy to be configured on 3 levels: effi-
cacy to protect against infection when an individual is susceptible (i.e., V ESus),
efficacy to avoid an infected individual from becoming infectious (i.e., V EInf )
and efficacy to avoid an infected individual from becoming symptomatic (i.e.,
V ESym). In our experiment we consider V ESus = 0.5 [32], V EInf = 0.5 [32]
and V ESym = 0.67 [7]. The influenza vaccine, as most vaccines, only becomes
fully effective after a certain period upon its administration, and the effective-
ness increases gradually over this period [33]. In our experiment, we assume the
vaccine effectiveness to build up exponentially over a period of 2 weeks [33,34].

We define two experiments: both experiments use the base model configu-
ration as described above. The two experiments differ with respect to their R0

(i.e., basic reproduction number) parameter. To evaluate our new method, we
select 2 values that are used in many studies: R0 = {1.3, 1.4} [5,10,31]. Each
experiment thus has its own configuration. With respect to the definition of the
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epidemiological model (i.e., E = C×P → R), we can express these configurations
as cR0=1.3 and cR0=1.4 ∈ C.

4.2 Formulating Vaccine Allocation Strategies

We consider 5 age groups to which vaccine doses can be allocated: pre-school
children (i.e., 0–4 years old), school-age children (i.e., 5–18 years old), young
adults (i.e., 19–29 years old), older adults (i.e., 30–64 years old) and the elderly
(>65 years old). An allocation scheme can be encoded by a Boolean 5-tuple,
where each position in the tuple corresponds to the respective age group. When
the value is 1 at a position, this denotes that vaccines should be allocated to
the respective age group. When the value is 0 at a position, this denotes that
vaccines should not be allocated to the respective age group. When vaccine is
to be allocated to a particular age group, this is done proportional to the size of
the population that is part of this age group.

Some examples: a preventive strategy where no vaccine should be allocated
is encoded as 〈0, 0, 0, 0, 0〉, a preventive strategy where vaccine needs to be allo-
cated uniformly across all age groups is encoded as 〈1, 1, 1, 1, 1〉, a preventive
strategy where vaccine needs to be allocated exclusively to children is encoded
as 〈1, 1, 0, 0, 0〉.

To decide on the best vaccine allocation strategy, we enumerate all possible
combinations of this tuple. Since the tuple consists of a sequence of {0, 1}∗,
the tuple can be encoded as a binary number. This enables us to represent the
different allocation strategies by integers (i.e., {0, 1, ..., 31}).

With respect to the definition of the epidemiological model (i.e.,
E = C × P → R), this set of 32 strategies is a subset of P.

4.3 An Influenza Bandit

So far, we defined the model configurations (i.e., cR0=1.3 and cR0=1.4) and the
set of preventive strategies (i.e., 32 vaccine allocation strategies) to be evaluated.

Now, let us define the influenza preventive bandit BFlu: BFlu has exactly 32
arms (i.e., {A0, ..., A31} ). Each arm Ai is associated with the allocation strategy
for which the integer encoding is equal to i. To conclude the specification of the
influenza bandit BFlu, we describe what happens when an arm Ai of BFlu is
played:

1. Invoke FluTE with a model configuration c0 ∈ C and the vaccine allocation
strategy pi ∈ P associated with the arm Ai (i.e., this is allocation strategy i,
using the strategy’s integer representation).2

2. From FluTE’s output, extract the proportion of the population that experi-
enced a symptomatic infection: # symptomatic individuals

# individuals .
3. Return a reward = 1− # symptomatic individuals

# individuals . Note that the reward denotes
the proportion of individuals that did not experience symptomatic infection.

2 Note that the configuration is serialized as a text file, for details on the format of
this file, refer to Appendix B.
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4.4 Outcome Distributions

To perform an initial analysis concerning the outcome distributions of the 32
prevention strategies, all strategies were evaluated 1000 times for both model
configurations (i.e., cR0=1.3 and cR0=1.4 ∈ C). Note that generating thousands
of samples (i.e., 2 × 32000 in this case) would not be computationally feasible
when considering a larger population. This analysis is performed to identify the
best strategy, such that we can properly validate the results from our learning
experiments.

The outcome distributions are visualized in Figs. 1 and 2 for cR0=1.3 and
cR0=1.4 respectively. A violin plot is used to plot the density of the outcome
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Fig. 1. Violin plot that depicts the density of the outcome distribution for 32 vaccine
allocation strategies, considering a model environment with R0 = 1.3. For each density,
the sample mean is visualized with a diamond. The sample mean of the optimal strategy
is depicted with a horizontal line.



76 P. Libin et al.

distribution per vaccine allocation strategy. The density for a particular strategy
is computed based on 1000 samples of the strategy’s outcome distribution. Note
that while the distributions have considerable density around the mean of the
distribution, there is also quite some density where the outcome is close to 0.
This is an artefact of the stochastic simulation: the pathogen is not able to
establish an epidemic for certain simulation runs.

Our analysis shows that the best vaccine allocation strategy was identified to
be 〈0, 1, 0, 0, 0〉 (i.e., vaccine allocation strategy 8) for both model configurations
cR0=1.3 and cRo=1.4.
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Fig. 2. Violin plot that depicts the density of the outcome distribution for 32 vaccine
allocation strategies, considering a model environment with R0 = 1.4. For each density,
the sample mean is visualized with a diamond. The sample mean of the optimal strategy
is depicted with a horizontal line.
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4.5 UCB1 and ε-greedy Experiment

To explore the utility of bandits to evaluate preventive strategies, we average
over 500 independent bandit runs for both experiments. For each experiment,
we run the ε-greedy (ε = 0.1) and UCB1 algorithm for 1000 iterations.3

The average reward reported in the first experiment is visualized in Fig. 3
for both the ε-greedy and UCB1 algorithm. The average reward reported in
the second experiment is visualized in Fig. 4 for both the ε-greedy and UCB1
algorithm.

We observe that the average reward starts to increase from iteration 400, for
both ε-greedy and UCB1, and continues to increase for the rest of the iterations.
However, we also note that the average reward learning curve increases faster
for ε-greedy than for UCB1.
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Fig. 3. Reward learning curve for the first experiment (i.e., model with R0 = 1.3), aver-
aged over 500 independent bandits for 1000 iterations. This plot depicts the learning
curve for both the ε-greedy and UCB1 algorithms.

In the previous section, the best vaccine allocation strategy was identified to
be 〈0, 1, 0, 0, 0〉 (i.e., vaccine allocation strategy 8) for both cR0=1.3 and cRo=1.4.
Figure 5 visualizes the percentage of plays of the optimal arm (i.e., vaccine allo-
cation strategy 〈0, 1, 0, 0, 0〉) for the first experiment. Figure 6 visualizes the per-
centage of plays of the optimal arm (i.e., vaccine allocation strategy 〈0, 1, 0, 0, 0〉)
for the second experiment.
3 To remind the reader, each arm involves the invocation of the FluTE simulator,

and is therefore associated with a significant computational cost (for details, please
see Appendix D).
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0 100 200 300 400 500 600 700 800 900 1,000

Iterations

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

A
ve

ra
g

e 
re

w
ar

d

Fig. 4. Reward learning curve for the first experiment (i.e., model with R0 = 1.4), aver-
aged over 500 independent bandits for 1000 iterations. This plot depicts the learning
curve for both the ε-greedy and UCB1 algorithms.
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Fig. 5. Optimal action selection learning curve for the first experiment (i.e., model
with R0 = 1.3), averaged over 500 independent bandits for 1000 iterations (i.e., the
Y-axis depicts the % the optimal action was selected). This plot depicts the learning
curve for both the ε-greedy and UCB1 algorithms.
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Fig. 6. Optimal action selection learning curve for the first experiment (i.e., model
with R0 = 1.4), averaged over 500 independent bandits for 1000 iterations (i.e., the
Y-axis depicts the % the optimal action was selected). This plot depicts the learning
curve for both the ε-greedy and UCB1 algorithms.

For both of the experiments, ε-greedy ends up selecting optimal actions 60%
of the time after 1000 iterations. As we observed for the average reward learning
curve, UCB1 also performs worse with respect to the optimal action selection
learning curve, reaching only 40–45% optimal action selection.

5 Discussion

Our influenza model, and more specifically the context in which only a limited
set of vaccine doses is available, was inspired by the work presented by Medlock
and Galvani [31]. However, we consider a much smaller population (i.e., 2000
individuals versus the entire United States), to make it computationally feasible
to validate our learning experiments. Furthermore, because of the differences
between the model setup presented by Medlock and FluTE, a perfect mapping
was not possible. It would therefore not be sound to compare our results directly
to the results obtained by Medlock. We were, however, able to reproduce some
significant trends. The best strategy identified by our analyses is associated with
the allocation of vaccine to children: this is in agreement with Medlock’s work.

The analysis of the outcome distributions for the different vaccine allocation
strategies shows that there is one optimal strategy 〈0, 1, 0, 0, 0〉. The differences
between the means and medians of the different strategies are however not very
pronounced. This is related to the limited number of available vaccine doses.
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For both of the experiments, ε-greedy ends up selecting optimal actions 60%
of the time after 1000 iterations. These results demonstrate that it is possible to
identify the optimal strategy using only a limited number of model evaluations,
even if there is a large number of preventive strategies to consider. We also
observe, that both the average reward and optimal action selection learning
curves continue to increase, indicating that the learning has not yet converged.
It is however important to stress that, our main interest is not convergence, but
to identify the best strategy using a minimal number of model evaluations.

We observe that, in our experiment setting, ε-greedy outperforms UCB1,
both with respect to the average reward learning curve and the optimal action
selection learning curve.

To support the reproducibility of our research, all source code and configu-
ration files used in our experiments is publicly available (for details, please see
the Appendices).

6 Conclusions

We formally defined the evaluation of prevention strategies as a multi-armed
bandit problem. We used this formal definition to describe a bandit that can
be used to evaluate vaccine allocation strategies with the intention to mitigate
pandemic influenza. Two elaborate experiments were set up to evaluate this
preventive bandit using the popular FluTE individual-based model. To assess the
performance of the preventive bandit, we report an average over 500 independent
bandit runs, for the two experiments.

We demonstrate that it is possible to identify the optimal strategy using
only a limited number of model evaluations, even if there is a large number of
preventive strategies to consider.

We are confident that our method has the potential to be used as a decision
support tool for mitigating influenza epidemics. To increase this potential, we
aim to significantly extend the features of our tool and framework.

Firstly, while our method is evaluated in the context of pandemic influenza,
it is important to stress that both our formalisms and infrastructure can be
used to evaluate prevention strategies for other infectious diseases. We expect
that epidemics of arboviruses (i.e., viruses that are transmitted by a mosquito
vector; e.g., Zika virus, Dengue virus) are a particularly interesting use case
for our preventive bandits. Only since recently, Dengue and Zika vaccines are
available [35] or in the pipeline [36], and the optimal allocation of these vaccines
is an important research topic [37]. Additionally, there exist individual-based
arbovirus models [38] that could be readily applied to perform such analyses.
We aim to test our approach on these pathogens as well.

Secondly, we aim to make different algorithmic extensions. In this study,
we used elemental bandit learning algorithms (i.e., ε-greedy and UCB1). We
acknowledge that other algorithms are more suited to identify the optimal
action and could potentially learn faster. We created the infrastructure to easily
implement and experiment with different algorithms and epidemiological mod-
els (details can be found in the Appendices) and we will use this framework
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to explore the use of other algorithms. Furthermore, the use of stateless rein-
forcement learning (i.e., bandits) presents us with a stepping stone to consider
reinforcement learning where the partial or full state of the epidemiological model
(e.g., which people are currently infected, and which measures have already been
taken and to what effect) is used to learn preventive strategies that are more
reactive towards events that take place in the simulation. We believe that such
strategies may prove to be better than the static strategies we used in this study.

Finally, our current preventive bandits only learn with respect to a single
model outcome: more specifically, for influenza this is the proportion of symp-
tomatic infections. In the context of influenza, and for many infectious diseases,
there is often interest to consider additional model outcomes (e.g., morbidity,
mortality, cost). In the future, we aim to use multi-objective multi-armed ban-
dits [39] in contrast to the current single-objective preventive bandits. With this
approach, we plan to learn a coverage set containing an optimal strategy for
every possible preference profile the decision makers might have [40]. We aim to
design suitable quality metrics [41–43] tailored to the use case of epidemiological
preventive strategy learning, to support the entire spectrum of epidemiological
models and thus to prevent method over-fitting [43].
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Appendix

A FluTE Source

FluTE is a stochastic individual-based model, that is implemented in C++.
The original source code, as release by FluTE’s author (i.e., D. Chao), is avail-
able from https://github.com/dlchao/FluTE. This github repository contains
FluTE’s C++ source code, GNU/Linux-specific make files and a set of popu-
lation density descriptions that can be used to simulate particular geographical
settings (i.e., 2000-individual population, Seattle, Los Angelos and the entire
United States).

Some changes were made to the source code to make our research easier: we
organized the source code in a directory structure and added a CMake meta-
make file. This CMake build file allows us to build the source code on GNU/Linux

https://github.com/dlchao/FluTE
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and MacOS. These changes are publicly available on the https://github.com/
vub-ai-lab/FluTE-bandits github repository.

B FluTE Configurations

To run our experiments, we defined a model environment to evaluate pre-
vaccination with little vaccine available, as described in detail in Sect. 4. The pre-
vaccination configuration script can be found in the ‘configs/bandits’ directory of
the https://github.com/vub-ai-lab/FluTE-bandits github repository. Note that
this configuration script is a python Mako template (http://makotemplates.
org/), to enable easy parameterization of the configuration script.

C Bandit Implementation

We implemented a flexible bandit framework in Scala, the code is publicly avail-
able on github: https://github.com/vub-ai-lab/scala-bandits. This framework is
specifically designed to enable us to easily experiment with new algorithms and
environments (i.e., both Scala environments and external environments, such as
e.g., the FluTE simulator environment). The repository contains the ε-greedy
algorithm, the UCB1 algorithm, the Sutton test environment [14], the FluTE
environment and some post processing utilities.

D High Performance Computing

Simulating epidemics using individual-based models is a computationally inten-
sive process. Therefore, our experiments were run on a powerful high perfor-
mance computing cluster: the Flemish Supercomputer Center. We report that,
to make this possible, all software had to be installed (or built) for the high per-
formance computing cluster. We report that our FluTE CMake file allows the
generation of efficient code (i.e., using SSE instructions) for all platforms used
in our analyses (i.e., MacOS, XUbuntu desktop GNU/Linux and GNU/Linux
on the high performance computing cluster).
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29. Kaufmann, E., Cappé, O., Garivier, A.: On the complexity of A/B testing. In:
COLT, pp. 461–481 (2014)

30. Blum, A., Kumar, V., Rudra, A., Felix, W.: Online learning in online auctions.
Theoret. Comput. Sci. 324(2–3), 137–146 (2004)

31. Medlock, J., Galvani, A.P.: Optimizing influenza vaccine distribution. Science
325(5948), 1705–1708 (2009)

32. McLean, H.Q., Thompson, M.G., Sundaram, M.E., Kieke, B.A., Gaglani, M.,
Murthy, K., Piedra, P.A., Zimmerman, R.K., Nowalk, M.P., Raviotta, J.M.,
Jackson, M.L., Jackson, L., Ohmit, S.E., Petrie, J.G., Monto, A.S., Meece, J.K.,
Thaker, S.N., Clippard, J.R., Spencer, S.M., Fry, A.M., Belongia, E.A.: Influenza
vaccine effectiveness in the United States during 2012–2013: variable protection by
age and virus type. J. Infect. Dis. 211(10), 1529–1540 (2015)

33. Abbas, A.K., Lichtman, A.H., Pillai, S.: Cellular and Molecular Immunology.
Elsevier Health Sciences, Amsterdam (2014)

34. CDC: Key facts about influenza (flu) & flu vaccine. Centers for Disease Control
and Prevention, Atlanta (2014)
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