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Abstract. There is increasing interest in promoting participatory
democracy, in particular by allowing voting by mail or internet and
through random-sample elections. A pernicious concern, though, is that
of vote buying, which occurs when a bad actor seeks to buy ballots,
paying someone to vote against their own intent. This becomes possi-
ble whenever a voter is able to sell evidence of which way she voted.
We show how to thwart vote buying through decoy ballots, which are
not counted but are indistinguishable from real ballots to a buyer. We
show that an Election Authority can significantly reduce the power of
vote buying through a small number of optimally distributed decoys, and
model societal processes by which decoys could be distributed. We also
introduce a generalization of our model to non-binary election outcomes.

1 Introduction

The goal of participatory democracy [9,11] is to engage citizens more frequently
and with more granularity in the decision-making processes of government bod-
ies. Technologies that can help with this transition are those that support voting
from the home by mail or over the internet, and that make use of random sam-
ple elections, in which a representative subsample of the population is tasked
with voting on a particular issue, allowing participatory democracy to function
without everyone needing to be concerned with every issue.

A pernicious concern, though, is that of vote buying, where a bad actor
attempts to gain improper influence in an election by purchasing ballots from
voters and paying them to vote against their intent. The practical implications
of this are manifold, since the social construct of elections relies on the percep-
tion of reliability and fairness. Vote buying has been an everlasting threat to
democracy; for example, a survey shows that in the 1996 Thai general elections
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“one third of households were offered money to buy votes at the last general elec-
tion” [13]. Schaffer [14] mentions that “[Vote buying]... is making an impressive
comeback...it seems, a blossoming market for votes has emerged as an epiphenom-
enon of democratization”. New technologies can make the situation worse. For
example, web platforms can serve as middlemen, digital currency supports anony-
mous payments, and abundant data coupled with machine learning can help buy-
ers discover entrapment schemes as well as identify voters to target with offers.

In this paper, we show that vote buying can be thwarted by distributing
decoy ballots, which are not counted, in addition to real ballots. A vote buyer
will not know whether a ballot is real or decoy, and thus, decoys (if sold) may
deplete a buyer’s budget. Voters who know that they have a decoy ballot are
motivated to sell their ballots to a buyer, both for reasons of profit and out
of civic duty, wanting to maintain the election’s integrity. David Chaum earlier
introduced the notion of random sample voting, and proposed decoy ballots
in order to address the potential problem of vote buying in remote elections
generally and for random sample voting in particular [4]. He has also introduced
the key notion of proof of decoy (see Sect. 2). We study how to distribute decoy
ballots, and analyze the power of this approach.

We assume that real ballots impose a high cost on society, for the reason
that it takes effort for citizens to become informed about an issue and vote
appropriately, thus representing their considered opinion on an issue.1 Without
the willingness to invest this effort, methods of participatory democracy may
ultimately fail. For example, a simple calculation for the US shows that if we
assume that 200 M people will participate, and there are about 12,000 issues to
decide per year,2 then assuming that voters are willing to engage three times a
year, we have a maximum of 50,000 voters per issue. At this scale, vote buying,
especially on contentious issues, may pose a severe problem.

Turning to decoy ballots, we model these as costly but not so costly that
the number of decoys to distribute cannot be considered as a design decision of
the Election Authority. The cost of decoys comes about because, to be effective,
voters need to be willing to go to the effort to sell the ballot (and thus, cast the
ballot and prove which way it was cast) if approached by a buyer. But because
any decoy ballots are not counted, we assume it is less cognitively expensive for
a voter to form an opinion.

Although we situate our discussion in a societal context, similar themes can
be imagined for economies of AIs [12], where it is desired to elicit and fairly
aggregate multiple opinions, but would not be scalable to request input from
every agent all the time.

Our Contributions. Focusing mostly on the binary outcome case, we provide
a formal model of vote buying, including a characterization of the vote buyer’s

1 In some approaches to random-sample voting this cost comes also about as a result
of needing to physically mail ballots.

2 This represents the approximate voter population and the number of issues before
Congress per year, assuming 2 issues per bill.
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behavior and an optimal policy for distributing decoy ballots by the Election
Authority (EA). In addition, we model two societal processes by which decoys
could be distributed—these approaches freeing the EA of any concern that it
could be seen to be biasing the outcome of an election when distributing decoys
in any way other than reflecting a random sample of the population. In simula-
tion, we show that the EA can make effective use of decoy ballots to maintain
election integrity (e.g., reducing the probability that the buyer changes the out-
come to less than 1%). For the optimal defense, we are able to achieve this by
adding a small number of decoys that are proportional in quantity to the num-
ber of ballots the buyer can afford to buy. Interestingly, a “civic duty defense”
that allocates decoys to a random subset of those who request one is almost as
effective as the optimal defense in which the EA optimizes the distribution of
voter types that receive decoys. We also provide a generalization of our model to
the three-outcome case, prove that a buy the expected winner strategy is optimal
for elections with simple voter types, and provide numerical results illustrating
the strategy of both the buyer and the EA in equilibrium.

Related Work. There are numerous studies on vote buying, for example [8,
15,16,19]. These include game-theoretic models of vote buying, but none that
consider the role of decoy ballots. In the work by Dekel et al. [6], the game is
played by the candidates themselves buying votes, Groseclose and Snyder [10]
study vote buying in legislative bodies and analyze the optimal coalition size.
Vicente [18] studies the incumbency advantage in a vote buying game. Within
AI, the problem studied here related to studies of control (manipulation of the
election structure, including changing the candidate slate) and bribery (voters
are paid by an interested party to vote a certain way) as studied in computational
social choice [2,7]. In particular, the lobbying problem considers an election with
a binary outcome on a number of issues, and the vote buyer has a total budget
that can be expended across all issues [1,3,5]. Ours is a special case with a
single issue, but whereas previous research has focused on using computational
complexity as a barrier against bribery and control, we adopt a game-theoretic
model and study the power of decoy ballots. There is also a conceptual connection
with work on security games [17], where the approach is to use game theory to
design optimal strategies to prevent losses from terrorist attacks.

2 The Model

We assume that there is a large population of possible voters, and, for now,
assume that this is a binary choice election with possible votes YES and NO.
For expositional simplicity, we assume that all voters who receive a real ballot
will place a vote. Similarly, we assume that every voter for whom it is profitable
to sell a ballot (decoy or otherwise) will try to sell the ballot.3

3 It is simple to generalize the model so that the voters who cast ballots are sampled
uniformly from those who receive ballots, and similarly for those who try to sell
ballots.
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The voters. Each voter i has an immutable, publicly-observable voter type, θi,
which indicates the probability that a random voter with this type will vote YES.
We can think about θi as the prior that a voter will vote YES before she has
carefully considered the merits of an issue. Voter types are drawn independently
from a voter type distribution with probability density f , assumed to have full
support on [0, 1]. We assume without loss of generality that Ef [θ] < 1/2, i.e.,
that the outcome of the election without any interference by a buyer and with
enough real ballots is NO.

The buyer. We model a single, budget-limited buyer. Given our assumption
that Ef [θ] < 1/2, we consider the interesting case of a YES-buyer, meaning that
the buyer wants the election outcome to be YES. To keep things simple, we
assume the buyer can find the voters with ballots, and will offer the same price
p > 0 to each voter in some subset of these voters. The buyer has a budget B,
representing the number of ballots that he can afford to purchase at price p, and
has no utility for unspent budget. The buyer selects a random subset of voters
if more respond to the offer than he can afford.

Conditioned on whether a voter’s intent is to vote NO or YES, and whether
they have a real or decoy ballot, all voters have the same utility function in
regard to whether or not to sell. In particular, simple analysis yields that this
ordering of the minimum price that a voter will require in order to agree to
sell a ballot is real-NO> real-YES>decoy-YES>decoy-NO. For example, any
price that is acceptable to a “real-YES” voter (real ballot, intent to vote YES) is
also acceptable to “decoy-YES” and “decoy-NO” voters. Ballots from decoy-NO
voters are the cheapest to buy.4

Based on this, the real-NO votes—and the only ones the buyer is interested
in—are the most expensive ballots to buy. Because of this, we assume the buyer
will set price p high enough for a real-NO voter to agree to sell if approached.
This could be set based on market research, for example.

The game form. The voters who receive a real ballot are a random subset
of the population, and thus with types that follow f . The choice of how to
distribute decoy ballots is, in general, a design decision. Let ψ denote the density
function for this decoy ballot distribution. Modeled as a sequential-move game,
the election proceeds in three stages:

(1) The EA distributes some number of real and decoy ballots, with the number
and type distribution of real ballots assumed fixed, but the number of decoy
ballots, and perhaps type distribution ψ a design decision.

4 To understand this ordering, suppose that a voter with a real ballot has a cost for
selling, representing the possibility of being caught. In addition, voters that intend
to vote NO prefer not to vote YES. Thus, real-NO ballots are the most expensive
votes to buy. Amongst decoys, decoy-YES ballots are more expensive to buy than
decoy-NO ballots because a voter who would vote NO (if she had a real ballot) has
a value for depleting the budget of a YES-buyer. This is not the case for a voter who
would vote YES.
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(2) The buyer learns who has received a ballot (possibly a decoy) and chooses to
offer price p to each voter in some subset of voters who have (real or decoy)
ballots. The voters who receive an offer decide whether or not to sell. The
buyer breaks ties at random if multiple voters agree to sell.

(3) Both real and decoy ballots are cast, and the real ballots are tallied to
determine the outcome. The buyer makes payments to voters who agreed to
sell and provide a proof that they vote YES.

Both distribution f and the type of each voter is common knowledge. Our
analysis will focus on the subgame perfect equilibrium of this game. Throughout,
the voters have a simple equilibrium behavior—agree to sell if offered a price p
(which will, in equilibrium, be high enough to be acceptable.)

Proof of decoy. We assume the existence of a proof-of-decoy, which lets a voter
with a decoy choose to prove that she has a decoy. This is required to mitigate the
“fear of being caught selling a ballot”— that way, a voter with a decoy can prove
to a vigilante that she is not selling a real ballot. On the other hand, there is no
way to prove the authenticity of a real ballot. This property is easy to support
through standard cryptographic primitives; see, for example, Chaum [4].5

EA and Buyer objectives. We take as the objective of the EA that of main-
taining election integrity, and thus minimizing the probability that the buyer
changes the election outcome. In contrast, the interests of the buyer are diamet-
rically opposed, and he wants to maximize the probability that the outcome of
the election is changed.

3 Buyer Analysis

Given the buyer’s objective, the best response of the buyer to the EA is to
maximize the expected number of real-NO ballots that he buys, given his budget
B and knowledge about voters’ types (probability of voting YES). Let I ⊆ [0, 1]
denote the subset of voter types from which the buyer buys; in particular, the
buyer will buy every ballot held (real or decoy) by voters of these types. Let nr

denote the number of real ballots and nd the number of decoy ballots. The buyer
wants to select the subset I to solve:

max
I

∫
I

nr

nr + nd
(1 − θ)f(θ)dθ s.t.

∫
I

nrf(θ) + ndψ(θ)dθ ≤ B. (1)

In this way, the buyer maximizes a quantity that is proportional to the
expected number of real-NO ballots purchased, subject to the total budget.

5 The asymmetry in having proof-of-decoy without proof-of-authenticity is important
to prevent a buyer from using coercion to buy only real ballots, while at the same
time allowing a voter with a decoy ballot to sell without fear of being accused of
acting against the social good. A voter will never choose to reveal that she holds a
decoy to a buyer, since doing so would remove the chance of a sale.
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Let h(θ) denote the probability that a ballot is real-NO given type θ. By Bayes’
rule, and recalling that the buyer has knowledge of f and ψ, this is

h(θ) def= P (real ∧ NO|θ) =
nr(1 − θ)f(θ)

nrf(θ) + ndψ(θ)
. (2)

Given a set I ⊆ [0, 1], let h(I) denote the set {h(θ)} for θ ∈ I. Let h(I1) <
h(I2) mean that every value in I1 is strictly less than every value in I2.

Lemma 1 (Buyer Optimality). The optimal buyer strategy in the subgame
perfect equilibrium is to buy in order of decreasing h(θ) until the budget is
exhausted.

Proof. Suppose not, i.e., suppose that there is a set J ⊂ I and a set J ′ �⊂ I
such that h(J ′) > h(J). Then, the buyer could strictly increase his objective by
buying J ′ instead of J .

We assume w.l.o.g. that if a YES-buyer has to choose between buying two
subsets of [0, 1] for which h(θ) is equal, he will buy the subset with lower θ.
Let M

def=
∫

I f(θ)dθ denote the fraction of real ballots that the buyer buys. By
‘election bought’, we refer to the event that the buyer buys enough real ballots
to change the outcome (with nr real ballots); by ‘correct outcome is NO’, we
refer to the event that the election outcome is NO (with nr + nd real ballots).

Lemma 2. The probability that the buyer changes the outcome in the subgame
perfect equilibrium is given by

P (buyer changes outcome)
= P ([election bought] ∧ [correct outcome is NO])

≈P

(
nr(1 − 2M − 2(1 − M)μY )
2
√

nr(1 − M)μY (1 − μY )
< Z <

(1 − 2μ)
√

nr + nd

2
√

μ(1 − μ)

)
, (3)

where Z ∼ N (0, 1), μ
def= Ef [θ], and μY

def= 1
1−M

∫
[0,1]\I θf(θ)dθ.

Proof. Let the type distribution of the unbought types be given by

fY (θ) def=

{
f(θ)
1−M for θ ∈ [0, 1] − I
0 for θ ∈ I . (4)

To model votes, we introduce the shorthand notation Xi � f(θ) to denote
the hierarchical model θi ∼ f(θ);Xi ∼ Bern(θi). The probability that the buyer
changes the outcome is given by

P (buyer changes outcome)
= P ([election bought] ∧ [correct outcome is NO])

= P

([∑(1−M)nr

i=1 Vi

nr
+ M >

1
2

]
∧

[∑nr+nd

j=1 Wj

nr + nd
<

1
2

])
, (5)
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where Vi � fY (θ) and Wj � f(θ). We can use the Normal approximation to
the Binomial to obtain

P (buyer changes outcome)

≈ P

(
nr(1 − 2M − 2(1 − M)μY )
2
√

nr(1 − M)μY (1 − μY )
< Z <

(1 − 2μ)
√

nr + nd

2
√

μ(1 − μ)

)
. (6)

This allows us to compute the probability the buyer changes the election
outcome, which is determined by the fraction of real ballots that he is able to
buy given a defense.

(a) optimal defense (b) civic duty defense

(c) auction-based defense

Fig. 1. Examples of type distribution f(θ), decoy distribution ψ(θ), and desirability to
buyer h(θ) for (a) an optimal defense, (b) a civic duty defense with max type requesting
a decoy xC = 0.5 and 10% decoy ballots, (c) an auction-based defense with max type
assigned a decoy xA = 0.5 and 50% decoy ballots. Here f = Beta(1, 2).

4 Optimal Decoy Distribution

In this section, we assume that the EA can design defense distribution ψ, and
study the equilibrium of the vote-buying game where the EA chooses an optimal
defense given that the buyer will best respond.
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Definition 1 (Canonical Defense). Defense ψ is canonical if there is some
x, 0 ≤ x ≤ 1, s.t. h(θ) = min(1 − x, 1 − θ).

See Fig. 1(a) for an illustration of a canonical defense. Let supp(g) denote
the support of distribution g. Define the following two properties for ψ:

(P1) h(θ) has the same value for all θ ∈ supp(ψ).
(P2) minθ∈supp(ψ) h(θ) ≥ maxθ/∈supp(ψ) h(θ)

Lemma 3. Any defense ψ satisfying both P1 and P2 is canonical.

Proof. We assume that ψ satisfies P1 and P2, and show that supp(ψ) = [0, xxO]
for some xO ∈ [0, 1], i.e., we must have 0 ∈ supp(ψ), supp(ψ) must be contiguous,
and the left endpoint of supp(ψ)def= [x0, xO] is 0 (i.e., x0 must be 0). Assume that
ψ is a defense that satisfies both P1 and P2.

Since ∀θ /∈ supp(ψ), h(θ) = 1 − θ and ∀θ ∈ supp(ψ), h(θ) ≤ 1 − θ, this
tells us that P2 requires 0 ∈ supp(ψ). Otherwise, h(0) > maxθ∈supp(ψ) h(θ) ≥
minθ∈supp(ψ) h(θ), which contradicts P2.

Next, assume for contradiction that supp(ψ) is not contiguous. Then, consider
the first two intervals J1

def= [x1, x2] and J2
def= [x3, x4], with J1, J2 ⊆ supp(ψ). By

P1, h(θ) has the same value ∀θ ∈ supp(ψ). Call this value y. First, we examine
the special case of x1 = 0. Then, we have

y ≤ (1 − x4) < (1 − x3) ≤ max
θ/∈supp(ψ)

h(θ), (7)

i.e., y < maxθ/∈supp(ψ) h(θ), but this contradicts P2.
So then, suppose that x1 �= 0. Then, we have

y ≤ (1 − x4) < (1 − x3) < (1 − x2) < (1 − x1) ≤ max
θ/∈supp(ψ)

h(θ), (8)

i.e., y < maxθ/∈supp(ψ) h(θ), but this contradicts P2.
Finally, assume for contradiction that supp(ψ) = [x1, x2], and consider x0 < x1

(i.e., x1 > 0). We have h(x0) > 1 − x1, and then h(x0) > minθ∈supp(ψ) h(θ),
contradicting P2.

Lemma 4. If the buyer buys all ballots in supp(ψ), then there is a canonical
defense ψ′ with the same value.

Proof. Let ψ be a non-canonical defense. Suppose that supp(ψ) ⊆ I, and let
d = minθ∈supp(ψ) h(θ). By Lemma 1, the buyer buys all ballots with θ ≤ 1 − d.
Now let ψ′ denote a canonical defense, and let h′(θ) = nrf(θ)(1−θ)

nrf(θ)+ndψ′(θ) . Now
minθ∈supp(ψ′) h′(θ) ≥ d by P1. Thus, the buyer still buys all ballots with θ ≤ 1−d,
including all of the decoys distributed according to ψ′.

Lemma 3 characterizes canonical defenses in terms of the properties defined
above. Lemma 4 shows that if the buyer can buy up all decoys, then how they
are distributed no longer matters.

Fixing the number of real ballots nr, the EA’s remaining choices are about
nd and ψ. We now state our main characterization result.
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Theorem 1. For a given nr, nd, and buyer budget B, the optimal strategy of
the EA in the subgame perfect equilibrium is canonical.

Proof. Assume for contradiction, that there is a non-canonical ψ that is better
than any canonical defense. Let k be an index, and consider a sequence of defenses
{ψk} = {ψ0, ψ1, ...}, where ψ

def= ψ0. We will show that we can define a finite
sequence that obtains a canonical defense at least as good as ψ. Let hk(θ) denote
the function h that corresponds to ψk.

Let Ik ⊆ [0, 1] denote the set of intervals that are best for the buyer given
ψk (solving for the buyer’s objective subject to his budget). If the buyer buys
all ballots in supp(ψk), then by Lemma 4, we can modify ψk to form a canonical
ψk+1 with the same value, and we are done.

Suppose otherwise, and that in addition ψk does not satisfy P1 and P2. That
is, we have:

(P0) the buyer does not buy all ballots in supp(ψk), and one or both of
(¬ P1) hk(θ) takes on multiple values for θ ∈ supp(ψk)
(¬ P2) minθ∈supp(ψk) hk(θ) < maxθ/∈supp(ψk) hk(θ).

By P0, we can construct some interval Sk ⊆ supp(ψk) (the source set),
where the buyer is not buying all ballots, and an interval Tk ⊆ Ik (the tar-
get set), such that hk(Sk) < hk(Tk) (and thus, Sk ∩ Tk = ∅). Let Rk =
suppψ \ Ik be the remaining subset of supp(ψ) that the buyer is not buy-
ing. We must have argminθ∈supp(ψk)

hk(θ) ⊆ Rk. The existence of Tk follows
from ¬P1 because ∃θ ∈ Ik for which hk(θ) > minθ∈supp(ψk) hk(θ) (the exis-
tence is guaranteed by values of θ ∈ supp(ψk) that are greater than the min-
imum), and thus we have maxθ∈Ik

hk(θ) > minθ∈supp(ψk) hk(θ). If ¬P2, then
by buyer optimality (Lemma 1), argminθ∈supp(ψk)

hk(θ) ⊆ Rk. In both cases,
argminθ∈supp(ψk) hk(θ) ⊆ Sk.

We pick εS , εT > 0 to define a move of a uniform slice of ψ density from Sk

to Tk such that,

(i)
∫

θ∈Sk
max(0, ψk(θ) − εS) dθ =

∫
θ∈Tk

εT dθ [mass conservation]
(ii) hk+1(Sk) < hk+1(Tk) [target set still preferred by buyer to source set]

By continuity (except possibly on a set of measure 0) of h(θ), such an εS , εT

pair that satisfies (ii) exists. We argue that Sk ∩ Ik+1 = ∅. Before the ψ mass
is moved, we have min hk(Ik) ≥ hk(Tk) > hk(Sk). After the move, we have
min hk+1(Ik+1) ≥ hk+1(Tk) > hk+1(Sk). The inequality is because the buyer can
always exhaust his budget by buying Ik. Thus, we know that the buyer does not
buy anything in Sk after the ψ mass has been moved. Let Qk

def=
∫

Ik
(1−θ)f(θ)dθ.

Thus, we have Qk+1 ≤ Qk because the only set on which hk+1(θ) > hk(θ) is Sk.
In addition, minθ∈supp(ψk) hk(θ) < minθ∈supp(ψk+1) hk+1(θ). Because ∀k ∈ Z

+,
θ ∈ [0, 1], hk(θ) ≥ 0 the sequence must be finite.
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Note that hk+1(θ) only differs from hk(θ) at Sk and Tk, increasing at Sk and
decreasing at Tk. We have

min
θ∈supp(ψk+1)

hk+1(θ)

= min
[
min
θ∈Sk

hk+1(θ), min
θ∈Tk

hk+1(θ), min
θ∈supp(ψk+1)\{Tk,Sk}

hk+1(θ)
]

> min
[
min
θ∈Sk

hk(θ), min
θ∈Sk

hk(θ), min
θ∈Sk

hk(θ)
]

= min
θ∈supp(ψk)

hk(θ). (9)

Theorem 1 says that for a given nr and nd, the optimal design of ψ by the
EA is canonical. The next result shows that ψ (and its support, which is [0, xO],
“o” for optimal) can be easily computed given any nr and nd.

Theorem 2. For any given nr and nd, the optimal defense of the EA in the
subgame perfect equilibrium is given by a decoy ballot distribution with density
function

ψ(θ) =

{
nr

nd

(xO−θ)f(θ)
1−xO

for θ ∈ [0, xO]
0 for θ ∈ (xO, 1]

, (10)

where the threshold xO is determined by the following equation: 1
1−xO

∫ xO

0
F (θ)dθ = nd

nr
and F (θ) is the CDF of f .

Proof. We suppose that nr and nd are fixed, and solve the expression h(θ) = c
for ψ(θ), where θ ∈ [0, xO] and c > 0, which gives us

ψ(θ) =
nr

nd

(
(1 − θ)f(θ)

c
− f(θ)

)
. (11)

Now, we need ψ(θ) to be non-negative on its support, which gives us c ≤ 1 −
θ,∀θ ∈ [0, xO], which implies that c ≤ 1 − xO. Further, we need

∫ xO

0

nr

nd

(
(1 − θ)f(θ)

1 − xO

− f(θ)
)

= 1, (12)

which implies that 1
1−xO

(
F (xO) − ∫ xO

0
θf(θ)dθ

) − F (xO) = nd

nr
, and after inte-

grating by parts and using the fact that θ ≥ 0, we obtain 1
1−xO

∫ xO

0
F (θ)dθ = nd

nr
.

Also, plugging in 1 − xO for c, we have, ∀θ ∈ [0, xO],

ψ(θ) =
nr

nd

(
(1 − θ)f(θ)

1 − xO

− f(θ)
)

=
nr

nd

(xO − θ)f(θ)
1 − xO

, (13)

as desired.

With this expression, we can determine the power of increasing the number
of decoys, nd, for any voter type distribution f , buyer budget B, and number of
real ballots nr.
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Fig. 2. Comparing the power of different defenses, with f = Beta(2, 4), 1000 ballots
in total (some real, some decoy), and different buyer budgets B. (a) Optimal defense,
varying the fraction of real ballots. (b) Civic duty defense, with the EA optimizing the
number of decoy ballots to use for each value of parameter xC (the ‘max type requesting
decoy’). (c) Auction-based defense, with the EA optimizing the number of decoys to
use for each value of xA (the ‘max type assigned a decoy’).

5 Neutral Approaches

In this section, we consider defenses where the EA does not design ψ, since doing
so may be argued as the EA playing too active a role in running the election.
Beyond neutrality, these new approaches have the additional advantage of not
relying on the EA having knowledge of f .

5.1 A Constrained Defense

We first consider a constrained defense:

Definition 2. Defense ψ is constrained if the EA distributes decoy ballots uni-
formly at random, i.e., ψ = f .

Having a constrained defense implies that h(θ) = nr

nr+nd
(1−θ) and I = [0, τC ]

for some τC > 0, such that the budget is spent, i.e., F (τC) = B/(nr + nd).
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Definition 3 (Low Budget). A low budget is a budget where
∫ 1

τC
θf(θ)dθ <

1
2 − F (τC).

Definition 4 (High Budget). A high budget is a budget where
∫ 1

τC
θf(θ)dθ >

1
2 − F (τC).

In words, for a buyer with a low (high) budget, the expected number of real
ballots the buyer buys is lower than (exceeds) the amount needed to change the
election outcome.

One way to study the power of a constrained defense is to consider the
following question: if the total number of ballots is fixed, what is the optimal
mix of real and decoy ballots?

Theorem 3. Fixing the total number of ballots, the best constrained defense for
the EA in the subgame perfect equilibrium is all (one) real ballots for low (high)
buyer budget under the Normal approximation (3).

Proof. We want to find, for fixed nr + nd,

argmin
{nr,nd}

P (buyer changes outcome) (14)

≈ argmin
{nr,nd}

P

(√
nr(1 − 2F (τ) − 2(1 − F (τ))μY )

2
√

(1 − F (τ))μY (1 − μY )
< Z

)
. (15)

If a buyer has low budget, then this means that μY (1 − F (τ)) < 1
2 − F (τ),

which implies that
√

nr(1 − 2F (τ) − 2(1 − F (τ))μY )

2
√

(1 − F (τ))μY (1 − μY )
< 0, (16)

and P (buyer changes outcome) is minimized when nd = 0. Similarly, if a buyer
has high budget, then this means that μY (1 − F (τ)) > 1

2 − F (τ), which implies
that

√
nr(1 − 2F (τ) − 2(1 − F (τ))μY )

2
√

(1 − F (τ))μY (1 − μY )
> 0, (17)

and P (buyer changes outcome) is minimized when nr → 0.

With a low buyer budget, while a constrained defense makes the buyer buy
some decoys, it also leaves unpurchased decoys and reduces the number of unpur-
chased real ballots, decreasing the accuracy of the result. Thus, decoys are not
useful for the EA in this case. On the other hand, the best that the EA can do
with a buyer with a high budget is to issue a single real ballot, with the hope
that the buyer won’t buy it, resulting in a high variance outcome based on the
vote of a single voter. Decoys are used, but not to good effect.
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5.2 Civic Duty Defense

In this model, the EA makes decoy ballots available to a random subset of those
voters who make an explicit request for a decoy.6 The decision of the EA is
thus the number of decoy ballots, but not how to distribute them. Rather, this
decision arises through a simple model of a societal process.

In modeling this process, we assume that, for a YES-buyer, there is some dis-
tribution of civic-mindedness π(θ), with support on [0, xC], that determines the
probability that a voter will request a decoy, where xC is a fixed, publicly known
quantity (“c” for civic). In particular, we assume for simplicity that π(θ) ∝ xC−θ.
This captures the idea that the more extreme an agent’s type, the more likely
the agent is to request a decoy and thus help preserve the election’s integrity.

Via Bayes’ rule, the effect on the distribution on types ψ of those who get
decoys is ψ(θ) = P (θ|request decoy) ∝ P (request decoy|θ)f(θ) = π(θ) · f(θ) =
(xC − θ)f(θ). In fact, there will sometimes be a choice of nd such that the civic
duty defense is optimal. If the EA can choose a number of decoys nd such that
nd(1−xC)

nr
= k, where k is the normalization constant, then we see the canonical

structure, with h(θ) = 1 − xC, ∀θ ∈ [0, xC]. We call the defense obtained via this
model a civic duty defense. An example of this defense is illustrated in Fig. 1(b).

5.3 Auction-Based Defense

In this variation, the EA makes decoy ballots available to voters via an auction.
We assume a simple nd+1st price auction (when selling nd decoy ballots), with
the EA choosing nd. The intent is not to model a sophisticated auction, but
to adopt a strategyproof mechanism as a model for an idealized market-based
approach for distributing decoy ballots to voters. The effect is that decoys go to
voters with the highest value for decoys. As with the civic duty defense, the EA
who makes use of an auction-based defense chooses the number of decoy ballots
but not how to distribute them.

In modeling this societal process, we assume that the value to a voter for
a decoy is monotonically increasing as the voter’s type θ gets closer to zero.7

For this reason, we model the effect of the auction as being that there is some
threshold xA ∈ (0, 1), whereby the decoys are distributed according to voter
type distribution f , conditioned on θ ≤ xA (“A” for auction). In particular, for
θ ∈ [0, xA], we have ψ(θ) ∝ f(θ).

6 We leave unmodeled that the buyer could try to interfere with this process. But
notice that buying decoys from citizens who participate in this process is not useful
because it depletes budget without hope of gaining real ballots. The same argument
holds for the auction-based defense.

7 We continue to assume that a voter’s value for using a decoy is less than her value
for a real ballot. Because of this, the auction-based process is consistent with our
analysis in Sect. 2 in regard to the ordering of minimum acceptable offer price across
different kinds of voters.
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6 Simulation Results

We describe the results of an extensive simulation study to compare the power of
various defenses in preventing a buyer succeeding in changing the outcome of an
election. We choose to present results for voter type distribution f = Beta(2, 4),
but the analysis is qualitatively unchanged for other distributions, including
those with mean voting types in [0.01, 0.49].

Figure 4 fixes the number of real ballots, and shows that vote buying can be
successfully thwarted by issuing sufficiently many decoy ballots. The optimal and
civic duty defenses are most effective, but even issuing decoys according to the
auction-based and constrained defenses substantially reduces the probability of a
vote buyer’s success. It is interesting that even a small number of decoys, relative
to the number of real ballots, can be effective. It also helps with understanding to
compare the power of different defenses when fixing the total number of ballots
and varying the number of decoy ballots. Figure 2(a) shows the effect of varying
the fraction of real ballots when using an optimal defense. Figures 2(b) and (c)
show the effect of the civic duty defense and auction-based defence for different
values of model parameter xC (the ‘max type requesting a decoy’) and xA (the
‘max type winning a decoy’), with the EA optimizing the number of decoys for
each value of xC and xA, respectively. The auction-based defense is the least
effective, but even here there is a range of xA for which the performance is better
than without using any decoys. In Figs. 2(b) and (c), a maximum type of 0
receiving a decoy corresponds to zero decoys.

Fixing the total number of ballots, we can also examine the relative power
of the different defenses as a function of the buyer budget. In Fig. 3 (with 1000
total ballots) we see that an optimal defense can use decoys to protect against
buyers with around twice the budget of a ‘no defense’ approach that just uses
real ballots. For the civic-duty and auction-based defenses, we fix xC = xA = 0.5
and pick the best nd at each point in the graph. The auction-based defense is
better than no defense and the constrained defense. The civic-duty defense has
good performance, about that of the optimal defense for many buyer budgets.

Fig. 3. Comparing the power of various defenses for f = Beta(2, 4), xC and xA = 0.5,
and 1000 total ballots.
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(a) constrained defense (b) optimal defense

(c) auction-based defense (d) civic duty defense

Fig. 4. Using decoys to thwart vote buying, for different buyer budgets (the number of
ballots the buyer can buy). The number of real ballots is 750, the voter type distribu-
tion is f = Beta(2,4). (a) Constrained defense, in which decoy ballots are distributed
according to f(θ). (b) Optimal defense. (c) Auction-based defense with xA = 0.5. (d)
Civic duty defense with xC = 0.5.

7 Non-binary Election Outcomes

In this section, we consider a generalization of the model presented above to
non-binary election outcomes. In particular, suppose that there are three elec-
tion choices, X, Y , and Z, and assume, without loss of generality, that Z is
expected to receive the most votes, followed by Y , followed by X. In this ver-
sion, we consider the election outcome to be determined by plurality, although
an alternative research direction could consider another rule such as single trans-
ferable vote.

There are three possible classes of buyers: an X-buyer, who wants the election
outcome to be X, a Y -buyer, who wants the election outcome to be Y , and an
XY -buyer, who wants the election outcome to be either X or Y . Here, we will
discuss only X-buyers, leaving an analysis of the other two classes of buyers to
future work.

We model voter types as being a vector of length 3, namely

θi
def= (P (voter i votes X), P (voter i votes Y ), P (voter i votes Z)),
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and use the shorthand θi[X], θi[Y ], and θi[Z] to refer to the components of θi.
Types are drawn from a distribution g(θ) with full support on a 2-simplex (e.g.,
a Dirichlet distribution or a discrete distribution with point masses).

Let J ⊂ [0, 1] × [0, 1] denote the subset of types that the buyer buys. Let
M

def=
∫

J g(θ)dθ denote the fraction of real ballots that the buyer buys. Let the
type distribution of the unbought types be given by

gτ (θ) def=

{
g(θ)
1−M for θ ∈ [0, 1] × [0, 1] − J
0 for θ ∈ J . (18)

We use the notation Xi � f(θ) to denote the hierarchical model θi ∼ g(θ);Xi ∼
Categorical(θi), and can now specify what it means for the buyer to change
the election outcome. As in the proof of Lemma 2, let Vi � gτ (θ) denote the
unbought votes, and let Wj � g(θ) denote all votes. We then have

P (buyer changes outcome)
=P ([election bought] ∧ [correct outcome is Y or Z])

= P

([∑(1−M)nr

i=1 1Vi=X

nr
+ M > max

(∑(1−M)nr

i=1 1Vi=Y

nr
,

∑(1−M)nr

i=1 1Vi=Z

nr

)]

∧
[
min

(∑nr+nd

j=1 1Wj=Y

nr + nd
,

∑nr+nd

j=1 1Wj=Z

nr + nd

)
>

∑nr+nd

j=1 1Wj=X

nr + nd

])
, (19)

Recall that in the binary outcome case, we derived a simple characterization
for an optimal buyer strategy (Lemma 1). On this basis, we were able to char-
acterize the form of an optimal defense. In the three-outcome case, the strategy
space is much richer, so we will discuss a few examples to illustrate some possible
buyer strategies.

We first describe a simple vote buying strategy, and then show that it is opti-
mal for simple, deterministic types (types where the voters vote for a particular
outcome with probability 1).

Definition 5 (Buy the Expected Winner (BEW)). The buy the expected
winner (BEW) strategy is to greedily buy the type with the highest probability of
voting for the current expected winner of the election, with the current expected
winner determined considering the ballots already purchased by the buyer.

Example 1. Suppose we have two voter types: 1,000 voters of type α: (0.25, 0,
0.75) and 600 voters of type β: (0, 1, 0) and no decoy ballots. Thus, the expected
vote count is 250 X votes, 600 Y votes, and 750 Z votes. Table 1 illustrates the
expected outcome for different buyer budgets and strategies. The third strategy
for each budget above is to buy 200 votes of type α, and then buy four α votes
for every three β votes until the budget runs out. This is the BEW strategy,
which we can determine is optimal by enumerating all possible buyer strategies.
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Example 2: Counterexample to Optimality of BEW. Suppose we have two voter
types: 1,000 voters of type α: (0.25, 0, 0.75) and 1,000 voters of type β: (0,
0.26, 0.74) and no decoy ballots. The expected vote count is 250 X votes, 260 Y
votes, and 1,490 Z votes. Table 2 illustrates the expected outcome for different
buyer budgets and strategies. The buyer is better off buying type β than type
α, which shows that the BEW strategy (i.e., buying type α) is not optimal. In
fact, buying all type β is optimal, which can be seen by enumerating all possible
buyer strategies.We next demonstrate that a refinement of BEW, where the
buyer instead buys the type with highest max(θi[Y ], θi[Z]) − θi[X], can also be
suboptimal.

Table 1. Illustrative buyer strategies for voter types α: (0.25, 0, 0.75) and β: (0, 1, 0).

Budget Strategy E[#X] E[#Y ] E[#Z]

0 - 250 600 750

400 Buy all α 550 600 450

400 Buy all β 650 200 750

400 Buy 314 α and 86 β 572.25 514 513.75

450 Buy all α 587.5 600 412.5

450 Buy all β 700 150 750

450 Buy 343 α and 107 β 614.25 493 492.75

500 Buy all α 625 600 375

500 Buy all β 750 100 750

500 Buy 371 α and 129 β 657.25 471 471.75

Table 2. Illustrative buyer strategies for voter types α: (0.25, 0, 0.75) and β: (0, 0.26,
0.74).

Budget Strategy E[#X] E[#Y ] E[#Z]

0 - 250 260 1,490

750 Buy all α 812.5 260 927.5

750 Buy all β 1,000 65 935

Example 3: Counterexample to Optimality of Refined BEW. Suppose we have
200 voters of type α: (0.25, 0.75, 0), 100 voters of type β: (0, 0.4, 0.6), and 150
voters of type γ: (0, 0, 1) and no decoy ballots. Then E(#X) = 50, E(#Y ) =
190, E(#Z) = 210. Suppose the buyer budget is 111. Table 3 illustrates the
expected outcome for different buyer budgets and strategies. The first strategy
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is the refined version of BEW. The buyer first buys 20 votes of type γ. Then,
we have E(#X) = 70, E(#Y ) = 190, E(#Z) = 190. Now, he will buy 39
more ballots of type γ and 52 ballots of type α, resulting in E(#X) = 148,
E(#Y ) = 151, E(#Z) = 151. So Y and Z are tied, and X has lost. The second
strategy is to buy all 100 β votes and then 11 more γ votes. Here, we have
E(#X) = 161, E(#Y ) = 150, E(#Z) = 139, and X wins. The third strategy,
obtained by enumerating all possible strategies, is optimal.

Table 3. Illustrative buyer strategies for voter types α: (0.25, 0.75, 0), β: (0, 0.4, 0.6),
and γ: (0, 0, 1).

Budget Strategy E[#X] E[#Y ] E[#Z]

0 - 50 190 210

111 Buy 52 α and 59 γ 148 151 151

111 Buy 100 β and 11 γ 161 150 139

111 Buy 2 α and 109 β 160.5 144.9 144.6

Example 4: Simple (Deterministic) Types. Suppose that we 200 voters of type
X: (1, 0, 0), 350 voters of type Y : (0, 1, 0), and 450 voters of type Z: (0, 0, 1),
and no decoy ballots. Table 4 illustrates the expected outcome for different buyer
budgets and strategies. The third strategy is the BEW strategy, which is optimal
here.

Table 4. Illustrative buyer strategies for deterministic voter types, X: (1, 0, 0), Y : (0,
1, 0), and Z: (0, 0, 1).

Budget Strategy E[#X] E[#Y ] E[#Z]

0 - 200 350 450

150 buy all Y 350 200 450

150 buy all Z 350 350 300

150 buy 25 Y and 125 Z 350 325 325

Example 5: Simple (Deterministic) Types with Decoys Suppose that the voter
types are the same as in Example 4, but that the EA can issue decoys. We
can numerically calculate the optimal EA strategy given the optimal defense.
In regard to the optimal defense, this is BEW for some buyer budgets and
numbers of decoys, but not always. See Fig. 5 for an illustration of the results.
The optimal EA defense is to add the first 450 decoys with only Z type, and
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then to begin adding both type Y and type Z decoys. In Fig. 5(a), all decoys
are issued with type Z, and the optimal buyer strategy is to buy more Z ballots
as each of them becomes less valuable— the buyer is playing the BEW strategy,
now incorporating the probability that the ballots are real. In Fig. 5(b), some of
the decoys (for numbers of decoys > 450) are issued with type Y , and the optimal
buyer strategy is sometimes to buy all or nearly all Y ballots instead of Z ballots.
In both cases, we see that the decoy defense is effective in stopping a vote buyer.
The red line corresponds to the threshold where the buyer goes from winning in
expectation to losing in expectation. With no defense, a strategic buyer needs
a budget of 134 ballots to change the outcome of the election (where he would
buy 17 Y ballots and 117 Z ballots). By issuing decoys, the EA can thwart a
vote buyer with budgets including 150 and 300 (with 1,000 total real ballots).

(a) buyer budget = 150 ballots (b) buyer budget = 300 ballots

Fig. 5. Using optimally-distributed decoys to thwart vote buying in the three-outcome
case. The voter types are from Example 5. In (a), the buyer is playing the BEW
strategy, which is optimal. However, BEW is not optimal for all buyer budgets and
numbers of decoys, as can be seen in (b), where the buyer sometimes buys all or nearly
all Y ballots.

We can prove the optimality of BEW for these simple, deterministic types,
and without decoy ballots. Note that with deterministic types there is no uncer-
tainty about the outcome of the election.

Theorem 4. For deterministic types and no decoy ballots, the BEW strategy is
optimal for a buyer.

Proof. We provide a proof for the slightly simpler case of buying fractional bal-
lots (the proof for indivisible ballots follows the same outline). Let X, Y , and
Z refer to the types (1, 0, 0), (0, 1, 0), and (0, 0, 1). Let x, y, and z refer to
the number of ballots cast for each election outcome. We proceed to show that
the BEW strategy minimizes the number of ballots needed for an X-buyer to
change the outcome of the election. Let δy ≥ 0, δz ≥ 0 denote the number of
Y and Z ballots purchased, respectively. The buyer wants to find the minimum
δ = δy + δz s.t. x + δy + δz ≥ max(y − δy, z − δz).



64 D. C. Parkes et al.

(Case 1) x < y = z. In BEW, the buyer buys Y and Z ballots in equal quantity
until winning. In particular, buying δ∗

y = δ∗
z = 1/3(y − x) leads to a win for

X, since x + δ∗
y + δ∗

z = x/3 + (2/3)y = y − δ∗
y = z − δ∗

z . No strategy using
δ′ < δ∗ = δ∗

y + δ∗
z = 2/3(y − x) ballots can do better. We have

min
δ′
y,δ′

z :δ
′
y+δ′

z=δ′
max(y − δ′

y, z − δ′
z) ≥ min

δy,δz :δy+δz=δ∗
max(y − δy, z − δz)

= max(y − δ∗
y , z − δ∗

z) = x/3 + (2/3)y > x + δ′,

where the first inequality follows because the LHS is more constrained, and the
first equality follows because this balances the two components of max(·, ·).

(Case 2) x < y < z, and 1/2(x + z) ≥ y. In BEW, the buyer buys δ∗
y = 0 and

δ∗
z = 1/2(z − x) of the Y and Z ballots respectively. This leads to a win for X,

with x + δ∗
z = z − δ∗

z = (1/2)(z + x) (and x + δ∗
z = (1/2)(z + x) ≥ y = y − δ∗.)

No strategy using δ′ < δ∗ = δ∗
y + δ∗

z = 1/2(z −x) ballots can do better. We have

min
δ′
y,δ′

z :δ
′
y+δ′

z=δ′
max(y − δ′

y, z − δ′
z) ≥ min

δy,δz :δy+δz=δ∗
max(y − δy, z − δz)

= max(y − δ∗
y , z − δ∗

z) = 1/2(x + z) > x + δ′,

where the first inequal. follows because the LHS is more constrained, and the
first equality follows because z − δ∗ ≥ y and thus it is optimal to only buy Z
ballots.

(Case 3) x < y < z, and 1/2(x + z) < y In BEW, the buyer first buys z − y of
the Z ballots, and then splits the remaining purchases equally between Y and
Z ballots. In particular, δ∗

y = 1/3(y − (x + (z − y))) = 1/3(2y − x − z) and δ∗
z =

(z−y)+1/3(2y−x−z) = z−(y−δ∗
y). Let δ∗ = δ∗

y +δ∗
z = (1/3)y−(2/3)x+(1/3)z.

This leads to a win for X, with x + δ∗ = (1/3)(x + y + z) = y − δ∗
y = z − δ∗

z . No
strategy using δ′ < δ∗ ballots can do better. We have

min
δ′
y,δ′

z :δ
′
y+δ′

z=δ′
max(y − δ′

y, z − δ′
z) ≥ min

δy,δz :δy+δz=δ∗
max(y − δy, z − δz)

= max(y − δ∗
y , z − δ∗

z) = (1/3)(x + y + z) > x + δ′,

where the first inequality follows because the LHS is more constrained, and the
first equality follows because this balances the two components of max(·, ·).

An immediate corollary (noting that BEW is oblivious to budget) is that
BEW also maximizes the advantage for X over the closest other outcome for a
buyer with additional budget. We leave to future work to develop a full charac-
terization of the optimal buyer strategy, and, in turn, optimal defense by the EA
in the case of three or more outcomes. We do not yet have a characterization of
the optimal buyer strategy even for the case of deterministic ballots, once decoys
are also introduced.
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8 Conclusion

We have presented the first game-theoretic study of the power of decoy bal-
lots in thwarting vote buyers. We have characterized the form of an optimal
defense, and compared its power to those of neutral defenses that could be
enabled through leveraging simple societal processes to distribute decoy ballots.
Our results are positive: decoy ballots are effective in thwarting the power of a
vote buyer. Amongst the neutral defenses, the civic duty defense, where decoys
are given at random to a subset of those who request such a ballot, seems espe-
cially interesting. Topics for future study include understanding defenses under
the requirement that they must protect equally against a YES- or NO-buyer,
and in settings with multiple buyers, simultaneous polls, and participants with
value and cost heterogeneity. For the non-binary outcome case, we have pro-
vided some illustrative examples of the new subtleties that arise in modeling
the optimal buyer strategy and thus optimal EA defense. There are a number
of future directions of interest, including characterizing the optimal buyer and
decoy defense strategies for non-binary outcome elections (initially for deter-
ministic types). We expect that the richness of this setting will yield future
interesting insights.
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