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Abstract. Given a classroom containing a fixed number of students and
a fixed number of tables that can be of different sizes, as well as a list of
preferred classmates to sit with for each student, the team composition
problem in a classroom (TCPC) is the problem of finding an assign-
ment of students to tables in such a way that preferences are maximally-
satisfied. In this paper, we formally define the TCPC, prove that it is
NP-hard and define a MaxSAT model of the problem. Moreover, we
report on the results of an empirical investigation that show that solving
the TCPC with MaxSAT solvers is a promising approach.

1 Introduction

Given a classroom containing a fixed number of students and a fixed number of
tables that can be of different sizes, as well as a list of preferred classmates to
sit with for each student, the team composition problem in a classroom (TCPC)
is the problem of finding an assignment of students to tables in such a way that
preferences are maximally-satisfied. Our motivation behind this work is to solve
a problem posed by the director of studies of a secondary school in the area of
Barcelona, though this problem may be found in a wide range of situations and
institutions.

In this paper, we formally define the TCPC, prove that it is NP-hard and
define a MaxSAT model of the problem. Moreover, we report on the results of an
empirical investigation that show that solving the TCPC with MaxSAT solvers
is a promising approach.

To tackle the TCPC we use a MaxSAT-based problem solving approach,
which is an active area of research in Artificial Intelligence, (see e.g. [2,5,7–12,15–
17,20,21] and the references therein for previous and related work). MaxSAT-
based problem solving is a generic problem solving approach for optimization
problems which consists on first defining a MaxSAT model for instances of the
problem to be solved, and then derive solutions to the encoded instances of
the problem using an off-the-shelf MaxSAT solver. By a MaxSAT model we
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mean a representation of the problem using the language of Boolean proposi-
tional logic. It is a declarative approach: we only need to define a model and
from that model an optimal solution is automatically derived. Furthermore, the
method is highly efficient because we may take advantage of the extremely effi-
cient MaxSAT solvers which are publicly available.

It is commonly assumed that designing an algorithm to work directly on the
original problem encoding should outperform approaches that require a trans-
lation via a generic intermediate formalism, such as a CSP, SAT or MaxSAT.
However, this line of reasoning ignores the fact that generic solvers can benefit
from many years of development by a broad research community. It is not easy
to replicate this kind of effort in other domains.

In the present formulation of the problem, we consider the preferences of the
students. Nevertheless, our approach could also be easily adapted to take into
account other factors that can be relevant to the performance of a team such as
personality, expertise, competence, competitiveness and human formation [4,6].

The rest of the paper is organized as follows: Sect. 2 defines the TCPC
formally and proves that it is NP-hard. Section 3 gives some background on
MaxSAT. Section 4 defines a MaxSAT model of the TCPC. Section 5 reports
on the empirical investigation conducted. Section 6 gives some conclusions and
future work.

2 The Team Composition Problem in a Classroom

Depending on the activity to be performed in a classroom at a given moment,
the distribution of the students may need to be different. In the general case,
we consider there is a fixed number of students and there is a list of preferred
classmates to sit with for each student. Then, the goal is to partition students
into teams, which may have different sizes, in such a way that the preferences of
the students are maximally-satisfied.

The version of the TCPC that we use as a case study in this paper has the
following constraints:

– The classroom has n students.
– The classroom has tables of 2 and 3 students with a combined capacity for n

students.
– Each student has provided a list of classmates she would prefer to sit with.

The objective is to find an assignment of students to tables such that pref-
erences are maximally-satisfied. Notice that the first two constraints are hard
whereas the last one is soft. We will say that a solution is fully-satisfied if, and
only if, all the students in the same table have the rest of the students of the table
in their list of preferences. We will say that a solution is maximally-satisfied if,
and only if, the number of students who have their preferences satisfied is maxi-
mized. Note that a fully-satisfied solution is also a maximally-satisfied solution.

Proposition 1. Given n students, a classroom that has tables of 2 and 3 stu-
dents with a combined capacity for n students, and a list of preferred classmates
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to sit with for each student, the problem of deciding if there is a fully-satisfied
solution is NP-complete.

Proof. This problem belongs to NP: we can check, in polynomial time, whether
or not an assignment of students to tables is a fully-satisfied solution by inspect-
ing the lists of preferences of the students.

We now prove that this problem is NP-hard by reducing the problem of
partitioning a graph into triangles to it.

Given a graph G = (V,E), where V is the set of vertices and E is the
set of edges, that verifies that |V | = 3q for some integer q, the partition of V
into triangles consists on finding a partition of V formed by V1, . . . , Vq, each
containing exactly 3 vertices, such that for each Vi = {ui, vi.wi}, 1 ≤ i ≤
q, the edges {ui, vi}, {ui, wi} and {vi, wi} belong to E. This problem is NP-
complete [14].

That problem can be reduced to an instance of our problem without loss of
generality by considering a classroom with 3q students, 0 tables of 2 and q tables
of 3. For each edge {u, v} on graph V , establish a preference of student u for
student v and a preference of student v for student u. Note that this reduction
takes polynomial time. Then, the problem of partitioning the vertices of a graph
into triangles has a solution if, and only if, all the students in the classroom can
be sat in such a way that all students preferences are fully-satisfied. ��
Corollary 1. The TCPC is NP-hard.

Proof. This follows from the fact that every fully-satisfied solution is also a
maximally-satisfied solution.

3 The MaxSAT Problem

We assume readers have some familiarity with basic concepts of Boolean propo-
sitional logic. The most well-know problem of propositional logic is SAT: given a
formula φ in Conjunctive Normal Form (CNF), decide whether there is a truth
assignment that satisfies φ.

Reminder: a literal is a propositional variable or a negated propositional
variable, a clause is a disjunction of literals, a CNF formula is a conjunction of
clauses, and a truth assignment is a mapping that assigns 0 (false) or 1 (true)
to each propositional variable. A CNF is satisfied by an assignment if it is true
under the usual truth-functional interpretation of ∨ and ∧ and the truth-values
assigned to the variables.

An optimization variant of SAT is MaxSAT: given a CNF formula φ, MaxSAT
consists of finding a truth assignment that maximizes the number of satisfied
clauses of φ. However, in this paper we use the term MaxSAT in a broad sense:
we allow to distinguish between hard and soft clauses, and allow to associate
a weight to soft clauses (formally, hard clauses have an infinite weight). This
more general formulation of MaxSAT is technically known as weighted partial
MaxSAT [15], which is formally defined in the remaining of this section.
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We start by defining a more general notion of clause. A weighted clause is a
pair (c, w), where c is a clause and w, its weight, is a positive integer or infinity.
A clause is hard if its weight is infinity; otherwise it is soft.

A weighted partial MaxSAT instance is a multiset of weighted clauses

φ = {(h1,∞), . . . , (hk,∞), (c1, w1), . . . , (cm, wm)},

where the first k clauses are hard and the last m clauses are soft. For sim-
plicity, in what follows, we omit infinity weights, and write φ = {h1, . . . , hk,
(c1, w1), . . . , (cm, wm)}. A soft clause (c, w) is equivalent to having w copies of
the clause (c, 1), and {(c, w1), (c, w2)} is equivalent to (c, w1 + w2).

Weighted partial MaxSAT for an instance φ is the problem of finding
an assignment that satisfies all the hard clauses and minimizes the sum of
the weights of the falsified soft clauses; such an assignment is called optimal
assignment.

4 The MaxSAT Encoding

We show how the TCPC can be represented as a weighted partial MaxSAT
instance. In other words, we show how to model the TCPC in the weighted
partial MaxSAT formalism. To illustrate how to model the problem, we will
consider that the classroom has 28 students and there are 8 tables of 2 students
and 4 tables of 3 students. This is a typical classroom distribution in secondary
schools of the area of Barcelona.

First of all, we define the set of Boolean variables of our encoding:

{xij |1 ≤ i < j ≤ 28} ∪ {xijk|1 ≤ i < j < k ≤ 28} ∪ {yi|1 ≤ i ≤ 28}
These variables have the following intended meaning: xij is true iff students

i and j sit together in a table of 2; xijk is true iff students i, j and k sit together
in a table of 3; and yi is true if student i sits in a table of 2 and is false if student
i sits in a table of 3.

Using the previous Boolean variables, we create a Weighted Partial MaxSAT
instance that encodes the constraints of the problem. The proposed encoding
has the following hard clauses:

1. For each student i, where 1 ≤ i ≤ 28, the encoding contains a set of hard
clauses that encode the following cardinality constraint:
(a) If i = 1, then

28∑

j=2

x1j +
27∑

j=2

28∑

k=j+1

x1jk = 1

(b) If 2 ≤ i ≤ 27, then

i−1∑

j=1

xji +
28∑

j=i+1

xij +
i−1∑

j=1

28∑

k=i+1

xjik +
27∑

j=i+1

28∑

k=j+1

xijk = 1



168 F. Manyà et al.

(c) If i = 28, then

27∑

j=1

xj28 +
26∑

j=1

27∑

k=j+1

xjk28 = 1

This cardinality constraint states that student i sits exactly in one table, and
the table is either of 2 or of 3.

2. For each variable xij , the encoding contains the hard clauses ¬xij ∨ yi and
¬xij ∨ yj . Note that (¬xij ∨ yi) ∧ (¬xij ∨ yj) is equivalent to xij → yi ∧ yj .
This clause states that if xij is true, then students i and j sit in a table of 2.

3. For each variable xijk, the encoding contains the hard clauses ¬xijk ∨ ¬yi,
¬xijk ∨¬yj and ¬xijk ∨¬yk. Note that (¬xijk ∨¬yi)∧(¬xijk ∨¬yj)∧(¬xijk ∨
¬yk) is equivalent to xijk → ¬yi ∧ ¬yj ∧ ¬yk. This clause states that if xijk

is true, then students i, j and k sit in a table of 3.
4. The encoding contains a set of hard clauses that encode the following cardi-

nality constraints:
∑28

i=1 yi = 16 and
∑28

i=1 ¬yi = 12. These cardinality con-
straints state that there are 16 students sitting in tables of 2 and 12 students
sitting in tables of 3.
In practice, it is sufficient to add either the constraint

∑28
i=1 yi = 16 or the

constraint
∑28

i=1 ¬yi = 12 because if there are exactly 16 (12) variables yi,
1 ≤ i ≤ 28, that evaluate to true (false), then the remaining 12 (16) variables
must evaluate to false.

The encoding of a cardinality constraint of the form x1 + . . . + xn = k has
O(n) clauses if one uses the encoding based on counters and defined in [22]. Other
efficient encodings of cardinality constraints are described and analyzed in [1]. In
our empirical investigation, we encode the previous cardinality constraints using
PBLib1, which is a C++ tool for efficiently encoding pseudo-Boolean constraints
to CNF.

Since we considered two sizes of tables, we just need one variable yi for each
student. If we consider n different sizes, then we need 
log2 n� variables for each
student. For example, for four different sizes, we need two variables (yi, y′

i) and
each size is represented by one of the following conjunctions: yi ∧ y′

i, ¬yi ∧ y′
i,

yi ∧ ¬y′
i and ¬yi ∧ ¬y′

i.
The soft clauses of our encoding are the following weighted unit clauses:

1. For each variable xij , 1 ≤ i < j ≤ 28, the encoding contains the weighted
unit clause (xij , wij).

2. For each variable xijk, 1 ≤ i < j < k ≤ 28, the encoding contains the
weighted unit clause (xijk, wijk).

Let us explain how weights are assigned to the variables of the form xij and
xijk. First of all, we build a directed graph G = (V,E), where V contains a vertex
i for each student i in the classroom, and E contains an edge (i, j) if student i
wants to seat with student j. The weight associated with each student i in G,
1 http://tools.computational-logic.org/content/pblib.php.

http://tools.computational-logic.org/content/pblib.php
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denoted by w(i), is the out-degree of the vertex i of G.2 The weight associated
with the variable xij , denoted by wij , is 2(w(i) × w(j)), where w(i) and w(j)
are the weights associated with vertices i and j, respectively, in the subgraph
of G induced by the set of vertices {i, j} (i.e.; the weight of student i and j
in G({i, j})). The weight associated with the variable xijk, denoted by wijk, is
3(w(i) × w(j) × w(k)/8), where w(i), w(j) and w(k) are the weights associated
with vertices i, j and k, respectively, in G({i, j, k}). The value of w(i) × w(j)
ranges from 0 to 1 and the value of w(i) × w(j) × w(k) ranges from 0 to 8. This
explains the fact that w(i)×w(j)×w(k) is divided by 8. Moreover, we multiply
the weights by 2 in the tables of 2 and by 3 in the tables of 3. In this way, we
maximize the number of satisfied students.3

In the previous encoding, if the weight associated with a variable is 0, then the
negation of this variable is added as a unit clause in the hard part. Moreover, an
optimal solution corresponds to a fully-satisfied solution iff all the satisfied soft
clauses of the form (xij , wij) and (xijk, wijk) have weight 2 and 3, respectively.

Observe that, for fully-satisfied instances, if we add to the hard part the
negation of xij (i.e., the unit hard clause ¬xij) for each variable xij whose
associated weight is different from 2 and the negation of xijk (i.e., the unit hard
clause ¬xijk) for each variable xijk whose associated weight is different from 3,
then we do not need to add any soft clause. Moreover, any satisfying assignment
of the hard part allows us to derive a fully-satisfied solution. This case can be
solved either with a SAT solver or with a MaxSAT solver fed with a MaxSAT
instance that only contains hard clauses.

If there is no fully-satisfied solution, the objective is to find a solution that
satisfies students as much as possible. Because of that, in the general case, we
add the clauses (xij , wij) and (xijk, wijk) such that wij �= 0 and wijk �= 0 in
the soft part of the encoding. In this way, we provide a solution that maximizes
the number of satisfied students. In this case, we say that we have a maximally-
satisfied solution.

Finally, it is worth mentioning that it is possible to define a MaxSAT encoding
of the TCPC using the set of propositional variables {xt

i|1 ≤ i ≤ 28, 1 ≤ t ≤ 12},
where the intended meaning of xt

i is that xt
i is true iff student i sits at table t.

However, all the experiments performed with encodings using this set of variables
did not outperform the experiments performed with the encoding proposed in
this section.

5 Experimental Results

We conducted an empirical investigation to assess how the MaxSAT-based app-
roach to the TCPC works in practice on fully-satisfied instances. In the experi-
ments, in order to analyze the scaling behavior, we considered different sizes of
2 The out-degree of a vertex is the number of edges going out of a vertex in a directed

graph.
3 Since most of the MaxSAT solvers deal with weights that are positive integers, in

the experiments we multiply the weights by 100 and take the integer part.
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classrooms: the rows always have 2 tables of 2 and 1 table of 3, and the numbers
of rows ranges from 1 to 20. So, the numbers of students per classroom ranges
from 7 to 140. Besides, we assumed that each student gives a list of students she
would like to sit with. We generated the preferences at random in such a way
that we can guarantee that the generated instances have fully-satisfied solutions.
We generated 50 different TCPC instances for each size of classroom, encoded
them to weighted partial MaxSAT, and solved the resulting encodings with the
exact MaxSAT solver WPM3 [7] using a cutoff time of 1 h. All the experiments
were performed in a 2.3 GHz Intel PC with 1 GB RAM. The results obtained are
shown in Tables 1 and 2.

Table 1 shows the results for the encoding that only contains hard clauses.
Besides the hard clauses of Sect. 4, we add the unit hard clause ¬xij for each
variable xij whose associated weight is different from 2 and the unit hard clause

Table 1. Experimental results for the encoding without soft clauses: Students: number
of students; Clauses: mean number of clauses per instance; Variables: mean number of
variables per instance; and Time: mean time, in seconds, needed to solve an instance.
The number of solved instances, within a cutoff time of 3600 s, is shown in parentheses.

Students Clauses Variables Time

7 178 96 0.01 (50)

14 947 607 0.01 (50)

21 2675 1857 0.01 (50)

28 5888 4260 0.01 (50)

35 10841 8155 0.01 (50)

42 18036 13732 0.01 (50)

49 27685 21381 0.01 (50)

56 40282 31508 0.02 (50)

63 56130 44490 0.02 (50)

70 75187 60606 0.04 (50)

77 98640 80288 0.05 (50)

84 126205 103807 0.08 (50)

91 158597 131484 0.12 (50)

98 195963 163685 0.16 (50)

105 239214 200667 0.21 (50)

112 288402 242780 0.27 (50)

119 343816 290432 0.61 (50)

126 405198 343887 1.23 (50)

133 475062 403623 1.94 (50)

140 551134 469835 2.73 (50)
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¬xijk for each variable xijk whose associated weight is different from 3. Table 2
shows the results for the encoding that has the hard clauses of the previous
encoding but also the soft clauses of the form (xij , 2) and (xijk, 3).

Table 2. Experimental results for the encoding with soft clauses: Students: number of
students; Clauses: mean number of clauses per instance; Soft clauses: mean number of
soft clauses per instance; Variables: mean number of variables per instance; and Time:
mean time, in seconds, needed to solve an instance. The number of solved instances,
within a cutoff time of 3600s, is shown in parentheses.

Students Clauses Soft clauses Variables Time

7 178 7 96 0.01 (50)

14 947 18 607 0.01 (50)

21 2675 32 1857 0.01 (50)

28 5888 51 4260 0.05 (50)

35 10841 75 8155 3.26 (50)

42 18036 100 13732 346 (49)

49 27685 133 21381 1273 (10)

The empirical results show that the encoding without soft constraints finds
optimal solutions quickly and scales well in practice. However, the encoding with
soft constraints only finds optimal solutions quickly when the number of students
is not greater than 35. In summary, the results show that MaxSAT allows one
to find fully-satisfied solutions quickly using suitable encodings. For the TCPC,
it is decisive to use efficient encodings for cardinality constraints.

6 Concluding Remarks

We have developed a method to encode the TCPC as a weighted partial MaxSAT
problem, proved its NP-hardness, and carried out experiments to evaluate our
approach using an exact MaxSAT solver. The results show that our method is
useful because it does not need a dedicated algorithm; it is declarative, hence all
stakeholders can be involved and understand the way the problem is specified;
it is flexible because different classroom configurations can be solved with it;
and it is efficient because it provides optimal solution in a reasonable amount of
time. In the future, we plan to conduct a more exhaustive empirical investiga-
tion, model the problem using MinSAT [18,19] instead of MaxSAT, and explore
the possibility of using our method to encode similar team composition prob-
lems. In practice, our method could be combined with profiling techniques [13] to
solve the group formation problem in Computer Supported Collaborative Learn-
ing applications. Our contributions could also be applied to other projects have
taken a different approach to solve related problems using other AI techniques
(see [3,4,6] and the references therein for further details).
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16. Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. J. Artif. Intell.
Res. 30, 321–359 (2007)
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19. Li, C.M., Zhu, Z., Manyà, F., Simon, L.: Optimizing with minimum satisfiability.
In: Artificial Intelligence, vol. 190, pp. 32–44 (2012)

20. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality con-
straints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–
548. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 39

21. Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and
core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534
(2013)

22. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005). https://doi.org/10.1007/11564751 73

https://doi.org/10.1007/978-3-319-10428-7_39
https://doi.org/10.1007/11564751_73

	A MaxSAT-Based Approach to the Team Composition Problem in a Classroom
	1 Introduction
	2 The Team Composition Problem in a Classroom
	3 The MaxSAT Problem
	4 The MaxSAT Encoding
	5 Experimental Results
	6 Concluding Remarks
	References




