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Abstract. ChaCha is a family of stream ciphers that are very efficient on
constrainted platforms. In this paper, we present electromagnetic side-
channel analyses for two different software implementations of ChaCha20
on a 32-bit architecture: one compiled and another one directly written in
assembly. On the device under test, practical experiments show that they
have different levels of resistance to side-channel attacks. For the most
leakage-resilient implementation, an analysis of the whole quarter round
is required. To overcome this complication, we introduce an optimized
attack based on a divide-and-conquer strategy named bricklayer attack.
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1 Introduction

ChaCha [7] is a family of stream ciphers introduced by Daniel J. Bernstein in
2008. It is a variant of the Salsa20 family [8], which is part of the eSTREAM
portfolio [4], providing better diffusion for similar performances. ChaCha is an
ARX-based cipher, which means that it only uses modular additions, rotations
and bitwise XORs. It has been widely adopted for encryption, as well as for ran-
dom number generation in many operating systems (e.g. Linux, OpenBSD) and
protocols (e.g. SSH, TLS). Moreover, the upcoming version 1.3 of the Trans-
port Layer Security (TLS) protocol [35] will allow Authenticated Encryption
with Associated Data (AEAD) cipher suites only, leaving AES-CCM [31], AES-
GCM [37] and ChaCha20-Poly1305 [25] as the only three options. This update
should significantly increase the use of ChaCha in the near future. On top of
that, the Internet of Things (IoT) should be in favour of the ChaCha deployment
(e.g. Apple HomeKit for IoT devices [2]), since its instances are cheaper than
AES on microcontrollers that do not have any dedicated cryptographic hardware.
For instance, on Android phones, HTTPS connections from Chrome browsers to
Google now use ChaCha20-Poly1305 [12].
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As a result of its standardization, ChaCha is under close scrutiny with
regards to cryptanalysis, especially regarding differential attacks [3,14,28,38,40].
Recently, studies have been carried out to evaluate its physical security, espe-
cially regarding fault attacks [24,32]. However, only one side-channel analysis
has been proposed so far [21]. We believe that further work must be undertaken
in this field since ChaCha is particularly well suited for embedded devices.

Our Contribution. In this paper, we focus on the side-channel analysis of
ChaCha by taking two different implementations into consideration.

First, we investigate the OpenSSL C source code compiled on a 32-bit ARM
microcontroller. It results in a straightforward attack path, which consists in
targeting each 32-bit key word independently.

The second target is an assembly implementation which saves some memory
accesses. We highlight that, on the device under test (DUT), this slight modifi-
cation protects from the only side-channel attack published to date. Neverthe-
less, our implementation remains vulnerable even though attack paths are more
complex. We tackle this problem by introducing the bricklayer attack, which is
based on a divide-and-conquer approach, and emphasize that attacking from the
keystream rather than from the input is way more efficient.

Outline. First, we present the ChaCha family of stream ciphers before providing
an outline of side-channel attacks. Then, we describe our approaches on perform-
ing electromagnetic analyses depending on software implementations of ChaCha.
Subsequently, we present our practical results and discuss the feasibility of con-
ducting these attacks in real-world scenarios. Finally, we analyze the overhead
introduced by the masking countermeasure in the specific case of ChaCha20.

2 The ChaCha Family of Stream Cipher

As its predecessor, and unlike traditional stream ciphers, ChaCha does not have
an initilization phase since it works like a block cipher used in counter (CTR)
mode [18]. Its core is an ARX-based function which maps a 512-bit input block
to a 512-bit output key stream. Input blocks are built by arranging data in
a 4 × 4 matrix where each element is a 32-bit word. The encryption key fills
half of the matrix as it is 256-bit long, while the two remaining quarters are
respectively occupied by the inputs and the constant ‘expand 32-byte k’. This
constant aims at reducing the amount of data an attacker can control while the
inputs refer to a nonce which is built from the block counter and the initial
vector (IV) (Fig. 1).

The core function is defined by iterating several rounds on the input block,
where each round consists of four parallel quarter round (QR) operations. A QR
updates 4 words (i.e. a block quarter) as defined in Algorithm1 where � means
addition modulo 232, ⊕ means XOR and ≪ means left bitwise rotation.

Depending on the round number (enumerated from 0), each QR operates
either on a column, or on a diagonal. ChaChaR refers to a specific instance
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Fig. 1. ChaCha’s input block intialization

Algorithm 1. ChaCha quarterround(a, b, c, d)

a �= b; d ⊕= a; d ≪= 16;

c �= d; b ⊕= c; b ≪= 12;

a �= b; d ⊕= a; d ≪= 8;

c �= d; b ⊕= c; b ≪= 7;

where R rounds are used. Several variants are defined with 8, 12 or 20 rounds,
defining different trade-offs between security and performance. Recently, it has
been shown under certain assumptions that ChaCha12 is sufficiently secure to
ensure a 256-bit security level [14]. Nevertheless, ChaCha20 remains the most
widespread instance for security margins. In many implementations, ChaChaR
uses R

2 iterations of double rounds instead of R rounds, which consists in a
column round and a diagonal one.

(a) Even round (b) Odd round

On top of iterating several rounds on the input block, an additional step is
required. The reason is that while QRs scramble blocks beyond recognition, they
are invertible. Therefore, applying the reverse of each operation in the reverse
order leads to the original block and thus, the encryption key. ChaCha prevents
this by adding the original block to the scrambled one, word by word, in order
to generate the pseudo-random block. The whole encryption process is detailed
in Algorithm 2.

3 Background on Side-Channel Attacks

3.1 Correlation Electromagnetic Analysis

Cryptographic primitives are usually built to resist to mathematical cryptanaly-
sis or exhaustive key search. However, they are designed to be finally executed
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Algorithm 2. ChaChaR encryption
Require:

n-bit plaintext P
encryption key k
counter ctr
IV iv

Ensure: n-bit ciphertext C
for i from 0 to �n/512� do

B ← init(k, ctr, iv) � input block initialization
B′ ← B � working variable
for j from 0 to R

2
− 1 do

quarterround(B′
0, B

′
4, B

′
8, B

′
12) � column rounds

quarterround(B′
1, B

′
5, B

′
9, B

′
13)

quarterround(B′
2, B

′
6, B

′
10, B

′
14)

quarterround(B′
3, B

′
7, B

′
11, B

′
15)

quarterround(B′
0, B

′
5, B

′
10, B

′
15) � diagonal rounds

quarterround(B′
1, B

′
6, B

′
11, B

′
12)

quarterround(B′
2, B

′
7, B

′
8, B

′
13)

quarterround(B′
3, B

′
4, B

′
9, B

′
14)

end for
B ← B � B′ � final block addition
Ci ← Pi ⊕ B
ctr ← ctr + 1

end for

on a given processor with its own physical characteristics. Electronic circuits are
inherently leaky as they produce emissions that make it possible for an attacker
to deduce how the circuit works and what data is being processed. Because these
emissions are nothing more than side effects, their use to recover cryptographic
keys has been termed ‘side-channel attacks’. Since the publication of Differen-
tial Power Analysis (DPA) [23], it is common knowledge that the analysis of
the power consumed by the execution of a cryptographic primitive might reveal
information about the secret involved.

A few years later, Correlation Power Analysis (CPA) has been widely adopted
over DPA as it requires fewer traces and has been shown to be more efficient [11].
The principle is to target a sensitive intermediate state of the algorithm and try
to predict its value from the known input and different key guesses. Then, to
uncover the link between these predictions and the leakage measurements, the
Pearson correlation coefficient between these two variables is computed using
an appropriate leakage model. The Hamming weight (HW) and the Hamming
distance (HD) model are the most commonly used models to simulate the leakage
of a cryptographic device. For each key hypothesis, it results in a value between
−1 (total negative correlation) and 1 (total positive correlation) for every point
in time, indicating how much the prediction correlates with the recorded values
over several measurements. The formula of this coefficient is
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Corr (X, Y ) =
E (X · Y ) − E (X) · E (Y )√

E
(
(X − E (X))2

)
· E

(
(Y − E (Y ))2

) (1)

where E(X) is the expected value of the random variable X. Finally, the hypothe-
sis which matches with the real key should return a significantly higher coefficient
than the other hypotheses. This attack remains valid when analyzing electromag-
netic emanations [19,34] instead of power consumption, since they are mainly
due to the displacement of current through the rails of the metal layers. In this
case, we talk about Correlation ElectroMagnetic Analysis (CEMA).

3.2 Selection Function

The intermediate state y on which the side-channel attack focuses is defined
by a selection function ϕ(x, k) = y, which is part of the encryption algorithm.
It depends on x, a known part of the input and on k, an unknown part of
the secret key. Usually, selection functions are chosen to be easy to compute,
typically at the beginning of the encryption or decryption process. Furthermore,
a valuable property for selection functions is high non-linearity as it ensures a
good distinguishability between the correct and incorrect key guesses. Indeed,
correlation between the leakage and the prediction will be close to zero if the
key guess is incorrect due to their non-linear relationship.

In case of ARX structures, the non-linearity only relies on modular addi-
tions, while diffusion is provided by rotations (diffusion within single words)
and XORs (diffusion between words). Although the carry propagation in the
modular addition results in some non-linearity, it is not as good a candidate
as S-boxes. It can be explained by the fact that most significant bits in the
output of a modular addition are more subject to non-linearity than least signif-
icant ones. However, side channel attacks remain possible as shown in numerous
publications [10,26,41].

4 Side-Channel Overview of ChaCha

4.1 ChaCha Case Study

To set up such a side-channel attack, one has to determine an attack path (i.e.
to choose a selection function) either starting from the plaintext, or from the
ciphertext. Physical attacks against stream ciphers can be challenging because
the key stream is computed independently from the plaintext/ciphertext, which
interferes in the relationship between known values and the secret key. However,
from a side-channel point of view, ChaCha differs significantly from other stream
ciphers’ designs such as linear-feedback shift registers where the key is only
directly involved during registers’ initialization. Indeed, as ChaCha operates like
a block cipher in CTR mode, the key is directly manipulated everytime a 512-bit
block needs to be encrypted. More precisely, each key word directly interacts
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with other data during the first round (after which they have been updated)
and again during the final block addition.

An attack that takes advantage of the first round has already been published
in [21]. The attack on the ith column round (0 < i < 4) relies on the selection
function defined by

ϕ0

(
noncei, k̃i ‖ ki+4

)
=

((
noncei ⊕ k̃i

)
≪ 16

)
� ki+4 (2)

where k̃i = ki � constanti. However, this selection function forces the attacker
to target two key words at once, which results in a key search space |K| = 264.
Since the bit-size of the targeted subkey determines the memory complexity
of the side-channel attack, one can understand why this would be undoable in
practice. To get around this problem, the authors exploit the QRs’ intermediate
states in order to operate step by step. They propose to first recover ki by
targeting noncei ⊕ k̃i and then take advantage of its knowledge to find ki+4.
Therefore, recovering ki and ki+4 requires the knowledge of noncei. However,
the paper also describes an attack path that allows to recover the entire key
with the knowledge of only two words. This latter exploits several intermediate
states in the first two rounds.

Regarding the final block addition, an attacker could choose ϕ(x, k) = x� k
where x refers to a keystream word and � refers to modular subtraction. Com-
pared to the previous attack path, it has the advantage of recovering all key words
using the modular subtraction as selection function. Moreover, all keystream
words are pseudorandom values, which is not necessarily the case for nonces.
However, this selection function requires the knowledge of the keystream (i.e.
both plaintext and ciphertext).

Throughout this paper, we will make the assumption that an attacker has
access to all this information. In Sect. 6 we discuss the attacks’ feasibility in
practice and thus, whether our assumptions are reasonable.

4.2 Implementation Aspects

When targeting software implementations on load/store architectures, data
transfers due to memory accesses (i.e. loads and stores between memory and
registers) are known to leak the most information compared to arithmetic and
logic operations [13,30], which only occur between registers and are usually
unexploitable in practice [9]. Our practical experiments on the DUT presented
in Sect. 6 verified this hypothesis. Therefore, the intermediate values that are
manipulated by these sensitive operations should be easiest to target, introduc-
ing a direct link between selection functions and implementation aspects.

Throughout this paper we will study selection functions in relation to memory
accesses, assuming they are the main source of exploitable leakage.

4.3 OpenSSL Implementation

First, we decided to attack a C implementation of ChaCha20 in order to see
how compilers can deal with ARX structures and memory accesses. To do so,
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we compiled the ChaCha20 C implementation from OpenSSL (version 1.0.1f)
for an ARM Cortex-M3 microcontroller using the GNU ARM C compiler 5.06
(update 2). Regardless of the optimization level chosen (from -O0 to -O3), within
a QR, each addition and each rotation is followed by a STR instruction. Hence,
these memory accesses allowed us to carry out the attacks described above.
Practical results are briefly presented in Sect. 6 for comparative purposes.

4.4 Side-Channel Analysis of the Salsa20 Quarter Round

In the next section, we show how memory accesses can be easily managed to
remove the leakage of intermediate states within a QR. This implies to target
the QR output without taking its intermediate values into consideration, making
the attacks presented in [21] irrelevant in this case. Although such an analysis
has already been performed on Salsa20 [29], it does not apply to ChaCha.

Algorithm 3. Salsa20 quarterround(a, b, c, d)

b ⊕= (a � d) ≪ 7; c ⊕= (b � a) ≪ 9;

d ⊕= (c � b) ≪ 13; a ⊕= (d � c) ≪ 18;

In the case of Salsa20, as described in Algorithm 3, the update of the second
input only depends on itself and two others (the first and the last). This allows to
recover the key words involved in this computation as first/last input words, with
two other ‘non-key’ operands (i.e. constant and nonce). The attack consists in
performing a CPA on a 32-bit value using a divide-and-conquer (D&C) approach,
which consists in separating the attack into � 32

n � computations on n-bit windows
in parallel. The other key words that do not match these requirements were
retrieved by using the knowledge of those which have been previously recovered.
This allowed to keep a search space of 232 instead of 264. On top of providing
better diffusion, the ChaCha QR gives each input word a chance to affect the
other three twice. This adjustment makes the attack irrelevant against ChaCha
since the key search space cannot be less than 264 in any case.

5 Side-Channel Analysis of the Quarter Round

Throughout this section, for greater clarity, we assume that all operators are
left-associative so that

a � b ⊕ c ≪ d ⇐⇒ (((a � b) ⊕ c) ≪ d).
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5.1 Optimizing Memory Accesses

A solution to overcome attacks on intermediate states within QRs is a straight-
forward assembly implementation, which is a good way to reduce memory access
instructions for load/store architectures. As explained in [9], for some instances
of ARX lightweight block ciphers like Simon and Speck [5], it is possible to keep
the whole state in registers during the entire encryption process. Thereby, they
can be implemented in assembly without having to execute a single STR instruc-
tion during the whole encryption process, drastically reducing the amount of
leakage.

Unfortunately, in the case of ChaCha, the state consists of 16 32-bit words.
Therefore, it would require a 32-bit CPU with at least 16 general-purpose regis-
ters (excluding the stack pointer, the program counter and other specific cases
such as hardwired registers) to avoid memory accesses. As our chip only has
13 general-purpose registers, we implemented ChaCha so that word values are
loaded into registers at the beginning of each QR and are then stored in RAM at
the end. Furthermore, during the last round, related key words are also loaded
into registers at the beginning of QRs, resulting in

quarterround′(x0, x5, x10, x15, k1, k6)
quarterround′(x1, x6, x11, x12, k2, k7)
quarterround′(x2, x7, x8, x13, k3, k4)
quarterround′(x3, x4, x9, x14, k0, k5)

where quarterround′(a, b, c, d, x, y) = quarterround(a, b, c, d) � (0, x, y, 0).
This method protects against leakages that would allow an attack from the
keystream using the modular subtraction as selection function. Thus, these ele-
mentary implementation tricks imply to analyze the side-channel resilience of
the whole QR.

5.2 Focusing on the Quarter Round

As every word influences the three others, and is updated twice, the simplest
selection function would be defined by focusing, during the first column rounds,
on the word which is completely updated at first, resulting in having

ϕ1 (noncei, ki ‖ ki+4) = noncei ⊕ k̃i ≪ 16 � ki+4 ⊕ ki ≪ 12 � k̃i. (3)

However, as previously mentioned, this implies a side-channel attack on 64 bits,
which is not feasible in practice. Therefore, we investigated the relevance of the
D&C approach in this specific case. Figure 2 sketches how key words are involved
in computations. It results that targeting n bits of y = ϕ1(noncei, ki ‖ki+4) does
not lead to a complexity equal to 22n since rotations make different n-bit windows
interact with each other. As there is a rotation of 16 bits followed by another
one of 12, some bits of k̃i may overlap. Hence, the key search space depends on
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the windows’ size.

|K| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

24n, if n ≤ 4
23n+4, if 4 ≤ n ≤ 12
22n+16, if 13 ≤ n ≤ 16
2n+32, otherwise

(4)

Furthermore, rotations are discarded from the selection function, resulting in

ϕ2,n

(
noncei, k̃

A
i ‖ kB

i ‖ kB
i+4 ‖ k̃C

i

)
= nonceA

i ⊕ k̃A
i �n kB

i+4 ⊕ kB
i �n k̃C

i (5)

where superscripts refer to intervals that define n-bit windows.

Fig. 2. D&C approach on the ChaCha QR, n = 8

In order to evaluate this method, we performed software simulations using
the HW model (without any additional noise) and random nonces. As expected,
the right key matches with the highest correlation coefficient. Nevertheless, some
other hypotheses also lead to the maximum coefficient as shown in Fig. 3, result-
ing in collisions.

Definition 1 (Collision). Let ϕ(n, k) be a selection function and κ be the right
key hypothesis. A collision is an hypothesis κ′ such that ϕ(n, κ) = ϕ(n, κ′) for
all n.

Fig. 3. Attack simulation on ϕ2,2
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Proposition 1. An attack on ϕ2,n returns up to n · 2n+2 collisions.

Another point that has not been discussed so far is the drawback caused by
carry propagations. Except when focusing on the least significant bits (LSBs),
one has no way of knowing if subkeys involved in additions are affected by a
carry. Thus, the positions of targeted windows are very important. Plus, we
made the choice to dissociate k̃i from ki in order to prevent from erroneous
predictions of kA

i �n constantA
i and kC

i �n constantC
i . For instance, in Fig. 2,

k̃C
i is the only hypothesis which could be erroneous due to a carry propagation

on its addend. As a result, an attacker should mount one attack taking this
carry into consideration, and another one without. This would mean that the
total number of collisions would be doubled. Although this selection function
may provide some information, we chose to investigate a more efficient attack
path.

5.3 Benefits of the Reverse Function

The ChaCha QR is trivially invertible and the inverse quarter round (IQR) is
defined in Algorithm 4.

Algorithm 4. ChaCha inv quarterround(a, b, c, d)

b ≫= 7; b ⊕= c; c �= d;

d ≫= 8; d ⊕= a; a �= b;

b ≫= 12; b ⊕= c; c �= d;

d ≫= 16; d ⊕= a; a �= b;

What matters here is that each input word does not have a chance to influence
the other three, since the first word does not impact the update of the second
one. Hence, the overall selection can be defined as below

ϕ3

(
b ‖ c ‖ d̃i, kb ‖ kc

)
=

(
b � kb ≫ 7

)
⊕

(
c � kc ≫ 12

)
⊕

(
c � kc � d̃i

)
(6)

where d̃i = di � noncei. Regarding the D&C approach where rotations are
discarded, it results in the following selection function.

ϕ4,n

(
b ‖ c ‖ d̃i, k

A
b ‖ kB

c ‖ kC
c

)
=

(
bA �n kA

b

) ⊕ (
cB �n kB

c

) ⊕
(
cC �n kC

c �n d̃C
i

)
(7)

As less words are involved, the key search space is reduced and still depends on
the windows’ size.

|K| =

⎧⎪⎨
⎪⎩

23n, if n ≤ 12
22n+12, if 12 ≤ n ≤ 20
2n+32, otherwise

(8)
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Fig. 4. D&C approach on the ChaCha IQR, n = 8

However, since the rotations are less pronounced, key words do not overlap if
the windows’ size does not exceed 12 bits, as depicted in Fig. 4. Throughout the
rest of this section, we only consider the case where n ≤ 12.

As before, key hypotheses might be affected by carry propagations. However,
another advantage of ϕ4,n over ϕ2,n is that one knows the entire 32-bit minuend
(i.e. b or c). Thus, depending on its value, one can calculate the probability of a
carry propagation. For instance, when targeting k

[x,x+n[
b , the probability is

p = P

(
k
[0,x[
b > b[0,x[

)
=

2x − (
b[0,x[ + 1

)
2x

. (9)

For our simulation with n = 4, we took a carry into consideration only if p > 0.75.
On top of providing a smaller key search space, ϕ4,n is less prone to collisions
as shown by our simulation depicted in Fig. 5.

Fig. 5. Attack simulation on ϕ4,4

Proposition 2. An attack on ϕ4,n returns 4 collisions.

Proof. Flipping the MSB of the minuend/subtrahend also flips the MSB of the
modular difference. Therefore, in the case of ϕ4,n, flipping the MSB of two n-bit
key windows leads to the same output. As a result, the number of collisions is
equal to 1 +

(
3
2

)
= 4. 	


This property allows to halve the key search space (i.e. |K| = 23n−1), since all
collisions can be retrieved from just one. In the next section, we suggest a more
efficient method than repeating this computation over several windows and then
sorting the right key from the collisions.
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5.4 Overview of the Brickerlayer Attack

Once collisions have been found using ϕ2,n or ϕ4,n, one has to reiterate the same
procedure on different windows. Instead of executing several attacks in parallel,
we suggest to take advantage of windows that have been previously recovered,
in order to target larger ones. For instance, once 4 collisions have been found
after an attack on ϕ4,n, one can target ϕ4,m, where m > n, with a complexity
|K| = 23(m−n)+1.

Proceeding in this sequential manner has two advantages. First, taking the
carry propagation into consideration is only necessary during the first attack.
This property is especially interesting for ϕ2,n since there is no way to estimate
carry propagations in this case. Second, each attack cancels collisions from the
previous ones, since the positions of the collision bits are changed. For instance,
regarding ϕ4,n where collisions only depend on MSBs, the bricklayer approach
transforms previous collisions into the predictions’ lower bits, allowing the cor-
rect collision to stand out. This property is less efficient in the case of ϕ2,n since
collisions depends on all bits of the n-bit word. Therefore, the correct collision
does not stand out directly but some wrong hypotheses are still discarded.

An example application of the bricklayer attack using ϕ4,n is depicted in
Fig. 6. Note that from the fourth step, the attack focuses two key windows instead
of three because rotations lead to a position that has already been recovered.
Finally, the last step considers the entire 32-bit output word using ϕ3 and the
known bits/collisions.

Fig. 6. Bricklayer attack example on IQR
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6 Applications in Practice

6.1 Practical Experiments

All practical experiments presented below were done using an ARM 32-bit
Cortex-M3 processor clocked at 24 MHz. Note that the DUT does not embed
any hardware countermeasure against side-channel attacks. A trigger signal was
inserted to indicate the beginning and the end of the penultimate round in order
to avoid synchronization complications. EM emanations were measured using a
Langer LF-U 5 near-field probe (100 kHz–50 MHz) and a LeCroy WaveSurfer 10
oscilloscope sampled at 10 GS/s. The signal was amplified using a Langer PA 303
BNC preamplifier, providing a gain of 30 dB. We used the same leakage model
as for our simulations, since our microcontroller leaks the HW of intermediate
values.

First, we tried to perform correlation analyses by focusing on arithmetic
operations, without success. Figure 7 emphasizes that attacking the final block
addition during executions of quarterround′ was not successfull, whereas for
the compiled C version (which stores the intermediate values in RAM), we were
able to retrieve the key bits. This reinforced our assumption that, depending on
the computing platform, memory accesses can be the only source of exploitable
leakage for software implementations.

Fig. 7. Impact of memory accesses on electromagnetic leakage

In order to put the bricklayer attack into practice, the following hard-coded
input block was used to encrypt 250 kB of data, where the counter (i.e. nonce0)
was incremented for each 512-bit block (Fig. 8).

Figure 9 depicts all the correlation curves corresponding to each step of the
bricklayer attack when targeting k2 and k7. We incremented the windows’ length
by 4 at each step, exactly as illustrated in Fig. 6, resulting in an overall compu-
tational complexity of 213. All CEMAs were computed by halving the key search
space. Consequently, some results do not appear clearly on charts and have to
be deduced.

The first step, which targets k23...20
7 ‖ k3...0

7 ‖ k10...7
2 , returned the collisions

Γ = {γ1, γ2, γ3, γ4} = {56, 176, 2096, 2232}. For the next stages, each key
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Fig. 8. Input block used for practical experiments

Fig. 9. CEMAs to recover k2 and k7

hypothesis κ ∈ K was coupled to each collision γj ∈ Γ and was placed at
the index i = κ · |Γ | + j of the prediction vector. Thus, higher coefficients
at indexes i revealed the correct collision of the previous step γj by comput-
ing j = i mod |Γ |. Finally, the new collisions are equal to (i − j) / |Γ |. For
instance, Fig. 9b indicates that the maximum coefficient appears at indexes
i ∈ {6499, 6979}. Both indexes are congruent to 3 modulo 4, which means that
γ3 = k23...20

7 ‖ k3...0
7 ‖ k10...7

2 . As a result, the collisions for k27...24
7 ‖ k7...4

7 ‖ k14...11
2

are defined by Γ = {1624, 1744, 3664, 3800}. The remaining steps followed the
same methodology, making it possible to recover k2 and k7 entirely. Obviously,
this can be applied on other IQRs in parallel to recover the whole encryption
key.
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A drawback of the D&C method is the number of required measurements,
since the leakage of the omitted bits influences the attacked ones. Thus, more
traces are needed in order to average out noise. Figure 10 compares, regarding
the number of measurements, an attack on the QR using ϕ2,3 with the first step
of the bricklayer attack presented above, using the same measurement setup.

As a result, to recover the same number of key bits, ϕ4,n requires less traces
as it targets larger windows than ϕ2,n. However, the number of required traces
decreases at each step of the bricklayer attack as the size of targeted windows
increases.

Fig. 10. Correlation coefficients to recover 12 key bits

6.2 Attacks’ Feasibility on Existing Protocols

In a typical side-channel analysis, it is assumed that the attacker has access to
either the plaintext or the ciphertext, but not necessarily to both. In the case
of ChaCha, we can consider the knowledge of the nonce as the knowledge of the
plaintext. However, attacks using ϕ4,n require the knowledge of the keystream
(i.e. plaintexts and ciphertexts), in addition to nonces. This is a strong assump-
tion that could be available in an evaluation laboratory but might be hard to
set up in practice, leaving the attacks from nonces more realistic. Therefore, we
discuss whether the knowledge of nonces is a fair assumption.

By definition, the single requirement for a cryptographic nonce is to be used
only once. Therefore, a simple counter could suit the need. However, in cases
where many different keys are used, some protocols (e.g. TLS) force a part of
the nonce (e.g. the IV) to be random in order to thwart multi-key attacks [27].
This leaves the block counter as the only predictable part of the nonce. Therefore,
if this latter is defined on n bits, then a correlation analysis cannot recover more
than 2 · n key bits. As a result, it introduces a protocol-level countermeasure
which protects a large part of the key.

Still, existing protocols are not defined in this way. For instance, the Secure
Shell (SSH) protocol uses the packet sequence number as a 64-bit IV [1] whereas
the remaining 64 bits are used for the block counter, which is reset for each
packet. Consequently, observing an entire SSH session makes it possible to pre-
dict the entire nonce, giving an attacker the opportunity to recover all key words
as soon as enough packets are transmitted.
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Furthermore, another construction that can be encountered in practice is
XChaCha20, which is implemented in the Sodium crypto library [17]. This con-
struction was first proposed for Salsa20 [6] and aims at extending the nonce to
192 bits so that it can be picked at random. The main idea is to encrypt a block
with a fixed key k and 128 bits of the random nonce, without executing the final
block addition. The first and last 16 bytes of the output result in a 256-bit subkey
k′. Finally, the regular ChaCha20 algorithm is executed using the 64 remaining
bits of the 192-bit nonce as IV, and k′ as encryption key. Note that XChaCha20
is intrinsically resistant against attacks from the keystream, since the final block
addition is omitted during the subkey generation. However, the 192-bit nonce
must be transmitted in clear and can be entirely known by the attacker.

These real life case studies introduce the need of dedicated countermeasures
against side-channel attacks when ChaCha is deployed in such conditions.

7 Towards a Secure Implementation

A common approach to thwart side-channel attacks is the use of masking. This
countermeasure consists in blinding the processed values x by means of ran-
dom masks r, so that intermediate variables are impossible to predict. Thus,
an attacker has to analyze multiple point distributions, which exponentially
increases the attack complexity with the number of shares. In this section, we
only discuss first-order masking i.e. the case where a single mask is used to ran-
domize the data. Because of their structures, ARX designs need both boolean
(x′ = x ⊕ r) and arithmetic (x′ = x � r) masking.

To overcome this complication, there are two main approaches. The first
one is to switch from one masking scheme to the other whenever necessary.
The first conversion algorithms, described by Goubin in [20], have complexity
of O(1) for boolean to arithmetic and O(k) for arithmetic to boolean, where
k refers to the addends’ bit size. The latter was then improved by Coron et
al. to O(log k) [15]. The second approach is to directly perform an addition on
the masked values, eliminating the need for conversions [22]. However, secure
adders usually rely on the recursion formulae involved in arithmetic to boolean
conversions. Consequently, they inherit from the same complexity.

The best method, in terms of performance, depends on the algorithm to
be protected. For instance, masks conversions are more efficient when several
arithmetic operations are processed successively, since only one arithmetic to
boolean conversion is ultimately required. Otherwise, secure adders can lead to
better performances as shown by a practical comparison between HMAC-SHA-1
and Speck in [15]. In order to give an insight into the overhead introduced by a
first-order masking, we implemented two secure adders in C language, using the
same compilation options as described in Sect. 4.3. This allowed us to compare,
in terms of performance, our secure implementations of ChaCha20 with the one
from the OpenSSL library. Running times given in Table 1 are expressed in clock
cycles and were computed with the help of debug sessions. Note that these mea-
surements do not take the generation of random numbers into account since this
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operation depends a lot on the computing platform. As these countermeasures
were implemented in C, they do not ensure the absence of memory accesses
within QRs. On the other hand, handling all data in registers during a whole
QR may not be possible, since masking also increases memory requirements. Fur-
ther investigations need to be carried out to determine which algorithms could
minimize memory access within QRs and how to securely manage them.

Table 1. Running time in clock cycles to encrypt a 512-bit block using ChaCha20 on
an ARM Cortex-M3

Time Penalty factor

ChaCha20 unmasked 4 380 1

ChaCha20 with Karroumi et al. SecAdd [22] 121 618 28

ChaCha20 with Coron et al. SecAdd [15] 93 993 22

These practical results point out how difficult it is to effectively secure ARX
ciphers’ implementations. However, masking is not the only answer to side-
channel attacks and is often combined with hiding countermeasures. The princi-
ple of hiding is to randomize an algorithm execution by running its operations at
different moments in time, during each execution [36,39]. This can be achieved
by randomly inserting dummy operations and shuffling. Shuffling intends to ran-
domly change the sequence of operations that can be computed in arbitrary
order. In practice, hiding countermeasures increase the number of traces needed
to carry out an attack [16,33].

Regarding ChaCha, operations within a QR cannot be shuffled as they are
executed sequentially. On the other hand, each QR can be computed indepen-
dently from the other, but this is only true for a single round because of switching
from column to diagonal rounds. However, there are many ways to implement
hiding in practice and further investigations will have to be carried out on the
specific case of ChaCha.

8 Conclusions and Further Work

This paper presents side-channel analyses of ChaCha based on leakages related to
memory accesses. Our study emphasizes that quantifying the signal available to
the attacker at the instruction level could allow to strengthen implementations
without much effort.

We compare, from a side-channel point of view, two different software imple-
mentations of ChaCha20 on a 32-bit processor. As a result, minimizing mem-
ory accesses makes selection functions more complex, to such an extent that
they may lead to collisions. We introduce the bricklayer attack to defeat such
implementations. Our results show that attacking the reverse QRs (i.e. from the
keystream) is more efficient than attacking the regular ones (i.e. from the input
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block). However, we highlight that attacks from the input block are the most
pragmatic threats since the knowledge of the keystream is a strong assumption.
Finally, we discuss possible countermeasures at several levels and highlight how
expensive it is to implement first-order masking for ChaCha20 with practical
measurements. Therefore, further work must be undertaken to propose efficient
secure implementations of ChaCha.
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