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Abstract. Evaluating the practical security of Ring-LWE based cryp-
tography has attracted lots of efforts recently. Indeed, some differences
from the standard LWE problem enable new attacks. In this paper we dis-
cuss the security of Ring-LWE as found in Fully Homomorphic Encryp-
tion (FHE) schemes. These FHE schemes require parameters of very
special shapes, that an attacker might use to its advantage. First we
present the specificities of this case and recall state-of-the-art attacks,
then we derive a new special-purpose attack. Our experiments show that
this attack has unexpected performance and confirm that we need to
study the security of special parameters sets carefully.
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1 Introduction

The Learning With Errors over Rings (Ring-LWE) problem has been introduced
by [LPR10] as a ring variant of the Learning With Errors due to Regev [Reg05].
Both problems enjoy security reductions to hard lattice problems (SIVP for LWE
and SVP in ideal lattices for Ring-LWE), so they serve as hardness grounds
for many cryptographic constructions, among others homomorphic encryption.
See the survey from Peikert [Pei15] for an extensive retrospective. Today, the
paramount question, that still stands in the way to practical use, concerns the
security of concrete instances of these problems. Namely, how shall one choose
parameters for these problems to meet a security level objective, say 80 bits of
security?

Homomorphic encryption (HE) is a type of encryption that allows to com-
pute over encrypted data. The result, once decrypted, equals that of the same
computation done over the plain data. HE enables many new applications
because one no longer needs to trust the computing entity, e.g. cloud ser-
vice providers. Fully homomorphic encryption (FHE) was first achieved by the
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ground-breaking works of Gentry [Gen09] and Aguilar et al. [AMGH10]. Since
then, huge efforts have been spent and have led to numerous scheme propos-
als, e.g. [vDGHV10,BGV12,FV12,GSW13,DS15,DM15,CGGI16]. Some of the
most efficient ones are now implemented, for early users: HElib [Hal], SEAL
[DGBL+15], FV-NFLlib [Cry]. These efficient schemes are known secure under
the assumption that Ring-LWE is intractable. For an application, the parame-
ters need to be chosen to guarantee the expected security level. This choice of
parameters is also constrained so that the scheme itself works.

Related work: This need for a better understanding of the Ring-LWE security, in
practice, has already driven some studies. For example, Albrecht et al. [APS15]
offer a complete overview of the known attacks against LWE. They also give
estimates of their costs against some LWE-based cryptographic schemes, not only
FHE. We recall them briefly below for our later discussion. Another more recent
line of work has been developed against Ring-LWE specifically, taking advantage
of the underlying ring structure, see [Pei16] for a summary and guidelines to draw
immune parameters.

Today, the estimates we can use to choose parameters are from the works of
Lindner and Peikert [LP11] or Van de Pol and Smart [vdPS13]. Also Albrecht
et al. maintain an LWE security estimator based on models of state-of-the-art
attacks1. However none of them include special-purpose attacks for FHE settings.

Our work: It seems to us that a focus on Ring-LWE-based FHE scheme is needed.
As we see later, in order to keep correctness in the homomorphic schemes, an
application designer needs to pick very special parameters. It seemed unclear to
us what concrete advantage an attacker might have in such cases. Our contribu-
tion aims at filling this gap. After reviewing state-of-the-art attacks, we derive
a new one, specially designed for this case, and present experimental results.

Roadmap: Introducing notation and definitions in Sect. 2, we review the state-
of-the-art of the attacks against Ring-LWE in Sect. 3. In Sect. 4 we present our
new attack in details, its performance in Sect. 5 and draw some conclusions in
Sect. 6.

2 Preliminaries

2.1 Notation

For a positive integer q > 0 we note Zq the set of elements {0, . . . , q − 1}.
For n > 0 integer, the matrix In refers to the identity matrix of size n.

Capital bold letters are used for matrices, e.g. B, and small ones for (row)
vectors, e.g. v. We similarly write B for a matrix or for the ordered family of
(row) vectors B = (b1,b2, . . . ,bn) using bold subscripts. For a vector v, we
refer to its components with italic subscripts vi.

1 https://bitbucket.org/malb/lwe-estimator/overview.

https://bitbucket.org/malb/lwe-estimator/overview
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When dealing with a polynomial p of degree n − 1, we use the coefficient
embedding and assimilate it as a coordinate vector: p = (p1,p2, . . . ,pn). We will
work with polynomials in polynomial ring R = Z[x]/(f(x)) for some f ∈ Z[x].
We denote Rq the set of polynomials in R with coefficients in Zq.

2.2 Lattices

General definitions. In general, a lattice L of dimension n is a discrete additive
subgroup of Rn. Integer lattices are discrete additive subgroups of Zn. In this
paper we only work with the integer lattices and simply call them lattices.

Lattices (of size n) are usually represented by a basis B, a set of n indepen-
dent integer vectors (b1,b2, . . . ,bn) of size n whose integer linear combinations
generate the lattice.

L(B) =

{
n∑

i=1

vibi : vi ∈ Z

}
=

{
BTv : v ∈ Z

n
}

= BZ
n

In our lattices, B is always a square integer matrix, B ∈ Z
n×n. For most of

the discussion we restrict to this full rank definition and will make it explicit
when working with greater generating families.

An invariant of a lattice is its determinant det(L). It is defined as the absolute
value of the determinant of any of its bases.

det(L) = |det(B)|

Gram-Schmidt Orthogonalization (GSO). We refer several times to the GSO
of a basis. This algorithm takes the matrix to orthogonalize and outputs the
resulting matrix B� and a matrix μ (lower triangular with 1 on the diagonal)
such that : B = μ × B�. We construct B� so that its vectors verify:

– b�
1 = b1

– b�
i is the projection of bi orthogonally to the subspace generated by the i− 1

first vectors of B.

It works in polynomial time in the size of the matrix.

q-ary lattices. When studying LWE and Ring-LWE problems, the lattices we
mostly work with are called q-ary, because they are defined modulo some integer
q (not necessarily prime). These lattices are defined as follows:

Lq(B) =

{
n∑

i=1

vibi mod q : vi ∈ Z

}

=
{
BTv mod q : v ∈ Z

n
}

Hence, since we are working modulo q, we can equivalently consider that all
the components of B and v are in Zq.
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Lattice reduction. As we discuss below, working with lattices is better when we
have nice bases. Therefore we have lattice reduction algorithms that, given a
basis, make it nicer according to some criteria. There is a wealth of studies on
this computational problem.

We usually consider the following criteria and say that a basis is:

– η-size-reduced if ∀i < j, |(bj|b�
i )| ≤ η . ‖b�

i ‖2
– δ-LLL-reduced if it is size-reduced and ∀i, δ‖b�

i ‖2 ≤
(
‖b�

i+1‖2 + (bi+1|b�
i )

2

‖bi
�‖2

)
– β-BKZ-reduced if it is LLL-reduced and for all j, b�

j is the shortest vector of
the sublattice spanned by (bj, . . . ,bk) with k = min(j + β − 1, n)

We have algorithms to achieve such reductions:

– The celebrated LLL algorithm from Lenstra et al. [LLL82], running in poly-
nomial time of the dimension and the size of the elements. Improvements
have been proposed since then and are available in current implementations
[NS05].

– The Blockwise Korkine-Zolotarev algorithm [SE94,CN11] achieves BKZ
reduction. It makes a polynomial (in n) call to a SVP oracle in a sublat-
tice of size β. It behaves roughly as a sub-exponential in the basis quality
[GN08b] and uses LLL as a sub-routine.

– Slide Reduction [GN08a] is another block algorithm, in the spirit of BKZ, but
simpler to express and analyze, whose performance approaches that of BKZ
[MW15].

The quantity we usually use to measure the reduction quality, indepen-
dently of the algorithm, is the root Hermite factor γ. It is defined as: ‖b1‖ =
γn det(L)1/n where b1 is the smallest vector of the basis we qualify. The higher
the quality, the smaller it gets.

2.3 Learning with Errors and Ring Variant

We recall here the definitions of the Learning With Errors problem [Reg05] and
the Ring-LWE variant [LPR10]. Both exist in a search version and a decision
version.

Definition LWE. Let n, q be positive integers, χ a probability distribution on
Z of standard deviation σ and s a secret random vector in Z

n
q . We denote by Ls,χ

the probability distribution on Z
n
q ×Zq obtained by choosing a ∈ Z

n
q uniformly at

random, choosing e ∈ Z according to χ and considering it in Zq, and returning
(a, c) = (a, 〈a, s〉 + e) ∈ Z

n
q × Zq.

Decision-LWE is the problem of deciding whether given pairs (a, c) are sam-
pled according to Ls,χ or the uniform distribution on Z

n
q × Zq.

Search-LWE is the problem of recovering s from pairs (a, c) sampled from
Ls,χ.
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Definition Ring-LWE. Let R be a ring of degree n over Z (usually R =
Z[x]/(f(x)) for some cyclotomic polynomial f(x)). Let q be a positive integer,
χ a probability distribution on R of standard deviation σ and s a secret ran-
dom element in Rq. We denote by Ls,χ the probability distribution on Rq × Rq

obtained by choosing a ∈ Rq uniformly at random, choosing e ∈ R according to
χ and considering it in Rq, and returning (a, c) = (a, [a · s + e]q) ∈ Rq × Rq.

Decision-Ring-LWE is the problem of deciding whether given pairs (a, c) are
sampled according to Ls,χ or the uniform distribution on Rq × Rq.

Search-Ring-LWE is the problem to recovering s from pairs (a, c) sampled
from Ls,χ.

The hardnesses of (Ring-)LWE problems depend on the three variables n,
σ and q. The hardness reductions presented in the introductory papers stands
when σ > 2

√
n. Besides that, we aim to establish a link between a choice of

parameters and the provided security level, in the context of FHE.

2.4 Ring-LWE Based FHE Schemes

Since the works of Gentry [Gen09] and Aguilar et al. [AMGH10], lots of homo-
morphic encryption schemes have been proposed. They can be divided into two
families: those based on integers and those based on lattices. LWE and Ring-
LWE serve as building ground for the latter family. Generally, those based on
Ring-LWE derive from an equivalent scheme on LWE and are more efficient in
terms of space and/or time. The most common Ring-LWE based schemes are:
[BGV12], [FV12] and SHIELD [KGV15].

For expository purpose, we recall here only elements of the [FV12] scheme.
The discussion remains valid for all schemes as well. The interested reader should
refer to the original papers for extensive details about the schemes. In our present
study, we are interested in the elements that will be the attack target, namely
the public key. In [FV12] the key generation process goes as follows:

1. FV.ParameterChoice(λ): choose (n, σ, q) to guarantee of level of security λ
and set R = Z[x]/(Φn(x))

2. FV.KeyGen(n, σ, q): sample s ← R2, a ← Rq, e ← χ and output

sk = s and pk = ([−(a · s + e)]q,a)

Security. Let aside the sign of the first element, the public key pk is exactly
a Ring-LWE pair as described above. The objective of the attacker is to solve
search-Ring-LWE (i.e. find s) when given access to this public key and the public
parameters (n, σ, q and R).

Correctness. The condition for the scheme to be correct (i.e. decryption yields
a result consistent with the computation) is [FV12, Eq. 6]:

4 · β(ε) · δLmax
R · (δR + 1.25)Lmax+1 · tLmax−1 <

q

σ



32 G. Bonnoron and C. Fontaine

where

– Lmax is the maximum multiplicative depth before bootstrapping is needed.
– t is the size of the plaintext space (Rt).
– δR = max{‖a · b‖/(‖a‖ · ‖b‖) : a,b ∈ R}, e.g. δZ[x]/(xn+1) = n.
– β(ε) is such that the error samples are bounded by B = β(ε) · σ with proba-

bility 1 − ε, e.g. β(2−64) ≈ 9.2.

As a result of this constraint, we can see that q will have to be very large, in
front of σ, to conserve correctness with interesting depth, say L = 9. To prevent
q from being enormous, many authors tend to take σ very tiny, e.g. 3.2 or 8.
However, this completely violates the bound σ > 2

√
n required for the hardness

reductions to hold [LPR10].

3 Existing Attacks

In January 2015, Albrecht et al. [APS15] aimed at assessing the concrete hardness
of LWE and provided an excellent survey of the state-of-art approaches as of
this date. These methods apply also to Ring-LWE. We recall here, from a high
level perspective, the different families of methods, together with more recent
attacks when such exist. The sections of their paper contains extensive details
and are therefore mentioned here as reference for the interested reader. Then we
briefly present the attacks targeting Ring-LWE specifically and summarized in
the recent survey [Pei16].

Bruteforce on s. Attempting an exhaustive search is always possible, yet rarely
efficient to solve the problem if the parameter choice is sound. For completeness
they express the time complexity of such attack, in general [APS15, Sect. 5.1]
and in the case where ||s|| ≤ 1 [APS15, Sect. 6.1]. There are better performing
methods, as follow.

Distinction. In [APS15, Sect. 5.3], they present a way to distinguish LWE sam-
ples from uniformly random samples, as stated by the Decision-LWE problem.
However this does not directly recover the secret.

Arora-Ge Attack [AG11]. A purely algebraic attack [APS15, Sects. 5.6 and 6.5],
this one consists in constructing from LWE samples a polynomial whose root is
the secret. It is particularly efficient in cases where ||e|| is very small, for example
binary errors. For this case however, we are outside of the domain of validity of
the hardness reduction from [Reg05] which requires σ > 2

√
n.

Blum-Kalai-Wasserman [BKW03]. This combinatorial method works like the
Gauss elimination procedure [APS15, Sects. 5.2 and 6.4]. It requests many sam-
ples, searches collisions between parts of these samples and gradually creates
linear combinations where more and more components equal 0. At the end, the
combination allows to deduce the secret. This method has been improved a lot
since its original presentation. To date, the best is from Guo et al. [GJS15]. Due
to the number of samples required, we do not consider this attack further. Indeed
we prefer to assume availability of only the public key and see what can be done.
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Decoding. In LWE samples, Gaussian errors can be considered bounded, with
high probability, by a sufficiently large bound. An approach is then to use
decoding algorithms to remove the error. This addresses the LWE problem as a
Bounded-Distance Decoding (BDD) instance in a specially crafted lattice. The
BDD problem asks to recover the lattice point closest to a given one (not in the
lattice), with the promise that the target point is close to the lattice [APS15,
Sect. 5.4].

Decoding with Embedding. Another technique to cope with the difficulties of
direct decoding is to embed the lattice into another. The latter has higher dimen-
sion and more properties that enable some optimizations. Two embeddings are
presented: one in the general case [APS15, Sect. 5.5] by Kannan [Kan87] and one
in the specific case of ||s|| ≤ 1 [APS15, Sect. 6.3] from [BG14].

Using the Ring Structure. Several recent works [EHL14,ELOS15,CLS15,CIV16]
use the underlying ring structure to attack Ring-LWE. Peikert describe a unified
framework that encompasses all these attacks and sort them into two classes:
reduction to errorless LWE and reduction modulo an ideal for which decision-
Ring-LWE is tractable [Pei16]. Consequently, we know some rings to be vulner-
able and others to be immune.

4 Our New Attack

Out of these surveys, we conclude to keep the decoding attacks. Algebraic attacks
are not usable within the bounds of hardness reductions [Reg05,LPR10] and
combinatorial attacks require too many samples, we let them aside. In the case
of [FV12], the secret is small, ||s|| ≤ 1, so when it comes to embedding, the
solution [BG14] is best.

4.1 Bai-Galbraith Embedding Improved

We detail here a slightly improved version of this embedding.
Let (A,b = AT s+ e mod q) be a LWE instance for some n, q and σ. As we

derive the matrix A from a single Ring-LWE sample (the key), we fix m = n,
A ∈ Z

n×n. Write A′ = (A|In), being a n × 2n matrix. We have the following
equality

b = A′
(
s
e

)
mod q

where ( s
e ) is a short vector with respect to q.

Clearly for w = ( 0
b ) we have A′w = b. We then try to approximate this

vector w by a point v0 from the lattice L′ defined by

L′ =
{
v ∈ Z

2n : A′v = 0 mod q
}
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For such a vector v0, we have v0 ≈ w so w − v0 is a short vector (with
respect to q) and

A′(w − v0) mod q = A′w − A′v0 mod q

= b − 0 mod q

= b

Consequently we have w−v0 = ( s
e ). Hence, finding v0 in L′ allows us to recover

s (and also e). We can use BDD algorithms for this, if we have a basis B for L′.
We obtain it by embedding as follows:

BT =
(

In 0
−A qIn

)
∈ Z

2n×2n

It can be verified that the columns of this matrix are linearly independent
and each of them satisfies the definition of L′, so B is a basis of L′.

This slightly differs from what Bai and Galbraith did. They introduced the
matrix

M =

⎛
⎝ In

qI2n
−A

⎞
⎠ ∈ Z

2n×3n

and compute its column Hermite Normal Form to end up with a full rank matrix
generating the lattice. Our trick avoids this HNF computation and yields a basis
for L′ more efficiently2.

After the embedding part, we leave untouched the rescaling operation from
[BG14]. Since ||s|| ≤ 1 whereas the standard deviation for e is σ (which is
not small as discussed above), the components of the difference w − v0 are
unbalanced. Therefore we multiply the n first components of the basis vectors.
It makes the lattice reduction easier, the difference more balanced and still short
(with respect to q). Consequently the next stage of the attack works in the lattice
whose basis is

BT =
(

σIn 0
−A qIn

)
∈ Z

2n×2n

4.2 Lattice Reduction

Once the embedding and rescaling are done, the next step is to find the closest
point v0 to w in L′. The existing algorithms for BDD require a somehow reduced
basis of the lattice, otherwise they are completely impracticable. Since our basis
B in its present form verifies none of the criteria for reduction given at the
beginning Sect. 2.2, we need to reduce it. We detail here the different options
and our strategy.

Lattice reduction has been studied for long since it is very useful in crypt-
analysis, integer programming, to cite only a few. The first and celebrated work of
2 Computing the HNF of a matrix is not an intense computation, but can be avoided.

See [SL96] for a complexity analysis.
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Lenstra et al. [LLL82] presented a polynomial time algorithm for lattice reduc-
tion, whose output quality suffices for many applications. Since then, several
blockwise algorithms have been introduced, the best performing are BKZ [CN11]
and Slide Reduction [GN08a]. Both achieve better output quality than LLL but
have worse time complexities. Since BDD becomes quicker with a better reduced
basis, we need to find a trade-off between the time spent on the reduction step
and on the BDD step, so that the overall attack time is minimized. Therefore,
an attacker might attempt to use LLL first and if the BDD step takes too much
time, try a stronger reduction algorithm. Same discussion apply when the algo-
rithm is fixed, the attacker can tweak its parameters and achieve different output
qualities at different computational costs.

The attacker may also look for specialised lattice reduction algorithm since
the previous ones work for any lattices and do not take advantage of any struc-
ture in them. To the best of our knowledge, the only specialized algorithm that
fits our case is the variant from Gama et al. [GHGN06]. The lattices it reduces
are symplectic. Denoting J2n =

(
0 In

−In 0

) ∈ Z
2n×2n, a lattice with basis B is

symplectic if and only if BT J2nB = J2n The bases of our case are indeed sym-
plectic, as can be verified. So this variant of LLL would be interesting to try.
The authors reported a speed-up factor of nearly 10 when compared to reference
implementation of classical LLL. However the code is not available, so we were
not able to use it in our tests.

In the next section we present the details of our experiments on algorithms
and parameters. Our conclusion is that for our case, the BDD step is successful
even when we only perform an LLL reduction with quite weak parameters. This
fact is absolutely no general conclusion. Here we are in a specific case, our basis
B has several properties (integer, upper triangular, blockwise upper triangular
with scaled identity on the diagonal, etc.) and so do our parameters n, σ and q.

4.3 Pruned Enumeration for BDD

Finally, to find v0 in L′ close to w with the reduced basis, we use Liu-Nguyen
pruned enumeration [LN13]. To our knowledge pruned enumeration is the best
performing algorithms in practice, see [HPS11] for a description of the other
candidates.

This method of pruned enumeration is an adaptation to BDD of the extreme
pruning technique introduced by Gama et al. [GNR10]. This algorithm enumer-
ates lattice points that are close enough to the target, with a bound provided as
a pruning function. Since the enumeration works by adding one component at
a time to the current partial solution, we may define different bounds for each
positions. Unlike previous work [Bab86,LP11], Liu-Nguyen pruned enumeration
evaluates the heuristic on the projections of the current candidate and not on
its components.

This concludes the algorithmic description of our attack. We turn now to
implementation aspects and the results we get.
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5 Implementation and Results

In this section we present the implementation details of our new attack, described
in the previous section. Since we were able to use it successfully against many
[FV12] keys, we thoroughly analyse its performance and give out some conclu-
sions.

5.1 Implementation Details

In order to implement our attack, we use the following existing codes:

– Lepoint’s implementation [Lep14] of [FV12],
– Stehlé’s fplll [dt16] for lattice reduction algorithms,
– Shoup’s NTL [Sho15] for additional lattice operations.

Then, we implemented the embedding/rescaling, the pruned enumeration algo-
rithm from Liu-Nguyen (following their pseudo-code [LN13]) and created the
glue between the different libraries to lead the attack from beginning to end.

Lepoint’s implementation. In [LN14], in order to compare [FV12] and YASHE,
Lepoint implemented the code needed to use both schemes and perform homo-
morphic operations. We use his constructor method with light modification. It
allows us to create a public key pk = ([−(a · s + e)]q,a), given n, σ and q. The
attack aims to recover the secret when given the FVKey object as input.

From [FV12] to R-LWE lattice. From the a in the public key, we construct a
lattice basis A so that [a · s + e]q (polynomial operation) equals As + e mod q
(matrix/vector operation). For instance, with R = Z[x]/(xn + 1) we have:

AT =

⎛
⎜⎜⎜⎜⎜⎝

a1 a2 a3 · · · an

−an a1 a2 · · · an−1

−an−1 −an a1 · · · an−2

...
...

...
. . .

...
−a2 −a3 −a4 · · · a1

⎞
⎟⎟⎟⎟⎟⎠

Embedding and rescaling. Then we embed this matrix A into B following
Sect. 4.1. Rescaling is also done here. B is ready for the next stage.

Lattice reduction. For this step we rely on the different routines from fplll
[dt16]. Both LLL and BKZ algorithms are available and can be tweaked conve-
niently. We detail below the settings we experimented.

BDD enumeration. Finally, we implemented the pruned enumeration algorithm
from Liu-Nguyen to solve BDD in the reduced lattice L′. Later, we discovered
an undocumented implementation of enumeration in fplll, that we included in
our experiments.
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5.2 Attack Settings – Early Benchmarks

Before launching a full-scale attack, we run it on small cases. It allows us to
explore the choices we have, for algorithms and their parameters, for the different
stages.

Lattice Reduction Tweaking. State-of-the-art results [APS15] tell us that
strong reductions like BKZ is needed to make enumeration possible. Yet after
a few toy examples with BKZ as reduction algorithm, we realized that most of
the attack time was spent in the lattice reduction stage. So we tried different
settings for BKZ and LLL on cases where n ≤ 100.

Beginning with BKZ, we could confirm [CN11], an intermediate blocksize
β = 20 leads to moderate running times. Whereas smaller values like 5 or greater
like 40 lead to prohibitive running times. Even with such blocksize, the attack
time is not balanced between reduction and enumeration, so we rapidly shifted
to study LLL.

LLL algorithm is governed by two parameters δ and η. We recall the size
reduction condition and the Lovász condition from Sect. 2.2:

∀i < j, |(bj|b�
i )| ≤ η . ‖b�

i ‖2 with 1/2 ≤ η ≤
√

δ

∀i, δ‖b�
i ‖2 ≤

(
‖b�

i+1‖2 +
(bi+1|b�

i )
2

‖b�
i ‖2

)
with 1/4 ≤ δ ≤ 1

The default values in fplll are (δ, η) = (0.99, 0.51).

Optimising δ. First, we tried to decrease δ to loosen the Lovász condition, how-
ever with (0.75, 0.51) we gained only limited speedups and only for n ≥ 100, and
it had dramatic effect on the observed success rate of the overall attack. The
enumeration stage fails due to a lattice basis of insufficient quality.

Optimising η. Then we restored δ and experimented with an increased η ∈
[0.60, 0.98], to ease the size-reduction condition.

As we can see in Fig. 1, loosening the size reduction condition decreases the
running time of LLL. We observe a greater gain (in time) between 0.60 and 0.75
than between 0.75 and 0.95. In addition, with η = 0.95 we get a less successful
attack, whereas for η equal to 0.51 or 0.75 the observed success rates are similar.

Observed root Hermite factor. We report in Table 1 the quality we get with
reduction parameters δ = 0.99 and η = 0.71. As a reminder, the best proved γ
for LLL is γ = 1.0754 and Gama and Nguyen observed γ = 1.0219 for random
lattices of similar dimensions [GN08b]. In our case, we observe that LLL reduces
lattices to a very good quality, even with weak reduction parameters δ and η.

Enumeration Behavior. For the enumeration step, we use the technique
of pruned enumeration from [LN13]. Its only setting is the pruning function
(R2

1, . . . , R
2
2n). As we know precisely the expected distance between w and the
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Fig. 1. Execution time in seconds in term of n for different η

Table 1. Observed reduction quality for different lattice parameters

γ log2 q = 47 log2 q = 95

n = 50 1.00238 1.00129

n = 200 1.00300 1.00147

lattice point v0, w − v0 = ( σs
e ), we can set the bound R2n to the expected

norm of ( σs
e ). For a Gaussian error distribution we have with high probability

||e||2 ≤ n × (3σ2), so R2
2n = nσ2 + n(3σ)2 = 10nσ2.

In their paper, Gama et al. [GNR10] introduce three pruning functions: lin-
ear, step and piecewise linear, whose they study the resulting time complexity
and success probability. They also mention another pruning function obtained
by numerical optimization. In our case, we start with a linear pruning function
defined by R2

k = (k/2n)R2
2n.

One of the surprising finding of our experiments is that the enumeration
terminates with the first candidate solutions, in nearly every cases. Recall that
enumeration for BDD begins with getting a vector quite close to the target,
and then, enumerates around, towards the one which minimizes the distance.
So this first enumerated vector is equal to that outputed by Babai’s Nearest
Plane algorithm [Bab86]. It so happens that this solution falls below our pruning
bound for most of our test cases, and leads to a successful key recovery. Both our
implementation of BDD and fplll’s ClosestVector routine show this behavior.
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A qualitative explanation for this unexpected costless enumeration is that
the error norm (depending on σ) is very small compared to the Gram-Schmidt
vectors, whose norms highly depend on q. Consequently, the simple rounding
from Babai algorithm seems enough to get directly to the closest vector, compo-
nent by component. This result stands also for other FHE schemes, in all which
we have the same properties for σ and q.

5.3 Attacking Higher Dimensions

With these first conclusions we decided to go for a greater range of values
for n and q. In terms of possible circuit depth evaluation, this range covers
up to L = 13. We set the attack to an LLL reduction with δ = 0.99 and
η ∈ {0.51, 0.61, 0.71} and an enumeration limited to Nearest Plane, and launched
it for a few weeks.

Fig. 2. Execution time in seconds in terms of n and q for different η

With n up to 250 we see in Fig. 2 that with η = 0.71 the attack takes fairly less
time than 0.51, roughly 5 times less and still finishes successfully. This motivated
us to keep only the version η = 0.71 and continue to higher dimensions.

In the end we were able to successfully break [FV12] keys with n = 250 and
log q = 46.8 in 10 h, or n = 320 and log q = 68.7 in little less than 28 h, see Fig. 3.
Our result compares favorably with the work of Laine and Lauter [LL15], who
were able to recover a key in dimension 350 in 3.5 days, yet with a less generic
attack working for q very large (252) and σ very small (3.2).

Such parameters are not considered secure, even prior to our work. One would
take much greater n for instance. Yet they serve as good examples to understand
the performance of our special-purpose attack. When composed with an LLL
reduction and an enumeration with Nearest Plane, our proposal requires only a
polynomial number of operations (in the parameters of the lattice) to complete.
Moreover, the estimator from [APS15], which takes into account only generic
attacks, including the latest [Alb17], predicts one month of computation to break
such key.
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Fig. 3. Execution time in seconds in terms of n and q for η = 0.71

6 Conclusion

In this work, we aimed at assessing the practical security of FHE schemes based
on Ring-LWE. To us, this is a topic that needs more focus, since the requirements
of correctness in FHE lead to very special shape of Ring-LWE parameters. After
reviewing state-of-the-art attacks, we presented a new special-purpose attack
for the case at hands. Our experiments show that such attack has unexpected
performance: with only a polynomial number of steps, it successfully breaks keys
with parameters beyond toy sizes.

Our main results, on lattice reduction and enumeration in FHE cases, confirm
our opinion that attacker may have unexpected advantage in special situations.
Our result does not contradict the security reductions of Ring-LWE, but when
picking practical parameters, it is really important to consider such results. The
discussion about sizing parameters to guarantee a security level objective is far
from being closed. We hope we raise interest for this kind of work which is of
great importance to move forward with FHE implementation.
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[DS15] Doröz, Y., Sunar, B.: Flattening NTRU for Evaluation Key Free Homo-
morphic Encryption (2015). http://eprint.iacr.org/

[dt16] The FPLLL development team. fplll, a lattice reduction library (2016).
https://github.com/fplll/fplll
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