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Abstract. Several recent cryptographic constructions – including a
public key encryption scheme, a fully homomorphic encryption scheme,
and a candidate multilinear map construction – rely on the hardness of
the short generator principal ideal problem (SG-PIP): given a Z-basis
of some principal (fractional) ideal in an algebraic number field that is
guaranteed to have an exceptionally short generator, find a shortest gen-
erator of the principal ideal. The folklore approach to this problem is
to first, recover some arbitrary generator of the ideal, which is known
as the principal ideal problem (PIP) and second, solve a bounded dis-
tance decoding (BDD) problem in the log-unit lattice to transform this
arbitrary generator into a shortest one. The PIP can be solved in polyno-
mial time on quantum computers for arbitrary number fields under the
generalized Riemann hypothesis due to Biasse and Song. Cramer et al.
showed, based on the work of Campbell et al., that the second problem
can be solved in polynomial time on classical computers for cyclotomic
fields of prime-power conductor.

In this work, we extend the work of Cramer et al. to cyclotomic fields
K = Q(ξm) of conductor m = pαqβ , where p, q are distinct odd primes.

In more detail, we show that the BDD problem in the log-unit lattice
can be solved in classical polynomial time (with quantum polynomial
time precomputation) under some sufficient conditions, if (p, q) is an
(α, β)-generator prime pair, a new notion introduced in this work.

Keywords: Lattice-based cryptography · Principal ideal lattices
SG-PIP · Cryptanalysis

1 Introduction

Over the past decade, lattice-based cryptography [23] has emerged as one of
the most promising candidates for post-quantum cryptography [18]. The secu-
rity of lattice-based schemes relies on the hardness of lattice problems such as
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finding a shortest non-zero vector of a lattice. In order to boost the efficiency or
achieve additional functionality, more structured lattices have been taken into
consideration, for example lattices induced by (principal) fractional ideals in
algebraic number fields, called ideal lattices [16,17]. Some recent cryptographic
constructions – including a public key encryption scheme [6], a fully homomor-
phic encryption scheme [26], and a candidate multilinear map construction [11] –
rely on the hardness of the short generator principal ideal problem (SG-PIP) [8]:
Given a Z-basis of a principal fractional ideal a in some algebraic number field
K that is guaranteed to have an exceptionally short generator, find a shortest
generator of a.

The folklore approach to solve this problem, as sketched by Bernstein [2] and
Campbell et al. [6] is to split it into the following two problems.

1. Recover some arbitrary generator g′ ∈ K of the ideal a, which is known as
the principal ideal problem (PIP).

2. Transform this generator into some shortest generator. In more detail, let
g = ug′ for some unit u ∈ O×

K be a shortest generator of a with respect to
the logarithmic embedding. In this case it holds that Log(g′) ∈ Log(g) +
Log(O×

K), where Log denotes the logarithmic embedding. Since Log(g) is
short, we can therefore find Log(g) (and hence g) by solving a closest vector
problem in the Dirichlet log-unit lattice Log(O×

K).

The PIP can be solved in polynomial time on quantum computers for cyclotomic
fields K = Q(ξm) of prime-power conductor m = pα [4,6,10] and, under the
generalized Riemann hypothesis, also for arbitrary number fields [5]. Following
the sketch of Campbell et al. [6], Cramer et al. [8] proved that the second problem
can be solved in classical polynomial time for cyclotomic fields K = Q(ξm) of
prime-power conductor m = pα, under some conjecture concerning the class
number h+

m of K+ = Q(ξm + ξ−1
m ). Their algorithm relies on the fact that the

units ξj
m−1

ξm−1 ∈ Z[ξm]× for j ∈ Zm/{±1} form a well suited basis of the so called
cyclotomic units, a subgroup of finite index in the unit group O×

K = Z[ξm]×

in the prime-power case m = pα. The success of their algorithm relies on the
following two facts.

1. The index of the group of cyclotomic units in Z[ξm]× is sufficiently small,
i.e., bounded by some constant (or at least by some polynomial in n = ϕ(m))
if m is a prime-power.

2. The norm of the dual vectors Log
(

ξj
m−1

ξm−1

)∗
for all j ∈ Zm/{±1} is small

enough if m is a prime-power.

The proofs given in [8] heavily use that the underlying cyclotomic number fields
have prime-power conductor.

In this work, we extend the work of Cramer et al. to cyclotomic number fields
K = Q(ξm) of conductor m = pαqβ , where p, q are distinct odd primes. We show
that in this case, under some conditions, the BDD problem in the log-unit lattice
can efficiently be solved if (p, q) is an (α, β)-generator prime pair, a new notion
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introduced in this work. We further provide experimental evidence that suggests
that roughly 35% of prime pairs are (α, β)-generator prime pairs for all α and
β. Combined with the results of Biasse and Song [5] our results show that under
sufficient conditions, the SG-PIP can be solved in quantum polynomial time in
cyclotomic number fields of composite conductor of the form pαqβ .

In consequence, we extend the quantum polynomial time key-recover attacks
[6,8] on the cryptographic schemes of [6,11,26] to the case of cyclotomic number
fields Q(ξm) of conductor m = pαqβ for (α, β)-generator prime pairs (p, q).

Outline. This work is structured as follows. In Sect. 2, we provide the necessary
mathematical background for this work. In Sect. 3, we sketch the algorithmic
approach and sufficient success conditions presented in [2,6,8] to find a shortest
generator of some principal fractional ideal, given an arbitrary generator. In
Sect. 4, we derive sufficient conditions, under which the algorithmic approach
described in the previous section is successful in the case of cyclotomic fields of
conductor m = pαqβ .

2 Preliminaries

We denote N := {1, 2, 3, . . .} and N0 := {0, 1, 2, 3, . . .}. The set of primes is
denoted by P. We denote the real and imaginary part of a complex number
z ∈ C by �(z) and �(z), respectively. We use the common notation “iff” for
“if and only if”. We denote vectors by lower-case bold letters, e.g., x ∈ R

n, and
matrices by upper-case bold letters, e.g., X ∈ R

n×m. For x1, . . . ,xk ∈ R
n we

write (x1, . . . ,xk) =: X ∈ R
n×k for the n × k matrix X whose columns are the

vectors x1, . . . ,xk. The canonical inner product and the Euclidean norm over
R

n are denoted by 〈·, ·〉 and || · ||2. The common rounding function is denoted
by �x� = �x + 1

2	 ∈ Z. For a vector v = (v1, . . . , vn)T ∈ R
n we define �v� :=

(�v1�, . . . , �vn�)T ∈ Z
n component wise.

2.1 Lattices

A lattice L is an additive subgroup of an n-dimensional R-vectorspace V such
that there exists R-linearly independent vectors v1, . . . ,vk ∈ V with L = Zv1 +
. . . + Zvk. The vectors v1, . . . ,vk ∈ V are called basis of the lattice L. If
V = R

n, we write L(B) := Zb1 + . . . + Zbk for the lattice whose basis is given
by the columns of a matrix B ∈ R

n×k. The dimension of a lattice is defined as
dim L := k. A full rank lattice is a lattice with n = k = dimL. A sublattice
L′ of L is a lattice with L′ ⊆ L. The dual basis B∗ = (b∗

1, . . . ,b
∗
k) ∈ R

n×k of
a lattice basis B ⊆ R

n is defined as the R-basis of span
R
(B) with 〈b∗

i ,bj〉 = δi,j

for all i, j ∈ {1, . . . , k}, i.e., BT · B∗ = (B∗)T · B = Ik. It is easy to see that the
unique dual basis B∗ is given by B∗ = B(BT B)−1.
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2.2 Algebraic Number Fields

Let L be a field and K ⊆ L a subfield of L. We denote the index of K in L
by [L : K] := dimKL. An algebraic number field K is an extension field of
Q of finite index. For an algebraic number field K we define the (finite) group
of roots of unity as μ(K) := {x ∈ K| xn = 1 for some n ∈ N} and its ring of
integers OK as

OK := {α ∈ K| ∃p ∈ Z[X]\{0} : p is monic and p(α) = 0}.

We say α ∈ K is integral iff α ∈ OK . Without loss of generality it is sufficient to
consider K ⊆ C for an algebraic number field K, since there is only one algebraic
closure of Q up to isomorphisms, so we assume Q ⊆ C. Note that OK is a subring
of K, see for example [22, p. 7]. A principal fractional ideal in K is a subring
of K of the form gOK for some g ∈ K×. The class group ClK = IK/PK of
K is the quotient of the abelian multiplicative group of fractional ideal IK and
the subgroup of principal fractional ideals PK . The class number hK of an
algebraic number field K is hK := |ClK | < ∞, see [22, Sect. 3. Ideals].

2.3 Logarithmic Embedding

Let K be an algebraic number field of degree n = [K : Q]. Moreover, let r be the
number of real embeddings δ1, . . . , δr : K → R of K and s the number of non
real embeddings (up to complex conjugation) σ1, σ1, . . . , σs, σs : K → C. Note
that n = r + 2s holds. In this case, we call (r, s) the signature of the number
field K. We define the logarithmic embedding as

Log : K× → R
r+2s

x �→ (
log(|δ1(x)|), . . . , log(|δr(x)|), log(|σ1(x)|), . . . , log(|σs(x)|)),

This mapping defines a group homomorphism from the multiplicative group K×

to the additive group R
r+2s = R

n. If the number field K has no real embedding,
i.e., r = 0 and therefore n = 2s, it is sufficient to use the reduced logarithmic
embedding of K×:

Logr(x) :=
(
log (|σ1(x)|) , . . . , log (|σs(x)|) ) ∈ R

n/2

for all α ∈ K×, where σ1, σ1, . . . , σs, σs : K → C are the different embeddings of
K into C. The following is known as Dirichlet’s unit theorem [22, Theorem (7.3)].

Theorem 2.1 (Dirichlet’s Unit Theorem). Let K be an algebraic number field
of degree n = [K : Q] with signature (r, s). The group Γ := Log(O×

K) is a lattice
of dimension k := r + s − 1, orthogonal to the vector 1 := (1, . . . , 1) ∈ R

r+2s.
We call Γ the log-unit lattice.

Lemma 2.2 ([22, (7.1) Proposition]). For an algebraic number field K it holds
that ker

(
Log|O×

K

)
= μ(K).
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Theorem 2.1 and Lemma 2.2 imply the following corollary.

Corollary 2.3. Let K be an algebraic number field of degree n = [K : Q] with
signature (r, s). The group of units O×

K is isomorphic to μ(K) × Z
r+s−1, i.e.,

there are units η1, . . . , ηk ∈ O×
K (where k := r + s − 1), such that each α ∈ O×

K

can be written as α = ζηe1
1 · · · ηek

k with unique e1, . . . , ek ∈ Z and ζ ∈ μ(K).

Such sets {η1, . . . ηk} ⊆ O×
K of multiplicative independent units which gen-

erates O×
K up to roots of unity like in Corollary 2.3 are called fundamental

systems of units of OK . We now define a “short generator” of a principal
fractional ideal.

Definition 2.4. Let K be an algebraic number field and g ∈ K×. Then g′ ∈ K×

is called a shortest generator of the principal fractional ideal gOK if g′OK =
gOK and

||Log(g′)||2 = min
u∈O×

K

||Log(g · u)||2 = min
u∈O×

K

||Log(g) + Log(u)||2.

This means g′ is a generator of gOK with minimal norm in the logarithmic
embedding.

2.4 Cyclotomic Fields

A cyclotomic field Km is an algebraic number field of the form Km = Q(ξm) for
some primitive m-th root of unity ξm ∈ C, i.e., ord(ξm) = m. If m �≡ 2 mod 4,
the number m is called the conductor of Km. The field extension Km/Q is
Galois with index [Km : Q] = ϕ(m), where ϕ(·) is the Euler totient function.
The automorphisms σi(·) of Km are characterized by σi(ξm) := ξi

m for i ∈ Z
×
m.

Therefore, the Galois group Gal(Km/Q) is isomorphic to Z
×
m. From now on we

fix ξm := e2πi/m and Km := Q(ξm) and define Om := OKm
. If m = 2 · k for some

odd k ∈ N, we have ξm = −ξk and therefore Q(ξm) = Q(ξk). Hence, without
loss of generality it is sufficient to assume m �≡ 2 mod 4. The ring of integers is
given by Om = Z[ξm] (e.g. [22, Proposition (10.2)]).

Lemma 2.5. For a cyclotomic field Km we have μ(Km) = 〈±ξm〉 ={±ξi
m| i ∈ Z

}
.

A proof of the previous lemma can be found in the extended version of this
paper [13]. The m-th cyclotomic polynomial Φm(X) ∈ Z[X] is defined as the
minimal polynomial of the m-th root of unity ξm ∈ C over Q. It is given by
Φm(X) =

∏
i∈Z

×
m

(
X − ξi

m

)
. We need the value of the cyclotomic polynomials in

X = 1.

Lemma 2.6. Let m ∈ N with m ≥ 2. Then the following holds.

Φm(1) =

{
p, if m = pl for some prime p and l ∈ N

1, else.

This lemma is a direct consequence of [12, Corollary 4].
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2.5 Circulant Matrices and Characters

We follow along [8, Sect. 2.2] and present some facts about circulant matrices
and characters of finite abelian groups.

Definition 2.7 (Circulant matrices). Let G be a finite abelian group and a =
(ag)g∈G ∈ C

G a complex vector indexed by G. The G-circulant matrix asso-
ciated with a is the G × G matrix

A :=
(
ai·j−1

)
(i,j)∈G×G

∈ C
G×G.

Notice that the transposed matrix of a G-circulant matrix A associated to
a = (ag)g∈G is again a G-circulant matrix associated to a′ = (ag−1)g∈G.

Definition 2.8 (Characters). Let G be a finite abelian group. A character of G
is a group homomorphism χ : G → S

1 := {z ∈ C| |z| = 1}, i.e., χ(g · h) = χ(g) ·
χ(h) for all g, h ∈ G. The set of all characters of G is denoted by Ĝ and forms a
group with the usual multiplication of functions, i.e., (χ ·Ψ)(g) := χ(g) ·Ψ(g) for
all χ, Ψ ∈ Ĝ and g ∈ G. The inverse of a character χ ∈ Ĝ as a group element
is given by χ, the composition of the complex conjugation and χ. The constant
character χ ≡ 1 is the identity element of Ĝ and is called trivial character.
Each finite abelian group G is isomorphic to Ĝ. In particular, |G| = |Ĝ|, see
[27, Lemma 3.1].

Theorem 2.9. Let G be a cyclic group of order n with generator g ∈ G. Then all
characters of G are given by χh(b) := ξ

h·logg(b)
n for 0 ≤ h ≤ n−1, where ξn ∈ C

is a primitive root of unity of order n and logg(b) ∈ Z with glogg(b) = b ∈ G.

Proof. Let χ ∈ Ĝ be a character, then 1 = χ(1) = χ(gn) = χ(g)n holds. There-
fore χ(g) has to be an n-th root of unity. It is easy to see that the functions χh

are well defined and n different characters. Since there are only |Ĝ| = |G| = n
different characters, that are all characters of G. ��

A Dirichlet character χ mod n is a character of the group G = Z
×
n , for

some n ∈ N. If n|m, the character χ of Z
×
n induces a character of Z

×
m via

concatenation of the natural projection π : Zm → Zn and χ, i.e., χ ◦ π. The
conductor of a character χ ∈ Ẑ×

n is defined as the smallest number fχ ∈ N

with fχ|n, such that χ is induced by some character Ψ ∈ Ẑ
×
fχ

. If n = fχ for some

character χ mod n, then χ is called primitive character. A character χ ∈ Ẑ
×
n

is said to be even if χ(−1) = 1, else we say χ is odd. A non-trivial character
χ with Im(χ) ∈ {±1} is called quadratic. We extend a Dirichlet character
χ : Z

×
n → S

1 of conductor fχ to a multiplicative function χ′ : Z → S
1 ∪ {0}

by χ′(z) := χfχ
(z) if gcd(z, fχ) = 1 and zero else, where χfχ

: Z
×
fχ

→ S
1 is a

primitive character which induces χ. We just write χ instead of χ′, when needed.
We identify characters χ of an arbitrary finite abelian group G with the complex
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vector (χ(g))g∈G ∈ C
G. This allows for geometrical calculations on characters

and provides coherence between circular matrices and characters. For a proof of
the following lemma see [8, Sect. 2.2] and use the fact, that G ∼= Ĝ holds for all
finite abelian groups G.

Lemma 2.10. Let G be a finite abelian group. Then the following holds.

(1) For all χ ∈ Ĝ we have
∑

g∈G χ(g) = |G| if χ ≡ 1 and 0 else.
(2) All characters χ ∈ Ĝ have Euclidean norm ||χ||2 =

√〈χ, χ〉 =
√|G|.

(3) Different characters χ, Ψ ∈ Ĝ are pairwise orthogonal, i.e. 〈χ, Ψ〉 = 0.
(4) For all g ∈ G we have

∑
χ∈ ̂G χ(g) = |G| if g is the identity element of G

and 0 else.

Definition 2.11. The circulant matrix of a finite abelian group G is defined as

PG := |G|−1/2 · (χ(g))(g,χ)∈G× ̂G ∈ C
G× ̂G.

It follows directly from Lemma2.10 that PG is unitary, i.e., P−1
G = PG

T
.

Lemma 2.12 ([8, Lemma 2.4]). Let G be a finite abelian group and A ∈ C
G×G

be a complex G × G matrix. The matrix A is G-circulant if and only if the
Ĝ × Ĝ matrix P−1

G · A · PG is diagonal; equivalently the columns of PG are the
eigenvectors of A. If A is the G-circulant matrix associated with a = (ag)g∈G,
its eigenvalues corresponding to χ ∈ Ĝ is λχ = 〈a, χ〉 =

∑
g∈G ag · χ(g).

The following statement is a direct consequence of the previous lemma.

Theorem 2.13. Let G be a finite abelian group, a = (ag)g∈G ∈ C
G be a complex

vector with associated G-circulant matrix A. The norm of the vector a is given by

||a||22 = |G|−1 ·
∑

χ∈ ̂G
|λχ|2,

where λχ = 〈a, χ〉 =
∑

g∈G ag · χ(g) is the eigenvalue of A corresponding to the
eigenvector χ.

Proof. Since PG and therefore P
T

G is unitary, which means that it is norm pre-
serving, we have

||a||22 =
∣∣∣∣PT

G · a∣∣∣∣2
2

=
∑

χ∈ ̂G

∣∣∑
g∈G

ag · |G|−1/2χ(g)
∣∣2 = |G|−1

∑

χ∈ ̂G
|λχ|2. ��



Recovering Short Generators of Principal Fractional Ideals 353

2.6 Dirichlet L-Series

Definition 2.14. Let χ be any Dirichlet character, then the Dirichlet L-function
L(·, χ) is defined as

L(·, χ) : H → C, s �→ L(s, χ) :=
∑
n∈N

χ(n)
ns

,

where H := {s ∈ C| �(s) > 1}.
Since the sum in the definition is absolutely convergent for every s ∈ H, the

sum converges uniformly on every Ht := {s ∈ C| �(s) > t} with t > 1. Hence,
L(·, χ) is an analytic function on H. If χ is the trivial character mod 1, i.e.,
χ(n) = 1 for all n ∈ Z, the Dirichlet L-function L(·, χ) is given by the Riemann
zeta function ζ(s) =

∑
n∈N

1
ns . If χ is a non-trivial character mod m ∈ N,

the Dirichlet L-function L(·, χ) can be extended uniquely to the whole complex
plane, see for example [21, Theorem 10.7. ff]. Therefore, L(1, χ) is well defined
in this case.

Theorem 2.15. There exists a constant C > 0, such that for every non
quadratic Dirichlet character χ mod m ∈ N of conductor fχ > 1

|L(1, χ)| ≥ 1
C log(fχ)

,

and for every quadratic character χ mod m ∈ N of conductor fχ > 1

|L(1, χ)| ≥ 1
C
√

fχ

.

In particular, L(1, χ) �= 0 if χ is a non-trivial Dirichlet character.

The first inequality was proven by Landau, see [15, p. 29]. For the second
inequality, see [25] or [14] for concrete results on the constant C > 0.

3 General Algorithmic Approach

In this section we sketch the algorithmic approach and sufficient success condi-
tions presented in [2,6,8] to find a shortest generator of some principal fractional
ideal, given an arbitrary generator.

A standard approach for recovering a short generator of a principal fractional
ideal is shifting this problem to a closest vector problem with requirements to the
distance of the target point to the lattice, called bounded-distance decoding
(BDD).

Problem 3.1 (BDD). Given a lattice L = L(B) and a target point t ∈ span(B)
with the property minv∈L ||v − t||2 ≤ r for some r < 1

2λ1(L), where λ1(L) :=
minv∈L\{0} ||v||2, find the unique vector v ∈ L with ||v − t||2 ≤ r.
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We will use the following Round-off Algorithm [1] for solving this problem
in our setting.

Algorithm 1. Round-off Algorithm
1 Input: B, t.
2 Output: A lattice vector v ∈ L.
3 a ← �(B∗)T · t�
4 v ← B · a
5 return (v,a)

Lemma 3.2 (Correctness Round-off Algorithm, [8, Claim 2.1]). Let L(B) ⊆ R
n

be a lattice and t := v + e ∈ R
n for some v ∈ L(B) and e ∈ R

n. If 〈e, b∗
j 〉 ∈

[− 1
2 , 1

2 ) holds for all j ∈ {1, . . . , k}, the Round-off Algorithm1 outputs v = B · a
on input B, t.

Note that in general the condition 〈b∗
j , e〉 ∈ [− 1

2 , 1
2

)
for all j ∈ {1, . . . , k}

does not guarantee that the vector v is in fact the closest vector in L(B) to
t = v + e. Therefore, one needs a “sufficiently good” basis B of the lattice.

Provided that the input basis is sufficiently well suited, Algorithm2 recovers a
shortest generator of a principal fractional ideal in some algebraic number field K.

Algorithm 2. Recovering a short generator with given basis of O×
K

1 Input: A generator g′ ∈ K× of some principal fractional ideal a and
b1, . . . , bk ∈ O×

K such that B := {Log(b1), . . . ,Log(bk)} is a basis of
Γ = Log(O×

K).
2 Output: A generator ge ∈ K of a.
3 (a1, . . . , ak)T ← �(B∗)T · Log(g′)� (Round-off-Step)
4 u′ ← ∏k

i=1 bai
i

5 ge ← g′
/u′

6 return ge

Lemma 3.3 (Correctness of Algorithm 2, [8, Theorem 4.1]). Let a be a principal
fractional ideal in some algebraic number field K of degree n = [K : Q] with
signature (r, s) and k := r + s − 1 and let b1, . . . , bk ∈ O×

K be a fundamental
system of units of O×

K . Assume that there exists some generator g ∈ K× of a
satisfying ∣∣〈Log(g),Log(bi)∗〉∣∣ <

1
2

for all i ∈ {1, . . . , k}.

Then for any input generator g′ ∈ K× of a Algorithm2 outputs a generator ge

of a with same norm as g, i.e., ||Log(g)||2 = ||Log(ge)||2.
Theorem 3.4. Algorithm2 has (classical) polynomial running time in
n = [K : Q].
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Proof. Since k = r+s−1 ≤ n, the algorithm only computes the n×k matrix B,
the dual basis B∗, which includes computing the inverse of a k × k matrix, and
some matrix and vector multiplications of matrices and vectors of size k, which
is all polynomial in n. ��

One natural question arises: If we draw a generator g ∈ K× from a distrib-
ution D over K (without loss of generality we ignore the case g = 0), does the
condition

∣∣〈Log(g),Log(bi)∗〉∣∣ < 1
2 hold for all i ∈ {1, . . . , k} with non-negligible

probability ω > 0 for a fixed basis b1, ..., bk? Lemma 3.3 gives rise to the following
definition.

Condition 3.5. Let D be a probability distribution over some algebraic number
field K and M > 0. If the probability that for all vectors v1, . . . , vk ∈ R

n of
Euclidean norm 1 orthogonal to the all-one vector 1 ∈ R

n the inequalities
∣∣〈Log(g), vi〉

∣∣ <
1

2M
for all i ∈ {1, . . . , k}

are satisfied is at least ω ∈ (0, 1), where g ∈ K is drawn from D, we say D
satisfies Condition 3.5 with parameters M and ω.

Condition 3.5 can be seen as a sufficient success condition on Algorithm 2, as
shown in the following theorem.

Theorem 3.6. If D is a distribution over an algebraic number field K satisfy-
ing Condition 3.5 with parameters M = max{||Log(b1)∗||2, . . . , ||Log(bk)∗||2} and
ω ∈ (0, 1) for the input basis b1, ..., bk ∈ O×

K and g ∈ K is chosen from D, then
for any input generator g′ of a = gOK , Algorithm2 outputs a generator ge ∈ K
of a with Euclidean norm at most the norm of g with probability at least ω > 0.

Proof. We set vi := Log(bi)
∗
/||Log(bi)

∗||2, which have norm 1 and are orthogonal to
the all-one vector 1 ∈ R

n, where n = [K : Q]. Since the distribution D satisfies
Condition 3.5 with parameters M and ω > 0 for b1, ..., bk ∈ O×

K , we conclude
that

∣∣〈Log(g),Log(bi)∗〉∣∣ = ||Log(bi)∗||2 · ∣∣〈Log(g),vi〉
∣∣ < M

1
2M

=
1
2

holds with probability ω. ��
As shown in [8, Sect. 5] for arbitrary cyclotomic fields Q(ξm) a natural dis-

tribution satisfying Condition 3.5 with a not too small parameter ω > 0 for the
basis discussed in Sect. 4.2 is the continuous Gaussian distribution. This is a
consequence of the following theorem (for more details see [8, 5 Tail Bounds]).

Lemma 3.7 ([8, Lemma 5.4]). Let n ∈ N, X1, . . . , Xn,X ′
1, . . . , X

′
n be i.i.d.

N(0, σ2) variables for some σ > 0, and let X̂i =
(
X2

i + (X ′
i)

2
)1/2 for i ∈

{1, . . . , n}. Then for any set of l ∈ N vectors a(1), . . . ,a(l) ∈ R
n of Euclid-

ean norm 1 that are orthogonal to the all-one vector 1 ∈ R
n and every t ≥ Cσ

for some universal constant Cσ (that only depends on σ) it holds that

Pr
[
∃j :

∣∣∣
〈 (

log(X̂1), ..., log(X̂n)
)T

,a(j)
〉∣∣∣ ≥ t

]
≤ 2l exp

(
− t

4

)
.
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Applied to our setting of cyclotomic number fields, we obtain that
Condition 3.5 is satisfied for Gaussian distributions if the norms of the basis
elements in the logarithmic embedding are sufficiently short.

Corollary 3.8. Let m ∈ N, m ≥ 3, n = ϕ(m), and k = n/2 − 1. If
M := max{||Log(bj)∗||2, . . . , ||Log(bk)∗||2} is small enough, i.e., 1/2M ≥ Cσ,
Condition 3.5 is satisfied for Gaussian distributions (with standard deviation σ)
with parameters M and ω(m) = 1 − 2k exp

(− 1
8M

)
, if ω(m) > 0.

There is one issue with this approach. Algorithm 2 uses a basis b1, . . . , bk

of O×
K (up to roots of unity), i.e., a fundamental set of units, with sufficiently

short dual vectors. However, in general, given a number field K, such basis
is not known. Instead, for special instances of cyclotomic number fields K =
Q(ξm), namely if m is a prime-power or a product of two prime powers (as
analyzed in the next section), only a well suited basis b1, . . . , bk ∈ O×

m of a
subgroup F with finite index in O×

m is known. This can be compensated for
by computing a fundamental system of units of O×

K and afterwards a set of
representatives u1, . . . , uf ∈ O×

K of O×
K/μ(K)F , using classical [3] or quantum [10]

algorithms. The quantum algorithm has running time polynomial in n = [K : Q]
and log(|dK |), where dK denotes the discriminant of K. Notice, if K = Q(ξm)
is a cyclotomic field, we obtain |dK | ∈ O(n log(m)) as a direct consequence of
[27, Proposition 2.7]. Hence, the quantum algorithm runs in polynomial time
in m. Note that the calculation of the set of representatives u1, . . . , uf ∈ O×

K

of O×
K/μ(K)F has to be done only once for each cyclotomic field K = Q(ξm)

and can therefore be seen as precomputation cost. If one has computed such a
set of representatives u1, . . . , uf ∈ O×

K , we can enumerate over all of them and
apply Algorithm2 for each g′

/ui, increasing the running time only by the factor
f := |O×

K/μ(K)F |. The detailed algorithm if one has precomputed such a set of
representatives can be found in the extended version of this paper [13].

In this work, we show that for cyclotomic number fields Q(ξm) the index of
the basis presented in Sect. 4.2 is polynomial in m, if m = pαqβ for some suitable
odd primes p and q. This yields a polynomial running time in m of Algorithm 2
in this case.

4 Finding Shortest Generators in Cyclotomic Fields
of Conductor m = pαqβ

In this section we study the SG-PIP in cyclotomic fields of composite conductor
m = pαqβ for distinct odd primes p, q.

4.1 Generator Prime Pairs

In the next section we investigate the group generated by the elements ξu
m−1

ξm−1 ∈
O×

m with j ∈ Z
×
m in the case where m = pαqβ has only two distinct odd prime

factors. We show that the index of this group in the full group of units is finite iff
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p is a generator of Z
×
qβ or a square of a generator and q is a generator of Z

×
pα or

a square of a generator. Therefore, we introduce the following notion and derive
several results surrounding it.

Definition 4.1. Let α, β ∈ N and p, q ∈ P be two distinct odd primes with the
following properties:

(i) • If q − 1 ≡ 0 mod 4: p is a generator of Z
×
qβ .

• If q − 1 �≡ 0 mod 4: p is a generator of Z
×
qβ or has order

ϕ(qβ)
2 =

qβ−1 · q−1
2 in Z

×
qβ .

And
(ii) • If p − 1 ≡ 0 mod 4: q is a generator of Z

×
pα .

• If p − 1 �≡ 0 mod 4: q is a generator of Z
×
pα or has order ϕ(pα)

2 =
pα−1 · p−1

2 in Z
×
pα .

We call such a pair (p, q) an (α, β)-generator prime pair ((α, β)-GPP).
If (p, q) is an (α, β)-generator prime pair for every α, β ∈ N, we just say that
(p, q) is a generator prime pair (GPP).

The definition of generator prime pairs is useless for testing given prime pairs
on this property, since infinitely many pairs of α and β have to be checked. To
obtain a better criterion, we use the following result.

Theorem 4.2 ([7, Lemma 1.4.5]). Let p be an odd prime, and let g ∈ Z be a
primitive root modulo p. Then either g or g + p is a primitive root modulo every
power of p.

In particular, if g ∈ Z is a generator of Z
×
p2 and therefore also for Z

×
p , then

g is a generator for all Z
×
pl with l ∈ N.

A direct consequence of Theorem 4.2 is that Z
×
pl is cyclic for every l ∈ N and

odd prime number p ∈ P, which implies the following corollaries. The proofs can
be found in the extended version of this paper [13].

Corollary 4.3. Let p be an odd prime, l ∈ N and g ∈ Z
×
pl be a generator. Then

the even Dirichlet characters of Z
×
pl are given by χh(b) := ξ

h·a(b)
ϕ(pl)

for 0 ≤ h ≤
ϕ(pl) − 1 and h is even, where ξϕ(pl) ∈ C is a primitive root of unity of order
ϕ
(
pl
)

and a(b) ∈ Z with ga(b) = b ∈ Z
×
pl .

Corollary 4.4. Let (p, q) be an (α, β)-GPP for some α, β ∈ N and β ≥ 2. Then
(p, q) is an (α, l)-GPP for every l ∈ N. Analogously, the same results follows if
we swap p and q.

In particular, (p, q) is a GPP iff it is a (2, 2)-GPP.

With Corollary 4.4 we can easily check prime pairs if they are generator prime
pairs by testing if they are a (2, 2)-GPP.
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In the extended version of this paper [13] we provide some examples and
numerical data of generator prime pairs. By computation, more than 35% of all
odd prime pairs up to 32600 are generator prime pairs, see Fig. 1. An interesting
fact is that a similar notion of prime pairs was used in the proof of Catalan’s
conjecture by Mihailescu [19], namely double Wieferich prime pairs (p, q),
which satisfy

pq−1 ≡ 1 mod q2 and qp−1 ≡ 1 mod p2,

see [24, Chap. 1]. More information about their relation can be found in the
extended version of this paper [13].

Fig. 1. Values of the quotient Q(x) = Number of GPP (p,q) with 2 < p < q ≤ x
Number of prime pairs (p,q) with 2 < p < q ≤ x

4.2 Suitable Units in the Case m = pαqβ

Let m ∈ N with m ≥ 3. For the rest of this section, for j ∈ Z
×
m let

bj :=
ξj
m − 1

ξm − 1
∈ O×

m and bj := Logr(bj) ∈ R
n/2, (1)

where n = ϕ(m). Further, let Gm := Z
×
m/{±1} (one can identify the group Gm

with the set of representatives {l ∈ N| 1 ≤ l < m
2 with gcd(l,m) = 1}) and let

Sm denote the group generated by {bj | j ∈ Gm\{1}} and ±ξm, i.e., we collect
the vectors bj for j ∈ Gm\{1} in the matrix

B :=
(

log
(∣∣∣ξ

ij
m − 1

ξi
m − 1

∣∣∣
))

i∈Gm

j∈Gm\{1}
. (2)

Notice that b−j = ξa
m · bj for some a ∈ Zm, hence it is sufficient to consider a

set of representatives of {bj | j ∈ Gm\{1}} as generators of Sm. The characters of
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Gm = Z
×
m/{±1} correspond to the even characters of Z

×
m via concatenation with

the canonical projection Z
×
m → Z

×
m/{±1}. We identify the characters of Gm with

the even characters of Z
×
m.

If [O×
m : Sm] is finite, the elements bj for j ∈ Gm\{1} have to be a basis of the

group Sm, by comparing the Z-rank of Sm and O×
m, which is ϕ(m)

2 −1 = |Gm\{1}|.

4.3 Index of the Subgroup in the Full Unit Group

We determine the index of Sm in the full group of units O×
m in the case m = pαqβ

with α, β ∈ N and distinct odd primes p, q. As we show in this work, the index is
finite iff (p, q) is an (α, β)-generator prime pair. Moreover, in this case the index
is bounded by the product of the class number h+

m and a factor, which is linear
in m.

The next lemma provides an explicit expression for the index of Sm in the
full group of units O×

m, which is a direct consequence of [27, Corollary 8.8].

Lemma 4.5. Let m ∈ N with m ≥ 3 and m �≡ 2 mod 4. If m is not a prime-
power, i.e., has at least two distinct prime factors, the index of Sm in O×

m is
given by

[O×
m : Sm] = 2h+

m

∏

χ∈̂Gm
χ�≡1

∏
p|m
p∈P

(1 − χ(p))

if the right hand side is not equal 0, else the index is infinite. The factor h+
m is

the class number of Q(ξm)+ := Q(ξm + ξ−1
m ).

For m ∈ N we define

βm :=
∏

χ∈̂Gm
χ�≡1

∏
p|m
p∈P

(1 − χ(p)) .

Theorem 4.6. Let p, q be two distinct odd primes and m = pαqβ for some
α, β ∈ N. Then

βm =
ϕ(m)

4
=

(p − 1)(q − 1)
4pq

m

iff (p, q) is an (α, β)-GPP, and βm = 0 otherwise. In particular, the index is
finite and bounded by [O×

m : Sm] = h+
m

(p−1)(q−1)
2pq m ≤ h+

m · m
2 , iff (p, q) is an

(α, β)-GPP.

Proof. Assume that (p, q) is an (α, β)-generator prime pair. Since m is only
divisible by the primes p, q, we obtain

βm =
∏

χ∈̂Gm
χ�≡1

∏
t|m
t∈P

(1 − χ(p)) =

( ∏

χ∈̂Gpα

χ�≡1

(1 − χ(q))

)
·
( ∏

χ∈̂G
qβ

χ�≡1

(1 − χ(p))

)
,
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because χ(p) = χ(q) = 0 and therefore (1 − χ(p)) (1 − χ(q)) = 1 if pq|fχ. Hence
it is sufficient to prove

∏

χ∈̂G
qβ

χ�≡1

(1 − χ(p)) =
ϕ
(
qβ
)

2
.

Let g be a generator of Z
×
qβ , and a ∈ Z with ga ≡ p mod qβ . Since (p, q) is an

(α, β)-generator prime pair, we conclude gcd
(

a,
ϕ(qβ)

2

)
= 1 by comparing the

order of p in Z
×
qβ , independent whether q − 1 ≡ 0 mod 4 or q − 1 �≡ 0 mod 4.

The even characters of Z
×
qβ are given by Corollary 4.3, which implies

∏

χ∈ ̂G
qβ

χ �≡1

(1 − χ(p)) =
∏

1≤h≤ϕ
(

qβ
)

−1
h even

(

1 − ξ
ha

ϕ(qβ)

)

=
(1)

∏

1≤k≤ ϕ(qβ)
2 −1

(

1 − ξ
k

ϕ(qβ)
2

)

=
(2)

X
ϕ
(

qβ
)

2 − 1

X − 1

∣

∣

∣

X=1
=

⎛

⎝X
ϕ
(

qβ
)

2 −1
+ X

ϕ
(

qβ
)

2 −2
+ . . . + 1

⎞

⎠

∣

∣

∣

X=1
=

ϕ
(

qβ
)

2
,

where we used in equality (1) that multiplying with a is a permutation of Z ϕ(qβ)
2

with 0 · a ≡ 0 mod ϕ(qβ)
2 , since gcd

(
a, ϕ(qβ)

2

)
= 1, and in (2) we used X l − 1 =∏

0≤k≤l−1

(
X − ξk

l

)
for all l ∈ N.

Conversely, assume that (p, q) is not an (α, β)-generator prime pair, i.e.,

without loss of generality p is not a generator of Z
×
qβ and has not order

ϕ(qβ)
2

in Z
×
qβ if q − 1 �≡ 0 mod 4. Again, let g be a generator of Z

×
qβ , and a ∈ Z with

ga ≡ p mod ql. We conclude that gcd
(
a, ϕ(qβ)

2

)
> 1 holds. Hence, there exists

a prime number t ∈ P such that t| gcd
(
a, ϕ(qβ)

2

)
holds. Then h :=

ϕ(qβ)
t ∈ N

is even and 1 ≤ h ≤ ϕ
(
qβ
) − 1. By Corollary 4.3, there is a non-trivial, even

Dirichlet character χh of Z
×
qβ with

χh(p) = ξah
ϕ(qβ) = ξ

a
t ϕ(qβ)
ϕ(qβ)

= 1,

which implies βm = 0 in this case. ��
We have proven that the factor βm is sufficiently small, if m = pαqβ for some

(α, β)-generator prime pair (p, q). The second factor of the index [O×
m : Sm] is

given by the class number h+
m, which has to be sufficiently small, too.
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Theorem 4.7 ([20, Theorem 1.1]). Let m be a composite integer, m �≡ 2
mod 4, and let Q(ξm)+ denote the maximal real subfield of the m-th cyclotomic
field Q(ξm). Then the class number h+

m of Q(ξm)+ is

h+
m =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 if ϕ(m) ≤ 116 and m �= 136, 145, 212,

2 if m = 136,

2 if m = 145,

1 if m = 256,

where ϕ(·) is the Euler phi function. Furthermore, under the generalized Rie-
mann hypothesis (GRH), h+

212 = 5 and h+
512 = 1.

Remark 4.8. In our case, m = pαqβ for some (α, β)-generator prime pair
(p, q). Since we want a polynomial running time in m of Algorithm2 for cyclo-
tomic fields Km = Q(ξm), we need a polynomial bound of the index [O×

m : Sm] =
2h+

mβm. The factor βm ∈ N is bounded by m
4 , hence it is sufficient if h+

m is
bounded by some polynomial in m, if m = pαqβ, at least for a fixed gener-
ator prime pair (p, q). We do not know if such a bound holds. However, by
Theorem4.7 one could conjecture that the class number h+

m is bounded by some
polynomial. In [9] this is presented as a reasonable conjecture.

4.4 Norms of the Basis Elements

We determine the norm of the dual vectors b∗
j for j ∈ Gm\{1} in the case, that

m = pαqβ , for some α, β ∈ N and (p, q) is an (α, β)-generator prime pair. Again,
we follow along [8, Chap. 3].

Let m ∈ N with m ≥ 2. We define

zj := ξj
m − 1 ∈ Om and zj := Logr(zj) ∈ R

n/2

for all j ∈ Z
×
m (again, n = ϕ(m)). Note that zj is well defined since ξ−j

m − 1 is
the complex conjugate of ξj

m − 1. We collect all the vectors zj−1 for j ∈ Gm in
the matrix Z ∈ R

n/2×n/2, i.e.,

Z :=
(
log

(∣∣ξi·j−1

m − 1
∣∣))

i,j∈Gm

.

Since the entry with index (i, j) ∈ Gm × Gm only depends on i · j−1, the matrix
Z is Gm-circulant and associated with z1. Notice that the vectors zj and the
matrix Z only depend on m.

Our first goal is to prove that only the eigenvalue of Z corresponding to the
trivial character of Z

×
m is zero, in the case that m = pαqβ , for some α, β ∈ N

and distinct primes p and q.

Lemma 4.9. Let m = pαqβ for some distinct primes p, q ∈ P and α, β ∈ N.
Then the eigenvalue λχ of Z corresponding to the trivial character 1 ≡ χ ∈ Gm

is λχ = 0.
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Proof. By Theorem 2.13, the eigenvalue of the Gm-circulant matrix Z corre-
sponding to the trivial character 1 ≡ χ ∈ Gm is given by

λχ = 〈z1, 1〉 =
1

2

∑

j∈Z
×
m

log
(∣∣ξj

m − 1
∣∣) = 1

2
log

⎛

⎜⎝
∣∣∣
∏

j∈Z
×
m

(
ξj
m − 1

) ∣∣∣

⎞

⎟⎠ =
1

2
log
(∣∣Φm(1)

∣∣) =
(1)

0,

where (1) follows from Lemma 2.6. ��
Lemma 4.10. Let m = pαqβ for some distinct primes p, q ∈ P and α, β ∈ N.
Furthermore, let χ ∈ Ĝm be an even character of conductor fχ > 1 with pq|fχ.
Then the eigenvalue λχ of Z corresponding to χ is given by

λχ =
1
2

∑

a∈Z
×
fχ

χ(a) · log(|1 − ξa
fχ

|).

This can be proven similar to the prime power case in [8, Corollary 3.4], a
proof can be found in the extended version of this paper [13].

Lemma 4.11. Let m = pαqβ for some distinct primes p, q ∈ P and α, β ∈ N.
Furthermore, let χ ∈ Ĝm be an even character of conductor fχ > 1 with q � fχ.
Then the eigenvalue λχ of Z corresponding to χ is given by

λχ =
1
2

(1 − χ(q))
∑

a∈Z
×
fχ

χ(a) · log(|1 − ξa
fχ

|).

Analogously, the same results hold if we swap p and q.

Proof. Let f := fχ > 1 be the conductor of χ, i.e., f = pe for some
1 ≤ e ≤ α. Further, let π : Z

×
m → Z

×
f be the canonical projection. For

a ∈ Z
×
f and a fixed integer representative a′ ∈ Z of a ∈ Z

×
f we have π−1(a) =

Ψ−1
({

a′ + k · f ∈ Z
×
pα

∣∣ 0 ≤ k < pα

f

}
× Z

×
qβ

)
⊆ Z

×
m by Chinese remainder the-

orem, where Ψ : Zm → Zpα × Zqβ , a �→ (a mod pα, a mod qβ). There exists
r1, r2 ∈ Z such that r1q

β ≡ 1 mod pα and r2p
α ≡ 1 mod qβ , which yields

π−1(a) =
{

(a′ + k · f) · r1q
β + y · r2p

α ∈ Z
×
m

∣∣ 0 ≤ k <
pα

f
, y ∈ Z

×
qβ

}
⊆ Z

×
m

(3)

for a fixed integer representative a′ ∈ Z of a ∈ Z
×
f . We obtain

∏

j∈Z
×
m

π(b)=a

(
1 − ξj

m

)
=
∏

y∈Z
×
qβ

∏

0≤k< pα

f

(
1 − ξkr1

pα

f

· ξyr2
qβ · ξa′r1

pα

)
=
(1)

∏

y∈Z
×
qβ

(
1 − ξ

yr2
pα

f

qβ · ξ
a′r1 pα

f

pα

)

=
(2)

∏

y∈Z
×
qβ

(
1 − ξ

y pα

f

qβ · ξar1
f

)
=
(3)

1 − ξar1qβ

f

1 − ξar1qβ−1

f

=
(4)

1 − ξa
f

1 − ξar1qβ−1

f

.
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In equation (1) we have used again the identity Xn − Y n =
∏

0≤k<n

(
X − ξk

nY
)

for n := pα

f , X := 1 and Y := ξyr2
qβ · ξar1

pα , where r1 ∈ Z
×
pα

f

and therefore

multiplication with r1 is a permutation of Z pα

f
. The same permutation argu-

ment implies equation (2), since r2 ∈ Z
×
qβ . In (3) we have used the identity

∏
a∈Z

×
qβ

(
X − ξa

qβ Y
)

= Xqβ −Y qβ

Xqβ−1−Y qβ−1 for X = 1 and Y = ξar1
f . The hypothesis

r1q
β ≡ 1 mod pα implies r1q

β ≡ 1 mod f and therefore equation (4).
Finally, we can calculate the eigenvalue λχ.

λχ = 〈z1, χ〉 =
1
2

∑

j∈Z
×
m

χ(j) · log
(∣∣1 − ξj

m

∣∣) =
1
2

∑

a∈Z
×
f

χ(a)
∑

j∈Z
×
m

π(j)=a

log
(∣∣1 − ξj

m

∣∣)

=
1
2

∑

a∈Z
×
f

χ(a) log

(∣∣∣∣∣
∏

j∈Z
×
m

π(j)=a

(
1 − ξj

m

)
∣∣∣∣∣

)
=

1
2

∑

a∈Z
×
f

χ(a) log

(∣∣∣∣∣
1 − ξa

f

1 − ξar1qβ−1

f

∣∣∣∣∣

)

=
1
2

∑

a∈Z
×
f

χ(a) log
(∣∣1 − ξa

f

∣∣)− 1
2

∑

a∈Z
×
f

χ(a) log
(∣∣∣1 − ξar1qβ−1

f

∣∣∣
)

=
(5)

1
2

∑

a∈Z
×
f

χ(a) log
(∣∣1 − ξa

f

∣∣)− 1
2

∑

a∈Z
×
f

χ(a · q) log
(∣∣1 − ξa

f

∣∣)

=
1
2
(1 − χ(q))

∑

a∈Z
×
f

χ(a) log
(∣∣1 − ξa

f

∣∣) ,

where we used in (5) the substitution a for ar1q
β−1 and the fact, that r1q

β ≡ 1
mod pα implies r1q

β−1 · q ≡ r1q
β ≡ 1 mod f , i.e., q is the multiplicative inverse

of r1q
β−1 mod f . ��

The next theorem provides a connection between the occurring sum in the
eigenvalues λχ and the Dirichlet L-function.

Theorem 4.12 ([27, Lemma 4.8. and Theorem 4.9]). Let χ be an even Dirichlet
character mod m ∈ N of conductor fχ > 1. Then

∣∣∣
∑

a∈Z
×
fχ

χ(a) · log
(∣∣1 − ξa

fχ

∣∣)
∣∣∣ =

√
fχ · |L(1, χ)|.

We collect the previous results in the following theorem. A proof can be found
in the extended version of this paper [13].

Theorem 4.13. Let m = pαqβ for some distinct primes p, q ∈ P and α, β ∈ N.
Further, let χ ∈ Ĝm be an even Dirichlet character mod m of conductor fχ > 1.
Then the eigenvalue λχ = 〈z1, χ〉 of Z corresponding to χ is given by

|λχ| =
1
2

∣∣ (1 − χ(p)) (1 − χ(q))
∣∣ ·√fχ · |L(1, χ)|.
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In particular, if p, q are odd primes, all eigenvalues λχ corresponding to some
non-trivial even character χ ∈ Ĝm are non-zero iff (p, q) is an (α, β)-generator
prime pair.

We are now prepared to express the norm of the dual vectors b∗
j in terms of

the eigenvalues λχ. Notice that this is the same result as in the prime-power case,
but is more complicated to prove since Z is not invertible, see [8, Lemma 3.2].

Lemma 4.14. Let (p, q) be an (α, β)-generator prime pair, and m := pαqβ.
Then the norm of b∗

j for all j ∈ Gm\{1} is given by

||b∗
j ||22 = |Gm|−1 ·

∑

χ∈̂Gm
χ�≡1

|λχ|−2,

where λχ = 〈z1, χ〉 denotes the eigenvalue of Z corresponding to χ. In particular,
all dual vectors b∗

j have the same norm.

Proof. Our goal is to prove the claim by defining a “pseudo inverse” D of ZT

and show that b∗
j is the j-th column of D.

For simplification, we fix an order of Ĝm, i.e., Ĝm = {χ1, . . . , χn} with n =
ϕ(m)

2 and χ1 ≡ 1 is the trivial character mod m. This allows us to represent
Ĝm × Ĝm matrices by n×n matrices. Notice that the characters χj are different
from the characters of Theorem 2.9, we only used a similar notation. The order of
Ĝm yields an order of the eigenvalues λ1, . . . , λk of Z, where λ1 = 0 by Lemma 4.9
and λj �= 0 for 2 ≤ j ≤ n by Theorem 4.13. Since Z is a Gm-circulant matrix,
Lemma 2.12 implies

Z = PGm

⎛

⎜⎜⎜⎝

0 0 . . . 0
0 λ2 . . . 0
.
.
.

.

.

.
. . .

.

.

.
0 0 . . . λn

⎞

⎟⎟⎟⎠P−1
Gm

.

We define

DT := PGm

⎛

⎜⎜⎜⎜⎝

0 0 . . . 0

0 1
λ2

. . . 0

.

..
.
..

. . .
.
..

0 0 . . . 1
λn

⎞

⎟⎟⎟⎟⎠
P−1

Gm
and ZM

1 := Z

⎛

⎜⎜⎜⎝

1 1 . . . 1
0 0 . . . 0
.
.
.
.
.
.

.

.

.
0 0 . . . 0

⎞

⎟⎟⎟⎠ = (z1, . . . , z1) ∈ R
Gm×Gm ,

where the first row of the matrix, which only has ones in the first row and zeroes
elsewhere, corresponds to 1 ∈ Gm.

Let dj be the j-th column of D for j ∈ Gm. We claim that dj = b∗
j for all

j ∈ Gm\{1}. Since span (B) ⊆ R
Gm ∼= R

n is the subspace orthogonal to the
all-one vector 1, we have to prove 〈dj ,1〉 = 0 or all j ∈ Gm\{1}, first. The
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components of the vector dj just differ by the order of the entries of d1, since
D is a Gm-circulant matrix associated to d1 by Lemma 2.12. Hence,

〈dj ,1〉 = 〈d1,1〉 = 0,

since 〈d1,1〉 is the eigenvalue of D corresponding to the trivial character 1 ≡
χ ∈ Ĝm.

Now, we only have to prove 〈di,bj〉 = δi,j for all i, j ∈ Gm\{1}. Since
bj = zj − z1 for all j ∈ Gm\{1}, we have

〈di,bj〉 =
(

D
T
B
)

i,j
=
(

D
T
Z − D

T
Z

M
1

)

i,j

=

⎛

⎜

⎜

⎜

⎜

⎝

PGm

⎛

⎜

⎜

⎜

⎜

⎝

0 0 . . . 0

0 1 . . . 0

.

.

.
.
.
.
. . .

.

.

.

0 0 . . . 1

⎞

⎟

⎟

⎟

⎟

⎠

P
−1
Gm

︸ ︷︷ ︸

=:M

− PGm

⎛

⎜

⎜

⎜

⎜

⎝

0 0 . . . 0

0 1 . . . 0

.

.

.
.
.
.
. . .

.

.

.

0 0 . . . 1

⎞

⎟

⎟

⎟

⎟

⎠

P
−1
Gm

︸ ︷︷ ︸

=M

⎛

⎜

⎜

⎜

⎜

⎝

1 1 . . . 1

0 0 . . . 0

.

.

.
.
.
.

.

.

.

0 0 . . . 0

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

i,j

= Mi,j − Mi,1

for all i, j ∈ Gm\{1}. The entry Mi,j of M is given by Mi,j =
1

|Gm|
∑

χ∈̂Gm
χ�≡1

χ
(
i · j−1

)
. Together with Lemma 2.10 (4) we obtain

Mi,j − Mi,1 =
1

|Gm|

(

∑

χ∈ ̂Gm
χ �≡1

χ
(

ij
−1
)

−
∑

χ∈ ̂Gm
χ �≡1

χ (i)

)

=
1

|Gm|

(

∑

χ∈ ̂Gm

χ
(

ij
−1
)

︸ ︷︷ ︸

=|Gm|, if i=j
=0, else

−
∑

χ∈ ̂Gm

χ (i)

︸ ︷︷ ︸

=0
since i�=1

)

= δi,j .

By the uniqueness of the dual basis, this implies b∗
j = dj for all j ∈ Gm\{1}.

Therefore, Theorem 2.13 implies

||b∗
j ||22 = ||dj ||22 = ||d1||22 = |Gm|−1 ·

∑

χ∈̂Gm\{1}
|λχ|−2

for all j ∈ Gm\{1}, since the eigenvalues of D are given by 0, 1
λ2

, . . . , 1
λn

and,
again, the components of dj are just a permutation of the components of d1. ��

The following theorem summarizes the presented results and provides an
upper bound for ||b∗

j ||2. It can be proven similar to the prime power case in [8,
Sect. 3], we only need to bound the new occurring factor |(1 − χ(p))(1 − χ(q))|.
Therefore we just sketch the proof of the following theorem, for a detailed version
see the extended version of this paper [13].

Theorem 4.15. Let (p, q) be an (α, β)-generator prime pair, and m := pαqβ.
Then the norm of all b∗

j for j ∈ Gm\{1} is equal and bounded by

||b∗
j ||22 ≤ 15C ′

m
+ C2 log2(m) ·

(
15αβ

2m
+

55(α + β)
8m

+
5β

12pα
+

5α

12qβ

)
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without the GRH, and

||b∗
j ||22 ≤ C2(log ◦ log)2(m) ·

(
15αβ

2m
+

55(α + β)
8m

+
5β

12pα
+

5α

12qβ

)
,

if the GRH holds, for some constants C,C ′ > 0, where C ′ depends on p, q and C
is independent of m. Note that log(m) = α log(p)+β log(q) holds for m = pαqβ.

Proof. Without loss of generality we just consider the inequality without the
GRH. Like in the prime power case, we distinguish between the quadratic and
non quadratic characters. Since Z

×
pα is cyclic, there is exactly one non-trivial

quadratic character of Z
×
pα

∼= Ẑ
×
pα with conductor p. Therefore Ẑ

×
m

∼= Ẑ
×
pα × Ẑ

×
qβ

has only three non-trivial quadratic characters of Z
×
m of conductor p, q and pq.

Hence, there exists a constant C ′ > 0, such that
∑

χ∈Ĝ
pl1 ql2 \{1}

χ is quadratic

|λχ|−2 ≤ C ′

for all l1, l2 ∈ N, since the bound of the eigenvalues λχ only depends on the
conductor fχ by Theorems 2.15 and 4.13. This implies

||b∗
j ||22 = |Gm|−1 ·

( ∑

χ∈̂Gm\{1}
χ is quadr.

|λχ|−2 +
∑

χ∈̂Gm\{1}
χ is not quadr.

|λχ|−2

)

≤ 15C ′

m
+

15
m

· l2(m)
∑

χ∈̂Gm
χ�≡1

1∣∣ (1 − χ(p)) (1 − χ(q))
∣∣2 · fχ

with l(m) := C log(m) ≥ C log(fχ) for some constant C > 0 by Theorem 2.15.
Hence, we have to bound the occurring sum. We split the sum into three sums over
the characterswith pq|fχ, q � fχ and p � fχ. If pq|fχ, then

∣∣ (1 − χ(p)) (1 − χ(q))
∣∣ =

1, therefore

∑

χ∈̂Gm
pq|fχ

1
∣∣ (1 − χ(p)) (1 − χ(q))

∣∣2 · fχ

=
∑

χ∈̂Gm
pq|fχ

1

fχ
=
∑

pq|t|m

1

t

∑

χ∈̂Gm
fχ=t

1 ≤
∑

pq|t|m

1

t
· t

2
=

1

2
α · β,

where we used that there at most |Ĝt| = ϕ(t)
2 ≤ t

2 characters of conductor t

in Ĝm.
For the case q � fχ = pe we use the inequality

∑n−1
k=1

1
|1−ξk

n|2 ≤ 1 + n
4 + 1

9n2,
which can be proven by basic analysis, see the extended version of this paper [13].
This and Corollary 4.3 implies

∑

χ∈ ̂Gm
1<fχ|pα

1
∣

∣ (1 − χ(p)) (1 − χ(q))
∣

∣
2 · fχ

≤
α
∑

e=1

1

pe

∑

χ∈ ̂Gpe

χ �≡1

1
∣

∣1 − χ(q)
∣

∣
2 =

α
∑

e=1

1

pe

ϕ(pe)
2 −1
∑

k=1

1
∣

∣1 − ξk
ϕ(pe)

2

∣

∣
2

≤
α
∑

e=1

1

pe
·
(

1 +
ϕ(pe)

8
+

ϕ(pe)2

36

)

≤ α

p
+

α

8
+ αp

α−2 (p − 1)2

36
,
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Analogously follows the same bound for the case p � fχ. Altogether we have

||b∗
j ||22 ≤ 15C1

m
+

15

m
· l2(m)

(
α

p
+

β

q
+

1

2
α · β +

α + β

8
+ βqβ−2 (q − 1)2

36
+ αpα−2 (p − 1)2

36

)

≤ 15C1

m
+ l2(m)

(
15αβ

2m
+

55(α + β)

8m
+

5β

12pα
+

5α

12qβ

)
,

where l(m) = C log(m) for some constant C > 0. We have used that α
p + β

q ≤
α
3 + β

5 ≤ α+β
3 . ��

The upper theorem implies ||b∗
j ||22 ∈ O

(
l3 · pl+ql+c

plql+c

)
, where α = l and β =

l + c for some constant c ∈ N0. The following corollary is a direct consequence
of this fact and shows, that the basis b1, . . . ,bk for m = pαqβ is well suited for
BDD, if (p, q) is a generator prime pair and the distance between α and β is
bounded. A proof can be found in the extended version of this paper [13].

Corollary 4.16. Let (p, q) be a generator prime pair and c ∈ N0. Further, let
αl := l, βl := l + c and ml := pαlqβl for all l ∈ N. Then ||b∗

j ||2 → 0 for l → ∞
and all j ∈ Gm\{1} and

ml · exp
(

− 1
8||b∗

j ||2

)
→ 0 for l → ∞.

In particular, for every ω ∈ (0, 1) Condition 3.5 holds with parameters M =
||Log(bj)∗||2 for all j ∈ Gm\{1} and ω for large enough ml, if the generator
g ∈ Kml

is drawn from a continuous Gaussian.

References

1. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986)

2. Bernstein, D.: A subfield-logarithm attack against ideal lattices, February 2014.
http://blog.cr.yp.to/20140213-ideal.html

3. Biasse, J.-F., Fieker, C.: Subexponential class group and unit group computation
in large degree number fields. LMS J. Comput. Math. 17(A), 385–403 (2014)

4. Biasse, J.-F., Song, F.: On the quantum attacks against schemes relying on the
hardness of finding a short generator of an ideal in Q(ζpn). Technical report, Tech
Report CACR 2015-12 (2015)

5. Biasse, J.-F., Song, F.: Efficient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number fields. In: Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 893–902. Society for Industrial and Applied Mathematics (2016)

6. Campbell, P., Groves, M., Shepherd, D.: Soliloquy: a cautionary tale. In: ETSI 2nd
Quantum-Safe Crypto Workshop, pp. 1–9 (2014)

7. Cohen, H.: A Course in Computational Algebraic Number Theory, vol. 4. Springer,
Heidelberg (2000)

http://blog.cr.yp.to/20140213-ideal.html


368 P. Holzer et al.

8. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of prin-
cipal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 20

9. Cramer, R., Ducas, L., Wesolowski, B.: Short Stickelberger class relations and
application to Ideal-SVP. Technical report, Cryptology ePrint Archive, Report
2016/885 (2016). http://eprint.iacr.org/2016/885
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