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Abstract. Nachef et al. used differential cryptanalysis to study four
types of Generalized Feistel Scheme (GFS). They gave the lower bound of
maximum number of rounds that is indistinguishable from a random per-
mutation. In this paper, we study the security of several types of GFS by
exploiting the asymmetric property. We show that better lower bounds
can be achieved for the Type-1 GFS, Type-3 GFS and Alternating Feis-
tel Scheme. Furthermore, we give the first general results regarding to
the lower bound of the Unbalanced Feistel Scheme.
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1 Introduction

1.1 Background

The Feistel Network is a widely-used method used to construct iterated block
ciphers. It has similar operations in encryption and decryption process which
is hardware efficient and the round function is not required to be a bijective
function. It has been applied in many block ciphers such as DES, DEAL [9] and
Camellia [2]. The structure was generalized to allow more branches and different
relations between the branches to form Generalized Feistel Network (GFN) [13].
Before the term GFN was proposed, Zheng et al. [24] described 3 types of trans-
formations which were in fact Type-1, Type-2 and Type-3 Generalized Feistel
Schemes. Anderson and Biham [1] and Lucks [11] proposed block cipher designs
using Alternating Feistel Network. Another type of GFN is the Unbalanced Feis-
tel Scheme, which was designed by Schneier and Kelsey [19]. Many block cipher
designs employed the GFN, such as CLEFIA [20], Skipjack and Simpira [6]. The
advantage of using a Generalized Feistel Network is that it allows for a design
to handle a larger block size with a relatively small round function.

1.2 Previous Work

Many analysis on Feistel network and Generalized Feistel Network have been
done [7,10,12,14,15,22]. However, as mentioned in [7], most analysis is special-
ized in some types instead of analysing many types at once.
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Nachef et al. [12] used differential cryptanalysis to study four types of GFS
using Known Plaintext Attack (KPA) and Chosen Plaintext Attack (CPA)
model. They established lower bounds of the maximum number of rounds dis-
tinguishable in Type-1, Type-2, Type-3 and Alternating Feistel Scheme in the
two models.

Provable-security analysis has been applied to Feistel Networks in [7,10].
Luby and Rackoff [10] analysed the classical Feistel Networks which is then
improved and generalised by Hoang and Rogaway in [7] to analyse Classi-
cal, Unbalanced, Alternating, Type-1, Type-2 and Type-3 Generalized Feistel
Scheme. The theoretical analysis of Generalized Feistel also plays an impor-
tant role in design and analysis of practical ciphers. In the design of DEAL [9],
Knudsen considers this theoretical attack to provide a security bound for any
key schedule that is used.

An interesting property existed in many the GFS designs is that the encryp-
tion and decryption are not exactly the same, which sometimes makes the dif-
ferential propagation slower in the decryption than in the encryption. In the
analysis on Skipjack [4,5], the difference in the decryption has been considered.
Recently, Tjuawinata et al. [21] showed that the analysis of Simpira [6] can be
improved by considering the asymmetry of Type-1 Generalized Feistel Scheme.
While this property is exploited in cryptanalysis, it is undesired for the designer.
In the design criterion of Keccak [3], it mentioned the property that the same
permutation function is used in both encryption and decryption.

1.3 Our Contribution

In this paper, we study the asymmetric property in the Generalized Feistel
Schemes. We provide better lower bounds of the maximum number of rounds
distinguishable in 3 different types of Generalized Feistel Networks given in [12],
which are Type-1 Feistel Scheme, Type-3 Feistel Scheme and Alternating Feistel
Scheme.1 We also provide a lower bound of the maximum number of rounds
distinguishable in another type of Generalized Feistel Network, the Unbalanced
Feistel Network. As far as we know, this is the first result on Unbalanced Feistel
Network that is applicable to different values of k′. We exploit the asymmetry
of certain types of GFS by observing that the backward differential diffusion is
slower than the forward differential diffusion. This leads to the improvements on
the lower bounds.

For Type-1 Feistel Scheme, we provide a chosen ciphertext distinguisher
which distinguishes k − 1 more rounds than the distinguisher given in [12] with
the same complexity. Furthermore, when the number of rounds to distinguish
is fixed to ak − 2 rounds for some integer a in the range 4 ≤ a ≤ k − 1, the
distinguisher in this paper has complexity 1/2n of the distinguisher given in the
CPA model in [12], from

√
2 · 2(a−2)n to

√
2 · 2(a−3)n.

1 We also examine Type-2 Feistel Scheme, but we cannot improve the previous results
since it does not have asymmetric property.
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In Type-3 Feistel Scheme, [12] only provides lower bound for the case when
the number of branches is at least 6. We propose a distinguisher which can be
used for any number of branches and can distinguish up to k +2 rounds in both
KPA and CCA model with complexity

√
2 ·2(k−1)n and

√
2 ·2(k−2)n respectively.

When k is at least 6, in the CCA model, a distinguisher for one more rounds
than the one given in [12] is constructed.

In Alternating Feistel Scheme, our analysis shows that lower complexity can
be achieved in some special cases. More specifically, when the number of rounds
is odd, the complexity is improved by a factor of 2

3n
2 from the distinguisher

proposed in [12].
In our analysis of Unbalanced Feistel Scheme, let k be the total number of

sub-blocks and k′ be the number of sub-blocks that are used as the output of the
round function. In this paper, we consider two special cases when k′ or k − k′

divides k. When k′ = 1, we can distinguish up to (k2 + k − 1) rounds with
complexity less than 2kn in the KPA model. In the CCA model, the number
of rounds that can be distinguished is up to 2k rounds with complexity less
than 2n. When k′ ≥ 1, a lower bound of the maximum number of rounds that
is distinguishable from random permutation is given. In the KPA model, the
bound is k2

k′ − k
2 + k

k′ when k′ is even and k2

k′ − k(k−1)
2k′ when k′ is odd. In the CCA

model, the bound is k
2 + 2 k

k′ when k′ is even and k(k′+3)
2k′ when k′ is odd. To the

best of our knowledge, this is the first analysis on Unbalanced Feistel Scheme
for any values of k.

1.4 Organization

We give some preliminaries in Sect. 2. The attack overview is then dis-
cussed in Sect. 3. The analysis on Type-1 Feistel Scheme is presented in
Sect. 4. Sections 5 and 6 contains analysis of Type-3 and Alternating Feistel
Scheme. The Unbalanced Feistel Scheme is analysed in Sect. 7. In Sect. 8, we
conclude this paper.

2 Preliminaries

2.1 Generalized Feistel Schemes

A Generalized Feistel Scheme of branch k is defined as a (keyed)-permutation
Π : (F2n)k → (F2n)k. For the m input-output pairs of Π, for all i ∈ {0, · · · ,m −
1}, the i-th input and output of Π are denoted by (I0(i), · · · , Ik−1(i)) and
(S0(i), · · · , Sk−1(i)) respectively. Since the analysis is on the inverse of Π, in
the remaining of the paper, “input” refers to (S0(i), · · · , Sk−1(i)) while “out-
put” refers to (I0(i), · · · , Ik−1(i)). In this paper, four types of Generalized Feistel
schemes are considered in details:

Type-1 Feistel Schemes. Π is an r-round Type-1 Feistel scheme if Π consists
of r repetitions of μ1 : (F2n)k → (F2n)k where μ1(x0, · · · , xk−1) = (x1 ⊕
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Fi(x0), x2, · · · , xk−1, x0). Assume that Fi : F2n → F2n is a function from
from n-bit input to n-bit output which may vary depending on the round
where it is being called. Here i = 1, · · · , r. Illustration of round i of Type-1
Feistel Scheme can be found in Fig. 1.

Type-3 Feistel Schemes. Π is an r-round Type-3 Feistel scheme if Π consists
of r iterations of μ3 : Fk

2n → F
k
2n . Given (x0, · · · , xk−1), μ3 maps

(x0, · · · , xk−1)

to
(x1 ⊕ F(i,0)(x0), x2 ⊕ F(i,1)(x1), · · · , xk−1 ⊕ F(i,k−2)(xk−2), x0).

Figure 2 illustrates the i-th round of Type-3 Feistel Scheme.
Alternating Feistel Schemes. For this scheme, consider two different round

functions μA,0, μA,1 : Fk
2n → F

k
2n which are used alternatingly for each round.

– μA,0(x0, · · · , xk−1) = (x0 ⊕ Fi(x1, · · · , xk−1), x1, · · · , xk−1) where Fi :
F

k−1
2n → F2n is called in round 2i−1. μA,0 is called the contracting round.

– μA,1(x0, · · · , xk−1) = (x0, x1 ⊕ F(i,1)(x0), · · · , xk−1 ⊕ F(i,k−1)(x0)). Here
Fi,j : F2n → F2n is the function called in the j-th component in round 2i.
These rounds are called the expanding rounds.

Illustration of round 2i−1 and 2i of Alternating Feistel Scheme can be found
in Fig. 3. Note that round number and index i starts from 1 instead of 0.
Alternatively, μA,1 can be used in odd rounds and μA,0 in even rounds but
in this paper a contracting round is always used at round 1. Note that if
μA,1 is used in the first one instead, the backward analysis on this variant is
equivalent to the forward analysis discussed in [12].

Unbalanced Feistel Schemes. This is a special case of the UFN defined in
Fig. 1 of [7]. Let k′ = 1, · · · , k − 1 and Fs : F

k−k′
2n → F

k′
2n be a map from

(k−k′)n bit to k′n bit with component functions denoted as Fs,0, · · · , Fs,k′−1

with the round number s as its parameter. Then Π is an r-round UFN(k′, k)
if it contains r repetitions of μU : F

k
2n → F

k
2n . In round s, given an input

(x0, · · · , xk−1), μU maps it to

(xk′ , · · · , xk−1, x0 ⊕ Fs,0(xk′ , · · · , xk−1), · · · , xk′−1 ⊕ Fs,k′−1(xk′ , · · · , xk−1)).

Figure 4 provides an illustration of round s of UFN(k′, k).

In this paper, differential analysis on the inverse of Π is considered. So the
attack starts with the image (S0(i), · · · , Sk−1(i)) and the differential path is
built to the preimage, (I0(i), · · · , Ik−1(i)).

2.2 Random Variable

Given a random variable X, denote by E(X), V (X), σ(X) the expected value,
variance and standard deviation of X respectively. Note that V (X) = E(X2) −
E(X)2 and σ(X) =

√
V (x).
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Fig. 1. Round i of Type-1 Feistel Scheme

Fig. 2. Round i of Type-3 Feistel Scheme

Fig. 3. Round 2i − 1 and Round 2i of Alternating Feistel Scheme

Now given n random variables X1, · · · ,Xn, define the covariance of Xi and
Xj as Cov(Xi,Xj) = E(XiXj) − E(Xi)E(Xj). A simple calculation of the def-
inition yields V (

∑n
i=1 Xi) =

∑n
i=1 V (Xi) +

∑
i�=j,1≤i,j≤n Cov(Xi,Xj).
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Fig. 4. Round s of Unbalanced Feistel Scheme

Proposition 1 [12]. Let X and Y be two random variables. X is said to be
distinguishable from Y if |E(X) − E(Y )| ≥ max(σ(X), σ(Y )).

More specifically, let EX , EY be the expected values of X and Y respectively
while σX , σY being the standard deviations of X and Y respectively. Without loss
of generality, let EX < EY . Then, if EY − EX ≥ max(σ(X), σ(Y )):

1. Pr
(
X ≥ EX+EY

2

) ≤ 0.30854
2. Pr

(
Y ≤ EX+EY

2

) ≤ 0.30854.

Proof. We only prove the first claim since the second one can be proved by using
the same method. A simple calculation tells us that:

Pr

(
X ≥ EX + EY

2

)
= Pr

(
X − EX ≥ EY − EX

2

)

≤ Pr
(
X − EX ≥ σX

2

)

= Pr

(
X − EX

σX
≥ 1

2

)
.

Assuming that X is sampled large enough time, we can use the Central Limit
Theorem to approximate X−EX

σX
by a standard normal distribution. Hence by

using this approximation and the standard normal distribution table, we get the
upper bound claimed.

Remark 1. When we use Proposition 1, the random variables are actually the
number of plaintext-ciphertext pairs that satisfy some equations. Now since the
number of plaintext-ciphertext pairs is O(2αn) for some constant α, we can
apply Central Limit Theorem here. So if the random variable is X with mean
μ and standard deviation δ, we can approximate X−μ

δ by the standard normal
distribution.
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3 Attack Overview

In this paper, as we have discussed in Sect. 1.2, we exploit the asymmetry of the
scheme by considering the backward differential diffusion.

We will discuss two types of improvements:

Unconstrained environment. We aim for a better lower bound for the max-
imum number of rounds distinguishable than the bound given in [12]. By
unconstrained environment, we mean that analysis considered in this envi-
ronment aims to distinguish more rounds than the previous results with com-
plexity strictly less than 2kn where k is the number of sub-block and n is
the number of bits in each sub-block. Throughout this paper, the complexity
of the attack is measured by the number of queries performed to make the
attack possible.

Constrained environment. There are two possible forms of this improvement.
Firstly, we aim to improve the number of rounds that can be distinguished in
the backward direction given the same complexity as the distinguisher given
in [12]. Secondly, given the same number of rounds, we aim to reduce the
complexity to distinguish the GFS from a random permutation.

Our analysis uses m plaintext-ciphertext pairs and considers the expected
number of pairs N that satisfies certain conditions depending on the scheme
analysed. Let Nperm be the value of N for a random permutation and NF be the
value N for F , the r-round Generalized Feistel Scheme. We use this information
to calculate the maximum number of rounds such that Nperm is distinguishable
from NF .

The functions Fi (or F(i,j)) used in the round function of GFS are assumed
to be ideal keyed functions. Given the input, the output is a random n-bit string.
Similarly, since it is ideal, given a nonzero input difference, the output difference
is uniformly distributed.

Furthermore, let I1 and I2 be two distinct indices of the round function in
the same cryptosystem (Ij can be a single integer or a pair or integers depending
on the GFN we are considering). Given two different indices values I1 and I2,
we also assume that FI1 and F(I2) are independent from each other. Hence given
the same input (or output) difference ΔS of FI1 and FI2 , we can further assume
that FI2(ΔS) is uniformly distributed even assuming that FI1(ΔS) is already
known.

First we give an intuitive description on how to launch the attack. Suppose
that given a Generalized Feistel Scheme f of r rounds, we denote the differences
in each stage as ΔI − Δ1 − · · · − Δr−1 − ΔO. The first step of the attack is done
by expressing ΔI as a function of Δ1, · · · ,Δr−1 and ΔO. We are choosing the
express ΔI as a function of ΔO instead of the other way around since we want
to use the expression we get to launch a backward differential trail instead of
the forward trail. To enable this, for each Δ, we partition Δ into k sub-blocks.
Since each round function takes one of these sub-blocks as input, we can easily
find the expression that we need.
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Having these expressions, we can then choose carefully the input and output
difference (truncated differences) to maximize the probability for the specified
input difference focusing in some of the sub-blocks to lead to the output difference
chosen. To calculate the success probability, we consider the number of ciphertext
pairs with specified difference that can lead to the plaintext pairs with the chosen
input difference in two scenarios; when the function is a random permutation,
denoted by Nperm and when the function is in the form of the Generalized Feistel
Network considered, denoted by NF .

Now having the expected values and variances of both Nperm and NF , those
four values will be functions of the round number r and number of ciphertext
pairs with the chosen difference m. By Definition 1, NF is distinguishable from
Nperm if |E(NF ) − E(Nperm)| ≥ max(σ(NF ), σ(Nperm)). So using this inequal-
ity, we obtain a relation between the number of rounds r and the number of
ciphertext pairs m. This will give us a lower bound of m given r. Since we want
the distinguisher to be useful, we require m to be less than the total number
of possible ciphertext pairs. In the case of known ciphertext attack, this means
that we need m ≤ 2kn. This gives us an upper bound for the round number, r,
such that F is distinguishable from a random permutation using this backward
differential attack.

As we described above, in fact the main idea of the attack is exactly the
same for all the types of Generalized Feistel Scheme. We first calculate a rela-
tion between ciphertext and plaintext differences which is closely related to the
structure of the scheme. Once the relation is established, the calculation of the
expectation and standard deviation will be very similar and they will be indepen-
dent of the scheme. Because of this similarity, we will just describe the calculation
once and omit the others. In the following sections of this paper, we perform this
attack on different types of Generalized Feistel Networks discussed in Sect. 2.1.

4 Type-1 Feistel Schemes

4.1 Analysis of the Type-1 Feistel Schemes

For this analysis, we assume the number of rounds is r = ak + b where k is the
number of branches in the scheme and a and b are non-negative integers where
0 ≤ b ≤ k−1 and k ≥ 3. We will be using the notation described in the previous
section for our analysis, namely I0, · · · , Ik−1 for the k sub-blocks pre-image of Π
while S0, · · · Sk−1 is used to denote the k sub-blocks image of Π. In this section
we discuss in detail how we build the relations between the sub-blocks, then
we discuss how we choose the differential trail. Having the differential trail, the
expected value and the variance of the trail when Π is random permutation and
a type-1 Generalized Feistel Scheme are calculated. This in turns tells us the
maximum number of rounds that is distinguishable from a random permutation
using the chosen differential.
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Let Xi be the intermediate variables obtained in the second branch (indexed
as 1) after the i-th round in the backward direction. By definition of the round
function of Type-1 Feistel Scheme, we have the following relations:

X0 = Sk−1,
X1 = S0 ⊕ Fak+b(Sk−1),
For t = 2, · · · , k − 1,Xt = Sk+1−t ⊕ Fak+b−(t−1)(Sk−t),
For t ≥ k,Xt = Xt−k ⊕ Fak+b−(t−1)(Xt−(k−1)), Note that Fr is always used
with input Xak+b−r−k+2.
For r ≥ k − 1, the input of the r-th round in the backward direction is
(Xr−(k−1),Xr,Xr−1, · · · ,Xr−(k−2)).

After r = ak + b rounds, the state becomes (I0, · · · , Ik−1) where I0 =
X(ak+b)−(k−1) and for i = 1, · · · , k − 1, Ii = X(ak+b)−(i−1). The following equal-
ities can then be derived using the relations established above:

I0 = Xb+1 ⊕ ⊕a−2
i=0 F(a−i−1)k(Xik+b+2),

For j ∈ {1, · · · ,min(k − 1, b + 1)},

Ij = Xb+1−j ⊕
a−1⊕

i=0

F(a−i−1)k+j(Xik+(b+2−j)),

For j ∈ {min(k − 1, b + 1) + 1, · · · , k − 1},

Ij = Xk+b+1−j ⊕
a−2⊕

i=0

F(a−i−2)k+j(Xik+(k+b+2−j)).

In particular, for I1,

I1 = Xb ⊕
a−1⊕

i=0

F(a−i−1)k+1(Xik+(b+1))

= Xb ⊕
a−2⊕

i=0

F(a−i−1)k+1(Xik+(b+1)) ⊕ F1(I0)

=

⎧
⎪⎪⎨

⎪⎪⎩

S1 ⊕ ⊕a−2
i=0 F(a−i−1)k+1(Xik+1) ⊕ F1(I0) if b = 0

S0 ⊕ Fak+1(Sk−1) ⊕ ⊕a−2
i=0 F(a−i−1)k+1(Xik+2) ⊕ F1(I0) if b = 1

Sk+1−b ⊕ Fak+1(Sk−b) ⊕ ⊕a−2
i=0 F(a−i−1)k+1(Xik+(b+1))

⊕F1(I0) otherwise.

We can further expand the sum by noting that when i = 0, the summand is
F(a−i−1)k+1(Xb+1) and

Xb+1 =

⎧
⎨

⎩

S0 ⊕ Fak(Sk−1) if b = 0
Sk−b ⊕ Fak(Sk−b−1) if 1 ≤ b ≤ k − 2

S1 ⊕ Fak(S0 ⊕ Fak+(k−1)(Sk−1)) if b = k − 1.
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So in any value of b ∈ {0, · · · , k − 1, }, we can express I1 as a function
of several sub-blocks of the output Sj , F1(I0) and a − 2 terms determined by
intermediate variables. More specifically, for b ∈ {0, · · · , k − 1}, we have:

1. When b = 0,

I1 ⊕ S1 ⊕ F1(I0)

=
a−2⊕

i=1

F(a−i−1)k+1(Xik+1) ⊕ F(a−1)k+1(S0 ⊕ Fak(Sk−1)), (1)

2. When b = 1,

I1 ⊕ S0 ⊕ F1(I0)

=
a−2⊕

i=1

F(a−i−1)k+1(Xik+2) ⊕ F(a−1)k+1(Sk−1 ⊕ Fak(Sk−2)), (2)

3. When 2 ≤ b ≤ k − 2,

I1 ⊕ Sk+1−b ⊕ F1(I0)

=
a−2⊕

i=1

F(a−i−1)k+1(Xik+2) ⊕ F(a−1)k+1(Sk−b ⊕ Fak(Sk−b−1)), (3)

4. When b = k − 1,

I1 ⊕ S2 ⊕ F1(I0)

=

a−2⊕

i=1

F(a−i−1)k+1(Xik+1) ⊕ F(a−1)k+1(S1 ⊕ Fak(S0 ⊕ F(a+1)k−1(Sk−1))). (4)

To choose the truncated differential for each case, we try to utilize Eqs. (1),
(2), (3) and (4). We will describe how we choose it for the case when b = 0. The
same idea can then be applied to all the other cases.

Note that for this case, for any ciphertext and its plaintext, we have the
relation

I1 ⊕ S1 ⊕ F1(I0)

=
a−2⊕

i=1

F(a−i−1)k+1(Xik+1) ⊕ F(a−1)k+1(S0 ⊕ Fak(Sk−1)),

Now for any two ciphertexts C = (S0, · · · , Sk−1), C ′ = (S′
0, · · · , S′

k−1) that
we choose (and their corresponding plaintexts P = (I0, · · · , Ik−1), P ′ =
(I ′

0, · · · , I ′
k−1)), we can only determine the value in the left hand side of Eq. (1).

So based on this relation, we try to find the probability that I1 ⊕ S1 ⊕ F1(I0) =
I ′
1 ⊕ S′

1 ⊕ F1(I ′
0). Since F1 is always assumed to be ideal, after some rearrange-

ment, this probability is the same as the probability that:

1. I0 = I ′
0

2. I1 ⊕ I ′
1 = S1 ⊕ S′

1.
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So we will use this as the truncated differential for the case of Type-1 Scheme
with b = 0. As mentioned before, this is done by collecting m ciphertexts with
their respective plaintexts and we compute the number of ciphertext pairs (along
with their corresponding plaintexts) that satisfies the above conditions. The same
analysis is done to all the other cases.

Now to find a theoretical approximation for the probability of these con-
ditions to be satisfied in various cases, we use the fact that if I0 = I ′

0 and
I1 ⊕ I ′

1 = S1 ⊕ S′
1, we must have

a−2⊕

i=1

F(a−i−1)k+1(Xik+1) ⊕ F(a−1)k+1(S1 ⊕ Fak(S0 ⊕ F(a+1)k−1(Sk−1)))

is equal to

a−2⊕

i=1

F(a−i−1)k+1(X ′
ik+1) ⊕ F(a−1)k+1(S′

1 ⊕ Fak(S′
0 ⊕ F(a+1)k−1(S′

k−1))).

Now note that in this last equation, we have terms that are just functions
of S0, Sk−1, S

′
0 and S′

k−1. So in the chosen ciphertext attack, to increase the
probability, we can make sure that these terms are equal in both sides by making
sure that S0 = S′

0 and Sk−1 = S′
k−1. So in the chosen ciphertext attack, instead

of choosing m random ciphertexts, we choose them with their first and last
sub-blocks being fixed to a predetermined value.

In summary, out of the m plaintext-ciphertext pairs, we count the number
of (s, t), 1 ≤ s < t ≤ m such that

1. I0(s) = I0(t)

2. I1(s) ⊕ I1(t) =

⎧
⎨

⎩

S1(s) ⊕ S1(t) if b = 0
S0(s) ⊕ S0(t) if b = 1

Sk+1−b(s) ⊕ Sk+1−b(t) if 2 ≤ b ≤ k − 1.

(5)

Note that in any of the equations that we have, we still have one term con-
taining some sub-blocks of the ciphertext. To increase the probability that the
equation is satisfied, we can set it to have no difference in any of the plaintext-
ciphertext pairs. So in particular, in the CCA model, pick m different ciphertext
such that:

If b = 0, pick all the ciphertext with fixed values of S0(s) and Sk−1(s). Hence in
the CCA attack, m ≤ 2(k−2)n.

If b = 1, · · · , k−2, fix the values of Sk−b(s) and Sk−b−1(s) for all s = 0, · · · ,m−1.
Again, in the CCA attack, m ≤ 2(k−2)n.

If b = k − 1 and k ≥ 4, fix the values of S0(s), S1(s) and Sk−1(s) for s =
0, · · · ,m−1. In this case, the CCA attack must have m to be at most 2(k−3)n.
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So in summary, the differential trail for r = ak + b rounds where b ∈
{0, · · · , k − 1}is as follows:

1. In the KPA setting, the input (ciphertext) differential is (∇0, · · · ,∇k−1) while
the output (plaintext) differential is (Δ0, · · · ,Δk−1) where it satisfies the
following equations:

– Δ0 = 0.
– Δ1 = ∇(k+1−b) (mod k)

– All other sub-blocks difference is arbitrary, which we denote by �.
2. In the CCA setting, the differential is the same, however, we impose some

requirement to the ciphertext that we pick:
– If b = 0, we fix the value of S0(s) and Sk−1(s).
– If b = 1, · · · k − 2, the values of Sk−b(s) and Sk−b−1(s) are fixed.
– If b = k − 1, we fix the values of S0(s), S1(s) and Sk−1(s).

Let NF,M be the random variable representing the number of sets of two
plaintext-ciphertext pairs that satisfy the conditions given by (5) for F rep-
resenting the function used, which has value in the set {perm,F}, and M ∈
{KPA,CCA}. F = perm is used for the random permutation while F = F is
used for the r-round Type-1 Feistel Scheme.

Now it is easy to see that the probability that the requirement set above to
be true is equal to the probability that the right hand side of the equations to
agree, which can be computed since we can assume all the Xi is uniformly and
independently distributed by the ideality of the round function (which has been
discussed in Sect. 3).

Calculating the expected values and variance of the random variables,

E(N(perm,KPA)), E(N(perm,CCA)), V (N(perm,KPA)), V (N(perm,CCA))

are all approximately m2

2·22n . Calculating the random variables corresponding to
F , the expected values and variances are summarised in Table 3 which can be
found in Appendix A. The details on the calculation of the expected values and
variances of NF,CCA for b = 0 can be found in the full version and is omitted
here due to its similarity with the calculation done in [12]. The other results can
be calculated using the same method.

Using the proposition of distinguishability of two random variables given in
the preliminaries, the result is provided in Table 1.

In the KPA model, the maximum number of rounds is k2 where from k(k −
1)+1 up to k2 rounds, the complexity is

√
2 · 2(k−1)n. Furthermore, in the CCA

model, the maximum number of rounds distinguishable is k(k−1)+k−2 = k2−2
rounds with complexity

√
2 · 2(k−3)n.

4.2 Comparison with Existing Result from [12]

To compare with the result given in [12] first note that there are some constant
multipliers that are omitted in [12]. More specifically, all the expected values and
variances should be multiplied by 1

2 . This constant adjustment comes from the
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Table 1. Summary of distinguishability of Type-1 Feistel Scheme

b Model Complexity of distinguishing ak + b rounds Maximum a

0 KPA
√

2 · 2(a−1)n k

CCA
√

2 · 2(a−2)n k − 1

1 ≤ b ≤ k − 2 KPA
√

2 · 2an k − 1

CCA
√

2 · 2(a−2)n k − 1

k − 1 KPA
√

2 · 2an k − 1

CCA
√

2 · 2(a−2)n k − 2

fact that given m plaintext-ciphertext pairs, the number of sets of 2 distinct pairs
should be m(m−1)

2 ≈ m2

2 instead of m2. Although the constant multiplier is very
close to one compared to 2n, it affects the maximum number of rounds that can
be distinguished in the KPA and CPA model. This is because all the complexities
of distinguishers should be multiplied by a factor of

√
2. The existence of this

factor makes it impossible for a to reach the maximum number given in [12]. For
ak−2 rounds distinguished in KPA model, the complexity should be

√
2·2(a−2)n.

Hence the maximum number of rounds that can be distinguished in the KPA
model is k2+k−2 rounds instead of k2+2k−2 rounds. Similarly, for ak−1 rounds
to be distinguishable in CPA, the complexity is again

√
2 ·2(a−2)n. Therefore, the

maximum number of rounds that is distinguishable in CPA model to be k2 − 1
rounds instead of k2 + k − 1.

Note that in both cases, the maximum number of rounds distinguishable
without any complexity constraint is still better in the forward direction. So
in this section, the advantage of using the backward direction analysis in a
constrained environment is discussed.

We compare the results in the CCA model presented above with the CPA
model.

1. When the complexity is fixed to
√

2·2tn, in CPA model, the maximum number
of rounds that is distinguishable is (t + 2)k − 1 while in CCA model, the
maximum number of rounds that is distinguishable is (t + 2)k + (k − 2) =
(t + 3)k − 2 = (t + 2)k − 1 + k − 1 which is an increase of k − 1 rounds.

2. Suppose that we want to distinguish r rounds for some positive integer r.
Table 3 of [12] (after the adjustment by a factor of

√
2) tells us that when

pk − (p − 2) = (p − 1)k + k − p + 2 ≤ r ≤ (p + 1)k − p = pk + k − p, the
complexity is

√
2 · 2(p−2)n. Using the same bound for r, the complexity is√

2 · 2(p−3)n =
√

2 · 2(p−2)n · 2−n when r ≤ pk − 1 and
√

2 · 2(p−2)n when
r ≥ pk (see Table 1). So the complexity is reduced by a factor of 1

2n when
(p − 1)k + k − p + 2 ≤ r ≤ pk for any value of p.

Now for all the following sections, since the method that is being used is
exactly the same, we will not discuss in detail on how to choose the differential,
the expected values and the distinguishability. Instead, only the final results will
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be stated and compared. We note that since we are using Proposition 1, which
is also used in the analysis in [12], has success probability at least 70 %.

5 Type-3 Feistel Scheme

5.1 Analysis of the Type-3 Feistel Scheme

As before, we denote the input as S0, · · · , Sk−1. Define intermediate variables
Xi such that (Xtk, · · · ,Xtk+k−1) is the state value after t rounds. Assuming the
number of rounds is r, for 0 ≤ s ≤ k − 1,Xs = Ss and Xrk+s = Is. Given the
input of round c, 1 ≤ c ≤ r, by definition:

Xck = X(c−1)k+k−1

Xck+s = X(c−1)k+(s−1) ⊕ F(r+1−c,s−1)(Xck+s−1), ∀1 ≤ s ≤ k − 1.

Let r = ak + b for 0 ≤ b ≤ k − 1. In this paper, we only consider a = 1 and
b > 0. Expanding the equation for X(k+b)k+s using the equation given above,
the following can then be derived:

• When b = s,

X(k+b)k+s =
b−1⊕

i=0

F(i+1,s−1−i)(X(k+b−i)k+(s−1−i)

⊕
k−2⊕

i=0

F(i+b+2,k−2−i)(X(k−1−i)k+(k−2−i)) ⊕ S0.

• When b = s + 1 ≤ k − 1,

X(k+b)k+s =
s−1⊕

i=0

F(i+1,s−1−i)(X(k+b−i)k+(s−1−i)) ⊕ F(b+1,k−2)(X(k)k+k−2)

⊕
k−3⊕

i=0

F(i+b+2,k−3−i)(X(k−1−i)k+k−3−i) ⊕ Sk−1.

• When s + 1 < b ≤ k − 1,

X(k+b)k+s =
s−1⊕

i=0

F(i+1,s−1−i)(X(k+b−i)k+(s−1−i))

⊕
b−s−1⊕

i=0

F(s+i+2,k−2−i)(X(k+b−s−1−i)k+k−2−i)

⊕
k−b+s−2⊕

i=0

F(i+b+2,k−b+s−2−i)(X(k−1−i)k+k−b+s−2−i)

⊕
b−s−2⊕

i=0

F(k+s+i+2,k−2−i)(X(b−s−1−i)k+(k−2−i)) ⊕ Sk−1.
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• When s = b + 1 ≤ k − 1,

X(k+t)k+b =
b⊕

i=0

F(i+1,b−i)(X(k+b−i)k+b−i)

⊕
k−3⊕

i=0

F(i+3,k−2−i)F (X(k−2−i)k+(k−2−i) ⊕ S1.

• When b + 1 < s ≤ k − 1,

X(k+b)k+s =
b⊕

i=0

F(i+1,b−i)(X(k+b−i)k+b−i)

⊕
s−b−2⊕

i=0

F(b+i+2,s−b−2−i)(X(k−1−i)k+s−b−2−i)

⊕
k−s+b−2⊕

i=0

F(s+2+i,k−2−i)(X(k−s+b−1−i)k+(k−2−i)) ⊕ Ss−b.

Let b ∈ {1, · · · , k−1}. For the m plaintext-ciphertext pairs, the distinguishing
attack counts the number of sets of two pairs (j, j′), 1 ≤ j < j′ ≤ m that satisfies
the following two conditions:

1. I(r−1)(j) = I(r−1)(j′)
2. Ir(j) ⊕ Ir(j′) = S0(j) ⊕ S0(j′). (6)

In the CCA model, fix the value of Sk−1(j) of all the m ciphertexts. Hence
m ≤ 2(k−1)n.

Calculating the random variables with the same method, E(N(perm,KPA)),
V (N(perm,KPA)), E(N(perm,CCA)), V (N(perm,CCA)), V (N(F,KPA)) and V (N(F,

CCA)) are all approximately m2

2·22n while

E(N(F,KPA)) =
m2

2

(
1

22n
+

1
2(k+r−2)n

)

and

E(N(F,CCA)) =
m2

2

(
1

22n
+

1
2(k+r−3)n

)
.

In both KPA and CPA model, F is distinguishable from a random permutation
when there are up to k+2 rounds and the complexity to distinguish k+b rounds
are

√
2 · 2(k+b−3)n and

√
2 · 2(k+b−4)n respectively.

5.2 Comparison with Existing Result from [12]

Now we compare our result with the one given in [12]. First of all, note that
in [12], there is a restriction that

⌊
k
2

⌋ ≥ 3. This means that k needs to be at
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least 6 while the distinguisher proposed above can be used for all k ≥ 2. So in
any attack model, this analysis provides a new lower bound of the maximum
number of distinguishable round for 2 ≤ k ≤ 5. Furthermore, when k ≥ 6, in
KPA model, in both k + 1 and k + 2 rounds proposed above, the complexity is
higher than the one given in [12]. The same thing happen in the distinguisher for
k +1 rounds in the CCA model. However, the lower bound of maximum number
of rounds distinguishable from random permutation in CCA model is increased
to k + 2 from k + 1 proposed in [12].

6 Alternating Feistel Scheme

6.1 Analysis of Alternating Feistel Scheme

We divide this section into two cases based on the parity of the number of rounds.
This is required due to the different round function in odd and even rounds.

Even Number of Rounds. Suppose that the number of rounds is 2r. Let Xi

be intermediate variables such that after 2t rounds the state value is

(Xtk, · · · Xtk+k−1).

For any 0 ≤ s ≤ k−1, (Is, Ss) = (Xrk+s,Xs). Then, given the state value after 2t
rounds, (Xtk, · · · Xtk+k−1) where 0 ≤ t ≤ r − 1, we have the following relations:

• X(t+1)k = Xtk ⊕ F(r−t)((Xtk+s ⊕ F(r−t,s)(Xtk))k−1
s=1 ) where

(Ya)s
a=r := (Yr, Yr+1, · · · Ys).

• X(t+1)k+s = Xtk+s ⊕ F(r−t,s)(Xtk), ∀s = 1, · · · , k − 1.

Then expand the equation for Is:

• I0 = S0 ⊕ ⊕r−1
i=0 F(r−i)((Xik+s ⊕ F(r−i,s)(Xik))k−1

s=1 )
• ∀s ∈ {1, · · · , k − 1},

Is = Ss ⊕
r−1⊕

i=0

F(r−i,s)(Xik) = Ss ⊕ F(r,s)(S0) ⊕
r−1⊕

i=1

F(r−i,s)(Xik).

The distinguishing attack finds the number of sets of two plaintext-ciphertext
pairs (p, q), 1 ≤ p < q ≤ m such that they satisfy the following conditions:

1. I0(p) = I0(q)
2. ∀s = 1, · · · k − 1, Ib(p) ⊕ Ib(q) = Sb(p) ⊕ Sb(q).

(7)
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Furthermore, in the CCA model, all the ciphertexts are chosen such that they
have the same fixed value in S0(p). So we have, m ≤ 2(k−1)n.

Using the same calculation as before, E(N(perm,KPA)), V (N(perm,KPA)),
E(N(perm,CCA)), V (N(perm,CCA)), V (N(F,KPA)) and V (N(F,KPA)) can all be
approximated by m2

2·2kn . Furthermore,

E(N(F,KPA)) =
m2

2

(
1

2kn
+

1
2rn

)
and E(N(F,CCA)) =

m2

2

(
1

2kn
+

1
2(r−1)n

)
.

Simplifying this, to distinguish 2r rounds, the complexity is
√

2 · 2(r− k
2 )n for

KPA and
√

2 · 2(r− k
2 −1)n for CCA. So when k is even, in both models, F can

be distinguished from a random permutation when the round number is up to
3k−2 with complexity

√
2 ·2(k−1)n and

√
2 ·2(k−2)n respectively. When k is odd,

F can be distinguished from a random permutation when the round number
is up to 3k − 1. In this case, the complexity is

√
2 · 2(k− 1

2 )n and
√

2 · 2(k− 3
2 )n

respectively.

Odd Number of Rounds. Suppose that the number of rounds is 2r + 1 for
some non-negative integers r. Let Xi be intermediate variables such that for any
non-negative integer t, after 2t+1 rounds, the state value is (Xtk, · · · ,Xtk+k−1).
So Is = Xrk+s for all 0 ≤ s ≤ k − 1 while

Xs =
{

Ss, if s = 1, · · · , k − 1,
S0 ⊕ Fr+1(S1, · · · , Sk−1) if s = 0.

Following the expansion done before, the following equalities can be found:

• I0 = S0 ⊕ Fr+1(S1, · · · , Sk−1) ⊕ ⊕r−1
i=0 F(r−i)((Xik+s ⊕ F(r−i,s)(Xik))k−1

s=1 )
• ∀s = 1, · · · , k − 1, Is = Ss ⊕ ⊕r−1

i=0 F(r−i,s)(Xik) = Ss ⊕ F(r,s)(S0) ⊕
⊕r−1

i=1 F(r−i,s)(Xik).

Because of this, all the distinguisher and calculation considered in the even
number of rounds case can still be used in this case. Hence the complexity
to distinguish 2r + 1 rounds is

√
2 · 2(r− k

2 )n for KPA and
√

2 · 2(r− k
2 −1)n for

CCA. When k is even, in both models, F can be distinguished from a random
permutation when the round number is up to 3k−1 with complexity

√
2 ·2(k−1)n

and
√

2 ·2(k−2)n respectively. When k is odd, we can distinguish up to 3k rounds
with complexity

√
2 · 2(k− 1

2 )n and
√

2 · 2(k− 3
2 )n respectively.

6.2 Comparison with Existing Result from [12]

We compare the result of previous subsection with the one given in Sect. 4.4 in
[12]. As before, note all the expected values and variance should be multiplied
by 1

2 , all the complexities should be multiplied by
√

2 and hence the maximum
number of rounds, in this case, should be decreased by 2. After this adjustment,
to distinguish t rounds, the complexities are summarised in Table 2:
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Table 2. Summary of comparison of Alternating Feistel Schemes with fixed number
of rounds t.

Parity of t Attack model Complexity [12] Complexity (This Paper)

Odd (t = 2p − 1) KPA
√

2 · 2(p− k
2 )n · 2n

2
√

2 · 2(p− k
2 )n · 2−n

CPA/CCA
√

2 · 2(p− k
2 )n · 2n

2
√

2 · 2(p− k
2 )n · 2−2n

Even (t = 2p) KPA
√

2 · 2(p− k
2 )n

√
2 · 2(p− k

2 )n

CPA/CCA
√

2 · 2(p− k
2 )n

√
2 · 2(p− k

2 ) · 2−n

In both models, when the number of rounds is odd, the complexity is better
than the forward direction, which is a reduction by a factor of 2

3n
2 . However,

when the number of rounds is even, backward direction requires the same com-
plexity in the KPA model. In the CCA model, the complexity of backward
direction is reduced by a factor of 2n.

Note that after the adjustment to the result in [12], backward differential
analysis achieves 2 more rounds in both models, from 3k−2 rounds to 3k rounds.

7 Unbalanced Feistel Scheme

7.1 Analysis of Unbalanced Feistel Scheme

In this section we only consider two special cases of UFN(k′, k). We discuss the
analysis of the case when k is divisible by k′. This is a generalization of the UFN
discussed in Sect. 6 of [16] where k is set to be 3 and k′ is set to be 1. It can also be
seen as a generalization of the UFN discussed in [17] where k′ = 1. In Appendix
D of the full version2, the case when k−k′ is a factor of k is also considered. Due
to the similarity of the technique used and also the page restriction, the detail
of the analysis is omitted. This second case is a generalization of the analysis of
UFN(k′, k) when k′ = k − 1 in [8,18,23].

Analysis of UFN(k ′,k) when k ′ divides k. Let A be a positive integer such
that k = Ak′. Define intermediate variables Xi such that (Xsk, · · · Xsk+(k−1)) is
the state value after s rounds. So

(X0, · · · ,Xk−1) = (S0, · · · , Sk−1).

Suppose that the number of rounds is r = pA + q where 0 ≤ q ≤ A − 1. So
(Xrk, · · · ,Xrk+k−1) = (I0, · · · , Ik−1). Given the state value after s − 1(s ≥ 1)
backward rounds (X(s−1)k, · · · ,X(s−1)k+k−1), the output of the s-th backward
round can be computed by:

• Xsk+t = X(s−1)k+(t−k′) if k′ ≤ t ≤ k − 1,

2 The full version will be uploaded to Cryptology ePrint archive soon.
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• Xsk+t = X(s−1)k+(k−k′+t) ⊕ Fr+1−s,t(X(s−1)k, · · · X(s−1)k+k−k′−1) =
X(s−1)k+(k−k′+t) ⊕ Fr+1−s,t(Xsk+k′ , · · · ,Xsk+k−1) if 0 ≤ t ≤ k′ − 1.
Now for 0 ≤ t ≤ k′ − 1, expanding the relation given above, we get:

• If q = 0,

It = St ⊕
p−1⊕

s=1

FsA+2,t(X(r−sA)k+k′ , · · · ,X(r−sA)k+k−1)

⊕ F2,t(Ik′ , · · · , Ik−1),

• Otherwise,

It = S(A−q)k′+t ⊕
p⊕

s=1

FsA+2,t(X(r−sA)k+k′ , · · · ,X(r−sA)k+k−1)

⊕F2,t(Ik′ , · · · , Ik−1).

The distinguisher counts the number of set of two plaintext ciphertext pairs
(i, j), 1 ≤ i < j ≤ m such that

∀t = 0, · · · , k′ − 1, It(i) ⊕ It(j) = S(a−q)k′+t(i) ⊕ S(a−q)k′+t(j).

In the CPA model, pick ciphertexts with a fixed value in Ik′ , · · · , Ik−1. In other
words, the maximum number of plaintext-ciphertext pairs is m ≤ 2k′n.

The expected values and variances of the random variables can be found in
Table 4 in Appendix A.

Using the definition of distinguishable, the complexity and maximum number
of rounds distinguishable are summarised in Tables 5 and 6 which can be found
in Appendix B.

A distinguisher for backward direction UFN(k′, k) can be constructed by
considering the forward propagation of the equation. Hence, given the value of
Xsk, · · · ,Xsk+k−1, we have:

• Xsk+t = X(s+1)k+(t+k′) if 0 ≤ t ≤ k − k′ − 1,
• Xsk+t = X(s+1)k+(t−k+k′) ⊕ Fr−s,t(X(s+1)k+k′ , · · · X(s+1)k+k−1)

= X(s+1)k+(t−k+k′) ⊕ Fr−s,t(Xsk, · · · ,Xsk+k−k′−1) if k − k′ ≤ t ≤ k − 1.

Expanding St, the following equalities can be obtained:

• If q = 0,

St = It ⊕
p−1⊕

s=1

Fr−sA,t(XsAk, · · · ,XsAk+k−k′−1) ⊕ Fr,t(S0, · · · , Ik−k′−1),

• Otherwise,

St = It−(A−q)k′ ⊕
p⊕

s=1

Fr−sA,t(XiAk, · · · ,XiAk+k−k′−1)

⊕Fr,t(S0, · · · , Sk−k′−1).
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The distinguisher finds the number of sets of two plaintext-ciphertext pairs
(i, j) such that ∀t = k −k′, · · · k − 1, St(i)⊕St(j) = It−(A−q)k′(i)⊕ It−(A−q)k′(j)
where S0, · · · Sk−k′−1 are fixed in the CCA model. It is easy to see that with this
model, we have exactly the same expected values, variances and distinguishabil-
ity as the ones found in Tables 4, 5 and 6.

8 Conclusion

In this paper, differential analysis on the inverse function of four different types of
generic Generalized Feistel Scheme, namely Type-1, Type-3, Alternating Scheme
and UFN(k′, k) was considered. We show that for Type-1 Feistel Scheme, back-
ward distinguisher performs better especially in the chosen ciphertext attack
compared to the results in [12]. Using the same complexity, we can distinguish
k − 1 more rounds while distinguishing the same number of rounds requires
smaller complexity with factor of 1

2n .
In Type-2 and Alternating Feistel scheme, although there are some difference

in the complexity, both directions can achieve almost the same number of rounds.
This shows that these two types can be seen as almost symmetric from both
direction.

We improve the differential cryptanalysis in Type-3 Feistel Scheme in several
cases. In the KPA model with low number of branches, 2 ≤ k ≤ 5, our analysis
provides a lower bound of the number of rounds that is indistinguishable from
random permutation. Secondly, in the CCA model, the lower bound of maximum
number of rounds distinguishable is increased by 1 round, from k + 1 obtained
in [12] to k + 2.

In Alternating Feistel Scheme, we achieve 2 more rounds than the one claimed
in [12]. The complexity is reduced by a factor of 2

3n
2 when distinguishing the

same odd number of rounds.
Lastly, a lower bound for the maximum number of rounds that is distin-

guishable from random permutation in UFN(k′, k) scheme is given through the
forward direction distinguisher. To the best of our knowledge, this is the first
bound given in a rather general case in which k′ is arbitrary as long as k′ is a
divisor of k for any integer k.

A Expected Value and Variance of Random Variables
Concerning Type-1 Feistel Scheme and UFN(k′, k)
When k′ Divides k.

The following table summarises the expected value and variance of the random
variables used in the analysis of Type-1 Feistel Schemes.

The next table summarises the expected values and variances for random
variables used in the analysis of UFN(k′, k) when k′ divides k.



322 I. Tjuawinata et al.

Table 3. Expected value and variance of random variables concerning Type-1 Feistel
Schemes

b Attack model Expected value Variance Maximum value of m

0 KPA m2
2

(
1

22n
+ 1

2an

)
m2

2·22n 2kn

CCA m2
2

(
1

22n
+ 1

2(a−1)n

)
m2

2·22n 2(k−2)n

1 ≤ b ≤ k − 2 KPA m2
2

(
1

22n
+ 1

2(a+1)n

)
m2

2·22n 2kn

CCA m2
2

(
1

22n
+ 1

2(a−1)n

)
m2

2·22n 2(k−2)n

k − 1 KPA m2
2

(
1

22n
+ 1

2(a+1)n

)
m2

2·22n 2kn

CCA m2
2

(
1

22n
+ 1

2(a−1)n

)
m2

2·22n 2(k−3)n

Table 4. Expected value and variance for various cases of UFN(k′, k)

Attack model q value Π E V σ

KPA 0 Perm m2

2·2k′n
m2

2·2k′n
m

√
2·2

k′
2 n

F m2
2 ·
(

1
2k′n + k′

2(k
′+p−1)n

)
m2

2·2k′n
m

√
2·2

k′
2 n

1 ≤ q ≤ A − 1 Perm m2

2·2k′n
m2

2·2k′n
m

√
2·2

k′
2 n

F m2
2 ·
(

1
2k′n + k′

2(k
′+p)n

)
m2

2·2k′n
m

√
2·2

k′
2 n

CPA 0 Perm m2

2·2k′n
m2

2·2k′n
m

√
2·2

k′
2 n

F m2
2 ·
(

1
2k′n + k′

2(k
′+p−2)n

)
m2

2·2k′n
m

√
2·2

k′
2 n

1 ≤ q ≤ A − 1 Perm m2

2·2k′n
m2

2·2k′n
m

√
2·2

k′
2 n

F m2
2 ·
(

1
2k′n + k′

2(k
′+p−1)n

)
m2

2·2k′n
m

√
2·2

k′
2 n

B Distinguishability Table for UFN(k′, k)

The following tables contain the summary of distinguishability of UFN(k′, k)
from a random permutation.

Table 5. Complexity of Unbalanced Feistel Scheme

k′ q value Attack model Complexity of distinguishing pA + q rounds

1 0 KPA
√

2 · 2(p− 1
2 )n

CPA/CCA
√

2 · 2(p− 3
2 )n

1 ≤ q ≤ A − 1 KPA
√

2 · 2(p+
1
2 )n

CPA/CCA
√

2 · 2(p− 1
2 )n

k′ ≥ 2 0 KPA
√

2
k′ · 2(

k′
2 +p−1)n

CPA/CCA
√

2
k′ · 2(

k′
2 +p−2)n

1 ≤ q ≤ A − 1 KPA
√

2
k′ · 2(p+

k′
2 )n

CPA/CCA
√

2
k′ · 2(p+

k′
2 −1)n
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Table 6. Summary of distinguishability of Unbalanced Feistel Scheme

k′ q value Attack model Maximum p distinguishable→Maximum round distinguishable

1 0 KPA k → k2

CPA/CCA 2 → 2k

1 ≤ q ≤ A − 1 KPA k → k2 + k − 1

CPA/CCA 1 → k + k − 1

k′ ≥ 2 0 KPA

⎧
⎨

⎩
k − k′

2 + 1 → k2
k′ − k

2 + k
k′ if k′ is even

k − k′−1
2 → k2

k′ − k(k′−1)
2k′ if k′ is odd

CPA/CCA

⎧
⎨

⎩

k′
2 + 2 → k

2 + 2 k
k′ if k′ is even

k′+3
2 → k(k′+3)

2k′ if k′ is odd

1 ≤ q ≤ A − 1 KPA

⎧
⎨

⎩
k − k′

2 → k2
k′ − k

2 + k
k′ − 1 if k′ is even

k − k′+1
2 → k2

k′ − k(k′+1)
2k′ + k

k′ − 1 if k′ is odd

CPA/CCA

⎧
⎨

⎩

k′
2 + 1 → k

2 + k
k′ + k

k′ − 1 if k′ is even

k′+1
2 → k(k′+1)

2k′ + k
k′ − 1 if k′ is odd
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